radv: only flush scalar cache for SSBO writes with ACO on GFX8+
[mesa.git] / src / amd / compiler / aco_instruction_selection.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 * Copyright © 2018 Google
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <algorithm>
27 #include <array>
28 #include <map>
29
30 #include "ac_shader_util.h"
31 #include "aco_ir.h"
32 #include "aco_builder.h"
33 #include "aco_interface.h"
34 #include "aco_instruction_selection_setup.cpp"
35 #include "util/fast_idiv_by_const.h"
36
37 namespace aco {
38 namespace {
39
40 class loop_info_RAII {
41 isel_context* ctx;
42 unsigned header_idx_old;
43 Block* exit_old;
44 bool divergent_cont_old;
45 bool divergent_branch_old;
46 bool divergent_if_old;
47
48 public:
49 loop_info_RAII(isel_context* ctx, unsigned loop_header_idx, Block* loop_exit)
50 : ctx(ctx),
51 header_idx_old(ctx->cf_info.parent_loop.header_idx), exit_old(ctx->cf_info.parent_loop.exit),
52 divergent_cont_old(ctx->cf_info.parent_loop.has_divergent_continue),
53 divergent_branch_old(ctx->cf_info.parent_loop.has_divergent_branch),
54 divergent_if_old(ctx->cf_info.parent_if.is_divergent)
55 {
56 ctx->cf_info.parent_loop.header_idx = loop_header_idx;
57 ctx->cf_info.parent_loop.exit = loop_exit;
58 ctx->cf_info.parent_loop.has_divergent_continue = false;
59 ctx->cf_info.parent_loop.has_divergent_branch = false;
60 ctx->cf_info.parent_if.is_divergent = false;
61 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
62 }
63
64 ~loop_info_RAII()
65 {
66 ctx->cf_info.parent_loop.header_idx = header_idx_old;
67 ctx->cf_info.parent_loop.exit = exit_old;
68 ctx->cf_info.parent_loop.has_divergent_continue = divergent_cont_old;
69 ctx->cf_info.parent_loop.has_divergent_branch = divergent_branch_old;
70 ctx->cf_info.parent_if.is_divergent = divergent_if_old;
71 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth - 1;
72 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent)
73 ctx->cf_info.exec_potentially_empty = false;
74 }
75 };
76
77 struct if_context {
78 Temp cond;
79
80 bool divergent_old;
81 bool exec_potentially_empty_old;
82
83 unsigned BB_if_idx;
84 unsigned invert_idx;
85 bool then_branch_divergent;
86 Block BB_invert;
87 Block BB_endif;
88 };
89
90 static void visit_cf_list(struct isel_context *ctx,
91 struct exec_list *list);
92
93 static void add_logical_edge(unsigned pred_idx, Block *succ)
94 {
95 succ->logical_preds.emplace_back(pred_idx);
96 }
97
98
99 static void add_linear_edge(unsigned pred_idx, Block *succ)
100 {
101 succ->linear_preds.emplace_back(pred_idx);
102 }
103
104 static void add_edge(unsigned pred_idx, Block *succ)
105 {
106 add_logical_edge(pred_idx, succ);
107 add_linear_edge(pred_idx, succ);
108 }
109
110 static void append_logical_start(Block *b)
111 {
112 Builder(NULL, b).pseudo(aco_opcode::p_logical_start);
113 }
114
115 static void append_logical_end(Block *b)
116 {
117 Builder(NULL, b).pseudo(aco_opcode::p_logical_end);
118 }
119
120 Temp get_ssa_temp(struct isel_context *ctx, nir_ssa_def *def)
121 {
122 assert(ctx->allocated[def->index].id());
123 return ctx->allocated[def->index];
124 }
125
126 Temp emit_mbcnt(isel_context *ctx, Definition dst,
127 Operand mask_lo = Operand((uint32_t) -1), Operand mask_hi = Operand((uint32_t) -1))
128 {
129 Builder bld(ctx->program, ctx->block);
130 Definition lo_def = ctx->program->wave_size == 32 ? dst : bld.def(v1);
131 Temp thread_id_lo = bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, lo_def, mask_lo, Operand(0u));
132
133 if (ctx->program->wave_size == 32) {
134 return thread_id_lo;
135 } else {
136 Temp thread_id_hi = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32, dst, mask_hi, thread_id_lo);
137 return thread_id_hi;
138 }
139 }
140
141 Temp emit_wqm(isel_context *ctx, Temp src, Temp dst=Temp(0, s1), bool program_needs_wqm = false)
142 {
143 Builder bld(ctx->program, ctx->block);
144
145 if (!dst.id())
146 dst = bld.tmp(src.regClass());
147
148 assert(src.size() == dst.size());
149
150 if (ctx->stage != fragment_fs) {
151 if (!dst.id())
152 return src;
153
154 bld.copy(Definition(dst), src);
155 return dst;
156 }
157
158 bld.pseudo(aco_opcode::p_wqm, Definition(dst), src);
159 ctx->program->needs_wqm |= program_needs_wqm;
160 return dst;
161 }
162
163 static Temp emit_bpermute(isel_context *ctx, Builder &bld, Temp index, Temp data)
164 {
165 if (index.regClass() == s1)
166 return bld.readlane(bld.def(s1), data, index);
167
168 Temp index_x4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), index);
169
170 /* Currently not implemented on GFX6-7 */
171 assert(ctx->options->chip_class >= GFX8);
172
173 if (ctx->options->chip_class <= GFX9 || ctx->program->wave_size == 32) {
174 return bld.ds(aco_opcode::ds_bpermute_b32, bld.def(v1), index_x4, data);
175 }
176
177 /* GFX10, wave64 mode:
178 * The bpermute instruction is limited to half-wave operation, which means that it can't
179 * properly support subgroup shuffle like older generations (or wave32 mode), so we
180 * emulate it here.
181 */
182 if (!ctx->has_gfx10_wave64_bpermute) {
183 ctx->has_gfx10_wave64_bpermute = true;
184 ctx->program->config->num_shared_vgprs = 8; /* Shared VGPRs are allocated in groups of 8 */
185 ctx->program->vgpr_limit -= 4; /* We allocate 8 shared VGPRs, so we'll have 4 fewer normal VGPRs */
186 }
187
188 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
189 Temp lane_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), lane_id);
190 Temp index_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), index);
191 Temp cmp = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(s2, vcc), lane_is_hi, index_is_hi);
192
193 return bld.reduction(aco_opcode::p_wave64_bpermute, bld.def(v1), bld.def(s2), bld.def(s1, scc),
194 bld.vcc(cmp), Operand(v2.as_linear()), index_x4, data, gfx10_wave64_bpermute);
195 }
196
197 Temp as_vgpr(isel_context *ctx, Temp val)
198 {
199 if (val.type() == RegType::sgpr) {
200 Builder bld(ctx->program, ctx->block);
201 return bld.copy(bld.def(RegType::vgpr, val.size()), val);
202 }
203 assert(val.type() == RegType::vgpr);
204 return val;
205 }
206
207 //assumes a != 0xffffffff
208 void emit_v_div_u32(isel_context *ctx, Temp dst, Temp a, uint32_t b)
209 {
210 assert(b != 0);
211 Builder bld(ctx->program, ctx->block);
212
213 if (util_is_power_of_two_or_zero(b)) {
214 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)util_logbase2(b)), a);
215 return;
216 }
217
218 util_fast_udiv_info info = util_compute_fast_udiv_info(b, 32, 32);
219
220 assert(info.multiplier <= 0xffffffff);
221
222 bool pre_shift = info.pre_shift != 0;
223 bool increment = info.increment != 0;
224 bool multiply = true;
225 bool post_shift = info.post_shift != 0;
226
227 if (!pre_shift && !increment && !multiply && !post_shift) {
228 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), a);
229 return;
230 }
231
232 Temp pre_shift_dst = a;
233 if (pre_shift) {
234 pre_shift_dst = (increment || multiply || post_shift) ? bld.tmp(v1) : dst;
235 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(pre_shift_dst), Operand((uint32_t)info.pre_shift), a);
236 }
237
238 Temp increment_dst = pre_shift_dst;
239 if (increment) {
240 increment_dst = (post_shift || multiply) ? bld.tmp(v1) : dst;
241 bld.vadd32(Definition(increment_dst), Operand((uint32_t) info.increment), pre_shift_dst);
242 }
243
244 Temp multiply_dst = increment_dst;
245 if (multiply) {
246 multiply_dst = post_shift ? bld.tmp(v1) : dst;
247 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(multiply_dst), increment_dst,
248 bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand((uint32_t)info.multiplier)));
249 }
250
251 if (post_shift) {
252 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)info.post_shift), multiply_dst);
253 }
254 }
255
256 void emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, Temp dst)
257 {
258 Builder bld(ctx->program, ctx->block);
259 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(idx));
260 }
261
262
263 Temp emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, RegClass dst_rc)
264 {
265 /* no need to extract the whole vector */
266 if (src.regClass() == dst_rc) {
267 assert(idx == 0);
268 return src;
269 }
270 assert(src.size() > idx);
271 Builder bld(ctx->program, ctx->block);
272 auto it = ctx->allocated_vec.find(src.id());
273 /* the size check needs to be early because elements other than 0 may be garbage */
274 if (it != ctx->allocated_vec.end() && it->second[0].size() == dst_rc.size()) {
275 if (it->second[idx].regClass() == dst_rc) {
276 return it->second[idx];
277 } else {
278 assert(dst_rc.size() == it->second[idx].regClass().size());
279 assert(dst_rc.type() == RegType::vgpr && it->second[idx].type() == RegType::sgpr);
280 return bld.copy(bld.def(dst_rc), it->second[idx]);
281 }
282 }
283
284 if (src.size() == dst_rc.size()) {
285 assert(idx == 0);
286 return bld.copy(bld.def(dst_rc), src);
287 } else {
288 Temp dst = bld.tmp(dst_rc);
289 emit_extract_vector(ctx, src, idx, dst);
290 return dst;
291 }
292 }
293
294 void emit_split_vector(isel_context* ctx, Temp vec_src, unsigned num_components)
295 {
296 if (num_components == 1)
297 return;
298 if (ctx->allocated_vec.find(vec_src.id()) != ctx->allocated_vec.end())
299 return;
300 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_components)};
301 split->operands[0] = Operand(vec_src);
302 std::array<Temp,4> elems;
303 for (unsigned i = 0; i < num_components; i++) {
304 elems[i] = {ctx->program->allocateId(), RegClass(vec_src.type(), vec_src.size() / num_components)};
305 split->definitions[i] = Definition(elems[i]);
306 }
307 ctx->block->instructions.emplace_back(std::move(split));
308 ctx->allocated_vec.emplace(vec_src.id(), elems);
309 }
310
311 /* This vector expansion uses a mask to determine which elements in the new vector
312 * come from the original vector. The other elements are undefined. */
313 void expand_vector(isel_context* ctx, Temp vec_src, Temp dst, unsigned num_components, unsigned mask)
314 {
315 emit_split_vector(ctx, vec_src, util_bitcount(mask));
316
317 if (vec_src == dst)
318 return;
319
320 Builder bld(ctx->program, ctx->block);
321 if (num_components == 1) {
322 if (dst.type() == RegType::sgpr)
323 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec_src);
324 else
325 bld.copy(Definition(dst), vec_src);
326 return;
327 }
328
329 unsigned component_size = dst.size() / num_components;
330 std::array<Temp,4> elems;
331
332 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
333 vec->definitions[0] = Definition(dst);
334 unsigned k = 0;
335 for (unsigned i = 0; i < num_components; i++) {
336 if (mask & (1 << i)) {
337 Temp src = emit_extract_vector(ctx, vec_src, k++, RegClass(vec_src.type(), component_size));
338 if (dst.type() == RegType::sgpr)
339 src = bld.as_uniform(src);
340 vec->operands[i] = Operand(src);
341 } else {
342 vec->operands[i] = Operand(0u);
343 }
344 elems[i] = vec->operands[i].getTemp();
345 }
346 ctx->block->instructions.emplace_back(std::move(vec));
347 ctx->allocated_vec.emplace(dst.id(), elems);
348 }
349
350 Temp bool_to_vector_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s2))
351 {
352 Builder bld(ctx->program, ctx->block);
353 if (!dst.id())
354 dst = bld.tmp(bld.lm);
355
356 assert(val.regClass() == s1);
357 assert(dst.regClass() == bld.lm);
358
359 return bld.sop2(Builder::s_cselect, bld.hint_vcc(Definition(dst)), Operand((uint32_t) -1), Operand(0u), bld.scc(val));
360 }
361
362 Temp bool_to_scalar_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s1))
363 {
364 Builder bld(ctx->program, ctx->block);
365 if (!dst.id())
366 dst = bld.tmp(s1);
367
368 assert(val.regClass() == bld.lm);
369 assert(dst.regClass() == s1);
370
371 /* if we're currently in WQM mode, ensure that the source is also computed in WQM */
372 Temp tmp = bld.tmp(s1);
373 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.scc(Definition(tmp)), val, Operand(exec, bld.lm));
374 return emit_wqm(ctx, tmp, dst);
375 }
376
377 Temp get_alu_src(struct isel_context *ctx, nir_alu_src src, unsigned size=1)
378 {
379 if (src.src.ssa->num_components == 1 && src.swizzle[0] == 0 && size == 1)
380 return get_ssa_temp(ctx, src.src.ssa);
381
382 if (src.src.ssa->num_components == size) {
383 bool identity_swizzle = true;
384 for (unsigned i = 0; identity_swizzle && i < size; i++) {
385 if (src.swizzle[i] != i)
386 identity_swizzle = false;
387 }
388 if (identity_swizzle)
389 return get_ssa_temp(ctx, src.src.ssa);
390 }
391
392 Temp vec = get_ssa_temp(ctx, src.src.ssa);
393 unsigned elem_size = vec.size() / src.src.ssa->num_components;
394 assert(elem_size > 0); /* TODO: 8 and 16-bit vectors not supported */
395 assert(vec.size() % elem_size == 0);
396
397 RegClass elem_rc = RegClass(vec.type(), elem_size);
398 if (size == 1) {
399 return emit_extract_vector(ctx, vec, src.swizzle[0], elem_rc);
400 } else {
401 assert(size <= 4);
402 std::array<Temp,4> elems;
403 aco_ptr<Pseudo_instruction> vec_instr{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
404 for (unsigned i = 0; i < size; ++i) {
405 elems[i] = emit_extract_vector(ctx, vec, src.swizzle[i], elem_rc);
406 vec_instr->operands[i] = Operand{elems[i]};
407 }
408 Temp dst{ctx->program->allocateId(), RegClass(vec.type(), elem_size * size)};
409 vec_instr->definitions[0] = Definition(dst);
410 ctx->block->instructions.emplace_back(std::move(vec_instr));
411 ctx->allocated_vec.emplace(dst.id(), elems);
412 return dst;
413 }
414 }
415
416 Temp convert_pointer_to_64_bit(isel_context *ctx, Temp ptr)
417 {
418 if (ptr.size() == 2)
419 return ptr;
420 Builder bld(ctx->program, ctx->block);
421 if (ptr.type() == RegType::vgpr)
422 ptr = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), ptr);
423 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s2),
424 ptr, Operand((unsigned)ctx->options->address32_hi));
425 }
426
427 void emit_sop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst, bool writes_scc)
428 {
429 aco_ptr<SOP2_instruction> sop2{create_instruction<SOP2_instruction>(op, Format::SOP2, 2, writes_scc ? 2 : 1)};
430 sop2->operands[0] = Operand(get_alu_src(ctx, instr->src[0]));
431 sop2->operands[1] = Operand(get_alu_src(ctx, instr->src[1]));
432 sop2->definitions[0] = Definition(dst);
433 if (writes_scc)
434 sop2->definitions[1] = Definition(ctx->program->allocateId(), scc, s1);
435 ctx->block->instructions.emplace_back(std::move(sop2));
436 }
437
438 void emit_vop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst, bool commutative, bool swap_srcs=false)
439 {
440 Builder bld(ctx->program, ctx->block);
441 Temp src0 = get_alu_src(ctx, instr->src[swap_srcs ? 1 : 0]);
442 Temp src1 = get_alu_src(ctx, instr->src[swap_srcs ? 0 : 1]);
443 if (src1.type() == RegType::sgpr) {
444 if (commutative && src0.type() == RegType::vgpr) {
445 Temp t = src0;
446 src0 = src1;
447 src1 = t;
448 } else if (src0.type() == RegType::vgpr &&
449 op != aco_opcode::v_madmk_f32 &&
450 op != aco_opcode::v_madak_f32 &&
451 op != aco_opcode::v_madmk_f16 &&
452 op != aco_opcode::v_madak_f16) {
453 /* If the instruction is not commutative, we emit a VOP3A instruction */
454 bld.vop2_e64(op, Definition(dst), src0, src1);
455 return;
456 } else {
457 src1 = bld.copy(bld.def(RegType::vgpr, src1.size()), src1); //TODO: as_vgpr
458 }
459 }
460 bld.vop2(op, Definition(dst), src0, src1);
461 }
462
463 void emit_vop3a_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
464 {
465 Temp src0 = get_alu_src(ctx, instr->src[0]);
466 Temp src1 = get_alu_src(ctx, instr->src[1]);
467 Temp src2 = get_alu_src(ctx, instr->src[2]);
468
469 /* ensure that the instruction has at most 1 sgpr operand
470 * The optimizer will inline constants for us */
471 if (src0.type() == RegType::sgpr && src1.type() == RegType::sgpr)
472 src0 = as_vgpr(ctx, src0);
473 if (src1.type() == RegType::sgpr && src2.type() == RegType::sgpr)
474 src1 = as_vgpr(ctx, src1);
475 if (src2.type() == RegType::sgpr && src0.type() == RegType::sgpr)
476 src2 = as_vgpr(ctx, src2);
477
478 Builder bld(ctx->program, ctx->block);
479 bld.vop3(op, Definition(dst), src0, src1, src2);
480 }
481
482 void emit_vop1_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
483 {
484 Builder bld(ctx->program, ctx->block);
485 bld.vop1(op, Definition(dst), get_alu_src(ctx, instr->src[0]));
486 }
487
488 void emit_vopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
489 {
490 Temp src0 = get_alu_src(ctx, instr->src[0]);
491 Temp src1 = get_alu_src(ctx, instr->src[1]);
492 assert(src0.size() == src1.size());
493
494 aco_ptr<Instruction> vopc;
495 if (src1.type() == RegType::sgpr) {
496 if (src0.type() == RegType::vgpr) {
497 /* to swap the operands, we might also have to change the opcode */
498 switch (op) {
499 case aco_opcode::v_cmp_lt_f32:
500 op = aco_opcode::v_cmp_gt_f32;
501 break;
502 case aco_opcode::v_cmp_ge_f32:
503 op = aco_opcode::v_cmp_le_f32;
504 break;
505 case aco_opcode::v_cmp_lt_i32:
506 op = aco_opcode::v_cmp_gt_i32;
507 break;
508 case aco_opcode::v_cmp_ge_i32:
509 op = aco_opcode::v_cmp_le_i32;
510 break;
511 case aco_opcode::v_cmp_lt_u32:
512 op = aco_opcode::v_cmp_gt_u32;
513 break;
514 case aco_opcode::v_cmp_ge_u32:
515 op = aco_opcode::v_cmp_le_u32;
516 break;
517 case aco_opcode::v_cmp_lt_f64:
518 op = aco_opcode::v_cmp_gt_f64;
519 break;
520 case aco_opcode::v_cmp_ge_f64:
521 op = aco_opcode::v_cmp_le_f64;
522 break;
523 case aco_opcode::v_cmp_lt_i64:
524 op = aco_opcode::v_cmp_gt_i64;
525 break;
526 case aco_opcode::v_cmp_ge_i64:
527 op = aco_opcode::v_cmp_le_i64;
528 break;
529 case aco_opcode::v_cmp_lt_u64:
530 op = aco_opcode::v_cmp_gt_u64;
531 break;
532 case aco_opcode::v_cmp_ge_u64:
533 op = aco_opcode::v_cmp_le_u64;
534 break;
535 default: /* eq and ne are commutative */
536 break;
537 }
538 Temp t = src0;
539 src0 = src1;
540 src1 = t;
541 } else {
542 src1 = as_vgpr(ctx, src1);
543 }
544 }
545
546 Builder bld(ctx->program, ctx->block);
547 bld.vopc(op, bld.hint_vcc(Definition(dst)), src0, src1);
548 }
549
550 void emit_sopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
551 {
552 Temp src0 = get_alu_src(ctx, instr->src[0]);
553 Temp src1 = get_alu_src(ctx, instr->src[1]);
554 Builder bld(ctx->program, ctx->block);
555
556 assert(dst.regClass() == bld.lm);
557 assert(src0.type() == RegType::sgpr);
558 assert(src1.type() == RegType::sgpr);
559 assert(src0.regClass() == src1.regClass());
560
561 /* Emit the SALU comparison instruction */
562 Temp cmp = bld.sopc(op, bld.scc(bld.def(s1)), src0, src1);
563 /* Turn the result into a per-lane bool */
564 bool_to_vector_condition(ctx, cmp, dst);
565 }
566
567 void emit_comparison(isel_context *ctx, nir_alu_instr *instr, Temp dst,
568 aco_opcode v32_op, aco_opcode v64_op, aco_opcode s32_op = aco_opcode::num_opcodes, aco_opcode s64_op = aco_opcode::num_opcodes)
569 {
570 aco_opcode s_op = instr->src[0].src.ssa->bit_size == 64 ? s64_op : s32_op;
571 aco_opcode v_op = instr->src[0].src.ssa->bit_size == 64 ? v64_op : v32_op;
572 bool divergent_vals = ctx->divergent_vals[instr->dest.dest.ssa.index];
573 bool use_valu = s_op == aco_opcode::num_opcodes ||
574 divergent_vals ||
575 ctx->allocated[instr->src[0].src.ssa->index].type() == RegType::vgpr ||
576 ctx->allocated[instr->src[1].src.ssa->index].type() == RegType::vgpr;
577 aco_opcode op = use_valu ? v_op : s_op;
578 assert(op != aco_opcode::num_opcodes);
579
580 if (use_valu)
581 emit_vopc_instruction(ctx, instr, op, dst);
582 else
583 emit_sopc_instruction(ctx, instr, op, dst);
584 }
585
586 void emit_boolean_logic(isel_context *ctx, nir_alu_instr *instr, Builder::WaveSpecificOpcode op, Temp dst)
587 {
588 Builder bld(ctx->program, ctx->block);
589 Temp src0 = get_alu_src(ctx, instr->src[0]);
590 Temp src1 = get_alu_src(ctx, instr->src[1]);
591
592 assert(dst.regClass() == bld.lm);
593 assert(src0.regClass() == bld.lm);
594 assert(src1.regClass() == bld.lm);
595
596 bld.sop2(op, Definition(dst), bld.def(s1, scc), src0, src1);
597 }
598
599 void emit_bcsel(isel_context *ctx, nir_alu_instr *instr, Temp dst)
600 {
601 Builder bld(ctx->program, ctx->block);
602 Temp cond = get_alu_src(ctx, instr->src[0]);
603 Temp then = get_alu_src(ctx, instr->src[1]);
604 Temp els = get_alu_src(ctx, instr->src[2]);
605
606 assert(cond.regClass() == bld.lm);
607
608 if (dst.type() == RegType::vgpr) {
609 aco_ptr<Instruction> bcsel;
610 if (dst.size() == 1) {
611 then = as_vgpr(ctx, then);
612 els = as_vgpr(ctx, els);
613
614 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), els, then, cond);
615 } else if (dst.size() == 2) {
616 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
617 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), then);
618 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
619 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), els);
620
621 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, cond);
622 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, cond);
623
624 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
625 } else {
626 fprintf(stderr, "Unimplemented NIR instr bit size: ");
627 nir_print_instr(&instr->instr, stderr);
628 fprintf(stderr, "\n");
629 }
630 return;
631 }
632
633 if (instr->dest.dest.ssa.bit_size == 1) {
634 assert(dst.regClass() == bld.lm);
635 assert(then.regClass() == bld.lm);
636 assert(els.regClass() == bld.lm);
637 }
638
639 if (!ctx->divergent_vals[instr->src[0].src.ssa->index]) { /* uniform condition and values in sgpr */
640 if (dst.regClass() == s1 || dst.regClass() == s2) {
641 assert((then.regClass() == s1 || then.regClass() == s2) && els.regClass() == then.regClass());
642 assert(dst.size() == then.size());
643 aco_opcode op = dst.regClass() == s1 ? aco_opcode::s_cselect_b32 : aco_opcode::s_cselect_b64;
644 bld.sop2(op, Definition(dst), then, els, bld.scc(bool_to_scalar_condition(ctx, cond)));
645 } else {
646 fprintf(stderr, "Unimplemented uniform bcsel bit size: ");
647 nir_print_instr(&instr->instr, stderr);
648 fprintf(stderr, "\n");
649 }
650 return;
651 }
652
653 /* divergent boolean bcsel
654 * this implements bcsel on bools: dst = s0 ? s1 : s2
655 * are going to be: dst = (s0 & s1) | (~s0 & s2) */
656 assert(instr->dest.dest.ssa.bit_size == 1);
657
658 if (cond.id() != then.id())
659 then = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), cond, then);
660
661 if (cond.id() == els.id())
662 bld.sop1(Builder::s_mov, Definition(dst), then);
663 else
664 bld.sop2(Builder::s_or, Definition(dst), bld.def(s1, scc), then,
665 bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), els, cond));
666 }
667
668 void emit_scaled_op(isel_context *ctx, Builder& bld, Definition dst, Temp val,
669 aco_opcode op, uint32_t undo)
670 {
671 /* multiply by 16777216 to handle denormals */
672 Temp is_denormal = bld.vopc(aco_opcode::v_cmp_class_f32, bld.hint_vcc(bld.def(bld.lm)),
673 as_vgpr(ctx, val), bld.copy(bld.def(v1), Operand((1u << 7) | (1u << 4))));
674 Temp scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x4b800000u), val);
675 scaled = bld.vop1(op, bld.def(v1), scaled);
676 scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(undo), scaled);
677
678 Temp not_scaled = bld.vop1(op, bld.def(v1), val);
679
680 bld.vop2(aco_opcode::v_cndmask_b32, dst, not_scaled, scaled, is_denormal);
681 }
682
683 void emit_rcp(isel_context *ctx, Builder& bld, Definition dst, Temp val)
684 {
685 if (ctx->block->fp_mode.denorm32 == 0) {
686 bld.vop1(aco_opcode::v_rcp_f32, dst, val);
687 return;
688 }
689
690 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rcp_f32, 0x4b800000u);
691 }
692
693 void emit_rsq(isel_context *ctx, Builder& bld, Definition dst, Temp val)
694 {
695 if (ctx->block->fp_mode.denorm32 == 0) {
696 bld.vop1(aco_opcode::v_rsq_f32, dst, val);
697 return;
698 }
699
700 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rsq_f32, 0x45800000u);
701 }
702
703 void emit_sqrt(isel_context *ctx, Builder& bld, Definition dst, Temp val)
704 {
705 if (ctx->block->fp_mode.denorm32 == 0) {
706 bld.vop1(aco_opcode::v_sqrt_f32, dst, val);
707 return;
708 }
709
710 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_sqrt_f32, 0x39800000u);
711 }
712
713 void emit_log2(isel_context *ctx, Builder& bld, Definition dst, Temp val)
714 {
715 if (ctx->block->fp_mode.denorm32 == 0) {
716 bld.vop1(aco_opcode::v_log_f32, dst, val);
717 return;
718 }
719
720 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_log_f32, 0xc1c00000u);
721 }
722
723 void visit_alu_instr(isel_context *ctx, nir_alu_instr *instr)
724 {
725 if (!instr->dest.dest.is_ssa) {
726 fprintf(stderr, "nir alu dst not in ssa: ");
727 nir_print_instr(&instr->instr, stderr);
728 fprintf(stderr, "\n");
729 abort();
730 }
731 Builder bld(ctx->program, ctx->block);
732 Temp dst = get_ssa_temp(ctx, &instr->dest.dest.ssa);
733 switch(instr->op) {
734 case nir_op_vec2:
735 case nir_op_vec3:
736 case nir_op_vec4: {
737 std::array<Temp,4> elems;
738 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.dest.ssa.num_components, 1)};
739 for (unsigned i = 0; i < instr->dest.dest.ssa.num_components; ++i) {
740 elems[i] = get_alu_src(ctx, instr->src[i]);
741 vec->operands[i] = Operand{elems[i]};
742 }
743 vec->definitions[0] = Definition(dst);
744 ctx->block->instructions.emplace_back(std::move(vec));
745 ctx->allocated_vec.emplace(dst.id(), elems);
746 break;
747 }
748 case nir_op_mov: {
749 Temp src = get_alu_src(ctx, instr->src[0]);
750 aco_ptr<Instruction> mov;
751 if (dst.type() == RegType::sgpr) {
752 if (src.type() == RegType::vgpr)
753 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
754 else if (src.regClass() == s1)
755 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
756 else if (src.regClass() == s2)
757 bld.sop1(aco_opcode::s_mov_b64, Definition(dst), src);
758 else
759 unreachable("wrong src register class for nir_op_imov");
760 } else if (dst.regClass() == v1) {
761 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), src);
762 } else if (dst.regClass() == v2) {
763 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
764 } else {
765 nir_print_instr(&instr->instr, stderr);
766 unreachable("Should have been lowered to scalar.");
767 }
768 break;
769 }
770 case nir_op_inot: {
771 Temp src = get_alu_src(ctx, instr->src[0]);
772 if (instr->dest.dest.ssa.bit_size == 1) {
773 assert(src.regClass() == bld.lm);
774 assert(dst.regClass() == bld.lm);
775 bld.sop2(Builder::s_andn2, Definition(dst), bld.def(s1, scc), Operand(exec, bld.lm), src);
776 } else if (dst.regClass() == v1) {
777 emit_vop1_instruction(ctx, instr, aco_opcode::v_not_b32, dst);
778 } else if (dst.type() == RegType::sgpr) {
779 aco_opcode opcode = dst.size() == 1 ? aco_opcode::s_not_b32 : aco_opcode::s_not_b64;
780 bld.sop1(opcode, Definition(dst), bld.def(s1, scc), src);
781 } else {
782 fprintf(stderr, "Unimplemented NIR instr bit size: ");
783 nir_print_instr(&instr->instr, stderr);
784 fprintf(stderr, "\n");
785 }
786 break;
787 }
788 case nir_op_ineg: {
789 Temp src = get_alu_src(ctx, instr->src[0]);
790 if (dst.regClass() == v1) {
791 bld.vsub32(Definition(dst), Operand(0u), Operand(src));
792 } else if (dst.regClass() == s1) {
793 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand((uint32_t) -1), src);
794 } else if (dst.size() == 2) {
795 Temp src0 = bld.tmp(dst.type(), 1);
796 Temp src1 = bld.tmp(dst.type(), 1);
797 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
798
799 if (dst.regClass() == s2) {
800 Temp carry = bld.tmp(s1);
801 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), Operand(0u), src0);
802 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), src1, carry);
803 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
804 } else {
805 Temp lower = bld.tmp(v1);
806 Temp borrow = bld.vsub32(Definition(lower), Operand(0u), src0, true).def(1).getTemp();
807 Temp upper = bld.vsub32(bld.def(v1), Operand(0u), src1, false, borrow);
808 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
809 }
810 } else {
811 fprintf(stderr, "Unimplemented NIR instr bit size: ");
812 nir_print_instr(&instr->instr, stderr);
813 fprintf(stderr, "\n");
814 }
815 break;
816 }
817 case nir_op_iabs: {
818 if (dst.regClass() == s1) {
819 bld.sop1(aco_opcode::s_abs_i32, Definition(dst), bld.def(s1, scc), get_alu_src(ctx, instr->src[0]));
820 } else if (dst.regClass() == v1) {
821 Temp src = get_alu_src(ctx, instr->src[0]);
822 bld.vop2(aco_opcode::v_max_i32, Definition(dst), src, bld.vsub32(bld.def(v1), Operand(0u), src));
823 } else {
824 fprintf(stderr, "Unimplemented NIR instr bit size: ");
825 nir_print_instr(&instr->instr, stderr);
826 fprintf(stderr, "\n");
827 }
828 break;
829 }
830 case nir_op_isign: {
831 Temp src = get_alu_src(ctx, instr->src[0]);
832 if (dst.regClass() == s1) {
833 Temp tmp = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
834 Temp gtz = bld.sopc(aco_opcode::s_cmp_gt_i32, bld.def(s1, scc), src, Operand(0u));
835 bld.sop2(aco_opcode::s_add_i32, Definition(dst), bld.def(s1, scc), gtz, tmp);
836 } else if (dst.regClass() == s2) {
837 Temp neg = bld.sop2(aco_opcode::s_ashr_i64, bld.def(s2), bld.def(s1, scc), src, Operand(63u));
838 Temp neqz;
839 if (ctx->program->chip_class >= GFX8)
840 neqz = bld.sopc(aco_opcode::s_cmp_lg_u64, bld.def(s1, scc), src, Operand(0u));
841 else
842 neqz = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), src, Operand(0u)).def(1).getTemp();
843 /* SCC gets zero-extended to 64 bit */
844 bld.sop2(aco_opcode::s_or_b64, Definition(dst), bld.def(s1, scc), neg, bld.scc(neqz));
845 } else if (dst.regClass() == v1) {
846 Temp tmp = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
847 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
848 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(1u), tmp, gtz);
849 } else if (dst.regClass() == v2) {
850 Temp upper = emit_extract_vector(ctx, src, 1, v1);
851 Temp neg = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), upper);
852 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
853 Temp lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(1u), neg, gtz);
854 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), neg, gtz);
855 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
856 } else {
857 fprintf(stderr, "Unimplemented NIR instr bit size: ");
858 nir_print_instr(&instr->instr, stderr);
859 fprintf(stderr, "\n");
860 }
861 break;
862 }
863 case nir_op_imax: {
864 if (dst.regClass() == v1) {
865 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_i32, dst, true);
866 } else if (dst.regClass() == s1) {
867 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_i32, dst, true);
868 } else {
869 fprintf(stderr, "Unimplemented NIR instr bit size: ");
870 nir_print_instr(&instr->instr, stderr);
871 fprintf(stderr, "\n");
872 }
873 break;
874 }
875 case nir_op_umax: {
876 if (dst.regClass() == v1) {
877 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_u32, dst, true);
878 } else if (dst.regClass() == s1) {
879 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_u32, dst, true);
880 } else {
881 fprintf(stderr, "Unimplemented NIR instr bit size: ");
882 nir_print_instr(&instr->instr, stderr);
883 fprintf(stderr, "\n");
884 }
885 break;
886 }
887 case nir_op_imin: {
888 if (dst.regClass() == v1) {
889 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_i32, dst, true);
890 } else if (dst.regClass() == s1) {
891 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_i32, dst, true);
892 } else {
893 fprintf(stderr, "Unimplemented NIR instr bit size: ");
894 nir_print_instr(&instr->instr, stderr);
895 fprintf(stderr, "\n");
896 }
897 break;
898 }
899 case nir_op_umin: {
900 if (dst.regClass() == v1) {
901 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_u32, dst, true);
902 } else if (dst.regClass() == s1) {
903 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_u32, dst, true);
904 } else {
905 fprintf(stderr, "Unimplemented NIR instr bit size: ");
906 nir_print_instr(&instr->instr, stderr);
907 fprintf(stderr, "\n");
908 }
909 break;
910 }
911 case nir_op_ior: {
912 if (instr->dest.dest.ssa.bit_size == 1) {
913 emit_boolean_logic(ctx, instr, Builder::s_or, dst);
914 } else if (dst.regClass() == v1) {
915 emit_vop2_instruction(ctx, instr, aco_opcode::v_or_b32, dst, true);
916 } else if (dst.regClass() == s1) {
917 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b32, dst, true);
918 } else if (dst.regClass() == s2) {
919 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b64, dst, true);
920 } else {
921 fprintf(stderr, "Unimplemented NIR instr bit size: ");
922 nir_print_instr(&instr->instr, stderr);
923 fprintf(stderr, "\n");
924 }
925 break;
926 }
927 case nir_op_iand: {
928 if (instr->dest.dest.ssa.bit_size == 1) {
929 emit_boolean_logic(ctx, instr, Builder::s_and, dst);
930 } else if (dst.regClass() == v1) {
931 emit_vop2_instruction(ctx, instr, aco_opcode::v_and_b32, dst, true);
932 } else if (dst.regClass() == s1) {
933 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b32, dst, true);
934 } else if (dst.regClass() == s2) {
935 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b64, dst, true);
936 } else {
937 fprintf(stderr, "Unimplemented NIR instr bit size: ");
938 nir_print_instr(&instr->instr, stderr);
939 fprintf(stderr, "\n");
940 }
941 break;
942 }
943 case nir_op_ixor: {
944 if (instr->dest.dest.ssa.bit_size == 1) {
945 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
946 } else if (dst.regClass() == v1) {
947 emit_vop2_instruction(ctx, instr, aco_opcode::v_xor_b32, dst, true);
948 } else if (dst.regClass() == s1) {
949 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b32, dst, true);
950 } else if (dst.regClass() == s2) {
951 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b64, dst, true);
952 } else {
953 fprintf(stderr, "Unimplemented NIR instr bit size: ");
954 nir_print_instr(&instr->instr, stderr);
955 fprintf(stderr, "\n");
956 }
957 break;
958 }
959 case nir_op_ushr: {
960 if (dst.regClass() == v1) {
961 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshrrev_b32, dst, false, true);
962 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
963 bld.vop3(aco_opcode::v_lshrrev_b64, Definition(dst),
964 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
965 } else if (dst.regClass() == v2) {
966 bld.vop3(aco_opcode::v_lshr_b64, Definition(dst),
967 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
968 } else if (dst.regClass() == s2) {
969 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b64, dst, true);
970 } else if (dst.regClass() == s1) {
971 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b32, dst, true);
972 } else {
973 fprintf(stderr, "Unimplemented NIR instr bit size: ");
974 nir_print_instr(&instr->instr, stderr);
975 fprintf(stderr, "\n");
976 }
977 break;
978 }
979 case nir_op_ishl: {
980 if (dst.regClass() == v1) {
981 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshlrev_b32, dst, false, true);
982 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
983 bld.vop3(aco_opcode::v_lshlrev_b64, Definition(dst),
984 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
985 } else if (dst.regClass() == v2) {
986 bld.vop3(aco_opcode::v_lshl_b64, Definition(dst),
987 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
988 } else if (dst.regClass() == s1) {
989 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b32, dst, true);
990 } else if (dst.regClass() == s2) {
991 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b64, dst, true);
992 } else {
993 fprintf(stderr, "Unimplemented NIR instr bit size: ");
994 nir_print_instr(&instr->instr, stderr);
995 fprintf(stderr, "\n");
996 }
997 break;
998 }
999 case nir_op_ishr: {
1000 if (dst.regClass() == v1) {
1001 emit_vop2_instruction(ctx, instr, aco_opcode::v_ashrrev_i32, dst, false, true);
1002 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1003 bld.vop3(aco_opcode::v_ashrrev_i64, Definition(dst),
1004 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1005 } else if (dst.regClass() == v2) {
1006 bld.vop3(aco_opcode::v_ashr_i64, Definition(dst),
1007 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1008 } else if (dst.regClass() == s1) {
1009 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i32, dst, true);
1010 } else if (dst.regClass() == s2) {
1011 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i64, dst, true);
1012 } else {
1013 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1014 nir_print_instr(&instr->instr, stderr);
1015 fprintf(stderr, "\n");
1016 }
1017 break;
1018 }
1019 case nir_op_find_lsb: {
1020 Temp src = get_alu_src(ctx, instr->src[0]);
1021 if (src.regClass() == s1) {
1022 bld.sop1(aco_opcode::s_ff1_i32_b32, Definition(dst), src);
1023 } else if (src.regClass() == v1) {
1024 emit_vop1_instruction(ctx, instr, aco_opcode::v_ffbl_b32, dst);
1025 } else if (src.regClass() == s2) {
1026 bld.sop1(aco_opcode::s_ff1_i32_b64, Definition(dst), src);
1027 } else {
1028 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1029 nir_print_instr(&instr->instr, stderr);
1030 fprintf(stderr, "\n");
1031 }
1032 break;
1033 }
1034 case nir_op_ufind_msb:
1035 case nir_op_ifind_msb: {
1036 Temp src = get_alu_src(ctx, instr->src[0]);
1037 if (src.regClass() == s1 || src.regClass() == s2) {
1038 aco_opcode op = src.regClass() == s2 ?
