aco: Introduce new helpers for calculating address offsets.
[mesa.git] / src / amd / compiler / aco_instruction_selection.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 * Copyright © 2018 Google
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <algorithm>
27 #include <array>
28 #include <stack>
29 #include <map>
30
31 #include "ac_shader_util.h"
32 #include "aco_ir.h"
33 #include "aco_builder.h"
34 #include "aco_interface.h"
35 #include "aco_instruction_selection_setup.cpp"
36 #include "util/fast_idiv_by_const.h"
37
38 namespace aco {
39 namespace {
40
41 class loop_info_RAII {
42 isel_context* ctx;
43 unsigned header_idx_old;
44 Block* exit_old;
45 bool divergent_cont_old;
46 bool divergent_branch_old;
47 bool divergent_if_old;
48
49 public:
50 loop_info_RAII(isel_context* ctx, unsigned loop_header_idx, Block* loop_exit)
51 : ctx(ctx),
52 header_idx_old(ctx->cf_info.parent_loop.header_idx), exit_old(ctx->cf_info.parent_loop.exit),
53 divergent_cont_old(ctx->cf_info.parent_loop.has_divergent_continue),
54 divergent_branch_old(ctx->cf_info.parent_loop.has_divergent_branch),
55 divergent_if_old(ctx->cf_info.parent_if.is_divergent)
56 {
57 ctx->cf_info.parent_loop.header_idx = loop_header_idx;
58 ctx->cf_info.parent_loop.exit = loop_exit;
59 ctx->cf_info.parent_loop.has_divergent_continue = false;
60 ctx->cf_info.parent_loop.has_divergent_branch = false;
61 ctx->cf_info.parent_if.is_divergent = false;
62 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
63 }
64
65 ~loop_info_RAII()
66 {
67 ctx->cf_info.parent_loop.header_idx = header_idx_old;
68 ctx->cf_info.parent_loop.exit = exit_old;
69 ctx->cf_info.parent_loop.has_divergent_continue = divergent_cont_old;
70 ctx->cf_info.parent_loop.has_divergent_branch = divergent_branch_old;
71 ctx->cf_info.parent_if.is_divergent = divergent_if_old;
72 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth - 1;
73 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent)
74 ctx->cf_info.exec_potentially_empty_discard = false;
75 }
76 };
77
78 struct if_context {
79 Temp cond;
80
81 bool divergent_old;
82 bool exec_potentially_empty_discard_old;
83 bool exec_potentially_empty_break_old;
84 uint16_t exec_potentially_empty_break_depth_old;
85
86 unsigned BB_if_idx;
87 unsigned invert_idx;
88 bool then_branch_divergent;
89 Block BB_invert;
90 Block BB_endif;
91 };
92
93 static void visit_cf_list(struct isel_context *ctx,
94 struct exec_list *list);
95
96 static void add_logical_edge(unsigned pred_idx, Block *succ)
97 {
98 succ->logical_preds.emplace_back(pred_idx);
99 }
100
101
102 static void add_linear_edge(unsigned pred_idx, Block *succ)
103 {
104 succ->linear_preds.emplace_back(pred_idx);
105 }
106
107 static void add_edge(unsigned pred_idx, Block *succ)
108 {
109 add_logical_edge(pred_idx, succ);
110 add_linear_edge(pred_idx, succ);
111 }
112
113 static void append_logical_start(Block *b)
114 {
115 Builder(NULL, b).pseudo(aco_opcode::p_logical_start);
116 }
117
118 static void append_logical_end(Block *b)
119 {
120 Builder(NULL, b).pseudo(aco_opcode::p_logical_end);
121 }
122
123 Temp get_ssa_temp(struct isel_context *ctx, nir_ssa_def *def)
124 {
125 assert(ctx->allocated[def->index].id());
126 return ctx->allocated[def->index];
127 }
128
129 Temp emit_mbcnt(isel_context *ctx, Definition dst,
130 Operand mask_lo = Operand((uint32_t) -1), Operand mask_hi = Operand((uint32_t) -1))
131 {
132 Builder bld(ctx->program, ctx->block);
133 Definition lo_def = ctx->program->wave_size == 32 ? dst : bld.def(v1);
134 Temp thread_id_lo = bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, lo_def, mask_lo, Operand(0u));
135
136 if (ctx->program->wave_size == 32) {
137 return thread_id_lo;
138 } else {
139 Temp thread_id_hi = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32, dst, mask_hi, thread_id_lo);
140 return thread_id_hi;
141 }
142 }
143
144 Temp emit_wqm(isel_context *ctx, Temp src, Temp dst=Temp(0, s1), bool program_needs_wqm = false)
145 {
146 Builder bld(ctx->program, ctx->block);
147
148 if (!dst.id())
149 dst = bld.tmp(src.regClass());
150
151 assert(src.size() == dst.size());
152
153 if (ctx->stage != fragment_fs) {
154 if (!dst.id())
155 return src;
156
157 bld.copy(Definition(dst), src);
158 return dst;
159 }
160
161 bld.pseudo(aco_opcode::p_wqm, Definition(dst), src);
162 ctx->program->needs_wqm |= program_needs_wqm;
163 return dst;
164 }
165
166 static Temp emit_bpermute(isel_context *ctx, Builder &bld, Temp index, Temp data)
167 {
168 if (index.regClass() == s1)
169 return bld.readlane(bld.def(s1), data, index);
170
171 Temp index_x4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), index);
172
173 /* Currently not implemented on GFX6-7 */
174 assert(ctx->options->chip_class >= GFX8);
175
176 if (ctx->options->chip_class <= GFX9 || ctx->program->wave_size == 32) {
177 return bld.ds(aco_opcode::ds_bpermute_b32, bld.def(v1), index_x4, data);
178 }
179
180 /* GFX10, wave64 mode:
181 * The bpermute instruction is limited to half-wave operation, which means that it can't
182 * properly support subgroup shuffle like older generations (or wave32 mode), so we
183 * emulate it here.
184 */
185 if (!ctx->has_gfx10_wave64_bpermute) {
186 ctx->has_gfx10_wave64_bpermute = true;
187 ctx->program->config->num_shared_vgprs = 8; /* Shared VGPRs are allocated in groups of 8 */
188 ctx->program->vgpr_limit -= 4; /* We allocate 8 shared VGPRs, so we'll have 4 fewer normal VGPRs */
189 }
190
191 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
192 Temp lane_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), lane_id);
193 Temp index_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), index);
194 Temp cmp = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm, vcc), lane_is_hi, index_is_hi);
195
196 return bld.reduction(aco_opcode::p_wave64_bpermute, bld.def(v1), bld.def(s2), bld.def(s1, scc),
197 bld.vcc(cmp), Operand(v2.as_linear()), index_x4, data, gfx10_wave64_bpermute);
198 }
199
200 Temp as_vgpr(isel_context *ctx, Temp val)
201 {
202 if (val.type() == RegType::sgpr) {
203 Builder bld(ctx->program, ctx->block);
204 return bld.copy(bld.def(RegType::vgpr, val.size()), val);
205 }
206 assert(val.type() == RegType::vgpr);
207 return val;
208 }
209
210 //assumes a != 0xffffffff
211 void emit_v_div_u32(isel_context *ctx, Temp dst, Temp a, uint32_t b)
212 {
213 assert(b != 0);
214 Builder bld(ctx->program, ctx->block);
215
216 if (util_is_power_of_two_or_zero(b)) {
217 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)util_logbase2(b)), a);
218 return;
219 }
220
221 util_fast_udiv_info info = util_compute_fast_udiv_info(b, 32, 32);
222
223 assert(info.multiplier <= 0xffffffff);
224
225 bool pre_shift = info.pre_shift != 0;
226 bool increment = info.increment != 0;
227 bool multiply = true;
228 bool post_shift = info.post_shift != 0;
229
230 if (!pre_shift && !increment && !multiply && !post_shift) {
231 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), a);
232 return;
233 }
234
235 Temp pre_shift_dst = a;
236 if (pre_shift) {
237 pre_shift_dst = (increment || multiply || post_shift) ? bld.tmp(v1) : dst;
238 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(pre_shift_dst), Operand((uint32_t)info.pre_shift), a);
239 }
240
241 Temp increment_dst = pre_shift_dst;
242 if (increment) {
243 increment_dst = (post_shift || multiply) ? bld.tmp(v1) : dst;
244 bld.vadd32(Definition(increment_dst), Operand((uint32_t) info.increment), pre_shift_dst);
245 }
246
247 Temp multiply_dst = increment_dst;
248 if (multiply) {
249 multiply_dst = post_shift ? bld.tmp(v1) : dst;
250 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(multiply_dst), increment_dst,
251 bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand((uint32_t)info.multiplier)));
252 }
253
254 if (post_shift) {
255 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)info.post_shift), multiply_dst);
256 }
257 }
258
259 void emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, Temp dst)
260 {
261 Builder bld(ctx->program, ctx->block);
262 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(idx));
263 }
264
265
266 Temp emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, RegClass dst_rc)
267 {
268 /* no need to extract the whole vector */
269 if (src.regClass() == dst_rc) {
270 assert(idx == 0);
271 return src;
272 }
273 assert(src.size() > idx);
274 Builder bld(ctx->program, ctx->block);
275 auto it = ctx->allocated_vec.find(src.id());
276 /* the size check needs to be early because elements other than 0 may be garbage */
277 if (it != ctx->allocated_vec.end() && it->second[0].size() == dst_rc.size()) {
278 if (it->second[idx].regClass() == dst_rc) {
279 return it->second[idx];
280 } else {
281 assert(dst_rc.size() == it->second[idx].regClass().size());
282 assert(dst_rc.type() == RegType::vgpr && it->second[idx].type() == RegType::sgpr);
283 return bld.copy(bld.def(dst_rc), it->second[idx]);
284 }
285 }
286
287 if (src.size() == dst_rc.size()) {
288 assert(idx == 0);
289 return bld.copy(bld.def(dst_rc), src);
290 } else {
291 Temp dst = bld.tmp(dst_rc);
292 emit_extract_vector(ctx, src, idx, dst);
293 return dst;
294 }
295 }
296
297 void emit_split_vector(isel_context* ctx, Temp vec_src, unsigned num_components)
298 {
299 if (num_components == 1)
300 return;
301 if (ctx->allocated_vec.find(vec_src.id()) != ctx->allocated_vec.end())
302 return;
303 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_components)};
304 split->operands[0] = Operand(vec_src);
305 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
306 for (unsigned i = 0; i < num_components; i++) {
307 elems[i] = {ctx->program->allocateId(), RegClass(vec_src.type(), vec_src.size() / num_components)};
308 split->definitions[i] = Definition(elems[i]);
309 }
310 ctx->block->instructions.emplace_back(std::move(split));
311 ctx->allocated_vec.emplace(vec_src.id(), elems);
312 }
313
314 /* This vector expansion uses a mask to determine which elements in the new vector
315 * come from the original vector. The other elements are undefined. */
316 void expand_vector(isel_context* ctx, Temp vec_src, Temp dst, unsigned num_components, unsigned mask)
317 {
318 emit_split_vector(ctx, vec_src, util_bitcount(mask));
319
320 if (vec_src == dst)
321 return;
322
323 Builder bld(ctx->program, ctx->block);
324 if (num_components == 1) {
325 if (dst.type() == RegType::sgpr)
326 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec_src);
327 else
328 bld.copy(Definition(dst), vec_src);
329 return;
330 }
331
332 unsigned component_size = dst.size() / num_components;
333 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
334
335 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
336 vec->definitions[0] = Definition(dst);
337 unsigned k = 0;
338 for (unsigned i = 0; i < num_components; i++) {
339 if (mask & (1 << i)) {
340 Temp src = emit_extract_vector(ctx, vec_src, k++, RegClass(vec_src.type(), component_size));
341 if (dst.type() == RegType::sgpr)
342 src = bld.as_uniform(src);
343 vec->operands[i] = Operand(src);
344 } else {
345 vec->operands[i] = Operand(0u);
346 }
347 elems[i] = vec->operands[i].getTemp();
348 }
349 ctx->block->instructions.emplace_back(std::move(vec));
350 ctx->allocated_vec.emplace(dst.id(), elems);
351 }
352
353 Temp bool_to_vector_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s2))
354 {
355 Builder bld(ctx->program, ctx->block);
356 if (!dst.id())
357 dst = bld.tmp(bld.lm);
358
359 assert(val.regClass() == s1);
360 assert(dst.regClass() == bld.lm);
361
362 return bld.sop2(Builder::s_cselect, Definition(dst), Operand((uint32_t) -1), Operand(0u), bld.scc(val));
363 }
364
365 Temp bool_to_scalar_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s1))
366 {
367 Builder bld(ctx->program, ctx->block);
368 if (!dst.id())
369 dst = bld.tmp(s1);
370
371 assert(val.regClass() == bld.lm);
372 assert(dst.regClass() == s1);
373
374 /* if we're currently in WQM mode, ensure that the source is also computed in WQM */
375 Temp tmp = bld.tmp(s1);
376 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.scc(Definition(tmp)), val, Operand(exec, bld.lm));
377 return emit_wqm(ctx, tmp, dst);
378 }
379
380 Temp get_alu_src(struct isel_context *ctx, nir_alu_src src, unsigned size=1)
381 {
382 if (src.src.ssa->num_components == 1 && src.swizzle[0] == 0 && size == 1)
383 return get_ssa_temp(ctx, src.src.ssa);
384
385 if (src.src.ssa->num_components == size) {
386 bool identity_swizzle = true;
387 for (unsigned i = 0; identity_swizzle && i < size; i++) {
388 if (src.swizzle[i] != i)
389 identity_swizzle = false;
390 }
391 if (identity_swizzle)
392 return get_ssa_temp(ctx, src.src.ssa);
393 }
394
395 Temp vec = get_ssa_temp(ctx, src.src.ssa);
396 unsigned elem_size = vec.size() / src.src.ssa->num_components;
397 assert(elem_size > 0); /* TODO: 8 and 16-bit vectors not supported */
398 assert(vec.size() % elem_size == 0);
399
400 RegClass elem_rc = RegClass(vec.type(), elem_size);
401 if (size == 1) {
402 return emit_extract_vector(ctx, vec, src.swizzle[0], elem_rc);
403 } else {
404 assert(size <= 4);
405 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
406 aco_ptr<Pseudo_instruction> vec_instr{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
407 for (unsigned i = 0; i < size; ++i) {
408 elems[i] = emit_extract_vector(ctx, vec, src.swizzle[i], elem_rc);
409 vec_instr->operands[i] = Operand{elems[i]};
410 }
411 Temp dst{ctx->program->allocateId(), RegClass(vec.type(), elem_size * size)};
412 vec_instr->definitions[0] = Definition(dst);
413 ctx->block->instructions.emplace_back(std::move(vec_instr));
414 ctx->allocated_vec.emplace(dst.id(), elems);
415 return dst;
416 }
417 }
418
419 Temp convert_pointer_to_64_bit(isel_context *ctx, Temp ptr)
420 {
421 if (ptr.size() == 2)
422 return ptr;
423 Builder bld(ctx->program, ctx->block);
424 if (ptr.type() == RegType::vgpr)
425 ptr = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), ptr);
426 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s2),
427 ptr, Operand((unsigned)ctx->options->address32_hi));
428 }
429
430 void emit_sop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst, bool writes_scc)
431 {
432 aco_ptr<SOP2_instruction> sop2{create_instruction<SOP2_instruction>(op, Format::SOP2, 2, writes_scc ? 2 : 1)};
433 sop2->operands[0] = Operand(get_alu_src(ctx, instr->src[0]));
434 sop2->operands[1] = Operand(get_alu_src(ctx, instr->src[1]));
435 sop2->definitions[0] = Definition(dst);
436 if (writes_scc)
437 sop2->definitions[1] = Definition(ctx->program->allocateId(), scc, s1);
438 ctx->block->instructions.emplace_back(std::move(sop2));
439 }
440
441 void emit_vop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
442 bool commutative, bool swap_srcs=false, bool flush_denorms = false)
443 {
444 Builder bld(ctx->program, ctx->block);
445 Temp src0 = get_alu_src(ctx, instr->src[swap_srcs ? 1 : 0]);
446 Temp src1 = get_alu_src(ctx, instr->src[swap_srcs ? 0 : 1]);
447 if (src1.type() == RegType::sgpr) {
448 if (commutative && src0.type() == RegType::vgpr) {
449 Temp t = src0;
450 src0 = src1;
451 src1 = t;
452 } else if (src0.type() == RegType::vgpr &&
453 op != aco_opcode::v_madmk_f32 &&
454 op != aco_opcode::v_madak_f32 &&
455 op != aco_opcode::v_madmk_f16 &&
456 op != aco_opcode::v_madak_f16) {
457 /* If the instruction is not commutative, we emit a VOP3A instruction */
458 bld.vop2_e64(op, Definition(dst), src0, src1);
459 return;
460 } else {
461 src1 = bld.copy(bld.def(RegType::vgpr, src1.size()), src1); //TODO: as_vgpr
462 }
463 }
464
465 if (flush_denorms && ctx->program->chip_class < GFX9) {
466 assert(dst.size() == 1);
467 Temp tmp = bld.vop2(op, bld.def(v1), src0, src1);
468 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
469 } else {
470 bld.vop2(op, Definition(dst), src0, src1);
471 }
472 }
473
474 void emit_vop3a_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
475 bool flush_denorms = false)
476 {
477 Temp src0 = get_alu_src(ctx, instr->src[0]);
478 Temp src1 = get_alu_src(ctx, instr->src[1]);
479 Temp src2 = get_alu_src(ctx, instr->src[2]);
480
481 /* ensure that the instruction has at most 1 sgpr operand
482 * The optimizer will inline constants for us */
483 if (src0.type() == RegType::sgpr && src1.type() == RegType::sgpr)
484 src0 = as_vgpr(ctx, src0);
485 if (src1.type() == RegType::sgpr && src2.type() == RegType::sgpr)
486 src1 = as_vgpr(ctx, src1);
487 if (src2.type() == RegType::sgpr && src0.type() == RegType::sgpr)
488 src2 = as_vgpr(ctx, src2);
489
490 Builder bld(ctx->program, ctx->block);
491 if (flush_denorms && ctx->program->chip_class < GFX9) {
492 assert(dst.size() == 1);
493 Temp tmp = bld.vop3(op, Definition(dst), src0, src1, src2);
494 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
495 } else {
496 bld.vop3(op, Definition(dst), src0, src1, src2);
497 }
498 }
499
500 void emit_vop1_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
501 {
502 Builder bld(ctx->program, ctx->block);
503 bld.vop1(op, Definition(dst), get_alu_src(ctx, instr->src[0]));
504 }
505
506 void emit_vopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
507 {
508 Temp src0 = get_alu_src(ctx, instr->src[0]);
509 Temp src1 = get_alu_src(ctx, instr->src[1]);
510 assert(src0.size() == src1.size());
511
512 aco_ptr<Instruction> vopc;
513 if (src1.type() == RegType::sgpr) {
514 if (src0.type() == RegType::vgpr) {
515 /* to swap the operands, we might also have to change the opcode */
516 switch (op) {
517 case aco_opcode::v_cmp_lt_f32:
518 op = aco_opcode::v_cmp_gt_f32;
519 break;
520 case aco_opcode::v_cmp_ge_f32:
521 op = aco_opcode::v_cmp_le_f32;
522 break;
523 case aco_opcode::v_cmp_lt_i32:
524 op = aco_opcode::v_cmp_gt_i32;
525 break;
526 case aco_opcode::v_cmp_ge_i32:
527 op = aco_opcode::v_cmp_le_i32;
528 break;
529 case aco_opcode::v_cmp_lt_u32:
530 op = aco_opcode::v_cmp_gt_u32;
531 break;
532 case aco_opcode::v_cmp_ge_u32:
533 op = aco_opcode::v_cmp_le_u32;
534 break;
535 case aco_opcode::v_cmp_lt_f64:
536 op = aco_opcode::v_cmp_gt_f64;
537 break;
538 case aco_opcode::v_cmp_ge_f64:
539 op = aco_opcode::v_cmp_le_f64;
540 break;
541 case aco_opcode::v_cmp_lt_i64:
542 op = aco_opcode::v_cmp_gt_i64;
543 break;
544 case aco_opcode::v_cmp_ge_i64:
545 op = aco_opcode::v_cmp_le_i64;
546 break;
547 case aco_opcode::v_cmp_lt_u64:
548 op = aco_opcode::v_cmp_gt_u64;
549 break;
550 case aco_opcode::v_cmp_ge_u64:
551 op = aco_opcode::v_cmp_le_u64;
552 break;
553 default: /* eq and ne are commutative */
554 break;
555 }
556 Temp t = src0;
557 src0 = src1;
558 src1 = t;
559 } else {
560 src1 = as_vgpr(ctx, src1);
561 }
562 }
563
564 Builder bld(ctx->program, ctx->block);
565 bld.vopc(op, bld.hint_vcc(Definition(dst)), src0, src1);
566 }
567
568 void emit_sopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
569 {
570 Temp src0 = get_alu_src(ctx, instr->src[0]);
571 Temp src1 = get_alu_src(ctx, instr->src[1]);
572 Builder bld(ctx->program, ctx->block);
573
574 assert(dst.regClass() == bld.lm);
575 assert(src0.type() == RegType::sgpr);
576 assert(src1.type() == RegType::sgpr);
577 assert(src0.regClass() == src1.regClass());
578
579 /* Emit the SALU comparison instruction */
580 Temp cmp = bld.sopc(op, bld.scc(bld.def(s1)), src0, src1);
581 /* Turn the result into a per-lane bool */
582 bool_to_vector_condition(ctx, cmp, dst);
583 }
584
585 void emit_comparison(isel_context *ctx, nir_alu_instr *instr, Temp dst,
586 aco_opcode v32_op, aco_opcode v64_op, aco_opcode s32_op = aco_opcode::num_opcodes, aco_opcode s64_op = aco_opcode::num_opcodes)
587 {
588 aco_opcode s_op = instr->src[0].src.ssa->bit_size == 64 ? s64_op : s32_op;
589 aco_opcode v_op = instr->src[0].src.ssa->bit_size == 64 ? v64_op : v32_op;
590 bool divergent_vals = ctx->divergent_vals[instr->dest.dest.ssa.index];
591 bool use_valu = s_op == aco_opcode::num_opcodes ||
592 divergent_vals ||
593 ctx->allocated[instr->src[0].src.ssa->index].type() == RegType::vgpr ||
594 ctx->allocated[instr->src[1].src.ssa->index].type() == RegType::vgpr;
595 aco_opcode op = use_valu ? v_op : s_op;
596 assert(op != aco_opcode::num_opcodes);
597 assert(dst.regClass() == ctx->program->lane_mask);
598
599 if (use_valu)
600 emit_vopc_instruction(ctx, instr, op, dst);
601 else
602 emit_sopc_instruction(ctx, instr, op, dst);
603 }
604
605 void emit_boolean_logic(isel_context *ctx, nir_alu_instr *instr, Builder::WaveSpecificOpcode op, Temp dst)
606 {
607 Builder bld(ctx->program, ctx->block);
608 Temp src0 = get_alu_src(ctx, instr->src[0]);
609 Temp src1 = get_alu_src(ctx, instr->src[1]);
610
611 assert(dst.regClass() == bld.lm);
612 assert(src0.regClass() == bld.lm);
613 assert(src1.regClass() == bld.lm);
614
615 bld.sop2(op, Definition(dst), bld.def(s1, scc), src0, src1);
616 }
617
618 void emit_bcsel(isel_context *ctx, nir_alu_instr *instr, Temp dst)
619 {
620 Builder bld(ctx->program, ctx->block);
621 Temp cond = get_alu_src(ctx, instr->src[0]);
622 Temp then = get_alu_src(ctx, instr->src[1]);
623 Temp els = get_alu_src(ctx, instr->src[2]);
624
625 assert(cond.regClass() == bld.lm);
626
627 if (dst.type() == RegType::vgpr) {
628 aco_ptr<Instruction> bcsel;
629 if (dst.size() == 1) {
630 then = as_vgpr(ctx, then);
631 els = as_vgpr(ctx, els);
632
633 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), els, then, cond);
634 } else if (dst.size() == 2) {
635 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
636 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), then);
637 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
638 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), els);
639
640 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, cond);
641 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, cond);
642
643 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
644 } else {
645 fprintf(stderr, "Unimplemented NIR instr bit size: ");
646 nir_print_instr(&instr->instr, stderr);
647 fprintf(stderr, "\n");
648 }
649 return;
650 }
651
652 if (instr->dest.dest.ssa.bit_size == 1) {
653 assert(dst.regClass() == bld.lm);
654 assert(then.regClass() == bld.lm);
655 assert(els.regClass() == bld.lm);
656 }
657
658 if (!ctx->divergent_vals[instr->src[0].src.ssa->index]) { /* uniform condition and values in sgpr */
659 if (dst.regClass() == s1 || dst.regClass() == s2) {
660 assert((then.regClass() == s1 || then.regClass() == s2) && els.regClass() == then.regClass());
661 assert(dst.size() == then.size());
662 aco_opcode op = dst.regClass() == s1 ? aco_opcode::s_cselect_b32 : aco_opcode::s_cselect_b64;
663 bld.sop2(op, Definition(dst), then, els, bld.scc(bool_to_scalar_condition(ctx, cond)));
664 } else {
665 fprintf(stderr, "Unimplemented uniform bcsel bit size: ");
666 nir_print_instr(&instr->instr, stderr);
667 fprintf(stderr, "\n");
668 }
669 return;
670 }
671
672 /* divergent boolean bcsel
673 * this implements bcsel on bools: dst = s0 ? s1 : s2
674 * are going to be: dst = (s0 & s1) | (~s0 & s2) */
675 assert(instr->dest.dest.ssa.bit_size == 1);
676
677 if (cond.id() != then.id())
678 then = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), cond, then);
679
680 if (cond.id() == els.id())
681 bld.sop1(Builder::s_mov, Definition(dst), then);
682 else
683 bld.sop2(Builder::s_or, Definition(dst), bld.def(s1, scc), then,
684 bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), els, cond));
685 }
686
687 void emit_scaled_op(isel_context *ctx, Builder& bld, Definition dst, Temp val,
688 aco_opcode op, uint32_t undo)
689 {
690 /* multiply by 16777216 to handle denormals */
691 Temp is_denormal = bld.vopc(aco_opcode::v_cmp_class_f32, bld.hint_vcc(bld.def(bld.lm)),
692 as_vgpr(ctx, val), bld.copy(bld.def(v1), Operand((1u << 7) | (1u << 4))));
693 Temp scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x4b800000u), val);
694 scaled = bld.vop1(op, bld.def(v1), scaled);
695 scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(undo), scaled);
696
697 Temp not_scaled = bld.vop1(op, bld.def(v1), val);
698
699 bld.vop2(aco_opcode::v_cndmask_b32, dst, not_scaled, scaled, is_denormal);
700 }
701
702 void emit_rcp(isel_context *ctx, Builder& bld, Definition dst, Temp val)
703 {
704 if (ctx->block->fp_mode.denorm32 == 0) {
705 bld.vop1(aco_opcode::v_rcp_f32, dst, val);
706 return;
707 }
708
709 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rcp_f32, 0x4b800000u);
710 }
711
712 void emit_rsq(isel_context *ctx, Builder& bld, Definition dst, Temp val)
713 {
714 if (ctx->block->fp_mode.denorm32 == 0) {
715 bld.vop1(aco_opcode::v_rsq_f32, dst, val);
716 return;
717 }
718
719 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rsq_f32, 0x45800000u);
720 }
721
722 void emit_sqrt(isel_context *ctx, Builder& bld, Definition dst, Temp val)
723 {
724 if (ctx->block->fp_mode.denorm32 == 0) {
725 bld.vop1(aco_opcode::v_sqrt_f32, dst, val);
726 return;
727 }
728
729 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_sqrt_f32, 0x39800000u);
730 }
731
732 void emit_log2(isel_context *ctx, Builder& bld, Definition dst, Temp val)
733 {
734 if (ctx->block->fp_mode.denorm32 == 0) {
735 bld.vop1(aco_opcode::v_log_f32, dst, val);
736 return;
737 }
738
739 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_log_f32, 0xc1c00000u);
740 }
741
742 Temp emit_trunc_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
743 {
744 if (ctx->options->chip_class >= GFX7)
745 return bld.vop1(aco_opcode::v_trunc_f64, Definition(dst), val);
746
747 /* GFX6 doesn't support V_TRUNC_F64, lower it. */
748 /* TODO: create more efficient code! */
749 if (val.type() == RegType::sgpr)
750 val = as_vgpr(ctx, val);
751
752 /* Split the input value. */
753 Temp val_lo = bld.tmp(v1), val_hi = bld.tmp(v1);
754 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
755
756 /* Extract the exponent and compute the unbiased value. */
757 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f64, bld.def(v1), val);
758
759 /* Extract the fractional part. */
760 Temp fract_mask = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x000fffffu));
761 fract_mask = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), fract_mask, exponent);
762
763 Temp fract_mask_lo = bld.tmp(v1), fract_mask_hi = bld.tmp(v1);
764 bld.pseudo(aco_opcode::p_split_vector, Definition(fract_mask_lo), Definition(fract_mask_hi), fract_mask);
765
766 Temp fract_lo = bld.tmp(v1), fract_hi = bld.tmp(v1);
767 Temp tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_lo);
768 fract_lo = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_lo, tmp);
769 tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_hi);
770 fract_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_hi, tmp);
771
772 /* Get the sign bit. */
773 Temp sign = bld.vop2(aco_opcode::v_ashr_i32, bld.def(v1), Operand(31u), val_hi);
774
775 /* Decide the operation to apply depending on the unbiased exponent. */
776 Temp exp_lt0 = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)), exponent, Operand(0u));
777 Temp dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_lo, bld.copy(bld.def(v1), Operand(0u)), exp_lt0);
778 Temp dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_hi, sign, exp_lt0);
779 Temp exp_gt51 = bld.vopc_e64(aco_opcode::v_cmp_gt_i32, bld.def(s2), exponent, Operand(51u));
780 dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_lo, val_lo, exp_gt51);
781 dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_hi, val_hi, exp_gt51);
782
783 return bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst_lo, dst_hi);
784 }
785
786 Temp emit_floor_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
787 {
788 if (ctx->options->chip_class >= GFX7)
789 return bld.vop1(aco_opcode::v_floor_f64, Definition(dst), val);
790
791 /* GFX6 doesn't support V_FLOOR_F64, lower it. */
792 Temp src0 = as_vgpr(ctx, val);
793
794 Temp mask = bld.copy(bld.def(s1), Operand(3u)); /* isnan */
795 Temp min_val = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(-1u), Operand(0x3fefffffu));
796
797 Temp isnan = bld.vopc_e64(aco_opcode::v_cmp_class_f64, bld.hint_vcc(bld.def(bld.lm)), src0, mask);
798 Temp fract = bld.vop1(aco_opcode::v_fract_f64, bld.def(v2), src0);
799 Temp min = bld.vop3(aco_opcode::v_min_f64, bld.def(v2), fract, min_val);
800
801 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
802 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), src0);
803 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
804 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), min);
805
806 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, isnan);
807 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, isnan);
808
809 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), dst0, dst1);
810
811 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src0, v);
812 static_cast<VOP3A_instruction*>(add)->neg[1] = true;
813
814 return add->definitions[0].getTemp();
815 }
816
817 void visit_alu_instr(isel_context *ctx, nir_alu_instr *instr)
818 {
819 if (!instr->dest.dest.is_ssa) {
820 fprintf(stderr, "nir alu dst not in ssa: ");
821 nir_print_instr(&instr->instr, stderr);
822 fprintf(stderr, "\n");
823 abort();
824 }
825 Builder bld(ctx->program, ctx->block);
826 Temp dst = get_ssa_temp(ctx, &instr->dest.dest.ssa);
827 switch(instr->op) {
828 case nir_op_vec2:
829 case nir_op_vec3:
830 case nir_op_vec4: {
831 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
832 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.dest.ssa.num_components, 1)};
833 for (unsigned i = 0; i < instr->dest.dest.ssa.num_components; ++i) {
834 elems[i] = get_alu_src(ctx, instr->src[i]);
835 vec->operands[i] = Operand{elems[i]};
836 }
837 vec->definitions[0] = Definition(dst);
838 ctx->block->instructions.emplace_back(std::move(vec));
839 ctx->allocated_vec.emplace(dst.id(), elems);
840 break;
841 }
842 case nir_op_mov: {
843 Temp src = get_alu_src(ctx, instr->src[0]);
844 aco_ptr<Instruction> mov;
845 if (dst.type() == RegType::sgpr) {
846 if (src.type() == RegType::vgpr)
847 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
848 else if (src.regClass() == s1)
849 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
850 else if (src.regClass() == s2)
851 bld.sop1(aco_opcode::s_mov_b64, Definition(dst), src);
852 else
853 unreachable("wrong src register class for nir_op_imov");
854 } else if (dst.regClass() == v1) {
855 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), src);
856 } else if (dst.regClass() == v2) {
857 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
858 } else {
859 nir_print_instr(&instr->instr, stderr);
860 unreachable("Should have been lowered to scalar.");
861 }
862 break;
863 }
864 case nir_op_inot: {
865 Temp src = get_alu_src(ctx, instr->src[0]);
866 if (instr->dest.dest.ssa.bit_size == 1) {
867 assert(src.regClass() == bld.lm);
868 assert(dst.regClass() == bld.lm);
869 /* Don't use s_andn2 here, this allows the optimizer to make a better decision */
870 Temp tmp = bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), src);
871 bld.sop2(Builder::s_and, Definition(dst), bld.def(s1, scc), tmp, Operand(exec, bld.lm));
872 } else if (dst.regClass() == v1) {
873 emit_vop1_instruction(ctx, instr, aco_opcode::v_not_b32, dst);
874 } else if (dst.type() == RegType::sgpr) {
875 aco_opcode opcode = dst.size() == 1 ? aco_opcode::s_not_b32 : aco_opcode::s_not_b64;
876 bld.sop1(opcode, Definition(dst), bld.def(s1, scc), src);
877 } else {
878 fprintf(stderr, "Unimplemented NIR instr bit size: ");
879 nir_print_instr(&instr->instr, stderr);
880 fprintf(stderr, "\n");
881 }
882 break;
883 }
884 case nir_op_ineg: {
885 Temp src = get_alu_src(ctx, instr->src[0]);
886 if (dst.regClass() == v1) {
887 bld.vsub32(Definition(dst), Operand(0u), Operand(src));
888 } else if (dst.regClass() == s1) {
889 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand((uint32_t) -1), src);
890 } else if (dst.size() == 2) {
891 Temp src0 = bld.tmp(dst.type(), 1);
892 Temp src1 = bld.tmp(dst.type(), 1);
893 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
894
895 if (dst.regClass() == s2) {
896 Temp carry = bld.tmp(s1);
897 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), Operand(0u), src0);
898 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), src1, carry);
899 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
900 } else {
901 Temp lower = bld.tmp(v1);
902 Temp borrow = bld.vsub32(Definition(lower), Operand(0u), src0, true).def(1).getTemp();
903 Temp upper = bld.vsub32(bld.def(v1), Operand(0u), src1, false, borrow);
904 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
905 }
906 } else {
907 fprintf(stderr, "Unimplemented NIR instr bit size: ");
908 nir_print_instr(&instr->instr, stderr);
909 fprintf(stderr, "\n");
910 }
911 break;
912 }
913 case nir_op_iabs: {
914 if (dst.regClass() == s1) {
915 bld.sop1(aco_opcode::s_abs_i32, Definition(dst), bld.def(s1, scc), get_alu_src(ctx, instr->src[0]));
916 } else if (dst.regClass() == v1) {
917 Temp src = get_alu_src(ctx, instr->src[0]);
918 bld.vop2(aco_opcode::v_max_i32, Definition(dst), src, bld.vsub32(bld.def(v1), Operand(0u), src));
919 } else {
920 fprintf(stderr, "Unimplemented NIR instr bit size: ");
921 nir_print_instr(&instr->instr, stderr);
922 fprintf(stderr, "\n");
923 }
924 break;
925 }
926 case nir_op_isign: {
927 Temp src = get_alu_src(ctx, instr->src[0]);
928 if (dst.regClass() == s1) {
929 Temp tmp = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
930 Temp gtz = bld.sopc(aco_opcode::s_cmp_gt_i32, bld.def(s1, scc), src, Operand(0u));
931 bld.sop2(aco_opcode::s_add_i32, Definition(dst), bld.def(s1, scc), gtz, tmp);
932 } else if (dst.regClass() == s2) {
933 Temp neg = bld.sop2(aco_opcode::s_ashr_i64, bld.def(s2), bld.def(s1, scc), src, Operand(63u));
934 Temp neqz;
935 if (ctx->program->chip_class >= GFX8)
936 neqz = bld.sopc(aco_opcode::s_cmp_lg_u64, bld.def(s1, scc), src, Operand(0u));
937 else
938 neqz = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), src, Operand(0u)).def(1).getTemp();
939 /* SCC gets zero-extended to 64 bit */
940 bld.sop2(aco_opcode::s_or_b64, Definition(dst), bld.def(s1, scc), neg, bld.scc(neqz));
941 } else if (dst.regClass() == v1) {
942 Temp tmp = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
943 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
944 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(1u), tmp, gtz);
945 } else if (dst.regClass() == v2) {
946 Temp upper = emit_extract_vector(ctx, src, 1, v1);
947 Temp neg = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), upper);
948 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
949 Temp lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(1u), neg, gtz);
950 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), neg, gtz);
951 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
952 } else {
953 fprintf(stderr, "Unimplemented NIR instr bit size: ");
954 nir_print_instr(&instr->instr, stderr);
955 fprintf(stderr, "\n");
956 }
957 break;
958 }
959 case nir_op_imax: {
960 if (dst.regClass() == v1) {
961 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_i32, dst, true);
962 } else if (dst.regClass() == s1) {
963 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_i32, dst, true);
964 } else {
965 fprintf(stderr, "Unimplemented NIR instr bit size: ");
966 nir_print_instr(&instr->instr, stderr);
967 fprintf(stderr, "\n");
968 }
969 break;
970 }
971 case nir_op_umax: {
972 if (dst.regClass() == v1) {
973 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_u32, dst, true);
974 } else if (dst.regClass() == s1) {
975 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_u32, dst, true);
976 } else {
977 fprintf(stderr, "Unimplemented NIR instr bit size: ");
978 nir_print_instr(&instr->instr, stderr);
979 fprintf(stderr, "\n");
980 }
981 break;
982 }
983 case nir_op_imin: {
984 if (dst.regClass() == v1) {
985 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_i32, dst, true);
986 } else if (dst.regClass() == s1) {
987 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_i32, dst, true);
988 } else {
989 fprintf(stderr, "Unimplemented NIR instr bit size: ");
990 nir_print_instr(&instr->instr, stderr);
991 fprintf(stderr, "\n");
992 }
993 break;
994 }
995 case nir_op_umin: {
996 if (dst.regClass() == v1) {
997 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_u32, dst, true);
998 } else if (dst.regClass() == s1) {
999 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_u32, dst, true);
1000 } else {
1001 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1002 nir_print_instr(&instr->instr, stderr);
1003 fprintf(stderr, "\n");
1004 }
1005 break;
1006 }
1007 case nir_op_ior: {
1008 if (instr->dest.dest.ssa.bit_size == 1) {
1009 emit_boolean_logic(ctx, instr, Builder::s_or, dst);
1010 } else if (dst.regClass() == v1) {
1011 emit_vop2_instruction(ctx, instr, aco_opcode::v_or_b32, dst, true);
1012 } else if (dst.regClass() == s1) {
1013 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b32, dst, true);
1014 } else if (dst.regClass() == s2) {
1015 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b64, dst, true);
1016 } else {
1017 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1018 nir_print_instr(&instr->instr, stderr);
1019 fprintf(stderr, "\n");
1020 }
1021 break;
1022 }
1023 case nir_op_iand: {
1024 if (instr->dest.dest.ssa.bit_size == 1) {
1025 emit_boolean_logic(ctx, instr, Builder::s_and, dst);
1026 } else if (dst.regClass() == v1) {
1027 emit_vop2_instruction(ctx, instr, aco_opcode::v_and_b32, dst, true);
1028 } else if (dst.regClass() == s1) {
1029 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b32, dst, true);
1030 } else if (dst.regClass() == s2) {
1031 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b64, dst, true);
1032 } else {
1033 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1034 nir_print_instr(&instr->instr, stderr);
1035 fprintf(stderr, "\n");
1036 }
1037 break;
1038 }
1039 case nir_op_ixor: {
1040 if (instr->dest.dest.ssa.bit_size == 1) {
1041 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
1042 } else if (dst.regClass() == v1) {
1043 emit_vop2_instruction(ctx, instr, aco_opcode::v_xor_b32, dst, true);
1044 } else if (dst.regClass() == s1) {
1045 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b32, dst, true);
1046 } else if (dst.regClass() == s2) {
1047 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b64, dst, true);
1048 } else {
1049 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1050 nir_print_instr(&instr->instr, stderr);
1051 fprintf(stderr, "\n");
1052 }
1053 break;
1054 }
1055 case nir_op_ushr: {
1056 if (dst.regClass() == v1) {
1057 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshrrev_b32, dst, false, true);
1058 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1059 bld.vop3(aco_opcode::v_lshrrev_b64, Definition(dst),
1060 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1061 } else if (dst.regClass() == v2) {
1062 bld.vop3(aco_opcode::v_lshr_b64, Definition(dst),
1063 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1064 } else if (dst.regClass() == s2) {
1065 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b64, dst, true);
1066 } else if (dst.regClass() == s1) {
1067 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b32, dst, true);
1068 } else {
1069 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1070 nir_print_instr(&instr->instr, stderr);
1071 fprintf(stderr, "\n");
1072 }
1073 break;
1074 }
1075 case nir_op_ishl: {
1076 if (dst.regClass() == v1) {
1077 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshlrev_b32, dst, false, true);
1078 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1079 bld.vop3(aco_opcode::v_lshlrev_b64, Definition(dst),
1080 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1081 } else if (dst.regClass() == v2) {
1082 bld.vop3(aco_opcode::v_lshl_b64, Definition(dst),
1083 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1084 } else if (dst.regClass() == s1) {
1085 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b32, dst, true);
1086 } else if (dst.regClass() == s2) {
1087 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b64, dst, true);
1088 } else {
1089 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1090 nir_print_instr(&instr->instr, stderr);
1091 fprintf(stderr, "\n");
1092 }
1093 break;
1094 }
1095 case nir_op_ishr: {
1096 if (dst.regClass() == v1) {
1097 emit_vop2_instruction(ctx, instr, aco_opcode::v_ashrrev_i32, dst, false, true);
1098 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1099 bld.vop3(aco_opcode::v_ashrrev_i64, Definition(dst),
1100 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1101 } else if (dst.regClass() == v2) {
1102 bld.vop3(aco_opcode::v_ashr_i64, Definition(dst),
1103 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1104 } else if (dst.regClass() == s1) {
1105 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i32, dst, true);
1106 } else if (dst.regClass() == s2) {
1107 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i64, dst, true);
1108 } else {
1109 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1110 nir_print_instr(&instr->instr, stderr);
1111 fprintf(stderr, "\n");
1112 }
1113 break;
1114 }
1115 case nir_op_find_lsb: {
1116 Temp src = get_alu_src(ctx, instr->src[0]);
1117 if (src.regClass() == s1) {
1118 bld.sop1(aco_opcode::s_ff1_i32_b32, Definition(dst), src);
1119 } else if (src.regClass() == v1) {
1120 emit_vop1_instruction(ctx, instr, aco_opcode::v_ffbl_b32, dst);
1121 } else if (src.regClass() == s2) {
1122 bld.sop1(aco_opcode::s_ff1_i32_b64, Definition(dst), src);
1123 } else {
1124 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1125 nir_print_instr(&instr->instr, stderr);
1126 fprintf(stderr, "\n");
1127 }
1128 break;
1129 }
1130 case nir_op_ufind_msb:
1131 case nir_op_ifind_msb: {
1132 Temp src = get_alu_src(ctx, instr->src[0]);
1133 if (src.regClass() == s1 || src.regClass() == s2) {
1134 aco_opcode op = src.regClass() == s2 ?
