aco: don't create byte-aligned short loads
[mesa.git] / src / amd / compiler / aco_instruction_selection.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 * Copyright © 2018 Google
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <algorithm>
27 #include <array>
28 #include <stack>
29 #include <map>
30
31 #include "ac_shader_util.h"
32 #include "aco_ir.h"
33 #include "aco_builder.h"
34 #include "aco_interface.h"
35 #include "aco_instruction_selection_setup.cpp"
36 #include "util/fast_idiv_by_const.h"
37
38 namespace aco {
39 namespace {
40
41 class loop_info_RAII {
42 isel_context* ctx;
43 unsigned header_idx_old;
44 Block* exit_old;
45 bool divergent_cont_old;
46 bool divergent_branch_old;
47 bool divergent_if_old;
48
49 public:
50 loop_info_RAII(isel_context* ctx, unsigned loop_header_idx, Block* loop_exit)
51 : ctx(ctx),
52 header_idx_old(ctx->cf_info.parent_loop.header_idx), exit_old(ctx->cf_info.parent_loop.exit),
53 divergent_cont_old(ctx->cf_info.parent_loop.has_divergent_continue),
54 divergent_branch_old(ctx->cf_info.parent_loop.has_divergent_branch),
55 divergent_if_old(ctx->cf_info.parent_if.is_divergent)
56 {
57 ctx->cf_info.parent_loop.header_idx = loop_header_idx;
58 ctx->cf_info.parent_loop.exit = loop_exit;
59 ctx->cf_info.parent_loop.has_divergent_continue = false;
60 ctx->cf_info.parent_loop.has_divergent_branch = false;
61 ctx->cf_info.parent_if.is_divergent = false;
62 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
63 }
64
65 ~loop_info_RAII()
66 {
67 ctx->cf_info.parent_loop.header_idx = header_idx_old;
68 ctx->cf_info.parent_loop.exit = exit_old;
69 ctx->cf_info.parent_loop.has_divergent_continue = divergent_cont_old;
70 ctx->cf_info.parent_loop.has_divergent_branch = divergent_branch_old;
71 ctx->cf_info.parent_if.is_divergent = divergent_if_old;
72 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth - 1;
73 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent)
74 ctx->cf_info.exec_potentially_empty_discard = false;
75 }
76 };
77
78 struct if_context {
79 Temp cond;
80
81 bool divergent_old;
82 bool exec_potentially_empty_discard_old;
83 bool exec_potentially_empty_break_old;
84 uint16_t exec_potentially_empty_break_depth_old;
85
86 unsigned BB_if_idx;
87 unsigned invert_idx;
88 bool uniform_has_then_branch;
89 bool then_branch_divergent;
90 Block BB_invert;
91 Block BB_endif;
92 };
93
94 static bool visit_cf_list(struct isel_context *ctx,
95 struct exec_list *list);
96
97 static void add_logical_edge(unsigned pred_idx, Block *succ)
98 {
99 succ->logical_preds.emplace_back(pred_idx);
100 }
101
102
103 static void add_linear_edge(unsigned pred_idx, Block *succ)
104 {
105 succ->linear_preds.emplace_back(pred_idx);
106 }
107
108 static void add_edge(unsigned pred_idx, Block *succ)
109 {
110 add_logical_edge(pred_idx, succ);
111 add_linear_edge(pred_idx, succ);
112 }
113
114 static void append_logical_start(Block *b)
115 {
116 Builder(NULL, b).pseudo(aco_opcode::p_logical_start);
117 }
118
119 static void append_logical_end(Block *b)
120 {
121 Builder(NULL, b).pseudo(aco_opcode::p_logical_end);
122 }
123
124 Temp get_ssa_temp(struct isel_context *ctx, nir_ssa_def *def)
125 {
126 assert(ctx->allocated[def->index].id());
127 return ctx->allocated[def->index];
128 }
129
130 Temp emit_mbcnt(isel_context *ctx, Definition dst,
131 Operand mask_lo = Operand((uint32_t) -1), Operand mask_hi = Operand((uint32_t) -1))
132 {
133 Builder bld(ctx->program, ctx->block);
134 Definition lo_def = ctx->program->wave_size == 32 ? dst : bld.def(v1);
135 Temp thread_id_lo = bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, lo_def, mask_lo, Operand(0u));
136
137 if (ctx->program->wave_size == 32) {
138 return thread_id_lo;
139 } else {
140 Temp thread_id_hi = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32, dst, mask_hi, thread_id_lo);
141 return thread_id_hi;
142 }
143 }
144
145 Temp emit_wqm(isel_context *ctx, Temp src, Temp dst=Temp(0, s1), bool program_needs_wqm = false)
146 {
147 Builder bld(ctx->program, ctx->block);
148
149 if (!dst.id())
150 dst = bld.tmp(src.regClass());
151
152 assert(src.size() == dst.size());
153
154 if (ctx->stage != fragment_fs) {
155 if (!dst.id())
156 return src;
157
158 bld.copy(Definition(dst), src);
159 return dst;
160 }
161
162 bld.pseudo(aco_opcode::p_wqm, Definition(dst), src);
163 ctx->program->needs_wqm |= program_needs_wqm;
164 return dst;
165 }
166
167 static Temp emit_bpermute(isel_context *ctx, Builder &bld, Temp index, Temp data)
168 {
169 if (index.regClass() == s1)
170 return bld.readlane(bld.def(s1), data, index);
171
172 if (ctx->options->chip_class <= GFX7) {
173 /* GFX6-7: there is no bpermute instruction */
174 Operand index_op(index);
175 Operand input_data(data);
176 index_op.setLateKill(true);
177 input_data.setLateKill(true);
178
179 return bld.pseudo(aco_opcode::p_bpermute, bld.def(v1), bld.def(bld.lm), bld.def(bld.lm, vcc), index_op, input_data);
180 } else if (ctx->options->chip_class >= GFX10 && ctx->program->wave_size == 64) {
181 /* GFX10 wave64 mode: emulate full-wave bpermute */
182 if (!ctx->has_gfx10_wave64_bpermute) {
183 ctx->has_gfx10_wave64_bpermute = true;
184 ctx->program->config->num_shared_vgprs = 8; /* Shared VGPRs are allocated in groups of 8 */
185 ctx->program->vgpr_limit -= 4; /* We allocate 8 shared VGPRs, so we'll have 4 fewer normal VGPRs */
186 }
187
188 Temp index_is_lo = bld.vopc(aco_opcode::v_cmp_ge_u32, bld.def(bld.lm), Operand(31u), index);
189 Builder::Result index_is_lo_split = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), bld.def(s1), index_is_lo);
190 Temp index_is_lo_n1 = bld.sop1(aco_opcode::s_not_b32, bld.def(s1), bld.def(s1, scc), index_is_lo_split.def(1).getTemp());
191 Operand same_half = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), index_is_lo_split.def(0).getTemp(), index_is_lo_n1);
192 Operand index_x4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), index);
193 Operand input_data(data);
194
195 index_x4.setLateKill(true);
196 input_data.setLateKill(true);
197 same_half.setLateKill(true);
198
199 return bld.pseudo(aco_opcode::p_bpermute, bld.def(v1), bld.def(s2), bld.def(s1, scc), index_x4, input_data, same_half);
200 } else {
201 /* GFX8-9 or GFX10 wave32: bpermute works normally */
202 Temp index_x4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), index);
203 return bld.ds(aco_opcode::ds_bpermute_b32, bld.def(v1), index_x4, data);
204 }
205 }
206
207 Temp as_vgpr(isel_context *ctx, Temp val)
208 {
209 if (val.type() == RegType::sgpr) {
210 Builder bld(ctx->program, ctx->block);
211 return bld.copy(bld.def(RegType::vgpr, val.size()), val);
212 }
213 assert(val.type() == RegType::vgpr);
214 return val;
215 }
216
217 //assumes a != 0xffffffff
218 void emit_v_div_u32(isel_context *ctx, Temp dst, Temp a, uint32_t b)
219 {
220 assert(b != 0);
221 Builder bld(ctx->program, ctx->block);
222
223 if (util_is_power_of_two_or_zero(b)) {
224 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)util_logbase2(b)), a);
225 return;
226 }
227
228 util_fast_udiv_info info = util_compute_fast_udiv_info(b, 32, 32);
229
230 assert(info.multiplier <= 0xffffffff);
231
232 bool pre_shift = info.pre_shift != 0;
233 bool increment = info.increment != 0;
234 bool multiply = true;
235 bool post_shift = info.post_shift != 0;
236
237 if (!pre_shift && !increment && !multiply && !post_shift) {
238 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), a);
239 return;
240 }
241
242 Temp pre_shift_dst = a;
243 if (pre_shift) {
244 pre_shift_dst = (increment || multiply || post_shift) ? bld.tmp(v1) : dst;
245 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(pre_shift_dst), Operand((uint32_t)info.pre_shift), a);
246 }
247
248 Temp increment_dst = pre_shift_dst;
249 if (increment) {
250 increment_dst = (post_shift || multiply) ? bld.tmp(v1) : dst;
251 bld.vadd32(Definition(increment_dst), Operand((uint32_t) info.increment), pre_shift_dst);
252 }
253
254 Temp multiply_dst = increment_dst;
255 if (multiply) {
256 multiply_dst = post_shift ? bld.tmp(v1) : dst;
257 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(multiply_dst), increment_dst,
258 bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand((uint32_t)info.multiplier)));
259 }
260
261 if (post_shift) {
262 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)info.post_shift), multiply_dst);
263 }
264 }
265
266 void emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, Temp dst)
267 {
268 Builder bld(ctx->program, ctx->block);
269 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(idx));
270 }
271
272
273 Temp emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, RegClass dst_rc)
274 {
275 /* no need to extract the whole vector */
276 if (src.regClass() == dst_rc) {
277 assert(idx == 0);
278 return src;
279 }
280
281 assert(src.bytes() > (idx * dst_rc.bytes()));
282 Builder bld(ctx->program, ctx->block);
283 auto it = ctx->allocated_vec.find(src.id());
284 if (it != ctx->allocated_vec.end() && dst_rc.bytes() == it->second[idx].regClass().bytes()) {
285 if (it->second[idx].regClass() == dst_rc) {
286 return it->second[idx];
287 } else {
288 assert(!dst_rc.is_subdword());
289 assert(dst_rc.type() == RegType::vgpr && it->second[idx].type() == RegType::sgpr);
290 return bld.copy(bld.def(dst_rc), it->second[idx]);
291 }
292 }
293
294 if (dst_rc.is_subdword())
295 src = as_vgpr(ctx, src);
296
297 if (src.bytes() == dst_rc.bytes()) {
298 assert(idx == 0);
299 return bld.copy(bld.def(dst_rc), src);
300 } else {
301 Temp dst = bld.tmp(dst_rc);
302 emit_extract_vector(ctx, src, idx, dst);
303 return dst;
304 }
305 }
306
307 void emit_split_vector(isel_context* ctx, Temp vec_src, unsigned num_components)
308 {
309 if (num_components == 1)
310 return;
311 if (ctx->allocated_vec.find(vec_src.id()) != ctx->allocated_vec.end())
312 return;
313 RegClass rc;
314 if (num_components > vec_src.size()) {
315 if (vec_src.type() == RegType::sgpr) {
316 /* should still help get_alu_src() */
317 emit_split_vector(ctx, vec_src, vec_src.size());
318 return;
319 }
320 /* sub-dword split */
321 rc = RegClass(RegType::vgpr, vec_src.bytes() / num_components).as_subdword();
322 } else {
323 rc = RegClass(vec_src.type(), vec_src.size() / num_components);
324 }
325 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_components)};
326 split->operands[0] = Operand(vec_src);
327 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
328 for (unsigned i = 0; i < num_components; i++) {
329 elems[i] = {ctx->program->allocateId(), rc};
330 split->definitions[i] = Definition(elems[i]);
331 }
332 ctx->block->instructions.emplace_back(std::move(split));
333 ctx->allocated_vec.emplace(vec_src.id(), elems);
334 }
335
336 /* This vector expansion uses a mask to determine which elements in the new vector
337 * come from the original vector. The other elements are undefined. */
338 void expand_vector(isel_context* ctx, Temp vec_src, Temp dst, unsigned num_components, unsigned mask)
339 {
340 emit_split_vector(ctx, vec_src, util_bitcount(mask));
341
342 if (vec_src == dst)
343 return;
344
345 Builder bld(ctx->program, ctx->block);
346 if (num_components == 1) {
347 if (dst.type() == RegType::sgpr)
348 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec_src);
349 else
350 bld.copy(Definition(dst), vec_src);
351 return;
352 }
353
354 unsigned component_size = dst.size() / num_components;
355 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
356
357 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
358 vec->definitions[0] = Definition(dst);
359 unsigned k = 0;
360 for (unsigned i = 0; i < num_components; i++) {
361 if (mask & (1 << i)) {
362 Temp src = emit_extract_vector(ctx, vec_src, k++, RegClass(vec_src.type(), component_size));
363 if (dst.type() == RegType::sgpr)
364 src = bld.as_uniform(src);
365 vec->operands[i] = Operand(src);
366 } else {
367 vec->operands[i] = Operand(0u);
368 }
369 elems[i] = vec->operands[i].getTemp();
370 }
371 ctx->block->instructions.emplace_back(std::move(vec));
372 ctx->allocated_vec.emplace(dst.id(), elems);
373 }
374
375 /* adjust misaligned small bit size loads */
376 void byte_align_scalar(isel_context *ctx, Temp vec, Operand offset, Temp dst)
377 {
378 Builder bld(ctx->program, ctx->block);
379 Operand shift;
380 Temp select = Temp();
381 if (offset.isConstant()) {
382 assert(offset.constantValue() && offset.constantValue() < 4);
383 shift = Operand(offset.constantValue() * 8);
384 } else {
385 /* bit_offset = 8 * (offset & 0x3) */
386 Temp tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), offset, Operand(3u));
387 select = bld.tmp(s1);
388 shift = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.scc(Definition(select)), tmp, Operand(3u));
389 }
390
391 if (vec.size() == 1) {
392 bld.sop2(aco_opcode::s_lshr_b32, Definition(dst), bld.def(s1, scc), vec, shift);
393 } else if (vec.size() == 2) {
394 Temp tmp = dst.size() == 2 ? dst : bld.tmp(s2);
395 bld.sop2(aco_opcode::s_lshr_b64, Definition(tmp), bld.def(s1, scc), vec, shift);
396 if (tmp == dst)
397 emit_split_vector(ctx, dst, 2);
398 else
399 emit_extract_vector(ctx, tmp, 0, dst);
400 } else if (vec.size() == 4) {
401 Temp lo = bld.tmp(s2), hi = bld.tmp(s2);
402 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), vec);
403 hi = bld.pseudo(aco_opcode::p_extract_vector, bld.def(s1), hi, Operand(0u));
404 if (select != Temp())
405 hi = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), hi, Operand(0u), bld.scc(select));
406 lo = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), lo, shift);
407 Temp mid = bld.tmp(s1);
408 lo = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), Definition(mid), lo);
409 hi = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), hi, shift);
410 mid = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), hi, mid);
411 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, mid);
412 emit_split_vector(ctx, dst, 2);
413 }
414 }
415
416 void byte_align_vector(isel_context *ctx, Temp vec, Operand offset, Temp dst, unsigned component_size)
417 {
418 Builder bld(ctx->program, ctx->block);
419 if (offset.isTemp()) {
420 Temp tmp[4] = {vec, vec, vec, vec};
421
422 if (vec.size() == 4) {
423 tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = bld.tmp(v1), tmp[3] = bld.tmp(v1);
424 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), Definition(tmp[2]), Definition(tmp[3]), vec);
425 } else if (vec.size() == 3) {
426 tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = bld.tmp(v1);
427 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), Definition(tmp[2]), vec);
428 } else if (vec.size() == 2) {
429 tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = tmp[1];
430 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), vec);
431 }
432 for (unsigned i = 0; i < dst.size(); i++)
433 tmp[i] = bld.vop3(aco_opcode::v_alignbyte_b32, bld.def(v1), tmp[i + 1], tmp[i], offset);
434
435 vec = tmp[0];
436 if (dst.size() == 2)
437 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), tmp[0], tmp[1]);
438
439 offset = Operand(0u);
440 }
441
442 unsigned num_components = dst.bytes() / component_size;
443 if (vec.regClass() == dst.regClass()) {
444 assert(offset.constantValue() == 0);
445 bld.copy(Definition(dst), vec);
446 emit_split_vector(ctx, dst, num_components);
447 return;
448 }
449
450 emit_split_vector(ctx, vec, vec.bytes() / component_size);
451 std::array<Temp, NIR_MAX_VEC_COMPONENTS> elems;
452 RegClass rc = RegClass(RegType::vgpr, component_size).as_subdword();
453
454 assert(offset.constantValue() % component_size == 0);
455 unsigned skip = offset.constantValue() / component_size;
456 for (unsigned i = 0; i < num_components; i++)
457 elems[i] = emit_extract_vector(ctx, vec, i + skip, rc);
458
459 /* if dst is vgpr - split the src and create a shrunk version according to the mask. */
460 if (dst.type() == RegType::vgpr) {
461 aco_ptr<Pseudo_instruction> create_vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
462 for (unsigned i = 0; i < num_components; i++)
463 create_vec->operands[i] = Operand(elems[i]);
464 create_vec->definitions[0] = Definition(dst);
465 bld.insert(std::move(create_vec));
466
467 /* if dst is sgpr - split the src, but move the original to sgpr. */
468 } else if (skip) {
469 vec = bld.pseudo(aco_opcode::p_as_uniform, bld.def(RegClass(RegType::sgpr, vec.size())), vec);
470 byte_align_scalar(ctx, vec, offset, dst);
471 } else {
472 assert(dst.size() == vec.size());
473 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
474 }
475
476 ctx->allocated_vec.emplace(dst.id(), elems);
477 }
478
479 Temp bool_to_vector_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s2))
480 {
481 Builder bld(ctx->program, ctx->block);
482 if (!dst.id())
483 dst = bld.tmp(bld.lm);
484
485 assert(val.regClass() == s1);
486 assert(dst.regClass() == bld.lm);
487
488 return bld.sop2(Builder::s_cselect, Definition(dst), Operand((uint32_t) -1), Operand(0u), bld.scc(val));
489 }
490
491 Temp bool_to_scalar_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s1))
492 {
493 Builder bld(ctx->program, ctx->block);
494 if (!dst.id())
495 dst = bld.tmp(s1);
496
497 assert(val.regClass() == bld.lm);
498 assert(dst.regClass() == s1);
499
500 /* if we're currently in WQM mode, ensure that the source is also computed in WQM */
501 Temp tmp = bld.tmp(s1);
502 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.scc(Definition(tmp)), val, Operand(exec, bld.lm));
503 return emit_wqm(ctx, tmp, dst);
504 }
505
506 Temp get_alu_src(struct isel_context *ctx, nir_alu_src src, unsigned size=1)
507 {
508 if (src.src.ssa->num_components == 1 && src.swizzle[0] == 0 && size == 1)
509 return get_ssa_temp(ctx, src.src.ssa);
510
511 if (src.src.ssa->num_components == size) {
512 bool identity_swizzle = true;
513 for (unsigned i = 0; identity_swizzle && i < size; i++) {
514 if (src.swizzle[i] != i)
515 identity_swizzle = false;
516 }
517 if (identity_swizzle)
518 return get_ssa_temp(ctx, src.src.ssa);
519 }
520
521 Temp vec = get_ssa_temp(ctx, src.src.ssa);
522 unsigned elem_size = vec.bytes() / src.src.ssa->num_components;
523 assert(elem_size > 0);
524 assert(vec.bytes() % elem_size == 0);
525
526 if (elem_size < 4 && vec.type() == RegType::sgpr) {
527 assert(src.src.ssa->bit_size == 8 || src.src.ssa->bit_size == 16);
528 assert(size == 1);
529 unsigned swizzle = src.swizzle[0];
530 if (vec.size() > 1) {
531 assert(src.src.ssa->bit_size == 16);
532 vec = emit_extract_vector(ctx, vec, swizzle / 2, s1);
533 swizzle = swizzle & 1;
534 }
535 if (swizzle == 0)
536 return vec;
537
538 Temp dst{ctx->program->allocateId(), s1};
539 aco_ptr<SOP2_instruction> bfe{create_instruction<SOP2_instruction>(aco_opcode::s_bfe_u32, Format::SOP2, 2, 2)};
540 bfe->operands[0] = Operand(vec);
541 bfe->operands[1] = Operand(uint32_t((src.src.ssa->bit_size << 16) | (src.src.ssa->bit_size * swizzle)));
542 bfe->definitions[0] = Definition(dst);
543 bfe->definitions[1] = Definition(ctx->program->allocateId(), scc, s1);
544 ctx->block->instructions.emplace_back(std::move(bfe));
545 return dst;
546 }
547
548 RegClass elem_rc = elem_size < 4 ? RegClass(vec.type(), elem_size).as_subdword() : RegClass(vec.type(), elem_size / 4);
549 if (size == 1) {
550 return emit_extract_vector(ctx, vec, src.swizzle[0], elem_rc);
551 } else {
552 assert(size <= 4);
553 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
554 aco_ptr<Pseudo_instruction> vec_instr{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
555 for (unsigned i = 0; i < size; ++i) {
556 elems[i] = emit_extract_vector(ctx, vec, src.swizzle[i], elem_rc);
557 vec_instr->operands[i] = Operand{elems[i]};
558 }
559 Temp dst{ctx->program->allocateId(), RegClass(vec.type(), elem_size * size / 4)};
560 vec_instr->definitions[0] = Definition(dst);
561 ctx->block->instructions.emplace_back(std::move(vec_instr));
562 ctx->allocated_vec.emplace(dst.id(), elems);
563 return dst;
564 }
565 }
566
567 Temp convert_pointer_to_64_bit(isel_context *ctx, Temp ptr)
568 {
569 if (ptr.size() == 2)
570 return ptr;
571 Builder bld(ctx->program, ctx->block);
572 if (ptr.type() == RegType::vgpr)
573 ptr = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), ptr);
574 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s2),
575 ptr, Operand((unsigned)ctx->options->address32_hi));
576 }
577
578 void emit_sop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst, bool writes_scc)
579 {
580 aco_ptr<SOP2_instruction> sop2{create_instruction<SOP2_instruction>(op, Format::SOP2, 2, writes_scc ? 2 : 1)};
581 sop2->operands[0] = Operand(get_alu_src(ctx, instr->src[0]));
582 sop2->operands[1] = Operand(get_alu_src(ctx, instr->src[1]));
583 sop2->definitions[0] = Definition(dst);
584 if (writes_scc)
585 sop2->definitions[1] = Definition(ctx->program->allocateId(), scc, s1);
586 ctx->block->instructions.emplace_back(std::move(sop2));
587 }
588
589 void emit_vop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
590 bool commutative, bool swap_srcs=false, bool flush_denorms = false)
591 {
592 Builder bld(ctx->program, ctx->block);
593 bld.is_precise = instr->exact;
594
595 Temp src0 = get_alu_src(ctx, instr->src[swap_srcs ? 1 : 0]);
596 Temp src1 = get_alu_src(ctx, instr->src[swap_srcs ? 0 : 1]);
597 if (src1.type() == RegType::sgpr) {
598 if (commutative && src0.type() == RegType::vgpr) {
599 Temp t = src0;
600 src0 = src1;
601 src1 = t;
602 } else {
603 src1 = as_vgpr(ctx, src1);
604 }
605 }
606
607 if (flush_denorms && ctx->program->chip_class < GFX9) {
608 assert(dst.size() == 1);
609 Temp tmp = bld.vop2(op, bld.def(v1), src0, src1);
610 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
611 } else {
612 bld.vop2(op, Definition(dst), src0, src1);
613 }
614 }
615
616 void emit_vop2_instruction_logic64(isel_context *ctx, nir_alu_instr *instr,
617 aco_opcode op, Temp dst)
618 {
619 Builder bld(ctx->program, ctx->block);
620 bld.is_precise = instr->exact;
621
622 Temp src0 = get_alu_src(ctx, instr->src[0]);
623 Temp src1 = get_alu_src(ctx, instr->src[1]);
624
625 if (src1.type() == RegType::sgpr) {
626 assert(src0.type() == RegType::vgpr);
627 std::swap(src0, src1);
628 }
629
630 Temp src00 = bld.tmp(src0.type(), 1);
631 Temp src01 = bld.tmp(src0.type(), 1);
632 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
633 Temp src10 = bld.tmp(v1);
634 Temp src11 = bld.tmp(v1);
635 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
636 Temp lo = bld.vop2(op, bld.def(v1), src00, src10);
637 Temp hi = bld.vop2(op, bld.def(v1), src01, src11);
638 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
639 }
640
641 void emit_vop3a_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
642 bool flush_denorms = false)
643 {
644 Temp src0 = get_alu_src(ctx, instr->src[0]);
645 Temp src1 = get_alu_src(ctx, instr->src[1]);
646 Temp src2 = get_alu_src(ctx, instr->src[2]);
647
648 /* ensure that the instruction has at most 1 sgpr operand
649 * The optimizer will inline constants for us */
650 if (src0.type() == RegType::sgpr && src1.type() == RegType::sgpr)
651 src0 = as_vgpr(ctx, src0);
652 if (src1.type() == RegType::sgpr && src2.type() == RegType::sgpr)
653 src1 = as_vgpr(ctx, src1);
654 if (src2.type() == RegType::sgpr && src0.type() == RegType::sgpr)
655 src2 = as_vgpr(ctx, src2);
656
657 Builder bld(ctx->program, ctx->block);
658 bld.is_precise = instr->exact;
659 if (flush_denorms && ctx->program->chip_class < GFX9) {
660 assert(dst.size() == 1);
661 Temp tmp = bld.vop3(op, Definition(dst), src0, src1, src2);
662 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
663 } else {
664 bld.vop3(op, Definition(dst), src0, src1, src2);
665 }
666 }
667
668 void emit_vop1_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
669 {
670 Builder bld(ctx->program, ctx->block);
671 bld.is_precise = instr->exact;
672 if (dst.type() == RegType::sgpr)
673 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
674 bld.vop1(op, bld.def(RegType::vgpr, dst.size()), get_alu_src(ctx, instr->src[0])));
675 else
676 bld.vop1(op, Definition(dst), get_alu_src(ctx, instr->src[0]));
677 }
678
679 void emit_vopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
680 {
681 Temp src0 = get_alu_src(ctx, instr->src[0]);
682 Temp src1 = get_alu_src(ctx, instr->src[1]);
683 assert(src0.size() == src1.size());
684
685 aco_ptr<Instruction> vopc;
686 if (src1.type() == RegType::sgpr) {
687 if (src0.type() == RegType::vgpr) {
688 /* to swap the operands, we might also have to change the opcode */
689 switch (op) {
690 case aco_opcode::v_cmp_lt_f16:
691 op = aco_opcode::v_cmp_gt_f16;
692 break;
693 case aco_opcode::v_cmp_ge_f16:
694 op = aco_opcode::v_cmp_le_f16;
695 break;
696 case aco_opcode::v_cmp_lt_i16:
697 op = aco_opcode::v_cmp_gt_i16;
698 break;
699 case aco_opcode::v_cmp_ge_i16:
700 op = aco_opcode::v_cmp_le_i16;
701 break;
702 case aco_opcode::v_cmp_lt_u16:
703 op = aco_opcode::v_cmp_gt_u16;
704 break;
705 case aco_opcode::v_cmp_ge_u16:
706 op = aco_opcode::v_cmp_le_u16;
707 break;
708 case aco_opcode::v_cmp_lt_f32:
709 op = aco_opcode::v_cmp_gt_f32;
710 break;
711 case aco_opcode::v_cmp_ge_f32:
712 op = aco_opcode::v_cmp_le_f32;
713 break;
714 case aco_opcode::v_cmp_lt_i32:
715 op = aco_opcode::v_cmp_gt_i32;
716 break;
717 case aco_opcode::v_cmp_ge_i32:
718 op = aco_opcode::v_cmp_le_i32;
719 break;
720 case aco_opcode::v_cmp_lt_u32:
721 op = aco_opcode::v_cmp_gt_u32;
722 break;
723 case aco_opcode::v_cmp_ge_u32:
724 op = aco_opcode::v_cmp_le_u32;
725 break;
726 case aco_opcode::v_cmp_lt_f64:
727 op = aco_opcode::v_cmp_gt_f64;
728 break;
729 case aco_opcode::v_cmp_ge_f64:
730 op = aco_opcode::v_cmp_le_f64;
731 break;
732 case aco_opcode::v_cmp_lt_i64:
733 op = aco_opcode::v_cmp_gt_i64;
734 break;
735 case aco_opcode::v_cmp_ge_i64:
736 op = aco_opcode::v_cmp_le_i64;
737 break;
738 case aco_opcode::v_cmp_lt_u64:
739 op = aco_opcode::v_cmp_gt_u64;
740 break;
741 case aco_opcode::v_cmp_ge_u64:
742 op = aco_opcode::v_cmp_le_u64;
743 break;
744 default: /* eq and ne are commutative */
745 break;
746 }
747 Temp t = src0;
748 src0 = src1;
749 src1 = t;
750 } else {
751 src1 = as_vgpr(ctx, src1);
752 }
753 }
754
755 Builder bld(ctx->program, ctx->block);
756 bld.vopc(op, bld.hint_vcc(Definition(dst)), src0, src1);
757 }
758
759 void emit_sopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
760 {
761 Temp src0 = get_alu_src(ctx, instr->src[0]);
762 Temp src1 = get_alu_src(ctx, instr->src[1]);
763 Builder bld(ctx->program, ctx->block);
764
765 assert(dst.regClass() == bld.lm);
766 assert(src0.type() == RegType::sgpr);
767 assert(src1.type() == RegType::sgpr);
768 assert(src0.regClass() == src1.regClass());
769
770 /* Emit the SALU comparison instruction */
771 Temp cmp = bld.sopc(op, bld.scc(bld.def(s1)), src0, src1);
772 /* Turn the result into a per-lane bool */
773 bool_to_vector_condition(ctx, cmp, dst);
774 }
775
776 void emit_comparison(isel_context *ctx, nir_alu_instr *instr, Temp dst,
777 aco_opcode v16_op, aco_opcode v32_op, aco_opcode v64_op, aco_opcode s32_op = aco_opcode::num_opcodes, aco_opcode s64_op = aco_opcode::num_opcodes)
778 {
779 aco_opcode s_op = instr->src[0].src.ssa->bit_size == 64 ? s64_op : instr->src[0].src.ssa->bit_size == 32 ? s32_op : aco_opcode::num_opcodes;
780 aco_opcode v_op = instr->src[0].src.ssa->bit_size == 64 ? v64_op : instr->src[0].src.ssa->bit_size == 32 ? v32_op : v16_op;
781 bool use_valu = s_op == aco_opcode::num_opcodes ||
782 nir_dest_is_divergent(instr->dest.dest) ||
783 ctx->allocated[instr->src[0].src.ssa->index].type() == RegType::vgpr ||
784 ctx->allocated[instr->src[1].src.ssa->index].type() == RegType::vgpr;
785 aco_opcode op = use_valu ? v_op : s_op;
786 assert(op != aco_opcode::num_opcodes);
787 assert(dst.regClass() == ctx->program->lane_mask);
788
789 if (use_valu)
790 emit_vopc_instruction(ctx, instr, op, dst);
791 else
792 emit_sopc_instruction(ctx, instr, op, dst);
793 }
794
795 void emit_boolean_logic(isel_context *ctx, nir_alu_instr *instr, Builder::WaveSpecificOpcode op, Temp dst)
796 {
797 Builder bld(ctx->program, ctx->block);
798 Temp src0 = get_alu_src(ctx, instr->src[0]);
799 Temp src1 = get_alu_src(ctx, instr->src[1]);
800
801 assert(dst.regClass() == bld.lm);
802 assert(src0.regClass() == bld.lm);
803 assert(src1.regClass() == bld.lm);
804
805 bld.sop2(op, Definition(dst), bld.def(s1, scc), src0, src1);
806 }
807
808 void emit_bcsel(isel_context *ctx, nir_alu_instr *instr, Temp dst)
809 {
810 Builder bld(ctx->program, ctx->block);
811 Temp cond = get_alu_src(ctx, instr->src[0]);
812 Temp then = get_alu_src(ctx, instr->src[1]);
813 Temp els = get_alu_src(ctx, instr->src[2]);
814
815 assert(cond.regClass() == bld.lm);
816
817 if (dst.type() == RegType::vgpr) {
818 aco_ptr<Instruction> bcsel;
819 if (dst.size() == 1) {
820 then = as_vgpr(ctx, then);
821 els = as_vgpr(ctx, els);
822
823 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), els, then, cond);
824 } else if (dst.size() == 2) {
825 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
826 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), then);
827 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
828 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), els);
829
830 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, cond);
831 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, cond);
832
833 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
834 } else {
835 fprintf(stderr, "Unimplemented NIR instr bit size: ");
836 nir_print_instr(&instr->instr, stderr);
837 fprintf(stderr, "\n");
838 }
839 return;
840 }
841
842 if (instr->dest.dest.ssa.bit_size == 1) {
843 assert(dst.regClass() == bld.lm);
844 assert(then.regClass() == bld.lm);
845 assert(els.regClass() == bld.lm);
846 }
847
848 if (!nir_src_is_divergent(instr->src[0].src)) { /* uniform condition and values in sgpr */
849 if (dst.regClass() == s1 || dst.regClass() == s2) {
850 assert((then.regClass() == s1 || then.regClass() == s2) && els.regClass() == then.regClass());
851 assert(dst.size() == then.size());
852 aco_opcode op = dst.regClass() == s1 ? aco_opcode::s_cselect_b32 : aco_opcode::s_cselect_b64;
853 bld.sop2(op, Definition(dst), then, els, bld.scc(bool_to_scalar_condition(ctx, cond)));
854 } else {
855 fprintf(stderr, "Unimplemented uniform bcsel bit size: ");
856 nir_print_instr(&instr->instr, stderr);
857 fprintf(stderr, "\n");
858 }
859 return;
860 }
861
862 /* divergent boolean bcsel
863 * this implements bcsel on bools: dst = s0 ? s1 : s2
864 * are going to be: dst = (s0 & s1) | (~s0 & s2) */
865 assert(instr->dest.dest.ssa.bit_size == 1);
866
867 if (cond.id() != then.id())
868 then = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), cond, then);
869
870 if (cond.id() == els.id())
871 bld.sop1(Builder::s_mov, Definition(dst), then);
872 else
873 bld.sop2(Builder::s_or, Definition(dst), bld.def(s1, scc), then,
874 bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), els, cond));
875 }
876
877 void emit_scaled_op(isel_context *ctx, Builder& bld, Definition dst, Temp val,
878 aco_opcode op, uint32_t undo)
879 {
880 /* multiply by 16777216 to handle denormals */
881 Temp is_denormal = bld.vopc(aco_opcode::v_cmp_class_f32, bld.hint_vcc(bld.def(bld.lm)),
882 as_vgpr(ctx, val), bld.copy(bld.def(v1), Operand((1u << 7) | (1u << 4))));
883 Temp scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x4b800000u), val);
884 scaled = bld.vop1(op, bld.def(v1), scaled);
885 scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(undo), scaled);
886
887 Temp not_scaled = bld.vop1(op, bld.def(v1), val);
888
889 bld.vop2(aco_opcode::v_cndmask_b32, dst, not_scaled, scaled, is_denormal);
890 }
891
892 void emit_rcp(isel_context *ctx, Builder& bld, Definition dst, Temp val)
893 {
894 if (ctx->block->fp_mode.denorm32 == 0) {
895 bld.vop1(aco_opcode::v_rcp_f32, dst, val);
896 return;
897 }
898
899 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rcp_f32, 0x4b800000u);
900 }
901
902 void emit_rsq(isel_context *ctx, Builder& bld, Definition dst, Temp val)
903 {
904 if (ctx->block->fp_mode.denorm32 == 0) {
905 bld.vop1(aco_opcode::v_rsq_f32, dst, val);
906 return;
907 }
908
909 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rsq_f32, 0x45800000u);
910 }
911
912 void emit_sqrt(isel_context *ctx, Builder& bld, Definition dst, Temp val)
913 {
914 if (ctx->block->fp_mode.denorm32 == 0) {
915 bld.vop1(aco_opcode::v_sqrt_f32, dst, val);
916 return;
917 }
918
919 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_sqrt_f32, 0x39800000u);
920 }
921
922 void emit_log2(isel_context *ctx, Builder& bld, Definition dst, Temp val)
923 {
924 if (ctx->block->fp_mode.denorm32 == 0) {
925 bld.vop1(aco_opcode::v_log_f32, dst, val);
926 return;
927 }
928
929 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_log_f32, 0xc1c00000u);
930 }
931
932 Temp emit_trunc_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
933 {
934 if (ctx->options->chip_class >= GFX7)
935 return bld.vop1(aco_opcode::v_trunc_f64, Definition(dst), val);
936
937 /* GFX6 doesn't support V_TRUNC_F64, lower it. */
938 /* TODO: create more efficient code! */
939 if (val.type() == RegType::sgpr)
940 val = as_vgpr(ctx, val);
941
942 /* Split the input value. */
943 Temp val_lo = bld.tmp(v1), val_hi = bld.tmp(v1);
944 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
945
946 /* Extract the exponent and compute the unbiased value. */
947 Temp exponent = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), val_hi, Operand(20u), Operand(11u));
948 exponent = bld.vsub32(bld.def(v1), exponent, Operand(1023u));
949
950 /* Extract the fractional part. */
951 Temp fract_mask = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x000fffffu));
952 fract_mask = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), fract_mask, exponent);
953
954 Temp fract_mask_lo = bld.tmp(v1), fract_mask_hi = bld.tmp(v1);
955 bld.pseudo(aco_opcode::p_split_vector, Definition(fract_mask_lo), Definition(fract_mask_hi), fract_mask);
956
957 Temp fract_lo = bld.tmp(v1), fract_hi = bld.tmp(v1);
958 Temp tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_lo);
959 fract_lo = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_lo, tmp);
960 tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_hi);
961 fract_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_hi, tmp);
962
963 /* Get the sign bit. */
964 Temp sign = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x80000000u), val_hi);
965
966 /* Decide the operation to apply depending on the unbiased exponent. */
967 Temp exp_lt0 = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)), exponent, Operand(0u));
968 Temp dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_lo, bld.copy(bld.def(v1), Operand(0u)), exp_lt0);
969 Temp dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_hi, sign, exp_lt0);
970 Temp exp_gt51 = bld.vopc_e64(aco_opcode::v_cmp_gt_i32, bld.def(s2), exponent, Operand(51u));
971 dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_lo, val_lo, exp_gt51);
972 dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_hi, val_hi, exp_gt51);
973
974 return bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst_lo, dst_hi);
975 }
976
977 Temp emit_floor_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
978 {
979 if (ctx->options->chip_class >= GFX7)
980 return bld.vop1(aco_opcode::v_floor_f64, Definition(dst), val);
981
982 /* GFX6 doesn't support V_FLOOR_F64, lower it. */
983 Temp src0 = as_vgpr(ctx, val);
984
985 Temp mask = bld.copy(bld.def(s1), Operand(3u)); /* isnan */
986 Temp min_val = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(-1u), Operand(0x3fefffffu));
987
988 Temp isnan = bld.vopc_e64(aco_opcode::v_cmp_class_f64, bld.hint_vcc(bld.def(bld.lm)), src0, mask);
989 Temp fract = bld.vop1(aco_opcode::v_fract_f64, bld.def(v2), src0);
990 Temp min = bld.vop3(aco_opcode::v_min_f64, bld.def(v2), fract, min_val);
991
992 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
993 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), src0);
994 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
995 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), min);
996
997 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, isnan);
998 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, isnan);
999
1000 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), dst0, dst1);
1001
1002 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src0, v);
1003 static_cast<VOP3A_instruction*>(add)->neg[1] = true;
1004
1005 return add->definitions[0].getTemp();
1006 }
1007
1008 Temp convert_int(isel_context *ctx, Builder& bld, Temp src, unsigned src_bits, unsigned dst_bits, bool is_signed, Temp dst=Temp()) {
1009 if (!dst.id()) {
1010 if (dst_bits % 32 == 0 || src.type() == RegType::sgpr)
1011 dst = bld.tmp(src.type(), DIV_ROUND_UP(dst_bits, 32u));
1012 else
1013 dst = bld.tmp(RegClass(RegType::vgpr, dst_bits / 8u).as_subdword());
1014 }
1015
1016 if (dst.bytes() == src.bytes() && dst_bits < src_bits)
1017 return bld.copy(Definition(dst), src);
1018 else if (dst.bytes() < src.bytes())
1019 return bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(0u));
1020
1021 Temp tmp = dst;
1022 if (dst_bits == 64)
1023 tmp = src_bits == 32 ? src : bld.tmp(src.type(), 1);
1024
1025 if (tmp == src) {
1026 } else if (src.regClass() == s1) {
1027 if (is_signed)
1028 bld.sop1(src_bits == 8 ? aco_opcode::s_sext_i32_i8 : aco_opcode::s_sext_i32_i16, Definition(tmp), src);
1029 else
1030 bld.sop2(aco_opcode::s_and_b32, Definition(tmp), bld.def(s1, scc), Operand(src_bits == 8 ? 0xFFu : 0xFFFFu), src);
1031 } else if (ctx->options->chip_class >= GFX8) {
1032 assert(src_bits != 8 || src.regClass() == v1b);
1033 assert(src_bits != 16 || src.regClass() == v2b);
1034 aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
1035 sdwa->operands[0] = Operand(src);
1036 sdwa->definitions[0] = Definition(tmp);
1037 if (is_signed)
1038 sdwa->sel[0] = src_bits == 8 ? sdwa_sbyte : sdwa_sword;
1039 else
1040 sdwa->sel[0] = src_bits == 8 ? sdwa_ubyte : sdwa_uword;
1041 sdwa->dst_sel = tmp.bytes() == 2 ? sdwa_uword : sdwa_udword;
1042 bld.insert(std::move(sdwa));
1043 } else {
1044 assert(ctx->options->chip_class == GFX6 || ctx->options->chip_class == GFX7);
1045 aco_opcode opcode = is_signed ? aco_opcode::v_bfe_i32 : aco_opcode::v_bfe_u32;
1046 bld.vop3(opcode, Definition(tmp), src, Operand(0u), Operand(src_bits == 8 ? 8u : 16u));
1047 }
1048
1049 if (dst_bits == 64) {
1050 if (is_signed && dst.regClass() == s2) {
1051 Temp high = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), tmp, Operand(31u));
1052 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, high);
1053 } else if (is_signed && dst.regClass() == v2) {
1054 Temp high = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), tmp);
1055 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, high);
1056 } else {
1057 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, Operand(0u));
1058 }
1059 }
1060
1061 return dst;
1062 }
1063
1064 void visit_alu_instr(isel_context *ctx, nir_alu_instr *instr)
1065 {
1066 if (!instr->dest.dest.is_ssa) {
1067 fprintf(stderr, "nir alu dst not in ssa: ");
1068 nir_print_instr(&instr->instr, stderr);
1069 fprintf(stderr, "\n");
1070 abort();
1071 }
1072 Builder bld(ctx->program, ctx->block);
1073 bld.is_precise = instr->exact;
1074 Temp dst = get_ssa_temp(ctx, &instr->dest.dest.ssa);
1075 switch(instr->op) {
1076 case nir_op_vec2:
1077 case nir_op_vec3:
1078 case nir_op_vec4: {
1079 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
1080 unsigned num = instr->dest.dest.ssa.num_components;
1081 for (unsigned i = 0; i < num; ++i)
1082 elems[i] = get_alu_src(ctx, instr->src[i]);
1083
1084 if (instr->dest.dest.ssa.bit_size >= 32 || dst.type() == RegType::vgpr) {
1085 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.dest.ssa.num_components, 1)};
1086 RegClass elem_rc = RegClass::get(RegType::vgpr, instr->dest.dest.ssa.bit_size / 8u);
1087 for (unsigned i = 0; i < num; ++i) {
1088 if (elems[i].type() == RegType::sgpr && elem_rc.is_subdword())
1089 vec->operands[i] = Operand(emit_extract_vector(ctx, elems[i], 0, elem_rc));
1090 else
1091 vec->operands[i] = Operand{elems[i]};
1092 }
1093 vec->definitions[0] = Definition(dst);
1094 ctx->block->instructions.emplace_back(std::move(vec));
1095 ctx->allocated_vec.emplace(dst.id(), elems);
1096 } else {
1097 // TODO: that is a bit suboptimal..
1098 Temp mask = bld.copy(bld.def(s1), Operand((1u << instr->dest.dest.ssa.bit_size) - 1));
1099 for (unsigned i = 0; i < num - 1; ++i)
1100 if (((i+1) * instr->dest.dest.ssa.bit_size) % 32)
1101 elems[i] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), elems[i], mask);
1102 for (unsigned i = 0; i < num; ++i) {
1103 unsigned bit = i * instr->dest.dest.ssa.bit_size;
1104 if (bit % 32 == 0) {
1105 elems[bit / 32] = elems[i];
1106 } else {
1107 elems[i] = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc),
1108 elems[i], Operand((i * instr->dest.dest.ssa.bit_size) % 32));
1109 elems[bit / 32] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), elems[bit / 32], elems[i]);
1110 }
1111 }
1112 if (dst.size() == 1)
1113 bld.copy(Definition(dst), elems[0]);
1114 else
1115 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), elems[0], elems[1]);
1116 }
1117 break;
1118 }
1119 case nir_op_mov: {
1120 Temp src = get_alu_src(ctx, instr->src[0]);
1121 aco_ptr<Instruction> mov;
1122 if (dst.type() == RegType::sgpr) {
1123 if (src.type() == RegType::vgpr)
1124 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
1125 else if (src.regClass() == s1)
1126 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
1127 else if (src.regClass() == s2)
1128 bld.sop1(aco_opcode::s_mov_b64, Definition(dst), src);
1129 else
1130 unreachable("wrong src register class for nir_op_imov");
1131 } else {
1132 if (dst.regClass() == v1)
1133 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), src);
1134 else if (dst.regClass() == v1b ||
1135 dst.regClass() == v2b ||
1136 dst.regClass() == v2)
1137 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
1138 else
1139 unreachable("wrong src register class for nir_op_imov");
1140 }
1141 break;
1142 }
1143 case nir_op_inot: {
1144 Temp src = get_alu_src(ctx, instr->src[0]);
1145 if (instr->dest.dest.ssa.bit_size == 1) {
1146 assert(src.regClass() == bld.lm);
1147 assert(dst.regClass() == bld.lm);
1148 /* Don't use s_andn2 here, this allows the optimizer to make a better decision */
1149 Temp tmp = bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), src);
1150 bld.sop2(Builder::s_and, Definition(dst), bld.def(s1, scc), tmp, Operand(exec, bld.lm));
1151 } else if (dst.regClass() == v1) {
1152 emit_vop1_instruction(ctx, instr, aco_opcode::v_not_b32, dst);
1153 } else if (dst.regClass() == v2) {
1154 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
1155 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
1156 lo = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), lo);
1157 hi = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), hi);
1158 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
1159 } else if (dst.type() == RegType::sgpr) {
1160 aco_opcode opcode = dst.size() == 1 ? aco_opcode::s_not_b32 : aco_opcode::s_not_b64;
1161 bld.sop1(opcode, Definition(dst), bld.def(s1, scc), src);
1162 } else {
1163 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1164 nir_print_instr(&instr->instr, stderr);
1165 fprintf(stderr, "\n");
1166 }
1167 break;
1168 }
1169 case nir_op_ineg: {
1170 Temp src = get_alu_src(ctx, instr->src[0]);
1171 if (dst.regClass() == v1) {
1172 bld.vsub32(Definition(dst), Operand(0u), Operand(src));
1173 } else if (dst.regClass() == s1) {
1174 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand((uint32_t) -1), src);
1175 } else if (dst.size() == 2) {
1176 Temp src0 = bld.tmp(dst.type(), 1);
1177 Temp src1 = bld.tmp(dst.type(), 1);
1178 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
1179
1180 if (dst.regClass() == s2) {
1181 Temp carry = bld.tmp(s1);
1182 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), Operand(0u), src0);
1183 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), src1, carry);
1184 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1185 } else {
1186 Temp lower = bld.tmp(v1);
1187 Temp borrow = bld.vsub32(Definition(lower), Operand(0u), src0, true).def(1).getTemp();
1188 Temp upper = bld.vsub32(bld.def(v1), Operand(0u), src1, false, borrow);
1189 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1190 }
1191 } else {
1192 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1193 nir_print_instr(&instr->instr, stderr);
1194 fprintf(stderr, "\n");
1195 }
1196 break;
1197 }
1198 case nir_op_iabs: {
1199 if (dst.regClass() == s1) {
1200 bld.sop1(aco_opcode::s_abs_i32, Definition(dst), bld.def(s1, scc), get_alu_src(ctx, instr->src[0]));
1201 } else if (dst.regClass() == v1) {
1202 Temp src = get_alu_src(ctx, instr->src[0]);
1203 bld.vop2(aco_opcode::v_max_i32, Definition(dst), src, bld.vsub32(bld.def(v1), Operand(0u), src));
1204 } else {
1205 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1206 nir_print_instr(&instr->instr, stderr);
1207 fprintf(stderr, "\n");
1208 }
1209 break;
1210 }
1211 case nir_op_isign: {
1212 Temp src = get_alu_src(ctx, instr->src[0]);
1213 if (dst.regClass() == s1) {
1214 Temp tmp = bld.sop2(aco_opcode::s_max_i32, bld.def(s1), bld.def(s1, scc), src, Operand((uint32_t)-1));
1215 bld.sop2(aco_opcode::s_min_i32, Definition(dst), bld.def(s1, scc), tmp, Operand(1u));
1216 } else if (dst.regClass() == s2) {
1217 Temp neg = bld.sop2(aco_opcode::s_ashr_i64, bld.def(s2), bld.def(s1, scc), src, Operand(63u));
1218 Temp neqz;
1219 if (ctx->program->chip_class >= GFX8)
1220 neqz = bld.sopc(aco_opcode::s_cmp_lg_u64, bld.def(s1, scc), src, Operand(0u));
1221 else
1222 neqz = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), src, Operand(0u)).def(1).getTemp();
1223 /* SCC gets zero-extended to 64 bit */
1224 bld.sop2(aco_opcode::s_or_b64, Definition(dst), bld.def(s1, scc), neg, bld.scc(neqz));
1225 } else if (dst.regClass() == v1) {
1226 bld.vop3(aco_opcode::v_med3_i32, Definition(dst), Operand((uint32_t)-1), src, Operand(1u));
1227 } else if (dst.regClass() == v2) {
1228 Temp upper = emit_extract_vector(ctx, src, 1, v1);
1229 Temp neg = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), upper);
1230 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1231 Temp lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(1u), neg, gtz);
1232 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), neg, gtz);
1233 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1234 } else {
1235 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1236 nir_print_instr(&instr->instr, stderr);
1237 fprintf(stderr, "\n");
1238 }
1239 break;
1240 }
1241 case nir_op_imax: {
1242 if (dst.regClass() == v1) {
1243 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_i32, dst, true);
1244 } else if (dst.regClass() == s1) {
1245 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_i32, dst, true);
1246 } else {
1247 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1248 nir_print_instr(&instr->instr, stderr);
1249 fprintf(stderr, "\n");
1250 }
1251 break;
1252 }
1253 case nir_op_umax: {
1254 if (dst.regClass() == v1) {
1255 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_u32, dst, true);
1256 } else if (dst.regClass() == s1) {
1257 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_u32, dst, true);
1258 } else {
1259 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1260 nir_print_instr(&instr->instr, stderr);
1261 fprintf(stderr, "\n");
1262 }
1263 break;
1264 }
1265 case nir_op_imin: {
1266 if (dst.regClass() == v1) {
1267 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_i32, dst, true);
1268 } else if (dst.regClass() == s1) {
1269 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_i32, dst, true);
1270 } else {
1271 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1272 nir_print_instr(&instr->instr, stderr);
1273 fprintf(stderr, "\n");
1274 }
1275 break;
1276 }
1277 case nir_op_umin: {
1278 if (dst.regClass() == v1) {
1279 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_u32, dst, true);
1280 } else if (dst.regClass() == s1) {
1281 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_u32, dst, true);
1282 } else {
1283 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1284 nir_print_instr(&instr->instr, stderr);
1285 fprintf(stderr, "\n");
1286 }
1287 break;
1288 }
1289 case nir_op_ior: {
1290 if (instr->dest.dest.ssa.bit_size == 1) {
1291 emit_boolean_logic(ctx, instr, Builder::s_or, dst);
1292 } else if (dst.regClass() == v1) {
1293 emit_vop2_instruction(ctx, instr, aco_opcode::v_or_b32, dst, true);
1294 } else if (dst.regClass() == v2) {
1295 emit_vop2_instruction_logic64(ctx, instr, aco_opcode::v_or_b32, dst);
1296 } else if (dst.regClass() == s1) {
1297 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b32, dst, true);
1298 } else if (dst.regClass() == s2) {
1299 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b64, dst, true);
1300 } else {
1301 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1302 nir_print_instr(&instr->instr, stderr);
1303 fprintf(stderr, "\n");
1304 }
1305 break;
1306 }
1307 case nir_op_iand: {
1308 if (instr->dest.dest.ssa.bit_size == 1) {
1309 emit_boolean_logic(ctx, instr, Builder::s_and, dst);
1310 } else if (dst.regClass() == v1) {
1311 emit_vop2_instruction(ctx, instr, aco_opcode::v_and_b32, dst, true);
1312 } else if (dst.regClass() == v2) {
1313 emit_vop2_instruction_logic64(ctx, instr, aco_opcode::v_and_b32, dst);
1314 } else if (dst.regClass() == s1) {
1315 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b32, dst, true);
1316 } else if (dst.regClass() == s2) {
1317 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b64, dst, true);
1318 } else {
1319 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1320 nir_print_instr(&instr->instr, stderr);
1321 fprintf(stderr, "\n");
1322 }
1323 break;
1324 }
1325 case nir_op_ixor: {
1326 if (instr->dest.dest.ssa.bit_size == 1) {
1327 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
1328 } else if (dst.regClass() == v1) {
1329 emit_vop2_instruction(ctx, instr, aco_opcode::v_xor_b32, dst, true);
1330 } else if (dst.regClass() == v2) {
1331 emit_vop2_instruction_logic64(ctx, instr, aco_opcode::v_xor_b32, dst);
1332 } else if (dst.regClass() == s1) {
1333 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b32, dst, true);
1334 } else if (dst.regClass() == s2) {
1335 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b64, dst, true);
1336 } else {
1337 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1338 nir_print_instr(&instr->instr, stderr);
1339 fprintf(stderr, "\n");
1340 }
1341 break;
1342 }
1343 case nir_op_ushr: {
1344 if (dst.regClass() == v1) {
1345 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshrrev_b32, dst, false, true);
1346 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1347 bld.vop3(aco_opcode::v_lshrrev_b64, Definition(dst),
1348 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1349 } else if (dst.regClass() == v2) {
1350 bld.vop3(aco_opcode::v_lshr_b64, Definition(dst),
1351 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1352 } else if (dst.regClass() == s2) {
1353 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b64, dst, true);
1354 } else if (dst.regClass() == s1) {
1355 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b32, dst, true);
1356 } else {
1357 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1358 nir_print_instr(&instr->instr, stderr);
1359 fprintf(stderr, "\n");
1360 }
1361 break;
1362 }
1363 case nir_op_ishl: {
1364 if (dst.regClass() == v1) {
1365 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshlrev_b32, dst, false, true);
1366 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1367 bld.vop3(aco_opcode::v_lshlrev_b64, Definition(dst),
1368 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1369 } else if (dst.regClass() == v2) {
1370 bld.vop3(aco_opcode::v_lshl_b64, Definition(dst),
1371 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1372 } else if (dst.regClass() == s1) {
1373 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b32, dst, true);
1374 } else if (dst.regClass() == s2) {
1375 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b64, dst, true);
1376 } else {
1377 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1378 nir_print_instr(&instr->instr, stderr);
1379 fprintf(stderr, "\n");
1380 }
1381 break;
1382 }
1383 case nir_op_ishr: {
1384 if (dst.regClass() == v1) {
1385 emit_vop2_instruction(ctx, instr, aco_opcode::v_ashrrev_i32, dst, false, true);
1386 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1387 bld.vop3(aco_opcode::v_ashrrev_i64, Definition(dst),
1388 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1389 } else if (dst.regClass() == v2) {
1390 bld.vop3(aco_opcode::v_ashr_i64, Definition(dst),
1391 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1392 } else if (dst.regClass() == s1) {
1393 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i32, dst, true);
1394 } else if (dst.regClass() == s2) {
1395 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i64, dst, true);
1396 } else {
1397 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1398 nir_print_instr(&instr->instr, stderr);
1399 fprintf(stderr, "\n");
1400 }
1401 break;
1402 }
1403 case nir_op_find_lsb: {
1404 Temp src = get_alu_src(ctx, instr->src[0]);
1405 if (src.regClass() == s1) {
1406 bld.sop1(aco_opcode::s_ff1_i32_b32, Definition(dst), src);
1407 } else if (src.regClass() == v1) {
1408 emit_vop1_instruction(ctx, instr, aco_opcode::v_ffbl_b32, dst);
1409 } else if (src.regClass() == s2) {
1410 bld.sop1(aco_opcode::s_ff1_i32_b64, Definition(dst), src);
1411 } else {
1412 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1413 nir_print_instr(&instr->instr, stderr);
1414 fprintf(stderr, "\n");
1415 }
1416 break;
1417 }
1418 case nir_op_ufind_msb:
1419 case nir_op_ifind_msb: {
1420 Temp src = get_alu_src(ctx, instr->src[0]);
1421 if (src.regClass() == s1 || src.regClass() == s2) {
1422 aco_opcode op = src.regClass() == s2 ?