1039 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b64 : aco_opcode::s_flbit_i32_i64) :
1040 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b32 : aco_opcode::s_flbit_i32);
1041 Temp msb_rev = bld.sop1(op, bld.def(s1), src);
1042
1043 Builder::Result sub = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc),
1044 Operand(src.size() * 32u - 1u), msb_rev);
1045 Temp msb = sub.def(0).getTemp();
1046 Temp carry = sub.def(1).getTemp();
1047
1048 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t)-1), msb, carry);
1049 } else if (src.regClass() == v1) {
1050 aco_opcode op = instr->op == nir_op_ufind_msb ? aco_opcode::v_ffbh_u32 : aco_opcode::v_ffbh_i32;
1051 Temp msb_rev = bld.tmp(v1);
1052 emit_vop1_instruction(ctx, instr, op, msb_rev);
1053 Temp msb = bld.tmp(v1);
1054 Temp carry = bld.vsub32(Definition(msb), Operand(31u), Operand(msb_rev), true).def(1).getTemp();
1055 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), msb, Operand((uint32_t)-1), carry);
1056 } else {
1057 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1058 nir_print_instr(&instr->instr, stderr);
1059 fprintf(stderr, "\n");
1060 }
1061 break;
1062 }
1063 case nir_op_bitfield_reverse: {
1064 if (dst.regClass() == s1) {
1065 bld.sop1(aco_opcode::s_brev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1066 } else if (dst.regClass() == v1) {
1067 bld.vop1(aco_opcode::v_bfrev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1068 } else {
1069 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1070 nir_print_instr(&instr->instr, stderr);
1071 fprintf(stderr, "\n");
1072 }
1073 break;
1074 }
1075 case nir_op_iadd: {
1076 if (dst.regClass() == s1) {
1077 emit_sop2_instruction(ctx, instr, aco_opcode::s_add_u32, dst, true);
1078 break;
1079 }
1080
1081 Temp src0 = get_alu_src(ctx, instr->src[0]);
1082 Temp src1 = get_alu_src(ctx, instr->src[1]);
1083 if (dst.regClass() == v1) {
1084 bld.vadd32(Definition(dst), Operand(src0), Operand(src1));
1085 break;
1086 }
1087
1088 assert(src0.size() == 2 && src1.size() == 2);
1089 Temp src00 = bld.tmp(src0.type(), 1);
1090 Temp src01 = bld.tmp(dst.type(), 1);
1091 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1092 Temp src10 = bld.tmp(src1.type(), 1);
1093 Temp src11 = bld.tmp(dst.type(), 1);
1094 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1095
1096 if (dst.regClass() == s2) {
1097 Temp carry = bld.tmp(s1);
1098 Temp dst0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1099 Temp dst1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), src01, src11, bld.scc(carry));
1100 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1101 } else if (dst.regClass() == v2) {
1102 Temp dst0 = bld.tmp(v1);
1103 Temp carry = bld.vadd32(Definition(dst0), src00, src10, true).def(1).getTemp();
1104 Temp dst1 = bld.vadd32(bld.def(v1), src01, src11, false, carry);
1105 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1106 } else {
1107 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1108 nir_print_instr(&instr->instr, stderr);
1109 fprintf(stderr, "\n");
1110 }
1111 break;
1112 }
1113 case nir_op_uadd_sat: {
1114 Temp src0 = get_alu_src(ctx, instr->src[0]);
1115 Temp src1 = get_alu_src(ctx, instr->src[1]);
1116 if (dst.regClass() == s1) {
1117 Temp tmp = bld.tmp(s1), carry = bld.tmp(s1);
1118 bld.sop2(aco_opcode::s_add_u32, Definition(tmp), bld.scc(Definition(carry)),
1119 src0, src1);
1120 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t) -1), tmp, bld.scc(carry));
1121 } else if (dst.regClass() == v1) {
1122 if (ctx->options->chip_class >= GFX9) {
1123 aco_ptr<VOP3A_instruction> add{create_instruction<VOP3A_instruction>(aco_opcode::v_add_u32, asVOP3(Format::VOP2), 2, 1)};
1124 add->operands[0] = Operand(src0);
1125 add->operands[1] = Operand(src1);
1126 add->definitions[0] = Definition(dst);
1127 add->clamp = 1;
1128 ctx->block->instructions.emplace_back(std::move(add));
1129 } else {
1130 if (src1.regClass() != v1)
1131 std::swap(src0, src1);
1132 assert(src1.regClass() == v1);
1133 Temp tmp = bld.tmp(v1);
1134 Temp carry = bld.vadd32(Definition(tmp), src0, src1, true).def(1).getTemp();
1135 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), tmp, Operand((uint32_t) -1), carry);
1136 }
1137 } else {
1138 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1139 nir_print_instr(&instr->instr, stderr);
1140 fprintf(stderr, "\n");
1141 }
1142 break;
1143 }
1144 case nir_op_uadd_carry: {
1145 Temp src0 = get_alu_src(ctx, instr->src[0]);
1146 Temp src1 = get_alu_src(ctx, instr->src[1]);
1147 if (dst.regClass() == s1) {
1148 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1149 break;
1150 }
1151 if (dst.regClass() == v1) {
1152 Temp carry = bld.vadd32(bld.def(v1), src0, src1, true).def(1).getTemp();
1153 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), carry);
1154 break;
1155 }
1156
1157 Temp src00 = bld.tmp(src0.type(), 1);
1158 Temp src01 = bld.tmp(dst.type(), 1);
1159 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1160 Temp src10 = bld.tmp(src1.type(), 1);
1161 Temp src11 = bld.tmp(dst.type(), 1);
1162 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1163 if (dst.regClass() == s2) {
1164 Temp carry = bld.tmp(s1);
1165 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1166 carry = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(carry)).def(1).getTemp();
1167 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1168 } else if (dst.regClass() == v2) {
1169 Temp carry = bld.vadd32(bld.def(v1), src00, src10, true).def(1).getTemp();
1170 carry = bld.vadd32(bld.def(v1), src01, src11, true, carry).def(1).getTemp();
1171 carry = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), carry);
1172 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1173 } else {
1174 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1175 nir_print_instr(&instr->instr, stderr);
1176 fprintf(stderr, "\n");
1177 }
1178 break;
1179 }
1180 case nir_op_isub: {
1181 if (dst.regClass() == s1) {
1182 emit_sop2_instruction(ctx, instr, aco_opcode::s_sub_i32, dst, true);
1183 break;
1184 }
1185
1186 Temp src0 = get_alu_src(ctx, instr->src[0]);
1187 Temp src1 = get_alu_src(ctx, instr->src[1]);
1188 if (dst.regClass() == v1) {
1189 bld.vsub32(Definition(dst), src0, src1);
1190 break;
1191 }
1192
1193 Temp src00 = bld.tmp(src0.type(), 1);
1194 Temp src01 = bld.tmp(dst.type(), 1);
1195 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1196 Temp src10 = bld.tmp(src1.type(), 1);
1197 Temp src11 = bld.tmp(dst.type(), 1);
1198 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1199 if (dst.regClass() == s2) {
1200 Temp carry = bld.tmp(s1);
1201 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1202 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), src01, src11, carry);
1203 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1204 } else if (dst.regClass() == v2) {
1205 Temp lower = bld.tmp(v1);
1206 Temp borrow = bld.vsub32(Definition(lower), src00, src10, true).def(1).getTemp();
1207 Temp upper = bld.vsub32(bld.def(v1), src01, src11, false, borrow);
1208 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1209 } else {
1210 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1211 nir_print_instr(&instr->instr, stderr);
1212 fprintf(stderr, "\n");
1213 }
1214 break;
1215 }
1216 case nir_op_usub_borrow: {
1217 Temp src0 = get_alu_src(ctx, instr->src[0]);
1218 Temp src1 = get_alu_src(ctx, instr->src[1]);
1219 if (dst.regClass() == s1) {
1220 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1221 break;
1222 } else if (dst.regClass() == v1) {
1223 Temp borrow = bld.vsub32(bld.def(v1), src0, src1, true).def(1).getTemp();
1224 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), borrow);
1225 break;
1226 }
1227
1228 Temp src00 = bld.tmp(src0.type(), 1);
1229 Temp src01 = bld.tmp(dst.type(), 1);
1230 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1231 Temp src10 = bld.tmp(src1.type(), 1);
1232 Temp src11 = bld.tmp(dst.type(), 1);
1233 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1234 if (dst.regClass() == s2) {
1235 Temp borrow = bld.tmp(s1);
1236 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), src00, src10);
1237 borrow = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(borrow)).def(1).getTemp();
1238 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1239 } else if (dst.regClass() == v2) {
1240 Temp borrow = bld.vsub32(bld.def(v1), src00, src10, true).def(1).getTemp();
1241 borrow = bld.vsub32(bld.def(v1), src01, src11, true, Operand(borrow)).def(1).getTemp();
1242 borrow = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), borrow);
1243 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1244 } else {
1245 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1246 nir_print_instr(&instr->instr, stderr);
1247 fprintf(stderr, "\n");
1248 }
1249 break;
1250 }
1251 case nir_op_imul: {
1252 if (dst.regClass() == v1) {
1253 bld.vop3(aco_opcode::v_mul_lo_u32, Definition(dst),
1254 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1255 } else if (dst.regClass() == s1) {
1256 emit_sop2_instruction(ctx, instr, aco_opcode::s_mul_i32, dst, false);
1257 } else {
1258 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1259 nir_print_instr(&instr->instr, stderr);
1260 fprintf(stderr, "\n");
1261 }
1262 break;
1263 }
1264 case nir_op_umul_high: {
1265 if (dst.regClass() == v1) {
1266 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1267 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1268 bld.sop2(aco_opcode::s_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1269 } else if (dst.regClass() == s1) {
1270 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1271 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1272 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1273 } else {
1274 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1275 nir_print_instr(&instr->instr, stderr);
1276 fprintf(stderr, "\n");
1277 }
1278 break;
1279 }
1280 case nir_op_imul_high: {
1281 if (dst.regClass() == v1) {
1282 bld.vop3(aco_opcode::v_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1283 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1284 bld.sop2(aco_opcode::s_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1285 } else if (dst.regClass() == s1) {
1286 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1287 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1288 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1289 } else {
1290 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1291 nir_print_instr(&instr->instr, stderr);
1292 fprintf(stderr, "\n");
1293 }
1294 break;
1295 }
1296 case nir_op_fmul: {
1297 if (dst.size() == 1) {
1298 emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f32, dst, true);
1299 } else if (dst.size() == 2) {
1300 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), get_alu_src(ctx, instr->src[0]),
1301 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1302 } else {
1303 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1304 nir_print_instr(&instr->instr, stderr);
1305 fprintf(stderr, "\n");
1306 }
1307 break;
1308 }
1309 case nir_op_fadd: {
1310 if (dst.size() == 1) {
1311 emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f32, dst, true);
1312 } else if (dst.size() == 2) {
1313 bld.vop3(aco_opcode::v_add_f64, Definition(dst), get_alu_src(ctx, instr->src[0]),
1314 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1315 } else {
1316 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1317 nir_print_instr(&instr->instr, stderr);
1318 fprintf(stderr, "\n");
1319 }
1320 break;
1321 }
1322 case nir_op_fsub: {
1323 Temp src0 = get_alu_src(ctx, instr->src[0]);
1324 Temp src1 = get_alu_src(ctx, instr->src[1]);
1325 if (dst.size() == 1) {
1326 if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
1327 emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f32, dst, false);
1328 else
1329 emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f32, dst, true);
1330 } else if (dst.size() == 2) {
1331 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst),
1332 get_alu_src(ctx, instr->src[0]),
1333 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1334 VOP3A_instruction* sub = static_cast<VOP3A_instruction*>(add);
1335 sub->neg[1] = true;
1336 } else {
1337 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1338 nir_print_instr(&instr->instr, stderr);
1339 fprintf(stderr, "\n");
1340 }
1341 break;
1342 }
1343 case nir_op_fmax: {
1344 if (dst.size() == 1) {
1345 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f32, dst, true);
1346 } else if (dst.size() == 2) {
1347 bld.vop3(aco_opcode::v_max_f64, Definition(dst),
1348 get_alu_src(ctx, instr->src[0]),
1349 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1350 } else {
1351 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1352 nir_print_instr(&instr->instr, stderr);
1353 fprintf(stderr, "\n");
1354 }
1355 break;
1356 }
1357 case nir_op_fmin: {
1358 if (dst.size() == 1) {
1359 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f32, dst, true);
1360 } else if (dst.size() == 2) {
1361 bld.vop3(aco_opcode::v_min_f64, Definition(dst),
1362 get_alu_src(ctx, instr->src[0]),
1363 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1364 } else {
1365 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1366 nir_print_instr(&instr->instr, stderr);
1367 fprintf(stderr, "\n");
1368 }
1369 break;
1370 }
1371 case nir_op_fmax3: {
1372 if (dst.size() == 1) {
1373 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_f32, dst);
1374 } else {
1375 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1376 nir_print_instr(&instr->instr, stderr);
1377 fprintf(stderr, "\n");
1378 }
1379 break;
1380 }
1381 case nir_op_fmin3: {
1382 if (dst.size() == 1) {
1383 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_f32, dst);
1384 } else {
1385 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1386 nir_print_instr(&instr->instr, stderr);
1387 fprintf(stderr, "\n");
1388 }
1389 break;
1390 }
1391 case nir_op_fmed3: {
1392 if (dst.size() == 1) {
1393 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_f32, dst);
1394 } else {
1395 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1396 nir_print_instr(&instr->instr, stderr);
1397 fprintf(stderr, "\n");
1398 }
1399 break;
1400 }
1401 case nir_op_umax3: {
1402 if (dst.size() == 1) {
1403 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_u32, dst);
1404 } else {
1405 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1406 nir_print_instr(&instr->instr, stderr);
1407 fprintf(stderr, "\n");
1408 }
1409 break;
1410 }
1411 case nir_op_umin3: {
1412 if (dst.size() == 1) {
1413 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_u32, dst);
1414 } else {
1415 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1416 nir_print_instr(&instr->instr, stderr);
1417 fprintf(stderr, "\n");
1418 }
1419 break;
1420 }
1421 case nir_op_umed3: {
1422 if (dst.size() == 1) {
1423 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_u32, dst);
1424 } else {
1425 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1426 nir_print_instr(&instr->instr, stderr);
1427 fprintf(stderr, "\n");
1428 }
1429 break;
1430 }
1431 case nir_op_imax3: {
1432 if (dst.size() == 1) {
1433 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_i32, dst);
1434 } else {
1435 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1436 nir_print_instr(&instr->instr, stderr);
1437 fprintf(stderr, "\n");
1438 }
1439 break;
1440 }
1441 case nir_op_imin3: {
1442 if (dst.size() == 1) {
1443 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_i32, dst);
1444 } else {
1445 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1446 nir_print_instr(&instr->instr, stderr);
1447 fprintf(stderr, "\n");
1448 }
1449 break;
1450 }
1451 case nir_op_imed3: {
1452 if (dst.size() == 1) {
1453 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_i32, dst);
1454 } else {
1455 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1456 nir_print_instr(&instr->instr, stderr);
1457 fprintf(stderr, "\n");
1458 }
1459 break;
1460 }
1461 case nir_op_cube_face_coord: {
1462 Temp in = get_alu_src(ctx, instr->src[0], 3);
1463 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1464 emit_extract_vector(ctx, in, 1, v1),
1465 emit_extract_vector(ctx, in, 2, v1) };
1466 Temp ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), src[0], src[1], src[2]);
1467 ma = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), ma);
1468 Temp sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), src[0], src[1], src[2]);
1469 Temp tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), src[0], src[1], src[2]);
1470 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, ma, Operand(0x3f000000u/*0.5*/));
1471 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, ma, Operand(0x3f000000u/*0.5*/));
1472 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), sc, tc);
1473 break;
1474 }
1475 case nir_op_cube_face_index: {
1476 Temp in = get_alu_src(ctx, instr->src[0], 3);
1477 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1478 emit_extract_vector(ctx, in, 1, v1),
1479 emit_extract_vector(ctx, in, 2, v1) };
1480 bld.vop3(aco_opcode::v_cubeid_f32, Definition(dst), src[0], src[1], src[2]);
1481 break;
1482 }
1483 case nir_op_bcsel: {
1484 emit_bcsel(ctx, instr, dst);
1485 break;
1486 }
1487 case nir_op_frsq: {
1488 if (dst.size() == 1) {
1489 emit_rsq(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1490 } else if (dst.size() == 2) {
1491 emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f64, dst);
1492 } else {
1493 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1494 nir_print_instr(&instr->instr, stderr);
1495 fprintf(stderr, "\n");
1496 }
1497 break;
1498 }
1499 case nir_op_fneg: {
1500 Temp src = get_alu_src(ctx, instr->src[0]);
1501 if (dst.size() == 1) {
1502 if (ctx->block->fp_mode.must_flush_denorms32)
1503 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1504 bld.vop2(aco_opcode::v_xor_b32, Definition(dst), Operand(0x80000000u), as_vgpr(ctx, src));
1505 } else if (dst.size() == 2) {
1506 if (ctx->block->fp_mode.must_flush_denorms16_64)
1507 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1508 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1509 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1510 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), Operand(0x80000000u), upper);
1511 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1512 } else {
1513 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1514 nir_print_instr(&instr->instr, stderr);
1515 fprintf(stderr, "\n");
1516 }
1517 break;
1518 }
1519 case nir_op_fabs: {
1520 Temp src = get_alu_src(ctx, instr->src[0]);
1521 if (dst.size() == 1) {
1522 if (ctx->block->fp_mode.must_flush_denorms32)
1523 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1524 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0x7FFFFFFFu), as_vgpr(ctx, src));
1525 } else if (dst.size() == 2) {
1526 if (ctx->block->fp_mode.must_flush_denorms16_64)
1527 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1528 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1529 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1530 upper = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7FFFFFFFu), upper);
1531 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1532 } else {
1533 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1534 nir_print_instr(&instr->instr, stderr);
1535 fprintf(stderr, "\n");
1536 }
1537 break;
1538 }
1539 case nir_op_fsat: {
1540 Temp src = get_alu_src(ctx, instr->src[0]);
1541 if (dst.size() == 1) {
1542 bld.vop3(aco_opcode::v_med3_f32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
1543 } else if (dst.size() == 2) {
1544 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src, Operand(0u));
1545 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(add);
1546 vop3->clamp = true;
1547 } else {
1548 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1549 nir_print_instr(&instr->instr, stderr);
1550 fprintf(stderr, "\n");
1551 }
1552 break;
1553 }
1554 case nir_op_flog2: {
1555 if (dst.size() == 1) {
1556 emit_log2(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1557 } else {
1558 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1559 nir_print_instr(&instr->instr, stderr);
1560 fprintf(stderr, "\n");
1561 }
1562 break;
1563 }
1564 case nir_op_frcp: {
1565 if (dst.size() == 1) {
1566 emit_rcp(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1567 } else if (dst.size() == 2) {
1568 emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f64, dst);
1569 } else {
1570 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1571 nir_print_instr(&instr->instr, stderr);
1572 fprintf(stderr, "\n");
1573 }
1574 break;
1575 }
1576 case nir_op_fexp2: {
1577 if (dst.size() == 1) {
1578 emit_vop1_instruction(ctx, instr, aco_opcode::v_exp_f32, dst);
1579 } else {
1580 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1581 nir_print_instr(&instr->instr, stderr);
1582 fprintf(stderr, "\n");
1583 }
1584 break;
1585 }
1586 case nir_op_fsqrt: {
1587 if (dst.size() == 1) {
1588 emit_sqrt(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1589 } else if (dst.size() == 2) {
1590 emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f64, dst);
1591 } else {
1592 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1593 nir_print_instr(&instr->instr, stderr);
1594 fprintf(stderr, "\n");
1595 }
1596 break;
1597 }
1598 case nir_op_ffract: {
1599 if (dst.size() == 1) {
1600 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f32, dst);
1601 } else if (dst.size() == 2) {
1602 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f64, dst);
1603 } else {
1604 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1605 nir_print_instr(&instr->instr, stderr);
1606 fprintf(stderr, "\n");
1607 }
1608 break;
1609 }
1610 case nir_op_ffloor: {
1611 if (dst.size() == 1) {
1612 emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f32, dst);
1613 } else if (dst.size() == 2) {
1614 emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f64, dst);
1615 } else {
1616 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1617 nir_print_instr(&instr->instr, stderr);
1618 fprintf(stderr, "\n");
1619 }
1620 break;
1621 }
1622 case nir_op_fceil: {
1623 if (dst.size() == 1) {
1624 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f32, dst);
1625 } else if (dst.size() == 2) {
1626 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f64, dst);
1627 } else {
1628 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1629 nir_print_instr(&instr->instr, stderr);
1630 fprintf(stderr, "\n");
1631 }
1632 break;
1633 }
1634 case nir_op_ftrunc: {
1635 if (dst.size() == 1) {
1636 emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f32, dst);
1637 } else if (dst.size() == 2) {
1638 emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f64, dst);
1639 } else {
1640 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1641 nir_print_instr(&instr->instr, stderr);
1642 fprintf(stderr, "\n");
1643 }
1644 break;
1645 }
1646 case nir_op_fround_even: {
1647 if (dst.size() == 1) {
1648 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f32, dst);
1649 } else if (dst.size() == 2) {
1650 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f64, dst);
1651 } else {
1652 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1653 nir_print_instr(&instr->instr, stderr);
1654 fprintf(stderr, "\n");
1655 }
1656 break;
1657 }
1658 case nir_op_fsin:
1659 case nir_op_fcos: {
1660 Temp src = get_alu_src(ctx, instr->src[0]);
1661 aco_ptr<Instruction> norm;
1662 if (dst.size() == 1) {
1663 Temp half_pi = bld.copy(bld.def(s1), Operand(0x3e22f983u));
1664 Temp tmp = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), half_pi, as_vgpr(ctx, src));
1665
1666 /* before GFX9, v_sin_f32 and v_cos_f32 had a valid input domain of [-256, +256] */
1667 if (ctx->options->chip_class < GFX9)
1668 tmp = bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), tmp);
1669
1670 aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f32 : aco_opcode::v_cos_f32;
1671 bld.vop1(opcode, Definition(dst), tmp);
1672 } else {
1673 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1674 nir_print_instr(&instr->instr, stderr);
1675 fprintf(stderr, "\n");
1676 }
1677 break;
1678 }
1679 case nir_op_ldexp: {
1680 if (dst.size() == 1) {
1681 bld.vop3(aco_opcode::v_ldexp_f32, Definition(dst),
1682 as_vgpr(ctx, get_alu_src(ctx, instr->src[0])),
1683 get_alu_src(ctx, instr->src[1]));
1684 } else if (dst.size() == 2) {
1685 bld.vop3(aco_opcode::v_ldexp_f64, Definition(dst),
1686 as_vgpr(ctx, get_alu_src(ctx, instr->src[0])),
1687 get_alu_src(ctx, instr->src[1]));
1688 } else {
1689 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1690 nir_print_instr(&instr->instr, stderr);
1691 fprintf(stderr, "\n");
1692 }
1693 break;
1694 }
1695 case nir_op_frexp_sig: {
1696 if (dst.size() == 1) {
1697 bld.vop1(aco_opcode::v_frexp_mant_f32, Definition(dst),
1698 get_alu_src(ctx, instr->src[0]));
1699 } else if (dst.size() == 2) {
1700 bld.vop1(aco_opcode::v_frexp_mant_f64, Definition(dst),
1701 get_alu_src(ctx, instr->src[0]));
1702 } else {
1703 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1704 nir_print_instr(&instr->instr, stderr);
1705 fprintf(stderr, "\n");
1706 }
1707 break;
1708 }
1709 case nir_op_frexp_exp: {
1710 if (instr->src[0].src.ssa->bit_size == 32) {
1711 bld.vop1(aco_opcode::v_frexp_exp_i32_f32, Definition(dst),
1712 get_alu_src(ctx, instr->src[0]));
1713 } else if (instr->src[0].src.ssa->bit_size == 64) {
1714 bld.vop1(aco_opcode::v_frexp_exp_i32_f64, Definition(dst),
1715 get_alu_src(ctx, instr->src[0]));
1716 } else {
1717 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1718 nir_print_instr(&instr->instr, stderr);
1719 fprintf(stderr, "\n");
1720 }
1721 break;
1722 }
1723 case nir_op_fsign: {
1724 Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
1725 if (dst.size() == 1) {
1726 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1727 src = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0x3f800000u), src, cond);
1728 cond = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1729 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0xbf800000u), src, cond);
1730 } else if (dst.size() == 2) {
1731 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1732 Temp tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0x3FF00000u));
1733 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, emit_extract_vector(ctx, src, 1, v1), cond);
1734
1735 cond = bld.vopc(aco_opcode::v_cmp_le_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1736 tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0xBFF00000u));
1737 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, upper, cond);
1738
1739 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
1740 } else {
1741 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1742 nir_print_instr(&instr->instr, stderr);
1743 fprintf(stderr, "\n");
1744 }
1745 break;
1746 }
1747 case nir_op_f2f32: {
1748 if (instr->src[0].src.ssa->bit_size == 64) {
1749 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f64, dst);
1750 } else {
1751 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1752 nir_print_instr(&instr->instr, stderr);
1753 fprintf(stderr, "\n");
1754 }
1755 break;
1756 }
1757 case nir_op_f2f64: {
1758 if (instr->src[0].src.ssa->bit_size == 32) {
1759 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_f32, dst);
1760 } else {
1761 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1762 nir_print_instr(&instr->instr, stderr);
1763 fprintf(stderr, "\n");
1764 }
1765 break;
1766 }
1767 case nir_op_i2f32: {
1768 assert(dst.size() == 1);
1769 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_i32, dst);
1770 break;
1771 }
1772 case nir_op_i2f64: {
1773 if (instr->src[0].src.ssa->bit_size == 32) {
1774 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_i32, dst);
1775 } else if (instr->src[0].src.ssa->bit_size == 64) {
1776 Temp src = get_alu_src(ctx, instr->src[0]);
1777 RegClass rc = RegClass(src.type(), 1);
1778 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
1779 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1780 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
1781 upper = bld.vop1(aco_opcode::v_cvt_f64_i32, bld.def(v2), upper);
1782 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
1783 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
1784
1785 } else {
1786 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1787 nir_print_instr(&instr->instr, stderr);
1788 fprintf(stderr, "\n");
1789 }
1790 break;
1791 }
1792 case nir_op_u2f32: {
1793 assert(dst.size() == 1);
1794 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_u32, dst);
1795 break;
1796 }
1797 case nir_op_u2f64: {
1798 if (instr->src[0].src.ssa->bit_size == 32) {
1799 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_u32, dst);
1800 } else if (instr->src[0].src.ssa->bit_size == 64) {
1801 Temp src = get_alu_src(ctx, instr->src[0]);
1802 RegClass rc = RegClass(src.type(), 1);
1803 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
1804 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1805 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
1806 upper = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), upper);
1807 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
1808 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
1809 } else {
1810 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1811 nir_print_instr(&instr->instr, stderr);
1812 fprintf(stderr, "\n");
1813 }
1814 break;
1815 }
1816 case nir_op_f2i32: {
1817 Temp src = get_alu_src(ctx, instr->src[0]);
1818 if (instr->src[0].src.ssa->bit_size == 32) {
1819 if (dst.type() == RegType::vgpr)
1820 bld.vop1(aco_opcode::v_cvt_i32_f32, Definition(dst), src);
1821 else
1822 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
1823 bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), src));
1824
1825 } else if (instr->src[0].src.ssa->bit_size == 64) {
1826 if (dst.type() == RegType::vgpr)
1827 bld.vop1(aco_opcode::v_cvt_i32_f64, Definition(dst), src);
1828 else
1829 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
1830 bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), src));
1831
1832 } else {
1833 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1834 nir_print_instr(&instr->instr, stderr);
1835 fprintf(stderr, "\n");
1836 }
1837 break;
1838 }
1839 case nir_op_f2u32: {
1840 Temp src = get_alu_src(ctx, instr->src[0]);
1841 if (instr->src[0].src.ssa->bit_size == 32) {
1842 if (dst.type() == RegType::vgpr)
1843 bld.vop1(aco_opcode::v_cvt_u32_f32, Definition(dst), src);
1844 else
1845 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
1846 bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), src));
1847
1848 } else if (instr->src[0].src.ssa->bit_size == 64) {
1849 if (dst.type() == RegType::vgpr)
1850 bld.vop1(aco_opcode::v_cvt_u32_f64, Definition(dst), src);
1851 else
1852 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
1853 bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), src));
1854
1855 } else {
1856 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1857 nir_print_instr(&instr->instr, stderr);
1858 fprintf(stderr, "\n");
1859 }
1860 break;
1861 }
1862 case nir_op_f2i64: {
1863 Temp src = get_alu_src(ctx, instr->src[0]);
1864 if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::vgpr) {
1865 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
1866 exponent = bld.vop3(aco_opcode::v_med3_i32, bld.def(v1), Operand(0x0u), exponent, Operand(64u));
1867 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
1868 Temp sign = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
1869 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
1870 mantissa = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(7u), mantissa);
1871 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
1872 Temp new_exponent = bld.tmp(v1);
1873 Temp borrow = bld.vsub32(Definition(new_exponent), Operand(63u), exponent, true).def(1).getTemp();
1874 if (ctx->program->chip_class >= GFX8)
1875 mantissa = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), new_exponent, mantissa);
1876 else
1877 mantissa = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), mantissa, new_exponent);
1878 Temp saturate = bld.vop1(aco_opcode::v_bfrev_b32, bld.def(v1), Operand(0xfffffffeu));
1879 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
1880 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
1881 lower = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), lower, Operand(0xffffffffu), borrow);
1882 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), upper, saturate, borrow);
1883 lower = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, lower);
1884 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, upper);
1885 Temp new_lower = bld.tmp(v1);
1886 borrow = bld.vsub32(Definition(new_lower), lower, sign, true).def(1).getTemp();
1887 Temp new_upper = bld.vsub32(bld.def(v1), upper, sign, false, borrow);
1888 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), new_lower, new_upper);
1889
1890 } else if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::sgpr) {
1891 if (src.type() == RegType::vgpr)
1892 src = bld.as_uniform(src);
1893 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
1894 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
1895 exponent = bld.sop2(aco_opcode::s_max_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
1896 exponent = bld.sop2(aco_opcode::s_min_u32, bld.def(s1), bld.def(s1, scc), Operand(64u), exponent);
1897 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
1898 Temp sign = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
1899 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
1900 mantissa = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), mantissa, Operand(7u));
1901 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
1902 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(63u), exponent);
1903 mantissa = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent);
1904 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), exponent, Operand(0xffffffffu)); // exp >= 64
1905 Temp saturate = bld.sop1(aco_opcode::s_brev_b64, bld.def(s2), Operand(0xfffffffeu));
1906 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), saturate, mantissa, cond);
1907 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
1908 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
1909 lower = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, lower);
1910 upper = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, upper);
1911 Temp borrow = bld.tmp(s1);
1912 lower = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), lower, sign);
1913 upper = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), upper, sign, borrow);
1914 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1915
1916 } else if (instr->src[0].src.ssa->bit_size == 64) {
1917 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
1918 Temp trunc = bld.vop1(aco_opcode::v_trunc_f64, bld.def(v2), src);
1919 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
1920 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
1921 Temp floor = bld.vop1(aco_opcode::v_floor_f64, bld.def(v2), mul);
1922 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
1923 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
1924 Temp upper = bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), floor);
1925 if (dst.type() == RegType::sgpr) {
1926 lower = bld.as_uniform(lower);
1927 upper = bld.as_uniform(upper);
1928 }
1929 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1930
1931 } else {
1932 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1933 nir_print_instr(&instr->instr, stderr);
1934 fprintf(stderr, "\n");
1935 }
1936 break;
1937 }
1938 case nir_op_f2u64: {
1939 Temp src = get_alu_src(ctx, instr->src[0]);
1940 if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::vgpr) {
1941 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
1942 Temp exponent_in_range = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(64u), exponent);
1943 exponent = bld.vop2(aco_opcode::v_max_i32, bld.def(v1), Operand(0x0u), exponent);
1944 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
1945 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
1946 Temp exponent_small = bld.vsub32(bld.def(v1), Operand(24u), exponent);
1947 Temp small = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), exponent_small, mantissa);
1948 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
1949 Temp new_exponent = bld.tmp(v1);
1950 Temp cond_small = bld.vsub32(Definition(new_exponent), exponent, Operand(24u), true).def(1).getTemp();
1951 if (ctx->program->chip_class >= GFX8)
1952 mantissa = bld.vop3(aco_opcode::v_lshlrev_b64, bld.def(v2), new_exponent, mantissa);
1953 else
1954 mantissa = bld.vop3(aco_opcode::v_lshl_b64, bld.def(v2), mantissa, new_exponent);
1955 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
1956 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
1957 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), lower, small, cond_small);
1958 upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), upper, Operand(0u), cond_small);
1959 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), lower, exponent_in_range);
1960 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), upper, exponent_in_range);
1961 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1962
1963 } else if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::sgpr) {
1964 if (src.type() == RegType::vgpr)
1965 src = bld.as_uniform(src);
1966 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
1967 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
1968 exponent = bld.sop2(aco_opcode::s_max_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
1969 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
1970 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
1971 Temp exponent_small = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(24u), exponent);
1972 Temp small = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), mantissa, exponent_small);
1973 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
1974 Temp exponent_large = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(24u));
1975 mantissa = bld.sop2(aco_opcode::s_lshl_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent_large);
1976 Temp cond = bld.sopc(aco_opcode::s_cmp_ge_i32, bld.def(s1, scc), Operand(64u), exponent);
1977 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), mantissa, Operand(0xffffffffu), cond);
1978 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
1979 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
1980 Temp cond_small = bld.sopc(aco_opcode::s_cmp_le_i32, bld.def(s1, scc), exponent, Operand(24u));
1981 lower = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), small, lower, cond_small);
1982 upper = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), Operand(0u), upper, cond_small);
1983 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1984
1985 } else if (instr->src[0].src.ssa->bit_size == 64) {
1986 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
1987 Temp trunc = bld.vop1(aco_opcode::v_trunc_f64, bld.def(v2), src);
1988 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
1989 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
1990 Temp floor = bld.vop1(aco_opcode::v_floor_f64, bld.def(v2), mul);
1991 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
1992 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
1993 Temp upper = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), floor);
1994 if (dst.type() == RegType::sgpr) {
1995 lower = bld.as_uniform(lower);
1996 upper = bld.as_uniform(upper);
1997 }
1998 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1999
2000 } else {
2001 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2002 nir_print_instr(&instr->instr, stderr);
2003 fprintf(stderr, "\n");
2004 }
2005 break;
2006 }
2007 case nir_op_b2f32: {
2008 Temp src = get_alu_src(ctx, instr->src[0]);
2009 assert(src.regClass() == bld.lm);
2010
2011 if (dst.regClass() == s1) {
2012 src = bool_to_scalar_condition(ctx, src);
2013 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3f800000u), src);
2014 } else if (dst.regClass() == v1) {
2015 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
2016 } else {
2017 unreachable("Wrong destination register class for nir_op_b2f32.");
2018 }
2019 break;
2020 }
2021 case nir_op_b2f64: {
2022 Temp src = get_alu_src(ctx, instr->src[0]);
2023 assert(src.regClass() == bld.lm);
2024
2025 if (dst.regClass() == s2) {
2026 src = bool_to_scalar_condition(ctx, src);
2027 bld.sop2(aco_opcode::s_cselect_b64, Definition(dst), Operand(0x3f800000u), Operand(0u), bld.scc(src));
2028 } else if (dst.regClass() == v2) {
2029 Temp one = bld.vop1(aco_opcode::v_mov_b32, bld.def(v2), Operand(0x3FF00000u));
2030 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), one, src);
2031 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
2032 } else {
2033 unreachable("Wrong destination register class for nir_op_b2f64.");
2034 }
2035 break;
2036 }
2037 case nir_op_i2i32: {
2038 Temp src = get_alu_src(ctx, instr->src[0]);
2039 if (instr->src[0].src.ssa->bit_size == 64) {
2040 /* we can actually just say dst = src, as it would map the lower register */
2041 emit_extract_vector(ctx, src, 0, dst);
2042 } else {
2043 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2044 nir_print_instr(&instr->instr, stderr);
2045 fprintf(stderr, "\n");
2046 }
2047 break;
2048 }
2049 case nir_op_u2u32: {
2050 Temp src = get_alu_src(ctx, instr->src[0]);
2051 if (instr->src[0].src.ssa->bit_size == 16) {
2052 if (dst.regClass() == s1) {
2053 bld.sop2(aco_opcode::s_and_b32, Definition(dst), bld.def(s1, scc), Operand(0xFFFFu), src);
2054 } else {
2055 // TODO: do better with SDWA
2056 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0xFFFFu), src);
2057 }
2058 } else if (instr->src[0].src.ssa->bit_size == 64) {
2059 /* we can actually just say dst = src, as it would map the lower register */
2060 emit_extract_vector(ctx, src, 0, dst);
2061 } else {
2062 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2063 nir_print_instr(&instr->instr, stderr);
2064 fprintf(stderr, "\n");
2065 }
2066 break;
2067 }
2068 case nir_op_i2i64: {
2069 Temp src = get_alu_src(ctx, instr->src[0]);
2070 if (src.regClass() == s1) {
2071 Temp high = bld.sopc(aco_opcode::s_ashr_i32, bld.def(s1, scc), src, Operand(31u));
2072 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, high);
2073 } else if (src.regClass() == v1) {
2074 Temp high = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
2075 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, high);
2076 } else {
2077 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2078 nir_print_instr(&instr->instr, stderr);
2079 fprintf(stderr, "\n");
2080 }
2081 break;
2082 }
2083 case nir_op_u2u64: {
2084 Temp src = get_alu_src(ctx, instr->src[0]);
2085 if (instr->src[0].src.ssa->bit_size == 32) {
2086 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, Operand(0u));
2087 } else {
2088 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2089 nir_print_instr(&instr->instr, stderr);
2090 fprintf(stderr, "\n");
2091 }
2092 break;
2093 }
2094 case nir_op_b2i32: {
2095 Temp src = get_alu_src(ctx, instr->src[0]);
2096 assert(src.regClass() == bld.lm);
2097
2098 if (dst.regClass() == s1) {
2099 // TODO: in a post-RA optimization, we can check if src is in VCC, and directly use VCCNZ
2100 bool_to_scalar_condition(ctx, src, dst);
2101 } else if (dst.regClass() == v1) {
2102 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), src);
2103 } else {
2104 unreachable("Invalid register class for b2i32");
2105 }
2106 break;
2107 }
2108 case nir_op_i2b1: {
2109 Temp src = get_alu_src(ctx, instr->src[0]);
2110 assert(dst.regClass() == bld.lm);
2111
2112 if (src.type() == RegType::vgpr) {
2113 assert(src.regClass() == v1 || src.regClass() == v2);
2114 bld.vopc(src.size() == 2 ? aco_opcode::v_cmp_lg_u64 : aco_opcode::v_cmp_lg_u32,
2115 Definition(dst), Operand(0u), src).def(0).setHint(vcc);
2116 } else {
2117 assert(src.regClass() == s1 || src.regClass() == s2);
2118 Temp tmp;
2119 if (src.regClass() == s2 && ctx->program->chip_class <= GFX7) {
2120 tmp = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), Operand(0u), src).def(1).getTemp();
2121 } else {
2122 tmp = bld.sopc(src.size() == 2 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::s_cmp_lg_u32,
2123 bld.scc(bld.def(s1)), Operand(0u), src);
2124 }
2125 bool_to_vector_condition(ctx, tmp, dst);
2126 }
2127 break;
2128 }
2129 case nir_op_pack_64_2x32_split: {
2130 Temp src0 = get_alu_src(ctx, instr->src[0]);
2131 Temp src1 = get_alu_src(ctx, instr->src[1]);
2132
2133 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
2134 break;
2135 }
2136 case nir_op_unpack_64_2x32_split_x:
2137 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
2138 break;
2139 case nir_op_unpack_64_2x32_split_y:
2140 bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
2141 break;
2142 case nir_op_pack_half_2x16: {
2143 Temp src = get_alu_src(ctx, instr->src[0], 2);
2144
2145 if (dst.regClass() == v1) {
2146 Temp src0 = bld.tmp(v1);
2147 Temp src1 = bld.tmp(v1);
2148 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
2149 if (!ctx->block->fp_mode.care_about_round32 || ctx->block->fp_mode.round32 == fp_round_tz)
2150 bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, Definition(dst), src0, src1);
2151 else
2152 bld.vop3(aco_opcode::v_cvt_pk_u16_u32, Definition(dst),
2153 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src0),
2154 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src1));
2155 } else {
2156 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2157 nir_print_instr(&instr->instr, stderr);
2158 fprintf(stderr, "\n");
2159 }
2160 break;
2161 }
2162 case nir_op_unpack_half_2x16_split_x: {
2163 if (dst.regClass() == v1) {
2164 Builder bld(ctx->program, ctx->block);
2165 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst), get_alu_src(ctx, instr->src[0]));
2166 } else {
2167 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2168 nir_print_instr(&instr->instr, stderr);
2169 fprintf(stderr, "\n");
2170 }
2171 break;
2172 }
2173 case nir_op_unpack_half_2x16_split_y: {
2174 if (dst.regClass() == v1) {
2175 Builder bld(ctx->program, ctx->block);
2176 /* TODO: use SDWA here */
2177 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst),
2178 bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), as_vgpr(ctx, get_alu_src(ctx, instr->src[0]))));
2179 } else {
2180 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2181 nir_print_instr(&instr->instr, stderr);
2182 fprintf(stderr, "\n");
2183 }
2184 break;
2185 }
2186 case nir_op_fquantize2f16: {
2187 Temp src = get_alu_src(ctx, instr->src[0]);
2188 Temp f16 = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), src);
2189 Temp f32, cmp_res;
2190
2191 if (ctx->program->chip_class >= GFX8) {
2192 Temp mask = bld.copy(bld.def(s1), Operand(0x36Fu)); /* value is NOT negative/positive denormal value */
2193 cmp_res = bld.vopc_e64(aco_opcode::v_cmp_class_f16, bld.hint_vcc(bld.def(bld.lm)), f16, mask);
2194 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2195 } else {
2196 /* 0x38800000 is smallest half float value (2^-14) in 32-bit float,
2197 * so compare the result and flush to 0 if it's smaller.
