aco: Don't store LS VS outputs to LDS when TCS doesn't need them.
[mesa.git] / src / amd / compiler / aco_instruction_selection.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 * Copyright © 2018 Google
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <algorithm>
27 #include <array>
28 #include <stack>
29 #include <map>
30
31 #include "ac_shader_util.h"
32 #include "aco_ir.h"
33 #include "aco_builder.h"
34 #include "aco_interface.h"
35 #include "aco_instruction_selection_setup.cpp"
36 #include "util/fast_idiv_by_const.h"
37
38 namespace aco {
39 namespace {
40
41 class loop_info_RAII {
42 isel_context* ctx;
43 unsigned header_idx_old;
44 Block* exit_old;
45 bool divergent_cont_old;
46 bool divergent_branch_old;
47 bool divergent_if_old;
48
49 public:
50 loop_info_RAII(isel_context* ctx, unsigned loop_header_idx, Block* loop_exit)
51 : ctx(ctx),
52 header_idx_old(ctx->cf_info.parent_loop.header_idx), exit_old(ctx->cf_info.parent_loop.exit),
53 divergent_cont_old(ctx->cf_info.parent_loop.has_divergent_continue),
54 divergent_branch_old(ctx->cf_info.parent_loop.has_divergent_branch),
55 divergent_if_old(ctx->cf_info.parent_if.is_divergent)
56 {
57 ctx->cf_info.parent_loop.header_idx = loop_header_idx;
58 ctx->cf_info.parent_loop.exit = loop_exit;
59 ctx->cf_info.parent_loop.has_divergent_continue = false;
60 ctx->cf_info.parent_loop.has_divergent_branch = false;
61 ctx->cf_info.parent_if.is_divergent = false;
62 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
63 }
64
65 ~loop_info_RAII()
66 {
67 ctx->cf_info.parent_loop.header_idx = header_idx_old;
68 ctx->cf_info.parent_loop.exit = exit_old;
69 ctx->cf_info.parent_loop.has_divergent_continue = divergent_cont_old;
70 ctx->cf_info.parent_loop.has_divergent_branch = divergent_branch_old;
71 ctx->cf_info.parent_if.is_divergent = divergent_if_old;
72 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth - 1;
73 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent)
74 ctx->cf_info.exec_potentially_empty_discard = false;
75 }
76 };
77
78 struct if_context {
79 Temp cond;
80
81 bool divergent_old;
82 bool exec_potentially_empty_discard_old;
83 bool exec_potentially_empty_break_old;
84 uint16_t exec_potentially_empty_break_depth_old;
85
86 unsigned BB_if_idx;
87 unsigned invert_idx;
88 bool then_branch_divergent;
89 Block BB_invert;
90 Block BB_endif;
91 };
92
93 static bool visit_cf_list(struct isel_context *ctx,
94 struct exec_list *list);
95
96 static void add_logical_edge(unsigned pred_idx, Block *succ)
97 {
98 succ->logical_preds.emplace_back(pred_idx);
99 }
100
101
102 static void add_linear_edge(unsigned pred_idx, Block *succ)
103 {
104 succ->linear_preds.emplace_back(pred_idx);
105 }
106
107 static void add_edge(unsigned pred_idx, Block *succ)
108 {
109 add_logical_edge(pred_idx, succ);
110 add_linear_edge(pred_idx, succ);
111 }
112
113 static void append_logical_start(Block *b)
114 {
115 Builder(NULL, b).pseudo(aco_opcode::p_logical_start);
116 }
117
118 static void append_logical_end(Block *b)
119 {
120 Builder(NULL, b).pseudo(aco_opcode::p_logical_end);
121 }
122
123 Temp get_ssa_temp(struct isel_context *ctx, nir_ssa_def *def)
124 {
125 assert(ctx->allocated[def->index].id());
126 return ctx->allocated[def->index];
127 }
128
129 Temp emit_mbcnt(isel_context *ctx, Definition dst,
130 Operand mask_lo = Operand((uint32_t) -1), Operand mask_hi = Operand((uint32_t) -1))
131 {
132 Builder bld(ctx->program, ctx->block);
133 Definition lo_def = ctx->program->wave_size == 32 ? dst : bld.def(v1);
134 Temp thread_id_lo = bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, lo_def, mask_lo, Operand(0u));
135
136 if (ctx->program->wave_size == 32) {
137 return thread_id_lo;
138 } else {
139 Temp thread_id_hi = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32, dst, mask_hi, thread_id_lo);
140 return thread_id_hi;
141 }
142 }
143
144 Temp emit_wqm(isel_context *ctx, Temp src, Temp dst=Temp(0, s1), bool program_needs_wqm = false)
145 {
146 Builder bld(ctx->program, ctx->block);
147
148 if (!dst.id())
149 dst = bld.tmp(src.regClass());
150
151 assert(src.size() == dst.size());
152
153 if (ctx->stage != fragment_fs) {
154 if (!dst.id())
155 return src;
156
157 bld.copy(Definition(dst), src);
158 return dst;
159 }
160
161 bld.pseudo(aco_opcode::p_wqm, Definition(dst), src);
162 ctx->program->needs_wqm |= program_needs_wqm;
163 return dst;
164 }
165
166 static Temp emit_bpermute(isel_context *ctx, Builder &bld, Temp index, Temp data)
167 {
168 if (index.regClass() == s1)
169 return bld.readlane(bld.def(s1), data, index);
170
171 Temp index_x4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), index);
172
173 /* Currently not implemented on GFX6-7 */
174 assert(ctx->options->chip_class >= GFX8);
175
176 if (ctx->options->chip_class <= GFX9 || ctx->program->wave_size == 32) {
177 return bld.ds(aco_opcode::ds_bpermute_b32, bld.def(v1), index_x4, data);
178 }
179
180 /* GFX10, wave64 mode:
181 * The bpermute instruction is limited to half-wave operation, which means that it can't
182 * properly support subgroup shuffle like older generations (or wave32 mode), so we
183 * emulate it here.
184 */
185 if (!ctx->has_gfx10_wave64_bpermute) {
186 ctx->has_gfx10_wave64_bpermute = true;
187 ctx->program->config->num_shared_vgprs = 8; /* Shared VGPRs are allocated in groups of 8 */
188 ctx->program->vgpr_limit -= 4; /* We allocate 8 shared VGPRs, so we'll have 4 fewer normal VGPRs */
189 }
190
191 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
192 Temp lane_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), lane_id);
193 Temp index_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), index);
194 Temp cmp = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm, vcc), lane_is_hi, index_is_hi);
195
196 return bld.reduction(aco_opcode::p_wave64_bpermute, bld.def(v1), bld.def(s2), bld.def(s1, scc),
197 bld.vcc(cmp), Operand(v2.as_linear()), index_x4, data, gfx10_wave64_bpermute);
198 }
199
200 Temp as_vgpr(isel_context *ctx, Temp val)
201 {
202 if (val.type() == RegType::sgpr) {
203 Builder bld(ctx->program, ctx->block);
204 return bld.copy(bld.def(RegType::vgpr, val.size()), val);
205 }
206 assert(val.type() == RegType::vgpr);
207 return val;
208 }
209
210 //assumes a != 0xffffffff
211 void emit_v_div_u32(isel_context *ctx, Temp dst, Temp a, uint32_t b)
212 {
213 assert(b != 0);
214 Builder bld(ctx->program, ctx->block);
215
216 if (util_is_power_of_two_or_zero(b)) {
217 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)util_logbase2(b)), a);
218 return;
219 }
220
221 util_fast_udiv_info info = util_compute_fast_udiv_info(b, 32, 32);
222
223 assert(info.multiplier <= 0xffffffff);
224
225 bool pre_shift = info.pre_shift != 0;
226 bool increment = info.increment != 0;
227 bool multiply = true;
228 bool post_shift = info.post_shift != 0;
229
230 if (!pre_shift && !increment && !multiply && !post_shift) {
231 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), a);
232 return;
233 }
234
235 Temp pre_shift_dst = a;
236 if (pre_shift) {
237 pre_shift_dst = (increment || multiply || post_shift) ? bld.tmp(v1) : dst;
238 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(pre_shift_dst), Operand((uint32_t)info.pre_shift), a);
239 }
240
241 Temp increment_dst = pre_shift_dst;
242 if (increment) {
243 increment_dst = (post_shift || multiply) ? bld.tmp(v1) : dst;
244 bld.vadd32(Definition(increment_dst), Operand((uint32_t) info.increment), pre_shift_dst);
245 }
246
247 Temp multiply_dst = increment_dst;
248 if (multiply) {
249 multiply_dst = post_shift ? bld.tmp(v1) : dst;
250 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(multiply_dst), increment_dst,
251 bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand((uint32_t)info.multiplier)));
252 }
253
254 if (post_shift) {
255 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)info.post_shift), multiply_dst);
256 }
257 }
258
259 void emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, Temp dst)
260 {
261 Builder bld(ctx->program, ctx->block);
262 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(idx));
263 }
264
265
266 Temp emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, RegClass dst_rc)
267 {
268 /* no need to extract the whole vector */
269 if (src.regClass() == dst_rc) {
270 assert(idx == 0);
271 return src;
272 }
273 assert(src.size() > idx);
274 Builder bld(ctx->program, ctx->block);
275 auto it = ctx->allocated_vec.find(src.id());
276 /* the size check needs to be early because elements other than 0 may be garbage */
277 if (it != ctx->allocated_vec.end() && it->second[0].size() == dst_rc.size()) {
278 if (it->second[idx].regClass() == dst_rc) {
279 return it->second[idx];
280 } else {
281 assert(dst_rc.size() == it->second[idx].regClass().size());
282 assert(dst_rc.type() == RegType::vgpr && it->second[idx].type() == RegType::sgpr);
283 return bld.copy(bld.def(dst_rc), it->second[idx]);
284 }
285 }
286
287 if (src.size() == dst_rc.size()) {
288 assert(idx == 0);
289 return bld.copy(bld.def(dst_rc), src);
290 } else {
291 Temp dst = bld.tmp(dst_rc);
292 emit_extract_vector(ctx, src, idx, dst);
293 return dst;
294 }
295 }
296
297 void emit_split_vector(isel_context* ctx, Temp vec_src, unsigned num_components)
298 {
299 if (num_components == 1)
300 return;
301 if (ctx->allocated_vec.find(vec_src.id()) != ctx->allocated_vec.end())
302 return;
303 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_components)};
304 split->operands[0] = Operand(vec_src);
305 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
306 for (unsigned i = 0; i < num_components; i++) {
307 elems[i] = {ctx->program->allocateId(), RegClass(vec_src.type(), vec_src.size() / num_components)};
308 split->definitions[i] = Definition(elems[i]);
309 }
310 ctx->block->instructions.emplace_back(std::move(split));
311 ctx->allocated_vec.emplace(vec_src.id(), elems);
312 }
313
314 /* This vector expansion uses a mask to determine which elements in the new vector
315 * come from the original vector. The other elements are undefined. */
316 void expand_vector(isel_context* ctx, Temp vec_src, Temp dst, unsigned num_components, unsigned mask)
317 {
318 emit_split_vector(ctx, vec_src, util_bitcount(mask));
319
320 if (vec_src == dst)
321 return;
322
323 Builder bld(ctx->program, ctx->block);
324 if (num_components == 1) {
325 if (dst.type() == RegType::sgpr)
326 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec_src);
327 else
328 bld.copy(Definition(dst), vec_src);
329 return;
330 }
331
332 unsigned component_size = dst.size() / num_components;
333 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
334
335 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
336 vec->definitions[0] = Definition(dst);
337 unsigned k = 0;
338 for (unsigned i = 0; i < num_components; i++) {
339 if (mask & (1 << i)) {
340 Temp src = emit_extract_vector(ctx, vec_src, k++, RegClass(vec_src.type(), component_size));
341 if (dst.type() == RegType::sgpr)
342 src = bld.as_uniform(src);
343 vec->operands[i] = Operand(src);
344 } else {
345 vec->operands[i] = Operand(0u);
346 }
347 elems[i] = vec->operands[i].getTemp();
348 }
349 ctx->block->instructions.emplace_back(std::move(vec));
350 ctx->allocated_vec.emplace(dst.id(), elems);
351 }
352
353 Temp bool_to_vector_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s2))
354 {
355 Builder bld(ctx->program, ctx->block);
356 if (!dst.id())
357 dst = bld.tmp(bld.lm);
358
359 assert(val.regClass() == s1);
360 assert(dst.regClass() == bld.lm);
361
362 return bld.sop2(Builder::s_cselect, Definition(dst), Operand((uint32_t) -1), Operand(0u), bld.scc(val));
363 }
364
365 Temp bool_to_scalar_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s1))
366 {
367 Builder bld(ctx->program, ctx->block);
368 if (!dst.id())
369 dst = bld.tmp(s1);
370
371 assert(val.regClass() == bld.lm);
372 assert(dst.regClass() == s1);
373
374 /* if we're currently in WQM mode, ensure that the source is also computed in WQM */
375 Temp tmp = bld.tmp(s1);
376 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.scc(Definition(tmp)), val, Operand(exec, bld.lm));
377 return emit_wqm(ctx, tmp, dst);
378 }
379
380 Temp get_alu_src(struct isel_context *ctx, nir_alu_src src, unsigned size=1)
381 {
382 if (src.src.ssa->num_components == 1 && src.swizzle[0] == 0 && size == 1)
383 return get_ssa_temp(ctx, src.src.ssa);
384
385 if (src.src.ssa->num_components == size) {
386 bool identity_swizzle = true;
387 for (unsigned i = 0; identity_swizzle && i < size; i++) {
388 if (src.swizzle[i] != i)
389 identity_swizzle = false;
390 }
391 if (identity_swizzle)
392 return get_ssa_temp(ctx, src.src.ssa);
393 }
394
395 Temp vec = get_ssa_temp(ctx, src.src.ssa);
396 unsigned elem_size = vec.size() / src.src.ssa->num_components;
397 assert(elem_size > 0); /* TODO: 8 and 16-bit vectors not supported */
398 assert(vec.size() % elem_size == 0);
399
400 RegClass elem_rc = RegClass(vec.type(), elem_size);
401 if (size == 1) {
402 return emit_extract_vector(ctx, vec, src.swizzle[0], elem_rc);
403 } else {
404 assert(size <= 4);
405 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
406 aco_ptr<Pseudo_instruction> vec_instr{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
407 for (unsigned i = 0; i < size; ++i) {
408 elems[i] = emit_extract_vector(ctx, vec, src.swizzle[i], elem_rc);
409 vec_instr->operands[i] = Operand{elems[i]};
410 }
411 Temp dst{ctx->program->allocateId(), RegClass(vec.type(), elem_size * size)};
412 vec_instr->definitions[0] = Definition(dst);
413 ctx->block->instructions.emplace_back(std::move(vec_instr));
414 ctx->allocated_vec.emplace(dst.id(), elems);
415 return dst;
416 }
417 }
418
419 Temp convert_pointer_to_64_bit(isel_context *ctx, Temp ptr)
420 {
421 if (ptr.size() == 2)
422 return ptr;
423 Builder bld(ctx->program, ctx->block);
424 if (ptr.type() == RegType::vgpr)
425 ptr = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), ptr);
426 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s2),
427 ptr, Operand((unsigned)ctx->options->address32_hi));
428 }
429
430 void emit_sop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst, bool writes_scc)
431 {
432 aco_ptr<SOP2_instruction> sop2{create_instruction<SOP2_instruction>(op, Format::SOP2, 2, writes_scc ? 2 : 1)};
433 sop2->operands[0] = Operand(get_alu_src(ctx, instr->src[0]));
434 sop2->operands[1] = Operand(get_alu_src(ctx, instr->src[1]));
435 sop2->definitions[0] = Definition(dst);
436 if (writes_scc)
437 sop2->definitions[1] = Definition(ctx->program->allocateId(), scc, s1);
438 ctx->block->instructions.emplace_back(std::move(sop2));
439 }
440
441 void emit_vop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
442 bool commutative, bool swap_srcs=false, bool flush_denorms = false)
443 {
444 Builder bld(ctx->program, ctx->block);
445 Temp src0 = get_alu_src(ctx, instr->src[swap_srcs ? 1 : 0]);
446 Temp src1 = get_alu_src(ctx, instr->src[swap_srcs ? 0 : 1]);
447 if (src1.type() == RegType::sgpr) {
448 if (commutative && src0.type() == RegType::vgpr) {
449 Temp t = src0;
450 src0 = src1;
451 src1 = t;
452 } else if (src0.type() == RegType::vgpr &&
453 op != aco_opcode::v_madmk_f32 &&
454 op != aco_opcode::v_madak_f32 &&
455 op != aco_opcode::v_madmk_f16 &&
456 op != aco_opcode::v_madak_f16) {
457 /* If the instruction is not commutative, we emit a VOP3A instruction */
458 bld.vop2_e64(op, Definition(dst), src0, src1);
459 return;
460 } else {
461 src1 = bld.copy(bld.def(RegType::vgpr, src1.size()), src1); //TODO: as_vgpr
462 }
463 }
464
465 if (flush_denorms && ctx->program->chip_class < GFX9) {
466 assert(dst.size() == 1);
467 Temp tmp = bld.vop2(op, bld.def(v1), src0, src1);
468 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
469 } else {
470 bld.vop2(op, Definition(dst), src0, src1);
471 }
472 }
473
474 void emit_vop3a_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
475 bool flush_denorms = false)
476 {
477 Temp src0 = get_alu_src(ctx, instr->src[0]);
478 Temp src1 = get_alu_src(ctx, instr->src[1]);
479 Temp src2 = get_alu_src(ctx, instr->src[2]);
480
481 /* ensure that the instruction has at most 1 sgpr operand
482 * The optimizer will inline constants for us */
483 if (src0.type() == RegType::sgpr && src1.type() == RegType::sgpr)
484 src0 = as_vgpr(ctx, src0);
485 if (src1.type() == RegType::sgpr && src2.type() == RegType::sgpr)
486 src1 = as_vgpr(ctx, src1);
487 if (src2.type() == RegType::sgpr && src0.type() == RegType::sgpr)
488 src2 = as_vgpr(ctx, src2);
489
490 Builder bld(ctx->program, ctx->block);
491 if (flush_denorms && ctx->program->chip_class < GFX9) {
492 assert(dst.size() == 1);
493 Temp tmp = bld.vop3(op, Definition(dst), src0, src1, src2);
494 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
495 } else {
496 bld.vop3(op, Definition(dst), src0, src1, src2);
497 }
498 }
499
500 void emit_vop1_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
501 {
502 Builder bld(ctx->program, ctx->block);
503 bld.vop1(op, Definition(dst), get_alu_src(ctx, instr->src[0]));
504 }
505
506 void emit_vopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
507 {
508 Temp src0 = get_alu_src(ctx, instr->src[0]);
509 Temp src1 = get_alu_src(ctx, instr->src[1]);
510 assert(src0.size() == src1.size());
511
512 aco_ptr<Instruction> vopc;
513 if (src1.type() == RegType::sgpr) {
514 if (src0.type() == RegType::vgpr) {
515 /* to swap the operands, we might also have to change the opcode */
516 switch (op) {
517 case aco_opcode::v_cmp_lt_f32:
518 op = aco_opcode::v_cmp_gt_f32;
519 break;
520 case aco_opcode::v_cmp_ge_f32:
521 op = aco_opcode::v_cmp_le_f32;
522 break;
523 case aco_opcode::v_cmp_lt_i32:
524 op = aco_opcode::v_cmp_gt_i32;
525 break;
526 case aco_opcode::v_cmp_ge_i32:
527 op = aco_opcode::v_cmp_le_i32;
528 break;
529 case aco_opcode::v_cmp_lt_u32:
530 op = aco_opcode::v_cmp_gt_u32;
531 break;
532 case aco_opcode::v_cmp_ge_u32:
533 op = aco_opcode::v_cmp_le_u32;
534 break;
535 case aco_opcode::v_cmp_lt_f64:
536 op = aco_opcode::v_cmp_gt_f64;
537 break;
538 case aco_opcode::v_cmp_ge_f64:
539 op = aco_opcode::v_cmp_le_f64;
540 break;
541 case aco_opcode::v_cmp_lt_i64:
542 op = aco_opcode::v_cmp_gt_i64;
543 break;
544 case aco_opcode::v_cmp_ge_i64:
545 op = aco_opcode::v_cmp_le_i64;
546 break;
547 case aco_opcode::v_cmp_lt_u64:
548 op = aco_opcode::v_cmp_gt_u64;
549 break;
550 case aco_opcode::v_cmp_ge_u64:
551 op = aco_opcode::v_cmp_le_u64;
552 break;
553 default: /* eq and ne are commutative */
554 break;
555 }
556 Temp t = src0;
557 src0 = src1;
558 src1 = t;
559 } else {
560 src1 = as_vgpr(ctx, src1);
561 }
562 }
563
564 Builder bld(ctx->program, ctx->block);
565 bld.vopc(op, bld.hint_vcc(Definition(dst)), src0, src1);
566 }
567
568 void emit_sopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
569 {
570 Temp src0 = get_alu_src(ctx, instr->src[0]);
571 Temp src1 = get_alu_src(ctx, instr->src[1]);
572 Builder bld(ctx->program, ctx->block);
573
574 assert(dst.regClass() == bld.lm);
575 assert(src0.type() == RegType::sgpr);
576 assert(src1.type() == RegType::sgpr);
577 assert(src0.regClass() == src1.regClass());
578
579 /* Emit the SALU comparison instruction */
580 Temp cmp = bld.sopc(op, bld.scc(bld.def(s1)), src0, src1);
581 /* Turn the result into a per-lane bool */
582 bool_to_vector_condition(ctx, cmp, dst);
583 }
584
585 void emit_comparison(isel_context *ctx, nir_alu_instr *instr, Temp dst,
586 aco_opcode v32_op, aco_opcode v64_op, aco_opcode s32_op = aco_opcode::num_opcodes, aco_opcode s64_op = aco_opcode::num_opcodes)
587 {
588 aco_opcode s_op = instr->src[0].src.ssa->bit_size == 64 ? s64_op : s32_op;
589 aco_opcode v_op = instr->src[0].src.ssa->bit_size == 64 ? v64_op : v32_op;
590 bool divergent_vals = ctx->divergent_vals[instr->dest.dest.ssa.index];
591 bool use_valu = s_op == aco_opcode::num_opcodes ||
592 divergent_vals ||
593 ctx->allocated[instr->src[0].src.ssa->index].type() == RegType::vgpr ||
594 ctx->allocated[instr->src[1].src.ssa->index].type() == RegType::vgpr;
595 aco_opcode op = use_valu ? v_op : s_op;
596 assert(op != aco_opcode::num_opcodes);
597 assert(dst.regClass() == ctx->program->lane_mask);
598
599 if (use_valu)
600 emit_vopc_instruction(ctx, instr, op, dst);
601 else
602 emit_sopc_instruction(ctx, instr, op, dst);
603 }
604
605 void emit_boolean_logic(isel_context *ctx, nir_alu_instr *instr, Builder::WaveSpecificOpcode op, Temp dst)
606 {
607 Builder bld(ctx->program, ctx->block);
608 Temp src0 = get_alu_src(ctx, instr->src[0]);
609 Temp src1 = get_alu_src(ctx, instr->src[1]);
610
611 assert(dst.regClass() == bld.lm);
612 assert(src0.regClass() == bld.lm);
613 assert(src1.regClass() == bld.lm);
614
615 bld.sop2(op, Definition(dst), bld.def(s1, scc), src0, src1);
616 }
617
618 void emit_bcsel(isel_context *ctx, nir_alu_instr *instr, Temp dst)
619 {
620 Builder bld(ctx->program, ctx->block);
621 Temp cond = get_alu_src(ctx, instr->src[0]);
622 Temp then = get_alu_src(ctx, instr->src[1]);
623 Temp els = get_alu_src(ctx, instr->src[2]);
624
625 assert(cond.regClass() == bld.lm);
626
627 if (dst.type() == RegType::vgpr) {
628 aco_ptr<Instruction> bcsel;
629 if (dst.size() == 1) {
630 then = as_vgpr(ctx, then);
631 els = as_vgpr(ctx, els);
632
633 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), els, then, cond);
634 } else if (dst.size() == 2) {
635 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
636 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), then);
637 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
638 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), els);
639
640 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, cond);
641 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, cond);
642
643 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
644 } else {
645 fprintf(stderr, "Unimplemented NIR instr bit size: ");
646 nir_print_instr(&instr->instr, stderr);
647 fprintf(stderr, "\n");
648 }
649 return;
650 }
651
652 if (instr->dest.dest.ssa.bit_size == 1) {
653 assert(dst.regClass() == bld.lm);
654 assert(then.regClass() == bld.lm);
655 assert(els.regClass() == bld.lm);
656 }
657
658 if (!ctx->divergent_vals[instr->src[0].src.ssa->index]) { /* uniform condition and values in sgpr */
659 if (dst.regClass() == s1 || dst.regClass() == s2) {
660 assert((then.regClass() == s1 || then.regClass() == s2) && els.regClass() == then.regClass());
661 assert(dst.size() == then.size());
662 aco_opcode op = dst.regClass() == s1 ? aco_opcode::s_cselect_b32 : aco_opcode::s_cselect_b64;
663 bld.sop2(op, Definition(dst), then, els, bld.scc(bool_to_scalar_condition(ctx, cond)));
664 } else {
665 fprintf(stderr, "Unimplemented uniform bcsel bit size: ");
666 nir_print_instr(&instr->instr, stderr);
667 fprintf(stderr, "\n");
668 }
669 return;
670 }
671
672 /* divergent boolean bcsel
673 * this implements bcsel on bools: dst = s0 ? s1 : s2
674 * are going to be: dst = (s0 & s1) | (~s0 & s2) */
675 assert(instr->dest.dest.ssa.bit_size == 1);
676
677 if (cond.id() != then.id())
678 then = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), cond, then);
679
680 if (cond.id() == els.id())
681 bld.sop1(Builder::s_mov, Definition(dst), then);
682 else
683 bld.sop2(Builder::s_or, Definition(dst), bld.def(s1, scc), then,
684 bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), els, cond));
685 }
686
687 void emit_scaled_op(isel_context *ctx, Builder& bld, Definition dst, Temp val,
688 aco_opcode op, uint32_t undo)
689 {
690 /* multiply by 16777216 to handle denormals */
691 Temp is_denormal = bld.vopc(aco_opcode::v_cmp_class_f32, bld.hint_vcc(bld.def(bld.lm)),
692 as_vgpr(ctx, val), bld.copy(bld.def(v1), Operand((1u << 7) | (1u << 4))));
693 Temp scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x4b800000u), val);
694 scaled = bld.vop1(op, bld.def(v1), scaled);
695 scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(undo), scaled);
696
697 Temp not_scaled = bld.vop1(op, bld.def(v1), val);
698
699 bld.vop2(aco_opcode::v_cndmask_b32, dst, not_scaled, scaled, is_denormal);
700 }
701
702 void emit_rcp(isel_context *ctx, Builder& bld, Definition dst, Temp val)
703 {
704 if (ctx->block->fp_mode.denorm32 == 0) {
705 bld.vop1(aco_opcode::v_rcp_f32, dst, val);
706 return;
707 }
708
709 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rcp_f32, 0x4b800000u);
710 }
711
712 void emit_rsq(isel_context *ctx, Builder& bld, Definition dst, Temp val)
713 {
714 if (ctx->block->fp_mode.denorm32 == 0) {
715 bld.vop1(aco_opcode::v_rsq_f32, dst, val);
716 return;
717 }
718
719 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rsq_f32, 0x45800000u);
720 }
721
722 void emit_sqrt(isel_context *ctx, Builder& bld, Definition dst, Temp val)
723 {
724 if (ctx->block->fp_mode.denorm32 == 0) {
725 bld.vop1(aco_opcode::v_sqrt_f32, dst, val);
726 return;
727 }
728
729 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_sqrt_f32, 0x39800000u);
730 }
731
732 void emit_log2(isel_context *ctx, Builder& bld, Definition dst, Temp val)
733 {
734 if (ctx->block->fp_mode.denorm32 == 0) {
735 bld.vop1(aco_opcode::v_log_f32, dst, val);
736 return;
737 }
738
739 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_log_f32, 0xc1c00000u);
740 }
741
742 Temp emit_trunc_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
743 {
744 if (ctx->options->chip_class >= GFX7)
745 return bld.vop1(aco_opcode::v_trunc_f64, Definition(dst), val);
746
747 /* GFX6 doesn't support V_TRUNC_F64, lower it. */
748 /* TODO: create more efficient code! */
749 if (val.type() == RegType::sgpr)
750 val = as_vgpr(ctx, val);
751
752 /* Split the input value. */
753 Temp val_lo = bld.tmp(v1), val_hi = bld.tmp(v1);
754 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
755
756 /* Extract the exponent and compute the unbiased value. */
757 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f64, bld.def(v1), val);
758
759 /* Extract the fractional part. */
760 Temp fract_mask = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x000fffffu));
761 fract_mask = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), fract_mask, exponent);
762
763 Temp fract_mask_lo = bld.tmp(v1), fract_mask_hi = bld.tmp(v1);
764 bld.pseudo(aco_opcode::p_split_vector, Definition(fract_mask_lo), Definition(fract_mask_hi), fract_mask);
765
766 Temp fract_lo = bld.tmp(v1), fract_hi = bld.tmp(v1);
767 Temp tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_lo);
768 fract_lo = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_lo, tmp);
769 tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_hi);
770 fract_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_hi, tmp);
771
772 /* Get the sign bit. */
773 Temp sign = bld.vop2(aco_opcode::v_ashr_i32, bld.def(v1), Operand(31u), val_hi);
774
775 /* Decide the operation to apply depending on the unbiased exponent. */
776 Temp exp_lt0 = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)), exponent, Operand(0u));
777 Temp dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_lo, bld.copy(bld.def(v1), Operand(0u)), exp_lt0);
778 Temp dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_hi, sign, exp_lt0);
779 Temp exp_gt51 = bld.vopc_e64(aco_opcode::v_cmp_gt_i32, bld.def(s2), exponent, Operand(51u));
780 dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_lo, val_lo, exp_gt51);
781 dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_hi, val_hi, exp_gt51);
782
783 return bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst_lo, dst_hi);
784 }
785
786 Temp emit_floor_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
787 {
788 if (ctx->options->chip_class >= GFX7)
789 return bld.vop1(aco_opcode::v_floor_f64, Definition(dst), val);
790
791 /* GFX6 doesn't support V_FLOOR_F64, lower it. */
792 Temp src0 = as_vgpr(ctx, val);
793
794 Temp mask = bld.copy(bld.def(s1), Operand(3u)); /* isnan */
795 Temp min_val = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(-1u), Operand(0x3fefffffu));
796
797 Temp isnan = bld.vopc_e64(aco_opcode::v_cmp_class_f64, bld.hint_vcc(bld.def(bld.lm)), src0, mask);
798 Temp fract = bld.vop1(aco_opcode::v_fract_f64, bld.def(v2), src0);
799 Temp min = bld.vop3(aco_opcode::v_min_f64, bld.def(v2), fract, min_val);
800
801 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
802 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), src0);
803 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
804 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), min);
805
806 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, isnan);
807 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, isnan);
808
809 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), dst0, dst1);
810
811 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src0, v);
812 static_cast<VOP3A_instruction*>(add)->neg[1] = true;
813
814 return add->definitions[0].getTemp();
815 }
816
817 void visit_alu_instr(isel_context *ctx, nir_alu_instr *instr)
818 {
819 if (!instr->dest.dest.is_ssa) {
820 fprintf(stderr, "nir alu dst not in ssa: ");
821 nir_print_instr(&instr->instr, stderr);
822 fprintf(stderr, "\n");
823 abort();
824 }
825 Builder bld(ctx->program, ctx->block);
826 Temp dst = get_ssa_temp(ctx, &instr->dest.dest.ssa);
827 switch(instr->op) {
828 case nir_op_vec2:
829 case nir_op_vec3:
830 case nir_op_vec4: {
831 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
832 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.dest.ssa.num_components, 1)};
833 for (unsigned i = 0; i < instr->dest.dest.ssa.num_components; ++i) {
834 elems[i] = get_alu_src(ctx, instr->src[i]);
835 vec->operands[i] = Operand{elems[i]};
836 }
837 vec->definitions[0] = Definition(dst);
838 ctx->block->instructions.emplace_back(std::move(vec));
839 ctx->allocated_vec.emplace(dst.id(), elems);
840 break;
841 }
842 case nir_op_mov: {
843 Temp src = get_alu_src(ctx, instr->src[0]);
844 aco_ptr<Instruction> mov;
845 if (dst.type() == RegType::sgpr) {
846 if (src.type() == RegType::vgpr)
847 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
848 else if (src.regClass() == s1)
849 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
850 else if (src.regClass() == s2)
851 bld.sop1(aco_opcode::s_mov_b64, Definition(dst), src);
852 else
853 unreachable("wrong src register class for nir_op_imov");
854 } else if (dst.regClass() == v1) {
855 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), src);
856 } else if (dst.regClass() == v2) {
857 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
858 } else {
859 nir_print_instr(&instr->instr, stderr);
860 unreachable("Should have been lowered to scalar.");
861 }
862 break;
863 }
864 case nir_op_inot: {
865 Temp src = get_alu_src(ctx, instr->src[0]);
866 if (instr->dest.dest.ssa.bit_size == 1) {
867 assert(src.regClass() == bld.lm);
868 assert(dst.regClass() == bld.lm);
869 /* Don't use s_andn2 here, this allows the optimizer to make a better decision */
870 Temp tmp = bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), src);
871 bld.sop2(Builder::s_and, Definition(dst), bld.def(s1, scc), tmp, Operand(exec, bld.lm));
872 } else if (dst.regClass() == v1) {
873 emit_vop1_instruction(ctx, instr, aco_opcode::v_not_b32, dst);
874 } else if (dst.type() == RegType::sgpr) {
875 aco_opcode opcode = dst.size() == 1 ? aco_opcode::s_not_b32 : aco_opcode::s_not_b64;
876 bld.sop1(opcode, Definition(dst), bld.def(s1, scc), src);
877 } else {
878 fprintf(stderr, "Unimplemented NIR instr bit size: ");
879 nir_print_instr(&instr->instr, stderr);
880 fprintf(stderr, "\n");
881 }
882 break;
883 }
884 case nir_op_ineg: {
885 Temp src = get_alu_src(ctx, instr->src[0]);
886 if (dst.regClass() == v1) {
887 bld.vsub32(Definition(dst), Operand(0u), Operand(src));
888 } else if (dst.regClass() == s1) {
889 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand((uint32_t) -1), src);
890 } else if (dst.size() == 2) {
891 Temp src0 = bld.tmp(dst.type(), 1);
892 Temp src1 = bld.tmp(dst.type(), 1);
893 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
894
895 if (dst.regClass() == s2) {
896 Temp carry = bld.tmp(s1);
897 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), Operand(0u), src0);
898 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), src1, carry);
899 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
900 } else {
901 Temp lower = bld.tmp(v1);
902 Temp borrow = bld.vsub32(Definition(lower), Operand(0u), src0, true).def(1).getTemp();
903 Temp upper = bld.vsub32(bld.def(v1), Operand(0u), src1, false, borrow);
904 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
905 }
906 } else {
907 fprintf(stderr, "Unimplemented NIR instr bit size: ");
908 nir_print_instr(&instr->instr, stderr);
909 fprintf(stderr, "\n");
910 }
911 break;
912 }
913 case nir_op_iabs: {
914 if (dst.regClass() == s1) {
915 bld.sop1(aco_opcode::s_abs_i32, Definition(dst), bld.def(s1, scc), get_alu_src(ctx, instr->src[0]));
916 } else if (dst.regClass() == v1) {
917 Temp src = get_alu_src(ctx, instr->src[0]);
918 bld.vop2(aco_opcode::v_max_i32, Definition(dst), src, bld.vsub32(bld.def(v1), Operand(0u), src));
919 } else {
920 fprintf(stderr, "Unimplemented NIR instr bit size: ");
921 nir_print_instr(&instr->instr, stderr);
922 fprintf(stderr, "\n");
923 }
924 break;
925 }
926 case nir_op_isign: {
927 Temp src = get_alu_src(ctx, instr->src[0]);
928 if (dst.regClass() == s1) {
929 Temp tmp = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
930 Temp gtz = bld.sopc(aco_opcode::s_cmp_gt_i32, bld.def(s1, scc), src, Operand(0u));
931 bld.sop2(aco_opcode::s_add_i32, Definition(dst), bld.def(s1, scc), gtz, tmp);
932 } else if (dst.regClass() == s2) {
933 Temp neg = bld.sop2(aco_opcode::s_ashr_i64, bld.def(s2), bld.def(s1, scc), src, Operand(63u));
934 Temp neqz;
935 if (ctx->program->chip_class >= GFX8)
936 neqz = bld.sopc(aco_opcode::s_cmp_lg_u64, bld.def(s1, scc), src, Operand(0u));
937 else
938 neqz = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), src, Operand(0u)).def(1).getTemp();
939 /* SCC gets zero-extended to 64 bit */
940 bld.sop2(aco_opcode::s_or_b64, Definition(dst), bld.def(s1, scc), neg, bld.scc(neqz));
941 } else if (dst.regClass() == v1) {
942 Temp tmp = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
943 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
944 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(1u), tmp, gtz);
945 } else if (dst.regClass() == v2) {
946 Temp upper = emit_extract_vector(ctx, src, 1, v1);
947 Temp neg = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), upper);
948 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
949 Temp lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(1u), neg, gtz);
950 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), neg, gtz);
951 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
952 } else {
953 fprintf(stderr, "Unimplemented NIR instr bit size: ");
954 nir_print_instr(&instr->instr, stderr);
955 fprintf(stderr, "\n");
956 }
957 break;
958 }
959 case nir_op_imax: {
960 if (dst.regClass() == v1) {
961 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_i32, dst, true);
962 } else if (dst.regClass() == s1) {
963 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_i32, dst, true);
964 } else {
965 fprintf(stderr, "Unimplemented NIR instr bit size: ");
966 nir_print_instr(&instr->instr, stderr);
967 fprintf(stderr, "\n");
968 }
969 break;
970 }
971 case nir_op_umax: {
972 if (dst.regClass() == v1) {
973 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_u32, dst, true);
974 } else if (dst.regClass() == s1) {
975 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_u32, dst, true);
976 } else {
977 fprintf(stderr, "Unimplemented NIR instr bit size: ");
978 nir_print_instr(&instr->instr, stderr);
979 fprintf(stderr, "\n");
980 }
981 break;
982 }
983 case nir_op_imin: {
984 if (dst.regClass() == v1) {
985 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_i32, dst, true);
986 } else if (dst.regClass() == s1) {
987 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_i32, dst, true);
988 } else {
989 fprintf(stderr, "Unimplemented NIR instr bit size: ");
990 nir_print_instr(&instr->instr, stderr);
991 fprintf(stderr, "\n");
992 }
993 break;
994 }
995 case nir_op_umin: {
996 if (dst.regClass() == v1) {
997 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_u32, dst, true);
998 } else if (dst.regClass() == s1) {
999 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_u32, dst, true);
1000 } else {
1001 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1002 nir_print_instr(&instr->instr, stderr);
1003 fprintf(stderr, "\n");
1004 }
1005 break;
1006 }
1007 case nir_op_ior: {
1008 if (instr->dest.dest.ssa.bit_size == 1) {
1009 emit_boolean_logic(ctx, instr, Builder::s_or, dst);
1010 } else if (dst.regClass() == v1) {
1011 emit_vop2_instruction(ctx, instr, aco_opcode::v_or_b32, dst, true);
1012 } else if (dst.regClass() == s1) {
1013 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b32, dst, true);
1014 } else if (dst.regClass() == s2) {
1015 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b64, dst, true);
1016 } else {
1017 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1018 nir_print_instr(&instr->instr, stderr);
1019 fprintf(stderr, "\n");
1020 }
1021 break;
1022 }
1023 case nir_op_iand: {
1024 if (instr->dest.dest.ssa.bit_size == 1) {
1025 emit_boolean_logic(ctx, instr, Builder::s_and, dst);
1026 } else if (dst.regClass() == v1) {
1027 emit_vop2_instruction(ctx, instr, aco_opcode::v_and_b32, dst, true);
1028 } else if (dst.regClass() == s1) {
1029 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b32, dst, true);
1030 } else if (dst.regClass() == s2) {
1031 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b64, dst, true);
1032 } else {
1033 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1034 nir_print_instr(&instr->instr, stderr);
1035 fprintf(stderr, "\n");
1036 }
1037 break;
1038 }
1039 case nir_op_ixor: {
1040 if (instr->dest.dest.ssa.bit_size == 1) {
1041 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
1042 } else if (dst.regClass() == v1) {
1043 emit_vop2_instruction(ctx, instr, aco_opcode::v_xor_b32, dst, true);
1044 } else if (dst.regClass() == s1) {
1045 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b32, dst, true);
1046 } else if (dst.regClass() == s2) {
1047 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b64, dst, true);
1048 } else {
1049 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1050 nir_print_instr(&instr->instr, stderr);
1051 fprintf(stderr, "\n");
1052 }
1053 break;
1054 }
1055 case nir_op_ushr: {
1056 if (dst.regClass() == v1) {
1057 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshrrev_b32, dst, false, true);
1058 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1059 bld.vop3(aco_opcode::v_lshrrev_b64, Definition(dst),
1060 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1061 } else if (dst.regClass() == v2) {
1062 bld.vop3(aco_opcode::v_lshr_b64, Definition(dst),
1063 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1064 } else if (dst.regClass() == s2) {
1065 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b64, dst, true);
1066 } else if (dst.regClass() == s1) {
1067 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b32, dst, true);
1068 } else {
1069 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1070 nir_print_instr(&instr->instr, stderr);
1071 fprintf(stderr, "\n");
1072 }
1073 break;
1074 }
1075 case nir_op_ishl: {
1076 if (dst.regClass() == v1) {
1077 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshlrev_b32, dst, false, true);
1078 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1079 bld.vop3(aco_opcode::v_lshlrev_b64, Definition(dst),
1080 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1081 } else if (dst.regClass() == v2) {
1082 bld.vop3(aco_opcode::v_lshl_b64, Definition(dst),
1083 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1084 } else if (dst.regClass() == s1) {
1085 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b32, dst, true);
1086 } else if (dst.regClass() == s2) {
1087 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b64, dst, true);
1088 } else {
1089 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1090 nir_print_instr(&instr->instr, stderr);
1091 fprintf(stderr, "\n");
1092 }
1093 break;
1094 }
1095 case nir_op_ishr: {
1096 if (dst.regClass() == v1) {
1097 emit_vop2_instruction(ctx, instr, aco_opcode::v_ashrrev_i32, dst, false, true);
1098 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1099 bld.vop3(aco_opcode::v_ashrrev_i64, Definition(dst),
1100 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1101 } else if (dst.regClass() == v2) {
1102 bld.vop3(aco_opcode::v_ashr_i64, Definition(dst),
1103 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1104 } else if (dst.regClass() == s1) {
1105 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i32, dst, true);
1106 } else if (dst.regClass() == s2) {
1107 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i64, dst, true);
1108 } else {
1109 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1110 nir_print_instr(&instr->instr, stderr);
1111 fprintf(stderr, "\n");
1112 }
1113 break;
1114 }
1115 case nir_op_find_lsb: {
1116 Temp src = get_alu_src(ctx, instr->src[0]);
1117 if (src.regClass() == s1) {
1118 bld.sop1(aco_opcode::s_ff1_i32_b32, Definition(dst), src);
1119 } else if (src.regClass() == v1) {
1120 emit_vop1_instruction(ctx, instr, aco_opcode::v_ffbl_b32, dst);
1121 } else if (src.regClass() == s2) {
1122 bld.sop1(aco_opcode::s_ff1_i32_b64, Definition(dst), src);
1123 } else {
1124 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1125 nir_print_instr(&instr->instr, stderr);
1126 fprintf(stderr, "\n");
1127 }
1128 break;
1129 }
1130 case nir_op_ufind_msb:
1131 case nir_op_ifind_msb: {
1132 Temp src = get_alu_src(ctx, instr->src[0]);
1133 if (src.regClass() == s1 || src.regClass() == s2) {
1134 aco_opcode op = src.regClass() == s2 ?
