aco: Extract store_output_to_temps into a separate function.
[mesa.git] / src / amd / compiler / aco_instruction_selection.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 * Copyright © 2018 Google
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <algorithm>
27 #include <array>
28 #include <stack>
29 #include <map>
30
31 #include "ac_shader_util.h"
32 #include "aco_ir.h"
33 #include "aco_builder.h"
34 #include "aco_interface.h"
35 #include "aco_instruction_selection_setup.cpp"
36 #include "util/fast_idiv_by_const.h"
37
38 namespace aco {
39 namespace {
40
41 class loop_info_RAII {
42 isel_context* ctx;
43 unsigned header_idx_old;
44 Block* exit_old;
45 bool divergent_cont_old;
46 bool divergent_branch_old;
47 bool divergent_if_old;
48
49 public:
50 loop_info_RAII(isel_context* ctx, unsigned loop_header_idx, Block* loop_exit)
51 : ctx(ctx),
52 header_idx_old(ctx->cf_info.parent_loop.header_idx), exit_old(ctx->cf_info.parent_loop.exit),
53 divergent_cont_old(ctx->cf_info.parent_loop.has_divergent_continue),
54 divergent_branch_old(ctx->cf_info.parent_loop.has_divergent_branch),
55 divergent_if_old(ctx->cf_info.parent_if.is_divergent)
56 {
57 ctx->cf_info.parent_loop.header_idx = loop_header_idx;
58 ctx->cf_info.parent_loop.exit = loop_exit;
59 ctx->cf_info.parent_loop.has_divergent_continue = false;
60 ctx->cf_info.parent_loop.has_divergent_branch = false;
61 ctx->cf_info.parent_if.is_divergent = false;
62 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
63 }
64
65 ~loop_info_RAII()
66 {
67 ctx->cf_info.parent_loop.header_idx = header_idx_old;
68 ctx->cf_info.parent_loop.exit = exit_old;
69 ctx->cf_info.parent_loop.has_divergent_continue = divergent_cont_old;
70 ctx->cf_info.parent_loop.has_divergent_branch = divergent_branch_old;
71 ctx->cf_info.parent_if.is_divergent = divergent_if_old;
72 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth - 1;
73 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent)
74 ctx->cf_info.exec_potentially_empty_discard = false;
75 }
76 };
77
78 struct if_context {
79 Temp cond;
80
81 bool divergent_old;
82 bool exec_potentially_empty_discard_old;
83 bool exec_potentially_empty_break_old;
84 uint16_t exec_potentially_empty_break_depth_old;
85
86 unsigned BB_if_idx;
87 unsigned invert_idx;
88 bool then_branch_divergent;
89 Block BB_invert;
90 Block BB_endif;
91 };
92
93 static bool visit_cf_list(struct isel_context *ctx,
94 struct exec_list *list);
95
96 static void add_logical_edge(unsigned pred_idx, Block *succ)
97 {
98 succ->logical_preds.emplace_back(pred_idx);
99 }
100
101
102 static void add_linear_edge(unsigned pred_idx, Block *succ)
103 {
104 succ->linear_preds.emplace_back(pred_idx);
105 }
106
107 static void add_edge(unsigned pred_idx, Block *succ)
108 {
109 add_logical_edge(pred_idx, succ);
110 add_linear_edge(pred_idx, succ);
111 }
112
113 static void append_logical_start(Block *b)
114 {
115 Builder(NULL, b).pseudo(aco_opcode::p_logical_start);
116 }
117
118 static void append_logical_end(Block *b)
119 {
120 Builder(NULL, b).pseudo(aco_opcode::p_logical_end);
121 }
122
123 Temp get_ssa_temp(struct isel_context *ctx, nir_ssa_def *def)
124 {
125 assert(ctx->allocated[def->index].id());
126 return ctx->allocated[def->index];
127 }
128
129 Temp emit_mbcnt(isel_context *ctx, Definition dst,
130 Operand mask_lo = Operand((uint32_t) -1), Operand mask_hi = Operand((uint32_t) -1))
131 {
132 Builder bld(ctx->program, ctx->block);
133 Definition lo_def = ctx->program->wave_size == 32 ? dst : bld.def(v1);
134 Temp thread_id_lo = bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, lo_def, mask_lo, Operand(0u));
135
136 if (ctx->program->wave_size == 32) {
137 return thread_id_lo;
138 } else {
139 Temp thread_id_hi = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32, dst, mask_hi, thread_id_lo);
140 return thread_id_hi;
141 }
142 }
143
144 Temp emit_wqm(isel_context *ctx, Temp src, Temp dst=Temp(0, s1), bool program_needs_wqm = false)
145 {
146 Builder bld(ctx->program, ctx->block);
147
148 if (!dst.id())
149 dst = bld.tmp(src.regClass());
150
151 assert(src.size() == dst.size());
152
153 if (ctx->stage != fragment_fs) {
154 if (!dst.id())
155 return src;
156
157 bld.copy(Definition(dst), src);
158 return dst;
159 }
160
161 bld.pseudo(aco_opcode::p_wqm, Definition(dst), src);
162 ctx->program->needs_wqm |= program_needs_wqm;
163 return dst;
164 }
165
166 static Temp emit_bpermute(isel_context *ctx, Builder &bld, Temp index, Temp data)
167 {
168 if (index.regClass() == s1)
169 return bld.readlane(bld.def(s1), data, index);
170
171 Temp index_x4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), index);
172
173 /* Currently not implemented on GFX6-7 */
174 assert(ctx->options->chip_class >= GFX8);
175
176 if (ctx->options->chip_class <= GFX9 || ctx->program->wave_size == 32) {
177 return bld.ds(aco_opcode::ds_bpermute_b32, bld.def(v1), index_x4, data);
178 }
179
180 /* GFX10, wave64 mode:
181 * The bpermute instruction is limited to half-wave operation, which means that it can't
182 * properly support subgroup shuffle like older generations (or wave32 mode), so we
183 * emulate it here.
184 */
185 if (!ctx->has_gfx10_wave64_bpermute) {
186 ctx->has_gfx10_wave64_bpermute = true;
187 ctx->program->config->num_shared_vgprs = 8; /* Shared VGPRs are allocated in groups of 8 */
188 ctx->program->vgpr_limit -= 4; /* We allocate 8 shared VGPRs, so we'll have 4 fewer normal VGPRs */
189 }
190
191 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
192 Temp lane_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), lane_id);
193 Temp index_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), index);
194 Temp cmp = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm, vcc), lane_is_hi, index_is_hi);
195
196 return bld.reduction(aco_opcode::p_wave64_bpermute, bld.def(v1), bld.def(s2), bld.def(s1, scc),
197 bld.vcc(cmp), Operand(v2.as_linear()), index_x4, data, gfx10_wave64_bpermute);
198 }
199
200 Temp as_vgpr(isel_context *ctx, Temp val)
201 {
202 if (val.type() == RegType::sgpr) {
203 Builder bld(ctx->program, ctx->block);
204 return bld.copy(bld.def(RegType::vgpr, val.size()), val);
205 }
206 assert(val.type() == RegType::vgpr);
207 return val;
208 }
209
210 //assumes a != 0xffffffff
211 void emit_v_div_u32(isel_context *ctx, Temp dst, Temp a, uint32_t b)
212 {
213 assert(b != 0);
214 Builder bld(ctx->program, ctx->block);
215
216 if (util_is_power_of_two_or_zero(b)) {
217 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)util_logbase2(b)), a);
218 return;
219 }
220
221 util_fast_udiv_info info = util_compute_fast_udiv_info(b, 32, 32);
222
223 assert(info.multiplier <= 0xffffffff);
224
225 bool pre_shift = info.pre_shift != 0;
226 bool increment = info.increment != 0;
227 bool multiply = true;
228 bool post_shift = info.post_shift != 0;
229
230 if (!pre_shift && !increment && !multiply && !post_shift) {
231 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), a);
232 return;
233 }
234
235 Temp pre_shift_dst = a;
236 if (pre_shift) {
237 pre_shift_dst = (increment || multiply || post_shift) ? bld.tmp(v1) : dst;
238 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(pre_shift_dst), Operand((uint32_t)info.pre_shift), a);
239 }
240
241 Temp increment_dst = pre_shift_dst;
242 if (increment) {
243 increment_dst = (post_shift || multiply) ? bld.tmp(v1) : dst;
244 bld.vadd32(Definition(increment_dst), Operand((uint32_t) info.increment), pre_shift_dst);
245 }
246
247 Temp multiply_dst = increment_dst;
248 if (multiply) {
249 multiply_dst = post_shift ? bld.tmp(v1) : dst;
250 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(multiply_dst), increment_dst,
251 bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand((uint32_t)info.multiplier)));
252 }
253
254 if (post_shift) {
255 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)info.post_shift), multiply_dst);
256 }
257 }
258
259 void emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, Temp dst)
260 {
261 Builder bld(ctx->program, ctx->block);
262 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(idx));
263 }
264
265
266 Temp emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, RegClass dst_rc)
267 {
268 /* no need to extract the whole vector */
269 if (src.regClass() == dst_rc) {
270 assert(idx == 0);
271 return src;
272 }
273 assert(src.size() > idx);
274 Builder bld(ctx->program, ctx->block);
275 auto it = ctx->allocated_vec.find(src.id());
276 /* the size check needs to be early because elements other than 0 may be garbage */
277 if (it != ctx->allocated_vec.end() && it->second[0].size() == dst_rc.size()) {
278 if (it->second[idx].regClass() == dst_rc) {
279 return it->second[idx];
280 } else {
281 assert(dst_rc.size() == it->second[idx].regClass().size());
282 assert(dst_rc.type() == RegType::vgpr && it->second[idx].type() == RegType::sgpr);
283 return bld.copy(bld.def(dst_rc), it->second[idx]);
284 }
285 }
286
287 if (src.size() == dst_rc.size()) {
288 assert(idx == 0);
289 return bld.copy(bld.def(dst_rc), src);
290 } else {
291 Temp dst = bld.tmp(dst_rc);
292 emit_extract_vector(ctx, src, idx, dst);
293 return dst;
294 }
295 }
296
297 void emit_split_vector(isel_context* ctx, Temp vec_src, unsigned num_components)
298 {
299 if (num_components == 1)
300 return;
301 if (ctx->allocated_vec.find(vec_src.id()) != ctx->allocated_vec.end())
302 return;
303 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_components)};
304 split->operands[0] = Operand(vec_src);
305 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
306 for (unsigned i = 0; i < num_components; i++) {
307 elems[i] = {ctx->program->allocateId(), RegClass(vec_src.type(), vec_src.size() / num_components)};
308 split->definitions[i] = Definition(elems[i]);
309 }
310 ctx->block->instructions.emplace_back(std::move(split));
311 ctx->allocated_vec.emplace(vec_src.id(), elems);
312 }
313
314 /* This vector expansion uses a mask to determine which elements in the new vector
315 * come from the original vector. The other elements are undefined. */
316 void expand_vector(isel_context* ctx, Temp vec_src, Temp dst, unsigned num_components, unsigned mask)
317 {
318 emit_split_vector(ctx, vec_src, util_bitcount(mask));
319
320 if (vec_src == dst)
321 return;
322
323 Builder bld(ctx->program, ctx->block);
324 if (num_components == 1) {
325 if (dst.type() == RegType::sgpr)
326 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec_src);
327 else
328 bld.copy(Definition(dst), vec_src);
329 return;
330 }
331
332 unsigned component_size = dst.size() / num_components;
333 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
334
335 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
336 vec->definitions[0] = Definition(dst);
337 unsigned k = 0;
338 for (unsigned i = 0; i < num_components; i++) {
339 if (mask & (1 << i)) {
340 Temp src = emit_extract_vector(ctx, vec_src, k++, RegClass(vec_src.type(), component_size));
341 if (dst.type() == RegType::sgpr)
342 src = bld.as_uniform(src);
343 vec->operands[i] = Operand(src);
344 } else {
345 vec->operands[i] = Operand(0u);
346 }
347 elems[i] = vec->operands[i].getTemp();
348 }
349 ctx->block->instructions.emplace_back(std::move(vec));
350 ctx->allocated_vec.emplace(dst.id(), elems);
351 }
352
353 Temp bool_to_vector_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s2))
354 {
355 Builder bld(ctx->program, ctx->block);
356 if (!dst.id())
357 dst = bld.tmp(bld.lm);
358
359 assert(val.regClass() == s1);
360 assert(dst.regClass() == bld.lm);
361
362 return bld.sop2(Builder::s_cselect, Definition(dst), Operand((uint32_t) -1), Operand(0u), bld.scc(val));
363 }
364
365 Temp bool_to_scalar_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s1))
366 {
367 Builder bld(ctx->program, ctx->block);
368 if (!dst.id())
369 dst = bld.tmp(s1);
370
371 assert(val.regClass() == bld.lm);
372 assert(dst.regClass() == s1);
373
374 /* if we're currently in WQM mode, ensure that the source is also computed in WQM */
375 Temp tmp = bld.tmp(s1);
376 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.scc(Definition(tmp)), val, Operand(exec, bld.lm));
377 return emit_wqm(ctx, tmp, dst);
378 }
379
380 Temp get_alu_src(struct isel_context *ctx, nir_alu_src src, unsigned size=1)
381 {
382 if (src.src.ssa->num_components == 1 && src.swizzle[0] == 0 && size == 1)
383 return get_ssa_temp(ctx, src.src.ssa);
384
385 if (src.src.ssa->num_components == size) {
386 bool identity_swizzle = true;
387 for (unsigned i = 0; identity_swizzle && i < size; i++) {
388 if (src.swizzle[i] != i)
389 identity_swizzle = false;
390 }
391 if (identity_swizzle)
392 return get_ssa_temp(ctx, src.src.ssa);
393 }
394
395 Temp vec = get_ssa_temp(ctx, src.src.ssa);
396 unsigned elem_size = vec.size() / src.src.ssa->num_components;
397 assert(elem_size > 0); /* TODO: 8 and 16-bit vectors not supported */
398 assert(vec.size() % elem_size == 0);
399
400 RegClass elem_rc = RegClass(vec.type(), elem_size);
401 if (size == 1) {
402 return emit_extract_vector(ctx, vec, src.swizzle[0], elem_rc);
403 } else {
404 assert(size <= 4);
405 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
406 aco_ptr<Pseudo_instruction> vec_instr{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
407 for (unsigned i = 0; i < size; ++i) {
408 elems[i] = emit_extract_vector(ctx, vec, src.swizzle[i], elem_rc);
409 vec_instr->operands[i] = Operand{elems[i]};
410 }
411 Temp dst{ctx->program->allocateId(), RegClass(vec.type(), elem_size * size)};
412 vec_instr->definitions[0] = Definition(dst);
413 ctx->block->instructions.emplace_back(std::move(vec_instr));
414 ctx->allocated_vec.emplace(dst.id(), elems);
415 return dst;
416 }
417 }
418
419 Temp convert_pointer_to_64_bit(isel_context *ctx, Temp ptr)
420 {
421 if (ptr.size() == 2)
422 return ptr;
423 Builder bld(ctx->program, ctx->block);
424 if (ptr.type() == RegType::vgpr)
425 ptr = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), ptr);
426 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s2),
427 ptr, Operand((unsigned)ctx->options->address32_hi));
428 }
429
430 void emit_sop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst, bool writes_scc)
431 {
432 aco_ptr<SOP2_instruction> sop2{create_instruction<SOP2_instruction>(op, Format::SOP2, 2, writes_scc ? 2 : 1)};
433 sop2->operands[0] = Operand(get_alu_src(ctx, instr->src[0]));
434 sop2->operands[1] = Operand(get_alu_src(ctx, instr->src[1]));
435 sop2->definitions[0] = Definition(dst);
436 if (writes_scc)
437 sop2->definitions[1] = Definition(ctx->program->allocateId(), scc, s1);
438 ctx->block->instructions.emplace_back(std::move(sop2));
439 }
440
441 void emit_vop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
442 bool commutative, bool swap_srcs=false, bool flush_denorms = false)
443 {
444 Builder bld(ctx->program, ctx->block);
445 Temp src0 = get_alu_src(ctx, instr->src[swap_srcs ? 1 : 0]);
446 Temp src1 = get_alu_src(ctx, instr->src[swap_srcs ? 0 : 1]);
447 if (src1.type() == RegType::sgpr) {
448 if (commutative && src0.type() == RegType::vgpr) {
449 Temp t = src0;
450 src0 = src1;
451 src1 = t;
452 } else if (src0.type() == RegType::vgpr &&
453 op != aco_opcode::v_madmk_f32 &&
454 op != aco_opcode::v_madak_f32 &&
455 op != aco_opcode::v_madmk_f16 &&
456 op != aco_opcode::v_madak_f16) {
457 /* If the instruction is not commutative, we emit a VOP3A instruction */
458 bld.vop2_e64(op, Definition(dst), src0, src1);
459 return;
460 } else {
461 src1 = bld.copy(bld.def(RegType::vgpr, src1.size()), src1); //TODO: as_vgpr
462 }
463 }
464
465 if (flush_denorms && ctx->program->chip_class < GFX9) {
466 assert(dst.size() == 1);
467 Temp tmp = bld.vop2(op, bld.def(v1), src0, src1);
468 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
469 } else {
470 bld.vop2(op, Definition(dst), src0, src1);
471 }
472 }
473
474 void emit_vop3a_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
475 bool flush_denorms = false)
476 {
477 Temp src0 = get_alu_src(ctx, instr->src[0]);
478 Temp src1 = get_alu_src(ctx, instr->src[1]);
479 Temp src2 = get_alu_src(ctx, instr->src[2]);
480
481 /* ensure that the instruction has at most 1 sgpr operand
482 * The optimizer will inline constants for us */
483 if (src0.type() == RegType::sgpr && src1.type() == RegType::sgpr)
484 src0 = as_vgpr(ctx, src0);
485 if (src1.type() == RegType::sgpr && src2.type() == RegType::sgpr)
486 src1 = as_vgpr(ctx, src1);
487 if (src2.type() == RegType::sgpr && src0.type() == RegType::sgpr)
488 src2 = as_vgpr(ctx, src2);
489
490 Builder bld(ctx->program, ctx->block);
491 if (flush_denorms && ctx->program->chip_class < GFX9) {
492 assert(dst.size() == 1);
493 Temp tmp = bld.vop3(op, Definition(dst), src0, src1, src2);
494 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
495 } else {
496 bld.vop3(op, Definition(dst), src0, src1, src2);
497 }
498 }
499
500 void emit_vop1_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
501 {
502 Builder bld(ctx->program, ctx->block);
503 bld.vop1(op, Definition(dst), get_alu_src(ctx, instr->src[0]));
504 }
505
506 void emit_vopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
507 {
508 Temp src0 = get_alu_src(ctx, instr->src[0]);
509 Temp src1 = get_alu_src(ctx, instr->src[1]);
510 assert(src0.size() == src1.size());
511
512 aco_ptr<Instruction> vopc;
513 if (src1.type() == RegType::sgpr) {
514 if (src0.type() == RegType::vgpr) {
515 /* to swap the operands, we might also have to change the opcode */
516 switch (op) {
517 case aco_opcode::v_cmp_lt_f32:
518 op = aco_opcode::v_cmp_gt_f32;
519 break;
520 case aco_opcode::v_cmp_ge_f32:
521 op = aco_opcode::v_cmp_le_f32;
522 break;
523 case aco_opcode::v_cmp_lt_i32:
524 op = aco_opcode::v_cmp_gt_i32;
525 break;
526 case aco_opcode::v_cmp_ge_i32:
527 op = aco_opcode::v_cmp_le_i32;
528 break;
529 case aco_opcode::v_cmp_lt_u32:
530 op = aco_opcode::v_cmp_gt_u32;
531 break;
532 case aco_opcode::v_cmp_ge_u32:
533 op = aco_opcode::v_cmp_le_u32;
534 break;
535 case aco_opcode::v_cmp_lt_f64:
536 op = aco_opcode::v_cmp_gt_f64;
537 break;
538 case aco_opcode::v_cmp_ge_f64:
539 op = aco_opcode::v_cmp_le_f64;
540 break;
541 case aco_opcode::v_cmp_lt_i64:
542 op = aco_opcode::v_cmp_gt_i64;
543 break;
544 case aco_opcode::v_cmp_ge_i64:
545 op = aco_opcode::v_cmp_le_i64;
546 break;
547 case aco_opcode::v_cmp_lt_u64:
548 op = aco_opcode::v_cmp_gt_u64;
549 break;
550 case aco_opcode::v_cmp_ge_u64:
551 op = aco_opcode::v_cmp_le_u64;
552 break;
553 default: /* eq and ne are commutative */
554 break;
555 }
556 Temp t = src0;
557 src0 = src1;
558 src1 = t;
559 } else {
560 src1 = as_vgpr(ctx, src1);
561 }
562 }
563
564 Builder bld(ctx->program, ctx->block);
565 bld.vopc(op, bld.hint_vcc(Definition(dst)), src0, src1);
566 }
567
568 void emit_sopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
569 {
570 Temp src0 = get_alu_src(ctx, instr->src[0]);
571 Temp src1 = get_alu_src(ctx, instr->src[1]);
572 Builder bld(ctx->program, ctx->block);
573
574 assert(dst.regClass() == bld.lm);
575 assert(src0.type() == RegType::sgpr);
576 assert(src1.type() == RegType::sgpr);
577 assert(src0.regClass() == src1.regClass());
578
579 /* Emit the SALU comparison instruction */
580 Temp cmp = bld.sopc(op, bld.scc(bld.def(s1)), src0, src1);
581 /* Turn the result into a per-lane bool */
582 bool_to_vector_condition(ctx, cmp, dst);
583 }
584
585 void emit_comparison(isel_context *ctx, nir_alu_instr *instr, Temp dst,
586 aco_opcode v32_op, aco_opcode v64_op, aco_opcode s32_op = aco_opcode::num_opcodes, aco_opcode s64_op = aco_opcode::num_opcodes)
587 {
588 aco_opcode s_op = instr->src[0].src.ssa->bit_size == 64 ? s64_op : s32_op;
589 aco_opcode v_op = instr->src[0].src.ssa->bit_size == 64 ? v64_op : v32_op;
590 bool divergent_vals = ctx->divergent_vals[instr->dest.dest.ssa.index];
591 bool use_valu = s_op == aco_opcode::num_opcodes ||
592 divergent_vals ||
593 ctx->allocated[instr->src[0].src.ssa->index].type() == RegType::vgpr ||
594 ctx->allocated[instr->src[1].src.ssa->index].type() == RegType::vgpr;
595 aco_opcode op = use_valu ? v_op : s_op;
596 assert(op != aco_opcode::num_opcodes);
597 assert(dst.regClass() == ctx->program->lane_mask);
598
599 if (use_valu)
600 emit_vopc_instruction(ctx, instr, op, dst);
601 else
602 emit_sopc_instruction(ctx, instr, op, dst);
603 }
604
605 void emit_boolean_logic(isel_context *ctx, nir_alu_instr *instr, Builder::WaveSpecificOpcode op, Temp dst)
606 {
607 Builder bld(ctx->program, ctx->block);
608 Temp src0 = get_alu_src(ctx, instr->src[0]);
609 Temp src1 = get_alu_src(ctx, instr->src[1]);
610
611 assert(dst.regClass() == bld.lm);
612 assert(src0.regClass() == bld.lm);
613 assert(src1.regClass() == bld.lm);
614
615 bld.sop2(op, Definition(dst), bld.def(s1, scc), src0, src1);
616 }
617
618 void emit_bcsel(isel_context *ctx, nir_alu_instr *instr, Temp dst)
619 {
620 Builder bld(ctx->program, ctx->block);
621 Temp cond = get_alu_src(ctx, instr->src[0]);
622 Temp then = get_alu_src(ctx, instr->src[1]);
623 Temp els = get_alu_src(ctx, instr->src[2]);
624
625 assert(cond.regClass() == bld.lm);
626
627 if (dst.type() == RegType::vgpr) {
628 aco_ptr<Instruction> bcsel;
629 if (dst.size() == 1) {
630 then = as_vgpr(ctx, then);
631 els = as_vgpr(ctx, els);
632
633 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), els, then, cond);
634 } else if (dst.size() == 2) {
635 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
636 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), then);
637 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
638 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), els);
639
640 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, cond);
641 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, cond);
642
643 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
644 } else {
645 fprintf(stderr, "Unimplemented NIR instr bit size: ");
646 nir_print_instr(&instr->instr, stderr);
647 fprintf(stderr, "\n");
648 }
649 return;
650 }
651
652 if (instr->dest.dest.ssa.bit_size == 1) {
653 assert(dst.regClass() == bld.lm);
654 assert(then.regClass() == bld.lm);
655 assert(els.regClass() == bld.lm);
656 }
657
658 if (!ctx->divergent_vals[instr->src[0].src.ssa->index]) { /* uniform condition and values in sgpr */
659 if (dst.regClass() == s1 || dst.regClass() == s2) {
660 assert((then.regClass() == s1 || then.regClass() == s2) && els.regClass() == then.regClass());
661 assert(dst.size() == then.size());
662 aco_opcode op = dst.regClass() == s1 ? aco_opcode::s_cselect_b32 : aco_opcode::s_cselect_b64;
663 bld.sop2(op, Definition(dst), then, els, bld.scc(bool_to_scalar_condition(ctx, cond)));
664 } else {
665 fprintf(stderr, "Unimplemented uniform bcsel bit size: ");
666 nir_print_instr(&instr->instr, stderr);
667 fprintf(stderr, "\n");
668 }
669 return;
670 }
671
672 /* divergent boolean bcsel
673 * this implements bcsel on bools: dst = s0 ? s1 : s2
674 * are going to be: dst = (s0 & s1) | (~s0 & s2) */
675 assert(instr->dest.dest.ssa.bit_size == 1);
676
677 if (cond.id() != then.id())
678 then = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), cond, then);
679
680 if (cond.id() == els.id())
681 bld.sop1(Builder::s_mov, Definition(dst), then);
682 else
683 bld.sop2(Builder::s_or, Definition(dst), bld.def(s1, scc), then,
684 bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), els, cond));
685 }
686
687 void emit_scaled_op(isel_context *ctx, Builder& bld, Definition dst, Temp val,
688 aco_opcode op, uint32_t undo)
689 {
690 /* multiply by 16777216 to handle denormals */
691 Temp is_denormal = bld.vopc(aco_opcode::v_cmp_class_f32, bld.hint_vcc(bld.def(bld.lm)),
692 as_vgpr(ctx, val), bld.copy(bld.def(v1), Operand((1u << 7) | (1u << 4))));
693 Temp scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x4b800000u), val);
694 scaled = bld.vop1(op, bld.def(v1), scaled);
695 scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(undo), scaled);
696
697 Temp not_scaled = bld.vop1(op, bld.def(v1), val);
698
699 bld.vop2(aco_opcode::v_cndmask_b32, dst, not_scaled, scaled, is_denormal);
700 }
701
702 void emit_rcp(isel_context *ctx, Builder& bld, Definition dst, Temp val)
703 {
704 if (ctx->block->fp_mode.denorm32 == 0) {
705 bld.vop1(aco_opcode::v_rcp_f32, dst, val);
706 return;
707 }
708
709 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rcp_f32, 0x4b800000u);
710 }
711
712 void emit_rsq(isel_context *ctx, Builder& bld, Definition dst, Temp val)
713 {
714 if (ctx->block->fp_mode.denorm32 == 0) {
715 bld.vop1(aco_opcode::v_rsq_f32, dst, val);
716 return;
717 }
718
719 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rsq_f32, 0x45800000u);
720 }
721
722 void emit_sqrt(isel_context *ctx, Builder& bld, Definition dst, Temp val)
723 {
724 if (ctx->block->fp_mode.denorm32 == 0) {
725 bld.vop1(aco_opcode::v_sqrt_f32, dst, val);
726 return;
727 }
728
729 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_sqrt_f32, 0x39800000u);
730 }
731
732 void emit_log2(isel_context *ctx, Builder& bld, Definition dst, Temp val)
733 {
734 if (ctx->block->fp_mode.denorm32 == 0) {
735 bld.vop1(aco_opcode::v_log_f32, dst, val);
736 return;
737 }
738
739 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_log_f32, 0xc1c00000u);
740 }
741
742 Temp emit_trunc_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
743 {
744 if (ctx->options->chip_class >= GFX7)
745 return bld.vop1(aco_opcode::v_trunc_f64, Definition(dst), val);
746
747 /* GFX6 doesn't support V_TRUNC_F64, lower it. */
748 /* TODO: create more efficient code! */
749 if (val.type() == RegType::sgpr)
750 val = as_vgpr(ctx, val);
751
752 /* Split the input value. */
753 Temp val_lo = bld.tmp(v1), val_hi = bld.tmp(v1);
754 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
755
756 /* Extract the exponent and compute the unbiased value. */
757 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f64, bld.def(v1), val);
758
759 /* Extract the fractional part. */
760 Temp fract_mask = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x000fffffu));
761 fract_mask = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), fract_mask, exponent);
762
763 Temp fract_mask_lo = bld.tmp(v1), fract_mask_hi = bld.tmp(v1);
764 bld.pseudo(aco_opcode::p_split_vector, Definition(fract_mask_lo), Definition(fract_mask_hi), fract_mask);
765
766 Temp fract_lo = bld.tmp(v1), fract_hi = bld.tmp(v1);
767 Temp tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_lo);
768 fract_lo = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_lo, tmp);
769 tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_hi);
770 fract_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_hi, tmp);
771
772 /* Get the sign bit. */
773 Temp sign = bld.vop2(aco_opcode::v_ashr_i32, bld.def(v1), Operand(31u), val_hi);
774
775 /* Decide the operation to apply depending on the unbiased exponent. */
776 Temp exp_lt0 = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)), exponent, Operand(0u));
777 Temp dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_lo, bld.copy(bld.def(v1), Operand(0u)), exp_lt0);
778 Temp dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_hi, sign, exp_lt0);
779 Temp exp_gt51 = bld.vopc_e64(aco_opcode::v_cmp_gt_i32, bld.def(s2), exponent, Operand(51u));
780 dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_lo, val_lo, exp_gt51);
781 dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_hi, val_hi, exp_gt51);
782
783 return bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst_lo, dst_hi);
784 }
785
786 Temp emit_floor_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
787 {
788 if (ctx->options->chip_class >= GFX7)
789 return bld.vop1(aco_opcode::v_floor_f64, Definition(dst), val);
790
791 /* GFX6 doesn't support V_FLOOR_F64, lower it. */
792 Temp src0 = as_vgpr(ctx, val);
793
794 Temp mask = bld.copy(bld.def(s1), Operand(3u)); /* isnan */
795 Temp min_val = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(-1u), Operand(0x3fefffffu));
796
797 Temp isnan = bld.vopc_e64(aco_opcode::v_cmp_class_f64, bld.hint_vcc(bld.def(bld.lm)), src0, mask);
798 Temp fract = bld.vop1(aco_opcode::v_fract_f64, bld.def(v2), src0);
799 Temp min = bld.vop3(aco_opcode::v_min_f64, bld.def(v2), fract, min_val);
800
801 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
802 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), src0);
803 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
804 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), min);
805
806 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, isnan);
807 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, isnan);
808
809 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), dst0, dst1);
810
811 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src0, v);
812 static_cast<VOP3A_instruction*>(add)->neg[1] = true;
813
814 return add->definitions[0].getTemp();
815 }
816
817 void visit_alu_instr(isel_context *ctx, nir_alu_instr *instr)
818 {
819 if (!instr->dest.dest.is_ssa) {
820 fprintf(stderr, "nir alu dst not in ssa: ");
821 nir_print_instr(&instr->instr, stderr);
822 fprintf(stderr, "\n");
823 abort();
824 }
825 Builder bld(ctx->program, ctx->block);
826 Temp dst = get_ssa_temp(ctx, &instr->dest.dest.ssa);
827 switch(instr->op) {
828 case nir_op_vec2:
829 case nir_op_vec3:
830 case nir_op_vec4: {
831 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
832 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.dest.ssa.num_components, 1)};
833 for (unsigned i = 0; i < instr->dest.dest.ssa.num_components; ++i) {
834 elems[i] = get_alu_src(ctx, instr->src[i]);
835 vec->operands[i] = Operand{elems[i]};
836 }
837 vec->definitions[0] = Definition(dst);
838 ctx->block->instructions.emplace_back(std::move(vec));
839 ctx->allocated_vec.emplace(dst.id(), elems);
840 break;
841 }
842 case nir_op_mov: {
843 Temp src = get_alu_src(ctx, instr->src[0]);
844 aco_ptr<Instruction> mov;
845 if (dst.type() == RegType::sgpr) {
846 if (src.type() == RegType::vgpr)
847 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
848 else if (src.regClass() == s1)
849 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
850 else if (src.regClass() == s2)
851 bld.sop1(aco_opcode::s_mov_b64, Definition(dst), src);
852 else
853 unreachable("wrong src register class for nir_op_imov");
854 } else if (dst.regClass() == v1) {
855 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), src);
856 } else if (dst.regClass() == v2) {
857 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
858 } else {
859 nir_print_instr(&instr->instr, stderr);
860 unreachable("Should have been lowered to scalar.");
861 }
862 break;
863 }
864 case nir_op_inot: {
865 Temp src = get_alu_src(ctx, instr->src[0]);
866 if (instr->dest.dest.ssa.bit_size == 1) {
867 assert(src.regClass() == bld.lm);
868 assert(dst.regClass() == bld.lm);
869 /* Don't use s_andn2 here, this allows the optimizer to make a better decision */
870 Temp tmp = bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), src);
871 bld.sop2(Builder::s_and, Definition(dst), bld.def(s1, scc), tmp, Operand(exec, bld.lm));
872 } else if (dst.regClass() == v1) {
873 emit_vop1_instruction(ctx, instr, aco_opcode::v_not_b32, dst);
874 } else if (dst.type() == RegType::sgpr) {
875 aco_opcode opcode = dst.size() == 1 ? aco_opcode::s_not_b32 : aco_opcode::s_not_b64;
876 bld.sop1(opcode, Definition(dst), bld.def(s1, scc), src);
877 } else {
878 fprintf(stderr, "Unimplemented NIR instr bit size: ");
879 nir_print_instr(&instr->instr, stderr);
880 fprintf(stderr, "\n");
881 }
882 break;
883 }
884 case nir_op_ineg: {
885 Temp src = get_alu_src(ctx, instr->src[0]);
886 if (dst.regClass() == v1) {
887 bld.vsub32(Definition(dst), Operand(0u), Operand(src));
888 } else if (dst.regClass() == s1) {
889 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand((uint32_t) -1), src);
890 } else if (dst.size() == 2) {
891 Temp src0 = bld.tmp(dst.type(), 1);
892 Temp src1 = bld.tmp(dst.type(), 1);
893 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
894
895 if (dst.regClass() == s2) {
896 Temp carry = bld.tmp(s1);
897 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), Operand(0u), src0);
898 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), src1, carry);
899 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
900 } else {
901 Temp lower = bld.tmp(v1);
902 Temp borrow = bld.vsub32(Definition(lower), Operand(0u), src0, true).def(1).getTemp();
903 Temp upper = bld.vsub32(bld.def(v1), Operand(0u), src1, false, borrow);
904 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
905 }
906 } else {
907 fprintf(stderr, "Unimplemented NIR instr bit size: ");
908 nir_print_instr(&instr->instr, stderr);
909 fprintf(stderr, "\n");
910 }
911 break;
912 }
913 case nir_op_iabs: {
914 if (dst.regClass() == s1) {
915 bld.sop1(aco_opcode::s_abs_i32, Definition(dst), bld.def(s1, scc), get_alu_src(ctx, instr->src[0]));
916 } else if (dst.regClass() == v1) {
917 Temp src = get_alu_src(ctx, instr->src[0]);
918 bld.vop2(aco_opcode::v_max_i32, Definition(dst), src, bld.vsub32(bld.def(v1), Operand(0u), src));
919 } else {
920 fprintf(stderr, "Unimplemented NIR instr bit size: ");
921 nir_print_instr(&instr->instr, stderr);
922 fprintf(stderr, "\n");
923 }
924 break;
925 }
926 case nir_op_isign: {
927 Temp src = get_alu_src(ctx, instr->src[0]);
928 if (dst.regClass() == s1) {
929 Temp tmp = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
930 Temp gtz = bld.sopc(aco_opcode::s_cmp_gt_i32, bld.def(s1, scc), src, Operand(0u));
931 bld.sop2(aco_opcode::s_add_i32, Definition(dst), bld.def(s1, scc), gtz, tmp);
932 } else if (dst.regClass() == s2) {
933 Temp neg = bld.sop2(aco_opcode::s_ashr_i64, bld.def(s2), bld.def(s1, scc), src, Operand(63u));
934 Temp neqz;
935 if (ctx->program->chip_class >= GFX8)
936 neqz = bld.sopc(aco_opcode::s_cmp_lg_u64, bld.def(s1, scc), src, Operand(0u));
937 else
938 neqz = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), src, Operand(0u)).def(1).getTemp();
939 /* SCC gets zero-extended to 64 bit */
940 bld.sop2(aco_opcode::s_or_b64, Definition(dst), bld.def(s1, scc), neg, bld.scc(neqz));
941 } else if (dst.regClass() == v1) {
942 Temp tmp = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
943 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
944 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(1u), tmp, gtz);
945 } else if (dst.regClass() == v2) {
946 Temp upper = emit_extract_vector(ctx, src, 1, v1);
947 Temp neg = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), upper);
948 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
949 Temp lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(1u), neg, gtz);
950 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), neg, gtz);
951 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
952 } else {
953 fprintf(stderr, "Unimplemented NIR instr bit size: ");
954 nir_print_instr(&instr->instr, stderr);
955 fprintf(stderr, "\n");
956 }
957 break;
958 }
959 case nir_op_imax: {
960 if (dst.regClass() == v1) {
961 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_i32, dst, true);
962 } else if (dst.regClass() == s1) {
963 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_i32, dst, true);
964 } else {
965 fprintf(stderr, "Unimplemented NIR instr bit size: ");
966 nir_print_instr(&instr->instr, stderr);
967 fprintf(stderr, "\n");
968 }
969 break;
970 }
971 case nir_op_umax: {
972 if (dst.regClass() == v1) {
973 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_u32, dst, true);
974 } else if (dst.regClass() == s1) {
975 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_u32, dst, true);
976 } else {
977 fprintf(stderr, "Unimplemented NIR instr bit size: ");
978 nir_print_instr(&instr->instr, stderr);
979 fprintf(stderr, "\n");
980 }
981 break;
982 }
983 case nir_op_imin: {
984 if (dst.regClass() == v1) {
985 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_i32, dst, true);
986 } else if (dst.regClass() == s1) {
987 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_i32, dst, true);
988 } else {
989 fprintf(stderr, "Unimplemented NIR instr bit size: ");
990 nir_print_instr(&instr->instr, stderr);
991 fprintf(stderr, "\n");
992 }
993 break;
994 }
995 case nir_op_umin: {
996 if (dst.regClass() == v1) {
997 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_u32, dst, true);
998 } else if (dst.regClass() == s1) {
999 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_u32, dst, true);
1000 } else {
1001 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1002 nir_print_instr(&instr->instr, stderr);
1003 fprintf(stderr, "\n");
1004 }
1005 break;
1006 }
1007 case nir_op_ior: {
1008 if (instr->dest.dest.ssa.bit_size == 1) {
1009 emit_boolean_logic(ctx, instr, Builder::s_or, dst);
1010 } else if (dst.regClass() == v1) {
1011 emit_vop2_instruction(ctx, instr, aco_opcode::v_or_b32, dst, true);
1012 } else if (dst.regClass() == s1) {
1013 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b32, dst, true);
1014 } else if (dst.regClass() == s2) {
1015 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b64, dst, true);
1016 } else {
1017 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1018 nir_print_instr(&instr->instr, stderr);
1019 fprintf(stderr, "\n");
1020 }
1021 break;
1022 }
1023 case nir_op_iand: {
1024 if (instr->dest.dest.ssa.bit_size == 1) {
1025 emit_boolean_logic(ctx, instr, Builder::s_and, dst);
1026 } else if (dst.regClass() == v1) {
1027 emit_vop2_instruction(ctx, instr, aco_opcode::v_and_b32, dst, true);
1028 } else if (dst.regClass() == s1) {
1029 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b32, dst, true);
1030 } else if (dst.regClass() == s2) {
1031 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b64, dst, true);
1032 } else {
1033 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1034 nir_print_instr(&instr->instr, stderr);
1035 fprintf(stderr, "\n");
1036 }
1037 break;
1038 }
1039 case nir_op_ixor: {
1040 if (instr->dest.dest.ssa.bit_size == 1) {
1041 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
1042 } else if (dst.regClass() == v1) {
1043 emit_vop2_instruction(ctx, instr, aco_opcode::v_xor_b32, dst, true);
1044 } else if (dst.regClass() == s1) {
1045 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b32, dst, true);
1046 } else if (dst.regClass() == s2) {
1047 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b64, dst, true);
1048 } else {
1049 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1050 nir_print_instr(&instr->instr, stderr);
1051 fprintf(stderr, "\n");
1052 }
1053 break;
1054 }
1055 case nir_op_ushr: {
1056 if (dst.regClass() == v1) {
1057 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshrrev_b32, dst, false, true);
1058 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1059 bld.vop3(aco_opcode::v_lshrrev_b64, Definition(dst),
1060 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1061 } else if (dst.regClass() == v2) {
1062 bld.vop3(aco_opcode::v_lshr_b64, Definition(dst),
1063 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1064 } else if (dst.regClass() == s2) {
1065 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b64, dst, true);
1066 } else if (dst.regClass() == s1) {
1067 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b32, dst, true);
1068 } else {
1069 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1070 nir_print_instr(&instr->instr, stderr);
1071 fprintf(stderr, "\n");
1072 }
1073 break;
1074 }
1075 case nir_op_ishl: {
1076 if (dst.regClass() == v1) {
1077 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshlrev_b32, dst, false, true);
1078 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1079 bld.vop3(aco_opcode::v_lshlrev_b64, Definition(dst),
1080 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1081 } else if (dst.regClass() == v2) {
1082 bld.vop3(aco_opcode::v_lshl_b64, Definition(dst),
1083 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1084 } else if (dst.regClass() == s1) {
1085 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b32, dst, true);
1086 } else if (dst.regClass() == s2) {
1087 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b64, dst, true);
1088 } else {
1089 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1090 nir_print_instr(&instr->instr, stderr);
1091 fprintf(stderr, "\n");
1092 }
1093 break;
1094 }
1095 case nir_op_ishr: {
1096 if (dst.regClass() == v1) {
1097 emit_vop2_instruction(ctx, instr, aco_opcode::v_ashrrev_i32, dst, false, true);
1098 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1099 bld.vop3(aco_opcode::v_ashrrev_i64, Definition(dst),
1100 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1101 } else if (dst.regClass() == v2) {
1102 bld.vop3(aco_opcode::v_ashr_i64, Definition(dst),
1103 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1104 } else if (dst.regClass() == s1) {
1105 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i32, dst, true);
1106 } else if (dst.regClass() == s2) {
1107 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i64, dst, true);
1108 } else {
1109 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1110 nir_print_instr(&instr->instr, stderr);
1111 fprintf(stderr, "\n");
1112 }
1113 break;
1114 }
1115 case nir_op_find_lsb: {
1116 Temp src = get_alu_src(ctx, instr->src[0]);
1117 if (src.regClass() == s1) {
1118 bld.sop1(aco_opcode::s_ff1_i32_b32, Definition(dst), src);
1119 } else if (src.regClass() == v1) {
1120 emit_vop1_instruction(ctx, instr, aco_opcode::v_ffbl_b32, dst);
1121 } else if (src.regClass() == s2) {
1122 bld.sop1(aco_opcode::s_ff1_i32_b64, Definition(dst), src);
1123 } else {
1124 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1125 nir_print_instr(&instr->instr, stderr);
1126 fprintf(stderr, "\n");
1127 }
1128 break;
1129 }
1130 case nir_op_ufind_msb:
1131 case nir_op_ifind_msb: {
1132 Temp src = get_alu_src(ctx, instr->src[0]);
1133 if (src.regClass() == s1 || src.regClass() == s2) {
1134 aco_opcode op = src.regClass() == s2 ?