2198 */
2199 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2200 Temp smallest = bld.copy(bld.def(s1), Operand(0x38800000u));
2201 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(s2)), f32, smallest);
2202 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
2203 cmp_res = vop3->definitions[0].getTemp();
2204 }
2205
2206 if (ctx->block->fp_mode.preserve_signed_zero_inf_nan32 || ctx->program->chip_class < GFX8) {
2207 Temp copysign_0 = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0u), as_vgpr(ctx, src));
2208 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), copysign_0, f32, cmp_res);
2209 } else {
2210 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), f32, cmp_res);
2211 }
2212 break;
2213 }
2214 case nir_op_bfm: {
2215 Temp bits = get_alu_src(ctx, instr->src[0]);
2216 Temp offset = get_alu_src(ctx, instr->src[1]);
2217
2218 if (dst.regClass() == s1) {
2219 bld.sop2(aco_opcode::s_bfm_b32, Definition(dst), bits, offset);
2220 } else if (dst.regClass() == v1) {
2221 bld.vop3(aco_opcode::v_bfm_b32, Definition(dst), bits, offset);
2222 } else {
2223 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2224 nir_print_instr(&instr->instr, stderr);
2225 fprintf(stderr, "\n");
2226 }
2227 break;
2228 }
2229 case nir_op_bitfield_select: {
2230 /* (mask & insert) | (~mask & base) */
2231 Temp bitmask = get_alu_src(ctx, instr->src[0]);
2232 Temp insert = get_alu_src(ctx, instr->src[1]);
2233 Temp base = get_alu_src(ctx, instr->src[2]);
2234
2235 /* dst = (insert & bitmask) | (base & ~bitmask) */
2236 if (dst.regClass() == s1) {
2237 aco_ptr<Instruction> sop2;
2238 nir_const_value* const_bitmask = nir_src_as_const_value(instr->src[0].src);
2239 nir_const_value* const_insert = nir_src_as_const_value(instr->src[1].src);
2240 Operand lhs;
2241 if (const_insert && const_bitmask) {
2242 lhs = Operand(const_insert->u32 & const_bitmask->u32);
2243 } else {
2244 insert = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), insert, bitmask);
2245 lhs = Operand(insert);
2246 }
2247
2248 Operand rhs;
2249 nir_const_value* const_base = nir_src_as_const_value(instr->src[2].src);
2250 if (const_base && const_bitmask) {
2251 rhs = Operand(const_base->u32 & ~const_bitmask->u32);
2252 } else {
2253 base = bld.sop2(aco_opcode::s_andn2_b32, bld.def(s1), bld.def(s1, scc), base, bitmask);
2254 rhs = Operand(base);
2255 }
2256
2257 bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), rhs, lhs);
2258
2259 } else if (dst.regClass() == v1) {
2260 if (base.type() == RegType::sgpr && (bitmask.type() == RegType::sgpr || (insert.type() == RegType::sgpr)))
2261 base = as_vgpr(ctx, base);
2262 if (insert.type() == RegType::sgpr && bitmask.type() == RegType::sgpr)
2263 insert = as_vgpr(ctx, insert);
2264
2265 bld.vop3(aco_opcode::v_bfi_b32, Definition(dst), bitmask, insert, base);
2266
2267 } else {
2268 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2269 nir_print_instr(&instr->instr, stderr);
2270 fprintf(stderr, "\n");
2271 }
2272 break;
2273 }
2274 case nir_op_ubfe:
2275 case nir_op_ibfe: {
2276 Temp base = get_alu_src(ctx, instr->src[0]);
2277 Temp offset = get_alu_src(ctx, instr->src[1]);
2278 Temp bits = get_alu_src(ctx, instr->src[2]);
2279
2280 if (dst.type() == RegType::sgpr) {
2281 Operand extract;
2282 nir_const_value* const_offset = nir_src_as_const_value(instr->src[1].src);
2283 nir_const_value* const_bits = nir_src_as_const_value(instr->src[2].src);
2284 if (const_offset && const_bits) {
2285 uint32_t const_extract = (const_bits->u32 << 16) | const_offset->u32;
2286 extract = Operand(const_extract);
2287 } else {
2288 Operand width;
2289 if (const_bits) {
2290 width = Operand(const_bits->u32 << 16);
2291 } else {
2292 width = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), bits, Operand(16u));
2293 }
2294 extract = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), offset, width);
2295 }
2296
2297 aco_opcode opcode;
2298 if (dst.regClass() == s1) {
2299 if (instr->op == nir_op_ubfe)
2300 opcode = aco_opcode::s_bfe_u32;
2301 else
2302 opcode = aco_opcode::s_bfe_i32;
2303 } else if (dst.regClass() == s2) {
2304 if (instr->op == nir_op_ubfe)
2305 opcode = aco_opcode::s_bfe_u64;
2306 else
2307 opcode = aco_opcode::s_bfe_i64;
2308 } else {
2309 unreachable("Unsupported BFE bit size");
2310 }
2311
2312 bld.sop2(opcode, Definition(dst), bld.def(s1, scc), base, extract);
2313
2314 } else {
2315 aco_opcode opcode;
2316 if (dst.regClass() == v1) {
2317 if (instr->op == nir_op_ubfe)
2318 opcode = aco_opcode::v_bfe_u32;
2319 else
2320 opcode = aco_opcode::v_bfe_i32;
2321 } else {
2322 unreachable("Unsupported BFE bit size");
2323 }
2324
2325 emit_vop3a_instruction(ctx, instr, opcode, dst);
2326 }
2327 break;
2328 }
2329 case nir_op_bit_count: {
2330 Temp src = get_alu_src(ctx, instr->src[0]);
2331 if (src.regClass() == s1) {
2332 bld.sop1(aco_opcode::s_bcnt1_i32_b32, Definition(dst), bld.def(s1, scc), src);
2333 } else if (src.regClass() == v1) {
2334 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst), src, Operand(0u));
2335 } else if (src.regClass() == v2) {
2336 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst),
2337 emit_extract_vector(ctx, src, 1, v1),
2338 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1),
2339 emit_extract_vector(ctx, src, 0, v1), Operand(0u)));
2340 } else if (src.regClass() == s2) {
2341 bld.sop1(aco_opcode::s_bcnt1_i32_b64, Definition(dst), bld.def(s1, scc), src);
2342 } else {
2343 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2344 nir_print_instr(&instr->instr, stderr);
2345 fprintf(stderr, "\n");
2346 }
2347 break;
2348 }
2349 case nir_op_flt: {
2350 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_f32, aco_opcode::v_cmp_lt_f64);
2351 break;
2352 }
2353 case nir_op_fge: {
2354 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_f32, aco_opcode::v_cmp_ge_f64);
2355 break;
2356 }
2357 case nir_op_feq: {
2358 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_f32, aco_opcode::v_cmp_eq_f64);
2359 break;
2360 }
2361 case nir_op_fne: {
2362 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_neq_f32, aco_opcode::v_cmp_neq_f64);
2363 break;
2364 }
2365 case nir_op_ilt: {
2366 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_i32, aco_opcode::v_cmp_lt_i64, aco_opcode::s_cmp_lt_i32);
2367 break;
2368 }
2369 case nir_op_ige: {
2370 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_i32, aco_opcode::v_cmp_ge_i64, aco_opcode::s_cmp_ge_i32);
2371 break;
2372 }
2373 case nir_op_ieq: {
2374 if (instr->src[0].src.ssa->bit_size == 1)
2375 emit_boolean_logic(ctx, instr, Builder::s_xnor, dst);
2376 else
2377 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_i32, aco_opcode::v_cmp_eq_i64, aco_opcode::s_cmp_eq_i32,
2378 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_eq_u64 : aco_opcode::num_opcodes);
2379 break;
2380 }
2381 case nir_op_ine: {
2382 if (instr->src[0].src.ssa->bit_size == 1)
2383 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
2384 else
2385 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lg_i32, aco_opcode::v_cmp_lg_i64, aco_opcode::s_cmp_lg_i32,
2386 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::num_opcodes);
2387 break;
2388 }
2389 case nir_op_ult: {
2390 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_u32, aco_opcode::v_cmp_lt_u64, aco_opcode::s_cmp_lt_u32);
2391 break;
2392 }
2393 case nir_op_uge: {
2394 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_u32, aco_opcode::v_cmp_ge_u64, aco_opcode::s_cmp_ge_u32);
2395 break;
2396 }
2397 case nir_op_fddx:
2398 case nir_op_fddy:
2399 case nir_op_fddx_fine:
2400 case nir_op_fddy_fine:
2401 case nir_op_fddx_coarse:
2402 case nir_op_fddy_coarse: {
2403 Temp src = get_alu_src(ctx, instr->src[0]);
2404 uint16_t dpp_ctrl1, dpp_ctrl2;
2405 if (instr->op == nir_op_fddx_fine) {
2406 dpp_ctrl1 = dpp_quad_perm(0, 0, 2, 2);
2407 dpp_ctrl2 = dpp_quad_perm(1, 1, 3, 3);
2408 } else if (instr->op == nir_op_fddy_fine) {
2409 dpp_ctrl1 = dpp_quad_perm(0, 1, 0, 1);
2410 dpp_ctrl2 = dpp_quad_perm(2, 3, 2, 3);
2411 } else {
2412 dpp_ctrl1 = dpp_quad_perm(0, 0, 0, 0);
2413 if (instr->op == nir_op_fddx || instr->op == nir_op_fddx_coarse)
2414 dpp_ctrl2 = dpp_quad_perm(1, 1, 1, 1);
2415 else
2416 dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
2417 }
2418
2419 Temp tmp;
2420 if (ctx->program->chip_class >= GFX8) {
2421 Temp tl = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl1);
2422 tmp = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), src, tl, dpp_ctrl2);
2423 } else {
2424 Temp tl = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl1);
2425 Temp tr = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl2);
2426 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), tr, tl);
2427 }
2428 emit_wqm(ctx, tmp, dst, true);
2429 break;
2430 }
2431 default:
2432 fprintf(stderr, "Unknown NIR ALU instr: ");
2433 nir_print_instr(&instr->instr, stderr);
2434 fprintf(stderr, "\n");
2435 }
2436 }
2437
2438 void visit_load_const(isel_context *ctx, nir_load_const_instr *instr)
2439 {
2440 Temp dst = get_ssa_temp(ctx, &instr->def);
2441
2442 // TODO: we really want to have the resulting type as this would allow for 64bit literals
2443 // which get truncated the lsb if double and msb if int
2444 // for now, we only use s_mov_b64 with 64bit inline constants
2445 assert(instr->def.num_components == 1 && "Vector load_const should be lowered to scalar.");
2446 assert(dst.type() == RegType::sgpr);
2447
2448 Builder bld(ctx->program, ctx->block);
2449
2450 if (instr->def.bit_size == 1) {
2451 assert(dst.regClass() == bld.lm);
2452 int val = instr->value[0].b ? -1 : 0;
2453 Operand op = bld.lm.size() == 1 ? Operand((uint32_t) val) : Operand((uint64_t) val);
2454 bld.sop1(Builder::s_mov, Definition(dst), op);
2455 } else if (dst.size() == 1) {
2456 bld.copy(Definition(dst), Operand(instr->value[0].u32));
2457 } else {
2458 assert(dst.size() != 1);
2459 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
2460 if (instr->def.bit_size == 64)
2461 for (unsigned i = 0; i < dst.size(); i++)
2462 vec->operands[i] = Operand{(uint32_t)(instr->value[0].u64 >> i * 32)};
2463 else {
2464 for (unsigned i = 0; i < dst.size(); i++)
2465 vec->operands[i] = Operand{instr->value[i].u32};
2466 }
2467 vec->definitions[0] = Definition(dst);
2468 ctx->block->instructions.emplace_back(std::move(vec));
2469 }
2470 }
2471
2472 uint32_t widen_mask(uint32_t mask, unsigned multiplier)
2473 {
2474 uint32_t new_mask = 0;
2475 for(unsigned i = 0; i < 32 && (1u << i) <= mask; ++i)
2476 if (mask & (1u << i))
2477 new_mask |= ((1u << multiplier) - 1u) << (i * multiplier);
2478 return new_mask;
2479 }
2480
2481 void visit_store_vs_output(isel_context *ctx, nir_intrinsic_instr *instr)
2482 {
2483 /* This wouldn't work inside control flow or with indirect offsets but
2484 * that doesn't happen because of nir_lower_io_to_temporaries(). */
2485
2486 unsigned write_mask = nir_intrinsic_write_mask(instr);
2487 unsigned component = nir_intrinsic_component(instr);
2488 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
2489 unsigned idx = nir_intrinsic_base(instr) + component;
2490
2491 nir_instr *off_instr = instr->src[1].ssa->parent_instr;
2492 if (off_instr->type != nir_instr_type_load_const) {
2493 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
2494 nir_print_instr(off_instr, stderr);
2495 fprintf(stderr, "\n");
2496 }
2497 idx += nir_instr_as_load_const(off_instr)->value[0].u32 * 4u;
2498
2499 if (instr->src[0].ssa->bit_size == 64)
2500 write_mask = widen_mask(write_mask, 2);
2501
2502 for (unsigned i = 0; i < 8; ++i) {
2503 if (write_mask & (1 << i)) {
2504 ctx->vs_output.mask[idx / 4u] |= 1 << (idx % 4u);
2505 ctx->vs_output.outputs[idx / 4u][idx % 4u] = emit_extract_vector(ctx, src, i, v1);
2506 }
2507 idx++;
2508 }
2509 }
2510
2511 void visit_store_fs_output(isel_context *ctx, nir_intrinsic_instr *instr)
2512 {
2513 Builder bld(ctx->program, ctx->block);
2514 unsigned write_mask = nir_intrinsic_write_mask(instr);
2515 Operand values[4];
2516 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
2517 for (unsigned i = 0; i < 4; ++i) {
2518 if (write_mask & (1 << i)) {
2519 Temp tmp = emit_extract_vector(ctx, src, i, v1);
2520 values[i] = Operand(tmp);
2521 } else {
2522 values[i] = Operand(v1);
2523 }
2524 }
2525
2526 unsigned index = nir_intrinsic_base(instr) / 4;
2527 unsigned target, col_format;
2528 unsigned enabled_channels = 0xF;
2529 aco_opcode compr_op = (aco_opcode)0;
2530
2531 nir_const_value* offset = nir_src_as_const_value(instr->src[1]);
2532 assert(offset && "Non-const offsets on exports not yet supported");
2533 index += offset->u32;
2534
2535 assert(index != FRAG_RESULT_COLOR);
2536
2537 /* Unlike vertex shader exports, it's fine to use multiple exports to
2538 * export separate channels of one target. So shaders which export both
2539 * FRAG_RESULT_SAMPLE_MASK and FRAG_RESULT_DEPTH should work fine.
2540 * TODO: combine the exports in those cases and create better code
2541 */
2542
2543 if (index == FRAG_RESULT_SAMPLE_MASK) {
2544
2545 if (ctx->program->info->ps.writes_z) {
2546 target = V_008DFC_SQ_EXP_MRTZ;
2547 enabled_channels = 0x4;
2548 col_format = (unsigned) -1;
2549
2550 values[2] = values[0];
2551 values[0] = Operand(v1);
2552 } else {
2553 bld.exp(aco_opcode::exp, Operand(v1), Operand(values[0]), Operand(v1), Operand(v1),
2554 0xc, V_008DFC_SQ_EXP_MRTZ, true);
2555 return;
2556 }
2557
2558 } else if (index == FRAG_RESULT_DEPTH) {
2559
2560 target = V_008DFC_SQ_EXP_MRTZ;
2561 enabled_channels = 0x1;
2562 col_format = (unsigned) -1;
2563
2564 } else if (index == FRAG_RESULT_STENCIL) {
2565
2566 if (ctx->program->info->ps.writes_z) {
2567 target = V_008DFC_SQ_EXP_MRTZ;
2568 enabled_channels = 0x2;
2569 col_format = (unsigned) -1;
2570
2571 values[1] = values[0];
2572 values[0] = Operand(v1);
2573 } else {
2574 values[0] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u), values[0]);
2575 bld.exp(aco_opcode::exp, values[0], Operand(v1), Operand(v1), Operand(v1),
2576 0x3, V_008DFC_SQ_EXP_MRTZ, true);
2577 return;
2578 }
2579
2580 } else {
2581 index -= FRAG_RESULT_DATA0;
2582 target = V_008DFC_SQ_EXP_MRT + index;
2583 col_format = (ctx->options->key.fs.col_format >> (4 * index)) & 0xf;
2584 }
2585 bool is_int8 = (ctx->options->key.fs.is_int8 >> index) & 1;
2586 bool is_int10 = (ctx->options->key.fs.is_int10 >> index) & 1;
2587
2588 switch (col_format)
2589 {
2590 case V_028714_SPI_SHADER_ZERO:
2591 enabled_channels = 0; /* writemask */
2592 target = V_008DFC_SQ_EXP_NULL;
2593 break;
2594
2595 case V_028714_SPI_SHADER_32_R:
2596 enabled_channels = 1;
2597 break;
2598
2599 case V_028714_SPI_SHADER_32_GR:
2600 enabled_channels = 0x3;
2601 break;
2602
2603 case V_028714_SPI_SHADER_32_AR:
2604 if (ctx->options->chip_class >= GFX10) {
2605 /* Special case: on GFX10, the outputs are different for 32_AR */
2606 enabled_channels = 0x3;
2607 values[1] = values[3];
2608 values[3] = Operand(v1);
2609 } else {
2610 enabled_channels = 0x9;
2611 }
2612 break;
2613
2614 case V_028714_SPI_SHADER_FP16_ABGR:
2615 enabled_channels = 0x5;
2616 compr_op = aco_opcode::v_cvt_pkrtz_f16_f32;
2617 break;
2618
2619 case V_028714_SPI_SHADER_UNORM16_ABGR:
2620 enabled_channels = 0x5;
2621 compr_op = aco_opcode::v_cvt_pknorm_u16_f32;
2622 break;
2623
2624 case V_028714_SPI_SHADER_SNORM16_ABGR:
2625 enabled_channels = 0x5;
2626 compr_op = aco_opcode::v_cvt_pknorm_i16_f32;
2627 break;
2628
2629 case V_028714_SPI_SHADER_UINT16_ABGR: {
2630 enabled_channels = 0x5;
2631 compr_op = aco_opcode::v_cvt_pk_u16_u32;
2632 if (is_int8 || is_int10) {
2633 /* clamp */
2634 uint32_t max_rgb = is_int8 ? 255 : is_int10 ? 1023 : 0;
2635 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
2636
2637 for (unsigned i = 0; i < 4; i++) {
2638 if ((write_mask >> i) & 1) {
2639 values[i] = bld.vop2(aco_opcode::v_min_u32, bld.def(v1),
2640 i == 3 && is_int10 ? Operand(3u) : Operand(max_rgb_val),
2641 values[i]);
2642 }
2643 }
2644 }
2645 break;
2646 }
2647
2648 case V_028714_SPI_SHADER_SINT16_ABGR:
2649 enabled_channels = 0x5;
2650 compr_op = aco_opcode::v_cvt_pk_i16_i32;
2651 if (is_int8 || is_int10) {
2652 /* clamp */
2653 uint32_t max_rgb = is_int8 ? 127 : is_int10 ? 511 : 0;
2654 uint32_t min_rgb = is_int8 ? -128 :is_int10 ? -512 : 0;
2655 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
2656 Temp min_rgb_val = bld.copy(bld.def(s1), Operand(min_rgb));
2657
2658 for (unsigned i = 0; i < 4; i++) {
2659 if ((write_mask >> i) & 1) {
2660 values[i] = bld.vop2(aco_opcode::v_min_i32, bld.def(v1),
2661 i == 3 && is_int10 ? Operand(1u) : Operand(max_rgb_val),
2662 values[i]);
2663 values[i] = bld.vop2(aco_opcode::v_max_i32, bld.def(v1),
2664 i == 3 && is_int10 ? Operand(-2u) : Operand(min_rgb_val),
2665 values[i]);
2666 }
2667 }
2668 }
2669 break;
2670
2671 case V_028714_SPI_SHADER_32_ABGR:
2672 enabled_channels = 0xF;
2673 break;
2674
2675 default:
2676 break;
2677 }
2678
2679 if (target == V_008DFC_SQ_EXP_NULL)
2680 return;
2681
2682 if ((bool) compr_op) {
2683 for (int i = 0; i < 2; i++) {
2684 /* check if at least one of the values to be compressed is enabled */
2685 unsigned enabled = (write_mask >> (i*2) | write_mask >> (i*2+1)) & 0x1;
2686 if (enabled) {
2687 enabled_channels |= enabled << (i*2);
2688 values[i] = bld.vop3(compr_op, bld.def(v1),
2689 values[i*2].isUndefined() ? Operand(0u) : values[i*2],
2690 values[i*2+1].isUndefined() ? Operand(0u): values[i*2+1]);
2691 } else {
2692 values[i] = Operand(v1);
2693 }
2694 }
2695 values[2] = Operand(v1);
2696 values[3] = Operand(v1);
2697 } else {
2698 for (int i = 0; i < 4; i++)
2699 values[i] = enabled_channels & (1 << i) ? values[i] : Operand(v1);
2700 }
2701
2702 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
2703 enabled_channels, target, (bool) compr_op);
2704 }
2705
2706 Operand load_lds_size_m0(isel_context *ctx)
2707 {
2708 /* TODO: m0 does not need to be initialized on GFX9+ */
2709 Builder bld(ctx->program, ctx->block);
2710 return bld.m0((Temp)bld.sopk(aco_opcode::s_movk_i32, bld.def(s1, m0), 0xffff));
2711 }
2712
2713 void load_lds(isel_context *ctx, unsigned elem_size_bytes, Temp dst,
2714 Temp address, unsigned base_offset, unsigned align)
2715 {
2716 assert(util_is_power_of_two_nonzero(align) && align >= 4);
2717
2718 Builder bld(ctx->program, ctx->block);
2719
2720 Operand m = load_lds_size_m0(ctx);
2721
2722 unsigned num_components = dst.size() * 4u / elem_size_bytes;
2723 unsigned bytes_read = 0;
2724 unsigned result_size = 0;
2725 unsigned total_bytes = num_components * elem_size_bytes;
2726 std::array<Temp, 4> result;
2727
2728 while (bytes_read < total_bytes) {
2729 unsigned todo = total_bytes - bytes_read;
2730 bool aligned8 = bytes_read % 8 == 0 && align % 8 == 0;
2731 bool aligned16 = bytes_read % 16 == 0 && align % 16 == 0;
2732
2733 aco_opcode op = aco_opcode::last_opcode;
2734 bool read2 = false;
2735 if (todo >= 16 && aligned16) {
2736 op = aco_opcode::ds_read_b128;
2737 todo = 16;
2738 } else if (todo >= 16 && aligned8) {
2739 op = aco_opcode::ds_read2_b64;
2740 read2 = true;
2741 todo = 16;
2742 } else if (todo >= 12 && aligned16) {
2743 op = aco_opcode::ds_read_b96;
2744 todo = 12;
2745 } else if (todo >= 8 && aligned8) {
2746 op = aco_opcode::ds_read_b64;
2747 todo = 8;
2748 } else if (todo >= 8) {
2749 op = aco_opcode::ds_read2_b32;
2750 read2 = true;
2751 todo = 8;
2752 } else if (todo >= 4) {
2753 op = aco_opcode::ds_read_b32;
2754 todo = 4;
2755 } else {
2756 assert(false);
2757 }
2758 assert(todo % elem_size_bytes == 0);
2759 unsigned num_elements = todo / elem_size_bytes;
2760 unsigned offset = base_offset + bytes_read;
2761 unsigned max_offset = read2 ? 1019 : 65535;
2762
2763 Temp address_offset = address;
2764 if (offset > max_offset) {
2765 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
2766 offset = bytes_read;
2767 }
2768 assert(offset <= max_offset); /* bytes_read shouldn't be large enough for this to happen */
2769
2770 Temp res;
2771 if (num_components == 1 && dst.type() == RegType::vgpr)
2772 res = dst;
2773 else
2774 res = bld.tmp(RegClass(RegType::vgpr, todo / 4));
2775
2776 if (read2)
2777 res = bld.ds(op, Definition(res), address_offset, m, offset >> 2, (offset >> 2) + 1);
2778 else
2779 res = bld.ds(op, Definition(res), address_offset, m, offset);
2780
2781 if (num_components == 1) {
2782 assert(todo == total_bytes);
2783 if (dst.type() == RegType::sgpr)
2784 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), res);
2785 return;
2786 }
2787
2788 if (dst.type() == RegType::sgpr)
2789 res = bld.as_uniform(res);
2790
2791 if (num_elements == 1) {
2792 result[result_size++] = res;
2793 } else {
2794 assert(res != dst && res.size() % num_elements == 0);
2795 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_elements)};
2796 split->operands[0] = Operand(res);
2797 for (unsigned i = 0; i < num_elements; i++)
2798 split->definitions[i] = Definition(result[result_size++] = bld.tmp(res.type(), elem_size_bytes / 4));
2799 ctx->block->instructions.emplace_back(std::move(split));
2800 }
2801
2802 bytes_read += todo;
2803 }
2804
2805 assert(result_size == num_components && result_size > 1);
2806 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, result_size, 1)};
2807 for (unsigned i = 0; i < result_size; i++)
2808 vec->operands[i] = Operand(result[i]);
2809 vec->definitions[0] = Definition(dst);
2810 ctx->block->instructions.emplace_back(std::move(vec));
2811 ctx->allocated_vec.emplace(dst.id(), result);
2812 }
2813
2814 Temp extract_subvector(isel_context *ctx, Temp data, unsigned start, unsigned size, RegType type)
2815 {
2816 if (start == 0 && size == data.size())
2817 return type == RegType::vgpr ? as_vgpr(ctx, data) : data;
2818
2819 unsigned size_hint = 1;
2820 auto it = ctx->allocated_vec.find(data.id());
2821 if (it != ctx->allocated_vec.end())
2822 size_hint = it->second[0].size();
2823 if (size % size_hint || start % size_hint)
2824 size_hint = 1;
2825
2826 start /= size_hint;
2827 size /= size_hint;
2828
2829 Temp elems[size];
2830 for (unsigned i = 0; i < size; i++)
2831 elems[i] = emit_extract_vector(ctx, data, start + i, RegClass(type, size_hint));
2832
2833 if (size == 1)
2834 return type == RegType::vgpr ? as_vgpr(ctx, elems[0]) : elems[0];
2835
2836 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
2837 for (unsigned i = 0; i < size; i++)
2838 vec->operands[i] = Operand(elems[i]);
2839 Temp res = {ctx->program->allocateId(), RegClass(type, size * size_hint)};
2840 vec->definitions[0] = Definition(res);
2841 ctx->block->instructions.emplace_back(std::move(vec));
2842 return res;
2843 }
2844
2845 void ds_write_helper(isel_context *ctx, Operand m, Temp address, Temp data, unsigned data_start, unsigned total_size, unsigned offset0, unsigned offset1, unsigned align)
2846 {
2847 Builder bld(ctx->program, ctx->block);
2848 unsigned bytes_written = 0;
2849 while (bytes_written < total_size * 4) {
2850 unsigned todo = total_size * 4 - bytes_written;
2851 bool aligned8 = bytes_written % 8 == 0 && align % 8 == 0;
2852 bool aligned16 = bytes_written % 16 == 0 && align % 16 == 0;
2853
2854 aco_opcode op = aco_opcode::last_opcode;
2855 bool write2 = false;
2856 unsigned size = 0;
2857 if (todo >= 16 && aligned16) {
2858 op = aco_opcode::ds_write_b128;
2859 size = 4;
2860 } else if (todo >= 16 && aligned8) {
2861 op = aco_opcode::ds_write2_b64;
2862 write2 = true;
2863 size = 4;
2864 } else if (todo >= 12 && aligned16) {
2865 op = aco_opcode::ds_write_b96;
2866 size = 3;
2867 } else if (todo >= 8 && aligned8) {
2868 op = aco_opcode::ds_write_b64;
2869 size = 2;
2870 } else if (todo >= 8) {
2871 op = aco_opcode::ds_write2_b32;
2872 write2 = true;
2873 size = 2;
2874 } else if (todo >= 4) {
2875 op = aco_opcode::ds_write_b32;
2876 size = 1;
2877 } else {
2878 assert(false);
2879 }
2880
2881 unsigned offset = offset0 + offset1 + bytes_written;
2882 unsigned max_offset = write2 ? 1020 : 65535;
2883 Temp address_offset = address;
2884 if (offset > max_offset) {
2885 address_offset = bld.vadd32(bld.def(v1), Operand(offset0), address_offset);
2886 offset = offset1 + bytes_written;
2887 }
2888 assert(offset <= max_offset); /* offset1 shouldn't be large enough for this to happen */
2889
2890 if (write2) {
2891 Temp val0 = extract_subvector(ctx, data, data_start + (bytes_written >> 2), size / 2, RegType::vgpr);
2892 Temp val1 = extract_subvector(ctx, data, data_start + (bytes_written >> 2) + 1, size / 2, RegType::vgpr);
2893 bld.ds(op, address_offset, val0, val1, m, offset >> 2, (offset >> 2) + 1);
2894 } else {
2895 Temp val = extract_subvector(ctx, data, data_start + (bytes_written >> 2), size, RegType::vgpr);
2896 bld.ds(op, address_offset, val, m, offset);
2897 }
2898
2899 bytes_written += size * 4;
2900 }
2901 }
2902
2903 void store_lds(isel_context *ctx, unsigned elem_size_bytes, Temp data, uint32_t wrmask,
2904 Temp address, unsigned base_offset, unsigned align)
2905 {
2906 assert(util_is_power_of_two_nonzero(align) && align >= 4);
2907
2908 Operand m = load_lds_size_m0(ctx);
2909
2910 /* we need at most two stores for 32bit variables */
2911 int start[2], count[2];
2912 u_bit_scan_consecutive_range(&wrmask, &start[0], &count[0]);
2913 u_bit_scan_consecutive_range(&wrmask, &start[1], &count[1]);
2914 assert(wrmask == 0);
2915
2916 /* one combined store is sufficient */
2917 if (count[0] == count[1]) {
2918 Builder bld(ctx->program, ctx->block);
2919
2920 Temp address_offset = address;
2921 if ((base_offset >> 2) + start[1] > 255) {
2922 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
2923 base_offset = 0;
2924 }
2925
2926 assert(count[0] == 1);
2927 Temp val0 = emit_extract_vector(ctx, data, start[0], v1);
2928 Temp val1 = emit_extract_vector(ctx, data, start[1], v1);
2929 aco_opcode op = elem_size_bytes == 4 ? aco_opcode::ds_write2_b32 : aco_opcode::ds_write2_b64;
2930 base_offset = base_offset / elem_size_bytes;
2931 bld.ds(op, address_offset, val0, val1, m,
2932 base_offset + start[0], base_offset + start[1]);
2933 return;
2934 }
2935
2936 for (unsigned i = 0; i < 2; i++) {
2937 if (count[i] == 0)
2938 continue;
2939
2940 unsigned elem_size_words = elem_size_bytes / 4;
2941 ds_write_helper(ctx, m, address, data, start[i] * elem_size_words, count[i] * elem_size_words,
2942 base_offset, start[i] * elem_size_bytes, align);
2943 }
2944 return;
2945 }
2946
2947 void visit_store_output(isel_context *ctx, nir_intrinsic_instr *instr)
2948 {
2949 if (ctx->stage == vertex_vs) {
2950 visit_store_vs_output(ctx, instr);
2951 } else if (ctx->stage == fragment_fs) {
2952 visit_store_fs_output(ctx, instr);
2953 } else {
2954 unreachable("Shader stage not implemented");
2955 }
2956 }
2957
2958 void emit_interp_instr(isel_context *ctx, unsigned idx, unsigned component, Temp src, Temp dst, Temp prim_mask)
2959 {
2960 Temp coord1 = emit_extract_vector(ctx, src, 0, v1);
2961 Temp coord2 = emit_extract_vector(ctx, src, 1, v1);
2962
2963 Builder bld(ctx->program, ctx->block);
2964 Temp tmp = bld.vintrp(aco_opcode::v_interp_p1_f32, bld.def(v1), coord1, bld.m0(prim_mask), idx, component);
2965 bld.vintrp(aco_opcode::v_interp_p2_f32, Definition(dst), coord2, bld.m0(prim_mask), tmp, idx, component);
2966 }
2967
2968 void emit_load_frag_coord(isel_context *ctx, Temp dst, unsigned num_components)
2969 {
2970 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1));
2971 for (unsigned i = 0; i < num_components; i++)
2972 vec->operands[i] = Operand(get_arg(ctx, ctx->args->ac.frag_pos[i]));
2973 if (G_0286CC_POS_W_FLOAT_ENA(ctx->program->config->spi_ps_input_ena)) {
2974 assert(num_components == 4);
2975 Builder bld(ctx->program, ctx->block);
2976 vec->operands[3] = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), get_arg(ctx, ctx->args->ac.frag_pos[3]));
2977 }
2978
2979 for (Operand& op : vec->operands)
2980 op = op.isUndefined() ? Operand(0u) : op;
2981
2982 vec->definitions[0] = Definition(dst);
2983 ctx->block->instructions.emplace_back(std::move(vec));
2984 emit_split_vector(ctx, dst, num_components);
2985 return;
2986 }
2987
2988 void visit_load_interpolated_input(isel_context *ctx, nir_intrinsic_instr *instr)
2989 {
2990 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
2991 Temp coords = get_ssa_temp(ctx, instr->src[0].ssa);
2992 unsigned idx = nir_intrinsic_base(instr);
2993 unsigned component = nir_intrinsic_component(instr);
2994 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
2995
2996 nir_const_value* offset = nir_src_as_const_value(instr->src[1]);
2997 if (offset) {
2998 assert(offset->u32 == 0);
2999 } else {
3000 /* the lower 15bit of the prim_mask contain the offset into LDS
3001 * while the upper bits contain the number of prims */
3002 Temp offset_src = get_ssa_temp(ctx, instr->src[1].ssa);
3003 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
3004 Builder bld(ctx->program, ctx->block);
3005 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
3006 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
3007 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
3008 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
3009 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
3010 }
3011
3012 if (instr->dest.ssa.num_components == 1) {
3013 emit_interp_instr(ctx, idx, component, coords, dst, prim_mask);
3014 } else {
3015 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.ssa.num_components, 1));
3016 for (unsigned i = 0; i < instr->dest.ssa.num_components; i++)
3017 {
3018 Temp tmp = {ctx->program->allocateId(), v1};
3019 emit_interp_instr(ctx, idx, component+i, coords, tmp, prim_mask);
3020 vec->operands[i] = Operand(tmp);
3021 }
3022 vec->definitions[0] = Definition(dst);
3023 ctx->block->instructions.emplace_back(std::move(vec));
3024 }
3025 }
3026
3027 unsigned get_num_channels_from_data_format(unsigned data_format)
3028 {
3029 switch (data_format) {
3030 case V_008F0C_BUF_DATA_FORMAT_8:
3031 case V_008F0C_BUF_DATA_FORMAT_16:
3032 case V_008F0C_BUF_DATA_FORMAT_32:
3033 return 1;
3034 case V_008F0C_BUF_DATA_FORMAT_8_8:
3035 case V_008F0C_BUF_DATA_FORMAT_16_16:
3036 case V_008F0C_BUF_DATA_FORMAT_32_32:
3037 return 2;
3038 case V_008F0C_BUF_DATA_FORMAT_10_11_11:
3039 case V_008F0C_BUF_DATA_FORMAT_11_11_10:
3040 case V_008F0C_BUF_DATA_FORMAT_32_32_32:
3041 return 3;
3042 case V_008F0C_BUF_DATA_FORMAT_8_8_8_8:
3043 case V_008F0C_BUF_DATA_FORMAT_10_10_10_2:
3044 case V_008F0C_BUF_DATA_FORMAT_2_10_10_10:
3045 case V_008F0C_BUF_DATA_FORMAT_16_16_16_16:
3046 case V_008F0C_BUF_DATA_FORMAT_32_32_32_32:
3047 return 4;
3048 default:
3049 break;
3050 }
3051
3052 return 4;
3053 }
3054
3055 /* For 2_10_10_10 formats the alpha is handled as unsigned by pre-vega HW.
3056 * so we may need to fix it up. */
3057 Temp adjust_vertex_fetch_alpha(isel_context *ctx, unsigned adjustment, Temp alpha)
3058 {
3059 Builder bld(ctx->program, ctx->block);
3060
3061 if (adjustment == RADV_ALPHA_ADJUST_SSCALED)
3062 alpha = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), alpha);
3063
3064 /* For the integer-like cases, do a natural sign extension.
3065 *
3066 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
3067 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
3068 * exponent.