1135 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b64 : aco_opcode::s_flbit_i32_i64) :
1136 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b32 : aco_opcode::s_flbit_i32);
1137 Temp msb_rev = bld.sop1(op, bld.def(s1), src);
1138
1139 Builder::Result sub = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc),
1140 Operand(src.size() * 32u - 1u), msb_rev);
1141 Temp msb = sub.def(0).getTemp();
1142 Temp carry = sub.def(1).getTemp();
1143
1144 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t)-1), msb, bld.scc(carry));
1145 } else if (src.regClass() == v1) {
1146 aco_opcode op = instr->op == nir_op_ufind_msb ? aco_opcode::v_ffbh_u32 : aco_opcode::v_ffbh_i32;
1147 Temp msb_rev = bld.tmp(v1);
1148 emit_vop1_instruction(ctx, instr, op, msb_rev);
1149 Temp msb = bld.tmp(v1);
1150 Temp carry = bld.vsub32(Definition(msb), Operand(31u), Operand(msb_rev), true).def(1).getTemp();
1151 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), msb, Operand((uint32_t)-1), carry);
1152 } else {
1153 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1154 nir_print_instr(&instr->instr, stderr);
1155 fprintf(stderr, "\n");
1156 }
1157 break;
1158 }
1159 case nir_op_bitfield_reverse: {
1160 if (dst.regClass() == s1) {
1161 bld.sop1(aco_opcode::s_brev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1162 } else if (dst.regClass() == v1) {
1163 bld.vop1(aco_opcode::v_bfrev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1164 } else {
1165 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1166 nir_print_instr(&instr->instr, stderr);
1167 fprintf(stderr, "\n");
1168 }
1169 break;
1170 }
1171 case nir_op_iadd: {
1172 if (dst.regClass() == s1) {
1173 emit_sop2_instruction(ctx, instr, aco_opcode::s_add_u32, dst, true);
1174 break;
1175 }
1176
1177 Temp src0 = get_alu_src(ctx, instr->src[0]);
1178 Temp src1 = get_alu_src(ctx, instr->src[1]);
1179 if (dst.regClass() == v1) {
1180 bld.vadd32(Definition(dst), Operand(src0), Operand(src1));
1181 break;
1182 }
1183
1184 assert(src0.size() == 2 && src1.size() == 2);
1185 Temp src00 = bld.tmp(src0.type(), 1);
1186 Temp src01 = bld.tmp(dst.type(), 1);
1187 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1188 Temp src10 = bld.tmp(src1.type(), 1);
1189 Temp src11 = bld.tmp(dst.type(), 1);
1190 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1191
1192 if (dst.regClass() == s2) {
1193 Temp carry = bld.tmp(s1);
1194 Temp dst0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1195 Temp dst1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), src01, src11, bld.scc(carry));
1196 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1197 } else if (dst.regClass() == v2) {
1198 Temp dst0 = bld.tmp(v1);
1199 Temp carry = bld.vadd32(Definition(dst0), src00, src10, true).def(1).getTemp();
1200 Temp dst1 = bld.vadd32(bld.def(v1), src01, src11, false, carry);
1201 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1202 } else {
1203 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1204 nir_print_instr(&instr->instr, stderr);
1205 fprintf(stderr, "\n");
1206 }
1207 break;
1208 }
1209 case nir_op_uadd_sat: {
1210 Temp src0 = get_alu_src(ctx, instr->src[0]);
1211 Temp src1 = get_alu_src(ctx, instr->src[1]);
1212 if (dst.regClass() == s1) {
1213 Temp tmp = bld.tmp(s1), carry = bld.tmp(s1);
1214 bld.sop2(aco_opcode::s_add_u32, Definition(tmp), bld.scc(Definition(carry)),
1215 src0, src1);
1216 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t) -1), tmp, bld.scc(carry));
1217 } else if (dst.regClass() == v1) {
1218 if (ctx->options->chip_class >= GFX9) {
1219 aco_ptr<VOP3A_instruction> add{create_instruction<VOP3A_instruction>(aco_opcode::v_add_u32, asVOP3(Format::VOP2), 2, 1)};
1220 add->operands[0] = Operand(src0);
1221 add->operands[1] = Operand(src1);
1222 add->definitions[0] = Definition(dst);
1223 add->clamp = 1;
1224 ctx->block->instructions.emplace_back(std::move(add));
1225 } else {
1226 if (src1.regClass() != v1)
1227 std::swap(src0, src1);
1228 assert(src1.regClass() == v1);
1229 Temp tmp = bld.tmp(v1);
1230 Temp carry = bld.vadd32(Definition(tmp), src0, src1, true).def(1).getTemp();
1231 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), tmp, Operand((uint32_t) -1), carry);
1232 }
1233 } else {
1234 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1235 nir_print_instr(&instr->instr, stderr);
1236 fprintf(stderr, "\n");
1237 }
1238 break;
1239 }
1240 case nir_op_uadd_carry: {
1241 Temp src0 = get_alu_src(ctx, instr->src[0]);
1242 Temp src1 = get_alu_src(ctx, instr->src[1]);
1243 if (dst.regClass() == s1) {
1244 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1245 break;
1246 }
1247 if (dst.regClass() == v1) {
1248 Temp carry = bld.vadd32(bld.def(v1), src0, src1, true).def(1).getTemp();
1249 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), carry);
1250 break;
1251 }
1252
1253 Temp src00 = bld.tmp(src0.type(), 1);
1254 Temp src01 = bld.tmp(dst.type(), 1);
1255 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1256 Temp src10 = bld.tmp(src1.type(), 1);
1257 Temp src11 = bld.tmp(dst.type(), 1);
1258 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1259 if (dst.regClass() == s2) {
1260 Temp carry = bld.tmp(s1);
1261 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1262 carry = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(carry)).def(1).getTemp();
1263 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1264 } else if (dst.regClass() == v2) {
1265 Temp carry = bld.vadd32(bld.def(v1), src00, src10, true).def(1).getTemp();
1266 carry = bld.vadd32(bld.def(v1), src01, src11, true, carry).def(1).getTemp();
1267 carry = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), carry);
1268 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1269 } else {
1270 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1271 nir_print_instr(&instr->instr, stderr);
1272 fprintf(stderr, "\n");
1273 }
1274 break;
1275 }
1276 case nir_op_isub: {
1277 if (dst.regClass() == s1) {
1278 emit_sop2_instruction(ctx, instr, aco_opcode::s_sub_i32, dst, true);
1279 break;
1280 }
1281
1282 Temp src0 = get_alu_src(ctx, instr->src[0]);
1283 Temp src1 = get_alu_src(ctx, instr->src[1]);
1284 if (dst.regClass() == v1) {
1285 bld.vsub32(Definition(dst), src0, src1);
1286 break;
1287 }
1288
1289 Temp src00 = bld.tmp(src0.type(), 1);
1290 Temp src01 = bld.tmp(dst.type(), 1);
1291 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1292 Temp src10 = bld.tmp(src1.type(), 1);
1293 Temp src11 = bld.tmp(dst.type(), 1);
1294 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1295 if (dst.regClass() == s2) {
1296 Temp carry = bld.tmp(s1);
1297 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1298 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), src01, src11, carry);
1299 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1300 } else if (dst.regClass() == v2) {
1301 Temp lower = bld.tmp(v1);
1302 Temp borrow = bld.vsub32(Definition(lower), src00, src10, true).def(1).getTemp();
1303 Temp upper = bld.vsub32(bld.def(v1), src01, src11, false, borrow);
1304 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1305 } else {
1306 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1307 nir_print_instr(&instr->instr, stderr);
1308 fprintf(stderr, "\n");
1309 }
1310 break;
1311 }
1312 case nir_op_usub_borrow: {
1313 Temp src0 = get_alu_src(ctx, instr->src[0]);
1314 Temp src1 = get_alu_src(ctx, instr->src[1]);
1315 if (dst.regClass() == s1) {
1316 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1317 break;
1318 } else if (dst.regClass() == v1) {
1319 Temp borrow = bld.vsub32(bld.def(v1), src0, src1, true).def(1).getTemp();
1320 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), borrow);
1321 break;
1322 }
1323
1324 Temp src00 = bld.tmp(src0.type(), 1);
1325 Temp src01 = bld.tmp(dst.type(), 1);
1326 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1327 Temp src10 = bld.tmp(src1.type(), 1);
1328 Temp src11 = bld.tmp(dst.type(), 1);
1329 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1330 if (dst.regClass() == s2) {
1331 Temp borrow = bld.tmp(s1);
1332 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), src00, src10);
1333 borrow = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(borrow)).def(1).getTemp();
1334 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1335 } else if (dst.regClass() == v2) {
1336 Temp borrow = bld.vsub32(bld.def(v1), src00, src10, true).def(1).getTemp();
1337 borrow = bld.vsub32(bld.def(v1), src01, src11, true, Operand(borrow)).def(1).getTemp();
1338 borrow = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), borrow);
1339 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1340 } else {
1341 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1342 nir_print_instr(&instr->instr, stderr);
1343 fprintf(stderr, "\n");
1344 }
1345 break;
1346 }
1347 case nir_op_imul: {
1348 if (dst.regClass() == v1) {
1349 bld.vop3(aco_opcode::v_mul_lo_u32, Definition(dst),
1350 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1351 } else if (dst.regClass() == s1) {
1352 emit_sop2_instruction(ctx, instr, aco_opcode::s_mul_i32, dst, false);
1353 } else {
1354 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1355 nir_print_instr(&instr->instr, stderr);
1356 fprintf(stderr, "\n");
1357 }
1358 break;
1359 }
1360 case nir_op_umul_high: {
1361 if (dst.regClass() == v1) {
1362 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1363 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1364 bld.sop2(aco_opcode::s_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1365 } else if (dst.regClass() == s1) {
1366 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1367 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1368 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1369 } else {
1370 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1371 nir_print_instr(&instr->instr, stderr);
1372 fprintf(stderr, "\n");
1373 }
1374 break;
1375 }
1376 case nir_op_imul_high: {
1377 if (dst.regClass() == v1) {
1378 bld.vop3(aco_opcode::v_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1379 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1380 bld.sop2(aco_opcode::s_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1381 } else if (dst.regClass() == s1) {
1382 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1383 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1384 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1385 } else {
1386 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1387 nir_print_instr(&instr->instr, stderr);
1388 fprintf(stderr, "\n");
1389 }
1390 break;
1391 }
1392 case nir_op_fmul: {
1393 if (dst.size() == 1) {
1394 emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f32, dst, true);
1395 } else if (dst.size() == 2) {
1396 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), get_alu_src(ctx, instr->src[0]),
1397 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1398 } else {
1399 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1400 nir_print_instr(&instr->instr, stderr);
1401 fprintf(stderr, "\n");
1402 }
1403 break;
1404 }
1405 case nir_op_fadd: {
1406 if (dst.size() == 1) {
1407 emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f32, dst, true);
1408 } else if (dst.size() == 2) {
1409 bld.vop3(aco_opcode::v_add_f64, Definition(dst), get_alu_src(ctx, instr->src[0]),
1410 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1411 } else {
1412 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1413 nir_print_instr(&instr->instr, stderr);
1414 fprintf(stderr, "\n");
1415 }
1416 break;
1417 }
1418 case nir_op_fsub: {
1419 Temp src0 = get_alu_src(ctx, instr->src[0]);
1420 Temp src1 = get_alu_src(ctx, instr->src[1]);
1421 if (dst.size() == 1) {
1422 if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
1423 emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f32, dst, false);
1424 else
1425 emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f32, dst, true);
1426 } else if (dst.size() == 2) {
1427 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst),
1428 get_alu_src(ctx, instr->src[0]),
1429 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1430 VOP3A_instruction* sub = static_cast<VOP3A_instruction*>(add);
1431 sub->neg[1] = true;
1432 } else {
1433 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1434 nir_print_instr(&instr->instr, stderr);
1435 fprintf(stderr, "\n");
1436 }
1437 break;
1438 }
1439 case nir_op_fmax: {
1440 if (dst.size() == 1) {
1441 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1442 } else if (dst.size() == 2) {
1443 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1444 Temp tmp = bld.vop3(aco_opcode::v_max_f64, bld.def(v2),
1445 get_alu_src(ctx, instr->src[0]),
1446 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1447 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1448 } else {
1449 bld.vop3(aco_opcode::v_max_f64, Definition(dst),
1450 get_alu_src(ctx, instr->src[0]),
1451 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1452 }
1453 } else {
1454 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1455 nir_print_instr(&instr->instr, stderr);
1456 fprintf(stderr, "\n");
1457 }
1458 break;
1459 }
1460 case nir_op_fmin: {
1461 if (dst.size() == 1) {
1462 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1463 } else if (dst.size() == 2) {
1464 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1465 Temp tmp = bld.vop3(aco_opcode::v_min_f64, bld.def(v2),
1466 get_alu_src(ctx, instr->src[0]),
1467 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1468 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1469 } else {
1470 bld.vop3(aco_opcode::v_min_f64, Definition(dst),
1471 get_alu_src(ctx, instr->src[0]),
1472 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1473 }
1474 } else {
1475 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1476 nir_print_instr(&instr->instr, stderr);
1477 fprintf(stderr, "\n");
1478 }
1479 break;
1480 }
1481 case nir_op_fmax3: {
1482 if (dst.size() == 1) {
1483 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1484 } else {
1485 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1486 nir_print_instr(&instr->instr, stderr);
1487 fprintf(stderr, "\n");
1488 }
1489 break;
1490 }
1491 case nir_op_fmin3: {
1492 if (dst.size() == 1) {
1493 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1494 } else {
1495 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1496 nir_print_instr(&instr->instr, stderr);
1497 fprintf(stderr, "\n");
1498 }
1499 break;
1500 }
1501 case nir_op_fmed3: {
1502 if (dst.size() == 1) {
1503 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1504 } else {
1505 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1506 nir_print_instr(&instr->instr, stderr);
1507 fprintf(stderr, "\n");
1508 }
1509 break;
1510 }
1511 case nir_op_umax3: {
1512 if (dst.size() == 1) {
1513 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_u32, dst);
1514 } else {
1515 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1516 nir_print_instr(&instr->instr, stderr);
1517 fprintf(stderr, "\n");
1518 }
1519 break;
1520 }
1521 case nir_op_umin3: {
1522 if (dst.size() == 1) {
1523 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_u32, dst);
1524 } else {
1525 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1526 nir_print_instr(&instr->instr, stderr);
1527 fprintf(stderr, "\n");
1528 }
1529 break;
1530 }
1531 case nir_op_umed3: {
1532 if (dst.size() == 1) {
1533 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_u32, dst);
1534 } else {
1535 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1536 nir_print_instr(&instr->instr, stderr);
1537 fprintf(stderr, "\n");
1538 }
1539 break;
1540 }
1541 case nir_op_imax3: {
1542 if (dst.size() == 1) {
1543 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_i32, dst);
1544 } else {
1545 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1546 nir_print_instr(&instr->instr, stderr);
1547 fprintf(stderr, "\n");
1548 }
1549 break;
1550 }
1551 case nir_op_imin3: {
1552 if (dst.size() == 1) {
1553 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_i32, dst);
1554 } else {
1555 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1556 nir_print_instr(&instr->instr, stderr);
1557 fprintf(stderr, "\n");
1558 }
1559 break;
1560 }
1561 case nir_op_imed3: {
1562 if (dst.size() == 1) {
1563 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_i32, dst);
1564 } else {
1565 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1566 nir_print_instr(&instr->instr, stderr);
1567 fprintf(stderr, "\n");
1568 }
1569 break;
1570 }
1571 case nir_op_cube_face_coord: {
1572 Temp in = get_alu_src(ctx, instr->src[0], 3);
1573 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1574 emit_extract_vector(ctx, in, 1, v1),
1575 emit_extract_vector(ctx, in, 2, v1) };
1576 Temp ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), src[0], src[1], src[2]);
1577 ma = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), ma);
1578 Temp sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), src[0], src[1], src[2]);
1579 Temp tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), src[0], src[1], src[2]);
1580 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, ma, Operand(0x3f000000u/*0.5*/));
1581 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, ma, Operand(0x3f000000u/*0.5*/));
1582 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), sc, tc);
1583 break;
1584 }
1585 case nir_op_cube_face_index: {
1586 Temp in = get_alu_src(ctx, instr->src[0], 3);
1587 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1588 emit_extract_vector(ctx, in, 1, v1),
1589 emit_extract_vector(ctx, in, 2, v1) };
1590 bld.vop3(aco_opcode::v_cubeid_f32, Definition(dst), src[0], src[1], src[2]);
1591 break;
1592 }
1593 case nir_op_bcsel: {
1594 emit_bcsel(ctx, instr, dst);
1595 break;
1596 }
1597 case nir_op_frsq: {
1598 if (dst.size() == 1) {
1599 emit_rsq(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1600 } else if (dst.size() == 2) {
1601 emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f64, dst);
1602 } else {
1603 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1604 nir_print_instr(&instr->instr, stderr);
1605 fprintf(stderr, "\n");
1606 }
1607 break;
1608 }
1609 case nir_op_fneg: {
1610 Temp src = get_alu_src(ctx, instr->src[0]);
1611 if (dst.size() == 1) {
1612 if (ctx->block->fp_mode.must_flush_denorms32)
1613 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1614 bld.vop2(aco_opcode::v_xor_b32, Definition(dst), Operand(0x80000000u), as_vgpr(ctx, src));
1615 } else if (dst.size() == 2) {
1616 if (ctx->block->fp_mode.must_flush_denorms16_64)
1617 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1618 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1619 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1620 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), Operand(0x80000000u), upper);
1621 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1622 } else {
1623 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1624 nir_print_instr(&instr->instr, stderr);
1625 fprintf(stderr, "\n");
1626 }
1627 break;
1628 }
1629 case nir_op_fabs: {
1630 Temp src = get_alu_src(ctx, instr->src[0]);
1631 if (dst.size() == 1) {
1632 if (ctx->block->fp_mode.must_flush_denorms32)
1633 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1634 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0x7FFFFFFFu), as_vgpr(ctx, src));
1635 } else if (dst.size() == 2) {
1636 if (ctx->block->fp_mode.must_flush_denorms16_64)
1637 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1638 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1639 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1640 upper = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7FFFFFFFu), upper);
1641 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1642 } else {
1643 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1644 nir_print_instr(&instr->instr, stderr);
1645 fprintf(stderr, "\n");
1646 }
1647 break;
1648 }
1649 case nir_op_fsat: {
1650 Temp src = get_alu_src(ctx, instr->src[0]);
1651 if (dst.size() == 1) {
1652 bld.vop3(aco_opcode::v_med3_f32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
1653 /* apparently, it is not necessary to flush denorms if this instruction is used with these operands */
1654 // TODO: confirm that this holds under any circumstances
1655 } else if (dst.size() == 2) {
1656 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src, Operand(0u));
1657 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(add);
1658 vop3->clamp = true;
1659 } else {
1660 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1661 nir_print_instr(&instr->instr, stderr);
1662 fprintf(stderr, "\n");
1663 }
1664 break;
1665 }
1666 case nir_op_flog2: {
1667 if (dst.size() == 1) {
1668 emit_log2(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1669 } else {
1670 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1671 nir_print_instr(&instr->instr, stderr);
1672 fprintf(stderr, "\n");
1673 }
1674 break;
1675 }
1676 case nir_op_frcp: {
1677 if (dst.size() == 1) {
1678 emit_rcp(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1679 } else if (dst.size() == 2) {
1680 emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f64, dst);
1681 } else {
1682 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1683 nir_print_instr(&instr->instr, stderr);
1684 fprintf(stderr, "\n");
1685 }
1686 break;
1687 }
1688 case nir_op_fexp2: {
1689 if (dst.size() == 1) {
1690 emit_vop1_instruction(ctx, instr, aco_opcode::v_exp_f32, dst);
1691 } else {
1692 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1693 nir_print_instr(&instr->instr, stderr);
1694 fprintf(stderr, "\n");
1695 }
1696 break;
1697 }
1698 case nir_op_fsqrt: {
1699 if (dst.size() == 1) {
1700 emit_sqrt(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1701 } else if (dst.size() == 2) {
1702 emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f64, dst);
1703 } else {
1704 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1705 nir_print_instr(&instr->instr, stderr);
1706 fprintf(stderr, "\n");
1707 }
1708 break;
1709 }
1710 case nir_op_ffract: {
1711 if (dst.size() == 1) {
1712 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f32, dst);
1713 } else if (dst.size() == 2) {
1714 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f64, dst);
1715 } else {
1716 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1717 nir_print_instr(&instr->instr, stderr);
1718 fprintf(stderr, "\n");
1719 }
1720 break;
1721 }
1722 case nir_op_ffloor: {
1723 if (dst.size() == 1) {
1724 emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f32, dst);
1725 } else if (dst.size() == 2) {
1726 emit_floor_f64(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1727 } else {
1728 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1729 nir_print_instr(&instr->instr, stderr);
1730 fprintf(stderr, "\n");
1731 }
1732 break;
1733 }
1734 case nir_op_fceil: {
1735 if (dst.size() == 1) {
1736 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f32, dst);
1737 } else if (dst.size() == 2) {
1738 if (ctx->options->chip_class >= GFX7) {
1739 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f64, dst);
1740 } else {
1741 /* GFX6 doesn't support V_CEIL_F64, lower it. */
1742 Temp src0 = get_alu_src(ctx, instr->src[0]);
1743
1744 /* trunc = trunc(src0)
1745 * if (src0 > 0.0 && src0 != trunc)
1746 * trunc += 1.0
1747 */
1748 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src0);
1749 Temp tmp0 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.def(bld.lm), src0, Operand(0u));
1750 Temp tmp1 = bld.vopc(aco_opcode::v_cmp_lg_f64, bld.hint_vcc(bld.def(bld.lm)), src0, trunc);
1751 Temp cond = bld.sop2(aco_opcode::s_and_b64, bld.hint_vcc(bld.def(s2)), bld.def(s1, scc), tmp0, tmp1);
1752 Temp add = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), bld.copy(bld.def(v1), Operand(0u)), bld.copy(bld.def(v1), Operand(0x3ff00000u)), cond);
1753 add = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), bld.copy(bld.def(v1), Operand(0u)), add);
1754 bld.vop3(aco_opcode::v_add_f64, Definition(dst), trunc, add);
1755 }
1756 } else {
1757 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1758 nir_print_instr(&instr->instr, stderr);
1759 fprintf(stderr, "\n");
1760 }
1761 break;
1762 }
1763 case nir_op_ftrunc: {
1764 if (dst.size() == 1) {
1765 emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f32, dst);
1766 } else if (dst.size() == 2) {
1767 emit_trunc_f64(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1768 } else {
1769 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1770 nir_print_instr(&instr->instr, stderr);
1771 fprintf(stderr, "\n");
1772 }
1773 break;
1774 }
1775 case nir_op_fround_even: {
1776 if (dst.size() == 1) {
1777 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f32, dst);
1778 } else if (dst.size() == 2) {
1779 if (ctx->options->chip_class >= GFX7) {
1780 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f64, dst);
1781 } else {
1782 /* GFX6 doesn't support V_RNDNE_F64, lower it. */
1783 Temp src0 = get_alu_src(ctx, instr->src[0]);
1784
1785 Temp src0_lo = bld.tmp(v1), src0_hi = bld.tmp(v1);
1786 bld.pseudo(aco_opcode::p_split_vector, Definition(src0_lo), Definition(src0_hi), src0);
1787
1788 Temp bitmask = bld.sop1(aco_opcode::s_brev_b32, bld.def(s1), bld.copy(bld.def(s1), Operand(-2u)));
1789 Temp bfi = bld.vop3(aco_opcode::v_bfi_b32, bld.def(v1), bitmask, bld.copy(bld.def(v1), Operand(0x43300000u)), as_vgpr(ctx, src0_hi));
1790 Temp tmp = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), src0, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
1791 Instruction *sub = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), tmp, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
1792 static_cast<VOP3A_instruction*>(sub)->neg[1] = true;
1793 tmp = sub->definitions[0].getTemp();
1794
1795 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x432fffffu));
1796 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.hint_vcc(bld.def(bld.lm)), src0, v);
1797 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
1798 Temp cond = vop3->definitions[0].getTemp();
1799
1800 Temp tmp_lo = bld.tmp(v1), tmp_hi = bld.tmp(v1);
1801 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp_lo), Definition(tmp_hi), tmp);
1802 Temp dst0 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_lo, as_vgpr(ctx, src0_lo), cond);
1803 Temp dst1 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_hi, as_vgpr(ctx, src0_hi), cond);
1804
1805 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1806 }
1807 } else {
1808 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1809 nir_print_instr(&instr->instr, stderr);
1810 fprintf(stderr, "\n");
1811 }
1812 break;
1813 }
1814 case nir_op_fsin:
1815 case nir_op_fcos: {
1816 Temp src = get_alu_src(ctx, instr->src[0]);
1817 aco_ptr<Instruction> norm;
1818 if (dst.size() == 1) {
1819 Temp half_pi = bld.copy(bld.def(s1), Operand(0x3e22f983u));
1820 Temp tmp = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), half_pi, as_vgpr(ctx, src));
1821
1822 /* before GFX9, v_sin_f32 and v_cos_f32 had a valid input domain of [-256, +256] */
1823 if (ctx->options->chip_class < GFX9)
1824 tmp = bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), tmp);
1825
1826 aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f32 : aco_opcode::v_cos_f32;
1827 bld.vop1(opcode, Definition(dst), tmp);
1828 } else {
1829 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1830 nir_print_instr(&instr->instr, stderr);
1831 fprintf(stderr, "\n");
1832 }
1833 break;
1834 }
1835 case nir_op_ldexp: {
1836 if (dst.size() == 1) {
1837 bld.vop3(aco_opcode::v_ldexp_f32, Definition(dst),
1838 as_vgpr(ctx, get_alu_src(ctx, instr->src[0])),
1839 get_alu_src(ctx, instr->src[1]));
1840 } else if (dst.size() == 2) {
1841 bld.vop3(aco_opcode::v_ldexp_f64, Definition(dst),
1842 as_vgpr(ctx, get_alu_src(ctx, instr->src[0])),
1843 get_alu_src(ctx, instr->src[1]));
1844 } else {
1845 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1846 nir_print_instr(&instr->instr, stderr);
1847 fprintf(stderr, "\n");
1848 }
1849 break;
1850 }
1851 case nir_op_frexp_sig: {
1852 if (dst.size() == 1) {
1853 bld.vop1(aco_opcode::v_frexp_mant_f32, Definition(dst),
1854 get_alu_src(ctx, instr->src[0]));
1855 } else if (dst.size() == 2) {
1856 bld.vop1(aco_opcode::v_frexp_mant_f64, Definition(dst),
1857 get_alu_src(ctx, instr->src[0]));
1858 } else {
1859 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1860 nir_print_instr(&instr->instr, stderr);
1861 fprintf(stderr, "\n");
1862 }
1863 break;
1864 }
1865 case nir_op_frexp_exp: {
1866 if (instr->src[0].src.ssa->bit_size == 32) {
1867 bld.vop1(aco_opcode::v_frexp_exp_i32_f32, Definition(dst),
1868 get_alu_src(ctx, instr->src[0]));
1869 } else if (instr->src[0].src.ssa->bit_size == 64) {
1870 bld.vop1(aco_opcode::v_frexp_exp_i32_f64, Definition(dst),
1871 get_alu_src(ctx, instr->src[0]));
1872 } else {
1873 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1874 nir_print_instr(&instr->instr, stderr);
1875 fprintf(stderr, "\n");
1876 }
1877 break;
1878 }
1879 case nir_op_fsign: {
1880 Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
1881 if (dst.size() == 1) {
1882 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1883 src = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0x3f800000u), src, cond);
1884 cond = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1885 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0xbf800000u), src, cond);
1886 } else if (dst.size() == 2) {
1887 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1888 Temp tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0x3FF00000u));
1889 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, emit_extract_vector(ctx, src, 1, v1), cond);
1890
1891 cond = bld.vopc(aco_opcode::v_cmp_le_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1892 tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0xBFF00000u));
1893 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, upper, cond);
1894
1895 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
1896 } else {
1897 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1898 nir_print_instr(&instr->instr, stderr);
1899 fprintf(stderr, "\n");
1900 }
1901 break;
1902 }
1903 case nir_op_f2f32: {
1904 if (instr->src[0].src.ssa->bit_size == 64) {
1905 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f64, dst);
1906 } else {
1907 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1908 nir_print_instr(&instr->instr, stderr);
1909 fprintf(stderr, "\n");
1910 }
1911 break;
1912 }
1913 case nir_op_f2f64: {
1914 if (instr->src[0].src.ssa->bit_size == 32) {
1915 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_f32, dst);
1916 } else {
1917 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1918 nir_print_instr(&instr->instr, stderr);
1919 fprintf(stderr, "\n");
1920 }
1921 break;
1922 }
1923 case nir_op_i2f32: {
1924 assert(dst.size() == 1);
1925 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_i32, dst);
1926 break;
1927 }
1928 case nir_op_i2f64: {
1929 if (instr->src[0].src.ssa->bit_size == 32) {
1930 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_i32, dst);
1931 } else if (instr->src[0].src.ssa->bit_size == 64) {
1932 Temp src = get_alu_src(ctx, instr->src[0]);
1933 RegClass rc = RegClass(src.type(), 1);
1934 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
1935 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1936 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
1937 upper = bld.vop1(aco_opcode::v_cvt_f64_i32, bld.def(v2), upper);
1938 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
1939 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
1940
1941 } else {
1942 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1943 nir_print_instr(&instr->instr, stderr);
1944 fprintf(stderr, "\n");
1945 }
1946 break;
1947 }
1948 case nir_op_u2f32: {
1949 assert(dst.size() == 1);
1950 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_u32, dst);
1951 break;
1952 }
1953 case nir_op_u2f64: {
1954 if (instr->src[0].src.ssa->bit_size == 32) {
1955 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_u32, dst);
1956 } else if (instr->src[0].src.ssa->bit_size == 64) {
1957 Temp src = get_alu_src(ctx, instr->src[0]);
1958 RegClass rc = RegClass(src.type(), 1);
1959 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
1960 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1961 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
1962 upper = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), upper);
1963 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
1964 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
1965 } else {
1966 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1967 nir_print_instr(&instr->instr, stderr);
1968 fprintf(stderr, "\n");
1969 }
1970 break;
1971 }
1972 case nir_op_f2i32: {
1973 Temp src = get_alu_src(ctx, instr->src[0]);
1974 if (instr->src[0].src.ssa->bit_size == 32) {
1975 if (dst.type() == RegType::vgpr)
1976 bld.vop1(aco_opcode::v_cvt_i32_f32, Definition(dst), src);
1977 else
1978 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
1979 bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), src));
1980
1981 } else if (instr->src[0].src.ssa->bit_size == 64) {
1982 if (dst.type() == RegType::vgpr)
1983 bld.vop1(aco_opcode::v_cvt_i32_f64, Definition(dst), src);
1984 else
1985 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
1986 bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), src));
1987
1988 } else {
1989 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1990 nir_print_instr(&instr->instr, stderr);
1991 fprintf(stderr, "\n");
1992 }
1993 break;
1994 }
1995 case nir_op_f2u32: {
1996 Temp src = get_alu_src(ctx, instr->src[0]);
1997 if (instr->src[0].src.ssa->bit_size == 32) {
1998 if (dst.type() == RegType::vgpr)
1999 bld.vop1(aco_opcode::v_cvt_u32_f32, Definition(dst), src);
2000 else
2001 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2002 bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), src));
2003
2004 } else if (instr->src[0].src.ssa->bit_size == 64) {
2005 if (dst.type() == RegType::vgpr)
2006 bld.vop1(aco_opcode::v_cvt_u32_f64, Definition(dst), src);
2007 else
2008 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2009 bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), src));
2010
2011 } else {
2012 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2013 nir_print_instr(&instr->instr, stderr);
2014 fprintf(stderr, "\n");
2015 }
2016 break;
2017 }
2018 case nir_op_f2i64: {
2019 Temp src = get_alu_src(ctx, instr->src[0]);
2020 if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::vgpr) {
2021 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2022 exponent = bld.vop3(aco_opcode::v_med3_i32, bld.def(v1), Operand(0x0u), exponent, Operand(64u));
2023 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2024 Temp sign = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
2025 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2026 mantissa = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(7u), mantissa);
2027 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2028 Temp new_exponent = bld.tmp(v1);
2029 Temp borrow = bld.vsub32(Definition(new_exponent), Operand(63u), exponent, true).def(1).getTemp();
2030 if (ctx->program->chip_class >= GFX8)
2031 mantissa = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), new_exponent, mantissa);
2032 else
2033 mantissa = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), mantissa, new_exponent);
2034 Temp saturate = bld.vop1(aco_opcode::v_bfrev_b32, bld.def(v1), Operand(0xfffffffeu));
2035 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2036 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2037 lower = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), lower, Operand(0xffffffffu), borrow);
2038 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), upper, saturate, borrow);
2039 lower = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, lower);
2040 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, upper);
2041 Temp new_lower = bld.tmp(v1);
2042 borrow = bld.vsub32(Definition(new_lower), lower, sign, true).def(1).getTemp();
2043 Temp new_upper = bld.vsub32(bld.def(v1), upper, sign, false, borrow);
2044 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), new_lower, new_upper);
2045
2046 } else if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::sgpr) {
2047 if (src.type() == RegType::vgpr)
2048 src = bld.as_uniform(src);
2049 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2050 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2051 exponent = bld.sop2(aco_opcode::s_max_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2052 exponent = bld.sop2(aco_opcode::s_min_u32, bld.def(s1), bld.def(s1, scc), Operand(64u), exponent);
2053 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2054 Temp sign = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
2055 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2056 mantissa = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), mantissa, Operand(7u));
2057 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2058 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(63u), exponent);
2059 mantissa = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent);
2060 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), exponent, Operand(0xffffffffu)); // exp >= 64
2061 Temp saturate = bld.sop1(aco_opcode::s_brev_b64, bld.def(s2), Operand(0xfffffffeu));
2062 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), saturate, mantissa, cond);
2063 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2064 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2065 lower = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, lower);
2066 upper = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, upper);
2067 Temp borrow = bld.tmp(s1);
2068 lower = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), lower, sign);
2069 upper = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), upper, sign, borrow);
2070 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2071
2072 } else if (instr->src[0].src.ssa->bit_size == 64) {
2073 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2074 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2075 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2076 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2077 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2078 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2079 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2080 Temp upper = bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), floor);
2081 if (dst.type() == RegType::sgpr) {
2082 lower = bld.as_uniform(lower);
2083 upper = bld.as_uniform(upper);
2084 }
2085 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2086
2087 } else {
2088 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2089 nir_print_instr(&instr->instr, stderr);
2090 fprintf(stderr, "\n");
2091 }
2092 break;
2093 }
2094 case nir_op_f2u64: {
2095 Temp src = get_alu_src(ctx, instr->src[0]);
2096 if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::vgpr) {
2097 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2098 Temp exponent_in_range = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(64u), exponent);
2099 exponent = bld.vop2(aco_opcode::v_max_i32, bld.def(v1), Operand(0x0u), exponent);
2100 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2101 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2102 Temp exponent_small = bld.vsub32(bld.def(v1), Operand(24u), exponent);
2103 Temp small = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), exponent_small, mantissa);
2104 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2105 Temp new_exponent = bld.tmp(v1);
2106 Temp cond_small = bld.vsub32(Definition(new_exponent), exponent, Operand(24u), true).def(1).getTemp();
2107 if (ctx->program->chip_class >= GFX8)
2108 mantissa = bld.vop3(aco_opcode::v_lshlrev_b64, bld.def(v2), new_exponent, mantissa);
2109 else
2110 mantissa = bld.vop3(aco_opcode::v_lshl_b64, bld.def(v2), mantissa, new_exponent);
2111 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2112 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2113 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), lower, small, cond_small);
2114 upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), upper, Operand(0u), cond_small);
2115 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), lower, exponent_in_range);
2116 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), upper, exponent_in_range);
2117 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2118
2119 } else if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::sgpr) {
2120 if (src.type() == RegType::vgpr)
2121 src = bld.as_uniform(src);
2122 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2123 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2124 exponent = bld.sop2(aco_opcode::s_max_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2125 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2126 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2127 Temp exponent_small = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(24u), exponent);
2128 Temp small = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), mantissa, exponent_small);
2129 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2130 Temp exponent_large = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(24u));
2131 mantissa = bld.sop2(aco_opcode::s_lshl_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent_large);
2132 Temp cond = bld.sopc(aco_opcode::s_cmp_ge_i32, bld.def(s1, scc), Operand(64u), exponent);
2133 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), mantissa, Operand(0xffffffffu), cond);
2134 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2135 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2136 Temp cond_small = bld.sopc(aco_opcode::s_cmp_le_i32, bld.def(s1, scc), exponent, Operand(24u));
2137 lower = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), small, lower, cond_small);
2138 upper = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), Operand(0u), upper, cond_small);
2139 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2140
2141 } else if (instr->src[0].src.ssa->bit_size == 64) {
2142 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2143 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2144 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2145 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2146 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2147 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2148 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2149 Temp upper = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), floor);
2150 if (dst.type() == RegType::sgpr) {
2151 lower = bld.as_uniform(lower);
2152 upper = bld.as_uniform(upper);
2153 }
2154 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2155
2156 } else {
2157 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2158 nir_print_instr(&instr->instr, stderr);
2159 fprintf(stderr, "\n");
2160 }
2161 break;
2162 }
2163 case nir_op_b2f32: {
2164 Temp src = get_alu_src(ctx, instr->src[0]);
2165 assert(src.regClass() == bld.lm);
2166
2167 if (dst.regClass() == s1) {
2168 src = bool_to_scalar_condition(ctx, src);
2169 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3f800000u), src);
2170 } else if (dst.regClass() == v1) {
2171 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
2172 } else {
2173 unreachable("Wrong destination register class for nir_op_b2f32.");
2174 }
2175 break;
2176 }
2177 case nir_op_b2f64: {
2178 Temp src = get_alu_src(ctx, instr->src[0]);
2179 assert(src.regClass() == bld.lm);
2180
2181 if (dst.regClass() == s2) {
2182 src = bool_to_scalar_condition(ctx, src);
2183 bld.sop2(aco_opcode::s_cselect_b64, Definition(dst), Operand(0x3f800000u), Operand(0u), bld.scc(src));
2184 } else if (dst.regClass() == v2) {
2185 Temp one = bld.vop1(aco_opcode::v_mov_b32, bld.def(v2), Operand(0x3FF00000u));
2186 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), one, src);
2187 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
2188 } else {
2189 unreachable("Wrong destination register class for nir_op_b2f64.");
2190 }
2191 break;
2192 }
2193 case nir_op_i2i32: {
2194 Temp src = get_alu_src(ctx, instr->src[0]);
2195 if (instr->src[0].src.ssa->bit_size == 64) {
2196 /* we can actually just say dst = src, as it would map the lower register */
2197 emit_extract_vector(ctx, src, 0, dst);
2198 } else {
2199 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2200 nir_print_instr(&instr->instr, stderr);
2201 fprintf(stderr, "\n");
2202 }
2203 break;
2204 }
2205 case nir_op_u2u32: {
2206 Temp src = get_alu_src(ctx, instr->src[0]);
2207 if (instr->src[0].src.ssa->bit_size == 16) {
2208 if (dst.regClass() == s1) {
2209 bld.sop2(aco_opcode::s_and_b32, Definition(dst), bld.def(s1, scc), Operand(0xFFFFu), src);
2210 } else {
2211 // TODO: do better with SDWA
2212 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0xFFFFu), src);
2213 }
2214 } else if (instr->src[0].src.ssa->bit_size == 64) {
2215 /* we can actually just say dst = src, as it would map the lower register */
2216 emit_extract_vector(ctx, src, 0, dst);
2217 } else {
2218 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2219 nir_print_instr(&instr->instr, stderr);
2220 fprintf(stderr, "\n");
2221 }
2222 break;
2223 }
2224 case nir_op_i2i64: {
2225 Temp src = get_alu_src(ctx, instr->src[0]);
2226 if (src.regClass() == s1) {
2227 Temp high = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
2228 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, high);
2229 } else if (src.regClass() == v1) {
2230 Temp high = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
2231 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, high);
2232 } else {
2233 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2234 nir_print_instr(&instr->instr, stderr);
2235 fprintf(stderr, "\n");
2236 }
2237 break;
2238 }
2239 case nir_op_u2u64: {
2240 Temp src = get_alu_src(ctx, instr->src[0]);
2241 if (instr->src[0].src.ssa->bit_size == 32) {
2242 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, Operand(0u));
2243 } else {
2244 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2245 nir_print_instr(&instr->instr, stderr);
2246 fprintf(stderr, "\n");
2247 }
2248 break;
2249 }
2250 case nir_op_b2i32: {
2251 Temp src = get_alu_src(ctx, instr->src[0]);
2252 assert(src.regClass() == bld.lm);
2253
2254 if (dst.regClass() == s1) {
2255 // TODO: in a post-RA optimization, we can check if src is in VCC, and directly use VCCNZ
2256 bool_to_scalar_condition(ctx, src, dst);
2257 } else if (dst.regClass() == v1) {
2258 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), src);
2259 } else {
2260 unreachable("Invalid register class for b2i32");
2261 }
2262 break;
2263 }
2264 case nir_op_i2b1: {
2265 Temp src = get_alu_src(ctx, instr->src[0]);
2266 assert(dst.regClass() == bld.lm);
2267
2268 if (src.type() == RegType::vgpr) {
2269 assert(src.regClass() == v1 || src.regClass() == v2);
2270 assert(dst.regClass() == bld.lm);
2271 bld.vopc(src.size() == 2 ? aco_opcode::v_cmp_lg_u64 : aco_opcode::v_cmp_lg_u32,
2272 Definition(dst), Operand(0u), src).def(0).setHint(vcc);
2273 } else {
2274 assert(src.regClass() == s1 || src.regClass() == s2);
2275 Temp tmp;
2276 if (src.regClass() == s2 && ctx->program->chip_class <= GFX7) {
2277 tmp = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), Operand(0u), src).def(1).getTemp();
2278 } else {
2279 tmp = bld.sopc(src.size() == 2 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::s_cmp_lg_u32,
2280 bld.scc(bld.def(s1)), Operand(0u), src);
2281 }
2282 bool_to_vector_condition(ctx, tmp, dst);
2283 }
2284 break;
2285 }
2286 case nir_op_pack_64_2x32_split: {
2287 Temp src0 = get_alu_src(ctx, instr->src[0]);
2288 Temp src1 = get_alu_src(ctx, instr->src[1]);
2289
2290 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
2291 break;
2292 }
2293 case nir_op_unpack_64_2x32_split_x:
2294 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
2295 break;
2296 case nir_op_unpack_64_2x32_split_y:
2297 bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
2298 break;
2299 case nir_op_pack_half_2x16: {
2300 Temp src = get_alu_src(ctx, instr->src[0], 2);
2301
2302 if (dst.regClass() == v1) {
2303 Temp src0 = bld.tmp(v1);
2304 Temp src1 = bld.tmp(v1);
2305 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
2306 if (!ctx->block->fp_mode.care_about_round32 || ctx->block->fp_mode.round32 == fp_round_tz)
2307 bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, Definition(dst), src0, src1);
2308 else
2309 bld.vop3(aco_opcode::v_cvt_pk_u16_u32, Definition(dst),
2310 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src0),
2311 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src1));
2312 } else {
2313 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2314 nir_print_instr(&instr->instr, stderr);
2315 fprintf(stderr, "\n");
2316 }
2317 break;
2318 }
2319 case nir_op_unpack_half_2x16_split_x: {
2320 if (dst.regClass() == v1) {
2321 Builder bld(ctx->program, ctx->block);
2322 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst), get_alu_src(ctx, instr->src[0]));
2323 } else {
2324 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2325 nir_print_instr(&instr->instr, stderr);
2326 fprintf(stderr, "\n");
2327 }
2328 break;
2329 }
2330 case nir_op_unpack_half_2x16_split_y: {
2331 if (dst.regClass() == v1) {
2332 Builder bld(ctx->program, ctx->block);
2333 /* TODO: use SDWA here */
2334 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst),
2335 bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), as_vgpr(ctx, get_alu_src(ctx, instr->src[0]))));
2336 } else {
2337 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2338 nir_print_instr(&instr->instr, stderr);
2339 fprintf(stderr, "\n");
2340 }
2341 break;
2342 }
2343 case nir_op_fquantize2f16: {
2344 Temp src = get_alu_src(ctx, instr->src[0]);
2345 Temp f16 = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), src);
2346 Temp f32, cmp_res;
2347
2348 if (ctx->program->chip_class >= GFX8) {
2349 Temp mask = bld.copy(bld.def(s1), Operand(0x36Fu)); /* value is NOT negative/positive denormal value */
2350 cmp_res = bld.vopc_e64(aco_opcode::v_cmp_class_f16, bld.hint_vcc(bld.def(bld.lm)), f16, mask);
2351 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2352 } else {
2353 /* 0x38800000 is smallest half float value (2^-14) in 32-bit float,
2354 * so compare the result and flush to 0 if it's smaller.