1135 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b64 : aco_opcode::s_flbit_i32_i64) :
1136 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b32 : aco_opcode::s_flbit_i32);
1137 Temp msb_rev = bld.sop1(op, bld.def(s1), src);
1138
1139 Builder::Result sub = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc),
1140 Operand(src.size() * 32u - 1u), msb_rev);
1141 Temp msb = sub.def(0).getTemp();
1142 Temp carry = sub.def(1).getTemp();
1143
1144 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t)-1), msb, bld.scc(carry));
1145 } else if (src.regClass() == v1) {
1146 aco_opcode op = instr->op == nir_op_ufind_msb ? aco_opcode::v_ffbh_u32 : aco_opcode::v_ffbh_i32;
1147 Temp msb_rev = bld.tmp(v1);
1148 emit_vop1_instruction(ctx, instr, op, msb_rev);
1149 Temp msb = bld.tmp(v1);
1150 Temp carry = bld.vsub32(Definition(msb), Operand(31u), Operand(msb_rev), true).def(1).getTemp();
1151 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), msb, Operand((uint32_t)-1), carry);
1152 } else {
1153 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1154 nir_print_instr(&instr->instr, stderr);
1155 fprintf(stderr, "\n");
1156 }
1157 break;
1158 }
1159 case nir_op_bitfield_reverse: {
1160 if (dst.regClass() == s1) {
1161 bld.sop1(aco_opcode::s_brev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1162 } else if (dst.regClass() == v1) {
1163 bld.vop1(aco_opcode::v_bfrev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1164 } else {
1165 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1166 nir_print_instr(&instr->instr, stderr);
1167 fprintf(stderr, "\n");
1168 }
1169 break;
1170 }
1171 case nir_op_iadd: {
1172 if (dst.regClass() == s1) {
1173 emit_sop2_instruction(ctx, instr, aco_opcode::s_add_u32, dst, true);
1174 break;
1175 }
1176
1177 Temp src0 = get_alu_src(ctx, instr->src[0]);
1178 Temp src1 = get_alu_src(ctx, instr->src[1]);
1179 if (dst.regClass() == v1) {
1180 bld.vadd32(Definition(dst), Operand(src0), Operand(src1));
1181 break;
1182 }
1183
1184 assert(src0.size() == 2 && src1.size() == 2);
1185 Temp src00 = bld.tmp(src0.type(), 1);
1186 Temp src01 = bld.tmp(dst.type(), 1);
1187 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1188 Temp src10 = bld.tmp(src1.type(), 1);
1189 Temp src11 = bld.tmp(dst.type(), 1);
1190 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1191
1192 if (dst.regClass() == s2) {
1193 Temp carry = bld.tmp(s1);
1194 Temp dst0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1195 Temp dst1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), src01, src11, bld.scc(carry));
1196 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1197 } else if (dst.regClass() == v2) {
1198 Temp dst0 = bld.tmp(v1);
1199 Temp carry = bld.vadd32(Definition(dst0), src00, src10, true).def(1).getTemp();
1200 Temp dst1 = bld.vadd32(bld.def(v1), src01, src11, false, carry);
1201 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1202 } else {
1203 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1204 nir_print_instr(&instr->instr, stderr);
1205 fprintf(stderr, "\n");
1206 }
1207 break;
1208 }
1209 case nir_op_uadd_sat: {
1210 Temp src0 = get_alu_src(ctx, instr->src[0]);
1211 Temp src1 = get_alu_src(ctx, instr->src[1]);
1212 if (dst.regClass() == s1) {
1213 Temp tmp = bld.tmp(s1), carry = bld.tmp(s1);
1214 bld.sop2(aco_opcode::s_add_u32, Definition(tmp), bld.scc(Definition(carry)),
1215 src0, src1);
1216 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t) -1), tmp, bld.scc(carry));
1217 } else if (dst.regClass() == v1) {
1218 if (ctx->options->chip_class >= GFX9) {
1219 aco_ptr<VOP3A_instruction> add{create_instruction<VOP3A_instruction>(aco_opcode::v_add_u32, asVOP3(Format::VOP2), 2, 1)};
1220 add->operands[0] = Operand(src0);
1221 add->operands[1] = Operand(src1);
1222 add->definitions[0] = Definition(dst);
1223 add->clamp = 1;
1224 ctx->block->instructions.emplace_back(std::move(add));
1225 } else {
1226 if (src1.regClass() != v1)
1227 std::swap(src0, src1);
1228 assert(src1.regClass() == v1);
1229 Temp tmp = bld.tmp(v1);
1230 Temp carry = bld.vadd32(Definition(tmp), src0, src1, true).def(1).getTemp();
1231 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), tmp, Operand((uint32_t) -1), carry);
1232 }
1233 } else {
1234 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1235 nir_print_instr(&instr->instr, stderr);
1236 fprintf(stderr, "\n");
1237 }
1238 break;
1239 }
1240 case nir_op_uadd_carry: {
1241 Temp src0 = get_alu_src(ctx, instr->src[0]);
1242 Temp src1 = get_alu_src(ctx, instr->src[1]);
1243 if (dst.regClass() == s1) {
1244 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1245 break;
1246 }
1247 if (dst.regClass() == v1) {
1248 Temp carry = bld.vadd32(bld.def(v1), src0, src1, true).def(1).getTemp();
1249 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), carry);
1250 break;
1251 }
1252
1253 Temp src00 = bld.tmp(src0.type(), 1);
1254 Temp src01 = bld.tmp(dst.type(), 1);
1255 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1256 Temp src10 = bld.tmp(src1.type(), 1);
1257 Temp src11 = bld.tmp(dst.type(), 1);
1258 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1259 if (dst.regClass() == s2) {
1260 Temp carry = bld.tmp(s1);
1261 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1262 carry = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(carry)).def(1).getTemp();
1263 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1264 } else if (dst.regClass() == v2) {
1265 Temp carry = bld.vadd32(bld.def(v1), src00, src10, true).def(1).getTemp();
1266 carry = bld.vadd32(bld.def(v1), src01, src11, true, carry).def(1).getTemp();
1267 carry = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), carry);
1268 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1269 } else {
1270 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1271 nir_print_instr(&instr->instr, stderr);
1272 fprintf(stderr, "\n");
1273 }
1274 break;
1275 }
1276 case nir_op_isub: {
1277 if (dst.regClass() == s1) {
1278 emit_sop2_instruction(ctx, instr, aco_opcode::s_sub_i32, dst, true);
1279 break;
1280 }
1281
1282 Temp src0 = get_alu_src(ctx, instr->src[0]);
1283 Temp src1 = get_alu_src(ctx, instr->src[1]);
1284 if (dst.regClass() == v1) {
1285 bld.vsub32(Definition(dst), src0, src1);
1286 break;
1287 }
1288
1289 Temp src00 = bld.tmp(src0.type(), 1);
1290 Temp src01 = bld.tmp(dst.type(), 1);
1291 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1292 Temp src10 = bld.tmp(src1.type(), 1);
1293 Temp src11 = bld.tmp(dst.type(), 1);
1294 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1295 if (dst.regClass() == s2) {
1296 Temp carry = bld.tmp(s1);
1297 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1298 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), src01, src11, carry);
1299 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1300 } else if (dst.regClass() == v2) {
1301 Temp lower = bld.tmp(v1);
1302 Temp borrow = bld.vsub32(Definition(lower), src00, src10, true).def(1).getTemp();
1303 Temp upper = bld.vsub32(bld.def(v1), src01, src11, false, borrow);
1304 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1305 } else {
1306 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1307 nir_print_instr(&instr->instr, stderr);
1308 fprintf(stderr, "\n");
1309 }
1310 break;
1311 }
1312 case nir_op_usub_borrow: {
1313 Temp src0 = get_alu_src(ctx, instr->src[0]);
1314 Temp src1 = get_alu_src(ctx, instr->src[1]);
1315 if (dst.regClass() == s1) {
1316 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1317 break;
1318 } else if (dst.regClass() == v1) {
1319 Temp borrow = bld.vsub32(bld.def(v1), src0, src1, true).def(1).getTemp();
1320 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), borrow);
1321 break;
1322 }
1323
1324 Temp src00 = bld.tmp(src0.type(), 1);
1325 Temp src01 = bld.tmp(dst.type(), 1);
1326 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1327 Temp src10 = bld.tmp(src1.type(), 1);
1328 Temp src11 = bld.tmp(dst.type(), 1);
1329 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1330 if (dst.regClass() == s2) {
1331 Temp borrow = bld.tmp(s1);
1332 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), src00, src10);
1333 borrow = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(borrow)).def(1).getTemp();
1334 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1335 } else if (dst.regClass() == v2) {
1336 Temp borrow = bld.vsub32(bld.def(v1), src00, src10, true).def(1).getTemp();
1337 borrow = bld.vsub32(bld.def(v1), src01, src11, true, Operand(borrow)).def(1).getTemp();
1338 borrow = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), borrow);
1339 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1340 } else {
1341 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1342 nir_print_instr(&instr->instr, stderr);
1343 fprintf(stderr, "\n");
1344 }
1345 break;
1346 }
1347 case nir_op_imul: {
1348 if (dst.regClass() == v1) {
1349 bld.vop3(aco_opcode::v_mul_lo_u32, Definition(dst),
1350 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1351 } else if (dst.regClass() == s1) {
1352 emit_sop2_instruction(ctx, instr, aco_opcode::s_mul_i32, dst, false);
1353 } else {
1354 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1355 nir_print_instr(&instr->instr, stderr);
1356 fprintf(stderr, "\n");
1357 }
1358 break;
1359 }
1360 case nir_op_umul_high: {
1361 if (dst.regClass() == v1) {
1362 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1363 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1364 bld.sop2(aco_opcode::s_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1365 } else if (dst.regClass() == s1) {
1366 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1367 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1368 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1369 } else {
1370 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1371 nir_print_instr(&instr->instr, stderr);
1372 fprintf(stderr, "\n");
1373 }
1374 break;
1375 }
1376 case nir_op_imul_high: {
1377 if (dst.regClass() == v1) {
1378 bld.vop3(aco_opcode::v_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1379 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1380 bld.sop2(aco_opcode::s_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1381 } else if (dst.regClass() == s1) {
1382 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1383 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1384 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1385 } else {
1386 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1387 nir_print_instr(&instr->instr, stderr);
1388 fprintf(stderr, "\n");
1389 }
1390 break;
1391 }
1392 case nir_op_fmul: {
1393 if (dst.size() == 1) {
1394 emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f32, dst, true);
1395 } else if (dst.size() == 2) {
1396 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), get_alu_src(ctx, instr->src[0]),
1397 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1398 } else {
1399 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1400 nir_print_instr(&instr->instr, stderr);
1401 fprintf(stderr, "\n");
1402 }
1403 break;
1404 }
1405 case nir_op_fadd: {
1406 if (dst.size() == 1) {
1407 emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f32, dst, true);
1408 } else if (dst.size() == 2) {
1409 bld.vop3(aco_opcode::v_add_f64, Definition(dst), get_alu_src(ctx, instr->src[0]),
1410 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1411 } else {
1412 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1413 nir_print_instr(&instr->instr, stderr);
1414 fprintf(stderr, "\n");
1415 }
1416 break;
1417 }
1418 case nir_op_fsub: {
1419 Temp src0 = get_alu_src(ctx, instr->src[0]);
1420 Temp src1 = get_alu_src(ctx, instr->src[1]);
1421 if (dst.size() == 1) {
1422 if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
1423 emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f32, dst, false);
1424 else
1425 emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f32, dst, true);
1426 } else if (dst.size() == 2) {
1427 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst),
1428 get_alu_src(ctx, instr->src[0]),
1429 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1430 VOP3A_instruction* sub = static_cast<VOP3A_instruction*>(add);
1431 sub->neg[1] = true;
1432 } else {
1433 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1434 nir_print_instr(&instr->instr, stderr);
1435 fprintf(stderr, "\n");
1436 }
1437 break;
1438 }
1439 case nir_op_fmax: {
1440 if (dst.size() == 1) {
1441 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1442 } else if (dst.size() == 2) {
1443 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1444 Temp tmp = bld.vop3(aco_opcode::v_max_f64, bld.def(v2),
1445 get_alu_src(ctx, instr->src[0]),
1446 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1447 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1448 } else {
1449 bld.vop3(aco_opcode::v_max_f64, Definition(dst),
1450 get_alu_src(ctx, instr->src[0]),
1451 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1452 }
1453 } else {
1454 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1455 nir_print_instr(&instr->instr, stderr);
1456 fprintf(stderr, "\n");
1457 }
1458 break;
1459 }
1460 case nir_op_fmin: {
1461 if (dst.size() == 1) {
1462 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1463 } else if (dst.size() == 2) {
1464 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1465 Temp tmp = bld.vop3(aco_opcode::v_min_f64, bld.def(v2),
1466 get_alu_src(ctx, instr->src[0]),
1467 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1468 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1469 } else {
1470 bld.vop3(aco_opcode::v_min_f64, Definition(dst),
1471 get_alu_src(ctx, instr->src[0]),
1472 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1473 }
1474 } else {
1475 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1476 nir_print_instr(&instr->instr, stderr);
1477 fprintf(stderr, "\n");
1478 }
1479 break;
1480 }
1481 case nir_op_fmax3: {
1482 if (dst.size() == 1) {
1483 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1484 } else {
1485 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1486 nir_print_instr(&instr->instr, stderr);
1487 fprintf(stderr, "\n");
1488 }
1489 break;
1490 }
1491 case nir_op_fmin3: {
1492 if (dst.size() == 1) {
1493 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1494 } else {
1495 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1496 nir_print_instr(&instr->instr, stderr);
1497 fprintf(stderr, "\n");
1498 }
1499 break;
1500 }
1501 case nir_op_fmed3: {
1502 if (dst.size() == 1) {
1503 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1504 } else {
1505 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1506 nir_print_instr(&instr->instr, stderr);
1507 fprintf(stderr, "\n");
1508 }
1509 break;
1510 }
1511 case nir_op_umax3: {
1512 if (dst.size() == 1) {
1513 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_u32, dst);
1514 } else {
1515 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1516 nir_print_instr(&instr->instr, stderr);
1517 fprintf(stderr, "\n");
1518 }
1519 break;
1520 }
1521 case nir_op_umin3: {
1522 if (dst.size() == 1) {
1523 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_u32, dst);
1524 } else {
1525 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1526 nir_print_instr(&instr->instr, stderr);
1527 fprintf(stderr, "\n");
1528 }
1529 break;
1530 }
1531 case nir_op_umed3: {
1532 if (dst.size() == 1) {
1533 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_u32, dst);
1534 } else {
1535 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1536 nir_print_instr(&instr->instr, stderr);
1537 fprintf(stderr, "\n");
1538 }
1539 break;
1540 }
1541 case nir_op_imax3: {
1542 if (dst.size() == 1) {
1543 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_i32, dst);
1544 } else {
1545 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1546 nir_print_instr(&instr->instr, stderr);
1547 fprintf(stderr, "\n");
1548 }
1549 break;
1550 }
1551 case nir_op_imin3: {
1552 if (dst.size() == 1) {
1553 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_i32, dst);
1554 } else {
1555 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1556 nir_print_instr(&instr->instr, stderr);
1557 fprintf(stderr, "\n");
1558 }
1559 break;
1560 }
1561 case nir_op_imed3: {
1562 if (dst.size() == 1) {
1563 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_i32, dst);
1564 } else {
1565 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1566 nir_print_instr(&instr->instr, stderr);
1567 fprintf(stderr, "\n");
1568 }
1569 break;
1570 }
1571 case nir_op_cube_face_coord: {
1572 Temp in = get_alu_src(ctx, instr->src[0], 3);
1573 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1574 emit_extract_vector(ctx, in, 1, v1),
1575 emit_extract_vector(ctx, in, 2, v1) };
1576 Temp ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), src[0], src[1], src[2]);
1577 ma = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), ma);
1578 Temp sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), src[0], src[1], src[2]);
1579 Temp tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), src[0], src[1], src[2]);
1580 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, ma, Operand(0x3f000000u/*0.5*/));
1581 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, ma, Operand(0x3f000000u/*0.5*/));
1582 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), sc, tc);
1583 break;
1584 }
1585 case nir_op_cube_face_index: {
1586 Temp in = get_alu_src(ctx, instr->src[0], 3);
1587 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1588 emit_extract_vector(ctx, in, 1, v1),
1589 emit_extract_vector(ctx, in, 2, v1) };
1590 bld.vop3(aco_opcode::v_cubeid_f32, Definition(dst), src[0], src[1], src[2]);
1591 break;
1592 }
1593 case nir_op_bcsel: {
1594 emit_bcsel(ctx, instr, dst);
1595 break;
1596 }
1597 case nir_op_frsq: {
1598 if (dst.size() == 1) {
1599 emit_rsq(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1600 } else if (dst.size() == 2) {
1601 emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f64, dst);
1602 } else {
1603 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1604 nir_print_instr(&instr->instr, stderr);
1605 fprintf(stderr, "\n");
1606 }
1607 break;
1608 }
1609 case nir_op_fneg: {
1610 Temp src = get_alu_src(ctx, instr->src[0]);
1611 if (dst.size() == 1) {
1612 if (ctx->block->fp_mode.must_flush_denorms32)
1613 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1614 bld.vop2(aco_opcode::v_xor_b32, Definition(dst), Operand(0x80000000u), as_vgpr(ctx, src));
1615 } else if (dst.size() == 2) {
1616 if (ctx->block->fp_mode.must_flush_denorms16_64)
1617 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1618 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1619 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1620 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), Operand(0x80000000u), upper);
1621 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1622 } else {
1623 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1624 nir_print_instr(&instr->instr, stderr);
1625 fprintf(stderr, "\n");
1626 }
1627 break;
1628 }
1629 case nir_op_fabs: {
1630 Temp src = get_alu_src(ctx, instr->src[0]);
1631 if (dst.size() == 1) {
1632 if (ctx->block->fp_mode.must_flush_denorms32)
1633 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1634 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0x7FFFFFFFu), as_vgpr(ctx, src));
1635 } else if (dst.size() == 2) {
1636 if (ctx->block->fp_mode.must_flush_denorms16_64)
1637 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1638 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1639 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1640 upper = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7FFFFFFFu), upper);
1641 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1642 } else {
1643 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1644 nir_print_instr(&instr->instr, stderr);
1645 fprintf(stderr, "\n");
1646 }
1647 break;
1648 }
1649 case nir_op_fsat: {
1650 Temp src = get_alu_src(ctx, instr->src[0]);
1651 if (dst.size() == 1) {
1652 bld.vop3(aco_opcode::v_med3_f32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
1653 /* apparently, it is not necessary to flush denorms if this instruction is used with these operands */
1654 // TODO: confirm that this holds under any circumstances
1655 } else if (dst.size() == 2) {
1656 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src, Operand(0u));
1657 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(add);
1658 vop3->clamp = true;
1659 } else {
1660 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1661 nir_print_instr(&instr->instr, stderr);
1662 fprintf(stderr, "\n");
1663 }
1664 break;
1665 }
1666 case nir_op_flog2: {
1667 if (dst.size() == 1) {
1668 emit_log2(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1669 } else {
1670 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1671 nir_print_instr(&instr->instr, stderr);
1672 fprintf(stderr, "\n");
1673 }
1674 break;
1675 }
1676 case nir_op_frcp: {
1677 if (dst.size() == 1) {
1678 emit_rcp(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1679 } else if (dst.size() == 2) {
1680 emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f64, dst);
1681 } else {
1682 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1683 nir_print_instr(&instr->instr, stderr);
1684 fprintf(stderr, "\n");
1685 }
1686 break;
1687 }
1688 case nir_op_fexp2: {
1689 if (dst.size() == 1) {
1690 emit_vop1_instruction(ctx, instr, aco_opcode::v_exp_f32, dst);
1691 } else {
1692 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1693 nir_print_instr(&instr->instr, stderr);
1694 fprintf(stderr, "\n");
1695 }
1696 break;
1697 }
1698 case nir_op_fsqrt: {
1699 if (dst.size() == 1) {
1700 emit_sqrt(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1701 } else if (dst.size() == 2) {
1702 emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f64, dst);
1703 } else {
1704 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1705 nir_print_instr(&instr->instr, stderr);
1706 fprintf(stderr, "\n");
1707 }
1708 break;
1709 }
1710 case nir_op_ffract: {
1711 if (dst.size() == 1) {
1712 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f32, dst);
1713 } else if (dst.size() == 2) {
1714 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f64, dst);
1715 } else {
1716 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1717 nir_print_instr(&instr->instr, stderr);
1718 fprintf(stderr, "\n");
1719 }
1720 break;
1721 }
1722 case nir_op_ffloor: {
1723 if (dst.size() == 1) {
1724 emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f32, dst);
1725 } else if (dst.size() == 2) {
1726 emit_floor_f64(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1727 } else {
1728 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1729 nir_print_instr(&instr->instr, stderr);
1730 fprintf(stderr, "\n");
1731 }
1732 break;
1733 }
1734 case nir_op_fceil: {
1735 if (dst.size() == 1) {
1736 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f32, dst);
1737 } else if (dst.size() == 2) {
1738 if (ctx->options->chip_class >= GFX7) {
1739 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f64, dst);
1740 } else {
1741 /* GFX6 doesn't support V_CEIL_F64, lower it. */
1742 Temp src0 = get_alu_src(ctx, instr->src[0]);
1743
1744 /* trunc = trunc(src0)
1745 * if (src0 > 0.0 && src0 != trunc)
1746 * trunc += 1.0
1747 */
1748 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src0);
1749 Temp tmp0 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.def(bld.lm), src0, Operand(0u));
1750 Temp tmp1 = bld.vopc(aco_opcode::v_cmp_lg_f64, bld.hint_vcc(bld.def(bld.lm)), src0, trunc);
1751 Temp cond = bld.sop2(aco_opcode::s_and_b64, bld.hint_vcc(bld.def(s2)), bld.def(s1, scc), tmp0, tmp1);
1752 Temp add = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), bld.copy(bld.def(v1), Operand(0u)), bld.copy(bld.def(v1), Operand(0x3ff00000u)), cond);
1753 add = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), bld.copy(bld.def(v1), Operand(0u)), add);
1754 bld.vop3(aco_opcode::v_add_f64, Definition(dst), trunc, add);
1755 }
1756 } else {
1757 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1758 nir_print_instr(&instr->instr, stderr);
1759 fprintf(stderr, "\n");
1760 }
1761 break;
1762 }
1763 case nir_op_ftrunc: {
1764 if (dst.size() == 1) {
1765 emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f32, dst);
1766 } else if (dst.size() == 2) {
1767 emit_trunc_f64(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1768 } else {
1769 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1770 nir_print_instr(&instr->instr, stderr);
1771 fprintf(stderr, "\n");
1772 }
1773 break;
1774 }
1775 case nir_op_fround_even: {
1776 if (dst.size() == 1) {
1777 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f32, dst);
1778 } else if (dst.size() == 2) {
1779 if (ctx->options->chip_class >= GFX7) {
1780 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f64, dst);
1781 } else {
1782 /* GFX6 doesn't support V_RNDNE_F64, lower it. */
1783 Temp src0 = get_alu_src(ctx, instr->src[0]);
1784
1785 Temp src0_lo = bld.tmp(v1), src0_hi = bld.tmp(v1);
1786 bld.pseudo(aco_opcode::p_split_vector, Definition(src0_lo), Definition(src0_hi), src0);
1787
1788 Temp bitmask = bld.sop1(aco_opcode::s_brev_b32, bld.def(s1), bld.copy(bld.def(s1), Operand(-2u)));
1789 Temp bfi = bld.vop3(aco_opcode::v_bfi_b32, bld.def(v1), bitmask, bld.copy(bld.def(v1), Operand(0x43300000u)), as_vgpr(ctx, src0_hi));
1790 Temp tmp = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), src0, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
1791 Instruction *sub = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), tmp, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
1792 static_cast<VOP3A_instruction*>(sub)->neg[1] = true;
1793 tmp = sub->definitions[0].getTemp();
1794
1795 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x432fffffu));
1796 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.hint_vcc(bld.def(bld.lm)), src0, v);
1797 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
1798 Temp cond = vop3->definitions[0].getTemp();
1799
1800 Temp tmp_lo = bld.tmp(v1), tmp_hi = bld.tmp(v1);
1801 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp_lo), Definition(tmp_hi), tmp);
1802 Temp dst0 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_lo, as_vgpr(ctx, src0_lo), cond);
1803 Temp dst1 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_hi, as_vgpr(ctx, src0_hi), cond);
1804
1805 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1806 }
1807 } else {
1808 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1809 nir_print_instr(&instr->instr, stderr);
1810 fprintf(stderr, "\n");
1811 }
1812 break;
1813 }
1814 case nir_op_fsin:
1815 case nir_op_fcos: {
1816 Temp src = get_alu_src(ctx, instr->src[0]);
1817 aco_ptr<Instruction> norm;
1818 if (dst.size() == 1) {
1819 Temp half_pi = bld.copy(bld.def(s1), Operand(0x3e22f983u));
1820 Temp tmp = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), half_pi, as_vgpr(ctx, src));
1821
1822 /* before GFX9, v_sin_f32 and v_cos_f32 had a valid input domain of [-256, +256] */
1823 if (ctx->options->chip_class < GFX9)
1824 tmp = bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), tmp);
1825
1826 aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f32 : aco_opcode::v_cos_f32;
1827 bld.vop1(opcode, Definition(dst), tmp);
1828 } else {
1829 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1830 nir_print_instr(&instr->instr, stderr);
1831 fprintf(stderr, "\n");
1832 }
1833 break;
1834 }
1835 case nir_op_ldexp: {
1836 if (dst.size() == 1) {
1837 bld.vop3(aco_opcode::v_ldexp_f32, Definition(dst),
1838 as_vgpr(ctx, get_alu_src(ctx, instr->src[0])),
1839 get_alu_src(ctx, instr->src[1]));
1840 } else if (dst.size() == 2) {
1841 bld.vop3(aco_opcode::v_ldexp_f64, Definition(dst),
1842 as_vgpr(ctx, get_alu_src(ctx, instr->src[0])),
1843 get_alu_src(ctx, instr->src[1]));
1844 } else {
1845 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1846 nir_print_instr(&instr->instr, stderr);
1847 fprintf(stderr, "\n");
1848 }
1849 break;
1850 }
1851 case nir_op_frexp_sig: {
1852 if (dst.size() == 1) {
1853 bld.vop1(aco_opcode::v_frexp_mant_f32, Definition(dst),
1854 get_alu_src(ctx, instr->src[0]));
1855 } else if (dst.size() == 2) {
1856 bld.vop1(aco_opcode::v_frexp_mant_f64, Definition(dst),
1857 get_alu_src(ctx, instr->src[0]));
1858 } else {
1859 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1860 nir_print_instr(&instr->instr, stderr);
1861 fprintf(stderr, "\n");
1862 }
1863 break;
1864 }
1865 case nir_op_frexp_exp: {
1866 if (instr->src[0].src.ssa->bit_size == 32) {
1867 bld.vop1(aco_opcode::v_frexp_exp_i32_f32, Definition(dst),
1868 get_alu_src(ctx, instr->src[0]));
1869 } else if (instr->src[0].src.ssa->bit_size == 64) {
1870 bld.vop1(aco_opcode::v_frexp_exp_i32_f64, Definition(dst),
1871 get_alu_src(ctx, instr->src[0]));
1872 } else {
1873 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1874 nir_print_instr(&instr->instr, stderr);
1875 fprintf(stderr, "\n");
1876 }
1877 break;
1878 }
1879 case nir_op_fsign: {
1880 Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
1881 if (dst.size() == 1) {
1882 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1883 src = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0x3f800000u), src, cond);
1884 cond = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1885 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0xbf800000u), src, cond);
1886 } else if (dst.size() == 2) {
1887 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1888 Temp tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0x3FF00000u));
1889 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, emit_extract_vector(ctx, src, 1, v1), cond);
1890
1891 cond = bld.vopc(aco_opcode::v_cmp_le_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1892 tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0xBFF00000u));
1893 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, upper, cond);
1894
1895 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
1896 } else {
1897 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1898 nir_print_instr(&instr->instr, stderr);
1899 fprintf(stderr, "\n");
1900 }
1901 break;
1902 }
1903 case nir_op_f2f32: {
1904 if (instr->src[0].src.ssa->bit_size == 64) {
1905 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f64, dst);
1906 } else {
1907 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1908 nir_print_instr(&instr->instr, stderr);
1909 fprintf(stderr, "\n");
1910 }
1911 break;
1912 }
1913 case nir_op_f2f64: {
1914 if (instr->src[0].src.ssa->bit_size == 32) {
1915 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_f32, dst);
1916 } else {
1917 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1918 nir_print_instr(&instr->instr, stderr);
1919 fprintf(stderr, "\n");
1920 }
1921 break;
1922 }
1923 case nir_op_i2f32: {
1924 assert(dst.size() == 1);
1925 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_i32, dst);
1926 break;
1927 }
1928 case nir_op_i2f64: {
1929 if (instr->src[0].src.ssa->bit_size == 32) {
1930 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_i32, dst);
1931 } else if (instr->src[0].src.ssa->bit_size == 64) {
1932 Temp src = get_alu_src(ctx, instr->src[0]);
1933 RegClass rc = RegClass(src.type(), 1);
1934 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
1935 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1936 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
1937 upper = bld.vop1(aco_opcode::v_cvt_f64_i32, bld.def(v2), upper);
1938 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
1939 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
1940
1941 } else {
1942 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1943 nir_print_instr(&instr->instr, stderr);
1944 fprintf(stderr, "\n");
1945 }
1946 break;
1947 }
1948 case nir_op_u2f32: {
1949 assert(dst.size() == 1);
1950 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_u32, dst);
1951 break;
1952 }
1953 case nir_op_u2f64: {
1954 if (instr->src[0].src.ssa->bit_size == 32) {
1955 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_u32, dst);
1956 } else if (instr->src[0].src.ssa->bit_size == 64) {
1957 Temp src = get_alu_src(ctx, instr->src[0]);
1958 RegClass rc = RegClass(src.type(), 1);
1959 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
1960 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1961 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
1962 upper = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), upper);
1963 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
1964 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
1965 } else {
1966 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1967 nir_print_instr(&instr->instr, stderr);
1968 fprintf(stderr, "\n");
1969 }
1970 break;
1971 }
1972 case nir_op_f2i32: {
1973 Temp src = get_alu_src(ctx, instr->src[0]);
1974 if (instr->src[0].src.ssa->bit_size == 32) {
1975 if (dst.type() == RegType::vgpr)
1976 bld.vop1(aco_opcode::v_cvt_i32_f32, Definition(dst), src);
1977 else
1978 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
1979 bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), src));
1980
1981 } else if (instr->src[0].src.ssa->bit_size == 64) {
1982 if (dst.type() == RegType::vgpr)
1983 bld.vop1(aco_opcode::v_cvt_i32_f64, Definition(dst), src);
1984 else
1985 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
1986 bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), src));
1987
1988 } else {
1989 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1990 nir_print_instr(&instr->instr, stderr);
1991 fprintf(stderr, "\n");
1992 }
1993 break;
1994 }
1995 case nir_op_f2u32: {
1996 Temp src = get_alu_src(ctx, instr->src[0]);
1997 if (instr->src[0].src.ssa->bit_size == 32) {
1998 if (dst.type() == RegType::vgpr)
1999 bld.vop1(aco_opcode::v_cvt_u32_f32, Definition(dst), src);
2000 else
2001 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2002 bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), src));
2003
2004 } else if (instr->src[0].src.ssa->bit_size == 64) {
2005 if (dst.type() == RegType::vgpr)
2006 bld.vop1(aco_opcode::v_cvt_u32_f64, Definition(dst), src);
2007 else
2008 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2009 bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), src));
2010
2011 } else {
2012 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2013 nir_print_instr(&instr->instr, stderr);
2014 fprintf(stderr, "\n");
2015 }
2016 break;
2017 }
2018 case nir_op_f2i64: {
2019 Temp src = get_alu_src(ctx, instr->src[0]);
2020 if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::vgpr) {
2021 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2022 exponent = bld.vop3(aco_opcode::v_med3_i32, bld.def(v1), Operand(0x0u), exponent, Operand(64u));
2023 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2024 Temp sign = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
2025 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2026 mantissa = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(7u), mantissa);
2027 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2028 Temp new_exponent = bld.tmp(v1);
2029 Temp borrow = bld.vsub32(Definition(new_exponent), Operand(63u), exponent, true).def(1).getTemp();
2030 if (ctx->program->chip_class >= GFX8)
2031 mantissa = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), new_exponent, mantissa);
2032 else
2033 mantissa = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), mantissa, new_exponent);
2034 Temp saturate = bld.vop1(aco_opcode::v_bfrev_b32, bld.def(v1), Operand(0xfffffffeu));
2035 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2036 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2037 lower = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), lower, Operand(0xffffffffu), borrow);
2038 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), upper, saturate, borrow);
2039 lower = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, lower);
2040 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, upper);
2041 Temp new_lower = bld.tmp(v1);
2042 borrow = bld.vsub32(Definition(new_lower), lower, sign, true).def(1).getTemp();
2043 Temp new_upper = bld.vsub32(bld.def(v1), upper, sign, false, borrow);
2044 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), new_lower, new_upper);
2045
2046 } else if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::sgpr) {
2047 if (src.type() == RegType::vgpr)
2048 src = bld.as_uniform(src);
2049 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2050 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2051 exponent = bld.sop2(aco_opcode::s_max_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2052 exponent = bld.sop2(aco_opcode::s_min_u32, bld.def(s1), bld.def(s1, scc), Operand(64u), exponent);
2053 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2054 Temp sign = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
2055 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2056 mantissa = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), mantissa, Operand(7u));
2057 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2058 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(63u), exponent);
2059 mantissa = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent);
2060 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), exponent, Operand(0xffffffffu)); // exp >= 64
2061 Temp saturate = bld.sop1(aco_opcode::s_brev_b64, bld.def(s2), Operand(0xfffffffeu));
2062 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), saturate, mantissa, cond);
2063 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2064 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2065 lower = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, lower);
2066 upper = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, upper);
2067 Temp borrow = bld.tmp(s1);
2068 lower = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), lower, sign);
2069 upper = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), upper, sign, borrow);
2070 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2071
2072 } else if (instr->src[0].src.ssa->bit_size == 64) {
2073 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2074 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2075 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2076 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2077 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2078 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2079 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2080 Temp upper = bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), floor);
2081 if (dst.type() == RegType::sgpr) {
2082 lower = bld.as_uniform(lower);
2083 upper = bld.as_uniform(upper);
2084 }
2085 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2086
2087 } else {
2088 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2089 nir_print_instr(&instr->instr, stderr);
2090 fprintf(stderr, "\n");
2091 }
2092 break;
2093 }
2094 case nir_op_f2u64: {
2095 Temp src = get_alu_src(ctx, instr->src[0]);
2096 if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::vgpr) {
2097 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2098 Temp exponent_in_range = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(64u), exponent);
2099 exponent = bld.vop2(aco_opcode::v_max_i32, bld.def(v1), Operand(0x0u), exponent);
2100 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2101 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2102 Temp exponent_small = bld.vsub32(bld.def(v1), Operand(24u), exponent);
2103 Temp small = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), exponent_small, mantissa);
2104 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2105 Temp new_exponent = bld.tmp(v1);
2106 Temp cond_small = bld.vsub32(Definition(new_exponent), exponent, Operand(24u), true).def(1).getTemp();
2107 if (ctx->program->chip_class >= GFX8)
2108 mantissa = bld.vop3(aco_opcode::v_lshlrev_b64, bld.def(v2), new_exponent, mantissa);
2109 else
2110 mantissa = bld.vop3(aco_opcode::v_lshl_b64, bld.def(v2), mantissa, new_exponent);
2111 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2112 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2113 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), lower, small, cond_small);
2114 upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), upper, Operand(0u), cond_small);
2115 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), lower, exponent_in_range);
2116 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), upper, exponent_in_range);
2117 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2118
2119 } else if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::sgpr) {
2120 if (src.type() == RegType::vgpr)
2121 src = bld.as_uniform(src);
2122 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2123 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2124 exponent = bld.sop2(aco_opcode::s_max_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2125 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2126 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2127 Temp exponent_small = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(24u), exponent);
2128 Temp small = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), mantissa, exponent_small);
2129 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2130 Temp exponent_large = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(24u));
2131 mantissa = bld.sop2(aco_opcode::s_lshl_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent_large);
2132 Temp cond = bld.sopc(aco_opcode::s_cmp_ge_i32, bld.def(s1, scc), Operand(64u), exponent);
2133 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), mantissa, Operand(0xffffffffu), cond);
2134 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2135 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2136 Temp cond_small = bld.sopc(aco_opcode::s_cmp_le_i32, bld.def(s1, scc), exponent, Operand(24u));
2137 lower = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), small, lower, cond_small);
2138 upper = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), Operand(0u), upper, cond_small);
2139 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2140
2141 } else if (instr->src[0].src.ssa->bit_size == 64) {
2142 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2143 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2144 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2145 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2146 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2147 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2148 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2149 Temp upper = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), floor);
2150 if (dst.type() == RegType::sgpr) {
2151 lower = bld.as_uniform(lower);
2152 upper = bld.as_uniform(upper);
2153 }
2154 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2155
2156 } else {
2157 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2158 nir_print_instr(&instr->instr, stderr);
2159 fprintf(stderr, "\n");
2160 }
2161 break;
2162 }
2163 case nir_op_b2f32: {
2164 Temp src = get_alu_src(ctx, instr->src[0]);
2165 assert(src.regClass() == bld.lm);
2166
2167 if (dst.regClass() == s1) {
2168 src = bool_to_scalar_condition(ctx, src);
2169 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3f800000u), src);
2170 } else if (dst.regClass() == v1) {
2171 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
2172 } else {
2173 unreachable("Wrong destination register class for nir_op_b2f32.");
2174 }
2175 break;
2176 }
2177 case nir_op_b2f64: {
2178 Temp src = get_alu_src(ctx, instr->src[0]);
2179 assert(src.regClass() == bld.lm);
2180
2181 if (dst.regClass() == s2) {
2182 src = bool_to_scalar_condition(ctx, src);
2183 bld.sop2(aco_opcode::s_cselect_b64, Definition(dst), Operand(0x3f800000u), Operand(0u), bld.scc(src));
2184 } else if (dst.regClass() == v2) {
2185 Temp one = bld.vop1(aco_opcode::v_mov_b32, bld.def(v2), Operand(0x3FF00000u));
2186 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), one, src);
2187 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
2188 } else {
2189 unreachable("Wrong destination register class for nir_op_b2f64.");
2190 }
2191 break;
2192 }
2193 case nir_op_i2i32: {
2194 Temp src = get_alu_src(ctx, instr->src[0]);
2195 if (instr->src[0].src.ssa->bit_size == 64) {
2196 /* we can actually just say dst = src, as it would map the lower register */
2197 emit_extract_vector(ctx, src, 0, dst);
2198 } else {
2199 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2200 nir_print_instr(&instr->instr, stderr);
2201 fprintf(stderr, "\n");
2202 }
2203 break;
2204 }
2205 case nir_op_u2u32: {
2206 Temp src = get_alu_src(ctx, instr->src[0]);
2207 if (instr->src[0].src.ssa->bit_size == 16) {
2208 if (dst.regClass() == s1) {
2209 bld.sop2(aco_opcode::s_and_b32, Definition(dst), bld.def(s1, scc), Operand(0xFFFFu), src);
2210 } else {
2211 // TODO: do better with SDWA
2212 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0xFFFFu), src);
2213 }
2214 } else if (instr->src[0].src.ssa->bit_size == 64) {
2215 /* we can actually just say dst = src, as it would map the lower register */
2216 emit_extract_vector(ctx, src, 0, dst);
2217 } else {
2218 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2219 nir_print_instr(&instr->instr, stderr);
2220 fprintf(stderr, "\n");
2221 }
2222 break;
2223 }
2224 case nir_op_i2i64: {
2225 Temp src = get_alu_src(ctx, instr->src[0]);
2226 if (src.regClass() == s1) {
2227 Temp high = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
2228 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, high);
2229 } else if (src.regClass() == v1) {
2230 Temp high = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
2231 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, high);
2232 } else {
2233 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2234 nir_print_instr(&instr->instr, stderr);
2235 fprintf(stderr, "\n");
2236 }
2237 break;
2238 }
2239 case nir_op_u2u64: {
2240 Temp src = get_alu_src(ctx, instr->src[0]);
2241 if (instr->src[0].src.ssa->bit_size == 32) {
2242 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, Operand(0u));
2243 } else {
2244 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2245 nir_print_instr(&instr->instr, stderr);
2246 fprintf(stderr, "\n");
2247 }
2248 break;
2249 }
2250 case nir_op_b2i32: {
2251 Temp src = get_alu_src(ctx, instr->src[0]);
2252 assert(src.regClass() == bld.lm);
2253
2254 if (dst.regClass() == s1) {
2255 // TODO: in a post-RA optimization, we can check if src is in VCC, and directly use VCCNZ
2256 bool_to_scalar_condition(ctx, src, dst);
2257 } else if (dst.regClass() == v1) {
2258 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), src);
2259 } else {
2260 unreachable("Invalid register class for b2i32");
2261 }
2262 break;
2263 }
2264 case nir_op_i2b1: {
2265 Temp src = get_alu_src(ctx, instr->src[0]);
2266 assert(dst.regClass() == bld.lm);
2267
2268 if (src.type() == RegType::vgpr) {
2269 assert(src.regClass() == v1 || src.regClass() == v2);
2270 assert(dst.regClass() == bld.lm);
2271 bld.vopc(src.size() == 2 ? aco_opcode::v_cmp_lg_u64 : aco_opcode::v_cmp_lg_u32,
2272 Definition(dst), Operand(0u), src).def(0).setHint(vcc);
2273 } else {
2274 assert(src.regClass() == s1 || src.regClass() == s2);
2275 Temp tmp;
2276 if (src.regClass() == s2 && ctx->program->chip_class <= GFX7) {
2277 tmp = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), Operand(0u), src).def(1).getTemp();
2278 } else {
2279 tmp = bld.sopc(src.size() == 2 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::s_cmp_lg_u32,
2280 bld.scc(bld.def(s1)), Operand(0u), src);
2281 }
2282 bool_to_vector_condition(ctx, tmp, dst);
2283 }
2284 break;
2285 }
2286 case nir_op_pack_64_2x32_split: {
2287 Temp src0 = get_alu_src(ctx, instr->src[0]);
2288 Temp src1 = get_alu_src(ctx, instr->src[1]);
2289
2290 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
2291 break;
2292 }
2293 case nir_op_unpack_64_2x32_split_x:
2294 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
2295 break;
2296 case nir_op_unpack_64_2x32_split_y:
2297 bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
2298 break;
2299 case nir_op_pack_half_2x16: {
2300 Temp src = get_alu_src(ctx, instr->src[0], 2);
2301
2302 if (dst.regClass() == v1) {
2303 Temp src0 = bld.tmp(v1);
2304 Temp src1 = bld.tmp(v1);
2305 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
2306 if (!ctx->block->fp_mode.care_about_round32 || ctx->block->fp_mode.round32 == fp_round_tz)
2307 bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, Definition(dst), src0, src1);
2308 else
2309 bld.vop3(aco_opcode::v_cvt_pk_u16_u32, Definition(dst),
2310 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src0),
2311 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src1));
2312 } else {
2313 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2314 nir_print_instr(&instr->instr, stderr);
2315 fprintf(stderr, "\n");
2316 }
2317 break;
2318 }
2319 case nir_op_unpack_half_2x16_split_x: {
2320 if (dst.regClass() == v1) {
2321 Builder bld(ctx->program, ctx->block);
2322 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst), get_alu_src(ctx, instr->src[0]));
2323 } else {
2324 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2325 nir_print_instr(&instr->instr, stderr);
2326 fprintf(stderr, "\n");
2327 }
2328 break;
2329 }
2330 case nir_op_unpack_half_2x16_split_y: {
2331 if (dst.regClass() == v1) {
2332 Builder bld(ctx->program, ctx->block);
2333 /* TODO: use SDWA here */
2334 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst),
2335 bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), as_vgpr(ctx, get_alu_src(ctx, instr->src[0]))));
2336 } else {
2337 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2338 nir_print_instr(&instr->instr, stderr);
2339 fprintf(stderr, "\n");
2340 }
2341 break;
2342 }
2343 case nir_op_fquantize2f16: {
2344 Temp src = get_alu_src(ctx, instr->src[0]);
2345 Temp f16 = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), src);
2346 Temp f32, cmp_res;
2347
2348 if (ctx->program->chip_class >= GFX8) {
2349 Temp mask = bld.copy(bld.def(s1), Operand(0x36Fu)); /* value is NOT negative/positive denormal value */
2350 cmp_res = bld.vopc_e64(aco_opcode::v_cmp_class_f16, bld.hint_vcc(bld.def(bld.lm)), f16, mask);
2351 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2352 } else {
2353 /* 0x38800000 is smallest half float value (2^-14) in 32-bit float,
2354 * so compare the result and flush to 0 if it's smaller.