1423 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b64 : aco_opcode::s_flbit_i32_i64) :
1424 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b32 : aco_opcode::s_flbit_i32);
1425 Temp msb_rev = bld.sop1(op, bld.def(s1), src);
1426
1427 Builder::Result sub = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc),
1428 Operand(src.size() * 32u - 1u), msb_rev);
1429 Temp msb = sub.def(0).getTemp();
1430 Temp carry = sub.def(1).getTemp();
1431
1432 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t)-1), msb, bld.scc(carry));
1433 } else if (src.regClass() == v1) {
1434 aco_opcode op = instr->op == nir_op_ufind_msb ? aco_opcode::v_ffbh_u32 : aco_opcode::v_ffbh_i32;
1435 Temp msb_rev = bld.tmp(v1);
1436 emit_vop1_instruction(ctx, instr, op, msb_rev);
1437 Temp msb = bld.tmp(v1);
1438 Temp carry = bld.vsub32(Definition(msb), Operand(31u), Operand(msb_rev), true).def(1).getTemp();
1439 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), msb, Operand((uint32_t)-1), carry);
1440 } else {
1441 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1442 nir_print_instr(&instr->instr, stderr);
1443 fprintf(stderr, "\n");
1444 }
1445 break;
1446 }
1447 case nir_op_bitfield_reverse: {
1448 if (dst.regClass() == s1) {
1449 bld.sop1(aco_opcode::s_brev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1450 } else if (dst.regClass() == v1) {
1451 bld.vop1(aco_opcode::v_bfrev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1452 } else {
1453 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1454 nir_print_instr(&instr->instr, stderr);
1455 fprintf(stderr, "\n");
1456 }
1457 break;
1458 }
1459 case nir_op_iadd: {
1460 if (dst.regClass() == s1) {
1461 emit_sop2_instruction(ctx, instr, aco_opcode::s_add_u32, dst, true);
1462 break;
1463 }
1464
1465 Temp src0 = get_alu_src(ctx, instr->src[0]);
1466 Temp src1 = get_alu_src(ctx, instr->src[1]);
1467 if (dst.regClass() == v1) {
1468 bld.vadd32(Definition(dst), Operand(src0), Operand(src1));
1469 break;
1470 }
1471
1472 assert(src0.size() == 2 && src1.size() == 2);
1473 Temp src00 = bld.tmp(src0.type(), 1);
1474 Temp src01 = bld.tmp(dst.type(), 1);
1475 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1476 Temp src10 = bld.tmp(src1.type(), 1);
1477 Temp src11 = bld.tmp(dst.type(), 1);
1478 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1479
1480 if (dst.regClass() == s2) {
1481 Temp carry = bld.tmp(s1);
1482 Temp dst0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1483 Temp dst1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), src01, src11, bld.scc(carry));
1484 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1485 } else if (dst.regClass() == v2) {
1486 Temp dst0 = bld.tmp(v1);
1487 Temp carry = bld.vadd32(Definition(dst0), src00, src10, true).def(1).getTemp();
1488 Temp dst1 = bld.vadd32(bld.def(v1), src01, src11, false, carry);
1489 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1490 } else {
1491 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1492 nir_print_instr(&instr->instr, stderr);
1493 fprintf(stderr, "\n");
1494 }
1495 break;
1496 }
1497 case nir_op_uadd_sat: {
1498 Temp src0 = get_alu_src(ctx, instr->src[0]);
1499 Temp src1 = get_alu_src(ctx, instr->src[1]);
1500 if (dst.regClass() == s1) {
1501 Temp tmp = bld.tmp(s1), carry = bld.tmp(s1);
1502 bld.sop2(aco_opcode::s_add_u32, Definition(tmp), bld.scc(Definition(carry)),
1503 src0, src1);
1504 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t) -1), tmp, bld.scc(carry));
1505 } else if (dst.regClass() == v1) {
1506 if (ctx->options->chip_class >= GFX9) {
1507 aco_ptr<VOP3A_instruction> add{create_instruction<VOP3A_instruction>(aco_opcode::v_add_u32, asVOP3(Format::VOP2), 2, 1)};
1508 add->operands[0] = Operand(src0);
1509 add->operands[1] = Operand(src1);
1510 add->definitions[0] = Definition(dst);
1511 add->clamp = 1;
1512 ctx->block->instructions.emplace_back(std::move(add));
1513 } else {
1514 if (src1.regClass() != v1)
1515 std::swap(src0, src1);
1516 assert(src1.regClass() == v1);
1517 Temp tmp = bld.tmp(v1);
1518 Temp carry = bld.vadd32(Definition(tmp), src0, src1, true).def(1).getTemp();
1519 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), tmp, Operand((uint32_t) -1), carry);
1520 }
1521 } else {
1522 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1523 nir_print_instr(&instr->instr, stderr);
1524 fprintf(stderr, "\n");
1525 }
1526 break;
1527 }
1528 case nir_op_uadd_carry: {
1529 Temp src0 = get_alu_src(ctx, instr->src[0]);
1530 Temp src1 = get_alu_src(ctx, instr->src[1]);
1531 if (dst.regClass() == s1) {
1532 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1533 break;
1534 }
1535 if (dst.regClass() == v1) {
1536 Temp carry = bld.vadd32(bld.def(v1), src0, src1, true).def(1).getTemp();
1537 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), carry);
1538 break;
1539 }
1540
1541 Temp src00 = bld.tmp(src0.type(), 1);
1542 Temp src01 = bld.tmp(dst.type(), 1);
1543 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1544 Temp src10 = bld.tmp(src1.type(), 1);
1545 Temp src11 = bld.tmp(dst.type(), 1);
1546 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1547 if (dst.regClass() == s2) {
1548 Temp carry = bld.tmp(s1);
1549 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1550 carry = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(carry)).def(1).getTemp();
1551 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1552 } else if (dst.regClass() == v2) {
1553 Temp carry = bld.vadd32(bld.def(v1), src00, src10, true).def(1).getTemp();
1554 carry = bld.vadd32(bld.def(v1), src01, src11, true, carry).def(1).getTemp();
1555 carry = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), carry);
1556 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1557 } else {
1558 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1559 nir_print_instr(&instr->instr, stderr);
1560 fprintf(stderr, "\n");
1561 }
1562 break;
1563 }
1564 case nir_op_isub: {
1565 if (dst.regClass() == s1) {
1566 emit_sop2_instruction(ctx, instr, aco_opcode::s_sub_i32, dst, true);
1567 break;
1568 }
1569
1570 Temp src0 = get_alu_src(ctx, instr->src[0]);
1571 Temp src1 = get_alu_src(ctx, instr->src[1]);
1572 if (dst.regClass() == v1) {
1573 bld.vsub32(Definition(dst), src0, src1);
1574 break;
1575 }
1576
1577 Temp src00 = bld.tmp(src0.type(), 1);
1578 Temp src01 = bld.tmp(dst.type(), 1);
1579 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1580 Temp src10 = bld.tmp(src1.type(), 1);
1581 Temp src11 = bld.tmp(dst.type(), 1);
1582 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1583 if (dst.regClass() == s2) {
1584 Temp carry = bld.tmp(s1);
1585 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1586 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), src01, src11, carry);
1587 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1588 } else if (dst.regClass() == v2) {
1589 Temp lower = bld.tmp(v1);
1590 Temp borrow = bld.vsub32(Definition(lower), src00, src10, true).def(1).getTemp();
1591 Temp upper = bld.vsub32(bld.def(v1), src01, src11, false, borrow);
1592 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1593 } else {
1594 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1595 nir_print_instr(&instr->instr, stderr);
1596 fprintf(stderr, "\n");
1597 }
1598 break;
1599 }
1600 case nir_op_usub_borrow: {
1601 Temp src0 = get_alu_src(ctx, instr->src[0]);
1602 Temp src1 = get_alu_src(ctx, instr->src[1]);
1603 if (dst.regClass() == s1) {
1604 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1605 break;
1606 } else if (dst.regClass() == v1) {
1607 Temp borrow = bld.vsub32(bld.def(v1), src0, src1, true).def(1).getTemp();
1608 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), borrow);
1609 break;
1610 }
1611
1612 Temp src00 = bld.tmp(src0.type(), 1);
1613 Temp src01 = bld.tmp(dst.type(), 1);
1614 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1615 Temp src10 = bld.tmp(src1.type(), 1);
1616 Temp src11 = bld.tmp(dst.type(), 1);
1617 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1618 if (dst.regClass() == s2) {
1619 Temp borrow = bld.tmp(s1);
1620 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), src00, src10);
1621 borrow = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(borrow)).def(1).getTemp();
1622 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1623 } else if (dst.regClass() == v2) {
1624 Temp borrow = bld.vsub32(bld.def(v1), src00, src10, true).def(1).getTemp();
1625 borrow = bld.vsub32(bld.def(v1), src01, src11, true, Operand(borrow)).def(1).getTemp();
1626 borrow = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), borrow);
1627 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1628 } else {
1629 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1630 nir_print_instr(&instr->instr, stderr);
1631 fprintf(stderr, "\n");
1632 }
1633 break;
1634 }
1635 case nir_op_imul: {
1636 if (dst.regClass() == v1) {
1637 bld.vop3(aco_opcode::v_mul_lo_u32, Definition(dst),
1638 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1639 } else if (dst.regClass() == s1) {
1640 emit_sop2_instruction(ctx, instr, aco_opcode::s_mul_i32, dst, false);
1641 } else {
1642 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1643 nir_print_instr(&instr->instr, stderr);
1644 fprintf(stderr, "\n");
1645 }
1646 break;
1647 }
1648 case nir_op_umul_high: {
1649 if (dst.regClass() == v1) {
1650 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1651 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1652 bld.sop2(aco_opcode::s_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1653 } else if (dst.regClass() == s1) {
1654 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1655 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1656 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1657 } else {
1658 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1659 nir_print_instr(&instr->instr, stderr);
1660 fprintf(stderr, "\n");
1661 }
1662 break;
1663 }
1664 case nir_op_imul_high: {
1665 if (dst.regClass() == v1) {
1666 bld.vop3(aco_opcode::v_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1667 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1668 bld.sop2(aco_opcode::s_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1669 } else if (dst.regClass() == s1) {
1670 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1671 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1672 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1673 } else {
1674 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1675 nir_print_instr(&instr->instr, stderr);
1676 fprintf(stderr, "\n");
1677 }
1678 break;
1679 }
1680 case nir_op_fmul: {
1681 Temp src0 = get_alu_src(ctx, instr->src[0]);
1682 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1683 if (dst.regClass() == v2b) {
1684 emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f16, dst, true);
1685 } else if (dst.regClass() == v1) {
1686 emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f32, dst, true);
1687 } else if (dst.regClass() == v2) {
1688 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), src0, src1);
1689 } else {
1690 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1691 nir_print_instr(&instr->instr, stderr);
1692 fprintf(stderr, "\n");
1693 }
1694 break;
1695 }
1696 case nir_op_fadd: {
1697 Temp src0 = get_alu_src(ctx, instr->src[0]);
1698 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1699 if (dst.regClass() == v2b) {
1700 emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f16, dst, true);
1701 } else if (dst.regClass() == v1) {
1702 emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f32, dst, true);
1703 } else if (dst.regClass() == v2) {
1704 bld.vop3(aco_opcode::v_add_f64, Definition(dst), src0, src1);
1705 } else {
1706 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1707 nir_print_instr(&instr->instr, stderr);
1708 fprintf(stderr, "\n");
1709 }
1710 break;
1711 }
1712 case nir_op_fsub: {
1713 Temp src0 = get_alu_src(ctx, instr->src[0]);
1714 Temp src1 = get_alu_src(ctx, instr->src[1]);
1715 if (dst.regClass() == v2b) {
1716 if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
1717 emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f16, dst, false);
1718 else
1719 emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f16, dst, true);
1720 } else if (dst.regClass() == v1) {
1721 if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
1722 emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f32, dst, false);
1723 else
1724 emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f32, dst, true);
1725 } else if (dst.regClass() == v2) {
1726 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst),
1727 as_vgpr(ctx, src0), as_vgpr(ctx, src1));
1728 VOP3A_instruction* sub = static_cast<VOP3A_instruction*>(add);
1729 sub->neg[1] = true;
1730 } else {
1731 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1732 nir_print_instr(&instr->instr, stderr);
1733 fprintf(stderr, "\n");
1734 }
1735 break;
1736 }
1737 case nir_op_fmax: {
1738 Temp src0 = get_alu_src(ctx, instr->src[0]);
1739 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1740 if (dst.regClass() == v2b) {
1741 // TODO: check fp_mode.must_flush_denorms16_64
1742 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f16, dst, true);
1743 } else if (dst.regClass() == v1) {
1744 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1745 } else if (dst.regClass() == v2) {
1746 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1747 Temp tmp = bld.vop3(aco_opcode::v_max_f64, bld.def(v2), src0, src1);
1748 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1749 } else {
1750 bld.vop3(aco_opcode::v_max_f64, Definition(dst), src0, src1);
1751 }
1752 } else {
1753 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1754 nir_print_instr(&instr->instr, stderr);
1755 fprintf(stderr, "\n");
1756 }
1757 break;
1758 }
1759 case nir_op_fmin: {
1760 Temp src0 = get_alu_src(ctx, instr->src[0]);
1761 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1762 if (dst.regClass() == v2b) {
1763 // TODO: check fp_mode.must_flush_denorms16_64
1764 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f16, dst, true);
1765 } else if (dst.regClass() == v1) {
1766 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1767 } else if (dst.regClass() == v2) {
1768 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1769 Temp tmp = bld.vop3(aco_opcode::v_min_f64, bld.def(v2), src0, src1);
1770 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1771 } else {
1772 bld.vop3(aco_opcode::v_min_f64, Definition(dst), src0, src1);
1773 }
1774 } else {
1775 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1776 nir_print_instr(&instr->instr, stderr);
1777 fprintf(stderr, "\n");
1778 }
1779 break;
1780 }
1781 case nir_op_fmax3: {
1782 if (dst.regClass() == v2b) {
1783 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_f16, dst, false);
1784 } else if (dst.regClass() == v1) {
1785 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1786 } else {
1787 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1788 nir_print_instr(&instr->instr, stderr);
1789 fprintf(stderr, "\n");
1790 }
1791 break;
1792 }
1793 case nir_op_fmin3: {
1794 if (dst.regClass() == v2b) {
1795 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_f16, dst, false);
1796 } else if (dst.regClass() == v1) {
1797 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1798 } else {
1799 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1800 nir_print_instr(&instr->instr, stderr);
1801 fprintf(stderr, "\n");
1802 }
1803 break;
1804 }
1805 case nir_op_fmed3: {
1806 if (dst.regClass() == v2b) {
1807 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_f16, dst, false);
1808 } else if (dst.regClass() == v1) {
1809 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1810 } else {
1811 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1812 nir_print_instr(&instr->instr, stderr);
1813 fprintf(stderr, "\n");
1814 }
1815 break;
1816 }
1817 case nir_op_umax3: {
1818 if (dst.size() == 1) {
1819 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_u32, dst);
1820 } else {
1821 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1822 nir_print_instr(&instr->instr, stderr);
1823 fprintf(stderr, "\n");
1824 }
1825 break;
1826 }
1827 case nir_op_umin3: {
1828 if (dst.size() == 1) {
1829 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_u32, dst);
1830 } else {
1831 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1832 nir_print_instr(&instr->instr, stderr);
1833 fprintf(stderr, "\n");
1834 }
1835 break;
1836 }
1837 case nir_op_umed3: {
1838 if (dst.size() == 1) {
1839 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_u32, dst);
1840 } else {
1841 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1842 nir_print_instr(&instr->instr, stderr);
1843 fprintf(stderr, "\n");
1844 }
1845 break;
1846 }
1847 case nir_op_imax3: {
1848 if (dst.size() == 1) {
1849 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_i32, dst);
1850 } else {
1851 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1852 nir_print_instr(&instr->instr, stderr);
1853 fprintf(stderr, "\n");
1854 }
1855 break;
1856 }
1857 case nir_op_imin3: {
1858 if (dst.size() == 1) {
1859 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_i32, dst);
1860 } else {
1861 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1862 nir_print_instr(&instr->instr, stderr);
1863 fprintf(stderr, "\n");
1864 }
1865 break;
1866 }
1867 case nir_op_imed3: {
1868 if (dst.size() == 1) {
1869 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_i32, dst);
1870 } else {
1871 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1872 nir_print_instr(&instr->instr, stderr);
1873 fprintf(stderr, "\n");
1874 }
1875 break;
1876 }
1877 case nir_op_cube_face_coord: {
1878 Temp in = get_alu_src(ctx, instr->src[0], 3);
1879 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1880 emit_extract_vector(ctx, in, 1, v1),
1881 emit_extract_vector(ctx, in, 2, v1) };
1882 Temp ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), src[0], src[1], src[2]);
1883 ma = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), ma);
1884 Temp sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), src[0], src[1], src[2]);
1885 Temp tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), src[0], src[1], src[2]);
1886 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, ma, Operand(0x3f000000u/*0.5*/));
1887 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, ma, Operand(0x3f000000u/*0.5*/));
1888 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), sc, tc);
1889 break;
1890 }
1891 case nir_op_cube_face_index: {
1892 Temp in = get_alu_src(ctx, instr->src[0], 3);
1893 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1894 emit_extract_vector(ctx, in, 1, v1),
1895 emit_extract_vector(ctx, in, 2, v1) };
1896 bld.vop3(aco_opcode::v_cubeid_f32, Definition(dst), src[0], src[1], src[2]);
1897 break;
1898 }
1899 case nir_op_bcsel: {
1900 emit_bcsel(ctx, instr, dst);
1901 break;
1902 }
1903 case nir_op_frsq: {
1904 Temp src = get_alu_src(ctx, instr->src[0]);
1905 if (dst.regClass() == v2b) {
1906 emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f16, dst);
1907 } else if (dst.regClass() == v1) {
1908 emit_rsq(ctx, bld, Definition(dst), src);
1909 } else if (dst.regClass() == v2) {
1910 emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f64, dst);
1911 } else {
1912 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1913 nir_print_instr(&instr->instr, stderr);
1914 fprintf(stderr, "\n");
1915 }
1916 break;
1917 }
1918 case nir_op_fneg: {
1919 Temp src = get_alu_src(ctx, instr->src[0]);
1920 if (dst.regClass() == v2b) {
1921 bld.vop2(aco_opcode::v_xor_b32, Definition(dst), Operand(0x8000u), as_vgpr(ctx, src));
1922 } else if (dst.regClass() == v1) {
1923 if (ctx->block->fp_mode.must_flush_denorms32)
1924 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1925 bld.vop2(aco_opcode::v_xor_b32, Definition(dst), Operand(0x80000000u), as_vgpr(ctx, src));
1926 } else if (dst.regClass() == v2) {
1927 if (ctx->block->fp_mode.must_flush_denorms16_64)
1928 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1929 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1930 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1931 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), Operand(0x80000000u), upper);
1932 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1933 } else {
1934 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1935 nir_print_instr(&instr->instr, stderr);
1936 fprintf(stderr, "\n");
1937 }
1938 break;
1939 }
1940 case nir_op_fabs: {
1941 Temp src = get_alu_src(ctx, instr->src[0]);
1942 if (dst.regClass() == v2b) {
1943 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0x7FFFu), as_vgpr(ctx, src));
1944 } else if (dst.regClass() == v1) {
1945 if (ctx->block->fp_mode.must_flush_denorms32)
1946 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1947 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0x7FFFFFFFu), as_vgpr(ctx, src));
1948 } else if (dst.regClass() == v2) {
1949 if (ctx->block->fp_mode.must_flush_denorms16_64)
1950 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1951 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1952 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1953 upper = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7FFFFFFFu), upper);
1954 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1955 } else {
1956 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1957 nir_print_instr(&instr->instr, stderr);
1958 fprintf(stderr, "\n");
1959 }
1960 break;
1961 }
1962 case nir_op_fsat: {
1963 Temp src = get_alu_src(ctx, instr->src[0]);
1964 if (dst.regClass() == v2b) {
1965 bld.vop3(aco_opcode::v_med3_f16, Definition(dst), Operand((uint16_t)0u), Operand((uint16_t)0x3c00), src);
1966 } else if (dst.regClass() == v1) {
1967 bld.vop3(aco_opcode::v_med3_f32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
1968 /* apparently, it is not necessary to flush denorms if this instruction is used with these operands */
1969 // TODO: confirm that this holds under any circumstances
1970 } else if (dst.regClass() == v2) {
1971 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src, Operand(0u));
1972 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(add);
1973 vop3->clamp = true;
1974 } else {
1975 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1976 nir_print_instr(&instr->instr, stderr);
1977 fprintf(stderr, "\n");
1978 }
1979 break;
1980 }
1981 case nir_op_flog2: {
1982 Temp src = get_alu_src(ctx, instr->src[0]);
1983 if (dst.regClass() == v2b) {
1984 emit_vop1_instruction(ctx, instr, aco_opcode::v_log_f16, dst);
1985 } else if (dst.regClass() == v1) {
1986 emit_log2(ctx, bld, Definition(dst), src);
1987 } else {
1988 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1989 nir_print_instr(&instr->instr, stderr);
1990 fprintf(stderr, "\n");
1991 }
1992 break;
1993 }
1994 case nir_op_frcp: {
1995 Temp src = get_alu_src(ctx, instr->src[0]);
1996 if (dst.regClass() == v2b) {
1997 emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f16, dst);
1998 } else if (dst.regClass() == v1) {
1999 emit_rcp(ctx, bld, Definition(dst), src);
2000 } else if (dst.regClass() == v2) {
2001 emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f64, dst);
2002 } else {
2003 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2004 nir_print_instr(&instr->instr, stderr);
2005 fprintf(stderr, "\n");
2006 }
2007 break;
2008 }
2009 case nir_op_fexp2: {
2010 if (dst.regClass() == v2b) {
2011 emit_vop1_instruction(ctx, instr, aco_opcode::v_exp_f16, dst);
2012 } else if (dst.regClass() == v1) {
2013 emit_vop1_instruction(ctx, instr, aco_opcode::v_exp_f32, dst);
2014 } else {
2015 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2016 nir_print_instr(&instr->instr, stderr);
2017 fprintf(stderr, "\n");
2018 }
2019 break;
2020 }
2021 case nir_op_fsqrt: {
2022 Temp src = get_alu_src(ctx, instr->src[0]);
2023 if (dst.regClass() == v2b) {
2024 emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f16, dst);
2025 } else if (dst.regClass() == v1) {
2026 emit_sqrt(ctx, bld, Definition(dst), src);
2027 } else if (dst.regClass() == v2) {
2028 emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f64, dst);
2029 } else {
2030 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2031 nir_print_instr(&instr->instr, stderr);
2032 fprintf(stderr, "\n");
2033 }
2034 break;
2035 }
2036 case nir_op_ffract: {
2037 if (dst.regClass() == v2b) {
2038 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f16, dst);
2039 } else if (dst.regClass() == v1) {
2040 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f32, dst);
2041 } else if (dst.regClass() == v2) {
2042 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f64, dst);
2043 } else {
2044 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2045 nir_print_instr(&instr->instr, stderr);
2046 fprintf(stderr, "\n");
2047 }
2048 break;
2049 }
2050 case nir_op_ffloor: {
2051 Temp src = get_alu_src(ctx, instr->src[0]);
2052 if (dst.regClass() == v2b) {
2053 emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f16, dst);
2054 } else if (dst.regClass() == v1) {
2055 emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f32, dst);
2056 } else if (dst.regClass() == v2) {
2057 emit_floor_f64(ctx, bld, Definition(dst), src);
2058 } else {
2059 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2060 nir_print_instr(&instr->instr, stderr);
2061 fprintf(stderr, "\n");
2062 }
2063 break;
2064 }
2065 case nir_op_fceil: {
2066 Temp src0 = get_alu_src(ctx, instr->src[0]);
2067 if (dst.regClass() == v2b) {
2068 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f16, dst);
2069 } else if (dst.regClass() == v1) {
2070 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f32, dst);
2071 } else if (dst.regClass() == v2) {
2072 if (ctx->options->chip_class >= GFX7) {
2073 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f64, dst);
2074 } else {
2075 /* GFX6 doesn't support V_CEIL_F64, lower it. */
2076 /* trunc = trunc(src0)
2077 * if (src0 > 0.0 && src0 != trunc)
2078 * trunc += 1.0
2079 */
2080 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src0);
2081 Temp tmp0 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.def(bld.lm), src0, Operand(0u));
2082 Temp tmp1 = bld.vopc(aco_opcode::v_cmp_lg_f64, bld.hint_vcc(bld.def(bld.lm)), src0, trunc);
2083 Temp cond = bld.sop2(aco_opcode::s_and_b64, bld.hint_vcc(bld.def(s2)), bld.def(s1, scc), tmp0, tmp1);
2084 Temp add = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), bld.copy(bld.def(v1), Operand(0u)), bld.copy(bld.def(v1), Operand(0x3ff00000u)), cond);
2085 add = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), bld.copy(bld.def(v1), Operand(0u)), add);
2086 bld.vop3(aco_opcode::v_add_f64, Definition(dst), trunc, add);
2087 }
2088 } else {
2089 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2090 nir_print_instr(&instr->instr, stderr);
2091 fprintf(stderr, "\n");
2092 }
2093 break;
2094 }
2095 case nir_op_ftrunc: {
2096 Temp src = get_alu_src(ctx, instr->src[0]);
2097 if (dst.regClass() == v2b) {
2098 emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f16, dst);
2099 } else if (dst.regClass() == v1) {
2100 emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f32, dst);
2101 } else if (dst.regClass() == v2) {
2102 emit_trunc_f64(ctx, bld, Definition(dst), src);
2103 } else {
2104 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2105 nir_print_instr(&instr->instr, stderr);
2106 fprintf(stderr, "\n");
2107 }
2108 break;
2109 }
2110 case nir_op_fround_even: {
2111 Temp src0 = get_alu_src(ctx, instr->src[0]);
2112 if (dst.regClass() == v2b) {
2113 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f16, dst);
2114 } else if (dst.regClass() == v1) {
2115 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f32, dst);
2116 } else if (dst.regClass() == v2) {
2117 if (ctx->options->chip_class >= GFX7) {
2118 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f64, dst);
2119 } else {
2120 /* GFX6 doesn't support V_RNDNE_F64, lower it. */
2121 Temp src0_lo = bld.tmp(v1), src0_hi = bld.tmp(v1);
2122 bld.pseudo(aco_opcode::p_split_vector, Definition(src0_lo), Definition(src0_hi), src0);
2123
2124 Temp bitmask = bld.sop1(aco_opcode::s_brev_b32, bld.def(s1), bld.copy(bld.def(s1), Operand(-2u)));
2125 Temp bfi = bld.vop3(aco_opcode::v_bfi_b32, bld.def(v1), bitmask, bld.copy(bld.def(v1), Operand(0x43300000u)), as_vgpr(ctx, src0_hi));
2126 Temp tmp = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), src0, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
2127 Instruction *sub = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), tmp, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
2128 static_cast<VOP3A_instruction*>(sub)->neg[1] = true;
2129 tmp = sub->definitions[0].getTemp();
2130
2131 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x432fffffu));
2132 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.hint_vcc(bld.def(bld.lm)), src0, v);
2133 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
2134 Temp cond = vop3->definitions[0].getTemp();
2135
2136 Temp tmp_lo = bld.tmp(v1), tmp_hi = bld.tmp(v1);
2137 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp_lo), Definition(tmp_hi), tmp);
2138 Temp dst0 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_lo, as_vgpr(ctx, src0_lo), cond);
2139 Temp dst1 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_hi, as_vgpr(ctx, src0_hi), cond);
2140
2141 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
2142 }
2143 } else {
2144 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2145 nir_print_instr(&instr->instr, stderr);
2146 fprintf(stderr, "\n");
2147 }
2148 break;
2149 }
2150 case nir_op_fsin:
2151 case nir_op_fcos: {
2152 Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
2153 aco_ptr<Instruction> norm;
2154 if (dst.regClass() == v2b) {
2155 Temp half_pi = bld.copy(bld.def(s1), Operand(0x3118u));
2156 Temp tmp = bld.vop2(aco_opcode::v_mul_f16, bld.def(v1), half_pi, src);
2157 aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f16 : aco_opcode::v_cos_f16;
2158 bld.vop1(opcode, Definition(dst), tmp);
2159 } else if (dst.regClass() == v1) {
2160 Temp half_pi = bld.copy(bld.def(s1), Operand(0x3e22f983u));
2161 Temp tmp = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), half_pi, src);
2162
2163 /* before GFX9, v_sin_f32 and v_cos_f32 had a valid input domain of [-256, +256] */
2164 if (ctx->options->chip_class < GFX9)
2165 tmp = bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), tmp);
2166
2167 aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f32 : aco_opcode::v_cos_f32;
2168 bld.vop1(opcode, Definition(dst), tmp);
2169 } else {
2170 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2171 nir_print_instr(&instr->instr, stderr);
2172 fprintf(stderr, "\n");
2173 }
2174 break;
2175 }
2176 case nir_op_ldexp: {
2177 Temp src0 = get_alu_src(ctx, instr->src[0]);
2178 Temp src1 = get_alu_src(ctx, instr->src[1]);
2179 if (dst.regClass() == v2b) {
2180 emit_vop2_instruction(ctx, instr, aco_opcode::v_ldexp_f16, dst, false);
2181 } else if (dst.regClass() == v1) {
2182 bld.vop3(aco_opcode::v_ldexp_f32, Definition(dst), as_vgpr(ctx, src0), src1);
2183 } else if (dst.regClass() == v2) {
2184 bld.vop3(aco_opcode::v_ldexp_f64, Definition(dst), as_vgpr(ctx, src0), src1);
2185 } else {
2186 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2187 nir_print_instr(&instr->instr, stderr);
2188 fprintf(stderr, "\n");
2189 }
2190 break;
2191 }
2192 case nir_op_frexp_sig: {
2193 Temp src = get_alu_src(ctx, instr->src[0]);
2194 if (dst.regClass() == v2b) {
2195 bld.vop1(aco_opcode::v_frexp_mant_f16, Definition(dst), src);
2196 } else if (dst.regClass() == v1) {
2197 bld.vop1(aco_opcode::v_frexp_mant_f32, Definition(dst), src);
2198 } else if (dst.regClass() == v2) {
2199 bld.vop1(aco_opcode::v_frexp_mant_f64, Definition(dst), src);
2200 } else {
2201 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2202 nir_print_instr(&instr->instr, stderr);
2203 fprintf(stderr, "\n");
2204 }
2205 break;
2206 }
2207 case nir_op_frexp_exp: {
2208 Temp src = get_alu_src(ctx, instr->src[0]);
2209 if (instr->src[0].src.ssa->bit_size == 16) {
2210 Temp tmp = bld.vop1(aco_opcode::v_frexp_exp_i16_f16, bld.def(v1), src);
2211 tmp = bld.pseudo(aco_opcode::p_extract_vector, bld.def(v1b), tmp, Operand(0u));
2212 convert_int(ctx, bld, tmp, 8, 32, true, dst);
2213 } else if (instr->src[0].src.ssa->bit_size == 32) {
2214 bld.vop1(aco_opcode::v_frexp_exp_i32_f32, Definition(dst), src);
2215 } else if (instr->src[0].src.ssa->bit_size == 64) {
2216 bld.vop1(aco_opcode::v_frexp_exp_i32_f64, Definition(dst), src);
2217 } else {
2218 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2219 nir_print_instr(&instr->instr, stderr);
2220 fprintf(stderr, "\n");
2221 }
2222 break;
2223 }
2224 case nir_op_fsign: {
2225 Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
2226 if (dst.regClass() == v2b) {
2227 Temp one = bld.copy(bld.def(v1), Operand(0x3c00u));
2228 Temp minus_one = bld.copy(bld.def(v1), Operand(0xbc00u));
2229 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f16, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2230 src = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), one, src, cond);
2231 cond = bld.vopc(aco_opcode::v_cmp_le_f16, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2232 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), minus_one, src, cond);
2233 } else if (dst.regClass() == v1) {
2234 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2235 src = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0x3f800000u), src, cond);
2236 cond = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2237 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0xbf800000u), src, cond);
2238 } else if (dst.regClass() == v2) {
2239 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2240 Temp tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0x3FF00000u));
2241 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, emit_extract_vector(ctx, src, 1, v1), cond);
2242
2243 cond = bld.vopc(aco_opcode::v_cmp_le_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2244 tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0xBFF00000u));
2245 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, upper, cond);
2246
2247 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
2248 } else {
2249 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2250 nir_print_instr(&instr->instr, stderr);
2251 fprintf(stderr, "\n");
2252 }
2253 break;
2254 }
2255 case nir_op_f2f16:
2256 case nir_op_f2f16_rtne: {
2257 Temp src = get_alu_src(ctx, instr->src[0]);
2258 if (instr->src[0].src.ssa->bit_size == 64)
2259 src = bld.vop1(aco_opcode::v_cvt_f32_f64, bld.def(v1), src);
2260 bld.vop1(aco_opcode::v_cvt_f16_f32, Definition(dst), src);
2261 break;
2262 }
2263 case nir_op_f2f16_rtz: {
2264 Temp src = get_alu_src(ctx, instr->src[0]);
2265 if (instr->src[0].src.ssa->bit_size == 64)
2266 src = bld.vop1(aco_opcode::v_cvt_f32_f64, bld.def(v1), src);
2267 bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, Definition(dst), src, Operand(0u));
2268 break;
2269 }
2270 case nir_op_f2f32: {
2271 if (instr->src[0].src.ssa->bit_size == 16) {
2272 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f16, dst);
2273 } else if (instr->src[0].src.ssa->bit_size == 64) {
2274 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f64, dst);
2275 } else {
2276 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2277 nir_print_instr(&instr->instr, stderr);
2278 fprintf(stderr, "\n");
2279 }
2280 break;
2281 }
2282 case nir_op_f2f64: {
2283 Temp src = get_alu_src(ctx, instr->src[0]);
2284 if (instr->src[0].src.ssa->bit_size == 16)
2285 src = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2286 bld.vop1(aco_opcode::v_cvt_f64_f32, Definition(dst), src);
2287 break;
2288 }
2289 case nir_op_i2f16: {
2290 assert(dst.regClass() == v2b);
2291 Temp src = get_alu_src(ctx, instr->src[0]);
2292 if (instr->src[0].src.ssa->bit_size == 8)
2293 src = convert_int(ctx, bld, src, 8, 16, true);
2294 else if (instr->src[0].src.ssa->bit_size == 64)
2295 src = convert_int(ctx, bld, src, 64, 32, false);
2296 bld.vop1(aco_opcode::v_cvt_f16_i16, Definition(dst), src);
2297 break;
2298 }
2299 case nir_op_i2f32: {
2300 assert(dst.size() == 1);
2301 Temp src = get_alu_src(ctx, instr->src[0]);
2302 if (instr->src[0].src.ssa->bit_size <= 16)
2303 src = convert_int(ctx, bld, src, instr->src[0].src.ssa->bit_size, 32, true);
2304 bld.vop1(aco_opcode::v_cvt_f32_i32, Definition(dst), src);
2305 break;
2306 }
2307 case nir_op_i2f64: {
2308 if (instr->src[0].src.ssa->bit_size <= 32) {
2309 Temp src = get_alu_src(ctx, instr->src[0]);
2310 if (instr->src[0].src.ssa->bit_size <= 16)
2311 src = convert_int(ctx, bld, src, instr->src[0].src.ssa->bit_size, 32, true);
2312 bld.vop1(aco_opcode::v_cvt_f64_i32, Definition(dst), src);
2313 } else if (instr->src[0].src.ssa->bit_size == 64) {
2314 Temp src = get_alu_src(ctx, instr->src[0]);
2315 RegClass rc = RegClass(src.type(), 1);
2316 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
2317 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
2318 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
2319 upper = bld.vop1(aco_opcode::v_cvt_f64_i32, bld.def(v2), upper);
2320 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
2321 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
2322
2323 } else {
2324 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2325 nir_print_instr(&instr->instr, stderr);
2326 fprintf(stderr, "\n");
2327 }
2328 break;
2329 }
2330 case nir_op_u2f16: {
2331 assert(dst.regClass() == v2b);
2332 Temp src = get_alu_src(ctx, instr->src[0]);
2333 if (instr->src[0].src.ssa->bit_size == 8)
2334 src = convert_int(ctx, bld, src, 8, 16, false);
2335 else if (instr->src[0].src.ssa->bit_size == 64)
2336 src = convert_int(ctx, bld, src, 64, 32, false);
2337 bld.vop1(aco_opcode::v_cvt_f16_u16, Definition(dst), src);
2338 break;
2339 }
2340 case nir_op_u2f32: {
2341 assert(dst.size() == 1);
2342 Temp src = get_alu_src(ctx, instr->src[0]);
2343 if (instr->src[0].src.ssa->bit_size == 8) {
2344 bld.vop1(aco_opcode::v_cvt_f32_ubyte0, Definition(dst), src);
2345 } else {
2346 if (instr->src[0].src.ssa->bit_size == 16)
2347 src = convert_int(ctx, bld, src, instr->src[0].src.ssa->bit_size, 32, true);
2348 bld.vop1(aco_opcode::v_cvt_f32_u32, Definition(dst), src);
2349 }
2350 break;
2351 }
2352 case nir_op_u2f64: {
2353 if (instr->src[0].src.ssa->bit_size <= 32) {
2354 Temp src = get_alu_src(ctx, instr->src[0]);
2355 if (instr->src[0].src.ssa->bit_size <= 16)
2356 src = convert_int(ctx, bld, src, instr->src[0].src.ssa->bit_size, 32, false);
2357 bld.vop1(aco_opcode::v_cvt_f64_u32, Definition(dst), src);
2358 } else if (instr->src[0].src.ssa->bit_size == 64) {
2359 Temp src = get_alu_src(ctx, instr->src[0]);
2360 RegClass rc = RegClass(src.type(), 1);
2361 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
2362 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
2363 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
2364 upper = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), upper);
2365 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
2366 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
2367 } else {
2368 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2369 nir_print_instr(&instr->instr, stderr);
2370 fprintf(stderr, "\n");
2371 }
2372 break;
2373 }
2374 case nir_op_f2i8:
2375 case nir_op_f2i16: {
2376 if (instr->src[0].src.ssa->bit_size == 16)
2377 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i16_f16, dst);
2378 else if (instr->src[0].src.ssa->bit_size == 32)
2379 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i32_f32, dst);
2380 else
2381 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i32_f64, dst);
2382 break;
2383 }
2384 case nir_op_f2u8:
2385 case nir_op_f2u16: {
2386 if (instr->src[0].src.ssa->bit_size == 16)
2387 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u16_f16, dst);
2388 else if (instr->src[0].src.ssa->bit_size == 32)
2389 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u32_f32, dst);
2390 else
2391 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u32_f64, dst);
2392 break;
2393 }
2394 case nir_op_f2i32: {
2395 Temp src = get_alu_src(ctx, instr->src[0]);
2396 if (instr->src[0].src.ssa->bit_size == 16) {
2397 Temp tmp = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2398 if (dst.type() == RegType::vgpr) {
2399 bld.vop1(aco_opcode::v_cvt_i32_f32, Definition(dst), tmp);
2400 } else {
2401 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2402 bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), tmp));
2403 }
2404 } else if (instr->src[0].src.ssa->bit_size == 32) {
2405 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i32_f32, dst);
2406 } else if (instr->src[0].src.ssa->bit_size == 64) {
2407 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_i32_f64, dst);
2408 } else {
2409 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2410 nir_print_instr(&instr->instr, stderr);
2411 fprintf(stderr, "\n");
2412 }
2413 break;
2414 }
2415 case nir_op_f2u32: {
2416 Temp src = get_alu_src(ctx, instr->src[0]);
2417 if (instr->src[0].src.ssa->bit_size == 16) {
2418 Temp tmp = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2419 if (dst.type() == RegType::vgpr) {
2420 bld.vop1(aco_opcode::v_cvt_u32_f32, Definition(dst), tmp);
2421 } else {
2422 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2423 bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), tmp));
2424 }
2425 } else if (instr->src[0].src.ssa->bit_size == 32) {
2426 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u32_f32, dst);
2427 } else if (instr->src[0].src.ssa->bit_size == 64) {
2428 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_u32_f64, dst);
2429 } else {
2430 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2431 nir_print_instr(&instr->instr, stderr);
2432 fprintf(stderr, "\n");
2433 }
2434 break;
2435 }
2436 case nir_op_f2i64: {
2437 Temp src = get_alu_src(ctx, instr->src[0]);
2438 if (instr->src[0].src.ssa->bit_size == 16)
2439 src = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2440
2441 if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::vgpr) {
2442 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2443 exponent = bld.vop3(aco_opcode::v_med3_i32, bld.def(v1), Operand(0x0u), exponent, Operand(64u));
2444 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2445 Temp sign = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
2446 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2447 mantissa = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(7u), mantissa);
2448 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2449 Temp new_exponent = bld.tmp(v1);
2450 Temp borrow = bld.vsub32(Definition(new_exponent), Operand(63u), exponent, true).def(1).getTemp();
2451 if (ctx->program->chip_class >= GFX8)
2452 mantissa = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), new_exponent, mantissa);
2453 else
2454 mantissa = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), mantissa, new_exponent);
2455 Temp saturate = bld.vop1(aco_opcode::v_bfrev_b32, bld.def(v1), Operand(0xfffffffeu));
2456 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2457 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2458 lower = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), lower, Operand(0xffffffffu), borrow);
2459 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), upper, saturate, borrow);
2460 lower = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, lower);
2461 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, upper);
2462 Temp new_lower = bld.tmp(v1);
2463 borrow = bld.vsub32(Definition(new_lower), lower, sign, true).def(1).getTemp();
2464 Temp new_upper = bld.vsub32(bld.def(v1), upper, sign, false, borrow);
2465 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), new_lower, new_upper);
2466
2467 } else if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::sgpr) {
2468 if (src.type() == RegType::vgpr)
2469 src = bld.as_uniform(src);
2470 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2471 exponent = bld.sop2(aco_opcode::s_sub_i32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2472 exponent = bld.sop2(aco_opcode::s_max_i32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2473 exponent = bld.sop2(aco_opcode::s_min_i32, bld.def(s1), bld.def(s1, scc), Operand(64u), exponent);
2474 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2475 Temp sign = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
2476 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2477 mantissa = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), mantissa, Operand(7u));
2478 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2479 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(63u), exponent);
2480 mantissa = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent);
2481 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), exponent, Operand(0xffffffffu)); // exp >= 64
2482 Temp saturate = bld.sop1(aco_opcode::s_brev_b64, bld.def(s2), Operand(0xfffffffeu));
2483 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), saturate, mantissa, cond);
2484 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2485 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2486 lower = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, lower);
2487 upper = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, upper);
2488 Temp borrow = bld.tmp(s1);
2489 lower = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), lower, sign);
2490 upper = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), upper, sign, borrow);
2491 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2492
2493 } else if (instr->src[0].src.ssa->bit_size == 64) {
2494 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2495 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2496 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2497 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2498 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2499 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2500 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2501 Temp upper = bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), floor);
2502 if (dst.type() == RegType::sgpr) {
2503 lower = bld.as_uniform(lower);
2504 upper = bld.as_uniform(upper);
2505 }
2506 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2507
2508 } else {
2509 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2510 nir_print_instr(&instr->instr, stderr);
2511 fprintf(stderr, "\n");
2512 }
2513 break;
2514 }
2515 case nir_op_f2u64: {
2516 Temp src = get_alu_src(ctx, instr->src[0]);
2517 if (instr->src[0].src.ssa->bit_size == 16)
2518 src = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2519
2520 if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::vgpr) {
2521 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2522 Temp exponent_in_range = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(64u), exponent);
2523 exponent = bld.vop2(aco_opcode::v_max_i32, bld.def(v1), Operand(0x0u), exponent);
2524 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2525 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2526 Temp exponent_small = bld.vsub32(bld.def(v1), Operand(24u), exponent);
2527 Temp small = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), exponent_small, mantissa);
2528 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2529 Temp new_exponent = bld.tmp(v1);
2530 Temp cond_small = bld.vsub32(Definition(new_exponent), exponent, Operand(24u), true).def(1).getTemp();
2531 if (ctx->program->chip_class >= GFX8)
2532 mantissa = bld.vop3(aco_opcode::v_lshlrev_b64, bld.def(v2), new_exponent, mantissa);
2533 else
2534 mantissa = bld.vop3(aco_opcode::v_lshl_b64, bld.def(v2), mantissa, new_exponent);
2535 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2536 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2537 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), lower, small, cond_small);
2538 upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), upper, Operand(0u), cond_small);
2539 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), lower, exponent_in_range);
2540 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), upper, exponent_in_range);
2541 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2542
2543 } else if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::sgpr) {
2544 if (src.type() == RegType::vgpr)
2545 src = bld.as_uniform(src);
2546 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2547 exponent = bld.sop2(aco_opcode::s_sub_i32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2548 exponent = bld.sop2(aco_opcode::s_max_i32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2549 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2550 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2551 Temp exponent_small = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(24u), exponent);
2552 Temp small = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), mantissa, exponent_small);
2553 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2554 Temp exponent_large = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(24u));
2555 mantissa = bld.sop2(aco_opcode::s_lshl_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent_large);
2556 Temp cond = bld.sopc(aco_opcode::s_cmp_ge_i32, bld.def(s1, scc), Operand(64u), exponent);
2557 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), mantissa, Operand(0xffffffffu), cond);
2558 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2559 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2560 Temp cond_small = bld.sopc(aco_opcode::s_cmp_le_i32, bld.def(s1, scc), exponent, Operand(24u));
2561 lower = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), small, lower, cond_small);
2562 upper = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), Operand(0u), upper, cond_small);
2563 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2564
2565 } else if (instr->src[0].src.ssa->bit_size == 64) {
2566 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2567 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2568 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2569 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2570 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2571 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2572 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2573 Temp upper = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), floor);
2574 if (dst.type() == RegType::sgpr) {
2575 lower = bld.as_uniform(lower);
2576 upper = bld.as_uniform(upper);
2577 }
2578 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2579
2580 } else {
2581 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2582 nir_print_instr(&instr->instr, stderr);
2583 fprintf(stderr, "\n");
2584 }
2585 break;
2586 }
2587 case nir_op_b2f16: {
2588 Temp src = get_alu_src(ctx, instr->src[0]);
2589 assert(src.regClass() == bld.lm);
2590
2591 if (dst.regClass() == s1) {
2592 src = bool_to_scalar_condition(ctx, src);
2593 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3c00u), src);
2594 } else if (dst.regClass() == v2b) {
2595 Temp one = bld.copy(bld.def(v1), Operand(0x3c00u));
2596 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), one, src);
2597 } else {
2598 unreachable("Wrong destination register class for nir_op_b2f16.");
2599 }
2600 break;
2601 }
2602 case nir_op_b2f32: {
2603 Temp src = get_alu_src(ctx, instr->src[0]);
2604 assert(src.regClass() == bld.lm);
2605
2606 if (dst.regClass() == s1) {
2607 src = bool_to_scalar_condition(ctx, src);
2608 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3f800000u), src);
2609 } else if (dst.regClass() == v1) {
2610 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
2611 } else {
2612 unreachable("Wrong destination register class for nir_op_b2f32.");
2613 }
2614 break;
2615 }
2616 case nir_op_b2f64: {
2617 Temp src = get_alu_src(ctx, instr->src[0]);
2618 assert(src.regClass() == bld.lm);
2619
2620 if (dst.regClass() == s2) {
2621 src = bool_to_scalar_condition(ctx, src);
2622 bld.sop2(aco_opcode::s_cselect_b64, Definition(dst), Operand(0x3f800000u), Operand(0u), bld.scc(src));
2623 } else if (dst.regClass() == v2) {
2624 Temp one = bld.vop1(aco_opcode::v_mov_b32, bld.def(v2), Operand(0x3FF00000u));
2625 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), one, src);
2626 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
2627 } else {
2628 unreachable("Wrong destination register class for nir_op_b2f64.");
2629 }
2630 break;
2631 }
2632 case nir_op_i2i8:
2633 case nir_op_i2i16:
2634 case nir_op_i2i32:
2635 case nir_op_i2i64: {
2636 convert_int(ctx, bld, get_alu_src(ctx, instr->src[0]),
2637 instr->src[0].src.ssa->bit_size, instr->dest.dest.ssa.bit_size, true, dst);
2638 break;
2639 }
2640 case nir_op_u2u8:
2641 case nir_op_u2u16:
2642 case nir_op_u2u32:
2643 case nir_op_u2u64: {
2644 convert_int(ctx, bld, get_alu_src(ctx, instr->src[0]),
2645 instr->src[0].src.ssa->bit_size, instr->dest.dest.ssa.bit_size, false, dst);
2646 break;
2647 }
2648 case nir_op_b2b32:
2649 case nir_op_b2i32: {
2650 Temp src = get_alu_src(ctx, instr->src[0]);
2651 assert(src.regClass() == bld.lm);
2652
2653 if (dst.regClass() == s1) {
2654 // TODO: in a post-RA optimization, we can check if src is in VCC, and directly use VCCNZ
2655 bool_to_scalar_condition(ctx, src, dst);
2656 } else if (dst.regClass() == v1) {
2657 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), src);
2658 } else {
2659 unreachable("Invalid register class for b2i32");
2660 }
2661 break;
2662 }
2663 case nir_op_b2b1:
2664 case nir_op_i2b1: {
2665 Temp src = get_alu_src(ctx, instr->src[0]);
2666 assert(dst.regClass() == bld.lm);
2667
2668 if (src.type() == RegType::vgpr) {
2669 assert(src.regClass() == v1 || src.regClass() == v2);
2670 assert(dst.regClass() == bld.lm);
2671 bld.vopc(src.size() == 2 ? aco_opcode::v_cmp_lg_u64 : aco_opcode::v_cmp_lg_u32,
2672 Definition(dst), Operand(0u), src).def(0).setHint(vcc);
2673 } else {
2674 assert(src.regClass() == s1 || src.regClass() == s2);
2675 Temp tmp;
2676 if (src.regClass() == s2 && ctx->program->chip_class <= GFX7) {
2677 tmp = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), Operand(0u), src).def(1).getTemp();
2678 } else {
2679 tmp = bld.sopc(src.size() == 2 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::s_cmp_lg_u32,
2680 bld.scc(bld.def(s1)), Operand(0u), src);
2681 }
2682 bool_to_vector_condition(ctx, tmp, dst);
2683 }
2684 break;
2685 }
2686 case nir_op_pack_64_2x32_split: {
2687 Temp src0 = get_alu_src(ctx, instr->src[0]);
2688 Temp src1 = get_alu_src(ctx, instr->src[1]);
2689
2690 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
2691 break;
2692 }
2693 case nir_op_unpack_64_2x32_split_x:
2694 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
2695 break;
2696 case nir_op_unpack_64_2x32_split_y:
2697 bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
2698 break;
2699 case nir_op_unpack_32_2x16_split_x:
2700 if (dst.type() == RegType::vgpr) {
2701 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
2702 } else {
2703 bld.copy(Definition(dst), get_alu_src(ctx, instr->src[0]));
2704 }
2705 break;
2706 case nir_op_unpack_32_2x16_split_y:
2707 if (dst.type() == RegType::vgpr) {
2708 bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
2709 } else {
2710 bld.sop2(aco_opcode::s_bfe_u32, Definition(dst), bld.def(s1, scc), get_alu_src(ctx, instr->src[0]), Operand(uint32_t(16 << 16 | 16)));
2711 }
2712 break;
2713 case nir_op_pack_32_2x16_split: {
2714 Temp src0 = get_alu_src(ctx, instr->src[0]);
2715 Temp src1 = get_alu_src(ctx, instr->src[1]);
2716 if (dst.regClass() == v1) {
2717 src0 = emit_extract_vector(ctx, src0, 0, v2b);
2718 src1 = emit_extract_vector(ctx, src1, 0, v2b);
2719 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
2720 } else {
2721 src0 = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), src0, Operand(0xFFFFu));
2722 src1 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), src1, Operand(16u));
2723 bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), src0, src1);
2724 }
2725 break;
2726 }
2727 case nir_op_pack_half_2x16: {
2728 Temp src = get_alu_src(ctx, instr->src[0], 2);
2729
2730 if (dst.regClass() == v1) {
2731 Temp src0 = bld.tmp(v1);
2732 Temp src1 = bld.tmp(v1);
2733 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
2734 if (!ctx->block->fp_mode.care_about_round32 || ctx->block->fp_mode.round32 == fp_round_tz)
2735 bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, Definition(dst), src0, src1);
2736 else
2737 bld.vop3(aco_opcode::v_cvt_pk_u16_u32, Definition(dst),
2738 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src0),
2739 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src1));
2740 } else {
2741 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2742 nir_print_instr(&instr->instr, stderr);
2743 fprintf(stderr, "\n");
2744 }
2745 break;
2746 }
2747 case nir_op_unpack_half_2x16_split_x: {
2748 if (dst.regClass() == v1) {
2749 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst), get_alu_src(ctx, instr->src[0]));
2750 } else {
2751 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2752 nir_print_instr(&instr->instr, stderr);
2753 fprintf(stderr, "\n");
2754 }
2755 break;
2756 }
2757 case nir_op_unpack_half_2x16_split_y: {
2758 if (dst.regClass() == v1) {
2759 /* TODO: use SDWA here */
2760 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst),
2761 bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), as_vgpr(ctx, get_alu_src(ctx, instr->src[0]))));
2762 } else {
2763 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2764 nir_print_instr(&instr->instr, stderr);
2765 fprintf(stderr, "\n");
2766 }
2767 break;
2768 }
2769 case nir_op_fquantize2f16: {
2770 Temp src = get_alu_src(ctx, instr->src[0]);
2771 Temp f16 = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), src);
2772 Temp f32, cmp_res;
2773
2774 if (ctx->program->chip_class >= GFX8) {
2775 Temp mask = bld.copy(bld.def(s1), Operand(0x36Fu)); /* value is NOT negative/positive denormal value */
2776 cmp_res = bld.vopc_e64(aco_opcode::v_cmp_class_f16, bld.hint_vcc(bld.def(bld.lm)), f16, mask);
2777 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2778 } else {
2779 /* 0x38800000 is smallest half float value (2^-14) in 32-bit float,
2780 * so compare the result and flush to 0 if it's smaller.