2355 */
2356 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2357 Temp smallest = bld.copy(bld.def(s1), Operand(0x38800000u));
2358 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), f32, smallest);
2359 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
2360 cmp_res = vop3->definitions[0].getTemp();
2361 }
2362
2363 if (ctx->block->fp_mode.preserve_signed_zero_inf_nan32 || ctx->program->chip_class < GFX8) {
2364 Temp copysign_0 = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0u), as_vgpr(ctx, src));
2365 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), copysign_0, f32, cmp_res);
2366 } else {
2367 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), f32, cmp_res);
2368 }
2369 break;
2370 }
2371 case nir_op_bfm: {
2372 Temp bits = get_alu_src(ctx, instr->src[0]);
2373 Temp offset = get_alu_src(ctx, instr->src[1]);
2374
2375 if (dst.regClass() == s1) {
2376 bld.sop2(aco_opcode::s_bfm_b32, Definition(dst), bits, offset);
2377 } else if (dst.regClass() == v1) {
2378 bld.vop3(aco_opcode::v_bfm_b32, Definition(dst), bits, offset);
2379 } else {
2380 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2381 nir_print_instr(&instr->instr, stderr);
2382 fprintf(stderr, "\n");
2383 }
2384 break;
2385 }
2386 case nir_op_bitfield_select: {
2387 /* (mask & insert) | (~mask & base) */
2388 Temp bitmask = get_alu_src(ctx, instr->src[0]);
2389 Temp insert = get_alu_src(ctx, instr->src[1]);
2390 Temp base = get_alu_src(ctx, instr->src[2]);
2391
2392 /* dst = (insert & bitmask) | (base & ~bitmask) */
2393 if (dst.regClass() == s1) {
2394 aco_ptr<Instruction> sop2;
2395 nir_const_value* const_bitmask = nir_src_as_const_value(instr->src[0].src);
2396 nir_const_value* const_insert = nir_src_as_const_value(instr->src[1].src);
2397 Operand lhs;
2398 if (const_insert && const_bitmask) {
2399 lhs = Operand(const_insert->u32 & const_bitmask->u32);
2400 } else {
2401 insert = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), insert, bitmask);
2402 lhs = Operand(insert);
2403 }
2404
2405 Operand rhs;
2406 nir_const_value* const_base = nir_src_as_const_value(instr->src[2].src);
2407 if (const_base && const_bitmask) {
2408 rhs = Operand(const_base->u32 & ~const_bitmask->u32);
2409 } else {
2410 base = bld.sop2(aco_opcode::s_andn2_b32, bld.def(s1), bld.def(s1, scc), base, bitmask);
2411 rhs = Operand(base);
2412 }
2413
2414 bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), rhs, lhs);
2415
2416 } else if (dst.regClass() == v1) {
2417 if (base.type() == RegType::sgpr && (bitmask.type() == RegType::sgpr || (insert.type() == RegType::sgpr)))
2418 base = as_vgpr(ctx, base);
2419 if (insert.type() == RegType::sgpr && bitmask.type() == RegType::sgpr)
2420 insert = as_vgpr(ctx, insert);
2421
2422 bld.vop3(aco_opcode::v_bfi_b32, Definition(dst), bitmask, insert, base);
2423
2424 } else {
2425 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2426 nir_print_instr(&instr->instr, stderr);
2427 fprintf(stderr, "\n");
2428 }
2429 break;
2430 }
2431 case nir_op_ubfe:
2432 case nir_op_ibfe: {
2433 Temp base = get_alu_src(ctx, instr->src[0]);
2434 Temp offset = get_alu_src(ctx, instr->src[1]);
2435 Temp bits = get_alu_src(ctx, instr->src[2]);
2436
2437 if (dst.type() == RegType::sgpr) {
2438 Operand extract;
2439 nir_const_value* const_offset = nir_src_as_const_value(instr->src[1].src);
2440 nir_const_value* const_bits = nir_src_as_const_value(instr->src[2].src);
2441 if (const_offset && const_bits) {
2442 uint32_t const_extract = (const_bits->u32 << 16) | const_offset->u32;
2443 extract = Operand(const_extract);
2444 } else {
2445 Operand width;
2446 if (const_bits) {
2447 width = Operand(const_bits->u32 << 16);
2448 } else {
2449 width = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), bits, Operand(16u));
2450 }
2451 extract = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), offset, width);
2452 }
2453
2454 aco_opcode opcode;
2455 if (dst.regClass() == s1) {
2456 if (instr->op == nir_op_ubfe)
2457 opcode = aco_opcode::s_bfe_u32;
2458 else
2459 opcode = aco_opcode::s_bfe_i32;
2460 } else if (dst.regClass() == s2) {
2461 if (instr->op == nir_op_ubfe)
2462 opcode = aco_opcode::s_bfe_u64;
2463 else
2464 opcode = aco_opcode::s_bfe_i64;
2465 } else {
2466 unreachable("Unsupported BFE bit size");
2467 }
2468
2469 bld.sop2(opcode, Definition(dst), bld.def(s1, scc), base, extract);
2470
2471 } else {
2472 aco_opcode opcode;
2473 if (dst.regClass() == v1) {
2474 if (instr->op == nir_op_ubfe)
2475 opcode = aco_opcode::v_bfe_u32;
2476 else
2477 opcode = aco_opcode::v_bfe_i32;
2478 } else {
2479 unreachable("Unsupported BFE bit size");
2480 }
2481
2482 emit_vop3a_instruction(ctx, instr, opcode, dst);
2483 }
2484 break;
2485 }
2486 case nir_op_bit_count: {
2487 Temp src = get_alu_src(ctx, instr->src[0]);
2488 if (src.regClass() == s1) {
2489 bld.sop1(aco_opcode::s_bcnt1_i32_b32, Definition(dst), bld.def(s1, scc), src);
2490 } else if (src.regClass() == v1) {
2491 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst), src, Operand(0u));
2492 } else if (src.regClass() == v2) {
2493 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst),
2494 emit_extract_vector(ctx, src, 1, v1),
2495 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1),
2496 emit_extract_vector(ctx, src, 0, v1), Operand(0u)));
2497 } else if (src.regClass() == s2) {
2498 bld.sop1(aco_opcode::s_bcnt1_i32_b64, Definition(dst), bld.def(s1, scc), src);
2499 } else {
2500 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2501 nir_print_instr(&instr->instr, stderr);
2502 fprintf(stderr, "\n");
2503 }
2504 break;
2505 }
2506 case nir_op_flt: {
2507 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_f32, aco_opcode::v_cmp_lt_f64);
2508 break;
2509 }
2510 case nir_op_fge: {
2511 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_f32, aco_opcode::v_cmp_ge_f64);
2512 break;
2513 }
2514 case nir_op_feq: {
2515 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_f32, aco_opcode::v_cmp_eq_f64);
2516 break;
2517 }
2518 case nir_op_fne: {
2519 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_neq_f32, aco_opcode::v_cmp_neq_f64);
2520 break;
2521 }
2522 case nir_op_ilt: {
2523 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_i32, aco_opcode::v_cmp_lt_i64, aco_opcode::s_cmp_lt_i32);
2524 break;
2525 }
2526 case nir_op_ige: {
2527 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_i32, aco_opcode::v_cmp_ge_i64, aco_opcode::s_cmp_ge_i32);
2528 break;
2529 }
2530 case nir_op_ieq: {
2531 if (instr->src[0].src.ssa->bit_size == 1)
2532 emit_boolean_logic(ctx, instr, Builder::s_xnor, dst);
2533 else
2534 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_i32, aco_opcode::v_cmp_eq_i64, aco_opcode::s_cmp_eq_i32,
2535 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_eq_u64 : aco_opcode::num_opcodes);
2536 break;
2537 }
2538 case nir_op_ine: {
2539 if (instr->src[0].src.ssa->bit_size == 1)
2540 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
2541 else
2542 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lg_i32, aco_opcode::v_cmp_lg_i64, aco_opcode::s_cmp_lg_i32,
2543 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::num_opcodes);
2544 break;
2545 }
2546 case nir_op_ult: {
2547 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_u32, aco_opcode::v_cmp_lt_u64, aco_opcode::s_cmp_lt_u32);
2548 break;
2549 }
2550 case nir_op_uge: {
2551 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_u32, aco_opcode::v_cmp_ge_u64, aco_opcode::s_cmp_ge_u32);
2552 break;
2553 }
2554 case nir_op_fddx:
2555 case nir_op_fddy:
2556 case nir_op_fddx_fine:
2557 case nir_op_fddy_fine:
2558 case nir_op_fddx_coarse:
2559 case nir_op_fddy_coarse: {
2560 Temp src = get_alu_src(ctx, instr->src[0]);
2561 uint16_t dpp_ctrl1, dpp_ctrl2;
2562 if (instr->op == nir_op_fddx_fine) {
2563 dpp_ctrl1 = dpp_quad_perm(0, 0, 2, 2);
2564 dpp_ctrl2 = dpp_quad_perm(1, 1, 3, 3);
2565 } else if (instr->op == nir_op_fddy_fine) {
2566 dpp_ctrl1 = dpp_quad_perm(0, 1, 0, 1);
2567 dpp_ctrl2 = dpp_quad_perm(2, 3, 2, 3);
2568 } else {
2569 dpp_ctrl1 = dpp_quad_perm(0, 0, 0, 0);
2570 if (instr->op == nir_op_fddx || instr->op == nir_op_fddx_coarse)
2571 dpp_ctrl2 = dpp_quad_perm(1, 1, 1, 1);
2572 else
2573 dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
2574 }
2575
2576 Temp tmp;
2577 if (ctx->program->chip_class >= GFX8) {
2578 Temp tl = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl1);
2579 tmp = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), src, tl, dpp_ctrl2);
2580 } else {
2581 Temp tl = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl1);
2582 Temp tr = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl2);
2583 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), tr, tl);
2584 }
2585 emit_wqm(ctx, tmp, dst, true);
2586 break;
2587 }
2588 default:
2589 fprintf(stderr, "Unknown NIR ALU instr: ");
2590 nir_print_instr(&instr->instr, stderr);
2591 fprintf(stderr, "\n");
2592 }
2593 }
2594
2595 void visit_load_const(isel_context *ctx, nir_load_const_instr *instr)
2596 {
2597 Temp dst = get_ssa_temp(ctx, &instr->def);
2598
2599 // TODO: we really want to have the resulting type as this would allow for 64bit literals
2600 // which get truncated the lsb if double and msb if int
2601 // for now, we only use s_mov_b64 with 64bit inline constants
2602 assert(instr->def.num_components == 1 && "Vector load_const should be lowered to scalar.");
2603 assert(dst.type() == RegType::sgpr);
2604
2605 Builder bld(ctx->program, ctx->block);
2606
2607 if (instr->def.bit_size == 1) {
2608 assert(dst.regClass() == bld.lm);
2609 int val = instr->value[0].b ? -1 : 0;
2610 Operand op = bld.lm.size() == 1 ? Operand((uint32_t) val) : Operand((uint64_t) val);
2611 bld.sop1(Builder::s_mov, Definition(dst), op);
2612 } else if (dst.size() == 1) {
2613 bld.copy(Definition(dst), Operand(instr->value[0].u32));
2614 } else {
2615 assert(dst.size() != 1);
2616 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
2617 if (instr->def.bit_size == 64)
2618 for (unsigned i = 0; i < dst.size(); i++)
2619 vec->operands[i] = Operand{(uint32_t)(instr->value[0].u64 >> i * 32)};
2620 else {
2621 for (unsigned i = 0; i < dst.size(); i++)
2622 vec->operands[i] = Operand{instr->value[i].u32};
2623 }
2624 vec->definitions[0] = Definition(dst);
2625 ctx->block->instructions.emplace_back(std::move(vec));
2626 }
2627 }
2628
2629 uint32_t widen_mask(uint32_t mask, unsigned multiplier)
2630 {
2631 uint32_t new_mask = 0;
2632 for(unsigned i = 0; i < 32 && (1u << i) <= mask; ++i)
2633 if (mask & (1u << i))
2634 new_mask |= ((1u << multiplier) - 1u) << (i * multiplier);
2635 return new_mask;
2636 }
2637
2638 Operand load_lds_size_m0(isel_context *ctx)
2639 {
2640 /* TODO: m0 does not need to be initialized on GFX9+ */
2641 Builder bld(ctx->program, ctx->block);
2642 return bld.m0((Temp)bld.sopk(aco_opcode::s_movk_i32, bld.def(s1, m0), 0xffff));
2643 }
2644
2645 Temp load_lds(isel_context *ctx, unsigned elem_size_bytes, Temp dst,
2646 Temp address, unsigned base_offset, unsigned align)
2647 {
2648 assert(util_is_power_of_two_nonzero(align) && align >= 4);
2649
2650 Builder bld(ctx->program, ctx->block);
2651
2652 Operand m = load_lds_size_m0(ctx);
2653
2654 unsigned num_components = dst.size() * 4u / elem_size_bytes;
2655 unsigned bytes_read = 0;
2656 unsigned result_size = 0;
2657 unsigned total_bytes = num_components * elem_size_bytes;
2658 std::array<Temp, NIR_MAX_VEC_COMPONENTS> result;
2659 bool large_ds_read = ctx->options->chip_class >= GFX7;
2660 bool usable_read2 = ctx->options->chip_class >= GFX7;
2661
2662 while (bytes_read < total_bytes) {
2663 unsigned todo = total_bytes - bytes_read;
2664 bool aligned8 = bytes_read % 8 == 0 && align % 8 == 0;
2665 bool aligned16 = bytes_read % 16 == 0 && align % 16 == 0;
2666
2667 aco_opcode op = aco_opcode::last_opcode;
2668 bool read2 = false;
2669 if (todo >= 16 && aligned16 && large_ds_read) {
2670 op = aco_opcode::ds_read_b128;
2671 todo = 16;
2672 } else if (todo >= 16 && aligned8 && usable_read2) {
2673 op = aco_opcode::ds_read2_b64;
2674 read2 = true;
2675 todo = 16;
2676 } else if (todo >= 12 && aligned16 && large_ds_read) {
2677 op = aco_opcode::ds_read_b96;
2678 todo = 12;
2679 } else if (todo >= 8 && aligned8) {
2680 op = aco_opcode::ds_read_b64;
2681 todo = 8;
2682 } else if (todo >= 8 && usable_read2) {
2683 op = aco_opcode::ds_read2_b32;
2684 read2 = true;
2685 todo = 8;
2686 } else if (todo >= 4) {
2687 op = aco_opcode::ds_read_b32;
2688 todo = 4;
2689 } else {
2690 assert(false);
2691 }
2692 assert(todo % elem_size_bytes == 0);
2693 unsigned num_elements = todo / elem_size_bytes;
2694 unsigned offset = base_offset + bytes_read;
2695 unsigned max_offset = read2 ? 1019 : 65535;
2696
2697 Temp address_offset = address;
2698 if (offset > max_offset) {
2699 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
2700 offset = bytes_read;
2701 }
2702 assert(offset <= max_offset); /* bytes_read shouldn't be large enough for this to happen */
2703
2704 Temp res;
2705 if (num_components == 1 && dst.type() == RegType::vgpr)
2706 res = dst;
2707 else
2708 res = bld.tmp(RegClass(RegType::vgpr, todo / 4));
2709
2710 if (read2)
2711 res = bld.ds(op, Definition(res), address_offset, m, offset / (todo / 2), (offset / (todo / 2)) + 1);
2712 else
2713 res = bld.ds(op, Definition(res), address_offset, m, offset);
2714
2715 if (num_components == 1) {
2716 assert(todo == total_bytes);
2717 if (dst.type() == RegType::sgpr)
2718 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), res);
2719 return dst;
2720 }
2721
2722 if (dst.type() == RegType::sgpr) {
2723 Temp new_res = bld.tmp(RegType::sgpr, res.size());
2724 expand_vector(ctx, res, new_res, res.size(), (1 << res.size()) - 1);
2725 res = new_res;
2726 }
2727
2728 if (num_elements == 1) {
2729 result[result_size++] = res;
2730 } else {
2731 assert(res != dst && res.size() % num_elements == 0);
2732 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_elements)};
2733 split->operands[0] = Operand(res);
2734 for (unsigned i = 0; i < num_elements; i++)
2735 split->definitions[i] = Definition(result[result_size++] = bld.tmp(res.type(), elem_size_bytes / 4));
2736 ctx->block->instructions.emplace_back(std::move(split));
2737 }
2738
2739 bytes_read += todo;
2740 }
2741
2742 assert(result_size == num_components && result_size > 1);
2743 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, result_size, 1)};
2744 for (unsigned i = 0; i < result_size; i++)
2745 vec->operands[i] = Operand(result[i]);
2746 vec->definitions[0] = Definition(dst);
2747 ctx->block->instructions.emplace_back(std::move(vec));
2748 ctx->allocated_vec.emplace(dst.id(), result);
2749
2750 return dst;
2751 }
2752
2753 Temp extract_subvector(isel_context *ctx, Temp data, unsigned start, unsigned size, RegType type)
2754 {
2755 if (start == 0 && size == data.size())
2756 return type == RegType::vgpr ? as_vgpr(ctx, data) : data;
2757
2758 unsigned size_hint = 1;
2759 auto it = ctx->allocated_vec.find(data.id());
2760 if (it != ctx->allocated_vec.end())
2761 size_hint = it->second[0].size();
2762 if (size % size_hint || start % size_hint)
2763 size_hint = 1;
2764
2765 start /= size_hint;
2766 size /= size_hint;
2767
2768 Temp elems[size];
2769 for (unsigned i = 0; i < size; i++)
2770 elems[i] = emit_extract_vector(ctx, data, start + i, RegClass(type, size_hint));
2771
2772 if (size == 1)
2773 return type == RegType::vgpr ? as_vgpr(ctx, elems[0]) : elems[0];
2774
2775 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
2776 for (unsigned i = 0; i < size; i++)
2777 vec->operands[i] = Operand(elems[i]);
2778 Temp res = {ctx->program->allocateId(), RegClass(type, size * size_hint)};
2779 vec->definitions[0] = Definition(res);
2780 ctx->block->instructions.emplace_back(std::move(vec));
2781 return res;
2782 }
2783
2784 void ds_write_helper(isel_context *ctx, Operand m, Temp address, Temp data, unsigned data_start, unsigned total_size, unsigned offset0, unsigned offset1, unsigned align)
2785 {
2786 Builder bld(ctx->program, ctx->block);
2787 unsigned bytes_written = 0;
2788 bool large_ds_write = ctx->options->chip_class >= GFX7;
2789 bool usable_write2 = ctx->options->chip_class >= GFX7;
2790
2791 while (bytes_written < total_size * 4) {
2792 unsigned todo = total_size * 4 - bytes_written;
2793 bool aligned8 = bytes_written % 8 == 0 && align % 8 == 0;
2794 bool aligned16 = bytes_written % 16 == 0 && align % 16 == 0;
2795
2796 aco_opcode op = aco_opcode::last_opcode;
2797 bool write2 = false;
2798 unsigned size = 0;
2799 if (todo >= 16 && aligned16 && large_ds_write) {
2800 op = aco_opcode::ds_write_b128;
2801 size = 4;
2802 } else if (todo >= 16 && aligned8 && usable_write2) {
2803 op = aco_opcode::ds_write2_b64;
2804 write2 = true;
2805 size = 4;
2806 } else if (todo >= 12 && aligned16 && large_ds_write) {
2807 op = aco_opcode::ds_write_b96;
2808 size = 3;
2809 } else if (todo >= 8 && aligned8) {
2810 op = aco_opcode::ds_write_b64;
2811 size = 2;
2812 } else if (todo >= 8 && usable_write2) {
2813 op = aco_opcode::ds_write2_b32;
2814 write2 = true;
2815 size = 2;
2816 } else if (todo >= 4) {
2817 op = aco_opcode::ds_write_b32;
2818 size = 1;
2819 } else {
2820 assert(false);
2821 }
2822
2823 unsigned offset = offset0 + offset1 + bytes_written;
2824 unsigned max_offset = write2 ? 1020 : 65535;
2825 Temp address_offset = address;
2826 if (offset > max_offset) {
2827 address_offset = bld.vadd32(bld.def(v1), Operand(offset0), address_offset);
2828 offset = offset1 + bytes_written;
2829 }
2830 assert(offset <= max_offset); /* offset1 shouldn't be large enough for this to happen */
2831
2832 if (write2) {
2833 Temp val0 = extract_subvector(ctx, data, data_start + (bytes_written >> 2), size / 2, RegType::vgpr);
2834 Temp val1 = extract_subvector(ctx, data, data_start + (bytes_written >> 2) + 1, size / 2, RegType::vgpr);
2835 bld.ds(op, address_offset, val0, val1, m, offset / size / 2, (offset / size / 2) + 1);
2836 } else {
2837 Temp val = extract_subvector(ctx, data, data_start + (bytes_written >> 2), size, RegType::vgpr);
2838 bld.ds(op, address_offset, val, m, offset);
2839 }
2840
2841 bytes_written += size * 4;
2842 }
2843 }
2844
2845 void store_lds(isel_context *ctx, unsigned elem_size_bytes, Temp data, uint32_t wrmask,
2846 Temp address, unsigned base_offset, unsigned align)
2847 {
2848 assert(util_is_power_of_two_nonzero(align) && align >= 4);
2849 assert(elem_size_bytes == 4 || elem_size_bytes == 8);
2850
2851 Operand m = load_lds_size_m0(ctx);
2852
2853 /* we need at most two stores, assuming that the writemask is at most 4 bits wide */
2854 assert(wrmask <= 0x0f);
2855 int start[2], count[2];
2856 u_bit_scan_consecutive_range(&wrmask, &start[0], &count[0]);
2857 u_bit_scan_consecutive_range(&wrmask, &start[1], &count[1]);
2858 assert(wrmask == 0);
2859
2860 /* one combined store is sufficient */
2861 if (count[0] == count[1] && (align % elem_size_bytes) == 0 && (base_offset % elem_size_bytes) == 0) {
2862 Builder bld(ctx->program, ctx->block);
2863
2864 Temp address_offset = address;
2865 if ((base_offset / elem_size_bytes) + start[1] > 255) {
2866 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
2867 base_offset = 0;
2868 }
2869
2870 assert(count[0] == 1);
2871 RegClass xtract_rc(RegType::vgpr, elem_size_bytes / 4);
2872
2873 Temp val0 = emit_extract_vector(ctx, data, start[0], xtract_rc);
2874 Temp val1 = emit_extract_vector(ctx, data, start[1], xtract_rc);
2875 aco_opcode op = elem_size_bytes == 4 ? aco_opcode::ds_write2_b32 : aco_opcode::ds_write2_b64;
2876 base_offset = base_offset / elem_size_bytes;
2877 bld.ds(op, address_offset, val0, val1, m,
2878 base_offset + start[0], base_offset + start[1]);
2879 return;
2880 }
2881
2882 for (unsigned i = 0; i < 2; i++) {
2883 if (count[i] == 0)
2884 continue;
2885
2886 unsigned elem_size_words = elem_size_bytes / 4;
2887 ds_write_helper(ctx, m, address, data, start[i] * elem_size_words, count[i] * elem_size_words,
2888 base_offset, start[i] * elem_size_bytes, align);
2889 }
2890 return;
2891 }
2892
2893 unsigned calculate_lds_alignment(isel_context *ctx, unsigned const_offset)
2894 {
2895 unsigned align = 16;
2896 if (const_offset)
2897 align = std::min(align, 1u << (ffs(const_offset) - 1));
2898
2899 return align;
2900 }
2901
2902
2903 Temp create_vec_from_array(isel_context *ctx, Temp arr[], unsigned cnt, RegType reg_type, unsigned elem_size_bytes,
2904 unsigned split_cnt = 0u, Temp dst = Temp())
2905 {
2906 Builder bld(ctx->program, ctx->block);
2907 unsigned dword_size = elem_size_bytes / 4;
2908
2909 if (!dst.id())
2910 dst = bld.tmp(RegClass(reg_type, cnt * dword_size));
2911
2912 std::array<Temp, NIR_MAX_VEC_COMPONENTS> allocated_vec;
2913 aco_ptr<Pseudo_instruction> instr {create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, cnt, 1)};
2914 instr->definitions[0] = Definition(dst);
2915
2916 for (unsigned i = 0; i < cnt; ++i) {
2917 if (arr[i].id()) {
2918 assert(arr[i].size() == dword_size);
2919 allocated_vec[i] = arr[i];
2920 instr->operands[i] = Operand(arr[i]);
2921 } else {
2922 Temp zero = bld.copy(bld.def(RegClass(reg_type, dword_size)), Operand(0u, dword_size == 2));
2923 allocated_vec[i] = zero;
2924 instr->operands[i] = Operand(zero);
2925 }
2926 }
2927
2928 bld.insert(std::move(instr));
2929
2930 if (split_cnt)
2931 emit_split_vector(ctx, dst, split_cnt);
2932 else
2933 ctx->allocated_vec.emplace(dst.id(), allocated_vec); /* emit_split_vector already does this */
2934
2935 return dst;
2936 }
2937
2938 inline unsigned resolve_excess_vmem_const_offset(Builder &bld, Temp &voffset, unsigned const_offset)
2939 {
2940 if (const_offset >= 4096) {
2941 unsigned excess_const_offset = const_offset / 4096u * 4096u;
2942 const_offset %= 4096u;
2943
2944 if (!voffset.id())
2945 voffset = bld.copy(bld.def(v1), Operand(excess_const_offset));
2946 else if (unlikely(voffset.regClass() == s1))
2947 voffset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), Operand(excess_const_offset), Operand(voffset));
2948 else if (likely(voffset.regClass() == v1))
2949 voffset = bld.vadd32(bld.def(v1), Operand(voffset), Operand(excess_const_offset));
2950 else
2951 unreachable("Unsupported register class of voffset");
2952 }
2953
2954 return const_offset;
2955 }
2956
2957 void emit_single_mubuf_store(isel_context *ctx, Temp descriptor, Temp voffset, Temp soffset, Temp vdata,
2958 unsigned const_offset = 0u, bool allow_reorder = true, bool slc = false)
2959 {
2960 assert(vdata.id());
2961 assert(vdata.size() != 3 || ctx->program->chip_class != GFX6);
2962 assert(vdata.size() >= 1 && vdata.size() <= 4);
2963
2964 Builder bld(ctx->program, ctx->block);
2965 aco_opcode op = (aco_opcode) ((unsigned) aco_opcode::buffer_store_dword + vdata.size() - 1);
2966 const_offset = resolve_excess_vmem_const_offset(bld, voffset, const_offset);
2967
2968 Operand voffset_op = voffset.id() ? Operand(as_vgpr(ctx, voffset)) : Operand(v1);
2969 Operand soffset_op = soffset.id() ? Operand(soffset) : Operand(0u);
2970 Builder::Result r = bld.mubuf(op, Operand(descriptor), voffset_op, soffset_op, Operand(vdata), const_offset,
2971 /* offen */ !voffset_op.isUndefined(), /* idxen*/ false, /* addr64 */ false,
2972 /* disable_wqm */ false, /* glc */ true, /* dlc*/ false, /* slc */ slc);
2973
2974 static_cast<MUBUF_instruction *>(r.instr)->can_reorder = allow_reorder;
2975 }
2976
2977 void store_vmem_mubuf(isel_context *ctx, Temp src, Temp descriptor, Temp voffset, Temp soffset,
2978 unsigned base_const_offset, unsigned elem_size_bytes, unsigned write_mask,
2979 bool allow_combining = true, bool reorder = true, bool slc = false)
2980 {
2981 Builder bld(ctx->program, ctx->block);
2982 assert(elem_size_bytes == 4 || elem_size_bytes == 8);
2983 assert(write_mask);
2984
2985 if (elem_size_bytes == 8) {
2986 elem_size_bytes = 4;
2987 write_mask = widen_mask(write_mask, 2);
2988 }
2989
2990 while (write_mask) {
2991 int start = 0;
2992 int count = 0;
2993 u_bit_scan_consecutive_range(&write_mask, &start, &count);
2994 assert(count > 0);
2995 assert(start >= 0);
2996
2997 while (count > 0) {
2998 unsigned sub_count = allow_combining ? MIN2(count, 4) : 1;
2999 unsigned const_offset = (unsigned) start * elem_size_bytes + base_const_offset;
3000
3001 /* GFX6 doesn't have buffer_store_dwordx3, so make sure not to emit that here either. */
3002 if (unlikely(ctx->program->chip_class == GFX6 && sub_count == 3))
3003 sub_count = 2;
3004
3005 Temp elem = extract_subvector(ctx, src, start, sub_count, RegType::vgpr);
3006 emit_single_mubuf_store(ctx, descriptor, voffset, soffset, elem, const_offset, reorder, slc);
3007
3008 count -= sub_count;
3009 start += sub_count;
3010 }
3011
3012 assert(count == 0);
3013 }
3014 }
3015
3016 Temp emit_single_mubuf_load(isel_context *ctx, Temp descriptor, Temp voffset, Temp soffset,
3017 unsigned const_offset, unsigned size_dwords, bool allow_reorder = true)
3018 {
3019 assert(size_dwords != 3 || ctx->program->chip_class != GFX6);
3020 assert(size_dwords >= 1 && size_dwords <= 4);
3021
3022 Builder bld(ctx->program, ctx->block);
3023 Temp vdata = bld.tmp(RegClass(RegType::vgpr, size_dwords));
3024 aco_opcode op = (aco_opcode) ((unsigned) aco_opcode::buffer_load_dword + size_dwords - 1);
3025 const_offset = resolve_excess_vmem_const_offset(bld, voffset, const_offset);
3026
3027 Operand voffset_op = voffset.id() ? Operand(as_vgpr(ctx, voffset)) : Operand(v1);
3028 Operand soffset_op = soffset.id() ? Operand(soffset) : Operand(0u);
3029 Builder::Result r = bld.mubuf(op, Definition(vdata), Operand(descriptor), voffset_op, soffset_op, const_offset,
3030 /* offen */ !voffset_op.isUndefined(), /* idxen*/ false, /* addr64 */ false,
3031 /* disable_wqm */ false, /* glc */ true,
3032 /* dlc*/ ctx->program->chip_class >= GFX10, /* slc */ false);
3033
3034 static_cast<MUBUF_instruction *>(r.instr)->can_reorder = allow_reorder;
3035
3036 return vdata;
3037 }
3038
3039 void load_vmem_mubuf(isel_context *ctx, Temp dst, Temp descriptor, Temp voffset, Temp soffset,
3040 unsigned base_const_offset, unsigned elem_size_bytes, unsigned num_components,
3041 unsigned stride = 0u, bool allow_combining = true, bool allow_reorder = true)
3042 {
3043 assert(elem_size_bytes == 4 || elem_size_bytes == 8);
3044 assert((num_components * elem_size_bytes / 4) == dst.size());
3045 assert(!!stride != allow_combining);
3046
3047 Builder bld(ctx->program, ctx->block);
3048 unsigned split_cnt = num_components;
3049
3050 if (elem_size_bytes == 8) {
3051 elem_size_bytes = 4;
3052 num_components *= 2;
3053 }
3054
3055 if (!stride)
3056 stride = elem_size_bytes;
3057
3058 unsigned load_size = 1;
3059 if (allow_combining) {
3060 if ((num_components % 4) == 0)
3061 load_size = 4;
3062 else if ((num_components % 3) == 0 && ctx->program->chip_class != GFX6)
3063 load_size = 3;
3064 else if ((num_components % 2) == 0)
3065 load_size = 2;
3066 }
3067
3068 unsigned num_loads = num_components / load_size;
3069 std::array<Temp, NIR_MAX_VEC_COMPONENTS> elems;
3070
3071 for (unsigned i = 0; i < num_loads; ++i) {
3072 unsigned const_offset = i * stride * load_size + base_const_offset;
3073 elems[i] = emit_single_mubuf_load(ctx, descriptor, voffset, soffset, const_offset, load_size, allow_reorder);
3074 }
3075
3076 create_vec_from_array(ctx, elems.data(), num_loads, RegType::vgpr, load_size * 4u, split_cnt, dst);
3077 }
3078
3079 std::pair<Temp, unsigned> offset_add_from_nir(isel_context *ctx, const std::pair<Temp, unsigned> &base_offset, nir_src *off_src, unsigned stride = 1u)
3080 {
3081 Builder bld(ctx->program, ctx->block);
3082 Temp offset = base_offset.first;
3083 unsigned const_offset = base_offset.second;
3084
3085 if (!nir_src_is_const(*off_src)) {
3086 Temp indirect_offset_arg = get_ssa_temp(ctx, off_src->ssa);
3087 Temp with_stride;
3088
3089 /* Calculate indirect offset with stride */
3090 if (likely(indirect_offset_arg.regClass() == v1))
3091 with_stride = bld.v_mul_imm(bld.def(v1), indirect_offset_arg, stride);
3092 else if (indirect_offset_arg.regClass() == s1)
3093 with_stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), indirect_offset_arg);
3094 else
3095 unreachable("Unsupported register class of indirect offset");
3096
3097 /* Add to the supplied base offset */
3098 if (offset.id() == 0)
3099 offset = with_stride;
3100 else if (unlikely(offset.regClass() == s1 && with_stride.regClass() == s1))
3101 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), with_stride, offset);
3102 else if (offset.size() == 1 && with_stride.size() == 1)
3103 offset = bld.vadd32(bld.def(v1), with_stride, offset);
3104 else
3105 unreachable("Unsupported register class of indirect offset");
3106 } else {
3107 unsigned const_offset_arg = nir_src_as_uint(*off_src);
3108 const_offset += const_offset_arg * stride;
3109 }
3110
3111 return std::make_pair(offset, const_offset);
3112 }
3113
3114 std::pair<Temp, unsigned> offset_add(isel_context *ctx, const std::pair<Temp, unsigned> &off1, const std::pair<Temp, unsigned> &off2)
3115 {
3116 Builder bld(ctx->program, ctx->block);
3117 Temp offset;
3118
3119 if (off1.first.id() && off2.first.id()) {
3120 if (unlikely(off1.first.regClass() == s1 && off2.first.regClass() == s1))
3121 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), off1.first, off2.first);
3122 else if (off1.first.size() == 1 && off2.first.size() == 1)
3123 offset = bld.vadd32(bld.def(v1), off1.first, off2.first);
3124 else
3125 unreachable("Unsupported register class of indirect offset");
3126 } else {
3127 offset = off1.first.id() ? off1.first : off2.first;
3128 }
3129
3130 return std::make_pair(offset, off1.second + off2.second);
3131 }
3132
3133 std::pair<Temp, unsigned> offset_mul(isel_context *ctx, const std::pair<Temp, unsigned> &offs, unsigned multiplier)
3134 {
3135 Builder bld(ctx->program, ctx->block);
3136 unsigned const_offset = offs.second * multiplier;
3137
3138 if (!offs.first.id())
3139 return std::make_pair(offs.first, const_offset);
3140
3141 Temp offset = unlikely(offs.first.regClass() == s1)
3142 ? bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(multiplier), offs.first)
3143 : bld.v_mul_imm(bld.def(v1), offs.first, multiplier);
3144
3145 return std::make_pair(offset, const_offset);
3146 }
3147
3148 std::pair<Temp, unsigned> get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned base_stride, unsigned component_stride)
3149 {
3150 Builder bld(ctx->program, ctx->block);
3151
3152 /* base is the driver_location, which is already multiplied by 4, so is in dwords */
3153 unsigned const_offset = nir_intrinsic_base(instr) * base_stride;
3154 /* component is in bytes */
3155 const_offset += nir_intrinsic_component(instr) * component_stride;
3156
3157 /* offset should be interpreted in relation to the base, so the instruction effectively reads/writes another input/output when it has an offset */
3158 nir_src *off_src = nir_get_io_offset_src(instr);
3159 return offset_add_from_nir(ctx, std::make_pair(Temp(), const_offset), off_src, 4u * base_stride);
3160 }
3161
3162 std::pair<Temp, unsigned> get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned stride = 1u)
3163 {
3164 return get_intrinsic_io_basic_offset(ctx, instr, stride, stride);
3165 }
3166
3167 Temp get_tess_rel_patch_id(isel_context *ctx)
3168 {
3169 Builder bld(ctx->program, ctx->block);
3170
3171 switch (ctx->shader->info.stage) {
3172 case MESA_SHADER_TESS_CTRL:
3173 return bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffu),
3174 get_arg(ctx, ctx->args->ac.tcs_rel_ids));
3175 case MESA_SHADER_TESS_EVAL:
3176 return get_arg(ctx, ctx->args->tes_rel_patch_id);
3177 default:
3178 unreachable("Unsupported stage in get_tess_rel_patch_id");
3179 }
3180 }
3181
3182 std::pair<Temp, unsigned> get_tcs_per_vertex_input_lds_offset(isel_context *ctx, nir_intrinsic_instr *instr)
3183 {
3184 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3185 Builder bld(ctx->program, ctx->block);
3186
3187 uint32_t tcs_in_patch_stride = ctx->args->options->key.tcs.input_vertices * ctx->tcs_num_inputs * 4;
3188 uint32_t tcs_in_vertex_stride = ctx->tcs_num_inputs * 4;
3189
3190 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr);
3191
3192 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
3193 offs = offset_add_from_nir(ctx, offs, vertex_index_src, tcs_in_vertex_stride);
3194
3195 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3196 Temp tcs_in_current_patch_offset = bld.v_mul24_imm(bld.def(v1), rel_patch_id, tcs_in_patch_stride);
3197 offs = offset_add(ctx, offs, std::make_pair(tcs_in_current_patch_offset, 0));
3198
3199 return offset_mul(ctx, offs, 4u);
3200 }
3201
3202 std::pair<Temp, unsigned> get_tcs_output_lds_offset(isel_context *ctx, nir_intrinsic_instr *instr = nullptr, bool per_vertex = false)
3203 {
3204 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3205 Builder bld(ctx->program, ctx->block);
3206
3207 uint32_t input_patch_size = ctx->args->options->key.tcs.input_vertices * ctx->tcs_num_inputs * 16;
3208 uint32_t num_tcs_outputs = util_last_bit64(ctx->args->shader_info->tcs.outputs_written);
3209 uint32_t num_tcs_patch_outputs = util_last_bit64(ctx->args->shader_info->tcs.patch_outputs_written);
3210 uint32_t output_vertex_size = num_tcs_outputs * 16;
3211 uint32_t pervertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
3212 uint32_t output_patch_stride = pervertex_output_patch_size + num_tcs_patch_outputs * 16;
3213
3214 std::pair<Temp, unsigned> offs = instr
3215 ? get_intrinsic_io_basic_offset(ctx, instr, 4u)
3216 : std::make_pair(Temp(), 0u);
3217
3218 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3219 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, output_patch_stride);
3220
3221 if (per_vertex) {
3222 assert(instr);
3223
3224 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
3225 offs = offset_add_from_nir(ctx, offs, vertex_index_src, output_vertex_size);
3226
3227 uint32_t output_patch0_offset = (input_patch_size * ctx->tcs_num_patches);
3228 offs = offset_add(ctx, offs, std::make_pair(patch_off, output_patch0_offset));
3229 } else {
3230 uint32_t output_patch0_patch_data_offset = (input_patch_size * ctx->tcs_num_patches + pervertex_output_patch_size);
3231 offs = offset_add(ctx, offs, std::make_pair(patch_off, output_patch0_patch_data_offset));
3232 }
3233
3234 return offs;
3235 }
3236
3237 std::pair<Temp, unsigned> get_tcs_per_vertex_output_vmem_offset(isel_context *ctx, nir_intrinsic_instr *instr)
3238 {
3239 Builder bld(ctx->program, ctx->block);
3240
3241 unsigned vertices_per_patch = ctx->shader->info.tess.tcs_vertices_out;
3242 unsigned attr_stride = vertices_per_patch * ctx->tcs_num_patches;
3243
3244 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, attr_stride * 4u, 4u);
3245
3246 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3247 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, vertices_per_patch * 16u);
3248 offs = offset_add(ctx, offs, std::make_pair(patch_off, 0u));
3249
3250 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
3251 offs = offset_add_from_nir(ctx, offs, vertex_index_src, 16u);
3252
3253 return offs;
3254 }
3255
3256 std::pair<Temp, unsigned> get_tcs_per_patch_output_vmem_offset(isel_context *ctx, nir_intrinsic_instr *instr = nullptr, unsigned const_base_offset = 0u)
3257 {
3258 Builder bld(ctx->program, ctx->block);
3259
3260 unsigned num_tcs_outputs = ctx->shader->info.stage == MESA_SHADER_TESS_CTRL
3261 ? util_last_bit64(ctx->args->shader_info->tcs.outputs_written)
3262 : ctx->args->options->key.tes.tcs_num_outputs;
3263
3264 unsigned output_vertex_size = num_tcs_outputs * 16;
3265 unsigned per_vertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
3266 unsigned per_patch_data_offset = per_vertex_output_patch_size * ctx->tcs_num_patches;
3267 unsigned attr_stride = ctx->tcs_num_patches;
3268
3269 std::pair<Temp, unsigned> offs = instr
3270 ? get_intrinsic_io_basic_offset(ctx, instr, attr_stride * 4u, 4u)
3271 : std::make_pair(Temp(), 0u);
3272
3273 if (const_base_offset)
3274 offs.second += const_base_offset * attr_stride;
3275
3276 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3277 Temp patch_off = bld.v_mul_imm(bld.def(v1), rel_patch_id, 16u);
3278 offs = offset_add(ctx, offs, std::make_pair(patch_off, per_patch_data_offset));
3279
3280 return offs;
3281 }
3282
3283 bool tcs_driver_location_matches_api_mask(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex, uint64_t mask, bool *indirect)
3284 {
3285 unsigned off = nir_intrinsic_base(instr) * 4u;
3286 nir_src *off_src = nir_get_io_offset_src(instr);
3287
3288 if (!nir_src_is_const(*off_src)) {
3289 *indirect = true;
3290 return false;
3291 }
3292
3293 *indirect = false;
3294 off += nir_src_as_uint(*off_src) * 16u;
3295
3296 while (mask) {
3297 unsigned slot = u_bit_scan64(&mask) + (per_vertex ? 0 : VARYING_SLOT_PATCH0);
3298 if (off == shader_io_get_unique_index((gl_varying_slot) slot) * 16u)
3299 return true;
3300 }
3301
3302 return false;
3303 }
3304
3305 bool store_output_to_temps(isel_context *ctx, nir_intrinsic_instr *instr)
3306 {
3307 unsigned write_mask = nir_intrinsic_write_mask(instr);
3308 unsigned component = nir_intrinsic_component(instr);
3309 unsigned idx = nir_intrinsic_base(instr) + component;
3310
3311 nir_instr *off_instr = instr->src[1].ssa->parent_instr;
3312 if (off_instr->type != nir_instr_type_load_const)
3313 return false;
3314
3315 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
3316 idx += nir_src_as_uint(instr->src[1]) * 4u;
3317
3318 if (instr->src[0].ssa->bit_size == 64)
3319 write_mask = widen_mask(write_mask, 2);
3320
3321 for (unsigned i = 0; i < 8; ++i) {
3322 if (write_mask & (1 << i)) {
3323 ctx->outputs.mask[idx / 4u] |= 1 << (idx % 4u);
3324 ctx->outputs.temps[idx] = emit_extract_vector(ctx, src, i, v1);
3325 }
3326 idx++;
3327 }
3328
3329 return true;
3330 }
3331
3332 bool load_input_from_temps(isel_context *ctx, nir_intrinsic_instr *instr, Temp dst)
3333 {
3334 /* Only TCS per-vertex inputs are supported by this function.
3335 * Per-vertex inputs only match between the VS/TCS invocation id when the number of invocations is the same.
3336 */
3337 if (ctx->shader->info.stage != MESA_SHADER_TESS_CTRL || !ctx->tcs_in_out_eq)
3338 return false;
3339
3340 nir_src *off_src = nir_get_io_offset_src(instr);
3341 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
3342 nir_instr *vertex_index_instr = vertex_index_src->ssa->parent_instr;
3343 bool can_use_temps = nir_src_is_const(*off_src) &&
3344 vertex_index_instr->type == nir_instr_type_intrinsic &&
3345 nir_instr_as_intrinsic(vertex_index_instr)->intrinsic == nir_intrinsic_load_invocation_id;
3346
3347 if (!can_use_temps)
3348 return false;
3349
3350 unsigned idx = nir_intrinsic_base(instr) + nir_intrinsic_component(instr) + 4 * nir_src_as_uint(*off_src);
3351 Temp *src = &ctx->inputs.temps[idx];
3352 Temp vec = create_vec_from_array(ctx, src, dst.size(), dst.regClass().type(), 4u);
3353 assert(vec.size() == dst.size());
3354
3355 Builder bld(ctx->program, ctx->block);
3356 bld.copy(Definition(dst), vec);
3357 return true;
3358 }
3359
3360 void visit_store_ls_or_es_output(isel_context *ctx, nir_intrinsic_instr *instr)
3361 {
3362 Builder bld(ctx->program, ctx->block);
3363
3364 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, 4u);
3365 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
3366 unsigned write_mask = nir_intrinsic_write_mask(instr);
3367 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8u;
3368
3369 if (ctx->tcs_in_out_eq && store_output_to_temps(ctx, instr)) {
3370 /* When the TCS only reads this output directly and for the same vertices as its invocation id, it is unnecessary to store the VS output to LDS. */
3371 bool indirect_write;
3372 bool temp_only_input = tcs_driver_location_matches_api_mask(ctx, instr, true, ctx->tcs_temp_only_inputs, &indirect_write);
3373 if (temp_only_input && !indirect_write)
3374 return;
3375 }
3376
3377 if (ctx->stage == vertex_es || ctx->stage == tess_eval_es) {
3378 /* GFX6-8: ES stage is not merged into GS, data is passed from ES to GS in VMEM. */
3379 Temp esgs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_VS * 16u));
3380 Temp es2gs_offset = get_arg(ctx, ctx->args->es2gs_offset);
3381 store_vmem_mubuf(ctx, src, esgs_ring, offs.first, es2gs_offset, offs.second, elem_size_bytes, write_mask, false, true, true);
3382 } else {
3383 Temp lds_base;
3384
3385 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
3386 /* GFX9+: ES stage is merged into GS, data is passed between them using LDS. */
3387 unsigned itemsize = ctx->stage == vertex_geometry_gs
3388 ? ctx->program->info->vs.es_info.esgs_itemsize
3389 : ctx->program->info->tes.es_info.esgs_itemsize;
3390 Temp thread_id = emit_mbcnt(ctx, bld.def(v1));
3391 Temp wave_idx = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(ctx, ctx->args->merged_wave_info), Operand(4u << 16 | 24));
3392 Temp vertex_idx = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), thread_id,
3393 bld.v_mul24_imm(bld.def(v1), as_vgpr(ctx, wave_idx), ctx->program->wave_size));
3394 lds_base = bld.v_mul24_imm(bld.def(v1), vertex_idx, itemsize);
3395 } else if (ctx->stage == vertex_ls || ctx->stage == vertex_tess_control_hs) {
3396 /* GFX6-8: VS runs on LS stage when tessellation is used, but LS shares LDS space with HS.
3397 * GFX9+: LS is merged into HS, but still uses the same LDS layout.
3398 */
3399 unsigned num_tcs_inputs = util_last_bit64(ctx->args->shader_info->vs.ls_outputs_written);
3400 Temp vertex_idx = get_arg(ctx, ctx->args->rel_auto_id);
3401 lds_base = bld.v_mul_imm(bld.def(v1), vertex_idx, num_tcs_inputs * 16u);
3402 } else {
3403 unreachable("Invalid LS or ES stage");
3404 }
3405
3406 offs = offset_add(ctx, offs, std::make_pair(lds_base, 0u));
3407 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
3408 store_lds(ctx, elem_size_bytes, src, write_mask, offs.first, offs.second, lds_align);
3409 }
3410 }
3411
3412 bool should_write_tcs_patch_output_to_vmem(isel_context *ctx, nir_intrinsic_instr *instr)
3413 {
3414 unsigned off = nir_intrinsic_base(instr) * 4u;
3415 return off != ctx->tcs_tess_lvl_out_loc &&
3416 off != ctx->tcs_tess_lvl_in_loc;
3417 }
3418
3419 bool should_write_tcs_output_to_lds(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
3420 {
3421 /* When none of the appropriate outputs are read, we are OK to never write to LDS */
3422 if (per_vertex ? ctx->shader->info.outputs_read == 0U : ctx->shader->info.patch_outputs_read == 0u)
3423 return false;
3424
3425 uint64_t mask = per_vertex
3426 ? ctx->shader->info.outputs_read
3427 : ctx->shader->info.patch_outputs_read;
3428 bool indirect_write;
3429 bool output_read = tcs_driver_location_matches_api_mask(ctx, instr, per_vertex, mask, &indirect_write);
3430 return indirect_write || output_read;
3431 }
3432
3433 void visit_store_tcs_output(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
3434 {
3435 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
3436 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3437
3438 Builder bld(ctx->program, ctx->block);
3439
3440 Temp store_val = get_ssa_temp(ctx, instr->src[0].ssa);
3441 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
3442 unsigned write_mask = nir_intrinsic_write_mask(instr);
3443
3444 /* Only write to VMEM if the output is per-vertex or it's per-patch non tess factor */
3445 bool write_to_vmem = per_vertex || should_write_tcs_patch_output_to_vmem(ctx, instr);
3446 /* Only write to LDS if the output is read by the shader, or it's per-patch tess factor */
3447 bool write_to_lds = !write_to_vmem || should_write_tcs_output_to_lds(ctx, instr, per_vertex);
3448
3449 if (write_to_vmem) {
3450 std::pair<Temp, unsigned> vmem_offs = per_vertex
3451 ? get_tcs_per_vertex_output_vmem_offset(ctx, instr)
3452 : get_tcs_per_patch_output_vmem_offset(ctx, instr);
3453
3454 Temp hs_ring_tess_offchip = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
3455 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
3456 store_vmem_mubuf(ctx, store_val, hs_ring_tess_offchip, vmem_offs.first, oc_lds, vmem_offs.second, elem_size_bytes, write_mask, true, false);
3457 }
3458
3459 if (write_to_lds) {
3460 std::pair<Temp, unsigned> lds_offs = get_tcs_output_lds_offset(ctx, instr, per_vertex);
3461 unsigned lds_align = calculate_lds_alignment(ctx, lds_offs.second);
3462 store_lds(ctx, elem_size_bytes, store_val, write_mask, lds_offs.first, lds_offs.second, lds_align);
3463 }
3464 }
3465
3466 void visit_load_tcs_output(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
3467 {
3468 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
3469 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3470
3471 Builder bld(ctx->program, ctx->block);
3472
3473 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3474 std::pair<Temp, unsigned> lds_offs = get_tcs_output_lds_offset(ctx, instr, per_vertex);
3475 unsigned lds_align = calculate_lds_alignment(ctx, lds_offs.second);
3476 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
3477
3478 load_lds(ctx, elem_size_bytes, dst, lds_offs.first, lds_offs.second, lds_align);
3479 }
3480
3481 void visit_store_output(isel_context *ctx, nir_intrinsic_instr *instr)
3482 {
3483 if (ctx->stage == vertex_vs ||
3484 ctx->stage == tess_eval_vs ||
3485 ctx->stage == fragment_fs ||
3486 ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
3487 bool stored_to_temps = store_output_to_temps(ctx, instr);
3488 if (!stored_to_temps) {
3489 fprintf(stderr, "Unimplemented output offset instruction:\n");
3490 nir_print_instr(instr->src[1].ssa->parent_instr, stderr);
3491 fprintf(stderr, "\n");
3492 abort();
3493 }
3494 } else if (ctx->stage == vertex_es ||
3495 ctx->stage == vertex_ls ||
3496 ctx->stage == tess_eval_es ||
3497 (ctx->stage == vertex_tess_control_hs && ctx->shader->info.stage == MESA_SHADER_VERTEX) ||
3498 (ctx->stage == vertex_geometry_gs && ctx->shader->info.stage == MESA_SHADER_VERTEX) ||
3499 (ctx->stage == tess_eval_geometry_gs && ctx->shader->info.stage == MESA_SHADER_TESS_EVAL)) {
3500 visit_store_ls_or_es_output(ctx, instr);
3501 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
3502 visit_store_tcs_output(ctx, instr, false);
3503 } else {
3504 unreachable("Shader stage not implemented");
3505 }
3506 }
3507
3508 void visit_load_output(isel_context *ctx, nir_intrinsic_instr *instr)
3509 {
3510 visit_load_tcs_output(ctx, instr, false);
3511 }
3512
3513 void emit_interp_instr(isel_context *ctx, unsigned idx, unsigned component, Temp src, Temp dst, Temp prim_mask)
3514 {
3515 Temp coord1 = emit_extract_vector(ctx, src, 0, v1);
3516 Temp coord2 = emit_extract_vector(ctx, src, 1, v1);
3517
3518 Builder bld(ctx->program, ctx->block);
3519 Builder::Result interp_p1 = bld.vintrp(aco_opcode::v_interp_p1_f32, bld.def(v1), coord1, bld.m0(prim_mask), idx, component);
3520 if (ctx->program->has_16bank_lds)
3521 interp_p1.instr->operands[0].setLateKill(true);
3522 bld.vintrp(aco_opcode::v_interp_p2_f32, Definition(dst), coord2, bld.m0(prim_mask), interp_p1, idx, component);
3523 }
3524
3525 void emit_load_frag_coord(isel_context *ctx, Temp dst, unsigned num_components)
3526 {
3527 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1));
3528 for (unsigned i = 0; i < num_components; i++)
3529 vec->operands[i] = Operand(get_arg(ctx, ctx->args->ac.frag_pos[i]));
3530 if (G_0286CC_POS_W_FLOAT_ENA(ctx->program->config->spi_ps_input_ena)) {
3531 assert(num_components == 4);
3532 Builder bld(ctx->program, ctx->block);
3533 vec->operands[3] = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), get_arg(ctx, ctx->args->ac.frag_pos[3]));
3534 }
3535
3536 for (Operand& op : vec->operands)
3537 op = op.isUndefined() ? Operand(0u) : op;
3538
3539 vec->definitions[0] = Definition(dst);
3540 ctx->block->instructions.emplace_back(std::move(vec));
3541 emit_split_vector(ctx, dst, num_components);
3542 return;
3543 }
3544
3545 void visit_load_interpolated_input(isel_context *ctx, nir_intrinsic_instr *instr)
3546 {
3547 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3548 Temp coords = get_ssa_temp(ctx, instr->src[0].ssa);
3549 unsigned idx = nir_intrinsic_base(instr);
3550 unsigned component = nir_intrinsic_component(instr);
3551 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
3552
3553 nir_const_value* offset = nir_src_as_const_value(instr->src[1]);
3554 if (offset) {
3555 assert(offset->u32 == 0);
3556 } else {
3557 /* the lower 15bit of the prim_mask contain the offset into LDS
3558 * while the upper bits contain the number of prims */
3559 Temp offset_src = get_ssa_temp(ctx, instr->src[1].ssa);
3560 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
3561 Builder bld(ctx->program, ctx->block);
3562 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
3563 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
3564 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
3565 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
3566 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
3567 }
3568
3569 if (instr->dest.ssa.num_components == 1) {
3570 emit_interp_instr(ctx, idx, component, coords, dst, prim_mask);
3571 } else {
3572 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.ssa.num_components, 1));
3573 for (unsigned i = 0; i < instr->dest.ssa.num_components; i++)
3574 {
3575 Temp tmp = {ctx->program->allocateId(), v1};
3576 emit_interp_instr(ctx, idx, component+i, coords, tmp, prim_mask);
3577 vec->operands[i] = Operand(tmp);
3578 }
3579 vec->definitions[0] = Definition(dst);
3580 ctx->block->instructions.emplace_back(std::move(vec));
3581 }
3582 }
3583
3584 bool check_vertex_fetch_size(isel_context *ctx, const ac_data_format_info *vtx_info,
3585 unsigned offset, unsigned stride, unsigned channels)
3586 {
3587 unsigned vertex_byte_size = vtx_info->chan_byte_size * channels;
3588 if (vtx_info->chan_byte_size != 4 && channels == 3)
3589 return false;
3590 return (ctx->options->chip_class != GFX6 && ctx->options->chip_class != GFX10) ||
3591 (offset % vertex_byte_size == 0 && stride % vertex_byte_size == 0);
3592 }
3593
3594 uint8_t get_fetch_data_format(isel_context *ctx, const ac_data_format_info *vtx_info,
3595 unsigned offset, unsigned stride, unsigned *channels)
3596 {
3597 if (!vtx_info->chan_byte_size) {
3598 *channels = vtx_info->num_channels;
3599 return vtx_info->chan_format;
3600 }
3601
3602 unsigned num_channels = *channels;
3603 if (!check_vertex_fetch_size(ctx, vtx_info, offset, stride, *channels)) {
3604 unsigned new_channels = num_channels + 1;
3605 /* first, assume more loads is worse and try using a larger data format */
3606 while (new_channels <= 4 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels)) {
3607 new_channels++;
3608 /* don't make the attribute potentially out-of-bounds */
3609 if (offset + new_channels * vtx_info->chan_byte_size > stride)
3610 new_channels = 5;
3611 }
3612
3613 if (new_channels == 5) {
3614 /* then try decreasing load size (at the cost of more loads) */
3615 new_channels = *channels;
3616 while (new_channels > 1 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels))
3617 new_channels--;
3618 }
3619
3620 if (new_channels < *channels)
3621 *channels = new_channels;
3622 num_channels = new_channels;
3623 }
3624
3625 switch (vtx_info->chan_format) {
3626 case V_008F0C_BUF_DATA_FORMAT_8:
3627 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_8, V_008F0C_BUF_DATA_FORMAT_8_8,
3628 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_8_8_8_8}[num_channels - 1];
3629 case V_008F0C_BUF_DATA_FORMAT_16:
3630 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_16, V_008F0C_BUF_DATA_FORMAT_16_16,
3631 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_16_16_16_16}[num_channels - 1];
3632 case V_008F0C_BUF_DATA_FORMAT_32:
3633 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_32, V_008F0C_BUF_DATA_FORMAT_32_32,
3634 V_008F0C_BUF_DATA_FORMAT_32_32_32, V_008F0C_BUF_DATA_FORMAT_32_32_32_32}[num_channels - 1];
3635 }
3636 unreachable("shouldn't reach here");
3637 return V_008F0C_BUF_DATA_FORMAT_INVALID;
3638 }
3639
3640 /* For 2_10_10_10 formats the alpha is handled as unsigned by pre-vega HW.
3641 * so we may need to fix it up. */
3642 Temp adjust_vertex_fetch_alpha(isel_context *ctx, unsigned adjustment, Temp alpha)
3643 {
3644 Builder bld(ctx->program, ctx->block);
3645
3646 if (adjustment == RADV_ALPHA_ADJUST_SSCALED)
3647 alpha = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), alpha);
3648
3649 /* For the integer-like cases, do a natural sign extension.
3650 *
3651 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
3652 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
3653 * exponent.