3069 */
3070 alpha = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(adjustment == RADV_ALPHA_ADJUST_SNORM ? 7u : 30u), alpha);
3071 alpha = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(30u), alpha);
3072
3073 /* Convert back to the right type. */
3074 if (adjustment == RADV_ALPHA_ADJUST_SNORM) {
3075 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
3076 Temp clamp = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0xbf800000u), alpha);
3077 alpha = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xbf800000u), alpha, clamp);
3078 } else if (adjustment == RADV_ALPHA_ADJUST_SSCALED) {
3079 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
3080 }
3081
3082 return alpha;
3083 }
3084
3085 void visit_load_input(isel_context *ctx, nir_intrinsic_instr *instr)
3086 {
3087 Builder bld(ctx->program, ctx->block);
3088 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3089 if (ctx->stage & sw_vs) {
3090
3091 nir_instr *off_instr = instr->src[0].ssa->parent_instr;
3092 if (off_instr->type != nir_instr_type_load_const) {
3093 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
3094 nir_print_instr(off_instr, stderr);
3095 fprintf(stderr, "\n");
3096 }
3097 uint32_t offset = nir_instr_as_load_const(off_instr)->value[0].u32;
3098
3099 Temp vertex_buffers = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->vertex_buffers));
3100
3101 unsigned location = nir_intrinsic_base(instr) / 4 - VERT_ATTRIB_GENERIC0 + offset;
3102 unsigned component = nir_intrinsic_component(instr);
3103 unsigned attrib_binding = ctx->options->key.vs.vertex_attribute_bindings[location];
3104 uint32_t attrib_offset = ctx->options->key.vs.vertex_attribute_offsets[location];
3105 uint32_t attrib_stride = ctx->options->key.vs.vertex_attribute_strides[location];
3106 unsigned attrib_format = ctx->options->key.vs.vertex_attribute_formats[location];
3107
3108 unsigned dfmt = attrib_format & 0xf;
3109
3110 unsigned nfmt = (attrib_format >> 4) & 0x7;
3111 unsigned num_dfmt_channels = get_num_channels_from_data_format(dfmt);
3112 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa) << component;
3113 unsigned num_channels = MIN2(util_last_bit(mask), num_dfmt_channels);
3114 unsigned alpha_adjust = (ctx->options->key.vs.alpha_adjust >> (location * 2)) & 3;
3115 bool post_shuffle = ctx->options->key.vs.post_shuffle & (1 << location);
3116 if (post_shuffle)
3117 num_channels = MAX2(num_channels, 3);
3118
3119 Temp list = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), vertex_buffers, Operand(attrib_binding * 16u));
3120
3121 Temp index;
3122 if (ctx->options->key.vs.instance_rate_inputs & (1u << location)) {
3123 uint32_t divisor = ctx->options->key.vs.instance_rate_divisors[location];
3124 Temp start_instance = get_arg(ctx, ctx->args->ac.start_instance);
3125 if (divisor) {
3126 ctx->needs_instance_id = true;
3127 Temp instance_id = get_arg(ctx, ctx->args->ac.instance_id);
3128 if (divisor != 1) {
3129 Temp divided = bld.tmp(v1);
3130 emit_v_div_u32(ctx, divided, as_vgpr(ctx, instance_id), divisor);
3131 index = bld.vadd32(bld.def(v1), start_instance, divided);
3132 } else {
3133 index = bld.vadd32(bld.def(v1), start_instance, instance_id);
3134 }
3135 } else {
3136 index = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), start_instance);
3137 }
3138 } else {
3139 index = bld.vadd32(bld.def(v1),
3140 get_arg(ctx, ctx->args->ac.base_vertex),
3141 get_arg(ctx, ctx->args->ac.vertex_id));
3142 }
3143
3144 if (attrib_stride != 0 && attrib_offset > attrib_stride) {
3145 index = bld.vadd32(bld.def(v1), Operand(attrib_offset / attrib_stride), index);
3146 attrib_offset = attrib_offset % attrib_stride;
3147 }
3148
3149 Operand soffset(0u);
3150 if (attrib_offset >= 4096) {
3151 soffset = bld.copy(bld.def(s1), Operand(attrib_offset));
3152 attrib_offset = 0;
3153 }
3154
3155 aco_opcode opcode;
3156 switch (num_channels) {
3157 case 1:
3158 opcode = aco_opcode::tbuffer_load_format_x;
3159 break;
3160 case 2:
3161 opcode = aco_opcode::tbuffer_load_format_xy;
3162 break;
3163 case 3:
3164 opcode = aco_opcode::tbuffer_load_format_xyz;
3165 break;
3166 case 4:
3167 opcode = aco_opcode::tbuffer_load_format_xyzw;
3168 break;
3169 default:
3170 unreachable("Unimplemented load_input vector size");
3171 }
3172
3173 Temp tmp = post_shuffle || num_channels != dst.size() || alpha_adjust != RADV_ALPHA_ADJUST_NONE || component ? bld.tmp(RegType::vgpr, num_channels) : dst;
3174
3175 aco_ptr<MTBUF_instruction> mubuf{create_instruction<MTBUF_instruction>(opcode, Format::MTBUF, 3, 1)};
3176 mubuf->operands[0] = Operand(index);
3177 mubuf->operands[1] = Operand(list);
3178 mubuf->operands[2] = soffset;
3179 mubuf->definitions[0] = Definition(tmp);
3180 mubuf->idxen = true;
3181 mubuf->can_reorder = true;
3182 mubuf->dfmt = dfmt;
3183 mubuf->nfmt = nfmt;
3184 assert(attrib_offset < 4096);
3185 mubuf->offset = attrib_offset;
3186 ctx->block->instructions.emplace_back(std::move(mubuf));
3187
3188 emit_split_vector(ctx, tmp, tmp.size());
3189
3190 if (tmp.id() != dst.id()) {
3191 bool is_float = nfmt != V_008F0C_BUF_NUM_FORMAT_UINT &&
3192 nfmt != V_008F0C_BUF_NUM_FORMAT_SINT;
3193
3194 static const unsigned swizzle_normal[4] = {0, 1, 2, 3};
3195 static const unsigned swizzle_post_shuffle[4] = {2, 1, 0, 3};
3196 const unsigned *swizzle = post_shuffle ? swizzle_post_shuffle : swizzle_normal;
3197
3198 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
3199 for (unsigned i = 0; i < dst.size(); i++) {
3200 unsigned idx = i + component;
3201 if (idx == 3 && alpha_adjust != RADV_ALPHA_ADJUST_NONE && num_channels >= 4) {
3202 Temp alpha = emit_extract_vector(ctx, tmp, swizzle[3], v1);
3203 vec->operands[3] = Operand(adjust_vertex_fetch_alpha(ctx, alpha_adjust, alpha));
3204 } else if (idx < num_channels) {
3205 vec->operands[i] = Operand(emit_extract_vector(ctx, tmp, swizzle[idx], v1));
3206 } else if (is_float && idx == 3) {
3207 vec->operands[i] = Operand(0x3f800000u);
3208 } else if (!is_float && idx == 3) {
3209 vec->operands[i] = Operand(1u);
3210 } else {
3211 vec->operands[i] = Operand(0u);
3212 }
3213 }
3214 vec->definitions[0] = Definition(dst);
3215 ctx->block->instructions.emplace_back(std::move(vec));
3216 emit_split_vector(ctx, dst, dst.size());
3217 }
3218
3219 } else if (ctx->stage == fragment_fs) {
3220 nir_instr *off_instr = instr->src[0].ssa->parent_instr;
3221 if (off_instr->type != nir_instr_type_load_const ||
3222 nir_instr_as_load_const(off_instr)->value[0].u32 != 0) {
3223 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
3224 nir_print_instr(off_instr, stderr);
3225 fprintf(stderr, "\n");
3226 }
3227
3228 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
3229 nir_const_value* offset = nir_src_as_const_value(instr->src[0]);
3230 if (offset) {
3231 assert(offset->u32 == 0);
3232 } else {
3233 /* the lower 15bit of the prim_mask contain the offset into LDS
3234 * while the upper bits contain the number of prims */
3235 Temp offset_src = get_ssa_temp(ctx, instr->src[0].ssa);
3236 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
3237 Builder bld(ctx->program, ctx->block);
3238 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
3239 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
3240 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
3241 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
3242 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
3243 }
3244
3245 unsigned idx = nir_intrinsic_base(instr);
3246 unsigned component = nir_intrinsic_component(instr);
3247
3248 if (dst.size() == 1) {
3249 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(dst), Operand(2u), bld.m0(prim_mask), idx, component);
3250 } else {
3251 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
3252 for (unsigned i = 0; i < dst.size(); i++)
3253 vec->operands[i] = bld.vintrp(aco_opcode::v_interp_mov_f32, bld.def(v1), Operand(2u), bld.m0(prim_mask), idx, component + i);
3254 vec->definitions[0] = Definition(dst);
3255 bld.insert(std::move(vec));
3256 }
3257
3258 } else {
3259 unreachable("Shader stage not implemented");
3260 }
3261 }
3262
3263 Temp load_desc_ptr(isel_context *ctx, unsigned desc_set)
3264 {
3265 if (ctx->program->info->need_indirect_descriptor_sets) {
3266 Builder bld(ctx->program, ctx->block);
3267 Temp ptr64 = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->descriptor_sets[0]));
3268 return bld.smem(aco_opcode::s_load_dword, bld.def(s1), ptr64, Operand(desc_set << 2));//, false, false, false);
3269 }
3270
3271 return get_arg(ctx, ctx->args->descriptor_sets[desc_set]);
3272 }
3273
3274
3275 void visit_load_resource(isel_context *ctx, nir_intrinsic_instr *instr)
3276 {
3277 Builder bld(ctx->program, ctx->block);
3278 Temp index = get_ssa_temp(ctx, instr->src[0].ssa);
3279 if (!ctx->divergent_vals[instr->dest.ssa.index])
3280 index = bld.as_uniform(index);
3281 unsigned desc_set = nir_intrinsic_desc_set(instr);
3282 unsigned binding = nir_intrinsic_binding(instr);
3283
3284 Temp desc_ptr;
3285 radv_pipeline_layout *pipeline_layout = ctx->options->layout;
3286 radv_descriptor_set_layout *layout = pipeline_layout->set[desc_set].layout;
3287 unsigned offset = layout->binding[binding].offset;
3288 unsigned stride;
3289 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
3290 layout->binding[binding].type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
3291 unsigned idx = pipeline_layout->set[desc_set].dynamic_offset_start + layout->binding[binding].dynamic_offset_offset;
3292 desc_ptr = get_arg(ctx, ctx->args->ac.push_constants);
3293 offset = pipeline_layout->push_constant_size + 16 * idx;
3294 stride = 16;
3295 } else {
3296 desc_ptr = load_desc_ptr(ctx, desc_set);
3297 stride = layout->binding[binding].size;
3298 }
3299
3300 nir_const_value* nir_const_index = nir_src_as_const_value(instr->src[0]);
3301 unsigned const_index = nir_const_index ? nir_const_index->u32 : 0;
3302 if (stride != 1) {
3303 if (nir_const_index) {
3304 const_index = const_index * stride;
3305 } else if (index.type() == RegType::vgpr) {
3306 bool index24bit = layout->binding[binding].array_size <= 0x1000000;
3307 index = bld.v_mul_imm(bld.def(v1), index, stride, index24bit);
3308 } else {
3309 index = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), Operand(index));
3310 }
3311 }
3312 if (offset) {
3313 if (nir_const_index) {
3314 const_index = const_index + offset;
3315 } else if (index.type() == RegType::vgpr) {
3316 index = bld.vadd32(bld.def(v1), Operand(offset), index);
3317 } else {
3318 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), Operand(index));
3319 }
3320 }
3321
3322 if (nir_const_index && const_index == 0) {
3323 index = desc_ptr;
3324 } else if (index.type() == RegType::vgpr) {
3325 index = bld.vadd32(bld.def(v1),
3326 nir_const_index ? Operand(const_index) : Operand(index),
3327 Operand(desc_ptr));
3328 } else {
3329 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
3330 nir_const_index ? Operand(const_index) : Operand(index),
3331 Operand(desc_ptr));
3332 }
3333
3334 bld.copy(Definition(get_ssa_temp(ctx, &instr->dest.ssa)), index);
3335 }
3336
3337 void load_buffer(isel_context *ctx, unsigned num_components, Temp dst,
3338 Temp rsrc, Temp offset, bool glc=false, bool readonly=true)
3339 {
3340 Builder bld(ctx->program, ctx->block);
3341
3342 unsigned num_bytes = dst.size() * 4;
3343 bool dlc = glc && ctx->options->chip_class >= GFX10;
3344
3345 aco_opcode op;
3346 if (dst.type() == RegType::vgpr || (ctx->options->chip_class < GFX8 && !readonly)) {
3347 if (ctx->options->chip_class < GFX8)
3348 offset = as_vgpr(ctx, offset);
3349
3350 Operand vaddr = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
3351 Operand soffset = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
3352 unsigned const_offset = 0;
3353
3354 Temp lower = Temp();
3355 if (num_bytes > 16) {
3356 assert(num_components == 3 || num_components == 4);
3357 op = aco_opcode::buffer_load_dwordx4;
3358 lower = bld.tmp(v4);
3359 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
3360 mubuf->definitions[0] = Definition(lower);
3361 mubuf->operands[0] = vaddr;
3362 mubuf->operands[1] = Operand(rsrc);
3363 mubuf->operands[2] = soffset;
3364 mubuf->offen = (offset.type() == RegType::vgpr);
3365 mubuf->glc = glc;
3366 mubuf->dlc = dlc;
3367 mubuf->barrier = readonly ? barrier_none : barrier_buffer;
3368 mubuf->can_reorder = readonly;
3369 bld.insert(std::move(mubuf));
3370 emit_split_vector(ctx, lower, 2);
3371 num_bytes -= 16;
3372 const_offset = 16;
3373 }
3374
3375 switch (num_bytes) {
3376 case 4:
3377 op = aco_opcode::buffer_load_dword;
3378 break;
3379 case 8:
3380 op = aco_opcode::buffer_load_dwordx2;
3381 break;
3382 case 12:
3383 op = aco_opcode::buffer_load_dwordx3;
3384 break;
3385 case 16:
3386 op = aco_opcode::buffer_load_dwordx4;
3387 break;
3388 default:
3389 unreachable("Load SSBO not implemented for this size.");
3390 }
3391 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
3392 mubuf->operands[0] = vaddr;
3393 mubuf->operands[1] = Operand(rsrc);
3394 mubuf->operands[2] = soffset;
3395 mubuf->offen = (offset.type() == RegType::vgpr);
3396 mubuf->glc = glc;
3397 mubuf->dlc = dlc;
3398 mubuf->barrier = readonly ? barrier_none : barrier_buffer;
3399 mubuf->can_reorder = readonly;
3400 mubuf->offset = const_offset;
3401 aco_ptr<Instruction> instr = std::move(mubuf);
3402
3403 if (dst.size() > 4) {
3404 assert(lower != Temp());
3405 Temp upper = bld.tmp(RegType::vgpr, dst.size() - lower.size());
3406 instr->definitions[0] = Definition(upper);
3407 bld.insert(std::move(instr));
3408 if (dst.size() == 8)
3409 emit_split_vector(ctx, upper, 2);
3410 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size() / 2, 1));
3411 instr->operands[0] = Operand(emit_extract_vector(ctx, lower, 0, v2));
3412 instr->operands[1] = Operand(emit_extract_vector(ctx, lower, 1, v2));
3413 instr->operands[2] = Operand(emit_extract_vector(ctx, upper, 0, v2));
3414 if (dst.size() == 8)
3415 instr->operands[3] = Operand(emit_extract_vector(ctx, upper, 1, v2));
3416 }
3417
3418 if (dst.type() == RegType::sgpr) {
3419 Temp vec = bld.tmp(RegType::vgpr, dst.size());
3420 instr->definitions[0] = Definition(vec);
3421 bld.insert(std::move(instr));
3422 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
3423 } else {
3424 instr->definitions[0] = Definition(dst);
3425 bld.insert(std::move(instr));
3426 }
3427 } else {
3428 switch (num_bytes) {
3429 case 4:
3430 op = aco_opcode::s_buffer_load_dword;
3431 break;
3432 case 8:
3433 op = aco_opcode::s_buffer_load_dwordx2;
3434 break;
3435 case 12:
3436 case 16:
3437 op = aco_opcode::s_buffer_load_dwordx4;
3438 break;
3439 case 24:
3440 case 32:
3441 op = aco_opcode::s_buffer_load_dwordx8;
3442 break;
3443 default:
3444 unreachable("Load SSBO not implemented for this size.");
3445 }
3446 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
3447 load->operands[0] = Operand(rsrc);
3448 load->operands[1] = Operand(bld.as_uniform(offset));
3449 assert(load->operands[1].getTemp().type() == RegType::sgpr);
3450 load->definitions[0] = Definition(dst);
3451 load->glc = glc;
3452 load->dlc = dlc;
3453 load->barrier = readonly ? barrier_none : barrier_buffer;
3454 load->can_reorder = false; // FIXME: currently, it doesn't seem beneficial due to how our scheduler works
3455 assert(ctx->options->chip_class >= GFX8 || !glc);
3456
3457 /* trim vector */
3458 if (dst.size() == 3) {
3459 Temp vec = bld.tmp(s4);
3460 load->definitions[0] = Definition(vec);
3461 bld.insert(std::move(load));
3462 emit_split_vector(ctx, vec, 4);
3463
3464 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
3465 emit_extract_vector(ctx, vec, 0, s1),
3466 emit_extract_vector(ctx, vec, 1, s1),
3467 emit_extract_vector(ctx, vec, 2, s1));
3468 } else if (dst.size() == 6) {
3469 Temp vec = bld.tmp(s8);
3470 load->definitions[0] = Definition(vec);
3471 bld.insert(std::move(load));
3472 emit_split_vector(ctx, vec, 4);
3473
3474 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
3475 emit_extract_vector(ctx, vec, 0, s2),
3476 emit_extract_vector(ctx, vec, 1, s2),
3477 emit_extract_vector(ctx, vec, 2, s2));
3478 } else {
3479 bld.insert(std::move(load));
3480 }
3481
3482 }
3483 emit_split_vector(ctx, dst, num_components);
3484 }
3485
3486 void visit_load_ubo(isel_context *ctx, nir_intrinsic_instr *instr)
3487 {
3488 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3489 Temp rsrc = get_ssa_temp(ctx, instr->src[0].ssa);
3490
3491 Builder bld(ctx->program, ctx->block);
3492
3493 nir_intrinsic_instr* idx_instr = nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
3494 unsigned desc_set = nir_intrinsic_desc_set(idx_instr);
3495 unsigned binding = nir_intrinsic_binding(idx_instr);
3496 radv_descriptor_set_layout *layout = ctx->options->layout->set[desc_set].layout;
3497
3498 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
3499 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
3500 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
3501 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
3502 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
3503 if (ctx->options->chip_class >= GFX10) {
3504 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
3505 S_008F0C_OOB_SELECT(3) |
3506 S_008F0C_RESOURCE_LEVEL(1);
3507 } else {
3508 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
3509 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
3510 }
3511 Temp upper_dwords = bld.pseudo(aco_opcode::p_create_vector, bld.def(s3),
3512 Operand(S_008F04_BASE_ADDRESS_HI(ctx->options->address32_hi)),
3513 Operand(0xFFFFFFFFu),
3514 Operand(desc_type));
3515 rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
3516 rsrc, upper_dwords);
3517 } else {
3518 rsrc = convert_pointer_to_64_bit(ctx, rsrc);
3519 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
3520 }
3521
3522 load_buffer(ctx, instr->num_components, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa));
3523 }
3524
3525 void visit_load_push_constant(isel_context *ctx, nir_intrinsic_instr *instr)
3526 {
3527 Builder bld(ctx->program, ctx->block);
3528 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3529
3530 unsigned offset = nir_intrinsic_base(instr);
3531 nir_const_value *index_cv = nir_src_as_const_value(instr->src[0]);
3532 if (index_cv && instr->dest.ssa.bit_size == 32) {
3533
3534 unsigned count = instr->dest.ssa.num_components;
3535 unsigned start = (offset + index_cv->u32) / 4u;
3536 start -= ctx->args->ac.base_inline_push_consts;
3537 if (start + count <= ctx->args->ac.num_inline_push_consts) {
3538 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
3539 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
3540 for (unsigned i = 0; i < count; ++i) {
3541 elems[i] = get_arg(ctx, ctx->args->ac.inline_push_consts[start + i]);
3542 vec->operands[i] = Operand{elems[i]};
3543 }
3544 vec->definitions[0] = Definition(dst);
3545 ctx->block->instructions.emplace_back(std::move(vec));
3546 ctx->allocated_vec.emplace(dst.id(), elems);
3547 return;
3548 }
3549 }
3550
3551 Temp index = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa));
3552 if (offset != 0) // TODO check if index != 0 as well
3553 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), index);
3554 Temp ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->ac.push_constants));
3555 Temp vec = dst;
3556 bool trim = false;
3557 aco_opcode op;
3558
3559 switch (dst.size()) {
3560 case 1:
3561 op = aco_opcode::s_load_dword;
3562 break;
3563 case 2:
3564 op = aco_opcode::s_load_dwordx2;
3565 break;
3566 case 3:
3567 vec = bld.tmp(s4);
3568 trim = true;
3569 case 4:
3570 op = aco_opcode::s_load_dwordx4;
3571 break;
3572 case 6:
3573 vec = bld.tmp(s8);
3574 trim = true;
3575 case 8:
3576 op = aco_opcode::s_load_dwordx8;
3577 break;
3578 default:
3579 unreachable("unimplemented or forbidden load_push_constant.");
3580 }
3581
3582 bld.smem(op, Definition(vec), ptr, index);
3583
3584 if (trim) {
3585 emit_split_vector(ctx, vec, 4);
3586 RegClass rc = dst.size() == 3 ? s1 : s2;
3587 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
3588 emit_extract_vector(ctx, vec, 0, rc),
3589 emit_extract_vector(ctx, vec, 1, rc),
3590 emit_extract_vector(ctx, vec, 2, rc));
3591
3592 }
3593 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
3594 }
3595
3596 void visit_load_constant(isel_context *ctx, nir_intrinsic_instr *instr)
3597 {
3598 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3599
3600 Builder bld(ctx->program, ctx->block);
3601
3602 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
3603 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
3604 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
3605 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
3606 if (ctx->options->chip_class >= GFX10) {
3607 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
3608 S_008F0C_OOB_SELECT(3) |
3609 S_008F0C_RESOURCE_LEVEL(1);
3610 } else {
3611 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
3612 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
3613 }
3614
3615 unsigned base = nir_intrinsic_base(instr);
3616 unsigned range = nir_intrinsic_range(instr);
3617
3618 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
3619 if (base && offset.type() == RegType::sgpr)
3620 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), offset, Operand(base));
3621 else if (base && offset.type() == RegType::vgpr)
3622 offset = bld.vadd32(bld.def(v1), Operand(base), offset);
3623
3624 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
3625 bld.sop1(aco_opcode::p_constaddr, bld.def(s2), bld.def(s1, scc), Operand(ctx->constant_data_offset)),
3626 Operand(MIN2(base + range, ctx->shader->constant_data_size)),
3627 Operand(desc_type));
3628
3629 load_buffer(ctx, instr->num_components, dst, rsrc, offset);
3630 }
3631
3632 void visit_discard_if(isel_context *ctx, nir_intrinsic_instr *instr)
3633 {
3634 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
3635 ctx->cf_info.exec_potentially_empty = true;
3636
3637 ctx->program->needs_exact = true;
3638
3639 // TODO: optimize uniform conditions
3640 Builder bld(ctx->program, ctx->block);
3641 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
3642 assert(src.regClass() == bld.lm);
3643 src = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
3644 bld.pseudo(aco_opcode::p_discard_if, src);
3645 ctx->block->kind |= block_kind_uses_discard_if;
3646 return;
3647 }
3648
3649 void visit_discard(isel_context* ctx, nir_intrinsic_instr *instr)
3650 {
3651 Builder bld(ctx->program, ctx->block);
3652
3653 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
3654 ctx->cf_info.exec_potentially_empty = true;
3655
3656 bool divergent = ctx->cf_info.parent_if.is_divergent ||
3657 ctx->cf_info.parent_loop.has_divergent_continue;
3658
3659 if (ctx->block->loop_nest_depth &&
3660 ((nir_instr_is_last(&instr->instr) && !divergent) || divergent)) {
3661 /* we handle discards the same way as jump instructions */
3662 append_logical_end(ctx->block);
3663
3664 /* in loops, discard behaves like break */
3665 Block *linear_target = ctx->cf_info.parent_loop.exit;
3666 ctx->block->kind |= block_kind_discard;
3667
3668 if (!divergent) {
3669 /* uniform discard - loop ends here */
3670 assert(nir_instr_is_last(&instr->instr));
3671 ctx->block->kind |= block_kind_uniform;
3672 ctx->cf_info.has_branch = true;
3673 bld.branch(aco_opcode::p_branch);
3674 add_linear_edge(ctx->block->index, linear_target);
3675 return;
3676 }
3677
3678 /* we add a break right behind the discard() instructions */
3679 ctx->block->kind |= block_kind_break;
3680 unsigned idx = ctx->block->index;
3681
3682 /* remove critical edges from linear CFG */
3683 bld.branch(aco_opcode::p_branch);
3684 Block* break_block = ctx->program->create_and_insert_block();
3685 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
3686 break_block->kind |= block_kind_uniform;
3687 add_linear_edge(idx, break_block);
3688 add_linear_edge(break_block->index, linear_target);
3689 bld.reset(break_block);
3690 bld.branch(aco_opcode::p_branch);
3691
3692 Block* continue_block = ctx->program->create_and_insert_block();
3693 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
3694 add_linear_edge(idx, continue_block);
3695 append_logical_start(continue_block);
3696 ctx->block = continue_block;
3697
3698 return;
3699 }
3700
3701 /* it can currently happen that NIR doesn't remove the unreachable code */
3702 if (!nir_instr_is_last(&instr->instr)) {
3703 ctx->program->needs_exact = true;
3704 /* save exec somewhere temporarily so that it doesn't get
3705 * overwritten before the discard from outer exec masks */
3706 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), Operand(0xFFFFFFFF), Operand(exec, bld.lm));
3707 bld.pseudo(aco_opcode::p_discard_if, cond);
3708 ctx->block->kind |= block_kind_uses_discard_if;
3709 return;
3710 }
3711
3712 /* This condition is incorrect for uniformly branched discards in a loop
3713 * predicated by a divergent condition, but the above code catches that case
3714 * and the discard would end up turning into a discard_if.
3715 * For example:
3716 * if (divergent) {
3717 * while (...) {
3718 * if (uniform) {
3719 * discard;
3720 * }
3721 * }
3722 * }
3723 */
3724 if (!ctx->cf_info.parent_if.is_divergent) {
3725 /* program just ends here */
3726 ctx->block->kind |= block_kind_uniform;
3727 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
3728 0 /* enabled mask */, 9 /* dest */,
3729 false /* compressed */, true/* done */, true /* valid mask */);
3730 bld.sopp(aco_opcode::s_endpgm);
3731 // TODO: it will potentially be followed by a branch which is dead code to sanitize NIR phis
3732 } else {
3733 ctx->block->kind |= block_kind_discard;
3734 /* branch and linear edge is added by visit_if() */
3735 }
3736 }
3737
3738 enum aco_descriptor_type {
3739 ACO_DESC_IMAGE,
3740 ACO_DESC_FMASK,
3741 ACO_DESC_SAMPLER,
3742 ACO_DESC_BUFFER,
3743 ACO_DESC_PLANE_0,
3744 ACO_DESC_PLANE_1,
3745 ACO_DESC_PLANE_2,
3746 };
3747
3748 static bool
3749 should_declare_array(isel_context *ctx, enum glsl_sampler_dim sampler_dim, bool is_array) {
3750 if (sampler_dim == GLSL_SAMPLER_DIM_BUF)
3751 return false;
3752 ac_image_dim dim = ac_get_sampler_dim(ctx->options->chip_class, sampler_dim, is_array);
3753 return dim == ac_image_cube ||
3754 dim == ac_image_1darray ||
3755 dim == ac_image_2darray ||
3756 dim == ac_image_2darraymsaa;
3757 }
3758
3759 Temp get_sampler_desc(isel_context *ctx, nir_deref_instr *deref_instr,
3760 enum aco_descriptor_type desc_type,
3761 const nir_tex_instr *tex_instr, bool image, bool write)
3762 {
3763 /* FIXME: we should lower the deref with some new nir_intrinsic_load_desc
3764 std::unordered_map<uint64_t, Temp>::iterator it = ctx->tex_desc.find((uint64_t) desc_type << 32 | deref_instr->dest.ssa.index);
3765 if (it != ctx->tex_desc.end())
3766 return it->second;
3767 */
3768 Temp index = Temp();
3769 bool index_set = false;
3770 unsigned constant_index = 0;
3771 unsigned descriptor_set;
3772 unsigned base_index;
3773 Builder bld(ctx->program, ctx->block);
3774
3775 if (!deref_instr) {
3776 assert(tex_instr && !image);
3777 descriptor_set = 0;
3778 base_index = tex_instr->sampler_index;
3779 } else {
3780 while(deref_instr->deref_type != nir_deref_type_var) {
3781 unsigned array_size = glsl_get_aoa_size(deref_instr->type);
3782 if (!array_size)
3783 array_size = 1;
3784
3785 assert(deref_instr->deref_type == nir_deref_type_array);
3786 nir_const_value *const_value = nir_src_as_const_value(deref_instr->arr.index);
3787 if (const_value) {
3788 constant_index += array_size * const_value->u32;
3789 } else {
3790 Temp indirect = get_ssa_temp(ctx, deref_instr->arr.index.ssa);
3791 if (indirect.type() == RegType::vgpr)
3792 indirect = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), indirect);
3793
3794 if (array_size != 1)
3795 indirect = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(array_size), indirect);
3796
3797 if (!index_set) {
3798 index = indirect;
3799 index_set = true;
3800 } else {
3801 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), index, indirect);
3802 }
3803 }
3804
3805 deref_instr = nir_src_as_deref(deref_instr->parent);
3806 }
3807 descriptor_set = deref_instr->var->data.descriptor_set;
3808 base_index = deref_instr->var->data.binding;
3809 }
3810
3811 Temp list = load_desc_ptr(ctx, descriptor_set);
3812 list = convert_pointer_to_64_bit(ctx, list);
3813
3814 struct radv_descriptor_set_layout *layout = ctx->options->layout->set[descriptor_set].layout;
3815 struct radv_descriptor_set_binding_layout *binding = layout->binding + base_index;
3816 unsigned offset = binding->offset;
3817 unsigned stride = binding->size;
3818 aco_opcode opcode;
3819 RegClass type;
3820
3821 assert(base_index < layout->binding_count);
3822
3823 switch (desc_type) {
3824 case ACO_DESC_IMAGE:
3825 type = s8;
3826 opcode = aco_opcode::s_load_dwordx8;
3827 break;
3828 case ACO_DESC_FMASK:
3829 type = s8;
3830 opcode = aco_opcode::s_load_dwordx8;
3831 offset += 32;
3832 break;
3833 case ACO_DESC_SAMPLER:
3834 type = s4;
3835 opcode = aco_opcode::s_load_dwordx4;
3836 if (binding->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
3837 offset += radv_combined_image_descriptor_sampler_offset(binding);
3838 break;
3839 case ACO_DESC_BUFFER:
3840 type = s4;
3841 opcode = aco_opcode::s_load_dwordx4;
3842 break;
3843 case ACO_DESC_PLANE_0:
3844 case ACO_DESC_PLANE_1:
3845 type = s8;
3846 opcode = aco_opcode::s_load_dwordx8;
3847 offset += 32 * (desc_type - ACO_DESC_PLANE_0);
3848 break;
3849 case ACO_DESC_PLANE_2:
3850 type = s4;
3851 opcode = aco_opcode::s_load_dwordx4;
3852 offset += 64;
3853 break;
3854 default:
3855 unreachable("invalid desc_type\n");
3856 }
3857
3858 offset += constant_index * stride;
3859
3860 if (desc_type == ACO_DESC_SAMPLER && binding->immutable_samplers_offset &&
3861 (!index_set || binding->immutable_samplers_equal)) {
3862 if (binding->immutable_samplers_equal)
3863 constant_index = 0;
3864
3865 const uint32_t *samplers = radv_immutable_samplers(layout, binding);
3866 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
3867 Operand(samplers[constant_index * 4 + 0]),
3868 Operand(samplers[constant_index * 4 + 1]),
3869 Operand(samplers[constant_index * 4 + 2]),
3870 Operand(samplers[constant_index * 4 + 3]));
3871 }
3872
3873 Operand off;
3874 if (!index_set) {
3875 off = Operand(offset);
3876 } else {
3877 off = Operand((Temp)bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset),
3878 bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), index)));
3879 }
3880
3881 Temp res = bld.smem(opcode, bld.def(type), list, off);
3882
3883 if (desc_type == ACO_DESC_PLANE_2) {
3884 Temp components[8];
3885 for (unsigned i = 0; i < 8; i++)
3886 components[i] = bld.tmp(s1);
3887 bld.pseudo(aco_opcode::p_split_vector,
3888 Definition(components[0]),
3889 Definition(components[1]),
3890 Definition(components[2]),
3891 Definition(components[3]),
3892 res);
3893
3894 Temp desc2 = get_sampler_desc(ctx, deref_instr, ACO_DESC_PLANE_1, tex_instr, image, write);
3895 bld.pseudo(aco_opcode::p_split_vector,
3896 bld.def(s1), bld.def(s1), bld.def(s1), bld.def(s1),
3897 Definition(components[4]),
3898 Definition(components[5]),
3899 Definition(components[6]),
3900 Definition(components[7]),
3901 desc2);
3902
3903 res = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
3904 components[0], components[1], components[2], components[3],
3905 components[4], components[5], components[6], components[7]);
3906 }
3907
3908 return res;
3909 }
3910
3911 static int image_type_to_components_count(enum glsl_sampler_dim dim, bool array)
3912 {
3913 switch (dim) {
3914 case GLSL_SAMPLER_DIM_BUF:
3915 return 1;
3916 case GLSL_SAMPLER_DIM_1D:
3917 return array ? 2 : 1;
3918 case GLSL_SAMPLER_DIM_2D:
3919 return array ? 3 : 2;
3920 case GLSL_SAMPLER_DIM_MS:
3921 return array ? 4 : 3;
3922 case GLSL_SAMPLER_DIM_3D:
3923 case GLSL_SAMPLER_DIM_CUBE:
3924 return 3;
3925 case GLSL_SAMPLER_DIM_RECT:
3926 case GLSL_SAMPLER_DIM_SUBPASS:
3927 return 2;
3928 case GLSL_SAMPLER_DIM_SUBPASS_MS:
3929 return 3;
3930 default:
3931 break;
3932 }
3933 return 0;
3934 }
3935
3936
3937 /* Adjust the sample index according to FMASK.
3938 *
3939 * For uncompressed MSAA surfaces, FMASK should return 0x76543210,
3940 * which is the identity mapping. Each nibble says which physical sample
3941 * should be fetched to get that sample.
3942 *
3943 * For example, 0x11111100 means there are only 2 samples stored and
3944 * the second sample covers 3/4 of the pixel. When reading samples 0
3945 * and 1, return physical sample 0 (determined by the first two 0s
3946 * in FMASK), otherwise return physical sample 1.