2781 */
2782 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2783 Temp smallest = bld.copy(bld.def(s1), Operand(0x38800000u));
2784 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), f32, smallest);
2785 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
2786 cmp_res = vop3->definitions[0].getTemp();
2787 }
2788
2789 if (ctx->block->fp_mode.preserve_signed_zero_inf_nan32 || ctx->program->chip_class < GFX8) {
2790 Temp copysign_0 = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0u), as_vgpr(ctx, src));
2791 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), copysign_0, f32, cmp_res);
2792 } else {
2793 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), f32, cmp_res);
2794 }
2795 break;
2796 }
2797 case nir_op_bfm: {
2798 Temp bits = get_alu_src(ctx, instr->src[0]);
2799 Temp offset = get_alu_src(ctx, instr->src[1]);
2800
2801 if (dst.regClass() == s1) {
2802 bld.sop2(aco_opcode::s_bfm_b32, Definition(dst), bits, offset);
2803 } else if (dst.regClass() == v1) {
2804 bld.vop3(aco_opcode::v_bfm_b32, Definition(dst), bits, offset);
2805 } else {
2806 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2807 nir_print_instr(&instr->instr, stderr);
2808 fprintf(stderr, "\n");
2809 }
2810 break;
2811 }
2812 case nir_op_bitfield_select: {
2813 /* (mask & insert) | (~mask & base) */
2814 Temp bitmask = get_alu_src(ctx, instr->src[0]);
2815 Temp insert = get_alu_src(ctx, instr->src[1]);
2816 Temp base = get_alu_src(ctx, instr->src[2]);
2817
2818 /* dst = (insert & bitmask) | (base & ~bitmask) */
2819 if (dst.regClass() == s1) {
2820 aco_ptr<Instruction> sop2;
2821 nir_const_value* const_bitmask = nir_src_as_const_value(instr->src[0].src);
2822 nir_const_value* const_insert = nir_src_as_const_value(instr->src[1].src);
2823 Operand lhs;
2824 if (const_insert && const_bitmask) {
2825 lhs = Operand(const_insert->u32 & const_bitmask->u32);
2826 } else {
2827 insert = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), insert, bitmask);
2828 lhs = Operand(insert);
2829 }
2830
2831 Operand rhs;
2832 nir_const_value* const_base = nir_src_as_const_value(instr->src[2].src);
2833 if (const_base && const_bitmask) {
2834 rhs = Operand(const_base->u32 & ~const_bitmask->u32);
2835 } else {
2836 base = bld.sop2(aco_opcode::s_andn2_b32, bld.def(s1), bld.def(s1, scc), base, bitmask);
2837 rhs = Operand(base);
2838 }
2839
2840 bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), rhs, lhs);
2841
2842 } else if (dst.regClass() == v1) {
2843 if (base.type() == RegType::sgpr && (bitmask.type() == RegType::sgpr || (insert.type() == RegType::sgpr)))
2844 base = as_vgpr(ctx, base);
2845 if (insert.type() == RegType::sgpr && bitmask.type() == RegType::sgpr)
2846 insert = as_vgpr(ctx, insert);
2847
2848 bld.vop3(aco_opcode::v_bfi_b32, Definition(dst), bitmask, insert, base);
2849
2850 } else {
2851 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2852 nir_print_instr(&instr->instr, stderr);
2853 fprintf(stderr, "\n");
2854 }
2855 break;
2856 }
2857 case nir_op_ubfe:
2858 case nir_op_ibfe: {
2859 Temp base = get_alu_src(ctx, instr->src[0]);
2860 Temp offset = get_alu_src(ctx, instr->src[1]);
2861 Temp bits = get_alu_src(ctx, instr->src[2]);
2862
2863 if (dst.type() == RegType::sgpr) {
2864 Operand extract;
2865 nir_const_value* const_offset = nir_src_as_const_value(instr->src[1].src);
2866 nir_const_value* const_bits = nir_src_as_const_value(instr->src[2].src);
2867 if (const_offset && const_bits) {
2868 uint32_t const_extract = (const_bits->u32 << 16) | const_offset->u32;
2869 extract = Operand(const_extract);
2870 } else {
2871 Operand width;
2872 if (const_bits) {
2873 width = Operand(const_bits->u32 << 16);
2874 } else {
2875 width = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), bits, Operand(16u));
2876 }
2877 extract = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), offset, width);
2878 }
2879
2880 aco_opcode opcode;
2881 if (dst.regClass() == s1) {
2882 if (instr->op == nir_op_ubfe)
2883 opcode = aco_opcode::s_bfe_u32;
2884 else
2885 opcode = aco_opcode::s_bfe_i32;
2886 } else if (dst.regClass() == s2) {
2887 if (instr->op == nir_op_ubfe)
2888 opcode = aco_opcode::s_bfe_u64;
2889 else
2890 opcode = aco_opcode::s_bfe_i64;
2891 } else {
2892 unreachable("Unsupported BFE bit size");
2893 }
2894
2895 bld.sop2(opcode, Definition(dst), bld.def(s1, scc), base, extract);
2896
2897 } else {
2898 aco_opcode opcode;
2899 if (dst.regClass() == v1) {
2900 if (instr->op == nir_op_ubfe)
2901 opcode = aco_opcode::v_bfe_u32;
2902 else
2903 opcode = aco_opcode::v_bfe_i32;
2904 } else {
2905 unreachable("Unsupported BFE bit size");
2906 }
2907
2908 emit_vop3a_instruction(ctx, instr, opcode, dst);
2909 }
2910 break;
2911 }
2912 case nir_op_bit_count: {
2913 Temp src = get_alu_src(ctx, instr->src[0]);
2914 if (src.regClass() == s1) {
2915 bld.sop1(aco_opcode::s_bcnt1_i32_b32, Definition(dst), bld.def(s1, scc), src);
2916 } else if (src.regClass() == v1) {
2917 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst), src, Operand(0u));
2918 } else if (src.regClass() == v2) {
2919 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst),
2920 emit_extract_vector(ctx, src, 1, v1),
2921 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1),
2922 emit_extract_vector(ctx, src, 0, v1), Operand(0u)));
2923 } else if (src.regClass() == s2) {
2924 bld.sop1(aco_opcode::s_bcnt1_i32_b64, Definition(dst), bld.def(s1, scc), src);
2925 } else {
2926 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2927 nir_print_instr(&instr->instr, stderr);
2928 fprintf(stderr, "\n");
2929 }
2930 break;
2931 }
2932 case nir_op_flt: {
2933 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_f16, aco_opcode::v_cmp_lt_f32, aco_opcode::v_cmp_lt_f64);
2934 break;
2935 }
2936 case nir_op_fge: {
2937 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_f16, aco_opcode::v_cmp_ge_f32, aco_opcode::v_cmp_ge_f64);
2938 break;
2939 }
2940 case nir_op_feq: {
2941 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_f16, aco_opcode::v_cmp_eq_f32, aco_opcode::v_cmp_eq_f64);
2942 break;
2943 }
2944 case nir_op_fne: {
2945 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_neq_f16, aco_opcode::v_cmp_neq_f32, aco_opcode::v_cmp_neq_f64);
2946 break;
2947 }
2948 case nir_op_ilt: {
2949 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_i16, aco_opcode::v_cmp_lt_i32, aco_opcode::v_cmp_lt_i64, aco_opcode::s_cmp_lt_i32);
2950 break;
2951 }
2952 case nir_op_ige: {
2953 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_i16, aco_opcode::v_cmp_ge_i32, aco_opcode::v_cmp_ge_i64, aco_opcode::s_cmp_ge_i32);
2954 break;
2955 }
2956 case nir_op_ieq: {
2957 if (instr->src[0].src.ssa->bit_size == 1)
2958 emit_boolean_logic(ctx, instr, Builder::s_xnor, dst);
2959 else
2960 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_i16, aco_opcode::v_cmp_eq_i32, aco_opcode::v_cmp_eq_i64, aco_opcode::s_cmp_eq_i32,
2961 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_eq_u64 : aco_opcode::num_opcodes);
2962 break;
2963 }
2964 case nir_op_ine: {
2965 if (instr->src[0].src.ssa->bit_size == 1)
2966 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
2967 else
2968 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lg_i16, aco_opcode::v_cmp_lg_i32, aco_opcode::v_cmp_lg_i64, aco_opcode::s_cmp_lg_i32,
2969 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::num_opcodes);
2970 break;
2971 }
2972 case nir_op_ult: {
2973 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_u16, aco_opcode::v_cmp_lt_u32, aco_opcode::v_cmp_lt_u64, aco_opcode::s_cmp_lt_u32);
2974 break;
2975 }
2976 case nir_op_uge: {
2977 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_u16, aco_opcode::v_cmp_ge_u32, aco_opcode::v_cmp_ge_u64, aco_opcode::s_cmp_ge_u32);
2978 break;
2979 }
2980 case nir_op_fddx:
2981 case nir_op_fddy:
2982 case nir_op_fddx_fine:
2983 case nir_op_fddy_fine:
2984 case nir_op_fddx_coarse:
2985 case nir_op_fddy_coarse: {
2986 Temp src = get_alu_src(ctx, instr->src[0]);
2987 uint16_t dpp_ctrl1, dpp_ctrl2;
2988 if (instr->op == nir_op_fddx_fine) {
2989 dpp_ctrl1 = dpp_quad_perm(0, 0, 2, 2);
2990 dpp_ctrl2 = dpp_quad_perm(1, 1, 3, 3);
2991 } else if (instr->op == nir_op_fddy_fine) {
2992 dpp_ctrl1 = dpp_quad_perm(0, 1, 0, 1);
2993 dpp_ctrl2 = dpp_quad_perm(2, 3, 2, 3);
2994 } else {
2995 dpp_ctrl1 = dpp_quad_perm(0, 0, 0, 0);
2996 if (instr->op == nir_op_fddx || instr->op == nir_op_fddx_coarse)
2997 dpp_ctrl2 = dpp_quad_perm(1, 1, 1, 1);
2998 else
2999 dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
3000 }
3001
3002 Temp tmp;
3003 if (ctx->program->chip_class >= GFX8) {
3004 Temp tl = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl1);
3005 tmp = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), src, tl, dpp_ctrl2);
3006 } else {
3007 Temp tl = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl1);
3008 Temp tr = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl2);
3009 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), tr, tl);
3010 }
3011 emit_wqm(ctx, tmp, dst, true);
3012 break;
3013 }
3014 default:
3015 fprintf(stderr, "Unknown NIR ALU instr: ");
3016 nir_print_instr(&instr->instr, stderr);
3017 fprintf(stderr, "\n");
3018 }
3019 }
3020
3021 void visit_load_const(isel_context *ctx, nir_load_const_instr *instr)
3022 {
3023 Temp dst = get_ssa_temp(ctx, &instr->def);
3024
3025 // TODO: we really want to have the resulting type as this would allow for 64bit literals
3026 // which get truncated the lsb if double and msb if int
3027 // for now, we only use s_mov_b64 with 64bit inline constants
3028 assert(instr->def.num_components == 1 && "Vector load_const should be lowered to scalar.");
3029 assert(dst.type() == RegType::sgpr);
3030
3031 Builder bld(ctx->program, ctx->block);
3032
3033 if (instr->def.bit_size == 1) {
3034 assert(dst.regClass() == bld.lm);
3035 int val = instr->value[0].b ? -1 : 0;
3036 Operand op = bld.lm.size() == 1 ? Operand((uint32_t) val) : Operand((uint64_t) val);
3037 bld.sop1(Builder::s_mov, Definition(dst), op);
3038 } else if (instr->def.bit_size == 8) {
3039 /* ensure that the value is correctly represented in the low byte of the register */
3040 bld.sopk(aco_opcode::s_movk_i32, Definition(dst), instr->value[0].u8);
3041 } else if (instr->def.bit_size == 16) {
3042 /* ensure that the value is correctly represented in the low half of the register */
3043 bld.sopk(aco_opcode::s_movk_i32, Definition(dst), instr->value[0].u16);
3044 } else if (dst.size() == 1) {
3045 bld.copy(Definition(dst), Operand(instr->value[0].u32));
3046 } else {
3047 assert(dst.size() != 1);
3048 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
3049 if (instr->def.bit_size == 64)
3050 for (unsigned i = 0; i < dst.size(); i++)
3051 vec->operands[i] = Operand{(uint32_t)(instr->value[0].u64 >> i * 32)};
3052 else {
3053 for (unsigned i = 0; i < dst.size(); i++)
3054 vec->operands[i] = Operand{instr->value[i].u32};
3055 }
3056 vec->definitions[0] = Definition(dst);
3057 ctx->block->instructions.emplace_back(std::move(vec));
3058 }
3059 }
3060
3061 uint32_t widen_mask(uint32_t mask, unsigned multiplier)
3062 {
3063 uint32_t new_mask = 0;
3064 for(unsigned i = 0; i < 32 && (1u << i) <= mask; ++i)
3065 if (mask & (1u << i))
3066 new_mask |= ((1u << multiplier) - 1u) << (i * multiplier);
3067 return new_mask;
3068 }
3069
3070 struct LoadEmitInfo {
3071 Operand offset;
3072 Temp dst;
3073 unsigned num_components;
3074 unsigned component_size;
3075 Temp resource = Temp(0, s1);
3076 unsigned component_stride = 0;
3077 unsigned const_offset = 0;
3078 unsigned align_mul = 0;
3079 unsigned align_offset = 0;
3080
3081 bool glc = false;
3082 unsigned swizzle_component_size = 0;
3083 barrier_interaction barrier = barrier_none;
3084 bool can_reorder = true;
3085 Temp soffset = Temp(0, s1);
3086 };
3087
3088 using LoadCallback = Temp(*)(
3089 Builder& bld, const LoadEmitInfo* info, Temp offset, unsigned bytes_needed,
3090 unsigned align, unsigned const_offset, Temp dst_hint);
3091
3092 template <LoadCallback callback, bool byte_align_loads, bool supports_8bit_16bit_loads, unsigned max_const_offset_plus_one>
3093 void emit_load(isel_context *ctx, Builder& bld, const LoadEmitInfo *info)
3094 {
3095 unsigned load_size = info->num_components * info->component_size;
3096 unsigned component_size = info->component_size;
3097
3098 unsigned num_vals = 0;
3099 Temp vals[info->dst.bytes()];
3100
3101 unsigned const_offset = info->const_offset;
3102
3103 unsigned align_mul = info->align_mul ? info->align_mul : component_size;
3104 unsigned align_offset = (info->align_offset + const_offset) % align_mul;
3105
3106 unsigned bytes_read = 0;
3107 while (bytes_read < load_size) {
3108 unsigned bytes_needed = load_size - bytes_read;
3109
3110 /* add buffer for unaligned loads */
3111 int byte_align = align_mul % 4 == 0 ? align_offset % 4 : -1;
3112
3113 if (byte_align) {
3114 if ((bytes_needed > 2 ||
3115 (bytes_needed == 2 && (align_mul % 2 || align_offset % 2)) ||
3116 !supports_8bit_16bit_loads) && byte_align_loads) {
3117 if (info->component_stride) {
3118 assert(supports_8bit_16bit_loads && "unimplemented");
3119 bytes_needed = 2;
3120 byte_align = 0;
3121 } else {
3122 bytes_needed += byte_align == -1 ? 4 - info->align_mul : byte_align;
3123 bytes_needed = align(bytes_needed, 4);
3124 }
3125 } else {
3126 byte_align = 0;
3127 }
3128 }
3129
3130 if (info->swizzle_component_size)
3131 bytes_needed = MIN2(bytes_needed, info->swizzle_component_size);
3132 if (info->component_stride)
3133 bytes_needed = MIN2(bytes_needed, info->component_size);
3134
3135 bool need_to_align_offset = byte_align && (align_mul % 4 || align_offset % 4);
3136
3137 /* reduce constant offset */
3138 Operand offset = info->offset;
3139 unsigned reduced_const_offset = const_offset;
3140 bool remove_const_offset_completely = need_to_align_offset;
3141 if (const_offset && (remove_const_offset_completely || const_offset >= max_const_offset_plus_one)) {
3142 unsigned to_add = const_offset;
3143 if (remove_const_offset_completely) {
3144 reduced_const_offset = 0;
3145 } else {
3146 to_add = const_offset / max_const_offset_plus_one * max_const_offset_plus_one;
3147 reduced_const_offset %= max_const_offset_plus_one;
3148 }
3149 Temp offset_tmp = offset.isTemp() ? offset.getTemp() : Temp();
3150 if (offset.isConstant()) {
3151 offset = Operand(offset.constantValue() + to_add);
3152 } else if (offset_tmp.regClass() == s1) {
3153 offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
3154 offset_tmp, Operand(to_add));
3155 } else if (offset_tmp.regClass() == v1) {
3156 offset = bld.vadd32(bld.def(v1), offset_tmp, Operand(to_add));
3157 } else {
3158 Temp lo = bld.tmp(offset_tmp.type(), 1);
3159 Temp hi = bld.tmp(offset_tmp.type(), 1);
3160 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), offset_tmp);
3161
3162 if (offset_tmp.regClass() == s2) {
3163 Temp carry = bld.tmp(s1);
3164 lo = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), lo, Operand(to_add));
3165 hi = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), hi, carry);
3166 offset = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), lo, hi);
3167 } else {
3168 Temp new_lo = bld.tmp(v1);
3169 Temp carry = bld.vadd32(Definition(new_lo), lo, Operand(to_add), true).def(1).getTemp();
3170 hi = bld.vadd32(bld.def(v1), hi, Operand(0u), false, carry);
3171 offset = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_lo, hi);
3172 }
3173 }
3174 }
3175
3176 /* align offset down if needed */
3177 Operand aligned_offset = offset;
3178 if (need_to_align_offset) {
3179 Temp offset_tmp = offset.isTemp() ? offset.getTemp() : Temp();
3180 if (offset.isConstant()) {
3181 aligned_offset = Operand(offset.constantValue() & 0xfffffffcu);
3182 } else if (offset_tmp.regClass() == s1) {
3183 aligned_offset = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfffffffcu), offset_tmp);
3184 } else if (offset_tmp.regClass() == s2) {
3185 aligned_offset = bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), Operand((uint64_t)0xfffffffffffffffcllu), offset_tmp);
3186 } else if (offset_tmp.regClass() == v1) {
3187 aligned_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xfffffffcu), offset_tmp);
3188 } else if (offset_tmp.regClass() == v2) {
3189 Temp hi = bld.tmp(v1), lo = bld.tmp(v1);
3190 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), offset_tmp);
3191 lo = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xfffffffcu), lo);
3192 aligned_offset = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), lo, hi);
3193 }
3194 }
3195 Temp aligned_offset_tmp = aligned_offset.isTemp() ? aligned_offset.getTemp() :
3196 bld.copy(bld.def(s1), aligned_offset);
3197
3198 unsigned align = align_offset ? 1 << (ffs(align_offset) - 1) : align_mul;
3199 Temp val = callback(bld, info, aligned_offset_tmp, bytes_needed, align,
3200 reduced_const_offset, byte_align ? Temp() : info->dst);
3201
3202 /* the callback wrote directly to dst */
3203 if (val == info->dst) {
3204 assert(num_vals == 0);
3205 emit_split_vector(ctx, info->dst, info->num_components);
3206 return;
3207 }
3208
3209 /* shift result right if needed */
3210 if (info->component_size < 4 && byte_align_loads) {
3211 Operand align((uint32_t)byte_align);
3212 if (byte_align == -1) {
3213 if (offset.isConstant())
3214 align = Operand(offset.constantValue() % 4u);
3215 else if (offset.size() == 2)
3216 align = Operand(emit_extract_vector(ctx, offset.getTemp(), 0, RegClass(offset.getTemp().type(), 1)));
3217 else
3218 align = offset;
3219 }
3220
3221 assert(val.bytes() >= load_size && "unimplemented");
3222 if (val.type() == RegType::sgpr)
3223 byte_align_scalar(ctx, val, align, info->dst);
3224 else
3225 byte_align_vector(ctx, val, align, info->dst, component_size);
3226 return;
3227 }
3228
3229 /* add result to list and advance */
3230 if (info->component_stride) {
3231 assert(val.bytes() == info->component_size && "unimplemented");
3232 const_offset += info->component_stride;
3233 align_offset = (align_offset + info->component_stride) % align_mul;
3234 } else {
3235 const_offset += val.bytes();
3236 align_offset = (align_offset + val.bytes()) % align_mul;
3237 }
3238 bytes_read += val.bytes();
3239 vals[num_vals++] = val;
3240 }
3241
3242 /* create array of components */
3243 unsigned components_split = 0;
3244 std::array<Temp, NIR_MAX_VEC_COMPONENTS> allocated_vec;
3245 bool has_vgprs = false;
3246 for (unsigned i = 0; i < num_vals;) {
3247 Temp tmp[num_vals];
3248 unsigned num_tmps = 0;
3249 unsigned tmp_size = 0;
3250 RegType reg_type = RegType::sgpr;
3251 while ((!tmp_size || (tmp_size % component_size)) && i < num_vals) {
3252 if (vals[i].type() == RegType::vgpr)
3253 reg_type = RegType::vgpr;
3254 tmp_size += vals[i].bytes();
3255 tmp[num_tmps++] = vals[i++];
3256 }
3257 if (num_tmps > 1) {
3258 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(
3259 aco_opcode::p_create_vector, Format::PSEUDO, num_tmps, 1)};
3260 for (unsigned i = 0; i < num_vals; i++)
3261 vec->operands[i] = Operand(tmp[i]);
3262 tmp[0] = bld.tmp(RegClass::get(reg_type, tmp_size));
3263 vec->definitions[0] = Definition(tmp[0]);
3264 bld.insert(std::move(vec));
3265 }
3266
3267 if (tmp[0].bytes() % component_size) {
3268 /* trim tmp[0] */
3269 assert(i == num_vals);
3270 RegClass new_rc = RegClass::get(reg_type, tmp[0].bytes() / component_size * component_size);
3271 tmp[0] = bld.pseudo(aco_opcode::p_extract_vector, bld.def(new_rc), tmp[0], Operand(0u));
3272 }
3273
3274 RegClass elem_rc = RegClass::get(reg_type, component_size);
3275
3276 unsigned start = components_split;
3277
3278 if (tmp_size == elem_rc.bytes()) {
3279 allocated_vec[components_split++] = tmp[0];
3280 } else {
3281 assert(tmp_size % elem_rc.bytes() == 0);
3282 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(
3283 aco_opcode::p_split_vector, Format::PSEUDO, 1, tmp_size / elem_rc.bytes())};
3284 for (unsigned i = 0; i < split->definitions.size(); i++) {
3285 Temp component = bld.tmp(elem_rc);
3286 allocated_vec[components_split++] = component;
3287 split->definitions[i] = Definition(component);
3288 }
3289 split->operands[0] = Operand(tmp[0]);
3290 bld.insert(std::move(split));
3291 }
3292
3293 /* try to p_as_uniform early so we can create more optimizable code and
3294 * also update allocated_vec */
3295 for (unsigned j = start; j < components_split; j++) {
3296 if (allocated_vec[j].bytes() % 4 == 0 && info->dst.type() == RegType::sgpr)
3297 allocated_vec[j] = bld.as_uniform(allocated_vec[j]);
3298 has_vgprs |= allocated_vec[j].type() == RegType::vgpr;
3299 }
3300 }
3301
3302 /* concatenate components and p_as_uniform() result if needed */
3303 if (info->dst.type() == RegType::vgpr || !has_vgprs)
3304 ctx->allocated_vec.emplace(info->dst.id(), allocated_vec);
3305
3306 int padding_bytes = MAX2((int)info->dst.bytes() - int(allocated_vec[0].bytes() * info->num_components), 0);
3307
3308 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(
3309 aco_opcode::p_create_vector, Format::PSEUDO, info->num_components + !!padding_bytes, 1)};
3310 for (unsigned i = 0; i < info->num_components; i++)
3311 vec->operands[i] = Operand(allocated_vec[i]);
3312 if (padding_bytes)
3313 vec->operands[info->num_components] = Operand(RegClass::get(RegType::vgpr, padding_bytes));
3314 if (info->dst.type() == RegType::sgpr && has_vgprs) {
3315 Temp tmp = bld.tmp(RegType::vgpr, info->dst.size());
3316 vec->definitions[0] = Definition(tmp);
3317 bld.insert(std::move(vec));
3318 bld.pseudo(aco_opcode::p_as_uniform, Definition(info->dst), tmp);
3319 } else {
3320 vec->definitions[0] = Definition(info->dst);
3321 bld.insert(std::move(vec));
3322 }
3323 }
3324
3325 Operand load_lds_size_m0(Builder& bld)
3326 {
3327 /* TODO: m0 does not need to be initialized on GFX9+ */
3328 return bld.m0((Temp)bld.sopk(aco_opcode::s_movk_i32, bld.def(s1, m0), 0xffff));
3329 }
3330
3331 Temp lds_load_callback(Builder& bld, const LoadEmitInfo *info,
3332 Temp offset, unsigned bytes_needed,
3333 unsigned align, unsigned const_offset,
3334 Temp dst_hint)
3335 {
3336 offset = offset.regClass() == s1 ? bld.copy(bld.def(v1), offset) : offset;
3337
3338 Operand m = load_lds_size_m0(bld);
3339
3340 bool large_ds_read = bld.program->chip_class >= GFX7;
3341 bool usable_read2 = bld.program->chip_class >= GFX7;
3342
3343 bool read2 = false;
3344 unsigned size = 0;
3345 aco_opcode op;
3346 //TODO: use ds_read_u8_d16_hi/ds_read_u16_d16_hi if beneficial
3347 if (bytes_needed >= 16 && align % 16 == 0 && large_ds_read) {
3348 size = 16;
3349 op = aco_opcode::ds_read_b128;
3350 } else if (bytes_needed >= 16 && align % 8 == 0 && const_offset % 8 == 0 && usable_read2) {
3351 size = 16;
3352 read2 = true;
3353 op = aco_opcode::ds_read2_b64;
3354 } else if (bytes_needed >= 12 && align % 16 == 0 && large_ds_read) {
3355 size = 12;
3356 op = aco_opcode::ds_read_b96;
3357 } else if (bytes_needed >= 8 && align % 8 == 0) {
3358 size = 8;
3359 op = aco_opcode::ds_read_b64;
3360 } else if (bytes_needed >= 8 && align % 4 == 0 && const_offset % 4 == 0) {
3361 size = 8;
3362 read2 = true;
3363 op = aco_opcode::ds_read2_b32;
3364 } else if (bytes_needed >= 4 && align % 4 == 0) {
3365 size = 4;
3366 op = aco_opcode::ds_read_b32;
3367 } else if (bytes_needed >= 2 && align % 2 == 0) {
3368 size = 2;
3369 op = aco_opcode::ds_read_u16;
3370 } else {
3371 size = 1;
3372 op = aco_opcode::ds_read_u8;
3373 }
3374
3375 unsigned max_offset_plus_one = read2 ? 254 * (size / 2u) + 1 : 65536;
3376 if (const_offset >= max_offset_plus_one) {
3377 offset = bld.vadd32(bld.def(v1), offset, Operand(const_offset / max_offset_plus_one));
3378 const_offset %= max_offset_plus_one;
3379 }
3380
3381 if (read2)
3382 const_offset /= (size / 2u);
3383
3384 RegClass rc = RegClass(RegType::vgpr, DIV_ROUND_UP(size, 4));
3385 Temp val = rc == info->dst.regClass() && dst_hint.id() ? dst_hint : bld.tmp(rc);
3386 if (read2)
3387 bld.ds(op, Definition(val), offset, m, const_offset, const_offset + 1);
3388 else
3389 bld.ds(op, Definition(val), offset, m, const_offset);
3390
3391 if (size < 4)
3392 val = bld.pseudo(aco_opcode::p_extract_vector, bld.def(RegClass::get(RegType::vgpr, size)), val, Operand(0u));
3393
3394 return val;
3395 }
3396
3397 static auto emit_lds_load = emit_load<lds_load_callback, false, true, UINT32_MAX>;
3398
3399 Temp smem_load_callback(Builder& bld, const LoadEmitInfo *info,
3400 Temp offset, unsigned bytes_needed,
3401 unsigned align, unsigned const_offset,
3402 Temp dst_hint)
3403 {
3404 unsigned size = 0;
3405 aco_opcode op;
3406 if (bytes_needed <= 4) {
3407 size = 1;
3408 op = info->resource.id() ? aco_opcode::s_buffer_load_dword : aco_opcode::s_load_dword;
3409 } else if (bytes_needed <= 8) {
3410 size = 2;
3411 op = info->resource.id() ? aco_opcode::s_buffer_load_dwordx2 : aco_opcode::s_load_dwordx2;
3412 } else if (bytes_needed <= 16) {
3413 size = 4;
3414 op = info->resource.id() ? aco_opcode::s_buffer_load_dwordx4 : aco_opcode::s_load_dwordx4;
3415 } else if (bytes_needed <= 32) {
3416 size = 8;
3417 op = info->resource.id() ? aco_opcode::s_buffer_load_dwordx8 : aco_opcode::s_load_dwordx8;
3418 } else {
3419 size = 16;
3420 op = info->resource.id() ? aco_opcode::s_buffer_load_dwordx16 : aco_opcode::s_load_dwordx16;
3421 }
3422 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
3423 if (info->resource.id()) {
3424 load->operands[0] = Operand(info->resource);
3425 load->operands[1] = Operand(offset);
3426 } else {
3427 load->operands[0] = Operand(offset);
3428 load->operands[1] = Operand(0u);
3429 }
3430 RegClass rc(RegType::sgpr, size);
3431 Temp val = dst_hint.id() && dst_hint.regClass() == rc ? dst_hint : bld.tmp(rc);
3432 load->definitions[0] = Definition(val);
3433 load->glc = info->glc;
3434 load->dlc = info->glc && bld.program->chip_class >= GFX10;
3435 load->barrier = info->barrier;
3436 load->can_reorder = false; // FIXME: currently, it doesn't seem beneficial due to how our scheduler works
3437 bld.insert(std::move(load));
3438 return val;
3439 }
3440
3441 static auto emit_smem_load = emit_load<smem_load_callback, true, false, 1024>;
3442
3443 Temp mubuf_load_callback(Builder& bld, const LoadEmitInfo *info,
3444 Temp offset, unsigned bytes_needed,
3445 unsigned align_, unsigned const_offset,
3446 Temp dst_hint)
3447 {
3448 Operand vaddr = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
3449 Operand soffset = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
3450
3451 if (info->soffset.id()) {
3452 if (soffset.isTemp())
3453 vaddr = bld.copy(bld.def(v1), soffset);
3454 soffset = Operand(info->soffset);
3455 }
3456
3457 unsigned bytes_size = 0;
3458 aco_opcode op;
3459 if (bytes_needed == 1) {
3460 bytes_size = 1;
3461 op = aco_opcode::buffer_load_ubyte;
3462 } else if (bytes_needed == 2) {
3463 bytes_size = 2;
3464 op = aco_opcode::buffer_load_ushort;
3465 } else if (bytes_needed <= 4) {
3466 bytes_size = 4;
3467 op = aco_opcode::buffer_load_dword;
3468 } else if (bytes_needed <= 8) {
3469 bytes_size = 8;
3470 op = aco_opcode::buffer_load_dwordx2;
3471 } else if (bytes_needed <= 12 && bld.program->chip_class > GFX6) {
3472 bytes_size = 12;
3473 op = aco_opcode::buffer_load_dwordx3;
3474 } else {
3475 bytes_size = 16;
3476 op = aco_opcode::buffer_load_dwordx4;
3477 }
3478 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
3479 mubuf->operands[0] = Operand(info->resource);
3480 mubuf->operands[1] = vaddr;
3481 mubuf->operands[2] = soffset;
3482 mubuf->offen = (offset.type() == RegType::vgpr);
3483 mubuf->glc = info->glc;
3484 mubuf->dlc = info->glc && bld.program->chip_class >= GFX10;
3485 mubuf->barrier = info->barrier;
3486 mubuf->can_reorder = info->can_reorder;
3487 mubuf->offset = const_offset;
3488 RegClass rc = RegClass::get(RegType::vgpr, align(bytes_size, 4));
3489 Temp val = dst_hint.id() && rc == dst_hint.regClass() ? dst_hint : bld.tmp(rc);
3490 mubuf->definitions[0] = Definition(val);
3491 bld.insert(std::move(mubuf));
3492
3493 return val;
3494 }
3495
3496 static auto emit_mubuf_load = emit_load<mubuf_load_callback, true, true, 4096>;
3497
3498 Temp get_gfx6_global_rsrc(Builder& bld, Temp addr)
3499 {
3500 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
3501 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
3502
3503 if (addr.type() == RegType::vgpr)
3504 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), Operand(0u), Operand(0u), Operand(-1u), Operand(rsrc_conf));
3505 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), addr, Operand(-1u), Operand(rsrc_conf));
3506 }
3507
3508 Temp global_load_callback(Builder& bld, const LoadEmitInfo *info,
3509 Temp offset, unsigned bytes_needed,
3510 unsigned align_, unsigned const_offset,
3511 Temp dst_hint)
3512 {
3513 unsigned bytes_size = 0;
3514 bool mubuf = bld.program->chip_class == GFX6;
3515 bool global = bld.program->chip_class >= GFX9;
3516 aco_opcode op;
3517 if (bytes_needed == 1) {
3518 bytes_size = 1;
3519 op = mubuf ? aco_opcode::buffer_load_ubyte : global ? aco_opcode::global_load_ubyte : aco_opcode::flat_load_ubyte;
3520 } else if (bytes_needed == 2) {
3521 bytes_size = 2;
3522 op = mubuf ? aco_opcode::buffer_load_ushort : global ? aco_opcode::global_load_ushort : aco_opcode::flat_load_ushort;
3523 } else if (bytes_needed <= 4) {
3524 bytes_size = 4;
3525 op = mubuf ? aco_opcode::buffer_load_dword : global ? aco_opcode::global_load_dword : aco_opcode::flat_load_dword;
3526 } else if (bytes_needed <= 8) {
3527 bytes_size = 8;
3528 op = mubuf ? aco_opcode::buffer_load_dwordx2 : global ? aco_opcode::global_load_dwordx2 : aco_opcode::flat_load_dwordx2;
3529 } else if (bytes_needed <= 12 && !mubuf) {
3530 bytes_size = 12;
3531 op = global ? aco_opcode::global_load_dwordx3 : aco_opcode::flat_load_dwordx3;
3532 } else {
3533 bytes_size = 16;
3534 op = mubuf ? aco_opcode::buffer_load_dwordx4 : global ? aco_opcode::global_load_dwordx4 : aco_opcode::flat_load_dwordx4;
3535 }
3536 RegClass rc = RegClass::get(RegType::vgpr, align(bytes_size, 4));
3537 Temp val = dst_hint.id() && rc == dst_hint.regClass() ? dst_hint : bld.tmp(rc);
3538 if (mubuf) {
3539 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
3540 mubuf->operands[0] = Operand(get_gfx6_global_rsrc(bld, offset));
3541 mubuf->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
3542 mubuf->operands[2] = Operand(0u);
3543 mubuf->glc = info->glc;
3544 mubuf->dlc = false;
3545 mubuf->offset = 0;
3546 mubuf->addr64 = offset.type() == RegType::vgpr;
3547 mubuf->disable_wqm = false;
3548 mubuf->barrier = info->barrier;
3549 mubuf->definitions[0] = Definition(val);
3550 bld.insert(std::move(mubuf));
3551 } else {
3552 offset = offset.regClass() == s2 ? bld.copy(bld.def(v2), offset) : offset;
3553
3554 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 2, 1)};
3555 flat->operands[0] = Operand(offset);
3556 flat->operands[1] = Operand(s1);
3557 flat->glc = info->glc;
3558 flat->dlc = info->glc && bld.program->chip_class >= GFX10;
3559 flat->barrier = info->barrier;
3560 flat->offset = 0u;
3561 flat->definitions[0] = Definition(val);
3562 bld.insert(std::move(flat));
3563 }
3564
3565 return val;
3566 }
3567
3568 static auto emit_global_load = emit_load<global_load_callback, true, true, 1>;
3569
3570 Temp load_lds(isel_context *ctx, unsigned elem_size_bytes, Temp dst,
3571 Temp address, unsigned base_offset, unsigned align)
3572 {
3573 assert(util_is_power_of_two_nonzero(align));
3574
3575 Builder bld(ctx->program, ctx->block);
3576
3577 unsigned num_components = dst.bytes() / elem_size_bytes;
3578 LoadEmitInfo info = {Operand(as_vgpr(ctx, address)), dst, num_components, elem_size_bytes};
3579 info.align_mul = align;
3580 info.align_offset = 0;
3581 info.barrier = barrier_shared;
3582 info.can_reorder = false;
3583 info.const_offset = base_offset;
3584 emit_lds_load(ctx, bld, &info);
3585
3586 return dst;
3587 }
3588
3589 void split_store_data(isel_context *ctx, RegType dst_type, unsigned count, Temp *dst, unsigned *offsets, Temp src)
3590 {
3591 if (!count)
3592 return;
3593
3594 Builder bld(ctx->program, ctx->block);
3595
3596 ASSERTED bool is_subdword = false;
3597 for (unsigned i = 0; i < count; i++)
3598 is_subdword |= offsets[i] % 4;
3599 is_subdword |= (src.bytes() - offsets[count - 1]) % 4;
3600 assert(!is_subdword || dst_type == RegType::vgpr);
3601
3602 /* count == 1 fast path */
3603 if (count == 1) {
3604 if (dst_type == RegType::sgpr)
3605 dst[0] = bld.as_uniform(src);
3606 else
3607 dst[0] = as_vgpr(ctx, src);
3608 return;
3609 }
3610
3611 for (unsigned i = 0; i < count - 1; i++)
3612 dst[i] = bld.tmp(RegClass::get(dst_type, offsets[i + 1] - offsets[i]));
3613 dst[count - 1] = bld.tmp(RegClass::get(dst_type, src.bytes() - offsets[count - 1]));
3614
3615 if (is_subdword && src.type() == RegType::sgpr) {
3616 src = as_vgpr(ctx, src);
3617 } else {
3618 /* use allocated_vec if possible */
3619 auto it = ctx->allocated_vec.find(src.id());
3620 if (it != ctx->allocated_vec.end()) {
3621 unsigned total_size = 0;
3622 for (unsigned i = 0; it->second[i].bytes() && (i < NIR_MAX_VEC_COMPONENTS); i++)
3623 total_size += it->second[i].bytes();
3624 if (total_size != src.bytes())
3625 goto split;
3626
3627 unsigned elem_size = it->second[0].bytes();
3628
3629 for (unsigned i = 0; i < count; i++) {
3630 if (offsets[i] % elem_size || dst[i].bytes() % elem_size)
3631 goto split;
3632 }
3633
3634 for (unsigned i = 0; i < count; i++) {
3635 unsigned start_idx = offsets[i] / elem_size;
3636 unsigned op_count = dst[i].bytes() / elem_size;
3637 if (op_count == 1) {
3638 if (dst_type == RegType::sgpr)
3639 dst[i] = bld.as_uniform(it->second[start_idx]);
3640 else
3641 dst[i] = as_vgpr(ctx, it->second[start_idx]);
3642 continue;
3643 }
3644
3645 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, op_count, 1)};
3646 for (unsigned j = 0; j < op_count; j++) {
3647 Temp tmp = it->second[start_idx + j];
3648 if (dst_type == RegType::sgpr)
3649 tmp = bld.as_uniform(tmp);
3650 vec->operands[j] = Operand(tmp);
3651 }
3652 vec->definitions[0] = Definition(dst[i]);
3653 bld.insert(std::move(vec));
3654 }
3655 return;
3656 }
3657 }
3658
3659 if (dst_type == RegType::sgpr)
3660 src = bld.as_uniform(src);
3661
3662 split:
3663 /* just split it */
3664 aco_ptr<Instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, count)};
3665 split->operands[0] = Operand(src);
3666 for (unsigned i = 0; i < count; i++)
3667 split->definitions[i] = Definition(dst[i]);
3668 bld.insert(std::move(split));
3669 }
3670
3671 bool scan_write_mask(uint32_t mask, uint32_t todo_mask,
3672 int *start, int *count)
3673 {
3674 unsigned start_elem = ffs(todo_mask) - 1;
3675 bool skip = !(mask & (1 << start_elem));
3676 if (skip)
3677 mask = ~mask & todo_mask;
3678
3679 mask &= todo_mask;
3680
3681 u_bit_scan_consecutive_range(&mask, start, count);
3682
3683 return !skip;
3684 }
3685
3686 void advance_write_mask(uint32_t *todo_mask, int start, int count)
3687 {
3688 *todo_mask &= ~u_bit_consecutive(0, count) << start;
3689 }
3690
3691 void store_lds(isel_context *ctx, unsigned elem_size_bytes, Temp data, uint32_t wrmask,
3692 Temp address, unsigned base_offset, unsigned align)
3693 {
3694 assert(util_is_power_of_two_nonzero(align));
3695 assert(util_is_power_of_two_nonzero(elem_size_bytes) && elem_size_bytes <= 8);
3696
3697 Builder bld(ctx->program, ctx->block);
3698 bool large_ds_write = ctx->options->chip_class >= GFX7;
3699 bool usable_write2 = ctx->options->chip_class >= GFX7;
3700
3701 unsigned write_count = 0;
3702 Temp write_datas[32];
3703 unsigned offsets[32];
3704 aco_opcode opcodes[32];
3705
3706 wrmask = widen_mask(wrmask, elem_size_bytes);
3707
3708 uint32_t todo = u_bit_consecutive(0, data.bytes());
3709 while (todo) {
3710 int offset, bytes;
3711 if (!scan_write_mask(wrmask, todo, &offset, &bytes)) {
3712 offsets[write_count] = offset;
3713 opcodes[write_count] = aco_opcode::num_opcodes;
3714 write_count++;
3715 advance_write_mask(&todo, offset, bytes);
3716 continue;
3717 }
3718
3719 bool aligned2 = offset % 2 == 0 && align % 2 == 0;
3720 bool aligned4 = offset % 4 == 0 && align % 4 == 0;
3721 bool aligned8 = offset % 8 == 0 && align % 8 == 0;
3722 bool aligned16 = offset % 16 == 0 && align % 16 == 0;
3723
3724 //TODO: use ds_write_b8_d16_hi/ds_write_b16_d16_hi if beneficial
3725 aco_opcode op = aco_opcode::num_opcodes;
3726 if (bytes >= 16 && aligned16 && large_ds_write) {
3727 op = aco_opcode::ds_write_b128;
3728 bytes = 16;
3729 } else if (bytes >= 12 && aligned16 && large_ds_write) {
3730 op = aco_opcode::ds_write_b96;
3731 bytes = 12;
3732 } else if (bytes >= 8 && aligned8) {
3733 op = aco_opcode::ds_write_b64;
3734 bytes = 8;
3735 } else if (bytes >= 4 && aligned4) {
3736 op = aco_opcode::ds_write_b32;
3737 bytes = 4;
3738 } else if (bytes >= 2 && aligned2) {
3739 op = aco_opcode::ds_write_b16;
3740 bytes = 2;
3741 } else if (bytes >= 1) {
3742 op = aco_opcode::ds_write_b8;
3743 bytes = 1;
3744 } else {
3745 assert(false);
3746 }
3747
3748 offsets[write_count] = offset;
3749 opcodes[write_count] = op;
3750 write_count++;
3751 advance_write_mask(&todo, offset, bytes);
3752 }
3753
3754 Operand m = load_lds_size_m0(bld);
3755
3756 split_store_data(ctx, RegType::vgpr, write_count, write_datas, offsets, data);
3757
3758 for (unsigned i = 0; i < write_count; i++) {
3759 aco_opcode op = opcodes[i];
3760 if (op == aco_opcode::num_opcodes)
3761 continue;
3762
3763 Temp data = write_datas[i];
3764
3765 unsigned second = write_count;
3766 if (usable_write2 && (op == aco_opcode::ds_write_b32 || op == aco_opcode::ds_write_b64)) {
3767 for (second = i + 1; second < write_count; second++) {
3768 if (opcodes[second] == op && (offsets[second] - offsets[i]) % data.bytes() == 0) {
3769 op = data.bytes() == 4 ? aco_opcode::ds_write2_b32 : aco_opcode::ds_write2_b64;
3770 opcodes[second] = aco_opcode::num_opcodes;
3771 break;
3772 }
3773 }
3774 }
3775
3776 bool write2 = op == aco_opcode::ds_write2_b32 || op == aco_opcode::ds_write2_b64;
3777 unsigned write2_off = (offsets[second] - offsets[i]) / data.bytes();
3778
3779 unsigned inline_offset = base_offset + offsets[i];
3780 unsigned max_offset = write2 ? (255 - write2_off) * data.bytes() : 65535;
3781 Temp address_offset = address;
3782 if (inline_offset > max_offset) {
3783 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
3784 inline_offset = offsets[i];
3785 }
3786 assert(inline_offset <= max_offset); /* offsets[i] shouldn't be large enough for this to happen */
3787
3788 if (write2) {
3789 Temp second_data = write_datas[second];
3790 inline_offset /= data.bytes();
3791 bld.ds(op, address_offset, data, second_data, m, inline_offset, inline_offset + write2_off);
3792 } else {
3793 bld.ds(op, address_offset, data, m, inline_offset);
3794 }
3795 }
3796 }
3797
3798 unsigned calculate_lds_alignment(isel_context *ctx, unsigned const_offset)
3799 {
3800 unsigned align = 16;
3801 if (const_offset)
3802 align = std::min(align, 1u << (ffs(const_offset) - 1));
3803
3804 return align;
3805 }
3806
3807
3808 aco_opcode get_buffer_store_op(bool smem, unsigned bytes)
3809 {
3810 switch (bytes) {
3811 case 1:
3812 assert(!smem);
3813 return aco_opcode::buffer_store_byte;
3814 case 2:
3815 assert(!smem);
3816 return aco_opcode::buffer_store_short;
3817 case 4:
3818 return smem ? aco_opcode::s_buffer_store_dword : aco_opcode::buffer_store_dword;
3819 case 8:
3820 return smem ? aco_opcode::s_buffer_store_dwordx2 : aco_opcode::buffer_store_dwordx2;
3821 case 12:
3822 assert(!smem);
3823 return aco_opcode::buffer_store_dwordx3;
3824 case 16:
3825 return smem ? aco_opcode::s_buffer_store_dwordx4 : aco_opcode::buffer_store_dwordx4;
3826 }
3827 unreachable("Unexpected store size");
3828 return aco_opcode::num_opcodes;
3829 }
3830
3831 void split_buffer_store(isel_context *ctx, nir_intrinsic_instr *instr, bool smem, RegType dst_type,
3832 Temp data, unsigned writemask, int swizzle_element_size,
3833 unsigned *write_count, Temp *write_datas, unsigned *offsets)
3834 {
3835 unsigned write_count_with_skips = 0;
3836 bool skips[16];
3837
3838 /* determine how to split the data */
3839 unsigned todo = u_bit_consecutive(0, data.bytes());
3840 while (todo) {
3841 int offset, bytes;
3842 skips[write_count_with_skips] = !scan_write_mask(writemask, todo, &offset, &bytes);
3843 offsets[write_count_with_skips] = offset;
3844 if (skips[write_count_with_skips]) {
3845 advance_write_mask(&todo, offset, bytes);
3846 write_count_with_skips++;
3847 continue;
3848 }
3849
3850 /* only supported sizes are 1, 2, 4, 8, 12 and 16 bytes and can't be
3851 * larger than swizzle_element_size */
3852 bytes = MIN2(bytes, swizzle_element_size);
3853 if (bytes % 4)
3854 bytes = bytes > 4 ? bytes & ~0x3 : MIN2(bytes, 2);
3855
3856 /* SMEM and GFX6 VMEM can't emit 12-byte stores */
3857 if ((ctx->program->chip_class == GFX6 || smem) && bytes == 12)
3858 bytes = 8;
3859
3860 /* dword or larger stores have to be dword-aligned */
3861 unsigned align_mul = instr ? nir_intrinsic_align_mul(instr) : 4;
3862 unsigned align_offset = (instr ? nir_intrinsic_align_offset(instr) : 0) + offset;
3863 bool dword_aligned = align_offset % 4 == 0 && align_mul % 4 == 0;
3864 if (!dword_aligned)
3865 bytes = MIN2(bytes, (align_offset % 2 == 0 && align_mul % 2 == 0) ? 2 : 1);
3866
3867 advance_write_mask(&todo, offset, bytes);
3868 write_count_with_skips++;
3869 }
3870
3871 /* actually split data */
3872 split_store_data(ctx, dst_type, write_count_with_skips, write_datas, offsets, data);
3873
3874 /* remove skips */
3875 for (unsigned i = 0; i < write_count_with_skips; i++) {
3876 if (skips[i])
3877 continue;
3878 write_datas[*write_count] = write_datas[i];
3879 offsets[*write_count] = offsets[i];
3880 (*write_count)++;
3881 }
3882 }
3883
3884 Temp create_vec_from_array(isel_context *ctx, Temp arr[], unsigned cnt, RegType reg_type, unsigned elem_size_bytes,
3885 unsigned split_cnt = 0u, Temp dst = Temp())
3886 {
3887 Builder bld(ctx->program, ctx->block);
3888 unsigned dword_size = elem_size_bytes / 4;
3889
3890 if (!dst.id())
3891 dst = bld.tmp(RegClass(reg_type, cnt * dword_size));
3892
3893 std::array<Temp, NIR_MAX_VEC_COMPONENTS> allocated_vec;
3894 aco_ptr<Pseudo_instruction> instr {create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, cnt, 1)};
3895 instr->definitions[0] = Definition(dst);
3896
3897 for (unsigned i = 0; i < cnt; ++i) {
3898 if (arr[i].id()) {
3899 assert(arr[i].size() == dword_size);
3900 allocated_vec[i] = arr[i];
3901 instr->operands[i] = Operand(arr[i]);
3902 } else {
3903 Temp zero = bld.copy(bld.def(RegClass(reg_type, dword_size)), Operand(0u, dword_size == 2));
3904 allocated_vec[i] = zero;
3905 instr->operands[i] = Operand(zero);
3906 }
3907 }
3908
3909 bld.insert(std::move(instr));
3910
3911 if (split_cnt)
3912 emit_split_vector(ctx, dst, split_cnt);
3913 else
3914 ctx->allocated_vec.emplace(dst.id(), allocated_vec); /* emit_split_vector already does this */
3915
3916 return dst;
3917 }
3918
3919 inline unsigned resolve_excess_vmem_const_offset(Builder &bld, Temp &voffset, unsigned const_offset)
3920 {
3921 if (const_offset >= 4096) {
3922 unsigned excess_const_offset = const_offset / 4096u * 4096u;
3923 const_offset %= 4096u;
3924
3925 if (!voffset.id())
3926 voffset = bld.copy(bld.def(v1), Operand(excess_const_offset));
3927 else if (unlikely(voffset.regClass() == s1))
3928 voffset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), Operand(excess_const_offset), Operand(voffset));
3929 else if (likely(voffset.regClass() == v1))
3930 voffset = bld.vadd32(bld.def(v1), Operand(voffset), Operand(excess_const_offset));
3931 else
3932 unreachable("Unsupported register class of voffset");
3933 }
3934
3935 return const_offset;
3936 }
3937
3938 void emit_single_mubuf_store(isel_context *ctx, Temp descriptor, Temp voffset, Temp soffset, Temp vdata,
3939 unsigned const_offset = 0u, bool allow_reorder = true, bool slc = false)
3940 {
3941 assert(vdata.id());
3942 assert(vdata.size() != 3 || ctx->program->chip_class != GFX6);
3943 assert(vdata.size() >= 1 && vdata.size() <= 4);
3944
3945 Builder bld(ctx->program, ctx->block);
3946 aco_opcode op = get_buffer_store_op(false, vdata.bytes());
3947 const_offset = resolve_excess_vmem_const_offset(bld, voffset, const_offset);
3948
3949 Operand voffset_op = voffset.id() ? Operand(as_vgpr(ctx, voffset)) : Operand(v1);
3950 Operand soffset_op = soffset.id() ? Operand(soffset) : Operand(0u);
3951 Builder::Result r = bld.mubuf(op, Operand(descriptor), voffset_op, soffset_op, Operand(vdata), const_offset,
3952 /* offen */ !voffset_op.isUndefined(), /* idxen*/ false, /* addr64 */ false,
3953 /* disable_wqm */ false, /* glc */ true, /* dlc*/ false, /* slc */ slc);
3954
3955 static_cast<MUBUF_instruction *>(r.instr)->can_reorder = allow_reorder;
3956 }
3957
3958 void store_vmem_mubuf(isel_context *ctx, Temp src, Temp descriptor, Temp voffset, Temp soffset,
3959 unsigned base_const_offset, unsigned elem_size_bytes, unsigned write_mask,
3960 bool allow_combining = true, bool reorder = true, bool slc = false)
3961 {
3962 Builder bld(ctx->program, ctx->block);
3963 assert(elem_size_bytes == 2 || elem_size_bytes == 4 || elem_size_bytes == 8);
3964 assert(write_mask);
3965 write_mask = widen_mask(write_mask, elem_size_bytes);
3966
3967 unsigned write_count = 0;
3968 Temp write_datas[32];
3969 unsigned offsets[32];
3970 split_buffer_store(ctx, NULL, false, RegType::vgpr, src, write_mask,
3971 allow_combining ? 16 : 4, &write_count, write_datas, offsets);
3972
3973 for (unsigned i = 0; i < write_count; i++) {
3974 unsigned const_offset = offsets[i] + base_const_offset;
3975 emit_single_mubuf_store(ctx, descriptor, voffset, soffset, write_datas[i], const_offset, reorder, slc);
3976 }
3977 }
3978
3979 void load_vmem_mubuf(isel_context *ctx, Temp dst, Temp descriptor, Temp voffset, Temp soffset,
3980 unsigned base_const_offset, unsigned elem_size_bytes, unsigned num_components,
3981 unsigned stride = 0u, bool allow_combining = true, bool allow_reorder = true)
3982 {
3983 assert(elem_size_bytes == 2 || elem_size_bytes == 4 || elem_size_bytes == 8);
3984 assert((num_components * elem_size_bytes) == dst.bytes());
3985 assert(!!stride != allow_combining);
3986
3987 Builder bld(ctx->program, ctx->block);
3988
3989 LoadEmitInfo info = {Operand(voffset), dst, num_components, elem_size_bytes, descriptor};
3990 info.component_stride = allow_combining ? 0 : stride;
3991 info.glc = true;
3992 info.swizzle_component_size = allow_combining ? 0 : 4;
3993 info.align_mul = MIN2(elem_size_bytes, 4);
3994 info.align_offset = 0;
3995 info.soffset = soffset;
3996 info.const_offset = base_const_offset;
3997 emit_mubuf_load(ctx, bld, &info);
3998 }
3999
4000 std::pair<Temp, unsigned> offset_add_from_nir(isel_context *ctx, const std::pair<Temp, unsigned> &base_offset, nir_src *off_src, unsigned stride = 1u)
4001 {
4002 Builder bld(ctx->program, ctx->block);
4003 Temp offset = base_offset.first;
4004 unsigned const_offset = base_offset.second;
4005
4006 if (!nir_src_is_const(*off_src)) {
4007 Temp indirect_offset_arg = get_ssa_temp(ctx, off_src->ssa);
4008 Temp with_stride;
4009
4010 /* Calculate indirect offset with stride */
4011 if (likely(indirect_offset_arg.regClass() == v1))
4012 with_stride = bld.v_mul24_imm(bld.def(v1), indirect_offset_arg, stride);
4013 else if (indirect_offset_arg.regClass() == s1)
4014 with_stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), indirect_offset_arg);
4015 else
4016 unreachable("Unsupported register class of indirect offset");
4017
4018 /* Add to the supplied base offset */
4019 if (offset.id() == 0)
4020 offset = with_stride;
4021 else if (unlikely(offset.regClass() == s1 && with_stride.regClass() == s1))
4022 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), with_stride, offset);
4023 else if (offset.size() == 1 && with_stride.size() == 1)
4024 offset = bld.vadd32(bld.def(v1), with_stride, offset);
4025 else
4026 unreachable("Unsupported register class of indirect offset");
4027 } else {
4028 unsigned const_offset_arg = nir_src_as_uint(*off_src);
4029 const_offset += const_offset_arg * stride;
4030 }
4031
4032 return std::make_pair(offset, const_offset);
4033 }
4034
4035 std::pair<Temp, unsigned> offset_add(isel_context *ctx, const std::pair<Temp, unsigned> &off1, const std::pair<Temp, unsigned> &off2)
4036 {
4037 Builder bld(ctx->program, ctx->block);
4038 Temp offset;
4039
4040 if (off1.first.id() && off2.first.id()) {
4041 if (unlikely(off1.first.regClass() == s1 && off2.first.regClass() == s1))
4042 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), off1.first, off2.first);
4043 else if (off1.first.size() == 1 && off2.first.size() == 1)
4044 offset = bld.vadd32(bld.def(v1), off1.first, off2.first);
4045 else
4046 unreachable("Unsupported register class of indirect offset");
4047 } else {
4048 offset = off1.first.id() ? off1.first : off2.first;
4049 }
4050
4051 return std::make_pair(offset, off1.second + off2.second);
4052 }
4053
4054 std::pair<Temp, unsigned> offset_mul(isel_context *ctx, const std::pair<Temp, unsigned> &offs, unsigned multiplier)
4055 {
4056 Builder bld(ctx->program, ctx->block);
4057 unsigned const_offset = offs.second * multiplier;
4058
4059 if (!offs.first.id())
4060 return std::make_pair(offs.first, const_offset);
4061
4062 Temp offset = unlikely(offs.first.regClass() == s1)
4063 ? bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(multiplier), offs.first)
4064 : bld.v_mul24_imm(bld.def(v1), offs.first, multiplier);
4065
4066 return std::make_pair(offset, const_offset);
4067 }
4068
4069 std::pair<Temp, unsigned> get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned base_stride, unsigned component_stride)
4070 {
4071 Builder bld(ctx->program, ctx->block);
4072
4073 /* base is the driver_location, which is already multiplied by 4, so is in dwords */
4074 unsigned const_offset = nir_intrinsic_base(instr) * base_stride;
4075 /* component is in bytes */
4076 const_offset += nir_intrinsic_component(instr) * component_stride;
4077
4078 /* offset should be interpreted in relation to the base, so the instruction effectively reads/writes another input/output when it has an offset */
4079 nir_src *off_src = nir_get_io_offset_src(instr);
4080 return offset_add_from_nir(ctx, std::make_pair(Temp(), const_offset), off_src, 4u * base_stride);
4081 }
4082
4083 std::pair<Temp, unsigned> get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned stride = 1u)
4084 {
4085 return get_intrinsic_io_basic_offset(ctx, instr, stride, stride);
4086 }
4087
4088 Temp get_tess_rel_patch_id(isel_context *ctx)
4089 {
4090 Builder bld(ctx->program, ctx->block);
4091
4092 switch (ctx->shader->info.stage) {
4093 case MESA_SHADER_TESS_CTRL:
4094 return bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffu),
4095 get_arg(ctx, ctx->args->ac.tcs_rel_ids));
4096 case MESA_SHADER_TESS_EVAL:
4097 return get_arg(ctx, ctx->args->tes_rel_patch_id);
4098 default:
4099 unreachable("Unsupported stage in get_tess_rel_patch_id");
4100 }
4101 }
4102
4103 std::pair<Temp, unsigned> get_tcs_per_vertex_input_lds_offset(isel_context *ctx, nir_intrinsic_instr *instr)
4104 {
4105 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4106 Builder bld(ctx->program, ctx->block);
4107
4108 uint32_t tcs_in_patch_stride = ctx->args->options->key.tcs.input_vertices * ctx->tcs_num_inputs * 4;
4109 uint32_t tcs_in_vertex_stride = ctx->tcs_num_inputs * 4;
4110
4111 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr);
4112
4113 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
4114 offs = offset_add_from_nir(ctx, offs, vertex_index_src, tcs_in_vertex_stride);
4115
4116 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
4117 Temp tcs_in_current_patch_offset = bld.v_mul24_imm(bld.def(v1), rel_patch_id, tcs_in_patch_stride);
4118 offs = offset_add(ctx, offs, std::make_pair(tcs_in_current_patch_offset, 0));
4119
4120 return offset_mul(ctx, offs, 4u);
4121 }
4122
4123 std::pair<Temp, unsigned> get_tcs_output_lds_offset(isel_context *ctx, nir_intrinsic_instr *instr = nullptr, bool per_vertex = false)
4124 {
4125 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4126 Builder bld(ctx->program, ctx->block);
4127
4128 uint32_t input_patch_size = ctx->args->options->key.tcs.input_vertices * ctx->tcs_num_inputs * 16;
4129 uint32_t output_vertex_size = ctx->tcs_num_outputs * 16;
4130 uint32_t pervertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
4131 uint32_t output_patch_stride = pervertex_output_patch_size + ctx->tcs_num_patch_outputs * 16;
4132
4133 std::pair<Temp, unsigned> offs = instr
4134 ? get_intrinsic_io_basic_offset(ctx, instr, 4u)
4135 : std::make_pair(Temp(), 0u);
4136
4137 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
4138 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, output_patch_stride);
4139
4140 if (per_vertex) {
4141 assert(instr);
4142
4143 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
4144 offs = offset_add_from_nir(ctx, offs, vertex_index_src, output_vertex_size);
4145
4146 uint32_t output_patch0_offset = (input_patch_size * ctx->tcs_num_patches);
4147 offs = offset_add(ctx, offs, std::make_pair(patch_off, output_patch0_offset));
4148 } else {
4149 uint32_t output_patch0_patch_data_offset = (input_patch_size * ctx->tcs_num_patches + pervertex_output_patch_size);
4150 offs = offset_add(ctx, offs, std::make_pair(patch_off, output_patch0_patch_data_offset));
4151 }
4152
4153 return offs;
4154 }
4155
4156 std::pair<Temp, unsigned> get_tcs_per_vertex_output_vmem_offset(isel_context *ctx, nir_intrinsic_instr *instr)
4157 {
4158 Builder bld(ctx->program, ctx->block);
4159
4160 unsigned vertices_per_patch = ctx->shader->info.tess.tcs_vertices_out;
4161 unsigned attr_stride = vertices_per_patch * ctx->tcs_num_patches;
4162
4163 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, attr_stride * 4u, 4u);
4164
4165 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
4166 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, vertices_per_patch * 16u);
4167 offs = offset_add(ctx, offs, std::make_pair(patch_off, 0u));
4168
4169 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
4170 offs = offset_add_from_nir(ctx, offs, vertex_index_src, 16u);
4171
4172 return offs;
4173 }
4174
4175 std::pair<Temp, unsigned> get_tcs_per_patch_output_vmem_offset(isel_context *ctx, nir_intrinsic_instr *instr = nullptr, unsigned const_base_offset = 0u)
4176 {
4177 Builder bld(ctx->program, ctx->block);
4178
4179 unsigned output_vertex_size = ctx->tcs_num_outputs * 16;
4180 unsigned per_vertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
4181 unsigned per_patch_data_offset = per_vertex_output_patch_size * ctx->tcs_num_patches;
4182 unsigned attr_stride = ctx->tcs_num_patches;
4183
4184 std::pair<Temp, unsigned> offs = instr
4185 ? get_intrinsic_io_basic_offset(ctx, instr, attr_stride * 4u, 4u)
4186 : std::make_pair(Temp(), 0u);
4187
4188 if (const_base_offset)
4189 offs.second += const_base_offset * attr_stride;
4190
4191 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
4192 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, 16u);
4193 offs = offset_add(ctx, offs, std::make_pair(patch_off, per_patch_data_offset));
4194
4195 return offs;
4196 }
4197
4198 bool tcs_driver_location_matches_api_mask(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex, uint64_t mask, bool *indirect)
4199 {
4200 assert(per_vertex || ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4201
4202 if (mask == 0)
4203 return false;
4204
4205 unsigned drv_loc = nir_intrinsic_base(instr);
4206 nir_src *off_src = nir_get_io_offset_src(instr);
4207
4208 if (!nir_src_is_const(*off_src)) {
4209 *indirect = true;
4210 return false;
4211 }
4212
4213 *indirect = false;
4214 uint64_t slot = per_vertex
4215 ? ctx->output_drv_loc_to_var_slot[ctx->shader->info.stage][drv_loc / 4]
4216 : (ctx->output_tcs_patch_drv_loc_to_var_slot[drv_loc / 4] - VARYING_SLOT_PATCH0);
4217 return (((uint64_t) 1) << slot) & mask;
4218 }
4219
4220 bool store_output_to_temps(isel_context *ctx, nir_intrinsic_instr *instr)
4221 {
4222 unsigned write_mask = nir_intrinsic_write_mask(instr);
4223 unsigned component = nir_intrinsic_component(instr);
4224 unsigned idx = nir_intrinsic_base(instr) + component;
4225
4226 nir_instr *off_instr = instr->src[1].ssa->parent_instr;
4227 if (off_instr->type != nir_instr_type_load_const)
4228 return false;
4229
4230 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
4231 idx += nir_src_as_uint(instr->src[1]) * 4u;
4232
4233 if (instr->src[0].ssa->bit_size == 64)
4234 write_mask = widen_mask(write_mask, 2);
4235
4236 RegClass rc = instr->src[0].ssa->bit_size == 16 ? v2b : v1;
4237
4238 for (unsigned i = 0; i < 8; ++i) {
4239 if (write_mask & (1 << i)) {
4240 ctx->outputs.mask[idx / 4u] |= 1 << (idx % 4u);
4241 ctx->outputs.temps[idx] = emit_extract_vector(ctx, src, i, rc);
4242 }
4243 idx++;
4244 }
4245
4246 return true;
4247 }
4248
4249 bool load_input_from_temps(isel_context *ctx, nir_intrinsic_instr *instr, Temp dst)
4250 {
4251 /* Only TCS per-vertex inputs are supported by this function.
