whoops, no ability to add comments in between functions in pseudocode
[openpower-isa.git] / src / openpower / decoder / isa / test_caller_svp64_ldst.py
index bc74f7b9c23b78bf54b137488487c6ae8d0cca8c..25ae698655142e7999e95b890bfca20d7fc521bc 100644 (file)
@@ -14,6 +14,8 @@ from openpower.decoder.isa.test_caller import Register, run_tst
 from openpower.sv.trans.svp64 import SVP64Asm
 from openpower.consts import SVP64CROffs
 from openpower.decoder.helpers import fp64toselectable
+from openpower.decoder.isa.remap_dct_yield import (halfrev2, reverse_bits,
+                                                  )
 from copy import deepcopy
 
 
@@ -185,6 +187,81 @@ class DecoderTestCase(FHDLTestCase):
             self.assertEqual(sim.gpr(14), SelectableInt(0x202, 64))
             self.assertEqual(sim.gpr(15), SelectableInt(0x404, 64))
 
+    def test_sv_load_store_bitreverse_fp(self):
+        """>>> lst = ["addi 1, 0, 0x0010",
+                        "addi 2, 0, 0x0004",
+                        "addi 3, 0, 0x0002",
+                        "addi 5, 0, 0x101",
+                        "addi 6, 0, 0x202",
+                        "addi 7, 0, 0x303",
+                        "addi 8, 0, 0x404",
+                        "sv.std 5.v, 0(1)",
+                        "sv.lfdbr 12.v, 4(1), 2"]
+
+        note: bitreverse mode is... odd.  it's the butterfly generator
+        from Cooley-Tukey FFT:
+        https://en.wikipedia.org/wiki/Cooley%E2%80%93Tukey_FFT_algorithm#Data_reordering,_bit_reversal,_and_in-place_algorithms
+
+        bitreverse LD is computed as:
+        for i in range(VL):
+            EA = (RA|0) + (EXTS(D) * LDSTsize * bitreverse(i, VL)) << RC
+
+        bitreversal of 0 1 2 3 in binary 0b00 0b01 0b10 0b11
+        produces       0 2 1 3 in binary 0b00 0b10 0b01 0b11
+
+        and thus creates the butterfly needed for one iteration of FFT.
+        the RC (shift) is to be able to offset the LDs by Radix-2 spans
+        """
+        lst = SVP64Asm(["addi 1, 0, 0x0010",
+                        "addi 2, 0, 0x0000",
+                        "addi 5, 0, 0x101",
+                        "addi 6, 0, 0x202",
+                        "addi 7, 0, 0x303",
+                        "addi 8, 0, 0x404",
+                        "sv.std 5.v, 0(1)", # scalar r1 + 0 + wordlen*offs
+                        "sv.lfdbr 12.v, 8(1), 2"]) # bit-reversed
+        lst = list(lst)
+
+        # SVSTATE (in this case, VL=4)
+        svstate = SVP64State()
+        svstate.vl = 4 # VL
+        svstate.maxvl = 4 # MAXVL
+        print ("SVSTATE", bin(svstate.asint()))
+
+        fprs = [0] * 32
+
+        with Program(lst, bigendian=False) as program:
+            sim = self.run_tst_program(program, svstate=svstate,
+                                                initial_fprs=fprs)
+            mem = sim.mem.dump(printout=False)
+            print (mem)
+
+            self.assertEqual(mem, [(16, 0x101),
+                                   (24, 0x202),
+                                   (32, 0x303),
+                                   (40, 0x404),
+                                  ])
+            print(sim.gpr(1))
+            # from STs
+            self.assertEqual(sim.gpr(5), SelectableInt(0x101, 64))
+            self.assertEqual(sim.gpr(6), SelectableInt(0x202, 64))
+            self.assertEqual(sim.gpr(7), SelectableInt(0x303, 64))
+            self.assertEqual(sim.gpr(8), SelectableInt(0x404, 64))
+            # r1=0x10, RC=0, offs=4: contents of memory expected at:
+            #    element 0:   EA = r1 + bitrev(0b00)*4 => 0x10 + 0b00*4 => 0x10
+            #    element 1:   EA = r1 + bitrev(0b01)*4 => 0x10 + 0b10*4 => 0x18
+            #    element 2:   EA = r1 + bitrev(0b10)*4 => 0x10 + 0b01*4 => 0x14
+            #    element 3:   EA = r1 + bitrev(0b11)*4 => 0x10 + 0b10*4 => 0x1c
+            # therefore loaded from (bit-reversed indexing):
+            #    r9  => mem[0x10] which was stored from r5
+            #    r10 => mem[0x18] which was stored from r6
+            #    r11 => mem[0x18] which was stored from r7
+            #    r12 => mem[0x1c] which was stored from r8
+            self.assertEqual(sim.fpr(12), SelectableInt(0x101, 64))
+            self.assertEqual(sim.fpr(13), SelectableInt(0x303, 64))
+            self.assertEqual(sim.fpr(14), SelectableInt(0x202, 64))
+            self.assertEqual(sim.fpr(15), SelectableInt(0x404, 64))
+
     def test_sv_load_store_bitreverse2(self):
         """>>> lst = ["addi 1, 0, 0x0010",
                         "addi 2, 0, 0x0004",
@@ -247,7 +324,7 @@ class DecoderTestCase(FHDLTestCase):
             #                       (24, 0x040400000303)])
             self._check_fpregs(sim, expected_fprs)
 