3654 */
3655 alpha = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(adjustment == RADV_ALPHA_ADJUST_SNORM ? 7u : 30u), alpha);
3656 alpha = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(30u), alpha);
3657
3658 /* Convert back to the right type. */
3659 if (adjustment == RADV_ALPHA_ADJUST_SNORM) {
3660 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
3661 Temp clamp = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0xbf800000u), alpha);
3662 alpha = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xbf800000u), alpha, clamp);
3663 } else if (adjustment == RADV_ALPHA_ADJUST_SSCALED) {
3664 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
3665 }
3666
3667 return alpha;
3668 }
3669
3670 void visit_load_input(isel_context *ctx, nir_intrinsic_instr *instr)
3671 {
3672 Builder bld(ctx->program, ctx->block);
3673 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3674 if (ctx->shader->info.stage == MESA_SHADER_VERTEX) {
3675
3676 nir_instr *off_instr = instr->src[0].ssa->parent_instr;
3677 if (off_instr->type != nir_instr_type_load_const) {
3678 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
3679 nir_print_instr(off_instr, stderr);
3680 fprintf(stderr, "\n");
3681 }
3682 uint32_t offset = nir_instr_as_load_const(off_instr)->value[0].u32;
3683
3684 Temp vertex_buffers = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->vertex_buffers));
3685
3686 unsigned location = nir_intrinsic_base(instr) / 4 - VERT_ATTRIB_GENERIC0 + offset;
3687 unsigned component = nir_intrinsic_component(instr);
3688 unsigned attrib_binding = ctx->options->key.vs.vertex_attribute_bindings[location];
3689 uint32_t attrib_offset = ctx->options->key.vs.vertex_attribute_offsets[location];
3690 uint32_t attrib_stride = ctx->options->key.vs.vertex_attribute_strides[location];
3691 unsigned attrib_format = ctx->options->key.vs.vertex_attribute_formats[location];
3692
3693 unsigned dfmt = attrib_format & 0xf;
3694 unsigned nfmt = (attrib_format >> 4) & 0x7;
3695 const struct ac_data_format_info *vtx_info = ac_get_data_format_info(dfmt);
3696
3697 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa) << component;
3698 unsigned num_channels = MIN2(util_last_bit(mask), vtx_info->num_channels);
3699 unsigned alpha_adjust = (ctx->options->key.vs.alpha_adjust >> (location * 2)) & 3;
3700 bool post_shuffle = ctx->options->key.vs.post_shuffle & (1 << location);
3701 if (post_shuffle)
3702 num_channels = MAX2(num_channels, 3);
3703
3704 Operand off = bld.copy(bld.def(s1), Operand(attrib_binding * 16u));
3705 Temp list = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), vertex_buffers, off);
3706
3707 Temp index;
3708 if (ctx->options->key.vs.instance_rate_inputs & (1u << location)) {
3709 uint32_t divisor = ctx->options->key.vs.instance_rate_divisors[location];
3710 Temp start_instance = get_arg(ctx, ctx->args->ac.start_instance);
3711 if (divisor) {
3712 Temp instance_id = get_arg(ctx, ctx->args->ac.instance_id);
3713 if (divisor != 1) {
3714 Temp divided = bld.tmp(v1);
3715 emit_v_div_u32(ctx, divided, as_vgpr(ctx, instance_id), divisor);
3716 index = bld.vadd32(bld.def(v1), start_instance, divided);
3717 } else {
3718 index = bld.vadd32(bld.def(v1), start_instance, instance_id);
3719 }
3720 } else {
3721 index = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), start_instance);
3722 }
3723 } else {
3724 index = bld.vadd32(bld.def(v1),
3725 get_arg(ctx, ctx->args->ac.base_vertex),
3726 get_arg(ctx, ctx->args->ac.vertex_id));
3727 }
3728
3729 Temp channels[num_channels];
3730 unsigned channel_start = 0;
3731 bool direct_fetch = false;
3732
3733 /* skip unused channels at the start */
3734 if (vtx_info->chan_byte_size && !post_shuffle) {
3735 channel_start = ffs(mask) - 1;
3736 for (unsigned i = 0; i < channel_start; i++)
3737 channels[i] = Temp(0, s1);
3738 } else if (vtx_info->chan_byte_size && post_shuffle && !(mask & 0x8)) {
3739 num_channels = 3 - (ffs(mask) - 1);
3740 }
3741
3742 /* load channels */
3743 while (channel_start < num_channels) {
3744 unsigned fetch_size = num_channels - channel_start;
3745 unsigned fetch_offset = attrib_offset + channel_start * vtx_info->chan_byte_size;
3746 bool expanded = false;
3747
3748 /* use MUBUF when possible to avoid possible alignment issues */
3749 /* TODO: we could use SDWA to unpack 8/16-bit attributes without extra instructions */
3750 bool use_mubuf = (nfmt == V_008F0C_BUF_NUM_FORMAT_FLOAT ||
3751 nfmt == V_008F0C_BUF_NUM_FORMAT_UINT ||
3752 nfmt == V_008F0C_BUF_NUM_FORMAT_SINT) &&
3753 vtx_info->chan_byte_size == 4;
3754 unsigned fetch_dfmt = V_008F0C_BUF_DATA_FORMAT_INVALID;
3755 if (!use_mubuf) {
3756 fetch_dfmt = get_fetch_data_format(ctx, vtx_info, fetch_offset, attrib_stride, &fetch_size);
3757 } else {
3758 if (fetch_size == 3 && ctx->options->chip_class == GFX6) {
3759 /* GFX6 only supports loading vec3 with MTBUF, expand to vec4. */
3760 fetch_size = 4;
3761 expanded = true;
3762 }
3763 }
3764
3765 Temp fetch_index = index;
3766 if (attrib_stride != 0 && fetch_offset > attrib_stride) {
3767 fetch_index = bld.vadd32(bld.def(v1), Operand(fetch_offset / attrib_stride), fetch_index);
3768 fetch_offset = fetch_offset % attrib_stride;
3769 }
3770
3771 Operand soffset(0u);
3772 if (fetch_offset >= 4096) {
3773 soffset = bld.copy(bld.def(s1), Operand(fetch_offset / 4096 * 4096));
3774 fetch_offset %= 4096;
3775 }
3776
3777 aco_opcode opcode;
3778 switch (fetch_size) {
3779 case 1:
3780 opcode = use_mubuf ? aco_opcode::buffer_load_dword : aco_opcode::tbuffer_load_format_x;
3781 break;
3782 case 2:
3783 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx2 : aco_opcode::tbuffer_load_format_xy;
3784 break;
3785 case 3:
3786 assert(ctx->options->chip_class >= GFX7 ||
3787 (!use_mubuf && ctx->options->chip_class == GFX6));
3788 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx3 : aco_opcode::tbuffer_load_format_xyz;
3789 break;
3790 case 4:
3791 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx4 : aco_opcode::tbuffer_load_format_xyzw;
3792 break;
3793 default:
3794 unreachable("Unimplemented load_input vector size");
3795 }
3796
3797 Temp fetch_dst;
3798 if (channel_start == 0 && fetch_size == dst.size() && !post_shuffle &&
3799 !expanded && (alpha_adjust == RADV_ALPHA_ADJUST_NONE ||
3800 num_channels <= 3)) {
3801 direct_fetch = true;
3802 fetch_dst = dst;
3803 } else {
3804 fetch_dst = bld.tmp(RegType::vgpr, fetch_size);
3805 }
3806
3807 if (use_mubuf) {
3808 Instruction *mubuf = bld.mubuf(opcode,
3809 Definition(fetch_dst), list, fetch_index, soffset,
3810 fetch_offset, false, true).instr;
3811 static_cast<MUBUF_instruction*>(mubuf)->can_reorder = true;
3812 } else {
3813 Instruction *mtbuf = bld.mtbuf(opcode,
3814 Definition(fetch_dst), list, fetch_index, soffset,
3815 fetch_dfmt, nfmt, fetch_offset, false, true).instr;
3816 static_cast<MTBUF_instruction*>(mtbuf)->can_reorder = true;
3817 }
3818
3819 emit_split_vector(ctx, fetch_dst, fetch_dst.size());
3820
3821 if (fetch_size == 1) {
3822 channels[channel_start] = fetch_dst;
3823 } else {
3824 for (unsigned i = 0; i < MIN2(fetch_size, num_channels - channel_start); i++)
3825 channels[channel_start + i] = emit_extract_vector(ctx, fetch_dst, i, v1);
3826 }
3827
3828 channel_start += fetch_size;
3829 }
3830
3831 if (!direct_fetch) {
3832 bool is_float = nfmt != V_008F0C_BUF_NUM_FORMAT_UINT &&
3833 nfmt != V_008F0C_BUF_NUM_FORMAT_SINT;
3834
3835 static const unsigned swizzle_normal[4] = {0, 1, 2, 3};
3836 static const unsigned swizzle_post_shuffle[4] = {2, 1, 0, 3};
3837 const unsigned *swizzle = post_shuffle ? swizzle_post_shuffle : swizzle_normal;
3838
3839 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
3840 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
3841 unsigned num_temp = 0;
3842 for (unsigned i = 0; i < dst.size(); i++) {
3843 unsigned idx = i + component;
3844 if (swizzle[idx] < num_channels && channels[swizzle[idx]].id()) {
3845 Temp channel = channels[swizzle[idx]];
3846 if (idx == 3 && alpha_adjust != RADV_ALPHA_ADJUST_NONE)
3847 channel = adjust_vertex_fetch_alpha(ctx, alpha_adjust, channel);
3848 vec->operands[i] = Operand(channel);
3849
3850 num_temp++;
3851 elems[i] = channel;
3852 } else if (is_float && idx == 3) {
3853 vec->operands[i] = Operand(0x3f800000u);
3854 } else if (!is_float && idx == 3) {
3855 vec->operands[i] = Operand(1u);
3856 } else {
3857 vec->operands[i] = Operand(0u);
3858 }
3859 }
3860 vec->definitions[0] = Definition(dst);
3861 ctx->block->instructions.emplace_back(std::move(vec));
3862 emit_split_vector(ctx, dst, dst.size());
3863
3864 if (num_temp == dst.size())
3865 ctx->allocated_vec.emplace(dst.id(), elems);
3866 }
3867 } else if (ctx->shader->info.stage == MESA_SHADER_FRAGMENT) {
3868 unsigned offset_idx = instr->intrinsic == nir_intrinsic_load_input ? 0 : 1;
3869 nir_instr *off_instr = instr->src[offset_idx].ssa->parent_instr;
3870 if (off_instr->type != nir_instr_type_load_const ||
3871 nir_instr_as_load_const(off_instr)->value[0].u32 != 0) {
3872 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
3873 nir_print_instr(off_instr, stderr);
3874 fprintf(stderr, "\n");
3875 }
3876
3877 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
3878 nir_const_value* offset = nir_src_as_const_value(instr->src[offset_idx]);
3879 if (offset) {
3880 assert(offset->u32 == 0);
3881 } else {
3882 /* the lower 15bit of the prim_mask contain the offset into LDS
3883 * while the upper bits contain the number of prims */
3884 Temp offset_src = get_ssa_temp(ctx, instr->src[offset_idx].ssa);
3885 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
3886 Builder bld(ctx->program, ctx->block);
3887 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
3888 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
3889 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
3890 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
3891 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
3892 }
3893
3894 unsigned idx = nir_intrinsic_base(instr);
3895 unsigned component = nir_intrinsic_component(instr);
3896 unsigned vertex_id = 2; /* P0 */
3897
3898 if (instr->intrinsic == nir_intrinsic_load_input_vertex) {
3899 nir_const_value* src0 = nir_src_as_const_value(instr->src[0]);
3900 switch (src0->u32) {
3901 case 0:
3902 vertex_id = 2; /* P0 */
3903 break;
3904 case 1:
3905 vertex_id = 0; /* P10 */
3906 break;
3907 case 2:
3908 vertex_id = 1; /* P20 */
3909 break;
3910 default:
3911 unreachable("invalid vertex index");
3912 }
3913 }
3914
3915 if (dst.size() == 1) {
3916 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(dst), Operand(vertex_id), bld.m0(prim_mask), idx, component);
3917 } else {
3918 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
3919 for (unsigned i = 0; i < dst.size(); i++)
3920 vec->operands[i] = bld.vintrp(aco_opcode::v_interp_mov_f32, bld.def(v1), Operand(vertex_id), bld.m0(prim_mask), idx, component + i);
3921 vec->definitions[0] = Definition(dst);
3922 bld.insert(std::move(vec));
3923 }
3924
3925 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_EVAL) {
3926 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
3927 Temp soffset = get_arg(ctx, ctx->args->oc_lds);
3928 std::pair<Temp, unsigned> offs = get_tcs_per_patch_output_vmem_offset(ctx, instr);
3929 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8u;
3930
3931 load_vmem_mubuf(ctx, dst, ring, offs.first, soffset, offs.second, elem_size_bytes, instr->dest.ssa.num_components);
3932 } else {
3933 unreachable("Shader stage not implemented");
3934 }
3935 }
3936
3937 std::pair<Temp, unsigned> get_gs_per_vertex_input_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned base_stride = 1u)
3938 {
3939 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
3940
3941 Builder bld(ctx->program, ctx->block);
3942 nir_src *vertex_src = nir_get_io_vertex_index_src(instr);
3943 Temp vertex_offset;
3944
3945 if (!nir_src_is_const(*vertex_src)) {
3946 /* better code could be created, but this case probably doesn't happen
3947 * much in practice */
3948 Temp indirect_vertex = as_vgpr(ctx, get_ssa_temp(ctx, vertex_src->ssa));
3949 for (unsigned i = 0; i < ctx->shader->info.gs.vertices_in; i++) {
3950 Temp elem;
3951
3952 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
3953 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i / 2u * 2u]);
3954 if (i % 2u)
3955 elem = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), elem);
3956 } else {
3957 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i]);
3958 }
3959
3960 if (vertex_offset.id()) {
3961 Temp cond = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)),
3962 Operand(i), indirect_vertex);
3963 vertex_offset = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), vertex_offset, elem, cond);
3964 } else {
3965 vertex_offset = elem;
3966 }
3967 }
3968
3969 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs)
3970 vertex_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu), vertex_offset);
3971 } else {
3972 unsigned vertex = nir_src_as_uint(*vertex_src);
3973 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs)
3974 vertex_offset = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
3975 get_arg(ctx, ctx->args->gs_vtx_offset[vertex / 2u * 2u]),
3976 Operand((vertex % 2u) * 16u), Operand(16u));
3977 else
3978 vertex_offset = get_arg(ctx, ctx->args->gs_vtx_offset[vertex]);
3979 }
3980
3981 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, base_stride);
3982 offs = offset_add(ctx, offs, std::make_pair(vertex_offset, 0u));
3983 return offset_mul(ctx, offs, 4u);
3984 }
3985
3986 void visit_load_gs_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
3987 {
3988 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
3989
3990 Builder bld(ctx->program, ctx->block);
3991 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3992 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
3993
3994 if (ctx->stage == geometry_gs) {
3995 std::pair<Temp, unsigned> offs = get_gs_per_vertex_input_offset(ctx, instr, ctx->program->wave_size);
3996 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_GS * 16u));
3997 load_vmem_mubuf(ctx, dst, ring, offs.first, Temp(), offs.second, elem_size_bytes, instr->dest.ssa.num_components, 4u * ctx->program->wave_size, false, true);
3998 } else if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
3999 std::pair<Temp, unsigned> offs = get_gs_per_vertex_input_offset(ctx, instr);
4000 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
4001 load_lds(ctx, elem_size_bytes, dst, offs.first, offs.second, lds_align);
4002 } else {
4003 unreachable("Unsupported GS stage.");
4004 }
4005 }
4006
4007 void visit_load_tcs_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4008 {
4009 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4010
4011 Builder bld(ctx->program, ctx->block);
4012 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4013
4014 if (load_input_from_temps(ctx, instr, dst))
4015 return;
4016
4017 std::pair<Temp, unsigned> offs = get_tcs_per_vertex_input_lds_offset(ctx, instr);
4018 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
4019 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
4020
4021 load_lds(ctx, elem_size_bytes, dst, offs.first, offs.second, lds_align);
4022 }
4023
4024 void visit_load_tes_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4025 {
4026 assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
4027
4028 Builder bld(ctx->program, ctx->block);
4029
4030 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
4031 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
4032 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4033
4034 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
4035 std::pair<Temp, unsigned> offs = get_tcs_per_vertex_output_vmem_offset(ctx, instr);
4036
4037 load_vmem_mubuf(ctx, dst, ring, offs.first, oc_lds, offs.second, elem_size_bytes, instr->dest.ssa.num_components, 0u, true, true);
4038 }
4039
4040 void visit_load_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4041 {
4042 switch (ctx->shader->info.stage) {
4043 case MESA_SHADER_GEOMETRY:
4044 visit_load_gs_per_vertex_input(ctx, instr);
4045 break;
4046 case MESA_SHADER_TESS_CTRL:
4047 visit_load_tcs_per_vertex_input(ctx, instr);
4048 break;
4049 case MESA_SHADER_TESS_EVAL:
4050 visit_load_tes_per_vertex_input(ctx, instr);
4051 break;
4052 default:
4053 unreachable("Unimplemented shader stage");
4054 }
4055 }
4056
4057 void visit_load_per_vertex_output(isel_context *ctx, nir_intrinsic_instr *instr)
4058 {
4059 visit_load_tcs_output(ctx, instr, true);
4060 }
4061
4062 void visit_store_per_vertex_output(isel_context *ctx, nir_intrinsic_instr *instr)
4063 {
4064 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
4065 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4066
4067 visit_store_tcs_output(ctx, instr, true);
4068 }
4069
4070 void visit_load_tess_coord(isel_context *ctx, nir_intrinsic_instr *instr)
4071 {
4072 assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
4073
4074 Builder bld(ctx->program, ctx->block);
4075 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4076
4077 Operand tes_u(get_arg(ctx, ctx->args->tes_u));
4078 Operand tes_v(get_arg(ctx, ctx->args->tes_v));
4079 Operand tes_w(0u);
4080
4081 if (ctx->shader->info.tess.primitive_mode == GL_TRIANGLES) {
4082 Temp tmp = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), tes_u, tes_v);
4083 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0x3f800000u /* 1.0f */), tmp);
4084 tes_w = Operand(tmp);
4085 }
4086
4087 Temp tess_coord = bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tes_u, tes_v, tes_w);
4088 emit_split_vector(ctx, tess_coord, 3);
4089 }
4090
4091 Temp load_desc_ptr(isel_context *ctx, unsigned desc_set)
4092 {
4093 if (ctx->program->info->need_indirect_descriptor_sets) {
4094 Builder bld(ctx->program, ctx->block);
4095 Temp ptr64 = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->descriptor_sets[0]));
4096 Operand off = bld.copy(bld.def(s1), Operand(desc_set << 2));
4097 return bld.smem(aco_opcode::s_load_dword, bld.def(s1), ptr64, off);//, false, false, false);
4098 }
4099
4100 return get_arg(ctx, ctx->args->descriptor_sets[desc_set]);
4101 }
4102
4103
4104 void visit_load_resource(isel_context *ctx, nir_intrinsic_instr *instr)
4105 {
4106 Builder bld(ctx->program, ctx->block);
4107 Temp index = get_ssa_temp(ctx, instr->src[0].ssa);
4108 if (!ctx->divergent_vals[instr->dest.ssa.index])
4109 index = bld.as_uniform(index);
4110 unsigned desc_set = nir_intrinsic_desc_set(instr);
4111 unsigned binding = nir_intrinsic_binding(instr);
4112
4113 Temp desc_ptr;
4114 radv_pipeline_layout *pipeline_layout = ctx->options->layout;
4115 radv_descriptor_set_layout *layout = pipeline_layout->set[desc_set].layout;
4116 unsigned offset = layout->binding[binding].offset;
4117 unsigned stride;
4118 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
4119 layout->binding[binding].type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
4120 unsigned idx = pipeline_layout->set[desc_set].dynamic_offset_start + layout->binding[binding].dynamic_offset_offset;
4121 desc_ptr = get_arg(ctx, ctx->args->ac.push_constants);
4122 offset = pipeline_layout->push_constant_size + 16 * idx;
4123 stride = 16;
4124 } else {
4125 desc_ptr = load_desc_ptr(ctx, desc_set);
4126 stride = layout->binding[binding].size;
4127 }
4128
4129 nir_const_value* nir_const_index = nir_src_as_const_value(instr->src[0]);
4130 unsigned const_index = nir_const_index ? nir_const_index->u32 : 0;
4131 if (stride != 1) {
4132 if (nir_const_index) {
4133 const_index = const_index * stride;
4134 } else if (index.type() == RegType::vgpr) {
4135 bool index24bit = layout->binding[binding].array_size <= 0x1000000;
4136 index = bld.v_mul_imm(bld.def(v1), index, stride, index24bit);
4137 } else {
4138 index = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), Operand(index));
4139 }
4140 }
4141 if (offset) {
4142 if (nir_const_index) {
4143 const_index = const_index + offset;
4144 } else if (index.type() == RegType::vgpr) {
4145 index = bld.vadd32(bld.def(v1), Operand(offset), index);
4146 } else {
4147 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), Operand(index));
4148 }
4149 }
4150
4151 if (nir_const_index && const_index == 0) {
4152 index = desc_ptr;
4153 } else if (index.type() == RegType::vgpr) {
4154 index = bld.vadd32(bld.def(v1),
4155 nir_const_index ? Operand(const_index) : Operand(index),
4156 Operand(desc_ptr));
4157 } else {
4158 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
4159 nir_const_index ? Operand(const_index) : Operand(index),
4160 Operand(desc_ptr));
4161 }
4162
4163 bld.copy(Definition(get_ssa_temp(ctx, &instr->dest.ssa)), index);
4164 }
4165
4166 void load_buffer(isel_context *ctx, unsigned num_components, Temp dst,
4167 Temp rsrc, Temp offset, bool glc=false, bool readonly=true)
4168 {
4169 Builder bld(ctx->program, ctx->block);
4170
4171 unsigned num_bytes = dst.size() * 4;
4172 bool dlc = glc && ctx->options->chip_class >= GFX10;
4173
4174 aco_opcode op;
4175 if (dst.type() == RegType::vgpr || (ctx->options->chip_class < GFX8 && !readonly)) {
4176 Operand vaddr = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
4177 Operand soffset = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
4178 unsigned const_offset = 0;
4179
4180 Temp lower = Temp();
4181 if (num_bytes > 16) {
4182 assert(num_components == 3 || num_components == 4);
4183 op = aco_opcode::buffer_load_dwordx4;
4184 lower = bld.tmp(v4);
4185 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
4186 mubuf->definitions[0] = Definition(lower);
4187 mubuf->operands[0] = Operand(rsrc);
4188 mubuf->operands[1] = vaddr;
4189 mubuf->operands[2] = soffset;
4190 mubuf->offen = (offset.type() == RegType::vgpr);
4191 mubuf->glc = glc;
4192 mubuf->dlc = dlc;
4193 mubuf->barrier = readonly ? barrier_none : barrier_buffer;
4194 mubuf->can_reorder = readonly;
4195 bld.insert(std::move(mubuf));
4196 emit_split_vector(ctx, lower, 2);
4197 num_bytes -= 16;
4198 const_offset = 16;
4199 } else if (num_bytes == 12 && ctx->options->chip_class == GFX6) {
4200 /* GFX6 doesn't support loading vec3, expand to vec4. */
4201 num_bytes = 16;
4202 }
4203
4204 switch (num_bytes) {
4205 case 4:
4206 op = aco_opcode::buffer_load_dword;
4207 break;
4208 case 8:
4209 op = aco_opcode::buffer_load_dwordx2;
4210 break;
4211 case 12:
4212 assert(ctx->options->chip_class > GFX6);
4213 op = aco_opcode::buffer_load_dwordx3;
4214 break;
4215 case 16:
4216 op = aco_opcode::buffer_load_dwordx4;
4217 break;
4218 default:
4219 unreachable("Load SSBO not implemented for this size.");
4220 }
4221 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
4222 mubuf->operands[0] = Operand(rsrc);
4223 mubuf->operands[1] = vaddr;
4224 mubuf->operands[2] = soffset;
4225 mubuf->offen = (offset.type() == RegType::vgpr);
4226 mubuf->glc = glc;
4227 mubuf->dlc = dlc;
4228 mubuf->barrier = readonly ? barrier_none : barrier_buffer;
4229 mubuf->can_reorder = readonly;
4230 mubuf->offset = const_offset;
4231 aco_ptr<Instruction> instr = std::move(mubuf);
4232
4233 if (dst.size() > 4) {
4234 assert(lower != Temp());
4235 Temp upper = bld.tmp(RegType::vgpr, dst.size() - lower.size());
4236 instr->definitions[0] = Definition(upper);
4237 bld.insert(std::move(instr));
4238 if (dst.size() == 8)
4239 emit_split_vector(ctx, upper, 2);
4240 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size() / 2, 1));
4241 instr->operands[0] = Operand(emit_extract_vector(ctx, lower, 0, v2));
4242 instr->operands[1] = Operand(emit_extract_vector(ctx, lower, 1, v2));
4243 instr->operands[2] = Operand(emit_extract_vector(ctx, upper, 0, v2));
4244 if (dst.size() == 8)
4245 instr->operands[3] = Operand(emit_extract_vector(ctx, upper, 1, v2));
4246 } else if (dst.size() == 3 && ctx->options->chip_class == GFX6) {
4247 Temp vec = bld.tmp(v4);
4248 instr->definitions[0] = Definition(vec);
4249 bld.insert(std::move(instr));
4250 emit_split_vector(ctx, vec, 4);
4251
4252 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 3, 1));
4253 instr->operands[0] = Operand(emit_extract_vector(ctx, vec, 0, v1));
4254 instr->operands[1] = Operand(emit_extract_vector(ctx, vec, 1, v1));
4255 instr->operands[2] = Operand(emit_extract_vector(ctx, vec, 2, v1));
4256 }
4257
4258 if (dst.type() == RegType::sgpr) {
4259 Temp vec = bld.tmp(RegType::vgpr, dst.size());
4260 instr->definitions[0] = Definition(vec);
4261 bld.insert(std::move(instr));
4262 expand_vector(ctx, vec, dst, num_components, (1 << num_components) - 1);
4263 } else {
4264 instr->definitions[0] = Definition(dst);
4265 bld.insert(std::move(instr));
4266 emit_split_vector(ctx, dst, num_components);
4267 }
4268 } else {
4269 switch (num_bytes) {
4270 case 4:
4271 op = aco_opcode::s_buffer_load_dword;
4272 break;
4273 case 8:
4274 op = aco_opcode::s_buffer_load_dwordx2;
4275 break;
4276 case 12:
4277 case 16:
4278 op = aco_opcode::s_buffer_load_dwordx4;
4279 break;
4280 case 24:
4281 case 32:
4282 op = aco_opcode::s_buffer_load_dwordx8;
4283 break;
4284 default:
4285 unreachable("Load SSBO not implemented for this size.");
4286 }
4287 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
4288 load->operands[0] = Operand(rsrc);
4289 load->operands[1] = Operand(bld.as_uniform(offset));
4290 assert(load->operands[1].getTemp().type() == RegType::sgpr);
4291 load->definitions[0] = Definition(dst);
4292 load->glc = glc;
4293 load->dlc = dlc;
4294 load->barrier = readonly ? barrier_none : barrier_buffer;
4295 load->can_reorder = false; // FIXME: currently, it doesn't seem beneficial due to how our scheduler works
4296 assert(ctx->options->chip_class >= GFX8 || !glc);
4297
4298 /* trim vector */
4299 if (dst.size() == 3) {
4300 Temp vec = bld.tmp(s4);
4301 load->definitions[0] = Definition(vec);
4302 bld.insert(std::move(load));
4303 emit_split_vector(ctx, vec, 4);
4304
4305 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4306 emit_extract_vector(ctx, vec, 0, s1),
4307 emit_extract_vector(ctx, vec, 1, s1),
4308 emit_extract_vector(ctx, vec, 2, s1));
4309 } else if (dst.size() == 6) {
4310 Temp vec = bld.tmp(s8);
4311 load->definitions[0] = Definition(vec);
4312 bld.insert(std::move(load));
4313 emit_split_vector(ctx, vec, 4);
4314
4315 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4316 emit_extract_vector(ctx, vec, 0, s2),
4317 emit_extract_vector(ctx, vec, 1, s2),
4318 emit_extract_vector(ctx, vec, 2, s2));
4319 } else {
4320 bld.insert(std::move(load));
4321 }
4322 emit_split_vector(ctx, dst, num_components);
4323 }
4324 }
4325
4326 void visit_load_ubo(isel_context *ctx, nir_intrinsic_instr *instr)
4327 {
4328 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4329 Temp rsrc = get_ssa_temp(ctx, instr->src[0].ssa);
4330
4331 Builder bld(ctx->program, ctx->block);
4332
4333 nir_intrinsic_instr* idx_instr = nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
4334 unsigned desc_set = nir_intrinsic_desc_set(idx_instr);
4335 unsigned binding = nir_intrinsic_binding(idx_instr);
4336 radv_descriptor_set_layout *layout = ctx->options->layout->set[desc_set].layout;
4337
4338 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
4339 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
4340 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
4341 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
4342 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
4343 if (ctx->options->chip_class >= GFX10) {
4344 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
4345 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
4346 S_008F0C_RESOURCE_LEVEL(1);
4347 } else {
4348 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
4349 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
4350 }
4351 Temp upper_dwords = bld.pseudo(aco_opcode::p_create_vector, bld.def(s3),
4352 Operand(S_008F04_BASE_ADDRESS_HI(ctx->options->address32_hi)),
4353 Operand(0xFFFFFFFFu),
4354 Operand(desc_type));
4355 rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
4356 rsrc, upper_dwords);
4357 } else {
4358 rsrc = convert_pointer_to_64_bit(ctx, rsrc);
4359 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
4360 }
4361
4362 load_buffer(ctx, instr->num_components, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa));
4363 }
4364
4365 void visit_load_push_constant(isel_context *ctx, nir_intrinsic_instr *instr)
4366 {
4367 Builder bld(ctx->program, ctx->block);
4368 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4369
4370 unsigned offset = nir_intrinsic_base(instr);
4371 nir_const_value *index_cv = nir_src_as_const_value(instr->src[0]);
4372 if (index_cv && instr->dest.ssa.bit_size == 32) {
4373
4374 unsigned count = instr->dest.ssa.num_components;
4375 unsigned start = (offset + index_cv->u32) / 4u;
4376 start -= ctx->args->ac.base_inline_push_consts;
4377 if (start + count <= ctx->args->ac.num_inline_push_consts) {
4378 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
4379 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
4380 for (unsigned i = 0; i < count; ++i) {
4381 elems[i] = get_arg(ctx, ctx->args->ac.inline_push_consts[start + i]);
4382 vec->operands[i] = Operand{elems[i]};
4383 }
4384 vec->definitions[0] = Definition(dst);
4385 ctx->block->instructions.emplace_back(std::move(vec));
4386 ctx->allocated_vec.emplace(dst.id(), elems);
4387 return;
4388 }
4389 }
4390
4391 Temp index = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa));
4392 if (offset != 0) // TODO check if index != 0 as well
4393 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), index);
4394 Temp ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->ac.push_constants));
4395 Temp vec = dst;
4396 bool trim = false;
4397 aco_opcode op;
4398
4399 switch (dst.size()) {
4400 case 1:
4401 op = aco_opcode::s_load_dword;
4402 break;
4403 case 2:
4404 op = aco_opcode::s_load_dwordx2;
4405 break;
4406 case 3:
4407 vec = bld.tmp(s4);
4408 trim = true;
4409 case 4:
4410 op = aco_opcode::s_load_dwordx4;
4411 break;
4412 case 6:
4413 vec = bld.tmp(s8);
4414 trim = true;
4415 case 8:
4416 op = aco_opcode::s_load_dwordx8;
4417 break;
4418 default:
4419 unreachable("unimplemented or forbidden load_push_constant.");
4420 }
4421
4422 bld.smem(op, Definition(vec), ptr, index);
4423
4424 if (trim) {
4425 emit_split_vector(ctx, vec, 4);
4426 RegClass rc = dst.size() == 3 ? s1 : s2;
4427 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4428 emit_extract_vector(ctx, vec, 0, rc),
4429 emit_extract_vector(ctx, vec, 1, rc),
4430 emit_extract_vector(ctx, vec, 2, rc));
4431
4432 }
4433 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
4434 }
4435
4436 void visit_load_constant(isel_context *ctx, nir_intrinsic_instr *instr)
4437 {
4438 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4439
4440 Builder bld(ctx->program, ctx->block);
4441
4442 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
4443 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
4444 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
4445 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
4446 if (ctx->options->chip_class >= GFX10) {
4447 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
4448 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
4449 S_008F0C_RESOURCE_LEVEL(1);
4450 } else {
4451 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
4452 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
4453 }
4454
4455 unsigned base = nir_intrinsic_base(instr);
4456 unsigned range = nir_intrinsic_range(instr);
4457
4458 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
4459 if (base && offset.type() == RegType::sgpr)
4460 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), offset, Operand(base));
4461 else if (base && offset.type() == RegType::vgpr)
4462 offset = bld.vadd32(bld.def(v1), Operand(base), offset);
4463
4464 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
4465 bld.sop1(aco_opcode::p_constaddr, bld.def(s2), bld.def(s1, scc), Operand(ctx->constant_data_offset)),
4466 Operand(MIN2(base + range, ctx->shader->constant_data_size)),
4467 Operand(desc_type));
4468
4469 load_buffer(ctx, instr->num_components, dst, rsrc, offset);
4470 }
4471
4472 void visit_discard_if(isel_context *ctx, nir_intrinsic_instr *instr)
4473 {
4474 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
4475 ctx->cf_info.exec_potentially_empty_discard = true;
4476
4477 ctx->program->needs_exact = true;
4478
4479 // TODO: optimize uniform conditions
4480 Builder bld(ctx->program, ctx->block);
4481 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
4482 assert(src.regClass() == bld.lm);
4483 src = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
4484 bld.pseudo(aco_opcode::p_discard_if, src);
4485 ctx->block->kind |= block_kind_uses_discard_if;
4486 return;
4487 }
4488
4489 void visit_discard(isel_context* ctx, nir_intrinsic_instr *instr)
4490 {
4491 Builder bld(ctx->program, ctx->block);
4492
4493 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
4494 ctx->cf_info.exec_potentially_empty_discard = true;
4495
4496 bool divergent = ctx->cf_info.parent_if.is_divergent ||
4497 ctx->cf_info.parent_loop.has_divergent_continue;
4498
4499 if (ctx->block->loop_nest_depth &&
4500 ((nir_instr_is_last(&instr->instr) && !divergent) || divergent)) {
4501 /* we handle discards the same way as jump instructions */
4502 append_logical_end(ctx->block);
4503
4504 /* in loops, discard behaves like break */
4505 Block *linear_target = ctx->cf_info.parent_loop.exit;
4506 ctx->block->kind |= block_kind_discard;
4507
4508 if (!divergent) {
4509 /* uniform discard - loop ends here */
4510 assert(nir_instr_is_last(&instr->instr));
4511 ctx->block->kind |= block_kind_uniform;
4512 ctx->cf_info.has_branch = true;
4513 bld.branch(aco_opcode::p_branch);
4514 add_linear_edge(ctx->block->index, linear_target);
4515 return;
4516 }
4517
4518 /* we add a break right behind the discard() instructions */
4519 ctx->block->kind |= block_kind_break;
4520 unsigned idx = ctx->block->index;
4521
4522 ctx->cf_info.parent_loop.has_divergent_branch = true;
4523 ctx->cf_info.nir_to_aco[instr->instr.block->index] = idx;
4524
4525 /* remove critical edges from linear CFG */
4526 bld.branch(aco_opcode::p_branch);
4527 Block* break_block = ctx->program->create_and_insert_block();
4528 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
4529 break_block->kind |= block_kind_uniform;
4530 add_linear_edge(idx, break_block);
4531 add_linear_edge(break_block->index, linear_target);
4532 bld.reset(break_block);
4533 bld.branch(aco_opcode::p_branch);
4534
4535 Block* continue_block = ctx->program->create_and_insert_block();
4536 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
4537 add_linear_edge(idx, continue_block);
4538 append_logical_start(continue_block);
4539 ctx->block = continue_block;
4540
4541 return;
4542 }
4543
4544 /* it can currently happen that NIR doesn't remove the unreachable code */
4545 if (!nir_instr_is_last(&instr->instr)) {
4546 ctx->program->needs_exact = true;
4547 /* save exec somewhere temporarily so that it doesn't get
4548 * overwritten before the discard from outer exec masks */
4549 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), Operand(0xFFFFFFFF), Operand(exec, bld.lm));
4550 bld.pseudo(aco_opcode::p_discard_if, cond);
4551 ctx->block->kind |= block_kind_uses_discard_if;
4552 return;
4553 }
4554
4555 /* This condition is incorrect for uniformly branched discards in a loop
4556 * predicated by a divergent condition, but the above code catches that case
4557 * and the discard would end up turning into a discard_if.
4558 * For example:
4559 * if (divergent) {
4560 * while (...) {
4561 * if (uniform) {
4562 * discard;
4563 * }
4564 * }
4565 * }
4566 */
4567 if (!ctx->cf_info.parent_if.is_divergent) {
4568 /* program just ends here */
4569 ctx->block->kind |= block_kind_uniform;
4570 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
4571 0 /* enabled mask */, 9 /* dest */,
4572 false /* compressed */, true/* done */, true /* valid mask */);
4573 bld.sopp(aco_opcode::s_endpgm);
4574 // TODO: it will potentially be followed by a branch which is dead code to sanitize NIR phis
4575 } else {
4576 ctx->block->kind |= block_kind_discard;
4577 /* branch and linear edge is added by visit_if() */
4578 }
4579 }
4580
4581 enum aco_descriptor_type {
4582 ACO_DESC_IMAGE,
4583 ACO_DESC_FMASK,
4584 ACO_DESC_SAMPLER,
4585 ACO_DESC_BUFFER,
4586 ACO_DESC_PLANE_0,
4587 ACO_DESC_PLANE_1,
4588 ACO_DESC_PLANE_2,
4589 };
4590
4591 static bool
4592 should_declare_array(isel_context *ctx, enum glsl_sampler_dim sampler_dim, bool is_array) {
4593 if (sampler_dim == GLSL_SAMPLER_DIM_BUF)
4594 return false;
4595 ac_image_dim dim = ac_get_sampler_dim(ctx->options->chip_class, sampler_dim, is_array);
4596 return dim == ac_image_cube ||
4597 dim == ac_image_1darray ||
4598 dim == ac_image_2darray ||
4599 dim == ac_image_2darraymsaa;
4600 }
4601
4602 Temp get_sampler_desc(isel_context *ctx, nir_deref_instr *deref_instr,
4603 enum aco_descriptor_type desc_type,
4604 const nir_tex_instr *tex_instr, bool image, bool write)
4605 {
4606 /* FIXME: we should lower the deref with some new nir_intrinsic_load_desc
4607 std::unordered_map<uint64_t, Temp>::iterator it = ctx->tex_desc.find((uint64_t) desc_type << 32 | deref_instr->dest.ssa.index);
4608 if (it != ctx->tex_desc.end())
4609 return it->second;
4610 */
4611 Temp index = Temp();
4612 bool index_set = false;
4613 unsigned constant_index = 0;
4614 unsigned descriptor_set;
4615 unsigned base_index;
4616 Builder bld(ctx->program, ctx->block);
4617
4618 if (!deref_instr) {
4619 assert(tex_instr && !image);
4620 descriptor_set = 0;
4621 base_index = tex_instr->sampler_index;
4622 } else {
4623 while(deref_instr->deref_type != nir_deref_type_var) {
4624 unsigned array_size = glsl_get_aoa_size(deref_instr->type);
4625 if (!array_size)
4626 array_size = 1;
4627
4628 assert(deref_instr->deref_type == nir_deref_type_array);
4629 nir_const_value *const_value = nir_src_as_const_value(deref_instr->arr.index);
4630 if (const_value) {
4631 constant_index += array_size * const_value->u32;
4632 } else {
4633 Temp indirect = get_ssa_temp(ctx, deref_instr->arr.index.ssa);
4634 if (indirect.type() == RegType::vgpr)
4635 indirect = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), indirect);
4636
4637 if (array_size != 1)
4638 indirect = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(array_size), indirect);
4639
4640 if (!index_set) {
4641 index = indirect;
4642 index_set = true;
4643 } else {
4644 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), index, indirect);
4645 }
4646 }
4647
4648 deref_instr = nir_src_as_deref(deref_instr->parent);
4649 }
4650 descriptor_set = deref_instr->var->data.descriptor_set;
4651 base_index = deref_instr->var->data.binding;
4652 }
4653
4654 Temp list = load_desc_ptr(ctx, descriptor_set);
4655 list = convert_pointer_to_64_bit(ctx, list);
4656
4657 struct radv_descriptor_set_layout *layout = ctx->options->layout->set[descriptor_set].layout;
4658 struct radv_descriptor_set_binding_layout *binding = layout->binding + base_index;
4659 unsigned offset = binding->offset;
4660 unsigned stride = binding->size;
4661 aco_opcode opcode;
4662 RegClass type;
4663
4664 assert(base_index < layout->binding_count);
4665
4666 switch (desc_type) {
4667 case ACO_DESC_IMAGE:
4668 type = s8;
4669 opcode = aco_opcode::s_load_dwordx8;
4670 break;
4671 case ACO_DESC_FMASK:
4672 type = s8;
4673 opcode = aco_opcode::s_load_dwordx8;
4674 offset += 32;
4675 break;
4676 case ACO_DESC_SAMPLER:
4677 type = s4;
4678 opcode = aco_opcode::s_load_dwordx4;
4679 if (binding->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
4680 offset += radv_combined_image_descriptor_sampler_offset(binding);
4681 break;
4682 case ACO_DESC_BUFFER:
4683 type = s4;
4684 opcode = aco_opcode::s_load_dwordx4;
4685 break;
4686 case ACO_DESC_PLANE_0:
4687 case ACO_DESC_PLANE_1:
4688 type = s8;
4689 opcode = aco_opcode::s_load_dwordx8;
4690 offset += 32 * (desc_type - ACO_DESC_PLANE_0);
4691 break;
4692 case ACO_DESC_PLANE_2:
4693 type = s4;
4694 opcode = aco_opcode::s_load_dwordx4;
4695 offset += 64;
4696 break;
4697 default:
4698 unreachable("invalid desc_type\n");
4699 }
4700
4701 offset += constant_index * stride;
4702
4703 if (desc_type == ACO_DESC_SAMPLER && binding->immutable_samplers_offset &&
4704 (!index_set || binding->immutable_samplers_equal)) {
4705 if (binding->immutable_samplers_equal)
4706 constant_index = 0;
4707
4708 const uint32_t *samplers = radv_immutable_samplers(layout, binding);
4709 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
4710 Operand(samplers[constant_index * 4 + 0]),
4711 Operand(samplers[constant_index * 4 + 1]),
4712 Operand(samplers[constant_index * 4 + 2]),
4713 Operand(samplers[constant_index * 4 + 3]));
4714 }
4715
4716 Operand off;
4717 if (!index_set) {
4718 off = bld.copy(bld.def(s1), Operand(offset));
4719 } else {
4720 off = Operand((Temp)bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset),
4721 bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), index)));
4722 }
4723
4724 Temp res = bld.smem(opcode, bld.def(type), list, off);
4725
4726 if (desc_type == ACO_DESC_PLANE_2) {
4727 Temp components[8];
4728 for (unsigned i = 0; i < 8; i++)
4729 components[i] = bld.tmp(s1);
4730 bld.pseudo(aco_opcode::p_split_vector,
4731 Definition(components[0]),
4732 Definition(components[1]),
4733 Definition(components[2]),
4734 Definition(components[3]),
4735 res);
4736
4737 Temp desc2 = get_sampler_desc(ctx, deref_instr, ACO_DESC_PLANE_1, tex_instr, image, write);
4738 bld.pseudo(aco_opcode::p_split_vector,
4739 bld.def(s1), bld.def(s1), bld.def(s1), bld.def(s1),
4740 Definition(components[4]),
4741 Definition(components[5]),
4742 Definition(components[6]),
4743 Definition(components[7]),
4744 desc2);
4745
4746 res = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
4747 components[0], components[1], components[2], components[3],
4748 components[4], components[5], components[6], components[7]);
4749 }
4750
4751 return res;
4752 }
4753
4754 static int image_type_to_components_count(enum glsl_sampler_dim dim, bool array)
4755 {
4756 switch (dim) {
4757 case GLSL_SAMPLER_DIM_BUF:
4758 return 1;
4759 case GLSL_SAMPLER_DIM_1D:
4760 return array ? 2 : 1;
4761 case GLSL_SAMPLER_DIM_2D:
4762 return array ? 3 : 2;
4763 case GLSL_SAMPLER_DIM_MS:
4764 return array ? 4 : 3;
4765 case GLSL_SAMPLER_DIM_3D:
4766 case GLSL_SAMPLER_DIM_CUBE:
4767 return 3;
4768 case GLSL_SAMPLER_DIM_RECT:
4769 case GLSL_SAMPLER_DIM_SUBPASS:
4770 return 2;
4771 case GLSL_SAMPLER_DIM_SUBPASS_MS:
4772 return 3;
4773 default:
4774 break;
4775 }
4776 return 0;
4777 }
4778
4779
4780 /* Adjust the sample index according to FMASK.
4781 *
4782 * For uncompressed MSAA surfaces, FMASK should return 0x76543210,
4783 * which is the identity mapping. Each nibble says which physical sample
4784 * should be fetched to get that sample.
4785 *
4786 * For example, 0x11111100 means there are only 2 samples stored and
4787 * the second sample covers 3/4 of the pixel. When reading samples 0
4788 * and 1, return physical sample 0 (determined by the first two 0s
4789 * in FMASK), otherwise return physical sample 1.