1135 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b64 : aco_opcode::s_flbit_i32_i64) :
1136 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b32 : aco_opcode::s_flbit_i32);
1137 Temp msb_rev = bld.sop1(op, bld.def(s1), src);
1138
1139 Builder::Result sub = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc),
1140 Operand(src.size() * 32u - 1u), msb_rev);
1141 Temp msb = sub.def(0).getTemp();
1142 Temp carry = sub.def(1).getTemp();
1143
1144 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t)-1), msb, bld.scc(carry));
1145 } else if (src.regClass() == v1) {
1146 aco_opcode op = instr->op == nir_op_ufind_msb ? aco_opcode::v_ffbh_u32 : aco_opcode::v_ffbh_i32;
1147 Temp msb_rev = bld.tmp(v1);
1148 emit_vop1_instruction(ctx, instr, op, msb_rev);
1149 Temp msb = bld.tmp(v1);
1150 Temp carry = bld.vsub32(Definition(msb), Operand(31u), Operand(msb_rev), true).def(1).getTemp();
1151 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), msb, Operand((uint32_t)-1), carry);
1152 } else {
1153 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1154 nir_print_instr(&instr->instr, stderr);
1155 fprintf(stderr, "\n");
1156 }
1157 break;
1158 }
1159 case nir_op_bitfield_reverse: {
1160 if (dst.regClass() == s1) {
1161 bld.sop1(aco_opcode::s_brev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1162 } else if (dst.regClass() == v1) {
1163 bld.vop1(aco_opcode::v_bfrev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1164 } else {
1165 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1166 nir_print_instr(&instr->instr, stderr);
1167 fprintf(stderr, "\n");
1168 }
1169 break;
1170 }
1171 case nir_op_iadd: {
1172 if (dst.regClass() == s1) {
1173 emit_sop2_instruction(ctx, instr, aco_opcode::s_add_u32, dst, true);
1174 break;
1175 }
1176
1177 Temp src0 = get_alu_src(ctx, instr->src[0]);
1178 Temp src1 = get_alu_src(ctx, instr->src[1]);
1179 if (dst.regClass() == v1) {
1180 bld.vadd32(Definition(dst), Operand(src0), Operand(src1));
1181 break;
1182 }
1183
1184 assert(src0.size() == 2 && src1.size() == 2);
1185 Temp src00 = bld.tmp(src0.type(), 1);
1186 Temp src01 = bld.tmp(dst.type(), 1);
1187 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1188 Temp src10 = bld.tmp(src1.type(), 1);
1189 Temp src11 = bld.tmp(dst.type(), 1);
1190 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1191
1192 if (dst.regClass() == s2) {
1193 Temp carry = bld.tmp(s1);
1194 Temp dst0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1195 Temp dst1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), src01, src11, bld.scc(carry));
1196 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1197 } else if (dst.regClass() == v2) {
1198 Temp dst0 = bld.tmp(v1);
1199 Temp carry = bld.vadd32(Definition(dst0), src00, src10, true).def(1).getTemp();
1200 Temp dst1 = bld.vadd32(bld.def(v1), src01, src11, false, carry);
1201 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1202 } else {
1203 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1204 nir_print_instr(&instr->instr, stderr);
1205 fprintf(stderr, "\n");
1206 }
1207 break;
1208 }
1209 case nir_op_uadd_sat: {
1210 Temp src0 = get_alu_src(ctx, instr->src[0]);
1211 Temp src1 = get_alu_src(ctx, instr->src[1]);
1212 if (dst.regClass() == s1) {
1213 Temp tmp = bld.tmp(s1), carry = bld.tmp(s1);
1214 bld.sop2(aco_opcode::s_add_u32, Definition(tmp), bld.scc(Definition(carry)),
1215 src0, src1);
1216 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t) -1), tmp, bld.scc(carry));
1217 } else if (dst.regClass() == v1) {
1218 if (ctx->options->chip_class >= GFX9) {
1219 aco_ptr<VOP3A_instruction> add{create_instruction<VOP3A_instruction>(aco_opcode::v_add_u32, asVOP3(Format::VOP2), 2, 1)};
1220 add->operands[0] = Operand(src0);
1221 add->operands[1] = Operand(src1);
1222 add->definitions[0] = Definition(dst);
1223 add->clamp = 1;
1224 ctx->block->instructions.emplace_back(std::move(add));
1225 } else {
1226 if (src1.regClass() != v1)
1227 std::swap(src0, src1);
1228 assert(src1.regClass() == v1);
1229 Temp tmp = bld.tmp(v1);
1230 Temp carry = bld.vadd32(Definition(tmp), src0, src1, true).def(1).getTemp();
1231 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), tmp, Operand((uint32_t) -1), carry);
1232 }
1233 } else {
1234 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1235 nir_print_instr(&instr->instr, stderr);
1236 fprintf(stderr, "\n");
1237 }
1238 break;
1239 }
1240 case nir_op_uadd_carry: {
1241 Temp src0 = get_alu_src(ctx, instr->src[0]);
1242 Temp src1 = get_alu_src(ctx, instr->src[1]);
1243 if (dst.regClass() == s1) {
1244 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1245 break;
1246 }
1247 if (dst.regClass() == v1) {
1248 Temp carry = bld.vadd32(bld.def(v1), src0, src1, true).def(1).getTemp();
1249 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), carry);
1250 break;
1251 }
1252
1253 Temp src00 = bld.tmp(src0.type(), 1);
1254 Temp src01 = bld.tmp(dst.type(), 1);
1255 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1256 Temp src10 = bld.tmp(src1.type(), 1);
1257 Temp src11 = bld.tmp(dst.type(), 1);
1258 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1259 if (dst.regClass() == s2) {
1260 Temp carry = bld.tmp(s1);
1261 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1262 carry = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(carry)).def(1).getTemp();
1263 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1264 } else if (dst.regClass() == v2) {
1265 Temp carry = bld.vadd32(bld.def(v1), src00, src10, true).def(1).getTemp();
1266 carry = bld.vadd32(bld.def(v1), src01, src11, true, carry).def(1).getTemp();
1267 carry = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), carry);
1268 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1269 } else {
1270 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1271 nir_print_instr(&instr->instr, stderr);
1272 fprintf(stderr, "\n");
1273 }
1274 break;
1275 }
1276 case nir_op_isub: {
1277 if (dst.regClass() == s1) {
1278 emit_sop2_instruction(ctx, instr, aco_opcode::s_sub_i32, dst, true);
1279 break;
1280 }
1281
1282 Temp src0 = get_alu_src(ctx, instr->src[0]);
1283 Temp src1 = get_alu_src(ctx, instr->src[1]);
1284 if (dst.regClass() == v1) {
1285 bld.vsub32(Definition(dst), src0, src1);
1286 break;
1287 }
1288
1289 Temp src00 = bld.tmp(src0.type(), 1);
1290 Temp src01 = bld.tmp(dst.type(), 1);
1291 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1292 Temp src10 = bld.tmp(src1.type(), 1);
1293 Temp src11 = bld.tmp(dst.type(), 1);
1294 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1295 if (dst.regClass() == s2) {
1296 Temp carry = bld.tmp(s1);
1297 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1298 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), src01, src11, carry);
1299 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1300 } else if (dst.regClass() == v2) {
1301 Temp lower = bld.tmp(v1);
1302 Temp borrow = bld.vsub32(Definition(lower), src00, src10, true).def(1).getTemp();
1303 Temp upper = bld.vsub32(bld.def(v1), src01, src11, false, borrow);
1304 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1305 } else {
1306 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1307 nir_print_instr(&instr->instr, stderr);
1308 fprintf(stderr, "\n");
1309 }
1310 break;
1311 }
1312 case nir_op_usub_borrow: {
1313 Temp src0 = get_alu_src(ctx, instr->src[0]);
1314 Temp src1 = get_alu_src(ctx, instr->src[1]);
1315 if (dst.regClass() == s1) {
1316 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1317 break;
1318 } else if (dst.regClass() == v1) {
1319 Temp borrow = bld.vsub32(bld.def(v1), src0, src1, true).def(1).getTemp();
1320 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), borrow);
1321 break;
1322 }
1323
1324 Temp src00 = bld.tmp(src0.type(), 1);
1325 Temp src01 = bld.tmp(dst.type(), 1);
1326 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1327 Temp src10 = bld.tmp(src1.type(), 1);
1328 Temp src11 = bld.tmp(dst.type(), 1);
1329 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1330 if (dst.regClass() == s2) {
1331 Temp borrow = bld.tmp(s1);
1332 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), src00, src10);
1333 borrow = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(borrow)).def(1).getTemp();
1334 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1335 } else if (dst.regClass() == v2) {
1336 Temp borrow = bld.vsub32(bld.def(v1), src00, src10, true).def(1).getTemp();
1337 borrow = bld.vsub32(bld.def(v1), src01, src11, true, Operand(borrow)).def(1).getTemp();
1338 borrow = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), borrow);
1339 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1340 } else {
1341 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1342 nir_print_instr(&instr->instr, stderr);
1343 fprintf(stderr, "\n");
1344 }
1345 break;
1346 }
1347 case nir_op_imul: {
1348 if (dst.regClass() == v1) {
1349 bld.vop3(aco_opcode::v_mul_lo_u32, Definition(dst),
1350 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1351 } else if (dst.regClass() == s1) {
1352 emit_sop2_instruction(ctx, instr, aco_opcode::s_mul_i32, dst, false);
1353 } else {
1354 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1355 nir_print_instr(&instr->instr, stderr);
1356 fprintf(stderr, "\n");
1357 }
1358 break;
1359 }
1360 case nir_op_umul_high: {
1361 if (dst.regClass() == v1) {
1362 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1363 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1364 bld.sop2(aco_opcode::s_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1365 } else if (dst.regClass() == s1) {
1366 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1367 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1368 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1369 } else {
1370 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1371 nir_print_instr(&instr->instr, stderr);
1372 fprintf(stderr, "\n");
1373 }
1374 break;
1375 }
1376 case nir_op_imul_high: {
1377 if (dst.regClass() == v1) {
1378 bld.vop3(aco_opcode::v_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1379 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1380 bld.sop2(aco_opcode::s_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1381 } else if (dst.regClass() == s1) {
1382 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1383 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1384 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1385 } else {
1386 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1387 nir_print_instr(&instr->instr, stderr);
1388 fprintf(stderr, "\n");
1389 }
1390 break;
1391 }
1392 case nir_op_fmul: {
1393 if (dst.size() == 1) {
1394 emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f32, dst, true);
1395 } else if (dst.size() == 2) {
1396 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), get_alu_src(ctx, instr->src[0]),
1397 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1398 } else {
1399 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1400 nir_print_instr(&instr->instr, stderr);
1401 fprintf(stderr, "\n");
1402 }
1403 break;
1404 }
1405 case nir_op_fadd: {
1406 if (dst.size() == 1) {
1407 emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f32, dst, true);
1408 } else if (dst.size() == 2) {
1409 bld.vop3(aco_opcode::v_add_f64, Definition(dst), get_alu_src(ctx, instr->src[0]),
1410 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1411 } else {
1412 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1413 nir_print_instr(&instr->instr, stderr);
1414 fprintf(stderr, "\n");
1415 }
1416 break;
1417 }
1418 case nir_op_fsub: {
1419 Temp src0 = get_alu_src(ctx, instr->src[0]);
1420 Temp src1 = get_alu_src(ctx, instr->src[1]);
1421 if (dst.size() == 1) {
1422 if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
1423 emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f32, dst, false);
1424 else
1425 emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f32, dst, true);
1426 } else if (dst.size() == 2) {
1427 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst),
1428 get_alu_src(ctx, instr->src[0]),
1429 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1430 VOP3A_instruction* sub = static_cast<VOP3A_instruction*>(add);
1431 sub->neg[1] = true;
1432 } else {
1433 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1434 nir_print_instr(&instr->instr, stderr);
1435 fprintf(stderr, "\n");
1436 }
1437 break;
1438 }
1439 case nir_op_fmax: {
1440 if (dst.size() == 1) {
1441 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1442 } else if (dst.size() == 2) {
1443 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1444 Temp tmp = bld.vop3(aco_opcode::v_max_f64, bld.def(v2),
1445 get_alu_src(ctx, instr->src[0]),
1446 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1447 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1448 } else {
1449 bld.vop3(aco_opcode::v_max_f64, Definition(dst),
1450 get_alu_src(ctx, instr->src[0]),
1451 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1452 }
1453 } else {
1454 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1455 nir_print_instr(&instr->instr, stderr);
1456 fprintf(stderr, "\n");
1457 }
1458 break;
1459 }
1460 case nir_op_fmin: {
1461 if (dst.size() == 1) {
1462 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1463 } else if (dst.size() == 2) {
1464 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1465 Temp tmp = bld.vop3(aco_opcode::v_min_f64, bld.def(v2),
1466 get_alu_src(ctx, instr->src[0]),
1467 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1468 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1469 } else {
1470 bld.vop3(aco_opcode::v_min_f64, Definition(dst),
1471 get_alu_src(ctx, instr->src[0]),
1472 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1473 }
1474 } else {
1475 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1476 nir_print_instr(&instr->instr, stderr);
1477 fprintf(stderr, "\n");
1478 }
1479 break;
1480 }
1481 case nir_op_fmax3: {
1482 if (dst.size() == 1) {
1483 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1484 } else {
1485 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1486 nir_print_instr(&instr->instr, stderr);
1487 fprintf(stderr, "\n");
1488 }
1489 break;
1490 }
1491 case nir_op_fmin3: {
1492 if (dst.size() == 1) {
1493 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1494 } else {
1495 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1496 nir_print_instr(&instr->instr, stderr);
1497 fprintf(stderr, "\n");
1498 }
1499 break;
1500 }
1501 case nir_op_fmed3: {
1502 if (dst.size() == 1) {
1503 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1504 } else {
1505 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1506 nir_print_instr(&instr->instr, stderr);
1507 fprintf(stderr, "\n");
1508 }
1509 break;
1510 }
1511 case nir_op_umax3: {
1512 if (dst.size() == 1) {
1513 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_u32, dst);
1514 } else {
1515 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1516 nir_print_instr(&instr->instr, stderr);
1517 fprintf(stderr, "\n");
1518 }
1519 break;
1520 }
1521 case nir_op_umin3: {
1522 if (dst.size() == 1) {
1523 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_u32, dst);
1524 } else {
1525 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1526 nir_print_instr(&instr->instr, stderr);
1527 fprintf(stderr, "\n");
1528 }
1529 break;
1530 }
1531 case nir_op_umed3: {
1532 if (dst.size() == 1) {
1533 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_u32, dst);
1534 } else {
1535 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1536 nir_print_instr(&instr->instr, stderr);
1537 fprintf(stderr, "\n");
1538 }
1539 break;
1540 }
1541 case nir_op_imax3: {
1542 if (dst.size() == 1) {
1543 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_i32, dst);
1544 } else {
1545 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1546 nir_print_instr(&instr->instr, stderr);
1547 fprintf(stderr, "\n");
1548 }
1549 break;
1550 }
1551 case nir_op_imin3: {
1552 if (dst.size() == 1) {
1553 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_i32, dst);
1554 } else {
1555 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1556 nir_print_instr(&instr->instr, stderr);
1557 fprintf(stderr, "\n");
1558 }
1559 break;
1560 }
1561 case nir_op_imed3: {
1562 if (dst.size() == 1) {
1563 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_i32, dst);
1564 } else {
1565 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1566 nir_print_instr(&instr->instr, stderr);
1567 fprintf(stderr, "\n");
1568 }
1569 break;
1570 }
1571 case nir_op_cube_face_coord: {
1572 Temp in = get_alu_src(ctx, instr->src[0], 3);
1573 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1574 emit_extract_vector(ctx, in, 1, v1),
1575 emit_extract_vector(ctx, in, 2, v1) };
1576 Temp ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), src[0], src[1], src[2]);
1577 ma = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), ma);
1578 Temp sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), src[0], src[1], src[2]);
1579 Temp tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), src[0], src[1], src[2]);
1580 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, ma, Operand(0x3f000000u/*0.5*/));
1581 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, ma, Operand(0x3f000000u/*0.5*/));
1582 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), sc, tc);
1583 break;
1584 }
1585 case nir_op_cube_face_index: {
1586 Temp in = get_alu_src(ctx, instr->src[0], 3);
1587 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1588 emit_extract_vector(ctx, in, 1, v1),
1589 emit_extract_vector(ctx, in, 2, v1) };
1590 bld.vop3(aco_opcode::v_cubeid_f32, Definition(dst), src[0], src[1], src[2]);
1591 break;
1592 }
1593 case nir_op_bcsel: {
1594 emit_bcsel(ctx, instr, dst);
1595 break;
1596 }
1597 case nir_op_frsq: {
1598 if (dst.size() == 1) {
1599 emit_rsq(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1600 } else if (dst.size() == 2) {
1601 emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f64, dst);
1602 } else {
1603 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1604 nir_print_instr(&instr->instr, stderr);
1605 fprintf(stderr, "\n");
1606 }
1607 break;
1608 }
1609 case nir_op_fneg: {
1610 Temp src = get_alu_src(ctx, instr->src[0]);
1611 if (dst.size() == 1) {
1612 if (ctx->block->fp_mode.must_flush_denorms32)
1613 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1614 bld.vop2(aco_opcode::v_xor_b32, Definition(dst), Operand(0x80000000u), as_vgpr(ctx, src));
1615 } else if (dst.size() == 2) {
1616 if (ctx->block->fp_mode.must_flush_denorms16_64)
1617 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1618 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1619 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1620 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), Operand(0x80000000u), upper);
1621 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1622 } else {
1623 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1624 nir_print_instr(&instr->instr, stderr);
1625 fprintf(stderr, "\n");
1626 }
1627 break;
1628 }
1629 case nir_op_fabs: {
1630 Temp src = get_alu_src(ctx, instr->src[0]);
1631 if (dst.size() == 1) {
1632 if (ctx->block->fp_mode.must_flush_denorms32)
1633 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1634 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0x7FFFFFFFu), as_vgpr(ctx, src));
1635 } else if (dst.size() == 2) {
1636 if (ctx->block->fp_mode.must_flush_denorms16_64)
1637 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1638 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1639 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1640 upper = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7FFFFFFFu), upper);
1641 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1642 } else {
1643 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1644 nir_print_instr(&instr->instr, stderr);
1645 fprintf(stderr, "\n");
1646 }
1647 break;
1648 }
1649 case nir_op_fsat: {
1650 Temp src = get_alu_src(ctx, instr->src[0]);
1651 if (dst.size() == 1) {
1652 bld.vop3(aco_opcode::v_med3_f32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
1653 /* apparently, it is not necessary to flush denorms if this instruction is used with these operands */
1654 // TODO: confirm that this holds under any circumstances
1655 } else if (dst.size() == 2) {
1656 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src, Operand(0u));
1657 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(add);
1658 vop3->clamp = true;
1659 } else {
1660 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1661 nir_print_instr(&instr->instr, stderr);
1662 fprintf(stderr, "\n");
1663 }
1664 break;
1665 }
1666 case nir_op_flog2: {
1667 if (dst.size() == 1) {
1668 emit_log2(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1669 } else {
1670 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1671 nir_print_instr(&instr->instr, stderr);
1672 fprintf(stderr, "\n");
1673 }
1674 break;
1675 }
1676 case nir_op_frcp: {
1677 if (dst.size() == 1) {
1678 emit_rcp(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1679 } else if (dst.size() == 2) {
1680 emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f64, dst);
1681 } else {
1682 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1683 nir_print_instr(&instr->instr, stderr);
1684 fprintf(stderr, "\n");
1685 }
1686 break;
1687 }
1688 case nir_op_fexp2: {
1689 if (dst.size() == 1) {
1690 emit_vop1_instruction(ctx, instr, aco_opcode::v_exp_f32, dst);
1691 } else {
1692 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1693 nir_print_instr(&instr->instr, stderr);
1694 fprintf(stderr, "\n");
1695 }
1696 break;
1697 }
1698 case nir_op_fsqrt: {
1699 if (dst.size() == 1) {
1700 emit_sqrt(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1701 } else if (dst.size() == 2) {
1702 emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f64, dst);
1703 } else {
1704 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1705 nir_print_instr(&instr->instr, stderr);
1706 fprintf(stderr, "\n");
1707 }
1708 break;
1709 }
1710 case nir_op_ffract: {
1711 if (dst.size() == 1) {
1712 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f32, dst);
1713 } else if (dst.size() == 2) {
1714 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f64, dst);
1715 } else {
1716 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1717 nir_print_instr(&instr->instr, stderr);
1718 fprintf(stderr, "\n");
1719 }
1720 break;
1721 }
1722 case nir_op_ffloor: {
1723 if (dst.size() == 1) {
1724 emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f32, dst);
1725 } else if (dst.size() == 2) {
1726 emit_floor_f64(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1727 } else {
1728 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1729 nir_print_instr(&instr->instr, stderr);
1730 fprintf(stderr, "\n");
1731 }
1732 break;
1733 }
1734 case nir_op_fceil: {
1735 if (dst.size() == 1) {
1736 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f32, dst);
1737 } else if (dst.size() == 2) {
1738 if (ctx->options->chip_class >= GFX7) {
1739 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f64, dst);
1740 } else {
1741 /* GFX6 doesn't support V_CEIL_F64, lower it. */
1742 Temp src0 = get_alu_src(ctx, instr->src[0]);
1743
1744 /* trunc = trunc(src0)
1745 * if (src0 > 0.0 && src0 != trunc)
1746 * trunc += 1.0
1747 */
1748 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src0);
1749 Temp tmp0 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.def(bld.lm), src0, Operand(0u));
1750 Temp tmp1 = bld.vopc(aco_opcode::v_cmp_lg_f64, bld.hint_vcc(bld.def(bld.lm)), src0, trunc);
1751 Temp cond = bld.sop2(aco_opcode::s_and_b64, bld.hint_vcc(bld.def(s2)), bld.def(s1, scc), tmp0, tmp1);
1752 Temp add = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), bld.copy(bld.def(v1), Operand(0u)), bld.copy(bld.def(v1), Operand(0x3ff00000u)), cond);
1753 add = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), bld.copy(bld.def(v1), Operand(0u)), add);
1754 bld.vop3(aco_opcode::v_add_f64, Definition(dst), trunc, add);
1755 }
1756 } else {
1757 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1758 nir_print_instr(&instr->instr, stderr);
1759 fprintf(stderr, "\n");
1760 }
1761 break;
1762 }
1763 case nir_op_ftrunc: {
1764 if (dst.size() == 1) {
1765 emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f32, dst);
1766 } else if (dst.size() == 2) {
1767 emit_trunc_f64(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1768 } else {
1769 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1770 nir_print_instr(&instr->instr, stderr);
1771 fprintf(stderr, "\n");
1772 }
1773 break;
1774 }
1775 case nir_op_fround_even: {
1776 if (dst.size() == 1) {
1777 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f32, dst);
1778 } else if (dst.size() == 2) {
1779 if (ctx->options->chip_class >= GFX7) {
1780 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f64, dst);
1781 } else {
1782 /* GFX6 doesn't support V_RNDNE_F64, lower it. */
1783 Temp src0 = get_alu_src(ctx, instr->src[0]);
1784
1785 Temp src0_lo = bld.tmp(v1), src0_hi = bld.tmp(v1);
1786 bld.pseudo(aco_opcode::p_split_vector, Definition(src0_lo), Definition(src0_hi), src0);
1787
1788 Temp bitmask = bld.sop1(aco_opcode::s_brev_b32, bld.def(s1), bld.copy(bld.def(s1), Operand(-2u)));
1789 Temp bfi = bld.vop3(aco_opcode::v_bfi_b32, bld.def(v1), bitmask, bld.copy(bld.def(v1), Operand(0x43300000u)), as_vgpr(ctx, src0_hi));
1790 Temp tmp = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), src0, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
1791 Instruction *sub = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), tmp, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
1792 static_cast<VOP3A_instruction*>(sub)->neg[1] = true;
1793 tmp = sub->definitions[0].getTemp();
1794
1795 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x432fffffu));
1796 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.hint_vcc(bld.def(bld.lm)), src0, v);
1797 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
1798 Temp cond = vop3->definitions[0].getTemp();
1799
1800 Temp tmp_lo = bld.tmp(v1), tmp_hi = bld.tmp(v1);
1801 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp_lo), Definition(tmp_hi), tmp);
1802 Temp dst0 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_lo, as_vgpr(ctx, src0_lo), cond);
1803 Temp dst1 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_hi, as_vgpr(ctx, src0_hi), cond);
1804
1805 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1806 }
1807 } else {
1808 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1809 nir_print_instr(&instr->instr, stderr);
1810 fprintf(stderr, "\n");
1811 }
1812 break;
1813 }
1814 case nir_op_fsin:
1815 case nir_op_fcos: {
1816 Temp src = get_alu_src(ctx, instr->src[0]);
1817 aco_ptr<Instruction> norm;
1818 if (dst.size() == 1) {
1819 Temp half_pi = bld.copy(bld.def(s1), Operand(0x3e22f983u));
1820 Temp tmp = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), half_pi, as_vgpr(ctx, src));
1821
1822 /* before GFX9, v_sin_f32 and v_cos_f32 had a valid input domain of [-256, +256] */
1823 if (ctx->options->chip_class < GFX9)
1824 tmp = bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), tmp);
1825
1826 aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f32 : aco_opcode::v_cos_f32;
1827 bld.vop1(opcode, Definition(dst), tmp);
1828 } else {
1829 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1830 nir_print_instr(&instr->instr, stderr);
1831 fprintf(stderr, "\n");
1832 }
1833 break;
1834 }
1835 case nir_op_ldexp: {
1836 if (dst.size() == 1) {
1837 bld.vop3(aco_opcode::v_ldexp_f32, Definition(dst),
1838 as_vgpr(ctx, get_alu_src(ctx, instr->src[0])),
1839 get_alu_src(ctx, instr->src[1]));
1840 } else if (dst.size() == 2) {
1841 bld.vop3(aco_opcode::v_ldexp_f64, Definition(dst),
1842 as_vgpr(ctx, get_alu_src(ctx, instr->src[0])),
1843 get_alu_src(ctx, instr->src[1]));
1844 } else {
1845 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1846 nir_print_instr(&instr->instr, stderr);
1847 fprintf(stderr, "\n");
1848 }
1849 break;
1850 }
1851 case nir_op_frexp_sig: {
1852 if (dst.size() == 1) {
1853 bld.vop1(aco_opcode::v_frexp_mant_f32, Definition(dst),
1854 get_alu_src(ctx, instr->src[0]));
1855 } else if (dst.size() == 2) {
1856 bld.vop1(aco_opcode::v_frexp_mant_f64, Definition(dst),
1857 get_alu_src(ctx, instr->src[0]));
1858 } else {
1859 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1860 nir_print_instr(&instr->instr, stderr);
1861 fprintf(stderr, "\n");
1862 }
1863 break;
1864 }
1865 case nir_op_frexp_exp: {
1866 if (instr->src[0].src.ssa->bit_size == 32) {
1867 bld.vop1(aco_opcode::v_frexp_exp_i32_f32, Definition(dst),
1868 get_alu_src(ctx, instr->src[0]));
1869 } else if (instr->src[0].src.ssa->bit_size == 64) {
1870 bld.vop1(aco_opcode::v_frexp_exp_i32_f64, Definition(dst),
1871 get_alu_src(ctx, instr->src[0]));
1872 } else {
1873 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1874 nir_print_instr(&instr->instr, stderr);
1875 fprintf(stderr, "\n");
1876 }
1877 break;
1878 }
1879 case nir_op_fsign: {
1880 Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
1881 if (dst.size() == 1) {
1882 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1883 src = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0x3f800000u), src, cond);
1884 cond = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1885 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0xbf800000u), src, cond);
1886 } else if (dst.size() == 2) {
1887 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1888 Temp tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0x3FF00000u));
1889 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, emit_extract_vector(ctx, src, 1, v1), cond);
1890
1891 cond = bld.vopc(aco_opcode::v_cmp_le_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1892 tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0xBFF00000u));
1893 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, upper, cond);
1894
1895 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
1896 } else {
1897 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1898 nir_print_instr(&instr->instr, stderr);
1899 fprintf(stderr, "\n");
1900 }
1901 break;
1902 }
1903 case nir_op_f2f32: {
1904 if (instr->src[0].src.ssa->bit_size == 64) {
1905 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f64, dst);
1906 } else {
1907 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1908 nir_print_instr(&instr->instr, stderr);
1909 fprintf(stderr, "\n");
1910 }
1911 break;
1912 }
1913 case nir_op_f2f64: {
1914 if (instr->src[0].src.ssa->bit_size == 32) {
1915 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_f32, dst);
1916 } else {
1917 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1918 nir_print_instr(&instr->instr, stderr);
1919 fprintf(stderr, "\n");
1920 }
1921 break;
1922 }
1923 case nir_op_i2f32: {
1924 assert(dst.size() == 1);
1925 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_i32, dst);
1926 break;
1927 }
1928 case nir_op_i2f64: {
1929 if (instr->src[0].src.ssa->bit_size == 32) {
1930 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_i32, dst);
1931 } else if (instr->src[0].src.ssa->bit_size == 64) {
1932 Temp src = get_alu_src(ctx, instr->src[0]);
1933 RegClass rc = RegClass(src.type(), 1);
1934 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
1935 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1936 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
1937 upper = bld.vop1(aco_opcode::v_cvt_f64_i32, bld.def(v2), upper);
1938 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
1939 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
1940
1941 } else {
1942 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1943 nir_print_instr(&instr->instr, stderr);
1944 fprintf(stderr, "\n");
1945 }
1946 break;
1947 }
1948 case nir_op_u2f32: {
1949 assert(dst.size() == 1);
1950 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_u32, dst);
1951 break;
1952 }
1953 case nir_op_u2f64: {
1954 if (instr->src[0].src.ssa->bit_size == 32) {
1955 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_u32, dst);
1956 } else if (instr->src[0].src.ssa->bit_size == 64) {
1957 Temp src = get_alu_src(ctx, instr->src[0]);
1958 RegClass rc = RegClass(src.type(), 1);
1959 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
1960 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1961 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
1962 upper = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), upper);
1963 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
1964 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
1965 } else {
1966 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1967 nir_print_instr(&instr->instr, stderr);
1968 fprintf(stderr, "\n");
1969 }
1970 break;
1971 }
1972 case nir_op_f2i32: {
1973 Temp src = get_alu_src(ctx, instr->src[0]);
1974 if (instr->src[0].src.ssa->bit_size == 32) {
1975 if (dst.type() == RegType::vgpr)
1976 bld.vop1(aco_opcode::v_cvt_i32_f32, Definition(dst), src);
1977 else
1978 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
1979 bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), src));
1980
1981 } else if (instr->src[0].src.ssa->bit_size == 64) {
1982 if (dst.type() == RegType::vgpr)
1983 bld.vop1(aco_opcode::v_cvt_i32_f64, Definition(dst), src);
1984 else
1985 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
1986 bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), src));
1987
1988 } else {
1989 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1990 nir_print_instr(&instr->instr, stderr);
1991 fprintf(stderr, "\n");
1992 }
1993 break;
1994 }
1995 case nir_op_f2u32: {
1996 Temp src = get_alu_src(ctx, instr->src[0]);
1997 if (instr->src[0].src.ssa->bit_size == 32) {
1998 if (dst.type() == RegType::vgpr)
1999 bld.vop1(aco_opcode::v_cvt_u32_f32, Definition(dst), src);
2000 else
2001 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2002 bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), src));
2003
2004 } else if (instr->src[0].src.ssa->bit_size == 64) {
2005 if (dst.type() == RegType::vgpr)
2006 bld.vop1(aco_opcode::v_cvt_u32_f64, Definition(dst), src);
2007 else
2008 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2009 bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), src));
2010
2011 } else {
2012 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2013 nir_print_instr(&instr->instr, stderr);
2014 fprintf(stderr, "\n");
2015 }
2016 break;
2017 }
2018 case nir_op_f2i64: {
2019 Temp src = get_alu_src(ctx, instr->src[0]);
2020 if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::vgpr) {
2021 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2022 exponent = bld.vop3(aco_opcode::v_med3_i32, bld.def(v1), Operand(0x0u), exponent, Operand(64u));
2023 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2024 Temp sign = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
2025 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2026 mantissa = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(7u), mantissa);
2027 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2028 Temp new_exponent = bld.tmp(v1);
2029 Temp borrow = bld.vsub32(Definition(new_exponent), Operand(63u), exponent, true).def(1).getTemp();
2030 if (ctx->program->chip_class >= GFX8)
2031 mantissa = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), new_exponent, mantissa);
2032 else
2033 mantissa = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), mantissa, new_exponent);
2034 Temp saturate = bld.vop1(aco_opcode::v_bfrev_b32, bld.def(v1), Operand(0xfffffffeu));
2035 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2036 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2037 lower = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), lower, Operand(0xffffffffu), borrow);
2038 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), upper, saturate, borrow);
2039 lower = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, lower);
2040 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, upper);
2041 Temp new_lower = bld.tmp(v1);
2042 borrow = bld.vsub32(Definition(new_lower), lower, sign, true).def(1).getTemp();
2043 Temp new_upper = bld.vsub32(bld.def(v1), upper, sign, false, borrow);
2044 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), new_lower, new_upper);
2045
2046 } else if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::sgpr) {
2047 if (src.type() == RegType::vgpr)
2048 src = bld.as_uniform(src);
2049 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2050 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2051 exponent = bld.sop2(aco_opcode::s_max_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2052 exponent = bld.sop2(aco_opcode::s_min_u32, bld.def(s1), bld.def(s1, scc), Operand(64u), exponent);
2053 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2054 Temp sign = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
2055 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2056 mantissa = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), mantissa, Operand(7u));
2057 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2058 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(63u), exponent);
2059 mantissa = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent);
2060 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), exponent, Operand(0xffffffffu)); // exp >= 64
2061 Temp saturate = bld.sop1(aco_opcode::s_brev_b64, bld.def(s2), Operand(0xfffffffeu));
2062 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), saturate, mantissa, cond);
2063 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2064 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2065 lower = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, lower);
2066 upper = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, upper);
2067 Temp borrow = bld.tmp(s1);
2068 lower = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), lower, sign);
2069 upper = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), upper, sign, borrow);
2070 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2071
2072 } else if (instr->src[0].src.ssa->bit_size == 64) {
2073 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2074 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2075 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2076 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2077 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2078 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2079 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2080 Temp upper = bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), floor);
2081 if (dst.type() == RegType::sgpr) {
2082 lower = bld.as_uniform(lower);
2083 upper = bld.as_uniform(upper);
2084 }
2085 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2086
2087 } else {
2088 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2089 nir_print_instr(&instr->instr, stderr);
2090 fprintf(stderr, "\n");
2091 }
2092 break;
2093 }
2094 case nir_op_f2u64: {
2095 Temp src = get_alu_src(ctx, instr->src[0]);
2096 if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::vgpr) {
2097 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2098 Temp exponent_in_range = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(64u), exponent);
2099 exponent = bld.vop2(aco_opcode::v_max_i32, bld.def(v1), Operand(0x0u), exponent);
2100 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2101 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2102 Temp exponent_small = bld.vsub32(bld.def(v1), Operand(24u), exponent);
2103 Temp small = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), exponent_small, mantissa);
2104 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2105 Temp new_exponent = bld.tmp(v1);
2106 Temp cond_small = bld.vsub32(Definition(new_exponent), exponent, Operand(24u), true).def(1).getTemp();
2107 if (ctx->program->chip_class >= GFX8)
2108 mantissa = bld.vop3(aco_opcode::v_lshlrev_b64, bld.def(v2), new_exponent, mantissa);
2109 else
2110 mantissa = bld.vop3(aco_opcode::v_lshl_b64, bld.def(v2), mantissa, new_exponent);
2111 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2112 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2113 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), lower, small, cond_small);
2114 upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), upper, Operand(0u), cond_small);
2115 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), lower, exponent_in_range);
2116 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), upper, exponent_in_range);
2117 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2118
2119 } else if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::sgpr) {
2120 if (src.type() == RegType::vgpr)
2121 src = bld.as_uniform(src);
2122 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2123 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2124 exponent = bld.sop2(aco_opcode::s_max_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2125 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2126 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2127 Temp exponent_small = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(24u), exponent);
2128 Temp small = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), mantissa, exponent_small);
2129 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2130 Temp exponent_large = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(24u));
2131 mantissa = bld.sop2(aco_opcode::s_lshl_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent_large);
2132 Temp cond = bld.sopc(aco_opcode::s_cmp_ge_i32, bld.def(s1, scc), Operand(64u), exponent);
2133 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), mantissa, Operand(0xffffffffu), cond);
2134 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2135 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2136 Temp cond_small = bld.sopc(aco_opcode::s_cmp_le_i32, bld.def(s1, scc), exponent, Operand(24u));
2137 lower = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), small, lower, cond_small);
2138 upper = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), Operand(0u), upper, cond_small);
2139 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2140
2141 } else if (instr->src[0].src.ssa->bit_size == 64) {
2142 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2143 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2144 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2145 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2146 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2147 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2148 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2149 Temp upper = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), floor);
2150 if (dst.type() == RegType::sgpr) {
2151 lower = bld.as_uniform(lower);
2152 upper = bld.as_uniform(upper);
2153 }
2154 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2155
2156 } else {
2157 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2158 nir_print_instr(&instr->instr, stderr);
2159 fprintf(stderr, "\n");
2160 }
2161 break;
2162 }
2163 case nir_op_b2f32: {
2164 Temp src = get_alu_src(ctx, instr->src[0]);
2165 assert(src.regClass() == bld.lm);
2166
2167 if (dst.regClass() == s1) {
2168 src = bool_to_scalar_condition(ctx, src);
2169 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3f800000u), src);
2170 } else if (dst.regClass() == v1) {
2171 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
2172 } else {
2173 unreachable("Wrong destination register class for nir_op_b2f32.");
2174 }
2175 break;
2176 }
2177 case nir_op_b2f64: {
2178 Temp src = get_alu_src(ctx, instr->src[0]);
2179 assert(src.regClass() == bld.lm);
2180
2181 if (dst.regClass() == s2) {
2182 src = bool_to_scalar_condition(ctx, src);
2183 bld.sop2(aco_opcode::s_cselect_b64, Definition(dst), Operand(0x3f800000u), Operand(0u), bld.scc(src));
2184 } else if (dst.regClass() == v2) {
2185 Temp one = bld.vop1(aco_opcode::v_mov_b32, bld.def(v2), Operand(0x3FF00000u));
2186 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), one, src);
2187 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
2188 } else {
2189 unreachable("Wrong destination register class for nir_op_b2f64.");
2190 }
2191 break;
2192 }
2193 case nir_op_i2i32: {
2194 Temp src = get_alu_src(ctx, instr->src[0]);
2195 if (instr->src[0].src.ssa->bit_size == 64) {
2196 /* we can actually just say dst = src, as it would map the lower register */
2197 emit_extract_vector(ctx, src, 0, dst);
2198 } else {
2199 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2200 nir_print_instr(&instr->instr, stderr);
2201 fprintf(stderr, "\n");
2202 }
2203 break;
2204 }
2205 case nir_op_u2u32: {
2206 Temp src = get_alu_src(ctx, instr->src[0]);
2207 if (instr->src[0].src.ssa->bit_size == 16) {
2208 if (dst.regClass() == s1) {
2209 bld.sop2(aco_opcode::s_and_b32, Definition(dst), bld.def(s1, scc), Operand(0xFFFFu), src);
2210 } else {
2211 // TODO: do better with SDWA
2212 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0xFFFFu), src);
2213 }
2214 } else if (instr->src[0].src.ssa->bit_size == 64) {
2215 /* we can actually just say dst = src, as it would map the lower register */
2216 emit_extract_vector(ctx, src, 0, dst);
2217 } else {
2218 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2219 nir_print_instr(&instr->instr, stderr);
2220 fprintf(stderr, "\n");
2221 }
2222 break;
2223 }
2224 case nir_op_i2i64: {
2225 Temp src = get_alu_src(ctx, instr->src[0]);
2226 if (src.regClass() == s1) {
2227 Temp high = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
2228 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, high);
2229 } else if (src.regClass() == v1) {
2230 Temp high = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
2231 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, high);
2232 } else {
2233 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2234 nir_print_instr(&instr->instr, stderr);
2235 fprintf(stderr, "\n");
2236 }
2237 break;
2238 }
2239 case nir_op_u2u64: {
2240 Temp src = get_alu_src(ctx, instr->src[0]);
2241 if (instr->src[0].src.ssa->bit_size == 32) {
2242 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, Operand(0u));
2243 } else {
2244 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2245 nir_print_instr(&instr->instr, stderr);
2246 fprintf(stderr, "\n");
2247 }
2248 break;
2249 }
2250 case nir_op_b2i32: {
2251 Temp src = get_alu_src(ctx, instr->src[0]);
2252 assert(src.regClass() == bld.lm);
2253
2254 if (dst.regClass() == s1) {
2255 // TODO: in a post-RA optimization, we can check if src is in VCC, and directly use VCCNZ
2256 bool_to_scalar_condition(ctx, src, dst);
2257 } else if (dst.regClass() == v1) {
2258 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), src);
2259 } else {
2260 unreachable("Invalid register class for b2i32");
2261 }
2262 break;
2263 }
2264 case nir_op_i2b1: {
2265 Temp src = get_alu_src(ctx, instr->src[0]);
2266 assert(dst.regClass() == bld.lm);
2267
2268 if (src.type() == RegType::vgpr) {
2269 assert(src.regClass() == v1 || src.regClass() == v2);
2270 assert(dst.regClass() == bld.lm);
2271 bld.vopc(src.size() == 2 ? aco_opcode::v_cmp_lg_u64 : aco_opcode::v_cmp_lg_u32,
2272 Definition(dst), Operand(0u), src).def(0).setHint(vcc);
2273 } else {
2274 assert(src.regClass() == s1 || src.regClass() == s2);
2275 Temp tmp;
2276 if (src.regClass() == s2 && ctx->program->chip_class <= GFX7) {
2277 tmp = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), Operand(0u), src).def(1).getTemp();
2278 } else {
2279 tmp = bld.sopc(src.size() == 2 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::s_cmp_lg_u32,
2280 bld.scc(bld.def(s1)), Operand(0u), src);
2281 }
2282 bool_to_vector_condition(ctx, tmp, dst);
2283 }
2284 break;
2285 }
2286 case nir_op_pack_64_2x32_split: {
2287 Temp src0 = get_alu_src(ctx, instr->src[0]);
2288 Temp src1 = get_alu_src(ctx, instr->src[1]);
2289
2290 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
2291 break;
2292 }
2293 case nir_op_unpack_64_2x32_split_x:
2294 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
2295 break;
2296 case nir_op_unpack_64_2x32_split_y:
2297 bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
2298 break;
2299 case nir_op_pack_half_2x16: {
2300 Temp src = get_alu_src(ctx, instr->src[0], 2);
2301
2302 if (dst.regClass() == v1) {
2303 Temp src0 = bld.tmp(v1);
2304 Temp src1 = bld.tmp(v1);
2305 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
2306 if (!ctx->block->fp_mode.care_about_round32 || ctx->block->fp_mode.round32 == fp_round_tz)
2307 bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, Definition(dst), src0, src1);
2308 else
2309 bld.vop3(aco_opcode::v_cvt_pk_u16_u32, Definition(dst),
2310 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src0),
2311 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src1));
2312 } else {
2313 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2314 nir_print_instr(&instr->instr, stderr);
2315 fprintf(stderr, "\n");
2316 }
2317 break;
2318 }
2319 case nir_op_unpack_half_2x16_split_x: {
2320 if (dst.regClass() == v1) {
2321 Builder bld(ctx->program, ctx->block);
2322 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst), get_alu_src(ctx, instr->src[0]));
2323 } else {
2324 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2325 nir_print_instr(&instr->instr, stderr);
2326 fprintf(stderr, "\n");
2327 }
2328 break;
2329 }
2330 case nir_op_unpack_half_2x16_split_y: {
2331 if (dst.regClass() == v1) {
2332 Builder bld(ctx->program, ctx->block);
2333 /* TODO: use SDWA here */
2334 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst),
2335 bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), as_vgpr(ctx, get_alu_src(ctx, instr->src[0]))));
2336 } else {
2337 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2338 nir_print_instr(&instr->instr, stderr);
2339 fprintf(stderr, "\n");
2340 }
2341 break;
2342 }
2343 case nir_op_fquantize2f16: {
2344 Temp src = get_alu_src(ctx, instr->src[0]);
2345 Temp f16 = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), src);
2346 Temp f32, cmp_res;
2347
2348 if (ctx->program->chip_class >= GFX8) {
2349 Temp mask = bld.copy(bld.def(s1), Operand(0x36Fu)); /* value is NOT negative/positive denormal value */
2350 cmp_res = bld.vopc_e64(aco_opcode::v_cmp_class_f16, bld.hint_vcc(bld.def(bld.lm)), f16, mask);
2351 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2352 } else {
2353 /* 0x38800000 is smallest half float value (2^-14) in 32-bit float,
2354 * so compare the result and flush to 0 if it's smaller.