-    def test_sv_load_store_bitreverse_remap(self):
+    def test_sv_load_store_remap_matrix(self):
         """>>> lst = ["addi 1, 0, 0x0010",
                         "addi 2, 0, 0x0004",
                         "addi 3, 0, 0x0002",
@@ -255,24 +332,14 @@ class DecoderTestCase(FHDLTestCase):
                         "addi 6, 0, 0x202",
                         "addi 7, 0, 0x303",
                         "addi 8, 0, 0x404",
-                        "sv.stw 5.v, 0(1)",
-                        "svshape 4, 4, 4, 0, 0",
-                        "svremap 31, 1, 2, 3, 0, 0, 0, 0",
-                        "sv.lwzbr 12.v, 4(1), 2"]
-
-        note: bitreverse mode is... odd.  it's the butterfly generator
-        from Cooley-Tukey FFT:
-        https://en.wikipedia.org/wiki/Cooley%E2%80%93Tukey_FFT_algorithm#Data_reordering,_bit_reversal,_and_in-place_algorithms
-
-        bitreverse LD is computed as:
-        for i in range(VL):
-            EA = (RA|0) + (EXTS(D) * LDSTsize * bitreverse(i, VL)) << RC
-
-        bitreversal of 0 1 2 3 in binary 0b00 0b01 0b10 0b11
-        produces       0 2 1 3 in binary 0b00 0b10 0b01 0b11
+                        "sv.stw 4.v, 0(1)",  # scalar r1 + 0 + wordlen*offs
+                        "svshape 3, 3, 4, 0, 0",
+                        "svremap 1, 1, 2, 0, 0, 0, 0, 1",
+                        "sv.lwz 20.v, 0(1)",
+                        ]
 
-        and thus creates the butterfly needed for one iteration of FFT.
-        the RC (shift) is to be able to offset the LDs by Radix-2 spans
+        REMAPed a LD operation via a Matrix Multiply Schedule,
+        which is set up as 3x4 result
         """
         lst = SVP64Asm(["addi 1, 0, 0x0010",
                         "addi 2, 0, 0x0000",
@@ -284,17 +351,25 @@ class DecoderTestCase(FHDLTestCase):
                         "addi 9, 0, 0x606",
                         "addi 10, 0, 0x707",
                         "addi 11, 0, 0x808",
+                        "addi 12, 0, 0x909",
+                        "addi 13, 0, 0xa0a",
+                        "addi 14, 0, 0xb0b",
+                        "addi 15, 0, 0xc0c",
+                        "addi 16, 0, 0xd0d",
+                        "addi 17, 0, 0xe0e",
+                        "addi 18, 0, 0xf0f",
                         "sv.stw 4.v, 0(1)",  # scalar r1 + 0 + wordlen*offs
-                        "svshape 4, 4, 2, 0, 0",
-                        "svremap 31, 1, 2, 3, 0, 0, 0, 1",
-                        #"setvl 0, 0, 8, 0, 1, 1",
-                        "sv.lwzbr 12.v, 4(1), 2"]) # bit-reversed
+                        "svshape 3, 3, 4, 0, 0",
+                        "svremap 1, 1, 2, 0, 0, 0, 0, 1",
+                        "sv.lwz 20.v, 0(1)",
+                        #"sv.lwzbr 12.v, 4(1), 2", # bit-reversed
+                        ])
         lst = list(lst)
 