2355 */
2356 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2357 Temp smallest = bld.copy(bld.def(s1), Operand(0x38800000u));
2358 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), f32, smallest);
2359 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
2360 cmp_res = vop3->definitions[0].getTemp();
2361 }
2362
2363 if (ctx->block->fp_mode.preserve_signed_zero_inf_nan32 || ctx->program->chip_class < GFX8) {
2364 Temp copysign_0 = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0u), as_vgpr(ctx, src));
2365 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), copysign_0, f32, cmp_res);
2366 } else {
2367 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), f32, cmp_res);
2368 }
2369 break;
2370 }
2371 case nir_op_bfm: {
2372 Temp bits = get_alu_src(ctx, instr->src[0]);
2373 Temp offset = get_alu_src(ctx, instr->src[1]);
2374
2375 if (dst.regClass() == s1) {
2376 bld.sop2(aco_opcode::s_bfm_b32, Definition(dst), bits, offset);
2377 } else if (dst.regClass() == v1) {
2378 bld.vop3(aco_opcode::v_bfm_b32, Definition(dst), bits, offset);
2379 } else {
2380 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2381 nir_print_instr(&instr->instr, stderr);
2382 fprintf(stderr, "\n");
2383 }
2384 break;
2385 }
2386 case nir_op_bitfield_select: {
2387 /* (mask & insert) | (~mask & base) */
2388 Temp bitmask = get_alu_src(ctx, instr->src[0]);
2389 Temp insert = get_alu_src(ctx, instr->src[1]);
2390 Temp base = get_alu_src(ctx, instr->src[2]);
2391
2392 /* dst = (insert & bitmask) | (base & ~bitmask) */
2393 if (dst.regClass() == s1) {
2394 aco_ptr<Instruction> sop2;
2395 nir_const_value* const_bitmask = nir_src_as_const_value(instr->src[0].src);
2396 nir_const_value* const_insert = nir_src_as_const_value(instr->src[1].src);
2397 Operand lhs;
2398 if (const_insert && const_bitmask) {
2399 lhs = Operand(const_insert->u32 & const_bitmask->u32);
2400 } else {
2401 insert = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), insert, bitmask);
2402 lhs = Operand(insert);
2403 }
2404
2405 Operand rhs;
2406 nir_const_value* const_base = nir_src_as_const_value(instr->src[2].src);
2407 if (const_base && const_bitmask) {
2408 rhs = Operand(const_base->u32 & ~const_bitmask->u32);
2409 } else {
2410 base = bld.sop2(aco_opcode::s_andn2_b32, bld.def(s1), bld.def(s1, scc), base, bitmask);
2411 rhs = Operand(base);
2412 }
2413
2414 bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), rhs, lhs);
2415
2416 } else if (dst.regClass() == v1) {
2417 if (base.type() == RegType::sgpr && (bitmask.type() == RegType::sgpr || (insert.type() == RegType::sgpr)))
2418 base = as_vgpr(ctx, base);
2419 if (insert.type() == RegType::sgpr && bitmask.type() == RegType::sgpr)
2420 insert = as_vgpr(ctx, insert);
2421
2422 bld.vop3(aco_opcode::v_bfi_b32, Definition(dst), bitmask, insert, base);
2423
2424 } else {
2425 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2426 nir_print_instr(&instr->instr, stderr);
2427 fprintf(stderr, "\n");
2428 }
2429 break;
2430 }
2431 case nir_op_ubfe:
2432 case nir_op_ibfe: {
2433 Temp base = get_alu_src(ctx, instr->src[0]);
2434 Temp offset = get_alu_src(ctx, instr->src[1]);
2435 Temp bits = get_alu_src(ctx, instr->src[2]);
2436
2437 if (dst.type() == RegType::sgpr) {
2438 Operand extract;
2439 nir_const_value* const_offset = nir_src_as_const_value(instr->src[1].src);
2440 nir_const_value* const_bits = nir_src_as_const_value(instr->src[2].src);
2441 if (const_offset && const_bits) {
2442 uint32_t const_extract = (const_bits->u32 << 16) | const_offset->u32;
2443 extract = Operand(const_extract);
2444 } else {
2445 Operand width;
2446 if (const_bits) {
2447 width = Operand(const_bits->u32 << 16);
2448 } else {
2449 width = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), bits, Operand(16u));
2450 }
2451 extract = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), offset, width);
2452 }
2453
2454 aco_opcode opcode;
2455 if (dst.regClass() == s1) {
2456 if (instr->op == nir_op_ubfe)
2457 opcode = aco_opcode::s_bfe_u32;
2458 else
2459 opcode = aco_opcode::s_bfe_i32;
2460 } else if (dst.regClass() == s2) {
2461 if (instr->op == nir_op_ubfe)
2462 opcode = aco_opcode::s_bfe_u64;
2463 else
2464 opcode = aco_opcode::s_bfe_i64;
2465 } else {
2466 unreachable("Unsupported BFE bit size");
2467 }
2468
2469 bld.sop2(opcode, Definition(dst), bld.def(s1, scc), base, extract);
2470
2471 } else {
2472 aco_opcode opcode;
2473 if (dst.regClass() == v1) {
2474 if (instr->op == nir_op_ubfe)
2475 opcode = aco_opcode::v_bfe_u32;
2476 else
2477 opcode = aco_opcode::v_bfe_i32;
2478 } else {
2479 unreachable("Unsupported BFE bit size");
2480 }
2481
2482 emit_vop3a_instruction(ctx, instr, opcode, dst);
2483 }
2484 break;
2485 }
2486 case nir_op_bit_count: {
2487 Temp src = get_alu_src(ctx, instr->src[0]);
2488 if (src.regClass() == s1) {
2489 bld.sop1(aco_opcode::s_bcnt1_i32_b32, Definition(dst), bld.def(s1, scc), src);
2490 } else if (src.regClass() == v1) {
2491 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst), src, Operand(0u));
2492 } else if (src.regClass() == v2) {
2493 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst),
2494 emit_extract_vector(ctx, src, 1, v1),
2495 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1),
2496 emit_extract_vector(ctx, src, 0, v1), Operand(0u)));
2497 } else if (src.regClass() == s2) {
2498 bld.sop1(aco_opcode::s_bcnt1_i32_b64, Definition(dst), bld.def(s1, scc), src);
2499 } else {
2500 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2501 nir_print_instr(&instr->instr, stderr);
2502 fprintf(stderr, "\n");
2503 }
2504 break;
2505 }
2506 case nir_op_flt: {
2507 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_f32, aco_opcode::v_cmp_lt_f64);
2508 break;
2509 }
2510 case nir_op_fge: {
2511 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_f32, aco_opcode::v_cmp_ge_f64);
2512 break;
2513 }
2514 case nir_op_feq: {
2515 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_f32, aco_opcode::v_cmp_eq_f64);
2516 break;
2517 }
2518 case nir_op_fne: {
2519 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_neq_f32, aco_opcode::v_cmp_neq_f64);
2520 break;
2521 }
2522 case nir_op_ilt: {
2523 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_i32, aco_opcode::v_cmp_lt_i64, aco_opcode::s_cmp_lt_i32);
2524 break;
2525 }
2526 case nir_op_ige: {
2527 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_i32, aco_opcode::v_cmp_ge_i64, aco_opcode::s_cmp_ge_i32);
2528 break;
2529 }
2530 case nir_op_ieq: {
2531 if (instr->src[0].src.ssa->bit_size == 1)
2532 emit_boolean_logic(ctx, instr, Builder::s_xnor, dst);
2533 else
2534 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_i32, aco_opcode::v_cmp_eq_i64, aco_opcode::s_cmp_eq_i32,
2535 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_eq_u64 : aco_opcode::num_opcodes);
2536 break;
2537 }
2538 case nir_op_ine: {
2539 if (instr->src[0].src.ssa->bit_size == 1)
2540 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
2541 else
2542 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lg_i32, aco_opcode::v_cmp_lg_i64, aco_opcode::s_cmp_lg_i32,
2543 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::num_opcodes);
2544 break;
2545 }
2546 case nir_op_ult: {
2547 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_u32, aco_opcode::v_cmp_lt_u64, aco_opcode::s_cmp_lt_u32);
2548 break;
2549 }
2550 case nir_op_uge: {
2551 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_u32, aco_opcode::v_cmp_ge_u64, aco_opcode::s_cmp_ge_u32);
2552 break;
2553 }
2554 case nir_op_fddx:
2555 case nir_op_fddy:
2556 case nir_op_fddx_fine:
2557 case nir_op_fddy_fine:
2558 case nir_op_fddx_coarse:
2559 case nir_op_fddy_coarse: {
2560 Temp src = get_alu_src(ctx, instr->src[0]);
2561 uint16_t dpp_ctrl1, dpp_ctrl2;
2562 if (instr->op == nir_op_fddx_fine) {
2563 dpp_ctrl1 = dpp_quad_perm(0, 0, 2, 2);
2564 dpp_ctrl2 = dpp_quad_perm(1, 1, 3, 3);
2565 } else if (instr->op == nir_op_fddy_fine) {
2566 dpp_ctrl1 = dpp_quad_perm(0, 1, 0, 1);
2567 dpp_ctrl2 = dpp_quad_perm(2, 3, 2, 3);
2568 } else {
2569 dpp_ctrl1 = dpp_quad_perm(0, 0, 0, 0);
2570 if (instr->op == nir_op_fddx || instr->op == nir_op_fddx_coarse)
2571 dpp_ctrl2 = dpp_quad_perm(1, 1, 1, 1);
2572 else
2573 dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
2574 }
2575
2576 Temp tmp;
2577 if (ctx->program->chip_class >= GFX8) {
2578 Temp tl = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl1);
2579 tmp = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), src, tl, dpp_ctrl2);
2580 } else {
2581 Temp tl = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl1);
2582 Temp tr = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl2);
2583 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), tr, tl);
2584 }
2585 emit_wqm(ctx, tmp, dst, true);
2586 break;
2587 }
2588 default:
2589 fprintf(stderr, "Unknown NIR ALU instr: ");
2590 nir_print_instr(&instr->instr, stderr);
2591 fprintf(stderr, "\n");
2592 }
2593 }
2594
2595 void visit_load_const(isel_context *ctx, nir_load_const_instr *instr)
2596 {
2597 Temp dst = get_ssa_temp(ctx, &instr->def);
2598
2599 // TODO: we really want to have the resulting type as this would allow for 64bit literals
2600 // which get truncated the lsb if double and msb if int
2601 // for now, we only use s_mov_b64 with 64bit inline constants
2602 assert(instr->def.num_components == 1 && "Vector load_const should be lowered to scalar.");
2603 assert(dst.type() == RegType::sgpr);
2604
2605 Builder bld(ctx->program, ctx->block);
2606
2607 if (instr->def.bit_size == 1) {
2608 assert(dst.regClass() == bld.lm);
2609 int val = instr->value[0].b ? -1 : 0;
2610 Operand op = bld.lm.size() == 1 ? Operand((uint32_t) val) : Operand((uint64_t) val);
2611 bld.sop1(Builder::s_mov, Definition(dst), op);
2612 } else if (dst.size() == 1) {
2613 bld.copy(Definition(dst), Operand(instr->value[0].u32));
2614 } else {
2615 assert(dst.size() != 1);
2616 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
2617 if (instr->def.bit_size == 64)
2618 for (unsigned i = 0; i < dst.size(); i++)
2619 vec->operands[i] = Operand{(uint32_t)(instr->value[0].u64 >> i * 32)};
2620 else {
2621 for (unsigned i = 0; i < dst.size(); i++)
2622 vec->operands[i] = Operand{instr->value[i].u32};
2623 }
2624 vec->definitions[0] = Definition(dst);
2625 ctx->block->instructions.emplace_back(std::move(vec));
2626 }
2627 }
2628
2629 uint32_t widen_mask(uint32_t mask, unsigned multiplier)
2630 {
2631 uint32_t new_mask = 0;
2632 for(unsigned i = 0; i < 32 && (1u << i) <= mask; ++i)
2633 if (mask & (1u << i))
2634 new_mask |= ((1u << multiplier) - 1u) << (i * multiplier);
2635 return new_mask;
2636 }
2637
2638 Operand load_lds_size_m0(isel_context *ctx)
2639 {
2640 /* TODO: m0 does not need to be initialized on GFX9+ */
2641 Builder bld(ctx->program, ctx->block);
2642 return bld.m0((Temp)bld.sopk(aco_opcode::s_movk_i32, bld.def(s1, m0), 0xffff));
2643 }
2644
2645 Temp load_lds(isel_context *ctx, unsigned elem_size_bytes, Temp dst,
2646 Temp address, unsigned base_offset, unsigned align)
2647 {
2648 assert(util_is_power_of_two_nonzero(align) && align >= 4);
2649
2650 Builder bld(ctx->program, ctx->block);
2651
2652 Operand m = load_lds_size_m0(ctx);
2653
2654 unsigned num_components = dst.size() * 4u / elem_size_bytes;
2655 unsigned bytes_read = 0;
2656 unsigned result_size = 0;
2657 unsigned total_bytes = num_components * elem_size_bytes;
2658 std::array<Temp, NIR_MAX_VEC_COMPONENTS> result;
2659 bool large_ds_read = ctx->options->chip_class >= GFX7;
2660 bool usable_read2 = ctx->options->chip_class >= GFX7;
2661
2662 while (bytes_read < total_bytes) {
2663 unsigned todo = total_bytes - bytes_read;
2664 bool aligned8 = bytes_read % 8 == 0 && align % 8 == 0;
2665 bool aligned16 = bytes_read % 16 == 0 && align % 16 == 0;
2666
2667 aco_opcode op = aco_opcode::last_opcode;
2668 bool read2 = false;
2669 if (todo >= 16 && aligned16 && large_ds_read) {
2670 op = aco_opcode::ds_read_b128;
2671 todo = 16;
2672 } else if (todo >= 16 && aligned8 && usable_read2) {
2673 op = aco_opcode::ds_read2_b64;
2674 read2 = true;
2675 todo = 16;
2676 } else if (todo >= 12 && aligned16 && large_ds_read) {
2677 op = aco_opcode::ds_read_b96;
2678 todo = 12;
2679 } else if (todo >= 8 && aligned8) {
2680 op = aco_opcode::ds_read_b64;
2681 todo = 8;
2682 } else if (todo >= 8 && usable_read2) {
2683 op = aco_opcode::ds_read2_b32;
2684 read2 = true;
2685 todo = 8;
2686 } else if (todo >= 4) {
2687 op = aco_opcode::ds_read_b32;
2688 todo = 4;
2689 } else {
2690 assert(false);
2691 }
2692 assert(todo % elem_size_bytes == 0);
2693 unsigned num_elements = todo / elem_size_bytes;
2694 unsigned offset = base_offset + bytes_read;
2695 unsigned max_offset = read2 ? 1019 : 65535;
2696
2697 Temp address_offset = address;
2698 if (offset > max_offset) {
2699 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
2700 offset = bytes_read;
2701 }
2702 assert(offset <= max_offset); /* bytes_read shouldn't be large enough for this to happen */
2703
2704 Temp res;
2705 if (num_components == 1 && dst.type() == RegType::vgpr)
2706 res = dst;
2707 else
2708 res = bld.tmp(RegClass(RegType::vgpr, todo / 4));
2709
2710 if (read2)
2711 res = bld.ds(op, Definition(res), address_offset, m, offset / (todo / 2), (offset / (todo / 2)) + 1);
2712 else
2713 res = bld.ds(op, Definition(res), address_offset, m, offset);
2714
2715 if (num_components == 1) {
2716 assert(todo == total_bytes);
2717 if (dst.type() == RegType::sgpr)
2718 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), res);
2719 return dst;
2720 }
2721
2722 if (dst.type() == RegType::sgpr) {
2723 Temp new_res = bld.tmp(RegType::sgpr, res.size());
2724 expand_vector(ctx, res, new_res, res.size(), (1 << res.size()) - 1);
2725 res = new_res;
2726 }
2727
2728 if (num_elements == 1) {
2729 result[result_size++] = res;
2730 } else {
2731 assert(res != dst && res.size() % num_elements == 0);
2732 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_elements)};
2733 split->operands[0] = Operand(res);
2734 for (unsigned i = 0; i < num_elements; i++)
2735 split->definitions[i] = Definition(result[result_size++] = bld.tmp(res.type(), elem_size_bytes / 4));
2736 ctx->block->instructions.emplace_back(std::move(split));
2737 }
2738
2739 bytes_read += todo;
2740 }
2741
2742 assert(result_size == num_components && result_size > 1);
2743 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, result_size, 1)};
2744 for (unsigned i = 0; i < result_size; i++)
2745 vec->operands[i] = Operand(result[i]);
2746 vec->definitions[0] = Definition(dst);
2747 ctx->block->instructions.emplace_back(std::move(vec));
2748 ctx->allocated_vec.emplace(dst.id(), result);
2749
2750 return dst;
2751 }
2752
2753 Temp extract_subvector(isel_context *ctx, Temp data, unsigned start, unsigned size, RegType type)
2754 {
2755 if (start == 0 && size == data.size())
2756 return type == RegType::vgpr ? as_vgpr(ctx, data) : data;
2757
2758 unsigned size_hint = 1;
2759 auto it = ctx->allocated_vec.find(data.id());
2760 if (it != ctx->allocated_vec.end())
2761 size_hint = it->second[0].size();
2762 if (size % size_hint || start % size_hint)
2763 size_hint = 1;
2764
2765 start /= size_hint;
2766 size /= size_hint;
2767
2768 Temp elems[size];
2769 for (unsigned i = 0; i < size; i++)
2770 elems[i] = emit_extract_vector(ctx, data, start + i, RegClass(type, size_hint));
2771
2772 if (size == 1)
2773 return type == RegType::vgpr ? as_vgpr(ctx, elems[0]) : elems[0];
2774
2775 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
2776 for (unsigned i = 0; i < size; i++)
2777 vec->operands[i] = Operand(elems[i]);
2778 Temp res = {ctx->program->allocateId(), RegClass(type, size * size_hint)};
2779 vec->definitions[0] = Definition(res);
2780 ctx->block->instructions.emplace_back(std::move(vec));
2781 return res;
2782 }
2783
2784 void ds_write_helper(isel_context *ctx, Operand m, Temp address, Temp data, unsigned data_start, unsigned total_size, unsigned offset0, unsigned offset1, unsigned align)
2785 {
2786 Builder bld(ctx->program, ctx->block);
2787 unsigned bytes_written = 0;
2788 bool large_ds_write = ctx->options->chip_class >= GFX7;
2789 bool usable_write2 = ctx->options->chip_class >= GFX7;
2790
2791 while (bytes_written < total_size * 4) {
2792 unsigned todo = total_size * 4 - bytes_written;
2793 bool aligned8 = bytes_written % 8 == 0 && align % 8 == 0;
2794 bool aligned16 = bytes_written % 16 == 0 && align % 16 == 0;
2795
2796 aco_opcode op = aco_opcode::last_opcode;
2797 bool write2 = false;
2798 unsigned size = 0;
2799 if (todo >= 16 && aligned16 && large_ds_write) {
2800 op = aco_opcode::ds_write_b128;
2801 size = 4;
2802 } else if (todo >= 16 && aligned8 && usable_write2) {
2803 op = aco_opcode::ds_write2_b64;
2804 write2 = true;
2805 size = 4;
2806 } else if (todo >= 12 && aligned16 && large_ds_write) {
2807 op = aco_opcode::ds_write_b96;
2808 size = 3;
2809 } else if (todo >= 8 && aligned8) {
2810 op = aco_opcode::ds_write_b64;
2811 size = 2;
2812 } else if (todo >= 8 && usable_write2) {
2813 op = aco_opcode::ds_write2_b32;
2814 write2 = true;
2815 size = 2;
2816 } else if (todo >= 4) {
2817 op = aco_opcode::ds_write_b32;
2818 size = 1;
2819 } else {
2820 assert(false);
2821 }
2822
2823 unsigned offset = offset0 + offset1 + bytes_written;
2824 unsigned max_offset = write2 ? 1020 : 65535;
2825 Temp address_offset = address;
2826 if (offset > max_offset) {
2827 address_offset = bld.vadd32(bld.def(v1), Operand(offset0), address_offset);
2828 offset = offset1 + bytes_written;
2829 }
2830 assert(offset <= max_offset); /* offset1 shouldn't be large enough for this to happen */
2831
2832 if (write2) {
2833 Temp val0 = extract_subvector(ctx, data, data_start + (bytes_written >> 2), size / 2, RegType::vgpr);
2834 Temp val1 = extract_subvector(ctx, data, data_start + (bytes_written >> 2) + 1, size / 2, RegType::vgpr);
2835 bld.ds(op, address_offset, val0, val1, m, offset / size / 2, (offset / size / 2) + 1);
2836 } else {
2837 Temp val = extract_subvector(ctx, data, data_start + (bytes_written >> 2), size, RegType::vgpr);
2838 bld.ds(op, address_offset, val, m, offset);
2839 }
2840
2841 bytes_written += size * 4;
2842 }
2843 }
2844
2845 void store_lds(isel_context *ctx, unsigned elem_size_bytes, Temp data, uint32_t wrmask,
2846 Temp address, unsigned base_offset, unsigned align)
2847 {
2848 assert(util_is_power_of_two_nonzero(align) && align >= 4);
2849 assert(elem_size_bytes == 4 || elem_size_bytes == 8);
2850
2851 Operand m = load_lds_size_m0(ctx);
2852
2853 /* we need at most two stores, assuming that the writemask is at most 4 bits wide */
2854 assert(wrmask <= 0x0f);
2855 int start[2], count[2];
2856 u_bit_scan_consecutive_range(&wrmask, &start[0], &count[0]);
2857 u_bit_scan_consecutive_range(&wrmask, &start[1], &count[1]);
2858 assert(wrmask == 0);
2859
2860 /* one combined store is sufficient */
2861 if (count[0] == count[1] && (align % elem_size_bytes) == 0 && (base_offset % elem_size_bytes) == 0) {
2862 Builder bld(ctx->program, ctx->block);
2863
2864 Temp address_offset = address;
2865 if ((base_offset / elem_size_bytes) + start[1] > 255) {
2866 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
2867 base_offset = 0;
2868 }
2869
2870 assert(count[0] == 1);
2871 RegClass xtract_rc(RegType::vgpr, elem_size_bytes / 4);
2872
2873 Temp val0 = emit_extract_vector(ctx, data, start[0], xtract_rc);
2874 Temp val1 = emit_extract_vector(ctx, data, start[1], xtract_rc);
2875 aco_opcode op = elem_size_bytes == 4 ? aco_opcode::ds_write2_b32 : aco_opcode::ds_write2_b64;
2876 base_offset = base_offset / elem_size_bytes;
2877 bld.ds(op, address_offset, val0, val1, m,
2878 base_offset + start[0], base_offset + start[1]);
2879 return;
2880 }
2881
2882 for (unsigned i = 0; i < 2; i++) {
2883 if (count[i] == 0)
2884 continue;
2885
2886 unsigned elem_size_words = elem_size_bytes / 4;
2887 ds_write_helper(ctx, m, address, data, start[i] * elem_size_words, count[i] * elem_size_words,
2888 base_offset, start[i] * elem_size_bytes, align);
2889 }
2890 return;
2891 }
2892
2893 unsigned calculate_lds_alignment(isel_context *ctx, unsigned const_offset)
2894 {
2895 unsigned align = 16;
2896 if (const_offset)
2897 align = std::min(align, 1u << (ffs(const_offset) - 1));
2898
2899 return align;
2900 }
2901
2902
2903 Temp create_vec_from_array(isel_context *ctx, Temp arr[], unsigned cnt, RegType reg_type, unsigned elem_size_bytes,
2904 unsigned split_cnt = 0u, Temp dst = Temp())
2905 {
2906 Builder bld(ctx->program, ctx->block);
2907 unsigned dword_size = elem_size_bytes / 4;
2908
2909 if (!dst.id())
2910 dst = bld.tmp(RegClass(reg_type, cnt * dword_size));
2911
2912 std::array<Temp, NIR_MAX_VEC_COMPONENTS> allocated_vec;
2913 aco_ptr<Pseudo_instruction> instr {create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, cnt, 1)};
2914 instr->definitions[0] = Definition(dst);
2915
2916 for (unsigned i = 0; i < cnt; ++i) {
2917 if (arr[i].id()) {
2918 assert(arr[i].size() == dword_size);
2919 allocated_vec[i] = arr[i];
2920 instr->operands[i] = Operand(arr[i]);
2921 } else {
2922 Temp zero = bld.copy(bld.def(RegClass(reg_type, dword_size)), Operand(0u, dword_size == 2));
2923 allocated_vec[i] = zero;
2924 instr->operands[i] = Operand(zero);
2925 }
2926 }
2927
2928 bld.insert(std::move(instr));
2929
2930 if (split_cnt)
2931 emit_split_vector(ctx, dst, split_cnt);
2932 else
2933 ctx->allocated_vec.emplace(dst.id(), allocated_vec); /* emit_split_vector already does this */
2934
2935 return dst;
2936 }
2937
2938 inline unsigned resolve_excess_vmem_const_offset(Builder &bld, Temp &voffset, unsigned const_offset)
2939 {
2940 if (const_offset >= 4096) {
2941 unsigned excess_const_offset = const_offset / 4096u * 4096u;
2942 const_offset %= 4096u;
2943
2944 if (!voffset.id())
2945 voffset = bld.copy(bld.def(v1), Operand(excess_const_offset));
2946 else if (unlikely(voffset.regClass() == s1))
2947 voffset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), Operand(excess_const_offset), Operand(voffset));
2948 else if (likely(voffset.regClass() == v1))
2949 voffset = bld.vadd32(bld.def(v1), Operand(voffset), Operand(excess_const_offset));
2950 else
2951 unreachable("Unsupported register class of voffset");
2952 }
2953
2954 return const_offset;
2955 }
2956
2957 void emit_single_mubuf_store(isel_context *ctx, Temp descriptor, Temp voffset, Temp soffset, Temp vdata,
2958 unsigned const_offset = 0u, bool allow_reorder = true, bool slc = false)
2959 {
2960 assert(vdata.id());
2961 assert(vdata.size() != 3 || ctx->program->chip_class != GFX6);
2962 assert(vdata.size() >= 1 && vdata.size() <= 4);
2963
2964 Builder bld(ctx->program, ctx->block);
2965 aco_opcode op = (aco_opcode) ((unsigned) aco_opcode::buffer_store_dword + vdata.size() - 1);
2966 const_offset = resolve_excess_vmem_const_offset(bld, voffset, const_offset);
2967
2968 Operand voffset_op = voffset.id() ? Operand(as_vgpr(ctx, voffset)) : Operand(v1);
2969 Operand soffset_op = soffset.id() ? Operand(soffset) : Operand(0u);
2970 Builder::Result r = bld.mubuf(op, Operand(descriptor), voffset_op, soffset_op, Operand(vdata), const_offset,
2971 /* offen */ !voffset_op.isUndefined(), /* idxen*/ false, /* addr64 */ false,
2972 /* disable_wqm */ false, /* glc */ true, /* dlc*/ false, /* slc */ slc);
2973
2974 static_cast<MUBUF_instruction *>(r.instr)->can_reorder = allow_reorder;
2975 }
2976
2977 void store_vmem_mubuf(isel_context *ctx, Temp src, Temp descriptor, Temp voffset, Temp soffset,
2978 unsigned base_const_offset, unsigned elem_size_bytes, unsigned write_mask,
2979 bool allow_combining = true, bool reorder = true, bool slc = false)
2980 {
2981 Builder bld(ctx->program, ctx->block);
2982 assert(elem_size_bytes == 4 || elem_size_bytes == 8);
2983 assert(write_mask);
2984
2985 if (elem_size_bytes == 8) {
2986 elem_size_bytes = 4;
2987 write_mask = widen_mask(write_mask, 2);
2988 }
2989
2990 while (write_mask) {
2991 int start = 0;
2992 int count = 0;
2993 u_bit_scan_consecutive_range(&write_mask, &start, &count);
2994 assert(count > 0);
2995 assert(start >= 0);
2996
2997 while (count > 0) {
2998 unsigned sub_count = allow_combining ? MIN2(count, 4) : 1;
2999 unsigned const_offset = (unsigned) start * elem_size_bytes + base_const_offset;
3000
3001 /* GFX6 doesn't have buffer_store_dwordx3, so make sure not to emit that here either. */
3002 if (unlikely(ctx->program->chip_class == GFX6 && sub_count == 3))
3003 sub_count = 2;
3004
3005 Temp elem = extract_subvector(ctx, src, start, sub_count, RegType::vgpr);
3006 emit_single_mubuf_store(ctx, descriptor, voffset, soffset, elem, const_offset, reorder, slc);
3007
3008 count -= sub_count;
3009 start += sub_count;
3010 }
3011
3012 assert(count == 0);
3013 }
3014 }
3015
3016 Temp emit_single_mubuf_load(isel_context *ctx, Temp descriptor, Temp voffset, Temp soffset,
3017 unsigned const_offset, unsigned size_dwords, bool allow_reorder = true)
3018 {
3019 assert(size_dwords != 3 || ctx->program->chip_class != GFX6);
3020 assert(size_dwords >= 1 && size_dwords <= 4);
3021
3022 Builder bld(ctx->program, ctx->block);
3023 Temp vdata = bld.tmp(RegClass(RegType::vgpr, size_dwords));
3024 aco_opcode op = (aco_opcode) ((unsigned) aco_opcode::buffer_load_dword + size_dwords - 1);
3025 const_offset = resolve_excess_vmem_const_offset(bld, voffset, const_offset);
3026
3027 Operand voffset_op = voffset.id() ? Operand(as_vgpr(ctx, voffset)) : Operand(v1);
3028 Operand soffset_op = soffset.id() ? Operand(soffset) : Operand(0u);
3029 Builder::Result r = bld.mubuf(op, Definition(vdata), Operand(descriptor), voffset_op, soffset_op, const_offset,
3030 /* offen */ !voffset_op.isUndefined(), /* idxen*/ false, /* addr64 */ false,
3031 /* disable_wqm */ false, /* glc */ true,
3032 /* dlc*/ ctx->program->chip_class >= GFX10, /* slc */ false);
3033
3034 static_cast<MUBUF_instruction *>(r.instr)->can_reorder = allow_reorder;
3035
3036 return vdata;
3037 }
3038
3039 void load_vmem_mubuf(isel_context *ctx, Temp dst, Temp descriptor, Temp voffset, Temp soffset,
3040 unsigned base_const_offset, unsigned elem_size_bytes, unsigned num_components,
3041 unsigned stride = 0u, bool allow_combining = true, bool allow_reorder = true)
3042 {
3043 assert(elem_size_bytes == 4 || elem_size_bytes == 8);
3044 assert((num_components * elem_size_bytes / 4) == dst.size());
3045 assert(!!stride != allow_combining);
3046
3047 Builder bld(ctx->program, ctx->block);
3048 unsigned split_cnt = num_components;
3049
3050 if (elem_size_bytes == 8) {
3051 elem_size_bytes = 4;
3052 num_components *= 2;
3053 }
3054
3055 if (!stride)
3056 stride = elem_size_bytes;
3057
3058 unsigned load_size = 1;
3059 if (allow_combining) {
3060 if ((num_components % 4) == 0)
3061 load_size = 4;
3062 else if ((num_components % 3) == 0 && ctx->program->chip_class != GFX6)
3063 load_size = 3;
3064 else if ((num_components % 2) == 0)
3065 load_size = 2;
3066 }
3067
3068 unsigned num_loads = num_components / load_size;
3069 std::array<Temp, NIR_MAX_VEC_COMPONENTS> elems;
3070
3071 for (unsigned i = 0; i < num_loads; ++i) {
3072 unsigned const_offset = i * stride * load_size + base_const_offset;
3073 elems[i] = emit_single_mubuf_load(ctx, descriptor, voffset, soffset, const_offset, load_size, allow_reorder);
3074 }
3075
3076 create_vec_from_array(ctx, elems.data(), num_loads, RegType::vgpr, load_size * 4u, split_cnt, dst);
3077 }
3078
3079 std::pair<Temp, unsigned> offset_add_from_nir(isel_context *ctx, const std::pair<Temp, unsigned> &base_offset, nir_src *off_src, unsigned stride = 1u)
3080 {
3081 Builder bld(ctx->program, ctx->block);
3082 Temp offset = base_offset.first;
3083 unsigned const_offset = base_offset.second;
3084
3085 if (!nir_src_is_const(*off_src)) {
3086 Temp indirect_offset_arg = get_ssa_temp(ctx, off_src->ssa);
3087 Temp with_stride;
3088
3089 /* Calculate indirect offset with stride */
3090 if (likely(indirect_offset_arg.regClass() == v1))
3091 with_stride = bld.v_mul_imm(bld.def(v1), indirect_offset_arg, stride);
3092 else if (indirect_offset_arg.regClass() == s1)
3093 with_stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), indirect_offset_arg);
3094 else
3095 unreachable("Unsupported register class of indirect offset");
3096
3097 /* Add to the supplied base offset */
3098 if (offset.id() == 0)
3099 offset = with_stride;
3100 else if (unlikely(offset.regClass() == s1 && with_stride.regClass() == s1))
3101 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), with_stride, offset);
3102 else if (offset.size() == 1 && with_stride.size() == 1)
3103 offset = bld.vadd32(bld.def(v1), with_stride, offset);
3104 else
3105 unreachable("Unsupported register class of indirect offset");
3106 } else {
3107 unsigned const_offset_arg = nir_src_as_uint(*off_src);
3108 const_offset += const_offset_arg * stride;
3109 }
3110
3111 return std::make_pair(offset, const_offset);
3112 }
3113
3114 std::pair<Temp, unsigned> offset_add(isel_context *ctx, const std::pair<Temp, unsigned> &off1, const std::pair<Temp, unsigned> &off2)
3115 {
3116 Builder bld(ctx->program, ctx->block);
3117 Temp offset;
3118
3119 if (off1.first.id() && off2.first.id()) {
3120 if (unlikely(off1.first.regClass() == s1 && off2.first.regClass() == s1))
3121 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), off1.first, off2.first);
3122 else if (off1.first.size() == 1 && off2.first.size() == 1)
3123 offset = bld.vadd32(bld.def(v1), off1.first, off2.first);
3124 else
3125 unreachable("Unsupported register class of indirect offset");
3126 } else {
3127 offset = off1.first.id() ? off1.first : off2.first;
3128 }
3129
3130 return std::make_pair(offset, off1.second + off2.second);
3131 }
3132
3133 std::pair<Temp, unsigned> offset_mul(isel_context *ctx, const std::pair<Temp, unsigned> &offs, unsigned multiplier)
3134 {
3135 Builder bld(ctx->program, ctx->block);
3136 unsigned const_offset = offs.second * multiplier;
3137
3138 if (!offs.first.id())
3139 return std::make_pair(offs.first, const_offset);
3140
3141 Temp offset = unlikely(offs.first.regClass() == s1)
3142 ? bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(multiplier), offs.first)
3143 : bld.v_mul_imm(bld.def(v1), offs.first, multiplier);
3144
3145 return std::make_pair(offset, const_offset);
3146 }
3147
3148 std::pair<Temp, unsigned> get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned base_stride, unsigned component_stride)
3149 {
3150 Builder bld(ctx->program, ctx->block);
3151
3152 /* base is the driver_location, which is already multiplied by 4, so is in dwords */
3153 unsigned const_offset = nir_intrinsic_base(instr) * base_stride;
3154 /* component is in bytes */
3155 const_offset += nir_intrinsic_component(instr) * component_stride;
3156
3157 /* offset should be interpreted in relation to the base, so the instruction effectively reads/writes another input/output when it has an offset */
3158 nir_src *off_src = nir_get_io_offset_src(instr);
3159 return offset_add_from_nir(ctx, std::make_pair(Temp(), const_offset), off_src, 4u * base_stride);
3160 }
3161
3162 std::pair<Temp, unsigned> get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned stride = 1u)
3163 {
3164 return get_intrinsic_io_basic_offset(ctx, instr, stride, stride);
3165 }
3166
3167 Temp get_tess_rel_patch_id(isel_context *ctx)
3168 {
3169 Builder bld(ctx->program, ctx->block);
3170
3171 switch (ctx->shader->info.stage) {
3172 case MESA_SHADER_TESS_CTRL:
3173 return bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffu),
3174 get_arg(ctx, ctx->args->ac.tcs_rel_ids));
3175 case MESA_SHADER_TESS_EVAL:
3176 return get_arg(ctx, ctx->args->tes_rel_patch_id);
3177 default:
3178 unreachable("Unsupported stage in get_tess_rel_patch_id");
3179 }
3180 }
3181
3182 std::pair<Temp, unsigned> get_tcs_per_vertex_input_lds_offset(isel_context *ctx, nir_intrinsic_instr *instr)
3183 {
3184 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3185 Builder bld(ctx->program, ctx->block);
3186
3187 uint32_t tcs_in_patch_stride = ctx->args->options->key.tcs.input_vertices * ctx->tcs_num_inputs * 4;
3188 uint32_t tcs_in_vertex_stride = ctx->tcs_num_inputs * 4;
3189
3190 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr);
3191
3192 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
3193 offs = offset_add_from_nir(ctx, offs, vertex_index_src, tcs_in_vertex_stride);
3194
3195 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3196 Temp tcs_in_current_patch_offset = bld.v_mul24_imm(bld.def(v1), rel_patch_id, tcs_in_patch_stride);
3197 offs = offset_add(ctx, offs, std::make_pair(tcs_in_current_patch_offset, 0));
3198
3199 return offset_mul(ctx, offs, 4u);
3200 }
3201
3202 std::pair<Temp, unsigned> get_tcs_output_lds_offset(isel_context *ctx, nir_intrinsic_instr *instr = nullptr, bool per_vertex = false)
3203 {
3204 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3205 Builder bld(ctx->program, ctx->block);
3206
3207 uint32_t input_patch_size = ctx->args->options->key.tcs.input_vertices * ctx->tcs_num_inputs * 16;
3208 uint32_t num_tcs_outputs = util_last_bit64(ctx->args->shader_info->tcs.outputs_written);
3209 uint32_t num_tcs_patch_outputs = util_last_bit64(ctx->args->shader_info->tcs.patch_outputs_written);
3210 uint32_t output_vertex_size = num_tcs_outputs * 16;
3211 uint32_t pervertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
3212 uint32_t output_patch_stride = pervertex_output_patch_size + num_tcs_patch_outputs * 16;
3213
3214 std::pair<Temp, unsigned> offs = instr
3215 ? get_intrinsic_io_basic_offset(ctx, instr, 4u)
3216 : std::make_pair(Temp(), 0u);
3217
3218 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3219 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, output_patch_stride);
3220
3221 if (per_vertex) {
3222 assert(instr);
3223
3224 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
3225 offs = offset_add_from_nir(ctx, offs, vertex_index_src, output_vertex_size);
3226
3227 uint32_t output_patch0_offset = (input_patch_size * ctx->tcs_num_patches);
3228 offs = offset_add(ctx, offs, std::make_pair(patch_off, output_patch0_offset));
3229 } else {
3230 uint32_t output_patch0_patch_data_offset = (input_patch_size * ctx->tcs_num_patches + pervertex_output_patch_size);
3231 offs = offset_add(ctx, offs, std::make_pair(patch_off, output_patch0_patch_data_offset));
3232 }
3233
3234 return offs;
3235 }
3236
3237 std::pair<Temp, unsigned> get_tcs_per_vertex_output_vmem_offset(isel_context *ctx, nir_intrinsic_instr *instr)
3238 {
3239 Builder bld(ctx->program, ctx->block);
3240
3241 unsigned vertices_per_patch = ctx->shader->info.tess.tcs_vertices_out;
3242 unsigned attr_stride = vertices_per_patch * ctx->tcs_num_patches;
3243
3244 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, attr_stride * 4u, 4u);
3245
3246 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3247 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, vertices_per_patch * 16u);
3248 offs = offset_add(ctx, offs, std::make_pair(patch_off, 0u));
3249
3250 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
3251 offs = offset_add_from_nir(ctx, offs, vertex_index_src, 16u);
3252
3253 return offs;
3254 }
3255
3256 std::pair<Temp, unsigned> get_tcs_per_patch_output_vmem_offset(isel_context *ctx, nir_intrinsic_instr *instr = nullptr, unsigned const_base_offset = 0u)
3257 {
3258 Builder bld(ctx->program, ctx->block);
3259
3260 unsigned num_tcs_outputs = ctx->shader->info.stage == MESA_SHADER_TESS_CTRL
3261 ? util_last_bit64(ctx->args->shader_info->tcs.outputs_written)
3262 : ctx->args->options->key.tes.tcs_num_outputs;
3263
3264 unsigned output_vertex_size = num_tcs_outputs * 16;
3265 unsigned per_vertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
3266 unsigned per_patch_data_offset = per_vertex_output_patch_size * ctx->tcs_num_patches;
3267 unsigned attr_stride = ctx->tcs_num_patches;
3268
3269 std::pair<Temp, unsigned> offs = instr
3270 ? get_intrinsic_io_basic_offset(ctx, instr, attr_stride * 4u, 4u)
3271 : std::make_pair(Temp(), 0u);
3272
3273 if (const_base_offset)
3274 offs.second += const_base_offset * attr_stride;
3275
3276 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3277 Temp patch_off = bld.v_mul_imm(bld.def(v1), rel_patch_id, 16u);
3278 offs = offset_add(ctx, offs, std::make_pair(patch_off, per_patch_data_offset));
3279
3280 return offs;
3281 }
3282
3283 bool tcs_driver_location_matches_api_mask(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex, uint64_t mask, bool *indirect)
3284 {
3285 unsigned off = nir_intrinsic_base(instr) * 4u;
3286 nir_src *off_src = nir_get_io_offset_src(instr);
3287
3288 if (!nir_src_is_const(*off_src)) {
3289 *indirect = true;
3290 return false;
3291 }
3292
3293 *indirect = false;
3294 off += nir_src_as_uint(*off_src) * 16u;
3295
3296 while (mask) {
3297 unsigned slot = u_bit_scan64(&mask) + (per_vertex ? 0 : VARYING_SLOT_PATCH0);
3298 if (off == shader_io_get_unique_index((gl_varying_slot) slot) * 16u)
3299 return true;
3300 }
3301
3302 return false;
3303 }
3304
3305 bool store_output_to_temps(isel_context *ctx, nir_intrinsic_instr *instr)
3306 {
3307 unsigned write_mask = nir_intrinsic_write_mask(instr);
3308 unsigned component = nir_intrinsic_component(instr);
3309 unsigned idx = nir_intrinsic_base(instr) + component;
3310
3311 nir_instr *off_instr = instr->src[1].ssa->parent_instr;
3312 if (off_instr->type != nir_instr_type_load_const)
3313 return false;
3314
3315 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
3316 idx += nir_src_as_uint(instr->src[1]) * 4u;
3317
3318 if (instr->src[0].ssa->bit_size == 64)
3319 write_mask = widen_mask(write_mask, 2);
3320
3321 for (unsigned i = 0; i < 8; ++i) {
3322 if (write_mask & (1 << i)) {
3323 ctx->outputs.mask[idx / 4u] |= 1 << (idx % 4u);
3324 ctx->outputs.temps[idx] = emit_extract_vector(ctx, src, i, v1);
3325 }
3326 idx++;
3327 }
3328
3329 return true;
3330 }
3331
3332 void visit_store_ls_or_es_output(isel_context *ctx, nir_intrinsic_instr *instr)
3333 {
3334 Builder bld(ctx->program, ctx->block);
3335
3336 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, 4u);
3337 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
3338 unsigned write_mask = nir_intrinsic_write_mask(instr);
3339 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8u;
3340
3341 if (ctx->stage == vertex_es || ctx->stage == tess_eval_es) {
3342 /* GFX6-8: ES stage is not merged into GS, data is passed from ES to GS in VMEM. */
3343 Temp esgs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_VS * 16u));
3344 Temp es2gs_offset = get_arg(ctx, ctx->args->es2gs_offset);
3345 store_vmem_mubuf(ctx, src, esgs_ring, offs.first, es2gs_offset, offs.second, elem_size_bytes, write_mask, false, true, true);
3346 } else {
3347 Temp lds_base;
3348
3349 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
3350 /* GFX9+: ES stage is merged into GS, data is passed between them using LDS. */
3351 unsigned itemsize = ctx->stage == vertex_geometry_gs
3352 ? ctx->program->info->vs.es_info.esgs_itemsize
3353 : ctx->program->info->tes.es_info.esgs_itemsize;
3354 Temp thread_id = emit_mbcnt(ctx, bld.def(v1));
3355 Temp wave_idx = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(ctx, ctx->args->merged_wave_info), Operand(4u << 16 | 24));
3356 Temp vertex_idx = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), thread_id,
3357 bld.v_mul24_imm(bld.def(v1), as_vgpr(ctx, wave_idx), ctx->program->wave_size));
3358 lds_base = bld.v_mul24_imm(bld.def(v1), vertex_idx, itemsize);
3359 } else if (ctx->stage == vertex_ls || ctx->stage == vertex_tess_control_hs) {
3360 /* GFX6-8: VS runs on LS stage when tessellation is used, but LS shares LDS space with HS.
3361 * GFX9+: LS is merged into HS, but still uses the same LDS layout.
3362 */
3363 unsigned num_tcs_inputs = util_last_bit64(ctx->args->shader_info->vs.ls_outputs_written);
3364 Temp vertex_idx = get_arg(ctx, ctx->args->rel_auto_id);
3365 lds_base = bld.v_mul_imm(bld.def(v1), vertex_idx, num_tcs_inputs * 16u);
3366 } else {
3367 unreachable("Invalid LS or ES stage");
3368 }
3369
3370 offs = offset_add(ctx, offs, std::make_pair(lds_base, 0u));
3371 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
3372 store_lds(ctx, elem_size_bytes, src, write_mask, offs.first, offs.second, lds_align);
3373 }
3374 }
3375
3376 bool should_write_tcs_patch_output_to_vmem(isel_context *ctx, nir_intrinsic_instr *instr)
3377 {
3378 unsigned off = nir_intrinsic_base(instr) * 4u;
3379 return off != ctx->tcs_tess_lvl_out_loc &&
3380 off != ctx->tcs_tess_lvl_in_loc;
3381 }
3382
3383 bool should_write_tcs_output_to_lds(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
3384 {
3385 /* When none of the appropriate outputs are read, we are OK to never write to LDS */
3386 if (per_vertex ? ctx->shader->info.outputs_read == 0U : ctx->shader->info.patch_outputs_read == 0u)
3387 return false;
3388
3389 uint64_t mask = per_vertex
3390 ? ctx->shader->info.outputs_read
3391 : ctx->shader->info.patch_outputs_read;
3392 bool indirect_write;
3393 bool output_read = tcs_driver_location_matches_api_mask(ctx, instr, per_vertex, mask, &indirect_write);
3394 return indirect_write || output_read;
3395 }
3396
3397 void visit_store_tcs_output(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
3398 {
3399 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
3400 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3401
3402 Builder bld(ctx->program, ctx->block);
3403
3404 Temp store_val = get_ssa_temp(ctx, instr->src[0].ssa);
3405 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
3406 unsigned write_mask = nir_intrinsic_write_mask(instr);
3407
3408 /* Only write to VMEM if the output is per-vertex or it's per-patch non tess factor */
3409 bool write_to_vmem = per_vertex || should_write_tcs_patch_output_to_vmem(ctx, instr);
3410 /* Only write to LDS if the output is read by the shader, or it's per-patch tess factor */
3411 bool write_to_lds = !write_to_vmem || should_write_tcs_output_to_lds(ctx, instr, per_vertex);
3412
3413 if (write_to_vmem) {
3414 std::pair<Temp, unsigned> vmem_offs = per_vertex
3415 ? get_tcs_per_vertex_output_vmem_offset(ctx, instr)
3416 : get_tcs_per_patch_output_vmem_offset(ctx, instr);
3417
3418 Temp hs_ring_tess_offchip = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
3419 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
3420 store_vmem_mubuf(ctx, store_val, hs_ring_tess_offchip, vmem_offs.first, oc_lds, vmem_offs.second, elem_size_bytes, write_mask, true, false);
3421 }
3422
3423 if (write_to_lds) {
3424 std::pair<Temp, unsigned> lds_offs = get_tcs_output_lds_offset(ctx, instr, per_vertex);
3425 unsigned lds_align = calculate_lds_alignment(ctx, lds_offs.second);
3426 store_lds(ctx, elem_size_bytes, store_val, write_mask, lds_offs.first, lds_offs.second, lds_align);
3427 }
3428 }
3429
3430 void visit_load_tcs_output(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
3431 {
3432 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
3433 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3434
3435 Builder bld(ctx->program, ctx->block);
3436
3437 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3438 std::pair<Temp, unsigned> lds_offs = get_tcs_output_lds_offset(ctx, instr, per_vertex);
3439 unsigned lds_align = calculate_lds_alignment(ctx, lds_offs.second);
3440 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
3441
3442 load_lds(ctx, elem_size_bytes, dst, lds_offs.first, lds_offs.second, lds_align);
3443 }
3444
3445 void visit_store_output(isel_context *ctx, nir_intrinsic_instr *instr)
3446 {
3447 if (ctx->stage == vertex_vs ||
3448 ctx->stage == tess_eval_vs ||
3449 ctx->stage == fragment_fs ||
3450 ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
3451 bool stored_to_temps = store_output_to_temps(ctx, instr);
3452 if (!stored_to_temps) {
3453 fprintf(stderr, "Unimplemented output offset instruction:\n");
3454 nir_print_instr(instr->src[1].ssa->parent_instr, stderr);
3455 fprintf(stderr, "\n");
3456 abort();
3457 }
3458 } else if (ctx->stage == vertex_es ||
3459 ctx->stage == vertex_ls ||
3460 ctx->stage == tess_eval_es ||
3461 (ctx->stage == vertex_tess_control_hs && ctx->shader->info.stage == MESA_SHADER_VERTEX) ||
3462 (ctx->stage == vertex_geometry_gs && ctx->shader->info.stage == MESA_SHADER_VERTEX) ||
3463 (ctx->stage == tess_eval_geometry_gs && ctx->shader->info.stage == MESA_SHADER_TESS_EVAL)) {
3464 visit_store_ls_or_es_output(ctx, instr);
3465 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
3466 visit_store_tcs_output(ctx, instr, false);
3467 } else {
3468 unreachable("Shader stage not implemented");
3469 }
3470 }
3471
3472 void visit_load_output(isel_context *ctx, nir_intrinsic_instr *instr)
3473 {
3474 visit_load_tcs_output(ctx, instr, false);
3475 }
3476
3477 void emit_interp_instr(isel_context *ctx, unsigned idx, unsigned component, Temp src, Temp dst, Temp prim_mask)
3478 {
3479 Temp coord1 = emit_extract_vector(ctx, src, 0, v1);
3480 Temp coord2 = emit_extract_vector(ctx, src, 1, v1);
3481
3482 Builder bld(ctx->program, ctx->block);
3483 Builder::Result interp_p1 = bld.vintrp(aco_opcode::v_interp_p1_f32, bld.def(v1), coord1, bld.m0(prim_mask), idx, component);
3484 if (ctx->program->has_16bank_lds)
3485 interp_p1.instr->operands[0].setLateKill(true);
3486 bld.vintrp(aco_opcode::v_interp_p2_f32, Definition(dst), coord2, bld.m0(prim_mask), interp_p1, idx, component);
3487 }
3488
3489 void emit_load_frag_coord(isel_context *ctx, Temp dst, unsigned num_components)
3490 {
3491 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1));
3492 for (unsigned i = 0; i < num_components; i++)
3493 vec->operands[i] = Operand(get_arg(ctx, ctx->args->ac.frag_pos[i]));
3494 if (G_0286CC_POS_W_FLOAT_ENA(ctx->program->config->spi_ps_input_ena)) {
3495 assert(num_components == 4);
3496 Builder bld(ctx->program, ctx->block);
3497 vec->operands[3] = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), get_arg(ctx, ctx->args->ac.frag_pos[3]));
3498 }
3499
3500 for (Operand& op : vec->operands)
3501 op = op.isUndefined() ? Operand(0u) : op;
3502
3503 vec->definitions[0] = Definition(dst);
3504 ctx->block->instructions.emplace_back(std::move(vec));
3505 emit_split_vector(ctx, dst, num_components);
3506 return;
3507 }
3508
3509 void visit_load_interpolated_input(isel_context *ctx, nir_intrinsic_instr *instr)
3510 {
3511 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3512 Temp coords = get_ssa_temp(ctx, instr->src[0].ssa);
3513 unsigned idx = nir_intrinsic_base(instr);
3514 unsigned component = nir_intrinsic_component(instr);
3515 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
3516
3517 nir_const_value* offset = nir_src_as_const_value(instr->src[1]);
3518 if (offset) {
3519 assert(offset->u32 == 0);
3520 } else {
3521 /* the lower 15bit of the prim_mask contain the offset into LDS
3522 * while the upper bits contain the number of prims */
3523 Temp offset_src = get_ssa_temp(ctx, instr->src[1].ssa);
3524 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
3525 Builder bld(ctx->program, ctx->block);
3526 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
3527 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
3528 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
3529 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
3530 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
3531 }
3532
3533 if (instr->dest.ssa.num_components == 1) {
3534 emit_interp_instr(ctx, idx, component, coords, dst, prim_mask);
3535 } else {
3536 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.ssa.num_components, 1));
3537 for (unsigned i = 0; i < instr->dest.ssa.num_components; i++)
3538 {
3539 Temp tmp = {ctx->program->allocateId(), v1};
3540 emit_interp_instr(ctx, idx, component+i, coords, tmp, prim_mask);
3541 vec->operands[i] = Operand(tmp);
3542 }
3543 vec->definitions[0] = Definition(dst);
3544 ctx->block->instructions.emplace_back(std::move(vec));
3545 }
3546 }
3547
3548 bool check_vertex_fetch_size(isel_context *ctx, const ac_data_format_info *vtx_info,
3549 unsigned offset, unsigned stride, unsigned channels)
3550 {
3551 unsigned vertex_byte_size = vtx_info->chan_byte_size * channels;
3552 if (vtx_info->chan_byte_size != 4 && channels == 3)
3553 return false;
3554 return (ctx->options->chip_class != GFX6 && ctx->options->chip_class != GFX10) ||
3555 (offset % vertex_byte_size == 0 && stride % vertex_byte_size == 0);
3556 }
3557
3558 uint8_t get_fetch_data_format(isel_context *ctx, const ac_data_format_info *vtx_info,
3559 unsigned offset, unsigned stride, unsigned *channels)
3560 {
3561 if (!vtx_info->chan_byte_size) {
3562 *channels = vtx_info->num_channels;
3563 return vtx_info->chan_format;
3564 }
3565
3566 unsigned num_channels = *channels;
3567 if (!check_vertex_fetch_size(ctx, vtx_info, offset, stride, *channels)) {
3568 unsigned new_channels = num_channels + 1;
3569 /* first, assume more loads is worse and try using a larger data format */
3570 while (new_channels <= 4 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels)) {
3571 new_channels++;
3572 /* don't make the attribute potentially out-of-bounds */
3573 if (offset + new_channels * vtx_info->chan_byte_size > stride)
3574 new_channels = 5;
3575 }
3576
3577 if (new_channels == 5) {
3578 /* then try decreasing load size (at the cost of more loads) */
3579 new_channels = *channels;
3580 while (new_channels > 1 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels))
3581 new_channels--;
3582 }
3583
3584 if (new_channels < *channels)
3585 *channels = new_channels;
3586 num_channels = new_channels;
3587 }
3588
3589 switch (vtx_info->chan_format) {
3590 case V_008F0C_BUF_DATA_FORMAT_8:
3591 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_8, V_008F0C_BUF_DATA_FORMAT_8_8,
3592 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_8_8_8_8}[num_channels - 1];
3593 case V_008F0C_BUF_DATA_FORMAT_16:
3594 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_16, V_008F0C_BUF_DATA_FORMAT_16_16,
3595 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_16_16_16_16}[num_channels - 1];
3596 case V_008F0C_BUF_DATA_FORMAT_32:
3597 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_32, V_008F0C_BUF_DATA_FORMAT_32_32,
3598 V_008F0C_BUF_DATA_FORMAT_32_32_32, V_008F0C_BUF_DATA_FORMAT_32_32_32_32}[num_channels - 1];
3599 }
3600 unreachable("shouldn't reach here");
3601 return V_008F0C_BUF_DATA_FORMAT_INVALID;
3602 }
3603
3604 /* For 2_10_10_10 formats the alpha is handled as unsigned by pre-vega HW.
3605 * so we may need to fix it up. */
3606 Temp adjust_vertex_fetch_alpha(isel_context *ctx, unsigned adjustment, Temp alpha)
3607 {
3608 Builder bld(ctx->program, ctx->block);
3609
3610 if (adjustment == RADV_ALPHA_ADJUST_SSCALED)
3611 alpha = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), alpha);
3612
3613 /* For the integer-like cases, do a natural sign extension.
3614 *
3615 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
3616 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
3617 * exponent.