4252 * Per-vertex inputs only match between the VS/TCS invocation id when the number of invocations is the same.
4253 */
4254 if (ctx->shader->info.stage != MESA_SHADER_TESS_CTRL || !ctx->tcs_in_out_eq)
4255 return false;
4256
4257 nir_src *off_src = nir_get_io_offset_src(instr);
4258 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
4259 nir_instr *vertex_index_instr = vertex_index_src->ssa->parent_instr;
4260 bool can_use_temps = nir_src_is_const(*off_src) &&
4261 vertex_index_instr->type == nir_instr_type_intrinsic &&
4262 nir_instr_as_intrinsic(vertex_index_instr)->intrinsic == nir_intrinsic_load_invocation_id;
4263
4264 if (!can_use_temps)
4265 return false;
4266
4267 unsigned idx = nir_intrinsic_base(instr) + nir_intrinsic_component(instr) + 4 * nir_src_as_uint(*off_src);
4268 Temp *src = &ctx->inputs.temps[idx];
4269 create_vec_from_array(ctx, src, dst.size(), dst.regClass().type(), 4u, 0, dst);
4270
4271 return true;
4272 }
4273
4274 void visit_store_ls_or_es_output(isel_context *ctx, nir_intrinsic_instr *instr)
4275 {
4276 Builder bld(ctx->program, ctx->block);
4277
4278 if (ctx->tcs_in_out_eq && store_output_to_temps(ctx, instr)) {
4279 /* When the TCS only reads this output directly and for the same vertices as its invocation id, it is unnecessary to store the VS output to LDS. */
4280 bool indirect_write;
4281 bool temp_only_input = tcs_driver_location_matches_api_mask(ctx, instr, true, ctx->tcs_temp_only_inputs, &indirect_write);
4282 if (temp_only_input && !indirect_write)
4283 return;
4284 }
4285
4286 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, 4u);
4287 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
4288 unsigned write_mask = nir_intrinsic_write_mask(instr);
4289 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8u;
4290
4291 if (ctx->stage == vertex_es || ctx->stage == tess_eval_es) {
4292 /* GFX6-8: ES stage is not merged into GS, data is passed from ES to GS in VMEM. */
4293 Temp esgs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_VS * 16u));
4294 Temp es2gs_offset = get_arg(ctx, ctx->args->es2gs_offset);
4295 store_vmem_mubuf(ctx, src, esgs_ring, offs.first, es2gs_offset, offs.second, elem_size_bytes, write_mask, false, true, true);
4296 } else {
4297 Temp lds_base;
4298
4299 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
4300 /* GFX9+: ES stage is merged into GS, data is passed between them using LDS. */
4301 unsigned itemsize = ctx->stage == vertex_geometry_gs
4302 ? ctx->program->info->vs.es_info.esgs_itemsize
4303 : ctx->program->info->tes.es_info.esgs_itemsize;
4304 Temp thread_id = emit_mbcnt(ctx, bld.def(v1));
4305 Temp wave_idx = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(ctx, ctx->args->merged_wave_info), Operand(4u << 16 | 24));
4306 Temp vertex_idx = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), thread_id,
4307 bld.v_mul24_imm(bld.def(v1), as_vgpr(ctx, wave_idx), ctx->program->wave_size));
4308 lds_base = bld.v_mul24_imm(bld.def(v1), vertex_idx, itemsize);
4309 } else if (ctx->stage == vertex_ls || ctx->stage == vertex_tess_control_hs) {
4310 /* GFX6-8: VS runs on LS stage when tessellation is used, but LS shares LDS space with HS.
4311 * GFX9+: LS is merged into HS, but still uses the same LDS layout.
4312 */
4313 Temp vertex_idx = get_arg(ctx, ctx->args->rel_auto_id);
4314 lds_base = bld.v_mul24_imm(bld.def(v1), vertex_idx, ctx->tcs_num_inputs * 16u);
4315 } else {
4316 unreachable("Invalid LS or ES stage");
4317 }
4318
4319 offs = offset_add(ctx, offs, std::make_pair(lds_base, 0u));
4320 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
4321 store_lds(ctx, elem_size_bytes, src, write_mask, offs.first, offs.second, lds_align);
4322 }
4323 }
4324
4325 bool tcs_output_is_tess_factor(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4326 {
4327 if (per_vertex)
4328 return false;
4329
4330 unsigned off = nir_intrinsic_base(instr) * 4u;
4331 return off == ctx->tcs_tess_lvl_out_loc ||
4332 off == ctx->tcs_tess_lvl_in_loc;
4333
4334 }
4335
4336 bool tcs_output_is_read_by_tes(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4337 {
4338 uint64_t mask = per_vertex
4339 ? ctx->program->info->tcs.tes_inputs_read
4340 : ctx->program->info->tcs.tes_patch_inputs_read;
4341
4342 bool indirect_write = false;
4343 bool output_read_by_tes = tcs_driver_location_matches_api_mask(ctx, instr, per_vertex, mask, &indirect_write);
4344 return indirect_write || output_read_by_tes;
4345 }
4346
4347 bool tcs_output_is_read_by_tcs(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4348 {
4349 uint64_t mask = per_vertex
4350 ? ctx->shader->info.outputs_read
4351 : ctx->shader->info.patch_outputs_read;
4352
4353 bool indirect_write = false;
4354 bool output_read = tcs_driver_location_matches_api_mask(ctx, instr, per_vertex, mask, &indirect_write);
4355 return indirect_write || output_read;
4356 }
4357
4358 void visit_store_tcs_output(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4359 {
4360 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
4361 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4362
4363 Builder bld(ctx->program, ctx->block);
4364
4365 Temp store_val = get_ssa_temp(ctx, instr->src[0].ssa);
4366 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
4367 unsigned write_mask = nir_intrinsic_write_mask(instr);
4368
4369 bool is_tess_factor = tcs_output_is_tess_factor(ctx, instr, per_vertex);
4370 bool write_to_vmem = !is_tess_factor && tcs_output_is_read_by_tes(ctx, instr, per_vertex);
4371 bool write_to_lds = is_tess_factor || tcs_output_is_read_by_tcs(ctx, instr, per_vertex);
4372
4373 if (write_to_vmem) {
4374 std::pair<Temp, unsigned> vmem_offs = per_vertex
4375 ? get_tcs_per_vertex_output_vmem_offset(ctx, instr)
4376 : get_tcs_per_patch_output_vmem_offset(ctx, instr);
4377
4378 Temp hs_ring_tess_offchip = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
4379 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
4380 store_vmem_mubuf(ctx, store_val, hs_ring_tess_offchip, vmem_offs.first, oc_lds, vmem_offs.second, elem_size_bytes, write_mask, true, false);
4381 }
4382
4383 if (write_to_lds) {
4384 std::pair<Temp, unsigned> lds_offs = get_tcs_output_lds_offset(ctx, instr, per_vertex);
4385 unsigned lds_align = calculate_lds_alignment(ctx, lds_offs.second);
4386 store_lds(ctx, elem_size_bytes, store_val, write_mask, lds_offs.first, lds_offs.second, lds_align);
4387 }
4388 }
4389
4390 void visit_load_tcs_output(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4391 {
4392 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
4393 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4394
4395 Builder bld(ctx->program, ctx->block);
4396
4397 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4398 std::pair<Temp, unsigned> lds_offs = get_tcs_output_lds_offset(ctx, instr, per_vertex);
4399 unsigned lds_align = calculate_lds_alignment(ctx, lds_offs.second);
4400 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
4401
4402 load_lds(ctx, elem_size_bytes, dst, lds_offs.first, lds_offs.second, lds_align);
4403 }
4404
4405 void visit_store_output(isel_context *ctx, nir_intrinsic_instr *instr)
4406 {
4407 if (ctx->stage == vertex_vs ||
4408 ctx->stage == tess_eval_vs ||
4409 ctx->stage == fragment_fs ||
4410 ctx->stage == ngg_vertex_gs ||
4411 ctx->stage == ngg_tess_eval_gs ||
4412 ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
4413 bool stored_to_temps = store_output_to_temps(ctx, instr);
4414 if (!stored_to_temps) {
4415 fprintf(stderr, "Unimplemented output offset instruction:\n");
4416 nir_print_instr(instr->src[1].ssa->parent_instr, stderr);
4417 fprintf(stderr, "\n");
4418 abort();
4419 }
4420 } else if (ctx->stage == vertex_es ||
4421 ctx->stage == vertex_ls ||
4422 ctx->stage == tess_eval_es ||
4423 (ctx->stage == vertex_tess_control_hs && ctx->shader->info.stage == MESA_SHADER_VERTEX) ||
4424 (ctx->stage == vertex_geometry_gs && ctx->shader->info.stage == MESA_SHADER_VERTEX) ||
4425 (ctx->stage == tess_eval_geometry_gs && ctx->shader->info.stage == MESA_SHADER_TESS_EVAL)) {
4426 visit_store_ls_or_es_output(ctx, instr);
4427 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
4428 visit_store_tcs_output(ctx, instr, false);
4429 } else {
4430 unreachable("Shader stage not implemented");
4431 }
4432 }
4433
4434 void visit_load_output(isel_context *ctx, nir_intrinsic_instr *instr)
4435 {
4436 visit_load_tcs_output(ctx, instr, false);
4437 }
4438
4439 void emit_interp_instr(isel_context *ctx, unsigned idx, unsigned component, Temp src, Temp dst, Temp prim_mask)
4440 {
4441 Temp coord1 = emit_extract_vector(ctx, src, 0, v1);
4442 Temp coord2 = emit_extract_vector(ctx, src, 1, v1);
4443
4444 Builder bld(ctx->program, ctx->block);
4445
4446 if (dst.regClass() == v2b) {
4447 if (ctx->program->has_16bank_lds) {
4448 assert(ctx->options->chip_class <= GFX8);
4449 Builder::Result interp_p1 =
4450 bld.vintrp(aco_opcode::v_interp_mov_f32, bld.def(v1),
4451 Operand(2u) /* P0 */, bld.m0(prim_mask), idx, component);
4452 interp_p1 = bld.vintrp(aco_opcode::v_interp_p1lv_f16, bld.def(v2b),
4453 coord1, bld.m0(prim_mask), interp_p1, idx, component);
4454 bld.vintrp(aco_opcode::v_interp_p2_legacy_f16, Definition(dst), coord2,
4455 bld.m0(prim_mask), interp_p1, idx, component);
4456 } else {
4457 aco_opcode interp_p2_op = aco_opcode::v_interp_p2_f16;
4458
4459 if (ctx->options->chip_class == GFX8)
4460 interp_p2_op = aco_opcode::v_interp_p2_legacy_f16;
4461
4462 Builder::Result interp_p1 =
4463 bld.vintrp(aco_opcode::v_interp_p1ll_f16, bld.def(v1),
4464 coord1, bld.m0(prim_mask), idx, component);
4465 bld.vintrp(interp_p2_op, Definition(dst), coord2, bld.m0(prim_mask),
4466 interp_p1, idx, component);
4467 }
4468 } else {
4469 Builder::Result interp_p1 =
4470 bld.vintrp(aco_opcode::v_interp_p1_f32, bld.def(v1), coord1,
4471 bld.m0(prim_mask), idx, component);
4472
4473 if (ctx->program->has_16bank_lds)
4474 interp_p1.instr->operands[0].setLateKill(true);
4475
4476 bld.vintrp(aco_opcode::v_interp_p2_f32, Definition(dst), coord2,
4477 bld.m0(prim_mask), interp_p1, idx, component);
4478 }
4479 }
4480
4481 void emit_load_frag_coord(isel_context *ctx, Temp dst, unsigned num_components)
4482 {
4483 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1));
4484 for (unsigned i = 0; i < num_components; i++)
4485 vec->operands[i] = Operand(get_arg(ctx, ctx->args->ac.frag_pos[i]));
4486 if (G_0286CC_POS_W_FLOAT_ENA(ctx->program->config->spi_ps_input_ena)) {
4487 assert(num_components == 4);
4488 Builder bld(ctx->program, ctx->block);
4489 vec->operands[3] = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), get_arg(ctx, ctx->args->ac.frag_pos[3]));
4490 }
4491
4492 for (Operand& op : vec->operands)
4493 op = op.isUndefined() ? Operand(0u) : op;
4494
4495 vec->definitions[0] = Definition(dst);
4496 ctx->block->instructions.emplace_back(std::move(vec));
4497 emit_split_vector(ctx, dst, num_components);
4498 return;
4499 }
4500
4501 void visit_load_interpolated_input(isel_context *ctx, nir_intrinsic_instr *instr)
4502 {
4503 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4504 Temp coords = get_ssa_temp(ctx, instr->src[0].ssa);
4505 unsigned idx = nir_intrinsic_base(instr);
4506 unsigned component = nir_intrinsic_component(instr);
4507 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
4508
4509 nir_const_value* offset = nir_src_as_const_value(instr->src[1]);
4510 if (offset) {
4511 assert(offset->u32 == 0);
4512 } else {
4513 /* the lower 15bit of the prim_mask contain the offset into LDS
4514 * while the upper bits contain the number of prims */
4515 Temp offset_src = get_ssa_temp(ctx, instr->src[1].ssa);
4516 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
4517 Builder bld(ctx->program, ctx->block);
4518 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
4519 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
4520 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
4521 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
4522 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
4523 }
4524
4525 if (instr->dest.ssa.num_components == 1) {
4526 emit_interp_instr(ctx, idx, component, coords, dst, prim_mask);
4527 } else {
4528 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.ssa.num_components, 1));
4529 for (unsigned i = 0; i < instr->dest.ssa.num_components; i++)
4530 {
4531 Temp tmp = {ctx->program->allocateId(), v1};
4532 emit_interp_instr(ctx, idx, component+i, coords, tmp, prim_mask);
4533 vec->operands[i] = Operand(tmp);
4534 }
4535 vec->definitions[0] = Definition(dst);
4536 ctx->block->instructions.emplace_back(std::move(vec));
4537 }
4538 }
4539
4540 bool check_vertex_fetch_size(isel_context *ctx, const ac_data_format_info *vtx_info,
4541 unsigned offset, unsigned stride, unsigned channels)
4542 {
4543 unsigned vertex_byte_size = vtx_info->chan_byte_size * channels;
4544 if (vtx_info->chan_byte_size != 4 && channels == 3)
4545 return false;
4546 return (ctx->options->chip_class != GFX6 && ctx->options->chip_class != GFX10) ||
4547 (offset % vertex_byte_size == 0 && stride % vertex_byte_size == 0);
4548 }
4549
4550 uint8_t get_fetch_data_format(isel_context *ctx, const ac_data_format_info *vtx_info,
4551 unsigned offset, unsigned stride, unsigned *channels)
4552 {
4553 if (!vtx_info->chan_byte_size) {
4554 *channels = vtx_info->num_channels;
4555 return vtx_info->chan_format;
4556 }
4557
4558 unsigned num_channels = *channels;
4559 if (!check_vertex_fetch_size(ctx, vtx_info, offset, stride, *channels)) {
4560 unsigned new_channels = num_channels + 1;
4561 /* first, assume more loads is worse and try using a larger data format */
4562 while (new_channels <= 4 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels)) {
4563 new_channels++;
4564 /* don't make the attribute potentially out-of-bounds */
4565 if (offset + new_channels * vtx_info->chan_byte_size > stride)
4566 new_channels = 5;
4567 }
4568
4569 if (new_channels == 5) {
4570 /* then try decreasing load size (at the cost of more loads) */
4571 new_channels = *channels;
4572 while (new_channels > 1 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels))
4573 new_channels--;
4574 }
4575
4576 if (new_channels < *channels)
4577 *channels = new_channels;
4578 num_channels = new_channels;
4579 }
4580
4581 switch (vtx_info->chan_format) {
4582 case V_008F0C_BUF_DATA_FORMAT_8:
4583 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_8, V_008F0C_BUF_DATA_FORMAT_8_8,
4584 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_8_8_8_8}[num_channels - 1];
4585 case V_008F0C_BUF_DATA_FORMAT_16:
4586 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_16, V_008F0C_BUF_DATA_FORMAT_16_16,
4587 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_16_16_16_16}[num_channels - 1];
4588 case V_008F0C_BUF_DATA_FORMAT_32:
4589 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_32, V_008F0C_BUF_DATA_FORMAT_32_32,
4590 V_008F0C_BUF_DATA_FORMAT_32_32_32, V_008F0C_BUF_DATA_FORMAT_32_32_32_32}[num_channels - 1];
4591 }
4592 unreachable("shouldn't reach here");
4593 return V_008F0C_BUF_DATA_FORMAT_INVALID;
4594 }
4595
4596 /* For 2_10_10_10 formats the alpha is handled as unsigned by pre-vega HW.
4597 * so we may need to fix it up. */
4598 Temp adjust_vertex_fetch_alpha(isel_context *ctx, unsigned adjustment, Temp alpha)
4599 {
4600 Builder bld(ctx->program, ctx->block);
4601
4602 if (adjustment == RADV_ALPHA_ADJUST_SSCALED)
4603 alpha = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), alpha);
4604
4605 /* For the integer-like cases, do a natural sign extension.
4606 *
4607 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
4608 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
4609 * exponent.
4610 */
4611 alpha = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(adjustment == RADV_ALPHA_ADJUST_SNORM ? 7u : 30u), alpha);
4612 alpha = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(30u), alpha);
4613
4614 /* Convert back to the right type. */
4615 if (adjustment == RADV_ALPHA_ADJUST_SNORM) {
4616 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
4617 Temp clamp = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0xbf800000u), alpha);
4618 alpha = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xbf800000u), alpha, clamp);
4619 } else if (adjustment == RADV_ALPHA_ADJUST_SSCALED) {
4620 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
4621 }
4622
4623 return alpha;
4624 }
4625
4626 void visit_load_input(isel_context *ctx, nir_intrinsic_instr *instr)
4627 {
4628 Builder bld(ctx->program, ctx->block);
4629 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4630 if (ctx->shader->info.stage == MESA_SHADER_VERTEX) {
4631
4632 nir_instr *off_instr = instr->src[0].ssa->parent_instr;
4633 if (off_instr->type != nir_instr_type_load_const) {
4634 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
4635 nir_print_instr(off_instr, stderr);
4636 fprintf(stderr, "\n");
4637 }
4638 uint32_t offset = nir_instr_as_load_const(off_instr)->value[0].u32;
4639
4640 Temp vertex_buffers = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->vertex_buffers));
4641
4642 unsigned location = nir_intrinsic_base(instr) / 4 - VERT_ATTRIB_GENERIC0 + offset;
4643 unsigned component = nir_intrinsic_component(instr);
4644 unsigned bitsize = instr->dest.ssa.bit_size;
4645 unsigned attrib_binding = ctx->options->key.vs.vertex_attribute_bindings[location];
4646 uint32_t attrib_offset = ctx->options->key.vs.vertex_attribute_offsets[location];
4647 uint32_t attrib_stride = ctx->options->key.vs.vertex_attribute_strides[location];
4648 unsigned attrib_format = ctx->options->key.vs.vertex_attribute_formats[location];
4649
4650 unsigned dfmt = attrib_format & 0xf;
4651 unsigned nfmt = (attrib_format >> 4) & 0x7;
4652 const struct ac_data_format_info *vtx_info = ac_get_data_format_info(dfmt);
4653
4654 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa) << component;
4655 unsigned num_channels = MIN2(util_last_bit(mask), vtx_info->num_channels);
4656 unsigned alpha_adjust = (ctx->options->key.vs.alpha_adjust >> (location * 2)) & 3;
4657 bool post_shuffle = ctx->options->key.vs.post_shuffle & (1 << location);
4658 if (post_shuffle)
4659 num_channels = MAX2(num_channels, 3);
4660
4661 Operand off = bld.copy(bld.def(s1), Operand(attrib_binding * 16u));
4662 Temp list = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), vertex_buffers, off);
4663
4664 Temp index;
4665 if (ctx->options->key.vs.instance_rate_inputs & (1u << location)) {
4666 uint32_t divisor = ctx->options->key.vs.instance_rate_divisors[location];
4667 Temp start_instance = get_arg(ctx, ctx->args->ac.start_instance);
4668 if (divisor) {
4669 Temp instance_id = get_arg(ctx, ctx->args->ac.instance_id);
4670 if (divisor != 1) {
4671 Temp divided = bld.tmp(v1);
4672 emit_v_div_u32(ctx, divided, as_vgpr(ctx, instance_id), divisor);
4673 index = bld.vadd32(bld.def(v1), start_instance, divided);
4674 } else {
4675 index = bld.vadd32(bld.def(v1), start_instance, instance_id);
4676 }
4677 } else {
4678 index = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), start_instance);
4679 }
4680 } else {
4681 index = bld.vadd32(bld.def(v1),
4682 get_arg(ctx, ctx->args->ac.base_vertex),
4683 get_arg(ctx, ctx->args->ac.vertex_id));
4684 }
4685
4686 Temp channels[num_channels];
4687 unsigned channel_start = 0;
4688 bool direct_fetch = false;
4689
4690 /* skip unused channels at the start */
4691 if (vtx_info->chan_byte_size && !post_shuffle) {
4692 channel_start = ffs(mask) - 1;
4693 for (unsigned i = 0; i < channel_start; i++)
4694 channels[i] = Temp(0, s1);
4695 } else if (vtx_info->chan_byte_size && post_shuffle && !(mask & 0x8)) {
4696 num_channels = 3 - (ffs(mask) - 1);
4697 }
4698
4699 /* load channels */
4700 while (channel_start < num_channels) {
4701 unsigned fetch_component = num_channels - channel_start;
4702 unsigned fetch_offset = attrib_offset + channel_start * vtx_info->chan_byte_size;
4703 bool expanded = false;
4704
4705 /* use MUBUF when possible to avoid possible alignment issues */
4706 /* TODO: we could use SDWA to unpack 8/16-bit attributes without extra instructions */
4707 bool use_mubuf = (nfmt == V_008F0C_BUF_NUM_FORMAT_FLOAT ||
4708 nfmt == V_008F0C_BUF_NUM_FORMAT_UINT ||
4709 nfmt == V_008F0C_BUF_NUM_FORMAT_SINT) &&
4710 vtx_info->chan_byte_size == 4;
4711 unsigned fetch_dfmt = V_008F0C_BUF_DATA_FORMAT_INVALID;
4712 if (!use_mubuf) {
4713 fetch_dfmt = get_fetch_data_format(ctx, vtx_info, fetch_offset, attrib_stride, &fetch_component);
4714 } else {
4715 if (fetch_component == 3 && ctx->options->chip_class == GFX6) {
4716 /* GFX6 only supports loading vec3 with MTBUF, expand to vec4. */
4717 fetch_component = 4;
4718 expanded = true;
4719 }
4720 }
4721
4722 unsigned fetch_bytes = fetch_component * bitsize / 8;
4723
4724 Temp fetch_index = index;
4725 if (attrib_stride != 0 && fetch_offset > attrib_stride) {
4726 fetch_index = bld.vadd32(bld.def(v1), Operand(fetch_offset / attrib_stride), fetch_index);
4727 fetch_offset = fetch_offset % attrib_stride;
4728 }
4729
4730 Operand soffset(0u);
4731 if (fetch_offset >= 4096) {
4732 soffset = bld.copy(bld.def(s1), Operand(fetch_offset / 4096 * 4096));
4733 fetch_offset %= 4096;
4734 }
4735
4736 aco_opcode opcode;
4737 switch (fetch_bytes) {
4738 case 2:
4739 assert(!use_mubuf && bitsize == 16);
4740 opcode = aco_opcode::tbuffer_load_format_d16_x;
4741 break;
4742 case 4:
4743 if (bitsize == 16) {
4744 assert(!use_mubuf);
4745 opcode = aco_opcode::tbuffer_load_format_d16_xy;
4746 } else {
4747 opcode = use_mubuf ? aco_opcode::buffer_load_dword : aco_opcode::tbuffer_load_format_x;
4748 }
4749 break;
4750 case 6:
4751 assert(!use_mubuf && bitsize == 16);
4752 opcode = aco_opcode::tbuffer_load_format_d16_xyz;
4753 break;
4754 case 8:
4755 if (bitsize == 16) {
4756 assert(!use_mubuf);
4757 opcode = aco_opcode::tbuffer_load_format_d16_xyzw;
4758 } else {
4759 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx2 : aco_opcode::tbuffer_load_format_xy;
4760 }
4761 break;
4762 case 12:
4763 assert(ctx->options->chip_class >= GFX7 ||
4764 (!use_mubuf && ctx->options->chip_class == GFX6));
4765 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx3 : aco_opcode::tbuffer_load_format_xyz;
4766 break;
4767 case 16:
4768 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx4 : aco_opcode::tbuffer_load_format_xyzw;
4769 break;
4770 default:
4771 unreachable("Unimplemented load_input vector size");
4772 }
4773
4774 Temp fetch_dst;
4775 if (channel_start == 0 && fetch_bytes == dst.bytes() && !post_shuffle &&
4776 !expanded && (alpha_adjust == RADV_ALPHA_ADJUST_NONE ||
4777 num_channels <= 3)) {
4778 direct_fetch = true;
4779 fetch_dst = dst;
4780 } else {
4781 fetch_dst = bld.tmp(RegClass::get(RegType::vgpr, fetch_bytes));
4782 }
4783
4784 if (use_mubuf) {
4785 Instruction *mubuf = bld.mubuf(opcode,
4786 Definition(fetch_dst), list, fetch_index, soffset,
4787 fetch_offset, false, true).instr;
4788 static_cast<MUBUF_instruction*>(mubuf)->can_reorder = true;
4789 } else {
4790 Instruction *mtbuf = bld.mtbuf(opcode,
4791 Definition(fetch_dst), list, fetch_index, soffset,
4792 fetch_dfmt, nfmt, fetch_offset, false, true).instr;
4793 static_cast<MTBUF_instruction*>(mtbuf)->can_reorder = true;
4794 }
4795
4796 emit_split_vector(ctx, fetch_dst, fetch_dst.size());
4797
4798 if (fetch_component == 1) {
4799 channels[channel_start] = fetch_dst;
4800 } else {
4801 for (unsigned i = 0; i < MIN2(fetch_component, num_channels - channel_start); i++)
4802 channels[channel_start + i] = emit_extract_vector(ctx, fetch_dst, i,
4803 bitsize == 16 ? v2b : v1);
4804 }
4805
4806 channel_start += fetch_component;
4807 }
4808
4809 if (!direct_fetch) {
4810 bool is_float = nfmt != V_008F0C_BUF_NUM_FORMAT_UINT &&
4811 nfmt != V_008F0C_BUF_NUM_FORMAT_SINT;
4812
4813 static const unsigned swizzle_normal[4] = {0, 1, 2, 3};
4814 static const unsigned swizzle_post_shuffle[4] = {2, 1, 0, 3};
4815 const unsigned *swizzle = post_shuffle ? swizzle_post_shuffle : swizzle_normal;
4816
4817 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
4818 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
4819 unsigned num_temp = 0;
4820 for (unsigned i = 0; i < dst.size(); i++) {
4821 unsigned idx = i + component;
4822 if (swizzle[idx] < num_channels && channels[swizzle[idx]].id()) {
4823 Temp channel = channels[swizzle[idx]];
4824 if (idx == 3 && alpha_adjust != RADV_ALPHA_ADJUST_NONE)
4825 channel = adjust_vertex_fetch_alpha(ctx, alpha_adjust, channel);
4826 vec->operands[i] = Operand(channel);
4827
4828 num_temp++;
4829 elems[i] = channel;
4830 } else if (is_float && idx == 3) {
4831 vec->operands[i] = Operand(0x3f800000u);
4832 } else if (!is_float && idx == 3) {
4833 vec->operands[i] = Operand(1u);
4834 } else {
4835 vec->operands[i] = Operand(0u);
4836 }
4837 }
4838 vec->definitions[0] = Definition(dst);
4839 ctx->block->instructions.emplace_back(std::move(vec));
4840 emit_split_vector(ctx, dst, dst.size());
4841
4842 if (num_temp == dst.size())
4843 ctx->allocated_vec.emplace(dst.id(), elems);
4844 }
4845 } else if (ctx->shader->info.stage == MESA_SHADER_FRAGMENT) {
4846 unsigned offset_idx = instr->intrinsic == nir_intrinsic_load_input ? 0 : 1;
4847 nir_instr *off_instr = instr->src[offset_idx].ssa->parent_instr;
4848 if (off_instr->type != nir_instr_type_load_const ||
4849 nir_instr_as_load_const(off_instr)->value[0].u32 != 0) {
4850 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
4851 nir_print_instr(off_instr, stderr);
4852 fprintf(stderr, "\n");
4853 }
4854
4855 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
4856 nir_const_value* offset = nir_src_as_const_value(instr->src[offset_idx]);
4857 if (offset) {
4858 assert(offset->u32 == 0);
4859 } else {
4860 /* the lower 15bit of the prim_mask contain the offset into LDS
4861 * while the upper bits contain the number of prims */
4862 Temp offset_src = get_ssa_temp(ctx, instr->src[offset_idx].ssa);
4863 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
4864 Builder bld(ctx->program, ctx->block);
4865 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
4866 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
4867 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
4868 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
4869 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
4870 }
4871
4872 unsigned idx = nir_intrinsic_base(instr);
4873 unsigned component = nir_intrinsic_component(instr);
4874 unsigned vertex_id = 2; /* P0 */
4875
4876 if (instr->intrinsic == nir_intrinsic_load_input_vertex) {
4877 nir_const_value* src0 = nir_src_as_const_value(instr->src[0]);
4878 switch (src0->u32) {
4879 case 0:
4880 vertex_id = 2; /* P0 */
4881 break;
4882 case 1:
4883 vertex_id = 0; /* P10 */
4884 break;
4885 case 2:
4886 vertex_id = 1; /* P20 */
4887 break;
4888 default:
4889 unreachable("invalid vertex index");
4890 }
4891 }
4892
4893 if (dst.size() == 1) {
4894 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(dst), Operand(vertex_id), bld.m0(prim_mask), idx, component);
4895 } else {
4896 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
4897 for (unsigned i = 0; i < dst.size(); i++)
4898 vec->operands[i] = bld.vintrp(aco_opcode::v_interp_mov_f32, bld.def(v1), Operand(vertex_id), bld.m0(prim_mask), idx, component + i);
4899 vec->definitions[0] = Definition(dst);
4900 bld.insert(std::move(vec));
4901 }
4902
4903 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_EVAL) {
4904 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
4905 Temp soffset = get_arg(ctx, ctx->args->oc_lds);
4906 std::pair<Temp, unsigned> offs = get_tcs_per_patch_output_vmem_offset(ctx, instr);
4907 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8u;
4908
4909 load_vmem_mubuf(ctx, dst, ring, offs.first, soffset, offs.second, elem_size_bytes, instr->dest.ssa.num_components);
4910 } else {
4911 unreachable("Shader stage not implemented");
4912 }
4913 }
4914
4915 std::pair<Temp, unsigned> get_gs_per_vertex_input_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned base_stride = 1u)
4916 {
4917 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
4918
4919 Builder bld(ctx->program, ctx->block);
4920 nir_src *vertex_src = nir_get_io_vertex_index_src(instr);
4921 Temp vertex_offset;
4922
4923 if (!nir_src_is_const(*vertex_src)) {
4924 /* better code could be created, but this case probably doesn't happen
4925 * much in practice */
4926 Temp indirect_vertex = as_vgpr(ctx, get_ssa_temp(ctx, vertex_src->ssa));
4927 for (unsigned i = 0; i < ctx->shader->info.gs.vertices_in; i++) {
4928 Temp elem;
4929
4930 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
4931 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i / 2u * 2u]);
4932 if (i % 2u)
4933 elem = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), elem);
4934 } else {
4935 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i]);
4936 }
4937
4938 if (vertex_offset.id()) {
4939 Temp cond = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)),
4940 Operand(i), indirect_vertex);
4941 vertex_offset = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), vertex_offset, elem, cond);
4942 } else {
4943 vertex_offset = elem;
4944 }
4945 }
4946
4947 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs)
4948 vertex_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu), vertex_offset);
4949 } else {
4950 unsigned vertex = nir_src_as_uint(*vertex_src);
4951 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs)
4952 vertex_offset = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
4953 get_arg(ctx, ctx->args->gs_vtx_offset[vertex / 2u * 2u]),
4954 Operand((vertex % 2u) * 16u), Operand(16u));
4955 else
4956 vertex_offset = get_arg(ctx, ctx->args->gs_vtx_offset[vertex]);
4957 }
4958
4959 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, base_stride);
4960 offs = offset_add(ctx, offs, std::make_pair(vertex_offset, 0u));
4961 return offset_mul(ctx, offs, 4u);
4962 }
4963
4964 void visit_load_gs_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4965 {
4966 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
4967
4968 Builder bld(ctx->program, ctx->block);
4969 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4970 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
4971
4972 if (ctx->stage == geometry_gs) {
4973 std::pair<Temp, unsigned> offs = get_gs_per_vertex_input_offset(ctx, instr, ctx->program->wave_size);
4974 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_GS * 16u));
4975 load_vmem_mubuf(ctx, dst, ring, offs.first, Temp(), offs.second, elem_size_bytes, instr->dest.ssa.num_components, 4u * ctx->program->wave_size, false, true);
4976 } else if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
4977 std::pair<Temp, unsigned> offs = get_gs_per_vertex_input_offset(ctx, instr);
4978 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
4979 load_lds(ctx, elem_size_bytes, dst, offs.first, offs.second, lds_align);
4980 } else {
4981 unreachable("Unsupported GS stage.");
4982 }
4983 }
4984
4985 void visit_load_tcs_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4986 {
4987 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4988
4989 Builder bld(ctx->program, ctx->block);
4990 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4991
4992 if (load_input_from_temps(ctx, instr, dst))
4993 return;
4994
4995 std::pair<Temp, unsigned> offs = get_tcs_per_vertex_input_lds_offset(ctx, instr);
4996 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
4997 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
4998
4999 load_lds(ctx, elem_size_bytes, dst, offs.first, offs.second, lds_align);
5000 }
5001
5002 void visit_load_tes_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
5003 {
5004 assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
5005
5006 Builder bld(ctx->program, ctx->block);
5007
5008 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
5009 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
5010 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5011
5012 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
5013 std::pair<Temp, unsigned> offs = get_tcs_per_vertex_output_vmem_offset(ctx, instr);
5014
5015 load_vmem_mubuf(ctx, dst, ring, offs.first, oc_lds, offs.second, elem_size_bytes, instr->dest.ssa.num_components, 0u, true, true);
5016 }
5017
5018 void visit_load_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
5019 {
5020 switch (ctx->shader->info.stage) {
5021 case MESA_SHADER_GEOMETRY:
5022 visit_load_gs_per_vertex_input(ctx, instr);
5023 break;
5024 case MESA_SHADER_TESS_CTRL:
5025 visit_load_tcs_per_vertex_input(ctx, instr);
5026 break;
5027 case MESA_SHADER_TESS_EVAL:
5028 visit_load_tes_per_vertex_input(ctx, instr);
5029 break;
5030 default:
5031 unreachable("Unimplemented shader stage");
5032 }
5033 }
5034
5035 void visit_load_per_vertex_output(isel_context *ctx, nir_intrinsic_instr *instr)
5036 {
5037 visit_load_tcs_output(ctx, instr, true);
5038 }
5039
5040 void visit_store_per_vertex_output(isel_context *ctx, nir_intrinsic_instr *instr)
5041 {
5042 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
5043 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
5044
5045 visit_store_tcs_output(ctx, instr, true);
5046 }
5047
5048 void visit_load_tess_coord(isel_context *ctx, nir_intrinsic_instr *instr)
5049 {
5050 assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
5051
5052 Builder bld(ctx->program, ctx->block);
5053 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5054
5055 Operand tes_u(get_arg(ctx, ctx->args->tes_u));
5056 Operand tes_v(get_arg(ctx, ctx->args->tes_v));
5057 Operand tes_w(0u);
5058
5059 if (ctx->shader->info.tess.primitive_mode == GL_TRIANGLES) {
5060 Temp tmp = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), tes_u, tes_v);
5061 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0x3f800000u /* 1.0f */), tmp);
5062 tes_w = Operand(tmp);
5063 }
5064
5065 Temp tess_coord = bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tes_u, tes_v, tes_w);
5066 emit_split_vector(ctx, tess_coord, 3);
5067 }
5068
5069 Temp load_desc_ptr(isel_context *ctx, unsigned desc_set)
5070 {
5071 if (ctx->program->info->need_indirect_descriptor_sets) {
5072 Builder bld(ctx->program, ctx->block);
5073 Temp ptr64 = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->descriptor_sets[0]));
5074 Operand off = bld.copy(bld.def(s1), Operand(desc_set << 2));
5075 return bld.smem(aco_opcode::s_load_dword, bld.def(s1), ptr64, off);//, false, false, false);
5076 }
5077
5078 return get_arg(ctx, ctx->args->descriptor_sets[desc_set]);
5079 }
5080
5081
5082 void visit_load_resource(isel_context *ctx, nir_intrinsic_instr *instr)
5083 {
5084 Builder bld(ctx->program, ctx->block);
5085 Temp index = get_ssa_temp(ctx, instr->src[0].ssa);
5086 if (!nir_dest_is_divergent(instr->dest))
5087 index = bld.as_uniform(index);
5088 unsigned desc_set = nir_intrinsic_desc_set(instr);
5089 unsigned binding = nir_intrinsic_binding(instr);
5090
5091 Temp desc_ptr;
5092 radv_pipeline_layout *pipeline_layout = ctx->options->layout;
5093 radv_descriptor_set_layout *layout = pipeline_layout->set[desc_set].layout;
5094 unsigned offset = layout->binding[binding].offset;
5095 unsigned stride;
5096 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
5097 layout->binding[binding].type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
5098 unsigned idx = pipeline_layout->set[desc_set].dynamic_offset_start + layout->binding[binding].dynamic_offset_offset;
5099 desc_ptr = get_arg(ctx, ctx->args->ac.push_constants);
5100 offset = pipeline_layout->push_constant_size + 16 * idx;
5101 stride = 16;
5102 } else {
5103 desc_ptr = load_desc_ptr(ctx, desc_set);
5104 stride = layout->binding[binding].size;
5105 }
5106
5107 nir_const_value* nir_const_index = nir_src_as_const_value(instr->src[0]);
5108 unsigned const_index = nir_const_index ? nir_const_index->u32 : 0;
5109 if (stride != 1) {
5110 if (nir_const_index) {
5111 const_index = const_index * stride;
5112 } else if (index.type() == RegType::vgpr) {
5113 bool index24bit = layout->binding[binding].array_size <= 0x1000000;
5114 index = bld.v_mul_imm(bld.def(v1), index, stride, index24bit);
5115 } else {
5116 index = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), Operand(index));
5117 }
5118 }
5119 if (offset) {
5120 if (nir_const_index) {
5121 const_index = const_index + offset;
5122 } else if (index.type() == RegType::vgpr) {
5123 index = bld.vadd32(bld.def(v1), Operand(offset), index);
5124 } else {
5125 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), Operand(index));
5126 }
5127 }
5128
5129 if (nir_const_index && const_index == 0) {
5130 index = desc_ptr;
5131 } else if (index.type() == RegType::vgpr) {
5132 index = bld.vadd32(bld.def(v1),
5133 nir_const_index ? Operand(const_index) : Operand(index),
5134 Operand(desc_ptr));
5135 } else {
5136 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
5137 nir_const_index ? Operand(const_index) : Operand(index),
5138 Operand(desc_ptr));
5139 }
5140
5141 bld.copy(Definition(get_ssa_temp(ctx, &instr->dest.ssa)), index);
5142 }
5143
5144 void load_buffer(isel_context *ctx, unsigned num_components, unsigned component_size,
5145 Temp dst, Temp rsrc, Temp offset, unsigned align_mul, unsigned align_offset,
5146 bool glc=false, bool readonly=true, bool allow_smem=true)
5147 {
5148 Builder bld(ctx->program, ctx->block);
5149
5150 bool use_smem = dst.type() != RegType::vgpr && (!glc || ctx->options->chip_class >= GFX8) && allow_smem;
5151 if (use_smem)
5152 offset = bld.as_uniform(offset);
5153
5154 LoadEmitInfo info = {Operand(offset), dst, num_components, component_size, rsrc};
5155 info.glc = glc;
5156 info.barrier = readonly ? barrier_none : barrier_buffer;
5157 info.can_reorder = readonly;
5158 info.align_mul = align_mul;
5159 info.align_offset = align_offset;
5160 if (use_smem)
5161 emit_smem_load(ctx, bld, &info);
5162 else
5163 emit_mubuf_load(ctx, bld, &info);
5164 }
5165
5166 void visit_load_ubo(isel_context *ctx, nir_intrinsic_instr *instr)
5167 {
5168 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5169 Temp rsrc = get_ssa_temp(ctx, instr->src[0].ssa);
5170
5171 Builder bld(ctx->program, ctx->block);
5172
5173 nir_intrinsic_instr* idx_instr = nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
5174 unsigned desc_set = nir_intrinsic_desc_set(idx_instr);
5175 unsigned binding = nir_intrinsic_binding(idx_instr);
5176 radv_descriptor_set_layout *layout = ctx->options->layout->set[desc_set].layout;
5177
5178 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
5179 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
5180 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
5181 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
5182 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
5183 if (ctx->options->chip_class >= GFX10) {
5184 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
5185 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
5186 S_008F0C_RESOURCE_LEVEL(1);
5187 } else {
5188 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5189 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
5190 }
5191 Temp upper_dwords = bld.pseudo(aco_opcode::p_create_vector, bld.def(s3),
5192 Operand(S_008F04_BASE_ADDRESS_HI(ctx->options->address32_hi)),
5193 Operand(0xFFFFFFFFu),
5194 Operand(desc_type));
5195 rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
5196 rsrc, upper_dwords);
5197 } else {
5198 rsrc = convert_pointer_to_64_bit(ctx, rsrc);
5199 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
5200 }
5201 unsigned size = instr->dest.ssa.bit_size / 8;
5202 load_buffer(ctx, instr->num_components, size, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa),
5203 nir_intrinsic_align_mul(instr), nir_intrinsic_align_offset(instr));
5204 }
5205
5206 void visit_load_push_constant(isel_context *ctx, nir_intrinsic_instr *instr)
5207 {
5208 Builder bld(ctx->program, ctx->block);
5209 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5210 unsigned offset = nir_intrinsic_base(instr);
5211 unsigned count = instr->dest.ssa.num_components;
5212 nir_const_value *index_cv = nir_src_as_const_value(instr->src[0]);
5213
5214 if (index_cv && instr->dest.ssa.bit_size == 32) {
5215 unsigned start = (offset + index_cv->u32) / 4u;
5216 start -= ctx->args->ac.base_inline_push_consts;
5217 if (start + count <= ctx->args->ac.num_inline_push_consts) {
5218 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
5219 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
5220 for (unsigned i = 0; i < count; ++i) {
5221 elems[i] = get_arg(ctx, ctx->args->ac.inline_push_consts[start + i]);
5222 vec->operands[i] = Operand{elems[i]};
5223 }
5224 vec->definitions[0] = Definition(dst);
5225 ctx->block->instructions.emplace_back(std::move(vec));
5226 ctx->allocated_vec.emplace(dst.id(), elems);
5227 return;
5228 }
5229 }
5230
5231 Temp index = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa));
5232 if (offset != 0) // TODO check if index != 0 as well
5233 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), index);
5234 Temp ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->ac.push_constants));
5235 Temp vec = dst;
5236 bool trim = false;
5237 bool aligned = true;
5238
5239 if (instr->dest.ssa.bit_size == 8) {
5240 aligned = index_cv && (offset + index_cv->u32) % 4 == 0;
5241 bool fits_in_dword = count == 1 || (index_cv && ((offset + index_cv->u32) % 4 + count) <= 4);
5242 if (!aligned)
5243 vec = fits_in_dword ? bld.tmp(s1) : bld.tmp(s2);
5244 } else if (instr->dest.ssa.bit_size == 16) {
5245 aligned = index_cv && (offset + index_cv->u32) % 4 == 0;
5246 if (!aligned)
5247 vec = count == 4 ? bld.tmp(s4) : count > 1 ? bld.tmp(s2) : bld.tmp(s1);
5248 }
5249
5250 aco_opcode op;
5251
5252 switch (vec.size()) {
5253 case 1:
5254 op = aco_opcode::s_load_dword;
5255 break;
5256 case 2:
5257 op = aco_opcode::s_load_dwordx2;
5258 break;
5259 case 3:
5260 vec = bld.tmp(s4);
5261 trim = true;
5262 case 4:
5263 op = aco_opcode::s_load_dwordx4;
5264 break;
5265 case 6:
5266 vec = bld.tmp(s8);
5267 trim = true;
5268 case 8:
5269 op = aco_opcode::s_load_dwordx8;
5270 break;
5271 default:
5272 unreachable("unimplemented or forbidden load_push_constant.");
5273 }
5274
5275 bld.smem(op, Definition(vec), ptr, index);
5276
5277 if (!aligned) {
5278 Operand byte_offset = index_cv ? Operand((offset + index_cv->u32) % 4) : Operand(index);
5279 byte_align_scalar(ctx, vec, byte_offset, dst);
5280 return;
5281 }
5282
5283 if (trim) {
5284 emit_split_vector(ctx, vec, 4);
5285 RegClass rc = dst.size() == 3 ? s1 : s2;
5286 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5287 emit_extract_vector(ctx, vec, 0, rc),
5288 emit_extract_vector(ctx, vec, 1, rc),
5289 emit_extract_vector(ctx, vec, 2, rc));
5290
5291 }
5292 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
5293 }
5294
5295 void visit_load_constant(isel_context *ctx, nir_intrinsic_instr *instr)
5296 {
5297 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5298
5299 Builder bld(ctx->program, ctx->block);
5300
5301 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
5302 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
5303 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
5304 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
5305 if (ctx->options->chip_class >= GFX10) {
5306 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
5307 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
5308 S_008F0C_RESOURCE_LEVEL(1);
5309 } else {
5310 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5311 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
5312 }
5313
5314 unsigned base = nir_intrinsic_base(instr);
5315 unsigned range = nir_intrinsic_range(instr);
5316
5317 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
5318 if (base && offset.type() == RegType::sgpr)
5319 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), offset, Operand(base));
5320 else if (base && offset.type() == RegType::vgpr)
5321 offset = bld.vadd32(bld.def(v1), Operand(base), offset);
5322
5323 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
5324 bld.sop1(aco_opcode::p_constaddr, bld.def(s2), bld.def(s1, scc), Operand(ctx->constant_data_offset)),
5325 Operand(MIN2(base + range, ctx->shader->constant_data_size)),
5326 Operand(desc_type));
5327 unsigned size = instr->dest.ssa.bit_size / 8;
5328 // TODO: get alignment information for subdword constants
5329 load_buffer(ctx, instr->num_components, size, dst, rsrc, offset, size, 0);
5330 }
5331
5332 void visit_discard_if(isel_context *ctx, nir_intrinsic_instr *instr)
5333 {
5334 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
5335 ctx->cf_info.exec_potentially_empty_discard = true;
5336
5337 ctx->program->needs_exact = true;
5338
5339 // TODO: optimize uniform conditions
5340 Builder bld(ctx->program, ctx->block);
5341 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
5342 assert(src.regClass() == bld.lm);
5343 src = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
5344 bld.pseudo(aco_opcode::p_discard_if, src);
5345 ctx->block->kind |= block_kind_uses_discard_if;
5346 return;
5347 }
5348
5349 void visit_discard(isel_context* ctx, nir_intrinsic_instr *instr)
5350 {
5351 Builder bld(ctx->program, ctx->block);
5352
5353 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
5354 ctx->cf_info.exec_potentially_empty_discard = true;
5355
5356 bool divergent = ctx->cf_info.parent_if.is_divergent ||
5357 ctx->cf_info.parent_loop.has_divergent_continue;
5358
5359 if (ctx->block->loop_nest_depth &&
5360 ((nir_instr_is_last(&instr->instr) && !divergent) || divergent)) {
5361 /* we handle discards the same way as jump instructions */
5362 append_logical_end(ctx->block);
5363
5364 /* in loops, discard behaves like break */
5365 Block *linear_target = ctx->cf_info.parent_loop.exit;
5366 ctx->block->kind |= block_kind_discard;
5367
5368 if (!divergent) {
5369 /* uniform discard - loop ends here */
5370 assert(nir_instr_is_last(&instr->instr));
5371 ctx->block->kind |= block_kind_uniform;
5372 ctx->cf_info.has_branch = true;
5373 bld.branch(aco_opcode::p_branch);
5374 add_linear_edge(ctx->block->index, linear_target);
5375 return;
5376 }
5377
5378 /* we add a break right behind the discard() instructions */
5379 ctx->block->kind |= block_kind_break;
5380 unsigned idx = ctx->block->index;
5381
5382 ctx->cf_info.parent_loop.has_divergent_branch = true;
5383 ctx->cf_info.nir_to_aco[instr->instr.block->index] = idx;
5384
5385 /* remove critical edges from linear CFG */
5386 bld.branch(aco_opcode::p_branch);
5387 Block* break_block = ctx->program->create_and_insert_block();
5388 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
5389 break_block->kind |= block_kind_uniform;
5390 add_linear_edge(idx, break_block);
5391 add_linear_edge(break_block->index, linear_target);
5392 bld.reset(break_block);
5393 bld.branch(aco_opcode::p_branch);
5394
5395 Block* continue_block = ctx->program->create_and_insert_block();
5396 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
5397 add_linear_edge(idx, continue_block);
5398 append_logical_start(continue_block);
5399 ctx->block = continue_block;
5400
5401 return;
5402 }
5403
5404 /* it can currently happen that NIR doesn't remove the unreachable code */
5405 if (!nir_instr_is_last(&instr->instr)) {
5406 ctx->program->needs_exact = true;
5407 /* save exec somewhere temporarily so that it doesn't get
5408 * overwritten before the discard from outer exec masks */
5409 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), Operand(0xFFFFFFFF), Operand(exec, bld.lm));
5410 bld.pseudo(aco_opcode::p_discard_if, cond);
5411 ctx->block->kind |= block_kind_uses_discard_if;
5412 return;
5413 }
5414
5415 /* This condition is incorrect for uniformly branched discards in a loop
5416 * predicated by a divergent condition, but the above code catches that case
5417 * and the discard would end up turning into a discard_if.
5418 * For example:
5419 * if (divergent) {
5420 * while (...) {
5421 * if (uniform) {
5422 * discard;
5423 * }
5424 * }
5425 * }
5426 */
5427 if (!ctx->cf_info.parent_if.is_divergent) {
5428 /* program just ends here */
5429 ctx->block->kind |= block_kind_uniform;
5430 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
5431 0 /* enabled mask */, 9 /* dest */,
5432 false /* compressed */, true/* done */, true /* valid mask */);
5433 bld.sopp(aco_opcode::s_endpgm);
5434 // TODO: it will potentially be followed by a branch which is dead code to sanitize NIR phis
5435 } else {
5436 ctx->block->kind |= block_kind_discard;
5437 /* branch and linear edge is added by visit_if() */
5438 }
5439 }
5440
5441 enum aco_descriptor_type {
5442 ACO_DESC_IMAGE,
5443 ACO_DESC_FMASK,
5444 ACO_DESC_SAMPLER,
5445 ACO_DESC_BUFFER,
5446 ACO_DESC_PLANE_0,
5447 ACO_DESC_PLANE_1,
5448 ACO_DESC_PLANE_2,
5449 };
5450
5451 static bool
5452 should_declare_array(isel_context *ctx, enum glsl_sampler_dim sampler_dim, bool is_array) {
5453 if (sampler_dim == GLSL_SAMPLER_DIM_BUF)
5454 return false;
5455 ac_image_dim dim = ac_get_sampler_dim(ctx->options->chip_class, sampler_dim, is_array);
5456 return dim == ac_image_cube ||
5457 dim == ac_image_1darray ||
5458 dim == ac_image_2darray ||
5459 dim == ac_image_2darraymsaa;
5460 }
5461
5462 Temp get_sampler_desc(isel_context *ctx, nir_deref_instr *deref_instr,
5463 enum aco_descriptor_type desc_type,
5464 const nir_tex_instr *tex_instr, bool image, bool write)
5465 {
5466 /* FIXME: we should lower the deref with some new nir_intrinsic_load_desc
5467 std::unordered_map<uint64_t, Temp>::iterator it = ctx->tex_desc.find((uint64_t) desc_type << 32 | deref_instr->dest.ssa.index);
5468 if (it != ctx->tex_desc.end())
5469 return it->second;
5470 */
5471 Temp index = Temp();
5472 bool index_set = false;
5473 unsigned constant_index = 0;
5474 unsigned descriptor_set;
5475 unsigned base_index;
5476 Builder bld(ctx->program, ctx->block);
5477
5478 if (!deref_instr) {
5479 assert(tex_instr && !image);
5480 descriptor_set = 0;
5481 base_index = tex_instr->sampler_index;
5482 } else {
5483 while(deref_instr->deref_type != nir_deref_type_var) {
5484 unsigned array_size = glsl_get_aoa_size(deref_instr->type);
5485 if (!array_size)
5486 array_size = 1;
5487
5488 assert(deref_instr->deref_type == nir_deref_type_array);
5489 nir_const_value *const_value = nir_src_as_const_value(deref_instr->arr.index);
5490 if (const_value) {
5491 constant_index += array_size * const_value->u32;
5492 } else {
5493 Temp indirect = get_ssa_temp(ctx, deref_instr->arr.index.ssa);
5494 if (indirect.type() == RegType::vgpr)
5495 indirect = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), indirect);
5496
5497 if (array_size != 1)
5498 indirect = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(array_size), indirect);
5499
5500 if (!index_set) {
5501 index = indirect;
5502 index_set = true;
5503 } else {
5504 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), index, indirect);
5505 }
5506 }
5507
5508 deref_instr = nir_src_as_deref(deref_instr->parent);
5509 }
5510 descriptor_set = deref_instr->var->data.descriptor_set;
5511 base_index = deref_instr->var->data.binding;
5512 }
5513
5514 Temp list = load_desc_ptr(ctx, descriptor_set);
5515 list = convert_pointer_to_64_bit(ctx, list);
5516
5517 struct radv_descriptor_set_layout *layout = ctx->options->layout->set[descriptor_set].layout;
5518 struct radv_descriptor_set_binding_layout *binding = layout->binding + base_index;
5519 unsigned offset = binding->offset;
5520 unsigned stride = binding->size;
5521 aco_opcode opcode;
5522 RegClass type;
5523
5524 assert(base_index < layout->binding_count);
5525
5526 switch (desc_type) {
5527 case ACO_DESC_IMAGE:
5528 type = s8;
5529 opcode = aco_opcode::s_load_dwordx8;
5530 break;
5531 case ACO_DESC_FMASK:
5532 type = s8;
5533 opcode = aco_opcode::s_load_dwordx8;
5534 offset += 32;
5535 break;
5536 case ACO_DESC_SAMPLER:
5537 type = s4;
5538 opcode = aco_opcode::s_load_dwordx4;
5539 if (binding->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
5540 offset += radv_combined_image_descriptor_sampler_offset(binding);
5541 break;
5542 case ACO_DESC_BUFFER:
5543 type = s4;
5544 opcode = aco_opcode::s_load_dwordx4;
5545 break;
5546 case ACO_DESC_PLANE_0:
5547 case ACO_DESC_PLANE_1:
5548 type = s8;
5549 opcode = aco_opcode::s_load_dwordx8;
5550 offset += 32 * (desc_type - ACO_DESC_PLANE_0);
5551 break;
5552 case ACO_DESC_PLANE_2:
5553 type = s4;
5554 opcode = aco_opcode::s_load_dwordx4;
5555 offset += 64;
5556 break;
5557 default:
5558 unreachable("invalid desc_type\n");
5559 }
5560
5561 offset += constant_index * stride;
5562
5563 if (desc_type == ACO_DESC_SAMPLER && binding->immutable_samplers_offset &&
5564 (!index_set || binding->immutable_samplers_equal)) {
5565 if (binding->immutable_samplers_equal)
5566 constant_index = 0;
5567
5568 const uint32_t *samplers = radv_immutable_samplers(layout, binding);
5569 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
5570 Operand(samplers[constant_index * 4 + 0]),
5571 Operand(samplers[constant_index * 4 + 1]),
5572 Operand(samplers[constant_index * 4 + 2]),
5573 Operand(samplers[constant_index * 4 + 3]));
5574 }
5575
5576 Operand off;
5577 if (!index_set) {
5578 off = bld.copy(bld.def(s1), Operand(offset));
5579 } else {
5580 off = Operand((Temp)bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset),
5581 bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), index)));
5582 }
5583
5584 Temp res = bld.smem(opcode, bld.def(type), list, off);
5585
5586 if (desc_type == ACO_DESC_PLANE_2) {
5587 Temp components[8];
5588 for (unsigned i = 0; i < 8; i++)
5589 components[i] = bld.tmp(s1);
5590 bld.pseudo(aco_opcode::p_split_vector,
5591 Definition(components[0]),
5592 Definition(components[1]),
5593 Definition(components[2]),
5594 Definition(components[3]),
5595 res);
5596
5597 Temp desc2 = get_sampler_desc(ctx, deref_instr, ACO_DESC_PLANE_1, tex_instr, image, write);
5598 bld.pseudo(aco_opcode::p_split_vector,
5599 bld.def(s1), bld.def(s1), bld.def(s1), bld.def(s1),
5600 Definition(components[4]),
5601 Definition(components[5]),
5602 Definition(components[6]),
5603 Definition(components[7]),
5604 desc2);
5605
5606 res = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
5607 components[0], components[1], components[2], components[3],
5608 components[4], components[5], components[6], components[7]);
5609 }
5610
5611 return res;
5612 }
5613
5614 static int image_type_to_components_count(enum glsl_sampler_dim dim, bool array)
5615 {
5616 switch (dim) {
5617 case GLSL_SAMPLER_DIM_BUF:
5618 return 1;
5619 case GLSL_SAMPLER_DIM_1D:
5620 return array ? 2 : 1;
5621 case GLSL_SAMPLER_DIM_2D:
5622 return array ? 3 : 2;
5623 case GLSL_SAMPLER_DIM_MS:
5624 return array ? 4 : 3;
5625 case GLSL_SAMPLER_DIM_3D:
5626 case GLSL_SAMPLER_DIM_CUBE:
5627 return 3;
5628 case GLSL_SAMPLER_DIM_RECT:
5629 case GLSL_SAMPLER_DIM_SUBPASS:
5630 return 2;
5631 case GLSL_SAMPLER_DIM_SUBPASS_MS:
5632 return 3;
5633 default:
5634 break;
5635 }
5636 return 0;
5637 }
5638
5639
5640 /* Adjust the sample index according to FMASK.