         # SVSTATE (in this case, VL=4)
         svstate = SVP64State()
-        svstate.vl = 8 # VL
-        svstate.maxvl = 8 # MAXVL
+        svstate.vl = 12 # VL
+        svstate.maxvl = 12 # MAXVL
         print ("SVSTATE", bin(svstate.asint()))
 
         regs = [0] * 64
@@ -309,7 +384,9 @@ class DecoderTestCase(FHDLTestCase):
             self.assertEqual(mem, [(16, 0x020200000101),
                                    (24, 0x040400000303),
                                    (32, 0x060600000505),
-                                   (40, 0x080800000707)])
+                                   (40, 0x080800000707),
+                                   (48, 0x0a0a00000909),
+                                   (56, 0x0c0c00000b0b)])
             print(sim.gpr(1))
             # from STs
             self.assertEqual(sim.gpr(4), SelectableInt(0x101, 64))
@@ -322,14 +399,103 @@ class DecoderTestCase(FHDLTestCase):
             self.assertEqual(sim.gpr(11), SelectableInt(0x808, 64))
             # combination of bit-reversed load with a Matrix REMAP
             # schedule
-            self.assertEqual(sim.gpr(12), SelectableInt(0x101, 64))
-            self.assertEqual(sim.gpr(13), SelectableInt(0x505, 64))
-            self.assertEqual(sim.gpr(14), SelectableInt(0x303, 64))
-            self.assertEqual(sim.gpr(15), SelectableInt(0x707, 64))
-            self.assertEqual(sim.gpr(16), SelectableInt(0x202, 64))
-            self.assertEqual(sim.gpr(17), SelectableInt(0x606, 64))
-            self.assertEqual(sim.gpr(18), SelectableInt(0x404, 64))
-            self.assertEqual(sim.gpr(19), SelectableInt(0x808, 64))
+            for i in range(3):
+                self.assertEqual(sim.gpr(20+i), SelectableInt(0x101, 64))
+                self.assertEqual(sim.gpr(23+i), SelectableInt(0x505, 64))
+                self.assertEqual(sim.gpr(26+i), SelectableInt(0x909, 64))
+                self.assertEqual(sim.gpr(29+i), SelectableInt(0x202, 64))
+
+    def test_sv_load_store_bitreverse_remap_halfswap(self):
+        """>>> lst = ["addi 1, 0, 0x0010",
+                        "addi 2, 0, 0x0000",
+                        "addi 4, 0, 0x101",
+                        "addi 5, 0, 0x202",
+                        "addi 6, 0, 0x303",
+                        "addi 7, 0, 0x404",
+                        "addi 8, 0, 0x505",
+                        "addi 9, 0, 0x606",
+                        "addi 10, 0, 0x707",
+                        "addi 11, 0, 0x808",
+                        "sv.stw 5.v, 0(1)",
+                        "svshape 8, 1, 1, 6, 0",
+                        "svremap 31, 1, 2, 3, 0, 0, 0, 0",
+                        "sv.lwzbr 12.v, 4(1), 2"]
+
+        bitreverse LD is computed as:
+        for i in range(VL):
+            EA = (RA|0) + (EXTS(D) * LDSTsize * bitreverse(i, VL)) << RC
+
+        bitreversal of 0 1 2 3 in binary 0b00 0b01 0b10 0b11
+        produces       0 2 1 3 in binary 0b00 0b10 0b01 0b11
+
+        and thus creates the butterfly needed for one iteration of FFT.
+        the RC (shift) is to be able to offset the LDs by Radix-2 spans
+
+        on top of the bit-reversal is a REMAP for half-swaps for DCT
+        in-place.
+        """
+        lst = SVP64Asm(["addi 1, 0, 0x0010",