3947 *
3948 * The sample index should be adjusted as follows:
3949 * sample_index = (fmask >> (sample_index * 4)) & 0xF;
3950 */
3951 static Temp adjust_sample_index_using_fmask(isel_context *ctx, bool da, Temp coords, Operand sample_index, Temp fmask_desc_ptr)
3952 {
3953 Builder bld(ctx->program, ctx->block);
3954 Temp fmask = bld.tmp(v1);
3955 unsigned dim = ctx->options->chip_class >= GFX10
3956 ? ac_get_sampler_dim(ctx->options->chip_class, GLSL_SAMPLER_DIM_2D, da)
3957 : 0;
3958
3959 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(aco_opcode::image_load, Format::MIMG, 2, 1)};
3960 load->operands[0] = Operand(coords);
3961 load->operands[1] = Operand(fmask_desc_ptr);
3962 load->definitions[0] = Definition(fmask);
3963 load->glc = false;
3964 load->dlc = false;
3965 load->dmask = 0x1;
3966 load->unrm = true;
3967 load->da = da;
3968 load->dim = dim;
3969 load->can_reorder = true; /* fmask images shouldn't be modified */
3970 ctx->block->instructions.emplace_back(std::move(load));
3971
3972 Operand sample_index4;
3973 if (sample_index.isConstant() && sample_index.constantValue() < 16) {
3974 sample_index4 = Operand(sample_index.constantValue() << 2);
3975 } else if (sample_index.regClass() == s1) {
3976 sample_index4 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), sample_index, Operand(2u));
3977 } else {
3978 assert(sample_index.regClass() == v1);
3979 sample_index4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), sample_index);
3980 }
3981
3982 Temp final_sample;
3983 if (sample_index4.isConstant() && sample_index4.constantValue() == 0)
3984 final_sample = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(15u), fmask);
3985 else if (sample_index4.isConstant() && sample_index4.constantValue() == 28)
3986 final_sample = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(28u), fmask);
3987 else
3988 final_sample = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), fmask, sample_index4, Operand(4u));
3989
3990 /* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK
3991 * resource descriptor is 0 (invalid),
3992 */
3993 Temp compare = bld.tmp(bld.lm);
3994 bld.vopc_e64(aco_opcode::v_cmp_lg_u32, Definition(compare),
3995 Operand(0u), emit_extract_vector(ctx, fmask_desc_ptr, 1, s1)).def(0).setHint(vcc);
3996
3997 Temp sample_index_v = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), sample_index);
3998
3999 /* Replace the MSAA sample index. */
4000 return bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), sample_index_v, final_sample, compare);
4001 }
4002
4003 static Temp get_image_coords(isel_context *ctx, const nir_intrinsic_instr *instr, const struct glsl_type *type)
4004 {
4005
4006 Temp src0 = get_ssa_temp(ctx, instr->src[1].ssa);
4007 enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4008 bool is_array = glsl_sampler_type_is_array(type);
4009 ASSERTED bool add_frag_pos = (dim == GLSL_SAMPLER_DIM_SUBPASS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
4010 assert(!add_frag_pos && "Input attachments should be lowered.");
4011 bool is_ms = (dim == GLSL_SAMPLER_DIM_MS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
4012 bool gfx9_1d = ctx->options->chip_class == GFX9 && dim == GLSL_SAMPLER_DIM_1D;
4013 int count = image_type_to_components_count(dim, is_array);
4014 std::vector<Operand> coords(count);
4015
4016 if (is_ms) {
4017 Operand sample_index;
4018 nir_const_value *sample_cv = nir_src_as_const_value(instr->src[2]);
4019 if (sample_cv)
4020 sample_index = Operand(sample_cv->u32);
4021 else
4022 sample_index = Operand(emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[2].ssa), 0, v1));
4023
4024 if (instr->intrinsic == nir_intrinsic_image_deref_load) {
4025 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, is_array ? 3 : 2, 1)};
4026 for (unsigned i = 0; i < vec->operands.size(); i++)
4027 vec->operands[i] = Operand(emit_extract_vector(ctx, src0, i, v1));
4028 Temp fmask_load_address = {ctx->program->allocateId(), is_array ? v3 : v2};
4029 vec->definitions[0] = Definition(fmask_load_address);
4030 ctx->block->instructions.emplace_back(std::move(vec));
4031
4032 Temp fmask_desc_ptr = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_FMASK, nullptr, false, false);
4033 sample_index = Operand(adjust_sample_index_using_fmask(ctx, is_array, fmask_load_address, sample_index, fmask_desc_ptr));
4034 }
4035 count--;
4036 coords[count] = sample_index;
4037 }
4038
4039 if (count == 1 && !gfx9_1d)
4040 return emit_extract_vector(ctx, src0, 0, v1);
4041
4042 if (gfx9_1d) {
4043 coords[0] = Operand(emit_extract_vector(ctx, src0, 0, v1));
4044 coords.resize(coords.size() + 1);
4045 coords[1] = Operand((uint32_t) 0);
4046 if (is_array)
4047 coords[2] = Operand(emit_extract_vector(ctx, src0, 1, v1));
4048 } else {
4049 for (int i = 0; i < count; i++)
4050 coords[i] = Operand(emit_extract_vector(ctx, src0, i, v1));
4051 }
4052
4053 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
4054 for (unsigned i = 0; i < coords.size(); i++)
4055 vec->operands[i] = coords[i];
4056 Temp res = {ctx->program->allocateId(), RegClass(RegType::vgpr, coords.size())};
4057 vec->definitions[0] = Definition(res);
4058 ctx->block->instructions.emplace_back(std::move(vec));
4059 return res;
4060 }
4061
4062
4063 void visit_image_load(isel_context *ctx, nir_intrinsic_instr *instr)
4064 {
4065 Builder bld(ctx->program, ctx->block);
4066 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
4067 const struct glsl_type *type = glsl_without_array(var->type);
4068 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4069 bool is_array = glsl_sampler_type_is_array(type);
4070 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4071
4072 if (dim == GLSL_SAMPLER_DIM_BUF) {
4073 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa);
4074 unsigned num_channels = util_last_bit(mask);
4075 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
4076 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
4077
4078 aco_opcode opcode;
4079 switch (num_channels) {
4080 case 1:
4081 opcode = aco_opcode::buffer_load_format_x;
4082 break;
4083 case 2:
4084 opcode = aco_opcode::buffer_load_format_xy;
4085 break;
4086 case 3:
4087 opcode = aco_opcode::buffer_load_format_xyz;
4088 break;
4089 case 4:
4090 opcode = aco_opcode::buffer_load_format_xyzw;
4091 break;
4092 default:
4093 unreachable(">4 channel buffer image load");
4094 }
4095 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 3, 1)};
4096 load->operands[0] = Operand(vindex);
4097 load->operands[1] = Operand(rsrc);
4098 load->operands[2] = Operand((uint32_t) 0);
4099 Temp tmp;
4100 if (num_channels == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
4101 tmp = dst;
4102 else
4103 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_channels)};
4104 load->definitions[0] = Definition(tmp);
4105 load->idxen = true;
4106 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT);
4107 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
4108 load->barrier = barrier_image;
4109 ctx->block->instructions.emplace_back(std::move(load));
4110
4111 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, (1 << num_channels) - 1);
4112 return;
4113 }
4114
4115 Temp coords = get_image_coords(ctx, instr, type);
4116 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
4117
4118 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
4119 unsigned num_components = util_bitcount(dmask);
4120 Temp tmp;
4121 if (num_components == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
4122 tmp = dst;
4123 else
4124 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_components)};
4125
4126 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(aco_opcode::image_load, Format::MIMG, 2, 1)};
4127 load->operands[0] = Operand(coords);
4128 load->operands[1] = Operand(resource);
4129 load->definitions[0] = Definition(tmp);
4130 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT) ? 1 : 0;
4131 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
4132 load->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
4133 load->dmask = dmask;
4134 load->unrm = true;
4135 load->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
4136 load->barrier = barrier_image;
4137 ctx->block->instructions.emplace_back(std::move(load));
4138
4139 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, dmask);
4140 return;
4141 }
4142
4143 void visit_image_store(isel_context *ctx, nir_intrinsic_instr *instr)
4144 {
4145 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
4146 const struct glsl_type *type = glsl_without_array(var->type);
4147 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4148 bool is_array = glsl_sampler_type_is_array(type);
4149 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
4150
4151 bool glc = ctx->options->chip_class == GFX6 || var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE) ? 1 : 0;
4152
4153 if (dim == GLSL_SAMPLER_DIM_BUF) {
4154 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
4155 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
4156 aco_opcode opcode;
4157 switch (data.size()) {
4158 case 1:
4159 opcode = aco_opcode::buffer_store_format_x;
4160 break;
4161 case 2:
4162 opcode = aco_opcode::buffer_store_format_xy;
4163 break;
4164 case 3:
4165 opcode = aco_opcode::buffer_store_format_xyz;
4166 break;
4167 case 4:
4168 opcode = aco_opcode::buffer_store_format_xyzw;
4169 break;
4170 default:
4171 unreachable(">4 channel buffer image store");
4172 }
4173 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
4174 store->operands[0] = Operand(vindex);
4175 store->operands[1] = Operand(rsrc);
4176 store->operands[2] = Operand((uint32_t) 0);
4177 store->operands[3] = Operand(data);
4178 store->idxen = true;
4179 store->glc = glc;
4180 store->dlc = false;
4181 store->disable_wqm = true;
4182 store->barrier = barrier_image;
4183 ctx->program->needs_exact = true;
4184 ctx->block->instructions.emplace_back(std::move(store));
4185 return;
4186 }
4187
4188 assert(data.type() == RegType::vgpr);
4189 Temp coords = get_image_coords(ctx, instr, type);
4190 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
4191
4192 aco_ptr<MIMG_instruction> store{create_instruction<MIMG_instruction>(aco_opcode::image_store, Format::MIMG, 4, 0)};
4193 store->operands[0] = Operand(coords);
4194 store->operands[1] = Operand(resource);
4195 store->operands[2] = Operand(s4);
4196 store->operands[3] = Operand(data);
4197 store->glc = glc;
4198 store->dlc = false;
4199 store->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
4200 store->dmask = (1 << data.size()) - 1;
4201 store->unrm = true;
4202 store->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
4203 store->disable_wqm = true;
4204 store->barrier = barrier_image;
4205 ctx->program->needs_exact = true;
4206 ctx->block->instructions.emplace_back(std::move(store));
4207 return;
4208 }
4209
4210 void visit_image_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
4211 {
4212 /* return the previous value if dest is ever used */
4213 bool return_previous = false;
4214 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
4215 return_previous = true;
4216 break;
4217 }
4218 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
4219 return_previous = true;
4220 break;
4221 }
4222
4223 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
4224 const struct glsl_type *type = glsl_without_array(var->type);
4225 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4226 bool is_array = glsl_sampler_type_is_array(type);
4227 Builder bld(ctx->program, ctx->block);
4228
4229 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
4230 assert(data.size() == 1 && "64bit ssbo atomics not yet implemented.");
4231
4232 if (instr->intrinsic == nir_intrinsic_image_deref_atomic_comp_swap)
4233 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), get_ssa_temp(ctx, instr->src[4].ssa), data);
4234
4235 aco_opcode buf_op, image_op;
4236 switch (instr->intrinsic) {
4237 case nir_intrinsic_image_deref_atomic_add:
4238 buf_op = aco_opcode::buffer_atomic_add;
4239 image_op = aco_opcode::image_atomic_add;
4240 break;
4241 case nir_intrinsic_image_deref_atomic_umin:
4242 buf_op = aco_opcode::buffer_atomic_umin;
4243 image_op = aco_opcode::image_atomic_umin;
4244 break;
4245 case nir_intrinsic_image_deref_atomic_imin:
4246 buf_op = aco_opcode::buffer_atomic_smin;
4247 image_op = aco_opcode::image_atomic_smin;
4248 break;
4249 case nir_intrinsic_image_deref_atomic_umax:
4250 buf_op = aco_opcode::buffer_atomic_umax;
4251 image_op = aco_opcode::image_atomic_umax;
4252 break;
4253 case nir_intrinsic_image_deref_atomic_imax:
4254 buf_op = aco_opcode::buffer_atomic_smax;
4255 image_op = aco_opcode::image_atomic_smax;
4256 break;
4257 case nir_intrinsic_image_deref_atomic_and:
4258 buf_op = aco_opcode::buffer_atomic_and;
4259 image_op = aco_opcode::image_atomic_and;
4260 break;
4261 case nir_intrinsic_image_deref_atomic_or:
4262 buf_op = aco_opcode::buffer_atomic_or;
4263 image_op = aco_opcode::image_atomic_or;
4264 break;
4265 case nir_intrinsic_image_deref_atomic_xor:
4266 buf_op = aco_opcode::buffer_atomic_xor;
4267 image_op = aco_opcode::image_atomic_xor;
4268 break;
4269 case nir_intrinsic_image_deref_atomic_exchange:
4270 buf_op = aco_opcode::buffer_atomic_swap;
4271 image_op = aco_opcode::image_atomic_swap;
4272 break;
4273 case nir_intrinsic_image_deref_atomic_comp_swap:
4274 buf_op = aco_opcode::buffer_atomic_cmpswap;
4275 image_op = aco_opcode::image_atomic_cmpswap;
4276 break;
4277 default:
4278 unreachable("visit_image_atomic should only be called with nir_intrinsic_image_deref_atomic_* instructions.");
4279 }
4280
4281 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4282
4283 if (dim == GLSL_SAMPLER_DIM_BUF) {
4284 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
4285 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
4286 //assert(ctx->options->chip_class < GFX9 && "GFX9 stride size workaround not yet implemented.");
4287 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(buf_op, Format::MUBUF, 4, return_previous ? 1 : 0)};
4288 mubuf->operands[0] = Operand(vindex);
4289 mubuf->operands[1] = Operand(resource);
4290 mubuf->operands[2] = Operand((uint32_t)0);
4291 mubuf->operands[3] = Operand(data);
4292 if (return_previous)
4293 mubuf->definitions[0] = Definition(dst);
4294 mubuf->offset = 0;
4295 mubuf->idxen = true;
4296 mubuf->glc = return_previous;
4297 mubuf->dlc = false; /* Not needed for atomics */
4298 mubuf->disable_wqm = true;
4299 mubuf->barrier = barrier_image;
4300 ctx->program->needs_exact = true;
4301 ctx->block->instructions.emplace_back(std::move(mubuf));
4302 return;
4303 }
4304
4305 Temp coords = get_image_coords(ctx, instr, type);
4306 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
4307 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(image_op, Format::MIMG, 4, return_previous ? 1 : 0)};
4308 mimg->operands[0] = Operand(coords);
4309 mimg->operands[1] = Operand(resource);
4310 mimg->operands[2] = Operand(s4); /* no sampler */
4311 mimg->operands[3] = Operand(data);
4312 if (return_previous)
4313 mimg->definitions[0] = Definition(dst);
4314 mimg->glc = return_previous;
4315 mimg->dlc = false; /* Not needed for atomics */
4316 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
4317 mimg->dmask = (1 << data.size()) - 1;
4318 mimg->unrm = true;
4319 mimg->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
4320 mimg->disable_wqm = true;
4321 mimg->barrier = barrier_image;
4322 ctx->program->needs_exact = true;
4323 ctx->block->instructions.emplace_back(std::move(mimg));
4324 return;
4325 }
4326
4327 void get_buffer_size(isel_context *ctx, Temp desc, Temp dst, bool in_elements)
4328 {
4329 if (in_elements && ctx->options->chip_class == GFX8) {
4330 Builder bld(ctx->program, ctx->block);
4331
4332 Temp stride = emit_extract_vector(ctx, desc, 1, s1);
4333 stride = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), stride, Operand((5u << 16) | 16u));
4334 stride = bld.vop1(aco_opcode::v_cvt_f32_ubyte0, bld.def(v1), stride);
4335 stride = bld.vop1(aco_opcode::v_rcp_iflag_f32, bld.def(v1), stride);
4336
4337 Temp size = emit_extract_vector(ctx, desc, 2, s1);
4338 size = bld.vop1(aco_opcode::v_cvt_f32_u32, bld.def(v1), size);
4339
4340 Temp res = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), size, stride);
4341 res = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), res);
4342 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), res);
4343
4344 // TODO: we can probably calculate this faster on the scalar unit to do: size / stride{1,2,4,8,12,16}
4345 /* idea
4346 * for 1,2,4,8,16, the result is just (stride >> S_FF1_I32_B32)
4347 * in case 12 (or 3?), we have to divide by 3:
4348 * set v_skip in case it's 12 (if we also have to take care of 3, shift first)
4349 * use v_mul_hi_u32 with magic number to divide
4350 * we need some pseudo merge opcode to overwrite the original SALU result with readfirstlane
4351 * disable v_skip
4352 * total: 6 SALU + 2 VALU instructions vs 1 SALU + 6 VALU instructions
4353 */
4354
4355 } else {
4356 emit_extract_vector(ctx, desc, 2, dst);
4357 }
4358 }
4359
4360 void visit_image_size(isel_context *ctx, nir_intrinsic_instr *instr)
4361 {
4362 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
4363 const struct glsl_type *type = glsl_without_array(var->type);
4364 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4365 bool is_array = glsl_sampler_type_is_array(type);
4366 Builder bld(ctx->program, ctx->block);
4367
4368 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF) {
4369 Temp desc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, NULL, true, false);
4370 return get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), true);
4371 }
4372
4373 /* LOD */
4374 Temp lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
4375
4376 /* Resource */
4377 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, NULL, true, false);
4378
4379 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4380
4381 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 2, 1)};
4382 mimg->operands[0] = Operand(lod);
4383 mimg->operands[1] = Operand(resource);
4384 unsigned& dmask = mimg->dmask;
4385 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
4386 mimg->dmask = (1 << instr->dest.ssa.num_components) - 1;
4387 mimg->da = glsl_sampler_type_is_array(type);
4388 mimg->can_reorder = true;
4389 Definition& def = mimg->definitions[0];
4390 ctx->block->instructions.emplace_back(std::move(mimg));
4391
4392 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE &&
4393 glsl_sampler_type_is_array(type)) {
4394
4395 assert(instr->dest.ssa.num_components == 3);
4396 Temp tmp = {ctx->program->allocateId(), v3};
4397 def = Definition(tmp);
4398 emit_split_vector(ctx, tmp, 3);
4399
4400 /* divide 3rd value by 6 by multiplying with magic number */
4401 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
4402 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp, 2, v1), c);
4403
4404 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4405 emit_extract_vector(ctx, tmp, 0, v1),
4406 emit_extract_vector(ctx, tmp, 1, v1),
4407 by_6);
4408
4409 } else if (ctx->options->chip_class == GFX9 &&
4410 glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_1D &&
4411 glsl_sampler_type_is_array(type)) {
4412 assert(instr->dest.ssa.num_components == 2);
4413 def = Definition(dst);
4414 dmask = 0x5;
4415 } else {
4416 def = Definition(dst);
4417 }
4418
4419 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
4420 }
4421
4422 void visit_load_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
4423 {
4424 Builder bld(ctx->program, ctx->block);
4425 unsigned num_components = instr->num_components;
4426
4427 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4428 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
4429 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
4430
4431 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
4432 load_buffer(ctx, num_components, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa), glc, false);
4433 }
4434
4435 void visit_store_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
4436 {
4437 Builder bld(ctx->program, ctx->block);
4438 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
4439 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
4440 unsigned writemask = nir_intrinsic_write_mask(instr);
4441
4442 Temp offset;
4443 if (ctx->options->chip_class < GFX8)
4444 offset = as_vgpr(ctx,get_ssa_temp(ctx, instr->src[2].ssa));
4445 else
4446 offset = get_ssa_temp(ctx, instr->src[2].ssa);
4447
4448 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
4449 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
4450
4451 bool smem = !ctx->divergent_vals[instr->src[2].ssa->index] &&
4452 ctx->options->chip_class >= GFX8;
4453 if (smem)
4454 offset = bld.as_uniform(offset);
4455 bool smem_nonfs = smem && ctx->stage != fragment_fs;
4456
4457 while (writemask) {
4458 int start, count;
4459 u_bit_scan_consecutive_range(&writemask, &start, &count);
4460 if (count == 3 && smem) {
4461 writemask |= 1u << (start + 2);
4462 count = 2;
4463 }
4464 int num_bytes = count * elem_size_bytes;
4465
4466 if (num_bytes > 16) {
4467 assert(elem_size_bytes == 8);
4468 writemask |= (((count - 2) << 1) - 1) << (start + 2);
4469 count = 2;
4470 num_bytes = 16;
4471 }
4472
4473 // TODO: check alignment of sub-dword stores
4474 // TODO: split 3 bytes. there is no store instruction for that
4475
4476 Temp write_data;
4477 if (count != instr->num_components) {
4478 emit_split_vector(ctx, data, instr->num_components);
4479 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
4480 for (int i = 0; i < count; i++) {
4481 Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(data.type(), elem_size_bytes / 4));
4482 vec->operands[i] = Operand(smem_nonfs ? bld.as_uniform(elem) : elem);
4483 }
4484 write_data = bld.tmp(!smem ? RegType::vgpr : smem_nonfs ? RegType::sgpr : data.type(), count * elem_size_bytes / 4);
4485 vec->definitions[0] = Definition(write_data);
4486 ctx->block->instructions.emplace_back(std::move(vec));
4487 } else if (!smem && data.type() != RegType::vgpr) {
4488 assert(num_bytes % 4 == 0);
4489 write_data = bld.copy(bld.def(RegType::vgpr, num_bytes / 4), data);
4490 } else if (smem_nonfs && data.type() == RegType::vgpr) {
4491 assert(num_bytes % 4 == 0);
4492 write_data = bld.as_uniform(data);
4493 } else {
4494 write_data = data;
4495 }
4496
4497 aco_opcode vmem_op, smem_op;
4498 switch (num_bytes) {
4499 case 4:
4500 vmem_op = aco_opcode::buffer_store_dword;
4501 smem_op = aco_opcode::s_buffer_store_dword;
4502 break;
4503 case 8:
4504 vmem_op = aco_opcode::buffer_store_dwordx2;
4505 smem_op = aco_opcode::s_buffer_store_dwordx2;
4506 break;
4507 case 12:
4508 vmem_op = aco_opcode::buffer_store_dwordx3;
4509 smem_op = aco_opcode::last_opcode;
4510 assert(!smem);
4511 break;
4512 case 16:
4513 vmem_op = aco_opcode::buffer_store_dwordx4;
4514 smem_op = aco_opcode::s_buffer_store_dwordx4;
4515 break;
4516 default:
4517 unreachable("Store SSBO not implemented for this size.");
4518 }
4519 if (ctx->stage == fragment_fs)
4520 smem_op = aco_opcode::p_fs_buffer_store_smem;
4521
4522 if (smem) {
4523 aco_ptr<SMEM_instruction> store{create_instruction<SMEM_instruction>(smem_op, Format::SMEM, 3, 0)};
4524 store->operands[0] = Operand(rsrc);
4525 if (start) {
4526 Temp off = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
4527 offset, Operand(start * elem_size_bytes));
4528 store->operands[1] = Operand(off);
4529 } else {
4530 store->operands[1] = Operand(offset);
4531 }
4532 if (smem_op != aco_opcode::p_fs_buffer_store_smem)
4533 store->operands[1].setFixed(m0);
4534 store->operands[2] = Operand(write_data);
4535 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
4536 store->dlc = false;
4537 store->disable_wqm = true;
4538 store->barrier = barrier_buffer;
4539 ctx->block->instructions.emplace_back(std::move(store));
4540 ctx->program->wb_smem_l1_on_end = true;
4541 if (smem_op == aco_opcode::p_fs_buffer_store_smem) {
4542 ctx->block->kind |= block_kind_needs_lowering;
4543 ctx->program->needs_exact = true;
4544 }
4545 } else {
4546 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(vmem_op, Format::MUBUF, 4, 0)};
4547 store->operands[0] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
4548 store->operands[1] = Operand(rsrc);
4549 store->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
4550 store->operands[3] = Operand(write_data);
4551 store->offset = start * elem_size_bytes;
4552 store->offen = (offset.type() == RegType::vgpr);
4553 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
4554 store->dlc = false;
4555 store->disable_wqm = true;
4556 store->barrier = barrier_buffer;
4557 ctx->program->needs_exact = true;
4558 ctx->block->instructions.emplace_back(std::move(store));
4559 }
4560 }
4561 }
4562
4563 void visit_atomic_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
4564 {
4565 /* return the previous value if dest is ever used */
4566 bool return_previous = false;
4567 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
4568 return_previous = true;
4569 break;
4570 }
4571 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
4572 return_previous = true;
4573 break;
4574 }
4575
4576 Builder bld(ctx->program, ctx->block);
4577 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[2].ssa));
4578
4579 if (instr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap)
4580 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
4581 get_ssa_temp(ctx, instr->src[3].ssa), data);
4582
4583 Temp offset;
4584 if (ctx->options->chip_class < GFX8)
4585 offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
4586 else
4587 offset = get_ssa_temp(ctx, instr->src[1].ssa);
4588
4589 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
4590 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
4591
4592 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4593
4594 aco_opcode op32, op64;
4595 switch (instr->intrinsic) {
4596 case nir_intrinsic_ssbo_atomic_add:
4597 op32 = aco_opcode::buffer_atomic_add;
4598 op64 = aco_opcode::buffer_atomic_add_x2;
4599 break;
4600 case nir_intrinsic_ssbo_atomic_imin:
4601 op32 = aco_opcode::buffer_atomic_smin;
4602 op64 = aco_opcode::buffer_atomic_smin_x2;
4603 break;
4604 case nir_intrinsic_ssbo_atomic_umin:
4605 op32 = aco_opcode::buffer_atomic_umin;
4606 op64 = aco_opcode::buffer_atomic_umin_x2;
4607 break;
4608 case nir_intrinsic_ssbo_atomic_imax:
4609 op32 = aco_opcode::buffer_atomic_smax;
4610 op64 = aco_opcode::buffer_atomic_smax_x2;
4611 break;
4612 case nir_intrinsic_ssbo_atomic_umax:
4613 op32 = aco_opcode::buffer_atomic_umax;
4614 op64 = aco_opcode::buffer_atomic_umax_x2;
4615 break;
4616 case nir_intrinsic_ssbo_atomic_and:
4617 op32 = aco_opcode::buffer_atomic_and;
4618 op64 = aco_opcode::buffer_atomic_and_x2;
4619 break;
4620 case nir_intrinsic_ssbo_atomic_or:
4621 op32 = aco_opcode::buffer_atomic_or;
4622 op64 = aco_opcode::buffer_atomic_or_x2;
4623 break;
4624 case nir_intrinsic_ssbo_atomic_xor:
4625 op32 = aco_opcode::buffer_atomic_xor;
4626 op64 = aco_opcode::buffer_atomic_xor_x2;
4627 break;
4628 case nir_intrinsic_ssbo_atomic_exchange:
4629 op32 = aco_opcode::buffer_atomic_swap;
4630 op64 = aco_opcode::buffer_atomic_swap_x2;
4631 break;
4632 case nir_intrinsic_ssbo_atomic_comp_swap:
4633 op32 = aco_opcode::buffer_atomic_cmpswap;
4634 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
4635 break;
4636 default:
4637 unreachable("visit_atomic_ssbo should only be called with nir_intrinsic_ssbo_atomic_* instructions.");
4638 }
4639 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
4640 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
4641 mubuf->operands[0] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
4642 mubuf->operands[1] = Operand(rsrc);
4643 mubuf->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
4644 mubuf->operands[3] = Operand(data);
4645 if (return_previous)
4646 mubuf->definitions[0] = Definition(dst);
4647 mubuf->offset = 0;
4648 mubuf->offen = (offset.type() == RegType::vgpr);
4649 mubuf->glc = return_previous;
4650 mubuf->dlc = false; /* Not needed for atomics */
4651 mubuf->disable_wqm = true;
4652 mubuf->barrier = barrier_buffer;
4653 ctx->program->needs_exact = true;
4654 ctx->block->instructions.emplace_back(std::move(mubuf));
4655 }
4656
4657 void visit_get_buffer_size(isel_context *ctx, nir_intrinsic_instr *instr) {
4658
4659 Temp index = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
4660 Builder bld(ctx->program, ctx->block);
4661 Temp desc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), index, Operand(0u));
4662 get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), false);
4663 }
4664
4665 void visit_load_global(isel_context *ctx, nir_intrinsic_instr *instr)
4666 {
4667 Builder bld(ctx->program, ctx->block);
4668 unsigned num_components = instr->num_components;
4669 unsigned num_bytes = num_components * instr->dest.ssa.bit_size / 8;
4670
4671 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4672 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
4673
4674 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
4675 bool dlc = glc && ctx->options->chip_class >= GFX10;
4676 aco_opcode op;
4677 if (dst.type() == RegType::vgpr || (glc && ctx->options->chip_class < GFX8)) {
4678 bool global = ctx->options->chip_class >= GFX9;
4679 aco_opcode op;
4680 switch (num_bytes) {
4681 case 4:
4682 op = global ? aco_opcode::global_load_dword : aco_opcode::flat_load_dword;
4683 break;
4684 case 8:
4685 op = global ? aco_opcode::global_load_dwordx2 : aco_opcode::flat_load_dwordx2;
4686 break;
4687 case 12:
4688 op = global ? aco_opcode::global_load_dwordx3 : aco_opcode::flat_load_dwordx3;
4689 break;
4690 case 16:
4691 op = global ? aco_opcode::global_load_dwordx4 : aco_opcode::flat_load_dwordx4;
4692 break;
4693 default:
4694 unreachable("load_global not implemented for this size.");
4695 }
4696 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 2, 1)};
4697 flat->operands[0] = Operand(addr);
4698 flat->operands[1] = Operand(s1);
4699 flat->glc = glc;
4700 flat->dlc = dlc;
4701 flat->barrier = barrier_buffer;
4702
4703 if (dst.type() == RegType::sgpr) {
4704 Temp vec = bld.tmp(RegType::vgpr, dst.size());
4705 flat->definitions[0] = Definition(vec);
4706 ctx->block->instructions.emplace_back(std::move(flat));
4707 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
4708 } else {
4709 flat->definitions[0] = Definition(dst);
4710 ctx->block->instructions.emplace_back(std::move(flat));
4711 }
4712 emit_split_vector(ctx, dst, num_components);
4713 } else {
4714 switch (num_bytes) {
4715 case 4:
4716 op = aco_opcode::s_load_dword;
4717 break;
4718 case 8:
4719 op = aco_opcode::s_load_dwordx2;
4720 break;
4721 case 12:
4722 case 16:
4723 op = aco_opcode::s_load_dwordx4;
4724 break;
4725 default:
4726 unreachable("load_global not implemented for this size.");
4727 }
4728 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
4729 load->operands[0] = Operand(addr);
4730 load->operands[1] = Operand(0u);
4731 load->definitions[0] = Definition(dst);
4732 load->glc = glc;
4733 load->dlc = dlc;
4734 load->barrier = barrier_buffer;
4735 assert(ctx->options->chip_class >= GFX8 || !glc);
4736
4737 if (dst.size() == 3) {
4738 /* trim vector */
4739 Temp vec = bld.tmp(s4);
4740 load->definitions[0] = Definition(vec);
4741 ctx->block->instructions.emplace_back(std::move(load));
4742 emit_split_vector(ctx, vec, 4);
4743
4744 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4745 emit_extract_vector(ctx, vec, 0, s1),
4746 emit_extract_vector(ctx, vec, 1, s1),
4747 emit_extract_vector(ctx, vec, 2, s1));
4748 } else {
4749 ctx->block->instructions.emplace_back(std::move(load));
4750 }
4751 }
4752 }
4753
4754 void visit_store_global(isel_context *ctx, nir_intrinsic_instr *instr)
4755 {
4756 Builder bld(ctx->program, ctx->block);
4757 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
4758
4759 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
4760 Temp addr = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
4761
4762 unsigned writemask = nir_intrinsic_write_mask(instr);
4763 while (writemask) {
4764 int start, count;
4765 u_bit_scan_consecutive_range(&writemask, &start, &count);
4766 unsigned num_bytes = count * elem_size_bytes;
4767
4768 Temp write_data = data;
4769 if (count != instr->num_components) {
4770 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
4771 for (int i = 0; i < count; i++)
4772 vec->operands[i] = Operand(emit_extract_vector(ctx, data, start + i, v1));
4773 write_data = bld.tmp(RegType::vgpr, count);
4774 vec->definitions[0] = Definition(write_data);
4775 ctx->block->instructions.emplace_back(std::move(vec));
4776 }
4777
4778 unsigned offset = start * elem_size_bytes;
4779 if (offset > 0 && ctx->options->chip_class < GFX9) {
4780 Temp addr0 = bld.tmp(v1), addr1 = bld.tmp(v1);
4781 Temp new_addr0 = bld.tmp(v1), new_addr1 = bld.tmp(v1);
4782 Temp carry = bld.tmp(bld.lm);
4783 bld.pseudo(aco_opcode::p_split_vector, Definition(addr0), Definition(addr1), addr);
4784
4785 bld.vop2(aco_opcode::v_add_co_u32, Definition(new_addr0), bld.hint_vcc(Definition(carry)),
4786 Operand(offset), addr0);
4787 bld.vop2(aco_opcode::v_addc_co_u32, Definition(new_addr1), bld.def(bld.lm),
4788 Operand(0u), addr1,
4789 carry).def(1).setHint(vcc);
4790
4791 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_addr0, new_addr1);
4792
4793 offset = 0;
4794 }
4795
4796 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
4797 bool global = ctx->options->chip_class >= GFX9;
4798 aco_opcode op;
4799 switch (num_bytes) {
4800 case 4:
4801 op = global ? aco_opcode::global_store_dword : aco_opcode::flat_store_dword;
4802 break;
4803 case 8:
4804 op = global ? aco_opcode::global_store_dwordx2 : aco_opcode::flat_store_dwordx2;
4805 break;
4806 case 12:
4807 op = global ? aco_opcode::global_store_dwordx3 : aco_opcode::flat_store_dwordx3;
4808 break;
4809 case 16:
4810 op = global ? aco_opcode::global_store_dwordx4 : aco_opcode::flat_store_dwordx4;
4811 break;
4812 default:
4813 unreachable("store_global not implemented for this size.");
4814 }
4815 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, 0)};
4816 flat->operands[0] = Operand(addr);
4817 flat->operands[1] = Operand(s1);
4818 flat->operands[2] = Operand(data);
4819 flat->glc = glc;
4820 flat->dlc = false;
4821 flat->offset = offset;
4822 flat->disable_wqm = true;
4823 flat->barrier = barrier_buffer;
4824 ctx->program->needs_exact = true;
4825 ctx->block->instructions.emplace_back(std::move(flat));
4826 }
4827 }
4828
4829 void visit_global_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
4830 {
4831 /* return the previous value if dest is ever used */
4832 bool return_previous = false;
4833 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
4834 return_previous = true;
4835 break;
4836 }
4837 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
4838 return_previous = true;
4839 break;
4840 }
4841
4842 Builder bld(ctx->program, ctx->block);
4843 Temp addr = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
4844 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
4845
4846 if (instr->intrinsic == nir_intrinsic_global_atomic_comp_swap)
4847 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
4848 get_ssa_temp(ctx, instr->src[2].ssa), data);
4849
4850 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4851
4852 bool global = ctx->options->chip_class >= GFX9;
4853 aco_opcode op32, op64;
4854 switch (instr->intrinsic) {
4855 case nir_intrinsic_global_atomic_add:
4856 op32 = global ? aco_opcode::global_atomic_add : aco_opcode::flat_atomic_add;
4857 op64 = global ? aco_opcode::global_atomic_add_x2 : aco_opcode::flat_atomic_add_x2;
4858 break;
4859 case nir_intrinsic_global_atomic_imin:
4860 op32 = global ? aco_opcode::global_atomic_smin : aco_opcode::flat_atomic_smin;
4861 op64 = global ? aco_opcode::global_atomic_smin_x2 : aco_opcode::flat_atomic_smin_x2;
4862 break;
4863 case nir_intrinsic_global_atomic_umin:
4864 op32 = global ? aco_opcode::global_atomic_umin : aco_opcode::flat_atomic_umin;
4865 op64 = global ? aco_opcode::global_atomic_umin_x2 : aco_opcode::flat_atomic_umin_x2;
4866 break;
4867 case nir_intrinsic_global_atomic_imax:
4868 op32 = global ? aco_opcode::global_atomic_smax : aco_opcode::flat_atomic_smax;
4869 op64 = global ? aco_opcode::global_atomic_smax_x2 : aco_opcode::flat_atomic_smax_x2;
4870 break;
4871 case nir_intrinsic_global_atomic_umax:
4872 op32 = global ? aco_opcode::global_atomic_umax : aco_opcode::flat_atomic_umax;
4873 op64 = global ? aco_opcode::global_atomic_umax_x2 : aco_opcode::flat_atomic_umax_x2;
4874 break;
4875 case nir_intrinsic_global_atomic_and:
4876 op32 = global ? aco_opcode::global_atomic_and : aco_opcode::flat_atomic_and;
4877 op64 = global ? aco_opcode::global_atomic_and_x2 : aco_opcode::flat_atomic_and_x2;
4878 break;
4879 case nir_intrinsic_global_atomic_or:
4880 op32 = global ? aco_opcode::global_atomic_or : aco_opcode::flat_atomic_or;
4881 op64 = global ? aco_opcode::global_atomic_or_x2 : aco_opcode::flat_atomic_or_x2;
4882 break;
4883 case nir_intrinsic_global_atomic_xor:
4884 op32 = global ? aco_opcode::global_atomic_xor : aco_opcode::flat_atomic_xor;
4885 op64 = global ? aco_opcode::global_atomic_xor_x2 : aco_opcode::flat_atomic_xor_x2;
4886 break;
4887 case nir_intrinsic_global_atomic_exchange:
4888 op32 = global ? aco_opcode::global_atomic_swap : aco_opcode::flat_atomic_swap;
4889 op64 = global ? aco_opcode::global_atomic_swap_x2 : aco_opcode::flat_atomic_swap_x2;
4890 break;
4891 case nir_intrinsic_global_atomic_comp_swap:
4892 op32 = global ? aco_opcode::global_atomic_cmpswap : aco_opcode::flat_atomic_cmpswap;
4893 op64 = global ? aco_opcode::global_atomic_cmpswap_x2 : aco_opcode::flat_atomic_cmpswap_x2;
4894 break;
4895 default:
4896 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
4897 }
4898 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
4899 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, return_previous ? 1 : 0)};
4900 flat->operands[0] = Operand(addr);
4901 flat->operands[1] = Operand(s1);
4902 flat->operands[2] = Operand(data);
4903 if (return_previous)
4904 flat->definitions[0] = Definition(dst);
4905 flat->glc = return_previous;
4906 flat->dlc = false; /* Not needed for atomics */
4907 flat->offset = 0;
4908 flat->disable_wqm = true;
4909 flat->barrier = barrier_buffer;
4910 ctx->program->needs_exact = true;
4911 ctx->block->instructions.emplace_back(std::move(flat));
4912 }
4913
4914 void emit_memory_barrier(isel_context *ctx, nir_intrinsic_instr *instr) {
4915 Builder bld(ctx->program, ctx->block);
4916 switch(instr->intrinsic) {
4917 case nir_intrinsic_group_memory_barrier:
4918 case nir_intrinsic_memory_barrier:
4919 bld.barrier(aco_opcode::p_memory_barrier_all);
4920 break;
4921 case nir_intrinsic_memory_barrier_atomic_counter:
4922 bld.barrier(aco_opcode::p_memory_barrier_atomic);
4923 break;
4924 case nir_intrinsic_memory_barrier_buffer:
4925 bld.barrier(aco_opcode::p_memory_barrier_buffer);
4926 break;
4927 case nir_intrinsic_memory_barrier_image:
4928 bld.barrier(aco_opcode::p_memory_barrier_image);
4929 break;
4930 case nir_intrinsic_memory_barrier_shared:
4931 bld.barrier(aco_opcode::p_memory_barrier_shared);
4932 break;
4933 default:
4934 unreachable("Unimplemented memory barrier intrinsic");
4935 break;
4936 }
4937 }
4938
4939 void visit_load_shared(isel_context *ctx, nir_intrinsic_instr *instr)
4940 {
4941 // TODO: implement sparse reads using ds_read2_b32 and nir_ssa_def_components_read()
4942 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4943 assert(instr->dest.ssa.bit_size >= 32 && "Bitsize not supported in load_shared.");
4944 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
4945 Builder bld(ctx->program, ctx->block);