5641 *
5642 * For uncompressed MSAA surfaces, FMASK should return 0x76543210,
5643 * which is the identity mapping. Each nibble says which physical sample
5644 * should be fetched to get that sample.
5645 *
5646 * For example, 0x11111100 means there are only 2 samples stored and
5647 * the second sample covers 3/4 of the pixel. When reading samples 0
5648 * and 1, return physical sample 0 (determined by the first two 0s
5649 * in FMASK), otherwise return physical sample 1.
5650 *
5651 * The sample index should be adjusted as follows:
5652 * sample_index = (fmask >> (sample_index * 4)) & 0xF;
5653 */
5654 static Temp adjust_sample_index_using_fmask(isel_context *ctx, bool da, std::vector<Temp>& coords, Operand sample_index, Temp fmask_desc_ptr)
5655 {
5656 Builder bld(ctx->program, ctx->block);
5657 Temp fmask = bld.tmp(v1);
5658 unsigned dim = ctx->options->chip_class >= GFX10
5659 ? ac_get_sampler_dim(ctx->options->chip_class, GLSL_SAMPLER_DIM_2D, da)
5660 : 0;
5661
5662 Temp coord = da ? bld.pseudo(aco_opcode::p_create_vector, bld.def(v3), coords[0], coords[1], coords[2]) :
5663 bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), coords[0], coords[1]);
5664 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(aco_opcode::image_load, Format::MIMG, 3, 1)};
5665 load->operands[0] = Operand(fmask_desc_ptr);
5666 load->operands[1] = Operand(s4); /* no sampler */
5667 load->operands[2] = Operand(coord);
5668 load->definitions[0] = Definition(fmask);
5669 load->glc = false;
5670 load->dlc = false;
5671 load->dmask = 0x1;
5672 load->unrm = true;
5673 load->da = da;
5674 load->dim = dim;
5675 load->can_reorder = true; /* fmask images shouldn't be modified */
5676 ctx->block->instructions.emplace_back(std::move(load));
5677
5678 Operand sample_index4;
5679 if (sample_index.isConstant()) {
5680 if (sample_index.constantValue() < 16) {
5681 sample_index4 = Operand(sample_index.constantValue() << 2);
5682 } else {
5683 sample_index4 = Operand(0u);
5684 }
5685 } else if (sample_index.regClass() == s1) {
5686 sample_index4 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), sample_index, Operand(2u));
5687 } else {
5688 assert(sample_index.regClass() == v1);
5689 sample_index4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), sample_index);
5690 }
5691
5692 Temp final_sample;
5693 if (sample_index4.isConstant() && sample_index4.constantValue() == 0)
5694 final_sample = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(15u), fmask);
5695 else if (sample_index4.isConstant() && sample_index4.constantValue() == 28)
5696 final_sample = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(28u), fmask);
5697 else
5698 final_sample = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), fmask, sample_index4, Operand(4u));
5699
5700 /* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK
5701 * resource descriptor is 0 (invalid),
5702 */
5703 Temp compare = bld.tmp(bld.lm);
5704 bld.vopc_e64(aco_opcode::v_cmp_lg_u32, Definition(compare),
5705 Operand(0u), emit_extract_vector(ctx, fmask_desc_ptr, 1, s1)).def(0).setHint(vcc);
5706
5707 Temp sample_index_v = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), sample_index);
5708
5709 /* Replace the MSAA sample index. */
5710 return bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), sample_index_v, final_sample, compare);
5711 }
5712
5713 static Temp get_image_coords(isel_context *ctx, const nir_intrinsic_instr *instr, const struct glsl_type *type)
5714 {
5715
5716 Temp src0 = get_ssa_temp(ctx, instr->src[1].ssa);
5717 enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5718 bool is_array = glsl_sampler_type_is_array(type);
5719 ASSERTED bool add_frag_pos = (dim == GLSL_SAMPLER_DIM_SUBPASS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
5720 assert(!add_frag_pos && "Input attachments should be lowered.");
5721 bool is_ms = (dim == GLSL_SAMPLER_DIM_MS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
5722 bool gfx9_1d = ctx->options->chip_class == GFX9 && dim == GLSL_SAMPLER_DIM_1D;
5723 int count = image_type_to_components_count(dim, is_array);
5724 std::vector<Temp> coords(count);
5725 Builder bld(ctx->program, ctx->block);
5726
5727 if (is_ms) {
5728 count--;
5729 Temp src2 = get_ssa_temp(ctx, instr->src[2].ssa);
5730 /* get sample index */
5731 if (instr->intrinsic == nir_intrinsic_image_deref_load) {
5732 nir_const_value *sample_cv = nir_src_as_const_value(instr->src[2]);
5733 Operand sample_index = sample_cv ? Operand(sample_cv->u32) : Operand(emit_extract_vector(ctx, src2, 0, v1));
5734 std::vector<Temp> fmask_load_address;
5735 for (unsigned i = 0; i < (is_array ? 3 : 2); i++)
5736 fmask_load_address.emplace_back(emit_extract_vector(ctx, src0, i, v1));
5737
5738 Temp fmask_desc_ptr = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_FMASK, nullptr, false, false);
5739 coords[count] = adjust_sample_index_using_fmask(ctx, is_array, fmask_load_address, sample_index, fmask_desc_ptr);
5740 } else {
5741 coords[count] = emit_extract_vector(ctx, src2, 0, v1);
5742 }
5743 }
5744
5745 if (gfx9_1d) {
5746 coords[0] = emit_extract_vector(ctx, src0, 0, v1);
5747 coords.resize(coords.size() + 1);
5748 coords[1] = bld.copy(bld.def(v1), Operand(0u));
5749 if (is_array)
5750 coords[2] = emit_extract_vector(ctx, src0, 1, v1);
5751 } else {
5752 for (int i = 0; i < count; i++)
5753 coords[i] = emit_extract_vector(ctx, src0, i, v1);
5754 }
5755
5756 if (instr->intrinsic == nir_intrinsic_image_deref_load ||
5757 instr->intrinsic == nir_intrinsic_image_deref_store) {
5758 int lod_index = instr->intrinsic == nir_intrinsic_image_deref_load ? 3 : 4;
5759 bool level_zero = nir_src_is_const(instr->src[lod_index]) && nir_src_as_uint(instr->src[lod_index]) == 0;
5760
5761 if (!level_zero)
5762 coords.emplace_back(get_ssa_temp(ctx, instr->src[lod_index].ssa));
5763 }
5764
5765 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
5766 for (unsigned i = 0; i < coords.size(); i++)
5767 vec->operands[i] = Operand(coords[i]);
5768 Temp res = {ctx->program->allocateId(), RegClass(RegType::vgpr, coords.size())};
5769 vec->definitions[0] = Definition(res);
5770 ctx->block->instructions.emplace_back(std::move(vec));
5771 return res;
5772 }
5773
5774
5775 void visit_image_load(isel_context *ctx, nir_intrinsic_instr *instr)
5776 {
5777 Builder bld(ctx->program, ctx->block);
5778 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5779 const struct glsl_type *type = glsl_without_array(var->type);
5780 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5781 bool is_array = glsl_sampler_type_is_array(type);
5782 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5783
5784 if (dim == GLSL_SAMPLER_DIM_BUF) {
5785 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa);
5786 unsigned num_channels = util_last_bit(mask);
5787 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5788 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5789
5790 aco_opcode opcode;
5791 switch (num_channels) {
5792 case 1:
5793 opcode = aco_opcode::buffer_load_format_x;
5794 break;
5795 case 2:
5796 opcode = aco_opcode::buffer_load_format_xy;
5797 break;
5798 case 3:
5799 opcode = aco_opcode::buffer_load_format_xyz;
5800 break;
5801 case 4:
5802 opcode = aco_opcode::buffer_load_format_xyzw;
5803 break;
5804 default:
5805 unreachable(">4 channel buffer image load");
5806 }
5807 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 3, 1)};
5808 load->operands[0] = Operand(rsrc);
5809 load->operands[1] = Operand(vindex);
5810 load->operands[2] = Operand((uint32_t) 0);
5811 Temp tmp;
5812 if (num_channels == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
5813 tmp = dst;
5814 else
5815 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_channels)};
5816 load->definitions[0] = Definition(tmp);
5817 load->idxen = true;
5818 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT);
5819 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
5820 load->barrier = barrier_image;
5821 ctx->block->instructions.emplace_back(std::move(load));
5822
5823 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, (1 << num_channels) - 1);
5824 return;
5825 }
5826
5827 Temp coords = get_image_coords(ctx, instr, type);
5828 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5829
5830 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
5831 unsigned num_components = util_bitcount(dmask);
5832 Temp tmp;
5833 if (num_components == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
5834 tmp = dst;
5835 else
5836 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_components)};
5837
5838 bool level_zero = nir_src_is_const(instr->src[3]) && nir_src_as_uint(instr->src[3]) == 0;
5839 aco_opcode opcode = level_zero ? aco_opcode::image_load : aco_opcode::image_load_mip;
5840
5841 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1)};
5842 load->operands[0] = Operand(resource);
5843 load->operands[1] = Operand(s4); /* no sampler */
5844 load->operands[2] = Operand(coords);
5845 load->definitions[0] = Definition(tmp);
5846 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT) ? 1 : 0;
5847 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
5848 load->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5849 load->dmask = dmask;
5850 load->unrm = true;
5851 load->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5852 load->barrier = barrier_image;
5853 ctx->block->instructions.emplace_back(std::move(load));
5854
5855 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, dmask);
5856 return;
5857 }
5858
5859 void visit_image_store(isel_context *ctx, nir_intrinsic_instr *instr)
5860 {
5861 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5862 const struct glsl_type *type = glsl_without_array(var->type);
5863 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5864 bool is_array = glsl_sampler_type_is_array(type);
5865 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
5866
5867 bool glc = ctx->options->chip_class == GFX6 || var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE) ? 1 : 0;
5868
5869 if (dim == GLSL_SAMPLER_DIM_BUF) {
5870 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5871 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5872 aco_opcode opcode;
5873 switch (data.size()) {
5874 case 1:
5875 opcode = aco_opcode::buffer_store_format_x;
5876 break;
5877 case 2:
5878 opcode = aco_opcode::buffer_store_format_xy;
5879 break;
5880 case 3:
5881 opcode = aco_opcode::buffer_store_format_xyz;
5882 break;
5883 case 4:
5884 opcode = aco_opcode::buffer_store_format_xyzw;
5885 break;
5886 default:
5887 unreachable(">4 channel buffer image store");
5888 }
5889 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
5890 store->operands[0] = Operand(rsrc);
5891 store->operands[1] = Operand(vindex);
5892 store->operands[2] = Operand((uint32_t) 0);
5893 store->operands[3] = Operand(data);
5894 store->idxen = true;
5895 store->glc = glc;
5896 store->dlc = false;
5897 store->disable_wqm = true;
5898 store->barrier = barrier_image;
5899 ctx->program->needs_exact = true;
5900 ctx->block->instructions.emplace_back(std::move(store));
5901 return;
5902 }
5903
5904 assert(data.type() == RegType::vgpr);
5905 Temp coords = get_image_coords(ctx, instr, type);
5906 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5907
5908 bool level_zero = nir_src_is_const(instr->src[4]) && nir_src_as_uint(instr->src[4]) == 0;
5909 aco_opcode opcode = level_zero ? aco_opcode::image_store : aco_opcode::image_store_mip;
5910
5911 aco_ptr<MIMG_instruction> store{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 0)};
5912 store->operands[0] = Operand(resource);
5913 store->operands[1] = Operand(data);
5914 store->operands[2] = Operand(coords);
5915 store->glc = glc;
5916 store->dlc = false;
5917 store->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5918 store->dmask = (1 << data.size()) - 1;
5919 store->unrm = true;
5920 store->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5921 store->disable_wqm = true;
5922 store->barrier = barrier_image;
5923 ctx->program->needs_exact = true;
5924 ctx->block->instructions.emplace_back(std::move(store));
5925 return;
5926 }
5927
5928 void visit_image_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
5929 {
5930 /* return the previous value if dest is ever used */
5931 bool return_previous = false;
5932 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5933 return_previous = true;
5934 break;
5935 }
5936 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5937 return_previous = true;
5938 break;
5939 }
5940
5941 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5942 const struct glsl_type *type = glsl_without_array(var->type);
5943 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5944 bool is_array = glsl_sampler_type_is_array(type);
5945 Builder bld(ctx->program, ctx->block);
5946
5947 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
5948 assert(data.size() == 1 && "64bit ssbo atomics not yet implemented.");
5949
5950 if (instr->intrinsic == nir_intrinsic_image_deref_atomic_comp_swap)
5951 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), get_ssa_temp(ctx, instr->src[4].ssa), data);
5952
5953 aco_opcode buf_op, image_op;
5954 switch (instr->intrinsic) {
5955 case nir_intrinsic_image_deref_atomic_add:
5956 buf_op = aco_opcode::buffer_atomic_add;
5957 image_op = aco_opcode::image_atomic_add;
5958 break;
5959 case nir_intrinsic_image_deref_atomic_umin:
5960 buf_op = aco_opcode::buffer_atomic_umin;
5961 image_op = aco_opcode::image_atomic_umin;
5962 break;
5963 case nir_intrinsic_image_deref_atomic_imin:
5964 buf_op = aco_opcode::buffer_atomic_smin;
5965 image_op = aco_opcode::image_atomic_smin;
5966 break;
5967 case nir_intrinsic_image_deref_atomic_umax:
5968 buf_op = aco_opcode::buffer_atomic_umax;
5969 image_op = aco_opcode::image_atomic_umax;
5970 break;
5971 case nir_intrinsic_image_deref_atomic_imax:
5972 buf_op = aco_opcode::buffer_atomic_smax;
5973 image_op = aco_opcode::image_atomic_smax;
5974 break;
5975 case nir_intrinsic_image_deref_atomic_and:
5976 buf_op = aco_opcode::buffer_atomic_and;
5977 image_op = aco_opcode::image_atomic_and;
5978 break;
5979 case nir_intrinsic_image_deref_atomic_or:
5980 buf_op = aco_opcode::buffer_atomic_or;
5981 image_op = aco_opcode::image_atomic_or;
5982 break;
5983 case nir_intrinsic_image_deref_atomic_xor:
5984 buf_op = aco_opcode::buffer_atomic_xor;
5985 image_op = aco_opcode::image_atomic_xor;
5986 break;
5987 case nir_intrinsic_image_deref_atomic_exchange:
5988 buf_op = aco_opcode::buffer_atomic_swap;
5989 image_op = aco_opcode::image_atomic_swap;
5990 break;
5991 case nir_intrinsic_image_deref_atomic_comp_swap:
5992 buf_op = aco_opcode::buffer_atomic_cmpswap;
5993 image_op = aco_opcode::image_atomic_cmpswap;
5994 break;
5995 default:
5996 unreachable("visit_image_atomic should only be called with nir_intrinsic_image_deref_atomic_* instructions.");
5997 }
5998
5999 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6000
6001 if (dim == GLSL_SAMPLER_DIM_BUF) {
6002 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
6003 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
6004 //assert(ctx->options->chip_class < GFX9 && "GFX9 stride size workaround not yet implemented.");
6005 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(buf_op, Format::MUBUF, 4, return_previous ? 1 : 0)};
6006 mubuf->operands[0] = Operand(resource);
6007 mubuf->operands[1] = Operand(vindex);
6008 mubuf->operands[2] = Operand((uint32_t)0);
6009 mubuf->operands[3] = Operand(data);
6010 if (return_previous)
6011 mubuf->definitions[0] = Definition(dst);
6012 mubuf->offset = 0;
6013 mubuf->idxen = true;
6014 mubuf->glc = return_previous;
6015 mubuf->dlc = false; /* Not needed for atomics */
6016 mubuf->disable_wqm = true;
6017 mubuf->barrier = barrier_image;
6018 ctx->program->needs_exact = true;
6019 ctx->block->instructions.emplace_back(std::move(mubuf));
6020 return;
6021 }
6022
6023 Temp coords = get_image_coords(ctx, instr, type);
6024 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
6025 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(image_op, Format::MIMG, 3, return_previous ? 1 : 0)};
6026 mimg->operands[0] = Operand(resource);
6027 mimg->operands[1] = Operand(data);
6028 mimg->operands[2] = Operand(coords);
6029 if (return_previous)
6030 mimg->definitions[0] = Definition(dst);
6031 mimg->glc = return_previous;
6032 mimg->dlc = false; /* Not needed for atomics */
6033 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
6034 mimg->dmask = (1 << data.size()) - 1;
6035 mimg->unrm = true;
6036 mimg->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
6037 mimg->disable_wqm = true;
6038 mimg->barrier = barrier_image;
6039 ctx->program->needs_exact = true;
6040 ctx->block->instructions.emplace_back(std::move(mimg));
6041 return;
6042 }
6043
6044 void get_buffer_size(isel_context *ctx, Temp desc, Temp dst, bool in_elements)
6045 {
6046 if (in_elements && ctx->options->chip_class == GFX8) {
6047 /* we only have to divide by 1, 2, 4, 8, 12 or 16 */
6048 Builder bld(ctx->program, ctx->block);
6049
6050 Temp size = emit_extract_vector(ctx, desc, 2, s1);
6051
6052 Temp size_div3 = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), bld.copy(bld.def(v1), Operand(0xaaaaaaabu)), size);
6053 size_div3 = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.as_uniform(size_div3), Operand(1u));
6054
6055 Temp stride = emit_extract_vector(ctx, desc, 1, s1);
6056 stride = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), stride, Operand((5u << 16) | 16u));
6057
6058 Temp is12 = bld.sopc(aco_opcode::s_cmp_eq_i32, bld.def(s1, scc), stride, Operand(12u));
6059 size = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), size_div3, size, bld.scc(is12));
6060
6061 Temp shr_dst = dst.type() == RegType::vgpr ? bld.tmp(s1) : dst;
6062 bld.sop2(aco_opcode::s_lshr_b32, Definition(shr_dst), bld.def(s1, scc),
6063 size, bld.sop1(aco_opcode::s_ff1_i32_b32, bld.def(s1), stride));
6064 if (dst.type() == RegType::vgpr)
6065 bld.copy(Definition(dst), shr_dst);
6066
6067 /* TODO: we can probably calculate this faster with v_skip when stride != 12 */
6068 } else {
6069 emit_extract_vector(ctx, desc, 2, dst);
6070 }
6071 }
6072
6073 void visit_image_size(isel_context *ctx, nir_intrinsic_instr *instr)
6074 {
6075 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
6076 const struct glsl_type *type = glsl_without_array(var->type);
6077 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
6078 bool is_array = glsl_sampler_type_is_array(type);
6079 Builder bld(ctx->program, ctx->block);
6080
6081 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF) {
6082 Temp desc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, NULL, true, false);
6083 return get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), true);
6084 }
6085
6086 /* LOD */
6087 Temp lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
6088
6089 /* Resource */
6090 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, NULL, true, false);
6091
6092 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6093
6094 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1)};
6095 mimg->operands[0] = Operand(resource);
6096 mimg->operands[1] = Operand(s4); /* no sampler */
6097 mimg->operands[2] = Operand(lod);
6098 uint8_t& dmask = mimg->dmask;
6099 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
6100 mimg->dmask = (1 << instr->dest.ssa.num_components) - 1;
6101 mimg->da = glsl_sampler_type_is_array(type);
6102 mimg->can_reorder = true;
6103 Definition& def = mimg->definitions[0];
6104 ctx->block->instructions.emplace_back(std::move(mimg));
6105
6106 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE &&
6107 glsl_sampler_type_is_array(type)) {
6108
6109 assert(instr->dest.ssa.num_components == 3);
6110 Temp tmp = {ctx->program->allocateId(), v3};
6111 def = Definition(tmp);
6112 emit_split_vector(ctx, tmp, 3);
6113
6114 /* divide 3rd value by 6 by multiplying with magic number */
6115 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
6116 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp, 2, v1), c);
6117
6118 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6119 emit_extract_vector(ctx, tmp, 0, v1),
6120 emit_extract_vector(ctx, tmp, 1, v1),
6121 by_6);
6122
6123 } else if (ctx->options->chip_class == GFX9 &&
6124 glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_1D &&
6125 glsl_sampler_type_is_array(type)) {
6126 assert(instr->dest.ssa.num_components == 2);
6127 def = Definition(dst);
6128 dmask = 0x5;
6129 } else {
6130 def = Definition(dst);
6131 }
6132
6133 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
6134 }
6135
6136 void visit_load_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
6137 {
6138 Builder bld(ctx->program, ctx->block);
6139 unsigned num_components = instr->num_components;
6140
6141 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6142 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6143 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
6144
6145 unsigned access = nir_intrinsic_access(instr);
6146 bool glc = access & (ACCESS_VOLATILE | ACCESS_COHERENT);
6147 unsigned size = instr->dest.ssa.bit_size / 8;
6148
6149 uint32_t flags = get_all_buffer_resource_flags(ctx, instr->src[0].ssa, access);
6150 /* GLC bypasses VMEM/SMEM caches, so GLC SMEM loads/stores are coherent with GLC VMEM loads/stores
6151 * TODO: this optimization is disabled for now because we still need to ensure correct ordering
6152 */
6153 bool allow_smem = !(flags & (0 && glc ? has_nonglc_vmem_store : has_vmem_store));
6154 allow_smem |= ((access & ACCESS_RESTRICT) && (access & ACCESS_NON_WRITEABLE)) || (access & ACCESS_CAN_REORDER);
6155
6156 load_buffer(ctx, num_components, size, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa),
6157 nir_intrinsic_align_mul(instr), nir_intrinsic_align_offset(instr), glc, false, allow_smem);
6158 }
6159
6160 void visit_store_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
6161 {
6162 Builder bld(ctx->program, ctx->block);
6163 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
6164 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6165 unsigned writemask = widen_mask(nir_intrinsic_write_mask(instr), elem_size_bytes);
6166 Temp offset = get_ssa_temp(ctx, instr->src[2].ssa);
6167
6168 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6169 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
6170
6171 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
6172 uint32_t flags = get_all_buffer_resource_flags(ctx, instr->src[1].ssa, nir_intrinsic_access(instr));
6173 /* GLC bypasses VMEM/SMEM caches, so GLC SMEM loads/stores are coherent with GLC VMEM loads/stores
6174 * TODO: this optimization is disabled for now because we still need to ensure correct ordering
6175 */
6176 bool allow_smem = !(flags & (0 && glc ? has_nonglc_vmem_loadstore : has_vmem_loadstore));
6177
6178 bool smem = !nir_src_is_divergent(instr->src[2]) &&
6179 ctx->options->chip_class >= GFX8 &&
6180 (elem_size_bytes >= 4 || can_subdword_ssbo_store_use_smem(instr)) &&
6181 allow_smem;
6182 if (smem)
6183 offset = bld.as_uniform(offset);
6184 bool smem_nonfs = smem && ctx->stage != fragment_fs;
6185
6186 unsigned write_count = 0;
6187 Temp write_datas[32];
6188 unsigned offsets[32];
6189 split_buffer_store(ctx, instr, smem, smem_nonfs ? RegType::sgpr : (smem ? data.type() : RegType::vgpr),
6190 data, writemask, 16, &write_count, write_datas, offsets);
6191
6192 for (unsigned i = 0; i < write_count; i++) {
6193 aco_opcode op = get_buffer_store_op(smem, write_datas[i].bytes());
6194 if (smem && ctx->stage == fragment_fs)
6195 op = aco_opcode::p_fs_buffer_store_smem;
6196
6197 if (smem) {
6198 aco_ptr<SMEM_instruction> store{create_instruction<SMEM_instruction>(op, Format::SMEM, 3, 0)};
6199 store->operands[0] = Operand(rsrc);
6200 if (offsets[i]) {
6201 Temp off = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
6202 offset, Operand(offsets[i]));
6203 store->operands[1] = Operand(off);
6204 } else {
6205 store->operands[1] = Operand(offset);
6206 }
6207 if (op != aco_opcode::p_fs_buffer_store_smem)
6208 store->operands[1].setFixed(m0);
6209 store->operands[2] = Operand(write_datas[i]);
6210 store->glc = glc;
6211 store->dlc = false;
6212 store->disable_wqm = true;
6213 store->barrier = barrier_buffer;
6214 ctx->block->instructions.emplace_back(std::move(store));
6215 ctx->program->wb_smem_l1_on_end = true;
6216 if (op == aco_opcode::p_fs_buffer_store_smem) {
6217 ctx->block->kind |= block_kind_needs_lowering;
6218 ctx->program->needs_exact = true;
6219 }
6220 } else {
6221 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, 0)};
6222 store->operands[0] = Operand(rsrc);
6223 store->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
6224 store->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
6225 store->operands[3] = Operand(write_datas[i]);
6226 store->offset = offsets[i];
6227 store->offen = (offset.type() == RegType::vgpr);
6228 store->glc = glc;
6229 store->dlc = false;
6230 store->disable_wqm = true;
6231 store->barrier = barrier_buffer;
6232 ctx->program->needs_exact = true;
6233 ctx->block->instructions.emplace_back(std::move(store));
6234 }
6235 }
6236 }
6237
6238 void visit_atomic_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
6239 {
6240 /* return the previous value if dest is ever used */
6241 bool return_previous = false;
6242 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6243 return_previous = true;
6244 break;
6245 }
6246 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6247 return_previous = true;
6248 break;
6249 }
6250
6251 Builder bld(ctx->program, ctx->block);
6252 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[2].ssa));
6253
6254 if (instr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap)
6255 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
6256 get_ssa_temp(ctx, instr->src[3].ssa), data);
6257
6258 Temp offset = get_ssa_temp(ctx, instr->src[1].ssa);
6259 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6260 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
6261
6262 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6263
6264 aco_opcode op32, op64;
6265 switch (instr->intrinsic) {
6266 case nir_intrinsic_ssbo_atomic_add:
6267 op32 = aco_opcode::buffer_atomic_add;
6268 op64 = aco_opcode::buffer_atomic_add_x2;
6269 break;
6270 case nir_intrinsic_ssbo_atomic_imin:
6271 op32 = aco_opcode::buffer_atomic_smin;
6272 op64 = aco_opcode::buffer_atomic_smin_x2;
6273 break;
6274 case nir_intrinsic_ssbo_atomic_umin:
6275 op32 = aco_opcode::buffer_atomic_umin;
6276 op64 = aco_opcode::buffer_atomic_umin_x2;
6277 break;
6278 case nir_intrinsic_ssbo_atomic_imax:
6279 op32 = aco_opcode::buffer_atomic_smax;
6280 op64 = aco_opcode::buffer_atomic_smax_x2;
6281 break;
6282 case nir_intrinsic_ssbo_atomic_umax:
6283 op32 = aco_opcode::buffer_atomic_umax;
6284 op64 = aco_opcode::buffer_atomic_umax_x2;
6285 break;
6286 case nir_intrinsic_ssbo_atomic_and:
6287 op32 = aco_opcode::buffer_atomic_and;
6288 op64 = aco_opcode::buffer_atomic_and_x2;
6289 break;
6290 case nir_intrinsic_ssbo_atomic_or:
6291 op32 = aco_opcode::buffer_atomic_or;
6292 op64 = aco_opcode::buffer_atomic_or_x2;
6293 break;
6294 case nir_intrinsic_ssbo_atomic_xor:
6295 op32 = aco_opcode::buffer_atomic_xor;
6296 op64 = aco_opcode::buffer_atomic_xor_x2;
6297 break;
6298 case nir_intrinsic_ssbo_atomic_exchange:
6299 op32 = aco_opcode::buffer_atomic_swap;
6300 op64 = aco_opcode::buffer_atomic_swap_x2;
6301 break;
6302 case nir_intrinsic_ssbo_atomic_comp_swap:
6303 op32 = aco_opcode::buffer_atomic_cmpswap;
6304 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
6305 break;
6306 default:
6307 unreachable("visit_atomic_ssbo should only be called with nir_intrinsic_ssbo_atomic_* instructions.");
6308 }
6309 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
6310 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
6311 mubuf->operands[0] = Operand(rsrc);
6312 mubuf->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
6313 mubuf->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
6314 mubuf->operands[3] = Operand(data);
6315 if (return_previous)
6316 mubuf->definitions[0] = Definition(dst);
6317 mubuf->offset = 0;
6318 mubuf->offen = (offset.type() == RegType::vgpr);
6319 mubuf->glc = return_previous;
6320 mubuf->dlc = false; /* Not needed for atomics */
6321 mubuf->disable_wqm = true;
6322 mubuf->barrier = barrier_buffer;
6323 ctx->program->needs_exact = true;
6324 ctx->block->instructions.emplace_back(std::move(mubuf));
6325 }
6326
6327 void visit_get_buffer_size(isel_context *ctx, nir_intrinsic_instr *instr) {
6328
6329 Temp index = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6330 Builder bld(ctx->program, ctx->block);
6331 Temp desc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), index, Operand(0u));
6332 get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), false);
6333 }
6334
6335 void visit_load_global(isel_context *ctx, nir_intrinsic_instr *instr)
6336 {
6337 Builder bld(ctx->program, ctx->block);
6338 unsigned num_components = instr->num_components;
6339 unsigned component_size = instr->dest.ssa.bit_size / 8;
6340
6341 LoadEmitInfo info = {Operand(get_ssa_temp(ctx, instr->src[0].ssa)),
6342 get_ssa_temp(ctx, &instr->dest.ssa),
6343 num_components, component_size};
6344 info.glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
6345 info.align_mul = nir_intrinsic_align_mul(instr);
6346 info.align_offset = nir_intrinsic_align_offset(instr);
6347 info.barrier = barrier_buffer;
6348 info.can_reorder = false;
6349 /* VMEM stores don't update the SMEM cache and it's difficult to prove that
6350 * it's safe to use SMEM */
6351 bool can_use_smem = nir_intrinsic_access(instr) & ACCESS_NON_WRITEABLE;
6352 if (info.dst.type() == RegType::vgpr || (info.glc && ctx->options->chip_class < GFX8) || !can_use_smem) {
6353 emit_global_load(ctx, bld, &info);
6354 } else {
6355 info.offset = Operand(bld.as_uniform(info.offset));
6356 emit_smem_load(ctx, bld, &info);
6357 }
6358 }
6359
6360 void visit_store_global(isel_context *ctx, nir_intrinsic_instr *instr)
6361 {
6362 Builder bld(ctx->program, ctx->block);
6363 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6364 unsigned writemask = widen_mask(nir_intrinsic_write_mask(instr), elem_size_bytes);
6365
6366 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6367 Temp addr = get_ssa_temp(ctx, instr->src[1].ssa);
6368 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
6369
6370 if (ctx->options->chip_class >= GFX7)
6371 addr = as_vgpr(ctx, addr);
6372
6373 unsigned write_count = 0;
6374 Temp write_datas[32];
6375 unsigned offsets[32];
6376 split_buffer_store(ctx, instr, false, RegType::vgpr, data, writemask,
6377 16, &write_count, write_datas, offsets);
6378
6379 for (unsigned i = 0; i < write_count; i++) {
6380 if (ctx->options->chip_class >= GFX7) {
6381 unsigned offset = offsets[i];
6382 Temp store_addr = addr;
6383 if (offset > 0 && ctx->options->chip_class < GFX9) {
6384 Temp addr0 = bld.tmp(v1), addr1 = bld.tmp(v1);
6385 Temp new_addr0 = bld.tmp(v1), new_addr1 = bld.tmp(v1);
6386 Temp carry = bld.tmp(bld.lm);
6387 bld.pseudo(aco_opcode::p_split_vector, Definition(addr0), Definition(addr1), addr);
6388
6389 bld.vop2(aco_opcode::v_add_co_u32, Definition(new_addr0), bld.hint_vcc(Definition(carry)),
6390 Operand(offset), addr0);
6391 bld.vop2(aco_opcode::v_addc_co_u32, Definition(new_addr1), bld.def(bld.lm),
6392 Operand(0u), addr1,
6393 carry).def(1).setHint(vcc);
6394
6395 store_addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_addr0, new_addr1);
6396
6397 offset = 0;
6398 }
6399
6400 bool global = ctx->options->chip_class >= GFX9;
6401 aco_opcode op;
6402 switch (write_datas[i].bytes()) {
6403 case 1:
6404 op = global ? aco_opcode::global_store_byte : aco_opcode::flat_store_byte;
6405 break;
6406 case 2:
6407 op = global ? aco_opcode::global_store_short : aco_opcode::flat_store_short;
6408 break;
6409 case 4:
6410 op = global ? aco_opcode::global_store_dword : aco_opcode::flat_store_dword;
6411 break;
6412 case 8:
6413 op = global ? aco_opcode::global_store_dwordx2 : aco_opcode::flat_store_dwordx2;
6414 break;
6415 case 12:
6416 op = global ? aco_opcode::global_store_dwordx3 : aco_opcode::flat_store_dwordx3;
6417 break;
6418 case 16:
6419 op = global ? aco_opcode::global_store_dwordx4 : aco_opcode::flat_store_dwordx4;
6420 break;
6421 default:
6422 unreachable("store_global not implemented for this size.");
6423 }
6424
6425 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, 0)};
6426 flat->operands[0] = Operand(store_addr);
6427 flat->operands[1] = Operand(s1);
6428 flat->operands[2] = Operand(write_datas[i]);
6429 flat->glc = glc;
6430 flat->dlc = false;
6431 flat->offset = offset;
6432 flat->disable_wqm = true;
6433 flat->barrier = barrier_buffer;
6434 ctx->program->needs_exact = true;
6435 ctx->block->instructions.emplace_back(std::move(flat));
6436 } else {
6437 assert(ctx->options->chip_class == GFX6);
6438
6439 aco_opcode op = get_buffer_store_op(false, write_datas[i].bytes());
6440
6441 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
6442
6443 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, 0)};
6444 mubuf->operands[0] = Operand(rsrc);
6445 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
6446 mubuf->operands[2] = Operand(0u);
6447 mubuf->operands[3] = Operand(write_datas[i]);
6448 mubuf->glc = glc;
6449 mubuf->dlc = false;
6450 mubuf->offset = offsets[i];
6451 mubuf->addr64 = addr.type() == RegType::vgpr;
6452 mubuf->disable_wqm = true;
6453 mubuf->barrier = barrier_buffer;
6454 ctx->program->needs_exact = true;
6455 ctx->block->instructions.emplace_back(std::move(mubuf));
6456 }
6457 }
6458 }
6459
6460 void visit_global_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
6461 {
6462 /* return the previous value if dest is ever used */
6463 bool return_previous = false;
6464 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6465 return_previous = true;
6466 break;
6467 }
6468 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6469 return_previous = true;
6470 break;
6471 }
6472
6473 Builder bld(ctx->program, ctx->block);
6474 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
6475 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6476
6477 if (ctx->options->chip_class >= GFX7)
6478 addr = as_vgpr(ctx, addr);
6479
6480 if (instr->intrinsic == nir_intrinsic_global_atomic_comp_swap)
6481 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
6482 get_ssa_temp(ctx, instr->src[2].ssa), data);
6483
6484 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6485
6486 aco_opcode op32, op64;
6487
6488 if (ctx->options->chip_class >= GFX7) {
6489 bool global = ctx->options->chip_class >= GFX9;
6490 switch (instr->intrinsic) {
6491 case nir_intrinsic_global_atomic_add:
6492 op32 = global ? aco_opcode::global_atomic_add : aco_opcode::flat_atomic_add;
6493 op64 = global ? aco_opcode::global_atomic_add_x2 : aco_opcode::flat_atomic_add_x2;
6494 break;
6495 case nir_intrinsic_global_atomic_imin:
6496 op32 = global ? aco_opcode::global_atomic_smin : aco_opcode::flat_atomic_smin;
6497 op64 = global ? aco_opcode::global_atomic_smin_x2 : aco_opcode::flat_atomic_smin_x2;
6498 break;
6499 case nir_intrinsic_global_atomic_umin:
6500 op32 = global ? aco_opcode::global_atomic_umin : aco_opcode::flat_atomic_umin;
6501 op64 = global ? aco_opcode::global_atomic_umin_x2 : aco_opcode::flat_atomic_umin_x2;
6502 break;
6503 case nir_intrinsic_global_atomic_imax:
6504 op32 = global ? aco_opcode::global_atomic_smax : aco_opcode::flat_atomic_smax;
6505 op64 = global ? aco_opcode::global_atomic_smax_x2 : aco_opcode::flat_atomic_smax_x2;
6506 break;
6507 case nir_intrinsic_global_atomic_umax:
6508 op32 = global ? aco_opcode::global_atomic_umax : aco_opcode::flat_atomic_umax;
6509 op64 = global ? aco_opcode::global_atomic_umax_x2 : aco_opcode::flat_atomic_umax_x2;
6510 break;
6511 case nir_intrinsic_global_atomic_and:
6512 op32 = global ? aco_opcode::global_atomic_and : aco_opcode::flat_atomic_and;
6513 op64 = global ? aco_opcode::global_atomic_and_x2 : aco_opcode::flat_atomic_and_x2;
6514 break;
6515 case nir_intrinsic_global_atomic_or:
6516 op32 = global ? aco_opcode::global_atomic_or : aco_opcode::flat_atomic_or;
6517 op64 = global ? aco_opcode::global_atomic_or_x2 : aco_opcode::flat_atomic_or_x2;
6518 break;
6519 case nir_intrinsic_global_atomic_xor:
6520 op32 = global ? aco_opcode::global_atomic_xor : aco_opcode::flat_atomic_xor;
6521 op64 = global ? aco_opcode::global_atomic_xor_x2 : aco_opcode::flat_atomic_xor_x2;
6522 break;
6523 case nir_intrinsic_global_atomic_exchange:
6524 op32 = global ? aco_opcode::global_atomic_swap : aco_opcode::flat_atomic_swap;
6525 op64 = global ? aco_opcode::global_atomic_swap_x2 : aco_opcode::flat_atomic_swap_x2;
6526 break;
6527 case nir_intrinsic_global_atomic_comp_swap:
6528 op32 = global ? aco_opcode::global_atomic_cmpswap : aco_opcode::flat_atomic_cmpswap;
6529 op64 = global ? aco_opcode::global_atomic_cmpswap_x2 : aco_opcode::flat_atomic_cmpswap_x2;
6530 break;
6531 default:
6532 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
6533 }
6534
6535 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
6536 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, return_previous ? 1 : 0)};
6537 flat->operands[0] = Operand(addr);
6538 flat->operands[1] = Operand(s1);
6539 flat->operands[2] = Operand(data);
6540 if (return_previous)
6541 flat->definitions[0] = Definition(dst);
6542 flat->glc = return_previous;
6543 flat->dlc = false; /* Not needed for atomics */
6544 flat->offset = 0;
6545 flat->disable_wqm = true;
6546 flat->barrier = barrier_buffer;
6547 ctx->program->needs_exact = true;
6548 ctx->block->instructions.emplace_back(std::move(flat));
6549 } else {
6550 assert(ctx->options->chip_class == GFX6);
6551
6552 switch (instr->intrinsic) {
6553 case nir_intrinsic_global_atomic_add:
6554 op32 = aco_opcode::buffer_atomic_add;
6555 op64 = aco_opcode::buffer_atomic_add_x2;
6556 break;
6557 case nir_intrinsic_global_atomic_imin:
6558 op32 = aco_opcode::buffer_atomic_smin;
6559 op64 = aco_opcode::buffer_atomic_smin_x2;
6560 break;
6561 case nir_intrinsic_global_atomic_umin:
6562 op32 = aco_opcode::buffer_atomic_umin;
6563 op64 = aco_opcode::buffer_atomic_umin_x2;
6564 break;
6565 case nir_intrinsic_global_atomic_imax:
6566 op32 = aco_opcode::buffer_atomic_smax;
6567 op64 = aco_opcode::buffer_atomic_smax_x2;
6568 break;
6569 case nir_intrinsic_global_atomic_umax:
6570 op32 = aco_opcode::buffer_atomic_umax;
6571 op64 = aco_opcode::buffer_atomic_umax_x2;
6572 break;
6573 case nir_intrinsic_global_atomic_and:
6574 op32 = aco_opcode::buffer_atomic_and;
6575 op64 = aco_opcode::buffer_atomic_and_x2;
6576 break;
6577 case nir_intrinsic_global_atomic_or:
6578 op32 = aco_opcode::buffer_atomic_or;
6579 op64 = aco_opcode::buffer_atomic_or_x2;
6580 break;
6581 case nir_intrinsic_global_atomic_xor:
6582 op32 = aco_opcode::buffer_atomic_xor;
6583 op64 = aco_opcode::buffer_atomic_xor_x2;
6584 break;
6585 case nir_intrinsic_global_atomic_exchange:
6586 op32 = aco_opcode::buffer_atomic_swap;
6587 op64 = aco_opcode::buffer_atomic_swap_x2;
6588 break;
6589 case nir_intrinsic_global_atomic_comp_swap:
6590 op32 = aco_opcode::buffer_atomic_cmpswap;
6591 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
6592 break;
6593 default:
6594 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
6595 }
6596
6597 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
6598
6599 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
6600
6601 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
6602 mubuf->operands[0] = Operand(rsrc);
6603 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
6604 mubuf->operands[2] = Operand(0u);
6605 mubuf->operands[3] = Operand(data);
6606 if (return_previous)
6607 mubuf->definitions[0] = Definition(dst);
6608 mubuf->glc = return_previous;
6609 mubuf->dlc = false;
6610 mubuf->offset = 0;
6611 mubuf->addr64 = addr.type() == RegType::vgpr;
6612 mubuf->disable_wqm = true;
6613 mubuf->barrier = barrier_buffer;
6614 ctx->program->needs_exact = true;
6615 ctx->block->instructions.emplace_back(std::move(mubuf));
6616 }
6617 }
6618
6619 void emit_memory_barrier(isel_context *ctx, nir_intrinsic_instr *instr) {
6620 Builder bld(ctx->program, ctx->block);
6621 switch(instr->intrinsic) {
6622 case nir_intrinsic_group_memory_barrier:
6623 case nir_intrinsic_memory_barrier:
6624 bld.barrier(aco_opcode::p_memory_barrier_common);
6625 break;
6626 case nir_intrinsic_memory_barrier_buffer:
6627 bld.barrier(aco_opcode::p_memory_barrier_buffer);
6628 break;
6629 case nir_intrinsic_memory_barrier_image:
6630 bld.barrier(aco_opcode::p_memory_barrier_image);
6631 break;
6632 case nir_intrinsic_memory_barrier_tcs_patch:
6633 case nir_intrinsic_memory_barrier_shared:
6634 bld.barrier(aco_opcode::p_memory_barrier_shared);
6635 break;
6636 default:
6637 unreachable("Unimplemented memory barrier intrinsic");
6638 break;
6639 }
6640 }
6641
6642 void visit_load_shared(isel_context *ctx, nir_intrinsic_instr *instr)
6643 {
6644 // TODO: implement sparse reads using ds_read2_b32 and nir_ssa_def_components_read()
6645 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6646 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6647 Builder bld(ctx->program, ctx->block);
6648
6649 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
6650 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
6651 load_lds(ctx, elem_size_bytes, dst, address, nir_intrinsic_base(instr), align);
6652 }
6653
6654 void visit_store_shared(isel_context *ctx, nir_intrinsic_instr *instr)
6655 {
6656 unsigned writemask = nir_intrinsic_write_mask(instr);
6657 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
6658 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6659 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6660
6661 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
6662 store_lds(ctx, elem_size_bytes, data, writemask, address, nir_intrinsic_base(instr), align);
6663 }
6664
6665 void visit_shared_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
6666 {
6667 unsigned offset = nir_intrinsic_base(instr);
6668 Builder bld(ctx->program, ctx->block);
6669 Operand m = load_lds_size_m0(bld);
6670 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6671 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6672
6673 unsigned num_operands = 3;
6674 aco_opcode op32, op64, op32_rtn, op64_rtn;
6675 switch(instr->intrinsic) {
6676 case nir_intrinsic_shared_atomic_add:
6677 op32 = aco_opcode::ds_add_u32;
6678 op64 = aco_opcode::ds_add_u64;
6679 op32_rtn = aco_opcode::ds_add_rtn_u32;
6680 op64_rtn = aco_opcode::ds_add_rtn_u64;
6681 break;
6682 case nir_intrinsic_shared_atomic_imin:
6683 op32 = aco_opcode::ds_min_i32;
6684 op64 = aco_opcode::ds_min_i64;
6685 op32_rtn = aco_opcode::ds_min_rtn_i32;
6686 op64_rtn = aco_opcode::ds_min_rtn_i64;
6687 break;
6688 case nir_intrinsic_shared_atomic_umin:
6689 op32 = aco_opcode::ds_min_u32;
6690 op64 = aco_opcode::ds_min_u64;
6691 op32_rtn = aco_opcode::ds_min_rtn_u32;
6692 op64_rtn = aco_opcode::ds_min_rtn_u64;
6693 break;
6694 case nir_intrinsic_shared_atomic_imax:
6695 op32 = aco_opcode::ds_max_i32;
6696 op64 = aco_opcode::ds_max_i64;
6697 op32_rtn = aco_opcode::ds_max_rtn_i32;
6698 op64_rtn = aco_opcode::ds_max_rtn_i64;
6699 break;
6700 case nir_intrinsic_shared_atomic_umax:
6701 op32 = aco_opcode::ds_max_u32;
6702 op64 = aco_opcode::ds_max_u64;
6703 op32_rtn = aco_opcode::ds_max_rtn_u32;
6704 op64_rtn = aco_opcode::ds_max_rtn_u64;
6705 break;
6706 case nir_intrinsic_shared_atomic_and:
6707 op32 = aco_opcode::ds_and_b32;
6708 op64 = aco_opcode::ds_and_b64;
6709 op32_rtn = aco_opcode::ds_and_rtn_b32;
6710 op64_rtn = aco_opcode::ds_and_rtn_b64;
6711 break;
6712 case nir_intrinsic_shared_atomic_or:
6713 op32 = aco_opcode::ds_or_b32;
6714 op64 = aco_opcode::ds_or_b64;
6715 op32_rtn = aco_opcode::ds_or_rtn_b32;
6716 op64_rtn = aco_opcode::ds_or_rtn_b64;
6717 break;
6718 case nir_intrinsic_shared_atomic_xor:
6719 op32 = aco_opcode::ds_xor_b32;
6720 op64 = aco_opcode::ds_xor_b64;
6721 op32_rtn = aco_opcode::ds_xor_rtn_b32;
6722 op64_rtn = aco_opcode::ds_xor_rtn_b64;
6723 break;
6724 case nir_intrinsic_shared_atomic_exchange:
6725 op32 = aco_opcode::ds_write_b32;
6726 op64 = aco_opcode::ds_write_b64;
6727 op32_rtn = aco_opcode::ds_wrxchg_rtn_b32;
6728 op64_rtn = aco_opcode::ds_wrxchg_rtn_b64;
6729 break;
6730 case nir_intrinsic_shared_atomic_comp_swap:
6731 op32 = aco_opcode::ds_cmpst_b32;
6732 op64 = aco_opcode::ds_cmpst_b64;
6733 op32_rtn = aco_opcode::ds_cmpst_rtn_b32;
6734 op64_rtn = aco_opcode::ds_cmpst_rtn_b64;
6735 num_operands = 4;
6736 break;
6737 default:
6738 unreachable("Unhandled shared atomic intrinsic");
6739 }
6740
6741 /* return the previous value if dest is ever used */
6742 bool return_previous = false;
6743 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6744 return_previous = true;
6745 break;
6746 }
6747 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6748 return_previous = true;
6749 break;
6750 }
6751
6752 aco_opcode op;
6753 if (data.size() == 1) {
6754 assert(instr->dest.ssa.bit_size == 32);
6755 op = return_previous ? op32_rtn : op32;
6756 } else {
6757 assert(instr->dest.ssa.bit_size == 64);
6758 op = return_previous ? op64_rtn : op64;
6759 }
6760
6761 if (offset > 65535) {
6762 address = bld.vadd32(bld.def(v1), Operand(offset), address);
6763 offset = 0;
6764 }
6765
6766 aco_ptr<DS_instruction> ds;
6767 ds.reset(create_instruction<DS_instruction>(op, Format::DS, num_operands, return_previous ? 1 : 0));
6768 ds->operands[0] = Operand(address);
6769 ds->operands[1] = Operand(data);
6770 if (num_operands == 4)
6771 ds->operands[2] = Operand(get_ssa_temp(ctx, instr->src[2].ssa));
6772 ds->operands[num_operands - 1] = m;
6773 ds->offset0 = offset;
6774 if (return_previous)
6775 ds->definitions[0] = Definition(get_ssa_temp(ctx, &instr->dest.ssa));
6776 ctx->block->instructions.emplace_back(std::move(ds));
6777 }
6778
6779 Temp get_scratch_resource(isel_context *ctx)
6780 {
6781 Builder bld(ctx->program, ctx->block);
6782 Temp scratch_addr = ctx->program->private_segment_buffer;
6783 if (ctx->stage != compute_cs)
6784 scratch_addr = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), scratch_addr, Operand(0u));
6785
6786 uint32_t rsrc_conf = S_008F0C_ADD_TID_ENABLE(1) |
6787 S_008F0C_INDEX_STRIDE(ctx->program->wave_size == 64 ? 3 : 2);;
6788
6789 if (ctx->program->chip_class >= GFX10) {
6790 rsrc_conf |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
6791 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
6792 S_008F0C_RESOURCE_LEVEL(1);
6793 } else if (ctx->program->chip_class <= GFX7) { /* dfmt modifies stride on GFX8/GFX9 when ADD_TID_EN=1 */
6794 rsrc_conf |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
6795 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
6796 }
6797
6798 /* older generations need element size = 16 bytes. element size removed in GFX9 */
6799 if (ctx->program->chip_class <= GFX8)
6800 rsrc_conf |= S_008F0C_ELEMENT_SIZE(3);
6801
6802 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), scratch_addr, Operand(-1u), Operand(rsrc_conf));
6803 }
6804
6805 void visit_load_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
6806 Builder bld(ctx->program, ctx->block);
6807 Temp rsrc = get_scratch_resource(ctx);
6808 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6809 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6810
6811 LoadEmitInfo info = {Operand(offset), dst, instr->dest.ssa.num_components,
6812 instr->dest.ssa.bit_size / 8u, rsrc};
6813 info.align_mul = nir_intrinsic_align_mul(instr);
6814 info.align_offset = nir_intrinsic_align_offset(instr);
6815 info.swizzle_component_size = 16;
6816 info.can_reorder = false;
6817 info.soffset = ctx->program->scratch_offset;
6818 emit_mubuf_load(ctx, bld, &info);
6819 }
6820
6821 void visit_store_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
6822 Builder bld(ctx->program, ctx->block);
6823 Temp rsrc = get_scratch_resource(ctx);
6824 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6825 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6826
6827 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6828 unsigned writemask = widen_mask(nir_intrinsic_write_mask(instr), elem_size_bytes);
6829
6830 unsigned write_count = 0;
6831 Temp write_datas[32];
6832 unsigned offsets[32];
6833 split_buffer_store(ctx, instr, false, RegType::vgpr, data, writemask,
6834 16, &write_count, write_datas, offsets);
6835
6836 for (unsigned i = 0; i < write_count; i++) {
6837 aco_opcode op = get_buffer_store_op(false, write_datas[i].bytes());
6838 bld.mubuf(op, rsrc, offset, ctx->program->scratch_offset, write_datas[i], offsets[i], true);
6839 }
6840 }
6841
6842 void visit_load_sample_mask_in(isel_context *ctx, nir_intrinsic_instr *instr) {
6843 uint8_t log2_ps_iter_samples;
6844 if (ctx->program->info->ps.force_persample) {
6845 log2_ps_iter_samples =
6846 util_logbase2(ctx->options->key.fs.num_samples);
6847 } else {
6848 log2_ps_iter_samples = ctx->options->key.fs.log2_ps_iter_samples;
6849 }
6850
6851 /* The bit pattern matches that used by fixed function fragment
6852 * processing. */
6853 static const unsigned ps_iter_masks[] = {
6854 0xffff, /* not used */
6855 0x5555,
6856 0x1111,
6857 0x0101,
6858 0x0001,
6859 };
6860 assert(log2_ps_iter_samples < ARRAY_SIZE(ps_iter_masks));
6861
6862 Builder bld(ctx->program, ctx->block);
6863
6864 Temp sample_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
6865 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
6866 Temp ps_iter_mask = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(ps_iter_masks[log2_ps_iter_samples]));
6867 Temp mask = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), sample_id, ps_iter_mask);
6868 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6869 bld.vop2(aco_opcode::v_and_b32, Definition(dst), mask, get_arg(ctx, ctx->args->ac.sample_coverage));
6870 }
6871
6872 void visit_emit_vertex_with_counter(isel_context *ctx, nir_intrinsic_instr *instr) {
6873 Builder bld(ctx->program, ctx->block);
6874
6875 unsigned stream = nir_intrinsic_stream_id(instr);
6876 Temp next_vertex = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6877 next_vertex = bld.v_mul_imm(bld.def(v1), next_vertex, 4u);
6878 nir_const_value *next_vertex_cv = nir_src_as_const_value(instr->src[0]);
6879
6880 /* get GSVS ring */
6881 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_GSVS_GS * 16u));
6882
6883 unsigned num_components =
6884 ctx->program->info->gs.num_stream_output_components[stream];
6885 assert(num_components);
6886
6887 unsigned stride = 4u * num_components * ctx->shader->info.gs.vertices_out;
6888 unsigned stream_offset = 0;
6889 for (unsigned i = 0; i < stream; i++) {
6890 unsigned prev_stride = 4u * ctx->program->info->gs.num_stream_output_components[i] * ctx->shader->info.gs.vertices_out;
6891 stream_offset += prev_stride * ctx->program->wave_size;
6892 }
6893
6894 /* Limit on the stride field for <= GFX7. */
6895 assert(stride < (1 << 14));
6896
6897 Temp gsvs_dwords[4];
6898 for (unsigned i = 0; i < 4; i++)
6899 gsvs_dwords[i] = bld.tmp(s1);
6900 bld.pseudo(aco_opcode::p_split_vector,
6901 Definition(gsvs_dwords[0]),
6902 Definition(gsvs_dwords[1]),
6903 Definition(gsvs_dwords[2]),
6904 Definition(gsvs_dwords[3]),
6905 gsvs_ring);
6906
6907 if (stream_offset) {
6908 Temp stream_offset_tmp = bld.copy(bld.def(s1), Operand(stream_offset));
6909
6910 Temp carry = bld.tmp(s1);
6911 gsvs_dwords[0] = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), gsvs_dwords[0], stream_offset_tmp);
6912 gsvs_dwords[1] = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(0u), bld.scc(carry));
6913 }
6914
6915 gsvs_dwords[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(S_008F04_STRIDE(stride)));
6916 gsvs_dwords[2] = bld.copy(bld.def(s1), Operand((uint32_t)ctx->program->wave_size));
6917
6918 gsvs_ring = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
6919 gsvs_dwords[0], gsvs_dwords[1], gsvs_dwords[2], gsvs_dwords[3]);
6920
6921 unsigned offset = 0;
6922 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; i++) {
6923 if (ctx->program->info->gs.output_streams[i] != stream)
6924 continue;
6925
6926 for (unsigned j = 0; j < 4; j++) {
6927 if (!(ctx->program->info->gs.output_usage_mask[i] & (1 << j)))
6928 continue;
6929
6930 if (ctx->outputs.mask[i] & (1 << j)) {
6931 Operand vaddr_offset = next_vertex_cv ? Operand(v1) : Operand(next_vertex);
6932 unsigned const_offset = (offset + (next_vertex_cv ? next_vertex_cv->u32 : 0u)) * 4u;
6933 if (const_offset >= 4096u) {
6934 if (vaddr_offset.isUndefined())
6935 vaddr_offset = bld.copy(bld.def(v1), Operand(const_offset / 4096u * 4096u));
6936 else
6937 vaddr_offset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), vaddr_offset);
6938 const_offset %= 4096u;
6939 }
6940
6941 aco_ptr<MTBUF_instruction> mtbuf{create_instruction<MTBUF_instruction>(aco_opcode::tbuffer_store_format_x, Format::MTBUF, 4, 0)};
6942 mtbuf->operands[0] = Operand(gsvs_ring);
6943 mtbuf->operands[1] = vaddr_offset;
6944 mtbuf->operands[2] = Operand(get_arg(ctx, ctx->args->gs2vs_offset));
6945 mtbuf->operands[3] = Operand(ctx->outputs.temps[i * 4u + j]);
6946 mtbuf->offen = !vaddr_offset.isUndefined();
6947 mtbuf->dfmt = V_008F0C_BUF_DATA_FORMAT_32;
6948 mtbuf->nfmt = V_008F0C_BUF_NUM_FORMAT_UINT;
6949 mtbuf->offset = const_offset;
6950 mtbuf->glc = true;
6951 mtbuf->slc = true;
6952 mtbuf->barrier = barrier_gs_data;
6953 mtbuf->can_reorder = true;
6954 bld.insert(std::move(mtbuf));
6955 }
6956
6957 offset += ctx->shader->info.gs.vertices_out;
6958 }
6959
6960 /* outputs for the next vertex are undefined and keeping them around can
6961 * create invalid IR with control flow */
6962 ctx->outputs.mask[i] = 0;
6963 }
6964
6965 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(false, true, stream));
6966 }
6967
6968 Temp emit_boolean_reduce(isel_context *ctx, nir_op op, unsigned cluster_size, Temp src)
6969 {
6970 Builder bld(ctx->program, ctx->block);
6971
6972 if (cluster_size == 1) {
6973 return src;
6974 } if (op == nir_op_iand && cluster_size == 4) {
6975 //subgroupClusteredAnd(val, 4) -> ~wqm(exec & ~val)
6976 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
6977 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc),
6978 bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc), tmp));
6979 } else if (op == nir_op_ior && cluster_size == 4) {
6980 //subgroupClusteredOr(val, 4) -> wqm(val & exec)
6981 return bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc),
6982 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)));
6983 } else if (op == nir_op_iand && cluster_size == ctx->program->wave_size) {
6984 //subgroupAnd(val) -> (exec & ~val) == 0
6985 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
6986 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
6987 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), cond);
6988 } else if (op == nir_op_ior && cluster_size == ctx->program->wave_size) {
6989 //subgroupOr(val) -> (val & exec) != 0
6990 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)).def(1).getTemp();
6991 return bool_to_vector_condition(ctx, tmp);
6992 } else if (op == nir_op_ixor && cluster_size == ctx->program->wave_size) {
6993 //subgroupXor(val) -> s_bcnt1_i32_b64(val & exec) & 1
6994 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
6995 tmp = bld.sop1(Builder::s_bcnt1_i32, bld.def(s1), bld.def(s1, scc), tmp);
6996 tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), tmp, Operand(1u)).def(1).getTemp();
6997 return bool_to_vector_condition(ctx, tmp);
6998 } else {
6999 //subgroupClustered{And,Or,Xor}(val, n) ->
7000 //lane_id = v_mbcnt_hi_u32_b32(-1, v_mbcnt_lo_u32_b32(-1, 0)) ; just v_mbcnt_lo_u32_b32 on wave32
7001 //cluster_offset = ~(n - 1) & lane_id
7002 //cluster_mask = ((1 << n) - 1)
7003 //subgroupClusteredAnd():
7004 // return ((val | ~exec) >> cluster_offset) & cluster_mask == cluster_mask
7005 //subgroupClusteredOr():
7006 // return ((val & exec) >> cluster_offset) & cluster_mask != 0
7007 //subgroupClusteredXor():
7008 // return v_bnt_u32_b32(((val & exec) >> cluster_offset) & cluster_mask, 0) & 1 != 0
7009 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
7010 Temp cluster_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(~uint32_t(cluster_size - 1)), lane_id);
7011
7012 Temp tmp;
7013 if (op == nir_op_iand)
7014 tmp = bld.sop2(Builder::s_orn2, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
7015 else
7016 tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
7017
7018 uint32_t cluster_mask = cluster_size == 32 ? -1 : (1u << cluster_size) - 1u;
7019
7020 if (ctx->program->chip_class <= GFX7)
7021 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), tmp, cluster_offset);
7022 else if (ctx->program->wave_size == 64)
7023 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), cluster_offset, tmp);
7024 else
7025 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), cluster_offset, tmp);
7026 tmp = emit_extract_vector(ctx, tmp, 0, v1);