2355 */
2356 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2357 Temp smallest = bld.copy(bld.def(s1), Operand(0x38800000u));
2358 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), f32, smallest);
2359 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
2360 cmp_res = vop3->definitions[0].getTemp();
2361 }
2362
2363 if (ctx->block->fp_mode.preserve_signed_zero_inf_nan32 || ctx->program->chip_class < GFX8) {
2364 Temp copysign_0 = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0u), as_vgpr(ctx, src));
2365 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), copysign_0, f32, cmp_res);
2366 } else {
2367 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), f32, cmp_res);
2368 }
2369 break;
2370 }
2371 case nir_op_bfm: {
2372 Temp bits = get_alu_src(ctx, instr->src[0]);
2373 Temp offset = get_alu_src(ctx, instr->src[1]);
2374
2375 if (dst.regClass() == s1) {
2376 bld.sop2(aco_opcode::s_bfm_b32, Definition(dst), bits, offset);
2377 } else if (dst.regClass() == v1) {
2378 bld.vop3(aco_opcode::v_bfm_b32, Definition(dst), bits, offset);
2379 } else {
2380 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2381 nir_print_instr(&instr->instr, stderr);
2382 fprintf(stderr, "\n");
2383 }
2384 break;
2385 }
2386 case nir_op_bitfield_select: {
2387 /* (mask & insert) | (~mask & base) */
2388 Temp bitmask = get_alu_src(ctx, instr->src[0]);
2389 Temp insert = get_alu_src(ctx, instr->src[1]);
2390 Temp base = get_alu_src(ctx, instr->src[2]);
2391
2392 /* dst = (insert & bitmask) | (base & ~bitmask) */
2393 if (dst.regClass() == s1) {
2394 aco_ptr<Instruction> sop2;
2395 nir_const_value* const_bitmask = nir_src_as_const_value(instr->src[0].src);
2396 nir_const_value* const_insert = nir_src_as_const_value(instr->src[1].src);
2397 Operand lhs;
2398 if (const_insert && const_bitmask) {
2399 lhs = Operand(const_insert->u32 & const_bitmask->u32);
2400 } else {
2401 insert = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), insert, bitmask);
2402 lhs = Operand(insert);
2403 }
2404
2405 Operand rhs;
2406 nir_const_value* const_base = nir_src_as_const_value(instr->src[2].src);
2407 if (const_base && const_bitmask) {
2408 rhs = Operand(const_base->u32 & ~const_bitmask->u32);
2409 } else {
2410 base = bld.sop2(aco_opcode::s_andn2_b32, bld.def(s1), bld.def(s1, scc), base, bitmask);
2411 rhs = Operand(base);
2412 }
2413
2414 bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), rhs, lhs);
2415
2416 } else if (dst.regClass() == v1) {
2417 if (base.type() == RegType::sgpr && (bitmask.type() == RegType::sgpr || (insert.type() == RegType::sgpr)))
2418 base = as_vgpr(ctx, base);
2419 if (insert.type() == RegType::sgpr && bitmask.type() == RegType::sgpr)
2420 insert = as_vgpr(ctx, insert);
2421
2422 bld.vop3(aco_opcode::v_bfi_b32, Definition(dst), bitmask, insert, base);
2423
2424 } else {
2425 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2426 nir_print_instr(&instr->instr, stderr);
2427 fprintf(stderr, "\n");
2428 }
2429 break;
2430 }
2431 case nir_op_ubfe:
2432 case nir_op_ibfe: {
2433 Temp base = get_alu_src(ctx, instr->src[0]);
2434 Temp offset = get_alu_src(ctx, instr->src[1]);
2435 Temp bits = get_alu_src(ctx, instr->src[2]);
2436
2437 if (dst.type() == RegType::sgpr) {
2438 Operand extract;
2439 nir_const_value* const_offset = nir_src_as_const_value(instr->src[1].src);
2440 nir_const_value* const_bits = nir_src_as_const_value(instr->src[2].src);
2441 if (const_offset && const_bits) {
2442 uint32_t const_extract = (const_bits->u32 << 16) | const_offset->u32;
2443 extract = Operand(const_extract);
2444 } else {
2445 Operand width;
2446 if (const_bits) {
2447 width = Operand(const_bits->u32 << 16);
2448 } else {
2449 width = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), bits, Operand(16u));
2450 }
2451 extract = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), offset, width);
2452 }
2453
2454 aco_opcode opcode;
2455 if (dst.regClass() == s1) {
2456 if (instr->op == nir_op_ubfe)
2457 opcode = aco_opcode::s_bfe_u32;
2458 else
2459 opcode = aco_opcode::s_bfe_i32;
2460 } else if (dst.regClass() == s2) {
2461 if (instr->op == nir_op_ubfe)
2462 opcode = aco_opcode::s_bfe_u64;
2463 else
2464 opcode = aco_opcode::s_bfe_i64;
2465 } else {
2466 unreachable("Unsupported BFE bit size");
2467 }
2468
2469 bld.sop2(opcode, Definition(dst), bld.def(s1, scc), base, extract);
2470
2471 } else {
2472 aco_opcode opcode;
2473 if (dst.regClass() == v1) {
2474 if (instr->op == nir_op_ubfe)
2475 opcode = aco_opcode::v_bfe_u32;
2476 else
2477 opcode = aco_opcode::v_bfe_i32;
2478 } else {
2479 unreachable("Unsupported BFE bit size");
2480 }
2481
2482 emit_vop3a_instruction(ctx, instr, opcode, dst);
2483 }
2484 break;
2485 }
2486 case nir_op_bit_count: {
2487 Temp src = get_alu_src(ctx, instr->src[0]);
2488 if (src.regClass() == s1) {
2489 bld.sop1(aco_opcode::s_bcnt1_i32_b32, Definition(dst), bld.def(s1, scc), src);
2490 } else if (src.regClass() == v1) {
2491 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst), src, Operand(0u));
2492 } else if (src.regClass() == v2) {
2493 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst),
2494 emit_extract_vector(ctx, src, 1, v1),
2495 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1),
2496 emit_extract_vector(ctx, src, 0, v1), Operand(0u)));
2497 } else if (src.regClass() == s2) {
2498 bld.sop1(aco_opcode::s_bcnt1_i32_b64, Definition(dst), bld.def(s1, scc), src);
2499 } else {
2500 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2501 nir_print_instr(&instr->instr, stderr);
2502 fprintf(stderr, "\n");
2503 }
2504 break;
2505 }
2506 case nir_op_flt: {
2507 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_f32, aco_opcode::v_cmp_lt_f64);
2508 break;
2509 }
2510 case nir_op_fge: {
2511 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_f32, aco_opcode::v_cmp_ge_f64);
2512 break;
2513 }
2514 case nir_op_feq: {
2515 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_f32, aco_opcode::v_cmp_eq_f64);
2516 break;
2517 }
2518 case nir_op_fne: {
2519 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_neq_f32, aco_opcode::v_cmp_neq_f64);
2520 break;
2521 }
2522 case nir_op_ilt: {
2523 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_i32, aco_opcode::v_cmp_lt_i64, aco_opcode::s_cmp_lt_i32);
2524 break;
2525 }
2526 case nir_op_ige: {
2527 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_i32, aco_opcode::v_cmp_ge_i64, aco_opcode::s_cmp_ge_i32);
2528 break;
2529 }
2530 case nir_op_ieq: {
2531 if (instr->src[0].src.ssa->bit_size == 1)
2532 emit_boolean_logic(ctx, instr, Builder::s_xnor, dst);
2533 else
2534 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_i32, aco_opcode::v_cmp_eq_i64, aco_opcode::s_cmp_eq_i32,
2535 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_eq_u64 : aco_opcode::num_opcodes);
2536 break;
2537 }
2538 case nir_op_ine: {
2539 if (instr->src[0].src.ssa->bit_size == 1)
2540 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
2541 else
2542 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lg_i32, aco_opcode::v_cmp_lg_i64, aco_opcode::s_cmp_lg_i32,
2543 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::num_opcodes);
2544 break;
2545 }
2546 case nir_op_ult: {
2547 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_u32, aco_opcode::v_cmp_lt_u64, aco_opcode::s_cmp_lt_u32);
2548 break;
2549 }
2550 case nir_op_uge: {
2551 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_u32, aco_opcode::v_cmp_ge_u64, aco_opcode::s_cmp_ge_u32);
2552 break;
2553 }
2554 case nir_op_fddx:
2555 case nir_op_fddy:
2556 case nir_op_fddx_fine:
2557 case nir_op_fddy_fine:
2558 case nir_op_fddx_coarse:
2559 case nir_op_fddy_coarse: {
2560 Temp src = get_alu_src(ctx, instr->src[0]);
2561 uint16_t dpp_ctrl1, dpp_ctrl2;
2562 if (instr->op == nir_op_fddx_fine) {
2563 dpp_ctrl1 = dpp_quad_perm(0, 0, 2, 2);
2564 dpp_ctrl2 = dpp_quad_perm(1, 1, 3, 3);
2565 } else if (instr->op == nir_op_fddy_fine) {
2566 dpp_ctrl1 = dpp_quad_perm(0, 1, 0, 1);
2567 dpp_ctrl2 = dpp_quad_perm(2, 3, 2, 3);
2568 } else {
2569 dpp_ctrl1 = dpp_quad_perm(0, 0, 0, 0);
2570 if (instr->op == nir_op_fddx || instr->op == nir_op_fddx_coarse)
2571 dpp_ctrl2 = dpp_quad_perm(1, 1, 1, 1);
2572 else
2573 dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
2574 }
2575
2576 Temp tmp;
2577 if (ctx->program->chip_class >= GFX8) {
2578 Temp tl = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl1);
2579 tmp = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), src, tl, dpp_ctrl2);
2580 } else {
2581 Temp tl = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl1);
2582 Temp tr = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl2);
2583 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), tr, tl);
2584 }
2585 emit_wqm(ctx, tmp, dst, true);
2586 break;
2587 }
2588 default:
2589 fprintf(stderr, "Unknown NIR ALU instr: ");
2590 nir_print_instr(&instr->instr, stderr);
2591 fprintf(stderr, "\n");
2592 }
2593 }
2594
2595 void visit_load_const(isel_context *ctx, nir_load_const_instr *instr)
2596 {
2597 Temp dst = get_ssa_temp(ctx, &instr->def);
2598
2599 // TODO: we really want to have the resulting type as this would allow for 64bit literals
2600 // which get truncated the lsb if double and msb if int
2601 // for now, we only use s_mov_b64 with 64bit inline constants
2602 assert(instr->def.num_components == 1 && "Vector load_const should be lowered to scalar.");
2603 assert(dst.type() == RegType::sgpr);
2604
2605 Builder bld(ctx->program, ctx->block);
2606
2607 if (instr->def.bit_size == 1) {
2608 assert(dst.regClass() == bld.lm);
2609 int val = instr->value[0].b ? -1 : 0;
2610 Operand op = bld.lm.size() == 1 ? Operand((uint32_t) val) : Operand((uint64_t) val);
2611 bld.sop1(Builder::s_mov, Definition(dst), op);
2612 } else if (dst.size() == 1) {
2613 bld.copy(Definition(dst), Operand(instr->value[0].u32));
2614 } else {
2615 assert(dst.size() != 1);
2616 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
2617 if (instr->def.bit_size == 64)
2618 for (unsigned i = 0; i < dst.size(); i++)
2619 vec->operands[i] = Operand{(uint32_t)(instr->value[0].u64 >> i * 32)};
2620 else {
2621 for (unsigned i = 0; i < dst.size(); i++)
2622 vec->operands[i] = Operand{instr->value[i].u32};
2623 }
2624 vec->definitions[0] = Definition(dst);
2625 ctx->block->instructions.emplace_back(std::move(vec));
2626 }
2627 }
2628
2629 uint32_t widen_mask(uint32_t mask, unsigned multiplier)
2630 {
2631 uint32_t new_mask = 0;
2632 for(unsigned i = 0; i < 32 && (1u << i) <= mask; ++i)
2633 if (mask & (1u << i))
2634 new_mask |= ((1u << multiplier) - 1u) << (i * multiplier);
2635 return new_mask;
2636 }
2637
2638 Operand load_lds_size_m0(isel_context *ctx)
2639 {
2640 /* TODO: m0 does not need to be initialized on GFX9+ */
2641 Builder bld(ctx->program, ctx->block);
2642 return bld.m0((Temp)bld.sopk(aco_opcode::s_movk_i32, bld.def(s1, m0), 0xffff));
2643 }
2644
2645 void load_lds(isel_context *ctx, unsigned elem_size_bytes, Temp dst,
2646 Temp address, unsigned base_offset, unsigned align)
2647 {
2648 assert(util_is_power_of_two_nonzero(align) && align >= 4);
2649
2650 Builder bld(ctx->program, ctx->block);
2651
2652 Operand m = load_lds_size_m0(ctx);
2653
2654 unsigned num_components = dst.size() * 4u / elem_size_bytes;
2655 unsigned bytes_read = 0;
2656 unsigned result_size = 0;
2657 unsigned total_bytes = num_components * elem_size_bytes;
2658 std::array<Temp, NIR_MAX_VEC_COMPONENTS> result;
2659 bool large_ds_read = ctx->options->chip_class >= GFX7;
2660 bool usable_read2 = ctx->options->chip_class >= GFX7;
2661
2662 while (bytes_read < total_bytes) {
2663 unsigned todo = total_bytes - bytes_read;
2664 bool aligned8 = bytes_read % 8 == 0 && align % 8 == 0;
2665 bool aligned16 = bytes_read % 16 == 0 && align % 16 == 0;
2666
2667 aco_opcode op = aco_opcode::last_opcode;
2668 bool read2 = false;
2669 if (todo >= 16 && aligned16 && large_ds_read) {
2670 op = aco_opcode::ds_read_b128;
2671 todo = 16;
2672 } else if (todo >= 16 && aligned8 && usable_read2) {
2673 op = aco_opcode::ds_read2_b64;
2674 read2 = true;
2675 todo = 16;
2676 } else if (todo >= 12 && aligned16 && large_ds_read) {
2677 op = aco_opcode::ds_read_b96;
2678 todo = 12;
2679 } else if (todo >= 8 && aligned8) {
2680 op = aco_opcode::ds_read_b64;
2681 todo = 8;
2682 } else if (todo >= 8 && usable_read2) {
2683 op = aco_opcode::ds_read2_b32;
2684 read2 = true;
2685 todo = 8;
2686 } else if (todo >= 4) {
2687 op = aco_opcode::ds_read_b32;
2688 todo = 4;
2689 } else {
2690 assert(false);
2691 }
2692 assert(todo % elem_size_bytes == 0);
2693 unsigned num_elements = todo / elem_size_bytes;
2694 unsigned offset = base_offset + bytes_read;
2695 unsigned max_offset = read2 ? 1019 : 65535;
2696
2697 Temp address_offset = address;
2698 if (offset > max_offset) {
2699 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
2700 offset = bytes_read;
2701 }
2702 assert(offset <= max_offset); /* bytes_read shouldn't be large enough for this to happen */
2703
2704 Temp res;
2705 if (num_components == 1 && dst.type() == RegType::vgpr)
2706 res = dst;
2707 else
2708 res = bld.tmp(RegClass(RegType::vgpr, todo / 4));
2709
2710 if (read2)
2711 res = bld.ds(op, Definition(res), address_offset, m, offset >> 2, (offset >> 2) + 1);
2712 else
2713 res = bld.ds(op, Definition(res), address_offset, m, offset);
2714
2715 if (num_components == 1) {
2716 assert(todo == total_bytes);
2717 if (dst.type() == RegType::sgpr)
2718 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), res);
2719 return;
2720 }
2721
2722 if (dst.type() == RegType::sgpr) {
2723 Temp new_res = bld.tmp(RegType::sgpr, res.size());
2724 expand_vector(ctx, res, new_res, res.size(), (1 << res.size()) - 1);
2725 res = new_res;
2726 }
2727
2728 if (num_elements == 1) {
2729 result[result_size++] = res;
2730 } else {
2731 assert(res != dst && res.size() % num_elements == 0);
2732 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_elements)};
2733 split->operands[0] = Operand(res);
2734 for (unsigned i = 0; i < num_elements; i++)
2735 split->definitions[i] = Definition(result[result_size++] = bld.tmp(res.type(), elem_size_bytes / 4));
2736 ctx->block->instructions.emplace_back(std::move(split));
2737 }
2738
2739 bytes_read += todo;
2740 }
2741
2742 assert(result_size == num_components && result_size > 1);
2743 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, result_size, 1)};
2744 for (unsigned i = 0; i < result_size; i++)
2745 vec->operands[i] = Operand(result[i]);
2746 vec->definitions[0] = Definition(dst);
2747 ctx->block->instructions.emplace_back(std::move(vec));
2748 ctx->allocated_vec.emplace(dst.id(), result);
2749 }
2750
2751 Temp extract_subvector(isel_context *ctx, Temp data, unsigned start, unsigned size, RegType type)
2752 {
2753 if (start == 0 && size == data.size())
2754 return type == RegType::vgpr ? as_vgpr(ctx, data) : data;
2755
2756 unsigned size_hint = 1;
2757 auto it = ctx->allocated_vec.find(data.id());
2758 if (it != ctx->allocated_vec.end())
2759 size_hint = it->second[0].size();
2760 if (size % size_hint || start % size_hint)
2761 size_hint = 1;
2762
2763 start /= size_hint;
2764 size /= size_hint;
2765
2766 Temp elems[size];
2767 for (unsigned i = 0; i < size; i++)
2768 elems[i] = emit_extract_vector(ctx, data, start + i, RegClass(type, size_hint));
2769
2770 if (size == 1)
2771 return type == RegType::vgpr ? as_vgpr(ctx, elems[0]) : elems[0];
2772
2773 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
2774 for (unsigned i = 0; i < size; i++)
2775 vec->operands[i] = Operand(elems[i]);
2776 Temp res = {ctx->program->allocateId(), RegClass(type, size * size_hint)};
2777 vec->definitions[0] = Definition(res);
2778 ctx->block->instructions.emplace_back(std::move(vec));
2779 return res;
2780 }
2781
2782 void ds_write_helper(isel_context *ctx, Operand m, Temp address, Temp data, unsigned data_start, unsigned total_size, unsigned offset0, unsigned offset1, unsigned align)
2783 {
2784 Builder bld(ctx->program, ctx->block);
2785 unsigned bytes_written = 0;
2786 bool large_ds_write = ctx->options->chip_class >= GFX7;
2787 bool usable_write2 = ctx->options->chip_class >= GFX7;
2788
2789 while (bytes_written < total_size * 4) {
2790 unsigned todo = total_size * 4 - bytes_written;
2791 bool aligned8 = bytes_written % 8 == 0 && align % 8 == 0;
2792 bool aligned16 = bytes_written % 16 == 0 && align % 16 == 0;
2793
2794 aco_opcode op = aco_opcode::last_opcode;
2795 bool write2 = false;
2796 unsigned size = 0;
2797 if (todo >= 16 && aligned16 && large_ds_write) {
2798 op = aco_opcode::ds_write_b128;
2799 size = 4;
2800 } else if (todo >= 16 && aligned8 && usable_write2) {
2801 op = aco_opcode::ds_write2_b64;
2802 write2 = true;
2803 size = 4;
2804 } else if (todo >= 12 && aligned16 && large_ds_write) {
2805 op = aco_opcode::ds_write_b96;
2806 size = 3;
2807 } else if (todo >= 8 && aligned8) {
2808 op = aco_opcode::ds_write_b64;
2809 size = 2;
2810 } else if (todo >= 8 && usable_write2) {
2811 op = aco_opcode::ds_write2_b32;
2812 write2 = true;
2813 size = 2;
2814 } else if (todo >= 4) {
2815 op = aco_opcode::ds_write_b32;
2816 size = 1;
2817 } else {
2818 assert(false);
2819 }
2820
2821 unsigned offset = offset0 + offset1 + bytes_written;
2822 unsigned max_offset = write2 ? 1020 : 65535;
2823 Temp address_offset = address;
2824 if (offset > max_offset) {
2825 address_offset = bld.vadd32(bld.def(v1), Operand(offset0), address_offset);
2826 offset = offset1 + bytes_written;
2827 }
2828 assert(offset <= max_offset); /* offset1 shouldn't be large enough for this to happen */
2829
2830 if (write2) {
2831 Temp val0 = extract_subvector(ctx, data, data_start + (bytes_written >> 2), size / 2, RegType::vgpr);
2832 Temp val1 = extract_subvector(ctx, data, data_start + (bytes_written >> 2) + 1, size / 2, RegType::vgpr);
2833 bld.ds(op, address_offset, val0, val1, m, offset >> 2, (offset >> 2) + 1);
2834 } else {
2835 Temp val = extract_subvector(ctx, data, data_start + (bytes_written >> 2), size, RegType::vgpr);
2836 bld.ds(op, address_offset, val, m, offset);
2837 }
2838
2839 bytes_written += size * 4;
2840 }
2841 }
2842
2843 void store_lds(isel_context *ctx, unsigned elem_size_bytes, Temp data, uint32_t wrmask,
2844 Temp address, unsigned base_offset, unsigned align)
2845 {
2846 assert(util_is_power_of_two_nonzero(align) && align >= 4);
2847
2848 Operand m = load_lds_size_m0(ctx);
2849
2850 /* we need at most two stores for 32bit variables */
2851 int start[2], count[2];
2852 u_bit_scan_consecutive_range(&wrmask, &start[0], &count[0]);
2853 u_bit_scan_consecutive_range(&wrmask, &start[1], &count[1]);
2854 assert(wrmask == 0);
2855
2856 /* one combined store is sufficient */
2857 if (count[0] == count[1]) {
2858 Builder bld(ctx->program, ctx->block);
2859
2860 Temp address_offset = address;
2861 if ((base_offset >> 2) + start[1] > 255) {
2862 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
2863 base_offset = 0;
2864 }
2865
2866 assert(count[0] == 1);
2867 Temp val0 = emit_extract_vector(ctx, data, start[0], v1);
2868 Temp val1 = emit_extract_vector(ctx, data, start[1], v1);
2869 aco_opcode op = elem_size_bytes == 4 ? aco_opcode::ds_write2_b32 : aco_opcode::ds_write2_b64;
2870 base_offset = base_offset / elem_size_bytes;
2871 bld.ds(op, address_offset, val0, val1, m,
2872 base_offset + start[0], base_offset + start[1]);
2873 return;
2874 }
2875
2876 for (unsigned i = 0; i < 2; i++) {
2877 if (count[i] == 0)
2878 continue;
2879
2880 unsigned elem_size_words = elem_size_bytes / 4;
2881 ds_write_helper(ctx, m, address, data, start[i] * elem_size_words, count[i] * elem_size_words,
2882 base_offset, start[i] * elem_size_bytes, align);
2883 }
2884 return;
2885 }
2886
2887 unsigned calculate_lds_alignment(isel_context *ctx, unsigned const_offset)
2888 {
2889 unsigned align = 16;
2890 if (const_offset)
2891 align = std::min(align, 1u << (ffs(const_offset) - 1));
2892
2893 return align;
2894 }
2895
2896
2897 Temp create_vec_from_array(isel_context *ctx, Temp arr[], unsigned cnt, RegType reg_type, unsigned split_cnt = 0u, Temp dst = Temp())
2898 {
2899 Builder bld(ctx->program, ctx->block);
2900
2901 if (!dst.id())
2902 dst = bld.tmp(RegClass(reg_type, cnt * arr[0].size()));
2903
2904 std::array<Temp, NIR_MAX_VEC_COMPONENTS> allocated_vec;
2905 aco_ptr<Pseudo_instruction> instr {create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, cnt, 1)};
2906 instr->definitions[0] = Definition(dst);
2907
2908 for (unsigned i = 0; i < cnt; ++i) {
2909 assert(arr[i].size() == arr[0].size());
2910 allocated_vec[i] = arr[i];
2911 instr->operands[i] = Operand(arr[i]);
2912 }
2913
2914 bld.insert(std::move(instr));
2915
2916 if (split_cnt)
2917 emit_split_vector(ctx, dst, split_cnt);
2918 else
2919 ctx->allocated_vec.emplace(dst.id(), allocated_vec); /* emit_split_vector already does this */
2920
2921 return dst;
2922 }
2923
2924 inline unsigned resolve_excess_vmem_const_offset(Builder &bld, Temp &voffset, unsigned const_offset)
2925 {
2926 if (const_offset >= 4096) {
2927 unsigned excess_const_offset = const_offset / 4096u * 4096u;
2928 const_offset %= 4096u;
2929
2930 if (!voffset.id())
2931 voffset = bld.copy(bld.def(v1), Operand(excess_const_offset));
2932 else if (unlikely(voffset.regClass() == s1))
2933 voffset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), Operand(excess_const_offset), Operand(voffset));
2934 else if (likely(voffset.regClass() == v1))
2935 voffset = bld.vadd32(bld.def(v1), Operand(voffset), Operand(excess_const_offset));
2936 else
2937 unreachable("Unsupported register class of voffset");
2938 }
2939
2940 return const_offset;
2941 }
2942
2943 void emit_single_mubuf_store(isel_context *ctx, Temp descriptor, Temp voffset, Temp soffset, Temp vdata,
2944 unsigned const_offset = 0u, bool allow_reorder = true, bool slc = false)
2945 {
2946 assert(vdata.id());
2947 assert(vdata.size() != 3 || ctx->program->chip_class != GFX6);
2948 assert(vdata.size() >= 1 && vdata.size() <= 4);
2949
2950 Builder bld(ctx->program, ctx->block);
2951 aco_opcode op = (aco_opcode) ((unsigned) aco_opcode::buffer_store_dword + vdata.size() - 1);
2952 const_offset = resolve_excess_vmem_const_offset(bld, voffset, const_offset);
2953
2954 Operand voffset_op = voffset.id() ? Operand(as_vgpr(ctx, voffset)) : Operand(v1);
2955 Operand soffset_op = soffset.id() ? Operand(soffset) : Operand(0u);
2956 Builder::Result r = bld.mubuf(op, Operand(descriptor), voffset_op, soffset_op, Operand(vdata), const_offset,
2957 /* offen */ !voffset_op.isUndefined(), /* idxen*/ false, /* addr64 */ false,
2958 /* disable_wqm */ false, /* glc */ true, /* dlc*/ false, /* slc */ slc);
2959
2960 static_cast<MUBUF_instruction *>(r.instr)->can_reorder = allow_reorder;
2961 }
2962
2963 void store_vmem_mubuf(isel_context *ctx, Temp src, Temp descriptor, Temp voffset, Temp soffset,
2964 unsigned base_const_offset, unsigned elem_size_bytes, unsigned write_mask,
2965 bool allow_combining = true, bool reorder = true, bool slc = false)
2966 {
2967 Builder bld(ctx->program, ctx->block);
2968 assert(elem_size_bytes == 4 || elem_size_bytes == 8);
2969 assert(write_mask);
2970
2971 if (elem_size_bytes == 8) {
2972 elem_size_bytes = 4;
2973 write_mask = widen_mask(write_mask, 2);
2974 }
2975
2976 while (write_mask) {
2977 int start = 0;
2978 int count = 0;
2979 u_bit_scan_consecutive_range(&write_mask, &start, &count);
2980 assert(count > 0);
2981 assert(start >= 0);
2982
2983 while (count > 0) {
2984 unsigned sub_count = allow_combining ? MIN2(count, 4) : 1;
2985 unsigned const_offset = (unsigned) start * elem_size_bytes + base_const_offset;
2986
2987 /* GFX6 doesn't have buffer_store_dwordx3, so make sure not to emit that here either. */
2988 if (unlikely(ctx->program->chip_class == GFX6 && sub_count == 3))
2989 sub_count = 2;
2990
2991 Temp elem = extract_subvector(ctx, src, start, sub_count, RegType::vgpr);
2992 emit_single_mubuf_store(ctx, descriptor, voffset, soffset, elem, const_offset, reorder, slc);
2993
2994 count -= sub_count;
2995 start += sub_count;
2996 }
2997
2998 assert(count == 0);
2999 }
3000 }
3001
3002 Temp emit_single_mubuf_load(isel_context *ctx, Temp descriptor, Temp voffset, Temp soffset,
3003 unsigned const_offset, unsigned size_dwords, bool allow_reorder = true)
3004 {
3005 assert(size_dwords != 3 || ctx->program->chip_class != GFX6);
3006 assert(size_dwords >= 1 && size_dwords <= 4);
3007
3008 Builder bld(ctx->program, ctx->block);
3009 Temp vdata = bld.tmp(RegClass(RegType::vgpr, size_dwords));
3010 aco_opcode op = (aco_opcode) ((unsigned) aco_opcode::buffer_load_dword + size_dwords - 1);
3011 const_offset = resolve_excess_vmem_const_offset(bld, voffset, const_offset);
3012
3013 Operand voffset_op = voffset.id() ? Operand(as_vgpr(ctx, voffset)) : Operand(v1);
3014 Operand soffset_op = soffset.id() ? Operand(soffset) : Operand(0u);
3015 Builder::Result r = bld.mubuf(op, Definition(vdata), Operand(descriptor), voffset_op, soffset_op, const_offset,
3016 /* offen */ !voffset_op.isUndefined(), /* idxen*/ false, /* addr64 */ false,
3017 /* disable_wqm */ false, /* glc */ true,
3018 /* dlc*/ ctx->program->chip_class >= GFX10, /* slc */ false);
3019
3020 static_cast<MUBUF_instruction *>(r.instr)->can_reorder = allow_reorder;
3021
3022 return vdata;
3023 }
3024
3025 void load_vmem_mubuf(isel_context *ctx, Temp dst, Temp descriptor, Temp voffset, Temp soffset,
3026 unsigned base_const_offset, unsigned elem_size_bytes, unsigned num_components,
3027 unsigned stride = 0u, bool allow_combining = true, bool allow_reorder = true)
3028 {
3029 assert(elem_size_bytes == 4 || elem_size_bytes == 8);
3030 assert((num_components * elem_size_bytes / 4) == dst.size());
3031 assert(!!stride != allow_combining);
3032
3033 Builder bld(ctx->program, ctx->block);
3034 unsigned split_cnt = num_components;
3035
3036 if (elem_size_bytes == 8) {
3037 elem_size_bytes = 4;
3038 num_components *= 2;
3039 }
3040
3041 if (!stride)
3042 stride = elem_size_bytes;
3043
3044 unsigned load_size = 1;
3045 if (allow_combining) {
3046 if ((num_components % 4) == 0)
3047 load_size = 4;
3048 else if ((num_components % 3) == 0 && ctx->program->chip_class != GFX6)
3049 load_size = 3;
3050 else if ((num_components % 2) == 0)
3051 load_size = 2;
3052 }
3053
3054 unsigned num_loads = num_components / load_size;
3055 std::array<Temp, NIR_MAX_VEC_COMPONENTS> elems;
3056
3057 for (unsigned i = 0; i < num_loads; ++i) {
3058 unsigned const_offset = i * stride * load_size + base_const_offset;
3059 elems[i] = emit_single_mubuf_load(ctx, descriptor, voffset, soffset, const_offset, load_size, allow_reorder);
3060 }
3061
3062 create_vec_from_array(ctx, elems.data(), num_loads, RegType::vgpr, split_cnt, dst);
3063 }
3064
3065 std::pair<Temp, unsigned> offset_add_from_nir(isel_context *ctx, const std::pair<Temp, unsigned> &base_offset, nir_src *off_src, unsigned stride = 1u)
3066 {
3067 Builder bld(ctx->program, ctx->block);
3068 Temp offset = base_offset.first;
3069 unsigned const_offset = base_offset.second;
3070
3071 if (!nir_src_is_const(*off_src)) {
3072 Temp indirect_offset_arg = get_ssa_temp(ctx, off_src->ssa);
3073 Temp with_stride;
3074
3075 /* Calculate indirect offset with stride */
3076 if (likely(indirect_offset_arg.regClass() == v1))
3077 with_stride = bld.v_mul_imm(bld.def(v1), indirect_offset_arg, stride);
3078 else if (indirect_offset_arg.regClass() == s1)
3079 with_stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), indirect_offset_arg);
3080 else
3081 unreachable("Unsupported register class of indirect offset");
3082
3083 /* Add to the supplied base offset */
3084 if (offset.id() == 0)
3085 offset = with_stride;
3086 else if (unlikely(offset.regClass() == s1 && with_stride.regClass() == s1))
3087 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), with_stride, offset);
3088 else if (offset.size() == 1 && with_stride.size() == 1)
3089 offset = bld.vadd32(bld.def(v1), with_stride, offset);
3090 else
3091 unreachable("Unsupported register class of indirect offset");
3092 } else {
3093 unsigned const_offset_arg = nir_src_as_uint(*off_src);
3094 const_offset += const_offset_arg * stride;
3095 }
3096
3097 return std::make_pair(offset, const_offset);
3098 }
3099
3100 std::pair<Temp, unsigned> offset_add(isel_context *ctx, const std::pair<Temp, unsigned> &off1, const std::pair<Temp, unsigned> &off2)
3101 {
3102 Builder bld(ctx->program, ctx->block);
3103 Temp offset;
3104
3105 if (off1.first.id() && off2.first.id()) {
3106 if (unlikely(off1.first.regClass() == s1 && off2.first.regClass() == s1))
3107 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), off1.first, off2.first);
3108 else if (off1.first.size() == 1 && off2.first.size() == 1)
3109 offset = bld.vadd32(bld.def(v1), off1.first, off2.first);
3110 else
3111 unreachable("Unsupported register class of indirect offset");
3112 } else {
3113 offset = off1.first.id() ? off1.first : off2.first;
3114 }
3115
3116 return std::make_pair(offset, off1.second + off2.second);
3117 }
3118
3119 std::pair<Temp, unsigned> offset_mul(isel_context *ctx, const std::pair<Temp, unsigned> &offs, unsigned multiplier)
3120 {
3121 Builder bld(ctx->program, ctx->block);
3122 unsigned const_offset = offs.second * multiplier;
3123
3124 if (!offs.first.id())
3125 return std::make_pair(offs.first, const_offset);
3126
3127 Temp offset = unlikely(offs.first.regClass() == s1)
3128 ? bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(multiplier), offs.first)
3129 : bld.v_mul_imm(bld.def(v1), offs.first, multiplier);
3130
3131 return std::make_pair(offset, const_offset);
3132 }
3133
3134 std::pair<Temp, unsigned> get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned base_stride, unsigned component_stride)
3135 {
3136 Builder bld(ctx->program, ctx->block);
3137
3138 /* base is the driver_location, which is already multiplied by 4, so is in dwords */
3139 unsigned const_offset = nir_intrinsic_base(instr) * base_stride;
3140 /* component is in bytes */
3141 const_offset += nir_intrinsic_component(instr) * component_stride;
3142
3143 /* offset should be interpreted in relation to the base, so the instruction effectively reads/writes another input/output when it has an offset */
3144 nir_src *off_src = nir_get_io_offset_src(instr);
3145 return offset_add_from_nir(ctx, std::make_pair(Temp(), const_offset), off_src, 4u * base_stride);
3146 }
3147
3148 std::pair<Temp, unsigned> get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned stride = 1u)
3149 {
3150 return get_intrinsic_io_basic_offset(ctx, instr, stride, stride);
3151 }
3152
3153 void visit_store_vsgs_output(isel_context *ctx, nir_intrinsic_instr *instr)
3154 {
3155 unsigned write_mask = nir_intrinsic_write_mask(instr);
3156 unsigned component = nir_intrinsic_component(instr);
3157 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
3158 unsigned idx = (nir_intrinsic_base(instr) + component) * 4u;
3159 Operand offset(s1);
3160 Builder bld(ctx->program, ctx->block);
3161
3162 nir_instr *off_instr = instr->src[1].ssa->parent_instr;
3163 if (off_instr->type != nir_instr_type_load_const)
3164 offset = bld.v_mul24_imm(bld.def(v1), get_ssa_temp(ctx, instr->src[1].ssa), 16u);
3165 else
3166 idx += nir_instr_as_load_const(off_instr)->value[0].u32 * 16u;
3167
3168 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8u;
3169 if (ctx->stage == vertex_es) {
3170 Temp esgs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_VS * 16u));
3171
3172 Temp elems[NIR_MAX_VEC_COMPONENTS * 2];
3173 if (elem_size_bytes == 8) {
3174 for (unsigned i = 0; i < src.size() / 2; i++) {
3175 Temp elem = emit_extract_vector(ctx, src, i, v2);
3176 elems[i*2] = bld.tmp(v1);
3177 elems[i*2+1] = bld.tmp(v1);
3178 bld.pseudo(aco_opcode::p_split_vector, Definition(elems[i*2]), Definition(elems[i*2+1]), elem);
3179 }
3180 write_mask = widen_mask(write_mask, 2);
3181 elem_size_bytes /= 2u;
3182 } else {
3183 for (unsigned i = 0; i < src.size(); i++)
3184 elems[i] = emit_extract_vector(ctx, src, i, v1);
3185 }
3186
3187 while (write_mask) {
3188 unsigned index = u_bit_scan(&write_mask);
3189 unsigned offset = index * elem_size_bytes;
3190 Temp elem = emit_extract_vector(ctx, src, index, RegClass(RegType::vgpr, elem_size_bytes / 4));
3191
3192 Operand vaddr_offset(v1);
3193 unsigned const_offset = idx + offset;
3194 if (const_offset >= 4096u) {
3195 vaddr_offset = bld.copy(bld.def(v1), Operand(const_offset / 4096u * 4096u));
3196 const_offset %= 4096u;
3197 }
3198
3199 aco_ptr<MTBUF_instruction> mtbuf{create_instruction<MTBUF_instruction>(aco_opcode::tbuffer_store_format_x, Format::MTBUF, 4, 0)};
3200 mtbuf->operands[0] = Operand(esgs_ring);
3201 mtbuf->operands[1] = vaddr_offset;
3202 mtbuf->operands[2] = Operand(get_arg(ctx, ctx->args->es2gs_offset));
3203 mtbuf->operands[3] = Operand(elem);
3204 mtbuf->offen = !vaddr_offset.isUndefined();
3205 mtbuf->dfmt = V_008F0C_BUF_DATA_FORMAT_32;
3206 mtbuf->nfmt = V_008F0C_BUF_NUM_FORMAT_UINT;
3207 mtbuf->offset = const_offset;
3208 mtbuf->glc = true;
3209 mtbuf->slc = true;
3210 mtbuf->barrier = barrier_none;
3211 mtbuf->can_reorder = true;
3212 bld.insert(std::move(mtbuf));
3213 }
3214 } else {
3215 unsigned itemsize = ctx->program->info->vs.es_info.esgs_itemsize;
3216
3217 Temp vertex_idx = emit_mbcnt(ctx, bld.def(v1));
3218 Temp wave_idx = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(ctx, ctx->args->merged_wave_info), Operand(4u << 16 | 24));
3219 vertex_idx = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), vertex_idx,
3220 bld.v_mul24_imm(bld.def(v1), as_vgpr(ctx, wave_idx), ctx->program->wave_size));
3221
3222 Temp lds_base = bld.v_mul24_imm(bld.def(v1), vertex_idx, itemsize);
3223 if (!offset.isUndefined())
3224 lds_base = bld.vadd32(bld.def(v1), offset, lds_base);
3225
3226 unsigned align = calculate_lds_alignment(ctx, idx);
3227 store_lds(ctx, elem_size_bytes, src, write_mask, lds_base, idx, align);
3228 }
3229 }
3230
3231 void visit_store_output(isel_context *ctx, nir_intrinsic_instr *instr)
3232 {
3233 if (ctx->stage == vertex_vs ||
3234 ctx->stage == fragment_fs ||
3235 ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
3236 unsigned write_mask = nir_intrinsic_write_mask(instr);
3237 unsigned component = nir_intrinsic_component(instr);
3238 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
3239 unsigned idx = nir_intrinsic_base(instr) + component;
3240
3241 nir_instr *off_instr = instr->src[1].ssa->parent_instr;
3242 if (off_instr->type != nir_instr_type_load_const) {
3243 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
3244 nir_print_instr(off_instr, stderr);
3245 fprintf(stderr, "\n");
3246 }
3247 idx += nir_instr_as_load_const(off_instr)->value[0].u32 * 4u;
3248
3249 if (instr->src[0].ssa->bit_size == 64)
3250 write_mask = widen_mask(write_mask, 2);
3251
3252 for (unsigned i = 0; i < 8; ++i) {
3253 if (write_mask & (1 << i)) {
3254 ctx->outputs.mask[idx / 4u] |= 1 << (idx % 4u);
3255 ctx->outputs.outputs[idx / 4u][idx % 4u] = emit_extract_vector(ctx, src, i, v1);
3256 }
3257 idx++;
3258 }
3259 } else if (ctx->stage == vertex_es ||
3260 (ctx->stage == vertex_geometry_gs && ctx->shader->info.stage == MESA_SHADER_VERTEX)) {
3261 visit_store_vsgs_output(ctx, instr);
3262 } else {
3263 unreachable("Shader stage not implemented");
3264 }
3265 }
3266
3267 void emit_interp_instr(isel_context *ctx, unsigned idx, unsigned component, Temp src, Temp dst, Temp prim_mask)
3268 {
3269 Temp coord1 = emit_extract_vector(ctx, src, 0, v1);
3270 Temp coord2 = emit_extract_vector(ctx, src, 1, v1);
3271
3272 Builder bld(ctx->program, ctx->block);
3273 Temp tmp = bld.vintrp(aco_opcode::v_interp_p1_f32, bld.def(v1), coord1, bld.m0(prim_mask), idx, component);
3274 bld.vintrp(aco_opcode::v_interp_p2_f32, Definition(dst), coord2, bld.m0(prim_mask), tmp, idx, component);
3275 }
3276
3277 void emit_load_frag_coord(isel_context *ctx, Temp dst, unsigned num_components)
3278 {
3279 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1));
3280 for (unsigned i = 0; i < num_components; i++)
3281 vec->operands[i] = Operand(get_arg(ctx, ctx->args->ac.frag_pos[i]));
3282 if (G_0286CC_POS_W_FLOAT_ENA(ctx->program->config->spi_ps_input_ena)) {
3283 assert(num_components == 4);
3284 Builder bld(ctx->program, ctx->block);
3285 vec->operands[3] = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), get_arg(ctx, ctx->args->ac.frag_pos[3]));
3286 }
3287
3288 for (Operand& op : vec->operands)
3289 op = op.isUndefined() ? Operand(0u) : op;
3290
3291 vec->definitions[0] = Definition(dst);
3292 ctx->block->instructions.emplace_back(std::move(vec));
3293 emit_split_vector(ctx, dst, num_components);
3294 return;
3295 }
3296
3297 void visit_load_interpolated_input(isel_context *ctx, nir_intrinsic_instr *instr)
3298 {
3299 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3300 Temp coords = get_ssa_temp(ctx, instr->src[0].ssa);
3301 unsigned idx = nir_intrinsic_base(instr);
3302 unsigned component = nir_intrinsic_component(instr);
3303 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
3304
3305 nir_const_value* offset = nir_src_as_const_value(instr->src[1]);
3306 if (offset) {
3307 assert(offset->u32 == 0);
3308 } else {
3309 /* the lower 15bit of the prim_mask contain the offset into LDS
3310 * while the upper bits contain the number of prims */
3311 Temp offset_src = get_ssa_temp(ctx, instr->src[1].ssa);
3312 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
3313 Builder bld(ctx->program, ctx->block);
3314 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
3315 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
3316 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
3317 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
3318 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
3319 }
3320
3321 if (instr->dest.ssa.num_components == 1) {
3322 emit_interp_instr(ctx, idx, component, coords, dst, prim_mask);
3323 } else {
3324 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.ssa.num_components, 1));
3325 for (unsigned i = 0; i < instr->dest.ssa.num_components; i++)
3326 {
3327 Temp tmp = {ctx->program->allocateId(), v1};
3328 emit_interp_instr(ctx, idx, component+i, coords, tmp, prim_mask);
3329 vec->operands[i] = Operand(tmp);
3330 }
3331 vec->definitions[0] = Definition(dst);
3332 ctx->block->instructions.emplace_back(std::move(vec));
3333 }
3334 }
3335
3336 bool check_vertex_fetch_size(isel_context *ctx, const ac_data_format_info *vtx_info,
3337 unsigned offset, unsigned stride, unsigned channels)
3338 {
3339 unsigned vertex_byte_size = vtx_info->chan_byte_size * channels;
3340 if (vtx_info->chan_byte_size != 4 && channels == 3)
3341 return false;
3342 return (ctx->options->chip_class != GFX6 && ctx->options->chip_class != GFX10) ||
3343 (offset % vertex_byte_size == 0 && stride % vertex_byte_size == 0);
3344 }
3345
3346 uint8_t get_fetch_data_format(isel_context *ctx, const ac_data_format_info *vtx_info,
3347 unsigned offset, unsigned stride, unsigned *channels)
3348 {
3349 if (!vtx_info->chan_byte_size) {
3350 *channels = vtx_info->num_channels;
3351 return vtx_info->chan_format;
3352 }
3353
3354 unsigned num_channels = *channels;
3355 if (!check_vertex_fetch_size(ctx, vtx_info, offset, stride, *channels)) {
3356 unsigned new_channels = num_channels + 1;
3357 /* first, assume more loads is worse and try using a larger data format */
3358 while (new_channels <= 4 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels)) {
3359 new_channels++;
3360 /* don't make the attribute potentially out-of-bounds */
3361 if (offset + new_channels * vtx_info->chan_byte_size > stride)
3362 new_channels = 5;
3363 }
3364
3365 if (new_channels == 5) {
3366 /* then try decreasing load size (at the cost of more loads) */
3367 new_channels = *channels;
3368 while (new_channels > 1 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels))
3369 new_channels--;
3370 }
3371
3372 if (new_channels < *channels)
3373 *channels = new_channels;
3374 num_channels = new_channels;
3375 }
3376
3377 switch (vtx_info->chan_format) {
3378 case V_008F0C_BUF_DATA_FORMAT_8:
3379 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_8, V_008F0C_BUF_DATA_FORMAT_8_8,
3380 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_8_8_8_8}[num_channels - 1];
3381 case V_008F0C_BUF_DATA_FORMAT_16:
3382 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_16, V_008F0C_BUF_DATA_FORMAT_16_16,
3383 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_16_16_16_16}[num_channels - 1];
3384 case V_008F0C_BUF_DATA_FORMAT_32:
3385 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_32, V_008F0C_BUF_DATA_FORMAT_32_32,
3386 V_008F0C_BUF_DATA_FORMAT_32_32_32, V_008F0C_BUF_DATA_FORMAT_32_32_32_32}[num_channels - 1];
3387 }
3388 unreachable("shouldn't reach here");
3389 return V_008F0C_BUF_DATA_FORMAT_INVALID;
3390 }
3391
3392 /* For 2_10_10_10 formats the alpha is handled as unsigned by pre-vega HW.
3393 * so we may need to fix it up. */
3394 Temp adjust_vertex_fetch_alpha(isel_context *ctx, unsigned adjustment, Temp alpha)
3395 {
3396 Builder bld(ctx->program, ctx->block);
3397
3398 if (adjustment == RADV_ALPHA_ADJUST_SSCALED)
3399 alpha = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), alpha);
3400
3401 /* For the integer-like cases, do a natural sign extension.
3402 *
3403 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
3404 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
3405 * exponent.