4946
4947 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
4948 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
4949 load_lds(ctx, elem_size_bytes, dst, address, nir_intrinsic_base(instr), align);
4950 }
4951
4952 void visit_store_shared(isel_context *ctx, nir_intrinsic_instr *instr)
4953 {
4954 unsigned writemask = nir_intrinsic_write_mask(instr);
4955 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
4956 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
4957 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
4958 assert(elem_size_bytes >= 4 && "Only 32bit & 64bit store_shared currently supported.");
4959
4960 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
4961 store_lds(ctx, elem_size_bytes, data, writemask, address, nir_intrinsic_base(instr), align);
4962 }
4963
4964 void visit_shared_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
4965 {
4966 unsigned offset = nir_intrinsic_base(instr);
4967 Operand m = load_lds_size_m0(ctx);
4968 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
4969 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
4970
4971 unsigned num_operands = 3;
4972 aco_opcode op32, op64, op32_rtn, op64_rtn;
4973 switch(instr->intrinsic) {
4974 case nir_intrinsic_shared_atomic_add:
4975 op32 = aco_opcode::ds_add_u32;
4976 op64 = aco_opcode::ds_add_u64;
4977 op32_rtn = aco_opcode::ds_add_rtn_u32;
4978 op64_rtn = aco_opcode::ds_add_rtn_u64;
4979 break;
4980 case nir_intrinsic_shared_atomic_imin:
4981 op32 = aco_opcode::ds_min_i32;
4982 op64 = aco_opcode::ds_min_i64;
4983 op32_rtn = aco_opcode::ds_min_rtn_i32;
4984 op64_rtn = aco_opcode::ds_min_rtn_i64;
4985 break;
4986 case nir_intrinsic_shared_atomic_umin:
4987 op32 = aco_opcode::ds_min_u32;
4988 op64 = aco_opcode::ds_min_u64;
4989 op32_rtn = aco_opcode::ds_min_rtn_u32;
4990 op64_rtn = aco_opcode::ds_min_rtn_u64;
4991 break;
4992 case nir_intrinsic_shared_atomic_imax:
4993 op32 = aco_opcode::ds_max_i32;
4994 op64 = aco_opcode::ds_max_i64;
4995 op32_rtn = aco_opcode::ds_max_rtn_i32;
4996 op64_rtn = aco_opcode::ds_max_rtn_i64;
4997 break;
4998 case nir_intrinsic_shared_atomic_umax:
4999 op32 = aco_opcode::ds_max_u32;
5000 op64 = aco_opcode::ds_max_u64;
5001 op32_rtn = aco_opcode::ds_max_rtn_u32;
5002 op64_rtn = aco_opcode::ds_max_rtn_u64;
5003 break;
5004 case nir_intrinsic_shared_atomic_and:
5005 op32 = aco_opcode::ds_and_b32;
5006 op64 = aco_opcode::ds_and_b64;
5007 op32_rtn = aco_opcode::ds_and_rtn_b32;
5008 op64_rtn = aco_opcode::ds_and_rtn_b64;
5009 break;
5010 case nir_intrinsic_shared_atomic_or:
5011 op32 = aco_opcode::ds_or_b32;
5012 op64 = aco_opcode::ds_or_b64;
5013 op32_rtn = aco_opcode::ds_or_rtn_b32;
5014 op64_rtn = aco_opcode::ds_or_rtn_b64;
5015 break;
5016 case nir_intrinsic_shared_atomic_xor:
5017 op32 = aco_opcode::ds_xor_b32;
5018 op64 = aco_opcode::ds_xor_b64;
5019 op32_rtn = aco_opcode::ds_xor_rtn_b32;
5020 op64_rtn = aco_opcode::ds_xor_rtn_b64;
5021 break;
5022 case nir_intrinsic_shared_atomic_exchange:
5023 op32 = aco_opcode::ds_write_b32;
5024 op64 = aco_opcode::ds_write_b64;
5025 op32_rtn = aco_opcode::ds_wrxchg_rtn_b32;
5026 op64_rtn = aco_opcode::ds_wrxchg2_rtn_b64;
5027 break;
5028 case nir_intrinsic_shared_atomic_comp_swap:
5029 op32 = aco_opcode::ds_cmpst_b32;
5030 op64 = aco_opcode::ds_cmpst_b64;
5031 op32_rtn = aco_opcode::ds_cmpst_rtn_b32;
5032 op64_rtn = aco_opcode::ds_cmpst_rtn_b64;
5033 num_operands = 4;
5034 break;
5035 default:
5036 unreachable("Unhandled shared atomic intrinsic");
5037 }
5038
5039 /* return the previous value if dest is ever used */
5040 bool return_previous = false;
5041 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5042 return_previous = true;
5043 break;
5044 }
5045 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5046 return_previous = true;
5047 break;
5048 }
5049
5050 aco_opcode op;
5051 if (data.size() == 1) {
5052 assert(instr->dest.ssa.bit_size == 32);
5053 op = return_previous ? op32_rtn : op32;
5054 } else {
5055 assert(instr->dest.ssa.bit_size == 64);
5056 op = return_previous ? op64_rtn : op64;
5057 }
5058
5059 if (offset > 65535) {
5060 Builder bld(ctx->program, ctx->block);
5061 address = bld.vadd32(bld.def(v1), Operand(offset), address);
5062 offset = 0;
5063 }
5064
5065 aco_ptr<DS_instruction> ds;
5066 ds.reset(create_instruction<DS_instruction>(op, Format::DS, num_operands, return_previous ? 1 : 0));
5067 ds->operands[0] = Operand(address);
5068 ds->operands[1] = Operand(data);
5069 if (num_operands == 4)
5070 ds->operands[2] = Operand(get_ssa_temp(ctx, instr->src[2].ssa));
5071 ds->operands[num_operands - 1] = m;
5072 ds->offset0 = offset;
5073 if (return_previous)
5074 ds->definitions[0] = Definition(get_ssa_temp(ctx, &instr->dest.ssa));
5075 ctx->block->instructions.emplace_back(std::move(ds));
5076 }
5077
5078 Temp get_scratch_resource(isel_context *ctx)
5079 {
5080 Builder bld(ctx->program, ctx->block);
5081 Temp scratch_addr = ctx->program->private_segment_buffer;
5082 if (ctx->stage != compute_cs)
5083 scratch_addr = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), scratch_addr, Operand(0u));
5084
5085 uint32_t rsrc_conf = S_008F0C_ADD_TID_ENABLE(1) |
5086 S_008F0C_INDEX_STRIDE(ctx->program->wave_size == 64 ? 3 : 2);;
5087
5088 if (ctx->program->chip_class >= GFX10) {
5089 rsrc_conf |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
5090 S_008F0C_OOB_SELECT(3) |
5091 S_008F0C_RESOURCE_LEVEL(1);
5092 } else if (ctx->program->chip_class <= GFX7) { /* dfmt modifies stride on GFX8/GFX9 when ADD_TID_EN=1 */
5093 rsrc_conf |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5094 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
5095 }
5096
5097 /* older generations need element size = 16 bytes. element size removed in GFX9 */
5098 if (ctx->program->chip_class <= GFX8)
5099 rsrc_conf |= S_008F0C_ELEMENT_SIZE(3);
5100
5101 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), scratch_addr, Operand(-1u), Operand(rsrc_conf));
5102 }
5103
5104 void visit_load_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
5105 assert(instr->dest.ssa.bit_size == 32 || instr->dest.ssa.bit_size == 64);
5106 Builder bld(ctx->program, ctx->block);
5107 Temp rsrc = get_scratch_resource(ctx);
5108 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5109 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5110
5111 aco_opcode op;
5112 switch (dst.size()) {
5113 case 1:
5114 op = aco_opcode::buffer_load_dword;
5115 break;
5116 case 2:
5117 op = aco_opcode::buffer_load_dwordx2;
5118 break;
5119 case 3:
5120 op = aco_opcode::buffer_load_dwordx3;
5121 break;
5122 case 4:
5123 op = aco_opcode::buffer_load_dwordx4;
5124 break;
5125 case 6:
5126 case 8: {
5127 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
5128 Temp lower = bld.mubuf(aco_opcode::buffer_load_dwordx4,
5129 bld.def(v4), offset, rsrc,
5130 ctx->program->scratch_offset, 0, true);
5131 Temp upper = bld.mubuf(dst.size() == 6 ? aco_opcode::buffer_load_dwordx2 :
5132 aco_opcode::buffer_load_dwordx4,
5133 dst.size() == 6 ? bld.def(v2) : bld.def(v4),
5134 offset, rsrc, ctx->program->scratch_offset, 16, true);
5135 emit_split_vector(ctx, lower, 2);
5136 elems[0] = emit_extract_vector(ctx, lower, 0, v2);
5137 elems[1] = emit_extract_vector(ctx, lower, 1, v2);
5138 if (dst.size() == 8) {
5139 emit_split_vector(ctx, upper, 2);
5140 elems[2] = emit_extract_vector(ctx, upper, 0, v2);
5141 elems[3] = emit_extract_vector(ctx, upper, 1, v2);
5142 } else {
5143 elems[2] = upper;
5144 }
5145
5146 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
5147 Format::PSEUDO, dst.size() / 2, 1)};
5148 for (unsigned i = 0; i < dst.size() / 2; i++)
5149 vec->operands[i] = Operand(elems[i]);
5150 vec->definitions[0] = Definition(dst);
5151 bld.insert(std::move(vec));
5152 ctx->allocated_vec.emplace(dst.id(), elems);
5153 return;
5154 }
5155 default:
5156 unreachable("Wrong dst size for nir_intrinsic_load_scratch");
5157 }
5158
5159 bld.mubuf(op, Definition(dst), offset, rsrc, ctx->program->scratch_offset, 0, true);
5160 emit_split_vector(ctx, dst, instr->num_components);
5161 }
5162
5163 void visit_store_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
5164 assert(instr->src[0].ssa->bit_size == 32 || instr->src[0].ssa->bit_size == 64);
5165 Builder bld(ctx->program, ctx->block);
5166 Temp rsrc = get_scratch_resource(ctx);
5167 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5168 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5169
5170 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
5171 unsigned writemask = nir_intrinsic_write_mask(instr);
5172
5173 while (writemask) {
5174 int start, count;
5175 u_bit_scan_consecutive_range(&writemask, &start, &count);
5176 int num_bytes = count * elem_size_bytes;
5177
5178 if (num_bytes > 16) {
5179 assert(elem_size_bytes == 8);
5180 writemask |= (((count - 2) << 1) - 1) << (start + 2);
5181 count = 2;
5182 num_bytes = 16;
5183 }
5184
5185 // TODO: check alignment of sub-dword stores
5186 // TODO: split 3 bytes. there is no store instruction for that
5187
5188 Temp write_data;
5189 if (count != instr->num_components) {
5190 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
5191 for (int i = 0; i < count; i++) {
5192 Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(RegType::vgpr, elem_size_bytes / 4));
5193 vec->operands[i] = Operand(elem);
5194 }
5195 write_data = bld.tmp(RegClass(RegType::vgpr, count * elem_size_bytes / 4));
5196 vec->definitions[0] = Definition(write_data);
5197 ctx->block->instructions.emplace_back(std::move(vec));
5198 } else {
5199 write_data = data;
5200 }
5201
5202 aco_opcode op;
5203 switch (num_bytes) {
5204 case 4:
5205 op = aco_opcode::buffer_store_dword;
5206 break;
5207 case 8:
5208 op = aco_opcode::buffer_store_dwordx2;
5209 break;
5210 case 12:
5211 op = aco_opcode::buffer_store_dwordx3;
5212 break;
5213 case 16:
5214 op = aco_opcode::buffer_store_dwordx4;
5215 break;
5216 default:
5217 unreachable("Invalid data size for nir_intrinsic_store_scratch.");
5218 }
5219
5220 bld.mubuf(op, offset, rsrc, ctx->program->scratch_offset, write_data, start * elem_size_bytes, true);
5221 }
5222 }
5223
5224 void visit_load_sample_mask_in(isel_context *ctx, nir_intrinsic_instr *instr) {
5225 uint8_t log2_ps_iter_samples;
5226 if (ctx->program->info->ps.force_persample) {
5227 log2_ps_iter_samples =
5228 util_logbase2(ctx->options->key.fs.num_samples);
5229 } else {
5230 log2_ps_iter_samples = ctx->options->key.fs.log2_ps_iter_samples;
5231 }
5232
5233 /* The bit pattern matches that used by fixed function fragment
5234 * processing. */
5235 static const unsigned ps_iter_masks[] = {
5236 0xffff, /* not used */
5237 0x5555,
5238 0x1111,
5239 0x0101,
5240 0x0001,
5241 };
5242 assert(log2_ps_iter_samples < ARRAY_SIZE(ps_iter_masks));
5243
5244 Builder bld(ctx->program, ctx->block);
5245
5246 Temp sample_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
5247 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
5248 Temp ps_iter_mask = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(ps_iter_masks[log2_ps_iter_samples]));
5249 Temp mask = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), sample_id, ps_iter_mask);
5250 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5251 bld.vop2(aco_opcode::v_and_b32, Definition(dst), mask, get_arg(ctx, ctx->args->ac.sample_coverage));
5252 }
5253
5254 Temp emit_boolean_reduce(isel_context *ctx, nir_op op, unsigned cluster_size, Temp src)
5255 {
5256 Builder bld(ctx->program, ctx->block);
5257
5258 if (cluster_size == 1) {
5259 return src;
5260 } if (op == nir_op_iand && cluster_size == 4) {
5261 //subgroupClusteredAnd(val, 4) -> ~wqm(exec & ~val)
5262 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
5263 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc),
5264 bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc), tmp));
5265 } else if (op == nir_op_ior && cluster_size == 4) {
5266 //subgroupClusteredOr(val, 4) -> wqm(val & exec)
5267 return bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc),
5268 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)));
5269 } else if (op == nir_op_iand && cluster_size == ctx->program->wave_size) {
5270 //subgroupAnd(val) -> (exec & ~val) == 0
5271 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
5272 return bld.sop2(Builder::s_cselect, bld.def(bld.lm), Operand(0u), Operand(-1u), bld.scc(tmp));
5273 } else if (op == nir_op_ior && cluster_size == ctx->program->wave_size) {
5274 //subgroupOr(val) -> (val & exec) != 0
5275 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)).def(1).getTemp();
5276 return bool_to_vector_condition(ctx, tmp);
5277 } else if (op == nir_op_ixor && cluster_size == ctx->program->wave_size) {
5278 //subgroupXor(val) -> s_bcnt1_i32_b64(val & exec) & 1
5279 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
5280 tmp = bld.sop1(Builder::s_bcnt1_i32, bld.def(s1), bld.def(s1, scc), tmp);
5281 tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), tmp, Operand(1u)).def(1).getTemp();
5282 return bool_to_vector_condition(ctx, tmp);
5283 } else {
5284 //subgroupClustered{And,Or,Xor}(val, n) ->
5285 //lane_id = v_mbcnt_hi_u32_b32(-1, v_mbcnt_lo_u32_b32(-1, 0)) ; just v_mbcnt_lo_u32_b32 on wave32
5286 //cluster_offset = ~(n - 1) & lane_id
5287 //cluster_mask = ((1 << n) - 1)
5288 //subgroupClusteredAnd():
5289 // return ((val | ~exec) >> cluster_offset) & cluster_mask == cluster_mask
5290 //subgroupClusteredOr():
5291 // return ((val & exec) >> cluster_offset) & cluster_mask != 0
5292 //subgroupClusteredXor():
5293 // return v_bnt_u32_b32(((val & exec) >> cluster_offset) & cluster_mask, 0) & 1 != 0
5294 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
5295 Temp cluster_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(~uint32_t(cluster_size - 1)), lane_id);
5296
5297 Temp tmp;
5298 if (op == nir_op_iand)
5299 tmp = bld.sop2(Builder::s_orn2, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
5300 else
5301 tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
5302
5303 uint32_t cluster_mask = cluster_size == 32 ? -1 : (1u << cluster_size) - 1u;
5304
5305 if (ctx->program->chip_class <= GFX7)
5306 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), tmp, cluster_offset);
5307 else if (ctx->program->wave_size == 64)
5308 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), cluster_offset, tmp);
5309 else
5310 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), cluster_offset, tmp);
5311 tmp = emit_extract_vector(ctx, tmp, 0, v1);
5312 if (cluster_mask != 0xffffffff)
5313 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(cluster_mask), tmp);
5314
5315 Definition cmp_def = Definition();
5316 if (op == nir_op_iand) {
5317 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(cluster_mask), tmp).def(0);
5318 } else if (op == nir_op_ior) {
5319 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
5320 } else if (op == nir_op_ixor) {
5321 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u),
5322 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1), tmp, Operand(0u)));
5323 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
5324 }
5325 cmp_def.setHint(vcc);
5326 return cmp_def.getTemp();
5327 }
5328 }
5329
5330 Temp emit_boolean_exclusive_scan(isel_context *ctx, nir_op op, Temp src)
5331 {
5332 Builder bld(ctx->program, ctx->block);
5333
5334 //subgroupExclusiveAnd(val) -> mbcnt(exec & ~val) == 0
5335 //subgroupExclusiveOr(val) -> mbcnt(val & exec) != 0
5336 //subgroupExclusiveXor(val) -> mbcnt(val & exec) & 1 != 0
5337 Temp tmp;
5338 if (op == nir_op_iand)
5339 tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
5340 else
5341 tmp = bld.sop2(Builder::s_and, bld.def(s2), bld.def(s1, scc), src, Operand(exec, bld.lm));
5342
5343 Builder::Result lohi = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), bld.def(s1), tmp);
5344 Temp lo = lohi.def(0).getTemp();
5345 Temp hi = lohi.def(1).getTemp();
5346 Temp mbcnt = emit_mbcnt(ctx, bld.def(v1), Operand(lo), Operand(hi));
5347
5348 Definition cmp_def = Definition();
5349 if (op == nir_op_iand)
5350 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
5351 else if (op == nir_op_ior)
5352 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
5353 else if (op == nir_op_ixor)
5354 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u),
5355 bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), mbcnt)).def(0);
5356 cmp_def.setHint(vcc);
5357 return cmp_def.getTemp();
5358 }
5359
5360 Temp emit_boolean_inclusive_scan(isel_context *ctx, nir_op op, Temp src)
5361 {
5362 Builder bld(ctx->program, ctx->block);
5363
5364 //subgroupInclusiveAnd(val) -> subgroupExclusiveAnd(val) && val
5365 //subgroupInclusiveOr(val) -> subgroupExclusiveOr(val) || val
5366 //subgroupInclusiveXor(val) -> subgroupExclusiveXor(val) ^^ val
5367 Temp tmp = emit_boolean_exclusive_scan(ctx, op, src);
5368 if (op == nir_op_iand)
5369 return bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
5370 else if (op == nir_op_ior)
5371 return bld.sop2(Builder::s_or, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
5372 else if (op == nir_op_ixor)
5373 return bld.sop2(Builder::s_xor, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
5374
5375 assert(false);
5376 return Temp();
5377 }
5378
5379 void emit_uniform_subgroup(isel_context *ctx, nir_intrinsic_instr *instr, Temp src)
5380 {
5381 Builder bld(ctx->program, ctx->block);
5382 Definition dst(get_ssa_temp(ctx, &instr->dest.ssa));
5383 if (src.regClass().type() == RegType::vgpr) {
5384 bld.pseudo(aco_opcode::p_as_uniform, dst, src);
5385 } else if (src.regClass() == s1) {
5386 bld.sop1(aco_opcode::s_mov_b32, dst, src);
5387 } else if (src.regClass() == s2) {
5388 bld.sop1(aco_opcode::s_mov_b64, dst, src);
5389 } else {
5390 fprintf(stderr, "Unimplemented NIR instr bit size: ");
5391 nir_print_instr(&instr->instr, stderr);
5392 fprintf(stderr, "\n");
5393 }
5394 }
5395
5396 void emit_interp_center(isel_context *ctx, Temp dst, Temp pos1, Temp pos2)
5397 {
5398 Builder bld(ctx->program, ctx->block);
5399 Temp persp_center = get_arg(ctx, ctx->args->ac.persp_center);
5400 Temp p1 = emit_extract_vector(ctx, persp_center, 0, v1);
5401 Temp p2 = emit_extract_vector(ctx, persp_center, 1, v1);
5402
5403 Temp ddx_1, ddx_2, ddy_1, ddy_2;
5404 uint32_t dpp_ctrl0 = dpp_quad_perm(0, 0, 0, 0);
5405 uint32_t dpp_ctrl1 = dpp_quad_perm(1, 1, 1, 1);
5406 uint32_t dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
5407
5408 /* Build DD X/Y */
5409 if (ctx->program->chip_class >= GFX8) {
5410 Temp tl_1 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p1, dpp_ctrl0);
5411 ddx_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl1);
5412 ddy_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl2);
5413 Temp tl_2 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p2, dpp_ctrl0);
5414 ddx_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl1);
5415 ddy_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl2);
5416 } else {
5417 Temp tl_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl0);
5418 ddx_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl1);
5419 ddx_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_1, tl_1);
5420 ddx_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl2);
5421 ddx_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_2, tl_1);
5422 Temp tl_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl0);
5423 ddy_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl1);
5424 ddy_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_1, tl_2);
5425 ddy_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl2);
5426 ddy_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_2, tl_2);
5427 }
5428
5429 /* res_k = p_k + ddx_k * pos1 + ddy_k * pos2 */
5430 Temp tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_1, pos1, p1);
5431 Temp tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_2, pos1, p2);
5432 tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_1, pos2, tmp1);
5433 tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_2, pos2, tmp2);
5434 Temp wqm1 = bld.tmp(v1);
5435 emit_wqm(ctx, tmp1, wqm1, true);
5436 Temp wqm2 = bld.tmp(v1);
5437 emit_wqm(ctx, tmp2, wqm2, true);
5438 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), wqm1, wqm2);
5439 return;
5440 }
5441
5442 void visit_intrinsic(isel_context *ctx, nir_intrinsic_instr *instr)
5443 {
5444 Builder bld(ctx->program, ctx->block);
5445 switch(instr->intrinsic) {
5446 case nir_intrinsic_load_barycentric_sample:
5447 case nir_intrinsic_load_barycentric_pixel:
5448 case nir_intrinsic_load_barycentric_centroid: {
5449 glsl_interp_mode mode = (glsl_interp_mode)nir_intrinsic_interp_mode(instr);
5450 Temp bary = Temp(0, s2);
5451 switch (mode) {
5452 case INTERP_MODE_SMOOTH:
5453 case INTERP_MODE_NONE:
5454 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
5455 bary = get_arg(ctx, ctx->args->ac.persp_center);
5456 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
5457 bary = ctx->persp_centroid;
5458 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
5459 bary = get_arg(ctx, ctx->args->ac.persp_sample);
5460 break;
5461 case INTERP_MODE_NOPERSPECTIVE:
5462 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
5463 bary = get_arg(ctx, ctx->args->ac.linear_center);
5464 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
5465 bary = ctx->linear_centroid;
5466 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
5467 bary = get_arg(ctx, ctx->args->ac.linear_sample);
5468 break;
5469 default:
5470 break;
5471 }
5472 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5473 Temp p1 = emit_extract_vector(ctx, bary, 0, v1);
5474 Temp p2 = emit_extract_vector(ctx, bary, 1, v1);
5475 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5476 Operand(p1), Operand(p2));
5477 emit_split_vector(ctx, dst, 2);
5478 break;
5479 }
5480 case nir_intrinsic_load_barycentric_at_sample: {
5481 uint32_t sample_pos_offset = RING_PS_SAMPLE_POSITIONS * 16;
5482 switch (ctx->options->key.fs.num_samples) {
5483 case 2: sample_pos_offset += 1 << 3; break;
5484 case 4: sample_pos_offset += 3 << 3; break;
5485 case 8: sample_pos_offset += 7 << 3; break;
5486 default: break;
5487 }
5488 Temp sample_pos;
5489 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
5490 nir_const_value* const_addr = nir_src_as_const_value(instr->src[0]);
5491 Temp private_segment_buffer = ctx->program->private_segment_buffer;
5492 if (addr.type() == RegType::sgpr) {
5493 Operand offset;
5494 if (const_addr) {
5495 sample_pos_offset += const_addr->u32 << 3;
5496 offset = Operand(sample_pos_offset);
5497 } else if (ctx->options->chip_class >= GFX9) {
5498 offset = bld.sop2(aco_opcode::s_lshl3_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
5499 } else {
5500 offset = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), addr, Operand(3u));
5501 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
5502 }
5503 sample_pos = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), private_segment_buffer, Operand(offset));
5504
5505 } else if (ctx->options->chip_class >= GFX9) {
5506 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
5507 sample_pos = bld.global(aco_opcode::global_load_dwordx2, bld.def(v2), addr, private_segment_buffer, sample_pos_offset);
5508 } else {
5509 /* addr += private_segment_buffer + sample_pos_offset */
5510 Temp tmp0 = bld.tmp(s1);
5511 Temp tmp1 = bld.tmp(s1);
5512 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp0), Definition(tmp1), private_segment_buffer);
5513 Definition scc_tmp = bld.def(s1, scc);
5514 tmp0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), scc_tmp, tmp0, Operand(sample_pos_offset));
5515 tmp1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), tmp1, Operand(0u), bld.scc(scc_tmp.getTemp()));
5516 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
5517 Temp pck0 = bld.tmp(v1);
5518 Temp carry = bld.vadd32(Definition(pck0), tmp0, addr, true).def(1).getTemp();
5519 tmp1 = as_vgpr(ctx, tmp1);
5520 Temp pck1 = bld.vop2_e64(aco_opcode::v_addc_co_u32, bld.def(v1), bld.hint_vcc(bld.def(bld.lm)), tmp1, Operand(0u), carry);
5521 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), pck0, pck1);
5522
5523 /* sample_pos = flat_load_dwordx2 addr */
5524 sample_pos = bld.flat(aco_opcode::flat_load_dwordx2, bld.def(v2), addr, Operand(s1));
5525 }
5526
5527 /* sample_pos -= 0.5 */
5528 Temp pos1 = bld.tmp(RegClass(sample_pos.type(), 1));
5529 Temp pos2 = bld.tmp(RegClass(sample_pos.type(), 1));
5530 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), sample_pos);
5531 pos1 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos1, Operand(0x3f000000u));
5532 pos2 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos2, Operand(0x3f000000u));
5533
5534 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
5535 break;
5536 }
5537 case nir_intrinsic_load_barycentric_at_offset: {
5538 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
5539 RegClass rc = RegClass(offset.type(), 1);
5540 Temp pos1 = bld.tmp(rc), pos2 = bld.tmp(rc);
5541 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), offset);
5542 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
5543 break;
5544 }
5545 case nir_intrinsic_load_front_face: {
5546 bld.vopc(aco_opcode::v_cmp_lg_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
5547 Operand(0u), get_arg(ctx, ctx->args->ac.front_face)).def(0).setHint(vcc);
5548 break;
5549 }
5550 case nir_intrinsic_load_view_index:
5551 case nir_intrinsic_load_layer_id: {
5552 if (instr->intrinsic == nir_intrinsic_load_view_index && (ctx->stage & sw_vs)) {
5553 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5554 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.view_index)));
5555 break;
5556 }
5557
5558 unsigned idx = nir_intrinsic_base(instr);
5559 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
5560 Operand(2u), bld.m0(get_arg(ctx, ctx->args->ac.prim_mask)), idx, 0);
5561 break;
5562 }
5563 case nir_intrinsic_load_frag_coord: {
5564 emit_load_frag_coord(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 4);
5565 break;
5566 }
5567 case nir_intrinsic_load_sample_pos: {
5568 Temp posx = get_arg(ctx, ctx->args->ac.frag_pos[0]);
5569 Temp posy = get_arg(ctx, ctx->args->ac.frag_pos[1]);
5570 bld.pseudo(aco_opcode::p_create_vector, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
5571 posx.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posx) : Operand(0u),
5572 posy.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posy) : Operand(0u));
5573 break;
5574 }
5575 case nir_intrinsic_load_interpolated_input:
5576 visit_load_interpolated_input(ctx, instr);
5577 break;
5578 case nir_intrinsic_store_output:
5579 visit_store_output(ctx, instr);
5580 break;
5581 case nir_intrinsic_load_input:
5582 visit_load_input(ctx, instr);
5583 break;
5584 case nir_intrinsic_load_ubo:
5585 visit_load_ubo(ctx, instr);
5586 break;
5587 case nir_intrinsic_load_push_constant:
5588 visit_load_push_constant(ctx, instr);
5589 break;
5590 case nir_intrinsic_load_constant:
5591 visit_load_constant(ctx, instr);
5592 break;
5593 case nir_intrinsic_vulkan_resource_index:
5594 visit_load_resource(ctx, instr);
5595 break;
5596 case nir_intrinsic_discard:
5597 visit_discard(ctx, instr);
5598 break;
5599 case nir_intrinsic_discard_if:
5600 visit_discard_if(ctx, instr);
5601 break;
5602 case nir_intrinsic_load_shared:
5603 visit_load_shared(ctx, instr);
5604 break;
5605 case nir_intrinsic_store_shared:
5606 visit_store_shared(ctx, instr);
5607 break;
5608 case nir_intrinsic_shared_atomic_add:
5609 case nir_intrinsic_shared_atomic_imin:
5610 case nir_intrinsic_shared_atomic_umin:
5611 case nir_intrinsic_shared_atomic_imax:
5612 case nir_intrinsic_shared_atomic_umax:
5613 case nir_intrinsic_shared_atomic_and:
5614 case nir_intrinsic_shared_atomic_or:
5615 case nir_intrinsic_shared_atomic_xor:
5616 case nir_intrinsic_shared_atomic_exchange:
5617 case nir_intrinsic_shared_atomic_comp_swap:
5618 visit_shared_atomic(ctx, instr);
5619 break;
5620 case nir_intrinsic_image_deref_load:
5621 visit_image_load(ctx, instr);
5622 break;
5623 case nir_intrinsic_image_deref_store:
5624 visit_image_store(ctx, instr);
5625 break;
5626 case nir_intrinsic_image_deref_atomic_add:
5627 case nir_intrinsic_image_deref_atomic_umin:
5628 case nir_intrinsic_image_deref_atomic_imin:
5629 case nir_intrinsic_image_deref_atomic_umax:
5630 case nir_intrinsic_image_deref_atomic_imax:
5631 case nir_intrinsic_image_deref_atomic_and:
5632 case nir_intrinsic_image_deref_atomic_or:
5633 case nir_intrinsic_image_deref_atomic_xor:
5634 case nir_intrinsic_image_deref_atomic_exchange:
5635 case nir_intrinsic_image_deref_atomic_comp_swap:
5636 visit_image_atomic(ctx, instr);
5637 break;
5638 case nir_intrinsic_image_deref_size:
5639 visit_image_size(ctx, instr);
5640 break;
5641 case nir_intrinsic_load_ssbo:
5642 visit_load_ssbo(ctx, instr);
5643 break;
5644 case nir_intrinsic_store_ssbo:
5645 visit_store_ssbo(ctx, instr);
5646 break;
5647 case nir_intrinsic_load_global:
5648 visit_load_global(ctx, instr);
5649 break;
5650 case nir_intrinsic_store_global:
5651 visit_store_global(ctx, instr);
5652 break;
5653 case nir_intrinsic_global_atomic_add:
5654 case nir_intrinsic_global_atomic_imin:
5655 case nir_intrinsic_global_atomic_umin:
5656 case nir_intrinsic_global_atomic_imax:
5657 case nir_intrinsic_global_atomic_umax:
5658 case nir_intrinsic_global_atomic_and:
5659 case nir_intrinsic_global_atomic_or:
5660 case nir_intrinsic_global_atomic_xor:
5661 case nir_intrinsic_global_atomic_exchange:
5662 case nir_intrinsic_global_atomic_comp_swap:
5663 visit_global_atomic(ctx, instr);
5664 break;
5665 case nir_intrinsic_ssbo_atomic_add:
5666 case nir_intrinsic_ssbo_atomic_imin:
5667 case nir_intrinsic_ssbo_atomic_umin:
5668 case nir_intrinsic_ssbo_atomic_imax:
5669 case nir_intrinsic_ssbo_atomic_umax:
5670 case nir_intrinsic_ssbo_atomic_and:
5671 case nir_intrinsic_ssbo_atomic_or:
5672 case nir_intrinsic_ssbo_atomic_xor:
5673 case nir_intrinsic_ssbo_atomic_exchange:
5674 case nir_intrinsic_ssbo_atomic_comp_swap:
5675 visit_atomic_ssbo(ctx, instr);
5676 break;
5677 case nir_intrinsic_load_scratch:
5678 visit_load_scratch(ctx, instr);
5679 break;
5680 case nir_intrinsic_store_scratch:
5681 visit_store_scratch(ctx, instr);
5682 break;
5683 case nir_intrinsic_get_buffer_size:
5684 visit_get_buffer_size(ctx, instr);
5685 break;
5686 case nir_intrinsic_barrier: {
5687 unsigned* bsize = ctx->program->info->cs.block_size;
5688 unsigned workgroup_size = bsize[0] * bsize[1] * bsize[2];
5689 if (workgroup_size > ctx->program->wave_size)
5690 bld.sopp(aco_opcode::s_barrier);
5691 break;
5692 }
5693 case nir_intrinsic_group_memory_barrier:
5694 case nir_intrinsic_memory_barrier:
5695 case nir_intrinsic_memory_barrier_atomic_counter:
5696 case nir_intrinsic_memory_barrier_buffer:
5697 case nir_intrinsic_memory_barrier_image:
5698 case nir_intrinsic_memory_barrier_shared:
5699 emit_memory_barrier(ctx, instr);
5700 break;
5701 case nir_intrinsic_load_num_work_groups: {
5702 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5703 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.num_work_groups)));
5704 emit_split_vector(ctx, dst, 3);
5705 break;
5706 }
5707 case nir_intrinsic_load_local_invocation_id: {
5708 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5709 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.local_invocation_ids)));
5710 emit_split_vector(ctx, dst, 3);
5711 break;
5712 }
5713 case nir_intrinsic_load_work_group_id: {
5714 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5715 struct ac_arg *args = ctx->args->ac.workgroup_ids;
5716 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5717 args[0].used ? Operand(get_arg(ctx, args[0])) : Operand(0u),
5718 args[1].used ? Operand(get_arg(ctx, args[1])) : Operand(0u),
5719 args[2].used ? Operand(get_arg(ctx, args[2])) : Operand(0u));
5720 emit_split_vector(ctx, dst, 3);
5721 break;
5722 }
5723 case nir_intrinsic_load_local_invocation_index: {
5724 Temp id = emit_mbcnt(ctx, bld.def(v1));
5725
5726 /* The tg_size bits [6:11] contain the subgroup id,
5727 * we need this multiplied by the wave size, and then OR the thread id to it.
5728 */
5729 if (ctx->program->wave_size == 64) {
5730 /* After the s_and the bits are already multiplied by 64 (left shifted by 6) so we can just feed that to v_or */
5731 Temp tg_num = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfc0u),
5732 get_arg(ctx, ctx->args->ac.tg_size));
5733 bld.vop2(aco_opcode::v_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, id);
5734 } else {
5735 /* Extract the bit field and multiply the result by 32 (left shift by 5), then do the OR */
5736 Temp tg_num = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
5737 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
5738 bld.vop3(aco_opcode::v_lshl_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, Operand(0x5u), id);
5739 }
5740 break;
5741 }
5742 case nir_intrinsic_load_subgroup_id: {
5743 if (ctx->stage == compute_cs) {
5744 bld.sop2(aco_opcode::s_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc),
5745 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
5746 } else {
5747 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x0u));
5748 }
5749 break;
5750 }
5751 case nir_intrinsic_load_subgroup_invocation: {
5752 emit_mbcnt(ctx, Definition(get_ssa_temp(ctx, &instr->dest.ssa)));
5753 break;
5754 }
5755 case nir_intrinsic_load_num_subgroups: {
5756 if (ctx->stage == compute_cs)
5757 bld.sop2(aco_opcode::s_and_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc), Operand(0x3fu),
5758 get_arg(ctx, ctx->args->ac.tg_size));
5759 else
5760 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x1u));
5761 break;
5762 }
5763 case nir_intrinsic_ballot: {
5764 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
5765 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5766 Definition tmp = bld.def(dst.regClass());
5767 Definition lanemask_tmp = dst.size() == bld.lm.size() ? tmp : bld.def(src.regClass());
5768 if (instr->src[0].ssa->bit_size == 1) {
5769 assert(src.regClass() == bld.lm);
5770 bld.sop2(Builder::s_and, lanemask_tmp, bld.def(s1, scc), Operand(exec, bld.lm), src);
5771 } else if (instr->src[0].ssa->bit_size == 32 && src.regClass() == v1) {
5772 bld.vopc(aco_opcode::v_cmp_lg_u32, lanemask_tmp, Operand(0u), src);
5773 } else if (instr->src[0].ssa->bit_size == 64 && src.regClass() == v2) {
5774 bld.vopc(aco_opcode::v_cmp_lg_u64, lanemask_tmp, Operand(0u), src);
5775 } else {
5776 fprintf(stderr, "Unimplemented NIR instr bit size: ");
5777 nir_print_instr(&instr->instr, stderr);
5778 fprintf(stderr, "\n");
5779 }
5780 if (dst.size() != bld.lm.size()) {
5781 /* Wave32 with ballot size set to 64 */
5782 bld.pseudo(aco_opcode::p_create_vector, Definition(tmp), lanemask_tmp.getTemp(), Operand(0u));
5783 }
5784 emit_wqm(ctx, tmp.getTemp(), dst);
5785 break;
5786 }
5787 case nir_intrinsic_shuffle:
5788 case nir_intrinsic_read_invocation: {
5789 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
5790 if (!ctx->divergent_vals[instr->src[0].ssa->index]) {
5791 emit_uniform_subgroup(ctx, instr, src);
5792 } else {
5793 Temp tid = get_ssa_temp(ctx, instr->src[1].ssa);
5794 if (instr->intrinsic == nir_intrinsic_read_invocation || !ctx->divergent_vals[instr->src[1].ssa->index])
5795 tid = bld.as_uniform(tid);
5796 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5797 if (src.regClass() == v1) {
5798 emit_wqm(ctx, emit_bpermute(ctx, bld, tid, src), dst);
5799 } else if (src.regClass() == v2) {
5800 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
5801 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
5802 lo = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, lo));
5803 hi = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, hi));
5804 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
5805 emit_split_vector(ctx, dst, 2);
5806 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == s1) {
5807 assert(src.regClass() == bld.lm);
5808 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src, tid);
5809 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
5810 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == v1) {
5811 assert(src.regClass() == bld.lm);
5812 Temp tmp;
5813 if (ctx->program->chip_class <= GFX7)
5814 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), src, tid);
5815 else if (ctx->program->wave_size == 64)
5816 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), tid, src);
5817 else
5818 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), tid, src);
5819 tmp = emit_extract_vector(ctx, tmp, 0, v1);
5820 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), tmp);
5821 emit_wqm(ctx, bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp), dst);
5822 } else {
5823 fprintf(stderr, "Unimplemented NIR instr bit size: ");
5824 nir_print_instr(&instr->instr, stderr);
5825 fprintf(stderr, "\n");
5826 }
5827 }
5828 break;
5829 }
5830 case nir_intrinsic_load_sample_id: {
5831 bld.vop3(aco_opcode::v_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
5832 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
5833 break;
5834 }
5835 case nir_intrinsic_load_sample_mask_in: {
5836 visit_load_sample_mask_in(ctx, instr);
5837 break;
5838 }
5839 case nir_intrinsic_read_first_invocation: {
5840 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
5841 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5842 if (src.regClass() == v1) {
5843 emit_wqm(ctx,
5844 bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), src),
5845 dst);
5846 } else if (src.regClass() == v2) {
5847 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
5848 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
5849 lo = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), lo));
5850 hi = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), hi));
5851 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
5852 emit_split_vector(ctx, dst, 2);
5853 } else if (instr->dest.ssa.bit_size == 1) {
5854 assert(src.regClass() == bld.lm);
5855 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src,
5856 bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)));
5857 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
5858 } else if (src.regClass() == s1) {
5859 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
5860 } else if (src.regClass() == s2) {
5861 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
5862 } else {
5863 fprintf(stderr, "Unimplemented NIR instr bit size: ");
5864 nir_print_instr(&instr->instr, stderr);
5865 fprintf(stderr, "\n");
5866 }
5867 break;
5868 }
5869 case nir_intrinsic_vote_all: {
5870 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
5871 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5872 assert(src.regClass() == bld.lm);
5873 assert(dst.regClass() == bld.lm);
5874
5875 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
5876 Temp val = bld.sop2(Builder::s_cselect, bld.def(bld.lm), Operand(0u), Operand(-1u), bld.scc(tmp));
5877 emit_wqm(ctx, val, dst);
5878 break;
5879 }
5880 case nir_intrinsic_vote_any: {
5881 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
5882 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5883 assert(src.regClass() == bld.lm);
5884 assert(dst.regClass() == bld.lm);
5885
5886 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
5887 Temp val = bld.sop2(Builder::s_cselect, bld.def(bld.lm), Operand(-1u), Operand(0u), bld.scc(tmp));
5888 emit_wqm(ctx, val, dst);
5889 break;
5890 }
5891 case nir_intrinsic_reduce:
5892 case nir_intrinsic_inclusive_scan:
5893 case nir_intrinsic_exclusive_scan: {
5894 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
5895 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5896 nir_op op = (nir_op) nir_intrinsic_reduction_op(instr);
5897 unsigned cluster_size = instr->intrinsic == nir_intrinsic_reduce ?