+                        "addi 2, 0, 0x0000",
+                        "addi 4, 0, 0x001",
+                        "addi 5, 0, 0x102",
+                        "addi 6, 0, 0x203",
+                        "addi 7, 0, 0x304",
+                        "addi 8, 0, 0x405",
+                        "addi 9, 0, 0x506",
+                        "addi 10, 0, 0x607",
+                        "addi 11, 0, 0x708",
+                        "sv.stw 4.v, 0(1)",  # scalar r1 + 0 + wordlen*offs
+                        "svshape 8, 1, 1, 6, 0",
+                        "svremap 1, 0, 0, 0, 0, 0, 0, 1",
+                        #"setvl 0, 0, 8, 0, 1, 1",
+                        "sv.lwzbr 12.v, 4(1), 2",  # bit-reversed
+                        #"sv.lwz 12.v, 0(1)"
+                        ])
+        lst = list(lst)
+
+        # SVSTATE (in this case, VL=4)
+        svstate = SVP64State()
+        svstate.vl = 8 # VL
+        svstate.maxvl = 8 # MAXVL
+        print ("SVSTATE", bin(svstate.asint()))
+
+        regs = [0] * 64
+
+        avi = [0x001, 0x102, 0x203, 0x304, 0x405, 0x506, 0x607, 0x708]
+        n = len(avi)
+        levels = n.bit_length() - 1
+        ri = list(range(n))
+        ri = [ri[reverse_bits(i, levels)] for i in range(n)]
+        av = halfrev2(avi, False)
+        av = [av[ri[i]] for i in range(n)]
+
+        with Program(lst, bigendian=False) as program:
+            sim = self.run_tst_program(program, svstate=svstate,
+                                                initial_regs=regs)
+            mem = sim.mem.dump(printout=False)
+            print ("Mem")
+            print (mem)
+
+            self.assertEqual(mem, [(16, 0x010200000001),
+                                   (24, 0x030400000203),
+                                   (32, 0x050600000405),
+                                   (40, 0x070800000607)])
+            # from STs
+            for i in range(len(avi)):
+                print ("st gpr", i, sim.gpr(i+4), hex(avi[i]))
+                self.assertEqual(sim.gpr(i+4), avi[i])
+            self.assertEqual(sim.gpr(5), SelectableInt(0x102, 64))
+            self.assertEqual(sim.gpr(6), SelectableInt(0x203, 64))
+            self.assertEqual(sim.gpr(7), SelectableInt(0x304, 64))
+            self.assertEqual(sim.gpr(8), SelectableInt(0x405, 64))
+            self.assertEqual(sim.gpr(9), SelectableInt(0x506, 64))
+            self.assertEqual(sim.gpr(10), SelectableInt(0x607, 64))
+            self.assertEqual(sim.gpr(11), SelectableInt(0x708, 64))
+            # combination of bit-reversed load with a DCT half-swap REMAP
+            # schedule
+            for i in range(len(avi)):
+                print ("ld gpr", i, sim.gpr(i+12), hex(av[i]))
+                self.assertEqual(sim.gpr(i+12), av[i])
 
     def run_tst_program(self, prog, initial_regs=None,
                               svstate=None, initial_fprs=None):
@@ -339,7 +505,10 @@ class DecoderTestCase(FHDLTestCase):
             initial_fprs = [0] * 32
         simulator = run_tst(prog, initial_regs, svstate=svstate,
                                   initial_fprs=initial_fprs)
+        print ("GPRs")
         simulator.gpr.dump()
+        print ("FPRs")
+        simulator.fpr.dump()
         return simulator