3618 */
3619 alpha = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(adjustment == RADV_ALPHA_ADJUST_SNORM ? 7u : 30u), alpha);
3620 alpha = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(30u), alpha);
3621
3622 /* Convert back to the right type. */
3623 if (adjustment == RADV_ALPHA_ADJUST_SNORM) {
3624 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
3625 Temp clamp = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0xbf800000u), alpha);
3626 alpha = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xbf800000u), alpha, clamp);
3627 } else if (adjustment == RADV_ALPHA_ADJUST_SSCALED) {
3628 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
3629 }
3630
3631 return alpha;
3632 }
3633
3634 void visit_load_input(isel_context *ctx, nir_intrinsic_instr *instr)
3635 {
3636 Builder bld(ctx->program, ctx->block);
3637 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3638 if (ctx->shader->info.stage == MESA_SHADER_VERTEX) {
3639
3640 nir_instr *off_instr = instr->src[0].ssa->parent_instr;
3641 if (off_instr->type != nir_instr_type_load_const) {
3642 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
3643 nir_print_instr(off_instr, stderr);
3644 fprintf(stderr, "\n");
3645 }
3646 uint32_t offset = nir_instr_as_load_const(off_instr)->value[0].u32;
3647
3648 Temp vertex_buffers = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->vertex_buffers));
3649
3650 unsigned location = nir_intrinsic_base(instr) / 4 - VERT_ATTRIB_GENERIC0 + offset;
3651 unsigned component = nir_intrinsic_component(instr);
3652 unsigned attrib_binding = ctx->options->key.vs.vertex_attribute_bindings[location];
3653 uint32_t attrib_offset = ctx->options->key.vs.vertex_attribute_offsets[location];
3654 uint32_t attrib_stride = ctx->options->key.vs.vertex_attribute_strides[location];
3655 unsigned attrib_format = ctx->options->key.vs.vertex_attribute_formats[location];
3656
3657 unsigned dfmt = attrib_format & 0xf;
3658 unsigned nfmt = (attrib_format >> 4) & 0x7;
3659 const struct ac_data_format_info *vtx_info = ac_get_data_format_info(dfmt);
3660
3661 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa) << component;
3662 unsigned num_channels = MIN2(util_last_bit(mask), vtx_info->num_channels);
3663 unsigned alpha_adjust = (ctx->options->key.vs.alpha_adjust >> (location * 2)) & 3;
3664 bool post_shuffle = ctx->options->key.vs.post_shuffle & (1 << location);
3665 if (post_shuffle)
3666 num_channels = MAX2(num_channels, 3);
3667
3668 Operand off = bld.copy(bld.def(s1), Operand(attrib_binding * 16u));
3669 Temp list = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), vertex_buffers, off);
3670
3671 Temp index;
3672 if (ctx->options->key.vs.instance_rate_inputs & (1u << location)) {
3673 uint32_t divisor = ctx->options->key.vs.instance_rate_divisors[location];
3674 Temp start_instance = get_arg(ctx, ctx->args->ac.start_instance);
3675 if (divisor) {
3676 Temp instance_id = get_arg(ctx, ctx->args->ac.instance_id);
3677 if (divisor != 1) {
3678 Temp divided = bld.tmp(v1);
3679 emit_v_div_u32(ctx, divided, as_vgpr(ctx, instance_id), divisor);
3680 index = bld.vadd32(bld.def(v1), start_instance, divided);
3681 } else {
3682 index = bld.vadd32(bld.def(v1), start_instance, instance_id);
3683 }
3684 } else {
3685 index = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), start_instance);
3686 }
3687 } else {
3688 index = bld.vadd32(bld.def(v1),
3689 get_arg(ctx, ctx->args->ac.base_vertex),
3690 get_arg(ctx, ctx->args->ac.vertex_id));
3691 }
3692
3693 Temp channels[num_channels];
3694 unsigned channel_start = 0;
3695 bool direct_fetch = false;
3696
3697 /* skip unused channels at the start */
3698 if (vtx_info->chan_byte_size && !post_shuffle) {
3699 channel_start = ffs(mask) - 1;
3700 for (unsigned i = 0; i < channel_start; i++)
3701 channels[i] = Temp(0, s1);
3702 } else if (vtx_info->chan_byte_size && post_shuffle && !(mask & 0x8)) {
3703 num_channels = 3 - (ffs(mask) - 1);
3704 }
3705
3706 /* load channels */
3707 while (channel_start < num_channels) {
3708 unsigned fetch_size = num_channels - channel_start;
3709 unsigned fetch_offset = attrib_offset + channel_start * vtx_info->chan_byte_size;
3710 bool expanded = false;
3711
3712 /* use MUBUF when possible to avoid possible alignment issues */
3713 /* TODO: we could use SDWA to unpack 8/16-bit attributes without extra instructions */
3714 bool use_mubuf = (nfmt == V_008F0C_BUF_NUM_FORMAT_FLOAT ||
3715 nfmt == V_008F0C_BUF_NUM_FORMAT_UINT ||
3716 nfmt == V_008F0C_BUF_NUM_FORMAT_SINT) &&
3717 vtx_info->chan_byte_size == 4;
3718 unsigned fetch_dfmt = V_008F0C_BUF_DATA_FORMAT_INVALID;
3719 if (!use_mubuf) {
3720 fetch_dfmt = get_fetch_data_format(ctx, vtx_info, fetch_offset, attrib_stride, &fetch_size);
3721 } else {
3722 if (fetch_size == 3 && ctx->options->chip_class == GFX6) {
3723 /* GFX6 only supports loading vec3 with MTBUF, expand to vec4. */
3724 fetch_size = 4;
3725 expanded = true;
3726 }
3727 }
3728
3729 Temp fetch_index = index;
3730 if (attrib_stride != 0 && fetch_offset > attrib_stride) {
3731 fetch_index = bld.vadd32(bld.def(v1), Operand(fetch_offset / attrib_stride), fetch_index);
3732 fetch_offset = fetch_offset % attrib_stride;
3733 }
3734
3735 Operand soffset(0u);
3736 if (fetch_offset >= 4096) {
3737 soffset = bld.copy(bld.def(s1), Operand(fetch_offset / 4096 * 4096));
3738 fetch_offset %= 4096;
3739 }
3740
3741 aco_opcode opcode;
3742 switch (fetch_size) {
3743 case 1:
3744 opcode = use_mubuf ? aco_opcode::buffer_load_dword : aco_opcode::tbuffer_load_format_x;
3745 break;
3746 case 2:
3747 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx2 : aco_opcode::tbuffer_load_format_xy;
3748 break;
3749 case 3:
3750 assert(ctx->options->chip_class >= GFX7 ||
3751 (!use_mubuf && ctx->options->chip_class == GFX6));
3752 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx3 : aco_opcode::tbuffer_load_format_xyz;
3753 break;
3754 case 4:
3755 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx4 : aco_opcode::tbuffer_load_format_xyzw;
3756 break;
3757 default:
3758 unreachable("Unimplemented load_input vector size");
3759 }
3760
3761 Temp fetch_dst;
3762 if (channel_start == 0 && fetch_size == dst.size() && !post_shuffle &&
3763 !expanded && (alpha_adjust == RADV_ALPHA_ADJUST_NONE ||
3764 num_channels <= 3)) {
3765 direct_fetch = true;
3766 fetch_dst = dst;
3767 } else {
3768 fetch_dst = bld.tmp(RegType::vgpr, fetch_size);
3769 }
3770
3771 if (use_mubuf) {
3772 Instruction *mubuf = bld.mubuf(opcode,
3773 Definition(fetch_dst), list, fetch_index, soffset,
3774 fetch_offset, false, true).instr;
3775 static_cast<MUBUF_instruction*>(mubuf)->can_reorder = true;
3776 } else {
3777 Instruction *mtbuf = bld.mtbuf(opcode,
3778 Definition(fetch_dst), list, fetch_index, soffset,
3779 fetch_dfmt, nfmt, fetch_offset, false, true).instr;
3780 static_cast<MTBUF_instruction*>(mtbuf)->can_reorder = true;
3781 }
3782
3783 emit_split_vector(ctx, fetch_dst, fetch_dst.size());
3784
3785 if (fetch_size == 1) {
3786 channels[channel_start] = fetch_dst;
3787 } else {
3788 for (unsigned i = 0; i < MIN2(fetch_size, num_channels - channel_start); i++)
3789 channels[channel_start + i] = emit_extract_vector(ctx, fetch_dst, i, v1);
3790 }
3791
3792 channel_start += fetch_size;
3793 }
3794
3795 if (!direct_fetch) {
3796 bool is_float = nfmt != V_008F0C_BUF_NUM_FORMAT_UINT &&
3797 nfmt != V_008F0C_BUF_NUM_FORMAT_SINT;
3798
3799 static const unsigned swizzle_normal[4] = {0, 1, 2, 3};
3800 static const unsigned swizzle_post_shuffle[4] = {2, 1, 0, 3};
3801 const unsigned *swizzle = post_shuffle ? swizzle_post_shuffle : swizzle_normal;
3802
3803 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
3804 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
3805 unsigned num_temp = 0;
3806 for (unsigned i = 0; i < dst.size(); i++) {
3807 unsigned idx = i + component;
3808 if (swizzle[idx] < num_channels && channels[swizzle[idx]].id()) {
3809 Temp channel = channels[swizzle[idx]];
3810 if (idx == 3 && alpha_adjust != RADV_ALPHA_ADJUST_NONE)
3811 channel = adjust_vertex_fetch_alpha(ctx, alpha_adjust, channel);
3812 vec->operands[i] = Operand(channel);
3813
3814 num_temp++;
3815 elems[i] = channel;
3816 } else if (is_float && idx == 3) {
3817 vec->operands[i] = Operand(0x3f800000u);
3818 } else if (!is_float && idx == 3) {
3819 vec->operands[i] = Operand(1u);
3820 } else {
3821 vec->operands[i] = Operand(0u);
3822 }
3823 }
3824 vec->definitions[0] = Definition(dst);
3825 ctx->block->instructions.emplace_back(std::move(vec));
3826 emit_split_vector(ctx, dst, dst.size());
3827
3828 if (num_temp == dst.size())
3829 ctx->allocated_vec.emplace(dst.id(), elems);
3830 }
3831 } else if (ctx->shader->info.stage == MESA_SHADER_FRAGMENT) {
3832 unsigned offset_idx = instr->intrinsic == nir_intrinsic_load_input ? 0 : 1;
3833 nir_instr *off_instr = instr->src[offset_idx].ssa->parent_instr;
3834 if (off_instr->type != nir_instr_type_load_const ||
3835 nir_instr_as_load_const(off_instr)->value[0].u32 != 0) {
3836 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
3837 nir_print_instr(off_instr, stderr);
3838 fprintf(stderr, "\n");
3839 }
3840
3841 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
3842 nir_const_value* offset = nir_src_as_const_value(instr->src[offset_idx]);
3843 if (offset) {
3844 assert(offset->u32 == 0);
3845 } else {
3846 /* the lower 15bit of the prim_mask contain the offset into LDS
3847 * while the upper bits contain the number of prims */
3848 Temp offset_src = get_ssa_temp(ctx, instr->src[offset_idx].ssa);
3849 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
3850 Builder bld(ctx->program, ctx->block);
3851 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
3852 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
3853 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
3854 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
3855 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
3856 }
3857
3858 unsigned idx = nir_intrinsic_base(instr);
3859 unsigned component = nir_intrinsic_component(instr);
3860 unsigned vertex_id = 2; /* P0 */
3861
3862 if (instr->intrinsic == nir_intrinsic_load_input_vertex) {
3863 nir_const_value* src0 = nir_src_as_const_value(instr->src[0]);
3864 switch (src0->u32) {
3865 case 0:
3866 vertex_id = 2; /* P0 */
3867 break;
3868 case 1:
3869 vertex_id = 0; /* P10 */
3870 break;
3871 case 2:
3872 vertex_id = 1; /* P20 */
3873 break;
3874 default:
3875 unreachable("invalid vertex index");
3876 }
3877 }
3878
3879 if (dst.size() == 1) {
3880 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(dst), Operand(vertex_id), bld.m0(prim_mask), idx, component);
3881 } else {
3882 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
3883 for (unsigned i = 0; i < dst.size(); i++)
3884 vec->operands[i] = bld.vintrp(aco_opcode::v_interp_mov_f32, bld.def(v1), Operand(vertex_id), bld.m0(prim_mask), idx, component + i);
3885 vec->definitions[0] = Definition(dst);
3886 bld.insert(std::move(vec));
3887 }
3888
3889 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_EVAL) {
3890 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
3891 Temp soffset = get_arg(ctx, ctx->args->oc_lds);
3892 std::pair<Temp, unsigned> offs = get_tcs_per_patch_output_vmem_offset(ctx, instr);
3893 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8u;
3894
3895 load_vmem_mubuf(ctx, dst, ring, offs.first, soffset, offs.second, elem_size_bytes, instr->dest.ssa.num_components);
3896 } else {
3897 unreachable("Shader stage not implemented");
3898 }
3899 }
3900
3901 std::pair<Temp, unsigned> get_gs_per_vertex_input_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned base_stride = 1u)
3902 {
3903 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
3904
3905 Builder bld(ctx->program, ctx->block);
3906 nir_src *vertex_src = nir_get_io_vertex_index_src(instr);
3907 Temp vertex_offset;
3908
3909 if (!nir_src_is_const(*vertex_src)) {
3910 /* better code could be created, but this case probably doesn't happen
3911 * much in practice */
3912 Temp indirect_vertex = as_vgpr(ctx, get_ssa_temp(ctx, vertex_src->ssa));
3913 for (unsigned i = 0; i < ctx->shader->info.gs.vertices_in; i++) {
3914 Temp elem;
3915
3916 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
3917 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i / 2u * 2u]);
3918 if (i % 2u)
3919 elem = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), elem);
3920 } else {
3921 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i]);
3922 }
3923
3924 if (vertex_offset.id()) {
3925 Temp cond = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)),
3926 Operand(i), indirect_vertex);
3927 vertex_offset = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), vertex_offset, elem, cond);
3928 } else {
3929 vertex_offset = elem;
3930 }
3931 }
3932
3933 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs)
3934 vertex_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu), vertex_offset);
3935 } else {
3936 unsigned vertex = nir_src_as_uint(*vertex_src);
3937 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs)
3938 vertex_offset = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
3939 get_arg(ctx, ctx->args->gs_vtx_offset[vertex / 2u * 2u]),
3940 Operand((vertex % 2u) * 16u), Operand(16u));
3941 else
3942 vertex_offset = get_arg(ctx, ctx->args->gs_vtx_offset[vertex]);
3943 }
3944
3945 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, base_stride);
3946 offs = offset_add(ctx, offs, std::make_pair(vertex_offset, 0u));
3947 return offset_mul(ctx, offs, 4u);
3948 }
3949
3950 void visit_load_gs_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
3951 {
3952 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
3953
3954 Builder bld(ctx->program, ctx->block);
3955 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3956 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
3957
3958 if (ctx->stage == geometry_gs) {
3959 std::pair<Temp, unsigned> offs = get_gs_per_vertex_input_offset(ctx, instr, ctx->program->wave_size);
3960 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_GS * 16u));
3961 load_vmem_mubuf(ctx, dst, ring, offs.first, Temp(), offs.second, elem_size_bytes, instr->dest.ssa.num_components, 4u * ctx->program->wave_size, false, true);
3962 } else if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
3963 std::pair<Temp, unsigned> offs = get_gs_per_vertex_input_offset(ctx, instr);
3964 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
3965 load_lds(ctx, elem_size_bytes, dst, offs.first, offs.second, lds_align);
3966 } else {
3967 unreachable("Unsupported GS stage.");
3968 }
3969 }
3970
3971 void visit_load_tcs_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
3972 {
3973 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3974
3975 Builder bld(ctx->program, ctx->block);
3976 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3977 std::pair<Temp, unsigned> offs = get_tcs_per_vertex_input_lds_offset(ctx, instr);
3978 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
3979 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
3980
3981 load_lds(ctx, elem_size_bytes, dst, offs.first, offs.second, lds_align);
3982 }
3983
3984 void visit_load_tes_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
3985 {
3986 assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
3987
3988 Builder bld(ctx->program, ctx->block);
3989
3990 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
3991 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
3992 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3993
3994 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
3995 std::pair<Temp, unsigned> offs = get_tcs_per_vertex_output_vmem_offset(ctx, instr);
3996
3997 load_vmem_mubuf(ctx, dst, ring, offs.first, oc_lds, offs.second, elem_size_bytes, instr->dest.ssa.num_components, 0u, true, true);
3998 }
3999
4000 void visit_load_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4001 {
4002 switch (ctx->shader->info.stage) {
4003 case MESA_SHADER_GEOMETRY:
4004 visit_load_gs_per_vertex_input(ctx, instr);
4005 break;
4006 case MESA_SHADER_TESS_CTRL:
4007 visit_load_tcs_per_vertex_input(ctx, instr);
4008 break;
4009 case MESA_SHADER_TESS_EVAL:
4010 visit_load_tes_per_vertex_input(ctx, instr);
4011 break;
4012 default:
4013 unreachable("Unimplemented shader stage");
4014 }
4015 }
4016
4017 void visit_load_per_vertex_output(isel_context *ctx, nir_intrinsic_instr *instr)
4018 {
4019 visit_load_tcs_output(ctx, instr, true);
4020 }
4021
4022 void visit_store_per_vertex_output(isel_context *ctx, nir_intrinsic_instr *instr)
4023 {
4024 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
4025 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4026
4027 visit_store_tcs_output(ctx, instr, true);
4028 }
4029
4030 void visit_load_tess_coord(isel_context *ctx, nir_intrinsic_instr *instr)
4031 {
4032 assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
4033
4034 Builder bld(ctx->program, ctx->block);
4035 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4036
4037 Operand tes_u(get_arg(ctx, ctx->args->tes_u));
4038 Operand tes_v(get_arg(ctx, ctx->args->tes_v));
4039 Operand tes_w(0u);
4040
4041 if (ctx->shader->info.tess.primitive_mode == GL_TRIANGLES) {
4042 Temp tmp = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), tes_u, tes_v);
4043 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0x3f800000u /* 1.0f */), tmp);
4044 tes_w = Operand(tmp);
4045 }
4046
4047 Temp tess_coord = bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tes_u, tes_v, tes_w);
4048 emit_split_vector(ctx, tess_coord, 3);
4049 }
4050
4051 Temp load_desc_ptr(isel_context *ctx, unsigned desc_set)
4052 {
4053 if (ctx->program->info->need_indirect_descriptor_sets) {
4054 Builder bld(ctx->program, ctx->block);
4055 Temp ptr64 = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->descriptor_sets[0]));
4056 Operand off = bld.copy(bld.def(s1), Operand(desc_set << 2));
4057 return bld.smem(aco_opcode::s_load_dword, bld.def(s1), ptr64, off);//, false, false, false);
4058 }
4059
4060 return get_arg(ctx, ctx->args->descriptor_sets[desc_set]);
4061 }
4062
4063
4064 void visit_load_resource(isel_context *ctx, nir_intrinsic_instr *instr)
4065 {
4066 Builder bld(ctx->program, ctx->block);
4067 Temp index = get_ssa_temp(ctx, instr->src[0].ssa);
4068 if (!ctx->divergent_vals[instr->dest.ssa.index])
4069 index = bld.as_uniform(index);
4070 unsigned desc_set = nir_intrinsic_desc_set(instr);
4071 unsigned binding = nir_intrinsic_binding(instr);
4072
4073 Temp desc_ptr;
4074 radv_pipeline_layout *pipeline_layout = ctx->options->layout;
4075 radv_descriptor_set_layout *layout = pipeline_layout->set[desc_set].layout;
4076 unsigned offset = layout->binding[binding].offset;
4077 unsigned stride;
4078 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
4079 layout->binding[binding].type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
4080 unsigned idx = pipeline_layout->set[desc_set].dynamic_offset_start + layout->binding[binding].dynamic_offset_offset;
4081 desc_ptr = get_arg(ctx, ctx->args->ac.push_constants);
4082 offset = pipeline_layout->push_constant_size + 16 * idx;
4083 stride = 16;
4084 } else {
4085 desc_ptr = load_desc_ptr(ctx, desc_set);
4086 stride = layout->binding[binding].size;
4087 }
4088
4089 nir_const_value* nir_const_index = nir_src_as_const_value(instr->src[0]);
4090 unsigned const_index = nir_const_index ? nir_const_index->u32 : 0;
4091 if (stride != 1) {
4092 if (nir_const_index) {
4093 const_index = const_index * stride;
4094 } else if (index.type() == RegType::vgpr) {
4095 bool index24bit = layout->binding[binding].array_size <= 0x1000000;
4096 index = bld.v_mul_imm(bld.def(v1), index, stride, index24bit);
4097 } else {
4098 index = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), Operand(index));
4099 }
4100 }
4101 if (offset) {
4102 if (nir_const_index) {
4103 const_index = const_index + offset;
4104 } else if (index.type() == RegType::vgpr) {
4105 index = bld.vadd32(bld.def(v1), Operand(offset), index);
4106 } else {
4107 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), Operand(index));
4108 }
4109 }
4110
4111 if (nir_const_index && const_index == 0) {
4112 index = desc_ptr;
4113 } else if (index.type() == RegType::vgpr) {
4114 index = bld.vadd32(bld.def(v1),
4115 nir_const_index ? Operand(const_index) : Operand(index),
4116 Operand(desc_ptr));
4117 } else {
4118 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
4119 nir_const_index ? Operand(const_index) : Operand(index),
4120 Operand(desc_ptr));
4121 }
4122
4123 bld.copy(Definition(get_ssa_temp(ctx, &instr->dest.ssa)), index);
4124 }
4125
4126 void load_buffer(isel_context *ctx, unsigned num_components, Temp dst,
4127 Temp rsrc, Temp offset, bool glc=false, bool readonly=true)
4128 {
4129 Builder bld(ctx->program, ctx->block);
4130
4131 unsigned num_bytes = dst.size() * 4;
4132 bool dlc = glc && ctx->options->chip_class >= GFX10;
4133
4134 aco_opcode op;
4135 if (dst.type() == RegType::vgpr || (ctx->options->chip_class < GFX8 && !readonly)) {
4136 Operand vaddr = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
4137 Operand soffset = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
4138 unsigned const_offset = 0;
4139
4140 Temp lower = Temp();
4141 if (num_bytes > 16) {
4142 assert(num_components == 3 || num_components == 4);
4143 op = aco_opcode::buffer_load_dwordx4;
4144 lower = bld.tmp(v4);
4145 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
4146 mubuf->definitions[0] = Definition(lower);
4147 mubuf->operands[0] = Operand(rsrc);
4148 mubuf->operands[1] = vaddr;
4149 mubuf->operands[2] = soffset;
4150 mubuf->offen = (offset.type() == RegType::vgpr);
4151 mubuf->glc = glc;
4152 mubuf->dlc = dlc;
4153 mubuf->barrier = readonly ? barrier_none : barrier_buffer;
4154 mubuf->can_reorder = readonly;
4155 bld.insert(std::move(mubuf));
4156 emit_split_vector(ctx, lower, 2);
4157 num_bytes -= 16;
4158 const_offset = 16;
4159 } else if (num_bytes == 12 && ctx->options->chip_class == GFX6) {
4160 /* GFX6 doesn't support loading vec3, expand to vec4. */
4161 num_bytes = 16;
4162 }
4163
4164 switch (num_bytes) {
4165 case 4:
4166 op = aco_opcode::buffer_load_dword;
4167 break;
4168 case 8:
4169 op = aco_opcode::buffer_load_dwordx2;
4170 break;
4171 case 12:
4172 assert(ctx->options->chip_class > GFX6);
4173 op = aco_opcode::buffer_load_dwordx3;
4174 break;
4175 case 16:
4176 op = aco_opcode::buffer_load_dwordx4;
4177 break;
4178 default:
4179 unreachable("Load SSBO not implemented for this size.");
4180 }
4181 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
4182 mubuf->operands[0] = Operand(rsrc);
4183 mubuf->operands[1] = vaddr;
4184 mubuf->operands[2] = soffset;
4185 mubuf->offen = (offset.type() == RegType::vgpr);
4186 mubuf->glc = glc;
4187 mubuf->dlc = dlc;
4188 mubuf->barrier = readonly ? barrier_none : barrier_buffer;
4189 mubuf->can_reorder = readonly;
4190 mubuf->offset = const_offset;
4191 aco_ptr<Instruction> instr = std::move(mubuf);
4192
4193 if (dst.size() > 4) {
4194 assert(lower != Temp());
4195 Temp upper = bld.tmp(RegType::vgpr, dst.size() - lower.size());
4196 instr->definitions[0] = Definition(upper);
4197 bld.insert(std::move(instr));
4198 if (dst.size() == 8)
4199 emit_split_vector(ctx, upper, 2);
4200 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size() / 2, 1));
4201 instr->operands[0] = Operand(emit_extract_vector(ctx, lower, 0, v2));
4202 instr->operands[1] = Operand(emit_extract_vector(ctx, lower, 1, v2));
4203 instr->operands[2] = Operand(emit_extract_vector(ctx, upper, 0, v2));
4204 if (dst.size() == 8)
4205 instr->operands[3] = Operand(emit_extract_vector(ctx, upper, 1, v2));
4206 } else if (dst.size() == 3 && ctx->options->chip_class == GFX6) {
4207 Temp vec = bld.tmp(v4);
4208 instr->definitions[0] = Definition(vec);
4209 bld.insert(std::move(instr));
4210 emit_split_vector(ctx, vec, 4);
4211
4212 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 3, 1));
4213 instr->operands[0] = Operand(emit_extract_vector(ctx, vec, 0, v1));
4214 instr->operands[1] = Operand(emit_extract_vector(ctx, vec, 1, v1));
4215 instr->operands[2] = Operand(emit_extract_vector(ctx, vec, 2, v1));
4216 }
4217
4218 if (dst.type() == RegType::sgpr) {
4219 Temp vec = bld.tmp(RegType::vgpr, dst.size());
4220 instr->definitions[0] = Definition(vec);
4221 bld.insert(std::move(instr));
4222 expand_vector(ctx, vec, dst, num_components, (1 << num_components) - 1);
4223 } else {
4224 instr->definitions[0] = Definition(dst);
4225 bld.insert(std::move(instr));
4226 emit_split_vector(ctx, dst, num_components);
4227 }
4228 } else {
4229 switch (num_bytes) {
4230 case 4:
4231 op = aco_opcode::s_buffer_load_dword;
4232 break;
4233 case 8:
4234 op = aco_opcode::s_buffer_load_dwordx2;
4235 break;
4236 case 12:
4237 case 16:
4238 op = aco_opcode::s_buffer_load_dwordx4;
4239 break;
4240 case 24:
4241 case 32:
4242 op = aco_opcode::s_buffer_load_dwordx8;
4243 break;
4244 default:
4245 unreachable("Load SSBO not implemented for this size.");
4246 }
4247 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
4248 load->operands[0] = Operand(rsrc);
4249 load->operands[1] = Operand(bld.as_uniform(offset));
4250 assert(load->operands[1].getTemp().type() == RegType::sgpr);
4251 load->definitions[0] = Definition(dst);
4252 load->glc = glc;
4253 load->dlc = dlc;
4254 load->barrier = readonly ? barrier_none : barrier_buffer;
4255 load->can_reorder = false; // FIXME: currently, it doesn't seem beneficial due to how our scheduler works
4256 assert(ctx->options->chip_class >= GFX8 || !glc);
4257
4258 /* trim vector */
4259 if (dst.size() == 3) {
4260 Temp vec = bld.tmp(s4);
4261 load->definitions[0] = Definition(vec);
4262 bld.insert(std::move(load));
4263 emit_split_vector(ctx, vec, 4);
4264
4265 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4266 emit_extract_vector(ctx, vec, 0, s1),
4267 emit_extract_vector(ctx, vec, 1, s1),
4268 emit_extract_vector(ctx, vec, 2, s1));
4269 } else if (dst.size() == 6) {
4270 Temp vec = bld.tmp(s8);
4271 load->definitions[0] = Definition(vec);
4272 bld.insert(std::move(load));
4273 emit_split_vector(ctx, vec, 4);
4274
4275 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4276 emit_extract_vector(ctx, vec, 0, s2),
4277 emit_extract_vector(ctx, vec, 1, s2),
4278 emit_extract_vector(ctx, vec, 2, s2));
4279 } else {
4280 bld.insert(std::move(load));
4281 }
4282 emit_split_vector(ctx, dst, num_components);
4283 }
4284 }
4285
4286 void visit_load_ubo(isel_context *ctx, nir_intrinsic_instr *instr)
4287 {
4288 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4289 Temp rsrc = get_ssa_temp(ctx, instr->src[0].ssa);
4290
4291 Builder bld(ctx->program, ctx->block);
4292
4293 nir_intrinsic_instr* idx_instr = nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
4294 unsigned desc_set = nir_intrinsic_desc_set(idx_instr);
4295 unsigned binding = nir_intrinsic_binding(idx_instr);
4296 radv_descriptor_set_layout *layout = ctx->options->layout->set[desc_set].layout;
4297
4298 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
4299 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
4300 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
4301 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
4302 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
4303 if (ctx->options->chip_class >= GFX10) {
4304 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
4305 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
4306 S_008F0C_RESOURCE_LEVEL(1);
4307 } else {
4308 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
4309 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
4310 }
4311 Temp upper_dwords = bld.pseudo(aco_opcode::p_create_vector, bld.def(s3),
4312 Operand(S_008F04_BASE_ADDRESS_HI(ctx->options->address32_hi)),
4313 Operand(0xFFFFFFFFu),
4314 Operand(desc_type));
4315 rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
4316 rsrc, upper_dwords);
4317 } else {
4318 rsrc = convert_pointer_to_64_bit(ctx, rsrc);
4319 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
4320 }
4321
4322 load_buffer(ctx, instr->num_components, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa));
4323 }
4324
4325 void visit_load_push_constant(isel_context *ctx, nir_intrinsic_instr *instr)
4326 {
4327 Builder bld(ctx->program, ctx->block);
4328 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4329
4330 unsigned offset = nir_intrinsic_base(instr);
4331 nir_const_value *index_cv = nir_src_as_const_value(instr->src[0]);
4332 if (index_cv && instr->dest.ssa.bit_size == 32) {
4333
4334 unsigned count = instr->dest.ssa.num_components;
4335 unsigned start = (offset + index_cv->u32) / 4u;
4336 start -= ctx->args->ac.base_inline_push_consts;
4337 if (start + count <= ctx->args->ac.num_inline_push_consts) {
4338 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
4339 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
4340 for (unsigned i = 0; i < count; ++i) {
4341 elems[i] = get_arg(ctx, ctx->args->ac.inline_push_consts[start + i]);
4342 vec->operands[i] = Operand{elems[i]};
4343 }
4344 vec->definitions[0] = Definition(dst);
4345 ctx->block->instructions.emplace_back(std::move(vec));
4346 ctx->allocated_vec.emplace(dst.id(), elems);
4347 return;
4348 }
4349 }
4350
4351 Temp index = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa));
4352 if (offset != 0) // TODO check if index != 0 as well
4353 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), index);
4354 Temp ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->ac.push_constants));
4355 Temp vec = dst;
4356 bool trim = false;
4357 aco_opcode op;
4358
4359 switch (dst.size()) {
4360 case 1:
4361 op = aco_opcode::s_load_dword;
4362 break;
4363 case 2:
4364 op = aco_opcode::s_load_dwordx2;
4365 break;
4366 case 3:
4367 vec = bld.tmp(s4);
4368 trim = true;
4369 case 4:
4370 op = aco_opcode::s_load_dwordx4;
4371 break;
4372 case 6:
4373 vec = bld.tmp(s8);
4374 trim = true;
4375 case 8:
4376 op = aco_opcode::s_load_dwordx8;
4377 break;
4378 default:
4379 unreachable("unimplemented or forbidden load_push_constant.");
4380 }
4381
4382 bld.smem(op, Definition(vec), ptr, index);
4383
4384 if (trim) {
4385 emit_split_vector(ctx, vec, 4);
4386 RegClass rc = dst.size() == 3 ? s1 : s2;
4387 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4388 emit_extract_vector(ctx, vec, 0, rc),
4389 emit_extract_vector(ctx, vec, 1, rc),
4390 emit_extract_vector(ctx, vec, 2, rc));
4391
4392 }
4393 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
4394 }
4395
4396 void visit_load_constant(isel_context *ctx, nir_intrinsic_instr *instr)
4397 {
4398 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4399
4400 Builder bld(ctx->program, ctx->block);
4401
4402 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
4403 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
4404 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
4405 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
4406 if (ctx->options->chip_class >= GFX10) {
4407 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
4408 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
4409 S_008F0C_RESOURCE_LEVEL(1);
4410 } else {
4411 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
4412 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
4413 }
4414
4415 unsigned base = nir_intrinsic_base(instr);
4416 unsigned range = nir_intrinsic_range(instr);
4417
4418 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
4419 if (base && offset.type() == RegType::sgpr)
4420 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), offset, Operand(base));
4421 else if (base && offset.type() == RegType::vgpr)
4422 offset = bld.vadd32(bld.def(v1), Operand(base), offset);
4423
4424 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
4425 bld.sop1(aco_opcode::p_constaddr, bld.def(s2), bld.def(s1, scc), Operand(ctx->constant_data_offset)),
4426 Operand(MIN2(base + range, ctx->shader->constant_data_size)),
4427 Operand(desc_type));
4428
4429 load_buffer(ctx, instr->num_components, dst, rsrc, offset);
4430 }
4431
4432 void visit_discard_if(isel_context *ctx, nir_intrinsic_instr *instr)
4433 {
4434 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
4435 ctx->cf_info.exec_potentially_empty_discard = true;
4436
4437 ctx->program->needs_exact = true;
4438
4439 // TODO: optimize uniform conditions
4440 Builder bld(ctx->program, ctx->block);
4441 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
4442 assert(src.regClass() == bld.lm);
4443 src = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
4444 bld.pseudo(aco_opcode::p_discard_if, src);
4445 ctx->block->kind |= block_kind_uses_discard_if;
4446 return;
4447 }
4448
4449 void visit_discard(isel_context* ctx, nir_intrinsic_instr *instr)
4450 {
4451 Builder bld(ctx->program, ctx->block);
4452
4453 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
4454 ctx->cf_info.exec_potentially_empty_discard = true;
4455
4456 bool divergent = ctx->cf_info.parent_if.is_divergent ||
4457 ctx->cf_info.parent_loop.has_divergent_continue;
4458
4459 if (ctx->block->loop_nest_depth &&
4460 ((nir_instr_is_last(&instr->instr) && !divergent) || divergent)) {
4461 /* we handle discards the same way as jump instructions */
4462 append_logical_end(ctx->block);
4463
4464 /* in loops, discard behaves like break */
4465 Block *linear_target = ctx->cf_info.parent_loop.exit;
4466 ctx->block->kind |= block_kind_discard;
4467
4468 if (!divergent) {
4469 /* uniform discard - loop ends here */
4470 assert(nir_instr_is_last(&instr->instr));
4471 ctx->block->kind |= block_kind_uniform;
4472 ctx->cf_info.has_branch = true;
4473 bld.branch(aco_opcode::p_branch);
4474 add_linear_edge(ctx->block->index, linear_target);
4475 return;
4476 }
4477
4478 /* we add a break right behind the discard() instructions */
4479 ctx->block->kind |= block_kind_break;
4480 unsigned idx = ctx->block->index;
4481
4482 ctx->cf_info.parent_loop.has_divergent_branch = true;
4483 ctx->cf_info.nir_to_aco[instr->instr.block->index] = idx;
4484
4485 /* remove critical edges from linear CFG */
4486 bld.branch(aco_opcode::p_branch);
4487 Block* break_block = ctx->program->create_and_insert_block();
4488 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
4489 break_block->kind |= block_kind_uniform;
4490 add_linear_edge(idx, break_block);
4491 add_linear_edge(break_block->index, linear_target);
4492 bld.reset(break_block);
4493 bld.branch(aco_opcode::p_branch);
4494
4495 Block* continue_block = ctx->program->create_and_insert_block();
4496 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
4497 add_linear_edge(idx, continue_block);
4498 append_logical_start(continue_block);
4499 ctx->block = continue_block;
4500
4501 return;
4502 }
4503
4504 /* it can currently happen that NIR doesn't remove the unreachable code */
4505 if (!nir_instr_is_last(&instr->instr)) {
4506 ctx->program->needs_exact = true;
4507 /* save exec somewhere temporarily so that it doesn't get
4508 * overwritten before the discard from outer exec masks */
4509 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), Operand(0xFFFFFFFF), Operand(exec, bld.lm));
4510 bld.pseudo(aco_opcode::p_discard_if, cond);
4511 ctx->block->kind |= block_kind_uses_discard_if;
4512 return;
4513 }
4514
4515 /* This condition is incorrect for uniformly branched discards in a loop
4516 * predicated by a divergent condition, but the above code catches that case
4517 * and the discard would end up turning into a discard_if.
4518 * For example:
4519 * if (divergent) {
4520 * while (...) {
4521 * if (uniform) {
4522 * discard;
4523 * }
4524 * }
4525 * }
4526 */
4527 if (!ctx->cf_info.parent_if.is_divergent) {
4528 /* program just ends here */
4529 ctx->block->kind |= block_kind_uniform;
4530 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
4531 0 /* enabled mask */, 9 /* dest */,
4532 false /* compressed */, true/* done */, true /* valid mask */);
4533 bld.sopp(aco_opcode::s_endpgm);
4534 // TODO: it will potentially be followed by a branch which is dead code to sanitize NIR phis
4535 } else {
4536 ctx->block->kind |= block_kind_discard;
4537 /* branch and linear edge is added by visit_if() */
4538 }
4539 }
4540
4541 enum aco_descriptor_type {
4542 ACO_DESC_IMAGE,
4543 ACO_DESC_FMASK,
4544 ACO_DESC_SAMPLER,
4545 ACO_DESC_BUFFER,
4546 ACO_DESC_PLANE_0,
4547 ACO_DESC_PLANE_1,
4548 ACO_DESC_PLANE_2,
4549 };
4550
4551 static bool
4552 should_declare_array(isel_context *ctx, enum glsl_sampler_dim sampler_dim, bool is_array) {
4553 if (sampler_dim == GLSL_SAMPLER_DIM_BUF)
4554 return false;
4555 ac_image_dim dim = ac_get_sampler_dim(ctx->options->chip_class, sampler_dim, is_array);
4556 return dim == ac_image_cube ||
4557 dim == ac_image_1darray ||
4558 dim == ac_image_2darray ||
4559 dim == ac_image_2darraymsaa;
4560 }
4561
4562 Temp get_sampler_desc(isel_context *ctx, nir_deref_instr *deref_instr,
4563 enum aco_descriptor_type desc_type,
4564 const nir_tex_instr *tex_instr, bool image, bool write)
4565 {
4566 /* FIXME: we should lower the deref with some new nir_intrinsic_load_desc
4567 std::unordered_map<uint64_t, Temp>::iterator it = ctx->tex_desc.find((uint64_t) desc_type << 32 | deref_instr->dest.ssa.index);
4568 if (it != ctx->tex_desc.end())
4569 return it->second;
4570 */
4571 Temp index = Temp();
4572 bool index_set = false;
4573 unsigned constant_index = 0;
4574 unsigned descriptor_set;
4575 unsigned base_index;
4576 Builder bld(ctx->program, ctx->block);
4577
4578 if (!deref_instr) {
4579 assert(tex_instr && !image);
4580 descriptor_set = 0;
4581 base_index = tex_instr->sampler_index;
4582 } else {
4583 while(deref_instr->deref_type != nir_deref_type_var) {
4584 unsigned array_size = glsl_get_aoa_size(deref_instr->type);
4585 if (!array_size)
4586 array_size = 1;
4587
4588 assert(deref_instr->deref_type == nir_deref_type_array);
4589 nir_const_value *const_value = nir_src_as_const_value(deref_instr->arr.index);
4590 if (const_value) {
4591 constant_index += array_size * const_value->u32;
4592 } else {
4593 Temp indirect = get_ssa_temp(ctx, deref_instr->arr.index.ssa);
4594 if (indirect.type() == RegType::vgpr)
4595 indirect = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), indirect);
4596
4597 if (array_size != 1)
4598 indirect = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(array_size), indirect);
4599
4600 if (!index_set) {
4601 index = indirect;
4602 index_set = true;
4603 } else {
4604 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), index, indirect);
4605 }
4606 }
4607
4608 deref_instr = nir_src_as_deref(deref_instr->parent);
4609 }
4610 descriptor_set = deref_instr->var->data.descriptor_set;
4611 base_index = deref_instr->var->data.binding;
4612 }
4613
4614 Temp list = load_desc_ptr(ctx, descriptor_set);
4615 list = convert_pointer_to_64_bit(ctx, list);
4616
4617 struct radv_descriptor_set_layout *layout = ctx->options->layout->set[descriptor_set].layout;
4618 struct radv_descriptor_set_binding_layout *binding = layout->binding + base_index;
4619 unsigned offset = binding->offset;
4620 unsigned stride = binding->size;
4621 aco_opcode opcode;
4622 RegClass type;
4623
4624 assert(base_index < layout->binding_count);
4625
4626 switch (desc_type) {
4627 case ACO_DESC_IMAGE:
4628 type = s8;
4629 opcode = aco_opcode::s_load_dwordx8;
4630 break;
4631 case ACO_DESC_FMASK:
4632 type = s8;
4633 opcode = aco_opcode::s_load_dwordx8;
4634 offset += 32;
4635 break;
4636 case ACO_DESC_SAMPLER:
4637 type = s4;
4638 opcode = aco_opcode::s_load_dwordx4;
4639 if (binding->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
4640 offset += radv_combined_image_descriptor_sampler_offset(binding);
4641 break;
4642 case ACO_DESC_BUFFER:
4643 type = s4;
4644 opcode = aco_opcode::s_load_dwordx4;
4645 break;
4646 case ACO_DESC_PLANE_0:
4647 case ACO_DESC_PLANE_1:
4648 type = s8;
4649 opcode = aco_opcode::s_load_dwordx8;
4650 offset += 32 * (desc_type - ACO_DESC_PLANE_0);
4651 break;
4652 case ACO_DESC_PLANE_2:
4653 type = s4;
4654 opcode = aco_opcode::s_load_dwordx4;
4655 offset += 64;
4656 break;
4657 default:
4658 unreachable("invalid desc_type\n");
4659 }
4660
4661 offset += constant_index * stride;
4662
4663 if (desc_type == ACO_DESC_SAMPLER && binding->immutable_samplers_offset &&
4664 (!index_set || binding->immutable_samplers_equal)) {
4665 if (binding->immutable_samplers_equal)
4666 constant_index = 0;
4667
4668 const uint32_t *samplers = radv_immutable_samplers(layout, binding);
4669 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
4670 Operand(samplers[constant_index * 4 + 0]),
4671 Operand(samplers[constant_index * 4 + 1]),
4672 Operand(samplers[constant_index * 4 + 2]),
4673 Operand(samplers[constant_index * 4 + 3]));
4674 }
4675
4676 Operand off;
4677 if (!index_set) {
4678 off = bld.copy(bld.def(s1), Operand(offset));
4679 } else {
4680 off = Operand((Temp)bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset),
4681 bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), index)));
4682 }
4683
4684 Temp res = bld.smem(opcode, bld.def(type), list, off);
4685
4686 if (desc_type == ACO_DESC_PLANE_2) {
4687 Temp components[8];
4688 for (unsigned i = 0; i < 8; i++)
4689 components[i] = bld.tmp(s1);
4690 bld.pseudo(aco_opcode::p_split_vector,
4691 Definition(components[0]),
4692 Definition(components[1]),
4693 Definition(components[2]),
4694 Definition(components[3]),
4695 res);
4696
4697 Temp desc2 = get_sampler_desc(ctx, deref_instr, ACO_DESC_PLANE_1, tex_instr, image, write);
4698 bld.pseudo(aco_opcode::p_split_vector,
4699 bld.def(s1), bld.def(s1), bld.def(s1), bld.def(s1),
4700 Definition(components[4]),
4701 Definition(components[5]),
4702 Definition(components[6]),
4703 Definition(components[7]),
4704 desc2);
4705
4706 res = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
4707 components[0], components[1], components[2], components[3],
4708 components[4], components[5], components[6], components[7]);
4709 }
4710
4711 return res;
4712 }
4713
4714 static int image_type_to_components_count(enum glsl_sampler_dim dim, bool array)
4715 {
4716 switch (dim) {
4717 case GLSL_SAMPLER_DIM_BUF:
4718 return 1;
4719 case GLSL_SAMPLER_DIM_1D:
4720 return array ? 2 : 1;
4721 case GLSL_SAMPLER_DIM_2D:
4722 return array ? 3 : 2;
4723 case GLSL_SAMPLER_DIM_MS:
4724 return array ? 4 : 3;
4725 case GLSL_SAMPLER_DIM_3D:
4726 case GLSL_SAMPLER_DIM_CUBE:
4727 return 3;
4728 case GLSL_SAMPLER_DIM_RECT:
4729 case GLSL_SAMPLER_DIM_SUBPASS:
4730 return 2;
4731 case GLSL_SAMPLER_DIM_SUBPASS_MS:
4732 return 3;
4733 default:
4734 break;
4735 }
4736 return 0;
4737 }
4738
4739
4740 /* Adjust the sample index according to FMASK.
4741 *
4742 * For uncompressed MSAA surfaces, FMASK should return 0x76543210,
4743 * which is the identity mapping. Each nibble says which physical sample
4744 * should be fetched to get that sample.
4745 *
4746 * For example, 0x11111100 means there are only 2 samples stored and
4747 * the second sample covers 3/4 of the pixel. When reading samples 0
4748 * and 1, return physical sample 0 (determined by the first two 0s
4749 * in FMASK), otherwise return physical sample 1.