5898 nir_intrinsic_cluster_size(instr) : 0;
5899 cluster_size = util_next_power_of_two(MIN2(cluster_size ? cluster_size : ctx->program->wave_size, ctx->program->wave_size));
5900
5901 if (!ctx->divergent_vals[instr->src[0].ssa->index] && (op == nir_op_ior || op == nir_op_iand)) {
5902 emit_uniform_subgroup(ctx, instr, src);
5903 } else if (instr->dest.ssa.bit_size == 1) {
5904 if (op == nir_op_imul || op == nir_op_umin || op == nir_op_imin)
5905 op = nir_op_iand;
5906 else if (op == nir_op_iadd)
5907 op = nir_op_ixor;
5908 else if (op == nir_op_umax || op == nir_op_imax)
5909 op = nir_op_ior;
5910 assert(op == nir_op_iand || op == nir_op_ior || op == nir_op_ixor);
5911
5912 switch (instr->intrinsic) {
5913 case nir_intrinsic_reduce:
5914 emit_wqm(ctx, emit_boolean_reduce(ctx, op, cluster_size, src), dst);
5915 break;
5916 case nir_intrinsic_exclusive_scan:
5917 emit_wqm(ctx, emit_boolean_exclusive_scan(ctx, op, src), dst);
5918 break;
5919 case nir_intrinsic_inclusive_scan:
5920 emit_wqm(ctx, emit_boolean_inclusive_scan(ctx, op, src), dst);
5921 break;
5922 default:
5923 assert(false);
5924 }
5925 } else if (cluster_size == 1) {
5926 bld.copy(Definition(dst), src);
5927 } else {
5928 src = as_vgpr(ctx, src);
5929
5930 ReduceOp reduce_op;
5931 switch (op) {
5932 #define CASE(name) case nir_op_##name: reduce_op = (src.regClass() == v1) ? name##32 : name##64; break;
5933 CASE(iadd)
5934 CASE(imul)
5935 CASE(fadd)
5936 CASE(fmul)
5937 CASE(imin)
5938 CASE(umin)
5939 CASE(fmin)
5940 CASE(imax)
5941 CASE(umax)
5942 CASE(fmax)
5943 CASE(iand)
5944 CASE(ior)
5945 CASE(ixor)
5946 default:
5947 unreachable("unknown reduction op");
5948 #undef CASE
5949 }
5950
5951 aco_opcode aco_op;
5952 switch (instr->intrinsic) {
5953 case nir_intrinsic_reduce: aco_op = aco_opcode::p_reduce; break;
5954 case nir_intrinsic_inclusive_scan: aco_op = aco_opcode::p_inclusive_scan; break;
5955 case nir_intrinsic_exclusive_scan: aco_op = aco_opcode::p_exclusive_scan; break;
5956 default:
5957 unreachable("unknown reduce intrinsic");
5958 }
5959
5960 aco_ptr<Pseudo_reduction_instruction> reduce{create_instruction<Pseudo_reduction_instruction>(aco_op, Format::PSEUDO_REDUCTION, 3, 5)};
5961 reduce->operands[0] = Operand(src);
5962 // filled in by aco_reduce_assign.cpp, used internally as part of the
5963 // reduce sequence
5964 assert(dst.size() == 1 || dst.size() == 2);
5965 reduce->operands[1] = Operand(RegClass(RegType::vgpr, dst.size()).as_linear());
5966 reduce->operands[2] = Operand(v1.as_linear());
5967
5968 Temp tmp_dst = bld.tmp(dst.regClass());
5969 reduce->definitions[0] = Definition(tmp_dst);
5970 reduce->definitions[1] = bld.def(ctx->program->lane_mask); // used internally
5971 reduce->definitions[2] = Definition();
5972 reduce->definitions[3] = Definition(scc, s1);
5973 reduce->definitions[4] = Definition();
5974 reduce->reduce_op = reduce_op;
5975 reduce->cluster_size = cluster_size;
5976 ctx->block->instructions.emplace_back(std::move(reduce));
5977
5978 emit_wqm(ctx, tmp_dst, dst);
5979 }
5980 break;
5981 }
5982 case nir_intrinsic_quad_broadcast: {
5983 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
5984 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
5985 emit_uniform_subgroup(ctx, instr, src);
5986 } else {
5987 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5988 unsigned lane = nir_src_as_const_value(instr->src[1])->u32;
5989 uint32_t dpp_ctrl = dpp_quad_perm(lane, lane, lane, lane);
5990
5991 if (instr->dest.ssa.bit_size == 1) {
5992 assert(src.regClass() == bld.lm);
5993 assert(dst.regClass() == bld.lm);
5994 uint32_t half_mask = 0x11111111u << lane;
5995 Temp mask_tmp = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(half_mask), Operand(half_mask));
5996 Temp tmp = bld.tmp(bld.lm);
5997 bld.sop1(Builder::s_wqm, Definition(tmp),
5998 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), mask_tmp,
5999 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm))));
6000 emit_wqm(ctx, tmp, dst);
6001 } else if (instr->dest.ssa.bit_size == 32) {
6002 if (ctx->program->chip_class >= GFX8)
6003 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), dst);
6004 else
6005 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), dst);
6006 } else if (instr->dest.ssa.bit_size == 64) {
6007 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
6008 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
6009 if (ctx->program->chip_class >= GFX8) {
6010 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
6011 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
6012 } else {
6013 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, (1 << 15) | dpp_ctrl));
6014 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, (1 << 15) | dpp_ctrl));
6015 }
6016 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6017 emit_split_vector(ctx, dst, 2);
6018 } else {
6019 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6020 nir_print_instr(&instr->instr, stderr);
6021 fprintf(stderr, "\n");
6022 }
6023 }
6024 break;
6025 }
6026 case nir_intrinsic_quad_swap_horizontal:
6027 case nir_intrinsic_quad_swap_vertical:
6028 case nir_intrinsic_quad_swap_diagonal:
6029 case nir_intrinsic_quad_swizzle_amd: {
6030 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6031 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
6032 emit_uniform_subgroup(ctx, instr, src);
6033 break;
6034 }
6035 uint16_t dpp_ctrl = 0;
6036 switch (instr->intrinsic) {
6037 case nir_intrinsic_quad_swap_horizontal:
6038 dpp_ctrl = dpp_quad_perm(1, 0, 3, 2);
6039 break;
6040 case nir_intrinsic_quad_swap_vertical:
6041 dpp_ctrl = dpp_quad_perm(2, 3, 0, 1);
6042 break;
6043 case nir_intrinsic_quad_swap_diagonal:
6044 dpp_ctrl = dpp_quad_perm(3, 2, 1, 0);
6045 break;
6046 case nir_intrinsic_quad_swizzle_amd:
6047 dpp_ctrl = nir_intrinsic_swizzle_mask(instr);
6048 break;
6049 default:
6050 break;
6051 }
6052 if (ctx->program->chip_class < GFX8)
6053 dpp_ctrl |= (1 << 15);
6054
6055 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6056 if (instr->dest.ssa.bit_size == 1) {
6057 assert(src.regClass() == bld.lm);
6058 src = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand((uint32_t)-1), src);
6059 if (ctx->program->chip_class >= GFX8)
6060 src = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
6061 else
6062 src = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
6063 Temp tmp = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), src);
6064 emit_wqm(ctx, tmp, dst);
6065 } else if (instr->dest.ssa.bit_size == 32) {
6066 Temp tmp;
6067 if (ctx->program->chip_class >= GFX8)
6068 tmp = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
6069 else
6070 tmp = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
6071 emit_wqm(ctx, tmp, dst);
6072 } else if (instr->dest.ssa.bit_size == 64) {
6073 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
6074 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
6075 if (ctx->program->chip_class >= GFX8) {
6076 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
6077 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
6078 } else {
6079 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, dpp_ctrl));
6080 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, dpp_ctrl));
6081 }
6082 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6083 emit_split_vector(ctx, dst, 2);
6084 } else {
6085 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6086 nir_print_instr(&instr->instr, stderr);
6087 fprintf(stderr, "\n");
6088 }
6089 break;
6090 }
6091 case nir_intrinsic_masked_swizzle_amd: {
6092 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6093 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
6094 emit_uniform_subgroup(ctx, instr, src);
6095 break;
6096 }
6097 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6098 uint32_t mask = nir_intrinsic_swizzle_mask(instr);
6099 if (dst.regClass() == v1) {
6100 emit_wqm(ctx,
6101 bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, mask, 0, false),
6102 dst);
6103 } else if (dst.regClass() == v2) {
6104 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
6105 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
6106 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, mask, 0, false));
6107 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, mask, 0, false));
6108 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6109 emit_split_vector(ctx, dst, 2);
6110 } else {
6111 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6112 nir_print_instr(&instr->instr, stderr);
6113 fprintf(stderr, "\n");
6114 }
6115 break;
6116 }
6117 case nir_intrinsic_write_invocation_amd: {
6118 Temp src = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6119 Temp val = bld.as_uniform(get_ssa_temp(ctx, instr->src[1].ssa));
6120 Temp lane = bld.as_uniform(get_ssa_temp(ctx, instr->src[2].ssa));
6121 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6122 if (dst.regClass() == v1) {
6123 /* src2 is ignored for writelane. RA assigns the same reg for dst */
6124 emit_wqm(ctx, bld.writelane(bld.def(v1), val, lane, src), dst);
6125 } else if (dst.regClass() == v2) {
6126 Temp src_lo = bld.tmp(v1), src_hi = bld.tmp(v1);
6127 Temp val_lo = bld.tmp(s1), val_hi = bld.tmp(s1);
6128 bld.pseudo(aco_opcode::p_split_vector, Definition(src_lo), Definition(src_hi), src);
6129 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
6130 Temp lo = emit_wqm(ctx, bld.writelane(bld.def(v1), val_lo, lane, src_hi));
6131 Temp hi = emit_wqm(ctx, bld.writelane(bld.def(v1), val_hi, lane, src_hi));
6132 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6133 emit_split_vector(ctx, dst, 2);
6134 } else {
6135 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6136 nir_print_instr(&instr->instr, stderr);
6137 fprintf(stderr, "\n");
6138 }
6139 break;
6140 }
6141 case nir_intrinsic_mbcnt_amd: {
6142 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6143 RegClass rc = RegClass(src.type(), 1);
6144 Temp mask_lo = bld.tmp(rc), mask_hi = bld.tmp(rc);
6145 bld.pseudo(aco_opcode::p_split_vector, Definition(mask_lo), Definition(mask_hi), src);
6146 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6147 Temp wqm_tmp = emit_mbcnt(ctx, bld.def(v1), Operand(mask_lo), Operand(mask_hi));
6148 emit_wqm(ctx, wqm_tmp, dst);
6149 break;
6150 }
6151 case nir_intrinsic_load_helper_invocation: {
6152 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6153 bld.pseudo(aco_opcode::p_load_helper, Definition(dst));
6154 ctx->block->kind |= block_kind_needs_lowering;
6155 ctx->program->needs_exact = true;
6156 break;
6157 }
6158 case nir_intrinsic_is_helper_invocation: {
6159 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6160 bld.pseudo(aco_opcode::p_is_helper, Definition(dst));
6161 ctx->block->kind |= block_kind_needs_lowering;
6162 ctx->program->needs_exact = true;
6163 break;
6164 }
6165 case nir_intrinsic_demote:
6166 bld.pseudo(aco_opcode::p_demote_to_helper);
6167 ctx->block->kind |= block_kind_uses_demote;
6168 ctx->program->needs_exact = true;
6169 break;
6170 case nir_intrinsic_demote_if: {
6171 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6172 assert(src.regClass() == bld.lm);
6173 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
6174 bld.pseudo(aco_opcode::p_demote_to_helper, cond);
6175 ctx->block->kind |= block_kind_uses_demote;
6176 ctx->program->needs_exact = true;
6177 break;
6178 }
6179 case nir_intrinsic_first_invocation: {
6180 emit_wqm(ctx, bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)),
6181 get_ssa_temp(ctx, &instr->dest.ssa));
6182 break;
6183 }
6184 case nir_intrinsic_shader_clock:
6185 bld.smem(aco_opcode::s_memtime, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), false);
6186 emit_split_vector(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 2);
6187 break;
6188 case nir_intrinsic_load_vertex_id_zero_base: {
6189 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6190 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.vertex_id));
6191 break;
6192 }
6193 case nir_intrinsic_load_first_vertex: {
6194 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6195 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.base_vertex));
6196 break;
6197 }
6198 case nir_intrinsic_load_base_instance: {
6199 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6200 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.start_instance));
6201 break;
6202 }
6203 case nir_intrinsic_load_instance_id: {
6204 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6205 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.instance_id));
6206 break;
6207 }
6208 case nir_intrinsic_load_draw_id: {
6209 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6210 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.draw_id));
6211 break;
6212 }
6213 default:
6214 fprintf(stderr, "Unimplemented intrinsic instr: ");
6215 nir_print_instr(&instr->instr, stderr);
6216 fprintf(stderr, "\n");
6217 abort();
6218
6219 break;
6220 }
6221 }
6222
6223
6224 void tex_fetch_ptrs(isel_context *ctx, nir_tex_instr *instr,
6225 Temp *res_ptr, Temp *samp_ptr, Temp *fmask_ptr,
6226 enum glsl_base_type *stype)
6227 {
6228 nir_deref_instr *texture_deref_instr = NULL;
6229 nir_deref_instr *sampler_deref_instr = NULL;
6230 int plane = -1;
6231
6232 for (unsigned i = 0; i < instr->num_srcs; i++) {
6233 switch (instr->src[i].src_type) {
6234 case nir_tex_src_texture_deref:
6235 texture_deref_instr = nir_src_as_deref(instr->src[i].src);
6236 break;
6237 case nir_tex_src_sampler_deref:
6238 sampler_deref_instr = nir_src_as_deref(instr->src[i].src);
6239 break;
6240 case nir_tex_src_plane:
6241 plane = nir_src_as_int(instr->src[i].src);
6242 break;
6243 default:
6244 break;
6245 }
6246 }
6247
6248 *stype = glsl_get_sampler_result_type(texture_deref_instr->type);
6249
6250 if (!sampler_deref_instr)
6251 sampler_deref_instr = texture_deref_instr;
6252
6253 if (plane >= 0) {
6254 assert(instr->op != nir_texop_txf_ms &&
6255 instr->op != nir_texop_samples_identical);
6256 assert(instr->sampler_dim != GLSL_SAMPLER_DIM_BUF);
6257 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, (aco_descriptor_type)(ACO_DESC_PLANE_0 + plane), instr, false, false);
6258 } else if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
6259 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_BUFFER, instr, false, false);
6260 } else {
6261 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_IMAGE, instr, false, false);
6262 }
6263 if (samp_ptr) {
6264 *samp_ptr = get_sampler_desc(ctx, sampler_deref_instr, ACO_DESC_SAMPLER, instr, false, false);
6265
6266 if (instr->sampler_dim < GLSL_SAMPLER_DIM_RECT && ctx->options->chip_class < GFX8) {
6267 /* fix sampler aniso on SI/CI: samp[0] = samp[0] & img[7] */
6268 Builder bld(ctx->program, ctx->block);
6269
6270 /* to avoid unnecessary moves, we split and recombine sampler and image */
6271 Temp img[8] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1),
6272 bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
6273 Temp samp[4] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
6274 bld.pseudo(aco_opcode::p_split_vector, Definition(img[0]), Definition(img[1]),
6275 Definition(img[2]), Definition(img[3]), Definition(img[4]),
6276 Definition(img[5]), Definition(img[6]), Definition(img[7]), *res_ptr);
6277 bld.pseudo(aco_opcode::p_split_vector, Definition(samp[0]), Definition(samp[1]),
6278 Definition(samp[2]), Definition(samp[3]), *samp_ptr);
6279
6280 samp[0] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), samp[0], img[7]);
6281 *res_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
6282 img[0], img[1], img[2], img[3],
6283 img[4], img[5], img[6], img[7]);
6284 *samp_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
6285 samp[0], samp[1], samp[2], samp[3]);
6286 }
6287 }
6288 if (fmask_ptr && (instr->op == nir_texop_txf_ms ||
6289 instr->op == nir_texop_samples_identical))
6290 *fmask_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
6291 }
6292
6293 void build_cube_select(isel_context *ctx, Temp ma, Temp id, Temp deriv,
6294 Temp *out_ma, Temp *out_sc, Temp *out_tc)
6295 {
6296 Builder bld(ctx->program, ctx->block);
6297
6298 Temp deriv_x = emit_extract_vector(ctx, deriv, 0, v1);
6299 Temp deriv_y = emit_extract_vector(ctx, deriv, 1, v1);
6300 Temp deriv_z = emit_extract_vector(ctx, deriv, 2, v1);
6301
6302 Operand neg_one(0xbf800000u);
6303 Operand one(0x3f800000u);
6304 Operand two(0x40000000u);
6305 Operand four(0x40800000u);
6306
6307 Temp is_ma_positive = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), ma);
6308 Temp sgn_ma = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, one, is_ma_positive);
6309 Temp neg_sgn_ma = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0u), sgn_ma);
6310
6311 Temp is_ma_z = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), four, id);
6312 Temp is_ma_y = bld.vopc(aco_opcode::v_cmp_le_f32, bld.def(s2), two, id);
6313 is_ma_y = bld.sop2(Builder::s_andn2, bld.hint_vcc(bld.def(bld.lm)), is_ma_y, is_ma_z);
6314 Temp is_not_ma_x = bld.sop2(aco_opcode::s_or_b64, bld.hint_vcc(bld.def(bld.lm)), bld.def(s1, scc), is_ma_z, is_ma_y);
6315
6316 // select sc
6317 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_z, deriv_x, is_not_ma_x);
6318 Temp sgn = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1),
6319 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_sgn_ma, sgn_ma, is_ma_z),
6320 one, is_ma_y);
6321 *out_sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
6322
6323 // select tc
6324 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_y, deriv_z, is_ma_y);
6325 sgn = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, sgn_ma, is_ma_y);
6326 *out_tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
6327
6328 // select ma
6329 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
6330 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_x, deriv_y, is_ma_y),
6331 deriv_z, is_ma_z);
6332 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffffu), tmp);
6333 *out_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), two, tmp);
6334 }
6335
6336 void prepare_cube_coords(isel_context *ctx, Temp* coords, Temp* ddx, Temp* ddy, bool is_deriv, bool is_array)
6337 {
6338 Builder bld(ctx->program, ctx->block);
6339 Temp coord_args[4], ma, tc, sc, id;
6340 for (unsigned i = 0; i < (is_array ? 4 : 3); i++)
6341 coord_args[i] = emit_extract_vector(ctx, *coords, i, v1);
6342
6343 if (is_array) {
6344 coord_args[3] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coord_args[3]);
6345
6346 // see comment in ac_prepare_cube_coords()
6347 if (ctx->options->chip_class <= GFX8)
6348 coord_args[3] = bld.vop2(aco_opcode::v_max_f32, bld.def(v1), Operand(0u), coord_args[3]);
6349 }
6350
6351 ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), coord_args[0], coord_args[1], coord_args[2]);
6352
6353 aco_ptr<VOP3A_instruction> vop3a{create_instruction<VOP3A_instruction>(aco_opcode::v_rcp_f32, asVOP3(Format::VOP1), 1, 1)};
6354 vop3a->operands[0] = Operand(ma);
6355 vop3a->abs[0] = true;
6356 Temp invma = bld.tmp(v1);
6357 vop3a->definitions[0] = Definition(invma);
6358 ctx->block->instructions.emplace_back(std::move(vop3a));
6359
6360 sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), coord_args[0], coord_args[1], coord_args[2]);
6361 if (!is_deriv)
6362 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, invma, Operand(0x3fc00000u/*1.5*/));
6363
6364 tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), coord_args[0], coord_args[1], coord_args[2]);
6365 if (!is_deriv)
6366 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, invma, Operand(0x3fc00000u/*1.5*/));
6367
6368 id = bld.vop3(aco_opcode::v_cubeid_f32, bld.def(v1), coord_args[0], coord_args[1], coord_args[2]);
6369
6370 if (is_deriv) {
6371 sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), sc, invma);
6372 tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tc, invma);
6373
6374 for (unsigned i = 0; i < 2; i++) {
6375 // see comment in ac_prepare_cube_coords()
6376 Temp deriv_ma;
6377 Temp deriv_sc, deriv_tc;
6378 build_cube_select(ctx, ma, id, i ? *ddy : *ddx,
6379 &deriv_ma, &deriv_sc, &deriv_tc);
6380
6381 deriv_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, invma);
6382
6383 Temp x = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
6384 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_sc, invma),
6385 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, sc));
6386 Temp y = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
6387 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_tc, invma),
6388 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, tc));
6389 *(i ? ddy : ddx) = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), x, y);
6390 }
6391
6392 sc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), sc);
6393 tc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), tc);
6394 }
6395
6396 if (is_array)
6397 id = bld.vop2(aco_opcode::v_madmk_f32, bld.def(v1), coord_args[3], id, Operand(0x41000000u/*8.0*/));
6398 *coords = bld.pseudo(aco_opcode::p_create_vector, bld.def(v3), sc, tc, id);
6399
6400 }
6401
6402 Temp apply_round_slice(isel_context *ctx, Temp coords, unsigned idx)
6403 {
6404 Temp coord_vec[3];
6405 for (unsigned i = 0; i < coords.size(); i++)
6406 coord_vec[i] = emit_extract_vector(ctx, coords, i, v1);
6407
6408 Builder bld(ctx->program, ctx->block);
6409 coord_vec[idx] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coord_vec[idx]);
6410
6411 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
6412 for (unsigned i = 0; i < coords.size(); i++)
6413 vec->operands[i] = Operand(coord_vec[i]);
6414 Temp res = bld.tmp(RegType::vgpr, coords.size());
6415 vec->definitions[0] = Definition(res);
6416 ctx->block->instructions.emplace_back(std::move(vec));
6417 return res;
6418 }
6419
6420 void get_const_vec(nir_ssa_def *vec, nir_const_value *cv[4])
6421 {
6422 if (vec->parent_instr->type != nir_instr_type_alu)
6423 return;
6424 nir_alu_instr *vec_instr = nir_instr_as_alu(vec->parent_instr);
6425 if (vec_instr->op != nir_op_vec(vec->num_components))
6426 return;
6427
6428 for (unsigned i = 0; i < vec->num_components; i++) {
6429 cv[i] = vec_instr->src[i].swizzle[0] == 0 ?
6430 nir_src_as_const_value(vec_instr->src[i].src) : NULL;
6431 }
6432 }
6433
6434 void visit_tex(isel_context *ctx, nir_tex_instr *instr)
6435 {
6436 Builder bld(ctx->program, ctx->block);
6437 bool has_bias = false, has_lod = false, level_zero = false, has_compare = false,
6438 has_offset = false, has_ddx = false, has_ddy = false, has_derivs = false, has_sample_index = false;
6439 Temp resource, sampler, fmask_ptr, bias = Temp(), coords, compare = Temp(), sample_index = Temp(),
6440 lod = Temp(), offset = Temp(), ddx = Temp(), ddy = Temp(), derivs = Temp();
6441 nir_const_value *sample_index_cv = NULL;
6442 nir_const_value *const_offset[4] = {NULL, NULL, NULL, NULL};
6443 enum glsl_base_type stype;
6444 tex_fetch_ptrs(ctx, instr, &resource, &sampler, &fmask_ptr, &stype);
6445
6446 bool tg4_integer_workarounds = ctx->options->chip_class <= GFX8 && instr->op == nir_texop_tg4 &&
6447 (stype == GLSL_TYPE_UINT || stype == GLSL_TYPE_INT);
6448 bool tg4_integer_cube_workaround = tg4_integer_workarounds &&
6449 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE;
6450
6451 for (unsigned i = 0; i < instr->num_srcs; i++) {
6452 switch (instr->src[i].src_type) {
6453 case nir_tex_src_coord:
6454 coords = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[i].src.ssa));
6455 break;
6456 case nir_tex_src_bias:
6457 if (instr->op == nir_texop_txb) {
6458 bias = get_ssa_temp(ctx, instr->src[i].src.ssa);
6459 has_bias = true;
6460 }
6461 break;
6462 case nir_tex_src_lod: {
6463 nir_const_value *val = nir_src_as_const_value(instr->src[i].src);
6464
6465 if (val && val->f32 <= 0.0) {
6466 level_zero = true;
6467 } else {
6468 lod = get_ssa_temp(ctx, instr->src[i].src.ssa);
6469 has_lod = true;
6470 }
6471 break;
6472 }
6473 case nir_tex_src_comparator:
6474 if (instr->is_shadow) {
6475 compare = get_ssa_temp(ctx, instr->src[i].src.ssa);
6476 has_compare = true;
6477 }
6478 break;
6479 case nir_tex_src_offset:
6480 offset = get_ssa_temp(ctx, instr->src[i].src.ssa);
6481 get_const_vec(instr->src[i].src.ssa, const_offset);
6482 has_offset = true;
6483 break;
6484 case nir_tex_src_ddx:
6485 ddx = get_ssa_temp(ctx, instr->src[i].src.ssa);
6486 has_ddx = true;
6487 break;
6488 case nir_tex_src_ddy:
6489 ddy = get_ssa_temp(ctx, instr->src[i].src.ssa);
6490 has_ddy = true;
6491 break;
6492 case nir_tex_src_ms_index:
6493 sample_index = get_ssa_temp(ctx, instr->src[i].src.ssa);
6494 sample_index_cv = nir_src_as_const_value(instr->src[i].src);
6495 has_sample_index = true;
6496 break;
6497 case nir_tex_src_texture_offset:
6498 case nir_tex_src_sampler_offset:
6499 default:
6500 break;
6501 }
6502 }
6503 // TODO: all other cases: structure taken from ac_nir_to_llvm.c
6504 if (instr->op == nir_texop_txs && instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
6505 return get_buffer_size(ctx, resource, get_ssa_temp(ctx, &instr->dest.ssa), true);
6506
6507 if (instr->op == nir_texop_texture_samples) {
6508 Temp dword3 = emit_extract_vector(ctx, resource, 3, s1);
6509
6510 Temp samples_log2 = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(16u | 4u<<16));
6511 Temp samples = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), Operand(1u), samples_log2);
6512 Temp type = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(28u | 4u<<16 /* offset=28, width=4 */));
6513 Temp is_msaa = bld.sopc(aco_opcode::s_cmp_ge_u32, bld.def(s1, scc), type, Operand(14u));
6514
6515 bld.sop2(aco_opcode::s_cselect_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6516 samples, Operand(1u), bld.scc(is_msaa));
6517 return;
6518 }
6519
6520 if (has_offset && instr->op != nir_texop_txf && instr->op != nir_texop_txf_ms) {
6521 aco_ptr<Instruction> tmp_instr;
6522 Temp acc, pack = Temp();
6523
6524 uint32_t pack_const = 0;
6525 for (unsigned i = 0; i < offset.size(); i++) {
6526 if (!const_offset[i])
6527 continue;
6528 pack_const |= (const_offset[i]->u32 & 0x3Fu) << (8u * i);
6529 }
6530
6531 if (offset.type() == RegType::sgpr) {
6532 for (unsigned i = 0; i < offset.size(); i++) {
6533 if (const_offset[i])
6534 continue;
6535
6536 acc = emit_extract_vector(ctx, offset, i, s1);
6537 acc = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(0x3Fu));
6538
6539 if (i) {
6540 acc = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(8u * i));
6541 }
6542
6543 if (pack == Temp()) {
6544 pack = acc;
6545 } else {
6546 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), pack, acc);
6547 }
6548 }
6549
6550 if (pack_const && pack != Temp())
6551 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(pack_const), pack);
6552 } else {
6553 for (unsigned i = 0; i < offset.size(); i++) {
6554 if (const_offset[i])
6555 continue;
6556
6557 acc = emit_extract_vector(ctx, offset, i, v1);
6558 acc = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x3Fu), acc);
6559
6560 if (i) {
6561 acc = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(8u * i), acc);
6562 }
6563
6564 if (pack == Temp()) {
6565 pack = acc;
6566 } else {
6567 pack = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), pack, acc);
6568 }
6569 }
6570
6571 if (pack_const && pack != Temp())
6572 pack = bld.sop2(aco_opcode::v_or_b32, bld.def(v1), Operand(pack_const), pack);
6573 }
6574 if (pack_const && pack == Temp())
6575 offset = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(pack_const));
6576 else if (pack == Temp())
6577 has_offset = false;
6578 else
6579 offset = pack;
6580 }
6581
6582 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE && instr->coord_components)
6583 prepare_cube_coords(ctx, &coords, &ddx, &ddy, instr->op == nir_texop_txd, instr->is_array && instr->op != nir_texop_lod);
6584
6585 /* pack derivatives */
6586 if (has_ddx || has_ddy) {
6587 if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D && ctx->options->chip_class == GFX9) {
6588 derivs = bld.pseudo(aco_opcode::p_create_vector, bld.def(v4),
6589 ddx, Operand(0u), ddy, Operand(0u));
6590 } else {
6591 derivs = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, ddx.size() + ddy.size()), ddx, ddy);
6592 }
6593 has_derivs = true;
6594 }
6595
6596 if (instr->coord_components > 1 &&
6597 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
6598 instr->is_array &&
6599 instr->op != nir_texop_txf)
6600 coords = apply_round_slice(ctx, coords, 1);
6601
6602 if (instr->coord_components > 2 &&
6603 (instr->sampler_dim == GLSL_SAMPLER_DIM_2D ||
6604 instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
6605 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS ||
6606 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
6607 instr->is_array &&
6608 instr->op != nir_texop_txf && instr->op != nir_texop_txf_ms)
6609 coords = apply_round_slice(ctx, coords, 2);
6610
6611 if (ctx->options->chip_class == GFX9 &&
6612 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
6613 instr->op != nir_texop_lod && instr->coord_components) {
6614 assert(coords.size() > 0 && coords.size() < 3);
6615
6616 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size() + 1, 1)};
6617 vec->operands[0] = Operand(emit_extract_vector(ctx, coords, 0, v1));
6618 vec->operands[1] = instr->op == nir_texop_txf ? Operand((uint32_t) 0) : Operand((uint32_t) 0x3f000000);
6619 if (coords.size() > 1)
6620 vec->operands[2] = Operand(emit_extract_vector(ctx, coords, 1, v1));
6621 coords = bld.tmp(RegType::vgpr, coords.size() + 1);
6622 vec->definitions[0] = Definition(coords);
6623 ctx->block->instructions.emplace_back(std::move(vec));
6624 }
6625
6626 bool da = should_declare_array(ctx, instr->sampler_dim, instr->is_array);
6627
6628 if (instr->op == nir_texop_samples_identical)
6629 resource = fmask_ptr;
6630
6631 else if ((instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
6632 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
6633 instr->op != nir_texop_txs) {
6634 assert(has_sample_index);
6635 Operand op(sample_index);
6636 if (sample_index_cv)
6637 op = Operand(sample_index_cv->u32);
6638 sample_index = adjust_sample_index_using_fmask(ctx, da, coords, op, fmask_ptr);
6639 }
6640
6641 if (has_offset && (instr->op == nir_texop_txf || instr->op == nir_texop_txf_ms)) {
6642 Temp split_coords[coords.size()];
6643 emit_split_vector(ctx, coords, coords.size());
6644 for (unsigned i = 0; i < coords.size(); i++)
6645 split_coords[i] = emit_extract_vector(ctx, coords, i, v1);
6646
6647 unsigned i = 0;
6648 for (; i < std::min(offset.size(), instr->coord_components); i++) {
6649 Temp off = emit_extract_vector(ctx, offset, i, v1);
6650 split_coords[i] = bld.vadd32(bld.def(v1), split_coords[i], off);
6651 }
6652
6653 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
6654 for (unsigned i = 0; i < coords.size(); i++)
6655 vec->operands[i] = Operand(split_coords[i]);
6656 coords = bld.tmp(coords.regClass());
6657 vec->definitions[0] = Definition(coords);
6658 ctx->block->instructions.emplace_back(std::move(vec));
6659
6660 has_offset = false;
6661 }
6662
6663 /* Build tex instruction */
6664 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
6665 unsigned dim = ctx->options->chip_class >= GFX10 && instr->sampler_dim != GLSL_SAMPLER_DIM_BUF
6666 ? ac_get_sampler_dim(ctx->options->chip_class, instr->sampler_dim, instr->is_array)
6667 : 0;
6668 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6669 Temp tmp_dst = dst;
6670
6671 /* gather4 selects the component by dmask and always returns vec4 */
6672 if (instr->op == nir_texop_tg4) {
6673 assert(instr->dest.ssa.num_components == 4);
6674 if (instr->is_shadow)
6675 dmask = 1;
6676 else
6677 dmask = 1 << instr->component;
6678 if (tg4_integer_cube_workaround || dst.type() == RegType::sgpr)
6679 tmp_dst = bld.tmp(v4);
6680 } else if (instr->op == nir_texop_samples_identical) {
6681 tmp_dst = bld.tmp(v1);
6682 } else if (util_bitcount(dmask) != instr->dest.ssa.num_components || dst.type() == RegType::sgpr) {
6683 tmp_dst = bld.tmp(RegClass(RegType::vgpr, util_bitcount(dmask)));
6684 }
6685
6686 aco_ptr<MIMG_instruction> tex;
6687 if (instr->op == nir_texop_txs || instr->op == nir_texop_query_levels) {
6688 if (!has_lod)
6689 lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
6690
6691 bool div_by_6 = instr->op == nir_texop_txs &&
6692 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
6693 instr->is_array &&
6694 (dmask & (1 << 2));
6695 if (tmp_dst.id() == dst.id() && div_by_6)
6696 tmp_dst = bld.tmp(tmp_dst.regClass());
6697
6698 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 2, 1));
6699 tex->operands[0] = Operand(as_vgpr(ctx,lod));
6700 tex->operands[1] = Operand(resource);
6701 if (ctx->options->chip_class == GFX9 &&
6702 instr->op == nir_texop_txs &&
6703 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
6704 instr->is_array) {
6705 tex->dmask = (dmask & 0x1) | ((dmask & 0x2) << 1);
6706 } else if (instr->op == nir_texop_query_levels) {
6707 tex->dmask = 1 << 3;
6708 } else {
6709 tex->dmask = dmask;
6710 }
6711 tex->da = da;
6712 tex->definitions[0] = Definition(tmp_dst);
6713 tex->dim = dim;
6714 tex->can_reorder = true;
6715 ctx->block->instructions.emplace_back(std::move(tex));
6716
6717 if (div_by_6) {
6718 /* divide 3rd value by 6 by multiplying with magic number */
6719 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
6720 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
6721 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp_dst, 2, v1), c);
6722 assert(instr->dest.ssa.num_components == 3);
6723 Temp tmp = dst.type() == RegType::vgpr ? dst : bld.tmp(v3);
6724 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
6725 emit_extract_vector(ctx, tmp_dst, 0, v1),
6726 emit_extract_vector(ctx, tmp_dst, 1, v1),
6727 by_6);
6728
6729 }
6730
6731 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
6732 return;
6733 }
6734
6735 Temp tg4_compare_cube_wa64 = Temp();
6736
6737 if (tg4_integer_workarounds) {
6738 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 2, 1));
6739 tex->operands[0] = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
6740 tex->operands[1] = Operand(resource);
6741 tex->dim = dim;
6742 tex->dmask = 0x3;
6743 tex->da = da;
6744 Temp size = bld.tmp(v2);
6745 tex->definitions[0] = Definition(size);
6746 tex->can_reorder = true;
6747 ctx->block->instructions.emplace_back(std::move(tex));
6748 emit_split_vector(ctx, size, size.size());
6749
6750 Temp half_texel[2];
6751 for (unsigned i = 0; i < 2; i++) {
6752 half_texel[i] = emit_extract_vector(ctx, size, i, v1);
6753 half_texel[i] = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), half_texel[i]);
6754 half_texel[i] = bld.vop1(aco_opcode::v_rcp_iflag_f32, bld.def(v1), half_texel[i]);
6755 half_texel[i] = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0xbf000000/*-0.5*/), half_texel[i]);
6756 }
6757
6758 Temp orig_coords[2] = {
6759 emit_extract_vector(ctx, coords, 0, v1),
6760 emit_extract_vector(ctx, coords, 1, v1)};
6761 Temp new_coords[2] = {
6762 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), orig_coords[0], half_texel[0]),
6763 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), orig_coords[1], half_texel[1])
6764 };
6765
6766 if (tg4_integer_cube_workaround) {
6767 // see comment in ac_nir_to_llvm.c's lower_gather4_integer()
6768 Temp desc[resource.size()];
6769 aco_ptr<Instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector,
6770 Format::PSEUDO, 1, resource.size())};
6771 split->operands[0] = Operand(resource);
6772 for (unsigned i = 0; i < resource.size(); i++) {
6773 desc[i] = bld.tmp(s1);
6774 split->definitions[i] = Definition(desc[i]);
6775 }
6776 ctx->block->instructions.emplace_back(std::move(split));
6777
6778 Temp dfmt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), desc[1], Operand(20u | (6u << 16)));
6779 Temp compare_cube_wa = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), dfmt,
6780 Operand((uint32_t)V_008F14_IMG_DATA_FORMAT_8_8_8_8));
6781
6782 Temp nfmt;
6783 if (stype == GLSL_TYPE_UINT) {
6784 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
6785 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_USCALED),
6786 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_UINT),
6787 bld.scc(compare_cube_wa));
6788 } else {
6789 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
6790 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SSCALED),
6791 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SINT),
6792 bld.scc(compare_cube_wa));
6793 }
6794 tg4_compare_cube_wa64 = bld.tmp(bld.lm);
6795 bool_to_vector_condition(ctx, compare_cube_wa, tg4_compare_cube_wa64);
6796
6797 nfmt = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), nfmt, Operand(26u));
6798
6799 desc[1] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), desc[1],
6800 Operand((uint32_t)C_008F14_NUM_FORMAT));
6801 desc[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), desc[1], nfmt);
6802
6803 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
6804 Format::PSEUDO, resource.size(), 1)};
6805 for (unsigned i = 0; i < resource.size(); i++)
6806 vec->operands[i] = Operand(desc[i]);
6807 resource = bld.tmp(resource.regClass());
6808 vec->definitions[0] = Definition(resource);
6809 ctx->block->instructions.emplace_back(std::move(vec));
6810
6811 new_coords[0] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
6812 new_coords[0], orig_coords[0], tg4_compare_cube_wa64);
6813 new_coords[1] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
6814 new_coords[1], orig_coords[1], tg4_compare_cube_wa64);
6815 }
6816
6817 if (coords.size() == 3) {
6818 coords = bld.pseudo(aco_opcode::p_create_vector, bld.def(v3),
6819 new_coords[0], new_coords[1],
6820 emit_extract_vector(ctx, coords, 2, v1));
6821 } else {
6822 assert(coords.size() == 2);
6823 coords = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2),
6824 new_coords[0], new_coords[1]);
6825 }
6826 }
6827
6828 std::vector<Operand> args;
6829 if (has_offset)
6830 args.emplace_back(Operand(offset));
6831 if (has_bias)
6832 args.emplace_back(Operand(bias));
6833 if (has_compare)
6834 args.emplace_back(Operand(compare));
6835 if (has_derivs)
6836 args.emplace_back(Operand(derivs));
6837 args.emplace_back(Operand(coords));
6838 if (has_sample_index)
6839 args.emplace_back(Operand(sample_index));
6840 if (has_lod)
6841 args.emplace_back(lod);
6842
6843 Temp arg;
6844 if (args.size() > 1) {
6845 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, args.size(), 1)};
6846 unsigned size = 0;
6847 for (unsigned i = 0; i < args.size(); i++) {
6848 size += args[i].size();
6849 vec->operands[i] = args[i];
6850 }
6851 RegClass rc = RegClass(RegType::vgpr, size);
6852 Temp tmp = bld.tmp(rc);
6853 vec->definitions[0] = Definition(tmp);
6854 ctx->block->instructions.emplace_back(std::move(vec));
6855 arg = tmp;
6856 } else {
6857 assert(args[0].isTemp());
6858 arg = as_vgpr(ctx, args[0].getTemp());
6859 }
6860
6861 /* we don't need the bias, sample index, compare value or offset to be
6862 * computed in WQM but if the p_create_vector copies the coordinates, then it
6863 * needs to be in WQM */
6864 if (!(has_ddx && has_ddy) && !has_lod && !level_zero &&
6865 instr->sampler_dim != GLSL_SAMPLER_DIM_MS &&
6866 instr->sampler_dim != GLSL_SAMPLER_DIM_SUBPASS_MS)
6867 arg = emit_wqm(ctx, arg, bld.tmp(arg.regClass()), true);
6868
6869 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
6870 //FIXME: if (ctx->abi->gfx9_stride_size_workaround) return ac_build_buffer_load_format_gfx9_safe()
6871
6872 assert(coords.size() == 1);
6873 unsigned last_bit = util_last_bit(nir_ssa_def_components_read(&instr->dest.ssa));
6874 aco_opcode op;
6875 switch (last_bit) {
6876 case 1:
6877 op = aco_opcode::buffer_load_format_x; break;
6878 case 2:
6879 op = aco_opcode::buffer_load_format_xy; break;
6880 case 3:
6881 op = aco_opcode::buffer_load_format_xyz; break;
6882 case 4:
6883 op = aco_opcode::buffer_load_format_xyzw; break;
6884 default:
6885 unreachable("Tex instruction loads more than 4 components.");
6886 }
6887
6888 /* if the instruction return value matches exactly the nir dest ssa, we can use it directly */
6889 if (last_bit == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
6890 tmp_dst = dst;
6891 else
6892 tmp_dst = bld.tmp(RegType::vgpr, last_bit);
6893
6894 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
6895 mubuf->operands[0] = Operand(coords);
6896 mubuf->operands[1] = Operand(resource);
6897 mubuf->operands[2] = Operand((uint32_t) 0);
6898 mubuf->definitions[0] = Definition(tmp_dst);
6899 mubuf->idxen = true;
6900 mubuf->can_reorder = true;
6901 ctx->block->instructions.emplace_back(std::move(mubuf));
6902
6903 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, (1 << last_bit) - 1);
6904 return;
6905 }
6906
6907
6908 if (instr->op == nir_texop_txf ||
6909 instr->op == nir_texop_txf_ms ||
6910 instr->op == nir_texop_samples_identical) {
6911 aco_opcode op = level_zero || instr->sampler_dim == GLSL_SAMPLER_DIM_MS ? aco_opcode::image_load : aco_opcode::image_load_mip;
6912 tex.reset(create_instruction<MIMG_instruction>(op, Format::MIMG, 2, 1));
6913 tex->operands[0] = Operand(arg);
6914 tex->operands[1] = Operand(resource);
6915 tex->dim = dim;
6916 tex->dmask = dmask;
6917 tex->unrm = true;
6918 tex->da = da;
6919 tex->definitions[0] = Definition(tmp_dst);
6920 tex->can_reorder = true;
6921 ctx->block->instructions.emplace_back(std::move(tex));
6922
6923 if (instr->op == nir_texop_samples_identical) {
6924 assert(dmask == 1 && dst.regClass() == v1);
6925 assert(dst.id() != tmp_dst.id());
6926
6927 Temp tmp = bld.tmp(bld.lm);
6928 bld.vopc(aco_opcode::v_cmp_eq_u32, Definition(tmp), Operand(0u), tmp_dst).def(0).setHint(vcc);
6929 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand((uint32_t)-1), tmp);
6930
6931 } else {
6932 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
6933 }
6934 return;
6935 }
6936
6937 // TODO: would be better to do this by adding offsets, but needs the opcodes ordered.