3406 */
3407 alpha = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(adjustment == RADV_ALPHA_ADJUST_SNORM ? 7u : 30u), alpha);
3408 alpha = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(30u), alpha);
3409
3410 /* Convert back to the right type. */
3411 if (adjustment == RADV_ALPHA_ADJUST_SNORM) {
3412 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
3413 Temp clamp = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0xbf800000u), alpha);
3414 alpha = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xbf800000u), alpha, clamp);
3415 } else if (adjustment == RADV_ALPHA_ADJUST_SSCALED) {
3416 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
3417 }
3418
3419 return alpha;
3420 }
3421
3422 void visit_load_input(isel_context *ctx, nir_intrinsic_instr *instr)
3423 {
3424 Builder bld(ctx->program, ctx->block);
3425 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3426 if (ctx->shader->info.stage == MESA_SHADER_VERTEX) {
3427
3428 nir_instr *off_instr = instr->src[0].ssa->parent_instr;
3429 if (off_instr->type != nir_instr_type_load_const) {
3430 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
3431 nir_print_instr(off_instr, stderr);
3432 fprintf(stderr, "\n");
3433 }
3434 uint32_t offset = nir_instr_as_load_const(off_instr)->value[0].u32;
3435
3436 Temp vertex_buffers = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->vertex_buffers));
3437
3438 unsigned location = nir_intrinsic_base(instr) / 4 - VERT_ATTRIB_GENERIC0 + offset;
3439 unsigned component = nir_intrinsic_component(instr);
3440 unsigned attrib_binding = ctx->options->key.vs.vertex_attribute_bindings[location];
3441 uint32_t attrib_offset = ctx->options->key.vs.vertex_attribute_offsets[location];
3442 uint32_t attrib_stride = ctx->options->key.vs.vertex_attribute_strides[location];
3443 unsigned attrib_format = ctx->options->key.vs.vertex_attribute_formats[location];
3444
3445 unsigned dfmt = attrib_format & 0xf;
3446 unsigned nfmt = (attrib_format >> 4) & 0x7;
3447 const struct ac_data_format_info *vtx_info = ac_get_data_format_info(dfmt);
3448
3449 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa) << component;
3450 unsigned num_channels = MIN2(util_last_bit(mask), vtx_info->num_channels);
3451 unsigned alpha_adjust = (ctx->options->key.vs.alpha_adjust >> (location * 2)) & 3;
3452 bool post_shuffle = ctx->options->key.vs.post_shuffle & (1 << location);
3453 if (post_shuffle)
3454 num_channels = MAX2(num_channels, 3);
3455
3456 Operand off = bld.copy(bld.def(s1), Operand(attrib_binding * 16u));
3457 Temp list = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), vertex_buffers, off);
3458
3459 Temp index;
3460 if (ctx->options->key.vs.instance_rate_inputs & (1u << location)) {
3461 uint32_t divisor = ctx->options->key.vs.instance_rate_divisors[location];
3462 Temp start_instance = get_arg(ctx, ctx->args->ac.start_instance);
3463 if (divisor) {
3464 Temp instance_id = get_arg(ctx, ctx->args->ac.instance_id);
3465 if (divisor != 1) {
3466 Temp divided = bld.tmp(v1);
3467 emit_v_div_u32(ctx, divided, as_vgpr(ctx, instance_id), divisor);
3468 index = bld.vadd32(bld.def(v1), start_instance, divided);
3469 } else {
3470 index = bld.vadd32(bld.def(v1), start_instance, instance_id);
3471 }
3472 } else {
3473 index = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), start_instance);
3474 }
3475 } else {
3476 index = bld.vadd32(bld.def(v1),
3477 get_arg(ctx, ctx->args->ac.base_vertex),
3478 get_arg(ctx, ctx->args->ac.vertex_id));
3479 }
3480
3481 Temp channels[num_channels];
3482 unsigned channel_start = 0;
3483 bool direct_fetch = false;
3484
3485 /* skip unused channels at the start */
3486 if (vtx_info->chan_byte_size && !post_shuffle) {
3487 channel_start = ffs(mask) - 1;
3488 for (unsigned i = 0; i < channel_start; i++)
3489 channels[i] = Temp(0, s1);
3490 } else if (vtx_info->chan_byte_size && post_shuffle && !(mask & 0x8)) {
3491 num_channels = 3 - (ffs(mask) - 1);
3492 }
3493
3494 /* load channels */
3495 while (channel_start < num_channels) {
3496 unsigned fetch_size = num_channels - channel_start;
3497 unsigned fetch_offset = attrib_offset + channel_start * vtx_info->chan_byte_size;
3498 bool expanded = false;
3499
3500 /* use MUBUF when possible to avoid possible alignment issues */
3501 /* TODO: we could use SDWA to unpack 8/16-bit attributes without extra instructions */
3502 bool use_mubuf = (nfmt == V_008F0C_BUF_NUM_FORMAT_FLOAT ||
3503 nfmt == V_008F0C_BUF_NUM_FORMAT_UINT ||
3504 nfmt == V_008F0C_BUF_NUM_FORMAT_SINT) &&
3505 vtx_info->chan_byte_size == 4;
3506 unsigned fetch_dfmt = V_008F0C_BUF_DATA_FORMAT_INVALID;
3507 if (!use_mubuf) {
3508 fetch_dfmt = get_fetch_data_format(ctx, vtx_info, fetch_offset, attrib_stride, &fetch_size);
3509 } else {
3510 if (fetch_size == 3 && ctx->options->chip_class == GFX6) {
3511 /* GFX6 only supports loading vec3 with MTBUF, expand to vec4. */
3512 fetch_size = 4;
3513 expanded = true;
3514 }
3515 }
3516
3517 Temp fetch_index = index;
3518 if (attrib_stride != 0 && fetch_offset > attrib_stride) {
3519 fetch_index = bld.vadd32(bld.def(v1), Operand(fetch_offset / attrib_stride), fetch_index);
3520 fetch_offset = fetch_offset % attrib_stride;
3521 }
3522
3523 Operand soffset(0u);
3524 if (fetch_offset >= 4096) {
3525 soffset = bld.copy(bld.def(s1), Operand(fetch_offset / 4096 * 4096));
3526 fetch_offset %= 4096;
3527 }
3528
3529 aco_opcode opcode;
3530 switch (fetch_size) {
3531 case 1:
3532 opcode = use_mubuf ? aco_opcode::buffer_load_dword : aco_opcode::tbuffer_load_format_x;
3533 break;
3534 case 2:
3535 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx2 : aco_opcode::tbuffer_load_format_xy;
3536 break;
3537 case 3:
3538 assert(ctx->options->chip_class >= GFX7 ||
3539 (!use_mubuf && ctx->options->chip_class == GFX6));
3540 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx3 : aco_opcode::tbuffer_load_format_xyz;
3541 break;
3542 case 4:
3543 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx4 : aco_opcode::tbuffer_load_format_xyzw;
3544 break;
3545 default:
3546 unreachable("Unimplemented load_input vector size");
3547 }
3548
3549 Temp fetch_dst;
3550 if (channel_start == 0 && fetch_size == dst.size() && !post_shuffle &&
3551 !expanded && (alpha_adjust == RADV_ALPHA_ADJUST_NONE ||
3552 num_channels <= 3)) {
3553 direct_fetch = true;
3554 fetch_dst = dst;
3555 } else {
3556 fetch_dst = bld.tmp(RegType::vgpr, fetch_size);
3557 }
3558
3559 if (use_mubuf) {
3560 Instruction *mubuf = bld.mubuf(opcode,
3561 Definition(fetch_dst), list, fetch_index, soffset,
3562 fetch_offset, false, true).instr;
3563 static_cast<MUBUF_instruction*>(mubuf)->can_reorder = true;
3564 } else {
3565 Instruction *mtbuf = bld.mtbuf(opcode,
3566 Definition(fetch_dst), list, fetch_index, soffset,
3567 fetch_dfmt, nfmt, fetch_offset, false, true).instr;
3568 static_cast<MTBUF_instruction*>(mtbuf)->can_reorder = true;
3569 }
3570
3571 emit_split_vector(ctx, fetch_dst, fetch_dst.size());
3572
3573 if (fetch_size == 1) {
3574 channels[channel_start] = fetch_dst;
3575 } else {
3576 for (unsigned i = 0; i < MIN2(fetch_size, num_channels - channel_start); i++)
3577 channels[channel_start + i] = emit_extract_vector(ctx, fetch_dst, i, v1);
3578 }
3579
3580 channel_start += fetch_size;
3581 }
3582
3583 if (!direct_fetch) {
3584 bool is_float = nfmt != V_008F0C_BUF_NUM_FORMAT_UINT &&
3585 nfmt != V_008F0C_BUF_NUM_FORMAT_SINT;
3586
3587 static const unsigned swizzle_normal[4] = {0, 1, 2, 3};
3588 static const unsigned swizzle_post_shuffle[4] = {2, 1, 0, 3};
3589 const unsigned *swizzle = post_shuffle ? swizzle_post_shuffle : swizzle_normal;
3590
3591 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
3592 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
3593 unsigned num_temp = 0;
3594 for (unsigned i = 0; i < dst.size(); i++) {
3595 unsigned idx = i + component;
3596 if (swizzle[idx] < num_channels && channels[swizzle[idx]].id()) {
3597 Temp channel = channels[swizzle[idx]];
3598 if (idx == 3 && alpha_adjust != RADV_ALPHA_ADJUST_NONE)
3599 channel = adjust_vertex_fetch_alpha(ctx, alpha_adjust, channel);
3600 vec->operands[i] = Operand(channel);
3601
3602 num_temp++;
3603 elems[i] = channel;
3604 } else if (is_float && idx == 3) {
3605 vec->operands[i] = Operand(0x3f800000u);
3606 } else if (!is_float && idx == 3) {
3607 vec->operands[i] = Operand(1u);
3608 } else {
3609 vec->operands[i] = Operand(0u);
3610 }
3611 }
3612 vec->definitions[0] = Definition(dst);
3613 ctx->block->instructions.emplace_back(std::move(vec));
3614 emit_split_vector(ctx, dst, dst.size());
3615
3616 if (num_temp == dst.size())
3617 ctx->allocated_vec.emplace(dst.id(), elems);
3618 }
3619 } else if (ctx->shader->info.stage == MESA_SHADER_FRAGMENT) {
3620 unsigned offset_idx = instr->intrinsic == nir_intrinsic_load_input ? 0 : 1;
3621 nir_instr *off_instr = instr->src[offset_idx].ssa->parent_instr;
3622 if (off_instr->type != nir_instr_type_load_const ||
3623 nir_instr_as_load_const(off_instr)->value[0].u32 != 0) {
3624 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
3625 nir_print_instr(off_instr, stderr);
3626 fprintf(stderr, "\n");
3627 }
3628
3629 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
3630 nir_const_value* offset = nir_src_as_const_value(instr->src[offset_idx]);
3631 if (offset) {
3632 assert(offset->u32 == 0);
3633 } else {
3634 /* the lower 15bit of the prim_mask contain the offset into LDS
3635 * while the upper bits contain the number of prims */
3636 Temp offset_src = get_ssa_temp(ctx, instr->src[offset_idx].ssa);
3637 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
3638 Builder bld(ctx->program, ctx->block);
3639 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
3640 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
3641 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
3642 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
3643 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
3644 }
3645
3646 unsigned idx = nir_intrinsic_base(instr);
3647 unsigned component = nir_intrinsic_component(instr);
3648 unsigned vertex_id = 2; /* P0 */
3649
3650 if (instr->intrinsic == nir_intrinsic_load_input_vertex) {
3651 nir_const_value* src0 = nir_src_as_const_value(instr->src[0]);
3652 switch (src0->u32) {
3653 case 0:
3654 vertex_id = 2; /* P0 */
3655 break;
3656 case 1:
3657 vertex_id = 0; /* P10 */
3658 break;
3659 case 2:
3660 vertex_id = 1; /* P20 */
3661 break;
3662 default:
3663 unreachable("invalid vertex index");
3664 }
3665 }
3666
3667 if (dst.size() == 1) {
3668 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(dst), Operand(vertex_id), bld.m0(prim_mask), idx, component);
3669 } else {
3670 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
3671 for (unsigned i = 0; i < dst.size(); i++)
3672 vec->operands[i] = bld.vintrp(aco_opcode::v_interp_mov_f32, bld.def(v1), Operand(vertex_id), bld.m0(prim_mask), idx, component + i);
3673 vec->definitions[0] = Definition(dst);
3674 bld.insert(std::move(vec));
3675 }
3676
3677 } else {
3678 unreachable("Shader stage not implemented");
3679 }
3680 }
3681
3682 void visit_load_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
3683 {
3684 assert(ctx->stage == vertex_geometry_gs || ctx->stage == geometry_gs);
3685 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
3686
3687 Builder bld(ctx->program, ctx->block);
3688 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3689
3690 Temp offset = Temp();
3691 if (instr->src[0].ssa->parent_instr->type != nir_instr_type_load_const) {
3692 /* better code could be created, but this case probably doesn't happen
3693 * much in practice */
3694 Temp indirect_vertex = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
3695 for (unsigned i = 0; i < ctx->shader->info.gs.vertices_in; i++) {
3696 Temp elem;
3697 if (ctx->stage == vertex_geometry_gs) {
3698 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i / 2u * 2u]);
3699 if (i % 2u)
3700 elem = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), elem);
3701 } else {
3702 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i]);
3703 }
3704 if (offset.id()) {
3705 Temp cond = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(s2)),
3706 Operand(i), indirect_vertex);
3707 offset = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), offset, elem, cond);
3708 } else {
3709 offset = elem;
3710 }
3711 }
3712 if (ctx->stage == vertex_geometry_gs)
3713 offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu), offset);
3714 } else {
3715 unsigned vertex = nir_src_as_uint(instr->src[0]);
3716 if (ctx->stage == vertex_geometry_gs)
3717 offset = bld.vop3(
3718 aco_opcode::v_bfe_u32, bld.def(v1), get_arg(ctx, ctx->args->gs_vtx_offset[vertex / 2u * 2u]),
3719 Operand((vertex % 2u) * 16u), Operand(16u));
3720 else
3721 offset = get_arg(ctx, ctx->args->gs_vtx_offset[vertex]);
3722 }
3723
3724 unsigned const_offset = nir_intrinsic_base(instr);
3725 const_offset += nir_intrinsic_component(instr);
3726
3727 nir_instr *off_instr = instr->src[1].ssa->parent_instr;
3728 if (off_instr->type != nir_instr_type_load_const) {
3729 Temp indirect_offset = get_ssa_temp(ctx, instr->src[1].ssa);
3730 offset = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u),
3731 bld.vadd32(bld.def(v1), indirect_offset, offset));
3732 } else {
3733 const_offset += nir_instr_as_load_const(off_instr)->value[0].u32 * 4u;
3734 }
3735 const_offset *= 4u;
3736
3737 offset = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), offset);
3738
3739 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
3740 if (ctx->stage == geometry_gs) {
3741 Temp esgs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_GS * 16u));
3742
3743 const_offset *= ctx->program->wave_size;
3744
3745 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
3746 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(
3747 aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.ssa.num_components, 1)};
3748 for (unsigned i = 0; i < instr->dest.ssa.num_components; i++) {
3749 Temp subelems[2];
3750 for (unsigned j = 0; j < elem_size_bytes / 4; j++) {
3751 Operand soffset(0u);
3752 if (const_offset >= 4096u)
3753 soffset = bld.copy(bld.def(s1), Operand(const_offset / 4096u * 4096u));
3754
3755 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dword, Format::MUBUF, 3, 1)};
3756 mubuf->definitions[0] = bld.def(v1);
3757 subelems[j] = mubuf->definitions[0].getTemp();
3758 mubuf->operands[0] = Operand(esgs_ring);
3759 mubuf->operands[1] = Operand(offset);
3760 mubuf->operands[2] = Operand(soffset);
3761 mubuf->offen = true;
3762 mubuf->offset = const_offset % 4096u;
3763 mubuf->glc = true;
3764 mubuf->dlc = ctx->options->chip_class >= GFX10;
3765 mubuf->barrier = barrier_none;
3766 mubuf->can_reorder = true;
3767 bld.insert(std::move(mubuf));
3768
3769 const_offset += ctx->program->wave_size * 4u;
3770 }
3771
3772 if (elem_size_bytes == 4)
3773 elems[i] = subelems[0];
3774 else
3775 elems[i] = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), subelems[0], subelems[1]);
3776 vec->operands[i] = Operand(elems[i]);
3777 }
3778 vec->definitions[0] = Definition(dst);
3779 ctx->block->instructions.emplace_back(std::move(vec));
3780 ctx->allocated_vec.emplace(dst.id(), elems);
3781 } else {
3782 unsigned align = calculate_lds_alignment(ctx, const_offset);
3783 load_lds(ctx, elem_size_bytes, dst, offset, const_offset, align);
3784 }
3785 }
3786
3787 void visit_load_tess_coord(isel_context *ctx, nir_intrinsic_instr *instr)
3788 {
3789 assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
3790
3791 Builder bld(ctx->program, ctx->block);
3792 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3793
3794 Operand tes_u(get_arg(ctx, ctx->args->tes_u));
3795 Operand tes_v(get_arg(ctx, ctx->args->tes_v));
3796 Operand tes_w(0u);
3797
3798 if (ctx->shader->info.tess.primitive_mode == GL_TRIANGLES) {
3799 Temp tmp = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), tes_u, tes_v);
3800 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0x3f800000u /* 1.0f */), tmp);
3801 tes_w = Operand(tmp);
3802 }
3803
3804 Temp tess_coord = bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tes_u, tes_v, tes_w);
3805 emit_split_vector(ctx, tess_coord, 3);
3806 }
3807
3808 Temp load_desc_ptr(isel_context *ctx, unsigned desc_set)
3809 {
3810 if (ctx->program->info->need_indirect_descriptor_sets) {
3811 Builder bld(ctx->program, ctx->block);
3812 Temp ptr64 = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->descriptor_sets[0]));
3813 Operand off = bld.copy(bld.def(s1), Operand(desc_set << 2));
3814 return bld.smem(aco_opcode::s_load_dword, bld.def(s1), ptr64, off);//, false, false, false);
3815 }
3816
3817 return get_arg(ctx, ctx->args->descriptor_sets[desc_set]);
3818 }
3819
3820
3821 void visit_load_resource(isel_context *ctx, nir_intrinsic_instr *instr)
3822 {
3823 Builder bld(ctx->program, ctx->block);
3824 Temp index = get_ssa_temp(ctx, instr->src[0].ssa);
3825 if (!ctx->divergent_vals[instr->dest.ssa.index])
3826 index = bld.as_uniform(index);
3827 unsigned desc_set = nir_intrinsic_desc_set(instr);
3828 unsigned binding = nir_intrinsic_binding(instr);
3829
3830 Temp desc_ptr;
3831 radv_pipeline_layout *pipeline_layout = ctx->options->layout;
3832 radv_descriptor_set_layout *layout = pipeline_layout->set[desc_set].layout;
3833 unsigned offset = layout->binding[binding].offset;
3834 unsigned stride;
3835 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
3836 layout->binding[binding].type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
3837 unsigned idx = pipeline_layout->set[desc_set].dynamic_offset_start + layout->binding[binding].dynamic_offset_offset;
3838 desc_ptr = get_arg(ctx, ctx->args->ac.push_constants);
3839 offset = pipeline_layout->push_constant_size + 16 * idx;
3840 stride = 16;
3841 } else {
3842 desc_ptr = load_desc_ptr(ctx, desc_set);
3843 stride = layout->binding[binding].size;
3844 }
3845
3846 nir_const_value* nir_const_index = nir_src_as_const_value(instr->src[0]);
3847 unsigned const_index = nir_const_index ? nir_const_index->u32 : 0;
3848 if (stride != 1) {
3849 if (nir_const_index) {
3850 const_index = const_index * stride;
3851 } else if (index.type() == RegType::vgpr) {
3852 bool index24bit = layout->binding[binding].array_size <= 0x1000000;
3853 index = bld.v_mul_imm(bld.def(v1), index, stride, index24bit);
3854 } else {
3855 index = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), Operand(index));
3856 }
3857 }
3858 if (offset) {
3859 if (nir_const_index) {
3860 const_index = const_index + offset;
3861 } else if (index.type() == RegType::vgpr) {
3862 index = bld.vadd32(bld.def(v1), Operand(offset), index);
3863 } else {
3864 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), Operand(index));
3865 }
3866 }
3867
3868 if (nir_const_index && const_index == 0) {
3869 index = desc_ptr;
3870 } else if (index.type() == RegType::vgpr) {
3871 index = bld.vadd32(bld.def(v1),
3872 nir_const_index ? Operand(const_index) : Operand(index),
3873 Operand(desc_ptr));
3874 } else {
3875 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
3876 nir_const_index ? Operand(const_index) : Operand(index),
3877 Operand(desc_ptr));
3878 }
3879
3880 bld.copy(Definition(get_ssa_temp(ctx, &instr->dest.ssa)), index);
3881 }
3882
3883 void load_buffer(isel_context *ctx, unsigned num_components, Temp dst,
3884 Temp rsrc, Temp offset, bool glc=false, bool readonly=true)
3885 {
3886 Builder bld(ctx->program, ctx->block);
3887
3888 unsigned num_bytes = dst.size() * 4;
3889 bool dlc = glc && ctx->options->chip_class >= GFX10;
3890
3891 aco_opcode op;
3892 if (dst.type() == RegType::vgpr || (ctx->options->chip_class < GFX8 && !readonly)) {
3893 Operand vaddr = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
3894 Operand soffset = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
3895 unsigned const_offset = 0;
3896
3897 Temp lower = Temp();
3898 if (num_bytes > 16) {
3899 assert(num_components == 3 || num_components == 4);
3900 op = aco_opcode::buffer_load_dwordx4;
3901 lower = bld.tmp(v4);
3902 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
3903 mubuf->definitions[0] = Definition(lower);
3904 mubuf->operands[0] = Operand(rsrc);
3905 mubuf->operands[1] = vaddr;
3906 mubuf->operands[2] = soffset;
3907 mubuf->offen = (offset.type() == RegType::vgpr);
3908 mubuf->glc = glc;
3909 mubuf->dlc = dlc;
3910 mubuf->barrier = readonly ? barrier_none : barrier_buffer;
3911 mubuf->can_reorder = readonly;
3912 bld.insert(std::move(mubuf));
3913 emit_split_vector(ctx, lower, 2);
3914 num_bytes -= 16;
3915 const_offset = 16;
3916 } else if (num_bytes == 12 && ctx->options->chip_class == GFX6) {
3917 /* GFX6 doesn't support loading vec3, expand to vec4. */
3918 num_bytes = 16;
3919 }
3920
3921 switch (num_bytes) {
3922 case 4:
3923 op = aco_opcode::buffer_load_dword;
3924 break;
3925 case 8:
3926 op = aco_opcode::buffer_load_dwordx2;
3927 break;
3928 case 12:
3929 assert(ctx->options->chip_class > GFX6);
3930 op = aco_opcode::buffer_load_dwordx3;
3931 break;
3932 case 16:
3933 op = aco_opcode::buffer_load_dwordx4;
3934 break;
3935 default:
3936 unreachable("Load SSBO not implemented for this size.");
3937 }
3938 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
3939 mubuf->operands[0] = Operand(rsrc);
3940 mubuf->operands[1] = vaddr;
3941 mubuf->operands[2] = soffset;
3942 mubuf->offen = (offset.type() == RegType::vgpr);
3943 mubuf->glc = glc;
3944 mubuf->dlc = dlc;
3945 mubuf->barrier = readonly ? barrier_none : barrier_buffer;
3946 mubuf->can_reorder = readonly;
3947 mubuf->offset = const_offset;
3948 aco_ptr<Instruction> instr = std::move(mubuf);
3949
3950 if (dst.size() > 4) {
3951 assert(lower != Temp());
3952 Temp upper = bld.tmp(RegType::vgpr, dst.size() - lower.size());
3953 instr->definitions[0] = Definition(upper);
3954 bld.insert(std::move(instr));
3955 if (dst.size() == 8)
3956 emit_split_vector(ctx, upper, 2);
3957 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size() / 2, 1));
3958 instr->operands[0] = Operand(emit_extract_vector(ctx, lower, 0, v2));
3959 instr->operands[1] = Operand(emit_extract_vector(ctx, lower, 1, v2));
3960 instr->operands[2] = Operand(emit_extract_vector(ctx, upper, 0, v2));
3961 if (dst.size() == 8)
3962 instr->operands[3] = Operand(emit_extract_vector(ctx, upper, 1, v2));
3963 } else if (dst.size() == 3 && ctx->options->chip_class == GFX6) {
3964 Temp vec = bld.tmp(v4);
3965 instr->definitions[0] = Definition(vec);
3966 bld.insert(std::move(instr));
3967 emit_split_vector(ctx, vec, 4);
3968
3969 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 3, 1));
3970 instr->operands[0] = Operand(emit_extract_vector(ctx, vec, 0, v1));
3971 instr->operands[1] = Operand(emit_extract_vector(ctx, vec, 1, v1));
3972 instr->operands[2] = Operand(emit_extract_vector(ctx, vec, 2, v1));
3973 }
3974
3975 if (dst.type() == RegType::sgpr) {
3976 Temp vec = bld.tmp(RegType::vgpr, dst.size());
3977 instr->definitions[0] = Definition(vec);
3978 bld.insert(std::move(instr));
3979 expand_vector(ctx, vec, dst, num_components, (1 << num_components) - 1);
3980 } else {
3981 instr->definitions[0] = Definition(dst);
3982 bld.insert(std::move(instr));
3983 emit_split_vector(ctx, dst, num_components);
3984 }
3985 } else {
3986 switch (num_bytes) {
3987 case 4:
3988 op = aco_opcode::s_buffer_load_dword;
3989 break;
3990 case 8:
3991 op = aco_opcode::s_buffer_load_dwordx2;
3992 break;
3993 case 12:
3994 case 16:
3995 op = aco_opcode::s_buffer_load_dwordx4;
3996 break;
3997 case 24:
3998 case 32:
3999 op = aco_opcode::s_buffer_load_dwordx8;
4000 break;
4001 default:
4002 unreachable("Load SSBO not implemented for this size.");
4003 }
4004 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
4005 load->operands[0] = Operand(rsrc);
4006 load->operands[1] = Operand(bld.as_uniform(offset));
4007 assert(load->operands[1].getTemp().type() == RegType::sgpr);
4008 load->definitions[0] = Definition(dst);
4009 load->glc = glc;
4010 load->dlc = dlc;
4011 load->barrier = readonly ? barrier_none : barrier_buffer;
4012 load->can_reorder = false; // FIXME: currently, it doesn't seem beneficial due to how our scheduler works
4013 assert(ctx->options->chip_class >= GFX8 || !glc);
4014
4015 /* trim vector */
4016 if (dst.size() == 3) {
4017 Temp vec = bld.tmp(s4);
4018 load->definitions[0] = Definition(vec);
4019 bld.insert(std::move(load));
4020 emit_split_vector(ctx, vec, 4);
4021
4022 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4023 emit_extract_vector(ctx, vec, 0, s1),
4024 emit_extract_vector(ctx, vec, 1, s1),
4025 emit_extract_vector(ctx, vec, 2, s1));
4026 } else if (dst.size() == 6) {
4027 Temp vec = bld.tmp(s8);
4028 load->definitions[0] = Definition(vec);
4029 bld.insert(std::move(load));
4030 emit_split_vector(ctx, vec, 4);
4031
4032 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4033 emit_extract_vector(ctx, vec, 0, s2),
4034 emit_extract_vector(ctx, vec, 1, s2),
4035 emit_extract_vector(ctx, vec, 2, s2));
4036 } else {
4037 bld.insert(std::move(load));
4038 }
4039 emit_split_vector(ctx, dst, num_components);
4040 }
4041 }
4042
4043 void visit_load_ubo(isel_context *ctx, nir_intrinsic_instr *instr)
4044 {
4045 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4046 Temp rsrc = get_ssa_temp(ctx, instr->src[0].ssa);
4047
4048 Builder bld(ctx->program, ctx->block);
4049
4050 nir_intrinsic_instr* idx_instr = nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
4051 unsigned desc_set = nir_intrinsic_desc_set(idx_instr);
4052 unsigned binding = nir_intrinsic_binding(idx_instr);
4053 radv_descriptor_set_layout *layout = ctx->options->layout->set[desc_set].layout;
4054
4055 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
4056 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
4057 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
4058 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
4059 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
4060 if (ctx->options->chip_class >= GFX10) {
4061 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
4062 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
4063 S_008F0C_RESOURCE_LEVEL(1);
4064 } else {
4065 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
4066 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
4067 }
4068 Temp upper_dwords = bld.pseudo(aco_opcode::p_create_vector, bld.def(s3),
4069 Operand(S_008F04_BASE_ADDRESS_HI(ctx->options->address32_hi)),
4070 Operand(0xFFFFFFFFu),
4071 Operand(desc_type));
4072 rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
4073 rsrc, upper_dwords);
4074 } else {
4075 rsrc = convert_pointer_to_64_bit(ctx, rsrc);
4076 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
4077 }
4078
4079 load_buffer(ctx, instr->num_components, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa));
4080 }
4081
4082 void visit_load_push_constant(isel_context *ctx, nir_intrinsic_instr *instr)
4083 {
4084 Builder bld(ctx->program, ctx->block);
4085 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4086
4087 unsigned offset = nir_intrinsic_base(instr);
4088 nir_const_value *index_cv = nir_src_as_const_value(instr->src[0]);
4089 if (index_cv && instr->dest.ssa.bit_size == 32) {
4090
4091 unsigned count = instr->dest.ssa.num_components;
4092 unsigned start = (offset + index_cv->u32) / 4u;
4093 start -= ctx->args->ac.base_inline_push_consts;
4094 if (start + count <= ctx->args->ac.num_inline_push_consts) {
4095 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
4096 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
4097 for (unsigned i = 0; i < count; ++i) {
4098 elems[i] = get_arg(ctx, ctx->args->ac.inline_push_consts[start + i]);
4099 vec->operands[i] = Operand{elems[i]};
4100 }
4101 vec->definitions[0] = Definition(dst);
4102 ctx->block->instructions.emplace_back(std::move(vec));
4103 ctx->allocated_vec.emplace(dst.id(), elems);
4104 return;
4105 }
4106 }
4107
4108 Temp index = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa));
4109 if (offset != 0) // TODO check if index != 0 as well
4110 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), index);
4111 Temp ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->ac.push_constants));
4112 Temp vec = dst;
4113 bool trim = false;
4114 aco_opcode op;
4115
4116 switch (dst.size()) {
4117 case 1:
4118 op = aco_opcode::s_load_dword;
4119 break;
4120 case 2:
4121 op = aco_opcode::s_load_dwordx2;
4122 break;
4123 case 3:
4124 vec = bld.tmp(s4);
4125 trim = true;
4126 case 4:
4127 op = aco_opcode::s_load_dwordx4;
4128 break;
4129 case 6:
4130 vec = bld.tmp(s8);
4131 trim = true;
4132 case 8:
4133 op = aco_opcode::s_load_dwordx8;
4134 break;
4135 default:
4136 unreachable("unimplemented or forbidden load_push_constant.");
4137 }
4138
4139 bld.smem(op, Definition(vec), ptr, index);
4140
4141 if (trim) {
4142 emit_split_vector(ctx, vec, 4);
4143 RegClass rc = dst.size() == 3 ? s1 : s2;
4144 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4145 emit_extract_vector(ctx, vec, 0, rc),
4146 emit_extract_vector(ctx, vec, 1, rc),
4147 emit_extract_vector(ctx, vec, 2, rc));
4148
4149 }
4150 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
4151 }
4152
4153 void visit_load_constant(isel_context *ctx, nir_intrinsic_instr *instr)
4154 {
4155 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4156
4157 Builder bld(ctx->program, ctx->block);
4158
4159 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
4160 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
4161 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
4162 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
4163 if (ctx->options->chip_class >= GFX10) {
4164 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
4165 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
4166 S_008F0C_RESOURCE_LEVEL(1);
4167 } else {
4168 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
4169 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
4170 }
4171
4172 unsigned base = nir_intrinsic_base(instr);
4173 unsigned range = nir_intrinsic_range(instr);
4174
4175 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
4176 if (base && offset.type() == RegType::sgpr)
4177 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), offset, Operand(base));
4178 else if (base && offset.type() == RegType::vgpr)
4179 offset = bld.vadd32(bld.def(v1), Operand(base), offset);
4180
4181 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
4182 bld.sop1(aco_opcode::p_constaddr, bld.def(s2), bld.def(s1, scc), Operand(ctx->constant_data_offset)),
4183 Operand(MIN2(base + range, ctx->shader->constant_data_size)),
4184 Operand(desc_type));
4185
4186 load_buffer(ctx, instr->num_components, dst, rsrc, offset);
4187 }
4188
4189 void visit_discard_if(isel_context *ctx, nir_intrinsic_instr *instr)
4190 {
4191 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
4192 ctx->cf_info.exec_potentially_empty_discard = true;
4193
4194 ctx->program->needs_exact = true;
4195
4196 // TODO: optimize uniform conditions
4197 Builder bld(ctx->program, ctx->block);
4198 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
4199 assert(src.regClass() == bld.lm);
4200 src = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
4201 bld.pseudo(aco_opcode::p_discard_if, src);
4202 ctx->block->kind |= block_kind_uses_discard_if;
4203 return;
4204 }
4205
4206 void visit_discard(isel_context* ctx, nir_intrinsic_instr *instr)
4207 {
4208 Builder bld(ctx->program, ctx->block);
4209
4210 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
4211 ctx->cf_info.exec_potentially_empty_discard = true;
4212
4213 bool divergent = ctx->cf_info.parent_if.is_divergent ||
4214 ctx->cf_info.parent_loop.has_divergent_continue;
4215
4216 if (ctx->block->loop_nest_depth &&
4217 ((nir_instr_is_last(&instr->instr) && !divergent) || divergent)) {
4218 /* we handle discards the same way as jump instructions */
4219 append_logical_end(ctx->block);
4220
4221 /* in loops, discard behaves like break */
4222 Block *linear_target = ctx->cf_info.parent_loop.exit;
4223 ctx->block->kind |= block_kind_discard;
4224
4225 if (!divergent) {
4226 /* uniform discard - loop ends here */
4227 assert(nir_instr_is_last(&instr->instr));
4228 ctx->block->kind |= block_kind_uniform;
4229 ctx->cf_info.has_branch = true;
4230 bld.branch(aco_opcode::p_branch);
4231 add_linear_edge(ctx->block->index, linear_target);
4232 return;
4233 }
4234
4235 /* we add a break right behind the discard() instructions */
4236 ctx->block->kind |= block_kind_break;
4237 unsigned idx = ctx->block->index;
4238
4239 /* remove critical edges from linear CFG */
4240 bld.branch(aco_opcode::p_branch);
4241 Block* break_block = ctx->program->create_and_insert_block();
4242 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
4243 break_block->kind |= block_kind_uniform;
4244 add_linear_edge(idx, break_block);
4245 add_linear_edge(break_block->index, linear_target);
4246 bld.reset(break_block);
4247 bld.branch(aco_opcode::p_branch);
4248
4249 Block* continue_block = ctx->program->create_and_insert_block();
4250 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
4251 add_linear_edge(idx, continue_block);
4252 append_logical_start(continue_block);
4253 ctx->block = continue_block;
4254
4255 return;
4256 }
4257
4258 /* it can currently happen that NIR doesn't remove the unreachable code */
4259 if (!nir_instr_is_last(&instr->instr)) {
4260 ctx->program->needs_exact = true;
4261 /* save exec somewhere temporarily so that it doesn't get
4262 * overwritten before the discard from outer exec masks */
4263 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), Operand(0xFFFFFFFF), Operand(exec, bld.lm));
4264 bld.pseudo(aco_opcode::p_discard_if, cond);
4265 ctx->block->kind |= block_kind_uses_discard_if;
4266 return;
4267 }
4268
4269 /* This condition is incorrect for uniformly branched discards in a loop
4270 * predicated by a divergent condition, but the above code catches that case
4271 * and the discard would end up turning into a discard_if.
4272 * For example:
4273 * if (divergent) {
4274 * while (...) {
4275 * if (uniform) {
4276 * discard;
4277 * }
4278 * }
4279 * }
4280 */
4281 if (!ctx->cf_info.parent_if.is_divergent) {
4282 /* program just ends here */
4283 ctx->block->kind |= block_kind_uniform;
4284 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
4285 0 /* enabled mask */, 9 /* dest */,
4286 false /* compressed */, true/* done */, true /* valid mask */);
4287 bld.sopp(aco_opcode::s_endpgm);
4288 // TODO: it will potentially be followed by a branch which is dead code to sanitize NIR phis
4289 } else {
4290 ctx->block->kind |= block_kind_discard;
4291 /* branch and linear edge is added by visit_if() */
4292 }
4293 }
4294
4295 enum aco_descriptor_type {
4296 ACO_DESC_IMAGE,
4297 ACO_DESC_FMASK,
4298 ACO_DESC_SAMPLER,
4299 ACO_DESC_BUFFER,
4300 ACO_DESC_PLANE_0,
4301 ACO_DESC_PLANE_1,
4302 ACO_DESC_PLANE_2,
4303 };
4304
4305 static bool
4306 should_declare_array(isel_context *ctx, enum glsl_sampler_dim sampler_dim, bool is_array) {
4307 if (sampler_dim == GLSL_SAMPLER_DIM_BUF)
4308 return false;
4309 ac_image_dim dim = ac_get_sampler_dim(ctx->options->chip_class, sampler_dim, is_array);
4310 return dim == ac_image_cube ||
4311 dim == ac_image_1darray ||
4312 dim == ac_image_2darray ||
4313 dim == ac_image_2darraymsaa;
4314 }
4315
4316 Temp get_sampler_desc(isel_context *ctx, nir_deref_instr *deref_instr,
4317 enum aco_descriptor_type desc_type,
4318 const nir_tex_instr *tex_instr, bool image, bool write)
4319 {
4320 /* FIXME: we should lower the deref with some new nir_intrinsic_load_desc
4321 std::unordered_map<uint64_t, Temp>::iterator it = ctx->tex_desc.find((uint64_t) desc_type << 32 | deref_instr->dest.ssa.index);
4322 if (it != ctx->tex_desc.end())
4323 return it->second;
4324 */
4325 Temp index = Temp();
4326 bool index_set = false;
4327 unsigned constant_index = 0;
4328 unsigned descriptor_set;
4329 unsigned base_index;
4330 Builder bld(ctx->program, ctx->block);
4331
4332 if (!deref_instr) {
4333 assert(tex_instr && !image);
4334 descriptor_set = 0;
4335 base_index = tex_instr->sampler_index;
4336 } else {
4337 while(deref_instr->deref_type != nir_deref_type_var) {
4338 unsigned array_size = glsl_get_aoa_size(deref_instr->type);
4339 if (!array_size)
4340 array_size = 1;
4341
4342 assert(deref_instr->deref_type == nir_deref_type_array);
4343 nir_const_value *const_value = nir_src_as_const_value(deref_instr->arr.index);
4344 if (const_value) {
4345 constant_index += array_size * const_value->u32;
4346 } else {
4347 Temp indirect = get_ssa_temp(ctx, deref_instr->arr.index.ssa);
4348 if (indirect.type() == RegType::vgpr)
4349 indirect = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), indirect);
4350
4351 if (array_size != 1)
4352 indirect = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(array_size), indirect);
4353
4354 if (!index_set) {
4355 index = indirect;
4356 index_set = true;
4357 } else {
4358 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), index, indirect);
4359 }
4360 }
4361
4362 deref_instr = nir_src_as_deref(deref_instr->parent);
4363 }
4364 descriptor_set = deref_instr->var->data.descriptor_set;
4365 base_index = deref_instr->var->data.binding;
4366 }
4367
4368 Temp list = load_desc_ptr(ctx, descriptor_set);
4369 list = convert_pointer_to_64_bit(ctx, list);
4370
4371 struct radv_descriptor_set_layout *layout = ctx->options->layout->set[descriptor_set].layout;
4372 struct radv_descriptor_set_binding_layout *binding = layout->binding + base_index;
4373 unsigned offset = binding->offset;
4374 unsigned stride = binding->size;
4375 aco_opcode opcode;
4376 RegClass type;
4377
4378 assert(base_index < layout->binding_count);
4379
4380 switch (desc_type) {
4381 case ACO_DESC_IMAGE:
4382 type = s8;
4383 opcode = aco_opcode::s_load_dwordx8;
4384 break;
4385 case ACO_DESC_FMASK:
4386 type = s8;
4387 opcode = aco_opcode::s_load_dwordx8;
4388 offset += 32;
4389 break;
4390 case ACO_DESC_SAMPLER:
4391 type = s4;
4392 opcode = aco_opcode::s_load_dwordx4;
4393 if (binding->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
4394 offset += radv_combined_image_descriptor_sampler_offset(binding);
4395 break;
4396 case ACO_DESC_BUFFER:
4397 type = s4;
4398 opcode = aco_opcode::s_load_dwordx4;
4399 break;
4400 case ACO_DESC_PLANE_0:
4401 case ACO_DESC_PLANE_1:
4402 type = s8;
4403 opcode = aco_opcode::s_load_dwordx8;
4404 offset += 32 * (desc_type - ACO_DESC_PLANE_0);
4405 break;
4406 case ACO_DESC_PLANE_2:
4407 type = s4;
4408 opcode = aco_opcode::s_load_dwordx4;
4409 offset += 64;
4410 break;
4411 default:
4412 unreachable("invalid desc_type\n");
4413 }
4414
4415 offset += constant_index * stride;
4416
4417 if (desc_type == ACO_DESC_SAMPLER && binding->immutable_samplers_offset &&
4418 (!index_set || binding->immutable_samplers_equal)) {
4419 if (binding->immutable_samplers_equal)
4420 constant_index = 0;
4421
4422 const uint32_t *samplers = radv_immutable_samplers(layout, binding);
4423 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
4424 Operand(samplers[constant_index * 4 + 0]),
4425 Operand(samplers[constant_index * 4 + 1]),
4426 Operand(samplers[constant_index * 4 + 2]),
4427 Operand(samplers[constant_index * 4 + 3]));
4428 }
4429
4430 Operand off;
4431 if (!index_set) {
4432 off = bld.copy(bld.def(s1), Operand(offset));
4433 } else {
4434 off = Operand((Temp)bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset),
4435 bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), index)));
4436 }
4437
4438 Temp res = bld.smem(opcode, bld.def(type), list, off);
4439
4440 if (desc_type == ACO_DESC_PLANE_2) {
4441 Temp components[8];
4442 for (unsigned i = 0; i < 8; i++)
4443 components[i] = bld.tmp(s1);
4444 bld.pseudo(aco_opcode::p_split_vector,
4445 Definition(components[0]),
4446 Definition(components[1]),
4447 Definition(components[2]),
4448 Definition(components[3]),
4449 res);
4450
4451 Temp desc2 = get_sampler_desc(ctx, deref_instr, ACO_DESC_PLANE_1, tex_instr, image, write);
4452 bld.pseudo(aco_opcode::p_split_vector,
4453 bld.def(s1), bld.def(s1), bld.def(s1), bld.def(s1),
4454 Definition(components[4]),
4455 Definition(components[5]),
4456 Definition(components[6]),
4457 Definition(components[7]),
4458 desc2);
4459
4460 res = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
4461 components[0], components[1], components[2], components[3],
4462 components[4], components[5], components[6], components[7]);
4463 }
4464
4465 return res;
4466 }
4467
4468 static int image_type_to_components_count(enum glsl_sampler_dim dim, bool array)
4469 {
4470 switch (dim) {
4471 case GLSL_SAMPLER_DIM_BUF:
4472 return 1;
4473 case GLSL_SAMPLER_DIM_1D:
4474 return array ? 2 : 1;
4475 case GLSL_SAMPLER_DIM_2D:
4476 return array ? 3 : 2;
4477 case GLSL_SAMPLER_DIM_MS:
4478 return array ? 4 : 3;
4479 case GLSL_SAMPLER_DIM_3D:
4480 case GLSL_SAMPLER_DIM_CUBE:
4481 return 3;
4482 case GLSL_SAMPLER_DIM_RECT:
4483 case GLSL_SAMPLER_DIM_SUBPASS:
4484 return 2;
4485 case GLSL_SAMPLER_DIM_SUBPASS_MS:
4486 return 3;
4487 default:
4488 break;
4489 }
4490 return 0;
4491 }
4492
4493
4494 /* Adjust the sample index according to FMASK.
4495 *
4496 * For uncompressed MSAA surfaces, FMASK should return 0x76543210,
4497 * which is the identity mapping. Each nibble says which physical sample
4498 * should be fetched to get that sample.
4499 *
4500 * For example, 0x11111100 means there are only 2 samples stored and
4501 * the second sample covers 3/4 of the pixel. When reading samples 0
4502 * and 1, return physical sample 0 (determined by the first two 0s
4503 * in FMASK), otherwise return physical sample 1.