4750 *
4751 * The sample index should be adjusted as follows:
4752 * sample_index = (fmask >> (sample_index * 4)) & 0xF;
4753 */
4754 static Temp adjust_sample_index_using_fmask(isel_context *ctx, bool da, std::vector<Temp>& coords, Operand sample_index, Temp fmask_desc_ptr)
4755 {
4756 Builder bld(ctx->program, ctx->block);
4757 Temp fmask = bld.tmp(v1);
4758 unsigned dim = ctx->options->chip_class >= GFX10
4759 ? ac_get_sampler_dim(ctx->options->chip_class, GLSL_SAMPLER_DIM_2D, da)
4760 : 0;
4761
4762 Temp coord = da ? bld.pseudo(aco_opcode::p_create_vector, bld.def(v3), coords[0], coords[1], coords[2]) :
4763 bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), coords[0], coords[1]);
4764 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(aco_opcode::image_load, Format::MIMG, 3, 1)};
4765 load->operands[0] = Operand(fmask_desc_ptr);
4766 load->operands[1] = Operand(s4); /* no sampler */
4767 load->operands[2] = Operand(coord);
4768 load->definitions[0] = Definition(fmask);
4769 load->glc = false;
4770 load->dlc = false;
4771 load->dmask = 0x1;
4772 load->unrm = true;
4773 load->da = da;
4774 load->dim = dim;
4775 load->can_reorder = true; /* fmask images shouldn't be modified */
4776 ctx->block->instructions.emplace_back(std::move(load));
4777
4778 Operand sample_index4;
4779 if (sample_index.isConstant() && sample_index.constantValue() < 16) {
4780 sample_index4 = Operand(sample_index.constantValue() << 2);
4781 } else if (sample_index.regClass() == s1) {
4782 sample_index4 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), sample_index, Operand(2u));
4783 } else {
4784 assert(sample_index.regClass() == v1);
4785 sample_index4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), sample_index);
4786 }
4787
4788 Temp final_sample;
4789 if (sample_index4.isConstant() && sample_index4.constantValue() == 0)
4790 final_sample = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(15u), fmask);
4791 else if (sample_index4.isConstant() && sample_index4.constantValue() == 28)
4792 final_sample = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(28u), fmask);
4793 else
4794 final_sample = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), fmask, sample_index4, Operand(4u));
4795
4796 /* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK
4797 * resource descriptor is 0 (invalid),
4798 */
4799 Temp compare = bld.tmp(bld.lm);
4800 bld.vopc_e64(aco_opcode::v_cmp_lg_u32, Definition(compare),
4801 Operand(0u), emit_extract_vector(ctx, fmask_desc_ptr, 1, s1)).def(0).setHint(vcc);
4802
4803 Temp sample_index_v = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), sample_index);
4804
4805 /* Replace the MSAA sample index. */
4806 return bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), sample_index_v, final_sample, compare);
4807 }
4808
4809 static Temp get_image_coords(isel_context *ctx, const nir_intrinsic_instr *instr, const struct glsl_type *type)
4810 {
4811
4812 Temp src0 = get_ssa_temp(ctx, instr->src[1].ssa);
4813 enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4814 bool is_array = glsl_sampler_type_is_array(type);
4815 ASSERTED bool add_frag_pos = (dim == GLSL_SAMPLER_DIM_SUBPASS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
4816 assert(!add_frag_pos && "Input attachments should be lowered.");
4817 bool is_ms = (dim == GLSL_SAMPLER_DIM_MS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
4818 bool gfx9_1d = ctx->options->chip_class == GFX9 && dim == GLSL_SAMPLER_DIM_1D;
4819 int count = image_type_to_components_count(dim, is_array);
4820 std::vector<Temp> coords(count);
4821 Builder bld(ctx->program, ctx->block);
4822
4823 if (is_ms) {
4824 count--;
4825 Temp src2 = get_ssa_temp(ctx, instr->src[2].ssa);
4826 /* get sample index */
4827 if (instr->intrinsic == nir_intrinsic_image_deref_load) {
4828 nir_const_value *sample_cv = nir_src_as_const_value(instr->src[2]);
4829 Operand sample_index = sample_cv ? Operand(sample_cv->u32) : Operand(emit_extract_vector(ctx, src2, 0, v1));
4830 std::vector<Temp> fmask_load_address;
4831 for (unsigned i = 0; i < (is_array ? 3 : 2); i++)
4832 fmask_load_address.emplace_back(emit_extract_vector(ctx, src0, i, v1));
4833
4834 Temp fmask_desc_ptr = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_FMASK, nullptr, false, false);
4835 coords[count] = adjust_sample_index_using_fmask(ctx, is_array, fmask_load_address, sample_index, fmask_desc_ptr);
4836 } else {
4837 coords[count] = emit_extract_vector(ctx, src2, 0, v1);
4838 }
4839 }
4840
4841 if (gfx9_1d) {
4842 coords[0] = emit_extract_vector(ctx, src0, 0, v1);
4843 coords.resize(coords.size() + 1);
4844 coords[1] = bld.copy(bld.def(v1), Operand(0u));
4845 if (is_array)
4846 coords[2] = emit_extract_vector(ctx, src0, 1, v1);
4847 } else {
4848 for (int i = 0; i < count; i++)
4849 coords[i] = emit_extract_vector(ctx, src0, i, v1);
4850 }
4851
4852 if (instr->intrinsic == nir_intrinsic_image_deref_load ||
4853 instr->intrinsic == nir_intrinsic_image_deref_store) {
4854 int lod_index = instr->intrinsic == nir_intrinsic_image_deref_load ? 3 : 4;
4855 bool level_zero = nir_src_is_const(instr->src[lod_index]) && nir_src_as_uint(instr->src[lod_index]) == 0;
4856
4857 if (!level_zero)
4858 coords.emplace_back(get_ssa_temp(ctx, instr->src[lod_index].ssa));
4859 }
4860
4861 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
4862 for (unsigned i = 0; i < coords.size(); i++)
4863 vec->operands[i] = Operand(coords[i]);
4864 Temp res = {ctx->program->allocateId(), RegClass(RegType::vgpr, coords.size())};
4865 vec->definitions[0] = Definition(res);
4866 ctx->block->instructions.emplace_back(std::move(vec));
4867 return res;
4868 }
4869
4870
4871 void visit_image_load(isel_context *ctx, nir_intrinsic_instr *instr)
4872 {
4873 Builder bld(ctx->program, ctx->block);
4874 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
4875 const struct glsl_type *type = glsl_without_array(var->type);
4876 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4877 bool is_array = glsl_sampler_type_is_array(type);
4878 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4879
4880 if (dim == GLSL_SAMPLER_DIM_BUF) {
4881 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa);
4882 unsigned num_channels = util_last_bit(mask);
4883 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
4884 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
4885
4886 aco_opcode opcode;
4887 switch (num_channels) {
4888 case 1:
4889 opcode = aco_opcode::buffer_load_format_x;
4890 break;
4891 case 2:
4892 opcode = aco_opcode::buffer_load_format_xy;
4893 break;
4894 case 3:
4895 opcode = aco_opcode::buffer_load_format_xyz;
4896 break;
4897 case 4:
4898 opcode = aco_opcode::buffer_load_format_xyzw;
4899 break;
4900 default:
4901 unreachable(">4 channel buffer image load");
4902 }
4903 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 3, 1)};
4904 load->operands[0] = Operand(rsrc);
4905 load->operands[1] = Operand(vindex);
4906 load->operands[2] = Operand((uint32_t) 0);
4907 Temp tmp;
4908 if (num_channels == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
4909 tmp = dst;
4910 else
4911 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_channels)};
4912 load->definitions[0] = Definition(tmp);
4913 load->idxen = true;
4914 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT);
4915 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
4916 load->barrier = barrier_image;
4917 ctx->block->instructions.emplace_back(std::move(load));
4918
4919 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, (1 << num_channels) - 1);
4920 return;
4921 }
4922
4923 Temp coords = get_image_coords(ctx, instr, type);
4924 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
4925
4926 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
4927 unsigned num_components = util_bitcount(dmask);
4928 Temp tmp;
4929 if (num_components == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
4930 tmp = dst;
4931 else
4932 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_components)};
4933
4934 bool level_zero = nir_src_is_const(instr->src[3]) && nir_src_as_uint(instr->src[3]) == 0;
4935 aco_opcode opcode = level_zero ? aco_opcode::image_load : aco_opcode::image_load_mip;
4936
4937 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1)};
4938 load->operands[0] = Operand(resource);
4939 load->operands[1] = Operand(s4); /* no sampler */
4940 load->operands[2] = Operand(coords);
4941 load->definitions[0] = Definition(tmp);
4942 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT) ? 1 : 0;
4943 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
4944 load->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
4945 load->dmask = dmask;
4946 load->unrm = true;
4947 load->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
4948 load->barrier = barrier_image;
4949 ctx->block->instructions.emplace_back(std::move(load));
4950
4951 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, dmask);
4952 return;
4953 }
4954
4955 void visit_image_store(isel_context *ctx, nir_intrinsic_instr *instr)
4956 {
4957 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
4958 const struct glsl_type *type = glsl_without_array(var->type);
4959 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4960 bool is_array = glsl_sampler_type_is_array(type);
4961 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
4962
4963 bool glc = ctx->options->chip_class == GFX6 || var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE) ? 1 : 0;
4964
4965 if (dim == GLSL_SAMPLER_DIM_BUF) {
4966 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
4967 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
4968 aco_opcode opcode;
4969 switch (data.size()) {
4970 case 1:
4971 opcode = aco_opcode::buffer_store_format_x;
4972 break;
4973 case 2:
4974 opcode = aco_opcode::buffer_store_format_xy;
4975 break;
4976 case 3:
4977 opcode = aco_opcode::buffer_store_format_xyz;
4978 break;
4979 case 4:
4980 opcode = aco_opcode::buffer_store_format_xyzw;
4981 break;
4982 default:
4983 unreachable(">4 channel buffer image store");
4984 }
4985 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
4986 store->operands[0] = Operand(rsrc);
4987 store->operands[1] = Operand(vindex);
4988 store->operands[2] = Operand((uint32_t) 0);
4989 store->operands[3] = Operand(data);
4990 store->idxen = true;
4991 store->glc = glc;
4992 store->dlc = false;
4993 store->disable_wqm = true;
4994 store->barrier = barrier_image;
4995 ctx->program->needs_exact = true;
4996 ctx->block->instructions.emplace_back(std::move(store));
4997 return;
4998 }
4999
5000 assert(data.type() == RegType::vgpr);
5001 Temp coords = get_image_coords(ctx, instr, type);
5002 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5003
5004 bool level_zero = nir_src_is_const(instr->src[4]) && nir_src_as_uint(instr->src[4]) == 0;
5005 aco_opcode opcode = level_zero ? aco_opcode::image_store : aco_opcode::image_store_mip;
5006
5007 aco_ptr<MIMG_instruction> store{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 0)};
5008 store->operands[0] = Operand(resource);
5009 store->operands[1] = Operand(data);
5010 store->operands[2] = Operand(coords);
5011 store->glc = glc;
5012 store->dlc = false;
5013 store->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5014 store->dmask = (1 << data.size()) - 1;
5015 store->unrm = true;
5016 store->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5017 store->disable_wqm = true;
5018 store->barrier = barrier_image;
5019 ctx->program->needs_exact = true;
5020 ctx->block->instructions.emplace_back(std::move(store));
5021 return;
5022 }
5023
5024 void visit_image_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
5025 {
5026 /* return the previous value if dest is ever used */
5027 bool return_previous = false;
5028 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5029 return_previous = true;
5030 break;
5031 }
5032 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5033 return_previous = true;
5034 break;
5035 }
5036
5037 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5038 const struct glsl_type *type = glsl_without_array(var->type);
5039 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5040 bool is_array = glsl_sampler_type_is_array(type);
5041 Builder bld(ctx->program, ctx->block);
5042
5043 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
5044 assert(data.size() == 1 && "64bit ssbo atomics not yet implemented.");
5045
5046 if (instr->intrinsic == nir_intrinsic_image_deref_atomic_comp_swap)
5047 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), get_ssa_temp(ctx, instr->src[4].ssa), data);
5048
5049 aco_opcode buf_op, image_op;
5050 switch (instr->intrinsic) {
5051 case nir_intrinsic_image_deref_atomic_add:
5052 buf_op = aco_opcode::buffer_atomic_add;
5053 image_op = aco_opcode::image_atomic_add;
5054 break;
5055 case nir_intrinsic_image_deref_atomic_umin:
5056 buf_op = aco_opcode::buffer_atomic_umin;
5057 image_op = aco_opcode::image_atomic_umin;
5058 break;
5059 case nir_intrinsic_image_deref_atomic_imin:
5060 buf_op = aco_opcode::buffer_atomic_smin;
5061 image_op = aco_opcode::image_atomic_smin;
5062 break;
5063 case nir_intrinsic_image_deref_atomic_umax:
5064 buf_op = aco_opcode::buffer_atomic_umax;
5065 image_op = aco_opcode::image_atomic_umax;
5066 break;
5067 case nir_intrinsic_image_deref_atomic_imax:
5068 buf_op = aco_opcode::buffer_atomic_smax;
5069 image_op = aco_opcode::image_atomic_smax;
5070 break;
5071 case nir_intrinsic_image_deref_atomic_and:
5072 buf_op = aco_opcode::buffer_atomic_and;
5073 image_op = aco_opcode::image_atomic_and;
5074 break;
5075 case nir_intrinsic_image_deref_atomic_or:
5076 buf_op = aco_opcode::buffer_atomic_or;
5077 image_op = aco_opcode::image_atomic_or;
5078 break;
5079 case nir_intrinsic_image_deref_atomic_xor:
5080 buf_op = aco_opcode::buffer_atomic_xor;
5081 image_op = aco_opcode::image_atomic_xor;
5082 break;
5083 case nir_intrinsic_image_deref_atomic_exchange:
5084 buf_op = aco_opcode::buffer_atomic_swap;
5085 image_op = aco_opcode::image_atomic_swap;
5086 break;
5087 case nir_intrinsic_image_deref_atomic_comp_swap:
5088 buf_op = aco_opcode::buffer_atomic_cmpswap;
5089 image_op = aco_opcode::image_atomic_cmpswap;
5090 break;
5091 default:
5092 unreachable("visit_image_atomic should only be called with nir_intrinsic_image_deref_atomic_* instructions.");
5093 }
5094
5095 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5096
5097 if (dim == GLSL_SAMPLER_DIM_BUF) {
5098 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5099 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5100 //assert(ctx->options->chip_class < GFX9 && "GFX9 stride size workaround not yet implemented.");
5101 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(buf_op, Format::MUBUF, 4, return_previous ? 1 : 0)};
5102 mubuf->operands[0] = Operand(resource);
5103 mubuf->operands[1] = Operand(vindex);
5104 mubuf->operands[2] = Operand((uint32_t)0);
5105 mubuf->operands[3] = Operand(data);
5106 if (return_previous)
5107 mubuf->definitions[0] = Definition(dst);
5108 mubuf->offset = 0;
5109 mubuf->idxen = true;
5110 mubuf->glc = return_previous;
5111 mubuf->dlc = false; /* Not needed for atomics */
5112 mubuf->disable_wqm = true;
5113 mubuf->barrier = barrier_image;
5114 ctx->program->needs_exact = true;
5115 ctx->block->instructions.emplace_back(std::move(mubuf));
5116 return;
5117 }
5118
5119 Temp coords = get_image_coords(ctx, instr, type);
5120 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5121 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(image_op, Format::MIMG, 3, return_previous ? 1 : 0)};
5122 mimg->operands[0] = Operand(resource);
5123 mimg->operands[1] = Operand(data);
5124 mimg->operands[2] = Operand(coords);
5125 if (return_previous)
5126 mimg->definitions[0] = Definition(dst);
5127 mimg->glc = return_previous;
5128 mimg->dlc = false; /* Not needed for atomics */
5129 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5130 mimg->dmask = (1 << data.size()) - 1;
5131 mimg->unrm = true;
5132 mimg->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5133 mimg->disable_wqm = true;
5134 mimg->barrier = barrier_image;
5135 ctx->program->needs_exact = true;
5136 ctx->block->instructions.emplace_back(std::move(mimg));
5137 return;
5138 }
5139
5140 void get_buffer_size(isel_context *ctx, Temp desc, Temp dst, bool in_elements)
5141 {
5142 if (in_elements && ctx->options->chip_class == GFX8) {
5143 /* we only have to divide by 1, 2, 4, 8, 12 or 16 */
5144 Builder bld(ctx->program, ctx->block);
5145
5146 Temp size = emit_extract_vector(ctx, desc, 2, s1);
5147
5148 Temp size_div3 = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), bld.copy(bld.def(v1), Operand(0xaaaaaaabu)), size);
5149 size_div3 = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.as_uniform(size_div3), Operand(1u));
5150
5151 Temp stride = emit_extract_vector(ctx, desc, 1, s1);
5152 stride = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), stride, Operand((5u << 16) | 16u));
5153
5154 Temp is12 = bld.sopc(aco_opcode::s_cmp_eq_i32, bld.def(s1, scc), stride, Operand(12u));
5155 size = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), size_div3, size, bld.scc(is12));
5156
5157 Temp shr_dst = dst.type() == RegType::vgpr ? bld.tmp(s1) : dst;
5158 bld.sop2(aco_opcode::s_lshr_b32, Definition(shr_dst), bld.def(s1, scc),
5159 size, bld.sop1(aco_opcode::s_ff1_i32_b32, bld.def(s1), stride));
5160 if (dst.type() == RegType::vgpr)
5161 bld.copy(Definition(dst), shr_dst);
5162
5163 /* TODO: we can probably calculate this faster with v_skip when stride != 12 */
5164 } else {
5165 emit_extract_vector(ctx, desc, 2, dst);
5166 }
5167 }
5168
5169 void visit_image_size(isel_context *ctx, nir_intrinsic_instr *instr)
5170 {
5171 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5172 const struct glsl_type *type = glsl_without_array(var->type);
5173 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5174 bool is_array = glsl_sampler_type_is_array(type);
5175 Builder bld(ctx->program, ctx->block);
5176
5177 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF) {
5178 Temp desc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, NULL, true, false);
5179 return get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), true);
5180 }
5181
5182 /* LOD */
5183 Temp lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
5184
5185 /* Resource */
5186 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, NULL, true, false);
5187
5188 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5189
5190 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1)};
5191 mimg->operands[0] = Operand(resource);
5192 mimg->operands[1] = Operand(s4); /* no sampler */
5193 mimg->operands[2] = Operand(lod);
5194 uint8_t& dmask = mimg->dmask;
5195 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5196 mimg->dmask = (1 << instr->dest.ssa.num_components) - 1;
5197 mimg->da = glsl_sampler_type_is_array(type);
5198 mimg->can_reorder = true;
5199 Definition& def = mimg->definitions[0];
5200 ctx->block->instructions.emplace_back(std::move(mimg));
5201
5202 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE &&
5203 glsl_sampler_type_is_array(type)) {
5204
5205 assert(instr->dest.ssa.num_components == 3);
5206 Temp tmp = {ctx->program->allocateId(), v3};
5207 def = Definition(tmp);
5208 emit_split_vector(ctx, tmp, 3);
5209
5210 /* divide 3rd value by 6 by multiplying with magic number */
5211 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
5212 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp, 2, v1), c);
5213
5214 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5215 emit_extract_vector(ctx, tmp, 0, v1),
5216 emit_extract_vector(ctx, tmp, 1, v1),
5217 by_6);
5218
5219 } else if (ctx->options->chip_class == GFX9 &&
5220 glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_1D &&
5221 glsl_sampler_type_is_array(type)) {
5222 assert(instr->dest.ssa.num_components == 2);
5223 def = Definition(dst);
5224 dmask = 0x5;
5225 } else {
5226 def = Definition(dst);
5227 }
5228
5229 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
5230 }
5231
5232 void visit_load_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
5233 {
5234 Builder bld(ctx->program, ctx->block);
5235 unsigned num_components = instr->num_components;
5236
5237 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5238 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5239 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
5240
5241 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
5242 load_buffer(ctx, num_components, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa), glc, false);
5243 }
5244
5245 void visit_store_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
5246 {
5247 Builder bld(ctx->program, ctx->block);
5248 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
5249 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
5250 unsigned writemask = nir_intrinsic_write_mask(instr);
5251 Temp offset = get_ssa_temp(ctx, instr->src[2].ssa);
5252
5253 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5254 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
5255
5256 bool smem = !ctx->divergent_vals[instr->src[2].ssa->index] &&
5257 ctx->options->chip_class >= GFX8;
5258 if (smem)
5259 offset = bld.as_uniform(offset);
5260 bool smem_nonfs = smem && ctx->stage != fragment_fs;
5261
5262 while (writemask) {
5263 int start, count;
5264 u_bit_scan_consecutive_range(&writemask, &start, &count);
5265 if (count == 3 && (smem || ctx->options->chip_class == GFX6)) {
5266 /* GFX6 doesn't support storing vec3, split it. */
5267 writemask |= 1u << (start + 2);
5268 count = 2;
5269 }
5270 int num_bytes = count * elem_size_bytes;
5271
5272 if (num_bytes > 16) {
5273 assert(elem_size_bytes == 8);
5274 writemask |= (((count - 2) << 1) - 1) << (start + 2);
5275 count = 2;
5276 num_bytes = 16;
5277 }
5278
5279 // TODO: check alignment of sub-dword stores
5280 // TODO: split 3 bytes. there is no store instruction for that
5281
5282 Temp write_data;
5283 if (count != instr->num_components) {
5284 emit_split_vector(ctx, data, instr->num_components);
5285 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
5286 for (int i = 0; i < count; i++) {
5287 Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(data.type(), elem_size_bytes / 4));
5288 vec->operands[i] = Operand(smem_nonfs ? bld.as_uniform(elem) : elem);
5289 }
5290 write_data = bld.tmp(!smem ? RegType::vgpr : smem_nonfs ? RegType::sgpr : data.type(), count * elem_size_bytes / 4);
5291 vec->definitions[0] = Definition(write_data);
5292 ctx->block->instructions.emplace_back(std::move(vec));
5293 } else if (!smem && data.type() != RegType::vgpr) {
5294 assert(num_bytes % 4 == 0);
5295 write_data = bld.copy(bld.def(RegType::vgpr, num_bytes / 4), data);
5296 } else if (smem_nonfs && data.type() == RegType::vgpr) {
5297 assert(num_bytes % 4 == 0);
5298 write_data = bld.as_uniform(data);
5299 } else {
5300 write_data = data;
5301 }
5302
5303 aco_opcode vmem_op, smem_op;
5304 switch (num_bytes) {
5305 case 4:
5306 vmem_op = aco_opcode::buffer_store_dword;
5307 smem_op = aco_opcode::s_buffer_store_dword;
5308 break;
5309 case 8:
5310 vmem_op = aco_opcode::buffer_store_dwordx2;
5311 smem_op = aco_opcode::s_buffer_store_dwordx2;
5312 break;
5313 case 12:
5314 vmem_op = aco_opcode::buffer_store_dwordx3;
5315 smem_op = aco_opcode::last_opcode;
5316 assert(!smem && ctx->options->chip_class > GFX6);
5317 break;
5318 case 16:
5319 vmem_op = aco_opcode::buffer_store_dwordx4;
5320 smem_op = aco_opcode::s_buffer_store_dwordx4;
5321 break;
5322 default:
5323 unreachable("Store SSBO not implemented for this size.");
5324 }
5325 if (ctx->stage == fragment_fs)
5326 smem_op = aco_opcode::p_fs_buffer_store_smem;
5327
5328 if (smem) {
5329 aco_ptr<SMEM_instruction> store{create_instruction<SMEM_instruction>(smem_op, Format::SMEM, 3, 0)};
5330 store->operands[0] = Operand(rsrc);
5331 if (start) {
5332 Temp off = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
5333 offset, Operand(start * elem_size_bytes));
5334 store->operands[1] = Operand(off);
5335 } else {
5336 store->operands[1] = Operand(offset);
5337 }
5338 if (smem_op != aco_opcode::p_fs_buffer_store_smem)
5339 store->operands[1].setFixed(m0);
5340 store->operands[2] = Operand(write_data);
5341 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
5342 store->dlc = false;
5343 store->disable_wqm = true;
5344 store->barrier = barrier_buffer;
5345 ctx->block->instructions.emplace_back(std::move(store));
5346 ctx->program->wb_smem_l1_on_end = true;
5347 if (smem_op == aco_opcode::p_fs_buffer_store_smem) {
5348 ctx->block->kind |= block_kind_needs_lowering;
5349 ctx->program->needs_exact = true;
5350 }
5351 } else {
5352 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(vmem_op, Format::MUBUF, 4, 0)};
5353 store->operands[0] = Operand(rsrc);
5354 store->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
5355 store->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
5356 store->operands[3] = Operand(write_data);
5357 store->offset = start * elem_size_bytes;
5358 store->offen = (offset.type() == RegType::vgpr);
5359 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
5360 store->dlc = false;
5361 store->disable_wqm = true;
5362 store->barrier = barrier_buffer;
5363 ctx->program->needs_exact = true;
5364 ctx->block->instructions.emplace_back(std::move(store));
5365 }
5366 }
5367 }
5368
5369 void visit_atomic_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
5370 {
5371 /* return the previous value if dest is ever used */
5372 bool return_previous = false;
5373 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5374 return_previous = true;
5375 break;
5376 }
5377 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5378 return_previous = true;
5379 break;
5380 }
5381
5382 Builder bld(ctx->program, ctx->block);
5383 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[2].ssa));
5384
5385 if (instr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap)
5386 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
5387 get_ssa_temp(ctx, instr->src[3].ssa), data);
5388
5389 Temp offset = get_ssa_temp(ctx, instr->src[1].ssa);
5390 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5391 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
5392
5393 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5394
5395 aco_opcode op32, op64;
5396 switch (instr->intrinsic) {
5397 case nir_intrinsic_ssbo_atomic_add:
5398 op32 = aco_opcode::buffer_atomic_add;
5399 op64 = aco_opcode::buffer_atomic_add_x2;
5400 break;
5401 case nir_intrinsic_ssbo_atomic_imin:
5402 op32 = aco_opcode::buffer_atomic_smin;
5403 op64 = aco_opcode::buffer_atomic_smin_x2;
5404 break;
5405 case nir_intrinsic_ssbo_atomic_umin:
5406 op32 = aco_opcode::buffer_atomic_umin;
5407 op64 = aco_opcode::buffer_atomic_umin_x2;
5408 break;
5409 case nir_intrinsic_ssbo_atomic_imax:
5410 op32 = aco_opcode::buffer_atomic_smax;
5411 op64 = aco_opcode::buffer_atomic_smax_x2;
5412 break;
5413 case nir_intrinsic_ssbo_atomic_umax:
5414 op32 = aco_opcode::buffer_atomic_umax;
5415 op64 = aco_opcode::buffer_atomic_umax_x2;
5416 break;
5417 case nir_intrinsic_ssbo_atomic_and:
5418 op32 = aco_opcode::buffer_atomic_and;
5419 op64 = aco_opcode::buffer_atomic_and_x2;
5420 break;
5421 case nir_intrinsic_ssbo_atomic_or:
5422 op32 = aco_opcode::buffer_atomic_or;
5423 op64 = aco_opcode::buffer_atomic_or_x2;
5424 break;
5425 case nir_intrinsic_ssbo_atomic_xor:
5426 op32 = aco_opcode::buffer_atomic_xor;
5427 op64 = aco_opcode::buffer_atomic_xor_x2;
5428 break;
5429 case nir_intrinsic_ssbo_atomic_exchange:
5430 op32 = aco_opcode::buffer_atomic_swap;
5431 op64 = aco_opcode::buffer_atomic_swap_x2;
5432 break;
5433 case nir_intrinsic_ssbo_atomic_comp_swap:
5434 op32 = aco_opcode::buffer_atomic_cmpswap;
5435 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
5436 break;
5437 default:
5438 unreachable("visit_atomic_ssbo should only be called with nir_intrinsic_ssbo_atomic_* instructions.");
5439 }
5440 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
5441 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
5442 mubuf->operands[0] = Operand(rsrc);
5443 mubuf->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
5444 mubuf->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
5445 mubuf->operands[3] = Operand(data);
5446 if (return_previous)
5447 mubuf->definitions[0] = Definition(dst);
5448 mubuf->offset = 0;
5449 mubuf->offen = (offset.type() == RegType::vgpr);
5450 mubuf->glc = return_previous;
5451 mubuf->dlc = false; /* Not needed for atomics */
5452 mubuf->disable_wqm = true;
5453 mubuf->barrier = barrier_buffer;
5454 ctx->program->needs_exact = true;
5455 ctx->block->instructions.emplace_back(std::move(mubuf));
5456 }
5457
5458 void visit_get_buffer_size(isel_context *ctx, nir_intrinsic_instr *instr) {
5459
5460 Temp index = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5461 Builder bld(ctx->program, ctx->block);
5462 Temp desc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), index, Operand(0u));
5463 get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), false);
5464 }
5465
5466 Temp get_gfx6_global_rsrc(Builder& bld, Temp addr)
5467 {
5468 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5469 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
5470
5471 if (addr.type() == RegType::vgpr)
5472 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), Operand(0u), Operand(0u), Operand(-1u), Operand(rsrc_conf));
5473 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), addr, Operand(-1u), Operand(rsrc_conf));
5474 }
5475
5476 void visit_load_global(isel_context *ctx, nir_intrinsic_instr *instr)
5477 {
5478 Builder bld(ctx->program, ctx->block);
5479 unsigned num_components = instr->num_components;
5480 unsigned num_bytes = num_components * instr->dest.ssa.bit_size / 8;
5481
5482 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5483 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
5484
5485 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
5486 bool dlc = glc && ctx->options->chip_class >= GFX10;
5487 aco_opcode op;
5488 if (dst.type() == RegType::vgpr || (glc && ctx->options->chip_class < GFX8)) {
5489 bool global = ctx->options->chip_class >= GFX9;
5490
5491 if (ctx->options->chip_class >= GFX7) {
5492 aco_opcode op;
5493 switch (num_bytes) {
5494 case 4:
5495 op = global ? aco_opcode::global_load_dword : aco_opcode::flat_load_dword;
5496 break;
5497 case 8:
5498 op = global ? aco_opcode::global_load_dwordx2 : aco_opcode::flat_load_dwordx2;
5499 break;
5500 case 12:
5501 op = global ? aco_opcode::global_load_dwordx3 : aco_opcode::flat_load_dwordx3;
5502 break;
5503 case 16:
5504 op = global ? aco_opcode::global_load_dwordx4 : aco_opcode::flat_load_dwordx4;
5505 break;
5506 default:
5507 unreachable("load_global not implemented for this size.");
5508 }
5509
5510 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 2, 1)};
5511 flat->operands[0] = Operand(addr);
5512 flat->operands[1] = Operand(s1);
5513 flat->glc = glc;
5514 flat->dlc = dlc;
5515 flat->barrier = barrier_buffer;
5516
5517 if (dst.type() == RegType::sgpr) {
5518 Temp vec = bld.tmp(RegType::vgpr, dst.size());
5519 flat->definitions[0] = Definition(vec);
5520 ctx->block->instructions.emplace_back(std::move(flat));
5521 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
5522 } else {
5523 flat->definitions[0] = Definition(dst);
5524 ctx->block->instructions.emplace_back(std::move(flat));
5525 }
5526 emit_split_vector(ctx, dst, num_components);
5527 } else {
5528 assert(ctx->options->chip_class == GFX6);
5529
5530 /* GFX6 doesn't support loading vec3, expand to vec4. */
5531 num_bytes = num_bytes == 12 ? 16 : num_bytes;
5532
5533 aco_opcode op;
5534 switch (num_bytes) {
5535 case 4:
5536 op = aco_opcode::buffer_load_dword;
5537 break;
5538 case 8:
5539 op = aco_opcode::buffer_load_dwordx2;
5540 break;
5541 case 16:
5542 op = aco_opcode::buffer_load_dwordx4;
5543 break;
5544 default:
5545 unreachable("load_global not implemented for this size.");
5546 }
5547
5548 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
5549
5550 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
5551 mubuf->operands[0] = Operand(rsrc);
5552 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
5553 mubuf->operands[2] = Operand(0u);
5554 mubuf->glc = glc;
5555 mubuf->dlc = false;
5556 mubuf->offset = 0;
5557 mubuf->addr64 = addr.type() == RegType::vgpr;
5558 mubuf->disable_wqm = false;
5559 mubuf->barrier = barrier_buffer;
5560 aco_ptr<Instruction> instr = std::move(mubuf);
5561
5562 /* expand vector */
5563 if (dst.size() == 3) {
5564 Temp vec = bld.tmp(v4);
5565 instr->definitions[0] = Definition(vec);
5566 bld.insert(std::move(instr));
5567 emit_split_vector(ctx, vec, 4);
5568
5569 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 3, 1));
5570 instr->operands[0] = Operand(emit_extract_vector(ctx, vec, 0, v1));
5571 instr->operands[1] = Operand(emit_extract_vector(ctx, vec, 1, v1));
5572 instr->operands[2] = Operand(emit_extract_vector(ctx, vec, 2, v1));
5573 }
5574
5575 if (dst.type() == RegType::sgpr) {
5576 Temp vec = bld.tmp(RegType::vgpr, dst.size());
5577 instr->definitions[0] = Definition(vec);
5578 bld.insert(std::move(instr));
5579 expand_vector(ctx, vec, dst, num_components, (1 << num_components) - 1);
5580 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
5581 } else {
5582 instr->definitions[0] = Definition(dst);
5583 bld.insert(std::move(instr));
5584 emit_split_vector(ctx, dst, num_components);
5585 }
5586 }
5587 } else {
5588 switch (num_bytes) {
5589 case 4:
5590 op = aco_opcode::s_load_dword;
5591 break;
5592 case 8:
5593 op = aco_opcode::s_load_dwordx2;
5594 break;
5595 case 12:
5596 case 16:
5597 op = aco_opcode::s_load_dwordx4;
5598 break;
5599 default:
5600 unreachable("load_global not implemented for this size.");
5601 }
5602 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
5603 load->operands[0] = Operand(addr);
5604 load->operands[1] = Operand(0u);
5605 load->definitions[0] = Definition(dst);
5606 load->glc = glc;
5607 load->dlc = dlc;
5608 load->barrier = barrier_buffer;
5609 assert(ctx->options->chip_class >= GFX8 || !glc);
5610
5611 if (dst.size() == 3) {
5612 /* trim vector */
5613 Temp vec = bld.tmp(s4);
5614 load->definitions[0] = Definition(vec);
5615 ctx->block->instructions.emplace_back(std::move(load));
5616 emit_split_vector(ctx, vec, 4);
5617
5618 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5619 emit_extract_vector(ctx, vec, 0, s1),
5620 emit_extract_vector(ctx, vec, 1, s1),
5621 emit_extract_vector(ctx, vec, 2, s1));
5622 } else {
5623 ctx->block->instructions.emplace_back(std::move(load));
5624 }
5625 }
5626 }
5627
5628 void visit_store_global(isel_context *ctx, nir_intrinsic_instr *instr)
5629 {
5630 Builder bld(ctx->program, ctx->block);
5631 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
5632
5633 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5634 Temp addr = get_ssa_temp(ctx, instr->src[1].ssa);
5635
5636 if (ctx->options->chip_class >= GFX7)
5637 addr = as_vgpr(ctx, addr);
5638
5639 unsigned writemask = nir_intrinsic_write_mask(instr);
5640 while (writemask) {
5641 int start, count;
5642 u_bit_scan_consecutive_range(&writemask, &start, &count);
5643 if (count == 3 && ctx->options->chip_class == GFX6) {
5644 /* GFX6 doesn't support storing vec3, split it. */
5645 writemask |= 1u << (start + 2);
5646 count = 2;
5647 }
5648 unsigned num_bytes = count * elem_size_bytes;
5649
5650 Temp write_data = data;
5651 if (count != instr->num_components) {
5652 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
5653 for (int i = 0; i < count; i++)
5654 vec->operands[i] = Operand(emit_extract_vector(ctx, data, start + i, v1));
5655 write_data = bld.tmp(RegType::vgpr, count);
5656 vec->definitions[0] = Definition(write_data);
5657 ctx->block->instructions.emplace_back(std::move(vec));
5658 }
5659
5660 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
5661 unsigned offset = start * elem_size_bytes;
5662
5663 if (ctx->options->chip_class >= GFX7) {
5664 if (offset > 0 && ctx->options->chip_class < GFX9) {
5665 Temp addr0 = bld.tmp(v1), addr1 = bld.tmp(v1);
5666 Temp new_addr0 = bld.tmp(v1), new_addr1 = bld.tmp(v1);
5667 Temp carry = bld.tmp(bld.lm);
5668 bld.pseudo(aco_opcode::p_split_vector, Definition(addr0), Definition(addr1), addr);
5669
5670 bld.vop2(aco_opcode::v_add_co_u32, Definition(new_addr0), bld.hint_vcc(Definition(carry)),
5671 Operand(offset), addr0);
5672 bld.vop2(aco_opcode::v_addc_co_u32, Definition(new_addr1), bld.def(bld.lm),
5673 Operand(0u), addr1,
5674 carry).def(1).setHint(vcc);
5675
5676 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_addr0, new_addr1);
5677
5678 offset = 0;
5679 }
5680
5681 bool global = ctx->options->chip_class >= GFX9;
5682 aco_opcode op;
5683 switch (num_bytes) {
5684 case 4:
5685 op = global ? aco_opcode::global_store_dword : aco_opcode::flat_store_dword;
5686 break;
5687 case 8:
5688 op = global ? aco_opcode::global_store_dwordx2 : aco_opcode::flat_store_dwordx2;
5689 break;
5690 case 12:
5691 op = global ? aco_opcode::global_store_dwordx3 : aco_opcode::flat_store_dwordx3;
5692 break;
5693 case 16:
5694 op = global ? aco_opcode::global_store_dwordx4 : aco_opcode::flat_store_dwordx4;
5695 break;
5696 default:
5697 unreachable("store_global not implemented for this size.");
5698 }
5699
5700 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, 0)};
5701 flat->operands[0] = Operand(addr);
5702 flat->operands[1] = Operand(s1);
5703 flat->operands[2] = Operand(data);
5704 flat->glc = glc;
5705 flat->dlc = false;
5706 flat->offset = offset;
5707 flat->disable_wqm = true;
5708 flat->barrier = barrier_buffer;
5709 ctx->program->needs_exact = true;
5710 ctx->block->instructions.emplace_back(std::move(flat));
5711 } else {
5712 assert(ctx->options->chip_class == GFX6);
5713
5714 aco_opcode op;
5715 switch (num_bytes) {
5716 case 4:
5717 op = aco_opcode::buffer_store_dword;
5718 break;
5719 case 8:
5720 op = aco_opcode::buffer_store_dwordx2;
5721 break;
5722 case 16:
5723 op = aco_opcode::buffer_store_dwordx4;
5724 break;
5725 default:
5726 unreachable("store_global not implemented for this size.");
5727 }
5728
5729 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
5730
5731 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, 0)};
5732 mubuf->operands[0] = Operand(rsrc);
5733 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
5734 mubuf->operands[2] = Operand(0u);
5735 mubuf->operands[3] = Operand(write_data);
5736 mubuf->glc = glc;
5737 mubuf->dlc = false;
5738 mubuf->offset = offset;
5739 mubuf->addr64 = addr.type() == RegType::vgpr;
5740 mubuf->disable_wqm = true;
5741 mubuf->barrier = barrier_buffer;
5742 ctx->program->needs_exact = true;
5743 ctx->block->instructions.emplace_back(std::move(mubuf));
5744 }
5745 }
5746 }
5747
5748 void visit_global_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
5749 {
5750 /* return the previous value if dest is ever used */
5751 bool return_previous = false;
5752 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5753 return_previous = true;
5754 break;
5755 }
5756 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5757 return_previous = true;
5758 break;
5759 }
5760
5761 Builder bld(ctx->program, ctx->block);
5762 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
5763 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5764
5765 if (ctx->options->chip_class >= GFX7)
5766 addr = as_vgpr(ctx, addr);
5767
5768 if (instr->intrinsic == nir_intrinsic_global_atomic_comp_swap)
5769 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
5770 get_ssa_temp(ctx, instr->src[2].ssa), data);
5771
5772 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5773
5774 aco_opcode op32, op64;
5775
5776 if (ctx->options->chip_class >= GFX7) {
5777 bool global = ctx->options->chip_class >= GFX9;
5778 switch (instr->intrinsic) {
5779 case nir_intrinsic_global_atomic_add:
5780 op32 = global ? aco_opcode::global_atomic_add : aco_opcode::flat_atomic_add;
5781 op64 = global ? aco_opcode::global_atomic_add_x2 : aco_opcode::flat_atomic_add_x2;
5782 break;
5783 case nir_intrinsic_global_atomic_imin:
5784 op32 = global ? aco_opcode::global_atomic_smin : aco_opcode::flat_atomic_smin;
5785 op64 = global ? aco_opcode::global_atomic_smin_x2 : aco_opcode::flat_atomic_smin_x2;
5786 break;
5787 case nir_intrinsic_global_atomic_umin:
5788 op32 = global ? aco_opcode::global_atomic_umin : aco_opcode::flat_atomic_umin;
5789 op64 = global ? aco_opcode::global_atomic_umin_x2 : aco_opcode::flat_atomic_umin_x2;
5790 break;
5791 case nir_intrinsic_global_atomic_imax:
5792 op32 = global ? aco_opcode::global_atomic_smax : aco_opcode::flat_atomic_smax;
5793 op64 = global ? aco_opcode::global_atomic_smax_x2 : aco_opcode::flat_atomic_smax_x2;
5794 break;
5795 case nir_intrinsic_global_atomic_umax:
5796 op32 = global ? aco_opcode::global_atomic_umax : aco_opcode::flat_atomic_umax;
5797 op64 = global ? aco_opcode::global_atomic_umax_x2 : aco_opcode::flat_atomic_umax_x2;
5798 break;
5799 case nir_intrinsic_global_atomic_and:
5800 op32 = global ? aco_opcode::global_atomic_and : aco_opcode::flat_atomic_and;
5801 op64 = global ? aco_opcode::global_atomic_and_x2 : aco_opcode::flat_atomic_and_x2;
5802 break;
5803 case nir_intrinsic_global_atomic_or:
5804 op32 = global ? aco_opcode::global_atomic_or : aco_opcode::flat_atomic_or;
5805 op64 = global ? aco_opcode::global_atomic_or_x2 : aco_opcode::flat_atomic_or_x2;
5806 break;
5807 case nir_intrinsic_global_atomic_xor:
5808 op32 = global ? aco_opcode::global_atomic_xor : aco_opcode::flat_atomic_xor;
5809 op64 = global ? aco_opcode::global_atomic_xor_x2 : aco_opcode::flat_atomic_xor_x2;
5810 break;
5811 case nir_intrinsic_global_atomic_exchange:
5812 op32 = global ? aco_opcode::global_atomic_swap : aco_opcode::flat_atomic_swap;
5813 op64 = global ? aco_opcode::global_atomic_swap_x2 : aco_opcode::flat_atomic_swap_x2;
5814 break;
5815 case nir_intrinsic_global_atomic_comp_swap:
5816 op32 = global ? aco_opcode::global_atomic_cmpswap : aco_opcode::flat_atomic_cmpswap;
5817 op64 = global ? aco_opcode::global_atomic_cmpswap_x2 : aco_opcode::flat_atomic_cmpswap_x2;
5818 break;
5819 default:
5820 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
5821 }
5822
5823 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
5824 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, return_previous ? 1 : 0)};
5825 flat->operands[0] = Operand(addr);
5826 flat->operands[1] = Operand(s1);
5827 flat->operands[2] = Operand(data);
5828 if (return_previous)
5829 flat->definitions[0] = Definition(dst);
5830 flat->glc = return_previous;
5831 flat->dlc = false; /* Not needed for atomics */
5832 flat->offset = 0;
5833 flat->disable_wqm = true;
5834 flat->barrier = barrier_buffer;
5835 ctx->program->needs_exact = true;
5836 ctx->block->instructions.emplace_back(std::move(flat));
5837 } else {
5838 assert(ctx->options->chip_class == GFX6);
5839
5840 switch (instr->intrinsic) {
5841 case nir_intrinsic_global_atomic_add:
5842 op32 = aco_opcode::buffer_atomic_add;
5843 op64 = aco_opcode::buffer_atomic_add_x2;
5844 break;
5845 case nir_intrinsic_global_atomic_imin:
5846 op32 = aco_opcode::buffer_atomic_smin;
5847 op64 = aco_opcode::buffer_atomic_smin_x2;
5848 break;
5849 case nir_intrinsic_global_atomic_umin:
5850 op32 = aco_opcode::buffer_atomic_umin;
5851 op64 = aco_opcode::buffer_atomic_umin_x2;
5852 break;
5853 case nir_intrinsic_global_atomic_imax:
5854 op32 = aco_opcode::buffer_atomic_smax;
5855 op64 = aco_opcode::buffer_atomic_smax_x2;
5856 break;
5857 case nir_intrinsic_global_atomic_umax:
5858 op32 = aco_opcode::buffer_atomic_umax;
5859 op64 = aco_opcode::buffer_atomic_umax_x2;
5860 break;
5861 case nir_intrinsic_global_atomic_and:
5862 op32 = aco_opcode::buffer_atomic_and;
5863 op64 = aco_opcode::buffer_atomic_and_x2;
5864 break;
5865 case nir_intrinsic_global_atomic_or:
5866 op32 = aco_opcode::buffer_atomic_or;
5867 op64 = aco_opcode::buffer_atomic_or_x2;
5868 break;
5869 case nir_intrinsic_global_atomic_xor:
5870 op32 = aco_opcode::buffer_atomic_xor;
5871 op64 = aco_opcode::buffer_atomic_xor_x2;
5872 break;
5873 case nir_intrinsic_global_atomic_exchange:
5874 op32 = aco_opcode::buffer_atomic_swap;
5875 op64 = aco_opcode::buffer_atomic_swap_x2;
5876 break;
5877 case nir_intrinsic_global_atomic_comp_swap:
5878 op32 = aco_opcode::buffer_atomic_cmpswap;
5879 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
5880 break;
5881 default:
5882 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
5883 }
5884
5885 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
5886
5887 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
5888
5889 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
5890 mubuf->operands[0] = Operand(rsrc);
5891 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
5892 mubuf->operands[2] = Operand(0u);
5893 mubuf->operands[3] = Operand(data);
5894 if (return_previous)
5895 mubuf->definitions[0] = Definition(dst);
5896 mubuf->glc = return_previous;
5897 mubuf->dlc = false;
5898 mubuf->offset = 0;
5899 mubuf->addr64 = addr.type() == RegType::vgpr;
5900 mubuf->disable_wqm = true;
5901 mubuf->barrier = barrier_buffer;
5902 ctx->program->needs_exact = true;
5903 ctx->block->instructions.emplace_back(std::move(mubuf));
5904 }
5905 }
5906
5907 void emit_memory_barrier(isel_context *ctx, nir_intrinsic_instr *instr) {
5908 Builder bld(ctx->program, ctx->block);
5909 switch(instr->intrinsic) {
5910 case nir_intrinsic_group_memory_barrier:
5911 case nir_intrinsic_memory_barrier:
5912 bld.barrier(aco_opcode::p_memory_barrier_common);
5913 break;
5914 case nir_intrinsic_memory_barrier_buffer:
5915 bld.barrier(aco_opcode::p_memory_barrier_buffer);
5916 break;
5917 case nir_intrinsic_memory_barrier_image:
5918 bld.barrier(aco_opcode::p_memory_barrier_image);
5919 break;
5920 case nir_intrinsic_memory_barrier_tcs_patch:
5921 case nir_intrinsic_memory_barrier_shared:
5922 bld.barrier(aco_opcode::p_memory_barrier_shared);
5923 break;
5924 default:
5925 unreachable("Unimplemented memory barrier intrinsic");
5926 break;
5927 }
5928 }
5929
5930 void visit_load_shared(isel_context *ctx, nir_intrinsic_instr *instr)
5931 {
5932 // TODO: implement sparse reads using ds_read2_b32 and nir_ssa_def_components_read()
5933 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5934 assert(instr->dest.ssa.bit_size >= 32 && "Bitsize not supported in load_shared.");
5935 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5936 Builder bld(ctx->program, ctx->block);
5937
5938 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
5939 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
5940 load_lds(ctx, elem_size_bytes, dst, address, nir_intrinsic_base(instr), align);
5941 }
5942
5943 void visit_store_shared(isel_context *ctx, nir_intrinsic_instr *instr)
5944 {
5945 unsigned writemask = nir_intrinsic_write_mask(instr);
5946 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
5947 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5948 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
5949 assert(elem_size_bytes >= 4 && "Only 32bit & 64bit store_shared currently supported.");
5950
5951 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
5952 store_lds(ctx, elem_size_bytes, data, writemask, address, nir_intrinsic_base(instr), align);
5953 }
5954
5955 void visit_shared_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
5956 {
5957 unsigned offset = nir_intrinsic_base(instr);
5958 Operand m = load_lds_size_m0(ctx);
5959 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5960 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5961
5962 unsigned num_operands = 3;
5963 aco_opcode op32, op64, op32_rtn, op64_rtn;
5964 switch(instr->intrinsic) {
5965 case nir_intrinsic_shared_atomic_add:
5966 op32 = aco_opcode::ds_add_u32;
5967 op64 = aco_opcode::ds_add_u64;
5968 op32_rtn = aco_opcode::ds_add_rtn_u32;
5969 op64_rtn = aco_opcode::ds_add_rtn_u64;
5970 break;
5971 case nir_intrinsic_shared_atomic_imin:
5972 op32 = aco_opcode::ds_min_i32;
5973 op64 = aco_opcode::ds_min_i64;
5974 op32_rtn = aco_opcode::ds_min_rtn_i32;
5975 op64_rtn = aco_opcode::ds_min_rtn_i64;
5976 break;
5977 case nir_intrinsic_shared_atomic_umin:
5978 op32 = aco_opcode::ds_min_u32;
5979 op64 = aco_opcode::ds_min_u64;
5980 op32_rtn = aco_opcode::ds_min_rtn_u32;
5981 op64_rtn = aco_opcode::ds_min_rtn_u64;
5982 break;
5983 case nir_intrinsic_shared_atomic_imax:
5984 op32 = aco_opcode::ds_max_i32;
5985 op64 = aco_opcode::ds_max_i64;
5986 op32_rtn = aco_opcode::ds_max_rtn_i32;
5987 op64_rtn = aco_opcode::ds_max_rtn_i64;
5988 break;
5989 case nir_intrinsic_shared_atomic_umax:
5990 op32 = aco_opcode::ds_max_u32;
5991 op64 = aco_opcode::ds_max_u64;
5992 op32_rtn = aco_opcode::ds_max_rtn_u32;
5993 op64_rtn = aco_opcode::ds_max_rtn_u64;
5994 break;
5995 case nir_intrinsic_shared_atomic_and:
5996 op32 = aco_opcode::ds_and_b32;
5997 op64 = aco_opcode::ds_and_b64;
5998 op32_rtn = aco_opcode::ds_and_rtn_b32;
5999 op64_rtn = aco_opcode::ds_and_rtn_b64;
6000 break;
6001 case nir_intrinsic_shared_atomic_or:
6002 op32 = aco_opcode::ds_or_b32;
6003 op64 = aco_opcode::ds_or_b64;
6004 op32_rtn = aco_opcode::ds_or_rtn_b32;
6005 op64_rtn = aco_opcode::ds_or_rtn_b64;
6006 break;
6007 case nir_intrinsic_shared_atomic_xor:
6008 op32 = aco_opcode::ds_xor_b32;
6009 op64 = aco_opcode::ds_xor_b64;
6010 op32_rtn = aco_opcode::ds_xor_rtn_b32;
6011 op64_rtn = aco_opcode::ds_xor_rtn_b64;
6012 break;
6013 case nir_intrinsic_shared_atomic_exchange:
6014 op32 = aco_opcode::ds_write_b32;
6015 op64 = aco_opcode::ds_write_b64;
6016 op32_rtn = aco_opcode::ds_wrxchg_rtn_b32;
6017 op64_rtn = aco_opcode::ds_wrxchg2_rtn_b64;
6018 break;
6019 case nir_intrinsic_shared_atomic_comp_swap:
6020 op32 = aco_opcode::ds_cmpst_b32;
6021 op64 = aco_opcode::ds_cmpst_b64;
6022 op32_rtn = aco_opcode::ds_cmpst_rtn_b32;
6023 op64_rtn = aco_opcode::ds_cmpst_rtn_b64;
6024 num_operands = 4;
6025 break;
6026 default:
6027 unreachable("Unhandled shared atomic intrinsic");
6028 }
6029
6030 /* return the previous value if dest is ever used */
6031 bool return_previous = false;
6032 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6033 return_previous = true;
6034 break;
6035 }
6036 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6037 return_previous = true;
6038 break;
6039 }
6040
6041 aco_opcode op;
6042 if (data.size() == 1) {
6043 assert(instr->dest.ssa.bit_size == 32);
6044 op = return_previous ? op32_rtn : op32;
6045 } else {
6046 assert(instr->dest.ssa.bit_size == 64);
6047 op = return_previous ? op64_rtn : op64;
6048 }
6049
6050 if (offset > 65535) {
6051 Builder bld(ctx->program, ctx->block);
6052 address = bld.vadd32(bld.def(v1), Operand(offset), address);
6053 offset = 0;
6054 }
6055
6056 aco_ptr<DS_instruction> ds;
6057 ds.reset(create_instruction<DS_instruction>(op, Format::DS, num_operands, return_previous ? 1 : 0));
6058 ds->operands[0] = Operand(address);
6059 ds->operands[1] = Operand(data);
6060 if (num_operands == 4)
6061 ds->operands[2] = Operand(get_ssa_temp(ctx, instr->src[2].ssa));
6062 ds->operands[num_operands - 1] = m;
6063 ds->offset0 = offset;
6064 if (return_previous)
6065 ds->definitions[0] = Definition(get_ssa_temp(ctx, &instr->dest.ssa));
6066 ctx->block->instructions.emplace_back(std::move(ds));
6067 }
6068
6069 Temp get_scratch_resource(isel_context *ctx)
6070 {
6071 Builder bld(ctx->program, ctx->block);
6072 Temp scratch_addr = ctx->program->private_segment_buffer;
6073 if (ctx->stage != compute_cs)
6074 scratch_addr = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), scratch_addr, Operand(0u));
6075
6076 uint32_t rsrc_conf = S_008F0C_ADD_TID_ENABLE(1) |
6077 S_008F0C_INDEX_STRIDE(ctx->program->wave_size == 64 ? 3 : 2);;
6078
6079 if (ctx->program->chip_class >= GFX10) {
6080 rsrc_conf |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
6081 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
6082 S_008F0C_RESOURCE_LEVEL(1);
6083 } else if (ctx->program->chip_class <= GFX7) { /* dfmt modifies stride on GFX8/GFX9 when ADD_TID_EN=1 */
6084 rsrc_conf |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
6085 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
6086 }
6087
6088 /* older generations need element size = 16 bytes. element size removed in GFX9 */
6089 if (ctx->program->chip_class <= GFX8)
6090 rsrc_conf |= S_008F0C_ELEMENT_SIZE(3);
6091
6092 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), scratch_addr, Operand(-1u), Operand(rsrc_conf));
6093 }
6094
6095 void visit_load_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
6096 assert(instr->dest.ssa.bit_size == 32 || instr->dest.ssa.bit_size == 64);
6097 Builder bld(ctx->program, ctx->block);
6098 Temp rsrc = get_scratch_resource(ctx);
6099 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6100 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6101
6102 aco_opcode op;
6103 switch (dst.size()) {
6104 case 1:
6105 op = aco_opcode::buffer_load_dword;
6106 break;
6107 case 2:
6108 op = aco_opcode::buffer_load_dwordx2;
6109 break;
6110 case 3:
6111 op = aco_opcode::buffer_load_dwordx3;
6112 break;
6113 case 4:
6114 op = aco_opcode::buffer_load_dwordx4;
6115 break;
6116 case 6:
6117 case 8: {
6118 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
6119 Temp lower = bld.mubuf(aco_opcode::buffer_load_dwordx4,
6120 bld.def(v4), rsrc, offset,
6121 ctx->program->scratch_offset, 0, true);
6122 Temp upper = bld.mubuf(dst.size() == 6 ? aco_opcode::buffer_load_dwordx2 :
6123 aco_opcode::buffer_load_dwordx4,
6124 dst.size() == 6 ? bld.def(v2) : bld.def(v4),
6125 rsrc, offset, ctx->program->scratch_offset, 16, true);
6126 emit_split_vector(ctx, lower, 2);
6127 elems[0] = emit_extract_vector(ctx, lower, 0, v2);
6128 elems[1] = emit_extract_vector(ctx, lower, 1, v2);
6129 if (dst.size() == 8) {
6130 emit_split_vector(ctx, upper, 2);
6131 elems[2] = emit_extract_vector(ctx, upper, 0, v2);
6132 elems[3] = emit_extract_vector(ctx, upper, 1, v2);
6133 } else {
6134 elems[2] = upper;
6135 }
6136
6137 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
6138 Format::PSEUDO, dst.size() / 2, 1)};
6139 for (unsigned i = 0; i < dst.size() / 2; i++)
6140 vec->operands[i] = Operand(elems[i]);
6141 vec->definitions[0] = Definition(dst);
6142 bld.insert(std::move(vec));
6143 ctx->allocated_vec.emplace(dst.id(), elems);
6144 return;
6145 }
6146 default:
6147 unreachable("Wrong dst size for nir_intrinsic_load_scratch");
6148 }
6149
6150 bld.mubuf(op, Definition(dst), rsrc, offset, ctx->program->scratch_offset, 0, true);
6151 emit_split_vector(ctx, dst, instr->num_components);
6152 }
6153
6154 void visit_store_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
6155 assert(instr->src[0].ssa->bit_size == 32 || instr->src[0].ssa->bit_size == 64);
6156 Builder bld(ctx->program, ctx->block);
6157 Temp rsrc = get_scratch_resource(ctx);
6158 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6159 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6160
6161 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6162 unsigned writemask = nir_intrinsic_write_mask(instr);
6163
6164 while (writemask) {
6165 int start, count;
6166 u_bit_scan_consecutive_range(&writemask, &start, &count);
6167 int num_bytes = count * elem_size_bytes;
6168
6169 if (num_bytes > 16) {
6170 assert(elem_size_bytes == 8);
6171 writemask |= (((count - 2) << 1) - 1) << (start + 2);
6172 count = 2;
6173 num_bytes = 16;
6174 }
6175
6176 // TODO: check alignment of sub-dword stores
6177 // TODO: split 3 bytes. there is no store instruction for that
6178
6179 Temp write_data;
6180 if (count != instr->num_components) {
6181 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
6182 for (int i = 0; i < count; i++) {
6183 Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(RegType::vgpr, elem_size_bytes / 4));
6184 vec->operands[i] = Operand(elem);
6185 }
6186 write_data = bld.tmp(RegClass(RegType::vgpr, count * elem_size_bytes / 4));
6187 vec->definitions[0] = Definition(write_data);
6188 ctx->block->instructions.emplace_back(std::move(vec));
6189 } else {
6190 write_data = data;
6191 }
6192
6193 aco_opcode op;
6194 switch (num_bytes) {
6195 case 4:
6196 op = aco_opcode::buffer_store_dword;
6197 break;
6198 case 8:
6199 op = aco_opcode::buffer_store_dwordx2;
6200 break;
6201 case 12:
6202 op = aco_opcode::buffer_store_dwordx3;
6203 break;
6204 case 16:
6205 op = aco_opcode::buffer_store_dwordx4;
6206 break;
6207 default:
6208 unreachable("Invalid data size for nir_intrinsic_store_scratch.");
6209 }
6210
6211 bld.mubuf(op, rsrc, offset, ctx->program->scratch_offset, write_data, start * elem_size_bytes, true);
6212 }
6213 }
6214
6215 void visit_load_sample_mask_in(isel_context *ctx, nir_intrinsic_instr *instr) {
6216 uint8_t log2_ps_iter_samples;
6217 if (ctx->program->info->ps.force_persample) {
6218 log2_ps_iter_samples =
6219 util_logbase2(ctx->options->key.fs.num_samples);
6220 } else {
6221 log2_ps_iter_samples = ctx->options->key.fs.log2_ps_iter_samples;
6222 }
6223
6224 /* The bit pattern matches that used by fixed function fragment
6225 * processing. */
6226 static const unsigned ps_iter_masks[] = {
6227 0xffff, /* not used */
6228 0x5555,
6229 0x1111,
6230 0x0101,
6231 0x0001,
6232 };
6233 assert(log2_ps_iter_samples < ARRAY_SIZE(ps_iter_masks));
6234
6235 Builder bld(ctx->program, ctx->block);
6236
6237 Temp sample_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
6238 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
6239 Temp ps_iter_mask = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(ps_iter_masks[log2_ps_iter_samples]));
6240 Temp mask = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), sample_id, ps_iter_mask);
6241 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6242 bld.vop2(aco_opcode::v_and_b32, Definition(dst), mask, get_arg(ctx, ctx->args->ac.sample_coverage));
6243 }
6244
6245 void visit_emit_vertex_with_counter(isel_context *ctx, nir_intrinsic_instr *instr) {
6246 Builder bld(ctx->program, ctx->block);
6247
6248 unsigned stream = nir_intrinsic_stream_id(instr);