4790 *
4791 * The sample index should be adjusted as follows:
4792 * sample_index = (fmask >> (sample_index * 4)) & 0xF;
4793 */
4794 static Temp adjust_sample_index_using_fmask(isel_context *ctx, bool da, std::vector<Temp>& coords, Operand sample_index, Temp fmask_desc_ptr)
4795 {
4796 Builder bld(ctx->program, ctx->block);
4797 Temp fmask = bld.tmp(v1);
4798 unsigned dim = ctx->options->chip_class >= GFX10
4799 ? ac_get_sampler_dim(ctx->options->chip_class, GLSL_SAMPLER_DIM_2D, da)
4800 : 0;
4801
4802 Temp coord = da ? bld.pseudo(aco_opcode::p_create_vector, bld.def(v3), coords[0], coords[1], coords[2]) :
4803 bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), coords[0], coords[1]);
4804 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(aco_opcode::image_load, Format::MIMG, 3, 1)};
4805 load->operands[0] = Operand(fmask_desc_ptr);
4806 load->operands[1] = Operand(s4); /* no sampler */
4807 load->operands[2] = Operand(coord);
4808 load->definitions[0] = Definition(fmask);
4809 load->glc = false;
4810 load->dlc = false;
4811 load->dmask = 0x1;
4812 load->unrm = true;
4813 load->da = da;
4814 load->dim = dim;
4815 load->can_reorder = true; /* fmask images shouldn't be modified */
4816 ctx->block->instructions.emplace_back(std::move(load));
4817
4818 Operand sample_index4;
4819 if (sample_index.isConstant() && sample_index.constantValue() < 16) {
4820 sample_index4 = Operand(sample_index.constantValue() << 2);
4821 } else if (sample_index.regClass() == s1) {
4822 sample_index4 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), sample_index, Operand(2u));
4823 } else {
4824 assert(sample_index.regClass() == v1);
4825 sample_index4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), sample_index);
4826 }
4827
4828 Temp final_sample;
4829 if (sample_index4.isConstant() && sample_index4.constantValue() == 0)
4830 final_sample = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(15u), fmask);
4831 else if (sample_index4.isConstant() && sample_index4.constantValue() == 28)
4832 final_sample = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(28u), fmask);
4833 else
4834 final_sample = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), fmask, sample_index4, Operand(4u));
4835
4836 /* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK
4837 * resource descriptor is 0 (invalid),
4838 */
4839 Temp compare = bld.tmp(bld.lm);
4840 bld.vopc_e64(aco_opcode::v_cmp_lg_u32, Definition(compare),
4841 Operand(0u), emit_extract_vector(ctx, fmask_desc_ptr, 1, s1)).def(0).setHint(vcc);
4842
4843 Temp sample_index_v = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), sample_index);
4844
4845 /* Replace the MSAA sample index. */
4846 return bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), sample_index_v, final_sample, compare);
4847 }
4848
4849 static Temp get_image_coords(isel_context *ctx, const nir_intrinsic_instr *instr, const struct glsl_type *type)
4850 {
4851
4852 Temp src0 = get_ssa_temp(ctx, instr->src[1].ssa);
4853 enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4854 bool is_array = glsl_sampler_type_is_array(type);
4855 ASSERTED bool add_frag_pos = (dim == GLSL_SAMPLER_DIM_SUBPASS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
4856 assert(!add_frag_pos && "Input attachments should be lowered.");
4857 bool is_ms = (dim == GLSL_SAMPLER_DIM_MS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
4858 bool gfx9_1d = ctx->options->chip_class == GFX9 && dim == GLSL_SAMPLER_DIM_1D;
4859 int count = image_type_to_components_count(dim, is_array);
4860 std::vector<Temp> coords(count);
4861 Builder bld(ctx->program, ctx->block);
4862
4863 if (is_ms) {
4864 count--;
4865 Temp src2 = get_ssa_temp(ctx, instr->src[2].ssa);
4866 /* get sample index */
4867 if (instr->intrinsic == nir_intrinsic_image_deref_load) {
4868 nir_const_value *sample_cv = nir_src_as_const_value(instr->src[2]);
4869 Operand sample_index = sample_cv ? Operand(sample_cv->u32) : Operand(emit_extract_vector(ctx, src2, 0, v1));
4870 std::vector<Temp> fmask_load_address;
4871 for (unsigned i = 0; i < (is_array ? 3 : 2); i++)
4872 fmask_load_address.emplace_back(emit_extract_vector(ctx, src0, i, v1));
4873
4874 Temp fmask_desc_ptr = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_FMASK, nullptr, false, false);
4875 coords[count] = adjust_sample_index_using_fmask(ctx, is_array, fmask_load_address, sample_index, fmask_desc_ptr);
4876 } else {
4877 coords[count] = emit_extract_vector(ctx, src2, 0, v1);
4878 }
4879 }
4880
4881 if (gfx9_1d) {
4882 coords[0] = emit_extract_vector(ctx, src0, 0, v1);
4883 coords.resize(coords.size() + 1);
4884 coords[1] = bld.copy(bld.def(v1), Operand(0u));
4885 if (is_array)
4886 coords[2] = emit_extract_vector(ctx, src0, 1, v1);
4887 } else {
4888 for (int i = 0; i < count; i++)
4889 coords[i] = emit_extract_vector(ctx, src0, i, v1);
4890 }
4891
4892 if (instr->intrinsic == nir_intrinsic_image_deref_load ||
4893 instr->intrinsic == nir_intrinsic_image_deref_store) {
4894 int lod_index = instr->intrinsic == nir_intrinsic_image_deref_load ? 3 : 4;
4895 bool level_zero = nir_src_is_const(instr->src[lod_index]) && nir_src_as_uint(instr->src[lod_index]) == 0;
4896
4897 if (!level_zero)
4898 coords.emplace_back(get_ssa_temp(ctx, instr->src[lod_index].ssa));
4899 }
4900
4901 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
4902 for (unsigned i = 0; i < coords.size(); i++)
4903 vec->operands[i] = Operand(coords[i]);
4904 Temp res = {ctx->program->allocateId(), RegClass(RegType::vgpr, coords.size())};
4905 vec->definitions[0] = Definition(res);
4906 ctx->block->instructions.emplace_back(std::move(vec));
4907 return res;
4908 }
4909
4910
4911 void visit_image_load(isel_context *ctx, nir_intrinsic_instr *instr)
4912 {
4913 Builder bld(ctx->program, ctx->block);
4914 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
4915 const struct glsl_type *type = glsl_without_array(var->type);
4916 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4917 bool is_array = glsl_sampler_type_is_array(type);
4918 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4919
4920 if (dim == GLSL_SAMPLER_DIM_BUF) {
4921 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa);
4922 unsigned num_channels = util_last_bit(mask);
4923 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
4924 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
4925
4926 aco_opcode opcode;
4927 switch (num_channels) {
4928 case 1:
4929 opcode = aco_opcode::buffer_load_format_x;
4930 break;
4931 case 2:
4932 opcode = aco_opcode::buffer_load_format_xy;
4933 break;
4934 case 3:
4935 opcode = aco_opcode::buffer_load_format_xyz;
4936 break;
4937 case 4:
4938 opcode = aco_opcode::buffer_load_format_xyzw;
4939 break;
4940 default:
4941 unreachable(">4 channel buffer image load");
4942 }
4943 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 3, 1)};
4944 load->operands[0] = Operand(rsrc);
4945 load->operands[1] = Operand(vindex);
4946 load->operands[2] = Operand((uint32_t) 0);
4947 Temp tmp;
4948 if (num_channels == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
4949 tmp = dst;
4950 else
4951 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_channels)};
4952 load->definitions[0] = Definition(tmp);
4953 load->idxen = true;
4954 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT);
4955 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
4956 load->barrier = barrier_image;
4957 ctx->block->instructions.emplace_back(std::move(load));
4958
4959 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, (1 << num_channels) - 1);
4960 return;
4961 }
4962
4963 Temp coords = get_image_coords(ctx, instr, type);
4964 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
4965
4966 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
4967 unsigned num_components = util_bitcount(dmask);
4968 Temp tmp;
4969 if (num_components == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
4970 tmp = dst;
4971 else
4972 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_components)};
4973
4974 bool level_zero = nir_src_is_const(instr->src[3]) && nir_src_as_uint(instr->src[3]) == 0;
4975 aco_opcode opcode = level_zero ? aco_opcode::image_load : aco_opcode::image_load_mip;
4976
4977 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1)};
4978 load->operands[0] = Operand(resource);
4979 load->operands[1] = Operand(s4); /* no sampler */
4980 load->operands[2] = Operand(coords);
4981 load->definitions[0] = Definition(tmp);
4982 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT) ? 1 : 0;
4983 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
4984 load->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
4985 load->dmask = dmask;
4986 load->unrm = true;
4987 load->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
4988 load->barrier = barrier_image;
4989 ctx->block->instructions.emplace_back(std::move(load));
4990
4991 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, dmask);
4992 return;
4993 }
4994
4995 void visit_image_store(isel_context *ctx, nir_intrinsic_instr *instr)
4996 {
4997 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
4998 const struct glsl_type *type = glsl_without_array(var->type);
4999 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5000 bool is_array = glsl_sampler_type_is_array(type);
5001 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
5002
5003 bool glc = ctx->options->chip_class == GFX6 || var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE) ? 1 : 0;
5004
5005 if (dim == GLSL_SAMPLER_DIM_BUF) {
5006 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5007 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5008 aco_opcode opcode;
5009 switch (data.size()) {
5010 case 1:
5011 opcode = aco_opcode::buffer_store_format_x;
5012 break;
5013 case 2:
5014 opcode = aco_opcode::buffer_store_format_xy;
5015 break;
5016 case 3:
5017 opcode = aco_opcode::buffer_store_format_xyz;
5018 break;
5019 case 4:
5020 opcode = aco_opcode::buffer_store_format_xyzw;
5021 break;
5022 default:
5023 unreachable(">4 channel buffer image store");
5024 }
5025 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
5026 store->operands[0] = Operand(rsrc);
5027 store->operands[1] = Operand(vindex);
5028 store->operands[2] = Operand((uint32_t) 0);
5029 store->operands[3] = Operand(data);
5030 store->idxen = true;
5031 store->glc = glc;
5032 store->dlc = false;
5033 store->disable_wqm = true;
5034 store->barrier = barrier_image;
5035 ctx->program->needs_exact = true;
5036 ctx->block->instructions.emplace_back(std::move(store));
5037 return;
5038 }
5039
5040 assert(data.type() == RegType::vgpr);
5041 Temp coords = get_image_coords(ctx, instr, type);
5042 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5043
5044 bool level_zero = nir_src_is_const(instr->src[4]) && nir_src_as_uint(instr->src[4]) == 0;
5045 aco_opcode opcode = level_zero ? aco_opcode::image_store : aco_opcode::image_store_mip;
5046
5047 aco_ptr<MIMG_instruction> store{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 0)};
5048 store->operands[0] = Operand(resource);
5049 store->operands[1] = Operand(data);
5050 store->operands[2] = Operand(coords);
5051 store->glc = glc;
5052 store->dlc = false;
5053 store->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5054 store->dmask = (1 << data.size()) - 1;
5055 store->unrm = true;
5056 store->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5057 store->disable_wqm = true;
5058 store->barrier = barrier_image;
5059 ctx->program->needs_exact = true;
5060 ctx->block->instructions.emplace_back(std::move(store));
5061 return;
5062 }
5063
5064 void visit_image_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
5065 {
5066 /* return the previous value if dest is ever used */
5067 bool return_previous = false;
5068 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5069 return_previous = true;
5070 break;
5071 }
5072 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5073 return_previous = true;
5074 break;
5075 }
5076
5077 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5078 const struct glsl_type *type = glsl_without_array(var->type);
5079 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5080 bool is_array = glsl_sampler_type_is_array(type);
5081 Builder bld(ctx->program, ctx->block);
5082
5083 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
5084 assert(data.size() == 1 && "64bit ssbo atomics not yet implemented.");
5085
5086 if (instr->intrinsic == nir_intrinsic_image_deref_atomic_comp_swap)
5087 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), get_ssa_temp(ctx, instr->src[4].ssa), data);
5088
5089 aco_opcode buf_op, image_op;
5090 switch (instr->intrinsic) {
5091 case nir_intrinsic_image_deref_atomic_add:
5092 buf_op = aco_opcode::buffer_atomic_add;
5093 image_op = aco_opcode::image_atomic_add;
5094 break;
5095 case nir_intrinsic_image_deref_atomic_umin:
5096 buf_op = aco_opcode::buffer_atomic_umin;
5097 image_op = aco_opcode::image_atomic_umin;
5098 break;
5099 case nir_intrinsic_image_deref_atomic_imin:
5100 buf_op = aco_opcode::buffer_atomic_smin;
5101 image_op = aco_opcode::image_atomic_smin;
5102 break;
5103 case nir_intrinsic_image_deref_atomic_umax:
5104 buf_op = aco_opcode::buffer_atomic_umax;
5105 image_op = aco_opcode::image_atomic_umax;
5106 break;
5107 case nir_intrinsic_image_deref_atomic_imax:
5108 buf_op = aco_opcode::buffer_atomic_smax;
5109 image_op = aco_opcode::image_atomic_smax;
5110 break;
5111 case nir_intrinsic_image_deref_atomic_and:
5112 buf_op = aco_opcode::buffer_atomic_and;
5113 image_op = aco_opcode::image_atomic_and;
5114 break;
5115 case nir_intrinsic_image_deref_atomic_or:
5116 buf_op = aco_opcode::buffer_atomic_or;
5117 image_op = aco_opcode::image_atomic_or;
5118 break;
5119 case nir_intrinsic_image_deref_atomic_xor:
5120 buf_op = aco_opcode::buffer_atomic_xor;
5121 image_op = aco_opcode::image_atomic_xor;
5122 break;
5123 case nir_intrinsic_image_deref_atomic_exchange:
5124 buf_op = aco_opcode::buffer_atomic_swap;
5125 image_op = aco_opcode::image_atomic_swap;
5126 break;
5127 case nir_intrinsic_image_deref_atomic_comp_swap:
5128 buf_op = aco_opcode::buffer_atomic_cmpswap;
5129 image_op = aco_opcode::image_atomic_cmpswap;
5130 break;
5131 default:
5132 unreachable("visit_image_atomic should only be called with nir_intrinsic_image_deref_atomic_* instructions.");
5133 }
5134
5135 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5136
5137 if (dim == GLSL_SAMPLER_DIM_BUF) {
5138 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5139 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5140 //assert(ctx->options->chip_class < GFX9 && "GFX9 stride size workaround not yet implemented.");
5141 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(buf_op, Format::MUBUF, 4, return_previous ? 1 : 0)};
5142 mubuf->operands[0] = Operand(resource);
5143 mubuf->operands[1] = Operand(vindex);
5144 mubuf->operands[2] = Operand((uint32_t)0);
5145 mubuf->operands[3] = Operand(data);
5146 if (return_previous)
5147 mubuf->definitions[0] = Definition(dst);
5148 mubuf->offset = 0;
5149 mubuf->idxen = true;
5150 mubuf->glc = return_previous;
5151 mubuf->dlc = false; /* Not needed for atomics */
5152 mubuf->disable_wqm = true;
5153 mubuf->barrier = barrier_image;
5154 ctx->program->needs_exact = true;
5155 ctx->block->instructions.emplace_back(std::move(mubuf));
5156 return;
5157 }
5158
5159 Temp coords = get_image_coords(ctx, instr, type);
5160 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5161 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(image_op, Format::MIMG, 3, return_previous ? 1 : 0)};
5162 mimg->operands[0] = Operand(resource);
5163 mimg->operands[1] = Operand(data);
5164 mimg->operands[2] = Operand(coords);
5165 if (return_previous)
5166 mimg->definitions[0] = Definition(dst);
5167 mimg->glc = return_previous;
5168 mimg->dlc = false; /* Not needed for atomics */
5169 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5170 mimg->dmask = (1 << data.size()) - 1;
5171 mimg->unrm = true;
5172 mimg->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5173 mimg->disable_wqm = true;
5174 mimg->barrier = barrier_image;
5175 ctx->program->needs_exact = true;
5176 ctx->block->instructions.emplace_back(std::move(mimg));
5177 return;
5178 }
5179
5180 void get_buffer_size(isel_context *ctx, Temp desc, Temp dst, bool in_elements)
5181 {
5182 if (in_elements && ctx->options->chip_class == GFX8) {
5183 /* we only have to divide by 1, 2, 4, 8, 12 or 16 */
5184 Builder bld(ctx->program, ctx->block);
5185
5186 Temp size = emit_extract_vector(ctx, desc, 2, s1);
5187
5188 Temp size_div3 = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), bld.copy(bld.def(v1), Operand(0xaaaaaaabu)), size);
5189 size_div3 = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.as_uniform(size_div3), Operand(1u));
5190
5191 Temp stride = emit_extract_vector(ctx, desc, 1, s1);
5192 stride = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), stride, Operand((5u << 16) | 16u));
5193
5194 Temp is12 = bld.sopc(aco_opcode::s_cmp_eq_i32, bld.def(s1, scc), stride, Operand(12u));
5195 size = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), size_div3, size, bld.scc(is12));
5196
5197 Temp shr_dst = dst.type() == RegType::vgpr ? bld.tmp(s1) : dst;
5198 bld.sop2(aco_opcode::s_lshr_b32, Definition(shr_dst), bld.def(s1, scc),
5199 size, bld.sop1(aco_opcode::s_ff1_i32_b32, bld.def(s1), stride));
5200 if (dst.type() == RegType::vgpr)
5201 bld.copy(Definition(dst), shr_dst);
5202
5203 /* TODO: we can probably calculate this faster with v_skip when stride != 12 */
5204 } else {
5205 emit_extract_vector(ctx, desc, 2, dst);
5206 }
5207 }
5208
5209 void visit_image_size(isel_context *ctx, nir_intrinsic_instr *instr)
5210 {
5211 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5212 const struct glsl_type *type = glsl_without_array(var->type);
5213 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5214 bool is_array = glsl_sampler_type_is_array(type);
5215 Builder bld(ctx->program, ctx->block);
5216
5217 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF) {
5218 Temp desc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, NULL, true, false);
5219 return get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), true);
5220 }
5221
5222 /* LOD */
5223 Temp lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
5224
5225 /* Resource */
5226 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, NULL, true, false);
5227
5228 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5229
5230 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1)};
5231 mimg->operands[0] = Operand(resource);
5232 mimg->operands[1] = Operand(s4); /* no sampler */
5233 mimg->operands[2] = Operand(lod);
5234 uint8_t& dmask = mimg->dmask;
5235 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5236 mimg->dmask = (1 << instr->dest.ssa.num_components) - 1;
5237 mimg->da = glsl_sampler_type_is_array(type);
5238 mimg->can_reorder = true;
5239 Definition& def = mimg->definitions[0];
5240 ctx->block->instructions.emplace_back(std::move(mimg));
5241
5242 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE &&
5243 glsl_sampler_type_is_array(type)) {
5244
5245 assert(instr->dest.ssa.num_components == 3);
5246 Temp tmp = {ctx->program->allocateId(), v3};
5247 def = Definition(tmp);
5248 emit_split_vector(ctx, tmp, 3);
5249
5250 /* divide 3rd value by 6 by multiplying with magic number */
5251 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
5252 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp, 2, v1), c);
5253
5254 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5255 emit_extract_vector(ctx, tmp, 0, v1),
5256 emit_extract_vector(ctx, tmp, 1, v1),
5257 by_6);
5258
5259 } else if (ctx->options->chip_class == GFX9 &&
5260 glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_1D &&
5261 glsl_sampler_type_is_array(type)) {
5262 assert(instr->dest.ssa.num_components == 2);
5263 def = Definition(dst);
5264 dmask = 0x5;
5265 } else {
5266 def = Definition(dst);
5267 }
5268
5269 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
5270 }
5271
5272 void visit_load_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
5273 {
5274 Builder bld(ctx->program, ctx->block);
5275 unsigned num_components = instr->num_components;
5276
5277 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5278 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5279 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
5280
5281 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
5282 load_buffer(ctx, num_components, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa), glc, false);
5283 }
5284
5285 void visit_store_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
5286 {
5287 Builder bld(ctx->program, ctx->block);
5288 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
5289 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
5290 unsigned writemask = nir_intrinsic_write_mask(instr);
5291 Temp offset = get_ssa_temp(ctx, instr->src[2].ssa);
5292
5293 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5294 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
5295
5296 bool smem = !ctx->divergent_vals[instr->src[2].ssa->index] &&
5297 ctx->options->chip_class >= GFX8;
5298 if (smem)
5299 offset = bld.as_uniform(offset);
5300 bool smem_nonfs = smem && ctx->stage != fragment_fs;
5301
5302 while (writemask) {
5303 int start, count;
5304 u_bit_scan_consecutive_range(&writemask, &start, &count);
5305 if (count == 3 && (smem || ctx->options->chip_class == GFX6)) {
5306 /* GFX6 doesn't support storing vec3, split it. */
5307 writemask |= 1u << (start + 2);
5308 count = 2;
5309 }
5310 int num_bytes = count * elem_size_bytes;
5311
5312 if (num_bytes > 16) {
5313 assert(elem_size_bytes == 8);
5314 writemask |= (((count - 2) << 1) - 1) << (start + 2);
5315 count = 2;
5316 num_bytes = 16;
5317 }
5318
5319 // TODO: check alignment of sub-dword stores
5320 // TODO: split 3 bytes. there is no store instruction for that
5321
5322 Temp write_data;
5323 if (count != instr->num_components) {
5324 emit_split_vector(ctx, data, instr->num_components);
5325 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
5326 for (int i = 0; i < count; i++) {
5327 Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(data.type(), elem_size_bytes / 4));
5328 vec->operands[i] = Operand(smem_nonfs ? bld.as_uniform(elem) : elem);
5329 }
5330 write_data = bld.tmp(!smem ? RegType::vgpr : smem_nonfs ? RegType::sgpr : data.type(), count * elem_size_bytes / 4);
5331 vec->definitions[0] = Definition(write_data);
5332 ctx->block->instructions.emplace_back(std::move(vec));
5333 } else if (!smem && data.type() != RegType::vgpr) {
5334 assert(num_bytes % 4 == 0);
5335 write_data = bld.copy(bld.def(RegType::vgpr, num_bytes / 4), data);
5336 } else if (smem_nonfs && data.type() == RegType::vgpr) {
5337 assert(num_bytes % 4 == 0);
5338 write_data = bld.as_uniform(data);
5339 } else {
5340 write_data = data;
5341 }
5342
5343 aco_opcode vmem_op, smem_op;
5344 switch (num_bytes) {
5345 case 4:
5346 vmem_op = aco_opcode::buffer_store_dword;
5347 smem_op = aco_opcode::s_buffer_store_dword;
5348 break;
5349 case 8:
5350 vmem_op = aco_opcode::buffer_store_dwordx2;
5351 smem_op = aco_opcode::s_buffer_store_dwordx2;
5352 break;
5353 case 12:
5354 vmem_op = aco_opcode::buffer_store_dwordx3;
5355 smem_op = aco_opcode::last_opcode;
5356 assert(!smem && ctx->options->chip_class > GFX6);
5357 break;
5358 case 16:
5359 vmem_op = aco_opcode::buffer_store_dwordx4;
5360 smem_op = aco_opcode::s_buffer_store_dwordx4;
5361 break;
5362 default:
5363 unreachable("Store SSBO not implemented for this size.");
5364 }
5365 if (ctx->stage == fragment_fs)
5366 smem_op = aco_opcode::p_fs_buffer_store_smem;
5367
5368 if (smem) {
5369 aco_ptr<SMEM_instruction> store{create_instruction<SMEM_instruction>(smem_op, Format::SMEM, 3, 0)};
5370 store->operands[0] = Operand(rsrc);
5371 if (start) {
5372 Temp off = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
5373 offset, Operand(start * elem_size_bytes));
5374 store->operands[1] = Operand(off);
5375 } else {
5376 store->operands[1] = Operand(offset);
5377 }
5378 if (smem_op != aco_opcode::p_fs_buffer_store_smem)
5379 store->operands[1].setFixed(m0);
5380 store->operands[2] = Operand(write_data);
5381 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
5382 store->dlc = false;
5383 store->disable_wqm = true;
5384 store->barrier = barrier_buffer;
5385 ctx->block->instructions.emplace_back(std::move(store));
5386 ctx->program->wb_smem_l1_on_end = true;
5387 if (smem_op == aco_opcode::p_fs_buffer_store_smem) {
5388 ctx->block->kind |= block_kind_needs_lowering;
5389 ctx->program->needs_exact = true;
5390 }
5391 } else {
5392 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(vmem_op, Format::MUBUF, 4, 0)};
5393 store->operands[0] = Operand(rsrc);
5394 store->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
5395 store->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
5396 store->operands[3] = Operand(write_data);
5397 store->offset = start * elem_size_bytes;
5398 store->offen = (offset.type() == RegType::vgpr);
5399 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
5400 store->dlc = false;
5401 store->disable_wqm = true;
5402 store->barrier = barrier_buffer;
5403 ctx->program->needs_exact = true;
5404 ctx->block->instructions.emplace_back(std::move(store));
5405 }
5406 }
5407 }
5408
5409 void visit_atomic_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
5410 {
5411 /* return the previous value if dest is ever used */
5412 bool return_previous = false;
5413 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5414 return_previous = true;
5415 break;
5416 }
5417 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5418 return_previous = true;
5419 break;
5420 }
5421
5422 Builder bld(ctx->program, ctx->block);
5423 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[2].ssa));
5424
5425 if (instr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap)
5426 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
5427 get_ssa_temp(ctx, instr->src[3].ssa), data);
5428
5429 Temp offset = get_ssa_temp(ctx, instr->src[1].ssa);
5430 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5431 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
5432
5433 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5434
5435 aco_opcode op32, op64;
5436 switch (instr->intrinsic) {
5437 case nir_intrinsic_ssbo_atomic_add:
5438 op32 = aco_opcode::buffer_atomic_add;
5439 op64 = aco_opcode::buffer_atomic_add_x2;
5440 break;
5441 case nir_intrinsic_ssbo_atomic_imin:
5442 op32 = aco_opcode::buffer_atomic_smin;
5443 op64 = aco_opcode::buffer_atomic_smin_x2;
5444 break;
5445 case nir_intrinsic_ssbo_atomic_umin:
5446 op32 = aco_opcode::buffer_atomic_umin;
5447 op64 = aco_opcode::buffer_atomic_umin_x2;
5448 break;
5449 case nir_intrinsic_ssbo_atomic_imax:
5450 op32 = aco_opcode::buffer_atomic_smax;
5451 op64 = aco_opcode::buffer_atomic_smax_x2;
5452 break;
5453 case nir_intrinsic_ssbo_atomic_umax:
5454 op32 = aco_opcode::buffer_atomic_umax;
5455 op64 = aco_opcode::buffer_atomic_umax_x2;
5456 break;
5457 case nir_intrinsic_ssbo_atomic_and:
5458 op32 = aco_opcode::buffer_atomic_and;
5459 op64 = aco_opcode::buffer_atomic_and_x2;
5460 break;
5461 case nir_intrinsic_ssbo_atomic_or:
5462 op32 = aco_opcode::buffer_atomic_or;
5463 op64 = aco_opcode::buffer_atomic_or_x2;
5464 break;
5465 case nir_intrinsic_ssbo_atomic_xor:
5466 op32 = aco_opcode::buffer_atomic_xor;
5467 op64 = aco_opcode::buffer_atomic_xor_x2;
5468 break;
5469 case nir_intrinsic_ssbo_atomic_exchange:
5470 op32 = aco_opcode::buffer_atomic_swap;
5471 op64 = aco_opcode::buffer_atomic_swap_x2;
5472 break;
5473 case nir_intrinsic_ssbo_atomic_comp_swap:
5474 op32 = aco_opcode::buffer_atomic_cmpswap;
5475 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
5476 break;
5477 default:
5478 unreachable("visit_atomic_ssbo should only be called with nir_intrinsic_ssbo_atomic_* instructions.");
5479 }
5480 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
5481 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
5482 mubuf->operands[0] = Operand(rsrc);
5483 mubuf->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
5484 mubuf->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
5485 mubuf->operands[3] = Operand(data);
5486 if (return_previous)
5487 mubuf->definitions[0] = Definition(dst);
5488 mubuf->offset = 0;
5489 mubuf->offen = (offset.type() == RegType::vgpr);
5490 mubuf->glc = return_previous;
5491 mubuf->dlc = false; /* Not needed for atomics */
5492 mubuf->disable_wqm = true;
5493 mubuf->barrier = barrier_buffer;
5494 ctx->program->needs_exact = true;
5495 ctx->block->instructions.emplace_back(std::move(mubuf));
5496 }
5497
5498 void visit_get_buffer_size(isel_context *ctx, nir_intrinsic_instr *instr) {
5499
5500 Temp index = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5501 Builder bld(ctx->program, ctx->block);
5502 Temp desc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), index, Operand(0u));
5503 get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), false);
5504 }
5505
5506 Temp get_gfx6_global_rsrc(Builder& bld, Temp addr)
5507 {
5508 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5509 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
5510
5511 if (addr.type() == RegType::vgpr)
5512 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), Operand(0u), Operand(0u), Operand(-1u), Operand(rsrc_conf));
5513 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), addr, Operand(-1u), Operand(rsrc_conf));
5514 }
5515
5516 void visit_load_global(isel_context *ctx, nir_intrinsic_instr *instr)
5517 {
5518 Builder bld(ctx->program, ctx->block);
5519 unsigned num_components = instr->num_components;
5520 unsigned num_bytes = num_components * instr->dest.ssa.bit_size / 8;
5521
5522 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5523 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
5524
5525 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
5526 bool dlc = glc && ctx->options->chip_class >= GFX10;
5527 aco_opcode op;
5528 if (dst.type() == RegType::vgpr || (glc && ctx->options->chip_class < GFX8)) {
5529 bool global = ctx->options->chip_class >= GFX9;
5530
5531 if (ctx->options->chip_class >= GFX7) {
5532 aco_opcode op;
5533 switch (num_bytes) {
5534 case 4:
5535 op = global ? aco_opcode::global_load_dword : aco_opcode::flat_load_dword;
5536 break;
5537 case 8:
5538 op = global ? aco_opcode::global_load_dwordx2 : aco_opcode::flat_load_dwordx2;
5539 break;
5540 case 12:
5541 op = global ? aco_opcode::global_load_dwordx3 : aco_opcode::flat_load_dwordx3;
5542 break;
5543 case 16:
5544 op = global ? aco_opcode::global_load_dwordx4 : aco_opcode::flat_load_dwordx4;
5545 break;
5546 default:
5547 unreachable("load_global not implemented for this size.");
5548 }
5549
5550 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 2, 1)};
5551 flat->operands[0] = Operand(addr);
5552 flat->operands[1] = Operand(s1);
5553 flat->glc = glc;
5554 flat->dlc = dlc;
5555 flat->barrier = barrier_buffer;
5556
5557 if (dst.type() == RegType::sgpr) {
5558 Temp vec = bld.tmp(RegType::vgpr, dst.size());
5559 flat->definitions[0] = Definition(vec);
5560 ctx->block->instructions.emplace_back(std::move(flat));
5561 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
5562 } else {
5563 flat->definitions[0] = Definition(dst);
5564 ctx->block->instructions.emplace_back(std::move(flat));
5565 }
5566 emit_split_vector(ctx, dst, num_components);
5567 } else {
5568 assert(ctx->options->chip_class == GFX6);
5569
5570 /* GFX6 doesn't support loading vec3, expand to vec4. */
5571 num_bytes = num_bytes == 12 ? 16 : num_bytes;
5572
5573 aco_opcode op;
5574 switch (num_bytes) {
5575 case 4:
5576 op = aco_opcode::buffer_load_dword;
5577 break;
5578 case 8:
5579 op = aco_opcode::buffer_load_dwordx2;
5580 break;
5581 case 16:
5582 op = aco_opcode::buffer_load_dwordx4;
5583 break;
5584 default:
5585 unreachable("load_global not implemented for this size.");
5586 }
5587
5588 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
5589
5590 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
5591 mubuf->operands[0] = Operand(rsrc);
5592 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
5593 mubuf->operands[2] = Operand(0u);
5594 mubuf->glc = glc;
5595 mubuf->dlc = false;
5596 mubuf->offset = 0;
5597 mubuf->addr64 = addr.type() == RegType::vgpr;
5598 mubuf->disable_wqm = false;
5599 mubuf->barrier = barrier_buffer;
5600 aco_ptr<Instruction> instr = std::move(mubuf);
5601
5602 /* expand vector */
5603 if (dst.size() == 3) {
5604 Temp vec = bld.tmp(v4);
5605 instr->definitions[0] = Definition(vec);
5606 bld.insert(std::move(instr));
5607 emit_split_vector(ctx, vec, 4);
5608
5609 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 3, 1));
5610 instr->operands[0] = Operand(emit_extract_vector(ctx, vec, 0, v1));
5611 instr->operands[1] = Operand(emit_extract_vector(ctx, vec, 1, v1));
5612 instr->operands[2] = Operand(emit_extract_vector(ctx, vec, 2, v1));
5613 }
5614
5615 if (dst.type() == RegType::sgpr) {
5616 Temp vec = bld.tmp(RegType::vgpr, dst.size());
5617 instr->definitions[0] = Definition(vec);
5618 bld.insert(std::move(instr));
5619 expand_vector(ctx, vec, dst, num_components, (1 << num_components) - 1);
5620 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
5621 } else {
5622 instr->definitions[0] = Definition(dst);
5623 bld.insert(std::move(instr));
5624 emit_split_vector(ctx, dst, num_components);
5625 }
5626 }
5627 } else {
5628 switch (num_bytes) {
5629 case 4:
5630 op = aco_opcode::s_load_dword;
5631 break;
5632 case 8:
5633 op = aco_opcode::s_load_dwordx2;
5634 break;
5635 case 12:
5636 case 16:
5637 op = aco_opcode::s_load_dwordx4;
5638 break;
5639 default:
5640 unreachable("load_global not implemented for this size.");
5641 }
5642 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
5643 load->operands[0] = Operand(addr);
5644 load->operands[1] = Operand(0u);
5645 load->definitions[0] = Definition(dst);
5646 load->glc = glc;
5647 load->dlc = dlc;
5648 load->barrier = barrier_buffer;
5649 assert(ctx->options->chip_class >= GFX8 || !glc);
5650
5651 if (dst.size() == 3) {
5652 /* trim vector */
5653 Temp vec = bld.tmp(s4);
5654 load->definitions[0] = Definition(vec);
5655 ctx->block->instructions.emplace_back(std::move(load));
5656 emit_split_vector(ctx, vec, 4);
5657
5658 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5659 emit_extract_vector(ctx, vec, 0, s1),
5660 emit_extract_vector(ctx, vec, 1, s1),
5661 emit_extract_vector(ctx, vec, 2, s1));
5662 } else {
5663 ctx->block->instructions.emplace_back(std::move(load));
5664 }
5665 }
5666 }
5667
5668 void visit_store_global(isel_context *ctx, nir_intrinsic_instr *instr)
5669 {
5670 Builder bld(ctx->program, ctx->block);
5671 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
5672
5673 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5674 Temp addr = get_ssa_temp(ctx, instr->src[1].ssa);
5675
5676 if (ctx->options->chip_class >= GFX7)
5677 addr = as_vgpr(ctx, addr);
5678
5679 unsigned writemask = nir_intrinsic_write_mask(instr);
5680 while (writemask) {
5681 int start, count;
5682 u_bit_scan_consecutive_range(&writemask, &start, &count);
5683 if (count == 3 && ctx->options->chip_class == GFX6) {
5684 /* GFX6 doesn't support storing vec3, split it. */
5685 writemask |= 1u << (start + 2);
5686 count = 2;
5687 }
5688 unsigned num_bytes = count * elem_size_bytes;
5689
5690 Temp write_data = data;
5691 if (count != instr->num_components) {
5692 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
5693 for (int i = 0; i < count; i++)
5694 vec->operands[i] = Operand(emit_extract_vector(ctx, data, start + i, v1));
5695 write_data = bld.tmp(RegType::vgpr, count);
5696 vec->definitions[0] = Definition(write_data);
5697 ctx->block->instructions.emplace_back(std::move(vec));
5698 }
5699
5700 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
5701 unsigned offset = start * elem_size_bytes;
5702
5703 if (ctx->options->chip_class >= GFX7) {
5704 if (offset > 0 && ctx->options->chip_class < GFX9) {
5705 Temp addr0 = bld.tmp(v1), addr1 = bld.tmp(v1);
5706 Temp new_addr0 = bld.tmp(v1), new_addr1 = bld.tmp(v1);
5707 Temp carry = bld.tmp(bld.lm);
5708 bld.pseudo(aco_opcode::p_split_vector, Definition(addr0), Definition(addr1), addr);
5709
5710 bld.vop2(aco_opcode::v_add_co_u32, Definition(new_addr0), bld.hint_vcc(Definition(carry)),
5711 Operand(offset), addr0);
5712 bld.vop2(aco_opcode::v_addc_co_u32, Definition(new_addr1), bld.def(bld.lm),
5713 Operand(0u), addr1,
5714 carry).def(1).setHint(vcc);
5715
5716 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_addr0, new_addr1);
5717
5718 offset = 0;
5719 }
5720
5721 bool global = ctx->options->chip_class >= GFX9;
5722 aco_opcode op;
5723 switch (num_bytes) {
5724 case 4:
5725 op = global ? aco_opcode::global_store_dword : aco_opcode::flat_store_dword;
5726 break;
5727 case 8:
5728 op = global ? aco_opcode::global_store_dwordx2 : aco_opcode::flat_store_dwordx2;
5729 break;
5730 case 12:
5731 op = global ? aco_opcode::global_store_dwordx3 : aco_opcode::flat_store_dwordx3;
5732 break;
5733 case 16:
5734 op = global ? aco_opcode::global_store_dwordx4 : aco_opcode::flat_store_dwordx4;
5735 break;
5736 default:
5737 unreachable("store_global not implemented for this size.");
5738 }
5739
5740 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, 0)};
5741 flat->operands[0] = Operand(addr);
5742 flat->operands[1] = Operand(s1);
5743 flat->operands[2] = Operand(data);
5744 flat->glc = glc;
5745 flat->dlc = false;
5746 flat->offset = offset;
5747 flat->disable_wqm = true;
5748 flat->barrier = barrier_buffer;
5749 ctx->program->needs_exact = true;
5750 ctx->block->instructions.emplace_back(std::move(flat));
5751 } else {
5752 assert(ctx->options->chip_class == GFX6);
5753
5754 aco_opcode op;
5755 switch (num_bytes) {
5756 case 4:
5757 op = aco_opcode::buffer_store_dword;
5758 break;
5759 case 8:
5760 op = aco_opcode::buffer_store_dwordx2;
5761 break;
5762 case 16:
5763 op = aco_opcode::buffer_store_dwordx4;
5764 break;
5765 default:
5766 unreachable("store_global not implemented for this size.");
5767 }
5768
5769 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
5770
5771 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, 0)};
5772 mubuf->operands[0] = Operand(rsrc);
5773 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
5774 mubuf->operands[2] = Operand(0u);
5775 mubuf->operands[3] = Operand(write_data);
5776 mubuf->glc = glc;
5777 mubuf->dlc = false;
5778 mubuf->offset = offset;
5779 mubuf->addr64 = addr.type() == RegType::vgpr;
5780 mubuf->disable_wqm = true;
5781 mubuf->barrier = barrier_buffer;
5782 ctx->program->needs_exact = true;
5783 ctx->block->instructions.emplace_back(std::move(mubuf));
5784 }
5785 }
5786 }
5787
5788 void visit_global_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
5789 {
5790 /* return the previous value if dest is ever used */
5791 bool return_previous = false;
5792 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5793 return_previous = true;
5794 break;
5795 }
5796 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5797 return_previous = true;
5798 break;
5799 }
5800
5801 Builder bld(ctx->program, ctx->block);
5802 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
5803 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5804
5805 if (ctx->options->chip_class >= GFX7)
5806 addr = as_vgpr(ctx, addr);
5807
5808 if (instr->intrinsic == nir_intrinsic_global_atomic_comp_swap)
5809 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
5810 get_ssa_temp(ctx, instr->src[2].ssa), data);
5811
5812 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5813
5814 aco_opcode op32, op64;
5815
5816 if (ctx->options->chip_class >= GFX7) {
5817 bool global = ctx->options->chip_class >= GFX9;
5818 switch (instr->intrinsic) {
5819 case nir_intrinsic_global_atomic_add:
5820 op32 = global ? aco_opcode::global_atomic_add : aco_opcode::flat_atomic_add;
5821 op64 = global ? aco_opcode::global_atomic_add_x2 : aco_opcode::flat_atomic_add_x2;
5822 break;
5823 case nir_intrinsic_global_atomic_imin:
5824 op32 = global ? aco_opcode::global_atomic_smin : aco_opcode::flat_atomic_smin;
5825 op64 = global ? aco_opcode::global_atomic_smin_x2 : aco_opcode::flat_atomic_smin_x2;
5826 break;
5827 case nir_intrinsic_global_atomic_umin:
5828 op32 = global ? aco_opcode::global_atomic_umin : aco_opcode::flat_atomic_umin;
5829 op64 = global ? aco_opcode::global_atomic_umin_x2 : aco_opcode::flat_atomic_umin_x2;
5830 break;
5831 case nir_intrinsic_global_atomic_imax:
5832 op32 = global ? aco_opcode::global_atomic_smax : aco_opcode::flat_atomic_smax;
5833 op64 = global ? aco_opcode::global_atomic_smax_x2 : aco_opcode::flat_atomic_smax_x2;
5834 break;
5835 case nir_intrinsic_global_atomic_umax:
5836 op32 = global ? aco_opcode::global_atomic_umax : aco_opcode::flat_atomic_umax;
5837 op64 = global ? aco_opcode::global_atomic_umax_x2 : aco_opcode::flat_atomic_umax_x2;
5838 break;
5839 case nir_intrinsic_global_atomic_and:
5840 op32 = global ? aco_opcode::global_atomic_and : aco_opcode::flat_atomic_and;
5841 op64 = global ? aco_opcode::global_atomic_and_x2 : aco_opcode::flat_atomic_and_x2;
5842 break;
5843 case nir_intrinsic_global_atomic_or:
5844 op32 = global ? aco_opcode::global_atomic_or : aco_opcode::flat_atomic_or;
5845 op64 = global ? aco_opcode::global_atomic_or_x2 : aco_opcode::flat_atomic_or_x2;
5846 break;
5847 case nir_intrinsic_global_atomic_xor:
5848 op32 = global ? aco_opcode::global_atomic_xor : aco_opcode::flat_atomic_xor;
5849 op64 = global ? aco_opcode::global_atomic_xor_x2 : aco_opcode::flat_atomic_xor_x2;
5850 break;
5851 case nir_intrinsic_global_atomic_exchange:
5852 op32 = global ? aco_opcode::global_atomic_swap : aco_opcode::flat_atomic_swap;
5853 op64 = global ? aco_opcode::global_atomic_swap_x2 : aco_opcode::flat_atomic_swap_x2;
5854 break;
5855 case nir_intrinsic_global_atomic_comp_swap:
5856 op32 = global ? aco_opcode::global_atomic_cmpswap : aco_opcode::flat_atomic_cmpswap;
5857 op64 = global ? aco_opcode::global_atomic_cmpswap_x2 : aco_opcode::flat_atomic_cmpswap_x2;
5858 break;
5859 default:
5860 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
5861 }
5862
5863 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
5864 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, return_previous ? 1 : 0)};
5865 flat->operands[0] = Operand(addr);
5866 flat->operands[1] = Operand(s1);
5867 flat->operands[2] = Operand(data);
5868 if (return_previous)
5869 flat->definitions[0] = Definition(dst);
5870 flat->glc = return_previous;
5871 flat->dlc = false; /* Not needed for atomics */
5872 flat->offset = 0;
5873 flat->disable_wqm = true;
5874 flat->barrier = barrier_buffer;
5875 ctx->program->needs_exact = true;
5876 ctx->block->instructions.emplace_back(std::move(flat));
5877 } else {
5878 assert(ctx->options->chip_class == GFX6);
5879
5880 switch (instr->intrinsic) {
5881 case nir_intrinsic_global_atomic_add:
5882 op32 = aco_opcode::buffer_atomic_add;
5883 op64 = aco_opcode::buffer_atomic_add_x2;
5884 break;
5885 case nir_intrinsic_global_atomic_imin:
5886 op32 = aco_opcode::buffer_atomic_smin;
5887 op64 = aco_opcode::buffer_atomic_smin_x2;
5888 break;
5889 case nir_intrinsic_global_atomic_umin:
5890 op32 = aco_opcode::buffer_atomic_umin;
5891 op64 = aco_opcode::buffer_atomic_umin_x2;
5892 break;
5893 case nir_intrinsic_global_atomic_imax:
5894 op32 = aco_opcode::buffer_atomic_smax;
5895 op64 = aco_opcode::buffer_atomic_smax_x2;
5896 break;
5897 case nir_intrinsic_global_atomic_umax:
5898 op32 = aco_opcode::buffer_atomic_umax;
5899 op64 = aco_opcode::buffer_atomic_umax_x2;
5900 break;
5901 case nir_intrinsic_global_atomic_and:
5902 op32 = aco_opcode::buffer_atomic_and;
5903 op64 = aco_opcode::buffer_atomic_and_x2;
5904 break;
5905 case nir_intrinsic_global_atomic_or:
5906 op32 = aco_opcode::buffer_atomic_or;
5907 op64 = aco_opcode::buffer_atomic_or_x2;
5908 break;
5909 case nir_intrinsic_global_atomic_xor:
5910 op32 = aco_opcode::buffer_atomic_xor;
5911 op64 = aco_opcode::buffer_atomic_xor_x2;
5912 break;
5913 case nir_intrinsic_global_atomic_exchange:
5914 op32 = aco_opcode::buffer_atomic_swap;
5915 op64 = aco_opcode::buffer_atomic_swap_x2;
5916 break;
5917 case nir_intrinsic_global_atomic_comp_swap:
5918 op32 = aco_opcode::buffer_atomic_cmpswap;
5919 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
5920 break;
5921 default:
5922 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
5923 }
5924
5925 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
5926
5927 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
5928
5929 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
5930 mubuf->operands[0] = Operand(rsrc);
5931 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
5932 mubuf->operands[2] = Operand(0u);
5933 mubuf->operands[3] = Operand(data);
5934 if (return_previous)
5935 mubuf->definitions[0] = Definition(dst);
5936 mubuf->glc = return_previous;
5937 mubuf->dlc = false;
5938 mubuf->offset = 0;
5939 mubuf->addr64 = addr.type() == RegType::vgpr;
5940 mubuf->disable_wqm = true;
5941 mubuf->barrier = barrier_buffer;
5942 ctx->program->needs_exact = true;
5943 ctx->block->instructions.emplace_back(std::move(mubuf));
5944 }
5945 }
5946
5947 void emit_memory_barrier(isel_context *ctx, nir_intrinsic_instr *instr) {
5948 Builder bld(ctx->program, ctx->block);
5949 switch(instr->intrinsic) {
5950 case nir_intrinsic_group_memory_barrier:
5951 case nir_intrinsic_memory_barrier:
5952 bld.barrier(aco_opcode::p_memory_barrier_common);
5953 break;
5954 case nir_intrinsic_memory_barrier_buffer:
5955 bld.barrier(aco_opcode::p_memory_barrier_buffer);
5956 break;
5957 case nir_intrinsic_memory_barrier_image:
5958 bld.barrier(aco_opcode::p_memory_barrier_image);
5959 break;
5960 case nir_intrinsic_memory_barrier_tcs_patch:
5961 case nir_intrinsic_memory_barrier_shared:
5962 bld.barrier(aco_opcode::p_memory_barrier_shared);
5963 break;
5964 default:
5965 unreachable("Unimplemented memory barrier intrinsic");
5966 break;
5967 }
5968 }
5969
5970 void visit_load_shared(isel_context *ctx, nir_intrinsic_instr *instr)
5971 {
5972 // TODO: implement sparse reads using ds_read2_b32 and nir_ssa_def_components_read()
5973 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5974 assert(instr->dest.ssa.bit_size >= 32 && "Bitsize not supported in load_shared.");
5975 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5976 Builder bld(ctx->program, ctx->block);
5977
5978 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
5979 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
5980 load_lds(ctx, elem_size_bytes, dst, address, nir_intrinsic_base(instr), align);
5981 }
5982
5983 void visit_store_shared(isel_context *ctx, nir_intrinsic_instr *instr)
5984 {
5985 unsigned writemask = nir_intrinsic_write_mask(instr);
5986 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
5987 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5988 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
5989 assert(elem_size_bytes >= 4 && "Only 32bit & 64bit store_shared currently supported.");
5990
5991 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
5992 store_lds(ctx, elem_size_bytes, data, writemask, address, nir_intrinsic_base(instr), align);
5993 }
5994
5995 void visit_shared_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
5996 {
5997 unsigned offset = nir_intrinsic_base(instr);
5998 Operand m = load_lds_size_m0(ctx);
5999 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6000 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6001
6002 unsigned num_operands = 3;
6003 aco_opcode op32, op64, op32_rtn, op64_rtn;
6004 switch(instr->intrinsic) {
6005 case nir_intrinsic_shared_atomic_add:
6006 op32 = aco_opcode::ds_add_u32;
6007 op64 = aco_opcode::ds_add_u64;
6008 op32_rtn = aco_opcode::ds_add_rtn_u32;
6009 op64_rtn = aco_opcode::ds_add_rtn_u64;
6010 break;
6011 case nir_intrinsic_shared_atomic_imin:
6012 op32 = aco_opcode::ds_min_i32;
6013 op64 = aco_opcode::ds_min_i64;
6014 op32_rtn = aco_opcode::ds_min_rtn_i32;
6015 op64_rtn = aco_opcode::ds_min_rtn_i64;
6016 break;
6017 case nir_intrinsic_shared_atomic_umin:
6018 op32 = aco_opcode::ds_min_u32;
6019 op64 = aco_opcode::ds_min_u64;
6020 op32_rtn = aco_opcode::ds_min_rtn_u32;
6021 op64_rtn = aco_opcode::ds_min_rtn_u64;
6022 break;
6023 case nir_intrinsic_shared_atomic_imax:
6024 op32 = aco_opcode::ds_max_i32;
6025 op64 = aco_opcode::ds_max_i64;
6026 op32_rtn = aco_opcode::ds_max_rtn_i32;
6027 op64_rtn = aco_opcode::ds_max_rtn_i64;
6028 break;
6029 case nir_intrinsic_shared_atomic_umax:
6030 op32 = aco_opcode::ds_max_u32;
6031 op64 = aco_opcode::ds_max_u64;
6032 op32_rtn = aco_opcode::ds_max_rtn_u32;
6033 op64_rtn = aco_opcode::ds_max_rtn_u64;
6034 break;
6035 case nir_intrinsic_shared_atomic_and:
6036 op32 = aco_opcode::ds_and_b32;
6037 op64 = aco_opcode::ds_and_b64;
6038 op32_rtn = aco_opcode::ds_and_rtn_b32;
6039 op64_rtn = aco_opcode::ds_and_rtn_b64;
6040 break;
6041 case nir_intrinsic_shared_atomic_or:
6042 op32 = aco_opcode::ds_or_b32;
6043 op64 = aco_opcode::ds_or_b64;
6044 op32_rtn = aco_opcode::ds_or_rtn_b32;
6045 op64_rtn = aco_opcode::ds_or_rtn_b64;
6046 break;
6047 case nir_intrinsic_shared_atomic_xor:
6048 op32 = aco_opcode::ds_xor_b32;
6049 op64 = aco_opcode::ds_xor_b64;
6050 op32_rtn = aco_opcode::ds_xor_rtn_b32;
6051 op64_rtn = aco_opcode::ds_xor_rtn_b64;
6052 break;
6053 case nir_intrinsic_shared_atomic_exchange:
6054 op32 = aco_opcode::ds_write_b32;
6055 op64 = aco_opcode::ds_write_b64;
6056 op32_rtn = aco_opcode::ds_wrxchg_rtn_b32;
6057 op64_rtn = aco_opcode::ds_wrxchg2_rtn_b64;
6058 break;
6059 case nir_intrinsic_shared_atomic_comp_swap:
6060 op32 = aco_opcode::ds_cmpst_b32;
6061 op64 = aco_opcode::ds_cmpst_b64;
6062 op32_rtn = aco_opcode::ds_cmpst_rtn_b32;
6063 op64_rtn = aco_opcode::ds_cmpst_rtn_b64;
6064 num_operands = 4;
6065 break;
6066 default:
6067 unreachable("Unhandled shared atomic intrinsic");
6068 }
6069
6070 /* return the previous value if dest is ever used */
6071 bool return_previous = false;
6072 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6073 return_previous = true;
6074 break;
6075 }
6076 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6077 return_previous = true;
6078 break;
6079 }
6080
6081 aco_opcode op;
6082 if (data.size() == 1) {
6083 assert(instr->dest.ssa.bit_size == 32);
6084 op = return_previous ? op32_rtn : op32;
6085 } else {
6086 assert(instr->dest.ssa.bit_size == 64);
6087 op = return_previous ? op64_rtn : op64;
6088 }
6089
6090 if (offset > 65535) {
6091 Builder bld(ctx->program, ctx->block);
6092 address = bld.vadd32(bld.def(v1), Operand(offset), address);
6093 offset = 0;
6094 }
6095
6096 aco_ptr<DS_instruction> ds;
6097 ds.reset(create_instruction<DS_instruction>(op, Format::DS, num_operands, return_previous ? 1 : 0));
6098 ds->operands[0] = Operand(address);
6099 ds->operands[1] = Operand(data);
6100 if (num_operands == 4)
6101 ds->operands[2] = Operand(get_ssa_temp(ctx, instr->src[2].ssa));
6102 ds->operands[num_operands - 1] = m;
6103 ds->offset0 = offset;
6104 if (return_previous)
6105 ds->definitions[0] = Definition(get_ssa_temp(ctx, &instr->dest.ssa));
6106 ctx->block->instructions.emplace_back(std::move(ds));
6107 }
6108
6109 Temp get_scratch_resource(isel_context *ctx)
6110 {
6111 Builder bld(ctx->program, ctx->block);
6112 Temp scratch_addr = ctx->program->private_segment_buffer;
6113 if (ctx->stage != compute_cs)
6114 scratch_addr = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), scratch_addr, Operand(0u));
6115
6116 uint32_t rsrc_conf = S_008F0C_ADD_TID_ENABLE(1) |
6117 S_008F0C_INDEX_STRIDE(ctx->program->wave_size == 64 ? 3 : 2);;
6118
6119 if (ctx->program->chip_class >= GFX10) {
6120 rsrc_conf |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
6121 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
6122 S_008F0C_RESOURCE_LEVEL(1);
6123 } else if (ctx->program->chip_class <= GFX7) { /* dfmt modifies stride on GFX8/GFX9 when ADD_TID_EN=1 */
6124 rsrc_conf |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
6125 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
6126 }
6127
6128 /* older generations need element size = 16 bytes. element size removed in GFX9 */
6129 if (ctx->program->chip_class <= GFX8)
6130 rsrc_conf |= S_008F0C_ELEMENT_SIZE(3);
6131
6132 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), scratch_addr, Operand(-1u), Operand(rsrc_conf));
6133 }
6134
6135 void visit_load_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
6136 assert(instr->dest.ssa.bit_size == 32 || instr->dest.ssa.bit_size == 64);
6137 Builder bld(ctx->program, ctx->block);
6138 Temp rsrc = get_scratch_resource(ctx);
6139 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6140 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6141
6142 aco_opcode op;
6143 switch (dst.size()) {
6144 case 1:
6145 op = aco_opcode::buffer_load_dword;
6146 break;
6147 case 2:
6148 op = aco_opcode::buffer_load_dwordx2;
6149 break;
6150 case 3:
6151 op = aco_opcode::buffer_load_dwordx3;
6152 break;
6153 case 4:
6154 op = aco_opcode::buffer_load_dwordx4;
6155 break;
6156 case 6:
6157 case 8: {
6158 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
6159 Temp lower = bld.mubuf(aco_opcode::buffer_load_dwordx4,
6160 bld.def(v4), rsrc, offset,
6161 ctx->program->scratch_offset, 0, true);
6162 Temp upper = bld.mubuf(dst.size() == 6 ? aco_opcode::buffer_load_dwordx2 :
6163 aco_opcode::buffer_load_dwordx4,
6164 dst.size() == 6 ? bld.def(v2) : bld.def(v4),
6165 rsrc, offset, ctx->program->scratch_offset, 16, true);
6166 emit_split_vector(ctx, lower, 2);
6167 elems[0] = emit_extract_vector(ctx, lower, 0, v2);
6168 elems[1] = emit_extract_vector(ctx, lower, 1, v2);
6169 if (dst.size() == 8) {
6170 emit_split_vector(ctx, upper, 2);
6171 elems[2] = emit_extract_vector(ctx, upper, 0, v2);
6172 elems[3] = emit_extract_vector(ctx, upper, 1, v2);
6173 } else {
6174 elems[2] = upper;
6175 }
6176
6177 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
6178 Format::PSEUDO, dst.size() / 2, 1)};
6179 for (unsigned i = 0; i < dst.size() / 2; i++)
6180 vec->operands[i] = Operand(elems[i]);
6181 vec->definitions[0] = Definition(dst);
6182 bld.insert(std::move(vec));
6183 ctx->allocated_vec.emplace(dst.id(), elems);
6184 return;
6185 }
6186 default:
6187 unreachable("Wrong dst size for nir_intrinsic_load_scratch");
6188 }
6189
6190 bld.mubuf(op, Definition(dst), rsrc, offset, ctx->program->scratch_offset, 0, true);
6191 emit_split_vector(ctx, dst, instr->num_components);
6192 }
6193
6194 void visit_store_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
6195 assert(instr->src[0].ssa->bit_size == 32 || instr->src[0].ssa->bit_size == 64);
6196 Builder bld(ctx->program, ctx->block);
6197 Temp rsrc = get_scratch_resource(ctx);
6198 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6199 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6200
6201 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6202 unsigned writemask = nir_intrinsic_write_mask(instr);
6203
6204 while (writemask) {
6205 int start, count;
6206 u_bit_scan_consecutive_range(&writemask, &start, &count);
6207 int num_bytes = count * elem_size_bytes;
6208
6209 if (num_bytes > 16) {
6210 assert(elem_size_bytes == 8);
6211 writemask |= (((count - 2) << 1) - 1) << (start + 2);
6212 count = 2;
6213 num_bytes = 16;
6214 }
6215
6216 // TODO: check alignment of sub-dword stores
6217 // TODO: split 3 bytes. there is no store instruction for that
6218
6219 Temp write_data;
6220 if (count != instr->num_components) {
6221 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
6222 for (int i = 0; i < count; i++) {
6223 Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(RegType::vgpr, elem_size_bytes / 4));
6224 vec->operands[i] = Operand(elem);
6225 }
6226 write_data = bld.tmp(RegClass(RegType::vgpr, count * elem_size_bytes / 4));
6227 vec->definitions[0] = Definition(write_data);
6228 ctx->block->instructions.emplace_back(std::move(vec));
6229 } else {
6230 write_data = data;
6231 }
6232
6233 aco_opcode op;
6234 switch (num_bytes) {
6235 case 4:
6236 op = aco_opcode::buffer_store_dword;
6237 break;
6238 case 8:
6239 op = aco_opcode::buffer_store_dwordx2;
6240 break;
6241 case 12:
6242 op = aco_opcode::buffer_store_dwordx3;
6243 break;
6244 case 16:
6245 op = aco_opcode::buffer_store_dwordx4;
6246 break;
6247 default:
6248 unreachable("Invalid data size for nir_intrinsic_store_scratch.");
6249 }
6250
6251 bld.mubuf(op, rsrc, offset, ctx->program->scratch_offset, write_data, start * elem_size_bytes, true);
6252 }
6253 }
6254
6255 void visit_load_sample_mask_in(isel_context *ctx, nir_intrinsic_instr *instr) {
6256 uint8_t log2_ps_iter_samples;
6257 if (ctx->program->info->ps.force_persample) {
6258 log2_ps_iter_samples =
6259 util_logbase2(ctx->options->key.fs.num_samples);
6260 } else {
6261 log2_ps_iter_samples = ctx->options->key.fs.log2_ps_iter_samples;
6262 }
6263
6264 /* The bit pattern matches that used by fixed function fragment
6265 * processing. */
6266 static const unsigned ps_iter_masks[] = {
6267 0xffff, /* not used */
6268 0x5555,
6269 0x1111,
6270 0x0101,
6271 0x0001,
6272 };
6273 assert(log2_ps_iter_samples < ARRAY_SIZE(ps_iter_masks));
6274
6275 Builder bld(ctx->program, ctx->block);
6276
6277 Temp sample_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
6278 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
6279 Temp ps_iter_mask = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(ps_iter_masks[log2_ps_iter_samples]));
6280 Temp mask = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), sample_id, ps_iter_mask);
6281 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6282 bld.vop2(aco_opcode::v_and_b32, Definition(dst), mask, get_arg(ctx, ctx->args->ac.sample_coverage));
6283 }
6284
6285 void visit_emit_vertex_with_counter(isel_context *ctx, nir_intrinsic_instr *instr) {
6286 Builder bld(ctx->program, ctx->block);
6287
6288 unsigned stream = nir_intrinsic_stream_id(instr);