4504 *
4505 * The sample index should be adjusted as follows:
4506 * sample_index = (fmask >> (sample_index * 4)) & 0xF;
4507 */
4508 static Temp adjust_sample_index_using_fmask(isel_context *ctx, bool da, std::vector<Temp>& coords, Operand sample_index, Temp fmask_desc_ptr)
4509 {
4510 Builder bld(ctx->program, ctx->block);
4511 Temp fmask = bld.tmp(v1);
4512 unsigned dim = ctx->options->chip_class >= GFX10
4513 ? ac_get_sampler_dim(ctx->options->chip_class, GLSL_SAMPLER_DIM_2D, da)
4514 : 0;
4515
4516 Temp coord = da ? bld.pseudo(aco_opcode::p_create_vector, bld.def(v3), coords[0], coords[1], coords[2]) :
4517 bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), coords[0], coords[1]);
4518 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(aco_opcode::image_load, Format::MIMG, 3, 1)};
4519 load->operands[0] = Operand(fmask_desc_ptr);
4520 load->operands[1] = Operand(s4); /* no sampler */
4521 load->operands[2] = Operand(coord);
4522 load->definitions[0] = Definition(fmask);
4523 load->glc = false;
4524 load->dlc = false;
4525 load->dmask = 0x1;
4526 load->unrm = true;
4527 load->da = da;
4528 load->dim = dim;
4529 load->can_reorder = true; /* fmask images shouldn't be modified */
4530 ctx->block->instructions.emplace_back(std::move(load));
4531
4532 Operand sample_index4;
4533 if (sample_index.isConstant() && sample_index.constantValue() < 16) {
4534 sample_index4 = Operand(sample_index.constantValue() << 2);
4535 } else if (sample_index.regClass() == s1) {
4536 sample_index4 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), sample_index, Operand(2u));
4537 } else {
4538 assert(sample_index.regClass() == v1);
4539 sample_index4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), sample_index);
4540 }
4541
4542 Temp final_sample;
4543 if (sample_index4.isConstant() && sample_index4.constantValue() == 0)
4544 final_sample = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(15u), fmask);
4545 else if (sample_index4.isConstant() && sample_index4.constantValue() == 28)
4546 final_sample = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(28u), fmask);
4547 else
4548 final_sample = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), fmask, sample_index4, Operand(4u));
4549
4550 /* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK
4551 * resource descriptor is 0 (invalid),
4552 */
4553 Temp compare = bld.tmp(bld.lm);
4554 bld.vopc_e64(aco_opcode::v_cmp_lg_u32, Definition(compare),
4555 Operand(0u), emit_extract_vector(ctx, fmask_desc_ptr, 1, s1)).def(0).setHint(vcc);
4556
4557 Temp sample_index_v = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), sample_index);
4558
4559 /* Replace the MSAA sample index. */
4560 return bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), sample_index_v, final_sample, compare);
4561 }
4562
4563 static Temp get_image_coords(isel_context *ctx, const nir_intrinsic_instr *instr, const struct glsl_type *type)
4564 {
4565
4566 Temp src0 = get_ssa_temp(ctx, instr->src[1].ssa);
4567 enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4568 bool is_array = glsl_sampler_type_is_array(type);
4569 ASSERTED bool add_frag_pos = (dim == GLSL_SAMPLER_DIM_SUBPASS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
4570 assert(!add_frag_pos && "Input attachments should be lowered.");
4571 bool is_ms = (dim == GLSL_SAMPLER_DIM_MS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
4572 bool gfx9_1d = ctx->options->chip_class == GFX9 && dim == GLSL_SAMPLER_DIM_1D;
4573 int count = image_type_to_components_count(dim, is_array);
4574 std::vector<Temp> coords(count);
4575 Builder bld(ctx->program, ctx->block);
4576
4577 if (is_ms) {
4578 count--;
4579 Temp src2 = get_ssa_temp(ctx, instr->src[2].ssa);
4580 /* get sample index */
4581 if (instr->intrinsic == nir_intrinsic_image_deref_load) {
4582 nir_const_value *sample_cv = nir_src_as_const_value(instr->src[2]);
4583 Operand sample_index = sample_cv ? Operand(sample_cv->u32) : Operand(emit_extract_vector(ctx, src2, 0, v1));
4584 std::vector<Temp> fmask_load_address;
4585 for (unsigned i = 0; i < (is_array ? 3 : 2); i++)
4586 fmask_load_address.emplace_back(emit_extract_vector(ctx, src0, i, v1));
4587
4588 Temp fmask_desc_ptr = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_FMASK, nullptr, false, false);
4589 coords[count] = adjust_sample_index_using_fmask(ctx, is_array, fmask_load_address, sample_index, fmask_desc_ptr);
4590 } else {
4591 coords[count] = emit_extract_vector(ctx, src2, 0, v1);
4592 }
4593 }
4594
4595 if (gfx9_1d) {
4596 coords[0] = emit_extract_vector(ctx, src0, 0, v1);
4597 coords.resize(coords.size() + 1);
4598 coords[1] = bld.copy(bld.def(v1), Operand(0u));
4599 if (is_array)
4600 coords[2] = emit_extract_vector(ctx, src0, 1, v1);
4601 } else {
4602 for (int i = 0; i < count; i++)
4603 coords[i] = emit_extract_vector(ctx, src0, i, v1);
4604 }
4605
4606 if (instr->intrinsic == nir_intrinsic_image_deref_load ||
4607 instr->intrinsic == nir_intrinsic_image_deref_store) {
4608 int lod_index = instr->intrinsic == nir_intrinsic_image_deref_load ? 3 : 4;
4609 bool level_zero = nir_src_is_const(instr->src[lod_index]) && nir_src_as_uint(instr->src[lod_index]) == 0;
4610
4611 if (!level_zero)
4612 coords.emplace_back(get_ssa_temp(ctx, instr->src[lod_index].ssa));
4613 }
4614
4615 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
4616 for (unsigned i = 0; i < coords.size(); i++)
4617 vec->operands[i] = Operand(coords[i]);
4618 Temp res = {ctx->program->allocateId(), RegClass(RegType::vgpr, coords.size())};
4619 vec->definitions[0] = Definition(res);
4620 ctx->block->instructions.emplace_back(std::move(vec));
4621 return res;
4622 }
4623
4624
4625 void visit_image_load(isel_context *ctx, nir_intrinsic_instr *instr)
4626 {
4627 Builder bld(ctx->program, ctx->block);
4628 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
4629 const struct glsl_type *type = glsl_without_array(var->type);
4630 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4631 bool is_array = glsl_sampler_type_is_array(type);
4632 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4633
4634 if (dim == GLSL_SAMPLER_DIM_BUF) {
4635 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa);
4636 unsigned num_channels = util_last_bit(mask);
4637 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
4638 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
4639
4640 aco_opcode opcode;
4641 switch (num_channels) {
4642 case 1:
4643 opcode = aco_opcode::buffer_load_format_x;
4644 break;
4645 case 2:
4646 opcode = aco_opcode::buffer_load_format_xy;
4647 break;
4648 case 3:
4649 opcode = aco_opcode::buffer_load_format_xyz;
4650 break;
4651 case 4:
4652 opcode = aco_opcode::buffer_load_format_xyzw;
4653 break;
4654 default:
4655 unreachable(">4 channel buffer image load");
4656 }
4657 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 3, 1)};
4658 load->operands[0] = Operand(rsrc);
4659 load->operands[1] = Operand(vindex);
4660 load->operands[2] = Operand((uint32_t) 0);
4661 Temp tmp;
4662 if (num_channels == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
4663 tmp = dst;
4664 else
4665 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_channels)};
4666 load->definitions[0] = Definition(tmp);
4667 load->idxen = true;
4668 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT);
4669 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
4670 load->barrier = barrier_image;
4671 ctx->block->instructions.emplace_back(std::move(load));
4672
4673 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, (1 << num_channels) - 1);
4674 return;
4675 }
4676
4677 Temp coords = get_image_coords(ctx, instr, type);
4678 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
4679
4680 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
4681 unsigned num_components = util_bitcount(dmask);
4682 Temp tmp;
4683 if (num_components == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
4684 tmp = dst;
4685 else
4686 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_components)};
4687
4688 bool level_zero = nir_src_is_const(instr->src[3]) && nir_src_as_uint(instr->src[3]) == 0;
4689 aco_opcode opcode = level_zero ? aco_opcode::image_load : aco_opcode::image_load_mip;
4690
4691 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1)};
4692 load->operands[0] = Operand(resource);
4693 load->operands[1] = Operand(s4); /* no sampler */
4694 load->operands[2] = Operand(coords);
4695 load->definitions[0] = Definition(tmp);
4696 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT) ? 1 : 0;
4697 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
4698 load->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
4699 load->dmask = dmask;
4700 load->unrm = true;
4701 load->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
4702 load->barrier = barrier_image;
4703 ctx->block->instructions.emplace_back(std::move(load));
4704
4705 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, dmask);
4706 return;
4707 }
4708
4709 void visit_image_store(isel_context *ctx, nir_intrinsic_instr *instr)
4710 {
4711 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
4712 const struct glsl_type *type = glsl_without_array(var->type);
4713 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4714 bool is_array = glsl_sampler_type_is_array(type);
4715 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
4716
4717 bool glc = ctx->options->chip_class == GFX6 || var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE) ? 1 : 0;
4718
4719 if (dim == GLSL_SAMPLER_DIM_BUF) {
4720 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
4721 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
4722 aco_opcode opcode;
4723 switch (data.size()) {
4724 case 1:
4725 opcode = aco_opcode::buffer_store_format_x;
4726 break;
4727 case 2:
4728 opcode = aco_opcode::buffer_store_format_xy;
4729 break;
4730 case 3:
4731 opcode = aco_opcode::buffer_store_format_xyz;
4732 break;
4733 case 4:
4734 opcode = aco_opcode::buffer_store_format_xyzw;
4735 break;
4736 default:
4737 unreachable(">4 channel buffer image store");
4738 }
4739 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
4740 store->operands[0] = Operand(rsrc);
4741 store->operands[1] = Operand(vindex);
4742 store->operands[2] = Operand((uint32_t) 0);
4743 store->operands[3] = Operand(data);
4744 store->idxen = true;
4745 store->glc = glc;
4746 store->dlc = false;
4747 store->disable_wqm = true;
4748 store->barrier = barrier_image;
4749 ctx->program->needs_exact = true;
4750 ctx->block->instructions.emplace_back(std::move(store));
4751 return;
4752 }
4753
4754 assert(data.type() == RegType::vgpr);
4755 Temp coords = get_image_coords(ctx, instr, type);
4756 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
4757
4758 bool level_zero = nir_src_is_const(instr->src[4]) && nir_src_as_uint(instr->src[4]) == 0;
4759 aco_opcode opcode = level_zero ? aco_opcode::image_store : aco_opcode::image_store_mip;
4760
4761 aco_ptr<MIMG_instruction> store{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 0)};
4762 store->operands[0] = Operand(resource);
4763 store->operands[1] = Operand(data);
4764 store->operands[2] = Operand(coords);
4765 store->glc = glc;
4766 store->dlc = false;
4767 store->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
4768 store->dmask = (1 << data.size()) - 1;
4769 store->unrm = true;
4770 store->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
4771 store->disable_wqm = true;
4772 store->barrier = barrier_image;
4773 ctx->program->needs_exact = true;
4774 ctx->block->instructions.emplace_back(std::move(store));
4775 return;
4776 }
4777
4778 void visit_image_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
4779 {
4780 /* return the previous value if dest is ever used */
4781 bool return_previous = false;
4782 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
4783 return_previous = true;
4784 break;
4785 }
4786 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
4787 return_previous = true;
4788 break;
4789 }
4790
4791 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
4792 const struct glsl_type *type = glsl_without_array(var->type);
4793 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4794 bool is_array = glsl_sampler_type_is_array(type);
4795 Builder bld(ctx->program, ctx->block);
4796
4797 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
4798 assert(data.size() == 1 && "64bit ssbo atomics not yet implemented.");
4799
4800 if (instr->intrinsic == nir_intrinsic_image_deref_atomic_comp_swap)
4801 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), get_ssa_temp(ctx, instr->src[4].ssa), data);
4802
4803 aco_opcode buf_op, image_op;
4804 switch (instr->intrinsic) {
4805 case nir_intrinsic_image_deref_atomic_add:
4806 buf_op = aco_opcode::buffer_atomic_add;
4807 image_op = aco_opcode::image_atomic_add;
4808 break;
4809 case nir_intrinsic_image_deref_atomic_umin:
4810 buf_op = aco_opcode::buffer_atomic_umin;
4811 image_op = aco_opcode::image_atomic_umin;
4812 break;
4813 case nir_intrinsic_image_deref_atomic_imin:
4814 buf_op = aco_opcode::buffer_atomic_smin;
4815 image_op = aco_opcode::image_atomic_smin;
4816 break;
4817 case nir_intrinsic_image_deref_atomic_umax:
4818 buf_op = aco_opcode::buffer_atomic_umax;
4819 image_op = aco_opcode::image_atomic_umax;
4820 break;
4821 case nir_intrinsic_image_deref_atomic_imax:
4822 buf_op = aco_opcode::buffer_atomic_smax;
4823 image_op = aco_opcode::image_atomic_smax;
4824 break;
4825 case nir_intrinsic_image_deref_atomic_and:
4826 buf_op = aco_opcode::buffer_atomic_and;
4827 image_op = aco_opcode::image_atomic_and;
4828 break;
4829 case nir_intrinsic_image_deref_atomic_or:
4830 buf_op = aco_opcode::buffer_atomic_or;
4831 image_op = aco_opcode::image_atomic_or;
4832 break;
4833 case nir_intrinsic_image_deref_atomic_xor:
4834 buf_op = aco_opcode::buffer_atomic_xor;
4835 image_op = aco_opcode::image_atomic_xor;
4836 break;
4837 case nir_intrinsic_image_deref_atomic_exchange:
4838 buf_op = aco_opcode::buffer_atomic_swap;
4839 image_op = aco_opcode::image_atomic_swap;
4840 break;
4841 case nir_intrinsic_image_deref_atomic_comp_swap:
4842 buf_op = aco_opcode::buffer_atomic_cmpswap;
4843 image_op = aco_opcode::image_atomic_cmpswap;
4844 break;
4845 default:
4846 unreachable("visit_image_atomic should only be called with nir_intrinsic_image_deref_atomic_* instructions.");
4847 }
4848
4849 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4850
4851 if (dim == GLSL_SAMPLER_DIM_BUF) {
4852 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
4853 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
4854 //assert(ctx->options->chip_class < GFX9 && "GFX9 stride size workaround not yet implemented.");
4855 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(buf_op, Format::MUBUF, 4, return_previous ? 1 : 0)};
4856 mubuf->operands[0] = Operand(resource);
4857 mubuf->operands[1] = Operand(vindex);
4858 mubuf->operands[2] = Operand((uint32_t)0);
4859 mubuf->operands[3] = Operand(data);
4860 if (return_previous)
4861 mubuf->definitions[0] = Definition(dst);
4862 mubuf->offset = 0;
4863 mubuf->idxen = true;
4864 mubuf->glc = return_previous;
4865 mubuf->dlc = false; /* Not needed for atomics */
4866 mubuf->disable_wqm = true;
4867 mubuf->barrier = barrier_image;
4868 ctx->program->needs_exact = true;
4869 ctx->block->instructions.emplace_back(std::move(mubuf));
4870 return;
4871 }
4872
4873 Temp coords = get_image_coords(ctx, instr, type);
4874 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
4875 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(image_op, Format::MIMG, 3, return_previous ? 1 : 0)};
4876 mimg->operands[0] = Operand(resource);
4877 mimg->operands[1] = Operand(data);
4878 mimg->operands[2] = Operand(coords);
4879 if (return_previous)
4880 mimg->definitions[0] = Definition(dst);
4881 mimg->glc = return_previous;
4882 mimg->dlc = false; /* Not needed for atomics */
4883 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
4884 mimg->dmask = (1 << data.size()) - 1;
4885 mimg->unrm = true;
4886 mimg->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
4887 mimg->disable_wqm = true;
4888 mimg->barrier = barrier_image;
4889 ctx->program->needs_exact = true;
4890 ctx->block->instructions.emplace_back(std::move(mimg));
4891 return;
4892 }
4893
4894 void get_buffer_size(isel_context *ctx, Temp desc, Temp dst, bool in_elements)
4895 {
4896 if (in_elements && ctx->options->chip_class == GFX8) {
4897 /* we only have to divide by 1, 2, 4, 8, 12 or 16 */
4898 Builder bld(ctx->program, ctx->block);
4899
4900 Temp size = emit_extract_vector(ctx, desc, 2, s1);
4901
4902 Temp size_div3 = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), bld.copy(bld.def(v1), Operand(0xaaaaaaabu)), size);
4903 size_div3 = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.as_uniform(size_div3), Operand(1u));
4904
4905 Temp stride = emit_extract_vector(ctx, desc, 1, s1);
4906 stride = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), stride, Operand((5u << 16) | 16u));
4907
4908 Temp is12 = bld.sopc(aco_opcode::s_cmp_eq_i32, bld.def(s1, scc), stride, Operand(12u));
4909 size = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), size_div3, size, bld.scc(is12));
4910
4911 Temp shr_dst = dst.type() == RegType::vgpr ? bld.tmp(s1) : dst;
4912 bld.sop2(aco_opcode::s_lshr_b32, Definition(shr_dst), bld.def(s1, scc),
4913 size, bld.sop1(aco_opcode::s_ff1_i32_b32, bld.def(s1), stride));
4914 if (dst.type() == RegType::vgpr)
4915 bld.copy(Definition(dst), shr_dst);
4916
4917 /* TODO: we can probably calculate this faster with v_skip when stride != 12 */
4918 } else {
4919 emit_extract_vector(ctx, desc, 2, dst);
4920 }
4921 }
4922
4923 void visit_image_size(isel_context *ctx, nir_intrinsic_instr *instr)
4924 {
4925 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
4926 const struct glsl_type *type = glsl_without_array(var->type);
4927 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4928 bool is_array = glsl_sampler_type_is_array(type);
4929 Builder bld(ctx->program, ctx->block);
4930
4931 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF) {
4932 Temp desc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, NULL, true, false);
4933 return get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), true);
4934 }
4935
4936 /* LOD */
4937 Temp lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
4938
4939 /* Resource */
4940 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, NULL, true, false);
4941
4942 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4943
4944 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1)};
4945 mimg->operands[0] = Operand(resource);
4946 mimg->operands[1] = Operand(s4); /* no sampler */
4947 mimg->operands[2] = Operand(lod);
4948 uint8_t& dmask = mimg->dmask;
4949 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
4950 mimg->dmask = (1 << instr->dest.ssa.num_components) - 1;
4951 mimg->da = glsl_sampler_type_is_array(type);
4952 mimg->can_reorder = true;
4953 Definition& def = mimg->definitions[0];
4954 ctx->block->instructions.emplace_back(std::move(mimg));
4955
4956 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE &&
4957 glsl_sampler_type_is_array(type)) {
4958
4959 assert(instr->dest.ssa.num_components == 3);
4960 Temp tmp = {ctx->program->allocateId(), v3};
4961 def = Definition(tmp);
4962 emit_split_vector(ctx, tmp, 3);
4963
4964 /* divide 3rd value by 6 by multiplying with magic number */
4965 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
4966 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp, 2, v1), c);
4967
4968 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4969 emit_extract_vector(ctx, tmp, 0, v1),
4970 emit_extract_vector(ctx, tmp, 1, v1),
4971 by_6);
4972
4973 } else if (ctx->options->chip_class == GFX9 &&
4974 glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_1D &&
4975 glsl_sampler_type_is_array(type)) {
4976 assert(instr->dest.ssa.num_components == 2);
4977 def = Definition(dst);
4978 dmask = 0x5;
4979 } else {
4980 def = Definition(dst);
4981 }
4982
4983 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
4984 }
4985
4986 void visit_load_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
4987 {
4988 Builder bld(ctx->program, ctx->block);
4989 unsigned num_components = instr->num_components;
4990
4991 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4992 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
4993 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
4994
4995 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
4996 load_buffer(ctx, num_components, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa), glc, false);
4997 }
4998
4999 void visit_store_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
5000 {
5001 Builder bld(ctx->program, ctx->block);
5002 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
5003 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
5004 unsigned writemask = nir_intrinsic_write_mask(instr);
5005 Temp offset = get_ssa_temp(ctx, instr->src[2].ssa);
5006
5007 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5008 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
5009
5010 bool smem = !ctx->divergent_vals[instr->src[2].ssa->index] &&
5011 ctx->options->chip_class >= GFX8;
5012 if (smem)
5013 offset = bld.as_uniform(offset);
5014 bool smem_nonfs = smem && ctx->stage != fragment_fs;
5015
5016 while (writemask) {
5017 int start, count;
5018 u_bit_scan_consecutive_range(&writemask, &start, &count);
5019 if (count == 3 && (smem || ctx->options->chip_class == GFX6)) {
5020 /* GFX6 doesn't support storing vec3, split it. */
5021 writemask |= 1u << (start + 2);
5022 count = 2;
5023 }
5024 int num_bytes = count * elem_size_bytes;
5025
5026 if (num_bytes > 16) {
5027 assert(elem_size_bytes == 8);
5028 writemask |= (((count - 2) << 1) - 1) << (start + 2);
5029 count = 2;
5030 num_bytes = 16;
5031 }
5032
5033 // TODO: check alignment of sub-dword stores
5034 // TODO: split 3 bytes. there is no store instruction for that
5035
5036 Temp write_data;
5037 if (count != instr->num_components) {
5038 emit_split_vector(ctx, data, instr->num_components);
5039 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
5040 for (int i = 0; i < count; i++) {
5041 Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(data.type(), elem_size_bytes / 4));
5042 vec->operands[i] = Operand(smem_nonfs ? bld.as_uniform(elem) : elem);
5043 }
5044 write_data = bld.tmp(!smem ? RegType::vgpr : smem_nonfs ? RegType::sgpr : data.type(), count * elem_size_bytes / 4);
5045 vec->definitions[0] = Definition(write_data);
5046 ctx->block->instructions.emplace_back(std::move(vec));
5047 } else if (!smem && data.type() != RegType::vgpr) {
5048 assert(num_bytes % 4 == 0);
5049 write_data = bld.copy(bld.def(RegType::vgpr, num_bytes / 4), data);
5050 } else if (smem_nonfs && data.type() == RegType::vgpr) {
5051 assert(num_bytes % 4 == 0);
5052 write_data = bld.as_uniform(data);
5053 } else {
5054 write_data = data;
5055 }
5056
5057 aco_opcode vmem_op, smem_op;
5058 switch (num_bytes) {
5059 case 4:
5060 vmem_op = aco_opcode::buffer_store_dword;
5061 smem_op = aco_opcode::s_buffer_store_dword;
5062 break;
5063 case 8:
5064 vmem_op = aco_opcode::buffer_store_dwordx2;
5065 smem_op = aco_opcode::s_buffer_store_dwordx2;
5066 break;
5067 case 12:
5068 vmem_op = aco_opcode::buffer_store_dwordx3;
5069 smem_op = aco_opcode::last_opcode;
5070 assert(!smem && ctx->options->chip_class > GFX6);
5071 break;
5072 case 16:
5073 vmem_op = aco_opcode::buffer_store_dwordx4;
5074 smem_op = aco_opcode::s_buffer_store_dwordx4;
5075 break;
5076 default:
5077 unreachable("Store SSBO not implemented for this size.");
5078 }
5079 if (ctx->stage == fragment_fs)
5080 smem_op = aco_opcode::p_fs_buffer_store_smem;
5081
5082 if (smem) {
5083 aco_ptr<SMEM_instruction> store{create_instruction<SMEM_instruction>(smem_op, Format::SMEM, 3, 0)};
5084 store->operands[0] = Operand(rsrc);
5085 if (start) {
5086 Temp off = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
5087 offset, Operand(start * elem_size_bytes));
5088 store->operands[1] = Operand(off);
5089 } else {
5090 store->operands[1] = Operand(offset);
5091 }
5092 if (smem_op != aco_opcode::p_fs_buffer_store_smem)
5093 store->operands[1].setFixed(m0);
5094 store->operands[2] = Operand(write_data);
5095 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
5096 store->dlc = false;
5097 store->disable_wqm = true;
5098 store->barrier = barrier_buffer;
5099 ctx->block->instructions.emplace_back(std::move(store));
5100 ctx->program->wb_smem_l1_on_end = true;
5101 if (smem_op == aco_opcode::p_fs_buffer_store_smem) {
5102 ctx->block->kind |= block_kind_needs_lowering;
5103 ctx->program->needs_exact = true;
5104 }
5105 } else {
5106 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(vmem_op, Format::MUBUF, 4, 0)};
5107 store->operands[0] = Operand(rsrc);
5108 store->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
5109 store->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
5110 store->operands[3] = Operand(write_data);
5111 store->offset = start * elem_size_bytes;
5112 store->offen = (offset.type() == RegType::vgpr);
5113 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
5114 store->dlc = false;
5115 store->disable_wqm = true;
5116 store->barrier = barrier_buffer;
5117 ctx->program->needs_exact = true;
5118 ctx->block->instructions.emplace_back(std::move(store));
5119 }
5120 }
5121 }
5122
5123 void visit_atomic_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
5124 {
5125 /* return the previous value if dest is ever used */
5126 bool return_previous = false;
5127 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5128 return_previous = true;
5129 break;
5130 }
5131 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5132 return_previous = true;
5133 break;
5134 }
5135
5136 Builder bld(ctx->program, ctx->block);
5137 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[2].ssa));
5138
5139 if (instr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap)
5140 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
5141 get_ssa_temp(ctx, instr->src[3].ssa), data);
5142
5143 Temp offset = get_ssa_temp(ctx, instr->src[1].ssa);
5144 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5145 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
5146
5147 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5148
5149 aco_opcode op32, op64;
5150 switch (instr->intrinsic) {
5151 case nir_intrinsic_ssbo_atomic_add:
5152 op32 = aco_opcode::buffer_atomic_add;
5153 op64 = aco_opcode::buffer_atomic_add_x2;
5154 break;
5155 case nir_intrinsic_ssbo_atomic_imin:
5156 op32 = aco_opcode::buffer_atomic_smin;
5157 op64 = aco_opcode::buffer_atomic_smin_x2;
5158 break;
5159 case nir_intrinsic_ssbo_atomic_umin:
5160 op32 = aco_opcode::buffer_atomic_umin;
5161 op64 = aco_opcode::buffer_atomic_umin_x2;
5162 break;
5163 case nir_intrinsic_ssbo_atomic_imax:
5164 op32 = aco_opcode::buffer_atomic_smax;
5165 op64 = aco_opcode::buffer_atomic_smax_x2;
5166 break;
5167 case nir_intrinsic_ssbo_atomic_umax:
5168 op32 = aco_opcode::buffer_atomic_umax;
5169 op64 = aco_opcode::buffer_atomic_umax_x2;
5170 break;
5171 case nir_intrinsic_ssbo_atomic_and:
5172 op32 = aco_opcode::buffer_atomic_and;
5173 op64 = aco_opcode::buffer_atomic_and_x2;
5174 break;
5175 case nir_intrinsic_ssbo_atomic_or:
5176 op32 = aco_opcode::buffer_atomic_or;
5177 op64 = aco_opcode::buffer_atomic_or_x2;
5178 break;
5179 case nir_intrinsic_ssbo_atomic_xor:
5180 op32 = aco_opcode::buffer_atomic_xor;
5181 op64 = aco_opcode::buffer_atomic_xor_x2;
5182 break;
5183 case nir_intrinsic_ssbo_atomic_exchange:
5184 op32 = aco_opcode::buffer_atomic_swap;
5185 op64 = aco_opcode::buffer_atomic_swap_x2;
5186 break;
5187 case nir_intrinsic_ssbo_atomic_comp_swap:
5188 op32 = aco_opcode::buffer_atomic_cmpswap;
5189 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
5190 break;
5191 default:
5192 unreachable("visit_atomic_ssbo should only be called with nir_intrinsic_ssbo_atomic_* instructions.");
5193 }
5194 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
5195 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
5196 mubuf->operands[0] = Operand(rsrc);
5197 mubuf->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
5198 mubuf->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
5199 mubuf->operands[3] = Operand(data);
5200 if (return_previous)
5201 mubuf->definitions[0] = Definition(dst);
5202 mubuf->offset = 0;
5203 mubuf->offen = (offset.type() == RegType::vgpr);
5204 mubuf->glc = return_previous;
5205 mubuf->dlc = false; /* Not needed for atomics */
5206 mubuf->disable_wqm = true;
5207 mubuf->barrier = barrier_buffer;
5208 ctx->program->needs_exact = true;
5209 ctx->block->instructions.emplace_back(std::move(mubuf));
5210 }
5211
5212 void visit_get_buffer_size(isel_context *ctx, nir_intrinsic_instr *instr) {
5213
5214 Temp index = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5215 Builder bld(ctx->program, ctx->block);
5216 Temp desc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), index, Operand(0u));
5217 get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), false);
5218 }
5219
5220 Temp get_gfx6_global_rsrc(Builder& bld, Temp addr)
5221 {
5222 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5223 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
5224
5225 if (addr.type() == RegType::vgpr)
5226 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), Operand(0u), Operand(0u), Operand(-1u), Operand(rsrc_conf));
5227 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), addr, Operand(-1u), Operand(rsrc_conf));
5228 }
5229
5230 void visit_load_global(isel_context *ctx, nir_intrinsic_instr *instr)
5231 {
5232 Builder bld(ctx->program, ctx->block);
5233 unsigned num_components = instr->num_components;
5234 unsigned num_bytes = num_components * instr->dest.ssa.bit_size / 8;
5235
5236 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5237 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
5238
5239 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
5240 bool dlc = glc && ctx->options->chip_class >= GFX10;
5241 aco_opcode op;
5242 if (dst.type() == RegType::vgpr || (glc && ctx->options->chip_class < GFX8)) {
5243 bool global = ctx->options->chip_class >= GFX9;
5244
5245 if (ctx->options->chip_class >= GFX7) {
5246 aco_opcode op;
5247 switch (num_bytes) {
5248 case 4:
5249 op = global ? aco_opcode::global_load_dword : aco_opcode::flat_load_dword;
5250 break;
5251 case 8:
5252 op = global ? aco_opcode::global_load_dwordx2 : aco_opcode::flat_load_dwordx2;
5253 break;
5254 case 12:
5255 op = global ? aco_opcode::global_load_dwordx3 : aco_opcode::flat_load_dwordx3;
5256 break;
5257 case 16:
5258 op = global ? aco_opcode::global_load_dwordx4 : aco_opcode::flat_load_dwordx4;
5259 break;
5260 default:
5261 unreachable("load_global not implemented for this size.");
5262 }
5263
5264 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 2, 1)};
5265 flat->operands[0] = Operand(addr);
5266 flat->operands[1] = Operand(s1);
5267 flat->glc = glc;
5268 flat->dlc = dlc;
5269 flat->barrier = barrier_buffer;
5270
5271 if (dst.type() == RegType::sgpr) {
5272 Temp vec = bld.tmp(RegType::vgpr, dst.size());
5273 flat->definitions[0] = Definition(vec);
5274 ctx->block->instructions.emplace_back(std::move(flat));
5275 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
5276 } else {
5277 flat->definitions[0] = Definition(dst);
5278 ctx->block->instructions.emplace_back(std::move(flat));
5279 }
5280 emit_split_vector(ctx, dst, num_components);
5281 } else {
5282 assert(ctx->options->chip_class == GFX6);
5283
5284 /* GFX6 doesn't support loading vec3, expand to vec4. */
5285 num_bytes = num_bytes == 12 ? 16 : num_bytes;
5286
5287 aco_opcode op;
5288 switch (num_bytes) {
5289 case 4:
5290 op = aco_opcode::buffer_load_dword;
5291 break;
5292 case 8:
5293 op = aco_opcode::buffer_load_dwordx2;
5294 break;
5295 case 16:
5296 op = aco_opcode::buffer_load_dwordx4;
5297 break;
5298 default:
5299 unreachable("load_global not implemented for this size.");
5300 }
5301
5302 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
5303
5304 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
5305 mubuf->operands[0] = Operand(rsrc);
5306 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
5307 mubuf->operands[2] = Operand(0u);
5308 mubuf->glc = glc;
5309 mubuf->dlc = false;
5310 mubuf->offset = 0;
5311 mubuf->addr64 = addr.type() == RegType::vgpr;
5312 mubuf->disable_wqm = false;
5313 mubuf->barrier = barrier_buffer;
5314 aco_ptr<Instruction> instr = std::move(mubuf);
5315
5316 /* expand vector */
5317 if (dst.size() == 3) {
5318 Temp vec = bld.tmp(v4);
5319 instr->definitions[0] = Definition(vec);
5320 bld.insert(std::move(instr));
5321 emit_split_vector(ctx, vec, 4);
5322
5323 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 3, 1));
5324 instr->operands[0] = Operand(emit_extract_vector(ctx, vec, 0, v1));
5325 instr->operands[1] = Operand(emit_extract_vector(ctx, vec, 1, v1));
5326 instr->operands[2] = Operand(emit_extract_vector(ctx, vec, 2, v1));
5327 }
5328
5329 if (dst.type() == RegType::sgpr) {
5330 Temp vec = bld.tmp(RegType::vgpr, dst.size());
5331 instr->definitions[0] = Definition(vec);
5332 bld.insert(std::move(instr));
5333 expand_vector(ctx, vec, dst, num_components, (1 << num_components) - 1);
5334 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
5335 } else {
5336 instr->definitions[0] = Definition(dst);
5337 bld.insert(std::move(instr));
5338 emit_split_vector(ctx, dst, num_components);
5339 }
5340 }
5341 } else {
5342 switch (num_bytes) {
5343 case 4:
5344 op = aco_opcode::s_load_dword;
5345 break;
5346 case 8:
5347 op = aco_opcode::s_load_dwordx2;
5348 break;
5349 case 12:
5350 case 16:
5351 op = aco_opcode::s_load_dwordx4;
5352 break;
5353 default:
5354 unreachable("load_global not implemented for this size.");
5355 }
5356 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
5357 load->operands[0] = Operand(addr);
5358 load->operands[1] = Operand(0u);
5359 load->definitions[0] = Definition(dst);
5360 load->glc = glc;
5361 load->dlc = dlc;
5362 load->barrier = barrier_buffer;
5363 assert(ctx->options->chip_class >= GFX8 || !glc);
5364
5365 if (dst.size() == 3) {
5366 /* trim vector */
5367 Temp vec = bld.tmp(s4);
5368 load->definitions[0] = Definition(vec);
5369 ctx->block->instructions.emplace_back(std::move(load));
5370 emit_split_vector(ctx, vec, 4);
5371
5372 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5373 emit_extract_vector(ctx, vec, 0, s1),
5374 emit_extract_vector(ctx, vec, 1, s1),
5375 emit_extract_vector(ctx, vec, 2, s1));
5376 } else {
5377 ctx->block->instructions.emplace_back(std::move(load));
5378 }
5379 }
5380 }
5381
5382 void visit_store_global(isel_context *ctx, nir_intrinsic_instr *instr)
5383 {
5384 Builder bld(ctx->program, ctx->block);
5385 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
5386
5387 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5388 Temp addr = get_ssa_temp(ctx, instr->src[1].ssa);
5389
5390 if (ctx->options->chip_class >= GFX7)
5391 addr = as_vgpr(ctx, addr);
5392
5393 unsigned writemask = nir_intrinsic_write_mask(instr);
5394 while (writemask) {
5395 int start, count;
5396 u_bit_scan_consecutive_range(&writemask, &start, &count);
5397 if (count == 3 && ctx->options->chip_class == GFX6) {
5398 /* GFX6 doesn't support storing vec3, split it. */
5399 writemask |= 1u << (start + 2);
5400 count = 2;
5401 }
5402 unsigned num_bytes = count * elem_size_bytes;
5403
5404 Temp write_data = data;
5405 if (count != instr->num_components) {
5406 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
5407 for (int i = 0; i < count; i++)
5408 vec->operands[i] = Operand(emit_extract_vector(ctx, data, start + i, v1));
5409 write_data = bld.tmp(RegType::vgpr, count);
5410 vec->definitions[0] = Definition(write_data);
5411 ctx->block->instructions.emplace_back(std::move(vec));
5412 }
5413
5414 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
5415 unsigned offset = start * elem_size_bytes;
5416
5417 if (ctx->options->chip_class >= GFX7) {
5418 if (offset > 0 && ctx->options->chip_class < GFX9) {
5419 Temp addr0 = bld.tmp(v1), addr1 = bld.tmp(v1);
5420 Temp new_addr0 = bld.tmp(v1), new_addr1 = bld.tmp(v1);
5421 Temp carry = bld.tmp(bld.lm);
5422 bld.pseudo(aco_opcode::p_split_vector, Definition(addr0), Definition(addr1), addr);
5423
5424 bld.vop2(aco_opcode::v_add_co_u32, Definition(new_addr0), bld.hint_vcc(Definition(carry)),
5425 Operand(offset), addr0);
5426 bld.vop2(aco_opcode::v_addc_co_u32, Definition(new_addr1), bld.def(bld.lm),
5427 Operand(0u), addr1,
5428 carry).def(1).setHint(vcc);
5429
5430 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_addr0, new_addr1);
5431
5432 offset = 0;
5433 }
5434
5435 bool global = ctx->options->chip_class >= GFX9;
5436 aco_opcode op;
5437 switch (num_bytes) {
5438 case 4:
5439 op = global ? aco_opcode::global_store_dword : aco_opcode::flat_store_dword;
5440 break;
5441 case 8:
5442 op = global ? aco_opcode::global_store_dwordx2 : aco_opcode::flat_store_dwordx2;
5443 break;
5444 case 12:
5445 op = global ? aco_opcode::global_store_dwordx3 : aco_opcode::flat_store_dwordx3;
5446 break;
5447 case 16:
5448 op = global ? aco_opcode::global_store_dwordx4 : aco_opcode::flat_store_dwordx4;
5449 break;
5450 default:
5451 unreachable("store_global not implemented for this size.");
5452 }
5453
5454 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, 0)};
5455 flat->operands[0] = Operand(addr);
5456 flat->operands[1] = Operand(s1);
5457 flat->operands[2] = Operand(data);
5458 flat->glc = glc;
5459 flat->dlc = false;
5460 flat->offset = offset;
5461 flat->disable_wqm = true;
5462 flat->barrier = barrier_buffer;
5463 ctx->program->needs_exact = true;
5464 ctx->block->instructions.emplace_back(std::move(flat));
5465 } else {
5466 assert(ctx->options->chip_class == GFX6);
5467
5468 aco_opcode op;
5469 switch (num_bytes) {
5470 case 4:
5471 op = aco_opcode::buffer_store_dword;
5472 break;
5473 case 8:
5474 op = aco_opcode::buffer_store_dwordx2;
5475 break;
5476 case 16:
5477 op = aco_opcode::buffer_store_dwordx4;
5478 break;
5479 default:
5480 unreachable("store_global not implemented for this size.");
5481 }
5482
5483 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
5484
5485 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, 0)};
5486 mubuf->operands[0] = Operand(rsrc);
5487 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
5488 mubuf->operands[2] = Operand(0u);
5489 mubuf->operands[3] = Operand(write_data);
5490 mubuf->glc = glc;
5491 mubuf->dlc = false;
5492 mubuf->offset = offset;
5493 mubuf->addr64 = addr.type() == RegType::vgpr;
5494 mubuf->disable_wqm = true;
5495 mubuf->barrier = barrier_buffer;
5496 ctx->program->needs_exact = true;
5497 ctx->block->instructions.emplace_back(std::move(mubuf));
5498 }
5499 }
5500 }
5501
5502 void visit_global_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
5503 {
5504 /* return the previous value if dest is ever used */
5505 bool return_previous = false;
5506 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5507 return_previous = true;
5508 break;
5509 }
5510 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5511 return_previous = true;
5512 break;
5513 }
5514
5515 Builder bld(ctx->program, ctx->block);
5516 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
5517 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5518
5519 if (ctx->options->chip_class >= GFX7)
5520 addr = as_vgpr(ctx, addr);
5521
5522 if (instr->intrinsic == nir_intrinsic_global_atomic_comp_swap)
5523 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
5524 get_ssa_temp(ctx, instr->src[2].ssa), data);
5525
5526 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5527
5528 aco_opcode op32, op64;
5529
5530 if (ctx->options->chip_class >= GFX7) {
5531 bool global = ctx->options->chip_class >= GFX9;
5532 switch (instr->intrinsic) {
5533 case nir_intrinsic_global_atomic_add:
5534 op32 = global ? aco_opcode::global_atomic_add : aco_opcode::flat_atomic_add;
5535 op64 = global ? aco_opcode::global_atomic_add_x2 : aco_opcode::flat_atomic_add_x2;
5536 break;
5537 case nir_intrinsic_global_atomic_imin:
5538 op32 = global ? aco_opcode::global_atomic_smin : aco_opcode::flat_atomic_smin;
5539 op64 = global ? aco_opcode::global_atomic_smin_x2 : aco_opcode::flat_atomic_smin_x2;
5540 break;
5541 case nir_intrinsic_global_atomic_umin:
5542 op32 = global ? aco_opcode::global_atomic_umin : aco_opcode::flat_atomic_umin;
5543 op64 = global ? aco_opcode::global_atomic_umin_x2 : aco_opcode::flat_atomic_umin_x2;
5544 break;
5545 case nir_intrinsic_global_atomic_imax:
5546 op32 = global ? aco_opcode::global_atomic_smax : aco_opcode::flat_atomic_smax;
5547 op64 = global ? aco_opcode::global_atomic_smax_x2 : aco_opcode::flat_atomic_smax_x2;
5548 break;
5549 case nir_intrinsic_global_atomic_umax:
5550 op32 = global ? aco_opcode::global_atomic_umax : aco_opcode::flat_atomic_umax;
5551 op64 = global ? aco_opcode::global_atomic_umax_x2 : aco_opcode::flat_atomic_umax_x2;
5552 break;
5553 case nir_intrinsic_global_atomic_and:
5554 op32 = global ? aco_opcode::global_atomic_and : aco_opcode::flat_atomic_and;
5555 op64 = global ? aco_opcode::global_atomic_and_x2 : aco_opcode::flat_atomic_and_x2;
5556 break;
5557 case nir_intrinsic_global_atomic_or:
5558 op32 = global ? aco_opcode::global_atomic_or : aco_opcode::flat_atomic_or;
5559 op64 = global ? aco_opcode::global_atomic_or_x2 : aco_opcode::flat_atomic_or_x2;
5560 break;
5561 case nir_intrinsic_global_atomic_xor:
5562 op32 = global ? aco_opcode::global_atomic_xor : aco_opcode::flat_atomic_xor;
5563 op64 = global ? aco_opcode::global_atomic_xor_x2 : aco_opcode::flat_atomic_xor_x2;
5564 break;
5565 case nir_intrinsic_global_atomic_exchange:
5566 op32 = global ? aco_opcode::global_atomic_swap : aco_opcode::flat_atomic_swap;
5567 op64 = global ? aco_opcode::global_atomic_swap_x2 : aco_opcode::flat_atomic_swap_x2;
5568 break;
5569 case nir_intrinsic_global_atomic_comp_swap:
5570 op32 = global ? aco_opcode::global_atomic_cmpswap : aco_opcode::flat_atomic_cmpswap;
5571 op64 = global ? aco_opcode::global_atomic_cmpswap_x2 : aco_opcode::flat_atomic_cmpswap_x2;
5572 break;
5573 default:
5574 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
5575 }
5576
5577 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
5578 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, return_previous ? 1 : 0)};
5579 flat->operands[0] = Operand(addr);
5580 flat->operands[1] = Operand(s1);
5581 flat->operands[2] = Operand(data);
5582 if (return_previous)
5583 flat->definitions[0] = Definition(dst);
5584 flat->glc = return_previous;
5585 flat->dlc = false; /* Not needed for atomics */
5586 flat->offset = 0;
5587 flat->disable_wqm = true;
5588 flat->barrier = barrier_buffer;
5589 ctx->program->needs_exact = true;
5590 ctx->block->instructions.emplace_back(std::move(flat));
5591 } else {
5592 assert(ctx->options->chip_class == GFX6);
5593
5594 switch (instr->intrinsic) {
5595 case nir_intrinsic_global_atomic_add:
5596 op32 = aco_opcode::buffer_atomic_add;
5597 op64 = aco_opcode::buffer_atomic_add_x2;
5598 break;
5599 case nir_intrinsic_global_atomic_imin:
5600 op32 = aco_opcode::buffer_atomic_smin;
5601 op64 = aco_opcode::buffer_atomic_smin_x2;
5602 break;
5603 case nir_intrinsic_global_atomic_umin:
5604 op32 = aco_opcode::buffer_atomic_umin;
5605 op64 = aco_opcode::buffer_atomic_umin_x2;
5606 break;
5607 case nir_intrinsic_global_atomic_imax:
5608 op32 = aco_opcode::buffer_atomic_smax;
5609 op64 = aco_opcode::buffer_atomic_smax_x2;
5610 break;
5611 case nir_intrinsic_global_atomic_umax:
5612 op32 = aco_opcode::buffer_atomic_umax;
5613 op64 = aco_opcode::buffer_atomic_umax_x2;
5614 break;
5615 case nir_intrinsic_global_atomic_and:
5616 op32 = aco_opcode::buffer_atomic_and;
5617 op64 = aco_opcode::buffer_atomic_and_x2;
5618 break;
5619 case nir_intrinsic_global_atomic_or:
5620 op32 = aco_opcode::buffer_atomic_or;
5621 op64 = aco_opcode::buffer_atomic_or_x2;
5622 break;
5623 case nir_intrinsic_global_atomic_xor:
5624 op32 = aco_opcode::buffer_atomic_xor;
5625 op64 = aco_opcode::buffer_atomic_xor_x2;
5626 break;
5627 case nir_intrinsic_global_atomic_exchange:
5628 op32 = aco_opcode::buffer_atomic_swap;
5629 op64 = aco_opcode::buffer_atomic_swap_x2;
5630 break;
5631 case nir_intrinsic_global_atomic_comp_swap:
5632 op32 = aco_opcode::buffer_atomic_cmpswap;
5633 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
5634 break;
5635 default:
5636 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
5637 }
5638
5639 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
5640
5641 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
5642
5643 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
5644 mubuf->operands[0] = Operand(rsrc);
5645 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
5646 mubuf->operands[2] = Operand(0u);
5647 mubuf->operands[3] = Operand(data);
5648 if (return_previous)
5649 mubuf->definitions[0] = Definition(dst);
5650 mubuf->glc = return_previous;
5651 mubuf->dlc = false;
5652 mubuf->offset = 0;
5653 mubuf->addr64 = addr.type() == RegType::vgpr;
5654 mubuf->disable_wqm = true;
5655 mubuf->barrier = barrier_buffer;
5656 ctx->program->needs_exact = true;
5657 ctx->block->instructions.emplace_back(std::move(mubuf));
5658 }
5659 }
5660
5661 void emit_memory_barrier(isel_context *ctx, nir_intrinsic_instr *instr) {
5662 Builder bld(ctx->program, ctx->block);
5663 switch(instr->intrinsic) {
5664 case nir_intrinsic_group_memory_barrier:
5665 case nir_intrinsic_memory_barrier:
5666 bld.barrier(aco_opcode::p_memory_barrier_common);
5667 break;
5668 case nir_intrinsic_memory_barrier_buffer:
5669 bld.barrier(aco_opcode::p_memory_barrier_buffer);
5670 break;
5671 case nir_intrinsic_memory_barrier_image:
5672 bld.barrier(aco_opcode::p_memory_barrier_image);
5673 break;
5674 case nir_intrinsic_memory_barrier_tcs_patch:
5675 case nir_intrinsic_memory_barrier_shared:
5676 bld.barrier(aco_opcode::p_memory_barrier_shared);
5677 break;
5678 default:
5679 unreachable("Unimplemented memory barrier intrinsic");
5680 break;
5681 }
5682 }
5683
5684 void visit_load_shared(isel_context *ctx, nir_intrinsic_instr *instr)
5685 {
5686 // TODO: implement sparse reads using ds_read2_b32 and nir_ssa_def_components_read()
5687 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5688 assert(instr->dest.ssa.bit_size >= 32 && "Bitsize not supported in load_shared.");
5689 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5690 Builder bld(ctx->program, ctx->block);
5691
5692 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
5693 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
5694 load_lds(ctx, elem_size_bytes, dst, address, nir_intrinsic_base(instr), align);
5695 }
5696
5697 void visit_store_shared(isel_context *ctx, nir_intrinsic_instr *instr)
5698 {
5699 unsigned writemask = nir_intrinsic_write_mask(instr);
5700 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
5701 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5702 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
5703 assert(elem_size_bytes >= 4 && "Only 32bit & 64bit store_shared currently supported.");
5704
5705 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
5706 store_lds(ctx, elem_size_bytes, data, writemask, address, nir_intrinsic_base(instr), align);
5707 }
5708
5709 void visit_shared_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
5710 {
5711 unsigned offset = nir_intrinsic_base(instr);
5712 Operand m = load_lds_size_m0(ctx);
5713 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5714 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5715
5716 unsigned num_operands = 3;
5717 aco_opcode op32, op64, op32_rtn, op64_rtn;
5718 switch(instr->intrinsic) {
5719 case nir_intrinsic_shared_atomic_add:
5720 op32 = aco_opcode::ds_add_u32;
5721 op64 = aco_opcode::ds_add_u64;
5722 op32_rtn = aco_opcode::ds_add_rtn_u32;
5723 op64_rtn = aco_opcode::ds_add_rtn_u64;
5724 break;
5725 case nir_intrinsic_shared_atomic_imin:
5726 op32 = aco_opcode::ds_min_i32;
5727 op64 = aco_opcode::ds_min_i64;
5728 op32_rtn = aco_opcode::ds_min_rtn_i32;
5729 op64_rtn = aco_opcode::ds_min_rtn_i64;
5730 break;
5731 case nir_intrinsic_shared_atomic_umin:
5732 op32 = aco_opcode::ds_min_u32;
5733 op64 = aco_opcode::ds_min_u64;
5734 op32_rtn = aco_opcode::ds_min_rtn_u32;
5735 op64_rtn = aco_opcode::ds_min_rtn_u64;
5736 break;
5737 case nir_intrinsic_shared_atomic_imax:
5738 op32 = aco_opcode::ds_max_i32;
5739 op64 = aco_opcode::ds_max_i64;
5740 op32_rtn = aco_opcode::ds_max_rtn_i32;
5741 op64_rtn = aco_opcode::ds_max_rtn_i64;
5742 break;
5743 case nir_intrinsic_shared_atomic_umax:
5744 op32 = aco_opcode::ds_max_u32;
5745 op64 = aco_opcode::ds_max_u64;
5746 op32_rtn = aco_opcode::ds_max_rtn_u32;
5747 op64_rtn = aco_opcode::ds_max_rtn_u64;
5748 break;
5749 case nir_intrinsic_shared_atomic_and:
5750 op32 = aco_opcode::ds_and_b32;
5751 op64 = aco_opcode::ds_and_b64;
5752 op32_rtn = aco_opcode::ds_and_rtn_b32;
5753 op64_rtn = aco_opcode::ds_and_rtn_b64;
5754 break;
5755 case nir_intrinsic_shared_atomic_or:
5756 op32 = aco_opcode::ds_or_b32;
5757 op64 = aco_opcode::ds_or_b64;
5758 op32_rtn = aco_opcode::ds_or_rtn_b32;
5759 op64_rtn = aco_opcode::ds_or_rtn_b64;
5760 break;
5761 case nir_intrinsic_shared_atomic_xor:
5762 op32 = aco_opcode::ds_xor_b32;
5763 op64 = aco_opcode::ds_xor_b64;
5764 op32_rtn = aco_opcode::ds_xor_rtn_b32;
5765 op64_rtn = aco_opcode::ds_xor_rtn_b64;
5766 break;
5767 case nir_intrinsic_shared_atomic_exchange:
5768 op32 = aco_opcode::ds_write_b32;
5769 op64 = aco_opcode::ds_write_b64;
5770 op32_rtn = aco_opcode::ds_wrxchg_rtn_b32;
5771 op64_rtn = aco_opcode::ds_wrxchg2_rtn_b64;
5772 break;
5773 case nir_intrinsic_shared_atomic_comp_swap:
5774 op32 = aco_opcode::ds_cmpst_b32;
5775 op64 = aco_opcode::ds_cmpst_b64;
5776 op32_rtn = aco_opcode::ds_cmpst_rtn_b32;
5777 op64_rtn = aco_opcode::ds_cmpst_rtn_b64;
5778 num_operands = 4;
5779 break;
5780 default:
5781 unreachable("Unhandled shared atomic intrinsic");
5782 }
5783
5784 /* return the previous value if dest is ever used */
5785 bool return_previous = false;
5786 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5787 return_previous = true;
5788 break;
5789 }
5790 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5791 return_previous = true;
5792 break;
5793 }
5794
5795 aco_opcode op;
5796 if (data.size() == 1) {
5797 assert(instr->dest.ssa.bit_size == 32);
5798 op = return_previous ? op32_rtn : op32;
5799 } else {
5800 assert(instr->dest.ssa.bit_size == 64);
5801 op = return_previous ? op64_rtn : op64;
5802 }
5803
5804 if (offset > 65535) {
5805 Builder bld(ctx->program, ctx->block);
5806 address = bld.vadd32(bld.def(v1), Operand(offset), address);
5807 offset = 0;
5808 }
5809
5810 aco_ptr<DS_instruction> ds;
5811 ds.reset(create_instruction<DS_instruction>(op, Format::DS, num_operands, return_previous ? 1 : 0));
5812 ds->operands[0] = Operand(address);
5813 ds->operands[1] = Operand(data);
5814 if (num_operands == 4)
5815 ds->operands[2] = Operand(get_ssa_temp(ctx, instr->src[2].ssa));
5816 ds->operands[num_operands - 1] = m;
5817 ds->offset0 = offset;
5818 if (return_previous)
5819 ds->definitions[0] = Definition(get_ssa_temp(ctx, &instr->dest.ssa));
5820 ctx->block->instructions.emplace_back(std::move(ds));
5821 }
5822
5823 Temp get_scratch_resource(isel_context *ctx)
5824 {
5825 Builder bld(ctx->program, ctx->block);
5826 Temp scratch_addr = ctx->program->private_segment_buffer;
5827 if (ctx->stage != compute_cs)
5828 scratch_addr = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), scratch_addr, Operand(0u));
5829
5830 uint32_t rsrc_conf = S_008F0C_ADD_TID_ENABLE(1) |
5831 S_008F0C_INDEX_STRIDE(ctx->program->wave_size == 64 ? 3 : 2);;
5832
5833 if (ctx->program->chip_class >= GFX10) {
5834 rsrc_conf |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
5835 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
5836 S_008F0C_RESOURCE_LEVEL(1);
5837 } else if (ctx->program->chip_class <= GFX7) { /* dfmt modifies stride on GFX8/GFX9 when ADD_TID_EN=1 */
5838 rsrc_conf |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5839 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
5840 }
5841
5842 /* older generations need element size = 16 bytes. element size removed in GFX9 */
5843 if (ctx->program->chip_class <= GFX8)
5844 rsrc_conf |= S_008F0C_ELEMENT_SIZE(3);
5845
5846 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), scratch_addr, Operand(-1u), Operand(rsrc_conf));
5847 }
5848
5849 void visit_load_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
5850 assert(instr->dest.ssa.bit_size == 32 || instr->dest.ssa.bit_size == 64);
5851 Builder bld(ctx->program, ctx->block);
5852 Temp rsrc = get_scratch_resource(ctx);
5853 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5854 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5855
5856 aco_opcode op;
5857 switch (dst.size()) {
5858 case 1:
5859 op = aco_opcode::buffer_load_dword;
5860 break;
5861 case 2:
5862 op = aco_opcode::buffer_load_dwordx2;
5863 break;
5864 case 3:
5865 op = aco_opcode::buffer_load_dwordx3;
5866 break;
5867 case 4:
5868 op = aco_opcode::buffer_load_dwordx4;
5869 break;
5870 case 6:
5871 case 8: {
5872 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
5873 Temp lower = bld.mubuf(aco_opcode::buffer_load_dwordx4,
5874 bld.def(v4), rsrc, offset,
5875 ctx->program->scratch_offset, 0, true);
5876 Temp upper = bld.mubuf(dst.size() == 6 ? aco_opcode::buffer_load_dwordx2 :
5877 aco_opcode::buffer_load_dwordx4,
5878 dst.size() == 6 ? bld.def(v2) : bld.def(v4),
5879 rsrc, offset, ctx->program->scratch_offset, 16, true);
5880 emit_split_vector(ctx, lower, 2);
5881 elems[0] = emit_extract_vector(ctx, lower, 0, v2);
5882 elems[1] = emit_extract_vector(ctx, lower, 1, v2);
5883 if (dst.size() == 8) {
5884 emit_split_vector(ctx, upper, 2);
5885 elems[2] = emit_extract_vector(ctx, upper, 0, v2);
5886 elems[3] = emit_extract_vector(ctx, upper, 1, v2);
5887 } else {
5888 elems[2] = upper;
5889 }
5890
5891 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
5892 Format::PSEUDO, dst.size() / 2, 1)};
5893 for (unsigned i = 0; i < dst.size() / 2; i++)
5894 vec->operands[i] = Operand(elems[i]);
5895 vec->definitions[0] = Definition(dst);
5896 bld.insert(std::move(vec));
5897 ctx->allocated_vec.emplace(dst.id(), elems);
5898 return;
5899 }
5900 default:
5901 unreachable("Wrong dst size for nir_intrinsic_load_scratch");
5902 }
5903
5904 bld.mubuf(op, Definition(dst), rsrc, offset, ctx->program->scratch_offset, 0, true);
5905 emit_split_vector(ctx, dst, instr->num_components);
5906 }
5907
5908 void visit_store_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
5909 assert(instr->src[0].ssa->bit_size == 32 || instr->src[0].ssa->bit_size == 64);
5910 Builder bld(ctx->program, ctx->block);
5911 Temp rsrc = get_scratch_resource(ctx);
5912 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5913 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5914
5915 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
5916 unsigned writemask = nir_intrinsic_write_mask(instr);
5917
5918 while (writemask) {
5919 int start, count;
5920 u_bit_scan_consecutive_range(&writemask, &start, &count);
5921 int num_bytes = count * elem_size_bytes;
5922
5923 if (num_bytes > 16) {
5924 assert(elem_size_bytes == 8);
5925 writemask |= (((count - 2) << 1) - 1) << (start + 2);
5926 count = 2;
5927 num_bytes = 16;
5928 }
5929
5930 // TODO: check alignment of sub-dword stores
5931 // TODO: split 3 bytes. there is no store instruction for that
5932
5933 Temp write_data;
5934 if (count != instr->num_components) {
5935 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
5936 for (int i = 0; i < count; i++) {
5937 Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(RegType::vgpr, elem_size_bytes / 4));
5938 vec->operands[i] = Operand(elem);
5939 }
5940 write_data = bld.tmp(RegClass(RegType::vgpr, count * elem_size_bytes / 4));
5941 vec->definitions[0] = Definition(write_data);
5942 ctx->block->instructions.emplace_back(std::move(vec));
5943 } else {
5944 write_data = data;
5945 }
5946
5947 aco_opcode op;
5948 switch (num_bytes) {
5949 case 4:
5950 op = aco_opcode::buffer_store_dword;
5951 break;
5952 case 8:
5953 op = aco_opcode::buffer_store_dwordx2;
5954 break;
5955 case 12:
5956 op = aco_opcode::buffer_store_dwordx3;
5957 break;
5958 case 16:
5959 op = aco_opcode::buffer_store_dwordx4;
5960 break;
5961 default:
5962 unreachable("Invalid data size for nir_intrinsic_store_scratch.");
5963 }
5964
5965 bld.mubuf(op, rsrc, offset, ctx->program->scratch_offset, write_data, start * elem_size_bytes, true);
5966 }
5967 }
5968
5969 void visit_load_sample_mask_in(isel_context *ctx, nir_intrinsic_instr *instr) {
5970 uint8_t log2_ps_iter_samples;
5971 if (ctx->program->info->ps.force_persample) {
5972 log2_ps_iter_samples =
5973 util_logbase2(ctx->options->key.fs.num_samples);
5974 } else {
5975 log2_ps_iter_samples = ctx->options->key.fs.log2_ps_iter_samples;
5976 }
5977
5978 /* The bit pattern matches that used by fixed function fragment
5979 * processing. */
5980 static const unsigned ps_iter_masks[] = {
5981 0xffff, /* not used */
5982 0x5555,
5983 0x1111,
5984 0x0101,
5985 0x0001,
5986 };
5987 assert(log2_ps_iter_samples < ARRAY_SIZE(ps_iter_masks));
5988
5989 Builder bld(ctx->program, ctx->block);
5990
5991 Temp sample_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
5992 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
5993 Temp ps_iter_mask = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(ps_iter_masks[log2_ps_iter_samples]));
5994 Temp mask = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), sample_id, ps_iter_mask);
5995 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5996 bld.vop2(aco_opcode::v_and_b32, Definition(dst), mask, get_arg(ctx, ctx->args->ac.sample_coverage));
5997 }
5998
5999 void visit_emit_vertex_with_counter(isel_context *ctx, nir_intrinsic_instr *instr) {
6000 Builder bld(ctx->program, ctx->block);
6001
6002 unsigned stream = nir_intrinsic_stream_id(instr);
6003 Temp next_vertex = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6004 next_vertex = bld.v_mul_imm(bld.def(v1), next_vertex, 4u);
6005 nir_const_value *next_vertex_cv = nir_src_as_const_value(instr->src[0]);
6006
6007 /* get GSVS ring */