6249 Temp next_vertex = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6250 next_vertex = bld.v_mul_imm(bld.def(v1), next_vertex, 4u);
6251 nir_const_value *next_vertex_cv = nir_src_as_const_value(instr->src[0]);
6252
6253 /* get GSVS ring */
6254 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_GSVS_GS * 16u));
6255
6256 unsigned num_components =
6257 ctx->program->info->gs.num_stream_output_components[stream];
6258 assert(num_components);
6259
6260 unsigned stride = 4u * num_components * ctx->shader->info.gs.vertices_out;
6261 unsigned stream_offset = 0;
6262 for (unsigned i = 0; i < stream; i++) {
6263 unsigned prev_stride = 4u * ctx->program->info->gs.num_stream_output_components[i] * ctx->shader->info.gs.vertices_out;
6264 stream_offset += prev_stride * ctx->program->wave_size;
6265 }
6266
6267 /* Limit on the stride field for <= GFX7. */
6268 assert(stride < (1 << 14));
6269
6270 Temp gsvs_dwords[4];
6271 for (unsigned i = 0; i < 4; i++)
6272 gsvs_dwords[i] = bld.tmp(s1);
6273 bld.pseudo(aco_opcode::p_split_vector,
6274 Definition(gsvs_dwords[0]),
6275 Definition(gsvs_dwords[1]),
6276 Definition(gsvs_dwords[2]),
6277 Definition(gsvs_dwords[3]),
6278 gsvs_ring);
6279
6280 if (stream_offset) {
6281 Temp stream_offset_tmp = bld.copy(bld.def(s1), Operand(stream_offset));
6282
6283 Temp carry = bld.tmp(s1);
6284 gsvs_dwords[0] = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), gsvs_dwords[0], stream_offset_tmp);
6285 gsvs_dwords[1] = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(0u), bld.scc(carry));
6286 }
6287
6288 gsvs_dwords[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(S_008F04_STRIDE(stride)));
6289 gsvs_dwords[2] = bld.copy(bld.def(s1), Operand((uint32_t)ctx->program->wave_size));
6290
6291 gsvs_ring = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
6292 gsvs_dwords[0], gsvs_dwords[1], gsvs_dwords[2], gsvs_dwords[3]);
6293
6294 unsigned offset = 0;
6295 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; i++) {
6296 if (ctx->program->info->gs.output_streams[i] != stream)
6297 continue;
6298
6299 for (unsigned j = 0; j < 4; j++) {
6300 if (!(ctx->program->info->gs.output_usage_mask[i] & (1 << j)))
6301 continue;
6302
6303 if (ctx->outputs.mask[i] & (1 << j)) {
6304 Operand vaddr_offset = next_vertex_cv ? Operand(v1) : Operand(next_vertex);
6305 unsigned const_offset = (offset + (next_vertex_cv ? next_vertex_cv->u32 : 0u)) * 4u;
6306 if (const_offset >= 4096u) {
6307 if (vaddr_offset.isUndefined())
6308 vaddr_offset = bld.copy(bld.def(v1), Operand(const_offset / 4096u * 4096u));
6309 else
6310 vaddr_offset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), vaddr_offset);
6311 const_offset %= 4096u;
6312 }
6313
6314 aco_ptr<MTBUF_instruction> mtbuf{create_instruction<MTBUF_instruction>(aco_opcode::tbuffer_store_format_x, Format::MTBUF, 4, 0)};
6315 mtbuf->operands[0] = Operand(gsvs_ring);
6316 mtbuf->operands[1] = vaddr_offset;
6317 mtbuf->operands[2] = Operand(get_arg(ctx, ctx->args->gs2vs_offset));
6318 mtbuf->operands[3] = Operand(ctx->outputs.temps[i * 4u + j]);
6319 mtbuf->offen = !vaddr_offset.isUndefined();
6320 mtbuf->dfmt = V_008F0C_BUF_DATA_FORMAT_32;
6321 mtbuf->nfmt = V_008F0C_BUF_NUM_FORMAT_UINT;
6322 mtbuf->offset = const_offset;
6323 mtbuf->glc = true;
6324 mtbuf->slc = true;
6325 mtbuf->barrier = barrier_gs_data;
6326 mtbuf->can_reorder = true;
6327 bld.insert(std::move(mtbuf));
6328 }
6329
6330 offset += ctx->shader->info.gs.vertices_out;
6331 }
6332
6333 /* outputs for the next vertex are undefined and keeping them around can
6334 * create invalid IR with control flow */
6335 ctx->outputs.mask[i] = 0;
6336 }
6337
6338 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(false, true, stream));
6339 }
6340
6341 Temp emit_boolean_reduce(isel_context *ctx, nir_op op, unsigned cluster_size, Temp src)
6342 {
6343 Builder bld(ctx->program, ctx->block);
6344
6345 if (cluster_size == 1) {
6346 return src;
6347 } if (op == nir_op_iand && cluster_size == 4) {
6348 //subgroupClusteredAnd(val, 4) -> ~wqm(exec & ~val)
6349 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
6350 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc),
6351 bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc), tmp));
6352 } else if (op == nir_op_ior && cluster_size == 4) {
6353 //subgroupClusteredOr(val, 4) -> wqm(val & exec)
6354 return bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc),
6355 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)));
6356 } else if (op == nir_op_iand && cluster_size == ctx->program->wave_size) {
6357 //subgroupAnd(val) -> (exec & ~val) == 0
6358 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
6359 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
6360 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), cond);
6361 } else if (op == nir_op_ior && cluster_size == ctx->program->wave_size) {
6362 //subgroupOr(val) -> (val & exec) != 0
6363 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)).def(1).getTemp();
6364 return bool_to_vector_condition(ctx, tmp);
6365 } else if (op == nir_op_ixor && cluster_size == ctx->program->wave_size) {
6366 //subgroupXor(val) -> s_bcnt1_i32_b64(val & exec) & 1
6367 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
6368 tmp = bld.sop1(Builder::s_bcnt1_i32, bld.def(s1), bld.def(s1, scc), tmp);
6369 tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), tmp, Operand(1u)).def(1).getTemp();
6370 return bool_to_vector_condition(ctx, tmp);
6371 } else {
6372 //subgroupClustered{And,Or,Xor}(val, n) ->
6373 //lane_id = v_mbcnt_hi_u32_b32(-1, v_mbcnt_lo_u32_b32(-1, 0)) ; just v_mbcnt_lo_u32_b32 on wave32
6374 //cluster_offset = ~(n - 1) & lane_id
6375 //cluster_mask = ((1 << n) - 1)
6376 //subgroupClusteredAnd():
6377 // return ((val | ~exec) >> cluster_offset) & cluster_mask == cluster_mask
6378 //subgroupClusteredOr():
6379 // return ((val & exec) >> cluster_offset) & cluster_mask != 0
6380 //subgroupClusteredXor():
6381 // return v_bnt_u32_b32(((val & exec) >> cluster_offset) & cluster_mask, 0) & 1 != 0
6382 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
6383 Temp cluster_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(~uint32_t(cluster_size - 1)), lane_id);
6384
6385 Temp tmp;
6386 if (op == nir_op_iand)
6387 tmp = bld.sop2(Builder::s_orn2, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
6388 else
6389 tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
6390
6391 uint32_t cluster_mask = cluster_size == 32 ? -1 : (1u << cluster_size) - 1u;
6392
6393 if (ctx->program->chip_class <= GFX7)
6394 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), tmp, cluster_offset);
6395 else if (ctx->program->wave_size == 64)
6396 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), cluster_offset, tmp);
6397 else
6398 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), cluster_offset, tmp);
6399 tmp = emit_extract_vector(ctx, tmp, 0, v1);
6400 if (cluster_mask != 0xffffffff)
6401 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(cluster_mask), tmp);
6402
6403 Definition cmp_def = Definition();
6404 if (op == nir_op_iand) {
6405 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(cluster_mask), tmp).def(0);
6406 } else if (op == nir_op_ior) {
6407 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
6408 } else if (op == nir_op_ixor) {
6409 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u),
6410 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1), tmp, Operand(0u)));
6411 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
6412 }
6413 cmp_def.setHint(vcc);
6414 return cmp_def.getTemp();
6415 }
6416 }
6417
6418 Temp emit_boolean_exclusive_scan(isel_context *ctx, nir_op op, Temp src)
6419 {
6420 Builder bld(ctx->program, ctx->block);
6421
6422 //subgroupExclusiveAnd(val) -> mbcnt(exec & ~val) == 0
6423 //subgroupExclusiveOr(val) -> mbcnt(val & exec) != 0
6424 //subgroupExclusiveXor(val) -> mbcnt(val & exec) & 1 != 0
6425 Temp tmp;
6426 if (op == nir_op_iand)
6427 tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
6428 else
6429 tmp = bld.sop2(Builder::s_and, bld.def(s2), bld.def(s1, scc), src, Operand(exec, bld.lm));
6430
6431 Builder::Result lohi = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), bld.def(s1), tmp);
6432 Temp lo = lohi.def(0).getTemp();
6433 Temp hi = lohi.def(1).getTemp();
6434 Temp mbcnt = emit_mbcnt(ctx, bld.def(v1), Operand(lo), Operand(hi));
6435
6436 Definition cmp_def = Definition();
6437 if (op == nir_op_iand)
6438 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
6439 else if (op == nir_op_ior)
6440 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
6441 else if (op == nir_op_ixor)
6442 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u),
6443 bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), mbcnt)).def(0);
6444 cmp_def.setHint(vcc);
6445 return cmp_def.getTemp();
6446 }
6447
6448 Temp emit_boolean_inclusive_scan(isel_context *ctx, nir_op op, Temp src)
6449 {
6450 Builder bld(ctx->program, ctx->block);
6451
6452 //subgroupInclusiveAnd(val) -> subgroupExclusiveAnd(val) && val
6453 //subgroupInclusiveOr(val) -> subgroupExclusiveOr(val) || val
6454 //subgroupInclusiveXor(val) -> subgroupExclusiveXor(val) ^^ val
6455 Temp tmp = emit_boolean_exclusive_scan(ctx, op, src);
6456 if (op == nir_op_iand)
6457 return bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
6458 else if (op == nir_op_ior)
6459 return bld.sop2(Builder::s_or, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
6460 else if (op == nir_op_ixor)
6461 return bld.sop2(Builder::s_xor, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
6462
6463 assert(false);
6464 return Temp();
6465 }
6466
6467 void emit_uniform_subgroup(isel_context *ctx, nir_intrinsic_instr *instr, Temp src)
6468 {
6469 Builder bld(ctx->program, ctx->block);
6470 Definition dst(get_ssa_temp(ctx, &instr->dest.ssa));
6471 if (src.regClass().type() == RegType::vgpr) {
6472 bld.pseudo(aco_opcode::p_as_uniform, dst, src);
6473 } else if (src.regClass() == s1) {
6474 bld.sop1(aco_opcode::s_mov_b32, dst, src);
6475 } else if (src.regClass() == s2) {
6476 bld.sop1(aco_opcode::s_mov_b64, dst, src);
6477 } else {
6478 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6479 nir_print_instr(&instr->instr, stderr);
6480 fprintf(stderr, "\n");
6481 }
6482 }
6483
6484 void emit_interp_center(isel_context *ctx, Temp dst, Temp pos1, Temp pos2)
6485 {
6486 Builder bld(ctx->program, ctx->block);
6487 Temp persp_center = get_arg(ctx, ctx->args->ac.persp_center);
6488 Temp p1 = emit_extract_vector(ctx, persp_center, 0, v1);
6489 Temp p2 = emit_extract_vector(ctx, persp_center, 1, v1);
6490
6491 Temp ddx_1, ddx_2, ddy_1, ddy_2;
6492 uint32_t dpp_ctrl0 = dpp_quad_perm(0, 0, 0, 0);
6493 uint32_t dpp_ctrl1 = dpp_quad_perm(1, 1, 1, 1);
6494 uint32_t dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
6495
6496 /* Build DD X/Y */
6497 if (ctx->program->chip_class >= GFX8) {
6498 Temp tl_1 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p1, dpp_ctrl0);
6499 ddx_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl1);
6500 ddy_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl2);
6501 Temp tl_2 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p2, dpp_ctrl0);
6502 ddx_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl1);
6503 ddy_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl2);
6504 } else {
6505 Temp tl_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl0);
6506 ddx_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl1);
6507 ddx_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_1, tl_1);
6508 ddx_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl2);
6509 ddx_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_2, tl_1);
6510 Temp tl_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl0);
6511 ddy_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl1);
6512 ddy_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_1, tl_2);
6513 ddy_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl2);
6514 ddy_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_2, tl_2);
6515 }
6516
6517 /* res_k = p_k + ddx_k * pos1 + ddy_k * pos2 */
6518 Temp tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_1, pos1, p1);
6519 Temp tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_2, pos1, p2);
6520 tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_1, pos2, tmp1);
6521 tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_2, pos2, tmp2);
6522 Temp wqm1 = bld.tmp(v1);
6523 emit_wqm(ctx, tmp1, wqm1, true);
6524 Temp wqm2 = bld.tmp(v1);
6525 emit_wqm(ctx, tmp2, wqm2, true);
6526 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), wqm1, wqm2);
6527 return;
6528 }
6529
6530 void visit_intrinsic(isel_context *ctx, nir_intrinsic_instr *instr)
6531 {
6532 Builder bld(ctx->program, ctx->block);
6533 switch(instr->intrinsic) {
6534 case nir_intrinsic_load_barycentric_sample:
6535 case nir_intrinsic_load_barycentric_pixel:
6536 case nir_intrinsic_load_barycentric_centroid: {
6537 glsl_interp_mode mode = (glsl_interp_mode)nir_intrinsic_interp_mode(instr);
6538 Temp bary = Temp(0, s2);
6539 switch (mode) {
6540 case INTERP_MODE_SMOOTH:
6541 case INTERP_MODE_NONE:
6542 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
6543 bary = get_arg(ctx, ctx->args->ac.persp_center);
6544 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
6545 bary = ctx->persp_centroid;
6546 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
6547 bary = get_arg(ctx, ctx->args->ac.persp_sample);
6548 break;
6549 case INTERP_MODE_NOPERSPECTIVE:
6550 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
6551 bary = get_arg(ctx, ctx->args->ac.linear_center);
6552 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
6553 bary = ctx->linear_centroid;
6554 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
6555 bary = get_arg(ctx, ctx->args->ac.linear_sample);
6556 break;
6557 default:
6558 break;
6559 }
6560 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6561 Temp p1 = emit_extract_vector(ctx, bary, 0, v1);
6562 Temp p2 = emit_extract_vector(ctx, bary, 1, v1);
6563 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6564 Operand(p1), Operand(p2));
6565 emit_split_vector(ctx, dst, 2);
6566 break;
6567 }
6568 case nir_intrinsic_load_barycentric_model: {
6569 Temp model = get_arg(ctx, ctx->args->ac.pull_model);
6570
6571 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6572 Temp p1 = emit_extract_vector(ctx, model, 0, v1);
6573 Temp p2 = emit_extract_vector(ctx, model, 1, v1);
6574 Temp p3 = emit_extract_vector(ctx, model, 2, v1);
6575 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6576 Operand(p1), Operand(p2), Operand(p3));
6577 emit_split_vector(ctx, dst, 3);
6578 break;
6579 }
6580 case nir_intrinsic_load_barycentric_at_sample: {
6581 uint32_t sample_pos_offset = RING_PS_SAMPLE_POSITIONS * 16;
6582 switch (ctx->options->key.fs.num_samples) {
6583 case 2: sample_pos_offset += 1 << 3; break;
6584 case 4: sample_pos_offset += 3 << 3; break;
6585 case 8: sample_pos_offset += 7 << 3; break;
6586 default: break;
6587 }
6588 Temp sample_pos;
6589 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
6590 nir_const_value* const_addr = nir_src_as_const_value(instr->src[0]);
6591 Temp private_segment_buffer = ctx->program->private_segment_buffer;
6592 if (addr.type() == RegType::sgpr) {
6593 Operand offset;
6594 if (const_addr) {
6595 sample_pos_offset += const_addr->u32 << 3;
6596 offset = Operand(sample_pos_offset);
6597 } else if (ctx->options->chip_class >= GFX9) {
6598 offset = bld.sop2(aco_opcode::s_lshl3_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
6599 } else {
6600 offset = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), addr, Operand(3u));
6601 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
6602 }
6603
6604 Operand off = bld.copy(bld.def(s1), Operand(offset));
6605 sample_pos = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), private_segment_buffer, off);
6606
6607 } else if (ctx->options->chip_class >= GFX9) {
6608 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
6609 sample_pos = bld.global(aco_opcode::global_load_dwordx2, bld.def(v2), addr, private_segment_buffer, sample_pos_offset);
6610 } else if (ctx->options->chip_class >= GFX7) {
6611 /* addr += private_segment_buffer + sample_pos_offset */
6612 Temp tmp0 = bld.tmp(s1);
6613 Temp tmp1 = bld.tmp(s1);
6614 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp0), Definition(tmp1), private_segment_buffer);
6615 Definition scc_tmp = bld.def(s1, scc);
6616 tmp0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), scc_tmp, tmp0, Operand(sample_pos_offset));
6617 tmp1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), tmp1, Operand(0u), bld.scc(scc_tmp.getTemp()));
6618 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
6619 Temp pck0 = bld.tmp(v1);
6620 Temp carry = bld.vadd32(Definition(pck0), tmp0, addr, true).def(1).getTemp();
6621 tmp1 = as_vgpr(ctx, tmp1);
6622 Temp pck1 = bld.vop2_e64(aco_opcode::v_addc_co_u32, bld.def(v1), bld.hint_vcc(bld.def(bld.lm)), tmp1, Operand(0u), carry);
6623 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), pck0, pck1);
6624
6625 /* sample_pos = flat_load_dwordx2 addr */
6626 sample_pos = bld.flat(aco_opcode::flat_load_dwordx2, bld.def(v2), addr, Operand(s1));
6627 } else {
6628 assert(ctx->options->chip_class == GFX6);
6629
6630 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
6631 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
6632 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), private_segment_buffer, Operand(0u), Operand(rsrc_conf));
6633
6634 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
6635 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), addr, Operand(0u));
6636
6637 sample_pos = bld.tmp(v2);
6638
6639 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dwordx2, Format::MUBUF, 3, 1)};
6640 load->definitions[0] = Definition(sample_pos);
6641 load->operands[0] = Operand(rsrc);
6642 load->operands[1] = Operand(addr);
6643 load->operands[2] = Operand(0u);
6644 load->offset = sample_pos_offset;
6645 load->offen = 0;
6646 load->addr64 = true;
6647 load->glc = false;
6648 load->dlc = false;
6649 load->disable_wqm = false;
6650 load->barrier = barrier_none;
6651 load->can_reorder = true;
6652 ctx->block->instructions.emplace_back(std::move(load));
6653 }
6654
6655 /* sample_pos -= 0.5 */
6656 Temp pos1 = bld.tmp(RegClass(sample_pos.type(), 1));
6657 Temp pos2 = bld.tmp(RegClass(sample_pos.type(), 1));
6658 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), sample_pos);
6659 pos1 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos1, Operand(0x3f000000u));
6660 pos2 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos2, Operand(0x3f000000u));
6661
6662 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
6663 break;
6664 }
6665 case nir_intrinsic_load_barycentric_at_offset: {
6666 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
6667 RegClass rc = RegClass(offset.type(), 1);
6668 Temp pos1 = bld.tmp(rc), pos2 = bld.tmp(rc);
6669 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), offset);
6670 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
6671 break;
6672 }
6673 case nir_intrinsic_load_front_face: {
6674 bld.vopc(aco_opcode::v_cmp_lg_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6675 Operand(0u), get_arg(ctx, ctx->args->ac.front_face)).def(0).setHint(vcc);
6676 break;
6677 }
6678 case nir_intrinsic_load_view_index: {
6679 if (ctx->stage & (sw_vs | sw_gs | sw_tcs | sw_tes)) {
6680 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6681 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.view_index)));
6682 break;
6683 }
6684
6685 /* fallthrough */
6686 }
6687 case nir_intrinsic_load_layer_id: {
6688 unsigned idx = nir_intrinsic_base(instr);
6689 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6690 Operand(2u), bld.m0(get_arg(ctx, ctx->args->ac.prim_mask)), idx, 0);
6691 break;
6692 }
6693 case nir_intrinsic_load_frag_coord: {
6694 emit_load_frag_coord(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 4);
6695 break;
6696 }
6697 case nir_intrinsic_load_sample_pos: {
6698 Temp posx = get_arg(ctx, ctx->args->ac.frag_pos[0]);
6699 Temp posy = get_arg(ctx, ctx->args->ac.frag_pos[1]);
6700 bld.pseudo(aco_opcode::p_create_vector, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6701 posx.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posx) : Operand(0u),
6702 posy.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posy) : Operand(0u));
6703 break;
6704 }
6705 case nir_intrinsic_load_tess_coord:
6706 visit_load_tess_coord(ctx, instr);
6707 break;
6708 case nir_intrinsic_load_interpolated_input:
6709 visit_load_interpolated_input(ctx, instr);
6710 break;
6711 case nir_intrinsic_store_output:
6712 visit_store_output(ctx, instr);
6713 break;
6714 case nir_intrinsic_load_input:
6715 case nir_intrinsic_load_input_vertex:
6716 visit_load_input(ctx, instr);
6717 break;
6718 case nir_intrinsic_load_output:
6719 visit_load_output(ctx, instr);
6720 break;
6721 case nir_intrinsic_load_per_vertex_input:
6722 visit_load_per_vertex_input(ctx, instr);
6723 break;
6724 case nir_intrinsic_load_per_vertex_output:
6725 visit_load_per_vertex_output(ctx, instr);
6726 break;
6727 case nir_intrinsic_store_per_vertex_output:
6728 visit_store_per_vertex_output(ctx, instr);
6729 break;
6730 case nir_intrinsic_load_ubo:
6731 visit_load_ubo(ctx, instr);
6732 break;
6733 case nir_intrinsic_load_push_constant:
6734 visit_load_push_constant(ctx, instr);
6735 break;
6736 case nir_intrinsic_load_constant:
6737 visit_load_constant(ctx, instr);
6738 break;
6739 case nir_intrinsic_vulkan_resource_index:
6740 visit_load_resource(ctx, instr);
6741 break;
6742 case nir_intrinsic_discard:
6743 visit_discard(ctx, instr);
6744 break;
6745 case nir_intrinsic_discard_if:
6746 visit_discard_if(ctx, instr);
6747 break;
6748 case nir_intrinsic_load_shared:
6749 visit_load_shared(ctx, instr);
6750 break;
6751 case nir_intrinsic_store_shared:
6752 visit_store_shared(ctx, instr);
6753 break;
6754 case nir_intrinsic_shared_atomic_add:
6755 case nir_intrinsic_shared_atomic_imin:
6756 case nir_intrinsic_shared_atomic_umin:
6757 case nir_intrinsic_shared_atomic_imax:
6758 case nir_intrinsic_shared_atomic_umax:
6759 case nir_intrinsic_shared_atomic_and:
6760 case nir_intrinsic_shared_atomic_or:
6761 case nir_intrinsic_shared_atomic_xor:
6762 case nir_intrinsic_shared_atomic_exchange:
6763 case nir_intrinsic_shared_atomic_comp_swap:
6764 visit_shared_atomic(ctx, instr);
6765 break;
6766 case nir_intrinsic_image_deref_load:
6767 visit_image_load(ctx, instr);
6768 break;
6769 case nir_intrinsic_image_deref_store:
6770 visit_image_store(ctx, instr);
6771 break;
6772 case nir_intrinsic_image_deref_atomic_add:
6773 case nir_intrinsic_image_deref_atomic_umin:
6774 case nir_intrinsic_image_deref_atomic_imin:
6775 case nir_intrinsic_image_deref_atomic_umax:
6776 case nir_intrinsic_image_deref_atomic_imax:
6777 case nir_intrinsic_image_deref_atomic_and:
6778 case nir_intrinsic_image_deref_atomic_or:
6779 case nir_intrinsic_image_deref_atomic_xor:
6780 case nir_intrinsic_image_deref_atomic_exchange:
6781 case nir_intrinsic_image_deref_atomic_comp_swap:
6782 visit_image_atomic(ctx, instr);
6783 break;
6784 case nir_intrinsic_image_deref_size:
6785 visit_image_size(ctx, instr);
6786 break;
6787 case nir_intrinsic_load_ssbo:
6788 visit_load_ssbo(ctx, instr);
6789 break;
6790 case nir_intrinsic_store_ssbo:
6791 visit_store_ssbo(ctx, instr);
6792 break;
6793 case nir_intrinsic_load_global:
6794 visit_load_global(ctx, instr);
6795 break;
6796 case nir_intrinsic_store_global:
6797 visit_store_global(ctx, instr);
6798 break;
6799 case nir_intrinsic_global_atomic_add:
6800 case nir_intrinsic_global_atomic_imin:
6801 case nir_intrinsic_global_atomic_umin:
6802 case nir_intrinsic_global_atomic_imax:
6803 case nir_intrinsic_global_atomic_umax:
6804 case nir_intrinsic_global_atomic_and:
6805 case nir_intrinsic_global_atomic_or:
6806 case nir_intrinsic_global_atomic_xor:
6807 case nir_intrinsic_global_atomic_exchange:
6808 case nir_intrinsic_global_atomic_comp_swap:
6809 visit_global_atomic(ctx, instr);
6810 break;
6811 case nir_intrinsic_ssbo_atomic_add:
6812 case nir_intrinsic_ssbo_atomic_imin:
6813 case nir_intrinsic_ssbo_atomic_umin:
6814 case nir_intrinsic_ssbo_atomic_imax:
6815 case nir_intrinsic_ssbo_atomic_umax:
6816 case nir_intrinsic_ssbo_atomic_and:
6817 case nir_intrinsic_ssbo_atomic_or:
6818 case nir_intrinsic_ssbo_atomic_xor:
6819 case nir_intrinsic_ssbo_atomic_exchange:
6820 case nir_intrinsic_ssbo_atomic_comp_swap:
6821 visit_atomic_ssbo(ctx, instr);
6822 break;
6823 case nir_intrinsic_load_scratch:
6824 visit_load_scratch(ctx, instr);
6825 break;
6826 case nir_intrinsic_store_scratch:
6827 visit_store_scratch(ctx, instr);
6828 break;
6829 case nir_intrinsic_get_buffer_size:
6830 visit_get_buffer_size(ctx, instr);
6831 break;
6832 case nir_intrinsic_control_barrier: {
6833 if (ctx->program->chip_class == GFX6 && ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
6834 /* GFX6 only (thanks to a hw bug workaround):
6835 * The real barrier instruction isn’t needed, because an entire patch
6836 * always fits into a single wave.
6837 */
6838 break;
6839 }
6840
6841 if (ctx->program->workgroup_size > ctx->program->wave_size)
6842 bld.sopp(aco_opcode::s_barrier);
6843
6844 break;
6845 }
6846 case nir_intrinsic_memory_barrier_tcs_patch:
6847 case nir_intrinsic_group_memory_barrier:
6848 case nir_intrinsic_memory_barrier:
6849 case nir_intrinsic_memory_barrier_buffer:
6850 case nir_intrinsic_memory_barrier_image:
6851 case nir_intrinsic_memory_barrier_shared:
6852 emit_memory_barrier(ctx, instr);
6853 break;
6854 case nir_intrinsic_load_num_work_groups: {
6855 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6856 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.num_work_groups)));
6857 emit_split_vector(ctx, dst, 3);
6858 break;
6859 }
6860 case nir_intrinsic_load_local_invocation_id: {
6861 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6862 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.local_invocation_ids)));
6863 emit_split_vector(ctx, dst, 3);
6864 break;
6865 }
6866 case nir_intrinsic_load_work_group_id: {
6867 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6868 struct ac_arg *args = ctx->args->ac.workgroup_ids;
6869 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6870 args[0].used ? Operand(get_arg(ctx, args[0])) : Operand(0u),
6871 args[1].used ? Operand(get_arg(ctx, args[1])) : Operand(0u),
6872 args[2].used ? Operand(get_arg(ctx, args[2])) : Operand(0u));
6873 emit_split_vector(ctx, dst, 3);
6874 break;
6875 }
6876 case nir_intrinsic_load_local_invocation_index: {
6877 Temp id = emit_mbcnt(ctx, bld.def(v1));
6878
6879 /* The tg_size bits [6:11] contain the subgroup id,
6880 * we need this multiplied by the wave size, and then OR the thread id to it.
6881 */
6882 if (ctx->program->wave_size == 64) {
6883 /* After the s_and the bits are already multiplied by 64 (left shifted by 6) so we can just feed that to v_or */
6884 Temp tg_num = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfc0u),
6885 get_arg(ctx, ctx->args->ac.tg_size));
6886 bld.vop2(aco_opcode::v_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, id);
6887 } else {
6888 /* Extract the bit field and multiply the result by 32 (left shift by 5), then do the OR */
6889 Temp tg_num = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
6890 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
6891 bld.vop3(aco_opcode::v_lshl_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, Operand(0x5u), id);
6892 }
6893 break;
6894 }
6895 case nir_intrinsic_load_subgroup_id: {
6896 if (ctx->stage == compute_cs) {
6897 bld.sop2(aco_opcode::s_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc),
6898 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
6899 } else {
6900 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x0u));
6901 }
6902 break;
6903 }
6904 case nir_intrinsic_load_subgroup_invocation: {
6905 emit_mbcnt(ctx, Definition(get_ssa_temp(ctx, &instr->dest.ssa)));
6906 break;
6907 }
6908 case nir_intrinsic_load_num_subgroups: {
6909 if (ctx->stage == compute_cs)
6910 bld.sop2(aco_opcode::s_and_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc), Operand(0x3fu),
6911 get_arg(ctx, ctx->args->ac.tg_size));
6912 else
6913 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x1u));
6914 break;
6915 }
6916 case nir_intrinsic_ballot: {
6917 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6918 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6919 Definition tmp = bld.def(dst.regClass());
6920 Definition lanemask_tmp = dst.size() == bld.lm.size() ? tmp : bld.def(src.regClass());
6921 if (instr->src[0].ssa->bit_size == 1) {
6922 assert(src.regClass() == bld.lm);
6923 bld.sop2(Builder::s_and, lanemask_tmp, bld.def(s1, scc), Operand(exec, bld.lm), src);
6924 } else if (instr->src[0].ssa->bit_size == 32 && src.regClass() == v1) {
6925 bld.vopc(aco_opcode::v_cmp_lg_u32, lanemask_tmp, Operand(0u), src);
6926 } else if (instr->src[0].ssa->bit_size == 64 && src.regClass() == v2) {
6927 bld.vopc(aco_opcode::v_cmp_lg_u64, lanemask_tmp, Operand(0u), src);
6928 } else {
6929 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6930 nir_print_instr(&instr->instr, stderr);
6931 fprintf(stderr, "\n");
6932 }
6933 if (dst.size() != bld.lm.size()) {
6934 /* Wave32 with ballot size set to 64 */
6935 bld.pseudo(aco_opcode::p_create_vector, Definition(tmp), lanemask_tmp.getTemp(), Operand(0u));
6936 }
6937 emit_wqm(ctx, tmp.getTemp(), dst);
6938 break;
6939 }
6940 case nir_intrinsic_shuffle:
6941 case nir_intrinsic_read_invocation: {
6942 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6943 if (!ctx->divergent_vals[instr->src[0].ssa->index]) {
6944 emit_uniform_subgroup(ctx, instr, src);
6945 } else {
6946 Temp tid = get_ssa_temp(ctx, instr->src[1].ssa);
6947 if (instr->intrinsic == nir_intrinsic_read_invocation || !ctx->divergent_vals[instr->src[1].ssa->index])
6948 tid = bld.as_uniform(tid);
6949 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6950 if (src.regClass() == v1) {
6951 emit_wqm(ctx, emit_bpermute(ctx, bld, tid, src), dst);
6952 } else if (src.regClass() == v2) {
6953 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
6954 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
6955 lo = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, lo));
6956 hi = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, hi));
6957 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6958 emit_split_vector(ctx, dst, 2);
6959 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == s1) {
6960 assert(src.regClass() == bld.lm);
6961 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src, tid);
6962 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
6963 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == v1) {
6964 assert(src.regClass() == bld.lm);
6965 Temp tmp;
6966 if (ctx->program->chip_class <= GFX7)
6967 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), src, tid);
6968 else if (ctx->program->wave_size == 64)
6969 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), tid, src);
6970 else
6971 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), tid, src);
6972 tmp = emit_extract_vector(ctx, tmp, 0, v1);
6973 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), tmp);
6974 emit_wqm(ctx, bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp), dst);
6975 } else {
6976 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6977 nir_print_instr(&instr->instr, stderr);
6978 fprintf(stderr, "\n");
6979 }
6980 }
6981 break;
6982 }
6983 case nir_intrinsic_load_sample_id: {
6984 bld.vop3(aco_opcode::v_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6985 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
6986 break;
6987 }
6988 case nir_intrinsic_load_sample_mask_in: {
6989 visit_load_sample_mask_in(ctx, instr);
6990 break;
6991 }
6992 case nir_intrinsic_read_first_invocation: {
6993 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6994 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6995 if (src.regClass() == v1) {
6996 emit_wqm(ctx,
6997 bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), src),
6998 dst);
6999 } else if (src.regClass() == v2) {
7000 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7001 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7002 lo = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), lo));
7003 hi = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), hi));
7004 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7005 emit_split_vector(ctx, dst, 2);
7006 } else if (instr->dest.ssa.bit_size == 1) {
7007 assert(src.regClass() == bld.lm);
7008 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src,
7009 bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)));
7010 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7011 } else if (src.regClass() == s1) {
7012 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
7013 } else if (src.regClass() == s2) {
7014 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
7015 } else {
7016 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7017 nir_print_instr(&instr->instr, stderr);
7018 fprintf(stderr, "\n");
7019 }
7020 break;
7021 }
7022 case nir_intrinsic_vote_all: {
7023 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7024 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7025 assert(src.regClass() == bld.lm);
7026 assert(dst.regClass() == bld.lm);
7027
7028 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
7029 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
7030 bld.sop1(Builder::s_not, Definition(dst), bld.def(s1, scc), cond);
7031 break;
7032 }
7033 case nir_intrinsic_vote_any: {
7034 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7035 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7036 assert(src.regClass() == bld.lm);
7037 assert(dst.regClass() == bld.lm);
7038
7039 Temp tmp = bool_to_scalar_condition(ctx, src);
7040 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7041 break;
7042 }
7043 case nir_intrinsic_reduce:
7044 case nir_intrinsic_inclusive_scan:
7045 case nir_intrinsic_exclusive_scan: {
7046 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7047 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7048 nir_op op = (nir_op) nir_intrinsic_reduction_op(instr);
7049 unsigned cluster_size = instr->intrinsic == nir_intrinsic_reduce ?
7050 nir_intrinsic_cluster_size(instr) : 0;
7051 cluster_size = util_next_power_of_two(MIN2(cluster_size ? cluster_size : ctx->program->wave_size, ctx->program->wave_size));
7052
7053 if (!ctx->divergent_vals[instr->src[0].ssa->index] && (op == nir_op_ior || op == nir_op_iand)) {
7054 emit_uniform_subgroup(ctx, instr, src);
7055 } else if (instr->dest.ssa.bit_size == 1) {
7056 if (op == nir_op_imul || op == nir_op_umin || op == nir_op_imin)
7057 op = nir_op_iand;
7058 else if (op == nir_op_iadd)
7059 op = nir_op_ixor;
7060 else if (op == nir_op_umax || op == nir_op_imax)
7061 op = nir_op_ior;
7062 assert(op == nir_op_iand || op == nir_op_ior || op == nir_op_ixor);
7063
7064 switch (instr->intrinsic) {
7065 case nir_intrinsic_reduce:
7066 emit_wqm(ctx, emit_boolean_reduce(ctx, op, cluster_size, src), dst);
7067 break;
7068 case nir_intrinsic_exclusive_scan:
7069 emit_wqm(ctx, emit_boolean_exclusive_scan(ctx, op, src), dst);
7070 break;
7071 case nir_intrinsic_inclusive_scan:
7072 emit_wqm(ctx, emit_boolean_inclusive_scan(ctx, op, src), dst);
7073 break;
7074 default:
7075 assert(false);
7076 }
7077 } else if (cluster_size == 1) {
7078 bld.copy(Definition(dst), src);
7079 } else {
7080 src = as_vgpr(ctx, src);
7081
7082 ReduceOp reduce_op;
7083 switch (op) {
7084 #define CASE(name) case nir_op_##name: reduce_op = (src.regClass() == v1) ? name##32 : name##64; break;
7085 CASE(iadd)
7086 CASE(imul)
7087 CASE(fadd)
7088 CASE(fmul)
7089 CASE(imin)
7090 CASE(umin)
7091 CASE(fmin)
7092 CASE(imax)
7093 CASE(umax)
7094 CASE(fmax)
7095 CASE(iand)
7096 CASE(ior)
7097 CASE(ixor)
7098 default:
7099 unreachable("unknown reduction op");
7100 #undef CASE
7101 }
7102
7103 aco_opcode aco_op;
7104 switch (instr->intrinsic) {
7105 case nir_intrinsic_reduce: aco_op = aco_opcode::p_reduce; break;
7106 case nir_intrinsic_inclusive_scan: aco_op = aco_opcode::p_inclusive_scan; break;
7107 case nir_intrinsic_exclusive_scan: aco_op = aco_opcode::p_exclusive_scan; break;
7108 default:
7109 unreachable("unknown reduce intrinsic");
7110 }
7111
7112 aco_ptr<Pseudo_reduction_instruction> reduce{create_instruction<Pseudo_reduction_instruction>(aco_op, Format::PSEUDO_REDUCTION, 3, 5)};
7113 reduce->operands[0] = Operand(src);
7114 // filled in by aco_reduce_assign.cpp, used internally as part of the
7115 // reduce sequence
7116 assert(dst.size() == 1 || dst.size() == 2);
7117 reduce->operands[1] = Operand(RegClass(RegType::vgpr, dst.size()).as_linear());
7118 reduce->operands[2] = Operand(v1.as_linear());
7119
7120 Temp tmp_dst = bld.tmp(dst.regClass());
7121 reduce->definitions[0] = Definition(tmp_dst);
7122 reduce->definitions[1] = bld.def(ctx->program->lane_mask); // used internally
7123 reduce->definitions[2] = Definition();
7124 reduce->definitions[3] = Definition(scc, s1);
7125 reduce->definitions[4] = Definition();
7126 reduce->reduce_op = reduce_op;
7127 reduce->cluster_size = cluster_size;
7128 ctx->block->instructions.emplace_back(std::move(reduce));
7129
7130 emit_wqm(ctx, tmp_dst, dst);
7131 }
7132 break;
7133 }
7134 case nir_intrinsic_quad_broadcast: {
7135 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7136 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
7137 emit_uniform_subgroup(ctx, instr, src);
7138 } else {
7139 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7140 unsigned lane = nir_src_as_const_value(instr->src[1])->u32;
7141 uint32_t dpp_ctrl = dpp_quad_perm(lane, lane, lane, lane);
7142
7143 if (instr->dest.ssa.bit_size == 1) {
7144 assert(src.regClass() == bld.lm);
7145 assert(dst.regClass() == bld.lm);
7146 uint32_t half_mask = 0x11111111u << lane;
7147 Temp mask_tmp = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(half_mask), Operand(half_mask));
7148 Temp tmp = bld.tmp(bld.lm);
7149 bld.sop1(Builder::s_wqm, Definition(tmp),
7150 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), mask_tmp,
7151 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm))));
7152 emit_wqm(ctx, tmp, dst);
7153 } else if (instr->dest.ssa.bit_size == 32) {
7154 if (ctx->program->chip_class >= GFX8)
7155 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), dst);
7156 else
7157 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), dst);
7158 } else if (instr->dest.ssa.bit_size == 64) {
7159 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7160 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7161 if (ctx->program->chip_class >= GFX8) {
7162 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
7163 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
7164 } else {
7165 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, (1 << 15) | dpp_ctrl));
7166 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, (1 << 15) | dpp_ctrl));
7167 }
7168 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7169 emit_split_vector(ctx, dst, 2);
7170 } else {
7171 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7172 nir_print_instr(&instr->instr, stderr);
7173 fprintf(stderr, "\n");
7174 }
7175 }
7176 break;
7177 }
7178 case nir_intrinsic_quad_swap_horizontal:
7179 case nir_intrinsic_quad_swap_vertical:
7180 case nir_intrinsic_quad_swap_diagonal:
7181 case nir_intrinsic_quad_swizzle_amd: {
7182 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7183 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
7184 emit_uniform_subgroup(ctx, instr, src);
7185 break;
7186 }
7187 uint16_t dpp_ctrl = 0;
7188 switch (instr->intrinsic) {
7189 case nir_intrinsic_quad_swap_horizontal:
7190 dpp_ctrl = dpp_quad_perm(1, 0, 3, 2);
7191 break;
7192 case nir_intrinsic_quad_swap_vertical:
7193 dpp_ctrl = dpp_quad_perm(2, 3, 0, 1);
7194 break;
7195 case nir_intrinsic_quad_swap_diagonal:
7196 dpp_ctrl = dpp_quad_perm(3, 2, 1, 0);
7197 break;
7198 case nir_intrinsic_quad_swizzle_amd:
7199 dpp_ctrl = nir_intrinsic_swizzle_mask(instr);
7200 break;
7201 default:
7202 break;
7203 }
7204 if (ctx->program->chip_class < GFX8)
7205 dpp_ctrl |= (1 << 15);
7206
7207 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7208 if (instr->dest.ssa.bit_size == 1) {
7209 assert(src.regClass() == bld.lm);
7210 src = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand((uint32_t)-1), src);
7211 if (ctx->program->chip_class >= GFX8)
7212 src = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
7213 else
7214 src = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
7215 Temp tmp = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), src);
7216 emit_wqm(ctx, tmp, dst);
7217 } else if (instr->dest.ssa.bit_size == 32) {
7218 Temp tmp;
7219 if (ctx->program->chip_class >= GFX8)
7220 tmp = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
7221 else
7222 tmp = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
7223 emit_wqm(ctx, tmp, dst);
7224 } else if (instr->dest.ssa.bit_size == 64) {
7225 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7226 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7227 if (ctx->program->chip_class >= GFX8) {
7228 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
7229 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
7230 } else {
7231 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, dpp_ctrl));
7232 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, dpp_ctrl));
7233 }
7234 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7235 emit_split_vector(ctx, dst, 2);
7236 } else {
7237 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7238 nir_print_instr(&instr->instr, stderr);
7239 fprintf(stderr, "\n");
7240 }
7241 break;
7242 }
7243 case nir_intrinsic_masked_swizzle_amd: {
7244 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7245 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
7246 emit_uniform_subgroup(ctx, instr, src);
7247 break;
7248 }
7249 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7250 uint32_t mask = nir_intrinsic_swizzle_mask(instr);
7251 if (dst.regClass() == v1) {
7252 emit_wqm(ctx,
7253 bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, mask, 0, false),
7254 dst);
7255 } else if (dst.regClass() == v2) {
7256 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7257 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7258 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, mask, 0, false));
7259 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, mask, 0, false));
7260 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7261 emit_split_vector(ctx, dst, 2);
7262 } else {
7263 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7264 nir_print_instr(&instr->instr, stderr);
7265 fprintf(stderr, "\n");
7266 }
7267 break;
7268 }
7269 case nir_intrinsic_write_invocation_amd: {
7270 Temp src = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
7271 Temp val = bld.as_uniform(get_ssa_temp(ctx, instr->src[1].ssa));
7272 Temp lane = bld.as_uniform(get_ssa_temp(ctx, instr->src[2].ssa));
7273 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7274 if (dst.regClass() == v1) {
7275 /* src2 is ignored for writelane. RA assigns the same reg for dst */
7276 emit_wqm(ctx, bld.writelane(bld.def(v1), val, lane, src), dst);
7277 } else if (dst.regClass() == v2) {
7278 Temp src_lo = bld.tmp(v1), src_hi = bld.tmp(v1);
7279 Temp val_lo = bld.tmp(s1), val_hi = bld.tmp(s1);
7280 bld.pseudo(aco_opcode::p_split_vector, Definition(src_lo), Definition(src_hi), src);
7281 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
7282 Temp lo = emit_wqm(ctx, bld.writelane(bld.def(v1), val_lo, lane, src_hi));
7283 Temp hi = emit_wqm(ctx, bld.writelane(bld.def(v1), val_hi, lane, src_hi));
7284 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7285 emit_split_vector(ctx, dst, 2);
7286 } else {
7287 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7288 nir_print_instr(&instr->instr, stderr);
7289 fprintf(stderr, "\n");
7290 }
7291 break;
7292 }
7293 case nir_intrinsic_mbcnt_amd: {
7294 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7295 RegClass rc = RegClass(src.type(), 1);
7296 Temp mask_lo = bld.tmp(rc), mask_hi = bld.tmp(rc);
7297 bld.pseudo(aco_opcode::p_split_vector, Definition(mask_lo), Definition(mask_hi), src);
7298 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7299 Temp wqm_tmp = emit_mbcnt(ctx, bld.def(v1), Operand(mask_lo), Operand(mask_hi));
7300 emit_wqm(ctx, wqm_tmp, dst);
7301 break;
7302 }
7303 case nir_intrinsic_load_helper_invocation: {
7304 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7305 bld.pseudo(aco_opcode::p_load_helper, Definition(dst));
7306 ctx->block->kind |= block_kind_needs_lowering;
7307 ctx->program->needs_exact = true;
7308 break;
7309 }
7310 case nir_intrinsic_is_helper_invocation: {
7311 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7312 bld.pseudo(aco_opcode::p_is_helper, Definition(dst));
7313 ctx->block->kind |= block_kind_needs_lowering;
7314 ctx->program->needs_exact = true;
7315 break;
7316 }
7317 case nir_intrinsic_demote:
7318 bld.pseudo(aco_opcode::p_demote_to_helper, Operand(-1u));
7319
7320 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
7321 ctx->cf_info.exec_potentially_empty_discard = true;
7322 ctx->block->kind |= block_kind_uses_demote;
7323 ctx->program->needs_exact = true;
7324 break;
7325 case nir_intrinsic_demote_if: {
7326 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7327 assert(src.regClass() == bld.lm);
7328 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
7329 bld.pseudo(aco_opcode::p_demote_to_helper, cond);
7330
7331 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
7332 ctx->cf_info.exec_potentially_empty_discard = true;
7333 ctx->block->kind |= block_kind_uses_demote;
7334 ctx->program->needs_exact = true;
7335 break;
7336 }
7337 case nir_intrinsic_first_invocation: {
7338 emit_wqm(ctx, bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)),
7339 get_ssa_temp(ctx, &instr->dest.ssa));
7340 break;
7341 }
7342 case nir_intrinsic_shader_clock:
7343 bld.smem(aco_opcode::s_memtime, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), false);
7344 emit_split_vector(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 2);
7345 break;
7346 case nir_intrinsic_load_vertex_id_zero_base: {
7347 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7348 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.vertex_id));
7349 break;
7350 }
7351 case nir_intrinsic_load_first_vertex: {
7352 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7353 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.base_vertex));
7354 break;
7355 }
7356 case nir_intrinsic_load_base_instance: {
7357 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7358 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.start_instance));
7359 break;
7360 }
7361 case nir_intrinsic_load_instance_id: {
7362 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7363 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.instance_id));
7364 break;
7365 }
7366 case nir_intrinsic_load_draw_id: {
7367 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7368 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.draw_id));
7369 break;
7370 }
7371 case nir_intrinsic_load_invocation_id: {
7372 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7373
7374 if (ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
7375 if (ctx->options->chip_class >= GFX10)
7376 bld.vop2_e64(aco_opcode::v_and_b32, Definition(dst), Operand(127u), get_arg(ctx, ctx->args->ac.gs_invocation_id));
7377 else
7378 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_invocation_id));
7379 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
7380 bld.vop3(aco_opcode::v_bfe_u32, Definition(dst),
7381 get_arg(ctx, ctx->args->ac.tcs_rel_ids), Operand(8u), Operand(5u));
7382 } else {
7383 unreachable("Unsupported stage for load_invocation_id");
7384 }
7385
7386 break;
7387 }
7388 case nir_intrinsic_load_primitive_id: {
7389 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7390
7391 switch (ctx->shader->info.stage) {
7392 case MESA_SHADER_GEOMETRY:
7393 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_prim_id));
7394 break;
7395 case MESA_SHADER_TESS_CTRL:
7396 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tcs_patch_id));
7397 break;
7398 case MESA_SHADER_TESS_EVAL:
7399 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tes_patch_id));
7400 break;
7401 default:
7402 unreachable("Unimplemented shader stage for nir_intrinsic_load_primitive_id");
7403 }
7404
7405 break;
7406 }
7407 case nir_intrinsic_load_patch_vertices_in: {
7408 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL ||
7409 ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
7410
7411 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7412 bld.copy(Definition(dst), Operand(ctx->args->options->key.tcs.input_vertices));
7413 break;
7414 }
7415 case nir_intrinsic_emit_vertex_with_counter: {
7416 visit_emit_vertex_with_counter(ctx, instr);
7417 break;
7418 }
7419 case nir_intrinsic_end_primitive_with_counter: {
7420 unsigned stream = nir_intrinsic_stream_id(instr);
7421 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(true, false, stream));
7422 break;
7423 }
7424 case nir_intrinsic_set_vertex_count: {
7425 /* unused, the HW keeps track of this for us */
7426 break;
7427 }
7428 default:
7429 fprintf(stderr, "Unimplemented intrinsic instr: ");
7430 nir_print_instr(&instr->instr, stderr);
7431 fprintf(stderr, "\n");
7432 abort();
7433
7434 break;
7435 }
7436 }
7437
7438
7439 void tex_fetch_ptrs(isel_context *ctx, nir_tex_instr *instr,
7440 Temp *res_ptr, Temp *samp_ptr, Temp *fmask_ptr,
7441 enum glsl_base_type *stype)
7442 {
7443 nir_deref_instr *texture_deref_instr = NULL;
7444 nir_deref_instr *sampler_deref_instr = NULL;
7445 int plane = -1;
7446
7447 for (unsigned i = 0; i < instr->num_srcs; i++) {
7448 switch (instr->src[i].src_type) {
7449 case nir_tex_src_texture_deref:
7450 texture_deref_instr = nir_src_as_deref(instr->src[i].src);
7451 break;
7452 case nir_tex_src_sampler_deref:
7453 sampler_deref_instr = nir_src_as_deref(instr->src[i].src);
7454 break;
7455 case nir_tex_src_plane:
7456 plane = nir_src_as_int(instr->src[i].src);
7457 break;
7458 default:
7459 break;
7460 }
7461 }
7462
7463 *stype = glsl_get_sampler_result_type(texture_deref_instr->type);
7464
7465 if (!sampler_deref_instr)
7466 sampler_deref_instr = texture_deref_instr;
7467
7468 if (plane >= 0) {
7469 assert(instr->op != nir_texop_txf_ms &&
7470 instr->op != nir_texop_samples_identical);
7471 assert(instr->sampler_dim != GLSL_SAMPLER_DIM_BUF);
7472 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, (aco_descriptor_type)(ACO_DESC_PLANE_0 + plane), instr, false, false);
7473 } else if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
7474 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_BUFFER, instr, false, false);
7475 } else if (instr->op == nir_texop_fragment_mask_fetch) {
7476 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
7477 } else {
7478 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_IMAGE, instr, false, false);
7479 }
7480 if (samp_ptr) {
7481 *samp_ptr = get_sampler_desc(ctx, sampler_deref_instr, ACO_DESC_SAMPLER, instr, false, false);
7482
7483 if (instr->sampler_dim < GLSL_SAMPLER_DIM_RECT && ctx->options->chip_class < GFX8) {
7484 /* fix sampler aniso on SI/CI: samp[0] = samp[0] & img[7] */
7485 Builder bld(ctx->program, ctx->block);
7486
7487 /* to avoid unnecessary moves, we split and recombine sampler and image */
7488 Temp img[8] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1),
7489 bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
7490 Temp samp[4] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
7491 bld.pseudo(aco_opcode::p_split_vector, Definition(img[0]), Definition(img[1]),
7492 Definition(img[2]), Definition(img[3]), Definition(img[4]),
7493 Definition(img[5]), Definition(img[6]), Definition(img[7]), *res_ptr);
7494 bld.pseudo(aco_opcode::p_split_vector, Definition(samp[0]), Definition(samp[1]),
7495 Definition(samp[2]), Definition(samp[3]), *samp_ptr);
7496
7497 samp[0] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), samp[0], img[7]);
7498 *res_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
7499 img[0], img[1], img[2], img[3],
7500 img[4], img[5], img[6], img[7]);
7501 *samp_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
7502 samp[0], samp[1], samp[2], samp[3]);
7503 }
7504 }
7505 if (fmask_ptr && (instr->op == nir_texop_txf_ms ||
7506 instr->op == nir_texop_samples_identical))
7507 *fmask_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
7508 }
7509
7510 void build_cube_select(isel_context *ctx, Temp ma, Temp id, Temp deriv,
7511 Temp *out_ma, Temp *out_sc, Temp *out_tc)
7512 {
7513 Builder bld(ctx->program, ctx->block);
7514
7515 Temp deriv_x = emit_extract_vector(ctx, deriv, 0, v1);
7516 Temp deriv_y = emit_extract_vector(ctx, deriv, 1, v1);
7517 Temp deriv_z = emit_extract_vector(ctx, deriv, 2, v1);
7518
7519 Operand neg_one(0xbf800000u);
7520 Operand one(0x3f800000u);
7521 Operand two(0x40000000u);
7522 Operand four(0x40800000u);
7523
7524 Temp is_ma_positive = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), ma);
7525 Temp sgn_ma = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, one, is_ma_positive);
7526 Temp neg_sgn_ma = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0u), sgn_ma);
7527
7528 Temp is_ma_z = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), four, id);
7529 Temp is_ma_y = bld.vopc(aco_opcode::v_cmp_le_f32, bld.def(bld.lm), two, id);
7530 is_ma_y = bld.sop2(Builder::s_andn2, bld.hint_vcc(bld.def(bld.lm)), is_ma_y, is_ma_z);
7531 Temp is_not_ma_x = bld.sop2(aco_opcode::s_or_b64, bld.hint_vcc(bld.def(bld.lm)), bld.def(s1, scc), is_ma_z, is_ma_y);
7532
7533 // select sc
7534 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_z, deriv_x, is_not_ma_x);
7535 Temp sgn = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1),
7536 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_sgn_ma, sgn_ma, is_ma_z),
7537 one, is_ma_y);
7538 *out_sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
7539
7540 // select tc
7541 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_y, deriv_z, is_ma_y);
7542 sgn = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, sgn_ma, is_ma_y);
7543 *out_tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
7544
7545 // select ma
7546 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
7547 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_x, deriv_y, is_ma_y),
7548 deriv_z, is_ma_z);
7549 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffffu), tmp);
7550 *out_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), two, tmp);
7551 }
7552
7553 void prepare_cube_coords(isel_context *ctx, std::vector<Temp>& coords, Temp* ddx, Temp* ddy, bool is_deriv, bool is_array)
7554 {
7555 Builder bld(ctx->program, ctx->block);
7556 Temp ma, tc, sc, id;
7557
7558 if (is_array) {
7559 coords[3] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[3]);
7560
7561 // see comment in ac_prepare_cube_coords()
7562 if (ctx->options->chip_class <= GFX8)
7563 coords[3] = bld.vop2(aco_opcode::v_max_f32, bld.def(v1), Operand(0u), coords[3]);
7564 }
7565
7566 ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), coords[0], coords[1], coords[2]);
7567
7568 aco_ptr<VOP3A_instruction> vop3a{create_instruction<VOP3A_instruction>(aco_opcode::v_rcp_f32, asVOP3(Format::VOP1), 1, 1)};
7569 vop3a->operands[0] = Operand(ma);
7570 vop3a->abs[0] = true;
7571 Temp invma = bld.tmp(v1);
7572 vop3a->definitions[0] = Definition(invma);
7573 ctx->block->instructions.emplace_back(std::move(vop3a));
7574
7575 sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
7576 if (!is_deriv)
7577 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, invma, Operand(0x3fc00000u/*1.5*/));
7578
7579 tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
7580 if (!is_deriv)
7581 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, invma, Operand(0x3fc00000u/*1.5*/));
7582
7583 id = bld.vop3(aco_opcode::v_cubeid_f32, bld.def(v1), coords[0], coords[1], coords[2]);
7584
7585 if (is_deriv) {
7586 sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), sc, invma);
7587 tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tc, invma);
7588
7589 for (unsigned i = 0; i < 2; i++) {
7590 // see comment in ac_prepare_cube_coords()
7591 Temp deriv_ma;
7592 Temp deriv_sc, deriv_tc;
7593 build_cube_select(ctx, ma, id, i ? *ddy : *ddx,
7594 &deriv_ma, &deriv_sc, &deriv_tc);
7595
7596 deriv_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, invma);
7597
7598 Temp x = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
7599 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_sc, invma),
7600 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, sc));
7601 Temp y = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
7602 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_tc, invma),
7603 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, tc));
7604 *(i ? ddy : ddx) = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), x, y);
7605 }
7606
7607 sc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), sc);
7608 tc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), tc);
7609 }
7610
7611 if (is_array)
7612 id = bld.vop2(aco_opcode::v_madmk_f32, bld.def(v1), coords[3], id, Operand(0x41000000u/*8.0*/));
7613 coords.resize(3);
7614 coords[0] = sc;
7615 coords[1] = tc;
7616 coords[2] = id;
7617 }
7618
7619 void get_const_vec(nir_ssa_def *vec, nir_const_value *cv[4])
7620 {
7621 if (vec->parent_instr->type != nir_instr_type_alu)
7622 return;
7623 nir_alu_instr *vec_instr = nir_instr_as_alu(vec->parent_instr);
7624 if (vec_instr->op != nir_op_vec(vec->num_components))
7625 return;
7626
7627 for (unsigned i = 0; i < vec->num_components; i++) {
7628 cv[i] = vec_instr->src[i].swizzle[0] == 0 ?