7027 if (cluster_mask != 0xffffffff)
7028 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(cluster_mask), tmp);
7029
7030 Definition cmp_def = Definition();
7031 if (op == nir_op_iand) {
7032 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(cluster_mask), tmp).def(0);
7033 } else if (op == nir_op_ior) {
7034 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
7035 } else if (op == nir_op_ixor) {
7036 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u),
7037 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1), tmp, Operand(0u)));
7038 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
7039 }
7040 cmp_def.setHint(vcc);
7041 return cmp_def.getTemp();
7042 }
7043 }
7044
7045 Temp emit_boolean_exclusive_scan(isel_context *ctx, nir_op op, Temp src)
7046 {
7047 Builder bld(ctx->program, ctx->block);
7048
7049 //subgroupExclusiveAnd(val) -> mbcnt(exec & ~val) == 0
7050 //subgroupExclusiveOr(val) -> mbcnt(val & exec) != 0
7051 //subgroupExclusiveXor(val) -> mbcnt(val & exec) & 1 != 0
7052 Temp tmp;
7053 if (op == nir_op_iand)
7054 tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
7055 else
7056 tmp = bld.sop2(Builder::s_and, bld.def(s2), bld.def(s1, scc), src, Operand(exec, bld.lm));
7057
7058 Builder::Result lohi = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), bld.def(s1), tmp);
7059 Temp lo = lohi.def(0).getTemp();
7060 Temp hi = lohi.def(1).getTemp();
7061 Temp mbcnt = emit_mbcnt(ctx, bld.def(v1), Operand(lo), Operand(hi));
7062
7063 Definition cmp_def = Definition();
7064 if (op == nir_op_iand)
7065 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
7066 else if (op == nir_op_ior)
7067 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
7068 else if (op == nir_op_ixor)
7069 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u),
7070 bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), mbcnt)).def(0);
7071 cmp_def.setHint(vcc);
7072 return cmp_def.getTemp();
7073 }
7074
7075 Temp emit_boolean_inclusive_scan(isel_context *ctx, nir_op op, Temp src)
7076 {
7077 Builder bld(ctx->program, ctx->block);
7078
7079 //subgroupInclusiveAnd(val) -> subgroupExclusiveAnd(val) && val
7080 //subgroupInclusiveOr(val) -> subgroupExclusiveOr(val) || val
7081 //subgroupInclusiveXor(val) -> subgroupExclusiveXor(val) ^^ val
7082 Temp tmp = emit_boolean_exclusive_scan(ctx, op, src);
7083 if (op == nir_op_iand)
7084 return bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
7085 else if (op == nir_op_ior)
7086 return bld.sop2(Builder::s_or, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
7087 else if (op == nir_op_ixor)
7088 return bld.sop2(Builder::s_xor, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
7089
7090 assert(false);
7091 return Temp();
7092 }
7093
7094 void emit_uniform_subgroup(isel_context *ctx, nir_intrinsic_instr *instr, Temp src)
7095 {
7096 Builder bld(ctx->program, ctx->block);
7097 Definition dst(get_ssa_temp(ctx, &instr->dest.ssa));
7098 if (src.regClass().type() == RegType::vgpr) {
7099 bld.pseudo(aco_opcode::p_as_uniform, dst, src);
7100 } else if (src.regClass() == s1) {
7101 bld.sop1(aco_opcode::s_mov_b32, dst, src);
7102 } else if (src.regClass() == s2) {
7103 bld.sop1(aco_opcode::s_mov_b64, dst, src);
7104 } else {
7105 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7106 nir_print_instr(&instr->instr, stderr);
7107 fprintf(stderr, "\n");
7108 }
7109 }
7110
7111 void emit_interp_center(isel_context *ctx, Temp dst, Temp pos1, Temp pos2)
7112 {
7113 Builder bld(ctx->program, ctx->block);
7114 Temp persp_center = get_arg(ctx, ctx->args->ac.persp_center);
7115 Temp p1 = emit_extract_vector(ctx, persp_center, 0, v1);
7116 Temp p2 = emit_extract_vector(ctx, persp_center, 1, v1);
7117
7118 Temp ddx_1, ddx_2, ddy_1, ddy_2;
7119 uint32_t dpp_ctrl0 = dpp_quad_perm(0, 0, 0, 0);
7120 uint32_t dpp_ctrl1 = dpp_quad_perm(1, 1, 1, 1);
7121 uint32_t dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
7122
7123 /* Build DD X/Y */
7124 if (ctx->program->chip_class >= GFX8) {
7125 Temp tl_1 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p1, dpp_ctrl0);
7126 ddx_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl1);
7127 ddy_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl2);
7128 Temp tl_2 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p2, dpp_ctrl0);
7129 ddx_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl1);
7130 ddy_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl2);
7131 } else {
7132 Temp tl_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl0);
7133 ddx_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl1);
7134 ddx_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_1, tl_1);
7135 ddx_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl2);
7136 ddx_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_2, tl_1);
7137 Temp tl_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl0);
7138 ddy_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl1);
7139 ddy_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_1, tl_2);
7140 ddy_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl2);
7141 ddy_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_2, tl_2);
7142 }
7143
7144 /* res_k = p_k + ddx_k * pos1 + ddy_k * pos2 */
7145 Temp tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_1, pos1, p1);
7146 Temp tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_2, pos1, p2);
7147 tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_1, pos2, tmp1);
7148 tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_2, pos2, tmp2);
7149 Temp wqm1 = bld.tmp(v1);
7150 emit_wqm(ctx, tmp1, wqm1, true);
7151 Temp wqm2 = bld.tmp(v1);
7152 emit_wqm(ctx, tmp2, wqm2, true);
7153 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), wqm1, wqm2);
7154 return;
7155 }
7156
7157 void visit_intrinsic(isel_context *ctx, nir_intrinsic_instr *instr)
7158 {
7159 Builder bld(ctx->program, ctx->block);
7160 switch(instr->intrinsic) {
7161 case nir_intrinsic_load_barycentric_sample:
7162 case nir_intrinsic_load_barycentric_pixel:
7163 case nir_intrinsic_load_barycentric_centroid: {
7164 glsl_interp_mode mode = (glsl_interp_mode)nir_intrinsic_interp_mode(instr);
7165 Temp bary = Temp(0, s2);
7166 switch (mode) {
7167 case INTERP_MODE_SMOOTH:
7168 case INTERP_MODE_NONE:
7169 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
7170 bary = get_arg(ctx, ctx->args->ac.persp_center);
7171 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
7172 bary = ctx->persp_centroid;
7173 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
7174 bary = get_arg(ctx, ctx->args->ac.persp_sample);
7175 break;
7176 case INTERP_MODE_NOPERSPECTIVE:
7177 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
7178 bary = get_arg(ctx, ctx->args->ac.linear_center);
7179 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
7180 bary = ctx->linear_centroid;
7181 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
7182 bary = get_arg(ctx, ctx->args->ac.linear_sample);
7183 break;
7184 default:
7185 break;
7186 }
7187 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7188 Temp p1 = emit_extract_vector(ctx, bary, 0, v1);
7189 Temp p2 = emit_extract_vector(ctx, bary, 1, v1);
7190 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
7191 Operand(p1), Operand(p2));
7192 emit_split_vector(ctx, dst, 2);
7193 break;
7194 }
7195 case nir_intrinsic_load_barycentric_model: {
7196 Temp model = get_arg(ctx, ctx->args->ac.pull_model);
7197
7198 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7199 Temp p1 = emit_extract_vector(ctx, model, 0, v1);
7200 Temp p2 = emit_extract_vector(ctx, model, 1, v1);
7201 Temp p3 = emit_extract_vector(ctx, model, 2, v1);
7202 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
7203 Operand(p1), Operand(p2), Operand(p3));
7204 emit_split_vector(ctx, dst, 3);
7205 break;
7206 }
7207 case nir_intrinsic_load_barycentric_at_sample: {
7208 uint32_t sample_pos_offset = RING_PS_SAMPLE_POSITIONS * 16;
7209 switch (ctx->options->key.fs.num_samples) {
7210 case 2: sample_pos_offset += 1 << 3; break;
7211 case 4: sample_pos_offset += 3 << 3; break;
7212 case 8: sample_pos_offset += 7 << 3; break;
7213 default: break;
7214 }
7215 Temp sample_pos;
7216 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
7217 nir_const_value* const_addr = nir_src_as_const_value(instr->src[0]);
7218 Temp private_segment_buffer = ctx->program->private_segment_buffer;
7219 if (addr.type() == RegType::sgpr) {
7220 Operand offset;
7221 if (const_addr) {
7222 sample_pos_offset += const_addr->u32 << 3;
7223 offset = Operand(sample_pos_offset);
7224 } else if (ctx->options->chip_class >= GFX9) {
7225 offset = bld.sop2(aco_opcode::s_lshl3_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
7226 } else {
7227 offset = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), addr, Operand(3u));
7228 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
7229 }
7230
7231 Operand off = bld.copy(bld.def(s1), Operand(offset));
7232 sample_pos = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), private_segment_buffer, off);
7233
7234 } else if (ctx->options->chip_class >= GFX9) {
7235 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
7236 sample_pos = bld.global(aco_opcode::global_load_dwordx2, bld.def(v2), addr, private_segment_buffer, sample_pos_offset);
7237 } else if (ctx->options->chip_class >= GFX7) {
7238 /* addr += private_segment_buffer + sample_pos_offset */
7239 Temp tmp0 = bld.tmp(s1);
7240 Temp tmp1 = bld.tmp(s1);
7241 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp0), Definition(tmp1), private_segment_buffer);
7242 Definition scc_tmp = bld.def(s1, scc);
7243 tmp0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), scc_tmp, tmp0, Operand(sample_pos_offset));
7244 tmp1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), tmp1, Operand(0u), bld.scc(scc_tmp.getTemp()));
7245 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
7246 Temp pck0 = bld.tmp(v1);
7247 Temp carry = bld.vadd32(Definition(pck0), tmp0, addr, true).def(1).getTemp();
7248 tmp1 = as_vgpr(ctx, tmp1);
7249 Temp pck1 = bld.vop2_e64(aco_opcode::v_addc_co_u32, bld.def(v1), bld.hint_vcc(bld.def(bld.lm)), tmp1, Operand(0u), carry);
7250 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), pck0, pck1);
7251
7252 /* sample_pos = flat_load_dwordx2 addr */
7253 sample_pos = bld.flat(aco_opcode::flat_load_dwordx2, bld.def(v2), addr, Operand(s1));
7254 } else {
7255 assert(ctx->options->chip_class == GFX6);
7256
7257 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
7258 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
7259 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), private_segment_buffer, Operand(0u), Operand(rsrc_conf));
7260
7261 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
7262 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), addr, Operand(0u));
7263
7264 sample_pos = bld.tmp(v2);
7265
7266 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dwordx2, Format::MUBUF, 3, 1)};
7267 load->definitions[0] = Definition(sample_pos);
7268 load->operands[0] = Operand(rsrc);
7269 load->operands[1] = Operand(addr);
7270 load->operands[2] = Operand(0u);
7271 load->offset = sample_pos_offset;
7272 load->offen = 0;
7273 load->addr64 = true;
7274 load->glc = false;
7275 load->dlc = false;
7276 load->disable_wqm = false;
7277 load->barrier = barrier_none;
7278 load->can_reorder = true;
7279 ctx->block->instructions.emplace_back(std::move(load));
7280 }
7281
7282 /* sample_pos -= 0.5 */
7283 Temp pos1 = bld.tmp(RegClass(sample_pos.type(), 1));
7284 Temp pos2 = bld.tmp(RegClass(sample_pos.type(), 1));
7285 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), sample_pos);
7286 pos1 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos1, Operand(0x3f000000u));
7287 pos2 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos2, Operand(0x3f000000u));
7288
7289 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
7290 break;
7291 }
7292 case nir_intrinsic_load_barycentric_at_offset: {
7293 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
7294 RegClass rc = RegClass(offset.type(), 1);
7295 Temp pos1 = bld.tmp(rc), pos2 = bld.tmp(rc);
7296 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), offset);
7297 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
7298 break;
7299 }
7300 case nir_intrinsic_load_front_face: {
7301 bld.vopc(aco_opcode::v_cmp_lg_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7302 Operand(0u), get_arg(ctx, ctx->args->ac.front_face)).def(0).setHint(vcc);
7303 break;
7304 }
7305 case nir_intrinsic_load_view_index: {
7306 if (ctx->stage & (sw_vs | sw_gs | sw_tcs | sw_tes)) {
7307 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7308 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.view_index)));
7309 break;
7310 }
7311
7312 /* fallthrough */
7313 }
7314 case nir_intrinsic_load_layer_id: {
7315 unsigned idx = nir_intrinsic_base(instr);
7316 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7317 Operand(2u), bld.m0(get_arg(ctx, ctx->args->ac.prim_mask)), idx, 0);
7318 break;
7319 }
7320 case nir_intrinsic_load_frag_coord: {
7321 emit_load_frag_coord(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 4);
7322 break;
7323 }
7324 case nir_intrinsic_load_sample_pos: {
7325 Temp posx = get_arg(ctx, ctx->args->ac.frag_pos[0]);
7326 Temp posy = get_arg(ctx, ctx->args->ac.frag_pos[1]);
7327 bld.pseudo(aco_opcode::p_create_vector, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7328 posx.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posx) : Operand(0u),
7329 posy.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posy) : Operand(0u));
7330 break;
7331 }
7332 case nir_intrinsic_load_tess_coord:
7333 visit_load_tess_coord(ctx, instr);
7334 break;
7335 case nir_intrinsic_load_interpolated_input:
7336 visit_load_interpolated_input(ctx, instr);
7337 break;
7338 case nir_intrinsic_store_output:
7339 visit_store_output(ctx, instr);
7340 break;
7341 case nir_intrinsic_load_input:
7342 case nir_intrinsic_load_input_vertex:
7343 visit_load_input(ctx, instr);
7344 break;
7345 case nir_intrinsic_load_output:
7346 visit_load_output(ctx, instr);
7347 break;
7348 case nir_intrinsic_load_per_vertex_input:
7349 visit_load_per_vertex_input(ctx, instr);
7350 break;
7351 case nir_intrinsic_load_per_vertex_output:
7352 visit_load_per_vertex_output(ctx, instr);
7353 break;
7354 case nir_intrinsic_store_per_vertex_output:
7355 visit_store_per_vertex_output(ctx, instr);
7356 break;
7357 case nir_intrinsic_load_ubo:
7358 visit_load_ubo(ctx, instr);
7359 break;
7360 case nir_intrinsic_load_push_constant:
7361 visit_load_push_constant(ctx, instr);
7362 break;
7363 case nir_intrinsic_load_constant:
7364 visit_load_constant(ctx, instr);
7365 break;
7366 case nir_intrinsic_vulkan_resource_index:
7367 visit_load_resource(ctx, instr);
7368 break;
7369 case nir_intrinsic_discard:
7370 visit_discard(ctx, instr);
7371 break;
7372 case nir_intrinsic_discard_if:
7373 visit_discard_if(ctx, instr);
7374 break;
7375 case nir_intrinsic_load_shared:
7376 visit_load_shared(ctx, instr);
7377 break;
7378 case nir_intrinsic_store_shared:
7379 visit_store_shared(ctx, instr);
7380 break;
7381 case nir_intrinsic_shared_atomic_add:
7382 case nir_intrinsic_shared_atomic_imin:
7383 case nir_intrinsic_shared_atomic_umin:
7384 case nir_intrinsic_shared_atomic_imax:
7385 case nir_intrinsic_shared_atomic_umax:
7386 case nir_intrinsic_shared_atomic_and:
7387 case nir_intrinsic_shared_atomic_or:
7388 case nir_intrinsic_shared_atomic_xor:
7389 case nir_intrinsic_shared_atomic_exchange:
7390 case nir_intrinsic_shared_atomic_comp_swap:
7391 visit_shared_atomic(ctx, instr);
7392 break;
7393 case nir_intrinsic_image_deref_load:
7394 visit_image_load(ctx, instr);
7395 break;
7396 case nir_intrinsic_image_deref_store:
7397 visit_image_store(ctx, instr);
7398 break;
7399 case nir_intrinsic_image_deref_atomic_add:
7400 case nir_intrinsic_image_deref_atomic_umin:
7401 case nir_intrinsic_image_deref_atomic_imin:
7402 case nir_intrinsic_image_deref_atomic_umax:
7403 case nir_intrinsic_image_deref_atomic_imax:
7404 case nir_intrinsic_image_deref_atomic_and:
7405 case nir_intrinsic_image_deref_atomic_or:
7406 case nir_intrinsic_image_deref_atomic_xor:
7407 case nir_intrinsic_image_deref_atomic_exchange:
7408 case nir_intrinsic_image_deref_atomic_comp_swap:
7409 visit_image_atomic(ctx, instr);
7410 break;
7411 case nir_intrinsic_image_deref_size:
7412 visit_image_size(ctx, instr);
7413 break;
7414 case nir_intrinsic_load_ssbo:
7415 visit_load_ssbo(ctx, instr);
7416 break;
7417 case nir_intrinsic_store_ssbo:
7418 visit_store_ssbo(ctx, instr);
7419 break;
7420 case nir_intrinsic_load_global:
7421 visit_load_global(ctx, instr);
7422 break;
7423 case nir_intrinsic_store_global:
7424 visit_store_global(ctx, instr);
7425 break;
7426 case nir_intrinsic_global_atomic_add:
7427 case nir_intrinsic_global_atomic_imin:
7428 case nir_intrinsic_global_atomic_umin:
7429 case nir_intrinsic_global_atomic_imax:
7430 case nir_intrinsic_global_atomic_umax:
7431 case nir_intrinsic_global_atomic_and:
7432 case nir_intrinsic_global_atomic_or:
7433 case nir_intrinsic_global_atomic_xor:
7434 case nir_intrinsic_global_atomic_exchange:
7435 case nir_intrinsic_global_atomic_comp_swap:
7436 visit_global_atomic(ctx, instr);
7437 break;
7438 case nir_intrinsic_ssbo_atomic_add:
7439 case nir_intrinsic_ssbo_atomic_imin:
7440 case nir_intrinsic_ssbo_atomic_umin:
7441 case nir_intrinsic_ssbo_atomic_imax:
7442 case nir_intrinsic_ssbo_atomic_umax:
7443 case nir_intrinsic_ssbo_atomic_and:
7444 case nir_intrinsic_ssbo_atomic_or:
7445 case nir_intrinsic_ssbo_atomic_xor:
7446 case nir_intrinsic_ssbo_atomic_exchange:
7447 case nir_intrinsic_ssbo_atomic_comp_swap:
7448 visit_atomic_ssbo(ctx, instr);
7449 break;
7450 case nir_intrinsic_load_scratch:
7451 visit_load_scratch(ctx, instr);
7452 break;
7453 case nir_intrinsic_store_scratch:
7454 visit_store_scratch(ctx, instr);
7455 break;
7456 case nir_intrinsic_get_buffer_size:
7457 visit_get_buffer_size(ctx, instr);
7458 break;
7459 case nir_intrinsic_control_barrier: {
7460 if (ctx->program->chip_class == GFX6 && ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
7461 /* GFX6 only (thanks to a hw bug workaround):
7462 * The real barrier instruction isn’t needed, because an entire patch
7463 * always fits into a single wave.
7464 */
7465 break;
7466 }
7467
7468 if (ctx->program->workgroup_size > ctx->program->wave_size)
7469 bld.sopp(aco_opcode::s_barrier);
7470
7471 break;
7472 }
7473 case nir_intrinsic_memory_barrier_tcs_patch:
7474 case nir_intrinsic_group_memory_barrier:
7475 case nir_intrinsic_memory_barrier:
7476 case nir_intrinsic_memory_barrier_buffer:
7477 case nir_intrinsic_memory_barrier_image:
7478 case nir_intrinsic_memory_barrier_shared:
7479 emit_memory_barrier(ctx, instr);
7480 break;
7481 case nir_intrinsic_load_num_work_groups: {
7482 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7483 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.num_work_groups)));
7484 emit_split_vector(ctx, dst, 3);
7485 break;
7486 }
7487 case nir_intrinsic_load_local_invocation_id: {
7488 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7489 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.local_invocation_ids)));
7490 emit_split_vector(ctx, dst, 3);
7491 break;
7492 }
7493 case nir_intrinsic_load_work_group_id: {
7494 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7495 struct ac_arg *args = ctx->args->ac.workgroup_ids;
7496 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
7497 args[0].used ? Operand(get_arg(ctx, args[0])) : Operand(0u),
7498 args[1].used ? Operand(get_arg(ctx, args[1])) : Operand(0u),
7499 args[2].used ? Operand(get_arg(ctx, args[2])) : Operand(0u));
7500 emit_split_vector(ctx, dst, 3);
7501 break;
7502 }
7503 case nir_intrinsic_load_local_invocation_index: {
7504 Temp id = emit_mbcnt(ctx, bld.def(v1));
7505
7506 /* The tg_size bits [6:11] contain the subgroup id,
7507 * we need this multiplied by the wave size, and then OR the thread id to it.
7508 */
7509 if (ctx->program->wave_size == 64) {
7510 /* After the s_and the bits are already multiplied by 64 (left shifted by 6) so we can just feed that to v_or */
7511 Temp tg_num = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfc0u),
7512 get_arg(ctx, ctx->args->ac.tg_size));
7513 bld.vop2(aco_opcode::v_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, id);
7514 } else {
7515 /* Extract the bit field and multiply the result by 32 (left shift by 5), then do the OR */
7516 Temp tg_num = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
7517 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
7518 bld.vop3(aco_opcode::v_lshl_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, Operand(0x5u), id);
7519 }
7520 break;
7521 }
7522 case nir_intrinsic_load_subgroup_id: {
7523 if (ctx->stage == compute_cs) {
7524 bld.sop2(aco_opcode::s_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc),
7525 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
7526 } else {
7527 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x0u));
7528 }
7529 break;
7530 }
7531 case nir_intrinsic_load_subgroup_invocation: {
7532 emit_mbcnt(ctx, Definition(get_ssa_temp(ctx, &instr->dest.ssa)));
7533 break;
7534 }
7535 case nir_intrinsic_load_num_subgroups: {
7536 if (ctx->stage == compute_cs)
7537 bld.sop2(aco_opcode::s_and_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc), Operand(0x3fu),
7538 get_arg(ctx, ctx->args->ac.tg_size));
7539 else
7540 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x1u));
7541 break;
7542 }
7543 case nir_intrinsic_ballot: {
7544 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7545 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7546 Definition tmp = bld.def(dst.regClass());
7547 Definition lanemask_tmp = dst.size() == bld.lm.size() ? tmp : bld.def(src.regClass());
7548 if (instr->src[0].ssa->bit_size == 1) {
7549 assert(src.regClass() == bld.lm);
7550 bld.sop2(Builder::s_and, lanemask_tmp, bld.def(s1, scc), Operand(exec, bld.lm), src);
7551 } else if (instr->src[0].ssa->bit_size == 32 && src.regClass() == v1) {
7552 bld.vopc(aco_opcode::v_cmp_lg_u32, lanemask_tmp, Operand(0u), src);
7553 } else if (instr->src[0].ssa->bit_size == 64 && src.regClass() == v2) {
7554 bld.vopc(aco_opcode::v_cmp_lg_u64, lanemask_tmp, Operand(0u), src);
7555 } else {
7556 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7557 nir_print_instr(&instr->instr, stderr);
7558 fprintf(stderr, "\n");
7559 }
7560 if (dst.size() != bld.lm.size()) {
7561 /* Wave32 with ballot size set to 64 */
7562 bld.pseudo(aco_opcode::p_create_vector, Definition(tmp), lanemask_tmp.getTemp(), Operand(0u));
7563 }
7564 emit_wqm(ctx, tmp.getTemp(), dst);
7565 break;
7566 }
7567 case nir_intrinsic_shuffle:
7568 case nir_intrinsic_read_invocation: {
7569 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7570 if (!nir_src_is_divergent(instr->src[0])) {
7571 emit_uniform_subgroup(ctx, instr, src);
7572 } else {
7573 Temp tid = get_ssa_temp(ctx, instr->src[1].ssa);
7574 if (instr->intrinsic == nir_intrinsic_read_invocation || !nir_src_is_divergent(instr->src[1]))
7575 tid = bld.as_uniform(tid);
7576 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7577 if (src.regClass() == v1b || src.regClass() == v2b) {
7578 Temp tmp = bld.tmp(v1);
7579 tmp = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, src), tmp);
7580 if (dst.type() == RegType::vgpr)
7581 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(src.regClass() == v1b ? v3b : v2b), tmp);
7582 else
7583 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
7584 } else if (src.regClass() == v1) {
7585 emit_wqm(ctx, emit_bpermute(ctx, bld, tid, src), dst);
7586 } else if (src.regClass() == v2) {
7587 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7588 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7589 lo = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, lo));
7590 hi = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, hi));
7591 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7592 emit_split_vector(ctx, dst, 2);
7593 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == s1) {
7594 assert(src.regClass() == bld.lm);
7595 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src, tid);
7596 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7597 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == v1) {
7598 assert(src.regClass() == bld.lm);
7599 Temp tmp;
7600 if (ctx->program->chip_class <= GFX7)
7601 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), src, tid);
7602 else if (ctx->program->wave_size == 64)
7603 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), tid, src);
7604 else
7605 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), tid, src);
7606 tmp = emit_extract_vector(ctx, tmp, 0, v1);
7607 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), tmp);
7608 emit_wqm(ctx, bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp), dst);
7609 } else {
7610 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7611 nir_print_instr(&instr->instr, stderr);
7612 fprintf(stderr, "\n");
7613 }
7614 }
7615 break;
7616 }
7617 case nir_intrinsic_load_sample_id: {
7618 bld.vop3(aco_opcode::v_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7619 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
7620 break;
7621 }
7622 case nir_intrinsic_load_sample_mask_in: {
7623 visit_load_sample_mask_in(ctx, instr);
7624 break;
7625 }
7626 case nir_intrinsic_read_first_invocation: {
7627 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7628 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7629 if (src.regClass() == v1b || src.regClass() == v2b || src.regClass() == v1) {
7630 emit_wqm(ctx,
7631 bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), src),
7632 dst);
7633 } else if (src.regClass() == v2) {
7634 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7635 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7636 lo = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), lo));
7637 hi = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), hi));
7638 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7639 emit_split_vector(ctx, dst, 2);
7640 } else if (instr->dest.ssa.bit_size == 1) {
7641 assert(src.regClass() == bld.lm);
7642 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src,
7643 bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)));
7644 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7645 } else if (src.regClass() == s1) {
7646 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
7647 } else if (src.regClass() == s2) {
7648 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
7649 } else {
7650 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7651 nir_print_instr(&instr->instr, stderr);
7652 fprintf(stderr, "\n");
7653 }
7654 break;
7655 }
7656 case nir_intrinsic_vote_all: {
7657 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7658 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7659 assert(src.regClass() == bld.lm);
7660 assert(dst.regClass() == bld.lm);
7661
7662 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
7663 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
7664 bld.sop1(Builder::s_not, Definition(dst), bld.def(s1, scc), cond);
7665 break;
7666 }
7667 case nir_intrinsic_vote_any: {
7668 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7669 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7670 assert(src.regClass() == bld.lm);
7671 assert(dst.regClass() == bld.lm);
7672
7673 Temp tmp = bool_to_scalar_condition(ctx, src);
7674 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7675 break;
7676 }
7677 case nir_intrinsic_reduce:
7678 case nir_intrinsic_inclusive_scan:
7679 case nir_intrinsic_exclusive_scan: {
7680 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7681 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7682 nir_op op = (nir_op) nir_intrinsic_reduction_op(instr);
7683 unsigned cluster_size = instr->intrinsic == nir_intrinsic_reduce ?
7684 nir_intrinsic_cluster_size(instr) : 0;
7685 cluster_size = util_next_power_of_two(MIN2(cluster_size ? cluster_size : ctx->program->wave_size, ctx->program->wave_size));
7686
7687 if (!nir_src_is_divergent(instr->src[0]) && (op == nir_op_ior || op == nir_op_iand)) {
7688 emit_uniform_subgroup(ctx, instr, src);
7689 } else if (instr->dest.ssa.bit_size == 1) {
7690 if (op == nir_op_imul || op == nir_op_umin || op == nir_op_imin)
7691 op = nir_op_iand;
7692 else if (op == nir_op_iadd)
7693 op = nir_op_ixor;
7694 else if (op == nir_op_umax || op == nir_op_imax)
7695 op = nir_op_ior;
7696 assert(op == nir_op_iand || op == nir_op_ior || op == nir_op_ixor);
7697
7698 switch (instr->intrinsic) {
7699 case nir_intrinsic_reduce:
7700 emit_wqm(ctx, emit_boolean_reduce(ctx, op, cluster_size, src), dst);
7701 break;
7702 case nir_intrinsic_exclusive_scan:
7703 emit_wqm(ctx, emit_boolean_exclusive_scan(ctx, op, src), dst);
7704 break;
7705 case nir_intrinsic_inclusive_scan:
7706 emit_wqm(ctx, emit_boolean_inclusive_scan(ctx, op, src), dst);
7707 break;
7708 default:
7709 assert(false);
7710 }
7711 } else if (cluster_size == 1) {
7712 bld.copy(Definition(dst), src);
7713 } else {
7714 unsigned bit_size = instr->src[0].ssa->bit_size;
7715
7716 src = emit_extract_vector(ctx, src, 0, RegClass::get(RegType::vgpr, bit_size / 8));
7717
7718 ReduceOp reduce_op;
7719 switch (op) {
7720 #define CASEI(name) case nir_op_##name: reduce_op = (bit_size == 32) ? name##32 : (bit_size == 16) ? name##16 : (bit_size == 8) ? name##8 : name##64; break;
7721 #define CASEF(name) case nir_op_##name: reduce_op = (bit_size == 32) ? name##32 : (bit_size == 16) ? name##16 : name##64; break;
7722 CASEI(iadd)
7723 CASEI(imul)
7724 CASEI(imin)
7725 CASEI(umin)
7726 CASEI(imax)
7727 CASEI(umax)
7728 CASEI(iand)
7729 CASEI(ior)
7730 CASEI(ixor)
7731 CASEF(fadd)
7732 CASEF(fmul)
7733 CASEF(fmin)
7734 CASEF(fmax)
7735 default:
7736 unreachable("unknown reduction op");
7737 #undef CASEI
7738 #undef CASEF
7739 }
7740
7741 aco_opcode aco_op;
7742 switch (instr->intrinsic) {
7743 case nir_intrinsic_reduce: aco_op = aco_opcode::p_reduce; break;
7744 case nir_intrinsic_inclusive_scan: aco_op = aco_opcode::p_inclusive_scan; break;
7745 case nir_intrinsic_exclusive_scan: aco_op = aco_opcode::p_exclusive_scan; break;
7746 default:
7747 unreachable("unknown reduce intrinsic");
7748 }
7749
7750 aco_ptr<Pseudo_reduction_instruction> reduce{create_instruction<Pseudo_reduction_instruction>(aco_op, Format::PSEUDO_REDUCTION, 3, 5)};
7751 reduce->operands[0] = Operand(src);
7752 // filled in by aco_reduce_assign.cpp, used internally as part of the
7753 // reduce sequence
7754 assert(dst.size() == 1 || dst.size() == 2);
7755 reduce->operands[1] = Operand(RegClass(RegType::vgpr, dst.size()).as_linear());
7756 reduce->operands[2] = Operand(v1.as_linear());
7757
7758 Temp tmp_dst = bld.tmp(dst.regClass());
7759 reduce->definitions[0] = Definition(tmp_dst);
7760 reduce->definitions[1] = bld.def(ctx->program->lane_mask); // used internally
7761 reduce->definitions[2] = Definition();
7762 reduce->definitions[3] = Definition(scc, s1);
7763 reduce->definitions[4] = Definition();
7764 reduce->reduce_op = reduce_op;
7765 reduce->cluster_size = cluster_size;
7766 ctx->block->instructions.emplace_back(std::move(reduce));
7767
7768 emit_wqm(ctx, tmp_dst, dst);
7769 }
7770 break;
7771 }
7772 case nir_intrinsic_quad_broadcast: {
7773 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7774 if (!nir_dest_is_divergent(instr->dest)) {
7775 emit_uniform_subgroup(ctx, instr, src);
7776 } else {
7777 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7778 unsigned lane = nir_src_as_const_value(instr->src[1])->u32;
7779 uint32_t dpp_ctrl = dpp_quad_perm(lane, lane, lane, lane);
7780
7781 if (instr->dest.ssa.bit_size == 1) {
7782 assert(src.regClass() == bld.lm);
7783 assert(dst.regClass() == bld.lm);
7784 uint32_t half_mask = 0x11111111u << lane;
7785 Temp mask_tmp = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(half_mask), Operand(half_mask));
7786 Temp tmp = bld.tmp(bld.lm);
7787 bld.sop1(Builder::s_wqm, Definition(tmp),
7788 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), mask_tmp,
7789 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm))));
7790 emit_wqm(ctx, tmp, dst);
7791 } else if (instr->dest.ssa.bit_size == 8) {
7792 Temp tmp = bld.tmp(v1);
7793 if (ctx->program->chip_class >= GFX8)
7794 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), tmp);
7795 else
7796 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), tmp);
7797 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v3b), tmp);
7798 } else if (instr->dest.ssa.bit_size == 16) {
7799 Temp tmp = bld.tmp(v1);
7800 if (ctx->program->chip_class >= GFX8)
7801 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), tmp);
7802 else
7803 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), tmp);
7804 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
7805 } else if (instr->dest.ssa.bit_size == 32) {
7806 if (ctx->program->chip_class >= GFX8)
7807 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), dst);
7808 else
7809 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), dst);
7810 } else if (instr->dest.ssa.bit_size == 64) {
7811 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7812 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7813 if (ctx->program->chip_class >= GFX8) {
7814 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
7815 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
7816 } else {
7817 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, (1 << 15) | dpp_ctrl));
7818 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, (1 << 15) | dpp_ctrl));
7819 }
7820 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7821 emit_split_vector(ctx, dst, 2);
7822 } else {
7823 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7824 nir_print_instr(&instr->instr, stderr);
7825 fprintf(stderr, "\n");
7826 }
7827 }
7828 break;
7829 }
7830 case nir_intrinsic_quad_swap_horizontal:
7831 case nir_intrinsic_quad_swap_vertical:
7832 case nir_intrinsic_quad_swap_diagonal:
7833 case nir_intrinsic_quad_swizzle_amd: {
7834 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7835 if (!nir_dest_is_divergent(instr->dest)) {
7836 emit_uniform_subgroup(ctx, instr, src);
7837 break;
7838 }
7839 uint16_t dpp_ctrl = 0;
7840 switch (instr->intrinsic) {
7841 case nir_intrinsic_quad_swap_horizontal:
7842 dpp_ctrl = dpp_quad_perm(1, 0, 3, 2);
7843 break;
7844 case nir_intrinsic_quad_swap_vertical:
7845 dpp_ctrl = dpp_quad_perm(2, 3, 0, 1);
7846 break;
7847 case nir_intrinsic_quad_swap_diagonal:
7848 dpp_ctrl = dpp_quad_perm(3, 2, 1, 0);
7849 break;
7850 case nir_intrinsic_quad_swizzle_amd:
7851 dpp_ctrl = nir_intrinsic_swizzle_mask(instr);
7852 break;
7853 default:
7854 break;
7855 }
7856 if (ctx->program->chip_class < GFX8)
7857 dpp_ctrl |= (1 << 15);
7858
7859 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7860 if (instr->dest.ssa.bit_size == 1) {
7861 assert(src.regClass() == bld.lm);
7862 src = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand((uint32_t)-1), src);
7863 if (ctx->program->chip_class >= GFX8)
7864 src = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
7865 else
7866 src = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
7867 Temp tmp = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), src);
7868 emit_wqm(ctx, tmp, dst);
7869 } else if (instr->dest.ssa.bit_size == 8) {
7870 Temp tmp = bld.tmp(v1);
7871 if (ctx->program->chip_class >= GFX8)
7872 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), tmp);
7873 else
7874 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl), tmp);
7875 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v3b), tmp);
7876 } else if (instr->dest.ssa.bit_size == 16) {
7877 Temp tmp = bld.tmp(v1);
7878 if (ctx->program->chip_class >= GFX8)
7879 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), tmp);
7880 else
7881 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl), tmp);
7882 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
7883 } else if (instr->dest.ssa.bit_size == 32) {
7884 Temp tmp;
7885 if (ctx->program->chip_class >= GFX8)
7886 tmp = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
7887 else
7888 tmp = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
7889 emit_wqm(ctx, tmp, dst);
7890 } else if (instr->dest.ssa.bit_size == 64) {
7891 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7892 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7893 if (ctx->program->chip_class >= GFX8) {
7894 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
7895 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
7896 } else {
7897 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, dpp_ctrl));
7898 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, dpp_ctrl));
7899 }
7900 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7901 emit_split_vector(ctx, dst, 2);
7902 } else {
7903 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7904 nir_print_instr(&instr->instr, stderr);
7905 fprintf(stderr, "\n");
7906 }
7907 break;
7908 }
7909 case nir_intrinsic_masked_swizzle_amd: {
7910 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7911 if (!nir_dest_is_divergent(instr->dest)) {
7912 emit_uniform_subgroup(ctx, instr, src);
7913 break;
7914 }
7915 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7916 uint32_t mask = nir_intrinsic_swizzle_mask(instr);
7917 if (dst.regClass() == v1) {
7918 emit_wqm(ctx,
7919 bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, mask, 0, false),
7920 dst);
7921 } else if (dst.regClass() == v2) {
7922 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7923 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7924 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, mask, 0, false));
7925 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, mask, 0, false));
7926 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7927 emit_split_vector(ctx, dst, 2);
7928 } else {
7929 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7930 nir_print_instr(&instr->instr, stderr);
7931 fprintf(stderr, "\n");
7932 }
7933 break;
7934 }
7935 case nir_intrinsic_write_invocation_amd: {
7936 Temp src = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
7937 Temp val = bld.as_uniform(get_ssa_temp(ctx, instr->src[1].ssa));
7938 Temp lane = bld.as_uniform(get_ssa_temp(ctx, instr->src[2].ssa));
7939 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7940 if (dst.regClass() == v1) {
7941 /* src2 is ignored for writelane. RA assigns the same reg for dst */
7942 emit_wqm(ctx, bld.writelane(bld.def(v1), val, lane, src), dst);
7943 } else if (dst.regClass() == v2) {
7944 Temp src_lo = bld.tmp(v1), src_hi = bld.tmp(v1);
7945 Temp val_lo = bld.tmp(s1), val_hi = bld.tmp(s1);
7946 bld.pseudo(aco_opcode::p_split_vector, Definition(src_lo), Definition(src_hi), src);
7947 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
7948 Temp lo = emit_wqm(ctx, bld.writelane(bld.def(v1), val_lo, lane, src_hi));
7949 Temp hi = emit_wqm(ctx, bld.writelane(bld.def(v1), val_hi, lane, src_hi));
7950 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7951 emit_split_vector(ctx, dst, 2);
7952 } else {
7953 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7954 nir_print_instr(&instr->instr, stderr);
7955 fprintf(stderr, "\n");
7956 }
7957 break;
7958 }
7959 case nir_intrinsic_mbcnt_amd: {
7960 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7961 RegClass rc = RegClass(src.type(), 1);
7962 Temp mask_lo = bld.tmp(rc), mask_hi = bld.tmp(rc);
7963 bld.pseudo(aco_opcode::p_split_vector, Definition(mask_lo), Definition(mask_hi), src);
7964 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7965 Temp wqm_tmp = emit_mbcnt(ctx, bld.def(v1), Operand(mask_lo), Operand(mask_hi));
7966 emit_wqm(ctx, wqm_tmp, dst);
7967 break;
7968 }
7969 case nir_intrinsic_load_helper_invocation: {
7970 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7971 bld.pseudo(aco_opcode::p_load_helper, Definition(dst));
7972 ctx->block->kind |= block_kind_needs_lowering;
7973 ctx->program->needs_exact = true;
7974 break;
7975 }
7976 case nir_intrinsic_is_helper_invocation: {
7977 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7978 bld.pseudo(aco_opcode::p_is_helper, Definition(dst));
7979 ctx->block->kind |= block_kind_needs_lowering;
7980 ctx->program->needs_exact = true;
7981 break;
7982 }
7983 case nir_intrinsic_demote:
7984 bld.pseudo(aco_opcode::p_demote_to_helper, Operand(-1u));
7985
7986 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
7987 ctx->cf_info.exec_potentially_empty_discard = true;
7988 ctx->block->kind |= block_kind_uses_demote;
7989 ctx->program->needs_exact = true;
7990 break;
7991 case nir_intrinsic_demote_if: {
7992 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7993 assert(src.regClass() == bld.lm);
7994 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
7995 bld.pseudo(aco_opcode::p_demote_to_helper, cond);
7996
7997 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
7998 ctx->cf_info.exec_potentially_empty_discard = true;
7999 ctx->block->kind |= block_kind_uses_demote;
8000 ctx->program->needs_exact = true;
8001 break;
8002 }
8003 case nir_intrinsic_first_invocation: {
8004 emit_wqm(ctx, bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)),
8005 get_ssa_temp(ctx, &instr->dest.ssa));
8006 break;
8007 }
8008 case nir_intrinsic_shader_clock: {
8009 aco_opcode opcode =
8010 nir_intrinsic_memory_scope(instr) == NIR_SCOPE_DEVICE ?
8011 aco_opcode::s_memrealtime : aco_opcode::s_memtime;
8012 bld.smem(opcode, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), false);
8013 emit_split_vector(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 2);
8014 break;
8015 }
8016 case nir_intrinsic_load_vertex_id_zero_base: {
8017 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8018 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.vertex_id));
8019 break;
8020 }
8021 case nir_intrinsic_load_first_vertex: {
8022 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8023 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.base_vertex));
8024 break;
8025 }
8026 case nir_intrinsic_load_base_instance: {
8027 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8028 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.start_instance));
8029 break;
8030 }
8031 case nir_intrinsic_load_instance_id: {
8032 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8033 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.instance_id));
8034 break;
8035 }
8036 case nir_intrinsic_load_draw_id: {
8037 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8038 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.draw_id));
8039 break;
8040 }
8041 case nir_intrinsic_load_invocation_id: {
8042 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8043
8044 if (ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
8045 if (ctx->options->chip_class >= GFX10)
8046 bld.vop2_e64(aco_opcode::v_and_b32, Definition(dst), Operand(127u), get_arg(ctx, ctx->args->ac.gs_invocation_id));
8047 else
8048 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_invocation_id));
8049 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
8050 bld.vop3(aco_opcode::v_bfe_u32, Definition(dst),
8051 get_arg(ctx, ctx->args->ac.tcs_rel_ids), Operand(8u), Operand(5u));
8052 } else {
8053 unreachable("Unsupported stage for load_invocation_id");
8054 }
8055
8056 break;
8057 }
8058 case nir_intrinsic_load_primitive_id: {
8059 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8060
8061 switch (ctx->shader->info.stage) {
8062 case MESA_SHADER_GEOMETRY:
8063 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_prim_id));
8064 break;
8065 case MESA_SHADER_TESS_CTRL:
8066 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tcs_patch_id));
8067 break;
8068 case MESA_SHADER_TESS_EVAL:
8069 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tes_patch_id));
8070 break;
8071 default:
8072 unreachable("Unimplemented shader stage for nir_intrinsic_load_primitive_id");
8073 }
8074
8075 break;
8076 }
8077 case nir_intrinsic_load_patch_vertices_in: {
8078 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL ||
8079 ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
8080
8081 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8082 bld.copy(Definition(dst), Operand(ctx->args->options->key.tcs.input_vertices));
8083 break;
8084 }
8085 case nir_intrinsic_emit_vertex_with_counter: {
8086 visit_emit_vertex_with_counter(ctx, instr);
8087 break;
8088 }
8089 case nir_intrinsic_end_primitive_with_counter: {
8090 unsigned stream = nir_intrinsic_stream_id(instr);
8091 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(true, false, stream));
8092 break;
8093 }
8094 case nir_intrinsic_set_vertex_count: {
8095 /* unused, the HW keeps track of this for us */
8096 break;
8097 }
8098 default:
8099 fprintf(stderr, "Unimplemented intrinsic instr: ");
8100 nir_print_instr(&instr->instr, stderr);
8101 fprintf(stderr, "\n");
8102 abort();
8103
8104 break;
8105 }
8106 }
8107
8108
8109 void tex_fetch_ptrs(isel_context *ctx, nir_tex_instr *instr,
8110 Temp *res_ptr, Temp *samp_ptr, Temp *fmask_ptr,
8111 enum glsl_base_type *stype)
8112 {
8113 nir_deref_instr *texture_deref_instr = NULL;
8114 nir_deref_instr *sampler_deref_instr = NULL;
8115 int plane = -1;
8116
8117 for (unsigned i = 0; i < instr->num_srcs; i++) {
8118 switch (instr->src[i].src_type) {
8119 case nir_tex_src_texture_deref:
8120 texture_deref_instr = nir_src_as_deref(instr->src[i].src);
8121 break;
8122 case nir_tex_src_sampler_deref:
8123 sampler_deref_instr = nir_src_as_deref(instr->src[i].src);
8124 break;
8125 case nir_tex_src_plane:
8126 plane = nir_src_as_int(instr->src[i].src);
8127 break;
8128 default:
8129 break;
8130 }
8131 }
8132
8133 *stype = glsl_get_sampler_result_type(texture_deref_instr->type);
8134
8135 if (!sampler_deref_instr)
8136 sampler_deref_instr = texture_deref_instr;
8137
8138 if (plane >= 0) {
8139 assert(instr->op != nir_texop_txf_ms &&
8140 instr->op != nir_texop_samples_identical);
8141 assert(instr->sampler_dim != GLSL_SAMPLER_DIM_BUF);
8142 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, (aco_descriptor_type)(ACO_DESC_PLANE_0 + plane), instr, false, false);
8143 } else if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
8144 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_BUFFER, instr, false, false);
8145 } else if (instr->op == nir_texop_fragment_mask_fetch) {
8146 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
8147 } else {
8148 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_IMAGE, instr, false, false);
8149 }
8150 if (samp_ptr) {
8151 *samp_ptr = get_sampler_desc(ctx, sampler_deref_instr, ACO_DESC_SAMPLER, instr, false, false);
8152
8153 if (instr->sampler_dim < GLSL_SAMPLER_DIM_RECT && ctx->options->chip_class < GFX8) {
8154 /* fix sampler aniso on SI/CI: samp[0] = samp[0] & img[7] */
8155 Builder bld(ctx->program, ctx->block);
8156
8157 /* to avoid unnecessary moves, we split and recombine sampler and image */
8158 Temp img[8] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1),
8159 bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
8160 Temp samp[4] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
8161 bld.pseudo(aco_opcode::p_split_vector, Definition(img[0]), Definition(img[1]),
8162 Definition(img[2]), Definition(img[3]), Definition(img[4]),
8163 Definition(img[5]), Definition(img[6]), Definition(img[7]), *res_ptr);
8164 bld.pseudo(aco_opcode::p_split_vector, Definition(samp[0]), Definition(samp[1]),
8165 Definition(samp[2]), Definition(samp[3]), *samp_ptr);
8166
8167 samp[0] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), samp[0], img[7]);
8168 *res_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
8169 img[0], img[1], img[2], img[3],
8170 img[4], img[5], img[6], img[7]);
8171 *samp_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
8172 samp[0], samp[1], samp[2], samp[3]);
8173 }
8174 }
8175 if (fmask_ptr && (instr->op == nir_texop_txf_ms ||
8176 instr->op == nir_texop_samples_identical))
8177 *fmask_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
8178 }
8179
8180 void build_cube_select(isel_context *ctx, Temp ma, Temp id, Temp deriv,
8181 Temp *out_ma, Temp *out_sc, Temp *out_tc)
8182 {
8183 Builder bld(ctx->program, ctx->block);
8184
8185 Temp deriv_x = emit_extract_vector(ctx, deriv, 0, v1);
8186 Temp deriv_y = emit_extract_vector(ctx, deriv, 1, v1);
8187 Temp deriv_z = emit_extract_vector(ctx, deriv, 2, v1);
8188
8189 Operand neg_one(0xbf800000u);
8190 Operand one(0x3f800000u);
8191 Operand two(0x40000000u);
8192 Operand four(0x40800000u);
8193
8194 Temp is_ma_positive = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), ma);
8195 Temp sgn_ma = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, one, is_ma_positive);
8196 Temp neg_sgn_ma = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0u), sgn_ma);
8197
8198 Temp is_ma_z = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), four, id);
8199 Temp is_ma_y = bld.vopc(aco_opcode::v_cmp_le_f32, bld.def(bld.lm), two, id);
8200 is_ma_y = bld.sop2(Builder::s_andn2, bld.hint_vcc(bld.def(bld.lm)), is_ma_y, is_ma_z);
8201 Temp is_not_ma_x = bld.sop2(aco_opcode::s_or_b64, bld.hint_vcc(bld.def(bld.lm)), bld.def(s1, scc), is_ma_z, is_ma_y);
8202
8203 // select sc
8204 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_z, deriv_x, is_not_ma_x);
8205 Temp sgn = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1),
8206 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_sgn_ma, sgn_ma, is_ma_z),
8207 one, is_ma_y);
8208 *out_sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
8209
8210 // select tc
8211 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_y, deriv_z, is_ma_y);
8212 sgn = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, sgn_ma, is_ma_y);
8213 *out_tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
8214
8215 // select ma
8216 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8217 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_x, deriv_y, is_ma_y),
8218 deriv_z, is_ma_z);
8219 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffffu), tmp);
8220 *out_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), two, tmp);
8221 }
8222
8223 void prepare_cube_coords(isel_context *ctx, std::vector<Temp>& coords, Temp* ddx, Temp* ddy, bool is_deriv, bool is_array)
8224 {
8225 Builder bld(ctx->program, ctx->block);
8226 Temp ma, tc, sc, id;
8227
8228 if (is_array) {
8229 coords[3] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[3]);
8230
8231 // see comment in ac_prepare_cube_coords()
8232 if (ctx->options->chip_class <= GFX8)
8233 coords[3] = bld.vop2(aco_opcode::v_max_f32, bld.def(v1), Operand(0u), coords[3]);
8234 }
8235
8236 ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8237
8238 aco_ptr<VOP3A_instruction> vop3a{create_instruction<VOP3A_instruction>(aco_opcode::v_rcp_f32, asVOP3(Format::VOP1), 1, 1)};
8239 vop3a->operands[0] = Operand(ma);
8240 vop3a->abs[0] = true;
8241 Temp invma = bld.tmp(v1);
8242 vop3a->definitions[0] = Definition(invma);
8243 ctx->block->instructions.emplace_back(std::move(vop3a));
8244
8245 sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8246 if (!is_deriv)
8247 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, invma, Operand(0x3fc00000u/*1.5*/));
8248
8249 tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8250 if (!is_deriv)
8251 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, invma, Operand(0x3fc00000u/*1.5*/));
8252
8253 id = bld.vop3(aco_opcode::v_cubeid_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8254
8255 if (is_deriv) {
8256 sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), sc, invma);
8257 tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tc, invma);
8258
8259 for (unsigned i = 0; i < 2; i++) {
8260 // see comment in ac_prepare_cube_coords()
8261 Temp deriv_ma;
8262 Temp deriv_sc, deriv_tc;
8263 build_cube_select(ctx, ma, id, i ? *ddy : *ddx,
8264 &deriv_ma, &deriv_sc, &deriv_tc);
8265
8266 deriv_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, invma);
8267
8268 Temp x = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
8269 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_sc, invma),
8270 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, sc));
8271 Temp y = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
8272 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_tc, invma),
8273 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, tc));
8274 *(i ? ddy : ddx) = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), x, y);
8275 }
8276
8277 sc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), sc);
8278 tc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), tc);
8279 }
8280
8281 if (is_array)
8282 id = bld.vop2(aco_opcode::v_madmk_f32, bld.def(v1), coords[3], id, Operand(0x41000000u/*8.0*/));
8283 coords.resize(3);
8284 coords[0] = sc;
8285 coords[1] = tc;
8286 coords[2] = id;
8287 }
8288
8289 void get_const_vec(nir_ssa_def *vec, nir_const_value *cv[4])
8290 {
8291 if (vec->parent_instr->type != nir_instr_type_alu)
8292 return;
8293 nir_alu_instr *vec_instr = nir_instr_as_alu(vec->parent_instr);
8294 if (vec_instr->op != nir_op_vec(vec->num_components))
8295 return;
8296
8297 for (unsigned i = 0; i < vec->num_components; i++) {
8298 cv[i] = vec_instr->src[i].swizzle[0] == 0 ?
8299 nir_src_as_const_value(vec_instr->src[i].src) : NULL;
8300 }
8301 }
8302
8303 void visit_tex(isel_context *ctx, nir_tex_instr *instr)
8304 {
8305 Builder bld(ctx->program, ctx->block);
8306 bool has_bias = false, has_lod = false, level_zero = false, has_compare = false,
8307 has_offset = false, has_ddx = false, has_ddy = false, has_derivs = false, has_sample_index = false,
8308 has_clamped_lod = false;
8309 Temp resource, sampler, fmask_ptr, bias = Temp(), compare = Temp(), sample_index = Temp(),
8310 lod = Temp(), offset = Temp(), ddx = Temp(), ddy = Temp(),
8311 clamped_lod = Temp();
8312 std::vector<Temp> coords;
8313 std::vector<Temp> derivs;
8314 nir_const_value *sample_index_cv = NULL;
8315 nir_const_value *const_offset[4] = {NULL, NULL, NULL, NULL};
8316 enum glsl_base_type stype;
8317 tex_fetch_ptrs(ctx, instr, &resource, &sampler, &fmask_ptr, &stype);
8318
8319 bool tg4_integer_workarounds = ctx->options->chip_class <= GFX8 && instr->op == nir_texop_tg4 &&
8320 (stype == GLSL_TYPE_UINT || stype == GLSL_TYPE_INT);
8321 bool tg4_integer_cube_workaround = tg4_integer_workarounds &&
8322 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE;
8323
8324 for (unsigned i = 0; i < instr->num_srcs; i++) {
8325 switch (instr->src[i].src_type) {
8326 case nir_tex_src_coord: {
8327 Temp coord = get_ssa_temp(ctx, instr->src[i].src.ssa);
8328 for (unsigned i = 0; i < coord.size(); i++)
8329 coords.emplace_back(emit_extract_vector(ctx, coord, i, v1));
8330 break;
8331 }
8332 case nir_tex_src_bias:
8333 bias = get_ssa_temp(ctx, instr->src[i].src.ssa);
8334 has_bias = true;
8335 break;
8336 case nir_tex_src_lod: {
8337 nir_const_value *val = nir_src_as_const_value(instr->src[i].src);
8338
8339 if (val && val->f32 <= 0.0) {
8340 level_zero = true;
8341 } else {
8342 lod = get_ssa_temp(ctx, instr->src[i].src.ssa);
8343 has_lod = true;
8344 }
8345 break;
8346 }
8347 case nir_tex_src_min_lod:
8348 clamped_lod = get_ssa_temp(ctx, instr->src[i].src.ssa);
8349 has_clamped_lod = true;
8350 break;
8351 case nir_tex_src_comparator:
8352 if (instr->is_shadow) {
8353 compare = get_ssa_temp(ctx, instr->src[i].src.ssa);
8354 has_compare = true;
8355 }
8356 break;
8357 case nir_tex_src_offset:
8358 offset = get_ssa_temp(ctx, instr->src[i].src.ssa);
8359 get_const_vec(instr->src[i].src.ssa, const_offset);
8360 has_offset = true;
8361 break;
8362 case nir_tex_src_ddx:
8363 ddx = get_ssa_temp(ctx, instr->src[i].src.ssa);
8364 has_ddx = true;
8365 break;
8366 case nir_tex_src_ddy:
8367 ddy = get_ssa_temp(ctx, instr->src[i].src.ssa);
8368 has_ddy = true;
8369 break;
8370 case nir_tex_src_ms_index:
8371 sample_index = get_ssa_temp(ctx, instr->src[i].src.ssa);
8372 sample_index_cv = nir_src_as_const_value(instr->src[i].src);
8373 has_sample_index = true;
8374 break;
8375 case nir_tex_src_texture_offset:
8376 case nir_tex_src_sampler_offset:
8377 default:
8378 break;
8379 }
8380 }
8381
8382 if (instr->op == nir_texop_txs && instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
8383 return get_buffer_size(ctx, resource, get_ssa_temp(ctx, &instr->dest.ssa), true);
8384
8385 if (instr->op == nir_texop_texture_samples) {
8386 Temp dword3 = emit_extract_vector(ctx, resource, 3, s1);
8387
8388 Temp samples_log2 = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(16u | 4u<<16));
8389 Temp samples = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), Operand(1u), samples_log2);
8390 Temp type = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(28u | 4u<<16 /* offset=28, width=4 */));
8391
8392 Operand default_sample = Operand(1u);
8393 if (ctx->options->robust_buffer_access) {
8394 /* Extract the second dword of the descriptor, if it's
8395 * all zero, then it's a null descriptor.