6008 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_GSVS_GS * 16u));
6009
6010 unsigned num_components =
6011 ctx->program->info->gs.num_stream_output_components[stream];
6012 assert(num_components);
6013
6014 unsigned stride = 4u * num_components * ctx->shader->info.gs.vertices_out;
6015 unsigned stream_offset = 0;
6016 for (unsigned i = 0; i < stream; i++) {
6017 unsigned prev_stride = 4u * ctx->program->info->gs.num_stream_output_components[i] * ctx->shader->info.gs.vertices_out;
6018 stream_offset += prev_stride * ctx->program->wave_size;
6019 }
6020
6021 /* Limit on the stride field for <= GFX7. */
6022 assert(stride < (1 << 14));
6023
6024 Temp gsvs_dwords[4];
6025 for (unsigned i = 0; i < 4; i++)
6026 gsvs_dwords[i] = bld.tmp(s1);
6027 bld.pseudo(aco_opcode::p_split_vector,
6028 Definition(gsvs_dwords[0]),
6029 Definition(gsvs_dwords[1]),
6030 Definition(gsvs_dwords[2]),
6031 Definition(gsvs_dwords[3]),
6032 gsvs_ring);
6033
6034 if (stream_offset) {
6035 Temp stream_offset_tmp = bld.copy(bld.def(s1), Operand(stream_offset));
6036
6037 Temp carry = bld.tmp(s1);
6038 gsvs_dwords[0] = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), gsvs_dwords[0], stream_offset_tmp);
6039 gsvs_dwords[1] = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(0u), bld.scc(carry));
6040 }
6041
6042 gsvs_dwords[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(S_008F04_STRIDE(stride)));
6043 gsvs_dwords[2] = bld.copy(bld.def(s1), Operand((uint32_t)ctx->program->wave_size));
6044
6045 gsvs_ring = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
6046 gsvs_dwords[0], gsvs_dwords[1], gsvs_dwords[2], gsvs_dwords[3]);
6047
6048 unsigned offset = 0;
6049 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; i++) {
6050 if (ctx->program->info->gs.output_streams[i] != stream)
6051 continue;
6052
6053 for (unsigned j = 0; j < 4; j++) {
6054 if (!(ctx->program->info->gs.output_usage_mask[i] & (1 << j)))
6055 continue;
6056
6057 if (ctx->outputs.mask[i] & (1 << j)) {
6058 Operand vaddr_offset = next_vertex_cv ? Operand(v1) : Operand(next_vertex);
6059 unsigned const_offset = (offset + (next_vertex_cv ? next_vertex_cv->u32 : 0u)) * 4u;
6060 if (const_offset >= 4096u) {
6061 if (vaddr_offset.isUndefined())
6062 vaddr_offset = bld.copy(bld.def(v1), Operand(const_offset / 4096u * 4096u));
6063 else
6064 vaddr_offset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), vaddr_offset);
6065 const_offset %= 4096u;
6066 }
6067
6068 aco_ptr<MTBUF_instruction> mtbuf{create_instruction<MTBUF_instruction>(aco_opcode::tbuffer_store_format_x, Format::MTBUF, 4, 0)};
6069 mtbuf->operands[0] = Operand(gsvs_ring);
6070 mtbuf->operands[1] = vaddr_offset;
6071 mtbuf->operands[2] = Operand(get_arg(ctx, ctx->args->gs2vs_offset));
6072 mtbuf->operands[3] = Operand(ctx->outputs.outputs[i][j]);
6073 mtbuf->offen = !vaddr_offset.isUndefined();
6074 mtbuf->dfmt = V_008F0C_BUF_DATA_FORMAT_32;
6075 mtbuf->nfmt = V_008F0C_BUF_NUM_FORMAT_UINT;
6076 mtbuf->offset = const_offset;
6077 mtbuf->glc = true;
6078 mtbuf->slc = true;
6079 mtbuf->barrier = barrier_gs_data;
6080 mtbuf->can_reorder = true;
6081 bld.insert(std::move(mtbuf));
6082 }
6083
6084 offset += ctx->shader->info.gs.vertices_out;
6085 }
6086
6087 /* outputs for the next vertex are undefined and keeping them around can
6088 * create invalid IR with control flow */
6089 ctx->outputs.mask[i] = 0;
6090 }
6091
6092 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(false, true, stream));
6093 }
6094
6095 Temp emit_boolean_reduce(isel_context *ctx, nir_op op, unsigned cluster_size, Temp src)
6096 {
6097 Builder bld(ctx->program, ctx->block);
6098
6099 if (cluster_size == 1) {
6100 return src;
6101 } if (op == nir_op_iand && cluster_size == 4) {
6102 //subgroupClusteredAnd(val, 4) -> ~wqm(exec & ~val)
6103 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
6104 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc),
6105 bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc), tmp));
6106 } else if (op == nir_op_ior && cluster_size == 4) {
6107 //subgroupClusteredOr(val, 4) -> wqm(val & exec)
6108 return bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc),
6109 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)));
6110 } else if (op == nir_op_iand && cluster_size == ctx->program->wave_size) {
6111 //subgroupAnd(val) -> (exec & ~val) == 0
6112 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
6113 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
6114 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), cond);
6115 } else if (op == nir_op_ior && cluster_size == ctx->program->wave_size) {
6116 //subgroupOr(val) -> (val & exec) != 0
6117 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)).def(1).getTemp();
6118 return bool_to_vector_condition(ctx, tmp);
6119 } else if (op == nir_op_ixor && cluster_size == ctx->program->wave_size) {
6120 //subgroupXor(val) -> s_bcnt1_i32_b64(val & exec) & 1
6121 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
6122 tmp = bld.sop1(Builder::s_bcnt1_i32, bld.def(s1), bld.def(s1, scc), tmp);
6123 tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), tmp, Operand(1u)).def(1).getTemp();
6124 return bool_to_vector_condition(ctx, tmp);
6125 } else {
6126 //subgroupClustered{And,Or,Xor}(val, n) ->
6127 //lane_id = v_mbcnt_hi_u32_b32(-1, v_mbcnt_lo_u32_b32(-1, 0)) ; just v_mbcnt_lo_u32_b32 on wave32
6128 //cluster_offset = ~(n - 1) & lane_id
6129 //cluster_mask = ((1 << n) - 1)
6130 //subgroupClusteredAnd():
6131 // return ((val | ~exec) >> cluster_offset) & cluster_mask == cluster_mask
6132 //subgroupClusteredOr():
6133 // return ((val & exec) >> cluster_offset) & cluster_mask != 0
6134 //subgroupClusteredXor():
6135 // return v_bnt_u32_b32(((val & exec) >> cluster_offset) & cluster_mask, 0) & 1 != 0
6136 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
6137 Temp cluster_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(~uint32_t(cluster_size - 1)), lane_id);
6138
6139 Temp tmp;
6140 if (op == nir_op_iand)
6141 tmp = bld.sop2(Builder::s_orn2, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
6142 else
6143 tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
6144
6145 uint32_t cluster_mask = cluster_size == 32 ? -1 : (1u << cluster_size) - 1u;
6146
6147 if (ctx->program->chip_class <= GFX7)
6148 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), tmp, cluster_offset);
6149 else if (ctx->program->wave_size == 64)
6150 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), cluster_offset, tmp);
6151 else
6152 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), cluster_offset, tmp);
6153 tmp = emit_extract_vector(ctx, tmp, 0, v1);
6154 if (cluster_mask != 0xffffffff)
6155 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(cluster_mask), tmp);
6156
6157 Definition cmp_def = Definition();
6158 if (op == nir_op_iand) {
6159 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(cluster_mask), tmp).def(0);
6160 } else if (op == nir_op_ior) {
6161 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
6162 } else if (op == nir_op_ixor) {
6163 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u),
6164 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1), tmp, Operand(0u)));
6165 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
6166 }
6167 cmp_def.setHint(vcc);
6168 return cmp_def.getTemp();
6169 }
6170 }
6171
6172 Temp emit_boolean_exclusive_scan(isel_context *ctx, nir_op op, Temp src)
6173 {
6174 Builder bld(ctx->program, ctx->block);
6175
6176 //subgroupExclusiveAnd(val) -> mbcnt(exec & ~val) == 0
6177 //subgroupExclusiveOr(val) -> mbcnt(val & exec) != 0
6178 //subgroupExclusiveXor(val) -> mbcnt(val & exec) & 1 != 0
6179 Temp tmp;
6180 if (op == nir_op_iand)
6181 tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
6182 else
6183 tmp = bld.sop2(Builder::s_and, bld.def(s2), bld.def(s1, scc), src, Operand(exec, bld.lm));
6184
6185 Builder::Result lohi = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), bld.def(s1), tmp);
6186 Temp lo = lohi.def(0).getTemp();
6187 Temp hi = lohi.def(1).getTemp();
6188 Temp mbcnt = emit_mbcnt(ctx, bld.def(v1), Operand(lo), Operand(hi));
6189
6190 Definition cmp_def = Definition();
6191 if (op == nir_op_iand)
6192 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
6193 else if (op == nir_op_ior)
6194 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
6195 else if (op == nir_op_ixor)
6196 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u),
6197 bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), mbcnt)).def(0);
6198 cmp_def.setHint(vcc);
6199 return cmp_def.getTemp();
6200 }
6201
6202 Temp emit_boolean_inclusive_scan(isel_context *ctx, nir_op op, Temp src)
6203 {
6204 Builder bld(ctx->program, ctx->block);
6205
6206 //subgroupInclusiveAnd(val) -> subgroupExclusiveAnd(val) && val
6207 //subgroupInclusiveOr(val) -> subgroupExclusiveOr(val) || val
6208 //subgroupInclusiveXor(val) -> subgroupExclusiveXor(val) ^^ val
6209 Temp tmp = emit_boolean_exclusive_scan(ctx, op, src);
6210 if (op == nir_op_iand)
6211 return bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
6212 else if (op == nir_op_ior)
6213 return bld.sop2(Builder::s_or, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
6214 else if (op == nir_op_ixor)
6215 return bld.sop2(Builder::s_xor, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
6216
6217 assert(false);
6218 return Temp();
6219 }
6220
6221 void emit_uniform_subgroup(isel_context *ctx, nir_intrinsic_instr *instr, Temp src)
6222 {
6223 Builder bld(ctx->program, ctx->block);
6224 Definition dst(get_ssa_temp(ctx, &instr->dest.ssa));
6225 if (src.regClass().type() == RegType::vgpr) {
6226 bld.pseudo(aco_opcode::p_as_uniform, dst, src);
6227 } else if (src.regClass() == s1) {
6228 bld.sop1(aco_opcode::s_mov_b32, dst, src);
6229 } else if (src.regClass() == s2) {
6230 bld.sop1(aco_opcode::s_mov_b64, dst, src);
6231 } else {
6232 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6233 nir_print_instr(&instr->instr, stderr);
6234 fprintf(stderr, "\n");
6235 }
6236 }
6237
6238 void emit_interp_center(isel_context *ctx, Temp dst, Temp pos1, Temp pos2)
6239 {
6240 Builder bld(ctx->program, ctx->block);
6241 Temp persp_center = get_arg(ctx, ctx->args->ac.persp_center);
6242 Temp p1 = emit_extract_vector(ctx, persp_center, 0, v1);
6243 Temp p2 = emit_extract_vector(ctx, persp_center, 1, v1);
6244
6245 Temp ddx_1, ddx_2, ddy_1, ddy_2;
6246 uint32_t dpp_ctrl0 = dpp_quad_perm(0, 0, 0, 0);
6247 uint32_t dpp_ctrl1 = dpp_quad_perm(1, 1, 1, 1);
6248 uint32_t dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
6249
6250 /* Build DD X/Y */
6251 if (ctx->program->chip_class >= GFX8) {
6252 Temp tl_1 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p1, dpp_ctrl0);
6253 ddx_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl1);
6254 ddy_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl2);
6255 Temp tl_2 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p2, dpp_ctrl0);
6256 ddx_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl1);
6257 ddy_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl2);
6258 } else {
6259 Temp tl_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl0);
6260 ddx_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl1);
6261 ddx_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_1, tl_1);
6262 ddx_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl2);
6263 ddx_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_2, tl_1);
6264 Temp tl_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl0);
6265 ddy_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl1);
6266 ddy_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_1, tl_2);
6267 ddy_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl2);
6268 ddy_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_2, tl_2);
6269 }
6270
6271 /* res_k = p_k + ddx_k * pos1 + ddy_k * pos2 */
6272 Temp tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_1, pos1, p1);
6273 Temp tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_2, pos1, p2);
6274 tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_1, pos2, tmp1);
6275 tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_2, pos2, tmp2);
6276 Temp wqm1 = bld.tmp(v1);
6277 emit_wqm(ctx, tmp1, wqm1, true);
6278 Temp wqm2 = bld.tmp(v1);
6279 emit_wqm(ctx, tmp2, wqm2, true);
6280 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), wqm1, wqm2);
6281 return;
6282 }
6283
6284 void visit_intrinsic(isel_context *ctx, nir_intrinsic_instr *instr)
6285 {
6286 Builder bld(ctx->program, ctx->block);
6287 switch(instr->intrinsic) {
6288 case nir_intrinsic_load_barycentric_sample:
6289 case nir_intrinsic_load_barycentric_pixel:
6290 case nir_intrinsic_load_barycentric_centroid: {
6291 glsl_interp_mode mode = (glsl_interp_mode)nir_intrinsic_interp_mode(instr);
6292 Temp bary = Temp(0, s2);
6293 switch (mode) {
6294 case INTERP_MODE_SMOOTH:
6295 case INTERP_MODE_NONE:
6296 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
6297 bary = get_arg(ctx, ctx->args->ac.persp_center);
6298 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
6299 bary = ctx->persp_centroid;
6300 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
6301 bary = get_arg(ctx, ctx->args->ac.persp_sample);
6302 break;
6303 case INTERP_MODE_NOPERSPECTIVE:
6304 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
6305 bary = get_arg(ctx, ctx->args->ac.linear_center);
6306 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
6307 bary = ctx->linear_centroid;
6308 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
6309 bary = get_arg(ctx, ctx->args->ac.linear_sample);
6310 break;
6311 default:
6312 break;
6313 }
6314 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6315 Temp p1 = emit_extract_vector(ctx, bary, 0, v1);
6316 Temp p2 = emit_extract_vector(ctx, bary, 1, v1);
6317 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6318 Operand(p1), Operand(p2));
6319 emit_split_vector(ctx, dst, 2);
6320 break;
6321 }
6322 case nir_intrinsic_load_barycentric_model: {
6323 Temp model = get_arg(ctx, ctx->args->ac.pull_model);
6324
6325 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6326 Temp p1 = emit_extract_vector(ctx, model, 0, v1);
6327 Temp p2 = emit_extract_vector(ctx, model, 1, v1);
6328 Temp p3 = emit_extract_vector(ctx, model, 2, v1);
6329 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6330 Operand(p1), Operand(p2), Operand(p3));
6331 emit_split_vector(ctx, dst, 3);
6332 break;
6333 }
6334 case nir_intrinsic_load_barycentric_at_sample: {
6335 uint32_t sample_pos_offset = RING_PS_SAMPLE_POSITIONS * 16;
6336 switch (ctx->options->key.fs.num_samples) {
6337 case 2: sample_pos_offset += 1 << 3; break;
6338 case 4: sample_pos_offset += 3 << 3; break;
6339 case 8: sample_pos_offset += 7 << 3; break;
6340 default: break;
6341 }
6342 Temp sample_pos;
6343 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
6344 nir_const_value* const_addr = nir_src_as_const_value(instr->src[0]);
6345 Temp private_segment_buffer = ctx->program->private_segment_buffer;
6346 if (addr.type() == RegType::sgpr) {
6347 Operand offset;
6348 if (const_addr) {
6349 sample_pos_offset += const_addr->u32 << 3;
6350 offset = Operand(sample_pos_offset);
6351 } else if (ctx->options->chip_class >= GFX9) {
6352 offset = bld.sop2(aco_opcode::s_lshl3_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
6353 } else {
6354 offset = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), addr, Operand(3u));
6355 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
6356 }
6357
6358 Operand off = bld.copy(bld.def(s1), Operand(offset));
6359 sample_pos = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), private_segment_buffer, off);
6360
6361 } else if (ctx->options->chip_class >= GFX9) {
6362 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
6363 sample_pos = bld.global(aco_opcode::global_load_dwordx2, bld.def(v2), addr, private_segment_buffer, sample_pos_offset);
6364 } else if (ctx->options->chip_class >= GFX7) {
6365 /* addr += private_segment_buffer + sample_pos_offset */
6366 Temp tmp0 = bld.tmp(s1);
6367 Temp tmp1 = bld.tmp(s1);
6368 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp0), Definition(tmp1), private_segment_buffer);
6369 Definition scc_tmp = bld.def(s1, scc);
6370 tmp0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), scc_tmp, tmp0, Operand(sample_pos_offset));
6371 tmp1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), tmp1, Operand(0u), bld.scc(scc_tmp.getTemp()));
6372 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
6373 Temp pck0 = bld.tmp(v1);
6374 Temp carry = bld.vadd32(Definition(pck0), tmp0, addr, true).def(1).getTemp();
6375 tmp1 = as_vgpr(ctx, tmp1);
6376 Temp pck1 = bld.vop2_e64(aco_opcode::v_addc_co_u32, bld.def(v1), bld.hint_vcc(bld.def(bld.lm)), tmp1, Operand(0u), carry);
6377 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), pck0, pck1);
6378
6379 /* sample_pos = flat_load_dwordx2 addr */
6380 sample_pos = bld.flat(aco_opcode::flat_load_dwordx2, bld.def(v2), addr, Operand(s1));
6381 } else {
6382 assert(ctx->options->chip_class == GFX6);
6383
6384 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
6385 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
6386 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), private_segment_buffer, Operand(0u), Operand(rsrc_conf));
6387
6388 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
6389 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), addr, Operand(0u));
6390
6391 sample_pos = bld.tmp(v2);
6392
6393 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dwordx2, Format::MUBUF, 3, 1)};
6394 load->definitions[0] = Definition(sample_pos);
6395 load->operands[0] = Operand(rsrc);
6396 load->operands[1] = Operand(addr);
6397 load->operands[2] = Operand(0u);
6398 load->offset = sample_pos_offset;
6399 load->offen = 0;
6400 load->addr64 = true;
6401 load->glc = false;
6402 load->dlc = false;
6403 load->disable_wqm = false;
6404 load->barrier = barrier_none;
6405 load->can_reorder = true;
6406 ctx->block->instructions.emplace_back(std::move(load));
6407 }
6408
6409 /* sample_pos -= 0.5 */
6410 Temp pos1 = bld.tmp(RegClass(sample_pos.type(), 1));
6411 Temp pos2 = bld.tmp(RegClass(sample_pos.type(), 1));
6412 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), sample_pos);
6413 pos1 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos1, Operand(0x3f000000u));
6414 pos2 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos2, Operand(0x3f000000u));
6415
6416 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
6417 break;
6418 }
6419 case nir_intrinsic_load_barycentric_at_offset: {
6420 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
6421 RegClass rc = RegClass(offset.type(), 1);
6422 Temp pos1 = bld.tmp(rc), pos2 = bld.tmp(rc);
6423 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), offset);
6424 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
6425 break;
6426 }
6427 case nir_intrinsic_load_front_face: {
6428 bld.vopc(aco_opcode::v_cmp_lg_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6429 Operand(0u), get_arg(ctx, ctx->args->ac.front_face)).def(0).setHint(vcc);
6430 break;
6431 }
6432 case nir_intrinsic_load_view_index: {
6433 if (ctx->stage & (sw_vs | sw_gs | sw_tcs | sw_tes)) {
6434 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6435 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.view_index)));
6436 break;
6437 }
6438
6439 /* fallthrough */
6440 }
6441 case nir_intrinsic_load_layer_id: {
6442 unsigned idx = nir_intrinsic_base(instr);
6443 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6444 Operand(2u), bld.m0(get_arg(ctx, ctx->args->ac.prim_mask)), idx, 0);
6445 break;
6446 }
6447 case nir_intrinsic_load_frag_coord: {
6448 emit_load_frag_coord(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 4);
6449 break;
6450 }
6451 case nir_intrinsic_load_sample_pos: {
6452 Temp posx = get_arg(ctx, ctx->args->ac.frag_pos[0]);
6453 Temp posy = get_arg(ctx, ctx->args->ac.frag_pos[1]);
6454 bld.pseudo(aco_opcode::p_create_vector, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6455 posx.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posx) : Operand(0u),
6456 posy.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posy) : Operand(0u));
6457 break;
6458 }
6459 case nir_intrinsic_load_tess_coord:
6460 visit_load_tess_coord(ctx, instr);
6461 break;
6462 case nir_intrinsic_load_interpolated_input:
6463 visit_load_interpolated_input(ctx, instr);
6464 break;
6465 case nir_intrinsic_store_output:
6466 visit_store_output(ctx, instr);
6467 break;
6468 case nir_intrinsic_load_input:
6469 case nir_intrinsic_load_input_vertex:
6470 visit_load_input(ctx, instr);
6471 break;
6472 case nir_intrinsic_load_per_vertex_input:
6473 visit_load_per_vertex_input(ctx, instr);
6474 break;
6475 case nir_intrinsic_load_ubo:
6476 visit_load_ubo(ctx, instr);
6477 break;
6478 case nir_intrinsic_load_push_constant:
6479 visit_load_push_constant(ctx, instr);
6480 break;
6481 case nir_intrinsic_load_constant:
6482 visit_load_constant(ctx, instr);
6483 break;
6484 case nir_intrinsic_vulkan_resource_index:
6485 visit_load_resource(ctx, instr);
6486 break;
6487 case nir_intrinsic_discard:
6488 visit_discard(ctx, instr);
6489 break;
6490 case nir_intrinsic_discard_if:
6491 visit_discard_if(ctx, instr);
6492 break;
6493 case nir_intrinsic_load_shared:
6494 visit_load_shared(ctx, instr);
6495 break;
6496 case nir_intrinsic_store_shared:
6497 visit_store_shared(ctx, instr);
6498 break;
6499 case nir_intrinsic_shared_atomic_add:
6500 case nir_intrinsic_shared_atomic_imin:
6501 case nir_intrinsic_shared_atomic_umin:
6502 case nir_intrinsic_shared_atomic_imax:
6503 case nir_intrinsic_shared_atomic_umax:
6504 case nir_intrinsic_shared_atomic_and:
6505 case nir_intrinsic_shared_atomic_or:
6506 case nir_intrinsic_shared_atomic_xor:
6507 case nir_intrinsic_shared_atomic_exchange:
6508 case nir_intrinsic_shared_atomic_comp_swap:
6509 visit_shared_atomic(ctx, instr);
6510 break;
6511 case nir_intrinsic_image_deref_load:
6512 visit_image_load(ctx, instr);
6513 break;
6514 case nir_intrinsic_image_deref_store:
6515 visit_image_store(ctx, instr);
6516 break;
6517 case nir_intrinsic_image_deref_atomic_add:
6518 case nir_intrinsic_image_deref_atomic_umin:
6519 case nir_intrinsic_image_deref_atomic_imin:
6520 case nir_intrinsic_image_deref_atomic_umax:
6521 case nir_intrinsic_image_deref_atomic_imax:
6522 case nir_intrinsic_image_deref_atomic_and:
6523 case nir_intrinsic_image_deref_atomic_or:
6524 case nir_intrinsic_image_deref_atomic_xor:
6525 case nir_intrinsic_image_deref_atomic_exchange:
6526 case nir_intrinsic_image_deref_atomic_comp_swap:
6527 visit_image_atomic(ctx, instr);
6528 break;
6529 case nir_intrinsic_image_deref_size:
6530 visit_image_size(ctx, instr);
6531 break;
6532 case nir_intrinsic_load_ssbo:
6533 visit_load_ssbo(ctx, instr);
6534 break;
6535 case nir_intrinsic_store_ssbo:
6536 visit_store_ssbo(ctx, instr);
6537 break;
6538 case nir_intrinsic_load_global:
6539 visit_load_global(ctx, instr);
6540 break;
6541 case nir_intrinsic_store_global:
6542 visit_store_global(ctx, instr);
6543 break;
6544 case nir_intrinsic_global_atomic_add:
6545 case nir_intrinsic_global_atomic_imin:
6546 case nir_intrinsic_global_atomic_umin:
6547 case nir_intrinsic_global_atomic_imax:
6548 case nir_intrinsic_global_atomic_umax:
6549 case nir_intrinsic_global_atomic_and:
6550 case nir_intrinsic_global_atomic_or:
6551 case nir_intrinsic_global_atomic_xor:
6552 case nir_intrinsic_global_atomic_exchange:
6553 case nir_intrinsic_global_atomic_comp_swap:
6554 visit_global_atomic(ctx, instr);
6555 break;
6556 case nir_intrinsic_ssbo_atomic_add:
6557 case nir_intrinsic_ssbo_atomic_imin:
6558 case nir_intrinsic_ssbo_atomic_umin:
6559 case nir_intrinsic_ssbo_atomic_imax:
6560 case nir_intrinsic_ssbo_atomic_umax:
6561 case nir_intrinsic_ssbo_atomic_and:
6562 case nir_intrinsic_ssbo_atomic_or:
6563 case nir_intrinsic_ssbo_atomic_xor:
6564 case nir_intrinsic_ssbo_atomic_exchange:
6565 case nir_intrinsic_ssbo_atomic_comp_swap:
6566 visit_atomic_ssbo(ctx, instr);
6567 break;
6568 case nir_intrinsic_load_scratch:
6569 visit_load_scratch(ctx, instr);
6570 break;
6571 case nir_intrinsic_store_scratch:
6572 visit_store_scratch(ctx, instr);
6573 break;
6574 case nir_intrinsic_get_buffer_size:
6575 visit_get_buffer_size(ctx, instr);
6576 break;
6577 case nir_intrinsic_control_barrier: {
6578 if (ctx->program->chip_class == GFX6 && ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
6579 /* GFX6 only (thanks to a hw bug workaround):
6580 * The real barrier instruction isn’t needed, because an entire patch
6581 * always fits into a single wave.
6582 */
6583 break;
6584 }
6585
6586 if (ctx->shader->info.stage == MESA_SHADER_COMPUTE) {
6587 unsigned* bsize = ctx->program->info->cs.block_size;
6588 unsigned workgroup_size = bsize[0] * bsize[1] * bsize[2];
6589 if (workgroup_size > ctx->program->wave_size)
6590 bld.sopp(aco_opcode::s_barrier);
6591 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
6592 /* For each patch provided during rendering, n​ TCS shader invocations will be processed,
6593 * where n​ is the number of vertices in the output patch.
6594 */
6595 unsigned workgroup_size = ctx->tcs_num_patches * ctx->shader->info.tess.tcs_vertices_out;
6596 if (workgroup_size > ctx->program->wave_size)
6597 bld.sopp(aco_opcode::s_barrier);
6598 } else {
6599 /* We don't know the workgroup size, so always emit the s_barrier. */
6600 bld.sopp(aco_opcode::s_barrier);
6601 }
6602
6603 break;
6604 }
6605 case nir_intrinsic_memory_barrier_tcs_patch:
6606 case nir_intrinsic_group_memory_barrier:
6607 case nir_intrinsic_memory_barrier:
6608 case nir_intrinsic_memory_barrier_buffer:
6609 case nir_intrinsic_memory_barrier_image:
6610 case nir_intrinsic_memory_barrier_shared:
6611 emit_memory_barrier(ctx, instr);
6612 break;
6613 case nir_intrinsic_load_num_work_groups: {
6614 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6615 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.num_work_groups)));
6616 emit_split_vector(ctx, dst, 3);
6617 break;
6618 }
6619 case nir_intrinsic_load_local_invocation_id: {
6620 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6621 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.local_invocation_ids)));
6622 emit_split_vector(ctx, dst, 3);
6623 break;
6624 }
6625 case nir_intrinsic_load_work_group_id: {
6626 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6627 struct ac_arg *args = ctx->args->ac.workgroup_ids;
6628 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6629 args[0].used ? Operand(get_arg(ctx, args[0])) : Operand(0u),
6630 args[1].used ? Operand(get_arg(ctx, args[1])) : Operand(0u),
6631 args[2].used ? Operand(get_arg(ctx, args[2])) : Operand(0u));
6632 emit_split_vector(ctx, dst, 3);
6633 break;
6634 }
6635 case nir_intrinsic_load_local_invocation_index: {
6636 Temp id = emit_mbcnt(ctx, bld.def(v1));
6637
6638 /* The tg_size bits [6:11] contain the subgroup id,
6639 * we need this multiplied by the wave size, and then OR the thread id to it.
6640 */
6641 if (ctx->program->wave_size == 64) {
6642 /* After the s_and the bits are already multiplied by 64 (left shifted by 6) so we can just feed that to v_or */
6643 Temp tg_num = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfc0u),
6644 get_arg(ctx, ctx->args->ac.tg_size));
6645 bld.vop2(aco_opcode::v_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, id);
6646 } else {
6647 /* Extract the bit field and multiply the result by 32 (left shift by 5), then do the OR */
6648 Temp tg_num = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
6649 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
6650 bld.vop3(aco_opcode::v_lshl_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, Operand(0x5u), id);
6651 }
6652 break;
6653 }
6654 case nir_intrinsic_load_subgroup_id: {
6655 if (ctx->stage == compute_cs) {
6656 bld.sop2(aco_opcode::s_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc),
6657 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
6658 } else {
6659 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x0u));
6660 }
6661 break;
6662 }
6663 case nir_intrinsic_load_subgroup_invocation: {
6664 emit_mbcnt(ctx, Definition(get_ssa_temp(ctx, &instr->dest.ssa)));
6665 break;
6666 }
6667 case nir_intrinsic_load_num_subgroups: {
6668 if (ctx->stage == compute_cs)
6669 bld.sop2(aco_opcode::s_and_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc), Operand(0x3fu),
6670 get_arg(ctx, ctx->args->ac.tg_size));
6671 else
6672 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x1u));
6673 break;
6674 }
6675 case nir_intrinsic_ballot: {
6676 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6677 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6678 Definition tmp = bld.def(dst.regClass());
6679 Definition lanemask_tmp = dst.size() == bld.lm.size() ? tmp : bld.def(src.regClass());
6680 if (instr->src[0].ssa->bit_size == 1) {
6681 assert(src.regClass() == bld.lm);
6682 bld.sop2(Builder::s_and, lanemask_tmp, bld.def(s1, scc), Operand(exec, bld.lm), src);
6683 } else if (instr->src[0].ssa->bit_size == 32 && src.regClass() == v1) {
6684 bld.vopc(aco_opcode::v_cmp_lg_u32, lanemask_tmp, Operand(0u), src);
6685 } else if (instr->src[0].ssa->bit_size == 64 && src.regClass() == v2) {
6686 bld.vopc(aco_opcode::v_cmp_lg_u64, lanemask_tmp, Operand(0u), src);
6687 } else {
6688 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6689 nir_print_instr(&instr->instr, stderr);
6690 fprintf(stderr, "\n");
6691 }
6692 if (dst.size() != bld.lm.size()) {
6693 /* Wave32 with ballot size set to 64 */
6694 bld.pseudo(aco_opcode::p_create_vector, Definition(tmp), lanemask_tmp.getTemp(), Operand(0u));
6695 }
6696 emit_wqm(ctx, tmp.getTemp(), dst);
6697 break;
6698 }
6699 case nir_intrinsic_shuffle:
6700 case nir_intrinsic_read_invocation: {
6701 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6702 if (!ctx->divergent_vals[instr->src[0].ssa->index]) {
6703 emit_uniform_subgroup(ctx, instr, src);
6704 } else {
6705 Temp tid = get_ssa_temp(ctx, instr->src[1].ssa);
6706 if (instr->intrinsic == nir_intrinsic_read_invocation || !ctx->divergent_vals[instr->src[1].ssa->index])
6707 tid = bld.as_uniform(tid);
6708 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6709 if (src.regClass() == v1) {
6710 emit_wqm(ctx, emit_bpermute(ctx, bld, tid, src), dst);
6711 } else if (src.regClass() == v2) {
6712 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
6713 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
6714 lo = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, lo));
6715 hi = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, hi));
6716 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6717 emit_split_vector(ctx, dst, 2);
6718 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == s1) {
6719 assert(src.regClass() == bld.lm);
6720 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src, tid);
6721 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
6722 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == v1) {
6723 assert(src.regClass() == bld.lm);
6724 Temp tmp;
6725 if (ctx->program->chip_class <= GFX7)
6726 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), src, tid);
6727 else if (ctx->program->wave_size == 64)
6728 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), tid, src);
6729 else
6730 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), tid, src);
6731 tmp = emit_extract_vector(ctx, tmp, 0, v1);
6732 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), tmp);
6733 emit_wqm(ctx, bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp), dst);
6734 } else {
6735 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6736 nir_print_instr(&instr->instr, stderr);
6737 fprintf(stderr, "\n");
6738 }
6739 }
6740 break;
6741 }
6742 case nir_intrinsic_load_sample_id: {
6743 bld.vop3(aco_opcode::v_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6744 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
6745 break;
6746 }
6747 case nir_intrinsic_load_sample_mask_in: {
6748 visit_load_sample_mask_in(ctx, instr);
6749 break;
6750 }
6751 case nir_intrinsic_read_first_invocation: {
6752 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6753 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6754 if (src.regClass() == v1) {
6755 emit_wqm(ctx,
6756 bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), src),
6757 dst);
6758 } else if (src.regClass() == v2) {
6759 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
6760 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
6761 lo = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), lo));
6762 hi = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), hi));
6763 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6764 emit_split_vector(ctx, dst, 2);
6765 } else if (instr->dest.ssa.bit_size == 1) {
6766 assert(src.regClass() == bld.lm);
6767 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src,
6768 bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)));
6769 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
6770 } else if (src.regClass() == s1) {
6771 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
6772 } else if (src.regClass() == s2) {
6773 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
6774 } else {
6775 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6776 nir_print_instr(&instr->instr, stderr);
6777 fprintf(stderr, "\n");
6778 }
6779 break;
6780 }
6781 case nir_intrinsic_vote_all: {
6782 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6783 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6784 assert(src.regClass() == bld.lm);
6785 assert(dst.regClass() == bld.lm);
6786
6787 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
6788 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
6789 bld.sop1(Builder::s_not, Definition(dst), bld.def(s1, scc), cond);
6790 break;
6791 }
6792 case nir_intrinsic_vote_any: {
6793 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6794 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6795 assert(src.regClass() == bld.lm);
6796 assert(dst.regClass() == bld.lm);
6797
6798 Temp tmp = bool_to_scalar_condition(ctx, src);
6799 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
6800 break;
6801 }
6802 case nir_intrinsic_reduce:
6803 case nir_intrinsic_inclusive_scan:
6804 case nir_intrinsic_exclusive_scan: {
6805 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6806 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6807 nir_op op = (nir_op) nir_intrinsic_reduction_op(instr);
6808 unsigned cluster_size = instr->intrinsic == nir_intrinsic_reduce ?
6809 nir_intrinsic_cluster_size(instr) : 0;
6810 cluster_size = util_next_power_of_two(MIN2(cluster_size ? cluster_size : ctx->program->wave_size, ctx->program->wave_size));
6811
6812 if (!ctx->divergent_vals[instr->src[0].ssa->index] && (op == nir_op_ior || op == nir_op_iand)) {
6813 emit_uniform_subgroup(ctx, instr, src);
6814 } else if (instr->dest.ssa.bit_size == 1) {
6815 if (op == nir_op_imul || op == nir_op_umin || op == nir_op_imin)
6816 op = nir_op_iand;
6817 else if (op == nir_op_iadd)
6818 op = nir_op_ixor;
6819 else if (op == nir_op_umax || op == nir_op_imax)
6820 op = nir_op_ior;
6821 assert(op == nir_op_iand || op == nir_op_ior || op == nir_op_ixor);
6822
6823 switch (instr->intrinsic) {
6824 case nir_intrinsic_reduce:
6825 emit_wqm(ctx, emit_boolean_reduce(ctx, op, cluster_size, src), dst);
6826 break;
6827 case nir_intrinsic_exclusive_scan:
6828 emit_wqm(ctx, emit_boolean_exclusive_scan(ctx, op, src), dst);
6829 break;
6830 case nir_intrinsic_inclusive_scan:
6831 emit_wqm(ctx, emit_boolean_inclusive_scan(ctx, op, src), dst);
6832 break;
6833 default:
6834 assert(false);
6835 }
6836 } else if (cluster_size == 1) {
6837 bld.copy(Definition(dst), src);
6838 } else {
6839 src = as_vgpr(ctx, src);
6840
6841 ReduceOp reduce_op;
6842 switch (op) {
6843 #define CASE(name) case nir_op_##name: reduce_op = (src.regClass() == v1) ? name##32 : name##64; break;
6844 CASE(iadd)
6845 CASE(imul)
6846 CASE(fadd)
6847 CASE(fmul)
6848 CASE(imin)
6849 CASE(umin)
6850 CASE(fmin)
6851 CASE(imax)
6852 CASE(umax)
6853 CASE(fmax)
6854 CASE(iand)
6855 CASE(ior)
6856 CASE(ixor)
6857 default:
6858 unreachable("unknown reduction op");
6859 #undef CASE
6860 }
6861
6862 aco_opcode aco_op;
6863 switch (instr->intrinsic) {
6864 case nir_intrinsic_reduce: aco_op = aco_opcode::p_reduce; break;
6865 case nir_intrinsic_inclusive_scan: aco_op = aco_opcode::p_inclusive_scan; break;
6866 case nir_intrinsic_exclusive_scan: aco_op = aco_opcode::p_exclusive_scan; break;
6867 default:
6868 unreachable("unknown reduce intrinsic");
6869 }
6870
6871 aco_ptr<Pseudo_reduction_instruction> reduce{create_instruction<Pseudo_reduction_instruction>(aco_op, Format::PSEUDO_REDUCTION, 3, 5)};
6872 reduce->operands[0] = Operand(src);
6873 // filled in by aco_reduce_assign.cpp, used internally as part of the
6874 // reduce sequence
6875 assert(dst.size() == 1 || dst.size() == 2);
6876 reduce->operands[1] = Operand(RegClass(RegType::vgpr, dst.size()).as_linear());
6877 reduce->operands[2] = Operand(v1.as_linear());
6878
6879 Temp tmp_dst = bld.tmp(dst.regClass());
6880 reduce->definitions[0] = Definition(tmp_dst);
6881 reduce->definitions[1] = bld.def(ctx->program->lane_mask); // used internally
6882 reduce->definitions[2] = Definition();
6883 reduce->definitions[3] = Definition(scc, s1);
6884 reduce->definitions[4] = Definition();
6885 reduce->reduce_op = reduce_op;
6886 reduce->cluster_size = cluster_size;
6887 ctx->block->instructions.emplace_back(std::move(reduce));
6888
6889 emit_wqm(ctx, tmp_dst, dst);
6890 }
6891 break;
6892 }
6893 case nir_intrinsic_quad_broadcast: {
6894 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6895 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
6896 emit_uniform_subgroup(ctx, instr, src);
6897 } else {
6898 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6899 unsigned lane = nir_src_as_const_value(instr->src[1])->u32;
6900 uint32_t dpp_ctrl = dpp_quad_perm(lane, lane, lane, lane);
6901
6902 if (instr->dest.ssa.bit_size == 1) {
6903 assert(src.regClass() == bld.lm);
6904 assert(dst.regClass() == bld.lm);
6905 uint32_t half_mask = 0x11111111u << lane;
6906 Temp mask_tmp = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(half_mask), Operand(half_mask));
6907 Temp tmp = bld.tmp(bld.lm);
6908 bld.sop1(Builder::s_wqm, Definition(tmp),
6909 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), mask_tmp,
6910 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm))));
6911 emit_wqm(ctx, tmp, dst);
6912 } else if (instr->dest.ssa.bit_size == 32) {
6913 if (ctx->program->chip_class >= GFX8)
6914 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), dst);
6915 else
6916 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), dst);
6917 } else if (instr->dest.ssa.bit_size == 64) {
6918 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
6919 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
6920 if (ctx->program->chip_class >= GFX8) {
6921 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
6922 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
6923 } else {
6924 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, (1 << 15) | dpp_ctrl));
6925 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, (1 << 15) | dpp_ctrl));
6926 }
6927 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6928 emit_split_vector(ctx, dst, 2);
6929 } else {
6930 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6931 nir_print_instr(&instr->instr, stderr);
6932 fprintf(stderr, "\n");
6933 }
6934 }
6935 break;
6936 }
6937 case nir_intrinsic_quad_swap_horizontal:
6938 case nir_intrinsic_quad_swap_vertical:
6939 case nir_intrinsic_quad_swap_diagonal:
6940 case nir_intrinsic_quad_swizzle_amd: {
6941 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6942 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
6943 emit_uniform_subgroup(ctx, instr, src);
6944 break;
6945 }
6946 uint16_t dpp_ctrl = 0;
6947 switch (instr->intrinsic) {
6948 case nir_intrinsic_quad_swap_horizontal:
6949 dpp_ctrl = dpp_quad_perm(1, 0, 3, 2);
6950 break;
6951 case nir_intrinsic_quad_swap_vertical:
6952 dpp_ctrl = dpp_quad_perm(2, 3, 0, 1);
6953 break;
6954 case nir_intrinsic_quad_swap_diagonal:
6955 dpp_ctrl = dpp_quad_perm(3, 2, 1, 0);
6956 break;
6957 case nir_intrinsic_quad_swizzle_amd:
6958 dpp_ctrl = nir_intrinsic_swizzle_mask(instr);
6959 break;
6960 default:
6961 break;
6962 }
6963 if (ctx->program->chip_class < GFX8)
6964 dpp_ctrl |= (1 << 15);
6965
6966 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6967 if (instr->dest.ssa.bit_size == 1) {
6968 assert(src.regClass() == bld.lm);
6969 src = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand((uint32_t)-1), src);
6970 if (ctx->program->chip_class >= GFX8)
6971 src = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
6972 else
6973 src = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
6974 Temp tmp = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), src);
6975 emit_wqm(ctx, tmp, dst);
6976 } else if (instr->dest.ssa.bit_size == 32) {
6977 Temp tmp;
6978 if (ctx->program->chip_class >= GFX8)
6979 tmp = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
6980 else
6981 tmp = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
6982 emit_wqm(ctx, tmp, dst);
6983 } else if (instr->dest.ssa.bit_size == 64) {
6984 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
6985 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
6986 if (ctx->program->chip_class >= GFX8) {
6987 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
6988 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
6989 } else {
6990 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, dpp_ctrl));
6991 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, dpp_ctrl));
6992 }
6993 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6994 emit_split_vector(ctx, dst, 2);
6995 } else {
6996 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6997 nir_print_instr(&instr->instr, stderr);
6998 fprintf(stderr, "\n");
6999 }
7000 break;
7001 }
7002 case nir_intrinsic_masked_swizzle_amd: {
7003 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7004 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
7005 emit_uniform_subgroup(ctx, instr, src);
7006 break;
7007 }
7008 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7009 uint32_t mask = nir_intrinsic_swizzle_mask(instr);
7010 if (dst.regClass() == v1) {
7011 emit_wqm(ctx,
7012 bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, mask, 0, false),
7013 dst);
7014 } else if (dst.regClass() == v2) {
7015 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7016 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7017 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, mask, 0, false));
7018 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, mask, 0, false));
7019 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7020 emit_split_vector(ctx, dst, 2);
7021 } else {
7022 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7023 nir_print_instr(&instr->instr, stderr);
7024 fprintf(stderr, "\n");
7025 }
7026 break;
7027 }
7028 case nir_intrinsic_write_invocation_amd: {
7029 Temp src = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
7030 Temp val = bld.as_uniform(get_ssa_temp(ctx, instr->src[1].ssa));
7031 Temp lane = bld.as_uniform(get_ssa_temp(ctx, instr->src[2].ssa));
7032 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7033 if (dst.regClass() == v1) {
7034 /* src2 is ignored for writelane. RA assigns the same reg for dst */
7035 emit_wqm(ctx, bld.writelane(bld.def(v1), val, lane, src), dst);
7036 } else if (dst.regClass() == v2) {
7037 Temp src_lo = bld.tmp(v1), src_hi = bld.tmp(v1);
7038 Temp val_lo = bld.tmp(s1), val_hi = bld.tmp(s1);
7039 bld.pseudo(aco_opcode::p_split_vector, Definition(src_lo), Definition(src_hi), src);
7040 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
7041 Temp lo = emit_wqm(ctx, bld.writelane(bld.def(v1), val_lo, lane, src_hi));
7042 Temp hi = emit_wqm(ctx, bld.writelane(bld.def(v1), val_hi, lane, src_hi));
7043 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7044 emit_split_vector(ctx, dst, 2);
7045 } else {
7046 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7047 nir_print_instr(&instr->instr, stderr);
7048 fprintf(stderr, "\n");
7049 }
7050 break;
7051 }
7052 case nir_intrinsic_mbcnt_amd: {
7053 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7054 RegClass rc = RegClass(src.type(), 1);
7055 Temp mask_lo = bld.tmp(rc), mask_hi = bld.tmp(rc);
7056 bld.pseudo(aco_opcode::p_split_vector, Definition(mask_lo), Definition(mask_hi), src);
7057 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7058 Temp wqm_tmp = emit_mbcnt(ctx, bld.def(v1), Operand(mask_lo), Operand(mask_hi));
7059 emit_wqm(ctx, wqm_tmp, dst);
7060 break;
7061 }
7062 case nir_intrinsic_load_helper_invocation: {
7063 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7064 bld.pseudo(aco_opcode::p_load_helper, Definition(dst));
7065 ctx->block->kind |= block_kind_needs_lowering;
7066 ctx->program->needs_exact = true;
7067 break;
7068 }
7069 case nir_intrinsic_is_helper_invocation: {
7070 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7071 bld.pseudo(aco_opcode::p_is_helper, Definition(dst));
7072 ctx->block->kind |= block_kind_needs_lowering;
7073 ctx->program->needs_exact = true;
7074 break;
7075 }
7076 case nir_intrinsic_demote:
7077 bld.pseudo(aco_opcode::p_demote_to_helper, Operand(-1u));
7078
7079 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
7080 ctx->cf_info.exec_potentially_empty_discard = true;
7081 ctx->block->kind |= block_kind_uses_demote;
7082 ctx->program->needs_exact = true;
7083 break;
7084 case nir_intrinsic_demote_if: {
7085 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7086 assert(src.regClass() == bld.lm);
7087 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
7088 bld.pseudo(aco_opcode::p_demote_to_helper, cond);
7089
7090 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
7091 ctx->cf_info.exec_potentially_empty_discard = true;
7092 ctx->block->kind |= block_kind_uses_demote;
7093 ctx->program->needs_exact = true;
7094 break;
7095 }
7096 case nir_intrinsic_first_invocation: {
7097 emit_wqm(ctx, bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)),
7098 get_ssa_temp(ctx, &instr->dest.ssa));
7099 break;
7100 }
7101 case nir_intrinsic_shader_clock:
7102 bld.smem(aco_opcode::s_memtime, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), false);
7103 emit_split_vector(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 2);
7104 break;
7105 case nir_intrinsic_load_vertex_id_zero_base: {
7106 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7107 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.vertex_id));
7108 break;
7109 }
7110 case nir_intrinsic_load_first_vertex: {
7111 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7112 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.base_vertex));
7113 break;
7114 }
7115 case nir_intrinsic_load_base_instance: {
7116 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7117 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.start_instance));
7118 break;
7119 }
7120 case nir_intrinsic_load_instance_id: {
7121 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7122 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.instance_id));
7123 break;
7124 }
7125 case nir_intrinsic_load_draw_id: {
7126 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7127 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.draw_id));
7128 break;
7129 }
7130 case nir_intrinsic_load_invocation_id: {
7131 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7132
7133 if (ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
7134 if (ctx->options->chip_class >= GFX10)
7135 bld.vop2_e64(aco_opcode::v_and_b32, Definition(dst), Operand(127u), get_arg(ctx, ctx->args->ac.gs_invocation_id));
7136 else
7137 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_invocation_id));
7138 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
7139 bld.vop3(aco_opcode::v_bfe_u32, Definition(dst),
7140 get_arg(ctx, ctx->args->ac.tcs_rel_ids), Operand(8u), Operand(5u));
7141 } else {
7142 unreachable("Unsupported stage for load_invocation_id");
7143 }
7144
7145 break;
7146 }
7147 case nir_intrinsic_load_primitive_id: {
7148 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7149
7150 switch (ctx->shader->info.stage) {
7151 case MESA_SHADER_GEOMETRY:
7152 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_prim_id));
7153 break;
7154 case MESA_SHADER_TESS_CTRL:
7155 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tcs_patch_id));
7156 break;
7157 case MESA_SHADER_TESS_EVAL:
7158 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tes_patch_id));
7159 break;
7160 default:
7161 unreachable("Unimplemented shader stage for nir_intrinsic_load_primitive_id");
7162 }
7163
7164 break;
7165 }
7166 case nir_intrinsic_load_patch_vertices_in: {
7167 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL ||
7168 ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
7169
7170 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7171 bld.copy(Definition(dst), Operand(ctx->args->options->key.tcs.input_vertices));
7172 break;
7173 }
7174 case nir_intrinsic_emit_vertex_with_counter: {
7175 visit_emit_vertex_with_counter(ctx, instr);
7176 break;
7177 }
7178 case nir_intrinsic_end_primitive_with_counter: {
7179 unsigned stream = nir_intrinsic_stream_id(instr);
7180 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(true, false, stream));
7181 break;
7182 }
7183 case nir_intrinsic_set_vertex_count: {
7184 /* unused, the HW keeps track of this for us */
7185 break;
7186 }
7187 default:
7188 fprintf(stderr, "Unimplemented intrinsic instr: ");
7189 nir_print_instr(&instr->instr, stderr);
7190 fprintf(stderr, "\n");
7191 abort();
7192
7193 break;
7194 }
7195 }
7196
7197
7198 void tex_fetch_ptrs(isel_context *ctx, nir_tex_instr *instr,
7199 Temp *res_ptr, Temp *samp_ptr, Temp *fmask_ptr,
7200 enum glsl_base_type *stype)
7201 {
7202 nir_deref_instr *texture_deref_instr = NULL;
7203 nir_deref_instr *sampler_deref_instr = NULL;
7204 int plane = -1;
7205
7206 for (unsigned i = 0; i < instr->num_srcs; i++) {
7207 switch (instr->src[i].src_type) {
7208 case nir_tex_src_texture_deref:
7209 texture_deref_instr = nir_src_as_deref(instr->src[i].src);
7210 break;
7211 case nir_tex_src_sampler_deref:
7212 sampler_deref_instr = nir_src_as_deref(instr->src[i].src);
7213 break;
7214 case nir_tex_src_plane:
7215 plane = nir_src_as_int(instr->src[i].src);
7216 break;
7217 default:
7218 break;
7219 }
7220 }
7221
7222 *stype = glsl_get_sampler_result_type(texture_deref_instr->type);
7223
7224 if (!sampler_deref_instr)
7225 sampler_deref_instr = texture_deref_instr;
7226
7227 if (plane >= 0) {
7228 assert(instr->op != nir_texop_txf_ms &&
7229 instr->op != nir_texop_samples_identical);
7230 assert(instr->sampler_dim != GLSL_SAMPLER_DIM_BUF);
7231 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, (aco_descriptor_type)(ACO_DESC_PLANE_0 + plane), instr, false, false);
7232 } else if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
7233 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_BUFFER, instr, false, false);
7234 } else if (instr->op == nir_texop_fragment_mask_fetch) {
7235 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
7236 } else {
7237 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_IMAGE, instr, false, false);
7238 }
7239 if (samp_ptr) {
7240 *samp_ptr = get_sampler_desc(ctx, sampler_deref_instr, ACO_DESC_SAMPLER, instr, false, false);
7241
7242 if (instr->sampler_dim < GLSL_SAMPLER_DIM_RECT && ctx->options->chip_class < GFX8) {
7243 /* fix sampler aniso on SI/CI: samp[0] = samp[0] & img[7] */
7244 Builder bld(ctx->program, ctx->block);
7245
7246 /* to avoid unnecessary moves, we split and recombine sampler and image */
7247 Temp img[8] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1),
7248 bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
7249 Temp samp[4] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
7250 bld.pseudo(aco_opcode::p_split_vector, Definition(img[0]), Definition(img[1]),
7251 Definition(img[2]), Definition(img[3]), Definition(img[4]),
7252 Definition(img[5]), Definition(img[6]), Definition(img[7]), *res_ptr);
7253 bld.pseudo(aco_opcode::p_split_vector, Definition(samp[0]), Definition(samp[1]),
7254 Definition(samp[2]), Definition(samp[3]), *samp_ptr);
7255
7256 samp[0] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), samp[0], img[7]);
7257 *res_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
7258 img[0], img[1], img[2], img[3],
7259 img[4], img[5], img[6], img[7]);
7260 *samp_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
7261 samp[0], samp[1], samp[2], samp[3]);
7262 }
7263 }
7264 if (fmask_ptr && (instr->op == nir_texop_txf_ms ||
7265 instr->op == nir_texop_samples_identical))
7266 *fmask_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
7267 }
7268
7269 void build_cube_select(isel_context *ctx, Temp ma, Temp id, Temp deriv,
7270 Temp *out_ma, Temp *out_sc, Temp *out_tc)
7271 {
7272 Builder bld(ctx->program, ctx->block);
7273
7274 Temp deriv_x = emit_extract_vector(ctx, deriv, 0, v1);
7275 Temp deriv_y = emit_extract_vector(ctx, deriv, 1, v1);
7276 Temp deriv_z = emit_extract_vector(ctx, deriv, 2, v1);
7277
7278 Operand neg_one(0xbf800000u);
7279 Operand one(0x3f800000u);
7280 Operand two(0x40000000u);
7281 Operand four(0x40800000u);
7282
7283 Temp is_ma_positive = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), ma);
7284 Temp sgn_ma = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, one, is_ma_positive);
7285 Temp neg_sgn_ma = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0u), sgn_ma);
7286
7287 Temp is_ma_z = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), four, id);
7288 Temp is_ma_y = bld.vopc(aco_opcode::v_cmp_le_f32, bld.def(bld.lm), two, id);
7289 is_ma_y = bld.sop2(Builder::s_andn2, bld.hint_vcc(bld.def(bld.lm)), is_ma_y, is_ma_z);
7290 Temp is_not_ma_x = bld.sop2(aco_opcode::s_or_b64, bld.hint_vcc(bld.def(bld.lm)), bld.def(s1, scc), is_ma_z, is_ma_y);
7291
7292 // select sc
7293 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_z, deriv_x, is_not_ma_x);
7294 Temp sgn = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1),
7295 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_sgn_ma, sgn_ma, is_ma_z),
7296 one, is_ma_y);
7297 *out_sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
7298
7299 // select tc
7300 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_y, deriv_z, is_ma_y);
7301 sgn = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, sgn_ma, is_ma_y);
7302 *out_tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
7303
7304 // select ma
7305 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
7306 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_x, deriv_y, is_ma_y),
7307 deriv_z, is_ma_z);
7308 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffffu), tmp);
7309 *out_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), two, tmp);
7310 }
7311
7312 void prepare_cube_coords(isel_context *ctx, std::vector<Temp>& coords, Temp* ddx, Temp* ddy, bool is_deriv, bool is_array)
7313 {
7314 Builder bld(ctx->program, ctx->block);
7315 Temp ma, tc, sc, id;
7316
7317 if (is_array) {
7318 coords[3] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[3]);
7319
7320 // see comment in ac_prepare_cube_coords()
7321 if (ctx->options->chip_class <= GFX8)
7322 coords[3] = bld.vop2(aco_opcode::v_max_f32, bld.def(v1), Operand(0u), coords[3]);
7323 }
7324
7325 ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), coords[0], coords[1], coords[2]);
7326
7327 aco_ptr<VOP3A_instruction> vop3a{create_instruction<VOP3A_instruction>(aco_opcode::v_rcp_f32, asVOP3(Format::VOP1), 1, 1)};
7328 vop3a->operands[0] = Operand(ma);
7329 vop3a->abs[0] = true;
7330 Temp invma = bld.tmp(v1);
7331 vop3a->definitions[0] = Definition(invma);
7332 ctx->block->instructions.emplace_back(std::move(vop3a));
7333
7334 sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
7335 if (!is_deriv)
7336 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, invma, Operand(0x3fc00000u/*1.5*/));
7337
7338 tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
7339 if (!is_deriv)
7340 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, invma, Operand(0x3fc00000u/*1.5*/));
7341
7342 id = bld.vop3(aco_opcode::v_cubeid_f32, bld.def(v1), coords[0], coords[1], coords[2]);
7343
7344 if (is_deriv) {
7345 sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), sc, invma);
7346 tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tc, invma);
7347
7348 for (unsigned i = 0; i < 2; i++) {
7349 // see comment in ac_prepare_cube_coords()
7350 Temp deriv_ma;
7351 Temp deriv_sc, deriv_tc;
7352 build_cube_select(ctx, ma, id, i ? *ddy : *ddx,
7353 &deriv_ma, &deriv_sc, &deriv_tc);
7354
7355 deriv_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, invma);
7356
7357 Temp x = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
7358 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_sc, invma),
7359 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, sc));
7360 Temp y = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
7361 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_tc, invma),
7362 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, tc));
7363 *(i ? ddy : ddx) = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), x, y);
7364 }
7365
7366 sc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), sc);
7367 tc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), tc);
7368 }
7369
7370 if (is_array)
7371 id = bld.vop2(aco_opcode::v_madmk_f32, bld.def(v1), coords[3], id, Operand(0x41000000u/*8.0*/));
7372 coords.resize(3);
7373 coords[0] = sc;
7374 coords[1] = tc;
7375 coords[2] = id;
7376 }
7377
7378 void get_const_vec(nir_ssa_def *vec, nir_const_value *cv[4])
7379 {
7380 if (vec->parent_instr->type != nir_instr_type_alu)
7381 return;
7382 nir_alu_instr *vec_instr = nir_instr_as_alu(vec->parent_instr);
7383 if (vec_instr->op != nir_op_vec(vec->num_components))
7384 return;
7385
7386 for (unsigned i = 0; i < vec->num_components; i++) {
7387 cv[i] = vec_instr->src[i].swizzle[0] == 0 ?