7629 nir_src_as_const_value(vec_instr->src[i].src) : NULL;
7630 }
7631 }
7632
7633 void visit_tex(isel_context *ctx, nir_tex_instr *instr)
7634 {
7635 Builder bld(ctx->program, ctx->block);
7636 bool has_bias = false, has_lod = false, level_zero = false, has_compare = false,
7637 has_offset = false, has_ddx = false, has_ddy = false, has_derivs = false, has_sample_index = false;
7638 Temp resource, sampler, fmask_ptr, bias = Temp(), compare = Temp(), sample_index = Temp(),
7639 lod = Temp(), offset = Temp(), ddx = Temp(), ddy = Temp();
7640 std::vector<Temp> coords;
7641 std::vector<Temp> derivs;
7642 nir_const_value *sample_index_cv = NULL;
7643 nir_const_value *const_offset[4] = {NULL, NULL, NULL, NULL};
7644 enum glsl_base_type stype;
7645 tex_fetch_ptrs(ctx, instr, &resource, &sampler, &fmask_ptr, &stype);
7646
7647 bool tg4_integer_workarounds = ctx->options->chip_class <= GFX8 && instr->op == nir_texop_tg4 &&
7648 (stype == GLSL_TYPE_UINT || stype == GLSL_TYPE_INT);
7649 bool tg4_integer_cube_workaround = tg4_integer_workarounds &&
7650 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE;
7651
7652 for (unsigned i = 0; i < instr->num_srcs; i++) {
7653 switch (instr->src[i].src_type) {
7654 case nir_tex_src_coord: {
7655 Temp coord = get_ssa_temp(ctx, instr->src[i].src.ssa);
7656 for (unsigned i = 0; i < coord.size(); i++)
7657 coords.emplace_back(emit_extract_vector(ctx, coord, i, v1));
7658 break;
7659 }
7660 case nir_tex_src_bias:
7661 if (instr->op == nir_texop_txb) {
7662 bias = get_ssa_temp(ctx, instr->src[i].src.ssa);
7663 has_bias = true;
7664 }
7665 break;
7666 case nir_tex_src_lod: {
7667 nir_const_value *val = nir_src_as_const_value(instr->src[i].src);
7668
7669 if (val && val->f32 <= 0.0) {
7670 level_zero = true;
7671 } else {
7672 lod = get_ssa_temp(ctx, instr->src[i].src.ssa);
7673 has_lod = true;
7674 }
7675 break;
7676 }
7677 case nir_tex_src_comparator:
7678 if (instr->is_shadow) {
7679 compare = get_ssa_temp(ctx, instr->src[i].src.ssa);
7680 has_compare = true;
7681 }
7682 break;
7683 case nir_tex_src_offset:
7684 offset = get_ssa_temp(ctx, instr->src[i].src.ssa);
7685 get_const_vec(instr->src[i].src.ssa, const_offset);
7686 has_offset = true;
7687 break;
7688 case nir_tex_src_ddx:
7689 ddx = get_ssa_temp(ctx, instr->src[i].src.ssa);
7690 has_ddx = true;
7691 break;
7692 case nir_tex_src_ddy:
7693 ddy = get_ssa_temp(ctx, instr->src[i].src.ssa);
7694 has_ddy = true;
7695 break;
7696 case nir_tex_src_ms_index:
7697 sample_index = get_ssa_temp(ctx, instr->src[i].src.ssa);
7698 sample_index_cv = nir_src_as_const_value(instr->src[i].src);
7699 has_sample_index = true;
7700 break;
7701 case nir_tex_src_texture_offset:
7702 case nir_tex_src_sampler_offset:
7703 default:
7704 break;
7705 }
7706 }
7707
7708 if (instr->op == nir_texop_txs && instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
7709 return get_buffer_size(ctx, resource, get_ssa_temp(ctx, &instr->dest.ssa), true);
7710
7711 if (instr->op == nir_texop_texture_samples) {
7712 Temp dword3 = emit_extract_vector(ctx, resource, 3, s1);
7713
7714 Temp samples_log2 = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(16u | 4u<<16));
7715 Temp samples = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), Operand(1u), samples_log2);
7716 Temp type = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(28u | 4u<<16 /* offset=28, width=4 */));
7717 Temp is_msaa = bld.sopc(aco_opcode::s_cmp_ge_u32, bld.def(s1, scc), type, Operand(14u));
7718
7719 bld.sop2(aco_opcode::s_cselect_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7720 samples, Operand(1u), bld.scc(is_msaa));
7721 return;
7722 }
7723
7724 if (has_offset && instr->op != nir_texop_txf && instr->op != nir_texop_txf_ms) {
7725 aco_ptr<Instruction> tmp_instr;
7726 Temp acc, pack = Temp();
7727
7728 uint32_t pack_const = 0;
7729 for (unsigned i = 0; i < offset.size(); i++) {
7730 if (!const_offset[i])
7731 continue;
7732 pack_const |= (const_offset[i]->u32 & 0x3Fu) << (8u * i);
7733 }
7734
7735 if (offset.type() == RegType::sgpr) {
7736 for (unsigned i = 0; i < offset.size(); i++) {
7737 if (const_offset[i])
7738 continue;
7739
7740 acc = emit_extract_vector(ctx, offset, i, s1);
7741 acc = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(0x3Fu));
7742
7743 if (i) {
7744 acc = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(8u * i));
7745 }
7746
7747 if (pack == Temp()) {
7748 pack = acc;
7749 } else {
7750 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), pack, acc);
7751 }
7752 }
7753
7754 if (pack_const && pack != Temp())
7755 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(pack_const), pack);
7756 } else {
7757 for (unsigned i = 0; i < offset.size(); i++) {
7758 if (const_offset[i])
7759 continue;
7760
7761 acc = emit_extract_vector(ctx, offset, i, v1);
7762 acc = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x3Fu), acc);
7763
7764 if (i) {
7765 acc = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(8u * i), acc);
7766 }
7767
7768 if (pack == Temp()) {
7769 pack = acc;
7770 } else {
7771 pack = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), pack, acc);
7772 }
7773 }
7774
7775 if (pack_const && pack != Temp())
7776 pack = bld.sop2(aco_opcode::v_or_b32, bld.def(v1), Operand(pack_const), pack);
7777 }
7778 if (pack_const && pack == Temp())
7779 offset = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(pack_const));
7780 else if (pack == Temp())
7781 has_offset = false;
7782 else
7783 offset = pack;
7784 }
7785
7786 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE && instr->coord_components)
7787 prepare_cube_coords(ctx, coords, &ddx, &ddy, instr->op == nir_texop_txd, instr->is_array && instr->op != nir_texop_lod);
7788
7789 /* pack derivatives */
7790 if (has_ddx || has_ddy) {
7791 if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D && ctx->options->chip_class == GFX9) {
7792 assert(has_ddx && has_ddy && ddx.size() == 1 && ddy.size() == 1);
7793 Temp zero = bld.copy(bld.def(v1), Operand(0u));
7794 derivs = {ddy, zero, ddy, zero};
7795 } else {
7796 for (unsigned i = 0; has_ddx && i < ddx.size(); i++)
7797 derivs.emplace_back(emit_extract_vector(ctx, ddx, i, v1));
7798 for (unsigned i = 0; has_ddy && i < ddy.size(); i++)
7799 derivs.emplace_back(emit_extract_vector(ctx, ddy, i, v1));
7800 }
7801 has_derivs = true;
7802 }
7803
7804 if (instr->coord_components > 1 &&
7805 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
7806 instr->is_array &&
7807 instr->op != nir_texop_txf)
7808 coords[1] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[1]);
7809
7810 if (instr->coord_components > 2 &&
7811 (instr->sampler_dim == GLSL_SAMPLER_DIM_2D ||
7812 instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
7813 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS ||
7814 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
7815 instr->is_array &&
7816 instr->op != nir_texop_txf &&
7817 instr->op != nir_texop_txf_ms &&
7818 instr->op != nir_texop_fragment_fetch &&
7819 instr->op != nir_texop_fragment_mask_fetch)
7820 coords[2] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[2]);
7821
7822 if (ctx->options->chip_class == GFX9 &&
7823 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
7824 instr->op != nir_texop_lod && instr->coord_components) {
7825 assert(coords.size() > 0 && coords.size() < 3);
7826
7827 coords.insert(std::next(coords.begin()), bld.copy(bld.def(v1), instr->op == nir_texop_txf ?
7828 Operand((uint32_t) 0) :
7829 Operand((uint32_t) 0x3f000000)));
7830 }
7831
7832 bool da = should_declare_array(ctx, instr->sampler_dim, instr->is_array);
7833
7834 if (instr->op == nir_texop_samples_identical)
7835 resource = fmask_ptr;
7836
7837 else if ((instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
7838 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
7839 instr->op != nir_texop_txs &&
7840 instr->op != nir_texop_fragment_fetch &&
7841 instr->op != nir_texop_fragment_mask_fetch) {
7842 assert(has_sample_index);
7843 Operand op(sample_index);
7844 if (sample_index_cv)
7845 op = Operand(sample_index_cv->u32);
7846 sample_index = adjust_sample_index_using_fmask(ctx, da, coords, op, fmask_ptr);
7847 }
7848
7849 if (has_offset && (instr->op == nir_texop_txf || instr->op == nir_texop_txf_ms)) {
7850 for (unsigned i = 0; i < std::min(offset.size(), instr->coord_components); i++) {
7851 Temp off = emit_extract_vector(ctx, offset, i, v1);
7852 coords[i] = bld.vadd32(bld.def(v1), coords[i], off);
7853 }
7854 has_offset = false;
7855 }
7856
7857 /* Build tex instruction */
7858 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
7859 unsigned dim = ctx->options->chip_class >= GFX10 && instr->sampler_dim != GLSL_SAMPLER_DIM_BUF
7860 ? ac_get_sampler_dim(ctx->options->chip_class, instr->sampler_dim, instr->is_array)
7861 : 0;
7862 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7863 Temp tmp_dst = dst;
7864
7865 /* gather4 selects the component by dmask and always returns vec4 */
7866 if (instr->op == nir_texop_tg4) {
7867 assert(instr->dest.ssa.num_components == 4);
7868 if (instr->is_shadow)
7869 dmask = 1;
7870 else
7871 dmask = 1 << instr->component;
7872 if (tg4_integer_cube_workaround || dst.type() == RegType::sgpr)
7873 tmp_dst = bld.tmp(v4);
7874 } else if (instr->op == nir_texop_samples_identical) {
7875 tmp_dst = bld.tmp(v1);
7876 } else if (util_bitcount(dmask) != instr->dest.ssa.num_components || dst.type() == RegType::sgpr) {
7877 tmp_dst = bld.tmp(RegClass(RegType::vgpr, util_bitcount(dmask)));
7878 }
7879
7880 aco_ptr<MIMG_instruction> tex;
7881 if (instr->op == nir_texop_txs || instr->op == nir_texop_query_levels) {
7882 if (!has_lod)
7883 lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
7884
7885 bool div_by_6 = instr->op == nir_texop_txs &&
7886 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
7887 instr->is_array &&
7888 (dmask & (1 << 2));
7889 if (tmp_dst.id() == dst.id() && div_by_6)
7890 tmp_dst = bld.tmp(tmp_dst.regClass());
7891
7892 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
7893 tex->operands[0] = Operand(resource);
7894 tex->operands[1] = Operand(s4); /* no sampler */
7895 tex->operands[2] = Operand(as_vgpr(ctx,lod));
7896 if (ctx->options->chip_class == GFX9 &&
7897 instr->op == nir_texop_txs &&
7898 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
7899 instr->is_array) {
7900 tex->dmask = (dmask & 0x1) | ((dmask & 0x2) << 1);
7901 } else if (instr->op == nir_texop_query_levels) {
7902 tex->dmask = 1 << 3;
7903 } else {
7904 tex->dmask = dmask;
7905 }
7906 tex->da = da;
7907 tex->definitions[0] = Definition(tmp_dst);
7908 tex->dim = dim;
7909 tex->can_reorder = true;
7910 ctx->block->instructions.emplace_back(std::move(tex));
7911
7912 if (div_by_6) {
7913 /* divide 3rd value by 6 by multiplying with magic number */
7914 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
7915 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
7916 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp_dst, 2, v1), c);
7917 assert(instr->dest.ssa.num_components == 3);
7918 Temp tmp = dst.type() == RegType::vgpr ? dst : bld.tmp(v3);
7919 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
7920 emit_extract_vector(ctx, tmp_dst, 0, v1),
7921 emit_extract_vector(ctx, tmp_dst, 1, v1),
7922 by_6);
7923
7924 }
7925
7926 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
7927 return;
7928 }
7929
7930 Temp tg4_compare_cube_wa64 = Temp();
7931
7932 if (tg4_integer_workarounds) {
7933 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
7934 tex->operands[0] = Operand(resource);
7935 tex->operands[1] = Operand(s4); /* no sampler */
7936 tex->operands[2] = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
7937 tex->dim = dim;
7938 tex->dmask = 0x3;
7939 tex->da = da;
7940 Temp size = bld.tmp(v2);
7941 tex->definitions[0] = Definition(size);
7942 tex->can_reorder = true;
7943 ctx->block->instructions.emplace_back(std::move(tex));
7944 emit_split_vector(ctx, size, size.size());
7945
7946 Temp half_texel[2];
7947 for (unsigned i = 0; i < 2; i++) {
7948 half_texel[i] = emit_extract_vector(ctx, size, i, v1);
7949 half_texel[i] = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), half_texel[i]);
7950 half_texel[i] = bld.vop1(aco_opcode::v_rcp_iflag_f32, bld.def(v1), half_texel[i]);
7951 half_texel[i] = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0xbf000000/*-0.5*/), half_texel[i]);
7952 }
7953
7954 Temp new_coords[2] = {
7955 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[0], half_texel[0]),
7956 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[1], half_texel[1])
7957 };
7958
7959 if (tg4_integer_cube_workaround) {
7960 // see comment in ac_nir_to_llvm.c's lower_gather4_integer()
7961 Temp desc[resource.size()];
7962 aco_ptr<Instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector,
7963 Format::PSEUDO, 1, resource.size())};
7964 split->operands[0] = Operand(resource);
7965 for (unsigned i = 0; i < resource.size(); i++) {
7966 desc[i] = bld.tmp(s1);
7967 split->definitions[i] = Definition(desc[i]);
7968 }
7969 ctx->block->instructions.emplace_back(std::move(split));
7970
7971 Temp dfmt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), desc[1], Operand(20u | (6u << 16)));
7972 Temp compare_cube_wa = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), dfmt,
7973 Operand((uint32_t)V_008F14_IMG_DATA_FORMAT_8_8_8_8));
7974
7975 Temp nfmt;
7976 if (stype == GLSL_TYPE_UINT) {
7977 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
7978 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_USCALED),
7979 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_UINT),
7980 bld.scc(compare_cube_wa));
7981 } else {
7982 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
7983 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SSCALED),
7984 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SINT),
7985 bld.scc(compare_cube_wa));
7986 }
7987 tg4_compare_cube_wa64 = bld.tmp(bld.lm);
7988 bool_to_vector_condition(ctx, compare_cube_wa, tg4_compare_cube_wa64);
7989
7990 nfmt = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), nfmt, Operand(26u));
7991
7992 desc[1] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), desc[1],
7993 Operand((uint32_t)C_008F14_NUM_FORMAT));
7994 desc[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), desc[1], nfmt);
7995
7996 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
7997 Format::PSEUDO, resource.size(), 1)};
7998 for (unsigned i = 0; i < resource.size(); i++)
7999 vec->operands[i] = Operand(desc[i]);
8000 resource = bld.tmp(resource.regClass());
8001 vec->definitions[0] = Definition(resource);
8002 ctx->block->instructions.emplace_back(std::move(vec));
8003
8004 new_coords[0] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8005 new_coords[0], coords[0], tg4_compare_cube_wa64);
8006 new_coords[1] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8007 new_coords[1], coords[1], tg4_compare_cube_wa64);
8008 }
8009 coords[0] = new_coords[0];
8010 coords[1] = new_coords[1];
8011 }
8012
8013 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
8014 //FIXME: if (ctx->abi->gfx9_stride_size_workaround) return ac_build_buffer_load_format_gfx9_safe()
8015
8016 assert(coords.size() == 1);
8017 unsigned last_bit = util_last_bit(nir_ssa_def_components_read(&instr->dest.ssa));
8018 aco_opcode op;
8019 switch (last_bit) {
8020 case 1:
8021 op = aco_opcode::buffer_load_format_x; break;
8022 case 2:
8023 op = aco_opcode::buffer_load_format_xy; break;
8024 case 3:
8025 op = aco_opcode::buffer_load_format_xyz; break;
8026 case 4:
8027 op = aco_opcode::buffer_load_format_xyzw; break;
8028 default:
8029 unreachable("Tex instruction loads more than 4 components.");
8030 }
8031
8032 /* if the instruction return value matches exactly the nir dest ssa, we can use it directly */
8033 if (last_bit == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
8034 tmp_dst = dst;
8035 else
8036 tmp_dst = bld.tmp(RegType::vgpr, last_bit);
8037
8038 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
8039 mubuf->operands[0] = Operand(resource);
8040 mubuf->operands[1] = Operand(coords[0]);
8041 mubuf->operands[2] = Operand((uint32_t) 0);
8042 mubuf->definitions[0] = Definition(tmp_dst);
8043 mubuf->idxen = true;
8044 mubuf->can_reorder = true;
8045 ctx->block->instructions.emplace_back(std::move(mubuf));
8046
8047 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, (1 << last_bit) - 1);
8048 return;
8049 }
8050
8051 /* gather MIMG address components */
8052 std::vector<Temp> args;
8053 if (has_offset)
8054 args.emplace_back(offset);
8055 if (has_bias)
8056 args.emplace_back(bias);
8057 if (has_compare)
8058 args.emplace_back(compare);
8059 if (has_derivs)
8060 args.insert(args.end(), derivs.begin(), derivs.end());
8061
8062 args.insert(args.end(), coords.begin(), coords.end());
8063 if (has_sample_index)
8064 args.emplace_back(sample_index);
8065 if (has_lod)
8066 args.emplace_back(lod);
8067
8068 Temp arg = bld.tmp(RegClass(RegType::vgpr, args.size()));
8069 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, args.size(), 1)};
8070 vec->definitions[0] = Definition(arg);
8071 for (unsigned i = 0; i < args.size(); i++)
8072 vec->operands[i] = Operand(args[i]);
8073 ctx->block->instructions.emplace_back(std::move(vec));
8074
8075
8076 if (instr->op == nir_texop_txf ||
8077 instr->op == nir_texop_txf_ms ||
8078 instr->op == nir_texop_samples_identical ||
8079 instr->op == nir_texop_fragment_fetch ||
8080 instr->op == nir_texop_fragment_mask_fetch) {
8081 aco_opcode op = level_zero || instr->sampler_dim == GLSL_SAMPLER_DIM_MS || instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS ? aco_opcode::image_load : aco_opcode::image_load_mip;
8082 tex.reset(create_instruction<MIMG_instruction>(op, Format::MIMG, 3, 1));
8083 tex->operands[0] = Operand(resource);
8084 tex->operands[1] = Operand(s4); /* no sampler */
8085 tex->operands[2] = Operand(arg);
8086 tex->dim = dim;
8087 tex->dmask = dmask;
8088 tex->unrm = true;
8089 tex->da = da;
8090 tex->definitions[0] = Definition(tmp_dst);
8091 tex->can_reorder = true;
8092 ctx->block->instructions.emplace_back(std::move(tex));
8093
8094 if (instr->op == nir_texop_samples_identical) {
8095 assert(dmask == 1 && dst.regClass() == v1);
8096 assert(dst.id() != tmp_dst.id());
8097
8098 Temp tmp = bld.tmp(bld.lm);
8099 bld.vopc(aco_opcode::v_cmp_eq_u32, Definition(tmp), Operand(0u), tmp_dst).def(0).setHint(vcc);
8100 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand((uint32_t)-1), tmp);
8101
8102 } else {
8103 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
8104 }
8105 return;
8106 }
8107
8108 // TODO: would be better to do this by adding offsets, but needs the opcodes ordered.
8109 aco_opcode opcode = aco_opcode::image_sample;
8110 if (has_offset) { /* image_sample_*_o */
8111 if (has_compare) {
8112 opcode = aco_opcode::image_sample_c_o;
8113 if (has_derivs)
8114 opcode = aco_opcode::image_sample_c_d_o;
8115 if (has_bias)
8116 opcode = aco_opcode::image_sample_c_b_o;
8117 if (level_zero)
8118 opcode = aco_opcode::image_sample_c_lz_o;
8119 if (has_lod)
8120 opcode = aco_opcode::image_sample_c_l_o;
8121 } else {
8122 opcode = aco_opcode::image_sample_o;
8123 if (has_derivs)
8124 opcode = aco_opcode::image_sample_d_o;
8125 if (has_bias)
8126 opcode = aco_opcode::image_sample_b_o;
8127 if (level_zero)
8128 opcode = aco_opcode::image_sample_lz_o;
8129 if (has_lod)
8130 opcode = aco_opcode::image_sample_l_o;
8131 }
8132 } else { /* no offset */
8133 if (has_compare) {
8134 opcode = aco_opcode::image_sample_c;
8135 if (has_derivs)
8136 opcode = aco_opcode::image_sample_c_d;
8137 if (has_bias)
8138 opcode = aco_opcode::image_sample_c_b;
8139 if (level_zero)
8140 opcode = aco_opcode::image_sample_c_lz;
8141 if (has_lod)
8142 opcode = aco_opcode::image_sample_c_l;
8143 } else {
8144 opcode = aco_opcode::image_sample;
8145 if (has_derivs)
8146 opcode = aco_opcode::image_sample_d;
8147 if (has_bias)
8148 opcode = aco_opcode::image_sample_b;
8149 if (level_zero)
8150 opcode = aco_opcode::image_sample_lz;
8151 if (has_lod)
8152 opcode = aco_opcode::image_sample_l;
8153 }
8154 }
8155
8156 if (instr->op == nir_texop_tg4) {
8157 if (has_offset) {
8158 opcode = aco_opcode::image_gather4_lz_o;
8159 if (has_compare)
8160 opcode = aco_opcode::image_gather4_c_lz_o;
8161 } else {
8162 opcode = aco_opcode::image_gather4_lz;
8163 if (has_compare)
8164 opcode = aco_opcode::image_gather4_c_lz;
8165 }
8166 } else if (instr->op == nir_texop_lod) {
8167 opcode = aco_opcode::image_get_lod;
8168 }
8169
8170 /* we don't need the bias, sample index, compare value or offset to be
8171 * computed in WQM but if the p_create_vector copies the coordinates, then it
8172 * needs to be in WQM */
8173 if (ctx->stage == fragment_fs &&
8174 !has_derivs && !has_lod && !level_zero &&
8175 instr->sampler_dim != GLSL_SAMPLER_DIM_MS &&
8176 instr->sampler_dim != GLSL_SAMPLER_DIM_SUBPASS_MS)
8177 arg = emit_wqm(ctx, arg, bld.tmp(arg.regClass()), true);
8178
8179 tex.reset(create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1));
8180 tex->operands[0] = Operand(resource);
8181 tex->operands[1] = Operand(sampler);
8182 tex->operands[2] = Operand(arg);
8183 tex->dim = dim;
8184 tex->dmask = dmask;
8185 tex->da = da;
8186 tex->definitions[0] = Definition(tmp_dst);
8187 tex->can_reorder = true;
8188 ctx->block->instructions.emplace_back(std::move(tex));
8189
8190 if (tg4_integer_cube_workaround) {
8191 assert(tmp_dst.id() != dst.id());
8192 assert(tmp_dst.size() == dst.size() && dst.size() == 4);
8193
8194 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
8195 Temp val[4];
8196 for (unsigned i = 0; i < dst.size(); i++) {
8197 val[i] = emit_extract_vector(ctx, tmp_dst, i, v1);
8198 Temp cvt_val;
8199 if (stype == GLSL_TYPE_UINT)
8200 cvt_val = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), val[i]);
8201 else
8202 cvt_val = bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), val[i]);
8203 val[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), val[i], cvt_val, tg4_compare_cube_wa64);
8204 }
8205 Temp tmp = dst.regClass() == v4 ? dst : bld.tmp(v4);
8206 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
8207 val[0], val[1], val[2], val[3]);
8208 }
8209 unsigned mask = instr->op == nir_texop_tg4 ? 0xF : dmask;
8210 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, mask);
8211
8212 }
8213
8214
8215 Operand get_phi_operand(isel_context *ctx, nir_ssa_def *ssa)
8216 {
8217 Temp tmp = get_ssa_temp(ctx, ssa);
8218 if (ssa->parent_instr->type == nir_instr_type_ssa_undef)
8219 return Operand(tmp.regClass());
8220 else
8221 return Operand(tmp);
8222 }
8223
8224 void visit_phi(isel_context *ctx, nir_phi_instr *instr)
8225 {
8226 aco_ptr<Pseudo_instruction> phi;
8227 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8228 assert(instr->dest.ssa.bit_size != 1 || dst.regClass() == ctx->program->lane_mask);
8229
8230 bool logical = !dst.is_linear() || ctx->divergent_vals[instr->dest.ssa.index];
8231 logical |= ctx->block->kind & block_kind_merge;
8232 aco_opcode opcode = logical ? aco_opcode::p_phi : aco_opcode::p_linear_phi;
8233
8234 /* we want a sorted list of sources, since the predecessor list is also sorted */
8235 std::map<unsigned, nir_ssa_def*> phi_src;
8236 nir_foreach_phi_src(src, instr)
8237 phi_src[src->pred->index] = src->src.ssa;
8238
8239 std::vector<unsigned>& preds = logical ? ctx->block->logical_preds : ctx->block->linear_preds;
8240 unsigned num_operands = 0;
8241 Operand operands[std::max(exec_list_length(&instr->srcs), (unsigned)preds.size()) + 1];
8242 unsigned num_defined = 0;
8243 unsigned cur_pred_idx = 0;
8244 for (std::pair<unsigned, nir_ssa_def *> src : phi_src) {
8245 if (cur_pred_idx < preds.size()) {
8246 /* handle missing preds (IF merges with discard/break) and extra preds (loop exit with discard) */
8247 unsigned block = ctx->cf_info.nir_to_aco[src.first];
8248 unsigned skipped = 0;
8249 while (cur_pred_idx + skipped < preds.size() && preds[cur_pred_idx + skipped] != block)
8250 skipped++;
8251 if (cur_pred_idx + skipped < preds.size()) {
8252 for (unsigned i = 0; i < skipped; i++)
8253 operands[num_operands++] = Operand(dst.regClass());
8254 cur_pred_idx += skipped;
8255 } else {
8256 continue;
8257 }
8258 }
8259 /* Handle missing predecessors at the end. This shouldn't happen with loop
8260 * headers and we can't ignore these sources for loop header phis. */
8261 if (!(ctx->block->kind & block_kind_loop_header) && cur_pred_idx >= preds.size())
8262 continue;
8263 cur_pred_idx++;
8264 Operand op = get_phi_operand(ctx, src.second);
8265 operands[num_operands++] = op;
8266 num_defined += !op.isUndefined();
8267 }
8268 /* handle block_kind_continue_or_break at loop exit blocks */
8269 while (cur_pred_idx++ < preds.size())
8270 operands[num_operands++] = Operand(dst.regClass());
8271
8272 /* If the loop ends with a break, still add a linear continue edge in case
8273 * that break is divergent or continue_or_break is used. We'll either remove
8274 * this operand later in visit_loop() if it's not necessary or replace the
8275 * undef with something correct. */
8276 if (!logical && ctx->block->kind & block_kind_loop_header) {
8277 nir_loop *loop = nir_cf_node_as_loop(instr->instr.block->cf_node.parent);
8278 nir_block *last = nir_loop_last_block(loop);
8279 if (last->successors[0] != instr->instr.block)
8280 operands[num_operands++] = Operand(RegClass());
8281 }
8282
8283 if (num_defined == 0) {
8284 Builder bld(ctx->program, ctx->block);
8285 if (dst.regClass() == s1) {
8286 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), Operand(0u));
8287 } else if (dst.regClass() == v1) {
8288 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), Operand(0u));
8289 } else {
8290 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
8291 for (unsigned i = 0; i < dst.size(); i++)
8292 vec->operands[i] = Operand(0u);
8293 vec->definitions[0] = Definition(dst);
8294 ctx->block->instructions.emplace_back(std::move(vec));
8295 }
8296 return;
8297 }
8298
8299 /* we can use a linear phi in some cases if one src is undef */
8300 if (dst.is_linear() && ctx->block->kind & block_kind_merge && num_defined == 1) {
8301 phi.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, num_operands, 1));
8302
8303 Block *linear_else = &ctx->program->blocks[ctx->block->linear_preds[1]];
8304 Block *invert = &ctx->program->blocks[linear_else->linear_preds[0]];
8305 assert(invert->kind & block_kind_invert);
8306
8307 unsigned then_block = invert->linear_preds[0];
8308
8309 Block* insert_block = NULL;
8310 for (unsigned i = 0; i < num_operands; i++) {
8311 Operand op = operands[i];
8312 if (op.isUndefined())
8313 continue;
8314 insert_block = ctx->block->logical_preds[i] == then_block ? invert : ctx->block;
8315 phi->operands[0] = op;
8316 break;
8317 }
8318 assert(insert_block); /* should be handled by the "num_defined == 0" case above */
8319 phi->operands[1] = Operand(dst.regClass());
8320 phi->definitions[0] = Definition(dst);
8321 insert_block->instructions.emplace(insert_block->instructions.begin(), std::move(phi));
8322 return;
8323 }
8324
8325 /* try to scalarize vector phis */
8326 if (instr->dest.ssa.bit_size != 1 && dst.size() > 1) {
8327 // TODO: scalarize linear phis on divergent ifs
8328 bool can_scalarize = (opcode == aco_opcode::p_phi || !(ctx->block->kind & block_kind_merge));
8329 std::array<Temp, NIR_MAX_VEC_COMPONENTS> new_vec;
8330 for (unsigned i = 0; can_scalarize && (i < num_operands); i++) {
8331 Operand src = operands[i];
8332 if (src.isTemp() && ctx->allocated_vec.find(src.tempId()) == ctx->allocated_vec.end())
8333 can_scalarize = false;
8334 }
8335 if (can_scalarize) {
8336 unsigned num_components = instr->dest.ssa.num_components;
8337 assert(dst.size() % num_components == 0);
8338 RegClass rc = RegClass(dst.type(), dst.size() / num_components);
8339
8340 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
8341 for (unsigned k = 0; k < num_components; k++) {
8342 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
8343 for (unsigned i = 0; i < num_operands; i++) {
8344 Operand src = operands[i];
8345 phi->operands[i] = src.isTemp() ? Operand(ctx->allocated_vec[src.tempId()][k]) : Operand(rc);
8346 }
8347 Temp phi_dst = {ctx->program->allocateId(), rc};
8348 phi->definitions[0] = Definition(phi_dst);
8349 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
8350 new_vec[k] = phi_dst;
8351 vec->operands[k] = Operand(phi_dst);
8352 }
8353 vec->definitions[0] = Definition(dst);
8354 ctx->block->instructions.emplace_back(std::move(vec));
8355 ctx->allocated_vec.emplace(dst.id(), new_vec);
8356 return;
8357 }
8358 }
8359
8360 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
8361 for (unsigned i = 0; i < num_operands; i++)
8362 phi->operands[i] = operands[i];
8363 phi->definitions[0] = Definition(dst);
8364 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
8365 }
8366
8367
8368 void visit_undef(isel_context *ctx, nir_ssa_undef_instr *instr)
8369 {
8370 Temp dst = get_ssa_temp(ctx, &instr->def);
8371
8372 assert(dst.type() == RegType::sgpr);
8373
8374 if (dst.size() == 1) {
8375 Builder(ctx->program, ctx->block).copy(Definition(dst), Operand(0u));
8376 } else {
8377 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
8378 for (unsigned i = 0; i < dst.size(); i++)
8379 vec->operands[i] = Operand(0u);
8380 vec->definitions[0] = Definition(dst);
8381 ctx->block->instructions.emplace_back(std::move(vec));
8382 }
8383 }
8384
8385 void visit_jump(isel_context *ctx, nir_jump_instr *instr)
8386 {
8387 Builder bld(ctx->program, ctx->block);
8388 Block *logical_target;
8389 append_logical_end(ctx->block);
8390 unsigned idx = ctx->block->index;
8391
8392 switch (instr->type) {
8393 case nir_jump_break:
8394 logical_target = ctx->cf_info.parent_loop.exit;
8395 add_logical_edge(idx, logical_target);
8396 ctx->block->kind |= block_kind_break;
8397
8398 if (!ctx->cf_info.parent_if.is_divergent &&
8399 !ctx->cf_info.parent_loop.has_divergent_continue) {
8400 /* uniform break - directly jump out of the loop */
8401 ctx->block->kind |= block_kind_uniform;
8402 ctx->cf_info.has_branch = true;
8403 bld.branch(aco_opcode::p_branch);
8404 add_linear_edge(idx, logical_target);
8405 return;
8406 }
8407 ctx->cf_info.parent_loop.has_divergent_branch = true;
8408 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
8409 break;
8410 case nir_jump_continue:
8411 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
8412 add_logical_edge(idx, logical_target);
8413 ctx->block->kind |= block_kind_continue;
8414
8415 if (ctx->cf_info.parent_if.is_divergent) {
8416 /* for potential uniform breaks after this continue,
8417 we must ensure that they are handled correctly */
8418 ctx->cf_info.parent_loop.has_divergent_continue = true;
8419 ctx->cf_info.parent_loop.has_divergent_branch = true;
8420 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
8421 } else {
8422 /* uniform continue - directly jump to the loop header */
8423 ctx->block->kind |= block_kind_uniform;
8424 ctx->cf_info.has_branch = true;
8425 bld.branch(aco_opcode::p_branch);
8426 add_linear_edge(idx, logical_target);
8427 return;
8428 }
8429 break;
8430 default:
8431 fprintf(stderr, "Unknown NIR jump instr: ");
8432 nir_print_instr(&instr->instr, stderr);
8433 fprintf(stderr, "\n");
8434 abort();
8435 }
8436
8437 if (ctx->cf_info.parent_if.is_divergent && !ctx->cf_info.exec_potentially_empty_break) {
8438 ctx->cf_info.exec_potentially_empty_break = true;
8439 ctx->cf_info.exec_potentially_empty_break_depth = ctx->cf_info.loop_nest_depth;
8440 }
8441
8442 /* remove critical edges from linear CFG */
8443 bld.branch(aco_opcode::p_branch);
8444 Block* break_block = ctx->program->create_and_insert_block();
8445 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8446 break_block->kind |= block_kind_uniform;
8447 add_linear_edge(idx, break_block);
8448 /* the loop_header pointer might be invalidated by this point */
8449 if (instr->type == nir_jump_continue)
8450 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
8451 add_linear_edge(break_block->index, logical_target);
8452 bld.reset(break_block);
8453 bld.branch(aco_opcode::p_branch);
8454
8455 Block* continue_block = ctx->program->create_and_insert_block();
8456 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8457 add_linear_edge(idx, continue_block);
8458 append_logical_start(continue_block);
8459 ctx->block = continue_block;
8460 return;
8461 }
8462
8463 void visit_block(isel_context *ctx, nir_block *block)
8464 {
8465 nir_foreach_instr(instr, block) {
8466 switch (instr->type) {
8467 case nir_instr_type_alu:
8468 visit_alu_instr(ctx, nir_instr_as_alu(instr));
8469 break;
8470 case nir_instr_type_load_const:
8471 visit_load_const(ctx, nir_instr_as_load_const(instr));
8472 break;
8473 case nir_instr_type_intrinsic:
8474 visit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
8475 break;
8476 case nir_instr_type_tex:
8477 visit_tex(ctx, nir_instr_as_tex(instr));
8478 break;
8479 case nir_instr_type_phi:
8480 visit_phi(ctx, nir_instr_as_phi(instr));
8481 break;
8482 case nir_instr_type_ssa_undef:
8483 visit_undef(ctx, nir_instr_as_ssa_undef(instr));
8484 break;
8485 case nir_instr_type_deref:
8486 break;
8487 case nir_instr_type_jump:
8488 visit_jump(ctx, nir_instr_as_jump(instr));
8489 break;
8490 default:
8491 fprintf(stderr, "Unknown NIR instr type: ");
8492 nir_print_instr(instr, stderr);
8493 fprintf(stderr, "\n");
8494 //abort();
8495 }
8496 }
8497
8498 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8499 ctx->cf_info.nir_to_aco[block->index] = ctx->block->index;
8500 }
8501
8502
8503
8504 static Operand create_continue_phis(isel_context *ctx, unsigned first, unsigned last,
8505 aco_ptr<Instruction>& header_phi, Operand *vals)
8506 {
8507 vals[0] = Operand(header_phi->definitions[0].getTemp());
8508 RegClass rc = vals[0].regClass();
8509
8510 unsigned loop_nest_depth = ctx->program->blocks[first].loop_nest_depth;
8511
8512 unsigned next_pred = 1;
8513
8514 for (unsigned idx = first + 1; idx <= last; idx++) {
8515 Block& block = ctx->program->blocks[idx];
8516 if (block.loop_nest_depth != loop_nest_depth) {
8517 vals[idx - first] = vals[idx - 1 - first];
8518 continue;
8519 }
8520
8521 if (block.kind & block_kind_continue) {
8522 vals[idx - first] = header_phi->operands[next_pred];
8523 next_pred++;
8524 continue;
8525 }
8526
8527 bool all_same = true;
8528 for (unsigned i = 1; all_same && (i < block.linear_preds.size()); i++)
8529 all_same = vals[block.linear_preds[i] - first] == vals[block.linear_preds[0] - first];
8530
8531 Operand val;
8532 if (all_same) {
8533 val = vals[block.linear_preds[0] - first];
8534 } else {
8535 aco_ptr<Instruction> phi(create_instruction<Pseudo_instruction>(
8536 aco_opcode::p_linear_phi, Format::PSEUDO, block.linear_preds.size(), 1));
8537 for (unsigned i = 0; i < block.linear_preds.size(); i++)
8538 phi->operands[i] = vals[block.linear_preds[i] - first];
8539 val = Operand(Temp(ctx->program->allocateId(), rc));
8540 phi->definitions[0] = Definition(val.getTemp());
8541 block.instructions.emplace(block.instructions.begin(), std::move(phi));
8542 }
8543 vals[idx - first] = val;
8544 }
8545
8546 return vals[last - first];
8547 }
8548
8549 static void visit_loop(isel_context *ctx, nir_loop *loop)
8550 {
8551 //TODO: we might want to wrap the loop around a branch if exec_potentially_empty=true
8552 append_logical_end(ctx->block);
8553 ctx->block->kind |= block_kind_loop_preheader | block_kind_uniform;
8554 Builder bld(ctx->program, ctx->block);
8555 bld.branch(aco_opcode::p_branch);
8556 unsigned loop_preheader_idx = ctx->block->index;
8557
8558 Block loop_exit = Block();
8559 loop_exit.loop_nest_depth = ctx->cf_info.loop_nest_depth;
8560 loop_exit.kind |= (block_kind_loop_exit | (ctx->block->kind & block_kind_top_level));
8561
8562 Block* loop_header = ctx->program->create_and_insert_block();
8563 loop_header->loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
8564 loop_header->kind |= block_kind_loop_header;
8565 add_edge(loop_preheader_idx, loop_header);
8566 ctx->block = loop_header;
8567
8568 /* emit loop body */
8569 unsigned loop_header_idx = loop_header->index;
8570 loop_info_RAII loop_raii(ctx, loop_header_idx, &loop_exit);
8571 append_logical_start(ctx->block);
8572 bool unreachable = visit_cf_list(ctx, &loop->body);
8573
8574 //TODO: what if a loop ends with a unconditional or uniformly branched continue and this branch is never taken?
8575 if (!ctx->cf_info.has_branch) {
8576 append_logical_end(ctx->block);
8577 if (ctx->cf_info.exec_potentially_empty_discard || ctx->cf_info.exec_potentially_empty_break) {
8578 /* Discards can result in code running with an empty exec mask.
8579 * This would result in divergent breaks not ever being taken. As a
8580 * workaround, break the loop when the loop mask is empty instead of
8581 * always continuing. */
8582 ctx->block->kind |= (block_kind_continue_or_break | block_kind_uniform);
8583 unsigned block_idx = ctx->block->index;
8584
8585 /* create helper blocks to avoid critical edges */
8586 Block *break_block = ctx->program->create_and_insert_block();
8587 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8588 break_block->kind = block_kind_uniform;
8589 bld.reset(break_block);
8590 bld.branch(aco_opcode::p_branch);
8591 add_linear_edge(block_idx, break_block);
8592 add_linear_edge(break_block->index, &loop_exit);
8593
8594 Block *continue_block = ctx->program->create_and_insert_block();
8595 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8596 continue_block->kind = block_kind_uniform;
8597 bld.reset(continue_block);
8598 bld.branch(aco_opcode::p_branch);
8599 add_linear_edge(block_idx, continue_block);
8600 add_linear_edge(continue_block->index, &ctx->program->blocks[loop_header_idx]);
8601
8602 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8603 add_logical_edge(block_idx, &ctx->program->blocks[loop_header_idx]);
8604 ctx->block = &ctx->program->blocks[block_idx];
8605 } else {
8606 ctx->block->kind |= (block_kind_continue | block_kind_uniform);
8607 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8608 add_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
8609 else
8610 add_linear_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
8611 }
8612
8613 bld.reset(ctx->block);
8614 bld.branch(aco_opcode::p_branch);
8615 }
8616
8617 /* Fixup phis in loop header from unreachable blocks.
8618 * has_branch/has_divergent_branch also indicates if the loop ends with a
8619 * break/continue instruction, but we don't emit those if unreachable=true */
8620 if (unreachable) {
8621 assert(ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch);
8622 bool linear = ctx->cf_info.has_branch;
8623 bool logical = ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch;
8624 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
8625 if ((logical && instr->opcode == aco_opcode::p_phi) ||
8626 (linear && instr->opcode == aco_opcode::p_linear_phi)) {
8627 /* the last operand should be the one that needs to be removed */
8628 instr->operands.pop_back();
8629 } else if (!is_phi(instr)) {
8630 break;
8631 }
8632 }
8633 }
8634
8635 /* Fixup linear phis in loop header from expecting a continue. Both this fixup
8636 * and the previous one shouldn't both happen at once because a break in the
8637 * merge block would get CSE'd */
8638 if (nir_loop_last_block(loop)->successors[0] != nir_loop_first_block(loop)) {
8639 unsigned num_vals = ctx->cf_info.has_branch ? 1 : (ctx->block->index - loop_header_idx + 1);
8640 Operand vals[num_vals];
8641 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
8642 if (instr->opcode == aco_opcode::p_linear_phi) {
8643 if (ctx->cf_info.has_branch)
8644 instr->operands.pop_back();
8645 else
8646 instr->operands.back() = create_continue_phis(ctx, loop_header_idx, ctx->block->index, instr, vals);
8647 } else if (!is_phi(instr)) {
8648 break;
8649 }
8650 }
8651 }
8652
8653 ctx->cf_info.has_branch = false;
8654
8655 // TODO: if the loop has not a single exit, we must add one °°
8656 /* emit loop successor block */
8657 ctx->block = ctx->program->insert_block(std::move(loop_exit));
8658 append_logical_start(ctx->block);
8659
8660 #if 0
8661 // TODO: check if it is beneficial to not branch on continues
8662 /* trim linear phis in loop header */
8663 for (auto&& instr : loop_entry->instructions) {
8664 if (instr->opcode == aco_opcode::p_linear_phi) {
8665 aco_ptr<Pseudo_instruction> new_phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, loop_entry->linear_predecessors.size(), 1)};
8666 new_phi->definitions[0] = instr->definitions[0];
8667 for (unsigned i = 0; i < new_phi->operands.size(); i++)
8668 new_phi->operands[i] = instr->operands[i];
8669 /* check that the remaining operands are all the same */
8670 for (unsigned i = new_phi->operands.size(); i < instr->operands.size(); i++)
8671 assert(instr->operands[i].tempId() == instr->operands.back().tempId());
8672 instr.swap(new_phi);
8673 } else if (instr->opcode == aco_opcode::p_phi) {
8674 continue;
8675 } else {
8676 break;
8677 }
8678 }
8679 #endif
8680 }
8681
8682 static void begin_divergent_if_then(isel_context *ctx, if_context *ic, Temp cond)
8683 {
8684 ic->cond = cond;
8685
8686 append_logical_end(ctx->block);
8687 ctx->block->kind |= block_kind_branch;
8688
8689 /* branch to linear then block */
8690 assert(cond.regClass() == ctx->program->lane_mask);
8691 aco_ptr<Pseudo_branch_instruction> branch;
8692 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
8693 branch->operands[0] = Operand(cond);
8694 ctx->block->instructions.push_back(std::move(branch));
8695
8696 ic->BB_if_idx = ctx->block->index;
8697 ic->BB_invert = Block();
8698 ic->BB_invert.loop_nest_depth = ctx->cf_info.loop_nest_depth;
8699 /* Invert blocks are intentionally not marked as top level because they
8700 * are not part of the logical cfg. */
8701 ic->BB_invert.kind |= block_kind_invert;
8702 ic->BB_endif = Block();
8703 ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
8704 ic->BB_endif.kind |= (block_kind_merge | (ctx->block->kind & block_kind_top_level));
8705
8706 ic->exec_potentially_empty_discard_old = ctx->cf_info.exec_potentially_empty_discard;
8707 ic->exec_potentially_empty_break_old = ctx->cf_info.exec_potentially_empty_break;
8708 ic->exec_potentially_empty_break_depth_old = ctx->cf_info.exec_potentially_empty_break_depth;
8709 ic->divergent_old = ctx->cf_info.parent_if.is_divergent;
8710 ctx->cf_info.parent_if.is_divergent = true;
8711
8712 /* divergent branches use cbranch_execz */
8713 ctx->cf_info.exec_potentially_empty_discard = false;
8714 ctx->cf_info.exec_potentially_empty_break = false;
8715 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
8716
8717 /** emit logical then block */
8718 Block* BB_then_logical = ctx->program->create_and_insert_block();
8719 BB_then_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8720 add_edge(ic->BB_if_idx, BB_then_logical);
8721 ctx->block = BB_then_logical;
8722 append_logical_start(BB_then_logical);
8723 }
8724
8725 static void begin_divergent_if_else(isel_context *ctx, if_context *ic)
8726 {
8727 Block *BB_then_logical = ctx->block;
8728 append_logical_end(BB_then_logical);
8729 /* branch from logical then block to invert block */
8730 aco_ptr<Pseudo_branch_instruction> branch;
8731 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8732 BB_then_logical->instructions.emplace_back(std::move(branch));
8733 add_linear_edge(BB_then_logical->index, &ic->BB_invert);
8734 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8735 add_logical_edge(BB_then_logical->index, &ic->BB_endif);
8736 BB_then_logical->kind |= block_kind_uniform;
8737 assert(!ctx->cf_info.has_branch);
8738 ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
8739 ctx->cf_info.parent_loop.has_divergent_branch = false;
8740
8741 /** emit linear then block */
8742 Block* BB_then_linear = ctx->program->create_and_insert_block();
8743 BB_then_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8744 BB_then_linear->kind |= block_kind_uniform;
8745 add_linear_edge(ic->BB_if_idx, BB_then_linear);
8746 /* branch from linear then block to invert block */
8747 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8748 BB_then_linear->instructions.emplace_back(std::move(branch));
8749 add_linear_edge(BB_then_linear->index, &ic->BB_invert);
8750
8751 /** emit invert merge block */
8752 ctx->block = ctx->program->insert_block(std::move(ic->BB_invert));
8753 ic->invert_idx = ctx->block->index;
8754
8755 /* branch to linear else block (skip else) */
8756 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_nz, Format::PSEUDO_BRANCH, 1, 0));
8757 branch->operands[0] = Operand(ic->cond);
8758 ctx->block->instructions.push_back(std::move(branch));
8759
8760 ic->exec_potentially_empty_discard_old |= ctx->cf_info.exec_potentially_empty_discard;
8761 ic->exec_potentially_empty_break_old |= ctx->cf_info.exec_potentially_empty_break;
8762 ic->exec_potentially_empty_break_depth_old =
8763 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
8764 /* divergent branches use cbranch_execz */
8765 ctx->cf_info.exec_potentially_empty_discard = false;
8766 ctx->cf_info.exec_potentially_empty_break = false;
8767 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
8768
8769 /** emit logical else block */
8770 Block* BB_else_logical = ctx->program->create_and_insert_block();
8771 BB_else_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8772 add_logical_edge(ic->BB_if_idx, BB_else_logical);
8773 add_linear_edge(ic->invert_idx, BB_else_logical);
8774 ctx->block = BB_else_logical;
8775 append_logical_start(BB_else_logical);
8776 }
8777
8778 static void end_divergent_if(isel_context *ctx, if_context *ic)
8779 {
8780 Block *BB_else_logical = ctx->block;
8781 append_logical_end(BB_else_logical);
8782
8783 /* branch from logical else block to endif block */
8784 aco_ptr<Pseudo_branch_instruction> branch;
8785 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8786 BB_else_logical->instructions.emplace_back(std::move(branch));
8787 add_linear_edge(BB_else_logical->index, &ic->BB_endif);
8788 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8789 add_logical_edge(BB_else_logical->index, &ic->BB_endif);
8790 BB_else_logical->kind |= block_kind_uniform;
8791
8792 assert(!ctx->cf_info.has_branch);
8793 ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
8794
8795
8796 /** emit linear else block */
8797 Block* BB_else_linear = ctx->program->create_and_insert_block();
8798 BB_else_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8799 BB_else_linear->kind |= block_kind_uniform;
8800 add_linear_edge(ic->invert_idx, BB_else_linear);
8801
8802 /* branch from linear else block to endif block */
8803 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8804 BB_else_linear->instructions.emplace_back(std::move(branch));
8805 add_linear_edge(BB_else_linear->index, &ic->BB_endif);
8806
8807
8808 /** emit endif merge block */
8809 ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
8810 append_logical_start(ctx->block);
8811
8812
8813 ctx->cf_info.parent_if.is_divergent = ic->divergent_old;
8814 ctx->cf_info.exec_potentially_empty_discard |= ic->exec_potentially_empty_discard_old;
8815 ctx->cf_info.exec_potentially_empty_break |= ic->exec_potentially_empty_break_old;
8816 ctx->cf_info.exec_potentially_empty_break_depth =
8817 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
8818 if (ctx->cf_info.loop_nest_depth == ctx->cf_info.exec_potentially_empty_break_depth &&
8819 !ctx->cf_info.parent_if.is_divergent) {
8820 ctx->cf_info.exec_potentially_empty_break = false;
8821 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
8822 }
8823 /* uniform control flow never has an empty exec-mask */
8824 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent) {
8825 ctx->cf_info.exec_potentially_empty_discard = false;
8826 ctx->cf_info.exec_potentially_empty_break = false;
8827 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
8828 }
8829 }
8830
8831 static bool visit_if(isel_context *ctx, nir_if *if_stmt)
8832 {
8833 Temp cond = get_ssa_temp(ctx, if_stmt->condition.ssa);
8834 Builder bld(ctx->program, ctx->block);
8835 aco_ptr<Pseudo_branch_instruction> branch;
8836
8837 if (!ctx->divergent_vals[if_stmt->condition.ssa->index]) { /* uniform condition */
8838 /**
8839 * Uniform conditionals are represented in the following way*) :
8840 *
8841 * The linear and logical CFG:
8842 * BB_IF
8843 * / \
8844 * BB_THEN (logical) BB_ELSE (logical)
8845 * \ /
8846 * BB_ENDIF
8847 *
8848 * *) Exceptions may be due to break and continue statements within loops
8849 * If a break/continue happens within uniform control flow, it branches
8850 * to the loop exit/entry block. Otherwise, it branches to the next
8851 * merge block.