8396 */
8397 Temp dword1 = emit_extract_vector(ctx, resource, 1, s1);
8398 Temp is_non_null_descriptor = bld.sopc(aco_opcode::s_cmp_gt_u32, bld.def(s1, scc), dword1, Operand(0u));
8399 default_sample = Operand(is_non_null_descriptor);
8400 }
8401
8402 Temp is_msaa = bld.sopc(aco_opcode::s_cmp_ge_u32, bld.def(s1, scc), type, Operand(14u));
8403 bld.sop2(aco_opcode::s_cselect_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
8404 samples, default_sample, bld.scc(is_msaa));
8405 return;
8406 }
8407
8408 if (has_offset && instr->op != nir_texop_txf && instr->op != nir_texop_txf_ms) {
8409 aco_ptr<Instruction> tmp_instr;
8410 Temp acc, pack = Temp();
8411
8412 uint32_t pack_const = 0;
8413 for (unsigned i = 0; i < offset.size(); i++) {
8414 if (!const_offset[i])
8415 continue;
8416 pack_const |= (const_offset[i]->u32 & 0x3Fu) << (8u * i);
8417 }
8418
8419 if (offset.type() == RegType::sgpr) {
8420 for (unsigned i = 0; i < offset.size(); i++) {
8421 if (const_offset[i])
8422 continue;
8423
8424 acc = emit_extract_vector(ctx, offset, i, s1);
8425 acc = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(0x3Fu));
8426
8427 if (i) {
8428 acc = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(8u * i));
8429 }
8430
8431 if (pack == Temp()) {
8432 pack = acc;
8433 } else {
8434 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), pack, acc);
8435 }
8436 }
8437
8438 if (pack_const && pack != Temp())
8439 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(pack_const), pack);
8440 } else {
8441 for (unsigned i = 0; i < offset.size(); i++) {
8442 if (const_offset[i])
8443 continue;
8444
8445 acc = emit_extract_vector(ctx, offset, i, v1);
8446 acc = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x3Fu), acc);
8447
8448 if (i) {
8449 acc = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(8u * i), acc);
8450 }
8451
8452 if (pack == Temp()) {
8453 pack = acc;
8454 } else {
8455 pack = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), pack, acc);
8456 }
8457 }
8458
8459 if (pack_const && pack != Temp())
8460 pack = bld.sop2(aco_opcode::v_or_b32, bld.def(v1), Operand(pack_const), pack);
8461 }
8462 if (pack_const && pack == Temp())
8463 offset = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(pack_const));
8464 else if (pack == Temp())
8465 has_offset = false;
8466 else
8467 offset = pack;
8468 }
8469
8470 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE && instr->coord_components)
8471 prepare_cube_coords(ctx, coords, &ddx, &ddy, instr->op == nir_texop_txd, instr->is_array && instr->op != nir_texop_lod);
8472
8473 /* pack derivatives */
8474 if (has_ddx || has_ddy) {
8475 if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D && ctx->options->chip_class == GFX9) {
8476 assert(has_ddx && has_ddy && ddx.size() == 1 && ddy.size() == 1);
8477 Temp zero = bld.copy(bld.def(v1), Operand(0u));
8478 derivs = {ddx, zero, ddy, zero};
8479 } else {
8480 for (unsigned i = 0; has_ddx && i < ddx.size(); i++)
8481 derivs.emplace_back(emit_extract_vector(ctx, ddx, i, v1));
8482 for (unsigned i = 0; has_ddy && i < ddy.size(); i++)
8483 derivs.emplace_back(emit_extract_vector(ctx, ddy, i, v1));
8484 }
8485 has_derivs = true;
8486 }
8487
8488 if (instr->coord_components > 1 &&
8489 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
8490 instr->is_array &&
8491 instr->op != nir_texop_txf)
8492 coords[1] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[1]);
8493
8494 if (instr->coord_components > 2 &&
8495 (instr->sampler_dim == GLSL_SAMPLER_DIM_2D ||
8496 instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
8497 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS ||
8498 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
8499 instr->is_array &&
8500 instr->op != nir_texop_txf &&
8501 instr->op != nir_texop_txf_ms &&
8502 instr->op != nir_texop_fragment_fetch &&
8503 instr->op != nir_texop_fragment_mask_fetch)
8504 coords[2] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[2]);
8505
8506 if (ctx->options->chip_class == GFX9 &&
8507 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
8508 instr->op != nir_texop_lod && instr->coord_components) {
8509 assert(coords.size() > 0 && coords.size() < 3);
8510
8511 coords.insert(std::next(coords.begin()), bld.copy(bld.def(v1), instr->op == nir_texop_txf ?
8512 Operand((uint32_t) 0) :
8513 Operand((uint32_t) 0x3f000000)));
8514 }
8515
8516 bool da = should_declare_array(ctx, instr->sampler_dim, instr->is_array);
8517
8518 if (instr->op == nir_texop_samples_identical)
8519 resource = fmask_ptr;
8520
8521 else if ((instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
8522 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
8523 instr->op != nir_texop_txs &&
8524 instr->op != nir_texop_fragment_fetch &&
8525 instr->op != nir_texop_fragment_mask_fetch) {
8526 assert(has_sample_index);
8527 Operand op(sample_index);
8528 if (sample_index_cv)
8529 op = Operand(sample_index_cv->u32);
8530 sample_index = adjust_sample_index_using_fmask(ctx, da, coords, op, fmask_ptr);
8531 }
8532
8533 if (has_offset && (instr->op == nir_texop_txf || instr->op == nir_texop_txf_ms)) {
8534 for (unsigned i = 0; i < std::min(offset.size(), instr->coord_components); i++) {
8535 Temp off = emit_extract_vector(ctx, offset, i, v1);
8536 coords[i] = bld.vadd32(bld.def(v1), coords[i], off);
8537 }
8538 has_offset = false;
8539 }
8540
8541 /* Build tex instruction */
8542 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
8543 unsigned dim = ctx->options->chip_class >= GFX10 && instr->sampler_dim != GLSL_SAMPLER_DIM_BUF
8544 ? ac_get_sampler_dim(ctx->options->chip_class, instr->sampler_dim, instr->is_array)
8545 : 0;
8546 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8547 Temp tmp_dst = dst;
8548
8549 /* gather4 selects the component by dmask and always returns vec4 */
8550 if (instr->op == nir_texop_tg4) {
8551 assert(instr->dest.ssa.num_components == 4);
8552 if (instr->is_shadow)
8553 dmask = 1;
8554 else
8555 dmask = 1 << instr->component;
8556 if (tg4_integer_cube_workaround || dst.type() == RegType::sgpr)
8557 tmp_dst = bld.tmp(v4);
8558 } else if (instr->op == nir_texop_samples_identical) {
8559 tmp_dst = bld.tmp(v1);
8560 } else if (util_bitcount(dmask) != instr->dest.ssa.num_components || dst.type() == RegType::sgpr) {
8561 tmp_dst = bld.tmp(RegClass(RegType::vgpr, util_bitcount(dmask)));
8562 }
8563
8564 aco_ptr<MIMG_instruction> tex;
8565 if (instr->op == nir_texop_txs || instr->op == nir_texop_query_levels) {
8566 if (!has_lod)
8567 lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
8568
8569 bool div_by_6 = instr->op == nir_texop_txs &&
8570 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
8571 instr->is_array &&
8572 (dmask & (1 << 2));
8573 if (tmp_dst.id() == dst.id() && div_by_6)
8574 tmp_dst = bld.tmp(tmp_dst.regClass());
8575
8576 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
8577 tex->operands[0] = Operand(resource);
8578 tex->operands[1] = Operand(s4); /* no sampler */
8579 tex->operands[2] = Operand(as_vgpr(ctx,lod));
8580 if (ctx->options->chip_class == GFX9 &&
8581 instr->op == nir_texop_txs &&
8582 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
8583 instr->is_array) {
8584 tex->dmask = (dmask & 0x1) | ((dmask & 0x2) << 1);
8585 } else if (instr->op == nir_texop_query_levels) {
8586 tex->dmask = 1 << 3;
8587 } else {
8588 tex->dmask = dmask;
8589 }
8590 tex->da = da;
8591 tex->definitions[0] = Definition(tmp_dst);
8592 tex->dim = dim;
8593 tex->can_reorder = true;
8594 ctx->block->instructions.emplace_back(std::move(tex));
8595
8596 if (div_by_6) {
8597 /* divide 3rd value by 6 by multiplying with magic number */
8598 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
8599 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
8600 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp_dst, 2, v1), c);
8601 assert(instr->dest.ssa.num_components == 3);
8602 Temp tmp = dst.type() == RegType::vgpr ? dst : bld.tmp(v3);
8603 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
8604 emit_extract_vector(ctx, tmp_dst, 0, v1),
8605 emit_extract_vector(ctx, tmp_dst, 1, v1),
8606 by_6);
8607
8608 }
8609
8610 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
8611 return;
8612 }
8613
8614 Temp tg4_compare_cube_wa64 = Temp();
8615
8616 if (tg4_integer_workarounds) {
8617 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
8618 tex->operands[0] = Operand(resource);
8619 tex->operands[1] = Operand(s4); /* no sampler */
8620 tex->operands[2] = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
8621 tex->dim = dim;
8622 tex->dmask = 0x3;
8623 tex->da = da;
8624 Temp size = bld.tmp(v2);
8625 tex->definitions[0] = Definition(size);
8626 tex->can_reorder = true;
8627 ctx->block->instructions.emplace_back(std::move(tex));
8628 emit_split_vector(ctx, size, size.size());
8629
8630 Temp half_texel[2];
8631 for (unsigned i = 0; i < 2; i++) {
8632 half_texel[i] = emit_extract_vector(ctx, size, i, v1);
8633 half_texel[i] = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), half_texel[i]);
8634 half_texel[i] = bld.vop1(aco_opcode::v_rcp_iflag_f32, bld.def(v1), half_texel[i]);
8635 half_texel[i] = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0xbf000000/*-0.5*/), half_texel[i]);
8636 }
8637
8638 Temp new_coords[2] = {
8639 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[0], half_texel[0]),
8640 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[1], half_texel[1])
8641 };
8642
8643 if (tg4_integer_cube_workaround) {
8644 // see comment in ac_nir_to_llvm.c's lower_gather4_integer()
8645 Temp desc[resource.size()];
8646 aco_ptr<Instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector,
8647 Format::PSEUDO, 1, resource.size())};
8648 split->operands[0] = Operand(resource);
8649 for (unsigned i = 0; i < resource.size(); i++) {
8650 desc[i] = bld.tmp(s1);
8651 split->definitions[i] = Definition(desc[i]);
8652 }
8653 ctx->block->instructions.emplace_back(std::move(split));
8654
8655 Temp dfmt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), desc[1], Operand(20u | (6u << 16)));
8656 Temp compare_cube_wa = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), dfmt,
8657 Operand((uint32_t)V_008F14_IMG_DATA_FORMAT_8_8_8_8));
8658
8659 Temp nfmt;
8660 if (stype == GLSL_TYPE_UINT) {
8661 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
8662 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_USCALED),
8663 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_UINT),
8664 bld.scc(compare_cube_wa));
8665 } else {
8666 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
8667 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SSCALED),
8668 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SINT),
8669 bld.scc(compare_cube_wa));
8670 }
8671 tg4_compare_cube_wa64 = bld.tmp(bld.lm);
8672 bool_to_vector_condition(ctx, compare_cube_wa, tg4_compare_cube_wa64);
8673
8674 nfmt = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), nfmt, Operand(26u));
8675
8676 desc[1] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), desc[1],
8677 Operand((uint32_t)C_008F14_NUM_FORMAT));
8678 desc[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), desc[1], nfmt);
8679
8680 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
8681 Format::PSEUDO, resource.size(), 1)};
8682 for (unsigned i = 0; i < resource.size(); i++)
8683 vec->operands[i] = Operand(desc[i]);
8684 resource = bld.tmp(resource.regClass());
8685 vec->definitions[0] = Definition(resource);
8686 ctx->block->instructions.emplace_back(std::move(vec));
8687
8688 new_coords[0] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8689 new_coords[0], coords[0], tg4_compare_cube_wa64);
8690 new_coords[1] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8691 new_coords[1], coords[1], tg4_compare_cube_wa64);
8692 }
8693 coords[0] = new_coords[0];
8694 coords[1] = new_coords[1];
8695 }
8696
8697 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
8698 //FIXME: if (ctx->abi->gfx9_stride_size_workaround) return ac_build_buffer_load_format_gfx9_safe()
8699
8700 assert(coords.size() == 1);
8701 unsigned last_bit = util_last_bit(nir_ssa_def_components_read(&instr->dest.ssa));
8702 aco_opcode op;
8703 switch (last_bit) {
8704 case 1:
8705 op = aco_opcode::buffer_load_format_x; break;
8706 case 2:
8707 op = aco_opcode::buffer_load_format_xy; break;
8708 case 3:
8709 op = aco_opcode::buffer_load_format_xyz; break;
8710 case 4:
8711 op = aco_opcode::buffer_load_format_xyzw; break;
8712 default:
8713 unreachable("Tex instruction loads more than 4 components.");
8714 }
8715
8716 /* if the instruction return value matches exactly the nir dest ssa, we can use it directly */
8717 if (last_bit == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
8718 tmp_dst = dst;
8719 else
8720 tmp_dst = bld.tmp(RegType::vgpr, last_bit);
8721
8722 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
8723 mubuf->operands[0] = Operand(resource);
8724 mubuf->operands[1] = Operand(coords[0]);
8725 mubuf->operands[2] = Operand((uint32_t) 0);
8726 mubuf->definitions[0] = Definition(tmp_dst);
8727 mubuf->idxen = true;
8728 mubuf->can_reorder = true;
8729 ctx->block->instructions.emplace_back(std::move(mubuf));
8730
8731 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, (1 << last_bit) - 1);
8732 return;
8733 }
8734
8735 /* gather MIMG address components */
8736 std::vector<Temp> args;
8737 if (has_offset)
8738 args.emplace_back(offset);
8739 if (has_bias)
8740 args.emplace_back(bias);
8741 if (has_compare)
8742 args.emplace_back(compare);
8743 if (has_derivs)
8744 args.insert(args.end(), derivs.begin(), derivs.end());
8745
8746 args.insert(args.end(), coords.begin(), coords.end());
8747 if (has_sample_index)
8748 args.emplace_back(sample_index);
8749 if (has_lod)
8750 args.emplace_back(lod);
8751 if (has_clamped_lod)
8752 args.emplace_back(clamped_lod);
8753
8754 Temp arg = bld.tmp(RegClass(RegType::vgpr, args.size()));
8755 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, args.size(), 1)};
8756 vec->definitions[0] = Definition(arg);
8757 for (unsigned i = 0; i < args.size(); i++)
8758 vec->operands[i] = Operand(args[i]);
8759 ctx->block->instructions.emplace_back(std::move(vec));
8760
8761
8762 if (instr->op == nir_texop_txf ||
8763 instr->op == nir_texop_txf_ms ||
8764 instr->op == nir_texop_samples_identical ||
8765 instr->op == nir_texop_fragment_fetch ||
8766 instr->op == nir_texop_fragment_mask_fetch) {
8767 aco_opcode op = level_zero || instr->sampler_dim == GLSL_SAMPLER_DIM_MS || instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS ? aco_opcode::image_load : aco_opcode::image_load_mip;
8768 tex.reset(create_instruction<MIMG_instruction>(op, Format::MIMG, 3, 1));
8769 tex->operands[0] = Operand(resource);
8770 tex->operands[1] = Operand(s4); /* no sampler */
8771 tex->operands[2] = Operand(arg);
8772 tex->dim = dim;
8773 tex->dmask = dmask;
8774 tex->unrm = true;
8775 tex->da = da;
8776 tex->definitions[0] = Definition(tmp_dst);
8777 tex->can_reorder = true;
8778 ctx->block->instructions.emplace_back(std::move(tex));
8779
8780 if (instr->op == nir_texop_samples_identical) {
8781 assert(dmask == 1 && dst.regClass() == v1);
8782 assert(dst.id() != tmp_dst.id());
8783
8784 Temp tmp = bld.tmp(bld.lm);
8785 bld.vopc(aco_opcode::v_cmp_eq_u32, Definition(tmp), Operand(0u), tmp_dst).def(0).setHint(vcc);
8786 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand((uint32_t)-1), tmp);
8787
8788 } else {
8789 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
8790 }
8791 return;
8792 }
8793
8794 // TODO: would be better to do this by adding offsets, but needs the opcodes ordered.
8795 aco_opcode opcode = aco_opcode::image_sample;
8796 if (has_offset) { /* image_sample_*_o */
8797 if (has_clamped_lod) {
8798 if (has_compare) {
8799 opcode = aco_opcode::image_sample_c_cl_o;
8800 if (has_derivs)
8801 opcode = aco_opcode::image_sample_c_d_cl_o;
8802 if (has_bias)
8803 opcode = aco_opcode::image_sample_c_b_cl_o;
8804 } else {
8805 opcode = aco_opcode::image_sample_cl_o;
8806 if (has_derivs)
8807 opcode = aco_opcode::image_sample_d_cl_o;
8808 if (has_bias)
8809 opcode = aco_opcode::image_sample_b_cl_o;
8810 }
8811 } else if (has_compare) {
8812 opcode = aco_opcode::image_sample_c_o;
8813 if (has_derivs)
8814 opcode = aco_opcode::image_sample_c_d_o;
8815 if (has_bias)
8816 opcode = aco_opcode::image_sample_c_b_o;
8817 if (level_zero)
8818 opcode = aco_opcode::image_sample_c_lz_o;
8819 if (has_lod)
8820 opcode = aco_opcode::image_sample_c_l_o;
8821 } else {
8822 opcode = aco_opcode::image_sample_o;
8823 if (has_derivs)
8824 opcode = aco_opcode::image_sample_d_o;
8825 if (has_bias)
8826 opcode = aco_opcode::image_sample_b_o;
8827 if (level_zero)
8828 opcode = aco_opcode::image_sample_lz_o;
8829 if (has_lod)
8830 opcode = aco_opcode::image_sample_l_o;
8831 }
8832 } else if (has_clamped_lod) { /* image_sample_*_cl */
8833 if (has_compare) {
8834 opcode = aco_opcode::image_sample_c_cl;
8835 if (has_derivs)
8836 opcode = aco_opcode::image_sample_c_d_cl;
8837 if (has_bias)
8838 opcode = aco_opcode::image_sample_c_b_cl;
8839 } else {
8840 opcode = aco_opcode::image_sample_cl;
8841 if (has_derivs)
8842 opcode = aco_opcode::image_sample_d_cl;
8843 if (has_bias)
8844 opcode = aco_opcode::image_sample_b_cl;
8845 }
8846 } else { /* no offset */
8847 if (has_compare) {
8848 opcode = aco_opcode::image_sample_c;
8849 if (has_derivs)
8850 opcode = aco_opcode::image_sample_c_d;
8851 if (has_bias)
8852 opcode = aco_opcode::image_sample_c_b;
8853 if (level_zero)
8854 opcode = aco_opcode::image_sample_c_lz;
8855 if (has_lod)
8856 opcode = aco_opcode::image_sample_c_l;
8857 } else {
8858 opcode = aco_opcode::image_sample;
8859 if (has_derivs)
8860 opcode = aco_opcode::image_sample_d;
8861 if (has_bias)
8862 opcode = aco_opcode::image_sample_b;
8863 if (level_zero)
8864 opcode = aco_opcode::image_sample_lz;
8865 if (has_lod)
8866 opcode = aco_opcode::image_sample_l;
8867 }
8868 }
8869
8870 if (instr->op == nir_texop_tg4) {
8871 if (has_offset) { /* image_gather4_*_o */
8872 if (has_compare) {
8873 opcode = aco_opcode::image_gather4_c_lz_o;
8874 if (has_lod)
8875 opcode = aco_opcode::image_gather4_c_l_o;
8876 if (has_bias)
8877 opcode = aco_opcode::image_gather4_c_b_o;
8878 } else {
8879 opcode = aco_opcode::image_gather4_lz_o;
8880 if (has_lod)
8881 opcode = aco_opcode::image_gather4_l_o;
8882 if (has_bias)
8883 opcode = aco_opcode::image_gather4_b_o;
8884 }
8885 } else {
8886 if (has_compare) {
8887 opcode = aco_opcode::image_gather4_c_lz;
8888 if (has_lod)
8889 opcode = aco_opcode::image_gather4_c_l;
8890 if (has_bias)
8891 opcode = aco_opcode::image_gather4_c_b;
8892 } else {
8893 opcode = aco_opcode::image_gather4_lz;
8894 if (has_lod)
8895 opcode = aco_opcode::image_gather4_l;
8896 if (has_bias)
8897 opcode = aco_opcode::image_gather4_b;
8898 }
8899 }
8900 } else if (instr->op == nir_texop_lod) {
8901 opcode = aco_opcode::image_get_lod;
8902 }
8903
8904 /* we don't need the bias, sample index, compare value or offset to be
8905 * computed in WQM but if the p_create_vector copies the coordinates, then it
8906 * needs to be in WQM */
8907 if (ctx->stage == fragment_fs &&
8908 !has_derivs && !has_lod && !level_zero &&
8909 instr->sampler_dim != GLSL_SAMPLER_DIM_MS &&
8910 instr->sampler_dim != GLSL_SAMPLER_DIM_SUBPASS_MS)
8911 arg = emit_wqm(ctx, arg, bld.tmp(arg.regClass()), true);
8912
8913 tex.reset(create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1));
8914 tex->operands[0] = Operand(resource);
8915 tex->operands[1] = Operand(sampler);
8916 tex->operands[2] = Operand(arg);
8917 tex->dim = dim;
8918 tex->dmask = dmask;
8919 tex->da = da;
8920 tex->definitions[0] = Definition(tmp_dst);
8921 tex->can_reorder = true;
8922 ctx->block->instructions.emplace_back(std::move(tex));
8923
8924 if (tg4_integer_cube_workaround) {
8925 assert(tmp_dst.id() != dst.id());
8926 assert(tmp_dst.size() == dst.size() && dst.size() == 4);
8927
8928 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
8929 Temp val[4];
8930 for (unsigned i = 0; i < dst.size(); i++) {
8931 val[i] = emit_extract_vector(ctx, tmp_dst, i, v1);
8932 Temp cvt_val;
8933 if (stype == GLSL_TYPE_UINT)
8934 cvt_val = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), val[i]);
8935 else
8936 cvt_val = bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), val[i]);
8937 val[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), val[i], cvt_val, tg4_compare_cube_wa64);
8938 }
8939 Temp tmp = dst.regClass() == v4 ? dst : bld.tmp(v4);
8940 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
8941 val[0], val[1], val[2], val[3]);
8942 }
8943 unsigned mask = instr->op == nir_texop_tg4 ? 0xF : dmask;
8944 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, mask);
8945
8946 }
8947
8948
8949 Operand get_phi_operand(isel_context *ctx, nir_ssa_def *ssa, RegClass rc)
8950 {
8951 Temp tmp = get_ssa_temp(ctx, ssa);
8952 if (ssa->parent_instr->type == nir_instr_type_ssa_undef)
8953 return Operand(rc);
8954 else
8955 return Operand(tmp);
8956 }
8957
8958 void visit_phi(isel_context *ctx, nir_phi_instr *instr)
8959 {
8960 aco_ptr<Pseudo_instruction> phi;
8961 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8962 assert(instr->dest.ssa.bit_size != 1 || dst.regClass() == ctx->program->lane_mask);
8963
8964 bool logical = !dst.is_linear() || nir_dest_is_divergent(instr->dest);
8965 logical |= ctx->block->kind & block_kind_merge;
8966 aco_opcode opcode = logical ? aco_opcode::p_phi : aco_opcode::p_linear_phi;
8967
8968 /* we want a sorted list of sources, since the predecessor list is also sorted */
8969 std::map<unsigned, nir_ssa_def*> phi_src;
8970 nir_foreach_phi_src(src, instr)
8971 phi_src[src->pred->index] = src->src.ssa;
8972
8973 std::vector<unsigned>& preds = logical ? ctx->block->logical_preds : ctx->block->linear_preds;
8974 unsigned num_operands = 0;
8975 Operand operands[std::max(exec_list_length(&instr->srcs), (unsigned)preds.size()) + 1];
8976 unsigned num_defined = 0;
8977 unsigned cur_pred_idx = 0;
8978 for (std::pair<unsigned, nir_ssa_def *> src : phi_src) {
8979 if (cur_pred_idx < preds.size()) {
8980 /* handle missing preds (IF merges with discard/break) and extra preds (loop exit with discard) */
8981 unsigned block = ctx->cf_info.nir_to_aco[src.first];
8982 unsigned skipped = 0;
8983 while (cur_pred_idx + skipped < preds.size() && preds[cur_pred_idx + skipped] != block)
8984 skipped++;
8985 if (cur_pred_idx + skipped < preds.size()) {
8986 for (unsigned i = 0; i < skipped; i++)
8987 operands[num_operands++] = Operand(dst.regClass());
8988 cur_pred_idx += skipped;
8989 } else {
8990 continue;
8991 }
8992 }
8993 /* Handle missing predecessors at the end. This shouldn't happen with loop
8994 * headers and we can't ignore these sources for loop header phis. */
8995 if (!(ctx->block->kind & block_kind_loop_header) && cur_pred_idx >= preds.size())
8996 continue;
8997 cur_pred_idx++;
8998 Operand op = get_phi_operand(ctx, src.second, dst.regClass());
8999 operands[num_operands++] = op;
9000 num_defined += !op.isUndefined();
9001 }
9002 /* handle block_kind_continue_or_break at loop exit blocks */
9003 while (cur_pred_idx++ < preds.size())
9004 operands[num_operands++] = Operand(dst.regClass());
9005
9006 /* If the loop ends with a break, still add a linear continue edge in case
9007 * that break is divergent or continue_or_break is used. We'll either remove
9008 * this operand later in visit_loop() if it's not necessary or replace the
9009 * undef with something correct. */
9010 if (!logical && ctx->block->kind & block_kind_loop_header) {
9011 nir_loop *loop = nir_cf_node_as_loop(instr->instr.block->cf_node.parent);
9012 nir_block *last = nir_loop_last_block(loop);
9013 if (last->successors[0] != instr->instr.block)
9014 operands[num_operands++] = Operand(RegClass());
9015 }
9016
9017 if (num_defined == 0) {
9018 Builder bld(ctx->program, ctx->block);
9019 if (dst.regClass() == s1) {
9020 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), Operand(0u));
9021 } else if (dst.regClass() == v1) {
9022 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), Operand(0u));
9023 } else {
9024 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
9025 for (unsigned i = 0; i < dst.size(); i++)
9026 vec->operands[i] = Operand(0u);
9027 vec->definitions[0] = Definition(dst);
9028 ctx->block->instructions.emplace_back(std::move(vec));
9029 }
9030 return;
9031 }
9032
9033 /* we can use a linear phi in some cases if one src is undef */
9034 if (dst.is_linear() && ctx->block->kind & block_kind_merge && num_defined == 1) {
9035 phi.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, num_operands, 1));
9036
9037 Block *linear_else = &ctx->program->blocks[ctx->block->linear_preds[1]];
9038 Block *invert = &ctx->program->blocks[linear_else->linear_preds[0]];
9039 assert(invert->kind & block_kind_invert);
9040
9041 unsigned then_block = invert->linear_preds[0];
9042
9043 Block* insert_block = NULL;
9044 for (unsigned i = 0; i < num_operands; i++) {
9045 Operand op = operands[i];
9046 if (op.isUndefined())
9047 continue;
9048 insert_block = ctx->block->logical_preds[i] == then_block ? invert : ctx->block;
9049 phi->operands[0] = op;
9050 break;
9051 }
9052 assert(insert_block); /* should be handled by the "num_defined == 0" case above */
9053 phi->operands[1] = Operand(dst.regClass());
9054 phi->definitions[0] = Definition(dst);
9055 insert_block->instructions.emplace(insert_block->instructions.begin(), std::move(phi));
9056 return;
9057 }
9058
9059 /* try to scalarize vector phis */
9060 if (instr->dest.ssa.bit_size != 1 && dst.size() > 1) {
9061 // TODO: scalarize linear phis on divergent ifs
9062 bool can_scalarize = (opcode == aco_opcode::p_phi || !(ctx->block->kind & block_kind_merge));
9063 std::array<Temp, NIR_MAX_VEC_COMPONENTS> new_vec;
9064 for (unsigned i = 0; can_scalarize && (i < num_operands); i++) {
9065 Operand src = operands[i];
9066 if (src.isTemp() && ctx->allocated_vec.find(src.tempId()) == ctx->allocated_vec.end())
9067 can_scalarize = false;
9068 }
9069 if (can_scalarize) {
9070 unsigned num_components = instr->dest.ssa.num_components;
9071 assert(dst.size() % num_components == 0);
9072 RegClass rc = RegClass(dst.type(), dst.size() / num_components);
9073
9074 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
9075 for (unsigned k = 0; k < num_components; k++) {
9076 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
9077 for (unsigned i = 0; i < num_operands; i++) {
9078 Operand src = operands[i];
9079 phi->operands[i] = src.isTemp() ? Operand(ctx->allocated_vec[src.tempId()][k]) : Operand(rc);
9080 }
9081 Temp phi_dst = {ctx->program->allocateId(), rc};
9082 phi->definitions[0] = Definition(phi_dst);
9083 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
9084 new_vec[k] = phi_dst;
9085 vec->operands[k] = Operand(phi_dst);
9086 }
9087 vec->definitions[0] = Definition(dst);
9088 ctx->block->instructions.emplace_back(std::move(vec));
9089 ctx->allocated_vec.emplace(dst.id(), new_vec);
9090 return;
9091 }
9092 }
9093
9094 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
9095 for (unsigned i = 0; i < num_operands; i++)
9096 phi->operands[i] = operands[i];
9097 phi->definitions[0] = Definition(dst);
9098 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
9099 }
9100
9101
9102 void visit_undef(isel_context *ctx, nir_ssa_undef_instr *instr)
9103 {
9104 Temp dst = get_ssa_temp(ctx, &instr->def);
9105
9106 assert(dst.type() == RegType::sgpr);
9107
9108 if (dst.size() == 1) {
9109 Builder(ctx->program, ctx->block).copy(Definition(dst), Operand(0u));
9110 } else {
9111 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
9112 for (unsigned i = 0; i < dst.size(); i++)
9113 vec->operands[i] = Operand(0u);
9114 vec->definitions[0] = Definition(dst);
9115 ctx->block->instructions.emplace_back(std::move(vec));
9116 }
9117 }
9118
9119 void visit_jump(isel_context *ctx, nir_jump_instr *instr)
9120 {
9121 Builder bld(ctx->program, ctx->block);
9122 Block *logical_target;
9123 append_logical_end(ctx->block);
9124 unsigned idx = ctx->block->index;
9125
9126 switch (instr->type) {
9127 case nir_jump_break:
9128 logical_target = ctx->cf_info.parent_loop.exit;
9129 add_logical_edge(idx, logical_target);
9130 ctx->block->kind |= block_kind_break;
9131
9132 if (!ctx->cf_info.parent_if.is_divergent &&
9133 !ctx->cf_info.parent_loop.has_divergent_continue) {
9134 /* uniform break - directly jump out of the loop */
9135 ctx->block->kind |= block_kind_uniform;
9136 ctx->cf_info.has_branch = true;
9137 bld.branch(aco_opcode::p_branch);
9138 add_linear_edge(idx, logical_target);
9139 return;
9140 }
9141 ctx->cf_info.parent_loop.has_divergent_branch = true;
9142 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
9143 break;
9144 case nir_jump_continue:
9145 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
9146 add_logical_edge(idx, logical_target);
9147 ctx->block->kind |= block_kind_continue;
9148
9149 if (ctx->cf_info.parent_if.is_divergent) {
9150 /* for potential uniform breaks after this continue,
9151 we must ensure that they are handled correctly */
9152 ctx->cf_info.parent_loop.has_divergent_continue = true;
9153 ctx->cf_info.parent_loop.has_divergent_branch = true;
9154 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
9155 } else {
9156 /* uniform continue - directly jump to the loop header */
9157 ctx->block->kind |= block_kind_uniform;
9158 ctx->cf_info.has_branch = true;
9159 bld.branch(aco_opcode::p_branch);
9160 add_linear_edge(idx, logical_target);
9161 return;
9162 }
9163 break;
9164 default:
9165 fprintf(stderr, "Unknown NIR jump instr: ");
9166 nir_print_instr(&instr->instr, stderr);
9167 fprintf(stderr, "\n");
9168 abort();
9169 }
9170
9171 if (ctx->cf_info.parent_if.is_divergent && !ctx->cf_info.exec_potentially_empty_break) {
9172 ctx->cf_info.exec_potentially_empty_break = true;
9173 ctx->cf_info.exec_potentially_empty_break_depth = ctx->cf_info.loop_nest_depth;
9174 }
9175
9176 /* remove critical edges from linear CFG */
9177 bld.branch(aco_opcode::p_branch);
9178 Block* break_block = ctx->program->create_and_insert_block();
9179 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9180 break_block->kind |= block_kind_uniform;
9181 add_linear_edge(idx, break_block);
9182 /* the loop_header pointer might be invalidated by this point */
9183 if (instr->type == nir_jump_continue)
9184 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
9185 add_linear_edge(break_block->index, logical_target);
9186 bld.reset(break_block);
9187 bld.branch(aco_opcode::p_branch);
9188
9189 Block* continue_block = ctx->program->create_and_insert_block();
9190 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9191 add_linear_edge(idx, continue_block);
9192 append_logical_start(continue_block);
9193 ctx->block = continue_block;
9194 return;
9195 }
9196
9197 void visit_block(isel_context *ctx, nir_block *block)
9198 {
9199 nir_foreach_instr(instr, block) {
9200 switch (instr->type) {
9201 case nir_instr_type_alu:
9202 visit_alu_instr(ctx, nir_instr_as_alu(instr));
9203 break;
9204 case nir_instr_type_load_const:
9205 visit_load_const(ctx, nir_instr_as_load_const(instr));
9206 break;
9207 case nir_instr_type_intrinsic:
9208 visit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
9209 break;
9210 case nir_instr_type_tex:
9211 visit_tex(ctx, nir_instr_as_tex(instr));
9212 break;
9213 case nir_instr_type_phi:
9214 visit_phi(ctx, nir_instr_as_phi(instr));
9215 break;
9216 case nir_instr_type_ssa_undef:
9217 visit_undef(ctx, nir_instr_as_ssa_undef(instr));
9218 break;
9219 case nir_instr_type_deref:
9220 break;
9221 case nir_instr_type_jump:
9222 visit_jump(ctx, nir_instr_as_jump(instr));
9223 break;
9224 default:
9225 fprintf(stderr, "Unknown NIR instr type: ");
9226 nir_print_instr(instr, stderr);
9227 fprintf(stderr, "\n");
9228 //abort();
9229 }
9230 }
9231
9232 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9233 ctx->cf_info.nir_to_aco[block->index] = ctx->block->index;
9234 }
9235
9236
9237
9238 static Operand create_continue_phis(isel_context *ctx, unsigned first, unsigned last,
9239 aco_ptr<Instruction>& header_phi, Operand *vals)
9240 {
9241 vals[0] = Operand(header_phi->definitions[0].getTemp());
9242 RegClass rc = vals[0].regClass();
9243
9244 unsigned loop_nest_depth = ctx->program->blocks[first].loop_nest_depth;
9245
9246 unsigned next_pred = 1;
9247
9248 for (unsigned idx = first + 1; idx <= last; idx++) {
9249 Block& block = ctx->program->blocks[idx];
9250 if (block.loop_nest_depth != loop_nest_depth) {
9251 vals[idx - first] = vals[idx - 1 - first];
9252 continue;
9253 }
9254
9255 if (block.kind & block_kind_continue) {
9256 vals[idx - first] = header_phi->operands[next_pred];
9257 next_pred++;
9258 continue;
9259 }
9260
9261 bool all_same = true;
9262 for (unsigned i = 1; all_same && (i < block.linear_preds.size()); i++)
9263 all_same = vals[block.linear_preds[i] - first] == vals[block.linear_preds[0] - first];
9264
9265 Operand val;
9266 if (all_same) {
9267 val = vals[block.linear_preds[0] - first];
9268 } else {
9269 aco_ptr<Instruction> phi(create_instruction<Pseudo_instruction>(
9270 aco_opcode::p_linear_phi, Format::PSEUDO, block.linear_preds.size(), 1));
9271 for (unsigned i = 0; i < block.linear_preds.size(); i++)
9272 phi->operands[i] = vals[block.linear_preds[i] - first];
9273 val = Operand(Temp(ctx->program->allocateId(), rc));
9274 phi->definitions[0] = Definition(val.getTemp());
9275 block.instructions.emplace(block.instructions.begin(), std::move(phi));
9276 }
9277 vals[idx - first] = val;
9278 }
9279
9280 return vals[last - first];
9281 }
9282
9283 static void visit_loop(isel_context *ctx, nir_loop *loop)
9284 {
9285 //TODO: we might want to wrap the loop around a branch if exec_potentially_empty=true
9286 append_logical_end(ctx->block);
9287 ctx->block->kind |= block_kind_loop_preheader | block_kind_uniform;
9288 Builder bld(ctx->program, ctx->block);
9289 bld.branch(aco_opcode::p_branch);
9290 unsigned loop_preheader_idx = ctx->block->index;
9291
9292 Block loop_exit = Block();
9293 loop_exit.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9294 loop_exit.kind |= (block_kind_loop_exit | (ctx->block->kind & block_kind_top_level));
9295
9296 Block* loop_header = ctx->program->create_and_insert_block();
9297 loop_header->loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
9298 loop_header->kind |= block_kind_loop_header;
9299 add_edge(loop_preheader_idx, loop_header);
9300 ctx->block = loop_header;
9301
9302 /* emit loop body */
9303 unsigned loop_header_idx = loop_header->index;
9304 loop_info_RAII loop_raii(ctx, loop_header_idx, &loop_exit);
9305 append_logical_start(ctx->block);
9306 bool unreachable = visit_cf_list(ctx, &loop->body);
9307
9308 //TODO: what if a loop ends with a unconditional or uniformly branched continue and this branch is never taken?
9309 if (!ctx->cf_info.has_branch) {
9310 append_logical_end(ctx->block);
9311 if (ctx->cf_info.exec_potentially_empty_discard || ctx->cf_info.exec_potentially_empty_break) {
9312 /* Discards can result in code running with an empty exec mask.
9313 * This would result in divergent breaks not ever being taken. As a
9314 * workaround, break the loop when the loop mask is empty instead of
9315 * always continuing. */
9316 ctx->block->kind |= (block_kind_continue_or_break | block_kind_uniform);
9317 unsigned block_idx = ctx->block->index;
9318
9319 /* create helper blocks to avoid critical edges */
9320 Block *break_block = ctx->program->create_and_insert_block();
9321 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9322 break_block->kind = block_kind_uniform;
9323 bld.reset(break_block);
9324 bld.branch(aco_opcode::p_branch);
9325 add_linear_edge(block_idx, break_block);
9326 add_linear_edge(break_block->index, &loop_exit);
9327
9328 Block *continue_block = ctx->program->create_and_insert_block();
9329 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9330 continue_block->kind = block_kind_uniform;
9331 bld.reset(continue_block);
9332 bld.branch(aco_opcode::p_branch);
9333 add_linear_edge(block_idx, continue_block);
9334 add_linear_edge(continue_block->index, &ctx->program->blocks[loop_header_idx]);
9335
9336 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9337 add_logical_edge(block_idx, &ctx->program->blocks[loop_header_idx]);
9338 ctx->block = &ctx->program->blocks[block_idx];
9339 } else {
9340 ctx->block->kind |= (block_kind_continue | block_kind_uniform);
9341 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9342 add_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
9343 else
9344 add_linear_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
9345 }
9346
9347 bld.reset(ctx->block);
9348 bld.branch(aco_opcode::p_branch);
9349 }
9350
9351 /* Fixup phis in loop header from unreachable blocks.
9352 * has_branch/has_divergent_branch also indicates if the loop ends with a
9353 * break/continue instruction, but we don't emit those if unreachable=true */
9354 if (unreachable) {
9355 assert(ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch);
9356 bool linear = ctx->cf_info.has_branch;
9357 bool logical = ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch;
9358 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
9359 if ((logical && instr->opcode == aco_opcode::p_phi) ||
9360 (linear && instr->opcode == aco_opcode::p_linear_phi)) {
9361 /* the last operand should be the one that needs to be removed */
9362 instr->operands.pop_back();
9363 } else if (!is_phi(instr)) {
9364 break;
9365 }
9366 }
9367 }
9368
9369 /* Fixup linear phis in loop header from expecting a continue. Both this fixup
9370 * and the previous one shouldn't both happen at once because a break in the
9371 * merge block would get CSE'd */
9372 if (nir_loop_last_block(loop)->successors[0] != nir_loop_first_block(loop)) {
9373 unsigned num_vals = ctx->cf_info.has_branch ? 1 : (ctx->block->index - loop_header_idx + 1);
9374 Operand vals[num_vals];
9375 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
9376 if (instr->opcode == aco_opcode::p_linear_phi) {
9377 if (ctx->cf_info.has_branch)
9378 instr->operands.pop_back();
9379 else
9380 instr->operands.back() = create_continue_phis(ctx, loop_header_idx, ctx->block->index, instr, vals);
9381 } else if (!is_phi(instr)) {
9382 break;
9383 }
9384 }
9385 }
9386
9387 ctx->cf_info.has_branch = false;
9388
9389 // TODO: if the loop has not a single exit, we must add one °°
9390 /* emit loop successor block */
9391 ctx->block = ctx->program->insert_block(std::move(loop_exit));
9392 append_logical_start(ctx->block);
9393
9394 #if 0
9395 // TODO: check if it is beneficial to not branch on continues
9396 /* trim linear phis in loop header */
9397 for (auto&& instr : loop_entry->instructions) {
9398 if (instr->opcode == aco_opcode::p_linear_phi) {
9399 aco_ptr<Pseudo_instruction> new_phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, loop_entry->linear_predecessors.size(), 1)};
9400 new_phi->definitions[0] = instr->definitions[0];
9401 for (unsigned i = 0; i < new_phi->operands.size(); i++)
9402 new_phi->operands[i] = instr->operands[i];
9403 /* check that the remaining operands are all the same */
9404 for (unsigned i = new_phi->operands.size(); i < instr->operands.size(); i++)
9405 assert(instr->operands[i].tempId() == instr->operands.back().tempId());
9406 instr.swap(new_phi);
9407 } else if (instr->opcode == aco_opcode::p_phi) {
9408 continue;
9409 } else {
9410 break;
9411 }
9412 }
9413 #endif
9414 }
9415
9416 static void begin_divergent_if_then(isel_context *ctx, if_context *ic, Temp cond)
9417 {
9418 ic->cond = cond;
9419
9420 append_logical_end(ctx->block);
9421 ctx->block->kind |= block_kind_branch;
9422
9423 /* branch to linear then block */
9424 assert(cond.regClass() == ctx->program->lane_mask);
9425 aco_ptr<Pseudo_branch_instruction> branch;
9426 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
9427 branch->operands[0] = Operand(cond);
9428 ctx->block->instructions.push_back(std::move(branch));
9429
9430 ic->BB_if_idx = ctx->block->index;
9431 ic->BB_invert = Block();
9432 ic->BB_invert.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9433 /* Invert blocks are intentionally not marked as top level because they
9434 * are not part of the logical cfg. */
9435 ic->BB_invert.kind |= block_kind_invert;
9436 ic->BB_endif = Block();
9437 ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9438 ic->BB_endif.kind |= (block_kind_merge | (ctx->block->kind & block_kind_top_level));
9439
9440 ic->exec_potentially_empty_discard_old = ctx->cf_info.exec_potentially_empty_discard;
9441 ic->exec_potentially_empty_break_old = ctx->cf_info.exec_potentially_empty_break;
9442 ic->exec_potentially_empty_break_depth_old = ctx->cf_info.exec_potentially_empty_break_depth;
9443 ic->divergent_old = ctx->cf_info.parent_if.is_divergent;
9444 ctx->cf_info.parent_if.is_divergent = true;
9445
9446 /* divergent branches use cbranch_execz */
9447 ctx->cf_info.exec_potentially_empty_discard = false;
9448 ctx->cf_info.exec_potentially_empty_break = false;
9449 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9450
9451 /** emit logical then block */
9452 Block* BB_then_logical = ctx->program->create_and_insert_block();
9453 BB_then_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9454 add_edge(ic->BB_if_idx, BB_then_logical);
9455 ctx->block = BB_then_logical;
9456 append_logical_start(BB_then_logical);
9457 }
9458
9459 static void begin_divergent_if_else(isel_context *ctx, if_context *ic)
9460 {
9461 Block *BB_then_logical = ctx->block;
9462 append_logical_end(BB_then_logical);
9463 /* branch from logical then block to invert block */
9464 aco_ptr<Pseudo_branch_instruction> branch;
9465 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9466 BB_then_logical->instructions.emplace_back(std::move(branch));
9467 add_linear_edge(BB_then_logical->index, &ic->BB_invert);
9468 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9469 add_logical_edge(BB_then_logical->index, &ic->BB_endif);
9470 BB_then_logical->kind |= block_kind_uniform;
9471 assert(!ctx->cf_info.has_branch);
9472 ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
9473 ctx->cf_info.parent_loop.has_divergent_branch = false;
9474
9475 /** emit linear then block */
9476 Block* BB_then_linear = ctx->program->create_and_insert_block();
9477 BB_then_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9478 BB_then_linear->kind |= block_kind_uniform;
9479 add_linear_edge(ic->BB_if_idx, BB_then_linear);
9480 /* branch from linear then block to invert block */
9481 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9482 BB_then_linear->instructions.emplace_back(std::move(branch));
9483 add_linear_edge(BB_then_linear->index, &ic->BB_invert);
9484
9485 /** emit invert merge block */
9486 ctx->block = ctx->program->insert_block(std::move(ic->BB_invert));
9487 ic->invert_idx = ctx->block->index;
9488
9489 /* branch to linear else block (skip else) */
9490 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_nz, Format::PSEUDO_BRANCH, 1, 0));
9491 branch->operands[0] = Operand(ic->cond);
9492 ctx->block->instructions.push_back(std::move(branch));
9493
9494 ic->exec_potentially_empty_discard_old |= ctx->cf_info.exec_potentially_empty_discard;
9495 ic->exec_potentially_empty_break_old |= ctx->cf_info.exec_potentially_empty_break;
9496 ic->exec_potentially_empty_break_depth_old =
9497 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
9498 /* divergent branches use cbranch_execz */
9499 ctx->cf_info.exec_potentially_empty_discard = false;
9500 ctx->cf_info.exec_potentially_empty_break = false;
9501 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9502
9503 /** emit logical else block */
9504 Block* BB_else_logical = ctx->program->create_and_insert_block();
9505 BB_else_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9506 add_logical_edge(ic->BB_if_idx, BB_else_logical);
9507 add_linear_edge(ic->invert_idx, BB_else_logical);
9508 ctx->block = BB_else_logical;
9509 append_logical_start(BB_else_logical);
9510 }
9511
9512 static void end_divergent_if(isel_context *ctx, if_context *ic)
9513 {
9514 Block *BB_else_logical = ctx->block;
9515 append_logical_end(BB_else_logical);
9516
9517 /* branch from logical else block to endif block */
9518 aco_ptr<Pseudo_branch_instruction> branch;
9519 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9520 BB_else_logical->instructions.emplace_back(std::move(branch));
9521 add_linear_edge(BB_else_logical->index, &ic->BB_endif);
9522 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9523 add_logical_edge(BB_else_logical->index, &ic->BB_endif);
9524 BB_else_logical->kind |= block_kind_uniform;
9525
9526 assert(!ctx->cf_info.has_branch);
9527 ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
9528
9529
9530 /** emit linear else block */
9531 Block* BB_else_linear = ctx->program->create_and_insert_block();
9532 BB_else_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9533 BB_else_linear->kind |= block_kind_uniform;
9534 add_linear_edge(ic->invert_idx, BB_else_linear);
9535
9536 /* branch from linear else block to endif block */
9537 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9538 BB_else_linear->instructions.emplace_back(std::move(branch));
9539 add_linear_edge(BB_else_linear->index, &ic->BB_endif);
9540
9541
9542 /** emit endif merge block */
9543 ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
9544 append_logical_start(ctx->block);
9545
9546
9547 ctx->cf_info.parent_if.is_divergent = ic->divergent_old;
9548 ctx->cf_info.exec_potentially_empty_discard |= ic->exec_potentially_empty_discard_old;
9549 ctx->cf_info.exec_potentially_empty_break |= ic->exec_potentially_empty_break_old;
9550 ctx->cf_info.exec_potentially_empty_break_depth =
9551 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
9552 if (ctx->cf_info.loop_nest_depth == ctx->cf_info.exec_potentially_empty_break_depth &&
9553 !ctx->cf_info.parent_if.is_divergent) {
9554 ctx->cf_info.exec_potentially_empty_break = false;
9555 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9556 }
9557 /* uniform control flow never has an empty exec-mask */
9558 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent) {
9559 ctx->cf_info.exec_potentially_empty_discard = false;
9560 ctx->cf_info.exec_potentially_empty_break = false;
9561 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9562 }
9563 }
9564
9565 static void begin_uniform_if_then(isel_context *ctx, if_context *ic, Temp cond)
9566 {
9567 assert(cond.regClass() == s1);
9568
9569 append_logical_end(ctx->block);
9570 ctx->block->kind |= block_kind_uniform;
9571
9572 aco_ptr<Pseudo_branch_instruction> branch;
9573 aco_opcode branch_opcode = aco_opcode::p_cbranch_z;
9574 branch.reset(create_instruction<Pseudo_branch_instruction>(branch_opcode, Format::PSEUDO_BRANCH, 1, 0));
9575 branch->operands[0] = Operand(cond);
9576 branch->operands[0].setFixed(scc);
9577 ctx->block->instructions.emplace_back(std::move(branch));
9578
9579 ic->BB_if_idx = ctx->block->index;
9580 ic->BB_endif = Block();
9581 ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9582 ic->BB_endif.kind |= ctx->block->kind & block_kind_top_level;
9583
9584 ctx->cf_info.has_branch = false;
9585 ctx->cf_info.parent_loop.has_divergent_branch = false;
9586
9587 /** emit then block */
9588 Block* BB_then = ctx->program->create_and_insert_block();
9589 BB_then->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9590 add_edge(ic->BB_if_idx, BB_then);
9591 append_logical_start(BB_then);
9592 ctx->block = BB_then;
9593 }
9594
9595 static void begin_uniform_if_else(isel_context *ctx, if_context *ic)
9596 {
9597 Block *BB_then = ctx->block;
9598
9599 ic->uniform_has_then_branch = ctx->cf_info.has_branch;
9600 ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
9601
9602 if (!ic->uniform_has_then_branch) {
9603 append_logical_end(BB_then);
9604 /* branch from then block to endif block */
9605 aco_ptr<Pseudo_branch_instruction> branch;
9606 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9607 BB_then->instructions.emplace_back(std::move(branch));
9608 add_linear_edge(BB_then->index, &ic->BB_endif);
9609 if (!ic->then_branch_divergent)
9610 add_logical_edge(BB_then->index, &ic->BB_endif);
9611 BB_then->kind |= block_kind_uniform;
9612 }
9613
9614 ctx->cf_info.has_branch = false;
9615 ctx->cf_info.parent_loop.has_divergent_branch = false;
9616
9617 /** emit else block */
9618 Block* BB_else = ctx->program->create_and_insert_block();
9619 BB_else->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9620 add_edge(ic->BB_if_idx, BB_else);
9621 append_logical_start(BB_else);
9622 ctx->block = BB_else;
9623 }
9624
9625 static void end_uniform_if(isel_context *ctx, if_context *ic)
9626 {
9627 Block *BB_else = ctx->block;
9628
9629 if (!ctx->cf_info.has_branch) {
9630 append_logical_end(BB_else);
9631 /* branch from then block to endif block */
9632 aco_ptr<Pseudo_branch_instruction> branch;
9633 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9634 BB_else->instructions.emplace_back(std::move(branch));
9635 add_linear_edge(BB_else->index, &ic->BB_endif);
9636 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9637 add_logical_edge(BB_else->index, &ic->BB_endif);
9638 BB_else->kind |= block_kind_uniform;
9639 }
9640
9641 ctx->cf_info.has_branch &= ic->uniform_has_then_branch;
9642 ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
9643
9644 /** emit endif merge block */
9645 if (!ctx->cf_info.has_branch) {
9646 ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
9647 append_logical_start(ctx->block);
9648 }
9649 }
9650
9651 static bool visit_if(isel_context *ctx, nir_if *if_stmt)
9652 {
9653 Temp cond = get_ssa_temp(ctx, if_stmt->condition.ssa);
9654 Builder bld(ctx->program, ctx->block);
9655 aco_ptr<Pseudo_branch_instruction> branch;
9656 if_context ic;
9657
9658 if (!nir_src_is_divergent(if_stmt->condition)) { /* uniform condition */
9659 /**
9660 * Uniform conditionals are represented in the following way*) :
9661 *
9662 * The linear and logical CFG:
9663 * BB_IF
9664 * / \
9665 * BB_THEN (logical) BB_ELSE (logical)
9666 * \ /
9667 * BB_ENDIF
9668 *
9669 * *) Exceptions may be due to break and continue statements within loops
9670 * If a break/continue happens within uniform control flow, it branches
9671 * to the loop exit/entry block. Otherwise, it branches to the next
9672 * merge block.
9673 **/
9674
9675 // TODO: in a post-RA optimizer, we could check if the condition is in VCC and omit this instruction
9676 assert(cond.regClass() == ctx->program->lane_mask);
9677 cond = bool_to_scalar_condition(ctx, cond);
9678
9679 begin_uniform_if_then(ctx, &ic, cond);
9680 visit_cf_list(ctx, &if_stmt->then_list);
9681
9682 begin_uniform_if_else(ctx, &ic);
9683 visit_cf_list(ctx, &if_stmt->else_list);
9684
9685 end_uniform_if(ctx, &ic);
9686 } else { /* non-uniform condition */
9687 /**
9688 * To maintain a logical and linear CFG without critical edges,
9689 * non-uniform conditionals are represented in the following way*) :
9690 *
9691 * The linear CFG:
9692 * BB_IF
9693 * / \
9694 * BB_THEN (logical) BB_THEN (linear)
9695 * \ /
9696 * BB_INVERT (linear)
9697 * / \
9698 * BB_ELSE (logical) BB_ELSE (linear)
9699 * \ /
9700 * BB_ENDIF
9701 *
9702 * The logical CFG:
9703 * BB_IF
9704 * / \
9705 * BB_THEN (logical) BB_ELSE (logical)
9706 * \ /
9707 * BB_ENDIF
9708 *
9709 * *) Exceptions may be due to break and continue statements within loops
9710 **/
9711
9712 begin_divergent_if_then(ctx, &ic, cond);
9713 visit_cf_list(ctx, &if_stmt->then_list);
9714
9715 begin_divergent_if_else(ctx, &ic);
9716 visit_cf_list(ctx, &if_stmt->else_list);
9717
9718 end_divergent_if(ctx, &ic);
9719 }
9720
9721 return !ctx->cf_info.has_branch && !ctx->block->logical_preds.empty();
9722 }
9723
9724 static bool visit_cf_list(isel_context *ctx,
9725 struct exec_list *list)
9726 {
9727 foreach_list_typed(nir_cf_node, node, node, list) {
9728 switch (node->type) {
9729 case nir_cf_node_block:
9730 visit_block(ctx, nir_cf_node_as_block(node));
9731 break;
9732 case nir_cf_node_if:
9733 if (!visit_if(ctx, nir_cf_node_as_if(node)))
9734 return true;
9735 break;
9736 case nir_cf_node_loop:
9737 visit_loop(ctx, nir_cf_node_as_loop(node));
9738 break;
9739 default:
9740 unreachable("unimplemented cf list type");
9741 }
9742 }
9743 return false;
9744 }
9745
9746 static void create_null_export(isel_context *ctx)
9747 {
9748 /* Some shader stages always need to have exports.
9749 * So when there is none, we need to add a null export.
9750 */
9751
9752 unsigned dest = (ctx->program->stage & hw_fs) ? 9 /* NULL */ : V_008DFC_SQ_EXP_POS;
9753 bool vm = (ctx->program->stage & hw_fs) || ctx->program->chip_class >= GFX10;
9754 Builder bld(ctx->program, ctx->block);
9755 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
9756 /* enabled_mask */ 0, dest, /* compr */ false, /* done */ true, vm);
9757 }
9758
9759 static bool export_vs_varying(isel_context *ctx, int slot, bool is_pos, int *next_pos)
9760 {
9761 assert(ctx->stage == vertex_vs ||
9762 ctx->stage == tess_eval_vs ||
9763 ctx->stage == gs_copy_vs ||
9764 ctx->stage == ngg_vertex_gs ||
9765 ctx->stage == ngg_tess_eval_gs);
9766
9767 int offset = (ctx->stage & sw_tes)
9768 ? ctx->program->info->tes.outinfo.vs_output_param_offset[slot]
9769 : ctx->program->info->vs.outinfo.vs_output_param_offset[slot];
9770 uint64_t mask = ctx->outputs.mask[slot];
9771 if (!is_pos && !mask)
9772 return false;
9773 if (!is_pos && offset == AC_EXP_PARAM_UNDEFINED)
9774 return false;
9775 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
9776 exp->enabled_mask = mask;
9777 for (unsigned i = 0; i < 4; ++i) {
9778 if (mask & (1 << i))
9779 exp->operands[i] = Operand(ctx->outputs.temps[slot * 4u + i]);
9780 else
9781 exp->operands[i] = Operand(v1);
9782 }
9783 /* Navi10-14 skip POS0 exports if EXEC=0 and DONE=0, causing a hang.