7388 nir_src_as_const_value(vec_instr->src[i].src) : NULL;
7389 }
7390 }
7391
7392 void visit_tex(isel_context *ctx, nir_tex_instr *instr)
7393 {
7394 Builder bld(ctx->program, ctx->block);
7395 bool has_bias = false, has_lod = false, level_zero = false, has_compare = false,
7396 has_offset = false, has_ddx = false, has_ddy = false, has_derivs = false, has_sample_index = false;
7397 Temp resource, sampler, fmask_ptr, bias = Temp(), compare = Temp(), sample_index = Temp(),
7398 lod = Temp(), offset = Temp(), ddx = Temp(), ddy = Temp();
7399 std::vector<Temp> coords;
7400 std::vector<Temp> derivs;
7401 nir_const_value *sample_index_cv = NULL;
7402 nir_const_value *const_offset[4] = {NULL, NULL, NULL, NULL};
7403 enum glsl_base_type stype;
7404 tex_fetch_ptrs(ctx, instr, &resource, &sampler, &fmask_ptr, &stype);
7405
7406 bool tg4_integer_workarounds = ctx->options->chip_class <= GFX8 && instr->op == nir_texop_tg4 &&
7407 (stype == GLSL_TYPE_UINT || stype == GLSL_TYPE_INT);
7408 bool tg4_integer_cube_workaround = tg4_integer_workarounds &&
7409 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE;
7410
7411 for (unsigned i = 0; i < instr->num_srcs; i++) {
7412 switch (instr->src[i].src_type) {
7413 case nir_tex_src_coord: {
7414 Temp coord = get_ssa_temp(ctx, instr->src[i].src.ssa);
7415 for (unsigned i = 0; i < coord.size(); i++)
7416 coords.emplace_back(emit_extract_vector(ctx, coord, i, v1));
7417 break;
7418 }
7419 case nir_tex_src_bias:
7420 if (instr->op == nir_texop_txb) {
7421 bias = get_ssa_temp(ctx, instr->src[i].src.ssa);
7422 has_bias = true;
7423 }
7424 break;
7425 case nir_tex_src_lod: {
7426 nir_const_value *val = nir_src_as_const_value(instr->src[i].src);
7427
7428 if (val && val->f32 <= 0.0) {
7429 level_zero = true;
7430 } else {
7431 lod = get_ssa_temp(ctx, instr->src[i].src.ssa);
7432 has_lod = true;
7433 }
7434 break;
7435 }
7436 case nir_tex_src_comparator:
7437 if (instr->is_shadow) {
7438 compare = get_ssa_temp(ctx, instr->src[i].src.ssa);
7439 has_compare = true;
7440 }
7441 break;
7442 case nir_tex_src_offset:
7443 offset = get_ssa_temp(ctx, instr->src[i].src.ssa);
7444 get_const_vec(instr->src[i].src.ssa, const_offset);
7445 has_offset = true;
7446 break;
7447 case nir_tex_src_ddx:
7448 ddx = get_ssa_temp(ctx, instr->src[i].src.ssa);
7449 has_ddx = true;
7450 break;
7451 case nir_tex_src_ddy:
7452 ddy = get_ssa_temp(ctx, instr->src[i].src.ssa);
7453 has_ddy = true;
7454 break;
7455 case nir_tex_src_ms_index:
7456 sample_index = get_ssa_temp(ctx, instr->src[i].src.ssa);
7457 sample_index_cv = nir_src_as_const_value(instr->src[i].src);
7458 has_sample_index = true;
7459 break;
7460 case nir_tex_src_texture_offset:
7461 case nir_tex_src_sampler_offset:
7462 default:
7463 break;
7464 }
7465 }
7466
7467 if (instr->op == nir_texop_txs && instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
7468 return get_buffer_size(ctx, resource, get_ssa_temp(ctx, &instr->dest.ssa), true);
7469
7470 if (instr->op == nir_texop_texture_samples) {
7471 Temp dword3 = emit_extract_vector(ctx, resource, 3, s1);
7472
7473 Temp samples_log2 = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(16u | 4u<<16));
7474 Temp samples = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), Operand(1u), samples_log2);
7475 Temp type = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(28u | 4u<<16 /* offset=28, width=4 */));
7476 Temp is_msaa = bld.sopc(aco_opcode::s_cmp_ge_u32, bld.def(s1, scc), type, Operand(14u));
7477
7478 bld.sop2(aco_opcode::s_cselect_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7479 samples, Operand(1u), bld.scc(is_msaa));
7480 return;
7481 }
7482
7483 if (has_offset && instr->op != nir_texop_txf && instr->op != nir_texop_txf_ms) {
7484 aco_ptr<Instruction> tmp_instr;
7485 Temp acc, pack = Temp();
7486
7487 uint32_t pack_const = 0;
7488 for (unsigned i = 0; i < offset.size(); i++) {
7489 if (!const_offset[i])
7490 continue;
7491 pack_const |= (const_offset[i]->u32 & 0x3Fu) << (8u * i);
7492 }
7493
7494 if (offset.type() == RegType::sgpr) {
7495 for (unsigned i = 0; i < offset.size(); i++) {
7496 if (const_offset[i])
7497 continue;
7498
7499 acc = emit_extract_vector(ctx, offset, i, s1);
7500 acc = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(0x3Fu));
7501
7502 if (i) {
7503 acc = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(8u * i));
7504 }
7505
7506 if (pack == Temp()) {
7507 pack = acc;
7508 } else {
7509 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), pack, acc);
7510 }
7511 }
7512
7513 if (pack_const && pack != Temp())
7514 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(pack_const), pack);
7515 } else {
7516 for (unsigned i = 0; i < offset.size(); i++) {
7517 if (const_offset[i])
7518 continue;
7519
7520 acc = emit_extract_vector(ctx, offset, i, v1);
7521 acc = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x3Fu), acc);
7522
7523 if (i) {
7524 acc = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(8u * i), acc);
7525 }
7526
7527 if (pack == Temp()) {
7528 pack = acc;
7529 } else {
7530 pack = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), pack, acc);
7531 }
7532 }
7533
7534 if (pack_const && pack != Temp())
7535 pack = bld.sop2(aco_opcode::v_or_b32, bld.def(v1), Operand(pack_const), pack);
7536 }
7537 if (pack_const && pack == Temp())
7538 offset = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(pack_const));
7539 else if (pack == Temp())
7540 has_offset = false;
7541 else
7542 offset = pack;
7543 }
7544
7545 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE && instr->coord_components)
7546 prepare_cube_coords(ctx, coords, &ddx, &ddy, instr->op == nir_texop_txd, instr->is_array && instr->op != nir_texop_lod);
7547
7548 /* pack derivatives */
7549 if (has_ddx || has_ddy) {
7550 if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D && ctx->options->chip_class == GFX9) {
7551 assert(has_ddx && has_ddy && ddx.size() == 1 && ddy.size() == 1);
7552 Temp zero = bld.copy(bld.def(v1), Operand(0u));
7553 derivs = {ddy, zero, ddy, zero};
7554 } else {
7555 for (unsigned i = 0; has_ddx && i < ddx.size(); i++)
7556 derivs.emplace_back(emit_extract_vector(ctx, ddx, i, v1));
7557 for (unsigned i = 0; has_ddy && i < ddy.size(); i++)
7558 derivs.emplace_back(emit_extract_vector(ctx, ddy, i, v1));
7559 }
7560 has_derivs = true;
7561 }
7562
7563 if (instr->coord_components > 1 &&
7564 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
7565 instr->is_array &&
7566 instr->op != nir_texop_txf)
7567 coords[1] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[1]);
7568
7569 if (instr->coord_components > 2 &&
7570 (instr->sampler_dim == GLSL_SAMPLER_DIM_2D ||
7571 instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
7572 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS ||
7573 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
7574 instr->is_array &&
7575 instr->op != nir_texop_txf &&
7576 instr->op != nir_texop_txf_ms &&
7577 instr->op != nir_texop_fragment_fetch &&
7578 instr->op != nir_texop_fragment_mask_fetch)
7579 coords[2] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[2]);
7580
7581 if (ctx->options->chip_class == GFX9 &&
7582 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
7583 instr->op != nir_texop_lod && instr->coord_components) {
7584 assert(coords.size() > 0 && coords.size() < 3);
7585
7586 coords.insert(std::next(coords.begin()), bld.copy(bld.def(v1), instr->op == nir_texop_txf ?
7587 Operand((uint32_t) 0) :
7588 Operand((uint32_t) 0x3f000000)));
7589 }
7590
7591 bool da = should_declare_array(ctx, instr->sampler_dim, instr->is_array);
7592
7593 if (instr->op == nir_texop_samples_identical)
7594 resource = fmask_ptr;
7595
7596 else if ((instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
7597 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
7598 instr->op != nir_texop_txs &&
7599 instr->op != nir_texop_fragment_fetch &&
7600 instr->op != nir_texop_fragment_mask_fetch) {
7601 assert(has_sample_index);
7602 Operand op(sample_index);
7603 if (sample_index_cv)
7604 op = Operand(sample_index_cv->u32);
7605 sample_index = adjust_sample_index_using_fmask(ctx, da, coords, op, fmask_ptr);
7606 }
7607
7608 if (has_offset && (instr->op == nir_texop_txf || instr->op == nir_texop_txf_ms)) {
7609 for (unsigned i = 0; i < std::min(offset.size(), instr->coord_components); i++) {
7610 Temp off = emit_extract_vector(ctx, offset, i, v1);
7611 coords[i] = bld.vadd32(bld.def(v1), coords[i], off);
7612 }
7613 has_offset = false;
7614 }
7615
7616 /* Build tex instruction */
7617 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
7618 unsigned dim = ctx->options->chip_class >= GFX10 && instr->sampler_dim != GLSL_SAMPLER_DIM_BUF
7619 ? ac_get_sampler_dim(ctx->options->chip_class, instr->sampler_dim, instr->is_array)
7620 : 0;
7621 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7622 Temp tmp_dst = dst;
7623
7624 /* gather4 selects the component by dmask and always returns vec4 */
7625 if (instr->op == nir_texop_tg4) {
7626 assert(instr->dest.ssa.num_components == 4);
7627 if (instr->is_shadow)
7628 dmask = 1;
7629 else
7630 dmask = 1 << instr->component;
7631 if (tg4_integer_cube_workaround || dst.type() == RegType::sgpr)
7632 tmp_dst = bld.tmp(v4);
7633 } else if (instr->op == nir_texop_samples_identical) {
7634 tmp_dst = bld.tmp(v1);
7635 } else if (util_bitcount(dmask) != instr->dest.ssa.num_components || dst.type() == RegType::sgpr) {
7636 tmp_dst = bld.tmp(RegClass(RegType::vgpr, util_bitcount(dmask)));
7637 }
7638
7639 aco_ptr<MIMG_instruction> tex;
7640 if (instr->op == nir_texop_txs || instr->op == nir_texop_query_levels) {
7641 if (!has_lod)
7642 lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
7643
7644 bool div_by_6 = instr->op == nir_texop_txs &&
7645 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
7646 instr->is_array &&
7647 (dmask & (1 << 2));
7648 if (tmp_dst.id() == dst.id() && div_by_6)
7649 tmp_dst = bld.tmp(tmp_dst.regClass());
7650
7651 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
7652 tex->operands[0] = Operand(resource);
7653 tex->operands[1] = Operand(s4); /* no sampler */
7654 tex->operands[2] = Operand(as_vgpr(ctx,lod));
7655 if (ctx->options->chip_class == GFX9 &&
7656 instr->op == nir_texop_txs &&
7657 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
7658 instr->is_array) {
7659 tex->dmask = (dmask & 0x1) | ((dmask & 0x2) << 1);
7660 } else if (instr->op == nir_texop_query_levels) {
7661 tex->dmask = 1 << 3;
7662 } else {
7663 tex->dmask = dmask;
7664 }
7665 tex->da = da;
7666 tex->definitions[0] = Definition(tmp_dst);
7667 tex->dim = dim;
7668 tex->can_reorder = true;
7669 ctx->block->instructions.emplace_back(std::move(tex));
7670
7671 if (div_by_6) {
7672 /* divide 3rd value by 6 by multiplying with magic number */
7673 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
7674 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
7675 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp_dst, 2, v1), c);
7676 assert(instr->dest.ssa.num_components == 3);
7677 Temp tmp = dst.type() == RegType::vgpr ? dst : bld.tmp(v3);
7678 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
7679 emit_extract_vector(ctx, tmp_dst, 0, v1),
7680 emit_extract_vector(ctx, tmp_dst, 1, v1),
7681 by_6);
7682
7683 }
7684
7685 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
7686 return;
7687 }
7688
7689 Temp tg4_compare_cube_wa64 = Temp();
7690
7691 if (tg4_integer_workarounds) {
7692 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
7693 tex->operands[0] = Operand(resource);
7694 tex->operands[1] = Operand(s4); /* no sampler */
7695 tex->operands[2] = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
7696 tex->dim = dim;
7697 tex->dmask = 0x3;
7698 tex->da = da;
7699 Temp size = bld.tmp(v2);
7700 tex->definitions[0] = Definition(size);
7701 tex->can_reorder = true;
7702 ctx->block->instructions.emplace_back(std::move(tex));
7703 emit_split_vector(ctx, size, size.size());
7704
7705 Temp half_texel[2];
7706 for (unsigned i = 0; i < 2; i++) {
7707 half_texel[i] = emit_extract_vector(ctx, size, i, v1);
7708 half_texel[i] = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), half_texel[i]);
7709 half_texel[i] = bld.vop1(aco_opcode::v_rcp_iflag_f32, bld.def(v1), half_texel[i]);
7710 half_texel[i] = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0xbf000000/*-0.5*/), half_texel[i]);
7711 }
7712
7713 Temp new_coords[2] = {
7714 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[0], half_texel[0]),
7715 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[1], half_texel[1])
7716 };
7717
7718 if (tg4_integer_cube_workaround) {
7719 // see comment in ac_nir_to_llvm.c's lower_gather4_integer()
7720 Temp desc[resource.size()];
7721 aco_ptr<Instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector,
7722 Format::PSEUDO, 1, resource.size())};
7723 split->operands[0] = Operand(resource);
7724 for (unsigned i = 0; i < resource.size(); i++) {
7725 desc[i] = bld.tmp(s1);
7726 split->definitions[i] = Definition(desc[i]);
7727 }
7728 ctx->block->instructions.emplace_back(std::move(split));
7729
7730 Temp dfmt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), desc[1], Operand(20u | (6u << 16)));
7731 Temp compare_cube_wa = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), dfmt,
7732 Operand((uint32_t)V_008F14_IMG_DATA_FORMAT_8_8_8_8));
7733
7734 Temp nfmt;
7735 if (stype == GLSL_TYPE_UINT) {
7736 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
7737 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_USCALED),
7738 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_UINT),
7739 bld.scc(compare_cube_wa));
7740 } else {
7741 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
7742 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SSCALED),
7743 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SINT),
7744 bld.scc(compare_cube_wa));
7745 }
7746 tg4_compare_cube_wa64 = bld.tmp(bld.lm);
7747 bool_to_vector_condition(ctx, compare_cube_wa, tg4_compare_cube_wa64);
7748
7749 nfmt = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), nfmt, Operand(26u));
7750
7751 desc[1] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), desc[1],
7752 Operand((uint32_t)C_008F14_NUM_FORMAT));
7753 desc[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), desc[1], nfmt);
7754
7755 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
7756 Format::PSEUDO, resource.size(), 1)};
7757 for (unsigned i = 0; i < resource.size(); i++)
7758 vec->operands[i] = Operand(desc[i]);
7759 resource = bld.tmp(resource.regClass());
7760 vec->definitions[0] = Definition(resource);
7761 ctx->block->instructions.emplace_back(std::move(vec));
7762
7763 new_coords[0] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
7764 new_coords[0], coords[0], tg4_compare_cube_wa64);
7765 new_coords[1] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
7766 new_coords[1], coords[1], tg4_compare_cube_wa64);
7767 }
7768 coords[0] = new_coords[0];
7769 coords[1] = new_coords[1];
7770 }
7771
7772 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
7773 //FIXME: if (ctx->abi->gfx9_stride_size_workaround) return ac_build_buffer_load_format_gfx9_safe()
7774
7775 assert(coords.size() == 1);
7776 unsigned last_bit = util_last_bit(nir_ssa_def_components_read(&instr->dest.ssa));
7777 aco_opcode op;
7778 switch (last_bit) {
7779 case 1:
7780 op = aco_opcode::buffer_load_format_x; break;
7781 case 2:
7782 op = aco_opcode::buffer_load_format_xy; break;
7783 case 3:
7784 op = aco_opcode::buffer_load_format_xyz; break;
7785 case 4:
7786 op = aco_opcode::buffer_load_format_xyzw; break;
7787 default:
7788 unreachable("Tex instruction loads more than 4 components.");
7789 }
7790
7791 /* if the instruction return value matches exactly the nir dest ssa, we can use it directly */
7792 if (last_bit == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
7793 tmp_dst = dst;
7794 else
7795 tmp_dst = bld.tmp(RegType::vgpr, last_bit);
7796
7797 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
7798 mubuf->operands[0] = Operand(resource);
7799 mubuf->operands[1] = Operand(coords[0]);
7800 mubuf->operands[2] = Operand((uint32_t) 0);
7801 mubuf->definitions[0] = Definition(tmp_dst);
7802 mubuf->idxen = true;
7803 mubuf->can_reorder = true;
7804 ctx->block->instructions.emplace_back(std::move(mubuf));
7805
7806 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, (1 << last_bit) - 1);
7807 return;
7808 }
7809
7810 /* gather MIMG address components */
7811 std::vector<Temp> args;
7812 if (has_offset)
7813 args.emplace_back(offset);
7814 if (has_bias)
7815 args.emplace_back(bias);
7816 if (has_compare)
7817 args.emplace_back(compare);
7818 if (has_derivs)
7819 args.insert(args.end(), derivs.begin(), derivs.end());
7820
7821 args.insert(args.end(), coords.begin(), coords.end());
7822 if (has_sample_index)
7823 args.emplace_back(sample_index);
7824 if (has_lod)
7825 args.emplace_back(lod);
7826
7827 Temp arg = bld.tmp(RegClass(RegType::vgpr, args.size()));
7828 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, args.size(), 1)};
7829 vec->definitions[0] = Definition(arg);
7830 for (unsigned i = 0; i < args.size(); i++)
7831 vec->operands[i] = Operand(args[i]);
7832 ctx->block->instructions.emplace_back(std::move(vec));
7833
7834
7835 if (instr->op == nir_texop_txf ||
7836 instr->op == nir_texop_txf_ms ||
7837 instr->op == nir_texop_samples_identical ||
7838 instr->op == nir_texop_fragment_fetch ||
7839 instr->op == nir_texop_fragment_mask_fetch) {
7840 aco_opcode op = level_zero || instr->sampler_dim == GLSL_SAMPLER_DIM_MS || instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS ? aco_opcode::image_load : aco_opcode::image_load_mip;
7841 tex.reset(create_instruction<MIMG_instruction>(op, Format::MIMG, 3, 1));
7842 tex->operands[0] = Operand(resource);
7843 tex->operands[1] = Operand(s4); /* no sampler */
7844 tex->operands[2] = Operand(arg);
7845 tex->dim = dim;
7846 tex->dmask = dmask;
7847 tex->unrm = true;
7848 tex->da = da;
7849 tex->definitions[0] = Definition(tmp_dst);
7850 tex->can_reorder = true;
7851 ctx->block->instructions.emplace_back(std::move(tex));
7852
7853 if (instr->op == nir_texop_samples_identical) {
7854 assert(dmask == 1 && dst.regClass() == v1);
7855 assert(dst.id() != tmp_dst.id());
7856
7857 Temp tmp = bld.tmp(bld.lm);
7858 bld.vopc(aco_opcode::v_cmp_eq_u32, Definition(tmp), Operand(0u), tmp_dst).def(0).setHint(vcc);
7859 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand((uint32_t)-1), tmp);
7860
7861 } else {
7862 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
7863 }
7864 return;
7865 }
7866
7867 // TODO: would be better to do this by adding offsets, but needs the opcodes ordered.
7868 aco_opcode opcode = aco_opcode::image_sample;
7869 if (has_offset) { /* image_sample_*_o */
7870 if (has_compare) {
7871 opcode = aco_opcode::image_sample_c_o;
7872 if (has_derivs)
7873 opcode = aco_opcode::image_sample_c_d_o;
7874 if (has_bias)
7875 opcode = aco_opcode::image_sample_c_b_o;
7876 if (level_zero)
7877 opcode = aco_opcode::image_sample_c_lz_o;
7878 if (has_lod)
7879 opcode = aco_opcode::image_sample_c_l_o;
7880 } else {
7881 opcode = aco_opcode::image_sample_o;
7882 if (has_derivs)
7883 opcode = aco_opcode::image_sample_d_o;
7884 if (has_bias)
7885 opcode = aco_opcode::image_sample_b_o;
7886 if (level_zero)
7887 opcode = aco_opcode::image_sample_lz_o;
7888 if (has_lod)
7889 opcode = aco_opcode::image_sample_l_o;
7890 }
7891 } else { /* no offset */
7892 if (has_compare) {
7893 opcode = aco_opcode::image_sample_c;
7894 if (has_derivs)
7895 opcode = aco_opcode::image_sample_c_d;
7896 if (has_bias)
7897 opcode = aco_opcode::image_sample_c_b;
7898 if (level_zero)
7899 opcode = aco_opcode::image_sample_c_lz;
7900 if (has_lod)
7901 opcode = aco_opcode::image_sample_c_l;
7902 } else {
7903 opcode = aco_opcode::image_sample;
7904 if (has_derivs)
7905 opcode = aco_opcode::image_sample_d;
7906 if (has_bias)
7907 opcode = aco_opcode::image_sample_b;
7908 if (level_zero)
7909 opcode = aco_opcode::image_sample_lz;
7910 if (has_lod)
7911 opcode = aco_opcode::image_sample_l;
7912 }
7913 }
7914
7915 if (instr->op == nir_texop_tg4) {
7916 if (has_offset) {
7917 opcode = aco_opcode::image_gather4_lz_o;
7918 if (has_compare)
7919 opcode = aco_opcode::image_gather4_c_lz_o;
7920 } else {
7921 opcode = aco_opcode::image_gather4_lz;
7922 if (has_compare)
7923 opcode = aco_opcode::image_gather4_c_lz;
7924 }
7925 } else if (instr->op == nir_texop_lod) {
7926 opcode = aco_opcode::image_get_lod;
7927 }
7928
7929 /* we don't need the bias, sample index, compare value or offset to be
7930 * computed in WQM but if the p_create_vector copies the coordinates, then it
7931 * needs to be in WQM */
7932 if (ctx->stage == fragment_fs &&
7933 !has_derivs && !has_lod && !level_zero &&
7934 instr->sampler_dim != GLSL_SAMPLER_DIM_MS &&
7935 instr->sampler_dim != GLSL_SAMPLER_DIM_SUBPASS_MS)
7936 arg = emit_wqm(ctx, arg, bld.tmp(arg.regClass()), true);
7937
7938 tex.reset(create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1));
7939 tex->operands[0] = Operand(resource);
7940 tex->operands[1] = Operand(sampler);
7941 tex->operands[2] = Operand(arg);
7942 tex->dim = dim;
7943 tex->dmask = dmask;
7944 tex->da = da;
7945 tex->definitions[0] = Definition(tmp_dst);
7946 tex->can_reorder = true;
7947 ctx->block->instructions.emplace_back(std::move(tex));
7948
7949 if (tg4_integer_cube_workaround) {
7950 assert(tmp_dst.id() != dst.id());
7951 assert(tmp_dst.size() == dst.size() && dst.size() == 4);
7952
7953 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
7954 Temp val[4];
7955 for (unsigned i = 0; i < dst.size(); i++) {
7956 val[i] = emit_extract_vector(ctx, tmp_dst, i, v1);
7957 Temp cvt_val;
7958 if (stype == GLSL_TYPE_UINT)
7959 cvt_val = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), val[i]);
7960 else
7961 cvt_val = bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), val[i]);
7962 val[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), val[i], cvt_val, tg4_compare_cube_wa64);
7963 }
7964 Temp tmp = dst.regClass() == v4 ? dst : bld.tmp(v4);
7965 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
7966 val[0], val[1], val[2], val[3]);
7967 }
7968 unsigned mask = instr->op == nir_texop_tg4 ? 0xF : dmask;
7969 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, mask);
7970
7971 }
7972
7973
7974 Operand get_phi_operand(isel_context *ctx, nir_ssa_def *ssa)
7975 {
7976 Temp tmp = get_ssa_temp(ctx, ssa);
7977 if (ssa->parent_instr->type == nir_instr_type_ssa_undef)
7978 return Operand(tmp.regClass());
7979 else
7980 return Operand(tmp);
7981 }
7982
7983 void visit_phi(isel_context *ctx, nir_phi_instr *instr)
7984 {
7985 aco_ptr<Pseudo_instruction> phi;
7986 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7987 assert(instr->dest.ssa.bit_size != 1 || dst.regClass() == ctx->program->lane_mask);
7988
7989 bool logical = !dst.is_linear() || ctx->divergent_vals[instr->dest.ssa.index];
7990 logical |= ctx->block->kind & block_kind_merge;
7991 aco_opcode opcode = logical ? aco_opcode::p_phi : aco_opcode::p_linear_phi;
7992
7993 /* we want a sorted list of sources, since the predecessor list is also sorted */
7994 std::map<unsigned, nir_ssa_def*> phi_src;
7995 nir_foreach_phi_src(src, instr)
7996 phi_src[src->pred->index] = src->src.ssa;
7997
7998 std::vector<unsigned>& preds = logical ? ctx->block->logical_preds : ctx->block->linear_preds;
7999 unsigned num_operands = 0;
8000 Operand operands[std::max(exec_list_length(&instr->srcs), (unsigned)preds.size())];
8001 unsigned num_defined = 0;
8002 unsigned cur_pred_idx = 0;
8003 for (std::pair<unsigned, nir_ssa_def *> src : phi_src) {
8004 if (cur_pred_idx < preds.size()) {
8005 /* handle missing preds (IF merges with discard/break) and extra preds (loop exit with discard) */
8006 unsigned block = ctx->cf_info.nir_to_aco[src.first];
8007 unsigned skipped = 0;
8008 while (cur_pred_idx + skipped < preds.size() && preds[cur_pred_idx + skipped] != block)
8009 skipped++;
8010 if (cur_pred_idx + skipped < preds.size()) {
8011 for (unsigned i = 0; i < skipped; i++)
8012 operands[num_operands++] = Operand(dst.regClass());
8013 cur_pred_idx += skipped;
8014 } else {
8015 continue;
8016 }
8017 }
8018 cur_pred_idx++;
8019 Operand op = get_phi_operand(ctx, src.second);
8020 operands[num_operands++] = op;
8021 num_defined += !op.isUndefined();
8022 }
8023 /* handle block_kind_continue_or_break at loop exit blocks */
8024 while (cur_pred_idx++ < preds.size())
8025 operands[num_operands++] = Operand(dst.regClass());
8026
8027 if (num_defined == 0) {
8028 Builder bld(ctx->program, ctx->block);
8029 if (dst.regClass() == s1) {
8030 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), Operand(0u));
8031 } else if (dst.regClass() == v1) {
8032 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), Operand(0u));
8033 } else {
8034 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
8035 for (unsigned i = 0; i < dst.size(); i++)
8036 vec->operands[i] = Operand(0u);
8037 vec->definitions[0] = Definition(dst);
8038 ctx->block->instructions.emplace_back(std::move(vec));
8039 }
8040 return;
8041 }
8042
8043 /* we can use a linear phi in some cases if one src is undef */
8044 if (dst.is_linear() && ctx->block->kind & block_kind_merge && num_defined == 1) {
8045 phi.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, num_operands, 1));
8046
8047 Block *linear_else = &ctx->program->blocks[ctx->block->linear_preds[1]];
8048 Block *invert = &ctx->program->blocks[linear_else->linear_preds[0]];
8049 assert(invert->kind & block_kind_invert);
8050
8051 unsigned then_block = invert->linear_preds[0];
8052
8053 Block* insert_block = NULL;
8054 for (unsigned i = 0; i < num_operands; i++) {
8055 Operand op = operands[i];
8056 if (op.isUndefined())
8057 continue;
8058 insert_block = ctx->block->logical_preds[i] == then_block ? invert : ctx->block;
8059 phi->operands[0] = op;
8060 break;
8061 }
8062 assert(insert_block); /* should be handled by the "num_defined == 0" case above */
8063 phi->operands[1] = Operand(dst.regClass());
8064 phi->definitions[0] = Definition(dst);
8065 insert_block->instructions.emplace(insert_block->instructions.begin(), std::move(phi));
8066 return;
8067 }
8068
8069 /* try to scalarize vector phis */
8070 if (instr->dest.ssa.bit_size != 1 && dst.size() > 1) {
8071 // TODO: scalarize linear phis on divergent ifs
8072 bool can_scalarize = (opcode == aco_opcode::p_phi || !(ctx->block->kind & block_kind_merge));
8073 std::array<Temp, NIR_MAX_VEC_COMPONENTS> new_vec;
8074 for (unsigned i = 0; can_scalarize && (i < num_operands); i++) {
8075 Operand src = operands[i];
8076 if (src.isTemp() && ctx->allocated_vec.find(src.tempId()) == ctx->allocated_vec.end())
8077 can_scalarize = false;
8078 }
8079 if (can_scalarize) {
8080 unsigned num_components = instr->dest.ssa.num_components;
8081 assert(dst.size() % num_components == 0);
8082 RegClass rc = RegClass(dst.type(), dst.size() / num_components);
8083
8084 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
8085 for (unsigned k = 0; k < num_components; k++) {
8086 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
8087 for (unsigned i = 0; i < num_operands; i++) {
8088 Operand src = operands[i];
8089 phi->operands[i] = src.isTemp() ? Operand(ctx->allocated_vec[src.tempId()][k]) : Operand(rc);
8090 }
8091 Temp phi_dst = {ctx->program->allocateId(), rc};
8092 phi->definitions[0] = Definition(phi_dst);
8093 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
8094 new_vec[k] = phi_dst;
8095 vec->operands[k] = Operand(phi_dst);
8096 }
8097 vec->definitions[0] = Definition(dst);
8098 ctx->block->instructions.emplace_back(std::move(vec));
8099 ctx->allocated_vec.emplace(dst.id(), new_vec);
8100 return;
8101 }
8102 }
8103
8104 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
8105 for (unsigned i = 0; i < num_operands; i++)
8106 phi->operands[i] = operands[i];
8107 phi->definitions[0] = Definition(dst);
8108 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
8109 }
8110
8111
8112 void visit_undef(isel_context *ctx, nir_ssa_undef_instr *instr)
8113 {
8114 Temp dst = get_ssa_temp(ctx, &instr->def);
8115
8116 assert(dst.type() == RegType::sgpr);
8117
8118 if (dst.size() == 1) {
8119 Builder(ctx->program, ctx->block).copy(Definition(dst), Operand(0u));
8120 } else {
8121 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
8122 for (unsigned i = 0; i < dst.size(); i++)
8123 vec->operands[i] = Operand(0u);
8124 vec->definitions[0] = Definition(dst);
8125 ctx->block->instructions.emplace_back(std::move(vec));
8126 }
8127 }
8128
8129 void visit_jump(isel_context *ctx, nir_jump_instr *instr)
8130 {
8131 Builder bld(ctx->program, ctx->block);
8132 Block *logical_target;
8133 append_logical_end(ctx->block);
8134 unsigned idx = ctx->block->index;
8135
8136 switch (instr->type) {
8137 case nir_jump_break:
8138 logical_target = ctx->cf_info.parent_loop.exit;
8139 add_logical_edge(idx, logical_target);
8140 ctx->block->kind |= block_kind_break;
8141
8142 if (!ctx->cf_info.parent_if.is_divergent &&
8143 !ctx->cf_info.parent_loop.has_divergent_continue) {
8144 /* uniform break - directly jump out of the loop */
8145 ctx->block->kind |= block_kind_uniform;
8146 ctx->cf_info.has_branch = true;
8147 bld.branch(aco_opcode::p_branch);
8148 add_linear_edge(idx, logical_target);
8149 return;
8150 }
8151 ctx->cf_info.parent_loop.has_divergent_branch = true;
8152 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
8153 break;
8154 case nir_jump_continue:
8155 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
8156 add_logical_edge(idx, logical_target);
8157 ctx->block->kind |= block_kind_continue;
8158
8159 if (ctx->cf_info.parent_if.is_divergent) {
8160 /* for potential uniform breaks after this continue,
8161 we must ensure that they are handled correctly */
8162 ctx->cf_info.parent_loop.has_divergent_continue = true;
8163 ctx->cf_info.parent_loop.has_divergent_branch = true;
8164 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
8165 } else {
8166 /* uniform continue - directly jump to the loop header */
8167 ctx->block->kind |= block_kind_uniform;
8168 ctx->cf_info.has_branch = true;
8169 bld.branch(aco_opcode::p_branch);
8170 add_linear_edge(idx, logical_target);
8171 return;
8172 }
8173 break;
8174 default:
8175 fprintf(stderr, "Unknown NIR jump instr: ");
8176 nir_print_instr(&instr->instr, stderr);
8177 fprintf(stderr, "\n");
8178 abort();
8179 }
8180
8181 if (ctx->cf_info.parent_if.is_divergent && !ctx->cf_info.exec_potentially_empty_break) {
8182 ctx->cf_info.exec_potentially_empty_break = true;
8183 ctx->cf_info.exec_potentially_empty_break_depth = ctx->cf_info.loop_nest_depth;
8184 }
8185
8186 /* remove critical edges from linear CFG */
8187 bld.branch(aco_opcode::p_branch);
8188 Block* break_block = ctx->program->create_and_insert_block();
8189 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8190 break_block->kind |= block_kind_uniform;
8191 add_linear_edge(idx, break_block);
8192 /* the loop_header pointer might be invalidated by this point */
8193 if (instr->type == nir_jump_continue)
8194 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
8195 add_linear_edge(break_block->index, logical_target);
8196 bld.reset(break_block);
8197 bld.branch(aco_opcode::p_branch);
8198
8199 Block* continue_block = ctx->program->create_and_insert_block();
8200 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8201 add_linear_edge(idx, continue_block);
8202 append_logical_start(continue_block);
8203 ctx->block = continue_block;
8204 return;
8205 }
8206
8207 void visit_block(isel_context *ctx, nir_block *block)
8208 {
8209 nir_foreach_instr(instr, block) {
8210 switch (instr->type) {
8211 case nir_instr_type_alu:
8212 visit_alu_instr(ctx, nir_instr_as_alu(instr));
8213 break;
8214 case nir_instr_type_load_const:
8215 visit_load_const(ctx, nir_instr_as_load_const(instr));
8216 break;
8217 case nir_instr_type_intrinsic:
8218 visit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
8219 break;
8220 case nir_instr_type_tex:
8221 visit_tex(ctx, nir_instr_as_tex(instr));
8222 break;
8223 case nir_instr_type_phi:
8224 visit_phi(ctx, nir_instr_as_phi(instr));
8225 break;
8226 case nir_instr_type_ssa_undef:
8227 visit_undef(ctx, nir_instr_as_ssa_undef(instr));
8228 break;
8229 case nir_instr_type_deref:
8230 break;
8231 case nir_instr_type_jump:
8232 visit_jump(ctx, nir_instr_as_jump(instr));
8233 break;
8234 default:
8235 fprintf(stderr, "Unknown NIR instr type: ");
8236 nir_print_instr(instr, stderr);
8237 fprintf(stderr, "\n");
8238 //abort();
8239 }
8240 }
8241
8242 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8243 ctx->cf_info.nir_to_aco[block->index] = ctx->block->index;
8244 }
8245
8246
8247
8248 static void visit_loop(isel_context *ctx, nir_loop *loop)
8249 {
8250 //TODO: we might want to wrap the loop around a branch if exec_potentially_empty=true
8251 append_logical_end(ctx->block);
8252 ctx->block->kind |= block_kind_loop_preheader | block_kind_uniform;
8253 Builder bld(ctx->program, ctx->block);
8254 bld.branch(aco_opcode::p_branch);
8255 unsigned loop_preheader_idx = ctx->block->index;
8256
8257 Block loop_exit = Block();
8258 loop_exit.loop_nest_depth = ctx->cf_info.loop_nest_depth;
8259 loop_exit.kind |= (block_kind_loop_exit | (ctx->block->kind & block_kind_top_level));
8260
8261 Block* loop_header = ctx->program->create_and_insert_block();
8262 loop_header->loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
8263 loop_header->kind |= block_kind_loop_header;
8264 add_edge(loop_preheader_idx, loop_header);
8265 ctx->block = loop_header;
8266
8267 /* emit loop body */
8268 unsigned loop_header_idx = loop_header->index;
8269 loop_info_RAII loop_raii(ctx, loop_header_idx, &loop_exit);
8270 append_logical_start(ctx->block);
8271 visit_cf_list(ctx, &loop->body);
8272
8273 //TODO: what if a loop ends with a unconditional or uniformly branched continue and this branch is never taken?