8852 **/
8853 append_logical_end(ctx->block);
8854 ctx->block->kind |= block_kind_uniform;
8855
8856 /* emit branch */
8857 assert(cond.regClass() == bld.lm);
8858 // TODO: in a post-RA optimizer, we could check if the condition is in VCC and omit this instruction
8859 cond = bool_to_scalar_condition(ctx, cond);
8860
8861 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
8862 branch->operands[0] = Operand(cond);
8863 branch->operands[0].setFixed(scc);
8864 ctx->block->instructions.emplace_back(std::move(branch));
8865
8866 unsigned BB_if_idx = ctx->block->index;
8867 Block BB_endif = Block();
8868 BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
8869 BB_endif.kind |= ctx->block->kind & block_kind_top_level;
8870
8871 /** emit then block */
8872 Block* BB_then = ctx->program->create_and_insert_block();
8873 BB_then->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8874 add_edge(BB_if_idx, BB_then);
8875 append_logical_start(BB_then);
8876 ctx->block = BB_then;
8877 visit_cf_list(ctx, &if_stmt->then_list);
8878 BB_then = ctx->block;
8879 bool then_branch = ctx->cf_info.has_branch;
8880 bool then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
8881
8882 if (!then_branch) {
8883 append_logical_end(BB_then);
8884 /* branch from then block to endif block */
8885 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8886 BB_then->instructions.emplace_back(std::move(branch));
8887 add_linear_edge(BB_then->index, &BB_endif);
8888 if (!then_branch_divergent)
8889 add_logical_edge(BB_then->index, &BB_endif);
8890 BB_then->kind |= block_kind_uniform;
8891 }
8892
8893 ctx->cf_info.has_branch = false;
8894 ctx->cf_info.parent_loop.has_divergent_branch = false;
8895
8896 /** emit else block */
8897 Block* BB_else = ctx->program->create_and_insert_block();
8898 BB_else->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8899 add_edge(BB_if_idx, BB_else);
8900 append_logical_start(BB_else);
8901 ctx->block = BB_else;
8902 visit_cf_list(ctx, &if_stmt->else_list);
8903 BB_else = ctx->block;
8904
8905 if (!ctx->cf_info.has_branch) {
8906 append_logical_end(BB_else);
8907 /* branch from then block to endif block */
8908 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8909 BB_else->instructions.emplace_back(std::move(branch));
8910 add_linear_edge(BB_else->index, &BB_endif);
8911 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8912 add_logical_edge(BB_else->index, &BB_endif);
8913 BB_else->kind |= block_kind_uniform;
8914 }
8915
8916 ctx->cf_info.has_branch &= then_branch;
8917 ctx->cf_info.parent_loop.has_divergent_branch &= then_branch_divergent;
8918
8919 /** emit endif merge block */
8920 if (!ctx->cf_info.has_branch) {
8921 ctx->block = ctx->program->insert_block(std::move(BB_endif));
8922 append_logical_start(ctx->block);
8923 }
8924 return !ctx->cf_info.has_branch;
8925 } else { /* non-uniform condition */
8926 /**
8927 * To maintain a logical and linear CFG without critical edges,
8928 * non-uniform conditionals are represented in the following way*) :
8929 *
8930 * The linear CFG:
8931 * BB_IF
8932 * / \
8933 * BB_THEN (logical) BB_THEN (linear)
8934 * \ /
8935 * BB_INVERT (linear)
8936 * / \
8937 * BB_ELSE (logical) BB_ELSE (linear)
8938 * \ /
8939 * BB_ENDIF
8940 *
8941 * The logical CFG:
8942 * BB_IF
8943 * / \
8944 * BB_THEN (logical) BB_ELSE (logical)
8945 * \ /
8946 * BB_ENDIF
8947 *
8948 * *) Exceptions may be due to break and continue statements within loops
8949 **/
8950
8951 if_context ic;
8952
8953 begin_divergent_if_then(ctx, &ic, cond);
8954 visit_cf_list(ctx, &if_stmt->then_list);
8955
8956 begin_divergent_if_else(ctx, &ic);
8957 visit_cf_list(ctx, &if_stmt->else_list);
8958
8959 end_divergent_if(ctx, &ic);
8960
8961 return true;
8962 }
8963 }
8964
8965 static bool visit_cf_list(isel_context *ctx,
8966 struct exec_list *list)
8967 {
8968 foreach_list_typed(nir_cf_node, node, node, list) {
8969 switch (node->type) {
8970 case nir_cf_node_block:
8971 visit_block(ctx, nir_cf_node_as_block(node));
8972 break;
8973 case nir_cf_node_if:
8974 if (!visit_if(ctx, nir_cf_node_as_if(node)))
8975 return true;
8976 break;
8977 case nir_cf_node_loop:
8978 visit_loop(ctx, nir_cf_node_as_loop(node));
8979 break;
8980 default:
8981 unreachable("unimplemented cf list type");
8982 }
8983 }
8984 return false;
8985 }
8986
8987 static void create_null_export(isel_context *ctx)
8988 {
8989 /* Some shader stages always need to have exports.
8990 * So when there is none, we need to add a null export.
8991 */
8992
8993 unsigned dest = (ctx->program->stage & hw_fs) ? 9 /* NULL */ : V_008DFC_SQ_EXP_POS;
8994 bool vm = (ctx->program->stage & hw_fs) || ctx->program->chip_class >= GFX10;
8995 Builder bld(ctx->program, ctx->block);
8996 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
8997 /* enabled_mask */ 0, dest, /* compr */ false, /* done */ true, vm);
8998 }
8999
9000 static bool export_vs_varying(isel_context *ctx, int slot, bool is_pos, int *next_pos)
9001 {
9002 assert(ctx->stage == vertex_vs ||
9003 ctx->stage == tess_eval_vs ||
9004 ctx->stage == gs_copy_vs);
9005
9006 int offset = ctx->stage == tess_eval_vs
9007 ? ctx->program->info->tes.outinfo.vs_output_param_offset[slot]
9008 : ctx->program->info->vs.outinfo.vs_output_param_offset[slot];
9009 uint64_t mask = ctx->outputs.mask[slot];
9010 if (!is_pos && !mask)
9011 return false;
9012 if (!is_pos && offset == AC_EXP_PARAM_UNDEFINED)
9013 return false;
9014 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
9015 exp->enabled_mask = mask;
9016 for (unsigned i = 0; i < 4; ++i) {
9017 if (mask & (1 << i))
9018 exp->operands[i] = Operand(ctx->outputs.temps[slot * 4u + i]);
9019 else
9020 exp->operands[i] = Operand(v1);
9021 }
9022 /* Navi10-14 skip POS0 exports if EXEC=0 and DONE=0, causing a hang.
9023 * Setting valid_mask=1 prevents it and has no other effect.
9024 */
9025 exp->valid_mask = ctx->options->chip_class >= GFX10 && is_pos && *next_pos == 0;
9026 exp->done = false;
9027 exp->compressed = false;
9028 if (is_pos)
9029 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
9030 else
9031 exp->dest = V_008DFC_SQ_EXP_PARAM + offset;
9032 ctx->block->instructions.emplace_back(std::move(exp));
9033
9034 return true;
9035 }
9036
9037 static void export_vs_psiz_layer_viewport(isel_context *ctx, int *next_pos)
9038 {
9039 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
9040 exp->enabled_mask = 0;
9041 for (unsigned i = 0; i < 4; ++i)
9042 exp->operands[i] = Operand(v1);
9043 if (ctx->outputs.mask[VARYING_SLOT_PSIZ]) {
9044 exp->operands[0] = Operand(ctx->outputs.temps[VARYING_SLOT_PSIZ * 4u]);
9045 exp->enabled_mask |= 0x1;
9046 }
9047 if (ctx->outputs.mask[VARYING_SLOT_LAYER]) {
9048 exp->operands[2] = Operand(ctx->outputs.temps[VARYING_SLOT_LAYER * 4u]);
9049 exp->enabled_mask |= 0x4;
9050 }
9051 if (ctx->outputs.mask[VARYING_SLOT_VIEWPORT]) {
9052 if (ctx->options->chip_class < GFX9) {
9053 exp->operands[3] = Operand(ctx->outputs.temps[VARYING_SLOT_VIEWPORT * 4u]);
9054 exp->enabled_mask |= 0x8;
9055 } else {
9056 Builder bld(ctx->program, ctx->block);
9057
9058 Temp out = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u),
9059 Operand(ctx->outputs.temps[VARYING_SLOT_VIEWPORT * 4u]));
9060 if (exp->operands[2].isTemp())
9061 out = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(out), exp->operands[2]);
9062
9063 exp->operands[2] = Operand(out);
9064 exp->enabled_mask |= 0x4;
9065 }
9066 }
9067 exp->valid_mask = ctx->options->chip_class >= GFX10 && *next_pos == 0;
9068 exp->done = false;
9069 exp->compressed = false;
9070 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
9071 ctx->block->instructions.emplace_back(std::move(exp));
9072 }
9073
9074 static void create_vs_exports(isel_context *ctx)
9075 {
9076 assert(ctx->stage == vertex_vs ||
9077 ctx->stage == tess_eval_vs ||
9078 ctx->stage == gs_copy_vs);
9079
9080 radv_vs_output_info *outinfo = ctx->stage == tess_eval_vs
9081 ? &ctx->program->info->tes.outinfo
9082 : &ctx->program->info->vs.outinfo;
9083
9084 if (outinfo->export_prim_id) {
9085 ctx->outputs.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
9086 ctx->outputs.temps[VARYING_SLOT_PRIMITIVE_ID * 4u] = get_arg(ctx, ctx->args->vs_prim_id);
9087 }
9088
9089 if (ctx->options->key.has_multiview_view_index) {
9090 ctx->outputs.mask[VARYING_SLOT_LAYER] |= 0x1;
9091 ctx->outputs.temps[VARYING_SLOT_LAYER * 4u] = as_vgpr(ctx, get_arg(ctx, ctx->args->ac.view_index));
9092 }
9093
9094 /* the order these position exports are created is important */
9095 int next_pos = 0;
9096 bool exported_pos = export_vs_varying(ctx, VARYING_SLOT_POS, true, &next_pos);
9097 if (outinfo->writes_pointsize || outinfo->writes_layer || outinfo->writes_viewport_index) {
9098 export_vs_psiz_layer_viewport(ctx, &next_pos);
9099 exported_pos = true;
9100 }
9101 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
9102 exported_pos |= export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, true, &next_pos);
9103 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
9104 exported_pos |= export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, true, &next_pos);
9105
9106 if (ctx->export_clip_dists) {
9107 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
9108 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, false, &next_pos);
9109 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
9110 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, false, &next_pos);
9111 }
9112
9113 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
9114 if (i < VARYING_SLOT_VAR0 && i != VARYING_SLOT_LAYER &&
9115 i != VARYING_SLOT_PRIMITIVE_ID)
9116 continue;
9117
9118 export_vs_varying(ctx, i, false, NULL);
9119 }
9120
9121 if (!exported_pos)
9122 create_null_export(ctx);
9123 }
9124
9125 static bool export_fs_mrt_z(isel_context *ctx)
9126 {
9127 Builder bld(ctx->program, ctx->block);
9128 unsigned enabled_channels = 0;
9129 bool compr = false;
9130 Operand values[4];
9131
9132 for (unsigned i = 0; i < 4; ++i) {
9133 values[i] = Operand(v1);
9134 }
9135
9136 /* Both stencil and sample mask only need 16-bits. */
9137 if (!ctx->program->info->ps.writes_z &&
9138 (ctx->program->info->ps.writes_stencil ||
9139 ctx->program->info->ps.writes_sample_mask)) {
9140 compr = true; /* COMPR flag */
9141
9142 if (ctx->program->info->ps.writes_stencil) {
9143 /* Stencil should be in X[23:16]. */
9144 values[0] = Operand(ctx->outputs.temps[FRAG_RESULT_STENCIL * 4u]);
9145 values[0] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u), values[0]);
9146 enabled_channels |= 0x3;
9147 }
9148
9149 if (ctx->program->info->ps.writes_sample_mask) {
9150 /* SampleMask should be in Y[15:0]. */
9151 values[1] = Operand(ctx->outputs.temps[FRAG_RESULT_SAMPLE_MASK * 4u]);
9152 enabled_channels |= 0xc;
9153 }
9154 } else {
9155 if (ctx->program->info->ps.writes_z) {
9156 values[0] = Operand(ctx->outputs.temps[FRAG_RESULT_DEPTH * 4u]);
9157 enabled_channels |= 0x1;
9158 }
9159
9160 if (ctx->program->info->ps.writes_stencil) {
9161 values[1] = Operand(ctx->outputs.temps[FRAG_RESULT_STENCIL * 4u]);
9162 enabled_channels |= 0x2;
9163 }
9164
9165 if (ctx->program->info->ps.writes_sample_mask) {
9166 values[2] = Operand(ctx->outputs.temps[FRAG_RESULT_SAMPLE_MASK * 4u]);
9167 enabled_channels |= 0x4;
9168 }
9169 }
9170
9171 /* GFX6 (except OLAND and HAINAN) has a bug that it only looks at the X
9172 * writemask component.
9173 */
9174 if (ctx->options->chip_class == GFX6 &&
9175 ctx->options->family != CHIP_OLAND &&
9176 ctx->options->family != CHIP_HAINAN) {
9177 enabled_channels |= 0x1;
9178 }
9179
9180 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
9181 enabled_channels, V_008DFC_SQ_EXP_MRTZ, compr);
9182
9183 return true;
9184 }
9185
9186 static bool export_fs_mrt_color(isel_context *ctx, int slot)
9187 {
9188 Builder bld(ctx->program, ctx->block);
9189 unsigned write_mask = ctx->outputs.mask[slot];
9190 Operand values[4];
9191
9192 for (unsigned i = 0; i < 4; ++i) {
9193 if (write_mask & (1 << i)) {
9194 values[i] = Operand(ctx->outputs.temps[slot * 4u + i]);
9195 } else {
9196 values[i] = Operand(v1);
9197 }
9198 }
9199
9200 unsigned target, col_format;
9201 unsigned enabled_channels = 0;
9202 aco_opcode compr_op = (aco_opcode)0;
9203
9204 slot -= FRAG_RESULT_DATA0;
9205 target = V_008DFC_SQ_EXP_MRT + slot;
9206 col_format = (ctx->options->key.fs.col_format >> (4 * slot)) & 0xf;
9207
9208 bool is_int8 = (ctx->options->key.fs.is_int8 >> slot) & 1;
9209 bool is_int10 = (ctx->options->key.fs.is_int10 >> slot) & 1;
9210
9211 switch (col_format)
9212 {
9213 case V_028714_SPI_SHADER_ZERO:
9214 enabled_channels = 0; /* writemask */
9215 target = V_008DFC_SQ_EXP_NULL;
9216 break;
9217
9218 case V_028714_SPI_SHADER_32_R:
9219 enabled_channels = 1;
9220 break;
9221
9222 case V_028714_SPI_SHADER_32_GR:
9223 enabled_channels = 0x3;
9224 break;
9225
9226 case V_028714_SPI_SHADER_32_AR:
9227 if (ctx->options->chip_class >= GFX10) {
9228 /* Special case: on GFX10, the outputs are different for 32_AR */
9229 enabled_channels = 0x3;
9230 values[1] = values[3];
9231 values[3] = Operand(v1);
9232 } else {
9233 enabled_channels = 0x9;
9234 }
9235 break;
9236
9237 case V_028714_SPI_SHADER_FP16_ABGR:
9238 enabled_channels = 0x5;
9239 compr_op = aco_opcode::v_cvt_pkrtz_f16_f32;
9240 break;
9241
9242 case V_028714_SPI_SHADER_UNORM16_ABGR:
9243 enabled_channels = 0x5;
9244 compr_op = aco_opcode::v_cvt_pknorm_u16_f32;
9245 break;
9246
9247 case V_028714_SPI_SHADER_SNORM16_ABGR:
9248 enabled_channels = 0x5;
9249 compr_op = aco_opcode::v_cvt_pknorm_i16_f32;
9250 break;
9251
9252 case V_028714_SPI_SHADER_UINT16_ABGR: {
9253 enabled_channels = 0x5;
9254 compr_op = aco_opcode::v_cvt_pk_u16_u32;
9255 if (is_int8 || is_int10) {
9256 /* clamp */
9257 uint32_t max_rgb = is_int8 ? 255 : is_int10 ? 1023 : 0;
9258 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
9259
9260 for (unsigned i = 0; i < 4; i++) {
9261 if ((write_mask >> i) & 1) {
9262 values[i] = bld.vop2(aco_opcode::v_min_u32, bld.def(v1),
9263 i == 3 && is_int10 ? Operand(3u) : Operand(max_rgb_val),
9264 values[i]);
9265 }
9266 }
9267 }
9268 break;
9269 }
9270
9271 case V_028714_SPI_SHADER_SINT16_ABGR:
9272 enabled_channels = 0x5;
9273 compr_op = aco_opcode::v_cvt_pk_i16_i32;
9274 if (is_int8 || is_int10) {
9275 /* clamp */
9276 uint32_t max_rgb = is_int8 ? 127 : is_int10 ? 511 : 0;
9277 uint32_t min_rgb = is_int8 ? -128 :is_int10 ? -512 : 0;
9278 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
9279 Temp min_rgb_val = bld.copy(bld.def(s1), Operand(min_rgb));
9280
9281 for (unsigned i = 0; i < 4; i++) {
9282 if ((write_mask >> i) & 1) {
9283 values[i] = bld.vop2(aco_opcode::v_min_i32, bld.def(v1),
9284 i == 3 && is_int10 ? Operand(1u) : Operand(max_rgb_val),
9285 values[i]);
9286 values[i] = bld.vop2(aco_opcode::v_max_i32, bld.def(v1),
9287 i == 3 && is_int10 ? Operand(-2u) : Operand(min_rgb_val),
9288 values[i]);
9289 }
9290 }
9291 }
9292 break;
9293
9294 case V_028714_SPI_SHADER_32_ABGR:
9295 enabled_channels = 0xF;
9296 break;
9297
9298 default:
9299 break;
9300 }
9301
9302 if (target == V_008DFC_SQ_EXP_NULL)
9303 return false;
9304
9305 if ((bool) compr_op) {
9306 for (int i = 0; i < 2; i++) {
9307 /* check if at least one of the values to be compressed is enabled */
9308 unsigned enabled = (write_mask >> (i*2) | write_mask >> (i*2+1)) & 0x1;
9309 if (enabled) {
9310 enabled_channels |= enabled << (i*2);
9311 values[i] = bld.vop3(compr_op, bld.def(v1),
9312 values[i*2].isUndefined() ? Operand(0u) : values[i*2],
9313 values[i*2+1].isUndefined() ? Operand(0u): values[i*2+1]);
9314 } else {
9315 values[i] = Operand(v1);
9316 }
9317 }
9318 values[2] = Operand(v1);
9319 values[3] = Operand(v1);
9320 } else {
9321 for (int i = 0; i < 4; i++)
9322 values[i] = enabled_channels & (1 << i) ? values[i] : Operand(v1);
9323 }
9324
9325 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
9326 enabled_channels, target, (bool) compr_op);
9327 return true;
9328 }
9329
9330 static void create_fs_exports(isel_context *ctx)
9331 {
9332 bool exported = false;
9333
9334 /* Export depth, stencil and sample mask. */
9335 if (ctx->outputs.mask[FRAG_RESULT_DEPTH] ||
9336 ctx->outputs.mask[FRAG_RESULT_STENCIL] ||
9337 ctx->outputs.mask[FRAG_RESULT_SAMPLE_MASK])
9338 exported |= export_fs_mrt_z(ctx);
9339
9340 /* Export all color render targets. */
9341 for (unsigned i = FRAG_RESULT_DATA0; i < FRAG_RESULT_DATA7 + 1; ++i)
9342 if (ctx->outputs.mask[i])
9343 exported |= export_fs_mrt_color(ctx, i);
9344
9345 if (!exported)
9346 create_null_export(ctx);
9347 }
9348
9349 static void write_tcs_tess_factors(isel_context *ctx)
9350 {
9351 unsigned outer_comps;
9352 unsigned inner_comps;
9353
9354 switch (ctx->args->options->key.tcs.primitive_mode) {
9355 case GL_ISOLINES:
9356 outer_comps = 2;
9357 inner_comps = 0;
9358 break;
9359 case GL_TRIANGLES:
9360 outer_comps = 3;
9361 inner_comps = 1;
9362 break;
9363 case GL_QUADS:
9364 outer_comps = 4;
9365 inner_comps = 2;
9366 break;
9367 default:
9368 return;
9369 }
9370
9371 Builder bld(ctx->program, ctx->block);
9372
9373 bld.barrier(aco_opcode::p_memory_barrier_shared);
9374 if (unlikely(ctx->program->chip_class != GFX6 && ctx->program->workgroup_size > ctx->program->wave_size))
9375 bld.sopp(aco_opcode::s_barrier);
9376
9377 Temp tcs_rel_ids = get_arg(ctx, ctx->args->ac.tcs_rel_ids);
9378 Temp invocation_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), tcs_rel_ids, Operand(8u), Operand(5u));
9379
9380 Temp invocation_id_is_zero = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), invocation_id);
9381 if_context ic_invocation_id_is_zero;
9382 begin_divergent_if_then(ctx, &ic_invocation_id_is_zero, invocation_id_is_zero);
9383 bld.reset(ctx->block);
9384
9385 Temp hs_ring_tess_factor = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_FACTOR * 16u));
9386
9387 std::pair<Temp, unsigned> lds_base = get_tcs_output_lds_offset(ctx);
9388 unsigned stride = inner_comps + outer_comps;
9389 unsigned lds_align = calculate_lds_alignment(ctx, lds_base.second);
9390 Temp tf_inner_vec;
9391 Temp tf_outer_vec;
9392 Temp out[6];
9393 assert(stride <= (sizeof(out) / sizeof(Temp)));
9394
9395 if (ctx->args->options->key.tcs.primitive_mode == GL_ISOLINES) {
9396 // LINES reversal
9397 tf_outer_vec = load_lds(ctx, 4, bld.tmp(v2), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_out_loc, lds_align);
9398 out[1] = emit_extract_vector(ctx, tf_outer_vec, 0, v1);
9399 out[0] = emit_extract_vector(ctx, tf_outer_vec, 1, v1);
9400 } else {
9401 tf_outer_vec = load_lds(ctx, 4, bld.tmp(RegClass(RegType::vgpr, outer_comps)), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_out_loc, lds_align);
9402 tf_inner_vec = load_lds(ctx, 4, bld.tmp(RegClass(RegType::vgpr, inner_comps)), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_in_loc, lds_align);
9403
9404 for (unsigned i = 0; i < outer_comps; ++i)
9405 out[i] = emit_extract_vector(ctx, tf_outer_vec, i, v1);
9406 for (unsigned i = 0; i < inner_comps; ++i)
9407 out[outer_comps + i] = emit_extract_vector(ctx, tf_inner_vec, i, v1);
9408 }
9409
9410 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
9411 Temp tf_base = get_arg(ctx, ctx->args->tess_factor_offset);
9412 Temp byte_offset = bld.v_mul_imm(bld.def(v1), rel_patch_id, stride * 4u);
9413 unsigned tf_const_offset = 0;
9414
9415 if (ctx->program->chip_class <= GFX8) {
9416 Temp rel_patch_id_is_zero = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), rel_patch_id);
9417 if_context ic_rel_patch_id_is_zero;
9418 begin_divergent_if_then(ctx, &ic_rel_patch_id_is_zero, rel_patch_id_is_zero);
9419 bld.reset(ctx->block);
9420
9421 /* Store the dynamic HS control word. */
9422 Temp control_word = bld.copy(bld.def(v1), Operand(0x80000000u));
9423 bld.mubuf(aco_opcode::buffer_store_dword,
9424 /* SRSRC */ hs_ring_tess_factor, /* VADDR */ Operand(v1), /* SOFFSET */ tf_base, /* VDATA */ control_word,
9425 /* immediate OFFSET */ 0, /* OFFEN */ false, /* idxen*/ false, /* addr64 */ false,
9426 /* disable_wqm */ false, /* glc */ true);
9427 tf_const_offset += 4;
9428
9429 begin_divergent_if_else(ctx, &ic_rel_patch_id_is_zero);
9430 end_divergent_if(ctx, &ic_rel_patch_id_is_zero);
9431 bld.reset(ctx->block);
9432 }
9433
9434 assert(stride == 2 || stride == 4 || stride == 6);
9435 Temp tf_vec = create_vec_from_array(ctx, out, stride, RegType::vgpr, 4u);
9436 store_vmem_mubuf(ctx, tf_vec, hs_ring_tess_factor, byte_offset, tf_base, tf_const_offset, 4, (1 << stride) - 1, true, false);
9437
9438 /* Store to offchip for TES to read - only if TES reads them */
9439 if (ctx->args->options->key.tcs.tes_reads_tess_factors) {
9440 Temp hs_ring_tess_offchip = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
9441 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
9442
9443 std::pair<Temp, unsigned> vmem_offs_outer = get_tcs_per_patch_output_vmem_offset(ctx, nullptr, ctx->tcs_tess_lvl_out_loc);
9444 store_vmem_mubuf(ctx, tf_outer_vec, hs_ring_tess_offchip, vmem_offs_outer.first, oc_lds, vmem_offs_outer.second, 4, (1 << outer_comps) - 1, true, false);
9445
9446 if (likely(inner_comps)) {
9447 std::pair<Temp, unsigned> vmem_offs_inner = get_tcs_per_patch_output_vmem_offset(ctx, nullptr, ctx->tcs_tess_lvl_in_loc);
9448 store_vmem_mubuf(ctx, tf_inner_vec, hs_ring_tess_offchip, vmem_offs_inner.first, oc_lds, vmem_offs_inner.second, 4, (1 << inner_comps) - 1, true, false);
9449 }
9450 }
9451
9452 begin_divergent_if_else(ctx, &ic_invocation_id_is_zero);
9453 end_divergent_if(ctx, &ic_invocation_id_is_zero);
9454 }
9455
9456 static void emit_stream_output(isel_context *ctx,
9457 Temp const *so_buffers,
9458 Temp const *so_write_offset,
9459 const struct radv_stream_output *output)
9460 {
9461 unsigned num_comps = util_bitcount(output->component_mask);
9462 unsigned writemask = (1 << num_comps) - 1;
9463 unsigned loc = output->location;
9464 unsigned buf = output->buffer;
9465
9466 assert(num_comps && num_comps <= 4);
9467 if (!num_comps || num_comps > 4)
9468 return;
9469
9470 unsigned start = ffs(output->component_mask) - 1;
9471
9472 Temp out[4];
9473 bool all_undef = true;
9474 assert(ctx->stage == vertex_vs || ctx->stage == gs_copy_vs);
9475 for (unsigned i = 0; i < num_comps; i++) {
9476 out[i] = ctx->outputs.temps[loc * 4 + start + i];
9477 all_undef = all_undef && !out[i].id();
9478 }
9479 if (all_undef)
9480 return;
9481
9482 while (writemask) {
9483 int start, count;
9484 u_bit_scan_consecutive_range(&writemask, &start, &count);
9485 if (count == 3 && ctx->options->chip_class == GFX6) {
9486 /* GFX6 doesn't support storing vec3, split it. */
9487 writemask |= 1u << (start + 2);
9488 count = 2;
9489 }
9490
9491 unsigned offset = output->offset + start * 4;
9492
9493 Temp write_data = {ctx->program->allocateId(), RegClass(RegType::vgpr, count)};
9494 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
9495 for (int i = 0; i < count; ++i)
9496 vec->operands[i] = (ctx->outputs.mask[loc] & 1 << (start + i)) ? Operand(out[start + i]) : Operand(0u);
9497 vec->definitions[0] = Definition(write_data);
9498 ctx->block->instructions.emplace_back(std::move(vec));
9499
9500 aco_opcode opcode;
9501 switch (count) {
9502 case 1:
9503 opcode = aco_opcode::buffer_store_dword;
9504 break;
9505 case 2:
9506 opcode = aco_opcode::buffer_store_dwordx2;
9507 break;
9508 case 3:
9509 opcode = aco_opcode::buffer_store_dwordx3;
9510 break;
9511 case 4:
9512 opcode = aco_opcode::buffer_store_dwordx4;
9513 break;
9514 default:
9515 unreachable("Unsupported dword count.");
9516 }
9517
9518 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
9519 store->operands[0] = Operand(so_buffers[buf]);
9520 store->operands[1] = Operand(so_write_offset[buf]);
9521 store->operands[2] = Operand((uint32_t) 0);
9522 store->operands[3] = Operand(write_data);
9523 if (offset > 4095) {
9524 /* Don't think this can happen in RADV, but maybe GL? It's easy to do this anyway. */
9525 Builder bld(ctx->program, ctx->block);
9526 store->operands[0] = bld.vadd32(bld.def(v1), Operand(offset), Operand(so_write_offset[buf]));
9527 } else {
9528 store->offset = offset;
9529 }
9530 store->offen = true;
9531 store->glc = true;
9532 store->dlc = false;
9533 store->slc = true;
9534 store->can_reorder = true;
9535 ctx->block->instructions.emplace_back(std::move(store));
9536 }
9537 }
9538
9539 static void emit_streamout(isel_context *ctx, unsigned stream)
9540 {
9541 Builder bld(ctx->program, ctx->block);
9542
9543 Temp so_buffers[4];
9544 Temp buf_ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->streamout_buffers));
9545 for (unsigned i = 0; i < 4; i++) {
9546 unsigned stride = ctx->program->info->so.strides[i];
9547 if (!stride)
9548 continue;
9549
9550 Operand off = bld.copy(bld.def(s1), Operand(i * 16u));
9551 so_buffers[i] = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), buf_ptr, off);
9552 }
9553
9554 Temp so_vtx_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
9555 get_arg(ctx, ctx->args->streamout_config), Operand(0x70010u));
9556
9557 Temp tid = emit_mbcnt(ctx, bld.def(v1));
9558
9559 Temp can_emit = bld.vopc(aco_opcode::v_cmp_gt_i32, bld.def(bld.lm), so_vtx_count, tid);
9560
9561 if_context ic;
9562 begin_divergent_if_then(ctx, &ic, can_emit);
9563
9564 bld.reset(ctx->block);
9565
9566 Temp so_write_index = bld.vadd32(bld.def(v1), get_arg(ctx, ctx->args->streamout_write_idx), tid);
9567
9568 Temp so_write_offset[4];
9569
9570 for (unsigned i = 0; i < 4; i++) {
9571 unsigned stride = ctx->program->info->so.strides[i];
9572 if (!stride)
9573 continue;
9574
9575 if (stride == 1) {
9576 Temp offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
9577 get_arg(ctx, ctx->args->streamout_write_idx),
9578 get_arg(ctx, ctx->args->streamout_offset[i]));
9579 Temp new_offset = bld.vadd32(bld.def(v1), offset, tid);
9580
9581 so_write_offset[i] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), new_offset);
9582 } else {
9583 Temp offset = bld.v_mul_imm(bld.def(v1), so_write_index, stride * 4u);
9584 Temp offset2 = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(4u),
9585 get_arg(ctx, ctx->args->streamout_offset[i]));
9586 so_write_offset[i] = bld.vadd32(bld.def(v1), offset, offset2);
9587 }
9588 }
9589
9590 for (unsigned i = 0; i < ctx->program->info->so.num_outputs; i++) {
9591 struct radv_stream_output *output =
9592 &ctx->program->info->so.outputs[i];
9593 if (stream != output->stream)
9594 continue;
9595
9596 emit_stream_output(ctx, so_buffers, so_write_offset, output);
9597 }
9598
9599 begin_divergent_if_else(ctx, &ic);
9600 end_divergent_if(ctx, &ic);
9601 }
9602
9603 } /* end namespace */
9604
9605 void fix_ls_vgpr_init_bug(isel_context *ctx, Pseudo_instruction *startpgm)
9606 {
9607 assert(ctx->shader->info.stage == MESA_SHADER_VERTEX);
9608 Builder bld(ctx->program, ctx->block);
9609 constexpr unsigned hs_idx = 1u;
9610 Builder::Result hs_thread_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
9611 get_arg(ctx, ctx->args->merged_wave_info),
9612 Operand((8u << 16) | (hs_idx * 8u)));
9613 Temp ls_has_nonzero_hs_threads = bool_to_vector_condition(ctx, hs_thread_count.def(1).getTemp());
9614
9615 /* If there are no HS threads, SPI mistakenly loads the LS VGPRs starting at VGPR 0. */
9616
9617 Temp instance_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
9618 get_arg(ctx, ctx->args->rel_auto_id),
9619 get_arg(ctx, ctx->args->ac.instance_id),
9620 ls_has_nonzero_hs_threads);
9621 Temp rel_auto_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
9622 get_arg(ctx, ctx->args->ac.tcs_rel_ids),
9623 get_arg(ctx, ctx->args->rel_auto_id),
9624 ls_has_nonzero_hs_threads);
9625 Temp vertex_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
9626 get_arg(ctx, ctx->args->ac.tcs_patch_id),
9627 get_arg(ctx, ctx->args->ac.vertex_id),
9628 ls_has_nonzero_hs_threads);
9629
9630 ctx->arg_temps[ctx->args->ac.instance_id.arg_index] = instance_id;
9631 ctx->arg_temps[ctx->args->rel_auto_id.arg_index] = rel_auto_id;
9632 ctx->arg_temps[ctx->args->ac.vertex_id.arg_index] = vertex_id;
9633 }
9634
9635 void split_arguments(isel_context *ctx, Pseudo_instruction *startpgm)
9636 {
9637 /* Split all arguments except for the first (ring_offsets) and the last
9638 * (exec) so that the dead channels don't stay live throughout the program.
9639 */
9640 for (int i = 1; i < startpgm->definitions.size() - 1; i++) {
9641 if (startpgm->definitions[i].regClass().size() > 1) {
9642 emit_split_vector(ctx, startpgm->definitions[i].getTemp(),
9643 startpgm->definitions[i].regClass().size());
9644 }
9645 }
9646 }
9647
9648 void handle_bc_optimize(isel_context *ctx)
9649 {
9650 /* needed when SPI_PS_IN_CONTROL.BC_OPTIMIZE_DISABLE is set to 0 */
9651 Builder bld(ctx->program, ctx->block);
9652 uint32_t spi_ps_input_ena = ctx->program->config->spi_ps_input_ena;
9653 bool uses_center = G_0286CC_PERSP_CENTER_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTER_ENA(spi_ps_input_ena);
9654 bool uses_centroid = G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena);
9655 ctx->persp_centroid = get_arg(ctx, ctx->args->ac.persp_centroid);
9656 ctx->linear_centroid = get_arg(ctx, ctx->args->ac.linear_centroid);
9657 if (uses_center && uses_centroid) {
9658 Temp sel = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)),
9659 get_arg(ctx, ctx->args->ac.prim_mask), Operand(0u));
9660
9661 if (G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena)) {
9662 Temp new_coord[2];
9663 for (unsigned i = 0; i < 2; i++) {
9664 Temp persp_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_centroid), i, v1);
9665 Temp persp_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_center), i, v1);
9666 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
9667 persp_centroid, persp_center, sel);
9668 }
9669 ctx->persp_centroid = bld.tmp(v2);
9670 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->persp_centroid),
9671 Operand(new_coord[0]), Operand(new_coord[1]));
9672 emit_split_vector(ctx, ctx->persp_centroid, 2);
9673 }
9674
9675 if (G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena)) {
9676 Temp new_coord[2];
9677 for (unsigned i = 0; i < 2; i++) {
9678 Temp linear_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_centroid), i, v1);
9679 Temp linear_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_center), i, v1);
9680 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
9681 linear_centroid, linear_center, sel);
9682 }
9683 ctx->linear_centroid = bld.tmp(v2);
9684 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->linear_centroid),
9685 Operand(new_coord[0]), Operand(new_coord[1]));
9686 emit_split_vector(ctx, ctx->linear_centroid, 2);
9687 }
9688 }
9689 }
9690
9691 void setup_fp_mode(isel_context *ctx, nir_shader *shader)
9692 {
9693 Program *program = ctx->program;
9694
9695 unsigned float_controls = shader->info.float_controls_execution_mode;
9696
9697 program->next_fp_mode.preserve_signed_zero_inf_nan32 =
9698 float_controls & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32;
9699 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 =
9700 float_controls & (FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16 |
9701 FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64);
9702
9703 program->next_fp_mode.must_flush_denorms32 =
9704 float_controls & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32;
9705 program->next_fp_mode.must_flush_denorms16_64 =
9706 float_controls & (FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 |
9707 FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64);
9708
9709 program->next_fp_mode.care_about_round32 =
9710 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32);
9711
9712 program->next_fp_mode.care_about_round16_64 =
9713 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64 |
9714 FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
9715
9716 /* default to preserving fp16 and fp64 denorms, since it's free */
9717 if (program->next_fp_mode.must_flush_denorms16_64)
9718 program->next_fp_mode.denorm16_64 = 0;
9719 else
9720 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
9721
9722 /* preserving fp32 denorms is expensive, so only do it if asked */
9723 if (float_controls & FLOAT_CONTROLS_DENORM_PRESERVE_FP32)
9724 program->next_fp_mode.denorm32 = fp_denorm_keep;
9725 else
9726 program->next_fp_mode.denorm32 = 0;
9727
9728 if (float_controls & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32)
9729 program->next_fp_mode.round32 = fp_round_tz;
9730 else
9731 program->next_fp_mode.round32 = fp_round_ne;
9732
9733 if (float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64))
9734 program->next_fp_mode.round16_64 = fp_round_tz;
9735 else
9736 program->next_fp_mode.round16_64 = fp_round_ne;
9737
9738 ctx->block->fp_mode = program->next_fp_mode;
9739 }
9740
9741 void cleanup_cfg(Program *program)
9742 {
9743 /* create linear_succs/logical_succs */
9744 for (Block& BB : program->blocks) {
9745 for (unsigned idx : BB.linear_preds)
9746 program->blocks[idx].linear_succs.emplace_back(BB.index);
9747 for (unsigned idx : BB.logical_preds)
9748 program->blocks[idx].logical_succs.emplace_back(BB.index);
9749 }
9750 }
9751
9752 void select_program(Program *program,
9753 unsigned shader_count,
9754 struct nir_shader *const *shaders,
9755 ac_shader_config* config,
9756 struct radv_shader_args *args)
9757 {
9758 isel_context ctx = setup_isel_context(program, shader_count, shaders, config, args, false);
9759 if_context ic_merged_wave_info;
9760
9761 for (unsigned i = 0; i < shader_count; i++) {
9762 nir_shader *nir = shaders[i];
9763 init_context(&ctx, nir);
9764
9765 setup_fp_mode(&ctx, nir);
9766
9767 if (!i) {
9768 /* needs to be after init_context() for FS */
9769 Pseudo_instruction *startpgm = add_startpgm(&ctx);
9770 append_logical_start(ctx.block);
9771
9772 if (unlikely(args->options->has_ls_vgpr_init_bug && ctx.stage == vertex_tess_control_hs))
9773 fix_ls_vgpr_init_bug(&ctx, startpgm);
9774
9775 split_arguments(&ctx, startpgm);
9776 }
9777
9778 /* In a merged VS+TCS HS, the VS implementation can be completely empty. */
9779 nir_function_impl *func = nir_shader_get_entrypoint(nir);
9780 bool empty_shader = nir_cf_list_is_empty_block(&func->body) &&
9781 ((nir->info.stage == MESA_SHADER_VERTEX &&
9782 (ctx.stage == vertex_tess_control_hs || ctx.stage == vertex_geometry_gs)) ||
9783 (nir->info.stage == MESA_SHADER_TESS_EVAL &&
9784 ctx.stage == tess_eval_geometry_gs));
9785
9786 bool check_merged_wave_info = ctx.tcs_in_out_eq ? i == 0 : (shader_count >= 2 && !empty_shader);
9787 bool endif_merged_wave_info = ctx.tcs_in_out_eq ? i == 1 : check_merged_wave_info;
9788 if (check_merged_wave_info) {
9789 Builder bld(ctx.program, ctx.block);
9790
9791 /* The s_bfm only cares about s0.u[5:0] so we don't need either s_bfe nor s_and here */
9792 Temp count = i == 0 ? get_arg(&ctx, args->merged_wave_info)
9793 : bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc),
9794 get_arg(&ctx, args->merged_wave_info), Operand(i * 8u));
9795
9796 Temp mask = bld.sop2(aco_opcode::s_bfm_b64, bld.def(s2), count, Operand(0u));
9797 Temp cond;
9798
9799 if (ctx.program->wave_size == 64) {
9800 /* Special case for 64 active invocations, because 64 doesn't work with s_bfm */
9801 Temp active_64 = bld.sopc(aco_opcode::s_bitcmp1_b32, bld.def(s1, scc), count, Operand(6u /* log2(64) */));
9802 cond = bld.sop2(Builder::s_cselect, bld.def(bld.lm), Operand(-1u), mask, bld.scc(active_64));
9803 } else {
9804 /* We use s_bfm_b64 (not _b32) which works with 32, but we need to extract the lower half of the register */
9805 cond = emit_extract_vector(&ctx, mask, 0, bld.lm);
9806 }
9807
9808 begin_divergent_if_then(&ctx, &ic_merged_wave_info, cond);
9809 }
9810
9811 if (i) {
9812 Builder bld(ctx.program, ctx.block);
9813
9814 bld.barrier(aco_opcode::p_memory_barrier_shared);
9815 bld.sopp(aco_opcode::s_barrier);
9816
9817 if (ctx.stage == vertex_geometry_gs || ctx.stage == tess_eval_geometry_gs) {
9818 ctx.gs_wave_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1, m0), bld.def(s1, scc), get_arg(&ctx, args->merged_wave_info), Operand((8u << 16) | 16u));
9819 }
9820 } else if (ctx.stage == geometry_gs)
9821 ctx.gs_wave_id = get_arg(&ctx, args->gs_wave_id);
9822
9823 if (ctx.stage == fragment_fs)
9824 handle_bc_optimize(&ctx);
9825
9826 visit_cf_list(&ctx, &func->body);
9827
9828 if (ctx.program->info->so.num_outputs && (ctx.stage == vertex_vs || ctx.stage == tess_eval_vs))
9829 emit_streamout(&ctx, 0);
9830
9831 if (ctx.stage == vertex_vs || ctx.stage == tess_eval_vs) {
9832 create_vs_exports(&ctx);
9833 } else if (nir->info.stage == MESA_SHADER_GEOMETRY) {
9834 Builder bld(ctx.program, ctx.block);
9835 bld.barrier(aco_opcode::p_memory_barrier_gs_data);
9836 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx.gs_wave_id), -1, sendmsg_gs_done(false, false, 0));
9837 } else if (nir->info.stage == MESA_SHADER_TESS_CTRL) {
9838 write_tcs_tess_factors(&ctx);
9839 }
9840
9841 if (ctx.stage == fragment_fs)
9842 create_fs_exports(&ctx);
9843
9844 if (endif_merged_wave_info) {
9845 begin_divergent_if_else(&ctx, &ic_merged_wave_info);
9846 end_divergent_if(&ctx, &ic_merged_wave_info);
9847 }
9848
9849 ralloc_free(ctx.divergent_vals);
9850
9851 if (i == 0 && ctx.stage == vertex_tess_control_hs && ctx.tcs_in_out_eq) {
9852 /* Outputs of the previous stage are inputs to the next stage */
9853 ctx.inputs = ctx.outputs;
9854 ctx.outputs = shader_io_state();
9855 }
9856 }
9857
9858 program->config->float_mode = program->blocks[0].fp_mode.val;
9859
9860 append_logical_end(ctx.block);
9861 ctx.block->kind |= block_kind_uniform | block_kind_export_end;
9862 Builder bld(ctx.program, ctx.block);
9863 if (ctx.program->wb_smem_l1_on_end)
9864 bld.smem(aco_opcode::s_dcache_wb, false);
9865 bld.sopp(aco_opcode::s_endpgm);
9866
9867 cleanup_cfg(program);
9868 }
9869
9870 void select_gs_copy_shader(Program *program, struct nir_shader *gs_shader,
9871 ac_shader_config* config,
9872 struct radv_shader_args *args)
9873 {
9874 isel_context ctx = setup_isel_context(program, 1, &gs_shader, config, args, true);
9875
9876 program->next_fp_mode.preserve_signed_zero_inf_nan32 = false;
9877 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 = false;
9878 program->next_fp_mode.must_flush_denorms32 = false;
9879 program->next_fp_mode.must_flush_denorms16_64 = false;
9880 program->next_fp_mode.care_about_round32 = false;
9881 program->next_fp_mode.care_about_round16_64 = false;
9882 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
9883 program->next_fp_mode.denorm32 = 0;
9884 program->next_fp_mode.round32 = fp_round_ne;
9885 program->next_fp_mode.round16_64 = fp_round_ne;
9886 ctx.block->fp_mode = program->next_fp_mode;
9887
9888 add_startpgm(&ctx);
9889 append_logical_start(ctx.block);
9890
9891 Builder bld(ctx.program, ctx.block);
9892
9893 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), program->private_segment_buffer, Operand(RING_GSVS_VS * 16u));
9894
9895 Operand stream_id(0u);
9896 if (args->shader_info->so.num_outputs)
9897 stream_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
9898 get_arg(&ctx, ctx.args->streamout_config), Operand(0x20018u));
9899
9900 Temp vtx_offset = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), get_arg(&ctx, ctx.args->ac.vertex_id));
9901
9902 std::stack<Block> endif_blocks;
9903
9904 for (unsigned stream = 0; stream < 4; stream++) {
9905 if (stream_id.isConstant() && stream != stream_id.constantValue())
9906 continue;
9907
9908 unsigned num_components = args->shader_info->gs.num_stream_output_components[stream];
9909 if (stream > 0 && (!num_components || !args->shader_info->so.num_outputs))
9910 continue;
9911
9912 memset(ctx.outputs.mask, 0, sizeof(ctx.outputs.mask));
9913
9914 unsigned BB_if_idx = ctx.block->index;
9915 Block BB_endif = Block();
9916 if (!stream_id.isConstant()) {
9917 /* begin IF */
9918 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), stream_id, Operand(stream));
9919 append_logical_end(ctx.block);
9920 ctx.block->kind |= block_kind_uniform;
9921 bld.branch(aco_opcode::p_cbranch_z, cond);
9922
9923 BB_endif.kind |= ctx.block->kind & block_kind_top_level;
9924
9925 ctx.block = ctx.program->create_and_insert_block();
9926 add_edge(BB_if_idx, ctx.block);
9927 bld.reset(ctx.block);
9928 append_logical_start(ctx.block);
9929 }
9930
9931 unsigned offset = 0;
9932 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
9933 if (args->shader_info->gs.output_streams[i] != stream)
9934 continue;
9935
9936 unsigned output_usage_mask = args->shader_info->gs.output_usage_mask[i];
9937 unsigned length = util_last_bit(output_usage_mask);
9938 for (unsigned j = 0; j < length; ++j) {
9939 if (!(output_usage_mask & (1 << j)))
9940 continue;
9941
9942 unsigned const_offset = offset * args->shader_info->gs.vertices_out * 16 * 4;
9943 Temp voffset = vtx_offset;
9944 if (const_offset >= 4096u) {
9945 voffset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), voffset);
9946 const_offset %= 4096u;
9947 }
9948
9949 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dword, Format::MUBUF, 3, 1)};
9950 mubuf->definitions[0] = bld.def(v1);
9951 mubuf->operands[0] = Operand(gsvs_ring);
9952 mubuf->operands[1] = Operand(voffset);
9953 mubuf->operands[2] = Operand(0u);
9954 mubuf->offen = true;
9955 mubuf->offset = const_offset;
9956 mubuf->glc = true;
9957 mubuf->slc = true;
9958 mubuf->dlc = args->options->chip_class >= GFX10;
9959 mubuf->barrier = barrier_none;
9960 mubuf->can_reorder = true;
9961
9962 ctx.outputs.mask[i] |= 1 << j;
9963 ctx.outputs.temps[i * 4u + j] = mubuf->definitions[0].getTemp();
9964
9965 bld.insert(std::move(mubuf));
9966
9967 offset++;
9968 }
9969 }
9970
9971 if (args->shader_info->so.num_outputs) {
9972 emit_streamout(&ctx, stream);
9973 bld.reset(ctx.block);
9974 }
9975
9976 if (stream == 0) {
9977 create_vs_exports(&ctx);
9978 ctx.block->kind |= block_kind_export_end;
9979 }
9980
9981 if (!stream_id.isConstant()) {
9982 append_logical_end(ctx.block);
9983
9984 /* branch from then block to endif block */
9985 bld.branch(aco_opcode::p_branch);
9986 add_edge(ctx.block->index, &BB_endif);
9987 ctx.block->kind |= block_kind_uniform;
9988
9989 /* emit else block */
9990 ctx.block = ctx.program->create_and_insert_block();
9991 add_edge(BB_if_idx, ctx.block);
9992 bld.reset(ctx.block);
9993 append_logical_start(ctx.block);
9994
9995 endif_blocks.push(std::move(BB_endif));
9996 }
9997 }
9998
9999 while (!endif_blocks.empty()) {
10000 Block BB_endif = std::move(endif_blocks.top());
10001 endif_blocks.pop();
10002
10003 Block *BB_else = ctx.block;
10004
10005 append_logical_end(BB_else);
10006 /* branch from else block to endif block */
10007 bld.branch(aco_opcode::p_branch);
10008 add_edge(BB_else->index, &BB_endif);
10009 BB_else->kind |= block_kind_uniform;
10010
10011 /** emit endif merge block */
10012 ctx.block = program->insert_block(std::move(BB_endif));
10013 bld.reset(ctx.block);
10014 append_logical_start(ctx.block);
10015 }
10016
10017 program->config->float_mode = program->blocks[0].fp_mode.val;
10018
10019 append_logical_end(ctx.block);
10020 ctx.block->kind |= block_kind_uniform;
10021 bld.sopp(aco_opcode::s_endpgm);
10022
10023 cleanup_cfg(program);
10024 }
10025 }