6289 Temp next_vertex = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6290 next_vertex = bld.v_mul_imm(bld.def(v1), next_vertex, 4u);
6291 nir_const_value *next_vertex_cv = nir_src_as_const_value(instr->src[0]);
6292
6293 /* get GSVS ring */
6294 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_GSVS_GS * 16u));
6295
6296 unsigned num_components =
6297 ctx->program->info->gs.num_stream_output_components[stream];
6298 assert(num_components);
6299
6300 unsigned stride = 4u * num_components * ctx->shader->info.gs.vertices_out;
6301 unsigned stream_offset = 0;
6302 for (unsigned i = 0; i < stream; i++) {
6303 unsigned prev_stride = 4u * ctx->program->info->gs.num_stream_output_components[i] * ctx->shader->info.gs.vertices_out;
6304 stream_offset += prev_stride * ctx->program->wave_size;
6305 }
6306
6307 /* Limit on the stride field for <= GFX7. */
6308 assert(stride < (1 << 14));
6309
6310 Temp gsvs_dwords[4];
6311 for (unsigned i = 0; i < 4; i++)
6312 gsvs_dwords[i] = bld.tmp(s1);
6313 bld.pseudo(aco_opcode::p_split_vector,
6314 Definition(gsvs_dwords[0]),
6315 Definition(gsvs_dwords[1]),
6316 Definition(gsvs_dwords[2]),
6317 Definition(gsvs_dwords[3]),
6318 gsvs_ring);
6319
6320 if (stream_offset) {
6321 Temp stream_offset_tmp = bld.copy(bld.def(s1), Operand(stream_offset));
6322
6323 Temp carry = bld.tmp(s1);
6324 gsvs_dwords[0] = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), gsvs_dwords[0], stream_offset_tmp);
6325 gsvs_dwords[1] = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(0u), bld.scc(carry));
6326 }
6327
6328 gsvs_dwords[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(S_008F04_STRIDE(stride)));
6329 gsvs_dwords[2] = bld.copy(bld.def(s1), Operand((uint32_t)ctx->program->wave_size));
6330
6331 gsvs_ring = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
6332 gsvs_dwords[0], gsvs_dwords[1], gsvs_dwords[2], gsvs_dwords[3]);
6333
6334 unsigned offset = 0;
6335 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; i++) {
6336 if (ctx->program->info->gs.output_streams[i] != stream)
6337 continue;
6338
6339 for (unsigned j = 0; j < 4; j++) {
6340 if (!(ctx->program->info->gs.output_usage_mask[i] & (1 << j)))
6341 continue;
6342
6343 if (ctx->outputs.mask[i] & (1 << j)) {
6344 Operand vaddr_offset = next_vertex_cv ? Operand(v1) : Operand(next_vertex);
6345 unsigned const_offset = (offset + (next_vertex_cv ? next_vertex_cv->u32 : 0u)) * 4u;
6346 if (const_offset >= 4096u) {
6347 if (vaddr_offset.isUndefined())
6348 vaddr_offset = bld.copy(bld.def(v1), Operand(const_offset / 4096u * 4096u));
6349 else
6350 vaddr_offset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), vaddr_offset);
6351 const_offset %= 4096u;
6352 }
6353
6354 aco_ptr<MTBUF_instruction> mtbuf{create_instruction<MTBUF_instruction>(aco_opcode::tbuffer_store_format_x, Format::MTBUF, 4, 0)};
6355 mtbuf->operands[0] = Operand(gsvs_ring);
6356 mtbuf->operands[1] = vaddr_offset;
6357 mtbuf->operands[2] = Operand(get_arg(ctx, ctx->args->gs2vs_offset));
6358 mtbuf->operands[3] = Operand(ctx->outputs.temps[i * 4u + j]);
6359 mtbuf->offen = !vaddr_offset.isUndefined();
6360 mtbuf->dfmt = V_008F0C_BUF_DATA_FORMAT_32;
6361 mtbuf->nfmt = V_008F0C_BUF_NUM_FORMAT_UINT;
6362 mtbuf->offset = const_offset;
6363 mtbuf->glc = true;
6364 mtbuf->slc = true;
6365 mtbuf->barrier = barrier_gs_data;
6366 mtbuf->can_reorder = true;
6367 bld.insert(std::move(mtbuf));
6368 }
6369
6370 offset += ctx->shader->info.gs.vertices_out;
6371 }
6372
6373 /* outputs for the next vertex are undefined and keeping them around can
6374 * create invalid IR with control flow */
6375 ctx->outputs.mask[i] = 0;
6376 }
6377
6378 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(false, true, stream));
6379 }
6380
6381 Temp emit_boolean_reduce(isel_context *ctx, nir_op op, unsigned cluster_size, Temp src)
6382 {
6383 Builder bld(ctx->program, ctx->block);
6384
6385 if (cluster_size == 1) {
6386 return src;
6387 } if (op == nir_op_iand && cluster_size == 4) {
6388 //subgroupClusteredAnd(val, 4) -> ~wqm(exec & ~val)
6389 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
6390 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc),
6391 bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc), tmp));
6392 } else if (op == nir_op_ior && cluster_size == 4) {
6393 //subgroupClusteredOr(val, 4) -> wqm(val & exec)
6394 return bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc),
6395 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)));
6396 } else if (op == nir_op_iand && cluster_size == ctx->program->wave_size) {
6397 //subgroupAnd(val) -> (exec & ~val) == 0
6398 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
6399 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
6400 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), cond);
6401 } else if (op == nir_op_ior && cluster_size == ctx->program->wave_size) {
6402 //subgroupOr(val) -> (val & exec) != 0
6403 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)).def(1).getTemp();
6404 return bool_to_vector_condition(ctx, tmp);
6405 } else if (op == nir_op_ixor && cluster_size == ctx->program->wave_size) {
6406 //subgroupXor(val) -> s_bcnt1_i32_b64(val & exec) & 1
6407 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
6408 tmp = bld.sop1(Builder::s_bcnt1_i32, bld.def(s1), bld.def(s1, scc), tmp);
6409 tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), tmp, Operand(1u)).def(1).getTemp();
6410 return bool_to_vector_condition(ctx, tmp);
6411 } else {
6412 //subgroupClustered{And,Or,Xor}(val, n) ->
6413 //lane_id = v_mbcnt_hi_u32_b32(-1, v_mbcnt_lo_u32_b32(-1, 0)) ; just v_mbcnt_lo_u32_b32 on wave32
6414 //cluster_offset = ~(n - 1) & lane_id
6415 //cluster_mask = ((1 << n) - 1)
6416 //subgroupClusteredAnd():
6417 // return ((val | ~exec) >> cluster_offset) & cluster_mask == cluster_mask
6418 //subgroupClusteredOr():
6419 // return ((val & exec) >> cluster_offset) & cluster_mask != 0
6420 //subgroupClusteredXor():
6421 // return v_bnt_u32_b32(((val & exec) >> cluster_offset) & cluster_mask, 0) & 1 != 0
6422 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
6423 Temp cluster_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(~uint32_t(cluster_size - 1)), lane_id);
6424
6425 Temp tmp;
6426 if (op == nir_op_iand)
6427 tmp = bld.sop2(Builder::s_orn2, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
6428 else
6429 tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
6430
6431 uint32_t cluster_mask = cluster_size == 32 ? -1 : (1u << cluster_size) - 1u;
6432
6433 if (ctx->program->chip_class <= GFX7)
6434 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), tmp, cluster_offset);
6435 else if (ctx->program->wave_size == 64)
6436 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), cluster_offset, tmp);
6437 else
6438 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), cluster_offset, tmp);
6439 tmp = emit_extract_vector(ctx, tmp, 0, v1);
6440 if (cluster_mask != 0xffffffff)
6441 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(cluster_mask), tmp);
6442
6443 Definition cmp_def = Definition();
6444 if (op == nir_op_iand) {
6445 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(cluster_mask), tmp).def(0);
6446 } else if (op == nir_op_ior) {
6447 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
6448 } else if (op == nir_op_ixor) {
6449 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u),
6450 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1), tmp, Operand(0u)));
6451 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
6452 }
6453 cmp_def.setHint(vcc);
6454 return cmp_def.getTemp();
6455 }
6456 }
6457
6458 Temp emit_boolean_exclusive_scan(isel_context *ctx, nir_op op, Temp src)
6459 {
6460 Builder bld(ctx->program, ctx->block);
6461
6462 //subgroupExclusiveAnd(val) -> mbcnt(exec & ~val) == 0
6463 //subgroupExclusiveOr(val) -> mbcnt(val & exec) != 0
6464 //subgroupExclusiveXor(val) -> mbcnt(val & exec) & 1 != 0
6465 Temp tmp;
6466 if (op == nir_op_iand)
6467 tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
6468 else
6469 tmp = bld.sop2(Builder::s_and, bld.def(s2), bld.def(s1, scc), src, Operand(exec, bld.lm));
6470
6471 Builder::Result lohi = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), bld.def(s1), tmp);
6472 Temp lo = lohi.def(0).getTemp();
6473 Temp hi = lohi.def(1).getTemp();
6474 Temp mbcnt = emit_mbcnt(ctx, bld.def(v1), Operand(lo), Operand(hi));
6475
6476 Definition cmp_def = Definition();
6477 if (op == nir_op_iand)
6478 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
6479 else if (op == nir_op_ior)
6480 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
6481 else if (op == nir_op_ixor)
6482 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u),
6483 bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), mbcnt)).def(0);
6484 cmp_def.setHint(vcc);
6485 return cmp_def.getTemp();
6486 }
6487
6488 Temp emit_boolean_inclusive_scan(isel_context *ctx, nir_op op, Temp src)
6489 {
6490 Builder bld(ctx->program, ctx->block);
6491
6492 //subgroupInclusiveAnd(val) -> subgroupExclusiveAnd(val) && val
6493 //subgroupInclusiveOr(val) -> subgroupExclusiveOr(val) || val
6494 //subgroupInclusiveXor(val) -> subgroupExclusiveXor(val) ^^ val
6495 Temp tmp = emit_boolean_exclusive_scan(ctx, op, src);
6496 if (op == nir_op_iand)
6497 return bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
6498 else if (op == nir_op_ior)
6499 return bld.sop2(Builder::s_or, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
6500 else if (op == nir_op_ixor)
6501 return bld.sop2(Builder::s_xor, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
6502
6503 assert(false);
6504 return Temp();
6505 }
6506
6507 void emit_uniform_subgroup(isel_context *ctx, nir_intrinsic_instr *instr, Temp src)
6508 {
6509 Builder bld(ctx->program, ctx->block);
6510 Definition dst(get_ssa_temp(ctx, &instr->dest.ssa));
6511 if (src.regClass().type() == RegType::vgpr) {
6512 bld.pseudo(aco_opcode::p_as_uniform, dst, src);
6513 } else if (src.regClass() == s1) {
6514 bld.sop1(aco_opcode::s_mov_b32, dst, src);
6515 } else if (src.regClass() == s2) {
6516 bld.sop1(aco_opcode::s_mov_b64, dst, src);
6517 } else {
6518 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6519 nir_print_instr(&instr->instr, stderr);
6520 fprintf(stderr, "\n");
6521 }
6522 }
6523
6524 void emit_interp_center(isel_context *ctx, Temp dst, Temp pos1, Temp pos2)
6525 {
6526 Builder bld(ctx->program, ctx->block);
6527 Temp persp_center = get_arg(ctx, ctx->args->ac.persp_center);
6528 Temp p1 = emit_extract_vector(ctx, persp_center, 0, v1);
6529 Temp p2 = emit_extract_vector(ctx, persp_center, 1, v1);
6530
6531 Temp ddx_1, ddx_2, ddy_1, ddy_2;
6532 uint32_t dpp_ctrl0 = dpp_quad_perm(0, 0, 0, 0);
6533 uint32_t dpp_ctrl1 = dpp_quad_perm(1, 1, 1, 1);
6534 uint32_t dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
6535
6536 /* Build DD X/Y */
6537 if (ctx->program->chip_class >= GFX8) {
6538 Temp tl_1 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p1, dpp_ctrl0);
6539 ddx_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl1);
6540 ddy_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl2);
6541 Temp tl_2 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p2, dpp_ctrl0);
6542 ddx_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl1);
6543 ddy_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl2);
6544 } else {
6545 Temp tl_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl0);
6546 ddx_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl1);
6547 ddx_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_1, tl_1);
6548 ddx_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl2);
6549 ddx_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_2, tl_1);
6550 Temp tl_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl0);
6551 ddy_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl1);
6552 ddy_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_1, tl_2);
6553 ddy_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl2);
6554 ddy_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_2, tl_2);
6555 }
6556
6557 /* res_k = p_k + ddx_k * pos1 + ddy_k * pos2 */
6558 Temp tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_1, pos1, p1);
6559 Temp tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_2, pos1, p2);
6560 tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_1, pos2, tmp1);
6561 tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_2, pos2, tmp2);
6562 Temp wqm1 = bld.tmp(v1);
6563 emit_wqm(ctx, tmp1, wqm1, true);
6564 Temp wqm2 = bld.tmp(v1);
6565 emit_wqm(ctx, tmp2, wqm2, true);
6566 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), wqm1, wqm2);
6567 return;
6568 }
6569
6570 void visit_intrinsic(isel_context *ctx, nir_intrinsic_instr *instr)
6571 {
6572 Builder bld(ctx->program, ctx->block);
6573 switch(instr->intrinsic) {
6574 case nir_intrinsic_load_barycentric_sample:
6575 case nir_intrinsic_load_barycentric_pixel:
6576 case nir_intrinsic_load_barycentric_centroid: {
6577 glsl_interp_mode mode = (glsl_interp_mode)nir_intrinsic_interp_mode(instr);
6578 Temp bary = Temp(0, s2);
6579 switch (mode) {
6580 case INTERP_MODE_SMOOTH:
6581 case INTERP_MODE_NONE:
6582 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
6583 bary = get_arg(ctx, ctx->args->ac.persp_center);
6584 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
6585 bary = ctx->persp_centroid;
6586 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
6587 bary = get_arg(ctx, ctx->args->ac.persp_sample);
6588 break;
6589 case INTERP_MODE_NOPERSPECTIVE:
6590 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
6591 bary = get_arg(ctx, ctx->args->ac.linear_center);
6592 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
6593 bary = ctx->linear_centroid;
6594 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
6595 bary = get_arg(ctx, ctx->args->ac.linear_sample);
6596 break;
6597 default:
6598 break;
6599 }
6600 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6601 Temp p1 = emit_extract_vector(ctx, bary, 0, v1);
6602 Temp p2 = emit_extract_vector(ctx, bary, 1, v1);
6603 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6604 Operand(p1), Operand(p2));
6605 emit_split_vector(ctx, dst, 2);
6606 break;
6607 }
6608 case nir_intrinsic_load_barycentric_model: {
6609 Temp model = get_arg(ctx, ctx->args->ac.pull_model);
6610
6611 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6612 Temp p1 = emit_extract_vector(ctx, model, 0, v1);
6613 Temp p2 = emit_extract_vector(ctx, model, 1, v1);
6614 Temp p3 = emit_extract_vector(ctx, model, 2, v1);
6615 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6616 Operand(p1), Operand(p2), Operand(p3));
6617 emit_split_vector(ctx, dst, 3);
6618 break;
6619 }
6620 case nir_intrinsic_load_barycentric_at_sample: {
6621 uint32_t sample_pos_offset = RING_PS_SAMPLE_POSITIONS * 16;
6622 switch (ctx->options->key.fs.num_samples) {
6623 case 2: sample_pos_offset += 1 << 3; break;
6624 case 4: sample_pos_offset += 3 << 3; break;
6625 case 8: sample_pos_offset += 7 << 3; break;
6626 default: break;
6627 }
6628 Temp sample_pos;
6629 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
6630 nir_const_value* const_addr = nir_src_as_const_value(instr->src[0]);
6631 Temp private_segment_buffer = ctx->program->private_segment_buffer;
6632 if (addr.type() == RegType::sgpr) {
6633 Operand offset;
6634 if (const_addr) {
6635 sample_pos_offset += const_addr->u32 << 3;
6636 offset = Operand(sample_pos_offset);
6637 } else if (ctx->options->chip_class >= GFX9) {
6638 offset = bld.sop2(aco_opcode::s_lshl3_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
6639 } else {
6640 offset = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), addr, Operand(3u));
6641 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
6642 }
6643
6644 Operand off = bld.copy(bld.def(s1), Operand(offset));
6645 sample_pos = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), private_segment_buffer, off);
6646
6647 } else if (ctx->options->chip_class >= GFX9) {
6648 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
6649 sample_pos = bld.global(aco_opcode::global_load_dwordx2, bld.def(v2), addr, private_segment_buffer, sample_pos_offset);
6650 } else if (ctx->options->chip_class >= GFX7) {
6651 /* addr += private_segment_buffer + sample_pos_offset */
6652 Temp tmp0 = bld.tmp(s1);
6653 Temp tmp1 = bld.tmp(s1);
6654 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp0), Definition(tmp1), private_segment_buffer);
6655 Definition scc_tmp = bld.def(s1, scc);
6656 tmp0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), scc_tmp, tmp0, Operand(sample_pos_offset));
6657 tmp1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), tmp1, Operand(0u), bld.scc(scc_tmp.getTemp()));
6658 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
6659 Temp pck0 = bld.tmp(v1);
6660 Temp carry = bld.vadd32(Definition(pck0), tmp0, addr, true).def(1).getTemp();
6661 tmp1 = as_vgpr(ctx, tmp1);
6662 Temp pck1 = bld.vop2_e64(aco_opcode::v_addc_co_u32, bld.def(v1), bld.hint_vcc(bld.def(bld.lm)), tmp1, Operand(0u), carry);
6663 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), pck0, pck1);
6664
6665 /* sample_pos = flat_load_dwordx2 addr */
6666 sample_pos = bld.flat(aco_opcode::flat_load_dwordx2, bld.def(v2), addr, Operand(s1));
6667 } else {
6668 assert(ctx->options->chip_class == GFX6);
6669
6670 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
6671 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
6672 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), private_segment_buffer, Operand(0u), Operand(rsrc_conf));
6673
6674 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
6675 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), addr, Operand(0u));
6676
6677 sample_pos = bld.tmp(v2);
6678
6679 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dwordx2, Format::MUBUF, 3, 1)};
6680 load->definitions[0] = Definition(sample_pos);
6681 load->operands[0] = Operand(rsrc);
6682 load->operands[1] = Operand(addr);
6683 load->operands[2] = Operand(0u);
6684 load->offset = sample_pos_offset;
6685 load->offen = 0;
6686 load->addr64 = true;
6687 load->glc = false;
6688 load->dlc = false;
6689 load->disable_wqm = false;
6690 load->barrier = barrier_none;
6691 load->can_reorder = true;
6692 ctx->block->instructions.emplace_back(std::move(load));
6693 }
6694
6695 /* sample_pos -= 0.5 */
6696 Temp pos1 = bld.tmp(RegClass(sample_pos.type(), 1));
6697 Temp pos2 = bld.tmp(RegClass(sample_pos.type(), 1));
6698 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), sample_pos);
6699 pos1 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos1, Operand(0x3f000000u));
6700 pos2 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos2, Operand(0x3f000000u));
6701
6702 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
6703 break;
6704 }
6705 case nir_intrinsic_load_barycentric_at_offset: {
6706 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
6707 RegClass rc = RegClass(offset.type(), 1);
6708 Temp pos1 = bld.tmp(rc), pos2 = bld.tmp(rc);
6709 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), offset);
6710 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
6711 break;
6712 }
6713 case nir_intrinsic_load_front_face: {
6714 bld.vopc(aco_opcode::v_cmp_lg_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6715 Operand(0u), get_arg(ctx, ctx->args->ac.front_face)).def(0).setHint(vcc);
6716 break;
6717 }
6718 case nir_intrinsic_load_view_index: {
6719 if (ctx->stage & (sw_vs | sw_gs | sw_tcs | sw_tes)) {
6720 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6721 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.view_index)));
6722 break;
6723 }
6724
6725 /* fallthrough */
6726 }
6727 case nir_intrinsic_load_layer_id: {
6728 unsigned idx = nir_intrinsic_base(instr);
6729 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6730 Operand(2u), bld.m0(get_arg(ctx, ctx->args->ac.prim_mask)), idx, 0);
6731 break;
6732 }
6733 case nir_intrinsic_load_frag_coord: {
6734 emit_load_frag_coord(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 4);
6735 break;
6736 }
6737 case nir_intrinsic_load_sample_pos: {
6738 Temp posx = get_arg(ctx, ctx->args->ac.frag_pos[0]);
6739 Temp posy = get_arg(ctx, ctx->args->ac.frag_pos[1]);
6740 bld.pseudo(aco_opcode::p_create_vector, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6741 posx.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posx) : Operand(0u),
6742 posy.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posy) : Operand(0u));
6743 break;
6744 }
6745 case nir_intrinsic_load_tess_coord:
6746 visit_load_tess_coord(ctx, instr);
6747 break;
6748 case nir_intrinsic_load_interpolated_input:
6749 visit_load_interpolated_input(ctx, instr);
6750 break;
6751 case nir_intrinsic_store_output:
6752 visit_store_output(ctx, instr);
6753 break;
6754 case nir_intrinsic_load_input:
6755 case nir_intrinsic_load_input_vertex:
6756 visit_load_input(ctx, instr);
6757 break;
6758 case nir_intrinsic_load_output:
6759 visit_load_output(ctx, instr);
6760 break;
6761 case nir_intrinsic_load_per_vertex_input:
6762 visit_load_per_vertex_input(ctx, instr);
6763 break;
6764 case nir_intrinsic_load_per_vertex_output:
6765 visit_load_per_vertex_output(ctx, instr);
6766 break;
6767 case nir_intrinsic_store_per_vertex_output:
6768 visit_store_per_vertex_output(ctx, instr);
6769 break;
6770 case nir_intrinsic_load_ubo:
6771 visit_load_ubo(ctx, instr);
6772 break;
6773 case nir_intrinsic_load_push_constant:
6774 visit_load_push_constant(ctx, instr);
6775 break;
6776 case nir_intrinsic_load_constant:
6777 visit_load_constant(ctx, instr);
6778 break;
6779 case nir_intrinsic_vulkan_resource_index:
6780 visit_load_resource(ctx, instr);
6781 break;
6782 case nir_intrinsic_discard:
6783 visit_discard(ctx, instr);
6784 break;
6785 case nir_intrinsic_discard_if:
6786 visit_discard_if(ctx, instr);
6787 break;
6788 case nir_intrinsic_load_shared:
6789 visit_load_shared(ctx, instr);
6790 break;
6791 case nir_intrinsic_store_shared:
6792 visit_store_shared(ctx, instr);
6793 break;
6794 case nir_intrinsic_shared_atomic_add:
6795 case nir_intrinsic_shared_atomic_imin:
6796 case nir_intrinsic_shared_atomic_umin:
6797 case nir_intrinsic_shared_atomic_imax:
6798 case nir_intrinsic_shared_atomic_umax:
6799 case nir_intrinsic_shared_atomic_and:
6800 case nir_intrinsic_shared_atomic_or:
6801 case nir_intrinsic_shared_atomic_xor:
6802 case nir_intrinsic_shared_atomic_exchange:
6803 case nir_intrinsic_shared_atomic_comp_swap:
6804 visit_shared_atomic(ctx, instr);
6805 break;
6806 case nir_intrinsic_image_deref_load:
6807 visit_image_load(ctx, instr);
6808 break;
6809 case nir_intrinsic_image_deref_store:
6810 visit_image_store(ctx, instr);
6811 break;
6812 case nir_intrinsic_image_deref_atomic_add:
6813 case nir_intrinsic_image_deref_atomic_umin:
6814 case nir_intrinsic_image_deref_atomic_imin:
6815 case nir_intrinsic_image_deref_atomic_umax:
6816 case nir_intrinsic_image_deref_atomic_imax:
6817 case nir_intrinsic_image_deref_atomic_and:
6818 case nir_intrinsic_image_deref_atomic_or:
6819 case nir_intrinsic_image_deref_atomic_xor:
6820 case nir_intrinsic_image_deref_atomic_exchange:
6821 case nir_intrinsic_image_deref_atomic_comp_swap:
6822 visit_image_atomic(ctx, instr);
6823 break;
6824 case nir_intrinsic_image_deref_size:
6825 visit_image_size(ctx, instr);
6826 break;
6827 case nir_intrinsic_load_ssbo:
6828 visit_load_ssbo(ctx, instr);
6829 break;
6830 case nir_intrinsic_store_ssbo:
6831 visit_store_ssbo(ctx, instr);
6832 break;
6833 case nir_intrinsic_load_global:
6834 visit_load_global(ctx, instr);
6835 break;
6836 case nir_intrinsic_store_global:
6837 visit_store_global(ctx, instr);
6838 break;
6839 case nir_intrinsic_global_atomic_add:
6840 case nir_intrinsic_global_atomic_imin:
6841 case nir_intrinsic_global_atomic_umin:
6842 case nir_intrinsic_global_atomic_imax:
6843 case nir_intrinsic_global_atomic_umax:
6844 case nir_intrinsic_global_atomic_and:
6845 case nir_intrinsic_global_atomic_or:
6846 case nir_intrinsic_global_atomic_xor:
6847 case nir_intrinsic_global_atomic_exchange:
6848 case nir_intrinsic_global_atomic_comp_swap:
6849 visit_global_atomic(ctx, instr);
6850 break;
6851 case nir_intrinsic_ssbo_atomic_add:
6852 case nir_intrinsic_ssbo_atomic_imin:
6853 case nir_intrinsic_ssbo_atomic_umin:
6854 case nir_intrinsic_ssbo_atomic_imax:
6855 case nir_intrinsic_ssbo_atomic_umax:
6856 case nir_intrinsic_ssbo_atomic_and:
6857 case nir_intrinsic_ssbo_atomic_or:
6858 case nir_intrinsic_ssbo_atomic_xor:
6859 case nir_intrinsic_ssbo_atomic_exchange:
6860 case nir_intrinsic_ssbo_atomic_comp_swap:
6861 visit_atomic_ssbo(ctx, instr);
6862 break;
6863 case nir_intrinsic_load_scratch:
6864 visit_load_scratch(ctx, instr);
6865 break;
6866 case nir_intrinsic_store_scratch:
6867 visit_store_scratch(ctx, instr);
6868 break;
6869 case nir_intrinsic_get_buffer_size:
6870 visit_get_buffer_size(ctx, instr);
6871 break;
6872 case nir_intrinsic_control_barrier: {
6873 if (ctx->program->chip_class == GFX6 && ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
6874 /* GFX6 only (thanks to a hw bug workaround):
6875 * The real barrier instruction isn’t needed, because an entire patch
6876 * always fits into a single wave.
6877 */
6878 break;
6879 }
6880
6881 if (ctx->program->workgroup_size > ctx->program->wave_size)
6882 bld.sopp(aco_opcode::s_barrier);
6883
6884 break;
6885 }
6886 case nir_intrinsic_memory_barrier_tcs_patch:
6887 case nir_intrinsic_group_memory_barrier:
6888 case nir_intrinsic_memory_barrier:
6889 case nir_intrinsic_memory_barrier_buffer:
6890 case nir_intrinsic_memory_barrier_image:
6891 case nir_intrinsic_memory_barrier_shared:
6892 emit_memory_barrier(ctx, instr);
6893 break;
6894 case nir_intrinsic_load_num_work_groups: {
6895 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6896 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.num_work_groups)));
6897 emit_split_vector(ctx, dst, 3);
6898 break;
6899 }
6900 case nir_intrinsic_load_local_invocation_id: {
6901 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6902 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.local_invocation_ids)));
6903 emit_split_vector(ctx, dst, 3);
6904 break;
6905 }
6906 case nir_intrinsic_load_work_group_id: {
6907 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6908 struct ac_arg *args = ctx->args->ac.workgroup_ids;
6909 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6910 args[0].used ? Operand(get_arg(ctx, args[0])) : Operand(0u),
6911 args[1].used ? Operand(get_arg(ctx, args[1])) : Operand(0u),
6912 args[2].used ? Operand(get_arg(ctx, args[2])) : Operand(0u));
6913 emit_split_vector(ctx, dst, 3);
6914 break;
6915 }
6916 case nir_intrinsic_load_local_invocation_index: {
6917 Temp id = emit_mbcnt(ctx, bld.def(v1));
6918
6919 /* The tg_size bits [6:11] contain the subgroup id,
6920 * we need this multiplied by the wave size, and then OR the thread id to it.
6921 */
6922 if (ctx->program->wave_size == 64) {
6923 /* After the s_and the bits are already multiplied by 64 (left shifted by 6) so we can just feed that to v_or */
6924 Temp tg_num = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfc0u),
6925 get_arg(ctx, ctx->args->ac.tg_size));
6926 bld.vop2(aco_opcode::v_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, id);
6927 } else {
6928 /* Extract the bit field and multiply the result by 32 (left shift by 5), then do the OR */
6929 Temp tg_num = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
6930 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
6931 bld.vop3(aco_opcode::v_lshl_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, Operand(0x5u), id);
6932 }
6933 break;
6934 }
6935 case nir_intrinsic_load_subgroup_id: {
6936 if (ctx->stage == compute_cs) {
6937 bld.sop2(aco_opcode::s_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc),
6938 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
6939 } else {
6940 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x0u));
6941 }
6942 break;
6943 }
6944 case nir_intrinsic_load_subgroup_invocation: {
6945 emit_mbcnt(ctx, Definition(get_ssa_temp(ctx, &instr->dest.ssa)));
6946 break;
6947 }
6948 case nir_intrinsic_load_num_subgroups: {
6949 if (ctx->stage == compute_cs)
6950 bld.sop2(aco_opcode::s_and_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc), Operand(0x3fu),
6951 get_arg(ctx, ctx->args->ac.tg_size));
6952 else
6953 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x1u));
6954 break;
6955 }
6956 case nir_intrinsic_ballot: {
6957 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6958 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6959 Definition tmp = bld.def(dst.regClass());
6960 Definition lanemask_tmp = dst.size() == bld.lm.size() ? tmp : bld.def(src.regClass());
6961 if (instr->src[0].ssa->bit_size == 1) {
6962 assert(src.regClass() == bld.lm);
6963 bld.sop2(Builder::s_and, lanemask_tmp, bld.def(s1, scc), Operand(exec, bld.lm), src);
6964 } else if (instr->src[0].ssa->bit_size == 32 && src.regClass() == v1) {
6965 bld.vopc(aco_opcode::v_cmp_lg_u32, lanemask_tmp, Operand(0u), src);
6966 } else if (instr->src[0].ssa->bit_size == 64 && src.regClass() == v2) {
6967 bld.vopc(aco_opcode::v_cmp_lg_u64, lanemask_tmp, Operand(0u), src);
6968 } else {
6969 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6970 nir_print_instr(&instr->instr, stderr);
6971 fprintf(stderr, "\n");
6972 }
6973 if (dst.size() != bld.lm.size()) {
6974 /* Wave32 with ballot size set to 64 */
6975 bld.pseudo(aco_opcode::p_create_vector, Definition(tmp), lanemask_tmp.getTemp(), Operand(0u));
6976 }
6977 emit_wqm(ctx, tmp.getTemp(), dst);
6978 break;
6979 }
6980 case nir_intrinsic_shuffle:
6981 case nir_intrinsic_read_invocation: {
6982 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6983 if (!ctx->divergent_vals[instr->src[0].ssa->index]) {
6984 emit_uniform_subgroup(ctx, instr, src);
6985 } else {
6986 Temp tid = get_ssa_temp(ctx, instr->src[1].ssa);
6987 if (instr->intrinsic == nir_intrinsic_read_invocation || !ctx->divergent_vals[instr->src[1].ssa->index])
6988 tid = bld.as_uniform(tid);
6989 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6990 if (src.regClass() == v1) {
6991 emit_wqm(ctx, emit_bpermute(ctx, bld, tid, src), dst);
6992 } else if (src.regClass() == v2) {
6993 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
6994 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
6995 lo = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, lo));
6996 hi = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, hi));
6997 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6998 emit_split_vector(ctx, dst, 2);
6999 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == s1) {
7000 assert(src.regClass() == bld.lm);
7001 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src, tid);
7002 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7003 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == v1) {
7004 assert(src.regClass() == bld.lm);
7005 Temp tmp;
7006 if (ctx->program->chip_class <= GFX7)
7007 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), src, tid);
7008 else if (ctx->program->wave_size == 64)
7009 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), tid, src);
7010 else
7011 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), tid, src);
7012 tmp = emit_extract_vector(ctx, tmp, 0, v1);
7013 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), tmp);
7014 emit_wqm(ctx, bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp), dst);
7015 } else {
7016 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7017 nir_print_instr(&instr->instr, stderr);
7018 fprintf(stderr, "\n");
7019 }
7020 }
7021 break;
7022 }
7023 case nir_intrinsic_load_sample_id: {
7024 bld.vop3(aco_opcode::v_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7025 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
7026 break;
7027 }
7028 case nir_intrinsic_load_sample_mask_in: {
7029 visit_load_sample_mask_in(ctx, instr);
7030 break;
7031 }
7032 case nir_intrinsic_read_first_invocation: {
7033 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7034 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7035 if (src.regClass() == v1) {
7036 emit_wqm(ctx,
7037 bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), src),
7038 dst);
7039 } else if (src.regClass() == v2) {
7040 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7041 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7042 lo = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), lo));
7043 hi = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), hi));
7044 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7045 emit_split_vector(ctx, dst, 2);
7046 } else if (instr->dest.ssa.bit_size == 1) {
7047 assert(src.regClass() == bld.lm);
7048 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src,
7049 bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)));
7050 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7051 } else if (src.regClass() == s1) {
7052 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
7053 } else if (src.regClass() == s2) {
7054 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
7055 } else {
7056 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7057 nir_print_instr(&instr->instr, stderr);
7058 fprintf(stderr, "\n");
7059 }
7060 break;
7061 }
7062 case nir_intrinsic_vote_all: {
7063 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7064 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7065 assert(src.regClass() == bld.lm);
7066 assert(dst.regClass() == bld.lm);
7067
7068 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
7069 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
7070 bld.sop1(Builder::s_not, Definition(dst), bld.def(s1, scc), cond);
7071 break;
7072 }
7073 case nir_intrinsic_vote_any: {
7074 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7075 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7076 assert(src.regClass() == bld.lm);
7077 assert(dst.regClass() == bld.lm);
7078
7079 Temp tmp = bool_to_scalar_condition(ctx, src);
7080 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7081 break;
7082 }
7083 case nir_intrinsic_reduce:
7084 case nir_intrinsic_inclusive_scan:
7085 case nir_intrinsic_exclusive_scan: {
7086 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7087 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7088 nir_op op = (nir_op) nir_intrinsic_reduction_op(instr);
7089 unsigned cluster_size = instr->intrinsic == nir_intrinsic_reduce ?
7090 nir_intrinsic_cluster_size(instr) : 0;
7091 cluster_size = util_next_power_of_two(MIN2(cluster_size ? cluster_size : ctx->program->wave_size, ctx->program->wave_size));
7092
7093 if (!ctx->divergent_vals[instr->src[0].ssa->index] && (op == nir_op_ior || op == nir_op_iand)) {
7094 emit_uniform_subgroup(ctx, instr, src);
7095 } else if (instr->dest.ssa.bit_size == 1) {
7096 if (op == nir_op_imul || op == nir_op_umin || op == nir_op_imin)
7097 op = nir_op_iand;
7098 else if (op == nir_op_iadd)
7099 op = nir_op_ixor;
7100 else if (op == nir_op_umax || op == nir_op_imax)
7101 op = nir_op_ior;
7102 assert(op == nir_op_iand || op == nir_op_ior || op == nir_op_ixor);
7103
7104 switch (instr->intrinsic) {
7105 case nir_intrinsic_reduce:
7106 emit_wqm(ctx, emit_boolean_reduce(ctx, op, cluster_size, src), dst);
7107 break;
7108 case nir_intrinsic_exclusive_scan:
7109 emit_wqm(ctx, emit_boolean_exclusive_scan(ctx, op, src), dst);
7110 break;
7111 case nir_intrinsic_inclusive_scan:
7112 emit_wqm(ctx, emit_boolean_inclusive_scan(ctx, op, src), dst);
7113 break;
7114 default:
7115 assert(false);
7116 }
7117 } else if (cluster_size == 1) {
7118 bld.copy(Definition(dst), src);
7119 } else {
7120 src = as_vgpr(ctx, src);
7121
7122 ReduceOp reduce_op;
7123 switch (op) {
7124 #define CASE(name) case nir_op_##name: reduce_op = (src.regClass() == v1) ? name##32 : name##64; break;
7125 CASE(iadd)
7126 CASE(imul)
7127 CASE(fadd)
7128 CASE(fmul)
7129 CASE(imin)
7130 CASE(umin)
7131 CASE(fmin)
7132 CASE(imax)
7133 CASE(umax)
7134 CASE(fmax)
7135 CASE(iand)
7136 CASE(ior)
7137 CASE(ixor)
7138 default:
7139 unreachable("unknown reduction op");
7140 #undef CASE
7141 }
7142
7143 aco_opcode aco_op;
7144 switch (instr->intrinsic) {
7145 case nir_intrinsic_reduce: aco_op = aco_opcode::p_reduce; break;
7146 case nir_intrinsic_inclusive_scan: aco_op = aco_opcode::p_inclusive_scan; break;
7147 case nir_intrinsic_exclusive_scan: aco_op = aco_opcode::p_exclusive_scan; break;
7148 default:
7149 unreachable("unknown reduce intrinsic");
7150 }
7151
7152 aco_ptr<Pseudo_reduction_instruction> reduce{create_instruction<Pseudo_reduction_instruction>(aco_op, Format::PSEUDO_REDUCTION, 3, 5)};
7153 reduce->operands[0] = Operand(src);
7154 // filled in by aco_reduce_assign.cpp, used internally as part of the
7155 // reduce sequence
7156 assert(dst.size() == 1 || dst.size() == 2);
7157 reduce->operands[1] = Operand(RegClass(RegType::vgpr, dst.size()).as_linear());
7158 reduce->operands[2] = Operand(v1.as_linear());
7159
7160 Temp tmp_dst = bld.tmp(dst.regClass());
7161 reduce->definitions[0] = Definition(tmp_dst);
7162 reduce->definitions[1] = bld.def(ctx->program->lane_mask); // used internally
7163 reduce->definitions[2] = Definition();
7164 reduce->definitions[3] = Definition(scc, s1);
7165 reduce->definitions[4] = Definition();
7166 reduce->reduce_op = reduce_op;
7167 reduce->cluster_size = cluster_size;
7168 ctx->block->instructions.emplace_back(std::move(reduce));
7169
7170 emit_wqm(ctx, tmp_dst, dst);
7171 }
7172 break;
7173 }
7174 case nir_intrinsic_quad_broadcast: {
7175 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7176 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
7177 emit_uniform_subgroup(ctx, instr, src);
7178 } else {
7179 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7180 unsigned lane = nir_src_as_const_value(instr->src[1])->u32;
7181 uint32_t dpp_ctrl = dpp_quad_perm(lane, lane, lane, lane);
7182
7183 if (instr->dest.ssa.bit_size == 1) {
7184 assert(src.regClass() == bld.lm);
7185 assert(dst.regClass() == bld.lm);
7186 uint32_t half_mask = 0x11111111u << lane;
7187 Temp mask_tmp = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(half_mask), Operand(half_mask));
7188 Temp tmp = bld.tmp(bld.lm);
7189 bld.sop1(Builder::s_wqm, Definition(tmp),
7190 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), mask_tmp,
7191 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm))));
7192 emit_wqm(ctx, tmp, dst);
7193 } else if (instr->dest.ssa.bit_size == 32) {
7194 if (ctx->program->chip_class >= GFX8)
7195 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), dst);
7196 else
7197 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), dst);
7198 } else if (instr->dest.ssa.bit_size == 64) {
7199 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7200 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7201 if (ctx->program->chip_class >= GFX8) {
7202 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
7203 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
7204 } else {
7205 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, (1 << 15) | dpp_ctrl));
7206 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, (1 << 15) | dpp_ctrl));
7207 }
7208 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7209 emit_split_vector(ctx, dst, 2);
7210 } else {
7211 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7212 nir_print_instr(&instr->instr, stderr);
7213 fprintf(stderr, "\n");
7214 }
7215 }
7216 break;
7217 }
7218 case nir_intrinsic_quad_swap_horizontal:
7219 case nir_intrinsic_quad_swap_vertical:
7220 case nir_intrinsic_quad_swap_diagonal:
7221 case nir_intrinsic_quad_swizzle_amd: {
7222 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7223 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
7224 emit_uniform_subgroup(ctx, instr, src);
7225 break;
7226 }
7227 uint16_t dpp_ctrl = 0;
7228 switch (instr->intrinsic) {
7229 case nir_intrinsic_quad_swap_horizontal:
7230 dpp_ctrl = dpp_quad_perm(1, 0, 3, 2);
7231 break;
7232 case nir_intrinsic_quad_swap_vertical:
7233 dpp_ctrl = dpp_quad_perm(2, 3, 0, 1);
7234 break;
7235 case nir_intrinsic_quad_swap_diagonal:
7236 dpp_ctrl = dpp_quad_perm(3, 2, 1, 0);
7237 break;
7238 case nir_intrinsic_quad_swizzle_amd:
7239 dpp_ctrl = nir_intrinsic_swizzle_mask(instr);
7240 break;
7241 default:
7242 break;
7243 }
7244 if (ctx->program->chip_class < GFX8)
7245 dpp_ctrl |= (1 << 15);
7246
7247 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7248 if (instr->dest.ssa.bit_size == 1) {
7249 assert(src.regClass() == bld.lm);
7250 src = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand((uint32_t)-1), src);
7251 if (ctx->program->chip_class >= GFX8)
7252 src = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
7253 else
7254 src = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
7255 Temp tmp = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), src);
7256 emit_wqm(ctx, tmp, dst);
7257 } else if (instr->dest.ssa.bit_size == 32) {
7258 Temp tmp;
7259 if (ctx->program->chip_class >= GFX8)
7260 tmp = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
7261 else
7262 tmp = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
7263 emit_wqm(ctx, tmp, dst);
7264 } else if (instr->dest.ssa.bit_size == 64) {
7265 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7266 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7267 if (ctx->program->chip_class >= GFX8) {
7268 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
7269 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
7270 } else {
7271 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, dpp_ctrl));
7272 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, dpp_ctrl));
7273 }
7274 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7275 emit_split_vector(ctx, dst, 2);
7276 } else {
7277 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7278 nir_print_instr(&instr->instr, stderr);
7279 fprintf(stderr, "\n");
7280 }
7281 break;
7282 }
7283 case nir_intrinsic_masked_swizzle_amd: {
7284 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7285 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
7286 emit_uniform_subgroup(ctx, instr, src);
7287 break;
7288 }
7289 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7290 uint32_t mask = nir_intrinsic_swizzle_mask(instr);
7291 if (dst.regClass() == v1) {
7292 emit_wqm(ctx,
7293 bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, mask, 0, false),
7294 dst);
7295 } else if (dst.regClass() == v2) {
7296 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7297 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7298 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, mask, 0, false));
7299 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, mask, 0, false));
7300 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7301 emit_split_vector(ctx, dst, 2);
7302 } else {
7303 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7304 nir_print_instr(&instr->instr, stderr);
7305 fprintf(stderr, "\n");
7306 }
7307 break;
7308 }
7309 case nir_intrinsic_write_invocation_amd: {
7310 Temp src = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
7311 Temp val = bld.as_uniform(get_ssa_temp(ctx, instr->src[1].ssa));
7312 Temp lane = bld.as_uniform(get_ssa_temp(ctx, instr->src[2].ssa));
7313 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7314 if (dst.regClass() == v1) {
7315 /* src2 is ignored for writelane. RA assigns the same reg for dst */
7316 emit_wqm(ctx, bld.writelane(bld.def(v1), val, lane, src), dst);
7317 } else if (dst.regClass() == v2) {
7318 Temp src_lo = bld.tmp(v1), src_hi = bld.tmp(v1);
7319 Temp val_lo = bld.tmp(s1), val_hi = bld.tmp(s1);
7320 bld.pseudo(aco_opcode::p_split_vector, Definition(src_lo), Definition(src_hi), src);
7321 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
7322 Temp lo = emit_wqm(ctx, bld.writelane(bld.def(v1), val_lo, lane, src_hi));
7323 Temp hi = emit_wqm(ctx, bld.writelane(bld.def(v1), val_hi, lane, src_hi));
7324 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7325 emit_split_vector(ctx, dst, 2);
7326 } else {
7327 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7328 nir_print_instr(&instr->instr, stderr);
7329 fprintf(stderr, "\n");
7330 }
7331 break;
7332 }
7333 case nir_intrinsic_mbcnt_amd: {
7334 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7335 RegClass rc = RegClass(src.type(), 1);
7336 Temp mask_lo = bld.tmp(rc), mask_hi = bld.tmp(rc);
7337 bld.pseudo(aco_opcode::p_split_vector, Definition(mask_lo), Definition(mask_hi), src);
7338 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7339 Temp wqm_tmp = emit_mbcnt(ctx, bld.def(v1), Operand(mask_lo), Operand(mask_hi));
7340 emit_wqm(ctx, wqm_tmp, dst);
7341 break;
7342 }
7343 case nir_intrinsic_load_helper_invocation: {
7344 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7345 bld.pseudo(aco_opcode::p_load_helper, Definition(dst));
7346 ctx->block->kind |= block_kind_needs_lowering;
7347 ctx->program->needs_exact = true;
7348 break;
7349 }
7350 case nir_intrinsic_is_helper_invocation: {
7351 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7352 bld.pseudo(aco_opcode::p_is_helper, Definition(dst));
7353 ctx->block->kind |= block_kind_needs_lowering;
7354 ctx->program->needs_exact = true;
7355 break;
7356 }
7357 case nir_intrinsic_demote:
7358 bld.pseudo(aco_opcode::p_demote_to_helper, Operand(-1u));
7359
7360 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
7361 ctx->cf_info.exec_potentially_empty_discard = true;
7362 ctx->block->kind |= block_kind_uses_demote;
7363 ctx->program->needs_exact = true;
7364 break;
7365 case nir_intrinsic_demote_if: {
7366 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7367 assert(src.regClass() == bld.lm);
7368 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
7369 bld.pseudo(aco_opcode::p_demote_to_helper, cond);
7370
7371 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
7372 ctx->cf_info.exec_potentially_empty_discard = true;
7373 ctx->block->kind |= block_kind_uses_demote;
7374 ctx->program->needs_exact = true;
7375 break;
7376 }
7377 case nir_intrinsic_first_invocation: {
7378 emit_wqm(ctx, bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)),
7379 get_ssa_temp(ctx, &instr->dest.ssa));
7380 break;
7381 }
7382 case nir_intrinsic_shader_clock:
7383 bld.smem(aco_opcode::s_memtime, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), false);
7384 emit_split_vector(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 2);
7385 break;
7386 case nir_intrinsic_load_vertex_id_zero_base: {
7387 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7388 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.vertex_id));
7389 break;
7390 }
7391 case nir_intrinsic_load_first_vertex: {
7392 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7393 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.base_vertex));
7394 break;
7395 }
7396 case nir_intrinsic_load_base_instance: {
7397 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7398 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.start_instance));
7399 break;
7400 }
7401 case nir_intrinsic_load_instance_id: {
7402 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7403 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.instance_id));
7404 break;
7405 }
7406 case nir_intrinsic_load_draw_id: {
7407 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7408 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.draw_id));
7409 break;
7410 }
7411 case nir_intrinsic_load_invocation_id: {
7412 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7413
7414 if (ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
7415 if (ctx->options->chip_class >= GFX10)
7416 bld.vop2_e64(aco_opcode::v_and_b32, Definition(dst), Operand(127u), get_arg(ctx, ctx->args->ac.gs_invocation_id));
7417 else
7418 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_invocation_id));
7419 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
7420 bld.vop3(aco_opcode::v_bfe_u32, Definition(dst),
7421 get_arg(ctx, ctx->args->ac.tcs_rel_ids), Operand(8u), Operand(5u));
7422 } else {
7423 unreachable("Unsupported stage for load_invocation_id");
7424 }
7425
7426 break;
7427 }
7428 case nir_intrinsic_load_primitive_id: {
7429 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7430
7431 switch (ctx->shader->info.stage) {
7432 case MESA_SHADER_GEOMETRY:
7433 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_prim_id));
7434 break;
7435 case MESA_SHADER_TESS_CTRL:
7436 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tcs_patch_id));
7437 break;
7438 case MESA_SHADER_TESS_EVAL:
7439 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tes_patch_id));
7440 break;
7441 default:
7442 unreachable("Unimplemented shader stage for nir_intrinsic_load_primitive_id");
7443 }
7444
7445 break;
7446 }
7447 case nir_intrinsic_load_patch_vertices_in: {
7448 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL ||
7449 ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
7450
7451 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7452 bld.copy(Definition(dst), Operand(ctx->args->options->key.tcs.input_vertices));
7453 break;
7454 }
7455 case nir_intrinsic_emit_vertex_with_counter: {
7456 visit_emit_vertex_with_counter(ctx, instr);
7457 break;
7458 }
7459 case nir_intrinsic_end_primitive_with_counter: {
7460 unsigned stream = nir_intrinsic_stream_id(instr);
7461 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(true, false, stream));
7462 break;
7463 }
7464 case nir_intrinsic_set_vertex_count: {
7465 /* unused, the HW keeps track of this for us */
7466 break;
7467 }
7468 default:
7469 fprintf(stderr, "Unimplemented intrinsic instr: ");
7470 nir_print_instr(&instr->instr, stderr);
7471 fprintf(stderr, "\n");
7472 abort();
7473
7474 break;
7475 }
7476 }
7477
7478
7479 void tex_fetch_ptrs(isel_context *ctx, nir_tex_instr *instr,
7480 Temp *res_ptr, Temp *samp_ptr, Temp *fmask_ptr,
7481 enum glsl_base_type *stype)
7482 {
7483 nir_deref_instr *texture_deref_instr = NULL;
7484 nir_deref_instr *sampler_deref_instr = NULL;
7485 int plane = -1;
7486
7487 for (unsigned i = 0; i < instr->num_srcs; i++) {
7488 switch (instr->src[i].src_type) {
7489 case nir_tex_src_texture_deref:
7490 texture_deref_instr = nir_src_as_deref(instr->src[i].src);
7491 break;
7492 case nir_tex_src_sampler_deref:
7493 sampler_deref_instr = nir_src_as_deref(instr->src[i].src);
7494 break;
7495 case nir_tex_src_plane:
7496 plane = nir_src_as_int(instr->src[i].src);
7497 break;
7498 default:
7499 break;
7500 }
7501 }
7502
7503 *stype = glsl_get_sampler_result_type(texture_deref_instr->type);
7504
7505 if (!sampler_deref_instr)
7506 sampler_deref_instr = texture_deref_instr;
7507
7508 if (plane >= 0) {
7509 assert(instr->op != nir_texop_txf_ms &&
7510 instr->op != nir_texop_samples_identical);
7511 assert(instr->sampler_dim != GLSL_SAMPLER_DIM_BUF);
7512 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, (aco_descriptor_type)(ACO_DESC_PLANE_0 + plane), instr, false, false);
7513 } else if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
7514 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_BUFFER, instr, false, false);
7515 } else if (instr->op == nir_texop_fragment_mask_fetch) {
7516 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
7517 } else {
7518 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_IMAGE, instr, false, false);
7519 }
7520 if (samp_ptr) {
7521 *samp_ptr = get_sampler_desc(ctx, sampler_deref_instr, ACO_DESC_SAMPLER, instr, false, false);
7522
7523 if (instr->sampler_dim < GLSL_SAMPLER_DIM_RECT && ctx->options->chip_class < GFX8) {
7524 /* fix sampler aniso on SI/CI: samp[0] = samp[0] & img[7] */
7525 Builder bld(ctx->program, ctx->block);
7526
7527 /* to avoid unnecessary moves, we split and recombine sampler and image */
7528 Temp img[8] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1),
7529 bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
7530 Temp samp[4] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
7531 bld.pseudo(aco_opcode::p_split_vector, Definition(img[0]), Definition(img[1]),
7532 Definition(img[2]), Definition(img[3]), Definition(img[4]),
7533 Definition(img[5]), Definition(img[6]), Definition(img[7]), *res_ptr);
7534 bld.pseudo(aco_opcode::p_split_vector, Definition(samp[0]), Definition(samp[1]),
7535 Definition(samp[2]), Definition(samp[3]), *samp_ptr);
7536
7537 samp[0] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), samp[0], img[7]);
7538 *res_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
7539 img[0], img[1], img[2], img[3],
7540 img[4], img[5], img[6], img[7]);
7541 *samp_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
7542 samp[0], samp[1], samp[2], samp[3]);
7543 }
7544 }
7545 if (fmask_ptr && (instr->op == nir_texop_txf_ms ||
7546 instr->op == nir_texop_samples_identical))
7547 *fmask_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
7548 }
7549
7550 void build_cube_select(isel_context *ctx, Temp ma, Temp id, Temp deriv,
7551 Temp *out_ma, Temp *out_sc, Temp *out_tc)
7552 {
7553 Builder bld(ctx->program, ctx->block);
7554
7555 Temp deriv_x = emit_extract_vector(ctx, deriv, 0, v1);
7556 Temp deriv_y = emit_extract_vector(ctx, deriv, 1, v1);
7557 Temp deriv_z = emit_extract_vector(ctx, deriv, 2, v1);
7558
7559 Operand neg_one(0xbf800000u);
7560 Operand one(0x3f800000u);
7561 Operand two(0x40000000u);
7562 Operand four(0x40800000u);
7563
7564 Temp is_ma_positive = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), ma);
7565 Temp sgn_ma = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, one, is_ma_positive);
7566 Temp neg_sgn_ma = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0u), sgn_ma);
7567
7568 Temp is_ma_z = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), four, id);
7569 Temp is_ma_y = bld.vopc(aco_opcode::v_cmp_le_f32, bld.def(bld.lm), two, id);
7570 is_ma_y = bld.sop2(Builder::s_andn2, bld.hint_vcc(bld.def(bld.lm)), is_ma_y, is_ma_z);
7571 Temp is_not_ma_x = bld.sop2(aco_opcode::s_or_b64, bld.hint_vcc(bld.def(bld.lm)), bld.def(s1, scc), is_ma_z, is_ma_y);
7572
7573 // select sc
7574 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_z, deriv_x, is_not_ma_x);
7575 Temp sgn = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1),
7576 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_sgn_ma, sgn_ma, is_ma_z),
7577 one, is_ma_y);
7578 *out_sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
7579
7580 // select tc
7581 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_y, deriv_z, is_ma_y);
7582 sgn = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, sgn_ma, is_ma_y);
7583 *out_tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
7584
7585 // select ma
7586 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
7587 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_x, deriv_y, is_ma_y),
7588 deriv_z, is_ma_z);
7589 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffffu), tmp);
7590 *out_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), two, tmp);
7591 }
7592
7593 void prepare_cube_coords(isel_context *ctx, std::vector<Temp>& coords, Temp* ddx, Temp* ddy, bool is_deriv, bool is_array)
7594 {
7595 Builder bld(ctx->program, ctx->block);
7596 Temp ma, tc, sc, id;
7597
7598 if (is_array) {
7599 coords[3] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[3]);
7600
7601 // see comment in ac_prepare_cube_coords()
7602 if (ctx->options->chip_class <= GFX8)
7603 coords[3] = bld.vop2(aco_opcode::v_max_f32, bld.def(v1), Operand(0u), coords[3]);
7604 }
7605
7606 ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), coords[0], coords[1], coords[2]);
7607
7608 aco_ptr<VOP3A_instruction> vop3a{create_instruction<VOP3A_instruction>(aco_opcode::v_rcp_f32, asVOP3(Format::VOP1), 1, 1)};
7609 vop3a->operands[0] = Operand(ma);
7610 vop3a->abs[0] = true;
7611 Temp invma = bld.tmp(v1);
7612 vop3a->definitions[0] = Definition(invma);
7613 ctx->block->instructions.emplace_back(std::move(vop3a));
7614
7615 sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
7616 if (!is_deriv)
7617 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, invma, Operand(0x3fc00000u/*1.5*/));
7618
7619 tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
7620 if (!is_deriv)
7621 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, invma, Operand(0x3fc00000u/*1.5*/));
7622
7623 id = bld.vop3(aco_opcode::v_cubeid_f32, bld.def(v1), coords[0], coords[1], coords[2]);
7624
7625 if (is_deriv) {
7626 sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), sc, invma);
7627 tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tc, invma);
7628
7629 for (unsigned i = 0; i < 2; i++) {
7630 // see comment in ac_prepare_cube_coords()
7631 Temp deriv_ma;
7632 Temp deriv_sc, deriv_tc;
7633 build_cube_select(ctx, ma, id, i ? *ddy : *ddx,
7634 &deriv_ma, &deriv_sc, &deriv_tc);
7635
7636 deriv_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, invma);
7637
7638 Temp x = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
7639 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_sc, invma),
7640 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, sc));
7641 Temp y = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
7642 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_tc, invma),
7643 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, tc));
7644 *(i ? ddy : ddx) = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), x, y);
7645 }
7646
7647 sc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), sc);
7648 tc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), tc);
7649 }
7650
7651 if (is_array)
7652 id = bld.vop2(aco_opcode::v_madmk_f32, bld.def(v1), coords[3], id, Operand(0x41000000u/*8.0*/));
7653 coords.resize(3);
7654 coords[0] = sc;
7655 coords[1] = tc;
7656 coords[2] = id;
7657 }
7658
7659 void get_const_vec(nir_ssa_def *vec, nir_const_value *cv[4])
7660 {
7661 if (vec->parent_instr->type != nir_instr_type_alu)
7662 return;
7663 nir_alu_instr *vec_instr = nir_instr_as_alu(vec->parent_instr);
7664 if (vec_instr->op != nir_op_vec(vec->num_components))
7665 return;
7666
7667 for (unsigned i = 0; i < vec->num_components; i++) {
7668 cv[i] = vec_instr->src[i].swizzle[0] == 0 ?