6938 aco_opcode opcode = aco_opcode::image_sample;
6939 if (has_offset) { /* image_sample_*_o */
6940 if (has_compare) {
6941 opcode = aco_opcode::image_sample_c_o;
6942 if (has_derivs)
6943 opcode = aco_opcode::image_sample_c_d_o;
6944 if (has_bias)
6945 opcode = aco_opcode::image_sample_c_b_o;
6946 if (level_zero)
6947 opcode = aco_opcode::image_sample_c_lz_o;
6948 if (has_lod)
6949 opcode = aco_opcode::image_sample_c_l_o;
6950 } else {
6951 opcode = aco_opcode::image_sample_o;
6952 if (has_derivs)
6953 opcode = aco_opcode::image_sample_d_o;
6954 if (has_bias)
6955 opcode = aco_opcode::image_sample_b_o;
6956 if (level_zero)
6957 opcode = aco_opcode::image_sample_lz_o;
6958 if (has_lod)
6959 opcode = aco_opcode::image_sample_l_o;
6960 }
6961 } else { /* no offset */
6962 if (has_compare) {
6963 opcode = aco_opcode::image_sample_c;
6964 if (has_derivs)
6965 opcode = aco_opcode::image_sample_c_d;
6966 if (has_bias)
6967 opcode = aco_opcode::image_sample_c_b;
6968 if (level_zero)
6969 opcode = aco_opcode::image_sample_c_lz;
6970 if (has_lod)
6971 opcode = aco_opcode::image_sample_c_l;
6972 } else {
6973 opcode = aco_opcode::image_sample;
6974 if (has_derivs)
6975 opcode = aco_opcode::image_sample_d;
6976 if (has_bias)
6977 opcode = aco_opcode::image_sample_b;
6978 if (level_zero)
6979 opcode = aco_opcode::image_sample_lz;
6980 if (has_lod)
6981 opcode = aco_opcode::image_sample_l;
6982 }
6983 }
6984
6985 if (instr->op == nir_texop_tg4) {
6986 if (has_offset) {
6987 opcode = aco_opcode::image_gather4_lz_o;
6988 if (has_compare)
6989 opcode = aco_opcode::image_gather4_c_lz_o;
6990 } else {
6991 opcode = aco_opcode::image_gather4_lz;
6992 if (has_compare)
6993 opcode = aco_opcode::image_gather4_c_lz;
6994 }
6995 } else if (instr->op == nir_texop_lod) {
6996 opcode = aco_opcode::image_get_lod;
6997 }
6998
6999 tex.reset(create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1));
7000 tex->operands[0] = Operand(arg);
7001 tex->operands[1] = Operand(resource);
7002 tex->operands[2] = Operand(sampler);
7003 tex->dim = dim;
7004 tex->dmask = dmask;
7005 tex->da = da;
7006 tex->definitions[0] = Definition(tmp_dst);
7007 tex->can_reorder = true;
7008 ctx->block->instructions.emplace_back(std::move(tex));
7009
7010 if (tg4_integer_cube_workaround) {
7011 assert(tmp_dst.id() != dst.id());
7012 assert(tmp_dst.size() == dst.size() && dst.size() == 4);
7013
7014 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
7015 Temp val[4];
7016 for (unsigned i = 0; i < dst.size(); i++) {
7017 val[i] = emit_extract_vector(ctx, tmp_dst, i, v1);
7018 Temp cvt_val;
7019 if (stype == GLSL_TYPE_UINT)
7020 cvt_val = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), val[i]);
7021 else
7022 cvt_val = bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), val[i]);
7023 val[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), val[i], cvt_val, tg4_compare_cube_wa64);
7024 }
7025 Temp tmp = dst.regClass() == v4 ? dst : bld.tmp(v4);
7026 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
7027 val[0], val[1], val[2], val[3]);
7028 }
7029 unsigned mask = instr->op == nir_texop_tg4 ? 0xF : dmask;
7030 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, mask);
7031
7032 }
7033
7034
7035 Operand get_phi_operand(isel_context *ctx, nir_ssa_def *ssa)
7036 {
7037 Temp tmp = get_ssa_temp(ctx, ssa);
7038 if (ssa->parent_instr->type == nir_instr_type_ssa_undef)
7039 return Operand(tmp.regClass());
7040 else
7041 return Operand(tmp);
7042 }
7043
7044 void visit_phi(isel_context *ctx, nir_phi_instr *instr)
7045 {
7046 aco_ptr<Pseudo_instruction> phi;
7047 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7048 assert(instr->dest.ssa.bit_size != 1 || dst.regClass() == ctx->program->lane_mask);
7049
7050 bool logical = !dst.is_linear() || ctx->divergent_vals[instr->dest.ssa.index];
7051 logical |= ctx->block->kind & block_kind_merge;
7052 aco_opcode opcode = logical ? aco_opcode::p_phi : aco_opcode::p_linear_phi;
7053
7054 /* we want a sorted list of sources, since the predecessor list is also sorted */
7055 std::map<unsigned, nir_ssa_def*> phi_src;
7056 nir_foreach_phi_src(src, instr)
7057 phi_src[src->pred->index] = src->src.ssa;
7058
7059 std::vector<unsigned>& preds = logical ? ctx->block->logical_preds : ctx->block->linear_preds;
7060 unsigned num_operands = 0;
7061 Operand operands[std::max(exec_list_length(&instr->srcs), (unsigned)preds.size())];
7062 unsigned num_defined = 0;
7063 unsigned cur_pred_idx = 0;
7064 for (std::pair<unsigned, nir_ssa_def *> src : phi_src) {
7065 if (cur_pred_idx < preds.size()) {
7066 /* handle missing preds (IF merges with discard/break) and extra preds (loop exit with discard) */
7067 unsigned block = ctx->cf_info.nir_to_aco[src.first];
7068 unsigned skipped = 0;
7069 while (cur_pred_idx + skipped < preds.size() && preds[cur_pred_idx + skipped] != block)
7070 skipped++;
7071 if (cur_pred_idx + skipped < preds.size()) {
7072 for (unsigned i = 0; i < skipped; i++)
7073 operands[num_operands++] = Operand(dst.regClass());
7074 cur_pred_idx += skipped;
7075 } else {
7076 continue;
7077 }
7078 }
7079 cur_pred_idx++;
7080 Operand op = get_phi_operand(ctx, src.second);
7081 operands[num_operands++] = op;
7082 num_defined += !op.isUndefined();
7083 }
7084 /* handle block_kind_continue_or_break at loop exit blocks */
7085 while (cur_pred_idx++ < preds.size())
7086 operands[num_operands++] = Operand(dst.regClass());
7087
7088 if (num_defined == 0) {
7089 Builder bld(ctx->program, ctx->block);
7090 if (dst.regClass() == s1) {
7091 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), Operand(0u));
7092 } else if (dst.regClass() == v1) {
7093 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), Operand(0u));
7094 } else {
7095 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
7096 for (unsigned i = 0; i < dst.size(); i++)
7097 vec->operands[i] = Operand(0u);
7098 vec->definitions[0] = Definition(dst);
7099 ctx->block->instructions.emplace_back(std::move(vec));
7100 }
7101 return;
7102 }
7103
7104 /* we can use a linear phi in some cases if one src is undef */
7105 if (dst.is_linear() && ctx->block->kind & block_kind_merge && num_defined == 1) {
7106 phi.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, num_operands, 1));
7107
7108 Block *linear_else = &ctx->program->blocks[ctx->block->linear_preds[1]];
7109 Block *invert = &ctx->program->blocks[linear_else->linear_preds[0]];
7110 assert(invert->kind & block_kind_invert);
7111
7112 unsigned then_block = invert->linear_preds[0];
7113
7114 Block* insert_block = NULL;
7115 for (unsigned i = 0; i < num_operands; i++) {
7116 Operand op = operands[i];
7117 if (op.isUndefined())
7118 continue;
7119 insert_block = ctx->block->logical_preds[i] == then_block ? invert : ctx->block;
7120 phi->operands[0] = op;
7121 break;
7122 }
7123 assert(insert_block); /* should be handled by the "num_defined == 0" case above */
7124 phi->operands[1] = Operand(dst.regClass());
7125 phi->definitions[0] = Definition(dst);
7126 insert_block->instructions.emplace(insert_block->instructions.begin(), std::move(phi));
7127 return;
7128 }
7129
7130 /* try to scalarize vector phis */
7131 if (instr->dest.ssa.bit_size != 1 && dst.size() > 1) {
7132 // TODO: scalarize linear phis on divergent ifs
7133 bool can_scalarize = (opcode == aco_opcode::p_phi || !(ctx->block->kind & block_kind_merge));
7134 std::array<Temp, 4> new_vec;
7135 for (unsigned i = 0; can_scalarize && (i < num_operands); i++) {
7136 Operand src = operands[i];
7137 if (src.isTemp() && ctx->allocated_vec.find(src.tempId()) == ctx->allocated_vec.end())
7138 can_scalarize = false;
7139 }
7140 if (can_scalarize) {
7141 unsigned num_components = instr->dest.ssa.num_components;
7142 assert(dst.size() % num_components == 0);
7143 RegClass rc = RegClass(dst.type(), dst.size() / num_components);
7144
7145 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
7146 for (unsigned k = 0; k < num_components; k++) {
7147 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
7148 for (unsigned i = 0; i < num_operands; i++) {
7149 Operand src = operands[i];
7150 phi->operands[i] = src.isTemp() ? Operand(ctx->allocated_vec[src.tempId()][k]) : Operand(rc);
7151 }
7152 Temp phi_dst = {ctx->program->allocateId(), rc};
7153 phi->definitions[0] = Definition(phi_dst);
7154 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
7155 new_vec[k] = phi_dst;
7156 vec->operands[k] = Operand(phi_dst);
7157 }
7158 vec->definitions[0] = Definition(dst);
7159 ctx->block->instructions.emplace_back(std::move(vec));
7160 ctx->allocated_vec.emplace(dst.id(), new_vec);
7161 return;
7162 }
7163 }
7164
7165 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
7166 for (unsigned i = 0; i < num_operands; i++)
7167 phi->operands[i] = operands[i];
7168 phi->definitions[0] = Definition(dst);
7169 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
7170 }
7171
7172
7173 void visit_undef(isel_context *ctx, nir_ssa_undef_instr *instr)
7174 {
7175 Temp dst = get_ssa_temp(ctx, &instr->def);
7176
7177 assert(dst.type() == RegType::sgpr);
7178
7179 if (dst.size() == 1) {
7180 Builder(ctx->program, ctx->block).copy(Definition(dst), Operand(0u));
7181 } else {
7182 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
7183 for (unsigned i = 0; i < dst.size(); i++)
7184 vec->operands[i] = Operand(0u);
7185 vec->definitions[0] = Definition(dst);
7186 ctx->block->instructions.emplace_back(std::move(vec));
7187 }
7188 }
7189
7190 void visit_jump(isel_context *ctx, nir_jump_instr *instr)
7191 {
7192 Builder bld(ctx->program, ctx->block);
7193 Block *logical_target;
7194 append_logical_end(ctx->block);
7195 unsigned idx = ctx->block->index;
7196
7197 switch (instr->type) {
7198 case nir_jump_break:
7199 logical_target = ctx->cf_info.parent_loop.exit;
7200 add_logical_edge(idx, logical_target);
7201 ctx->block->kind |= block_kind_break;
7202
7203 if (!ctx->cf_info.parent_if.is_divergent &&
7204 !ctx->cf_info.parent_loop.has_divergent_continue) {
7205 /* uniform break - directly jump out of the loop */
7206 ctx->block->kind |= block_kind_uniform;
7207 ctx->cf_info.has_branch = true;
7208 bld.branch(aco_opcode::p_branch);
7209 add_linear_edge(idx, logical_target);
7210 return;
7211 }
7212 ctx->cf_info.parent_loop.has_divergent_branch = true;
7213 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
7214 break;
7215 case nir_jump_continue:
7216 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
7217 add_logical_edge(idx, logical_target);
7218 ctx->block->kind |= block_kind_continue;
7219
7220 if (ctx->cf_info.parent_if.is_divergent) {
7221 /* for potential uniform breaks after this continue,
7222 we must ensure that they are handled correctly */
7223 ctx->cf_info.parent_loop.has_divergent_continue = true;
7224 ctx->cf_info.parent_loop.has_divergent_branch = true;
7225 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
7226 } else {
7227 /* uniform continue - directly jump to the loop header */
7228 ctx->block->kind |= block_kind_uniform;
7229 ctx->cf_info.has_branch = true;
7230 bld.branch(aco_opcode::p_branch);
7231 add_linear_edge(idx, logical_target);
7232 return;
7233 }
7234 break;
7235 default:
7236 fprintf(stderr, "Unknown NIR jump instr: ");
7237 nir_print_instr(&instr->instr, stderr);
7238 fprintf(stderr, "\n");
7239 abort();
7240 }
7241
7242 /* remove critical edges from linear CFG */
7243 bld.branch(aco_opcode::p_branch);
7244 Block* break_block = ctx->program->create_and_insert_block();
7245 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
7246 break_block->kind |= block_kind_uniform;
7247 add_linear_edge(idx, break_block);
7248 /* the loop_header pointer might be invalidated by this point */
7249 if (instr->type == nir_jump_continue)
7250 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
7251 add_linear_edge(break_block->index, logical_target);
7252 bld.reset(break_block);
7253 bld.branch(aco_opcode::p_branch);
7254
7255 Block* continue_block = ctx->program->create_and_insert_block();
7256 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
7257 add_linear_edge(idx, continue_block);
7258 append_logical_start(continue_block);
7259 ctx->block = continue_block;
7260 return;
7261 }
7262
7263 void visit_block(isel_context *ctx, nir_block *block)
7264 {
7265 nir_foreach_instr(instr, block) {
7266 switch (instr->type) {
7267 case nir_instr_type_alu:
7268 visit_alu_instr(ctx, nir_instr_as_alu(instr));
7269 break;
7270 case nir_instr_type_load_const:
7271 visit_load_const(ctx, nir_instr_as_load_const(instr));
7272 break;
7273 case nir_instr_type_intrinsic:
7274 visit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
7275 break;
7276 case nir_instr_type_tex:
7277 visit_tex(ctx, nir_instr_as_tex(instr));
7278 break;
7279 case nir_instr_type_phi:
7280 visit_phi(ctx, nir_instr_as_phi(instr));
7281 break;
7282 case nir_instr_type_ssa_undef:
7283 visit_undef(ctx, nir_instr_as_ssa_undef(instr));
7284 break;
7285 case nir_instr_type_deref:
7286 break;
7287 case nir_instr_type_jump:
7288 visit_jump(ctx, nir_instr_as_jump(instr));
7289 break;
7290 default:
7291 fprintf(stderr, "Unknown NIR instr type: ");
7292 nir_print_instr(instr, stderr);
7293 fprintf(stderr, "\n");
7294 //abort();
7295 }
7296 }
7297
7298 if (!ctx->cf_info.parent_loop.has_divergent_branch)
7299 ctx->cf_info.nir_to_aco[block->index] = ctx->block->index;
7300 }
7301
7302
7303
7304 static void visit_loop(isel_context *ctx, nir_loop *loop)
7305 {
7306 append_logical_end(ctx->block);
7307 ctx->block->kind |= block_kind_loop_preheader | block_kind_uniform;
7308 Builder bld(ctx->program, ctx->block);
7309 bld.branch(aco_opcode::p_branch);
7310 unsigned loop_preheader_idx = ctx->block->index;
7311
7312 Block loop_exit = Block();
7313 loop_exit.loop_nest_depth = ctx->cf_info.loop_nest_depth;
7314 loop_exit.kind |= (block_kind_loop_exit | (ctx->block->kind & block_kind_top_level));
7315
7316 Block* loop_header = ctx->program->create_and_insert_block();
7317 loop_header->loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
7318 loop_header->kind |= block_kind_loop_header;
7319 add_edge(loop_preheader_idx, loop_header);
7320 ctx->block = loop_header;
7321
7322 /* emit loop body */
7323 unsigned loop_header_idx = loop_header->index;
7324 loop_info_RAII loop_raii(ctx, loop_header_idx, &loop_exit);
7325 append_logical_start(ctx->block);
7326 visit_cf_list(ctx, &loop->body);
7327
7328 //TODO: what if a loop ends with a unconditional or uniformly branched continue and this branch is never taken?
7329 if (!ctx->cf_info.has_branch) {
7330 append_logical_end(ctx->block);
7331 if (ctx->cf_info.exec_potentially_empty) {
7332 /* Discards can result in code running with an empty exec mask.
7333 * This would result in divergent breaks not ever being taken. As a
7334 * workaround, break the loop when the loop mask is empty instead of
7335 * always continuing. */
7336 ctx->block->kind |= (block_kind_continue_or_break | block_kind_uniform);
7337 unsigned block_idx = ctx->block->index;
7338
7339 /* create helper blocks to avoid critical edges */
7340 Block *break_block = ctx->program->create_and_insert_block();
7341 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
7342 break_block->kind = block_kind_uniform;
7343 bld.reset(break_block);
7344 bld.branch(aco_opcode::p_branch);
7345 add_linear_edge(block_idx, break_block);
7346 add_linear_edge(break_block->index, &loop_exit);
7347
7348 Block *continue_block = ctx->program->create_and_insert_block();
7349 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
7350 continue_block->kind = block_kind_uniform;
7351 bld.reset(continue_block);
7352 bld.branch(aco_opcode::p_branch);
7353 add_linear_edge(block_idx, continue_block);
7354 add_linear_edge(continue_block->index, &ctx->program->blocks[loop_header_idx]);
7355
7356 add_logical_edge(block_idx, &ctx->program->blocks[loop_header_idx]);
7357 ctx->block = &ctx->program->blocks[block_idx];
7358 } else {
7359 ctx->block->kind |= (block_kind_continue | block_kind_uniform);
7360 if (!ctx->cf_info.parent_loop.has_divergent_branch)
7361 add_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
7362 else
7363 add_linear_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
7364 }
7365
7366 bld.reset(ctx->block);
7367 bld.branch(aco_opcode::p_branch);
7368 }
7369
7370 /* fixup phis in loop header from unreachable blocks */
7371 if (ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch) {
7372 bool linear = ctx->cf_info.has_branch;
7373 bool logical = ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch;
7374 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
7375 if ((logical && instr->opcode == aco_opcode::p_phi) ||
7376 (linear && instr->opcode == aco_opcode::p_linear_phi)) {
7377 /* the last operand should be the one that needs to be removed */
7378 instr->operands.pop_back();
7379 } else if (!is_phi(instr)) {
7380 break;
7381 }
7382 }
7383 }
7384
7385 ctx->cf_info.has_branch = false;
7386
7387 // TODO: if the loop has not a single exit, we must add one °°
7388 /* emit loop successor block */
7389 ctx->block = ctx->program->insert_block(std::move(loop_exit));
7390 append_logical_start(ctx->block);
7391
7392 #if 0
7393 // TODO: check if it is beneficial to not branch on continues
7394 /* trim linear phis in loop header */
7395 for (auto&& instr : loop_entry->instructions) {
7396 if (instr->opcode == aco_opcode::p_linear_phi) {
7397 aco_ptr<Pseudo_instruction> new_phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, loop_entry->linear_predecessors.size(), 1)};
7398 new_phi->definitions[0] = instr->definitions[0];
7399 for (unsigned i = 0; i < new_phi->operands.size(); i++)
7400 new_phi->operands[i] = instr->operands[i];
7401 /* check that the remaining operands are all the same */
7402 for (unsigned i = new_phi->operands.size(); i < instr->operands.size(); i++)
7403 assert(instr->operands[i].tempId() == instr->operands.back().tempId());
7404 instr.swap(new_phi);
7405 } else if (instr->opcode == aco_opcode::p_phi) {
7406 continue;
7407 } else {
7408 break;
7409 }
7410 }
7411 #endif
7412 }
7413
7414 static void begin_divergent_if_then(isel_context *ctx, if_context *ic, Temp cond)
7415 {
7416 ic->cond = cond;
7417
7418 append_logical_end(ctx->block);
7419 ctx->block->kind |= block_kind_branch;
7420
7421 /* branch to linear then block */
7422 assert(cond.regClass() == ctx->program->lane_mask);
7423 aco_ptr<Pseudo_branch_instruction> branch;
7424 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
7425 branch->operands[0] = Operand(cond);
7426 ctx->block->instructions.push_back(std::move(branch));
7427
7428 ic->BB_if_idx = ctx->block->index;
7429 ic->BB_invert = Block();
7430 ic->BB_invert.loop_nest_depth = ctx->cf_info.loop_nest_depth;
7431 /* Invert blocks are intentionally not marked as top level because they
7432 * are not part of the logical cfg. */
7433 ic->BB_invert.kind |= block_kind_invert;
7434 ic->BB_endif = Block();
7435 ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
7436 ic->BB_endif.kind |= (block_kind_merge | (ctx->block->kind & block_kind_top_level));
7437
7438 ic->exec_potentially_empty_old = ctx->cf_info.exec_potentially_empty;
7439 ic->divergent_old = ctx->cf_info.parent_if.is_divergent;
7440 ctx->cf_info.parent_if.is_divergent = true;
7441 ctx->cf_info.exec_potentially_empty = false; /* divergent branches use cbranch_execz */
7442
7443 /** emit logical then block */
7444 Block* BB_then_logical = ctx->program->create_and_insert_block();
7445 BB_then_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
7446 add_edge(ic->BB_if_idx, BB_then_logical);
7447 ctx->block = BB_then_logical;
7448 append_logical_start(BB_then_logical);
7449 }
7450
7451 static void begin_divergent_if_else(isel_context *ctx, if_context *ic)
7452 {
7453 Block *BB_then_logical = ctx->block;
7454 append_logical_end(BB_then_logical);
7455 /* branch from logical then block to invert block */
7456 aco_ptr<Pseudo_branch_instruction> branch;
7457 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
7458 BB_then_logical->instructions.emplace_back(std::move(branch));
7459 add_linear_edge(BB_then_logical->index, &ic->BB_invert);
7460 if (!ctx->cf_info.parent_loop.has_divergent_branch)
7461 add_logical_edge(BB_then_logical->index, &ic->BB_endif);
7462 BB_then_logical->kind |= block_kind_uniform;
7463 assert(!ctx->cf_info.has_branch);
7464 ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
7465 ctx->cf_info.parent_loop.has_divergent_branch = false;
7466
7467 /** emit linear then block */
7468 Block* BB_then_linear = ctx->program->create_and_insert_block();
7469 BB_then_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
7470 BB_then_linear->kind |= block_kind_uniform;
7471 add_linear_edge(ic->BB_if_idx, BB_then_linear);
7472 /* branch from linear then block to invert block */
7473 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
7474 BB_then_linear->instructions.emplace_back(std::move(branch));
7475 add_linear_edge(BB_then_linear->index, &ic->BB_invert);
7476
7477 /** emit invert merge block */
7478 ctx->block = ctx->program->insert_block(std::move(ic->BB_invert));
7479 ic->invert_idx = ctx->block->index;
7480
7481 /* branch to linear else block (skip else) */
7482 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_nz, Format::PSEUDO_BRANCH, 1, 0));
7483 branch->operands[0] = Operand(ic->cond);
7484 ctx->block->instructions.push_back(std::move(branch));
7485
7486 ic->exec_potentially_empty_old |= ctx->cf_info.exec_potentially_empty;
7487 ctx->cf_info.exec_potentially_empty = false; /* divergent branches use cbranch_execz */
7488
7489 /** emit logical else block */
7490 Block* BB_else_logical = ctx->program->create_and_insert_block();
7491 BB_else_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
7492 add_logical_edge(ic->BB_if_idx, BB_else_logical);
7493 add_linear_edge(ic->invert_idx, BB_else_logical);
7494 ctx->block = BB_else_logical;
7495 append_logical_start(BB_else_logical);
7496 }
7497
7498 static void end_divergent_if(isel_context *ctx, if_context *ic)
7499 {
7500 Block *BB_else_logical = ctx->block;
7501 append_logical_end(BB_else_logical);
7502
7503 /* branch from logical else block to endif block */
7504 aco_ptr<Pseudo_branch_instruction> branch;
7505 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
7506 BB_else_logical->instructions.emplace_back(std::move(branch));
7507 add_linear_edge(BB_else_logical->index, &ic->BB_endif);
7508 if (!ctx->cf_info.parent_loop.has_divergent_branch)
7509 add_logical_edge(BB_else_logical->index, &ic->BB_endif);
7510 BB_else_logical->kind |= block_kind_uniform;
7511
7512 assert(!ctx->cf_info.has_branch);
7513 ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
7514
7515
7516 /** emit linear else block */
7517 Block* BB_else_linear = ctx->program->create_and_insert_block();
7518 BB_else_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
7519 BB_else_linear->kind |= block_kind_uniform;
7520 add_linear_edge(ic->invert_idx, BB_else_linear);
7521
7522 /* branch from linear else block to endif block */
7523 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
7524 BB_else_linear->instructions.emplace_back(std::move(branch));
7525 add_linear_edge(BB_else_linear->index, &ic->BB_endif);
7526
7527
7528 /** emit endif merge block */
7529 ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
7530 append_logical_start(ctx->block);
7531
7532
7533 ctx->cf_info.parent_if.is_divergent = ic->divergent_old;
7534 ctx->cf_info.exec_potentially_empty |= ic->exec_potentially_empty_old;
7535 /* uniform control flow never has an empty exec-mask */
7536 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent)
7537 ctx->cf_info.exec_potentially_empty = false;
7538 }
7539
7540 static void visit_if(isel_context *ctx, nir_if *if_stmt)
7541 {
7542 Temp cond = get_ssa_temp(ctx, if_stmt->condition.ssa);
7543 Builder bld(ctx->program, ctx->block);
7544 aco_ptr<Pseudo_branch_instruction> branch;
7545
7546 if (!ctx->divergent_vals[if_stmt->condition.ssa->index]) { /* uniform condition */
7547 /**
7548 * Uniform conditionals are represented in the following way*) :
7549 *
7550 * The linear and logical CFG:
7551 * BB_IF
7552 * / \
7553 * BB_THEN (logical) BB_ELSE (logical)
7554 * \ /
7555 * BB_ENDIF
7556 *
7557 * *) Exceptions may be due to break and continue statements within loops
7558 * If a break/continue happens within uniform control flow, it branches
7559 * to the loop exit/entry block. Otherwise, it branches to the next
7560 * merge block.
7561 **/
7562 append_logical_end(ctx->block);
7563 ctx->block->kind |= block_kind_uniform;
7564
7565 /* emit branch */
7566 assert(cond.regClass() == bld.lm);
7567 // TODO: in a post-RA optimizer, we could check if the condition is in VCC and omit this instruction
7568 cond = bool_to_scalar_condition(ctx, cond);
7569
7570 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
7571 branch->operands[0] = Operand(cond);
7572 branch->operands[0].setFixed(scc);
7573 ctx->block->instructions.emplace_back(std::move(branch));
7574
7575 unsigned BB_if_idx = ctx->block->index;
7576 Block BB_endif = Block();
7577 BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
7578 BB_endif.kind |= ctx->block->kind & block_kind_top_level;
7579
7580 /** emit then block */
7581 Block* BB_then = ctx->program->create_and_insert_block();
7582 BB_then->loop_nest_depth = ctx->cf_info.loop_nest_depth;
7583 add_edge(BB_if_idx, BB_then);
7584 append_logical_start(BB_then);
7585 ctx->block = BB_then;
7586 visit_cf_list(ctx, &if_stmt->then_list);
7587 BB_then = ctx->block;
7588 bool then_branch = ctx->cf_info.has_branch;
7589 bool then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
7590
7591 if (!then_branch) {
7592 append_logical_end(BB_then);
7593 /* branch from then block to endif block */
7594 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
7595 BB_then->instructions.emplace_back(std::move(branch));
7596 add_linear_edge(BB_then->index, &BB_endif);
7597 if (!then_branch_divergent)
7598 add_logical_edge(BB_then->index, &BB_endif);
7599 BB_then->kind |= block_kind_uniform;
7600 }
7601
7602 ctx->cf_info.has_branch = false;
7603 ctx->cf_info.parent_loop.has_divergent_branch = false;
7604
7605 /** emit else block */
7606 Block* BB_else = ctx->program->create_and_insert_block();
7607 BB_else->loop_nest_depth = ctx->cf_info.loop_nest_depth;
7608 add_edge(BB_if_idx, BB_else);
7609 append_logical_start(BB_else);
7610 ctx->block = BB_else;
7611 visit_cf_list(ctx, &if_stmt->else_list);
7612 BB_else = ctx->block;
7613
7614 if (!ctx->cf_info.has_branch) {
7615 append_logical_end(BB_else);
7616 /* branch from then block to endif block */
7617 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
7618 BB_else->instructions.emplace_back(std::move(branch));
7619 add_linear_edge(BB_else->index, &BB_endif);
7620 if (!ctx->cf_info.parent_loop.has_divergent_branch)
7621 add_logical_edge(BB_else->index, &BB_endif);
7622 BB_else->kind |= block_kind_uniform;
7623 }
7624
7625 ctx->cf_info.has_branch &= then_branch;
7626 ctx->cf_info.parent_loop.has_divergent_branch &= then_branch_divergent;
7627
7628 /** emit endif merge block */
7629 if (!ctx->cf_info.has_branch) {
7630 ctx->block = ctx->program->insert_block(std::move(BB_endif));
7631 append_logical_start(ctx->block);
7632 }
7633 } else { /* non-uniform condition */
7634 /**
7635 * To maintain a logical and linear CFG without critical edges,
7636 * non-uniform conditionals are represented in the following way*) :
7637 *
7638 * The linear CFG:
7639 * BB_IF
7640 * / \
7641 * BB_THEN (logical) BB_THEN (linear)
7642 * \ /
7643 * BB_INVERT (linear)
7644 * / \
7645 * BB_ELSE (logical) BB_ELSE (linear)
7646 * \ /
7647 * BB_ENDIF
7648 *
7649 * The logical CFG:
7650 * BB_IF
7651 * / \
7652 * BB_THEN (logical) BB_ELSE (logical)
7653 * \ /
7654 * BB_ENDIF
7655 *
7656 * *) Exceptions may be due to break and continue statements within loops
7657 **/
7658
7659 if_context ic;
7660
7661 begin_divergent_if_then(ctx, &ic, cond);
7662 visit_cf_list(ctx, &if_stmt->then_list);
7663
7664 begin_divergent_if_else(ctx, &ic);
7665 visit_cf_list(ctx, &if_stmt->else_list);
7666
7667 end_divergent_if(ctx, &ic);
7668 }
7669 }
7670
7671 static void visit_cf_list(isel_context *ctx,
7672 struct exec_list *list)
7673 {
7674 foreach_list_typed(nir_cf_node, node, node, list) {
7675 switch (node->type) {
7676 case nir_cf_node_block:
7677 visit_block(ctx, nir_cf_node_as_block(node));
7678 break;
7679 case nir_cf_node_if:
7680 visit_if(ctx, nir_cf_node_as_if(node));
7681 break;
7682 case nir_cf_node_loop:
7683 visit_loop(ctx, nir_cf_node_as_loop(node));
7684 break;
7685 default:
7686 unreachable("unimplemented cf list type");
7687 }
7688 }
7689 }
7690
7691 static void export_vs_varying(isel_context *ctx, int slot, bool is_pos, int *next_pos)
7692 {
7693 int offset = ctx->program->info->vs.outinfo.vs_output_param_offset[slot];
7694 uint64_t mask = ctx->vs_output.mask[slot];
7695 if (!is_pos && !mask)
7696 return;
7697 if (!is_pos && offset == AC_EXP_PARAM_UNDEFINED)
7698 return;
7699 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
7700 exp->enabled_mask = mask;
7701 for (unsigned i = 0; i < 4; ++i) {
7702 if (mask & (1 << i))
7703 exp->operands[i] = Operand(ctx->vs_output.outputs[slot][i]);
7704 else
7705 exp->operands[i] = Operand(v1);
7706 }
7707 exp->valid_mask = false;
7708 exp->done = false;
7709 exp->compressed = false;
7710 if (is_pos)
7711 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
7712 else
7713 exp->dest = V_008DFC_SQ_EXP_PARAM + offset;
7714 ctx->block->instructions.emplace_back(std::move(exp));
7715 }
7716
7717 static void export_vs_psiz_layer_viewport(isel_context *ctx, int *next_pos)
7718 {
7719 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
7720 exp->enabled_mask = 0;
7721 for (unsigned i = 0; i < 4; ++i)
7722 exp->operands[i] = Operand(v1);
7723 if (ctx->vs_output.mask[VARYING_SLOT_PSIZ]) {
7724 exp->operands[0] = Operand(ctx->vs_output.outputs[VARYING_SLOT_PSIZ][0]);
7725 exp->enabled_mask |= 0x1;
7726 }
7727 if (ctx->vs_output.mask[VARYING_SLOT_LAYER]) {
7728 exp->operands[2] = Operand(ctx->vs_output.outputs[VARYING_SLOT_LAYER][0]);
7729 exp->enabled_mask |= 0x4;
7730 }
7731 if (ctx->vs_output.mask[VARYING_SLOT_VIEWPORT]) {
7732 if (ctx->options->chip_class < GFX9) {
7733 exp->operands[3] = Operand(ctx->vs_output.outputs[VARYING_SLOT_VIEWPORT][0]);
7734 exp->enabled_mask |= 0x8;
7735 } else {
7736 Builder bld(ctx->program, ctx->block);
7737
7738 Temp out = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u),
7739 Operand(ctx->vs_output.outputs[VARYING_SLOT_VIEWPORT][0]));
7740 if (exp->operands[2].isTemp())
7741 out = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(out), exp->operands[2]);
7742
7743 exp->operands[2] = Operand(out);
7744 exp->enabled_mask |= 0x4;
7745 }
7746 }
7747 exp->valid_mask = false;
7748 exp->done = false;
7749 exp->compressed = false;
7750 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
7751 ctx->block->instructions.emplace_back(std::move(exp));
7752 }
7753
7754 static void create_vs_exports(isel_context *ctx)
7755 {
7756 radv_vs_output_info *outinfo = &ctx->program->info->vs.outinfo;
7757
7758 if (outinfo->export_prim_id) {
7759 ctx->vs_output.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
7760 ctx->vs_output.outputs[VARYING_SLOT_PRIMITIVE_ID][0] = get_arg(ctx, ctx->args->vs_prim_id);
7761 }
7762
7763 if (ctx->options->key.has_multiview_view_index) {
7764 ctx->vs_output.mask[VARYING_SLOT_LAYER] |= 0x1;
7765 ctx->vs_output.outputs[VARYING_SLOT_LAYER][0] = as_vgpr(ctx, get_arg(ctx, ctx->args->ac.view_index));
7766 }
7767
7768 /* the order these position exports are created is important */
7769 int next_pos = 0;
7770 export_vs_varying(ctx, VARYING_SLOT_POS, true, &next_pos);
7771 if (outinfo->writes_pointsize || outinfo->writes_layer || outinfo->writes_viewport_index) {
7772 export_vs_psiz_layer_viewport(ctx, &next_pos);
7773 }
7774 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
7775 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, true, &next_pos);
7776 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
7777 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, true, &next_pos);
7778
7779 if (ctx->options->key.vs_common_out.export_clip_dists) {
7780 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
7781 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, false, &next_pos);
7782 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
7783 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, false, &next_pos);
7784 }
7785
7786 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
7787 if (i < VARYING_SLOT_VAR0 && i != VARYING_SLOT_LAYER &&
7788 i != VARYING_SLOT_PRIMITIVE_ID)
7789 continue;
7790
7791 export_vs_varying(ctx, i, false, NULL);
7792 }
7793 }
7794
7795 static void emit_stream_output(isel_context *ctx,
7796 Temp const *so_buffers,
7797 Temp const *so_write_offset,
7798 const struct radv_stream_output *output)
7799 {
7800 unsigned num_comps = util_bitcount(output->component_mask);
7801 unsigned loc = output->location;
7802 unsigned buf = output->buffer;
7803 unsigned offset = output->offset;
7804
7805 assert(num_comps && num_comps <= 4);
7806 if (!num_comps || num_comps > 4)
7807 return;
7808
7809 unsigned start = ffs(output->component_mask) - 1;
7810
7811 Temp out[4];
7812 bool all_undef = true;
7813 assert(ctx->stage == vertex_vs);
7814 for (unsigned i = 0; i < num_comps; i++) {
7815 out[i] = ctx->vs_output.outputs[loc][start + i];
7816 all_undef = all_undef && !out[i].id();
7817 }
7818 if (all_undef)
7819 return;
7820
7821 Temp write_data = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_comps)};
7822 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_comps, 1)};
7823 for (unsigned i = 0; i < num_comps; ++i)
7824 vec->operands[i] = (ctx->vs_output.mask[loc] & 1 << i) ? Operand(out[i]) : Operand(0u);
7825 vec->definitions[0] = Definition(write_data);
7826 ctx->block->instructions.emplace_back(std::move(vec));
7827
7828 aco_opcode opcode;
7829 switch (num_comps) {
7830 case 1:
7831 opcode = aco_opcode::buffer_store_dword;
7832 break;
7833 case 2:
7834 opcode = aco_opcode::buffer_store_dwordx2;
7835 break;
7836 case 3:
7837 opcode = aco_opcode::buffer_store_dwordx3;
7838 break;
7839 case 4:
7840 opcode = aco_opcode::buffer_store_dwordx4;
7841 break;
7842 }
7843
7844 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
7845 store->operands[0] = Operand(so_write_offset[buf]);
7846 store->operands[1] = Operand(so_buffers[buf]);
7847 store->operands[2] = Operand((uint32_t) 0);
7848 store->operands[3] = Operand(write_data);
7849 if (offset > 4095) {
7850 /* Don't think this can happen in RADV, but maybe GL? It's easy to do this anyway. */
7851 Builder bld(ctx->program, ctx->block);
7852 store->operands[0] = bld.vadd32(bld.def(v1), Operand(offset), Operand(so_write_offset[buf]));
7853 } else {
7854 store->offset = offset;
7855 }
7856 store->offen = true;
7857 store->glc = true;
7858 store->dlc = false;
7859 store->slc = true;
7860 store->can_reorder = true;
7861 ctx->block->instructions.emplace_back(std::move(store));
7862 }
7863
7864 static void emit_streamout(isel_context *ctx, unsigned stream)
7865 {
7866 Builder bld(ctx->program, ctx->block);
7867
7868 Temp so_buffers[4];
7869 Temp buf_ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->streamout_buffers));
7870 for (unsigned i = 0; i < 4; i++) {
7871 unsigned stride = ctx->program->info->so.strides[i];
7872 if (!stride)
7873 continue;
7874
7875 so_buffers[i] = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), buf_ptr, Operand(i * 16u));
7876 }
7877
7878 Temp so_vtx_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
7879 get_arg(ctx, ctx->args->streamout_config), Operand(0x70010u));
7880
7881 Temp tid = emit_mbcnt(ctx, bld.def(v1));
7882
7883 Temp can_emit = bld.vopc(aco_opcode::v_cmp_gt_i32, bld.def(s2), so_vtx_count, tid);
7884
7885 if_context ic;
7886 begin_divergent_if_then(ctx, &ic, can_emit);
7887
7888 bld.reset(ctx->block);
7889
7890 Temp so_write_index = bld.vadd32(bld.def(v1), get_arg(ctx, ctx->args->streamout_write_idx), tid);
7891
7892 Temp so_write_offset[4];
7893
7894 for (unsigned i = 0; i < 4; i++) {
7895 unsigned stride = ctx->program->info->so.strides[i];
7896 if (!stride)
7897 continue;
7898
7899 if (stride == 1) {
7900 Temp offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
7901 get_arg(ctx, ctx->args->streamout_write_idx),
7902 get_arg(ctx, ctx->args->streamout_offset[i]));
7903 Temp new_offset = bld.vadd32(bld.def(v1), offset, tid);
7904
7905 so_write_offset[i] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), new_offset);
7906 } else {
7907 Temp offset = bld.v_mul_imm(bld.def(v1), so_write_index, stride * 4u);
7908 Temp offset2 = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(4u),
7909 get_arg(ctx, ctx->args->streamout_offset[i]));
7910 so_write_offset[i] = bld.vadd32(bld.def(v1), offset, offset2);
7911 }
7912 }
7913
7914 for (unsigned i = 0; i < ctx->program->info->so.num_outputs; i++) {
7915 struct radv_stream_output *output =
7916 &ctx->program->info->so.outputs[i];
7917 if (stream != output->stream)
7918 continue;
7919
7920 emit_stream_output(ctx, so_buffers, so_write_offset, output);
7921 }
7922
7923 begin_divergent_if_else(ctx, &ic);
7924 end_divergent_if(ctx, &ic);
7925 }
7926
7927 } /* end namespace */
7928
7929 void split_arguments(isel_context *ctx, Pseudo_instruction *startpgm)
7930 {
7931 /* Split all arguments except for the first (ring_offsets) and the last
7932 * (exec) so that the dead channels don't stay live throughout the program.
7933 */
7934 for (unsigned i = 1; i < startpgm->definitions.size() - 1; i++) {
7935 if (startpgm->definitions[i].regClass().size() > 1) {
7936 emit_split_vector(ctx, startpgm->definitions[i].getTemp(),
7937 startpgm->definitions[i].regClass().size());
7938 }
7939 }
7940 }
7941
7942 void handle_bc_optimize(isel_context *ctx)
7943 {
7944 /* needed when SPI_PS_IN_CONTROL.BC_OPTIMIZE_DISABLE is set to 0 */
7945 Builder bld(ctx->program, ctx->block);
7946 uint32_t spi_ps_input_ena = ctx->program->config->spi_ps_input_ena;
7947 bool uses_center = G_0286CC_PERSP_CENTER_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTER_ENA(spi_ps_input_ena);
7948 bool uses_centroid = G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena);
7949 ctx->persp_centroid = get_arg(ctx, ctx->args->ac.persp_centroid);
7950 ctx->linear_centroid = get_arg(ctx, ctx->args->ac.linear_centroid);
7951 if (uses_center && uses_centroid) {
7952 Temp sel = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)),
7953 get_arg(ctx, ctx->args->ac.prim_mask), Operand(0u));
7954
7955 if (G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena)) {
7956 Temp new_coord[2];
7957 for (unsigned i = 0; i < 2; i++) {
7958 Temp persp_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_centroid), i, v1);
7959 Temp persp_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_center), i, v1);
7960 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
7961 persp_centroid, persp_center, sel);
7962 }
7963 ctx->persp_centroid = bld.tmp(v2);
7964 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->persp_centroid),
7965 Operand(new_coord[0]), Operand(new_coord[1]));
7966 emit_split_vector(ctx, ctx->persp_centroid, 2);
7967 }
7968
7969 if (G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena)) {
7970 Temp new_coord[2];
7971 for (unsigned i = 0; i < 2; i++) {
7972 Temp linear_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_centroid), i, v1);
7973 Temp linear_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_center), i, v1);
7974 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
7975 linear_centroid, linear_center, sel);
7976 }
7977 ctx->linear_centroid = bld.tmp(v2);
7978 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->linear_centroid),
7979 Operand(new_coord[0]), Operand(new_coord[1]));
7980 emit_split_vector(ctx, ctx->linear_centroid, 2);
7981 }
7982 }
7983 }
7984
7985 void setup_fp_mode(isel_context *ctx, nir_shader *shader)
7986 {
7987 Program *program = ctx->program;
7988
7989 unsigned float_controls = shader->info.float_controls_execution_mode;
7990
7991 program->next_fp_mode.preserve_signed_zero_inf_nan32 =
7992 float_controls & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32;
7993 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 =
7994 float_controls & (FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16 |
7995 FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64);
7996
7997 program->next_fp_mode.must_flush_denorms32 =
7998 float_controls & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32;
7999 program->next_fp_mode.must_flush_denorms16_64 =
8000 float_controls & (FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 |
8001 FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64);
8002
8003 program->next_fp_mode.care_about_round32 =
8004 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32);
8005
8006 program->next_fp_mode.care_about_round16_64 =
8007 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64 |
8008 FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
8009
8010 /* default to preserving fp16 and fp64 denorms, since it's free */
8011 if (program->next_fp_mode.must_flush_denorms16_64)
8012 program->next_fp_mode.denorm16_64 = 0;
8013 else
8014 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
8015
8016 /* preserving fp32 denorms is expensive, so only do it if asked */
8017 if (float_controls & FLOAT_CONTROLS_DENORM_PRESERVE_FP32)
8018 program->next_fp_mode.denorm32 = fp_denorm_keep;
8019 else
8020 program->next_fp_mode.denorm32 = 0;
8021
8022 if (float_controls & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32)
8023 program->next_fp_mode.round32 = fp_round_tz;
8024 else
8025 program->next_fp_mode.round32 = fp_round_ne;
8026
8027 if (float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64))
8028 program->next_fp_mode.round16_64 = fp_round_tz;
8029 else
8030 program->next_fp_mode.round16_64 = fp_round_ne;
8031
8032 ctx->block->fp_mode = program->next_fp_mode;
8033 }
8034
8035 void select_program(Program *program,
8036 unsigned shader_count,
8037 struct nir_shader *const *shaders,
8038 ac_shader_config* config,
8039 struct radv_shader_args *args)
8040 {
8041 isel_context ctx = setup_isel_context(program, shader_count, shaders, config, args);
8042
8043 for (unsigned i = 0; i < shader_count; i++) {
8044 nir_shader *nir = shaders[i];
8045 init_context(&ctx, nir);
8046
8047 setup_fp_mode(&ctx, nir);
8048
8049 if (!i) {
8050 /* needs to be after init_context() for FS */
8051 Pseudo_instruction *startpgm = add_startpgm(&ctx);
8052 append_logical_start(ctx.block);
8053 split_arguments(&ctx, startpgm);
8054 }
8055
8056 if_context ic;
8057 if (shader_count >= 2) {
8058 Builder bld(ctx.program, ctx.block);
8059 Temp count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), ctx.merged_wave_info, Operand((8u << 16) | (i * 8u)));
8060 Temp thread_id = emit_mbcnt(&ctx, bld.def(v1));
8061 Temp cond = bld.vopc(aco_opcode::v_cmp_gt_u32, bld.hint_vcc(bld.def(bld.lm)), count, thread_id);
8062
8063 begin_divergent_if_then(&ctx, &ic, cond);
8064 }
8065
8066 if (i) {
8067 Builder bld(ctx.program, ctx.block);
8068 bld.barrier(aco_opcode::p_memory_barrier_shared); //TODO: different barriers are needed for different stages
8069 bld.sopp(aco_opcode::s_barrier);
8070 }
8071
8072 if (ctx.stage == fragment_fs)
8073 handle_bc_optimize(&ctx);
8074
8075 nir_function_impl *func = nir_shader_get_entrypoint(nir);
8076 visit_cf_list(&ctx, &func->body);
8077
8078 if (ctx.program->info->so.num_outputs/*&& !ctx->is_gs_copy_shader */)
8079 emit_streamout(&ctx, 0);
8080
8081 if (ctx.stage == vertex_vs)
8082 create_vs_exports(&ctx);
8083
8084 if (shader_count >= 2) {
8085 begin_divergent_if_else(&ctx, &ic);
8086 end_divergent_if(&ctx, &ic);
8087 }
8088
8089 ralloc_free(ctx.divergent_vals);
8090 }
8091
8092 program->config->float_mode = program->blocks[0].fp_mode.val;
8093
8094 append_logical_end(ctx.block);
8095 ctx.block->kind |= block_kind_uniform;
8096 Builder bld(ctx.program, ctx.block);
8097 if (ctx.program->wb_smem_l1_on_end)
8098 bld.smem(aco_opcode::s_dcache_wb, false);
8099 bld.sopp(aco_opcode::s_endpgm);
8100
8101 /* cleanup CFG */
8102 for (Block& BB : program->blocks) {
8103 for (unsigned idx : BB.linear_preds)
8104 program->blocks[idx].linear_succs.emplace_back(BB.index);
8105 for (unsigned idx : BB.logical_preds)
8106 program->blocks[idx].logical_succs.emplace_back(BB.index);
8107 }
8108 }
8109 }