9784 * Setting valid_mask=1 prevents it and has no other effect.
9785 */
9786 exp->valid_mask = ctx->options->chip_class >= GFX10 && is_pos && *next_pos == 0;
9787 exp->done = false;
9788 exp->compressed = false;
9789 if (is_pos)
9790 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
9791 else
9792 exp->dest = V_008DFC_SQ_EXP_PARAM + offset;
9793 ctx->block->instructions.emplace_back(std::move(exp));
9794
9795 return true;
9796 }
9797
9798 static void export_vs_psiz_layer_viewport(isel_context *ctx, int *next_pos)
9799 {
9800 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
9801 exp->enabled_mask = 0;
9802 for (unsigned i = 0; i < 4; ++i)
9803 exp->operands[i] = Operand(v1);
9804 if (ctx->outputs.mask[VARYING_SLOT_PSIZ]) {
9805 exp->operands[0] = Operand(ctx->outputs.temps[VARYING_SLOT_PSIZ * 4u]);
9806 exp->enabled_mask |= 0x1;
9807 }
9808 if (ctx->outputs.mask[VARYING_SLOT_LAYER]) {
9809 exp->operands[2] = Operand(ctx->outputs.temps[VARYING_SLOT_LAYER * 4u]);
9810 exp->enabled_mask |= 0x4;
9811 }
9812 if (ctx->outputs.mask[VARYING_SLOT_VIEWPORT]) {
9813 if (ctx->options->chip_class < GFX9) {
9814 exp->operands[3] = Operand(ctx->outputs.temps[VARYING_SLOT_VIEWPORT * 4u]);
9815 exp->enabled_mask |= 0x8;
9816 } else {
9817 Builder bld(ctx->program, ctx->block);
9818
9819 Temp out = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u),
9820 Operand(ctx->outputs.temps[VARYING_SLOT_VIEWPORT * 4u]));
9821 if (exp->operands[2].isTemp())
9822 out = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(out), exp->operands[2]);
9823
9824 exp->operands[2] = Operand(out);
9825 exp->enabled_mask |= 0x4;
9826 }
9827 }
9828 exp->valid_mask = ctx->options->chip_class >= GFX10 && *next_pos == 0;
9829 exp->done = false;
9830 exp->compressed = false;
9831 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
9832 ctx->block->instructions.emplace_back(std::move(exp));
9833 }
9834
9835 static void create_export_phis(isel_context *ctx)
9836 {
9837 /* Used when exports are needed, but the output temps are defined in a preceding block.
9838 * This function will set up phis in order to access the outputs in the next block.
9839 */
9840
9841 assert(ctx->block->instructions.back()->opcode == aco_opcode::p_logical_start);
9842 aco_ptr<Instruction> logical_start = aco_ptr<Instruction>(ctx->block->instructions.back().release());
9843 ctx->block->instructions.pop_back();
9844
9845 Builder bld(ctx->program, ctx->block);
9846
9847 for (unsigned slot = 0; slot <= VARYING_SLOT_VAR31; ++slot) {
9848 uint64_t mask = ctx->outputs.mask[slot];
9849 for (unsigned i = 0; i < 4; ++i) {
9850 if (!(mask & (1 << i)))
9851 continue;
9852
9853 Temp old = ctx->outputs.temps[slot * 4 + i];
9854 Temp phi = bld.pseudo(aco_opcode::p_phi, bld.def(v1), old, Operand(v1));
9855 ctx->outputs.temps[slot * 4 + i] = phi;
9856 }
9857 }
9858
9859 bld.insert(std::move(logical_start));
9860 }
9861
9862 static void create_vs_exports(isel_context *ctx)
9863 {
9864 assert(ctx->stage == vertex_vs ||
9865 ctx->stage == tess_eval_vs ||
9866 ctx->stage == gs_copy_vs ||
9867 ctx->stage == ngg_vertex_gs ||
9868 ctx->stage == ngg_tess_eval_gs);
9869
9870 radv_vs_output_info *outinfo = (ctx->stage & sw_tes)
9871 ? &ctx->program->info->tes.outinfo
9872 : &ctx->program->info->vs.outinfo;
9873
9874 if (outinfo->export_prim_id && !(ctx->stage & hw_ngg_gs)) {
9875 ctx->outputs.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
9876 ctx->outputs.temps[VARYING_SLOT_PRIMITIVE_ID * 4u] = get_arg(ctx, ctx->args->vs_prim_id);
9877 }
9878
9879 if (ctx->options->key.has_multiview_view_index) {
9880 ctx->outputs.mask[VARYING_SLOT_LAYER] |= 0x1;
9881 ctx->outputs.temps[VARYING_SLOT_LAYER * 4u] = as_vgpr(ctx, get_arg(ctx, ctx->args->ac.view_index));
9882 }
9883
9884 /* the order these position exports are created is important */
9885 int next_pos = 0;
9886 bool exported_pos = export_vs_varying(ctx, VARYING_SLOT_POS, true, &next_pos);
9887 if (outinfo->writes_pointsize || outinfo->writes_layer || outinfo->writes_viewport_index) {
9888 export_vs_psiz_layer_viewport(ctx, &next_pos);
9889 exported_pos = true;
9890 }
9891 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
9892 exported_pos |= export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, true, &next_pos);
9893 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
9894 exported_pos |= export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, true, &next_pos);
9895
9896 if (ctx->export_clip_dists) {
9897 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
9898 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, false, &next_pos);
9899 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
9900 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, false, &next_pos);
9901 }
9902
9903 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
9904 if (i < VARYING_SLOT_VAR0 &&
9905 i != VARYING_SLOT_LAYER &&
9906 i != VARYING_SLOT_PRIMITIVE_ID &&
9907 i != VARYING_SLOT_VIEWPORT)
9908 continue;
9909
9910 export_vs_varying(ctx, i, false, NULL);
9911 }
9912
9913 if (!exported_pos)
9914 create_null_export(ctx);
9915 }
9916
9917 static bool export_fs_mrt_z(isel_context *ctx)
9918 {
9919 Builder bld(ctx->program, ctx->block);
9920 unsigned enabled_channels = 0;
9921 bool compr = false;
9922 Operand values[4];
9923
9924 for (unsigned i = 0; i < 4; ++i) {
9925 values[i] = Operand(v1);
9926 }
9927
9928 /* Both stencil and sample mask only need 16-bits. */
9929 if (!ctx->program->info->ps.writes_z &&
9930 (ctx->program->info->ps.writes_stencil ||
9931 ctx->program->info->ps.writes_sample_mask)) {
9932 compr = true; /* COMPR flag */
9933
9934 if (ctx->program->info->ps.writes_stencil) {
9935 /* Stencil should be in X[23:16]. */
9936 values[0] = Operand(ctx->outputs.temps[FRAG_RESULT_STENCIL * 4u]);
9937 values[0] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u), values[0]);
9938 enabled_channels |= 0x3;
9939 }
9940
9941 if (ctx->program->info->ps.writes_sample_mask) {
9942 /* SampleMask should be in Y[15:0]. */
9943 values[1] = Operand(ctx->outputs.temps[FRAG_RESULT_SAMPLE_MASK * 4u]);
9944 enabled_channels |= 0xc;
9945 }
9946 } else {
9947 if (ctx->program->info->ps.writes_z) {
9948 values[0] = Operand(ctx->outputs.temps[FRAG_RESULT_DEPTH * 4u]);
9949 enabled_channels |= 0x1;
9950 }
9951
9952 if (ctx->program->info->ps.writes_stencil) {
9953 values[1] = Operand(ctx->outputs.temps[FRAG_RESULT_STENCIL * 4u]);
9954 enabled_channels |= 0x2;
9955 }
9956
9957 if (ctx->program->info->ps.writes_sample_mask) {
9958 values[2] = Operand(ctx->outputs.temps[FRAG_RESULT_SAMPLE_MASK * 4u]);
9959 enabled_channels |= 0x4;
9960 }
9961 }
9962
9963 /* GFX6 (except OLAND and HAINAN) has a bug that it only looks at the X
9964 * writemask component.
9965 */
9966 if (ctx->options->chip_class == GFX6 &&
9967 ctx->options->family != CHIP_OLAND &&
9968 ctx->options->family != CHIP_HAINAN) {
9969 enabled_channels |= 0x1;
9970 }
9971
9972 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
9973 enabled_channels, V_008DFC_SQ_EXP_MRTZ, compr);
9974
9975 return true;
9976 }
9977
9978 static bool export_fs_mrt_color(isel_context *ctx, int slot)
9979 {
9980 Builder bld(ctx->program, ctx->block);
9981 unsigned write_mask = ctx->outputs.mask[slot];
9982 Operand values[4];
9983
9984 for (unsigned i = 0; i < 4; ++i) {
9985 if (write_mask & (1 << i)) {
9986 values[i] = Operand(ctx->outputs.temps[slot * 4u + i]);
9987 } else {
9988 values[i] = Operand(v1);
9989 }
9990 }
9991
9992 unsigned target, col_format;
9993 unsigned enabled_channels = 0;
9994 aco_opcode compr_op = (aco_opcode)0;
9995
9996 slot -= FRAG_RESULT_DATA0;
9997 target = V_008DFC_SQ_EXP_MRT + slot;
9998 col_format = (ctx->options->key.fs.col_format >> (4 * slot)) & 0xf;
9999
10000 bool is_int8 = (ctx->options->key.fs.is_int8 >> slot) & 1;
10001 bool is_int10 = (ctx->options->key.fs.is_int10 >> slot) & 1;
10002 bool is_16bit = values[0].regClass() == v2b;
10003
10004 switch (col_format)
10005 {
10006 case V_028714_SPI_SHADER_ZERO:
10007 enabled_channels = 0; /* writemask */
10008 target = V_008DFC_SQ_EXP_NULL;
10009 break;
10010
10011 case V_028714_SPI_SHADER_32_R:
10012 enabled_channels = 1;
10013 break;
10014
10015 case V_028714_SPI_SHADER_32_GR:
10016 enabled_channels = 0x3;
10017 break;
10018
10019 case V_028714_SPI_SHADER_32_AR:
10020 if (ctx->options->chip_class >= GFX10) {
10021 /* Special case: on GFX10, the outputs are different for 32_AR */
10022 enabled_channels = 0x3;
10023 values[1] = values[3];
10024 values[3] = Operand(v1);
10025 } else {
10026 enabled_channels = 0x9;
10027 }
10028 break;
10029
10030 case V_028714_SPI_SHADER_FP16_ABGR:
10031 enabled_channels = 0x5;
10032 compr_op = aco_opcode::v_cvt_pkrtz_f16_f32;
10033 if (is_16bit) {
10034 if (ctx->options->chip_class >= GFX9) {
10035 /* Pack the FP16 values together instead of converting them to
10036 * FP32 and back to FP16.
10037 * TODO: use p_create_vector and let the compiler optimizes.
10038 */
10039 compr_op = aco_opcode::v_pack_b32_f16;
10040 } else {
10041 for (unsigned i = 0; i < 4; i++) {
10042 if ((write_mask >> i) & 1)
10043 values[i] = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), values[i]);
10044 }
10045 }
10046 }
10047 break;
10048
10049 case V_028714_SPI_SHADER_UNORM16_ABGR:
10050 enabled_channels = 0x5;
10051 if (is_16bit && ctx->options->chip_class >= GFX9) {
10052 compr_op = aco_opcode::v_cvt_pknorm_u16_f16;
10053 } else {
10054 compr_op = aco_opcode::v_cvt_pknorm_u16_f32;
10055 }
10056 break;
10057
10058 case V_028714_SPI_SHADER_SNORM16_ABGR:
10059 enabled_channels = 0x5;
10060 if (is_16bit && ctx->options->chip_class >= GFX9) {
10061 compr_op = aco_opcode::v_cvt_pknorm_i16_f16;
10062 } else {
10063 compr_op = aco_opcode::v_cvt_pknorm_i16_f32;
10064 }
10065 break;
10066
10067 case V_028714_SPI_SHADER_UINT16_ABGR: {
10068 enabled_channels = 0x5;
10069 compr_op = aco_opcode::v_cvt_pk_u16_u32;
10070 if (is_int8 || is_int10) {
10071 /* clamp */
10072 uint32_t max_rgb = is_int8 ? 255 : is_int10 ? 1023 : 0;
10073 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
10074
10075 for (unsigned i = 0; i < 4; i++) {
10076 if ((write_mask >> i) & 1) {
10077 values[i] = bld.vop2(aco_opcode::v_min_u32, bld.def(v1),
10078 i == 3 && is_int10 ? Operand(3u) : Operand(max_rgb_val),
10079 values[i]);
10080 }
10081 }
10082 } else if (is_16bit) {
10083 for (unsigned i = 0; i < 4; i++) {
10084 if ((write_mask >> i) & 1) {
10085 Temp tmp = convert_int(ctx, bld, values[i].getTemp(), 16, 32, false);
10086 values[i] = Operand(tmp);
10087 }
10088 }
10089 }
10090 break;
10091 }
10092
10093 case V_028714_SPI_SHADER_SINT16_ABGR:
10094 enabled_channels = 0x5;
10095 compr_op = aco_opcode::v_cvt_pk_i16_i32;
10096 if (is_int8 || is_int10) {
10097 /* clamp */
10098 uint32_t max_rgb = is_int8 ? 127 : is_int10 ? 511 : 0;
10099 uint32_t min_rgb = is_int8 ? -128 :is_int10 ? -512 : 0;
10100 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
10101 Temp min_rgb_val = bld.copy(bld.def(s1), Operand(min_rgb));
10102
10103 for (unsigned i = 0; i < 4; i++) {
10104 if ((write_mask >> i) & 1) {
10105 values[i] = bld.vop2(aco_opcode::v_min_i32, bld.def(v1),
10106 i == 3 && is_int10 ? Operand(1u) : Operand(max_rgb_val),
10107 values[i]);
10108 values[i] = bld.vop2(aco_opcode::v_max_i32, bld.def(v1),
10109 i == 3 && is_int10 ? Operand(-2u) : Operand(min_rgb_val),
10110 values[i]);
10111 }
10112 }
10113 } else if (is_16bit) {
10114 for (unsigned i = 0; i < 4; i++) {
10115 if ((write_mask >> i) & 1) {
10116 Temp tmp = convert_int(ctx, bld, values[i].getTemp(), 16, 32, true);
10117 values[i] = Operand(tmp);
10118 }
10119 }
10120 }
10121 break;
10122
10123 case V_028714_SPI_SHADER_32_ABGR:
10124 enabled_channels = 0xF;
10125 break;
10126
10127 default:
10128 break;
10129 }
10130
10131 if (target == V_008DFC_SQ_EXP_NULL)
10132 return false;
10133
10134 /* Replace NaN by zero (only 32-bit) to fix game bugs if requested. */
10135 if (ctx->options->enable_mrt_output_nan_fixup &&
10136 !is_16bit &&
10137 (col_format == V_028714_SPI_SHADER_32_R ||
10138 col_format == V_028714_SPI_SHADER_32_GR ||
10139 col_format == V_028714_SPI_SHADER_32_AR ||
10140 col_format == V_028714_SPI_SHADER_32_ABGR ||
10141 col_format == V_028714_SPI_SHADER_FP16_ABGR)) {
10142 for (int i = 0; i < 4; i++) {
10143 if (!(write_mask & (1 << i)))
10144 continue;
10145
10146 Temp isnan = bld.vopc(aco_opcode::v_cmp_class_f32,
10147 bld.hint_vcc(bld.def(bld.lm)), values[i],
10148 bld.copy(bld.def(v1), Operand(3u)));
10149 values[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), values[i],
10150 bld.copy(bld.def(v1), Operand(0u)), isnan);
10151 }
10152 }
10153
10154 if ((bool) compr_op) {
10155 for (int i = 0; i < 2; i++) {
10156 /* check if at least one of the values to be compressed is enabled */
10157 unsigned enabled = (write_mask >> (i*2) | write_mask >> (i*2+1)) & 0x1;
10158 if (enabled) {
10159 enabled_channels |= enabled << (i*2);
10160 values[i] = bld.vop3(compr_op, bld.def(v1),
10161 values[i*2].isUndefined() ? Operand(0u) : values[i*2],
10162 values[i*2+1].isUndefined() ? Operand(0u): values[i*2+1]);
10163 } else {
10164 values[i] = Operand(v1);
10165 }
10166 }
10167 values[2] = Operand(v1);
10168 values[3] = Operand(v1);
10169 } else {
10170 for (int i = 0; i < 4; i++)
10171 values[i] = enabled_channels & (1 << i) ? values[i] : Operand(v1);
10172 }
10173
10174 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
10175 enabled_channels, target, (bool) compr_op);
10176 return true;
10177 }
10178
10179 static void create_fs_exports(isel_context *ctx)
10180 {
10181 bool exported = false;
10182
10183 /* Export depth, stencil and sample mask. */
10184 if (ctx->outputs.mask[FRAG_RESULT_DEPTH] ||
10185 ctx->outputs.mask[FRAG_RESULT_STENCIL] ||
10186 ctx->outputs.mask[FRAG_RESULT_SAMPLE_MASK])
10187 exported |= export_fs_mrt_z(ctx);
10188
10189 /* Export all color render targets. */
10190 for (unsigned i = FRAG_RESULT_DATA0; i < FRAG_RESULT_DATA7 + 1; ++i)
10191 if (ctx->outputs.mask[i])
10192 exported |= export_fs_mrt_color(ctx, i);
10193
10194 if (!exported)
10195 create_null_export(ctx);
10196 }
10197
10198 static void write_tcs_tess_factors(isel_context *ctx)
10199 {
10200 unsigned outer_comps;
10201 unsigned inner_comps;
10202
10203 switch (ctx->args->options->key.tcs.primitive_mode) {
10204 case GL_ISOLINES:
10205 outer_comps = 2;
10206 inner_comps = 0;
10207 break;
10208 case GL_TRIANGLES:
10209 outer_comps = 3;
10210 inner_comps = 1;
10211 break;
10212 case GL_QUADS:
10213 outer_comps = 4;
10214 inner_comps = 2;
10215 break;
10216 default:
10217 return;
10218 }
10219
10220 Builder bld(ctx->program, ctx->block);
10221
10222 bld.barrier(aco_opcode::p_memory_barrier_shared);
10223 if (unlikely(ctx->program->chip_class != GFX6 && ctx->program->workgroup_size > ctx->program->wave_size))
10224 bld.sopp(aco_opcode::s_barrier);
10225
10226 Temp tcs_rel_ids = get_arg(ctx, ctx->args->ac.tcs_rel_ids);
10227 Temp invocation_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), tcs_rel_ids, Operand(8u), Operand(5u));
10228
10229 Temp invocation_id_is_zero = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), invocation_id);
10230 if_context ic_invocation_id_is_zero;
10231 begin_divergent_if_then(ctx, &ic_invocation_id_is_zero, invocation_id_is_zero);
10232 bld.reset(ctx->block);
10233
10234 Temp hs_ring_tess_factor = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_FACTOR * 16u));
10235
10236 std::pair<Temp, unsigned> lds_base = get_tcs_output_lds_offset(ctx);
10237 unsigned stride = inner_comps + outer_comps;
10238 unsigned lds_align = calculate_lds_alignment(ctx, lds_base.second);
10239 Temp tf_inner_vec;
10240 Temp tf_outer_vec;
10241 Temp out[6];
10242 assert(stride <= (sizeof(out) / sizeof(Temp)));
10243
10244 if (ctx->args->options->key.tcs.primitive_mode == GL_ISOLINES) {
10245 // LINES reversal
10246 tf_outer_vec = load_lds(ctx, 4, bld.tmp(v2), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_out_loc, lds_align);
10247 out[1] = emit_extract_vector(ctx, tf_outer_vec, 0, v1);
10248 out[0] = emit_extract_vector(ctx, tf_outer_vec, 1, v1);
10249 } else {
10250 tf_outer_vec = load_lds(ctx, 4, bld.tmp(RegClass(RegType::vgpr, outer_comps)), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_out_loc, lds_align);
10251 tf_inner_vec = load_lds(ctx, 4, bld.tmp(RegClass(RegType::vgpr, inner_comps)), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_in_loc, lds_align);
10252
10253 for (unsigned i = 0; i < outer_comps; ++i)
10254 out[i] = emit_extract_vector(ctx, tf_outer_vec, i, v1);
10255 for (unsigned i = 0; i < inner_comps; ++i)
10256 out[outer_comps + i] = emit_extract_vector(ctx, tf_inner_vec, i, v1);
10257 }
10258
10259 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
10260 Temp tf_base = get_arg(ctx, ctx->args->tess_factor_offset);
10261 Temp byte_offset = bld.v_mul24_imm(bld.def(v1), rel_patch_id, stride * 4u);
10262 unsigned tf_const_offset = 0;
10263
10264 if (ctx->program->chip_class <= GFX8) {
10265 Temp rel_patch_id_is_zero = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), rel_patch_id);
10266 if_context ic_rel_patch_id_is_zero;
10267 begin_divergent_if_then(ctx, &ic_rel_patch_id_is_zero, rel_patch_id_is_zero);
10268 bld.reset(ctx->block);
10269
10270 /* Store the dynamic HS control word. */
10271 Temp control_word = bld.copy(bld.def(v1), Operand(0x80000000u));
10272 bld.mubuf(aco_opcode::buffer_store_dword,
10273 /* SRSRC */ hs_ring_tess_factor, /* VADDR */ Operand(v1), /* SOFFSET */ tf_base, /* VDATA */ control_word,
10274 /* immediate OFFSET */ 0, /* OFFEN */ false, /* idxen*/ false, /* addr64 */ false,
10275 /* disable_wqm */ false, /* glc */ true);
10276 tf_const_offset += 4;
10277
10278 begin_divergent_if_else(ctx, &ic_rel_patch_id_is_zero);
10279 end_divergent_if(ctx, &ic_rel_patch_id_is_zero);
10280 bld.reset(ctx->block);
10281 }
10282
10283 assert(stride == 2 || stride == 4 || stride == 6);
10284 Temp tf_vec = create_vec_from_array(ctx, out, stride, RegType::vgpr, 4u);
10285 store_vmem_mubuf(ctx, tf_vec, hs_ring_tess_factor, byte_offset, tf_base, tf_const_offset, 4, (1 << stride) - 1, true, false);
10286
10287 /* Store to offchip for TES to read - only if TES reads them */
10288 if (ctx->args->options->key.tcs.tes_reads_tess_factors) {
10289 Temp hs_ring_tess_offchip = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
10290 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
10291
10292 std::pair<Temp, unsigned> vmem_offs_outer = get_tcs_per_patch_output_vmem_offset(ctx, nullptr, ctx->tcs_tess_lvl_out_loc);
10293 store_vmem_mubuf(ctx, tf_outer_vec, hs_ring_tess_offchip, vmem_offs_outer.first, oc_lds, vmem_offs_outer.second, 4, (1 << outer_comps) - 1, true, false);
10294
10295 if (likely(inner_comps)) {
10296 std::pair<Temp, unsigned> vmem_offs_inner = get_tcs_per_patch_output_vmem_offset(ctx, nullptr, ctx->tcs_tess_lvl_in_loc);
10297 store_vmem_mubuf(ctx, tf_inner_vec, hs_ring_tess_offchip, vmem_offs_inner.first, oc_lds, vmem_offs_inner.second, 4, (1 << inner_comps) - 1, true, false);
10298 }
10299 }
10300
10301 begin_divergent_if_else(ctx, &ic_invocation_id_is_zero);
10302 end_divergent_if(ctx, &ic_invocation_id_is_zero);
10303 }
10304
10305 static void emit_stream_output(isel_context *ctx,
10306 Temp const *so_buffers,
10307 Temp const *so_write_offset,
10308 const struct radv_stream_output *output)
10309 {
10310 unsigned num_comps = util_bitcount(output->component_mask);
10311 unsigned writemask = (1 << num_comps) - 1;
10312 unsigned loc = output->location;
10313 unsigned buf = output->buffer;
10314
10315 assert(num_comps && num_comps <= 4);
10316 if (!num_comps || num_comps > 4)
10317 return;
10318
10319 unsigned start = ffs(output->component_mask) - 1;
10320
10321 Temp out[4];
10322 bool all_undef = true;
10323 assert(ctx->stage & hw_vs);
10324 for (unsigned i = 0; i < num_comps; i++) {
10325 out[i] = ctx->outputs.temps[loc * 4 + start + i];
10326 all_undef = all_undef && !out[i].id();
10327 }
10328 if (all_undef)
10329 return;
10330
10331 while (writemask) {
10332 int start, count;
10333 u_bit_scan_consecutive_range(&writemask, &start, &count);
10334 if (count == 3 && ctx->options->chip_class == GFX6) {
10335 /* GFX6 doesn't support storing vec3, split it. */
10336 writemask |= 1u << (start + 2);
10337 count = 2;
10338 }
10339
10340 unsigned offset = output->offset + start * 4;
10341
10342 Temp write_data = {ctx->program->allocateId(), RegClass(RegType::vgpr, count)};
10343 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
10344 for (int i = 0; i < count; ++i)
10345 vec->operands[i] = (ctx->outputs.mask[loc] & 1 << (start + i)) ? Operand(out[start + i]) : Operand(0u);
10346 vec->definitions[0] = Definition(write_data);
10347 ctx->block->instructions.emplace_back(std::move(vec));
10348
10349 aco_opcode opcode;
10350 switch (count) {
10351 case 1:
10352 opcode = aco_opcode::buffer_store_dword;
10353 break;
10354 case 2:
10355 opcode = aco_opcode::buffer_store_dwordx2;
10356 break;
10357 case 3:
10358 opcode = aco_opcode::buffer_store_dwordx3;
10359 break;
10360 case 4:
10361 opcode = aco_opcode::buffer_store_dwordx4;
10362 break;
10363 default:
10364 unreachable("Unsupported dword count.");
10365 }
10366
10367 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
10368 store->operands[0] = Operand(so_buffers[buf]);
10369 store->operands[1] = Operand(so_write_offset[buf]);
10370 store->operands[2] = Operand((uint32_t) 0);
10371 store->operands[3] = Operand(write_data);
10372 if (offset > 4095) {
10373 /* Don't think this can happen in RADV, but maybe GL? It's easy to do this anyway. */
10374 Builder bld(ctx->program, ctx->block);
10375 store->operands[0] = bld.vadd32(bld.def(v1), Operand(offset), Operand(so_write_offset[buf]));
10376 } else {
10377 store->offset = offset;
10378 }
10379 store->offen = true;
10380 store->glc = true;
10381 store->dlc = false;
10382 store->slc = true;
10383 store->can_reorder = true;
10384 ctx->block->instructions.emplace_back(std::move(store));
10385 }
10386 }
10387
10388 static void emit_streamout(isel_context *ctx, unsigned stream)
10389 {
10390 Builder bld(ctx->program, ctx->block);
10391
10392 Temp so_buffers[4];
10393 Temp buf_ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->streamout_buffers));
10394 for (unsigned i = 0; i < 4; i++) {
10395 unsigned stride = ctx->program->info->so.strides[i];
10396 if (!stride)
10397 continue;
10398
10399 Operand off = bld.copy(bld.def(s1), Operand(i * 16u));
10400 so_buffers[i] = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), buf_ptr, off);
10401 }
10402
10403 Temp so_vtx_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10404 get_arg(ctx, ctx->args->streamout_config), Operand(0x70010u));
10405
10406 Temp tid = emit_mbcnt(ctx, bld.def(v1));
10407
10408 Temp can_emit = bld.vopc(aco_opcode::v_cmp_gt_i32, bld.def(bld.lm), so_vtx_count, tid);
10409
10410 if_context ic;
10411 begin_divergent_if_then(ctx, &ic, can_emit);
10412
10413 bld.reset(ctx->block);
10414
10415 Temp so_write_index = bld.vadd32(bld.def(v1), get_arg(ctx, ctx->args->streamout_write_idx), tid);
10416
10417 Temp so_write_offset[4];
10418
10419 for (unsigned i = 0; i < 4; i++) {
10420 unsigned stride = ctx->program->info->so.strides[i];
10421 if (!stride)
10422 continue;
10423
10424 if (stride == 1) {
10425 Temp offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
10426 get_arg(ctx, ctx->args->streamout_write_idx),
10427 get_arg(ctx, ctx->args->streamout_offset[i]));
10428 Temp new_offset = bld.vadd32(bld.def(v1), offset, tid);
10429
10430 so_write_offset[i] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), new_offset);
10431 } else {
10432 Temp offset = bld.v_mul_imm(bld.def(v1), so_write_index, stride * 4u);
10433 Temp offset2 = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(4u),
10434 get_arg(ctx, ctx->args->streamout_offset[i]));
10435 so_write_offset[i] = bld.vadd32(bld.def(v1), offset, offset2);
10436 }
10437 }
10438
10439 for (unsigned i = 0; i < ctx->program->info->so.num_outputs; i++) {
10440 struct radv_stream_output *output =
10441 &ctx->program->info->so.outputs[i];
10442 if (stream != output->stream)
10443 continue;
10444
10445 emit_stream_output(ctx, so_buffers, so_write_offset, output);
10446 }
10447
10448 begin_divergent_if_else(ctx, &ic);
10449 end_divergent_if(ctx, &ic);
10450 }
10451
10452 } /* end namespace */
10453
10454 void fix_ls_vgpr_init_bug(isel_context *ctx, Pseudo_instruction *startpgm)
10455 {
10456 assert(ctx->shader->info.stage == MESA_SHADER_VERTEX);
10457 Builder bld(ctx->program, ctx->block);
10458 constexpr unsigned hs_idx = 1u;
10459 Builder::Result hs_thread_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10460 get_arg(ctx, ctx->args->merged_wave_info),
10461 Operand((8u << 16) | (hs_idx * 8u)));
10462 Temp ls_has_nonzero_hs_threads = bool_to_vector_condition(ctx, hs_thread_count.def(1).getTemp());
10463
10464 /* If there are no HS threads, SPI mistakenly loads the LS VGPRs starting at VGPR 0. */
10465
10466 Temp instance_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10467 get_arg(ctx, ctx->args->rel_auto_id),
10468 get_arg(ctx, ctx->args->ac.instance_id),
10469 ls_has_nonzero_hs_threads);
10470 Temp rel_auto_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10471 get_arg(ctx, ctx->args->ac.tcs_rel_ids),
10472 get_arg(ctx, ctx->args->rel_auto_id),
10473 ls_has_nonzero_hs_threads);
10474 Temp vertex_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10475 get_arg(ctx, ctx->args->ac.tcs_patch_id),
10476 get_arg(ctx, ctx->args->ac.vertex_id),
10477 ls_has_nonzero_hs_threads);
10478
10479 ctx->arg_temps[ctx->args->ac.instance_id.arg_index] = instance_id;
10480 ctx->arg_temps[ctx->args->rel_auto_id.arg_index] = rel_auto_id;
10481 ctx->arg_temps[ctx->args->ac.vertex_id.arg_index] = vertex_id;
10482 }
10483
10484 void split_arguments(isel_context *ctx, Pseudo_instruction *startpgm)
10485 {
10486 /* Split all arguments except for the first (ring_offsets) and the last
10487 * (exec) so that the dead channels don't stay live throughout the program.
10488 */
10489 for (int i = 1; i < startpgm->definitions.size() - 1; i++) {
10490 if (startpgm->definitions[i].regClass().size() > 1) {
10491 emit_split_vector(ctx, startpgm->definitions[i].getTemp(),
10492 startpgm->definitions[i].regClass().size());
10493 }
10494 }
10495 }
10496
10497 void handle_bc_optimize(isel_context *ctx)
10498 {
10499 /* needed when SPI_PS_IN_CONTROL.BC_OPTIMIZE_DISABLE is set to 0 */
10500 Builder bld(ctx->program, ctx->block);
10501 uint32_t spi_ps_input_ena = ctx->program->config->spi_ps_input_ena;
10502 bool uses_center = G_0286CC_PERSP_CENTER_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTER_ENA(spi_ps_input_ena);
10503 bool uses_centroid = G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena);
10504 ctx->persp_centroid = get_arg(ctx, ctx->args->ac.persp_centroid);
10505 ctx->linear_centroid = get_arg(ctx, ctx->args->ac.linear_centroid);
10506 if (uses_center && uses_centroid) {
10507 Temp sel = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)),
10508 get_arg(ctx, ctx->args->ac.prim_mask), Operand(0u));
10509
10510 if (G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena)) {
10511 Temp new_coord[2];
10512 for (unsigned i = 0; i < 2; i++) {
10513 Temp persp_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_centroid), i, v1);
10514 Temp persp_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_center), i, v1);
10515 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10516 persp_centroid, persp_center, sel);
10517 }
10518 ctx->persp_centroid = bld.tmp(v2);
10519 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->persp_centroid),
10520 Operand(new_coord[0]), Operand(new_coord[1]));
10521 emit_split_vector(ctx, ctx->persp_centroid, 2);
10522 }
10523
10524 if (G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena)) {
10525 Temp new_coord[2];
10526 for (unsigned i = 0; i < 2; i++) {
10527 Temp linear_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_centroid), i, v1);
10528 Temp linear_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_center), i, v1);
10529 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10530 linear_centroid, linear_center, sel);
10531 }
10532 ctx->linear_centroid = bld.tmp(v2);
10533 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->linear_centroid),
10534 Operand(new_coord[0]), Operand(new_coord[1]));
10535 emit_split_vector(ctx, ctx->linear_centroid, 2);
10536 }
10537 }
10538 }
10539
10540 void setup_fp_mode(isel_context *ctx, nir_shader *shader)
10541 {
10542 Program *program = ctx->program;
10543
10544 unsigned float_controls = shader->info.float_controls_execution_mode;
10545
10546 program->next_fp_mode.preserve_signed_zero_inf_nan32 =
10547 float_controls & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32;
10548 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 =
10549 float_controls & (FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16 |
10550 FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64);
10551
10552 program->next_fp_mode.must_flush_denorms32 =
10553 float_controls & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32;
10554 program->next_fp_mode.must_flush_denorms16_64 =
10555 float_controls & (FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 |
10556 FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64);
10557
10558 program->next_fp_mode.care_about_round32 =
10559 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32);
10560
10561 program->next_fp_mode.care_about_round16_64 =
10562 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64 |
10563 FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
10564
10565 /* default to preserving fp16 and fp64 denorms, since it's free for fp64 and
10566 * the precision seems needed for Wolfenstein: Youngblood to render correctly */
10567 if (program->next_fp_mode.must_flush_denorms16_64)
10568 program->next_fp_mode.denorm16_64 = 0;
10569 else
10570 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
10571
10572 /* preserving fp32 denorms is expensive, so only do it if asked */
10573 if (float_controls & FLOAT_CONTROLS_DENORM_PRESERVE_FP32)
10574 program->next_fp_mode.denorm32 = fp_denorm_keep;
10575 else
10576 program->next_fp_mode.denorm32 = 0;
10577
10578 if (float_controls & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32)
10579 program->next_fp_mode.round32 = fp_round_tz;
10580 else
10581 program->next_fp_mode.round32 = fp_round_ne;
10582
10583 if (float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64))
10584 program->next_fp_mode.round16_64 = fp_round_tz;
10585 else
10586 program->next_fp_mode.round16_64 = fp_round_ne;
10587
10588 ctx->block->fp_mode = program->next_fp_mode;
10589 }
10590
10591 void cleanup_cfg(Program *program)
10592 {
10593 /* create linear_succs/logical_succs */
10594 for (Block& BB : program->blocks) {
10595 for (unsigned idx : BB.linear_preds)
10596 program->blocks[idx].linear_succs.emplace_back(BB.index);
10597 for (unsigned idx : BB.logical_preds)
10598 program->blocks[idx].logical_succs.emplace_back(BB.index);
10599 }
10600 }
10601
10602 Temp merged_wave_info_to_mask(isel_context *ctx, unsigned i)
10603 {
10604 Builder bld(ctx->program, ctx->block);
10605
10606 /* The s_bfm only cares about s0.u[5:0] so we don't need either s_bfe nor s_and here */
10607 Temp count = i == 0
10608 ? get_arg(ctx, ctx->args->merged_wave_info)
10609 : bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc),
10610 get_arg(ctx, ctx->args->merged_wave_info), Operand(i * 8u));
10611
10612 Temp mask = bld.sop2(aco_opcode::s_bfm_b64, bld.def(s2), count, Operand(0u));
10613 Temp cond;
10614
10615 if (ctx->program->wave_size == 64) {
10616 /* Special case for 64 active invocations, because 64 doesn't work with s_bfm */
10617 Temp active_64 = bld.sopc(aco_opcode::s_bitcmp1_b32, bld.def(s1, scc), count, Operand(6u /* log2(64) */));
10618 cond = bld.sop2(Builder::s_cselect, bld.def(bld.lm), Operand(-1u), mask, bld.scc(active_64));
10619 } else {
10620 /* We use s_bfm_b64 (not _b32) which works with 32, but we need to extract the lower half of the register */
10621 cond = emit_extract_vector(ctx, mask, 0, bld.lm);
10622 }
10623
10624 return cond;
10625 }
10626
10627 bool ngg_early_prim_export(isel_context *ctx)
10628 {
10629 /* TODO: Check edge flags, and if they are written, return false. (Needed for OpenGL, not for Vulkan.) */
10630 return true;
10631 }
10632
10633 void ngg_emit_sendmsg_gs_alloc_req(isel_context *ctx)
10634 {
10635 Builder bld(ctx->program, ctx->block);
10636
10637 /* It is recommended to do the GS_ALLOC_REQ as soon and as quickly as possible, so we set the maximum priority (3). */
10638 bld.sopp(aco_opcode::s_setprio, -1u, 0x3u);
10639
10640 /* Get the id of the current wave within the threadgroup (workgroup) */
10641 Builder::Result wave_id_in_tg = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10642 get_arg(ctx, ctx->args->merged_wave_info), Operand(24u | (4u << 16)));
10643
10644 /* Execute the following code only on the first wave (wave id 0),
10645 * use the SCC def to tell if the wave id is zero or not.
10646 */
10647 Temp cond = wave_id_in_tg.def(1).getTemp();
10648 if_context ic;
10649 begin_uniform_if_then(ctx, &ic, cond);
10650 begin_uniform_if_else(ctx, &ic);
10651 bld.reset(ctx->block);
10652
10653 /* Number of vertices output by VS/TES */
10654 Temp vtx_cnt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10655 get_arg(ctx, ctx->args->gs_tg_info), Operand(12u | (9u << 16u)));
10656 /* Number of primitives output by VS/TES */
10657 Temp prm_cnt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10658 get_arg(ctx, ctx->args->gs_tg_info), Operand(22u | (9u << 16u)));
10659
10660 /* Put the number of vertices and primitives into m0 for the GS_ALLOC_REQ */
10661 Temp tmp = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), prm_cnt, Operand(12u));
10662 tmp = bld.sop2(aco_opcode::s_or_b32, bld.m0(bld.def(s1)), bld.def(s1, scc), tmp, vtx_cnt);
10663
10664 /* Request the SPI to allocate space for the primitives and vertices that will be exported by the threadgroup. */
10665 bld.sopp(aco_opcode::s_sendmsg, bld.m0(tmp), -1, sendmsg_gs_alloc_req);
10666
10667 end_uniform_if(ctx, &ic);
10668
10669 /* After the GS_ALLOC_REQ is done, reset priority to default (0). */
10670 bld.reset(ctx->block);
10671 bld.sopp(aco_opcode::s_setprio, -1u, 0x0u);
10672 }
10673
10674 Temp ngg_get_prim_exp_arg(isel_context *ctx, unsigned num_vertices, const Temp vtxindex[])
10675 {
10676 Builder bld(ctx->program, ctx->block);
10677
10678 if (ctx->args->options->key.vs_common_out.as_ngg_passthrough) {
10679 return get_arg(ctx, ctx->args->gs_vtx_offset[0]);
10680 }
10681
10682 Temp gs_invocation_id = get_arg(ctx, ctx->args->ac.gs_invocation_id);
10683 Temp tmp;
10684
10685 for (unsigned i = 0; i < num_vertices; ++i) {
10686 assert(vtxindex[i].id());
10687
10688 if (i)
10689 tmp = bld.vop3(aco_opcode::v_lshl_add_u32, bld.def(v1), vtxindex[i], Operand(10u * i), tmp);
10690 else
10691 tmp = vtxindex[i];
10692
10693 /* The initial edge flag is always false in tess eval shaders. */
10694 if (ctx->stage == ngg_vertex_gs) {
10695 Temp edgeflag = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), gs_invocation_id, Operand(8 + i), Operand(1u));
10696 tmp = bld.vop3(aco_opcode::v_lshl_add_u32, bld.def(v1), edgeflag, Operand(10u * i + 9u), tmp);
10697 }
10698 }
10699
10700 /* TODO: Set isnull field in case of merged NGG VS+GS. */
10701
10702 return tmp;
10703 }
10704
10705 void ngg_emit_prim_export(isel_context *ctx, unsigned num_vertices_per_primitive, const Temp vtxindex[])
10706 {
10707 Builder bld(ctx->program, ctx->block);
10708 Temp prim_exp_arg = ngg_get_prim_exp_arg(ctx, num_vertices_per_primitive, vtxindex);
10709
10710 bld.exp(aco_opcode::exp, prim_exp_arg, Operand(v1), Operand(v1), Operand(v1),
10711 1 /* enabled mask */, V_008DFC_SQ_EXP_PRIM /* dest */,
10712 false /* compressed */, true/* done */, false /* valid mask */);
10713 }
10714
10715 void ngg_emit_nogs_gsthreads(isel_context *ctx)
10716 {
10717 /* Emit the things that NGG GS threads need to do, for shaders that don't have SW GS.
10718 * These must always come before VS exports.
10719 *
10720 * It is recommended to do these as early as possible. They can be at the beginning when
10721 * there is no SW GS and the shader doesn't write edge flags.
10722 */
10723
10724 if_context ic;
10725 Temp is_gs_thread = merged_wave_info_to_mask(ctx, 1);
10726 begin_divergent_if_then(ctx, &ic, is_gs_thread);
10727
10728 Builder bld(ctx->program, ctx->block);
10729 constexpr unsigned max_vertices_per_primitive = 3;
10730 unsigned num_vertices_per_primitive = max_vertices_per_primitive;
10731
10732 if (ctx->stage == ngg_vertex_gs) {
10733 /* TODO: optimize for points & lines */
10734 } else if (ctx->stage == ngg_tess_eval_gs) {
10735 if (ctx->shader->info.tess.point_mode)
10736 num_vertices_per_primitive = 1;
10737 else if (ctx->shader->info.tess.primitive_mode == GL_ISOLINES)
10738 num_vertices_per_primitive = 2;
10739 } else {
10740 unreachable("Unsupported NGG shader stage");
10741 }
10742
10743 Temp vtxindex[max_vertices_per_primitive];
10744 vtxindex[0] = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu),
10745 get_arg(ctx, ctx->args->gs_vtx_offset[0]));
10746 vtxindex[1] = num_vertices_per_primitive < 2 ? Temp(0, v1) :
10747 bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
10748 get_arg(ctx, ctx->args->gs_vtx_offset[0]), Operand(16u), Operand(16u));
10749 vtxindex[2] = num_vertices_per_primitive < 3 ? Temp(0, v1) :
10750 bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu),
10751 get_arg(ctx, ctx->args->gs_vtx_offset[2]));
10752
10753 /* Export primitive data to the index buffer. */
10754 ngg_emit_prim_export(ctx, num_vertices_per_primitive, vtxindex);
10755
10756 /* Export primitive ID. */
10757 if (ctx->stage == ngg_vertex_gs && ctx->args->options->key.vs_common_out.export_prim_id) {
10758 /* Copy Primitive IDs from GS threads to the LDS address corresponding to the ES thread of the provoking vertex. */
10759 Temp prim_id = get_arg(ctx, ctx->args->ac.gs_prim_id);
10760 Temp provoking_vtx_index = vtxindex[0];
10761 Temp addr = bld.v_mul_imm(bld.def(v1), provoking_vtx_index, 4u);
10762
10763 store_lds(ctx, 4, prim_id, 0x1u, addr, 0u, 4u);
10764 }
10765
10766 begin_divergent_if_else(ctx, &ic);
10767 end_divergent_if(ctx, &ic);
10768 }
10769
10770 void ngg_emit_nogs_output(isel_context *ctx)
10771 {
10772 /* Emits NGG GS output, for stages that don't have SW GS. */
10773
10774 if_context ic;
10775 Builder bld(ctx->program, ctx->block);
10776 bool late_prim_export = !ngg_early_prim_export(ctx);
10777
10778 /* NGG streamout is currently disabled by default. */
10779 assert(!ctx->args->shader_info->so.num_outputs);
10780
10781 if (late_prim_export) {
10782 /* VS exports are output to registers in a predecessor block. Emit phis to get them into this block. */
10783 create_export_phis(ctx);
10784 /* Do what we need to do in the GS threads. */
10785 ngg_emit_nogs_gsthreads(ctx);
10786
10787 /* What comes next should be executed on ES threads. */
10788 Temp is_es_thread = merged_wave_info_to_mask(ctx, 0);
10789 begin_divergent_if_then(ctx, &ic, is_es_thread);
10790 bld.reset(ctx->block);
10791 }
10792
10793 /* Export VS outputs */
10794 ctx->block->kind |= block_kind_export_end;
10795 create_vs_exports(ctx);
10796
10797 /* Export primitive ID */
10798 if (ctx->args->options->key.vs_common_out.export_prim_id) {
10799 Temp prim_id;
10800
10801 if (ctx->stage == ngg_vertex_gs) {
10802 /* Wait for GS threads to store primitive ID in LDS. */
10803 bld.barrier(aco_opcode::p_memory_barrier_shared);
10804 bld.sopp(aco_opcode::s_barrier);
10805
10806 /* Calculate LDS address where the GS threads stored the primitive ID. */
10807 Temp wave_id_in_tg = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10808 get_arg(ctx, ctx->args->merged_wave_info), Operand(24u | (4u << 16)));
10809 Temp thread_id_in_wave = emit_mbcnt(ctx, bld.def(v1));
10810 Temp wave_id_mul = bld.v_mul24_imm(bld.def(v1), as_vgpr(ctx, wave_id_in_tg), ctx->program->wave_size);
10811 Temp thread_id_in_tg = bld.vadd32(bld.def(v1), Operand(wave_id_mul), Operand(thread_id_in_wave));
10812 Temp addr = bld.v_mul24_imm(bld.def(v1), thread_id_in_tg, 4u);
10813
10814 /* Load primitive ID from LDS. */
10815 prim_id = load_lds(ctx, 4, bld.tmp(v1), addr, 0u, 4u);
10816 } else if (ctx->stage == ngg_tess_eval_gs) {
10817 /* TES: Just use the patch ID as the primitive ID. */
10818 prim_id = get_arg(ctx, ctx->args->ac.tes_patch_id);
10819 } else {
10820 unreachable("unsupported NGG shader stage.");
10821 }
10822
10823 ctx->outputs.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
10824 ctx->outputs.temps[VARYING_SLOT_PRIMITIVE_ID * 4u] = prim_id;
10825
10826 export_vs_varying(ctx, VARYING_SLOT_PRIMITIVE_ID, false, nullptr);
10827 }
10828
10829 if (late_prim_export) {
10830 begin_divergent_if_else(ctx, &ic);
10831 end_divergent_if(ctx, &ic);
10832 bld.reset(ctx->block);
10833 }
10834 }
10835
10836 void select_program(Program *program,
10837 unsigned shader_count,
10838 struct nir_shader *const *shaders,
10839 ac_shader_config* config,
10840 struct radv_shader_args *args)
10841 {
10842 isel_context ctx = setup_isel_context(program, shader_count, shaders, config, args, false);
10843 if_context ic_merged_wave_info;
10844 bool ngg_no_gs = ctx.stage == ngg_vertex_gs || ctx.stage == ngg_tess_eval_gs;
10845
10846 for (unsigned i = 0; i < shader_count; i++) {
10847 nir_shader *nir = shaders[i];
10848 init_context(&ctx, nir);
10849
10850 setup_fp_mode(&ctx, nir);
10851
10852 if (!i) {
10853 /* needs to be after init_context() for FS */
10854 Pseudo_instruction *startpgm = add_startpgm(&ctx);
10855 append_logical_start(ctx.block);
10856
10857 if (unlikely(args->options->has_ls_vgpr_init_bug && ctx.stage == vertex_tess_control_hs))
10858 fix_ls_vgpr_init_bug(&ctx, startpgm);
10859
10860 split_arguments(&ctx, startpgm);
10861 }
10862
10863 if (ngg_no_gs) {
10864 ngg_emit_sendmsg_gs_alloc_req(&ctx);
10865
10866 if (ngg_early_prim_export(&ctx))
10867 ngg_emit_nogs_gsthreads(&ctx);
10868 }
10869
10870 /* In a merged VS+TCS HS, the VS implementation can be completely empty. */
10871 nir_function_impl *func = nir_shader_get_entrypoint(nir);
10872 bool empty_shader = nir_cf_list_is_empty_block(&func->body) &&
10873 ((nir->info.stage == MESA_SHADER_VERTEX &&
10874 (ctx.stage == vertex_tess_control_hs || ctx.stage == vertex_geometry_gs)) ||
10875 (nir->info.stage == MESA_SHADER_TESS_EVAL &&
10876 ctx.stage == tess_eval_geometry_gs));
10877
10878 bool check_merged_wave_info = ctx.tcs_in_out_eq ? i == 0 : ((shader_count >= 2 && !empty_shader) || ngg_no_gs);
10879 bool endif_merged_wave_info = ctx.tcs_in_out_eq ? i == 1 : check_merged_wave_info;
10880 if (check_merged_wave_info) {
10881 Temp cond = merged_wave_info_to_mask(&ctx, i);
10882 begin_divergent_if_then(&ctx, &ic_merged_wave_info, cond);
10883 }
10884
10885 if (i) {
10886 Builder bld(ctx.program, ctx.block);
10887
10888 bld.barrier(aco_opcode::p_memory_barrier_shared);
10889 bld.sopp(aco_opcode::s_barrier);
10890
10891 if (ctx.stage == vertex_geometry_gs || ctx.stage == tess_eval_geometry_gs) {
10892 ctx.gs_wave_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1, m0), bld.def(s1, scc), get_arg(&ctx, args->merged_wave_info), Operand((8u << 16) | 16u));
10893 }
10894 } else if (ctx.stage == geometry_gs)
10895 ctx.gs_wave_id = get_arg(&ctx, args->gs_wave_id);
10896
10897 if (ctx.stage == fragment_fs)
10898 handle_bc_optimize(&ctx);
10899
10900 visit_cf_list(&ctx, &func->body);
10901
10902 if (ctx.program->info->so.num_outputs && (ctx.stage & hw_vs))
10903 emit_streamout(&ctx, 0);
10904
10905 if (ctx.stage & hw_vs) {
10906 create_vs_exports(&ctx);
10907 ctx.block->kind |= block_kind_export_end;
10908 } else if (ngg_no_gs && ngg_early_prim_export(&ctx)) {
10909 ngg_emit_nogs_output(&ctx);
10910 } else if (nir->info.stage == MESA_SHADER_GEOMETRY) {
10911 Builder bld(ctx.program, ctx.block);
10912 bld.barrier(aco_opcode::p_memory_barrier_gs_data);
10913 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx.gs_wave_id), -1, sendmsg_gs_done(false, false, 0));
10914 } else if (nir->info.stage == MESA_SHADER_TESS_CTRL) {
10915 write_tcs_tess_factors(&ctx);
10916 }
10917
10918 if (ctx.stage == fragment_fs) {
10919 create_fs_exports(&ctx);
10920 ctx.block->kind |= block_kind_export_end;
10921 }
10922
10923 if (endif_merged_wave_info) {
10924 begin_divergent_if_else(&ctx, &ic_merged_wave_info);
10925 end_divergent_if(&ctx, &ic_merged_wave_info);
10926 }
10927
10928 if (ngg_no_gs && !ngg_early_prim_export(&ctx))
10929 ngg_emit_nogs_output(&ctx);
10930
10931 if (i == 0 && ctx.stage == vertex_tess_control_hs && ctx.tcs_in_out_eq) {
10932 /* Outputs of the previous stage are inputs to the next stage */
10933 ctx.inputs = ctx.outputs;
10934 ctx.outputs = shader_io_state();
10935 }
10936 }
10937
10938 program->config->float_mode = program->blocks[0].fp_mode.val;
10939
10940 append_logical_end(ctx.block);
10941 ctx.block->kind |= block_kind_uniform;
10942 Builder bld(ctx.program, ctx.block);
10943 if (ctx.program->wb_smem_l1_on_end)
10944 bld.smem(aco_opcode::s_dcache_wb, false);
10945 bld.sopp(aco_opcode::s_endpgm);
10946
10947 cleanup_cfg(program);
10948 }
10949
10950 void select_gs_copy_shader(Program *program, struct nir_shader *gs_shader,
10951 ac_shader_config* config,
10952 struct radv_shader_args *args)
10953 {
10954 isel_context ctx = setup_isel_context(program, 1, &gs_shader, config, args, true);
10955
10956 program->next_fp_mode.preserve_signed_zero_inf_nan32 = false;
10957 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 = false;
10958 program->next_fp_mode.must_flush_denorms32 = false;
10959 program->next_fp_mode.must_flush_denorms16_64 = false;
10960 program->next_fp_mode.care_about_round32 = false;
10961 program->next_fp_mode.care_about_round16_64 = false;
10962 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
10963 program->next_fp_mode.denorm32 = 0;
10964 program->next_fp_mode.round32 = fp_round_ne;
10965 program->next_fp_mode.round16_64 = fp_round_ne;
10966 ctx.block->fp_mode = program->next_fp_mode;
10967
10968 add_startpgm(&ctx);
10969 append_logical_start(ctx.block);
10970
10971 Builder bld(ctx.program, ctx.block);
10972
10973 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), program->private_segment_buffer, Operand(RING_GSVS_VS * 16u));
10974
10975 Operand stream_id(0u);
10976 if (args->shader_info->so.num_outputs)
10977 stream_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10978 get_arg(&ctx, ctx.args->streamout_config), Operand(0x20018u));
10979
10980 Temp vtx_offset = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), get_arg(&ctx, ctx.args->ac.vertex_id));
10981
10982 std::stack<Block> endif_blocks;
10983
10984 for (unsigned stream = 0; stream < 4; stream++) {
10985 if (stream_id.isConstant() && stream != stream_id.constantValue())
10986 continue;
10987
10988 unsigned num_components = args->shader_info->gs.num_stream_output_components[stream];
10989 if (stream > 0 && (!num_components || !args->shader_info->so.num_outputs))
10990 continue;
10991
10992 memset(ctx.outputs.mask, 0, sizeof(ctx.outputs.mask));
10993
10994 unsigned BB_if_idx = ctx.block->index;
10995 Block BB_endif = Block();
10996 if (!stream_id.isConstant()) {
10997 /* begin IF */
10998 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), stream_id, Operand(stream));
10999 append_logical_end(ctx.block);
11000 ctx.block->kind |= block_kind_uniform;
11001 bld.branch(aco_opcode::p_cbranch_z, cond);
11002
11003 BB_endif.kind |= ctx.block->kind & block_kind_top_level;
11004
11005 ctx.block = ctx.program->create_and_insert_block();
11006 add_edge(BB_if_idx, ctx.block);
11007 bld.reset(ctx.block);
11008 append_logical_start(ctx.block);
11009 }
11010
11011 unsigned offset = 0;
11012 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
11013 if (args->shader_info->gs.output_streams[i] != stream)
11014 continue;
11015
11016 unsigned output_usage_mask = args->shader_info->gs.output_usage_mask[i];
11017 unsigned length = util_last_bit(output_usage_mask);
11018 for (unsigned j = 0; j < length; ++j) {
11019 if (!(output_usage_mask & (1 << j)))
11020 continue;
11021
11022 unsigned const_offset = offset * args->shader_info->gs.vertices_out * 16 * 4;
11023 Temp voffset = vtx_offset;
11024 if (const_offset >= 4096u) {
11025 voffset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), voffset);
11026 const_offset %= 4096u;
11027 }
11028
11029 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dword, Format::MUBUF, 3, 1)};
11030 mubuf->definitions[0] = bld.def(v1);
11031 mubuf->operands[0] = Operand(gsvs_ring);
11032 mubuf->operands[1] = Operand(voffset);
11033 mubuf->operands[2] = Operand(0u);
11034 mubuf->offen = true;
11035 mubuf->offset = const_offset;
11036 mubuf->glc = true;
11037 mubuf->slc = true;
11038 mubuf->dlc = args->options->chip_class >= GFX10;
11039 mubuf->barrier = barrier_none;
11040 mubuf->can_reorder = true;
11041
11042 ctx.outputs.mask[i] |= 1 << j;
11043 ctx.outputs.temps[i * 4u + j] = mubuf->definitions[0].getTemp();
11044
11045 bld.insert(std::move(mubuf));
11046
11047 offset++;
11048 }
11049 }
11050
11051 if (args->shader_info->so.num_outputs) {
11052 emit_streamout(&ctx, stream);
11053 bld.reset(ctx.block);
11054 }
11055
11056 if (stream == 0) {
11057 create_vs_exports(&ctx);
11058 ctx.block->kind |= block_kind_export_end;
11059 }
11060
11061 if (!stream_id.isConstant()) {
11062 append_logical_end(ctx.block);
11063
11064 /* branch from then block to endif block */
11065 bld.branch(aco_opcode::p_branch);
11066 add_edge(ctx.block->index, &BB_endif);
11067 ctx.block->kind |= block_kind_uniform;
11068
11069 /* emit else block */
11070 ctx.block = ctx.program->create_and_insert_block();
11071 add_edge(BB_if_idx, ctx.block);
11072 bld.reset(ctx.block);
11073 append_logical_start(ctx.block);
11074
11075 endif_blocks.push(std::move(BB_endif));
11076 }
11077 }
11078
11079 while (!endif_blocks.empty()) {
11080 Block BB_endif = std::move(endif_blocks.top());
11081 endif_blocks.pop();
11082
11083 Block *BB_else = ctx.block;
11084
11085 append_logical_end(BB_else);
11086 /* branch from else block to endif block */
11087 bld.branch(aco_opcode::p_branch);
11088 add_edge(BB_else->index, &BB_endif);
11089 BB_else->kind |= block_kind_uniform;
11090
11091 /** emit endif merge block */
11092 ctx.block = program->insert_block(std::move(BB_endif));
11093 bld.reset(ctx.block);
11094 append_logical_start(ctx.block);
11095 }
11096
11097 program->config->float_mode = program->blocks[0].fp_mode.val;
11098
11099 append_logical_end(ctx.block);
11100 ctx.block->kind |= block_kind_uniform;
11101 bld.sopp(aco_opcode::s_endpgm);
11102
11103 cleanup_cfg(program);
11104 }
11105 }