7669 nir_src_as_const_value(vec_instr->src[i].src) : NULL;
7670 }
7671 }
7672
7673 void visit_tex(isel_context *ctx, nir_tex_instr *instr)
7674 {
7675 Builder bld(ctx->program, ctx->block);
7676 bool has_bias = false, has_lod = false, level_zero = false, has_compare = false,
7677 has_offset = false, has_ddx = false, has_ddy = false, has_derivs = false, has_sample_index = false;
7678 Temp resource, sampler, fmask_ptr, bias = Temp(), compare = Temp(), sample_index = Temp(),
7679 lod = Temp(), offset = Temp(), ddx = Temp(), ddy = Temp();
7680 std::vector<Temp> coords;
7681 std::vector<Temp> derivs;
7682 nir_const_value *sample_index_cv = NULL;
7683 nir_const_value *const_offset[4] = {NULL, NULL, NULL, NULL};
7684 enum glsl_base_type stype;
7685 tex_fetch_ptrs(ctx, instr, &resource, &sampler, &fmask_ptr, &stype);
7686
7687 bool tg4_integer_workarounds = ctx->options->chip_class <= GFX8 && instr->op == nir_texop_tg4 &&
7688 (stype == GLSL_TYPE_UINT || stype == GLSL_TYPE_INT);
7689 bool tg4_integer_cube_workaround = tg4_integer_workarounds &&
7690 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE;
7691
7692 for (unsigned i = 0; i < instr->num_srcs; i++) {
7693 switch (instr->src[i].src_type) {
7694 case nir_tex_src_coord: {
7695 Temp coord = get_ssa_temp(ctx, instr->src[i].src.ssa);
7696 for (unsigned i = 0; i < coord.size(); i++)
7697 coords.emplace_back(emit_extract_vector(ctx, coord, i, v1));
7698 break;
7699 }
7700 case nir_tex_src_bias:
7701 if (instr->op == nir_texop_txb) {
7702 bias = get_ssa_temp(ctx, instr->src[i].src.ssa);
7703 has_bias = true;
7704 }
7705 break;
7706 case nir_tex_src_lod: {
7707 nir_const_value *val = nir_src_as_const_value(instr->src[i].src);
7708
7709 if (val && val->f32 <= 0.0) {
7710 level_zero = true;
7711 } else {
7712 lod = get_ssa_temp(ctx, instr->src[i].src.ssa);
7713 has_lod = true;
7714 }
7715 break;
7716 }
7717 case nir_tex_src_comparator:
7718 if (instr->is_shadow) {
7719 compare = get_ssa_temp(ctx, instr->src[i].src.ssa);
7720 has_compare = true;
7721 }
7722 break;
7723 case nir_tex_src_offset:
7724 offset = get_ssa_temp(ctx, instr->src[i].src.ssa);
7725 get_const_vec(instr->src[i].src.ssa, const_offset);
7726 has_offset = true;
7727 break;
7728 case nir_tex_src_ddx:
7729 ddx = get_ssa_temp(ctx, instr->src[i].src.ssa);
7730 has_ddx = true;
7731 break;
7732 case nir_tex_src_ddy:
7733 ddy = get_ssa_temp(ctx, instr->src[i].src.ssa);
7734 has_ddy = true;
7735 break;
7736 case nir_tex_src_ms_index:
7737 sample_index = get_ssa_temp(ctx, instr->src[i].src.ssa);
7738 sample_index_cv = nir_src_as_const_value(instr->src[i].src);
7739 has_sample_index = true;
7740 break;
7741 case nir_tex_src_texture_offset:
7742 case nir_tex_src_sampler_offset:
7743 default:
7744 break;
7745 }
7746 }
7747
7748 if (instr->op == nir_texop_txs && instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
7749 return get_buffer_size(ctx, resource, get_ssa_temp(ctx, &instr->dest.ssa), true);
7750
7751 if (instr->op == nir_texop_texture_samples) {
7752 Temp dword3 = emit_extract_vector(ctx, resource, 3, s1);
7753
7754 Temp samples_log2 = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(16u | 4u<<16));
7755 Temp samples = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), Operand(1u), samples_log2);
7756 Temp type = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(28u | 4u<<16 /* offset=28, width=4 */));
7757 Temp is_msaa = bld.sopc(aco_opcode::s_cmp_ge_u32, bld.def(s1, scc), type, Operand(14u));
7758
7759 bld.sop2(aco_opcode::s_cselect_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7760 samples, Operand(1u), bld.scc(is_msaa));
7761 return;
7762 }
7763
7764 if (has_offset && instr->op != nir_texop_txf && instr->op != nir_texop_txf_ms) {
7765 aco_ptr<Instruction> tmp_instr;
7766 Temp acc, pack = Temp();
7767
7768 uint32_t pack_const = 0;
7769 for (unsigned i = 0; i < offset.size(); i++) {
7770 if (!const_offset[i])
7771 continue;
7772 pack_const |= (const_offset[i]->u32 & 0x3Fu) << (8u * i);
7773 }
7774
7775 if (offset.type() == RegType::sgpr) {
7776 for (unsigned i = 0; i < offset.size(); i++) {
7777 if (const_offset[i])
7778 continue;
7779
7780 acc = emit_extract_vector(ctx, offset, i, s1);
7781 acc = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(0x3Fu));
7782
7783 if (i) {
7784 acc = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(8u * i));
7785 }
7786
7787 if (pack == Temp()) {
7788 pack = acc;
7789 } else {
7790 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), pack, acc);
7791 }
7792 }
7793
7794 if (pack_const && pack != Temp())
7795 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(pack_const), pack);
7796 } else {
7797 for (unsigned i = 0; i < offset.size(); i++) {
7798 if (const_offset[i])
7799 continue;
7800
7801 acc = emit_extract_vector(ctx, offset, i, v1);
7802 acc = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x3Fu), acc);
7803
7804 if (i) {
7805 acc = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(8u * i), acc);
7806 }
7807
7808 if (pack == Temp()) {
7809 pack = acc;
7810 } else {
7811 pack = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), pack, acc);
7812 }
7813 }
7814
7815 if (pack_const && pack != Temp())
7816 pack = bld.sop2(aco_opcode::v_or_b32, bld.def(v1), Operand(pack_const), pack);
7817 }
7818 if (pack_const && pack == Temp())
7819 offset = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(pack_const));
7820 else if (pack == Temp())
7821 has_offset = false;
7822 else
7823 offset = pack;
7824 }
7825
7826 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE && instr->coord_components)
7827 prepare_cube_coords(ctx, coords, &ddx, &ddy, instr->op == nir_texop_txd, instr->is_array && instr->op != nir_texop_lod);
7828
7829 /* pack derivatives */
7830 if (has_ddx || has_ddy) {
7831 if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D && ctx->options->chip_class == GFX9) {
7832 assert(has_ddx && has_ddy && ddx.size() == 1 && ddy.size() == 1);
7833 Temp zero = bld.copy(bld.def(v1), Operand(0u));
7834 derivs = {ddy, zero, ddy, zero};
7835 } else {
7836 for (unsigned i = 0; has_ddx && i < ddx.size(); i++)
7837 derivs.emplace_back(emit_extract_vector(ctx, ddx, i, v1));
7838 for (unsigned i = 0; has_ddy && i < ddy.size(); i++)
7839 derivs.emplace_back(emit_extract_vector(ctx, ddy, i, v1));
7840 }
7841 has_derivs = true;
7842 }
7843
7844 if (instr->coord_components > 1 &&
7845 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
7846 instr->is_array &&
7847 instr->op != nir_texop_txf)
7848 coords[1] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[1]);
7849
7850 if (instr->coord_components > 2 &&
7851 (instr->sampler_dim == GLSL_SAMPLER_DIM_2D ||
7852 instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
7853 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS ||
7854 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
7855 instr->is_array &&
7856 instr->op != nir_texop_txf &&
7857 instr->op != nir_texop_txf_ms &&
7858 instr->op != nir_texop_fragment_fetch &&
7859 instr->op != nir_texop_fragment_mask_fetch)
7860 coords[2] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[2]);
7861
7862 if (ctx->options->chip_class == GFX9 &&
7863 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
7864 instr->op != nir_texop_lod && instr->coord_components) {
7865 assert(coords.size() > 0 && coords.size() < 3);
7866
7867 coords.insert(std::next(coords.begin()), bld.copy(bld.def(v1), instr->op == nir_texop_txf ?
7868 Operand((uint32_t) 0) :
7869 Operand((uint32_t) 0x3f000000)));
7870 }
7871
7872 bool da = should_declare_array(ctx, instr->sampler_dim, instr->is_array);
7873
7874 if (instr->op == nir_texop_samples_identical)
7875 resource = fmask_ptr;
7876
7877 else if ((instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
7878 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
7879 instr->op != nir_texop_txs &&
7880 instr->op != nir_texop_fragment_fetch &&
7881 instr->op != nir_texop_fragment_mask_fetch) {
7882 assert(has_sample_index);
7883 Operand op(sample_index);
7884 if (sample_index_cv)
7885 op = Operand(sample_index_cv->u32);
7886 sample_index = adjust_sample_index_using_fmask(ctx, da, coords, op, fmask_ptr);
7887 }
7888
7889 if (has_offset && (instr->op == nir_texop_txf || instr->op == nir_texop_txf_ms)) {
7890 for (unsigned i = 0; i < std::min(offset.size(), instr->coord_components); i++) {
7891 Temp off = emit_extract_vector(ctx, offset, i, v1);
7892 coords[i] = bld.vadd32(bld.def(v1), coords[i], off);
7893 }
7894 has_offset = false;
7895 }
7896
7897 /* Build tex instruction */
7898 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
7899 unsigned dim = ctx->options->chip_class >= GFX10 && instr->sampler_dim != GLSL_SAMPLER_DIM_BUF
7900 ? ac_get_sampler_dim(ctx->options->chip_class, instr->sampler_dim, instr->is_array)
7901 : 0;
7902 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7903 Temp tmp_dst = dst;
7904
7905 /* gather4 selects the component by dmask and always returns vec4 */
7906 if (instr->op == nir_texop_tg4) {
7907 assert(instr->dest.ssa.num_components == 4);
7908 if (instr->is_shadow)
7909 dmask = 1;
7910 else
7911 dmask = 1 << instr->component;
7912 if (tg4_integer_cube_workaround || dst.type() == RegType::sgpr)
7913 tmp_dst = bld.tmp(v4);
7914 } else if (instr->op == nir_texop_samples_identical) {
7915 tmp_dst = bld.tmp(v1);
7916 } else if (util_bitcount(dmask) != instr->dest.ssa.num_components || dst.type() == RegType::sgpr) {
7917 tmp_dst = bld.tmp(RegClass(RegType::vgpr, util_bitcount(dmask)));
7918 }
7919
7920 aco_ptr<MIMG_instruction> tex;
7921 if (instr->op == nir_texop_txs || instr->op == nir_texop_query_levels) {
7922 if (!has_lod)
7923 lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
7924
7925 bool div_by_6 = instr->op == nir_texop_txs &&
7926 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
7927 instr->is_array &&
7928 (dmask & (1 << 2));
7929 if (tmp_dst.id() == dst.id() && div_by_6)
7930 tmp_dst = bld.tmp(tmp_dst.regClass());
7931
7932 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
7933 tex->operands[0] = Operand(resource);
7934 tex->operands[1] = Operand(s4); /* no sampler */
7935 tex->operands[2] = Operand(as_vgpr(ctx,lod));
7936 if (ctx->options->chip_class == GFX9 &&
7937 instr->op == nir_texop_txs &&
7938 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
7939 instr->is_array) {
7940 tex->dmask = (dmask & 0x1) | ((dmask & 0x2) << 1);
7941 } else if (instr->op == nir_texop_query_levels) {
7942 tex->dmask = 1 << 3;
7943 } else {
7944 tex->dmask = dmask;
7945 }
7946 tex->da = da;
7947 tex->definitions[0] = Definition(tmp_dst);
7948 tex->dim = dim;
7949 tex->can_reorder = true;
7950 ctx->block->instructions.emplace_back(std::move(tex));
7951
7952 if (div_by_6) {
7953 /* divide 3rd value by 6 by multiplying with magic number */
7954 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
7955 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
7956 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp_dst, 2, v1), c);
7957 assert(instr->dest.ssa.num_components == 3);
7958 Temp tmp = dst.type() == RegType::vgpr ? dst : bld.tmp(v3);
7959 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
7960 emit_extract_vector(ctx, tmp_dst, 0, v1),
7961 emit_extract_vector(ctx, tmp_dst, 1, v1),
7962 by_6);
7963
7964 }
7965
7966 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
7967 return;
7968 }
7969
7970 Temp tg4_compare_cube_wa64 = Temp();
7971
7972 if (tg4_integer_workarounds) {
7973 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
7974 tex->operands[0] = Operand(resource);
7975 tex->operands[1] = Operand(s4); /* no sampler */
7976 tex->operands[2] = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
7977 tex->dim = dim;
7978 tex->dmask = 0x3;
7979 tex->da = da;
7980 Temp size = bld.tmp(v2);
7981 tex->definitions[0] = Definition(size);
7982 tex->can_reorder = true;
7983 ctx->block->instructions.emplace_back(std::move(tex));
7984 emit_split_vector(ctx, size, size.size());
7985
7986 Temp half_texel[2];
7987 for (unsigned i = 0; i < 2; i++) {
7988 half_texel[i] = emit_extract_vector(ctx, size, i, v1);
7989 half_texel[i] = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), half_texel[i]);
7990 half_texel[i] = bld.vop1(aco_opcode::v_rcp_iflag_f32, bld.def(v1), half_texel[i]);
7991 half_texel[i] = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0xbf000000/*-0.5*/), half_texel[i]);
7992 }
7993
7994 Temp new_coords[2] = {
7995 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[0], half_texel[0]),
7996 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[1], half_texel[1])
7997 };
7998
7999 if (tg4_integer_cube_workaround) {
8000 // see comment in ac_nir_to_llvm.c's lower_gather4_integer()
8001 Temp desc[resource.size()];
8002 aco_ptr<Instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector,
8003 Format::PSEUDO, 1, resource.size())};
8004 split->operands[0] = Operand(resource);
8005 for (unsigned i = 0; i < resource.size(); i++) {
8006 desc[i] = bld.tmp(s1);
8007 split->definitions[i] = Definition(desc[i]);
8008 }
8009 ctx->block->instructions.emplace_back(std::move(split));
8010
8011 Temp dfmt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), desc[1], Operand(20u | (6u << 16)));
8012 Temp compare_cube_wa = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), dfmt,
8013 Operand((uint32_t)V_008F14_IMG_DATA_FORMAT_8_8_8_8));
8014
8015 Temp nfmt;
8016 if (stype == GLSL_TYPE_UINT) {
8017 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
8018 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_USCALED),
8019 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_UINT),
8020 bld.scc(compare_cube_wa));
8021 } else {
8022 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
8023 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SSCALED),
8024 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SINT),
8025 bld.scc(compare_cube_wa));
8026 }
8027 tg4_compare_cube_wa64 = bld.tmp(bld.lm);
8028 bool_to_vector_condition(ctx, compare_cube_wa, tg4_compare_cube_wa64);
8029
8030 nfmt = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), nfmt, Operand(26u));
8031
8032 desc[1] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), desc[1],
8033 Operand((uint32_t)C_008F14_NUM_FORMAT));
8034 desc[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), desc[1], nfmt);
8035
8036 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
8037 Format::PSEUDO, resource.size(), 1)};
8038 for (unsigned i = 0; i < resource.size(); i++)
8039 vec->operands[i] = Operand(desc[i]);
8040 resource = bld.tmp(resource.regClass());
8041 vec->definitions[0] = Definition(resource);
8042 ctx->block->instructions.emplace_back(std::move(vec));
8043
8044 new_coords[0] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8045 new_coords[0], coords[0], tg4_compare_cube_wa64);
8046 new_coords[1] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8047 new_coords[1], coords[1], tg4_compare_cube_wa64);
8048 }
8049 coords[0] = new_coords[0];
8050 coords[1] = new_coords[1];
8051 }
8052
8053 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
8054 //FIXME: if (ctx->abi->gfx9_stride_size_workaround) return ac_build_buffer_load_format_gfx9_safe()
8055
8056 assert(coords.size() == 1);
8057 unsigned last_bit = util_last_bit(nir_ssa_def_components_read(&instr->dest.ssa));
8058 aco_opcode op;
8059 switch (last_bit) {
8060 case 1:
8061 op = aco_opcode::buffer_load_format_x; break;
8062 case 2:
8063 op = aco_opcode::buffer_load_format_xy; break;
8064 case 3:
8065 op = aco_opcode::buffer_load_format_xyz; break;
8066 case 4:
8067 op = aco_opcode::buffer_load_format_xyzw; break;
8068 default:
8069 unreachable("Tex instruction loads more than 4 components.");
8070 }
8071
8072 /* if the instruction return value matches exactly the nir dest ssa, we can use it directly */
8073 if (last_bit == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
8074 tmp_dst = dst;
8075 else
8076 tmp_dst = bld.tmp(RegType::vgpr, last_bit);
8077
8078 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
8079 mubuf->operands[0] = Operand(resource);
8080 mubuf->operands[1] = Operand(coords[0]);
8081 mubuf->operands[2] = Operand((uint32_t) 0);
8082 mubuf->definitions[0] = Definition(tmp_dst);
8083 mubuf->idxen = true;
8084 mubuf->can_reorder = true;
8085 ctx->block->instructions.emplace_back(std::move(mubuf));
8086
8087 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, (1 << last_bit) - 1);
8088 return;
8089 }
8090
8091 /* gather MIMG address components */
8092 std::vector<Temp> args;
8093 if (has_offset)
8094 args.emplace_back(offset);
8095 if (has_bias)
8096 args.emplace_back(bias);
8097 if (has_compare)
8098 args.emplace_back(compare);
8099 if (has_derivs)
8100 args.insert(args.end(), derivs.begin(), derivs.end());
8101
8102 args.insert(args.end(), coords.begin(), coords.end());
8103 if (has_sample_index)
8104 args.emplace_back(sample_index);
8105 if (has_lod)
8106 args.emplace_back(lod);
8107
8108 Temp arg = bld.tmp(RegClass(RegType::vgpr, args.size()));
8109 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, args.size(), 1)};
8110 vec->definitions[0] = Definition(arg);
8111 for (unsigned i = 0; i < args.size(); i++)
8112 vec->operands[i] = Operand(args[i]);
8113 ctx->block->instructions.emplace_back(std::move(vec));
8114
8115
8116 if (instr->op == nir_texop_txf ||
8117 instr->op == nir_texop_txf_ms ||
8118 instr->op == nir_texop_samples_identical ||
8119 instr->op == nir_texop_fragment_fetch ||
8120 instr->op == nir_texop_fragment_mask_fetch) {
8121 aco_opcode op = level_zero || instr->sampler_dim == GLSL_SAMPLER_DIM_MS || instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS ? aco_opcode::image_load : aco_opcode::image_load_mip;
8122 tex.reset(create_instruction<MIMG_instruction>(op, Format::MIMG, 3, 1));
8123 tex->operands[0] = Operand(resource);
8124 tex->operands[1] = Operand(s4); /* no sampler */
8125 tex->operands[2] = Operand(arg);
8126 tex->dim = dim;
8127 tex->dmask = dmask;
8128 tex->unrm = true;
8129 tex->da = da;
8130 tex->definitions[0] = Definition(tmp_dst);
8131 tex->can_reorder = true;
8132 ctx->block->instructions.emplace_back(std::move(tex));
8133
8134 if (instr->op == nir_texop_samples_identical) {
8135 assert(dmask == 1 && dst.regClass() == v1);
8136 assert(dst.id() != tmp_dst.id());
8137
8138 Temp tmp = bld.tmp(bld.lm);
8139 bld.vopc(aco_opcode::v_cmp_eq_u32, Definition(tmp), Operand(0u), tmp_dst).def(0).setHint(vcc);
8140 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand((uint32_t)-1), tmp);
8141
8142 } else {
8143 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
8144 }
8145 return;
8146 }
8147
8148 // TODO: would be better to do this by adding offsets, but needs the opcodes ordered.
8149 aco_opcode opcode = aco_opcode::image_sample;
8150 if (has_offset) { /* image_sample_*_o */
8151 if (has_compare) {
8152 opcode = aco_opcode::image_sample_c_o;
8153 if (has_derivs)
8154 opcode = aco_opcode::image_sample_c_d_o;
8155 if (has_bias)
8156 opcode = aco_opcode::image_sample_c_b_o;
8157 if (level_zero)
8158 opcode = aco_opcode::image_sample_c_lz_o;
8159 if (has_lod)
8160 opcode = aco_opcode::image_sample_c_l_o;
8161 } else {
8162 opcode = aco_opcode::image_sample_o;
8163 if (has_derivs)
8164 opcode = aco_opcode::image_sample_d_o;
8165 if (has_bias)
8166 opcode = aco_opcode::image_sample_b_o;
8167 if (level_zero)
8168 opcode = aco_opcode::image_sample_lz_o;
8169 if (has_lod)
8170 opcode = aco_opcode::image_sample_l_o;
8171 }
8172 } else { /* no offset */
8173 if (has_compare) {
8174 opcode = aco_opcode::image_sample_c;
8175 if (has_derivs)
8176 opcode = aco_opcode::image_sample_c_d;
8177 if (has_bias)
8178 opcode = aco_opcode::image_sample_c_b;
8179 if (level_zero)
8180 opcode = aco_opcode::image_sample_c_lz;
8181 if (has_lod)
8182 opcode = aco_opcode::image_sample_c_l;
8183 } else {
8184 opcode = aco_opcode::image_sample;
8185 if (has_derivs)
8186 opcode = aco_opcode::image_sample_d;
8187 if (has_bias)
8188 opcode = aco_opcode::image_sample_b;
8189 if (level_zero)
8190 opcode = aco_opcode::image_sample_lz;
8191 if (has_lod)
8192 opcode = aco_opcode::image_sample_l;
8193 }
8194 }
8195
8196 if (instr->op == nir_texop_tg4) {
8197 if (has_offset) {
8198 opcode = aco_opcode::image_gather4_lz_o;
8199 if (has_compare)
8200 opcode = aco_opcode::image_gather4_c_lz_o;
8201 } else {
8202 opcode = aco_opcode::image_gather4_lz;
8203 if (has_compare)
8204 opcode = aco_opcode::image_gather4_c_lz;
8205 }
8206 } else if (instr->op == nir_texop_lod) {
8207 opcode = aco_opcode::image_get_lod;
8208 }
8209
8210 /* we don't need the bias, sample index, compare value or offset to be
8211 * computed in WQM but if the p_create_vector copies the coordinates, then it
8212 * needs to be in WQM */
8213 if (ctx->stage == fragment_fs &&
8214 !has_derivs && !has_lod && !level_zero &&
8215 instr->sampler_dim != GLSL_SAMPLER_DIM_MS &&
8216 instr->sampler_dim != GLSL_SAMPLER_DIM_SUBPASS_MS)
8217 arg = emit_wqm(ctx, arg, bld.tmp(arg.regClass()), true);
8218
8219 tex.reset(create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1));
8220 tex->operands[0] = Operand(resource);
8221 tex->operands[1] = Operand(sampler);
8222 tex->operands[2] = Operand(arg);
8223 tex->dim = dim;
8224 tex->dmask = dmask;
8225 tex->da = da;
8226 tex->definitions[0] = Definition(tmp_dst);
8227 tex->can_reorder = true;
8228 ctx->block->instructions.emplace_back(std::move(tex));
8229
8230 if (tg4_integer_cube_workaround) {
8231 assert(tmp_dst.id() != dst.id());
8232 assert(tmp_dst.size() == dst.size() && dst.size() == 4);
8233
8234 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
8235 Temp val[4];
8236 for (unsigned i = 0; i < dst.size(); i++) {
8237 val[i] = emit_extract_vector(ctx, tmp_dst, i, v1);
8238 Temp cvt_val;
8239 if (stype == GLSL_TYPE_UINT)
8240 cvt_val = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), val[i]);
8241 else
8242 cvt_val = bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), val[i]);
8243 val[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), val[i], cvt_val, tg4_compare_cube_wa64);
8244 }
8245 Temp tmp = dst.regClass() == v4 ? dst : bld.tmp(v4);
8246 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
8247 val[0], val[1], val[2], val[3]);
8248 }
8249 unsigned mask = instr->op == nir_texop_tg4 ? 0xF : dmask;
8250 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, mask);
8251
8252 }
8253
8254
8255 Operand get_phi_operand(isel_context *ctx, nir_ssa_def *ssa)
8256 {
8257 Temp tmp = get_ssa_temp(ctx, ssa);
8258 if (ssa->parent_instr->type == nir_instr_type_ssa_undef)
8259 return Operand(tmp.regClass());
8260 else
8261 return Operand(tmp);
8262 }
8263
8264 void visit_phi(isel_context *ctx, nir_phi_instr *instr)
8265 {
8266 aco_ptr<Pseudo_instruction> phi;
8267 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8268 assert(instr->dest.ssa.bit_size != 1 || dst.regClass() == ctx->program->lane_mask);
8269
8270 bool logical = !dst.is_linear() || ctx->divergent_vals[instr->dest.ssa.index];
8271 logical |= ctx->block->kind & block_kind_merge;
8272 aco_opcode opcode = logical ? aco_opcode::p_phi : aco_opcode::p_linear_phi;
8273
8274 /* we want a sorted list of sources, since the predecessor list is also sorted */
8275 std::map<unsigned, nir_ssa_def*> phi_src;
8276 nir_foreach_phi_src(src, instr)
8277 phi_src[src->pred->index] = src->src.ssa;
8278
8279 std::vector<unsigned>& preds = logical ? ctx->block->logical_preds : ctx->block->linear_preds;
8280 unsigned num_operands = 0;
8281 Operand operands[std::max(exec_list_length(&instr->srcs), (unsigned)preds.size()) + 1];
8282 unsigned num_defined = 0;
8283 unsigned cur_pred_idx = 0;
8284 for (std::pair<unsigned, nir_ssa_def *> src : phi_src) {
8285 if (cur_pred_idx < preds.size()) {
8286 /* handle missing preds (IF merges with discard/break) and extra preds (loop exit with discard) */
8287 unsigned block = ctx->cf_info.nir_to_aco[src.first];
8288 unsigned skipped = 0;
8289 while (cur_pred_idx + skipped < preds.size() && preds[cur_pred_idx + skipped] != block)
8290 skipped++;
8291 if (cur_pred_idx + skipped < preds.size()) {
8292 for (unsigned i = 0; i < skipped; i++)
8293 operands[num_operands++] = Operand(dst.regClass());
8294 cur_pred_idx += skipped;
8295 } else {
8296 continue;
8297 }
8298 }
8299 /* Handle missing predecessors at the end. This shouldn't happen with loop
8300 * headers and we can't ignore these sources for loop header phis. */
8301 if (!(ctx->block->kind & block_kind_loop_header) && cur_pred_idx >= preds.size())
8302 continue;
8303 cur_pred_idx++;
8304 Operand op = get_phi_operand(ctx, src.second);
8305 operands[num_operands++] = op;
8306 num_defined += !op.isUndefined();
8307 }
8308 /* handle block_kind_continue_or_break at loop exit blocks */
8309 while (cur_pred_idx++ < preds.size())
8310 operands[num_operands++] = Operand(dst.regClass());
8311
8312 /* If the loop ends with a break, still add a linear continue edge in case
8313 * that break is divergent or continue_or_break is used. We'll either remove
8314 * this operand later in visit_loop() if it's not necessary or replace the
8315 * undef with something correct. */
8316 if (!logical && ctx->block->kind & block_kind_loop_header) {
8317 nir_loop *loop = nir_cf_node_as_loop(instr->instr.block->cf_node.parent);
8318 nir_block *last = nir_loop_last_block(loop);
8319 if (last->successors[0] != instr->instr.block)
8320 operands[num_operands++] = Operand(RegClass());
8321 }
8322
8323 if (num_defined == 0) {
8324 Builder bld(ctx->program, ctx->block);
8325 if (dst.regClass() == s1) {
8326 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), Operand(0u));
8327 } else if (dst.regClass() == v1) {
8328 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), Operand(0u));
8329 } else {
8330 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
8331 for (unsigned i = 0; i < dst.size(); i++)
8332 vec->operands[i] = Operand(0u);
8333 vec->definitions[0] = Definition(dst);
8334 ctx->block->instructions.emplace_back(std::move(vec));
8335 }
8336 return;
8337 }
8338
8339 /* we can use a linear phi in some cases if one src is undef */
8340 if (dst.is_linear() && ctx->block->kind & block_kind_merge && num_defined == 1) {
8341 phi.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, num_operands, 1));
8342
8343 Block *linear_else = &ctx->program->blocks[ctx->block->linear_preds[1]];
8344 Block *invert = &ctx->program->blocks[linear_else->linear_preds[0]];
8345 assert(invert->kind & block_kind_invert);
8346
8347 unsigned then_block = invert->linear_preds[0];
8348
8349 Block* insert_block = NULL;
8350 for (unsigned i = 0; i < num_operands; i++) {
8351 Operand op = operands[i];
8352 if (op.isUndefined())
8353 continue;
8354 insert_block = ctx->block->logical_preds[i] == then_block ? invert : ctx->block;
8355 phi->operands[0] = op;
8356 break;
8357 }
8358 assert(insert_block); /* should be handled by the "num_defined == 0" case above */
8359 phi->operands[1] = Operand(dst.regClass());
8360 phi->definitions[0] = Definition(dst);
8361 insert_block->instructions.emplace(insert_block->instructions.begin(), std::move(phi));
8362 return;
8363 }
8364
8365 /* try to scalarize vector phis */
8366 if (instr->dest.ssa.bit_size != 1 && dst.size() > 1) {
8367 // TODO: scalarize linear phis on divergent ifs
8368 bool can_scalarize = (opcode == aco_opcode::p_phi || !(ctx->block->kind & block_kind_merge));
8369 std::array<Temp, NIR_MAX_VEC_COMPONENTS> new_vec;
8370 for (unsigned i = 0; can_scalarize && (i < num_operands); i++) {
8371 Operand src = operands[i];
8372 if (src.isTemp() && ctx->allocated_vec.find(src.tempId()) == ctx->allocated_vec.end())
8373 can_scalarize = false;
8374 }
8375 if (can_scalarize) {
8376 unsigned num_components = instr->dest.ssa.num_components;
8377 assert(dst.size() % num_components == 0);
8378 RegClass rc = RegClass(dst.type(), dst.size() / num_components);
8379
8380 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
8381 for (unsigned k = 0; k < num_components; k++) {
8382 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
8383 for (unsigned i = 0; i < num_operands; i++) {
8384 Operand src = operands[i];
8385 phi->operands[i] = src.isTemp() ? Operand(ctx->allocated_vec[src.tempId()][k]) : Operand(rc);
8386 }
8387 Temp phi_dst = {ctx->program->allocateId(), rc};
8388 phi->definitions[0] = Definition(phi_dst);
8389 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
8390 new_vec[k] = phi_dst;
8391 vec->operands[k] = Operand(phi_dst);
8392 }
8393 vec->definitions[0] = Definition(dst);
8394 ctx->block->instructions.emplace_back(std::move(vec));
8395 ctx->allocated_vec.emplace(dst.id(), new_vec);
8396 return;
8397 }
8398 }
8399
8400 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
8401 for (unsigned i = 0; i < num_operands; i++)
8402 phi->operands[i] = operands[i];
8403 phi->definitions[0] = Definition(dst);
8404 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
8405 }
8406
8407
8408 void visit_undef(isel_context *ctx, nir_ssa_undef_instr *instr)
8409 {
8410 Temp dst = get_ssa_temp(ctx, &instr->def);
8411
8412 assert(dst.type() == RegType::sgpr);
8413
8414 if (dst.size() == 1) {
8415 Builder(ctx->program, ctx->block).copy(Definition(dst), Operand(0u));
8416 } else {
8417 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
8418 for (unsigned i = 0; i < dst.size(); i++)
8419 vec->operands[i] = Operand(0u);
8420 vec->definitions[0] = Definition(dst);
8421 ctx->block->instructions.emplace_back(std::move(vec));
8422 }
8423 }
8424
8425 void visit_jump(isel_context *ctx, nir_jump_instr *instr)
8426 {
8427 Builder bld(ctx->program, ctx->block);
8428 Block *logical_target;
8429 append_logical_end(ctx->block);
8430 unsigned idx = ctx->block->index;
8431
8432 switch (instr->type) {
8433 case nir_jump_break:
8434 logical_target = ctx->cf_info.parent_loop.exit;
8435 add_logical_edge(idx, logical_target);
8436 ctx->block->kind |= block_kind_break;
8437
8438 if (!ctx->cf_info.parent_if.is_divergent &&
8439 !ctx->cf_info.parent_loop.has_divergent_continue) {
8440 /* uniform break - directly jump out of the loop */
8441 ctx->block->kind |= block_kind_uniform;
8442 ctx->cf_info.has_branch = true;
8443 bld.branch(aco_opcode::p_branch);
8444 add_linear_edge(idx, logical_target);
8445 return;
8446 }
8447 ctx->cf_info.parent_loop.has_divergent_branch = true;
8448 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
8449 break;
8450 case nir_jump_continue:
8451 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
8452 add_logical_edge(idx, logical_target);
8453 ctx->block->kind |= block_kind_continue;
8454
8455 if (ctx->cf_info.parent_if.is_divergent) {
8456 /* for potential uniform breaks after this continue,
8457 we must ensure that they are handled correctly */
8458 ctx->cf_info.parent_loop.has_divergent_continue = true;
8459 ctx->cf_info.parent_loop.has_divergent_branch = true;
8460 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
8461 } else {
8462 /* uniform continue - directly jump to the loop header */
8463 ctx->block->kind |= block_kind_uniform;
8464 ctx->cf_info.has_branch = true;
8465 bld.branch(aco_opcode::p_branch);
8466 add_linear_edge(idx, logical_target);
8467 return;
8468 }
8469 break;
8470 default:
8471 fprintf(stderr, "Unknown NIR jump instr: ");
8472 nir_print_instr(&instr->instr, stderr);
8473 fprintf(stderr, "\n");
8474 abort();
8475 }
8476
8477 if (ctx->cf_info.parent_if.is_divergent && !ctx->cf_info.exec_potentially_empty_break) {
8478 ctx->cf_info.exec_potentially_empty_break = true;
8479 ctx->cf_info.exec_potentially_empty_break_depth = ctx->cf_info.loop_nest_depth;
8480 }
8481
8482 /* remove critical edges from linear CFG */
8483 bld.branch(aco_opcode::p_branch);
8484 Block* break_block = ctx->program->create_and_insert_block();
8485 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8486 break_block->kind |= block_kind_uniform;
8487 add_linear_edge(idx, break_block);
8488 /* the loop_header pointer might be invalidated by this point */
8489 if (instr->type == nir_jump_continue)
8490 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
8491 add_linear_edge(break_block->index, logical_target);
8492 bld.reset(break_block);
8493 bld.branch(aco_opcode::p_branch);
8494
8495 Block* continue_block = ctx->program->create_and_insert_block();
8496 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8497 add_linear_edge(idx, continue_block);
8498 append_logical_start(continue_block);
8499 ctx->block = continue_block;
8500 return;
8501 }
8502
8503 void visit_block(isel_context *ctx, nir_block *block)
8504 {
8505 nir_foreach_instr(instr, block) {
8506 switch (instr->type) {
8507 case nir_instr_type_alu:
8508 visit_alu_instr(ctx, nir_instr_as_alu(instr));
8509 break;
8510 case nir_instr_type_load_const:
8511 visit_load_const(ctx, nir_instr_as_load_const(instr));
8512 break;
8513 case nir_instr_type_intrinsic:
8514 visit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
8515 break;
8516 case nir_instr_type_tex:
8517 visit_tex(ctx, nir_instr_as_tex(instr));
8518 break;
8519 case nir_instr_type_phi:
8520 visit_phi(ctx, nir_instr_as_phi(instr));
8521 break;
8522 case nir_instr_type_ssa_undef:
8523 visit_undef(ctx, nir_instr_as_ssa_undef(instr));
8524 break;
8525 case nir_instr_type_deref:
8526 break;
8527 case nir_instr_type_jump:
8528 visit_jump(ctx, nir_instr_as_jump(instr));
8529 break;
8530 default:
8531 fprintf(stderr, "Unknown NIR instr type: ");
8532 nir_print_instr(instr, stderr);
8533 fprintf(stderr, "\n");
8534 //abort();
8535 }
8536 }
8537
8538 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8539 ctx->cf_info.nir_to_aco[block->index] = ctx->block->index;
8540 }
8541
8542
8543
8544 static Operand create_continue_phis(isel_context *ctx, unsigned first, unsigned last,
8545 aco_ptr<Instruction>& header_phi, Operand *vals)
8546 {
8547 vals[0] = Operand(header_phi->definitions[0].getTemp());
8548 RegClass rc = vals[0].regClass();
8549
8550 unsigned loop_nest_depth = ctx->program->blocks[first].loop_nest_depth;
8551
8552 unsigned next_pred = 1;
8553
8554 for (unsigned idx = first + 1; idx <= last; idx++) {
8555 Block& block = ctx->program->blocks[idx];
8556 if (block.loop_nest_depth != loop_nest_depth) {
8557 vals[idx - first] = vals[idx - 1 - first];
8558 continue;
8559 }
8560
8561 if (block.kind & block_kind_continue) {
8562 vals[idx - first] = header_phi->operands[next_pred];
8563 next_pred++;
8564 continue;
8565 }
8566
8567 bool all_same = true;
8568 for (unsigned i = 1; all_same && (i < block.linear_preds.size()); i++)
8569 all_same = vals[block.linear_preds[i] - first] == vals[block.linear_preds[0] - first];
8570
8571 Operand val;
8572 if (all_same) {
8573 val = vals[block.linear_preds[0] - first];
8574 } else {
8575 aco_ptr<Instruction> phi(create_instruction<Pseudo_instruction>(
8576 aco_opcode::p_linear_phi, Format::PSEUDO, block.linear_preds.size(), 1));
8577 for (unsigned i = 0; i < block.linear_preds.size(); i++)
8578 phi->operands[i] = vals[block.linear_preds[i] - first];
8579 val = Operand(Temp(ctx->program->allocateId(), rc));
8580 phi->definitions[0] = Definition(val.getTemp());
8581 block.instructions.emplace(block.instructions.begin(), std::move(phi));
8582 }
8583 vals[idx - first] = val;
8584 }
8585
8586 return vals[last - first];
8587 }
8588
8589 static void visit_loop(isel_context *ctx, nir_loop *loop)
8590 {
8591 //TODO: we might want to wrap the loop around a branch if exec_potentially_empty=true
8592 append_logical_end(ctx->block);
8593 ctx->block->kind |= block_kind_loop_preheader | block_kind_uniform;
8594 Builder bld(ctx->program, ctx->block);
8595 bld.branch(aco_opcode::p_branch);
8596 unsigned loop_preheader_idx = ctx->block->index;
8597
8598 Block loop_exit = Block();
8599 loop_exit.loop_nest_depth = ctx->cf_info.loop_nest_depth;
8600 loop_exit.kind |= (block_kind_loop_exit | (ctx->block->kind & block_kind_top_level));
8601
8602 Block* loop_header = ctx->program->create_and_insert_block();
8603 loop_header->loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
8604 loop_header->kind |= block_kind_loop_header;
8605 add_edge(loop_preheader_idx, loop_header);
8606 ctx->block = loop_header;
8607
8608 /* emit loop body */
8609 unsigned loop_header_idx = loop_header->index;
8610 loop_info_RAII loop_raii(ctx, loop_header_idx, &loop_exit);
8611 append_logical_start(ctx->block);
8612 bool unreachable = visit_cf_list(ctx, &loop->body);
8613
8614 //TODO: what if a loop ends with a unconditional or uniformly branched continue and this branch is never taken?
8615 if (!ctx->cf_info.has_branch) {
8616 append_logical_end(ctx->block);
8617 if (ctx->cf_info.exec_potentially_empty_discard || ctx->cf_info.exec_potentially_empty_break) {
8618 /* Discards can result in code running with an empty exec mask.
8619 * This would result in divergent breaks not ever being taken. As a
8620 * workaround, break the loop when the loop mask is empty instead of
8621 * always continuing. */
8622 ctx->block->kind |= (block_kind_continue_or_break | block_kind_uniform);
8623 unsigned block_idx = ctx->block->index;
8624
8625 /* create helper blocks to avoid critical edges */
8626 Block *break_block = ctx->program->create_and_insert_block();
8627 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8628 break_block->kind = block_kind_uniform;
8629 bld.reset(break_block);
8630 bld.branch(aco_opcode::p_branch);
8631 add_linear_edge(block_idx, break_block);
8632 add_linear_edge(break_block->index, &loop_exit);
8633
8634 Block *continue_block = ctx->program->create_and_insert_block();
8635 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8636 continue_block->kind = block_kind_uniform;
8637 bld.reset(continue_block);
8638 bld.branch(aco_opcode::p_branch);
8639 add_linear_edge(block_idx, continue_block);
8640 add_linear_edge(continue_block->index, &ctx->program->blocks[loop_header_idx]);
8641
8642 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8643 add_logical_edge(block_idx, &ctx->program->blocks[loop_header_idx]);
8644 ctx->block = &ctx->program->blocks[block_idx];
8645 } else {
8646 ctx->block->kind |= (block_kind_continue | block_kind_uniform);
8647 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8648 add_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
8649 else
8650 add_linear_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
8651 }
8652
8653 bld.reset(ctx->block);
8654 bld.branch(aco_opcode::p_branch);
8655 }
8656
8657 /* Fixup phis in loop header from unreachable blocks.
8658 * has_branch/has_divergent_branch also indicates if the loop ends with a
8659 * break/continue instruction, but we don't emit those if unreachable=true */
8660 if (unreachable) {
8661 assert(ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch);
8662 bool linear = ctx->cf_info.has_branch;
8663 bool logical = ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch;
8664 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
8665 if ((logical && instr->opcode == aco_opcode::p_phi) ||
8666 (linear && instr->opcode == aco_opcode::p_linear_phi)) {
8667 /* the last operand should be the one that needs to be removed */
8668 instr->operands.pop_back();
8669 } else if (!is_phi(instr)) {
8670 break;
8671 }
8672 }
8673 }
8674
8675 /* Fixup linear phis in loop header from expecting a continue. Both this fixup
8676 * and the previous one shouldn't both happen at once because a break in the
8677 * merge block would get CSE'd */
8678 if (nir_loop_last_block(loop)->successors[0] != nir_loop_first_block(loop)) {
8679 unsigned num_vals = ctx->cf_info.has_branch ? 1 : (ctx->block->index - loop_header_idx + 1);
8680 Operand vals[num_vals];
8681 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
8682 if (instr->opcode == aco_opcode::p_linear_phi) {
8683 if (ctx->cf_info.has_branch)
8684 instr->operands.pop_back();
8685 else
8686 instr->operands.back() = create_continue_phis(ctx, loop_header_idx, ctx->block->index, instr, vals);
8687 } else if (!is_phi(instr)) {
8688 break;
8689 }
8690 }
8691 }
8692
8693 ctx->cf_info.has_branch = false;
8694
8695 // TODO: if the loop has not a single exit, we must add one °°
8696 /* emit loop successor block */
8697 ctx->block = ctx->program->insert_block(std::move(loop_exit));
8698 append_logical_start(ctx->block);
8699
8700 #if 0
8701 // TODO: check if it is beneficial to not branch on continues
8702 /* trim linear phis in loop header */
8703 for (auto&& instr : loop_entry->instructions) {
8704 if (instr->opcode == aco_opcode::p_linear_phi) {
8705 aco_ptr<Pseudo_instruction> new_phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, loop_entry->linear_predecessors.size(), 1)};
8706 new_phi->definitions[0] = instr->definitions[0];
8707 for (unsigned i = 0; i < new_phi->operands.size(); i++)
8708 new_phi->operands[i] = instr->operands[i];
8709 /* check that the remaining operands are all the same */
8710 for (unsigned i = new_phi->operands.size(); i < instr->operands.size(); i++)
8711 assert(instr->operands[i].tempId() == instr->operands.back().tempId());
8712 instr.swap(new_phi);
8713 } else if (instr->opcode == aco_opcode::p_phi) {
8714 continue;
8715 } else {
8716 break;
8717 }
8718 }
8719 #endif
8720 }
8721
8722 static void begin_divergent_if_then(isel_context *ctx, if_context *ic, Temp cond)
8723 {
8724 ic->cond = cond;
8725
8726 append_logical_end(ctx->block);
8727 ctx->block->kind |= block_kind_branch;
8728
8729 /* branch to linear then block */
8730 assert(cond.regClass() == ctx->program->lane_mask);
8731 aco_ptr<Pseudo_branch_instruction> branch;
8732 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
8733 branch->operands[0] = Operand(cond);
8734 ctx->block->instructions.push_back(std::move(branch));
8735
8736 ic->BB_if_idx = ctx->block->index;
8737 ic->BB_invert = Block();
8738 ic->BB_invert.loop_nest_depth = ctx->cf_info.loop_nest_depth;
8739 /* Invert blocks are intentionally not marked as top level because they
8740 * are not part of the logical cfg. */
8741 ic->BB_invert.kind |= block_kind_invert;
8742 ic->BB_endif = Block();
8743 ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
8744 ic->BB_endif.kind |= (block_kind_merge | (ctx->block->kind & block_kind_top_level));
8745
8746 ic->exec_potentially_empty_discard_old = ctx->cf_info.exec_potentially_empty_discard;
8747 ic->exec_potentially_empty_break_old = ctx->cf_info.exec_potentially_empty_break;
8748 ic->exec_potentially_empty_break_depth_old = ctx->cf_info.exec_potentially_empty_break_depth;
8749 ic->divergent_old = ctx->cf_info.parent_if.is_divergent;
8750 ctx->cf_info.parent_if.is_divergent = true;
8751
8752 /* divergent branches use cbranch_execz */
8753 ctx->cf_info.exec_potentially_empty_discard = false;
8754 ctx->cf_info.exec_potentially_empty_break = false;
8755 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
8756
8757 /** emit logical then block */
8758 Block* BB_then_logical = ctx->program->create_and_insert_block();
8759 BB_then_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8760 add_edge(ic->BB_if_idx, BB_then_logical);
8761 ctx->block = BB_then_logical;
8762 append_logical_start(BB_then_logical);
8763 }
8764
8765 static void begin_divergent_if_else(isel_context *ctx, if_context *ic)
8766 {
8767 Block *BB_then_logical = ctx->block;
8768 append_logical_end(BB_then_logical);
8769 /* branch from logical then block to invert block */
8770 aco_ptr<Pseudo_branch_instruction> branch;
8771 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8772 BB_then_logical->instructions.emplace_back(std::move(branch));
8773 add_linear_edge(BB_then_logical->index, &ic->BB_invert);
8774 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8775 add_logical_edge(BB_then_logical->index, &ic->BB_endif);
8776 BB_then_logical->kind |= block_kind_uniform;
8777 assert(!ctx->cf_info.has_branch);
8778 ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
8779 ctx->cf_info.parent_loop.has_divergent_branch = false;
8780
8781 /** emit linear then block */
8782 Block* BB_then_linear = ctx->program->create_and_insert_block();
8783 BB_then_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8784 BB_then_linear->kind |= block_kind_uniform;
8785 add_linear_edge(ic->BB_if_idx, BB_then_linear);
8786 /* branch from linear then block to invert block */
8787 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8788 BB_then_linear->instructions.emplace_back(std::move(branch));
8789 add_linear_edge(BB_then_linear->index, &ic->BB_invert);
8790
8791 /** emit invert merge block */
8792 ctx->block = ctx->program->insert_block(std::move(ic->BB_invert));
8793 ic->invert_idx = ctx->block->index;
8794
8795 /* branch to linear else block (skip else) */
8796 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_nz, Format::PSEUDO_BRANCH, 1, 0));
8797 branch->operands[0] = Operand(ic->cond);
8798 ctx->block->instructions.push_back(std::move(branch));
8799
8800 ic->exec_potentially_empty_discard_old |= ctx->cf_info.exec_potentially_empty_discard;
8801 ic->exec_potentially_empty_break_old |= ctx->cf_info.exec_potentially_empty_break;
8802 ic->exec_potentially_empty_break_depth_old =
8803 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
8804 /* divergent branches use cbranch_execz */
8805 ctx->cf_info.exec_potentially_empty_discard = false;
8806 ctx->cf_info.exec_potentially_empty_break = false;
8807 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
8808
8809 /** emit logical else block */
8810 Block* BB_else_logical = ctx->program->create_and_insert_block();
8811 BB_else_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8812 add_logical_edge(ic->BB_if_idx, BB_else_logical);
8813 add_linear_edge(ic->invert_idx, BB_else_logical);
8814 ctx->block = BB_else_logical;
8815 append_logical_start(BB_else_logical);
8816 }
8817
8818 static void end_divergent_if(isel_context *ctx, if_context *ic)
8819 {
8820 Block *BB_else_logical = ctx->block;
8821 append_logical_end(BB_else_logical);
8822
8823 /* branch from logical else block to endif block */
8824 aco_ptr<Pseudo_branch_instruction> branch;
8825 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8826 BB_else_logical->instructions.emplace_back(std::move(branch));
8827 add_linear_edge(BB_else_logical->index, &ic->BB_endif);
8828 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8829 add_logical_edge(BB_else_logical->index, &ic->BB_endif);
8830 BB_else_logical->kind |= block_kind_uniform;
8831
8832 assert(!ctx->cf_info.has_branch);
8833 ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
8834
8835
8836 /** emit linear else block */
8837 Block* BB_else_linear = ctx->program->create_and_insert_block();
8838 BB_else_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8839 BB_else_linear->kind |= block_kind_uniform;
8840 add_linear_edge(ic->invert_idx, BB_else_linear);
8841
8842 /* branch from linear else block to endif block */
8843 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8844 BB_else_linear->instructions.emplace_back(std::move(branch));
8845 add_linear_edge(BB_else_linear->index, &ic->BB_endif);
8846
8847
8848 /** emit endif merge block */
8849 ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
8850 append_logical_start(ctx->block);
8851
8852
8853 ctx->cf_info.parent_if.is_divergent = ic->divergent_old;
8854 ctx->cf_info.exec_potentially_empty_discard |= ic->exec_potentially_empty_discard_old;
8855 ctx->cf_info.exec_potentially_empty_break |= ic->exec_potentially_empty_break_old;
8856 ctx->cf_info.exec_potentially_empty_break_depth =
8857 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
8858 if (ctx->cf_info.loop_nest_depth == ctx->cf_info.exec_potentially_empty_break_depth &&
8859 !ctx->cf_info.parent_if.is_divergent) {
8860 ctx->cf_info.exec_potentially_empty_break = false;
8861 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
8862 }
8863 /* uniform control flow never has an empty exec-mask */
8864 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent) {
8865 ctx->cf_info.exec_potentially_empty_discard = false;
8866 ctx->cf_info.exec_potentially_empty_break = false;
8867 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
8868 }
8869 }
8870
8871 static bool visit_if(isel_context *ctx, nir_if *if_stmt)
8872 {
8873 Temp cond = get_ssa_temp(ctx, if_stmt->condition.ssa);
8874 Builder bld(ctx->program, ctx->block);
8875 aco_ptr<Pseudo_branch_instruction> branch;
8876
8877 if (!ctx->divergent_vals[if_stmt->condition.ssa->index]) { /* uniform condition */
8878 /**
8879 * Uniform conditionals are represented in the following way*) :
8880 *
8881 * The linear and logical CFG:
8882 * BB_IF
8883 * / \
8884 * BB_THEN (logical) BB_ELSE (logical)
8885 * \ /
8886 * BB_ENDIF
8887 *
8888 * *) Exceptions may be due to break and continue statements within loops
8889 * If a break/continue happens within uniform control flow, it branches
8890 * to the loop exit/entry block. Otherwise, it branches to the next
8891 * merge block.
8892 **/
8893 append_logical_end(ctx->block);
8894 ctx->block->kind |= block_kind_uniform;
8895
8896 /* emit branch */
8897 assert(cond.regClass() == bld.lm);
8898 // TODO: in a post-RA optimizer, we could check if the condition is in VCC and omit this instruction
8899 cond = bool_to_scalar_condition(ctx, cond);
8900
8901 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
8902 branch->operands[0] = Operand(cond);
8903 branch->operands[0].setFixed(scc);
8904 ctx->block->instructions.emplace_back(std::move(branch));
8905
8906 unsigned BB_if_idx = ctx->block->index;
8907 Block BB_endif = Block();
8908 BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
8909 BB_endif.kind |= ctx->block->kind & block_kind_top_level;
8910
8911 /** emit then block */
8912 Block* BB_then = ctx->program->create_and_insert_block();
8913 BB_then->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8914 add_edge(BB_if_idx, BB_then);
8915 append_logical_start(BB_then);
8916 ctx->block = BB_then;
8917 visit_cf_list(ctx, &if_stmt->then_list);
8918 BB_then = ctx->block;
8919 bool then_branch = ctx->cf_info.has_branch;
8920 bool then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
8921
8922 if (!then_branch) {
8923 append_logical_end(BB_then);
8924 /* branch from then block to endif block */
8925 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8926 BB_then->instructions.emplace_back(std::move(branch));
8927 add_linear_edge(BB_then->index, &BB_endif);
8928 if (!then_branch_divergent)
8929 add_logical_edge(BB_then->index, &BB_endif);
8930 BB_then->kind |= block_kind_uniform;
8931 }
8932
8933 ctx->cf_info.has_branch = false;
8934 ctx->cf_info.parent_loop.has_divergent_branch = false;
8935
8936 /** emit else block */
8937 Block* BB_else = ctx->program->create_and_insert_block();
8938 BB_else->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8939 add_edge(BB_if_idx, BB_else);
8940 append_logical_start(BB_else);
8941 ctx->block = BB_else;
8942 visit_cf_list(ctx, &if_stmt->else_list);
8943 BB_else = ctx->block;
8944
8945 if (!ctx->cf_info.has_branch) {
8946 append_logical_end(BB_else);
8947 /* branch from then block to endif block */
8948 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8949 BB_else->instructions.emplace_back(std::move(branch));
8950 add_linear_edge(BB_else->index, &BB_endif);
8951 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8952 add_logical_edge(BB_else->index, &BB_endif);
8953 BB_else->kind |= block_kind_uniform;
8954 }
8955
8956 ctx->cf_info.has_branch &= then_branch;
8957 ctx->cf_info.parent_loop.has_divergent_branch &= then_branch_divergent;
8958
8959 /** emit endif merge block */
8960 if (!ctx->cf_info.has_branch) {
8961 ctx->block = ctx->program->insert_block(std::move(BB_endif));
8962 append_logical_start(ctx->block);
8963 }
8964 return !ctx->cf_info.has_branch;
8965 } else { /* non-uniform condition */
8966 /**
8967 * To maintain a logical and linear CFG without critical edges,
8968 * non-uniform conditionals are represented in the following way*) :
8969 *
8970 * The linear CFG:
8971 * BB_IF
8972 * / \
8973 * BB_THEN (logical) BB_THEN (linear)
8974 * \ /
8975 * BB_INVERT (linear)
8976 * / \
8977 * BB_ELSE (logical) BB_ELSE (linear)
8978 * \ /
8979 * BB_ENDIF
8980 *
8981 * The logical CFG:
8982 * BB_IF
8983 * / \
8984 * BB_THEN (logical) BB_ELSE (logical)
8985 * \ /
8986 * BB_ENDIF
8987 *
8988 * *) Exceptions may be due to break and continue statements within loops
8989 **/
8990
8991 if_context ic;
8992
8993 begin_divergent_if_then(ctx, &ic, cond);
8994 visit_cf_list(ctx, &if_stmt->then_list);
8995
8996 begin_divergent_if_else(ctx, &ic);
8997 visit_cf_list(ctx, &if_stmt->else_list);
8998
8999 end_divergent_if(ctx, &ic);
9000
9001 return true;
9002 }
9003 }
9004
9005 static bool visit_cf_list(isel_context *ctx,
9006 struct exec_list *list)
9007 {
9008 foreach_list_typed(nir_cf_node, node, node, list) {
9009 switch (node->type) {
9010 case nir_cf_node_block:
9011 visit_block(ctx, nir_cf_node_as_block(node));
9012 break;
9013 case nir_cf_node_if:
9014 if (!visit_if(ctx, nir_cf_node_as_if(node)))
9015 return true;
9016 break;
9017 case nir_cf_node_loop:
9018 visit_loop(ctx, nir_cf_node_as_loop(node));
9019 break;
9020 default:
9021 unreachable("unimplemented cf list type");
9022 }
9023 }
9024 return false;
9025 }
9026
9027 static void create_null_export(isel_context *ctx)
9028 {
9029 /* Some shader stages always need to have exports.
9030 * So when there is none, we need to add a null export.
9031 */
9032
9033 unsigned dest = (ctx->program->stage & hw_fs) ? 9 /* NULL */ : V_008DFC_SQ_EXP_POS;
9034 bool vm = (ctx->program->stage & hw_fs) || ctx->program->chip_class >= GFX10;
9035 Builder bld(ctx->program, ctx->block);
9036 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
9037 /* enabled_mask */ 0, dest, /* compr */ false, /* done */ true, vm);
9038 }
9039
9040 static bool export_vs_varying(isel_context *ctx, int slot, bool is_pos, int *next_pos)
9041 {
9042 assert(ctx->stage == vertex_vs ||
9043 ctx->stage == tess_eval_vs ||
9044 ctx->stage == gs_copy_vs);
9045
9046 int offset = ctx->stage == tess_eval_vs
9047 ? ctx->program->info->tes.outinfo.vs_output_param_offset[slot]
9048 : ctx->program->info->vs.outinfo.vs_output_param_offset[slot];
9049 uint64_t mask = ctx->outputs.mask[slot];
9050 if (!is_pos && !mask)
9051 return false;
9052 if (!is_pos && offset == AC_EXP_PARAM_UNDEFINED)
9053 return false;
9054 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
9055 exp->enabled_mask = mask;
9056 for (unsigned i = 0; i < 4; ++i) {
9057 if (mask & (1 << i))
9058 exp->operands[i] = Operand(ctx->outputs.temps[slot * 4u + i]);
9059 else
9060 exp->operands[i] = Operand(v1);
9061 }
9062 /* Navi10-14 skip POS0 exports if EXEC=0 and DONE=0, causing a hang.
9063 * Setting valid_mask=1 prevents it and has no other effect.
9064 */
9065 exp->valid_mask = ctx->options->chip_class >= GFX10 && is_pos && *next_pos == 0;
9066 exp->done = false;
9067 exp->compressed = false;
9068 if (is_pos)
9069 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
9070 else
9071 exp->dest = V_008DFC_SQ_EXP_PARAM + offset;
9072 ctx->block->instructions.emplace_back(std::move(exp));
9073
9074 return true;
9075 }
9076
9077 static void export_vs_psiz_layer_viewport(isel_context *ctx, int *next_pos)
9078 {
9079 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
9080 exp->enabled_mask = 0;
9081 for (unsigned i = 0; i < 4; ++i)
9082 exp->operands[i] = Operand(v1);
9083 if (ctx->outputs.mask[VARYING_SLOT_PSIZ]) {
9084 exp->operands[0] = Operand(ctx->outputs.temps[VARYING_SLOT_PSIZ * 4u]);
9085 exp->enabled_mask |= 0x1;
9086 }
9087 if (ctx->outputs.mask[VARYING_SLOT_LAYER]) {
9088 exp->operands[2] = Operand(ctx->outputs.temps[VARYING_SLOT_LAYER * 4u]);
9089 exp->enabled_mask |= 0x4;
9090 }
9091 if (ctx->outputs.mask[VARYING_SLOT_VIEWPORT]) {
9092 if (ctx->options->chip_class < GFX9) {
9093 exp->operands[3] = Operand(ctx->outputs.temps[VARYING_SLOT_VIEWPORT * 4u]);
9094 exp->enabled_mask |= 0x8;
9095 } else {
9096 Builder bld(ctx->program, ctx->block);
9097
9098 Temp out = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u),
9099 Operand(ctx->outputs.temps[VARYING_SLOT_VIEWPORT * 4u]));
9100 if (exp->operands[2].isTemp())
9101 out = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(out), exp->operands[2]);
9102
9103 exp->operands[2] = Operand(out);
9104 exp->enabled_mask |= 0x4;
9105 }
9106 }
9107 exp->valid_mask = ctx->options->chip_class >= GFX10 && *next_pos == 0;
9108 exp->done = false;
9109 exp->compressed = false;
9110 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
9111 ctx->block->instructions.emplace_back(std::move(exp));
9112 }
9113
9114 static void create_vs_exports(isel_context *ctx)
9115 {
9116 assert(ctx->stage == vertex_vs ||
9117 ctx->stage == tess_eval_vs ||
9118 ctx->stage == gs_copy_vs);
9119
9120 radv_vs_output_info *outinfo = ctx->stage == tess_eval_vs
9121 ? &ctx->program->info->tes.outinfo
9122 : &ctx->program->info->vs.outinfo;
9123
9124 if (outinfo->export_prim_id) {
9125 ctx->outputs.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
9126 ctx->outputs.temps[VARYING_SLOT_PRIMITIVE_ID * 4u] = get_arg(ctx, ctx->args->vs_prim_id);
9127 }
9128
9129 if (ctx->options->key.has_multiview_view_index) {
9130 ctx->outputs.mask[VARYING_SLOT_LAYER] |= 0x1;
9131 ctx->outputs.temps[VARYING_SLOT_LAYER * 4u] = as_vgpr(ctx, get_arg(ctx, ctx->args->ac.view_index));
9132 }
9133
9134 /* the order these position exports are created is important */
9135 int next_pos = 0;
9136 bool exported_pos = export_vs_varying(ctx, VARYING_SLOT_POS, true, &next_pos);
9137 if (outinfo->writes_pointsize || outinfo->writes_layer || outinfo->writes_viewport_index) {
9138 export_vs_psiz_layer_viewport(ctx, &next_pos);
9139 exported_pos = true;
9140 }
9141 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
9142 exported_pos |= export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, true, &next_pos);
9143 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
9144 exported_pos |= export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, true, &next_pos);
9145
9146 if (ctx->export_clip_dists) {
9147 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
9148 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, false, &next_pos);
9149 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
9150 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, false, &next_pos);
9151 }
9152
9153 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
9154 if (i < VARYING_SLOT_VAR0 && i != VARYING_SLOT_LAYER &&
9155 i != VARYING_SLOT_PRIMITIVE_ID)
9156 continue;
9157
9158 export_vs_varying(ctx, i, false, NULL);
9159 }
9160
9161 if (!exported_pos)
9162 create_null_export(ctx);
9163 }
9164
9165 static bool export_fs_mrt_z(isel_context *ctx)
9166 {
9167 Builder bld(ctx->program, ctx->block);
9168 unsigned enabled_channels = 0;
9169 bool compr = false;
9170 Operand values[4];
9171
9172 for (unsigned i = 0; i < 4; ++i) {
9173 values[i] = Operand(v1);
9174 }
9175
9176 /* Both stencil and sample mask only need 16-bits. */
9177 if (!ctx->program->info->ps.writes_z &&
9178 (ctx->program->info->ps.writes_stencil ||
9179 ctx->program->info->ps.writes_sample_mask)) {
9180 compr = true; /* COMPR flag */
9181
9182 if (ctx->program->info->ps.writes_stencil) {
9183 /* Stencil should be in X[23:16]. */
9184 values[0] = Operand(ctx->outputs.temps[FRAG_RESULT_STENCIL * 4u]);
9185 values[0] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u), values[0]);
9186 enabled_channels |= 0x3;
9187 }
9188
9189 if (ctx->program->info->ps.writes_sample_mask) {
9190 /* SampleMask should be in Y[15:0]. */
9191 values[1] = Operand(ctx->outputs.temps[FRAG_RESULT_SAMPLE_MASK * 4u]);
9192 enabled_channels |= 0xc;
9193 }
9194 } else {
9195 if (ctx->program->info->ps.writes_z) {
9196 values[0] = Operand(ctx->outputs.temps[FRAG_RESULT_DEPTH * 4u]);
9197 enabled_channels |= 0x1;
9198 }
9199
9200 if (ctx->program->info->ps.writes_stencil) {
9201 values[1] = Operand(ctx->outputs.temps[FRAG_RESULT_STENCIL * 4u]);
9202 enabled_channels |= 0x2;
9203 }
9204
9205 if (ctx->program->info->ps.writes_sample_mask) {
9206 values[2] = Operand(ctx->outputs.temps[FRAG_RESULT_SAMPLE_MASK * 4u]);
9207 enabled_channels |= 0x4;
9208 }
9209 }
9210
9211 /* GFX6 (except OLAND and HAINAN) has a bug that it only looks at the X
9212 * writemask component.
9213 */
9214 if (ctx->options->chip_class == GFX6 &&
9215 ctx->options->family != CHIP_OLAND &&
9216 ctx->options->family != CHIP_HAINAN) {
9217 enabled_channels |= 0x1;
9218 }
9219
9220 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
9221 enabled_channels, V_008DFC_SQ_EXP_MRTZ, compr);
9222
9223 return true;
9224 }
9225
9226 static bool export_fs_mrt_color(isel_context *ctx, int slot)
9227 {
9228 Builder bld(ctx->program, ctx->block);
9229 unsigned write_mask = ctx->outputs.mask[slot];
9230 Operand values[4];
9231
9232 for (unsigned i = 0; i < 4; ++i) {
9233 if (write_mask & (1 << i)) {
9234 values[i] = Operand(ctx->outputs.temps[slot * 4u + i]);
9235 } else {
9236 values[i] = Operand(v1);
9237 }
9238 }
9239
9240 unsigned target, col_format;
9241 unsigned enabled_channels = 0;
9242 aco_opcode compr_op = (aco_opcode)0;
9243
9244 slot -= FRAG_RESULT_DATA0;
9245 target = V_008DFC_SQ_EXP_MRT + slot;
9246 col_format = (ctx->options->key.fs.col_format >> (4 * slot)) & 0xf;
9247
9248 bool is_int8 = (ctx->options->key.fs.is_int8 >> slot) & 1;
9249 bool is_int10 = (ctx->options->key.fs.is_int10 >> slot) & 1;
9250
9251 switch (col_format)
9252 {
9253 case V_028714_SPI_SHADER_ZERO:
9254 enabled_channels = 0; /* writemask */
9255 target = V_008DFC_SQ_EXP_NULL;
9256 break;
9257
9258 case V_028714_SPI_SHADER_32_R:
9259 enabled_channels = 1;
9260 break;
9261
9262 case V_028714_SPI_SHADER_32_GR:
9263 enabled_channels = 0x3;
9264 break;
9265
9266 case V_028714_SPI_SHADER_32_AR:
9267 if (ctx->options->chip_class >= GFX10) {
9268 /* Special case: on GFX10, the outputs are different for 32_AR */
9269 enabled_channels = 0x3;
9270 values[1] = values[3];
9271 values[3] = Operand(v1);
9272 } else {
9273 enabled_channels = 0x9;
9274 }
9275 break;
9276
9277 case V_028714_SPI_SHADER_FP16_ABGR:
9278 enabled_channels = 0x5;
9279 compr_op = aco_opcode::v_cvt_pkrtz_f16_f32;
9280 break;
9281
9282 case V_028714_SPI_SHADER_UNORM16_ABGR:
9283 enabled_channels = 0x5;
9284 compr_op = aco_opcode::v_cvt_pknorm_u16_f32;
9285 break;
9286
9287 case V_028714_SPI_SHADER_SNORM16_ABGR:
9288 enabled_channels = 0x5;
9289 compr_op = aco_opcode::v_cvt_pknorm_i16_f32;
9290 break;
9291
9292 case V_028714_SPI_SHADER_UINT16_ABGR: {
9293 enabled_channels = 0x5;
9294 compr_op = aco_opcode::v_cvt_pk_u16_u32;
9295 if (is_int8 || is_int10) {
9296 /* clamp */
9297 uint32_t max_rgb = is_int8 ? 255 : is_int10 ? 1023 : 0;
9298 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
9299
9300 for (unsigned i = 0; i < 4; i++) {
9301 if ((write_mask >> i) & 1) {
9302 values[i] = bld.vop2(aco_opcode::v_min_u32, bld.def(v1),
9303 i == 3 && is_int10 ? Operand(3u) : Operand(max_rgb_val),
9304 values[i]);
9305 }
9306 }
9307 }
9308 break;
9309 }
9310
9311 case V_028714_SPI_SHADER_SINT16_ABGR:
9312 enabled_channels = 0x5;
9313 compr_op = aco_opcode::v_cvt_pk_i16_i32;
9314 if (is_int8 || is_int10) {
9315 /* clamp */
9316 uint32_t max_rgb = is_int8 ? 127 : is_int10 ? 511 : 0;
9317 uint32_t min_rgb = is_int8 ? -128 :is_int10 ? -512 : 0;
9318 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
9319 Temp min_rgb_val = bld.copy(bld.def(s1), Operand(min_rgb));
9320
9321 for (unsigned i = 0; i < 4; i++) {
9322 if ((write_mask >> i) & 1) {
9323 values[i] = bld.vop2(aco_opcode::v_min_i32, bld.def(v1),
9324 i == 3 && is_int10 ? Operand(1u) : Operand(max_rgb_val),
9325 values[i]);
9326 values[i] = bld.vop2(aco_opcode::v_max_i32, bld.def(v1),
9327 i == 3 && is_int10 ? Operand(-2u) : Operand(min_rgb_val),
9328 values[i]);
9329 }
9330 }
9331 }
9332 break;
9333
9334 case V_028714_SPI_SHADER_32_ABGR:
9335 enabled_channels = 0xF;
9336 break;
9337
9338 default:
9339 break;
9340 }
9341
9342 if (target == V_008DFC_SQ_EXP_NULL)
9343 return false;
9344
9345 if ((bool) compr_op) {
9346 for (int i = 0; i < 2; i++) {
9347 /* check if at least one of the values to be compressed is enabled */
9348 unsigned enabled = (write_mask >> (i*2) | write_mask >> (i*2+1)) & 0x1;
9349 if (enabled) {
9350 enabled_channels |= enabled << (i*2);
9351 values[i] = bld.vop3(compr_op, bld.def(v1),
9352 values[i*2].isUndefined() ? Operand(0u) : values[i*2],
9353 values[i*2+1].isUndefined() ? Operand(0u): values[i*2+1]);
9354 } else {
9355 values[i] = Operand(v1);
9356 }
9357 }
9358 values[2] = Operand(v1);
9359 values[3] = Operand(v1);
9360 } else {
9361 for (int i = 0; i < 4; i++)
9362 values[i] = enabled_channels & (1 << i) ? values[i] : Operand(v1);
9363 }
9364
9365 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
9366 enabled_channels, target, (bool) compr_op);
9367 return true;
9368 }
9369
9370 static void create_fs_exports(isel_context *ctx)
9371 {
9372 bool exported = false;
9373
9374 /* Export depth, stencil and sample mask. */
9375 if (ctx->outputs.mask[FRAG_RESULT_DEPTH] ||
9376 ctx->outputs.mask[FRAG_RESULT_STENCIL] ||
9377 ctx->outputs.mask[FRAG_RESULT_SAMPLE_MASK])
9378 exported |= export_fs_mrt_z(ctx);
9379
9380 /* Export all color render targets. */
9381 for (unsigned i = FRAG_RESULT_DATA0; i < FRAG_RESULT_DATA7 + 1; ++i)
9382 if (ctx->outputs.mask[i])
9383 exported |= export_fs_mrt_color(ctx, i);
9384
9385 if (!exported)
9386 create_null_export(ctx);
9387 }
9388
9389 static void write_tcs_tess_factors(isel_context *ctx)
9390 {
9391 unsigned outer_comps;
9392 unsigned inner_comps;
9393
9394 switch (ctx->args->options->key.tcs.primitive_mode) {
9395 case GL_ISOLINES:
9396 outer_comps = 2;
9397 inner_comps = 0;
9398 break;
9399 case GL_TRIANGLES:
9400 outer_comps = 3;
9401 inner_comps = 1;
9402 break;
9403 case GL_QUADS:
9404 outer_comps = 4;
9405 inner_comps = 2;
9406 break;
9407 default:
9408 return;
9409 }
9410
9411 Builder bld(ctx->program, ctx->block);
9412
9413 bld.barrier(aco_opcode::p_memory_barrier_shared);
9414 if (unlikely(ctx->program->chip_class != GFX6 && ctx->program->workgroup_size > ctx->program->wave_size))
9415 bld.sopp(aco_opcode::s_barrier);
9416
9417 Temp tcs_rel_ids = get_arg(ctx, ctx->args->ac.tcs_rel_ids);
9418 Temp invocation_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), tcs_rel_ids, Operand(8u), Operand(5u));
9419
9420 Temp invocation_id_is_zero = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), invocation_id);
9421 if_context ic_invocation_id_is_zero;
9422 begin_divergent_if_then(ctx, &ic_invocation_id_is_zero, invocation_id_is_zero);
9423 bld.reset(ctx->block);
9424
9425 Temp hs_ring_tess_factor = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_FACTOR * 16u));
9426
9427 std::pair<Temp, unsigned> lds_base = get_tcs_output_lds_offset(ctx);
9428 unsigned stride = inner_comps + outer_comps;
9429 unsigned lds_align = calculate_lds_alignment(ctx, lds_base.second);
9430 Temp tf_inner_vec;
9431 Temp tf_outer_vec;
9432 Temp out[6];
9433 assert(stride <= (sizeof(out) / sizeof(Temp)));
9434
9435 if (ctx->args->options->key.tcs.primitive_mode == GL_ISOLINES) {
9436 // LINES reversal
9437 tf_outer_vec = load_lds(ctx, 4, bld.tmp(v2), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_out_loc, lds_align);
9438 out[1] = emit_extract_vector(ctx, tf_outer_vec, 0, v1);
9439 out[0] = emit_extract_vector(ctx, tf_outer_vec, 1, v1);
9440 } else {
9441 tf_outer_vec = load_lds(ctx, 4, bld.tmp(RegClass(RegType::vgpr, outer_comps)), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_out_loc, lds_align);
9442 tf_inner_vec = load_lds(ctx, 4, bld.tmp(RegClass(RegType::vgpr, inner_comps)), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_in_loc, lds_align);
9443
9444 for (unsigned i = 0; i < outer_comps; ++i)
9445 out[i] = emit_extract_vector(ctx, tf_outer_vec, i, v1);
9446 for (unsigned i = 0; i < inner_comps; ++i)
9447 out[outer_comps + i] = emit_extract_vector(ctx, tf_inner_vec, i, v1);
9448 }
9449
9450 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
9451 Temp tf_base = get_arg(ctx, ctx->args->tess_factor_offset);
9452 Temp byte_offset = bld.v_mul_imm(bld.def(v1), rel_patch_id, stride * 4u);
9453 unsigned tf_const_offset = 0;
9454
9455 if (ctx->program->chip_class <= GFX8) {
9456 Temp rel_patch_id_is_zero = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), rel_patch_id);
9457 if_context ic_rel_patch_id_is_zero;
9458 begin_divergent_if_then(ctx, &ic_rel_patch_id_is_zero, rel_patch_id_is_zero);
9459 bld.reset(ctx->block);
9460
9461 /* Store the dynamic HS control word. */
9462 Temp control_word = bld.copy(bld.def(v1), Operand(0x80000000u));
9463 bld.mubuf(aco_opcode::buffer_store_dword,
9464 /* SRSRC */ hs_ring_tess_factor, /* VADDR */ Operand(v1), /* SOFFSET */ tf_base, /* VDATA */ control_word,
9465 /* immediate OFFSET */ 0, /* OFFEN */ false, /* idxen*/ false, /* addr64 */ false,
9466 /* disable_wqm */ false, /* glc */ true);
9467 tf_const_offset += 4;
9468
9469 begin_divergent_if_else(ctx, &ic_rel_patch_id_is_zero);
9470 end_divergent_if(ctx, &ic_rel_patch_id_is_zero);
9471 bld.reset(ctx->block);
9472 }
9473
9474 assert(stride == 2 || stride == 4 || stride == 6);
9475 Temp tf_vec = create_vec_from_array(ctx, out, stride, RegType::vgpr, 4u);
9476 store_vmem_mubuf(ctx, tf_vec, hs_ring_tess_factor, byte_offset, tf_base, tf_const_offset, 4, (1 << stride) - 1, true, false);
9477
9478 /* Store to offchip for TES to read - only if TES reads them */
9479 if (ctx->args->options->key.tcs.tes_reads_tess_factors) {
9480 Temp hs_ring_tess_offchip = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
9481 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
9482
9483 std::pair<Temp, unsigned> vmem_offs_outer = get_tcs_per_patch_output_vmem_offset(ctx, nullptr, ctx->tcs_tess_lvl_out_loc);
9484 store_vmem_mubuf(ctx, tf_outer_vec, hs_ring_tess_offchip, vmem_offs_outer.first, oc_lds, vmem_offs_outer.second, 4, (1 << outer_comps) - 1, true, false);
9485
9486 if (likely(inner_comps)) {
9487 std::pair<Temp, unsigned> vmem_offs_inner = get_tcs_per_patch_output_vmem_offset(ctx, nullptr, ctx->tcs_tess_lvl_in_loc);
9488 store_vmem_mubuf(ctx, tf_inner_vec, hs_ring_tess_offchip, vmem_offs_inner.first, oc_lds, vmem_offs_inner.second, 4, (1 << inner_comps) - 1, true, false);
9489 }
9490 }
9491
9492 begin_divergent_if_else(ctx, &ic_invocation_id_is_zero);
9493 end_divergent_if(ctx, &ic_invocation_id_is_zero);
9494 }
9495
9496 static void emit_stream_output(isel_context *ctx,
9497 Temp const *so_buffers,
9498 Temp const *so_write_offset,
9499 const struct radv_stream_output *output)
9500 {
9501 unsigned num_comps = util_bitcount(output->component_mask);
9502 unsigned writemask = (1 << num_comps) - 1;
9503 unsigned loc = output->location;
9504 unsigned buf = output->buffer;
9505
9506 assert(num_comps && num_comps <= 4);
9507 if (!num_comps || num_comps > 4)
9508 return;
9509
9510 unsigned start = ffs(output->component_mask) - 1;
9511
9512 Temp out[4];
9513 bool all_undef = true;
9514 assert(ctx->stage == vertex_vs || ctx->stage == gs_copy_vs);
9515 for (unsigned i = 0; i < num_comps; i++) {
9516 out[i] = ctx->outputs.temps[loc * 4 + start + i];
9517 all_undef = all_undef && !out[i].id();
9518 }
9519 if (all_undef)
9520 return;
9521
9522 while (writemask) {
9523 int start, count;
9524 u_bit_scan_consecutive_range(&writemask, &start, &count);
9525 if (count == 3 && ctx->options->chip_class == GFX6) {
9526 /* GFX6 doesn't support storing vec3, split it. */
9527 writemask |= 1u << (start + 2);
9528 count = 2;
9529 }
9530
9531 unsigned offset = output->offset + start * 4;
9532
9533 Temp write_data = {ctx->program->allocateId(), RegClass(RegType::vgpr, count)};
9534 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
9535 for (int i = 0; i < count; ++i)
9536 vec->operands[i] = (ctx->outputs.mask[loc] & 1 << (start + i)) ? Operand(out[start + i]) : Operand(0u);
9537 vec->definitions[0] = Definition(write_data);
9538 ctx->block->instructions.emplace_back(std::move(vec));
9539
9540 aco_opcode opcode;
9541 switch (count) {
9542 case 1:
9543 opcode = aco_opcode::buffer_store_dword;
9544 break;
9545 case 2:
9546 opcode = aco_opcode::buffer_store_dwordx2;
9547 break;
9548 case 3:
9549 opcode = aco_opcode::buffer_store_dwordx3;
9550 break;
9551 case 4:
9552 opcode = aco_opcode::buffer_store_dwordx4;
9553 break;
9554 default:
9555 unreachable("Unsupported dword count.");
9556 }
9557
9558 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
9559 store->operands[0] = Operand(so_buffers[buf]);
9560 store->operands[1] = Operand(so_write_offset[buf]);
9561 store->operands[2] = Operand((uint32_t) 0);
9562 store->operands[3] = Operand(write_data);
9563 if (offset > 4095) {
9564 /* Don't think this can happen in RADV, but maybe GL? It's easy to do this anyway. */
9565 Builder bld(ctx->program, ctx->block);
9566 store->operands[0] = bld.vadd32(bld.def(v1), Operand(offset), Operand(so_write_offset[buf]));
9567 } else {
9568 store->offset = offset;
9569 }
9570 store->offen = true;
9571 store->glc = true;
9572 store->dlc = false;
9573 store->slc = true;
9574 store->can_reorder = true;
9575 ctx->block->instructions.emplace_back(std::move(store));
9576 }
9577 }
9578
9579 static void emit_streamout(isel_context *ctx, unsigned stream)
9580 {
9581 Builder bld(ctx->program, ctx->block);
9582
9583 Temp so_buffers[4];
9584 Temp buf_ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->streamout_buffers));
9585 for (unsigned i = 0; i < 4; i++) {
9586 unsigned stride = ctx->program->info->so.strides[i];
9587 if (!stride)
9588 continue;
9589
9590 Operand off = bld.copy(bld.def(s1), Operand(i * 16u));
9591 so_buffers[i] = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), buf_ptr, off);
9592 }
9593
9594 Temp so_vtx_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
9595 get_arg(ctx, ctx->args->streamout_config), Operand(0x70010u));
9596
9597 Temp tid = emit_mbcnt(ctx, bld.def(v1));
9598
9599 Temp can_emit = bld.vopc(aco_opcode::v_cmp_gt_i32, bld.def(bld.lm), so_vtx_count, tid);
9600
9601 if_context ic;
9602 begin_divergent_if_then(ctx, &ic, can_emit);
9603
9604 bld.reset(ctx->block);
9605
9606 Temp so_write_index = bld.vadd32(bld.def(v1), get_arg(ctx, ctx->args->streamout_write_idx), tid);
9607
9608 Temp so_write_offset[4];
9609
9610 for (unsigned i = 0; i < 4; i++) {
9611 unsigned stride = ctx->program->info->so.strides[i];
9612 if (!stride)
9613 continue;
9614
9615 if (stride == 1) {
9616 Temp offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
9617 get_arg(ctx, ctx->args->streamout_write_idx),
9618 get_arg(ctx, ctx->args->streamout_offset[i]));
9619 Temp new_offset = bld.vadd32(bld.def(v1), offset, tid);
9620
9621 so_write_offset[i] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), new_offset);
9622 } else {
9623 Temp offset = bld.v_mul_imm(bld.def(v1), so_write_index, stride * 4u);
9624 Temp offset2 = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(4u),
9625 get_arg(ctx, ctx->args->streamout_offset[i]));
9626 so_write_offset[i] = bld.vadd32(bld.def(v1), offset, offset2);
9627 }
9628 }
9629
9630 for (unsigned i = 0; i < ctx->program->info->so.num_outputs; i++) {
9631 struct radv_stream_output *output =
9632 &ctx->program->info->so.outputs[i];
9633 if (stream != output->stream)
9634 continue;
9635
9636 emit_stream_output(ctx, so_buffers, so_write_offset, output);
9637 }
9638
9639 begin_divergent_if_else(ctx, &ic);
9640 end_divergent_if(ctx, &ic);
9641 }
9642
9643 } /* end namespace */
9644
9645 void fix_ls_vgpr_init_bug(isel_context *ctx, Pseudo_instruction *startpgm)
9646 {
9647 assert(ctx->shader->info.stage == MESA_SHADER_VERTEX);
9648 Builder bld(ctx->program, ctx->block);
9649 constexpr unsigned hs_idx = 1u;
9650 Builder::Result hs_thread_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
9651 get_arg(ctx, ctx->args->merged_wave_info),
9652 Operand((8u << 16) | (hs_idx * 8u)));
9653 Temp ls_has_nonzero_hs_threads = bool_to_vector_condition(ctx, hs_thread_count.def(1).getTemp());
9654
9655 /* If there are no HS threads, SPI mistakenly loads the LS VGPRs starting at VGPR 0. */
9656
9657 Temp instance_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
9658 get_arg(ctx, ctx->args->rel_auto_id),
9659 get_arg(ctx, ctx->args->ac.instance_id),
9660 ls_has_nonzero_hs_threads);
9661 Temp rel_auto_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
9662 get_arg(ctx, ctx->args->ac.tcs_rel_ids),
9663 get_arg(ctx, ctx->args->rel_auto_id),
9664 ls_has_nonzero_hs_threads);
9665 Temp vertex_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
9666 get_arg(ctx, ctx->args->ac.tcs_patch_id),
9667 get_arg(ctx, ctx->args->ac.vertex_id),
9668 ls_has_nonzero_hs_threads);
9669
9670 ctx->arg_temps[ctx->args->ac.instance_id.arg_index] = instance_id;
9671 ctx->arg_temps[ctx->args->rel_auto_id.arg_index] = rel_auto_id;
9672 ctx->arg_temps[ctx->args->ac.vertex_id.arg_index] = vertex_id;
9673 }
9674
9675 void split_arguments(isel_context *ctx, Pseudo_instruction *startpgm)
9676 {
9677 /* Split all arguments except for the first (ring_offsets) and the last
9678 * (exec) so that the dead channels don't stay live throughout the program.
9679 */
9680 for (int i = 1; i < startpgm->definitions.size() - 1; i++) {
9681 if (startpgm->definitions[i].regClass().size() > 1) {
9682 emit_split_vector(ctx, startpgm->definitions[i].getTemp(),
9683 startpgm->definitions[i].regClass().size());
9684 }
9685 }
9686 }
9687
9688 void handle_bc_optimize(isel_context *ctx)
9689 {
9690 /* needed when SPI_PS_IN_CONTROL.BC_OPTIMIZE_DISABLE is set to 0 */
9691 Builder bld(ctx->program, ctx->block);
9692 uint32_t spi_ps_input_ena = ctx->program->config->spi_ps_input_ena;
9693 bool uses_center = G_0286CC_PERSP_CENTER_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTER_ENA(spi_ps_input_ena);
9694 bool uses_centroid = G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena);
9695 ctx->persp_centroid = get_arg(ctx, ctx->args->ac.persp_centroid);
9696 ctx->linear_centroid = get_arg(ctx, ctx->args->ac.linear_centroid);
9697 if (uses_center && uses_centroid) {
9698 Temp sel = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)),
9699 get_arg(ctx, ctx->args->ac.prim_mask), Operand(0u));
9700
9701 if (G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena)) {
9702 Temp new_coord[2];
9703 for (unsigned i = 0; i < 2; i++) {
9704 Temp persp_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_centroid), i, v1);
9705 Temp persp_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_center), i, v1);
9706 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
9707 persp_centroid, persp_center, sel);
9708 }
9709 ctx->persp_centroid = bld.tmp(v2);
9710 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->persp_centroid),
9711 Operand(new_coord[0]), Operand(new_coord[1]));
9712 emit_split_vector(ctx, ctx->persp_centroid, 2);
9713 }
9714
9715 if (G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena)) {
9716 Temp new_coord[2];
9717 for (unsigned i = 0; i < 2; i++) {
9718 Temp linear_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_centroid), i, v1);
9719 Temp linear_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_center), i, v1);
9720 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
9721 linear_centroid, linear_center, sel);
9722 }
9723 ctx->linear_centroid = bld.tmp(v2);
9724 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->linear_centroid),
9725 Operand(new_coord[0]), Operand(new_coord[1]));
9726 emit_split_vector(ctx, ctx->linear_centroid, 2);
9727 }
9728 }
9729 }
9730
9731 void setup_fp_mode(isel_context *ctx, nir_shader *shader)
9732 {
9733 Program *program = ctx->program;
9734
9735 unsigned float_controls = shader->info.float_controls_execution_mode;
9736
9737 program->next_fp_mode.preserve_signed_zero_inf_nan32 =
9738 float_controls & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32;
9739 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 =
9740 float_controls & (FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16 |
9741 FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64);
9742
9743 program->next_fp_mode.must_flush_denorms32 =
9744 float_controls & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32;
9745 program->next_fp_mode.must_flush_denorms16_64 =
9746 float_controls & (FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 |
9747 FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64);
9748
9749 program->next_fp_mode.care_about_round32 =
9750 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32);
9751
9752 program->next_fp_mode.care_about_round16_64 =
9753 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64 |
9754 FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
9755
9756 /* default to preserving fp16 and fp64 denorms, since it's free */
9757 if (program->next_fp_mode.must_flush_denorms16_64)
9758 program->next_fp_mode.denorm16_64 = 0;
9759 else
9760 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
9761
9762 /* preserving fp32 denorms is expensive, so only do it if asked */
9763 if (float_controls & FLOAT_CONTROLS_DENORM_PRESERVE_FP32)
9764 program->next_fp_mode.denorm32 = fp_denorm_keep;
9765 else
9766 program->next_fp_mode.denorm32 = 0;
9767
9768 if (float_controls & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32)
9769 program->next_fp_mode.round32 = fp_round_tz;
9770 else
9771 program->next_fp_mode.round32 = fp_round_ne;
9772
9773 if (float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64))
9774 program->next_fp_mode.round16_64 = fp_round_tz;
9775 else
9776 program->next_fp_mode.round16_64 = fp_round_ne;
9777
9778 ctx->block->fp_mode = program->next_fp_mode;
9779 }
9780
9781 void cleanup_cfg(Program *program)
9782 {
9783 /* create linear_succs/logical_succs */
9784 for (Block& BB : program->blocks) {
9785 for (unsigned idx : BB.linear_preds)
9786 program->blocks[idx].linear_succs.emplace_back(BB.index);
9787 for (unsigned idx : BB.logical_preds)
9788 program->blocks[idx].logical_succs.emplace_back(BB.index);
9789 }
9790 }
9791
9792 void select_program(Program *program,
9793 unsigned shader_count,
9794 struct nir_shader *const *shaders,
9795 ac_shader_config* config,
9796 struct radv_shader_args *args)
9797 {
9798 isel_context ctx = setup_isel_context(program, shader_count, shaders, config, args, false);
9799 if_context ic_merged_wave_info;
9800
9801 for (unsigned i = 0; i < shader_count; i++) {
9802 nir_shader *nir = shaders[i];
9803 init_context(&ctx, nir);
9804
9805 setup_fp_mode(&ctx, nir);
9806
9807 if (!i) {
9808 /* needs to be after init_context() for FS */
9809 Pseudo_instruction *startpgm = add_startpgm(&ctx);
9810 append_logical_start(ctx.block);
9811
9812 if (unlikely(args->options->has_ls_vgpr_init_bug && ctx.stage == vertex_tess_control_hs))
9813 fix_ls_vgpr_init_bug(&ctx, startpgm);
9814
9815 split_arguments(&ctx, startpgm);
9816 }
9817
9818 /* In a merged VS+TCS HS, the VS implementation can be completely empty. */
9819 nir_function_impl *func = nir_shader_get_entrypoint(nir);
9820 bool empty_shader = nir_cf_list_is_empty_block(&func->body) &&
9821 ((nir->info.stage == MESA_SHADER_VERTEX &&
9822 (ctx.stage == vertex_tess_control_hs || ctx.stage == vertex_geometry_gs)) ||
9823 (nir->info.stage == MESA_SHADER_TESS_EVAL &&
9824 ctx.stage == tess_eval_geometry_gs));
9825
9826 bool check_merged_wave_info = ctx.tcs_in_out_eq ? i == 0 : (shader_count >= 2 && !empty_shader);
9827 bool endif_merged_wave_info = ctx.tcs_in_out_eq ? i == 1 : check_merged_wave_info;
9828 if (check_merged_wave_info) {
9829 Builder bld(ctx.program, ctx.block);
9830
9831 /* The s_bfm only cares about s0.u[5:0] so we don't need either s_bfe nor s_and here */
9832 Temp count = i == 0 ? get_arg(&ctx, args->merged_wave_info)
9833 : bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc),
9834 get_arg(&ctx, args->merged_wave_info), Operand(i * 8u));
9835
9836 Temp mask = bld.sop2(aco_opcode::s_bfm_b64, bld.def(s2), count, Operand(0u));
9837 Temp cond;
9838
9839 if (ctx.program->wave_size == 64) {
9840 /* Special case for 64 active invocations, because 64 doesn't work with s_bfm */
9841 Temp active_64 = bld.sopc(aco_opcode::s_bitcmp1_b32, bld.def(s1, scc), count, Operand(6u /* log2(64) */));
9842 cond = bld.sop2(Builder::s_cselect, bld.def(bld.lm), Operand(-1u), mask, bld.scc(active_64));
9843 } else {
9844 /* We use s_bfm_b64 (not _b32) which works with 32, but we need to extract the lower half of the register */
9845 cond = emit_extract_vector(&ctx, mask, 0, bld.lm);
9846 }
9847
9848 begin_divergent_if_then(&ctx, &ic_merged_wave_info, cond);
9849 }
9850
9851 if (i) {
9852 Builder bld(ctx.program, ctx.block);
9853
9854 bld.barrier(aco_opcode::p_memory_barrier_shared);
9855 bld.sopp(aco_opcode::s_barrier);
9856
9857 if (ctx.stage == vertex_geometry_gs || ctx.stage == tess_eval_geometry_gs) {
9858 ctx.gs_wave_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1, m0), bld.def(s1, scc), get_arg(&ctx, args->merged_wave_info), Operand((8u << 16) | 16u));
9859 }
9860 } else if (ctx.stage == geometry_gs)
9861 ctx.gs_wave_id = get_arg(&ctx, args->gs_wave_id);
9862
9863 if (ctx.stage == fragment_fs)
9864 handle_bc_optimize(&ctx);
9865
9866 visit_cf_list(&ctx, &func->body);
9867
9868 if (ctx.program->info->so.num_outputs && (ctx.stage == vertex_vs || ctx.stage == tess_eval_vs))
9869 emit_streamout(&ctx, 0);
9870
9871 if (ctx.stage == vertex_vs || ctx.stage == tess_eval_vs) {
9872 create_vs_exports(&ctx);
9873 } else if (nir->info.stage == MESA_SHADER_GEOMETRY) {
9874 Builder bld(ctx.program, ctx.block);
9875 bld.barrier(aco_opcode::p_memory_barrier_gs_data);
9876 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx.gs_wave_id), -1, sendmsg_gs_done(false, false, 0));
9877 } else if (nir->info.stage == MESA_SHADER_TESS_CTRL) {
9878 write_tcs_tess_factors(&ctx);
9879 }
9880
9881 if (ctx.stage == fragment_fs)
9882 create_fs_exports(&ctx);
9883
9884 if (endif_merged_wave_info) {
9885 begin_divergent_if_else(&ctx, &ic_merged_wave_info);
9886 end_divergent_if(&ctx, &ic_merged_wave_info);
9887 }
9888
9889 ralloc_free(ctx.divergent_vals);
9890
9891 if (i == 0 && ctx.stage == vertex_tess_control_hs && ctx.tcs_in_out_eq) {
9892 /* Outputs of the previous stage are inputs to the next stage */
9893 ctx.inputs = ctx.outputs;
9894 ctx.outputs = shader_io_state();
9895 }
9896 }
9897
9898 program->config->float_mode = program->blocks[0].fp_mode.val;
9899
9900 append_logical_end(ctx.block);
9901 ctx.block->kind |= block_kind_uniform | block_kind_export_end;
9902 Builder bld(ctx.program, ctx.block);
9903 if (ctx.program->wb_smem_l1_on_end)
9904 bld.smem(aco_opcode::s_dcache_wb, false);
9905 bld.sopp(aco_opcode::s_endpgm);
9906
9907 cleanup_cfg(program);
9908 }
9909
9910 void select_gs_copy_shader(Program *program, struct nir_shader *gs_shader,
9911 ac_shader_config* config,
9912 struct radv_shader_args *args)
9913 {
9914 isel_context ctx = setup_isel_context(program, 1, &gs_shader, config, args, true);
9915
9916 program->next_fp_mode.preserve_signed_zero_inf_nan32 = false;
9917 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 = false;
9918 program->next_fp_mode.must_flush_denorms32 = false;
9919 program->next_fp_mode.must_flush_denorms16_64 = false;
9920 program->next_fp_mode.care_about_round32 = false;
9921 program->next_fp_mode.care_about_round16_64 = false;
9922 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
9923 program->next_fp_mode.denorm32 = 0;
9924 program->next_fp_mode.round32 = fp_round_ne;
9925 program->next_fp_mode.round16_64 = fp_round_ne;
9926 ctx.block->fp_mode = program->next_fp_mode;
9927
9928 add_startpgm(&ctx);
9929 append_logical_start(ctx.block);
9930
9931 Builder bld(ctx.program, ctx.block);
9932
9933 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), program->private_segment_buffer, Operand(RING_GSVS_VS * 16u));
9934
9935 Operand stream_id(0u);
9936 if (args->shader_info->so.num_outputs)
9937 stream_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
9938 get_arg(&ctx, ctx.args->streamout_config), Operand(0x20018u));
9939
9940 Temp vtx_offset = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), get_arg(&ctx, ctx.args->ac.vertex_id));
9941
9942 std::stack<Block> endif_blocks;
9943
9944 for (unsigned stream = 0; stream < 4; stream++) {
9945 if (stream_id.isConstant() && stream != stream_id.constantValue())
9946 continue;
9947
9948 unsigned num_components = args->shader_info->gs.num_stream_output_components[stream];
9949 if (stream > 0 && (!num_components || !args->shader_info->so.num_outputs))
9950 continue;
9951
9952 memset(ctx.outputs.mask, 0, sizeof(ctx.outputs.mask));
9953
9954 unsigned BB_if_idx = ctx.block->index;
9955 Block BB_endif = Block();
9956 if (!stream_id.isConstant()) {
9957 /* begin IF */
9958 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), stream_id, Operand(stream));
9959 append_logical_end(ctx.block);
9960 ctx.block->kind |= block_kind_uniform;
9961 bld.branch(aco_opcode::p_cbranch_z, cond);
9962
9963 BB_endif.kind |= ctx.block->kind & block_kind_top_level;
9964
9965 ctx.block = ctx.program->create_and_insert_block();
9966 add_edge(BB_if_idx, ctx.block);
9967 bld.reset(ctx.block);
9968 append_logical_start(ctx.block);
9969 }
9970
9971 unsigned offset = 0;
9972 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
9973 if (args->shader_info->gs.output_streams[i] != stream)
9974 continue;
9975
9976 unsigned output_usage_mask = args->shader_info->gs.output_usage_mask[i];
9977 unsigned length = util_last_bit(output_usage_mask);
9978 for (unsigned j = 0; j < length; ++j) {
9979 if (!(output_usage_mask & (1 << j)))
9980 continue;
9981
9982 unsigned const_offset = offset * args->shader_info->gs.vertices_out * 16 * 4;
9983 Temp voffset = vtx_offset;
9984 if (const_offset >= 4096u) {
9985 voffset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), voffset);
9986 const_offset %= 4096u;
9987 }
9988
9989 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dword, Format::MUBUF, 3, 1)};
9990 mubuf->definitions[0] = bld.def(v1);
9991 mubuf->operands[0] = Operand(gsvs_ring);
9992 mubuf->operands[1] = Operand(voffset);
9993 mubuf->operands[2] = Operand(0u);
9994 mubuf->offen = true;
9995 mubuf->offset = const_offset;
9996 mubuf->glc = true;
9997 mubuf->slc = true;
9998 mubuf->dlc = args->options->chip_class >= GFX10;
9999 mubuf->barrier = barrier_none;
10000 mubuf->can_reorder = true;
10001
10002 ctx.outputs.mask[i] |= 1 << j;
10003 ctx.outputs.temps[i * 4u + j] = mubuf->definitions[0].getTemp();
10004
10005 bld.insert(std::move(mubuf));
10006
10007 offset++;
10008 }
10009 }
10010
10011 if (args->shader_info->so.num_outputs) {
10012 emit_streamout(&ctx, stream);
10013 bld.reset(ctx.block);
10014 }
10015
10016 if (stream == 0) {
10017 create_vs_exports(&ctx);
10018 ctx.block->kind |= block_kind_export_end;
10019 }
10020
10021 if (!stream_id.isConstant()) {
10022 append_logical_end(ctx.block);
10023
10024 /* branch from then block to endif block */
10025 bld.branch(aco_opcode::p_branch);
10026 add_edge(ctx.block->index, &BB_endif);
10027 ctx.block->kind |= block_kind_uniform;
10028
10029 /* emit else block */
10030 ctx.block = ctx.program->create_and_insert_block();
10031 add_edge(BB_if_idx, ctx.block);
10032 bld.reset(ctx.block);
10033 append_logical_start(ctx.block);
10034
10035 endif_blocks.push(std::move(BB_endif));
10036 }
10037 }
10038
10039 while (!endif_blocks.empty()) {
10040 Block BB_endif = std::move(endif_blocks.top());
10041 endif_blocks.pop();
10042
10043 Block *BB_else = ctx.block;
10044
10045 append_logical_end(BB_else);
10046 /* branch from else block to endif block */
10047 bld.branch(aco_opcode::p_branch);
10048 add_edge(BB_else->index, &BB_endif);
10049 BB_else->kind |= block_kind_uniform;
10050
10051 /** emit endif merge block */
10052 ctx.block = program->insert_block(std::move(BB_endif));
10053 bld.reset(ctx.block);
10054 append_logical_start(ctx.block);
10055 }
10056
10057 program->config->float_mode = program->blocks[0].fp_mode.val;
10058
10059 append_logical_end(ctx.block);
10060 ctx.block->kind |= block_kind_uniform;
10061 bld.sopp(aco_opcode::s_endpgm);
10062
10063 cleanup_cfg(program);
10064 }
10065 }