8274 if (!ctx->cf_info.has_branch) {
8275 append_logical_end(ctx->block);
8276 if (ctx->cf_info.exec_potentially_empty_discard || ctx->cf_info.exec_potentially_empty_break) {
8277 /* Discards can result in code running with an empty exec mask.
8278 * This would result in divergent breaks not ever being taken. As a
8279 * workaround, break the loop when the loop mask is empty instead of
8280 * always continuing. */
8281 ctx->block->kind |= (block_kind_continue_or_break | block_kind_uniform);
8282 unsigned block_idx = ctx->block->index;
8283
8284 /* create helper blocks to avoid critical edges */
8285 Block *break_block = ctx->program->create_and_insert_block();
8286 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8287 break_block->kind = block_kind_uniform;
8288 bld.reset(break_block);
8289 bld.branch(aco_opcode::p_branch);
8290 add_linear_edge(block_idx, break_block);
8291 add_linear_edge(break_block->index, &loop_exit);
8292
8293 Block *continue_block = ctx->program->create_and_insert_block();
8294 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8295 continue_block->kind = block_kind_uniform;
8296 bld.reset(continue_block);
8297 bld.branch(aco_opcode::p_branch);
8298 add_linear_edge(block_idx, continue_block);
8299 add_linear_edge(continue_block->index, &ctx->program->blocks[loop_header_idx]);
8300
8301 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8302 add_logical_edge(block_idx, &ctx->program->blocks[loop_header_idx]);
8303 ctx->block = &ctx->program->blocks[block_idx];
8304 } else {
8305 ctx->block->kind |= (block_kind_continue | block_kind_uniform);
8306 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8307 add_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
8308 else
8309 add_linear_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
8310 }
8311
8312 bld.reset(ctx->block);
8313 bld.branch(aco_opcode::p_branch);
8314 }
8315
8316 /* fixup phis in loop header from unreachable blocks */
8317 if (ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch) {
8318 bool linear = ctx->cf_info.has_branch;
8319 bool logical = ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch;
8320 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
8321 if ((logical && instr->opcode == aco_opcode::p_phi) ||
8322 (linear && instr->opcode == aco_opcode::p_linear_phi)) {
8323 /* the last operand should be the one that needs to be removed */
8324 instr->operands.pop_back();
8325 } else if (!is_phi(instr)) {
8326 break;
8327 }
8328 }
8329 }
8330
8331 ctx->cf_info.has_branch = false;
8332
8333 // TODO: if the loop has not a single exit, we must add one °°
8334 /* emit loop successor block */
8335 ctx->block = ctx->program->insert_block(std::move(loop_exit));
8336 append_logical_start(ctx->block);
8337
8338 #if 0
8339 // TODO: check if it is beneficial to not branch on continues
8340 /* trim linear phis in loop header */
8341 for (auto&& instr : loop_entry->instructions) {
8342 if (instr->opcode == aco_opcode::p_linear_phi) {
8343 aco_ptr<Pseudo_instruction> new_phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, loop_entry->linear_predecessors.size(), 1)};
8344 new_phi->definitions[0] = instr->definitions[0];
8345 for (unsigned i = 0; i < new_phi->operands.size(); i++)
8346 new_phi->operands[i] = instr->operands[i];
8347 /* check that the remaining operands are all the same */
8348 for (unsigned i = new_phi->operands.size(); i < instr->operands.size(); i++)
8349 assert(instr->operands[i].tempId() == instr->operands.back().tempId());
8350 instr.swap(new_phi);
8351 } else if (instr->opcode == aco_opcode::p_phi) {
8352 continue;
8353 } else {
8354 break;
8355 }
8356 }
8357 #endif
8358 }
8359
8360 static void begin_divergent_if_then(isel_context *ctx, if_context *ic, Temp cond)
8361 {
8362 ic->cond = cond;
8363
8364 append_logical_end(ctx->block);
8365 ctx->block->kind |= block_kind_branch;
8366
8367 /* branch to linear then block */
8368 assert(cond.regClass() == ctx->program->lane_mask);
8369 aco_ptr<Pseudo_branch_instruction> branch;
8370 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
8371 branch->operands[0] = Operand(cond);
8372 ctx->block->instructions.push_back(std::move(branch));
8373
8374 ic->BB_if_idx = ctx->block->index;
8375 ic->BB_invert = Block();
8376 ic->BB_invert.loop_nest_depth = ctx->cf_info.loop_nest_depth;
8377 /* Invert blocks are intentionally not marked as top level because they
8378 * are not part of the logical cfg. */
8379 ic->BB_invert.kind |= block_kind_invert;
8380 ic->BB_endif = Block();
8381 ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
8382 ic->BB_endif.kind |= (block_kind_merge | (ctx->block->kind & block_kind_top_level));
8383
8384 ic->exec_potentially_empty_discard_old = ctx->cf_info.exec_potentially_empty_discard;
8385 ic->exec_potentially_empty_break_old = ctx->cf_info.exec_potentially_empty_break;
8386 ic->exec_potentially_empty_break_depth_old = ctx->cf_info.exec_potentially_empty_break_depth;
8387 ic->divergent_old = ctx->cf_info.parent_if.is_divergent;
8388 ctx->cf_info.parent_if.is_divergent = true;
8389
8390 /* divergent branches use cbranch_execz */
8391 ctx->cf_info.exec_potentially_empty_discard = false;
8392 ctx->cf_info.exec_potentially_empty_break = false;
8393 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
8394
8395 /** emit logical then block */
8396 Block* BB_then_logical = ctx->program->create_and_insert_block();
8397 BB_then_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8398 add_edge(ic->BB_if_idx, BB_then_logical);
8399 ctx->block = BB_then_logical;
8400 append_logical_start(BB_then_logical);
8401 }
8402
8403 static void begin_divergent_if_else(isel_context *ctx, if_context *ic)
8404 {
8405 Block *BB_then_logical = ctx->block;
8406 append_logical_end(BB_then_logical);
8407 /* branch from logical then block to invert block */
8408 aco_ptr<Pseudo_branch_instruction> branch;
8409 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8410 BB_then_logical->instructions.emplace_back(std::move(branch));
8411 add_linear_edge(BB_then_logical->index, &ic->BB_invert);
8412 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8413 add_logical_edge(BB_then_logical->index, &ic->BB_endif);
8414 BB_then_logical->kind |= block_kind_uniform;
8415 assert(!ctx->cf_info.has_branch);
8416 ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
8417 ctx->cf_info.parent_loop.has_divergent_branch = false;
8418
8419 /** emit linear then block */
8420 Block* BB_then_linear = ctx->program->create_and_insert_block();
8421 BB_then_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8422 BB_then_linear->kind |= block_kind_uniform;
8423 add_linear_edge(ic->BB_if_idx, BB_then_linear);
8424 /* branch from linear then block to invert block */
8425 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8426 BB_then_linear->instructions.emplace_back(std::move(branch));
8427 add_linear_edge(BB_then_linear->index, &ic->BB_invert);
8428
8429 /** emit invert merge block */
8430 ctx->block = ctx->program->insert_block(std::move(ic->BB_invert));
8431 ic->invert_idx = ctx->block->index;
8432
8433 /* branch to linear else block (skip else) */
8434 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_nz, Format::PSEUDO_BRANCH, 1, 0));
8435 branch->operands[0] = Operand(ic->cond);
8436 ctx->block->instructions.push_back(std::move(branch));
8437
8438 ic->exec_potentially_empty_discard_old |= ctx->cf_info.exec_potentially_empty_discard;
8439 ic->exec_potentially_empty_break_old |= ctx->cf_info.exec_potentially_empty_break;
8440 ic->exec_potentially_empty_break_depth_old =
8441 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
8442 /* divergent branches use cbranch_execz */
8443 ctx->cf_info.exec_potentially_empty_discard = false;
8444 ctx->cf_info.exec_potentially_empty_break = false;
8445 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
8446
8447 /** emit logical else block */
8448 Block* BB_else_logical = ctx->program->create_and_insert_block();
8449 BB_else_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8450 add_logical_edge(ic->BB_if_idx, BB_else_logical);
8451 add_linear_edge(ic->invert_idx, BB_else_logical);
8452 ctx->block = BB_else_logical;
8453 append_logical_start(BB_else_logical);
8454 }
8455
8456 static void end_divergent_if(isel_context *ctx, if_context *ic)
8457 {
8458 Block *BB_else_logical = ctx->block;
8459 append_logical_end(BB_else_logical);
8460
8461 /* branch from logical else block to endif block */
8462 aco_ptr<Pseudo_branch_instruction> branch;
8463 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8464 BB_else_logical->instructions.emplace_back(std::move(branch));
8465 add_linear_edge(BB_else_logical->index, &ic->BB_endif);
8466 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8467 add_logical_edge(BB_else_logical->index, &ic->BB_endif);
8468 BB_else_logical->kind |= block_kind_uniform;
8469
8470 assert(!ctx->cf_info.has_branch);
8471 ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
8472
8473
8474 /** emit linear else block */
8475 Block* BB_else_linear = ctx->program->create_and_insert_block();
8476 BB_else_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8477 BB_else_linear->kind |= block_kind_uniform;
8478 add_linear_edge(ic->invert_idx, BB_else_linear);
8479
8480 /* branch from linear else block to endif block */
8481 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8482 BB_else_linear->instructions.emplace_back(std::move(branch));
8483 add_linear_edge(BB_else_linear->index, &ic->BB_endif);
8484
8485
8486 /** emit endif merge block */
8487 ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
8488 append_logical_start(ctx->block);
8489
8490
8491 ctx->cf_info.parent_if.is_divergent = ic->divergent_old;
8492 ctx->cf_info.exec_potentially_empty_discard |= ic->exec_potentially_empty_discard_old;
8493 ctx->cf_info.exec_potentially_empty_break |= ic->exec_potentially_empty_break_old;
8494 ctx->cf_info.exec_potentially_empty_break_depth =
8495 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
8496 if (ctx->cf_info.loop_nest_depth == ctx->cf_info.exec_potentially_empty_break_depth &&
8497 !ctx->cf_info.parent_if.is_divergent) {
8498 ctx->cf_info.exec_potentially_empty_break = false;
8499 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
8500 }
8501 /* uniform control flow never has an empty exec-mask */
8502 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent) {
8503 ctx->cf_info.exec_potentially_empty_discard = false;
8504 ctx->cf_info.exec_potentially_empty_break = false;
8505 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
8506 }
8507 }
8508
8509 static void visit_if(isel_context *ctx, nir_if *if_stmt)
8510 {
8511 Temp cond = get_ssa_temp(ctx, if_stmt->condition.ssa);
8512 Builder bld(ctx->program, ctx->block);
8513 aco_ptr<Pseudo_branch_instruction> branch;
8514
8515 if (!ctx->divergent_vals[if_stmt->condition.ssa->index]) { /* uniform condition */
8516 /**
8517 * Uniform conditionals are represented in the following way*) :
8518 *
8519 * The linear and logical CFG:
8520 * BB_IF
8521 * / \
8522 * BB_THEN (logical) BB_ELSE (logical)
8523 * \ /
8524 * BB_ENDIF
8525 *
8526 * *) Exceptions may be due to break and continue statements within loops
8527 * If a break/continue happens within uniform control flow, it branches
8528 * to the loop exit/entry block. Otherwise, it branches to the next
8529 * merge block.
8530 **/
8531 append_logical_end(ctx->block);
8532 ctx->block->kind |= block_kind_uniform;
8533
8534 /* emit branch */
8535 assert(cond.regClass() == bld.lm);
8536 // TODO: in a post-RA optimizer, we could check if the condition is in VCC and omit this instruction
8537 cond = bool_to_scalar_condition(ctx, cond);
8538
8539 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
8540 branch->operands[0] = Operand(cond);
8541 branch->operands[0].setFixed(scc);
8542 ctx->block->instructions.emplace_back(std::move(branch));
8543
8544 unsigned BB_if_idx = ctx->block->index;
8545 Block BB_endif = Block();
8546 BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
8547 BB_endif.kind |= ctx->block->kind & block_kind_top_level;
8548
8549 /** emit then block */
8550 Block* BB_then = ctx->program->create_and_insert_block();
8551 BB_then->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8552 add_edge(BB_if_idx, BB_then);
8553 append_logical_start(BB_then);
8554 ctx->block = BB_then;
8555 visit_cf_list(ctx, &if_stmt->then_list);
8556 BB_then = ctx->block;
8557 bool then_branch = ctx->cf_info.has_branch;
8558 bool then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
8559
8560 if (!then_branch) {
8561 append_logical_end(BB_then);
8562 /* branch from then block to endif block */
8563 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8564 BB_then->instructions.emplace_back(std::move(branch));
8565 add_linear_edge(BB_then->index, &BB_endif);
8566 if (!then_branch_divergent)
8567 add_logical_edge(BB_then->index, &BB_endif);
8568 BB_then->kind |= block_kind_uniform;
8569 }
8570
8571 ctx->cf_info.has_branch = false;
8572 ctx->cf_info.parent_loop.has_divergent_branch = false;
8573
8574 /** emit else block */
8575 Block* BB_else = ctx->program->create_and_insert_block();
8576 BB_else->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8577 add_edge(BB_if_idx, BB_else);
8578 append_logical_start(BB_else);
8579 ctx->block = BB_else;
8580 visit_cf_list(ctx, &if_stmt->else_list);
8581 BB_else = ctx->block;
8582
8583 if (!ctx->cf_info.has_branch) {
8584 append_logical_end(BB_else);
8585 /* branch from then block to endif block */
8586 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8587 BB_else->instructions.emplace_back(std::move(branch));
8588 add_linear_edge(BB_else->index, &BB_endif);
8589 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8590 add_logical_edge(BB_else->index, &BB_endif);
8591 BB_else->kind |= block_kind_uniform;
8592 }
8593
8594 ctx->cf_info.has_branch &= then_branch;
8595 ctx->cf_info.parent_loop.has_divergent_branch &= then_branch_divergent;
8596
8597 /** emit endif merge block */
8598 if (!ctx->cf_info.has_branch) {
8599 ctx->block = ctx->program->insert_block(std::move(BB_endif));
8600 append_logical_start(ctx->block);
8601 }
8602 } else { /* non-uniform condition */
8603 /**
8604 * To maintain a logical and linear CFG without critical edges,
8605 * non-uniform conditionals are represented in the following way*) :
8606 *
8607 * The linear CFG:
8608 * BB_IF
8609 * / \
8610 * BB_THEN (logical) BB_THEN (linear)
8611 * \ /
8612 * BB_INVERT (linear)
8613 * / \
8614 * BB_ELSE (logical) BB_ELSE (linear)
8615 * \ /
8616 * BB_ENDIF
8617 *
8618 * The logical CFG:
8619 * BB_IF
8620 * / \
8621 * BB_THEN (logical) BB_ELSE (logical)
8622 * \ /
8623 * BB_ENDIF
8624 *
8625 * *) Exceptions may be due to break and continue statements within loops
8626 **/
8627
8628 if_context ic;
8629
8630 begin_divergent_if_then(ctx, &ic, cond);
8631 visit_cf_list(ctx, &if_stmt->then_list);
8632
8633 begin_divergent_if_else(ctx, &ic);
8634 visit_cf_list(ctx, &if_stmt->else_list);
8635
8636 end_divergent_if(ctx, &ic);
8637 }
8638 }
8639
8640 static void visit_cf_list(isel_context *ctx,
8641 struct exec_list *list)
8642 {
8643 foreach_list_typed(nir_cf_node, node, node, list) {
8644 switch (node->type) {
8645 case nir_cf_node_block:
8646 visit_block(ctx, nir_cf_node_as_block(node));
8647 break;
8648 case nir_cf_node_if:
8649 visit_if(ctx, nir_cf_node_as_if(node));
8650 break;
8651 case nir_cf_node_loop:
8652 visit_loop(ctx, nir_cf_node_as_loop(node));
8653 break;
8654 default:
8655 unreachable("unimplemented cf list type");
8656 }
8657 }
8658 }
8659
8660 static void export_vs_varying(isel_context *ctx, int slot, bool is_pos, int *next_pos)
8661 {
8662 int offset = ctx->program->info->vs.outinfo.vs_output_param_offset[slot];
8663 uint64_t mask = ctx->outputs.mask[slot];
8664 if (!is_pos && !mask)
8665 return;
8666 if (!is_pos && offset == AC_EXP_PARAM_UNDEFINED)
8667 return;
8668 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
8669 exp->enabled_mask = mask;
8670 for (unsigned i = 0; i < 4; ++i) {
8671 if (mask & (1 << i))
8672 exp->operands[i] = Operand(ctx->outputs.outputs[slot][i]);
8673 else
8674 exp->operands[i] = Operand(v1);
8675 }
8676 /* Navi10-14 skip POS0 exports if EXEC=0 and DONE=0, causing a hang.
8677 * Setting valid_mask=1 prevents it and has no other effect.
8678 */
8679 exp->valid_mask = ctx->options->chip_class >= GFX10 && is_pos && *next_pos == 0;
8680 exp->done = false;
8681 exp->compressed = false;
8682 if (is_pos)
8683 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
8684 else
8685 exp->dest = V_008DFC_SQ_EXP_PARAM + offset;
8686 ctx->block->instructions.emplace_back(std::move(exp));
8687 }
8688
8689 static void export_vs_psiz_layer_viewport(isel_context *ctx, int *next_pos)
8690 {
8691 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
8692 exp->enabled_mask = 0;
8693 for (unsigned i = 0; i < 4; ++i)
8694 exp->operands[i] = Operand(v1);
8695 if (ctx->outputs.mask[VARYING_SLOT_PSIZ]) {
8696 exp->operands[0] = Operand(ctx->outputs.outputs[VARYING_SLOT_PSIZ][0]);
8697 exp->enabled_mask |= 0x1;
8698 }
8699 if (ctx->outputs.mask[VARYING_SLOT_LAYER]) {
8700 exp->operands[2] = Operand(ctx->outputs.outputs[VARYING_SLOT_LAYER][0]);
8701 exp->enabled_mask |= 0x4;
8702 }
8703 if (ctx->outputs.mask[VARYING_SLOT_VIEWPORT]) {
8704 if (ctx->options->chip_class < GFX9) {
8705 exp->operands[3] = Operand(ctx->outputs.outputs[VARYING_SLOT_VIEWPORT][0]);
8706 exp->enabled_mask |= 0x8;
8707 } else {
8708 Builder bld(ctx->program, ctx->block);
8709
8710 Temp out = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u),
8711 Operand(ctx->outputs.outputs[VARYING_SLOT_VIEWPORT][0]));
8712 if (exp->operands[2].isTemp())
8713 out = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(out), exp->operands[2]);
8714
8715 exp->operands[2] = Operand(out);
8716 exp->enabled_mask |= 0x4;
8717 }
8718 }
8719 exp->valid_mask = ctx->options->chip_class >= GFX10 && *next_pos == 0;
8720 exp->done = false;
8721 exp->compressed = false;
8722 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
8723 ctx->block->instructions.emplace_back(std::move(exp));
8724 }
8725
8726 static void create_vs_exports(isel_context *ctx)
8727 {
8728 radv_vs_output_info *outinfo = &ctx->program->info->vs.outinfo;
8729
8730 if (outinfo->export_prim_id) {
8731 ctx->outputs.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
8732 ctx->outputs.outputs[VARYING_SLOT_PRIMITIVE_ID][0] = get_arg(ctx, ctx->args->vs_prim_id);
8733 }
8734
8735 if (ctx->options->key.has_multiview_view_index) {
8736 ctx->outputs.mask[VARYING_SLOT_LAYER] |= 0x1;
8737 ctx->outputs.outputs[VARYING_SLOT_LAYER][0] = as_vgpr(ctx, get_arg(ctx, ctx->args->ac.view_index));
8738 }
8739
8740 /* the order these position exports are created is important */
8741 int next_pos = 0;
8742 export_vs_varying(ctx, VARYING_SLOT_POS, true, &next_pos);
8743 if (outinfo->writes_pointsize || outinfo->writes_layer || outinfo->writes_viewport_index) {
8744 export_vs_psiz_layer_viewport(ctx, &next_pos);
8745 }
8746 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
8747 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, true, &next_pos);
8748 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
8749 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, true, &next_pos);
8750
8751 if (ctx->export_clip_dists) {
8752 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
8753 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, false, &next_pos);
8754 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
8755 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, false, &next_pos);
8756 }
8757
8758 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
8759 if (i < VARYING_SLOT_VAR0 && i != VARYING_SLOT_LAYER &&
8760 i != VARYING_SLOT_PRIMITIVE_ID)
8761 continue;
8762
8763 export_vs_varying(ctx, i, false, NULL);
8764 }
8765 }
8766
8767 static void export_fs_mrt_z(isel_context *ctx)
8768 {
8769 Builder bld(ctx->program, ctx->block);
8770 unsigned enabled_channels = 0;
8771 bool compr = false;
8772 Operand values[4];
8773
8774 for (unsigned i = 0; i < 4; ++i) {
8775 values[i] = Operand(v1);
8776 }
8777
8778 /* Both stencil and sample mask only need 16-bits. */
8779 if (!ctx->program->info->ps.writes_z &&
8780 (ctx->program->info->ps.writes_stencil ||
8781 ctx->program->info->ps.writes_sample_mask)) {
8782 compr = true; /* COMPR flag */
8783
8784 if (ctx->program->info->ps.writes_stencil) {
8785 /* Stencil should be in X[23:16]. */
8786 values[0] = Operand(ctx->outputs.outputs[FRAG_RESULT_STENCIL][0]);
8787 values[0] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u), values[0]);
8788 enabled_channels |= 0x3;
8789 }
8790
8791 if (ctx->program->info->ps.writes_sample_mask) {
8792 /* SampleMask should be in Y[15:0]. */
8793 values[1] = Operand(ctx->outputs.outputs[FRAG_RESULT_SAMPLE_MASK][0]);
8794 enabled_channels |= 0xc;
8795 }
8796 } else {
8797 if (ctx->program->info->ps.writes_z) {
8798 values[0] = Operand(ctx->outputs.outputs[FRAG_RESULT_DEPTH][0]);
8799 enabled_channels |= 0x1;
8800 }
8801
8802 if (ctx->program->info->ps.writes_stencil) {
8803 values[1] = Operand(ctx->outputs.outputs[FRAG_RESULT_STENCIL][0]);
8804 enabled_channels |= 0x2;
8805 }
8806
8807 if (ctx->program->info->ps.writes_sample_mask) {
8808 values[2] = Operand(ctx->outputs.outputs[FRAG_RESULT_SAMPLE_MASK][0]);
8809 enabled_channels |= 0x4;
8810 }
8811 }
8812
8813 /* GFX6 (except OLAND and HAINAN) has a bug that it only looks at the X
8814 * writemask component.
8815 */
8816 if (ctx->options->chip_class == GFX6 &&
8817 ctx->options->family != CHIP_OLAND &&
8818 ctx->options->family != CHIP_HAINAN) {
8819 enabled_channels |= 0x1;
8820 }
8821
8822 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
8823 enabled_channels, V_008DFC_SQ_EXP_MRTZ, compr);
8824 }
8825
8826 static void export_fs_mrt_color(isel_context *ctx, int slot)
8827 {
8828 Builder bld(ctx->program, ctx->block);
8829 unsigned write_mask = ctx->outputs.mask[slot];
8830 Operand values[4];
8831
8832 for (unsigned i = 0; i < 4; ++i) {
8833 if (write_mask & (1 << i)) {
8834 values[i] = Operand(ctx->outputs.outputs[slot][i]);
8835 } else {
8836 values[i] = Operand(v1);
8837 }
8838 }
8839
8840 unsigned target, col_format;
8841 unsigned enabled_channels = 0;
8842 aco_opcode compr_op = (aco_opcode)0;
8843
8844 slot -= FRAG_RESULT_DATA0;
8845 target = V_008DFC_SQ_EXP_MRT + slot;
8846 col_format = (ctx->options->key.fs.col_format >> (4 * slot)) & 0xf;
8847
8848 bool is_int8 = (ctx->options->key.fs.is_int8 >> slot) & 1;
8849 bool is_int10 = (ctx->options->key.fs.is_int10 >> slot) & 1;
8850
8851 switch (col_format)
8852 {
8853 case V_028714_SPI_SHADER_ZERO:
8854 enabled_channels = 0; /* writemask */
8855 target = V_008DFC_SQ_EXP_NULL;
8856 break;
8857
8858 case V_028714_SPI_SHADER_32_R:
8859 enabled_channels = 1;
8860 break;
8861
8862 case V_028714_SPI_SHADER_32_GR:
8863 enabled_channels = 0x3;
8864 break;
8865
8866 case V_028714_SPI_SHADER_32_AR:
8867 if (ctx->options->chip_class >= GFX10) {
8868 /* Special case: on GFX10, the outputs are different for 32_AR */
8869 enabled_channels = 0x3;
8870 values[1] = values[3];
8871 values[3] = Operand(v1);
8872 } else {
8873 enabled_channels = 0x9;
8874 }
8875 break;
8876
8877 case V_028714_SPI_SHADER_FP16_ABGR:
8878 enabled_channels = 0x5;
8879 compr_op = aco_opcode::v_cvt_pkrtz_f16_f32;
8880 break;
8881
8882 case V_028714_SPI_SHADER_UNORM16_ABGR:
8883 enabled_channels = 0x5;
8884 compr_op = aco_opcode::v_cvt_pknorm_u16_f32;
8885 break;
8886
8887 case V_028714_SPI_SHADER_SNORM16_ABGR:
8888 enabled_channels = 0x5;
8889 compr_op = aco_opcode::v_cvt_pknorm_i16_f32;
8890 break;
8891
8892 case V_028714_SPI_SHADER_UINT16_ABGR: {
8893 enabled_channels = 0x5;
8894 compr_op = aco_opcode::v_cvt_pk_u16_u32;
8895 if (is_int8 || is_int10) {
8896 /* clamp */
8897 uint32_t max_rgb = is_int8 ? 255 : is_int10 ? 1023 : 0;
8898 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
8899
8900 for (unsigned i = 0; i < 4; i++) {
8901 if ((write_mask >> i) & 1) {
8902 values[i] = bld.vop2(aco_opcode::v_min_u32, bld.def(v1),
8903 i == 3 && is_int10 ? Operand(3u) : Operand(max_rgb_val),
8904 values[i]);
8905 }
8906 }
8907 }
8908 break;
8909 }
8910
8911 case V_028714_SPI_SHADER_SINT16_ABGR:
8912 enabled_channels = 0x5;
8913 compr_op = aco_opcode::v_cvt_pk_i16_i32;
8914 if (is_int8 || is_int10) {
8915 /* clamp */
8916 uint32_t max_rgb = is_int8 ? 127 : is_int10 ? 511 : 0;
8917 uint32_t min_rgb = is_int8 ? -128 :is_int10 ? -512 : 0;
8918 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
8919 Temp min_rgb_val = bld.copy(bld.def(s1), Operand(min_rgb));
8920
8921 for (unsigned i = 0; i < 4; i++) {
8922 if ((write_mask >> i) & 1) {
8923 values[i] = bld.vop2(aco_opcode::v_min_i32, bld.def(v1),
8924 i == 3 && is_int10 ? Operand(1u) : Operand(max_rgb_val),
8925 values[i]);
8926 values[i] = bld.vop2(aco_opcode::v_max_i32, bld.def(v1),
8927 i == 3 && is_int10 ? Operand(-2u) : Operand(min_rgb_val),
8928 values[i]);
8929 }
8930 }
8931 }
8932 break;
8933
8934 case V_028714_SPI_SHADER_32_ABGR:
8935 enabled_channels = 0xF;
8936 break;
8937
8938 default:
8939 break;
8940 }
8941
8942 if (target == V_008DFC_SQ_EXP_NULL)
8943 return;
8944
8945 if ((bool) compr_op) {
8946 for (int i = 0; i < 2; i++) {
8947 /* check if at least one of the values to be compressed is enabled */
8948 unsigned enabled = (write_mask >> (i*2) | write_mask >> (i*2+1)) & 0x1;
8949 if (enabled) {
8950 enabled_channels |= enabled << (i*2);
8951 values[i] = bld.vop3(compr_op, bld.def(v1),
8952 values[i*2].isUndefined() ? Operand(0u) : values[i*2],
8953 values[i*2+1].isUndefined() ? Operand(0u): values[i*2+1]);
8954 } else {
8955 values[i] = Operand(v1);
8956 }
8957 }
8958 values[2] = Operand(v1);
8959 values[3] = Operand(v1);
8960 } else {
8961 for (int i = 0; i < 4; i++)
8962 values[i] = enabled_channels & (1 << i) ? values[i] : Operand(v1);
8963 }
8964
8965 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
8966 enabled_channels, target, (bool) compr_op);
8967 }
8968
8969 static void create_fs_exports(isel_context *ctx)
8970 {
8971 /* Export depth, stencil and sample mask. */
8972 if (ctx->outputs.mask[FRAG_RESULT_DEPTH] ||
8973 ctx->outputs.mask[FRAG_RESULT_STENCIL] ||
8974 ctx->outputs.mask[FRAG_RESULT_SAMPLE_MASK]) {
8975 export_fs_mrt_z(ctx);
8976 }
8977
8978 /* Export all color render targets. */
8979 for (unsigned i = FRAG_RESULT_DATA0; i < FRAG_RESULT_DATA7 + 1; ++i) {
8980 if (ctx->outputs.mask[i])
8981 export_fs_mrt_color(ctx, i);
8982 }
8983 }
8984
8985 static void emit_stream_output(isel_context *ctx,
8986 Temp const *so_buffers,
8987 Temp const *so_write_offset,
8988 const struct radv_stream_output *output)
8989 {
8990 unsigned num_comps = util_bitcount(output->component_mask);
8991 unsigned writemask = (1 << num_comps) - 1;
8992 unsigned loc = output->location;
8993 unsigned buf = output->buffer;
8994
8995 assert(num_comps && num_comps <= 4);
8996 if (!num_comps || num_comps > 4)
8997 return;
8998
8999 unsigned start = ffs(output->component_mask) - 1;
9000
9001 Temp out[4];
9002 bool all_undef = true;
9003 assert(ctx->stage == vertex_vs || ctx->stage == gs_copy_vs);
9004 for (unsigned i = 0; i < num_comps; i++) {
9005 out[i] = ctx->outputs.outputs[loc][start + i];
9006 all_undef = all_undef && !out[i].id();
9007 }
9008 if (all_undef)
9009 return;
9010
9011 while (writemask) {
9012 int start, count;
9013 u_bit_scan_consecutive_range(&writemask, &start, &count);
9014 if (count == 3 && ctx->options->chip_class == GFX6) {
9015 /* GFX6 doesn't support storing vec3, split it. */
9016 writemask |= 1u << (start + 2);
9017 count = 2;
9018 }
9019
9020 unsigned offset = output->offset + start * 4;
9021
9022 Temp write_data = {ctx->program->allocateId(), RegClass(RegType::vgpr, count)};
9023 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
9024 for (int i = 0; i < count; ++i)
9025 vec->operands[i] = (ctx->outputs.mask[loc] & 1 << (start + i)) ? Operand(out[start + i]) : Operand(0u);
9026 vec->definitions[0] = Definition(write_data);
9027 ctx->block->instructions.emplace_back(std::move(vec));
9028
9029 aco_opcode opcode;
9030 switch (count) {
9031 case 1:
9032 opcode = aco_opcode::buffer_store_dword;
9033 break;
9034 case 2:
9035 opcode = aco_opcode::buffer_store_dwordx2;
9036 break;
9037 case 3:
9038 opcode = aco_opcode::buffer_store_dwordx3;
9039 break;
9040 case 4:
9041 opcode = aco_opcode::buffer_store_dwordx4;
9042 break;
9043 default:
9044 unreachable("Unsupported dword count.");
9045 }
9046
9047 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
9048 store->operands[0] = Operand(so_buffers[buf]);
9049 store->operands[1] = Operand(so_write_offset[buf]);
9050 store->operands[2] = Operand((uint32_t) 0);
9051 store->operands[3] = Operand(write_data);
9052 if (offset > 4095) {
9053 /* Don't think this can happen in RADV, but maybe GL? It's easy to do this anyway. */
9054 Builder bld(ctx->program, ctx->block);
9055 store->operands[0] = bld.vadd32(bld.def(v1), Operand(offset), Operand(so_write_offset[buf]));
9056 } else {
9057 store->offset = offset;
9058 }
9059 store->offen = true;
9060 store->glc = true;
9061 store->dlc = false;
9062 store->slc = true;
9063 store->can_reorder = true;
9064 ctx->block->instructions.emplace_back(std::move(store));
9065 }
9066 }
9067
9068 static void emit_streamout(isel_context *ctx, unsigned stream)
9069 {
9070 Builder bld(ctx->program, ctx->block);
9071
9072 Temp so_buffers[4];
9073 Temp buf_ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->streamout_buffers));
9074 for (unsigned i = 0; i < 4; i++) {
9075 unsigned stride = ctx->program->info->so.strides[i];
9076 if (!stride)
9077 continue;
9078
9079 Operand off = bld.copy(bld.def(s1), Operand(i * 16u));
9080 so_buffers[i] = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), buf_ptr, off);
9081 }
9082
9083 Temp so_vtx_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
9084 get_arg(ctx, ctx->args->streamout_config), Operand(0x70010u));
9085
9086 Temp tid = emit_mbcnt(ctx, bld.def(v1));
9087
9088 Temp can_emit = bld.vopc(aco_opcode::v_cmp_gt_i32, bld.def(bld.lm), so_vtx_count, tid);
9089
9090 if_context ic;
9091 begin_divergent_if_then(ctx, &ic, can_emit);
9092
9093 bld.reset(ctx->block);
9094
9095 Temp so_write_index = bld.vadd32(bld.def(v1), get_arg(ctx, ctx->args->streamout_write_idx), tid);
9096
9097 Temp so_write_offset[4];
9098
9099 for (unsigned i = 0; i < 4; i++) {
9100 unsigned stride = ctx->program->info->so.strides[i];
9101 if (!stride)
9102 continue;
9103
9104 if (stride == 1) {
9105 Temp offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
9106 get_arg(ctx, ctx->args->streamout_write_idx),
9107 get_arg(ctx, ctx->args->streamout_offset[i]));
9108 Temp new_offset = bld.vadd32(bld.def(v1), offset, tid);
9109
9110 so_write_offset[i] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), new_offset);
9111 } else {
9112 Temp offset = bld.v_mul_imm(bld.def(v1), so_write_index, stride * 4u);
9113 Temp offset2 = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(4u),
9114 get_arg(ctx, ctx->args->streamout_offset[i]));
9115 so_write_offset[i] = bld.vadd32(bld.def(v1), offset, offset2);
9116 }
9117 }
9118
9119 for (unsigned i = 0; i < ctx->program->info->so.num_outputs; i++) {
9120 struct radv_stream_output *output =
9121 &ctx->program->info->so.outputs[i];
9122 if (stream != output->stream)
9123 continue;
9124
9125 emit_stream_output(ctx, so_buffers, so_write_offset, output);
9126 }
9127
9128 begin_divergent_if_else(ctx, &ic);
9129 end_divergent_if(ctx, &ic);
9130 }
9131
9132 } /* end namespace */
9133
9134 void split_arguments(isel_context *ctx, Pseudo_instruction *startpgm)
9135 {
9136 /* Split all arguments except for the first (ring_offsets) and the last
9137 * (exec) so that the dead channels don't stay live throughout the program.
9138 */
9139 for (int i = 1; i < startpgm->definitions.size() - 1; i++) {
9140 if (startpgm->definitions[i].regClass().size() > 1) {
9141 emit_split_vector(ctx, startpgm->definitions[i].getTemp(),
9142 startpgm->definitions[i].regClass().size());
9143 }
9144 }
9145 }
9146
9147 void handle_bc_optimize(isel_context *ctx)
9148 {
9149 /* needed when SPI_PS_IN_CONTROL.BC_OPTIMIZE_DISABLE is set to 0 */
9150 Builder bld(ctx->program, ctx->block);
9151 uint32_t spi_ps_input_ena = ctx->program->config->spi_ps_input_ena;
9152 bool uses_center = G_0286CC_PERSP_CENTER_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTER_ENA(spi_ps_input_ena);
9153 bool uses_centroid = G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena);
9154 ctx->persp_centroid = get_arg(ctx, ctx->args->ac.persp_centroid);
9155 ctx->linear_centroid = get_arg(ctx, ctx->args->ac.linear_centroid);
9156 if (uses_center && uses_centroid) {
9157 Temp sel = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)),
9158 get_arg(ctx, ctx->args->ac.prim_mask), Operand(0u));
9159
9160 if (G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena)) {
9161 Temp new_coord[2];
9162 for (unsigned i = 0; i < 2; i++) {
9163 Temp persp_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_centroid), i, v1);
9164 Temp persp_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_center), i, v1);
9165 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
9166 persp_centroid, persp_center, sel);
9167 }
9168 ctx->persp_centroid = bld.tmp(v2);
9169 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->persp_centroid),
9170 Operand(new_coord[0]), Operand(new_coord[1]));
9171 emit_split_vector(ctx, ctx->persp_centroid, 2);
9172 }
9173
9174 if (G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena)) {
9175 Temp new_coord[2];
9176 for (unsigned i = 0; i < 2; i++) {
9177 Temp linear_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_centroid), i, v1);
9178 Temp linear_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_center), i, v1);
9179 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
9180 linear_centroid, linear_center, sel);
9181 }
9182 ctx->linear_centroid = bld.tmp(v2);
9183 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->linear_centroid),
9184 Operand(new_coord[0]), Operand(new_coord[1]));
9185 emit_split_vector(ctx, ctx->linear_centroid, 2);
9186 }
9187 }
9188 }
9189
9190 void setup_fp_mode(isel_context *ctx, nir_shader *shader)
9191 {
9192 Program *program = ctx->program;
9193
9194 unsigned float_controls = shader->info.float_controls_execution_mode;
9195
9196 program->next_fp_mode.preserve_signed_zero_inf_nan32 =
9197 float_controls & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32;
9198 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 =
9199 float_controls & (FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16 |
9200 FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64);
9201
9202 program->next_fp_mode.must_flush_denorms32 =
9203 float_controls & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32;
9204 program->next_fp_mode.must_flush_denorms16_64 =
9205 float_controls & (FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 |
9206 FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64);
9207
9208 program->next_fp_mode.care_about_round32 =
9209 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32);
9210
9211 program->next_fp_mode.care_about_round16_64 =
9212 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64 |
9213 FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
9214
9215 /* default to preserving fp16 and fp64 denorms, since it's free */
9216 if (program->next_fp_mode.must_flush_denorms16_64)
9217 program->next_fp_mode.denorm16_64 = 0;
9218 else
9219 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
9220
9221 /* preserving fp32 denorms is expensive, so only do it if asked */
9222 if (float_controls & FLOAT_CONTROLS_DENORM_PRESERVE_FP32)
9223 program->next_fp_mode.denorm32 = fp_denorm_keep;
9224 else
9225 program->next_fp_mode.denorm32 = 0;
9226
9227 if (float_controls & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32)
9228 program->next_fp_mode.round32 = fp_round_tz;
9229 else
9230 program->next_fp_mode.round32 = fp_round_ne;
9231
9232 if (float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64))
9233 program->next_fp_mode.round16_64 = fp_round_tz;
9234 else
9235 program->next_fp_mode.round16_64 = fp_round_ne;
9236
9237 ctx->block->fp_mode = program->next_fp_mode;
9238 }
9239
9240 void cleanup_cfg(Program *program)
9241 {
9242 /* create linear_succs/logical_succs */
9243 for (Block& BB : program->blocks) {
9244 for (unsigned idx : BB.linear_preds)
9245 program->blocks[idx].linear_succs.emplace_back(BB.index);
9246 for (unsigned idx : BB.logical_preds)
9247 program->blocks[idx].logical_succs.emplace_back(BB.index);
9248 }
9249 }
9250
9251 void select_program(Program *program,
9252 unsigned shader_count,
9253 struct nir_shader *const *shaders,
9254 ac_shader_config* config,
9255 struct radv_shader_args *args)
9256 {
9257 isel_context ctx = setup_isel_context(program, shader_count, shaders, config, args, false);
9258
9259 for (unsigned i = 0; i < shader_count; i++) {
9260 nir_shader *nir = shaders[i];
9261 init_context(&ctx, nir);
9262
9263 setup_fp_mode(&ctx, nir);
9264
9265 if (!i) {
9266 /* needs to be after init_context() for FS */
9267 Pseudo_instruction *startpgm = add_startpgm(&ctx);
9268 append_logical_start(ctx.block);
9269 split_arguments(&ctx, startpgm);
9270 }
9271
9272 if_context ic;
9273 if (shader_count >= 2) {
9274 Builder bld(ctx.program, ctx.block);
9275 Temp count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(&ctx, args->merged_wave_info), Operand((8u << 16) | (i * 8u)));
9276 Temp thread_id = emit_mbcnt(&ctx, bld.def(v1));
9277 Temp cond = bld.vopc(aco_opcode::v_cmp_gt_u32, bld.hint_vcc(bld.def(bld.lm)), count, thread_id);
9278
9279 begin_divergent_if_then(&ctx, &ic, cond);
9280 }
9281
9282 if (i) {
9283 Builder bld(ctx.program, ctx.block);
9284
9285 bld.barrier(aco_opcode::p_memory_barrier_shared);
9286 bld.sopp(aco_opcode::s_barrier);
9287
9288 if (ctx.stage == vertex_geometry_gs) {
9289 ctx.gs_wave_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1, m0), bld.def(s1, scc), get_arg(&ctx, args->merged_wave_info), Operand((8u << 16) | 16u));
9290 }
9291 } else if (ctx.stage == geometry_gs)
9292 ctx.gs_wave_id = get_arg(&ctx, args->gs_wave_id);
9293
9294 if (ctx.stage == fragment_fs)
9295 handle_bc_optimize(&ctx);
9296
9297 nir_function_impl *func = nir_shader_get_entrypoint(nir);
9298 visit_cf_list(&ctx, &func->body);
9299
9300 if (ctx.program->info->so.num_outputs && ctx.stage == vertex_vs)
9301 emit_streamout(&ctx, 0);
9302
9303 if (ctx.stage == vertex_vs) {
9304 create_vs_exports(&ctx);
9305 } else if (nir->info.stage == MESA_SHADER_GEOMETRY) {
9306 Builder bld(ctx.program, ctx.block);
9307 bld.barrier(aco_opcode::p_memory_barrier_gs_data);
9308 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx.gs_wave_id), -1, sendmsg_gs_done(false, false, 0));
9309 }
9310
9311 if (ctx.stage == fragment_fs)
9312 create_fs_exports(&ctx);
9313
9314 if (shader_count >= 2) {
9315 begin_divergent_if_else(&ctx, &ic);
9316 end_divergent_if(&ctx, &ic);
9317 }
9318
9319 ralloc_free(ctx.divergent_vals);
9320 }
9321
9322 program->config->float_mode = program->blocks[0].fp_mode.val;
9323
9324 append_logical_end(ctx.block);
9325 ctx.block->kind |= block_kind_uniform | block_kind_export_end;
9326 Builder bld(ctx.program, ctx.block);
9327 if (ctx.program->wb_smem_l1_on_end)
9328 bld.smem(aco_opcode::s_dcache_wb, false);
9329 bld.sopp(aco_opcode::s_endpgm);
9330
9331 cleanup_cfg(program);
9332 }
9333
9334 void select_gs_copy_shader(Program *program, struct nir_shader *gs_shader,
9335 ac_shader_config* config,
9336 struct radv_shader_args *args)
9337 {
9338 isel_context ctx = setup_isel_context(program, 1, &gs_shader, config, args, true);
9339
9340 program->next_fp_mode.preserve_signed_zero_inf_nan32 = false;
9341 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 = false;
9342 program->next_fp_mode.must_flush_denorms32 = false;
9343 program->next_fp_mode.must_flush_denorms16_64 = false;
9344 program->next_fp_mode.care_about_round32 = false;
9345 program->next_fp_mode.care_about_round16_64 = false;
9346 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
9347 program->next_fp_mode.denorm32 = 0;
9348 program->next_fp_mode.round32 = fp_round_ne;
9349 program->next_fp_mode.round16_64 = fp_round_ne;
9350 ctx.block->fp_mode = program->next_fp_mode;
9351
9352 add_startpgm(&ctx);
9353 append_logical_start(ctx.block);
9354
9355 Builder bld(ctx.program, ctx.block);
9356
9357 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), program->private_segment_buffer, Operand(RING_GSVS_VS * 16u));
9358
9359 Operand stream_id(0u);
9360 if (args->shader_info->so.num_outputs)
9361 stream_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
9362 get_arg(&ctx, ctx.args->streamout_config), Operand(0x20018u));
9363
9364 Temp vtx_offset = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), get_arg(&ctx, ctx.args->ac.vertex_id));
9365
9366 std::stack<Block> endif_blocks;
9367
9368 for (unsigned stream = 0; stream < 4; stream++) {
9369 if (stream_id.isConstant() && stream != stream_id.constantValue())
9370 continue;
9371
9372 unsigned num_components = args->shader_info->gs.num_stream_output_components[stream];
9373 if (stream > 0 && (!num_components || !args->shader_info->so.num_outputs))
9374 continue;
9375
9376 memset(ctx.outputs.mask, 0, sizeof(ctx.outputs.mask));
9377
9378 unsigned BB_if_idx = ctx.block->index;
9379 Block BB_endif = Block();
9380 if (!stream_id.isConstant()) {
9381 /* begin IF */
9382 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), stream_id, Operand(stream));
9383 append_logical_end(ctx.block);
9384 ctx.block->kind |= block_kind_uniform;
9385 bld.branch(aco_opcode::p_cbranch_z, cond);
9386
9387 BB_endif.kind |= ctx.block->kind & block_kind_top_level;
9388
9389 ctx.block = ctx.program->create_and_insert_block();
9390 add_edge(BB_if_idx, ctx.block);
9391 bld.reset(ctx.block);
9392 append_logical_start(ctx.block);
9393 }
9394
9395 unsigned offset = 0;
9396 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
9397 if (args->shader_info->gs.output_streams[i] != stream)
9398 continue;
9399
9400 unsigned output_usage_mask = args->shader_info->gs.output_usage_mask[i];
9401 unsigned length = util_last_bit(output_usage_mask);
9402 for (unsigned j = 0; j < length; ++j) {
9403 if (!(output_usage_mask & (1 << j)))
9404 continue;
9405
9406 unsigned const_offset = offset * args->shader_info->gs.vertices_out * 16 * 4;
9407 Temp voffset = vtx_offset;
9408 if (const_offset >= 4096u) {
9409 voffset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), voffset);
9410 const_offset %= 4096u;
9411 }
9412
9413 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dword, Format::MUBUF, 3, 1)};
9414 mubuf->definitions[0] = bld.def(v1);
9415 mubuf->operands[0] = Operand(gsvs_ring);
9416 mubuf->operands[1] = Operand(voffset);
9417 mubuf->operands[2] = Operand(0u);
9418 mubuf->offen = true;
9419 mubuf->offset = const_offset;
9420 mubuf->glc = true;
9421 mubuf->slc = true;
9422 mubuf->dlc = args->options->chip_class >= GFX10;
9423 mubuf->barrier = barrier_none;
9424 mubuf->can_reorder = true;
9425
9426 ctx.outputs.mask[i] |= 1 << j;
9427 ctx.outputs.outputs[i][j] = mubuf->definitions[0].getTemp();
9428
9429 bld.insert(std::move(mubuf));
9430
9431 offset++;
9432 }
9433 }
9434
9435 if (args->shader_info->so.num_outputs) {
9436 emit_streamout(&ctx, stream);
9437 bld.reset(ctx.block);
9438 }
9439
9440 if (stream == 0) {
9441 create_vs_exports(&ctx);
9442 ctx.block->kind |= block_kind_export_end;
9443 }
9444
9445 if (!stream_id.isConstant()) {
9446 append_logical_end(ctx.block);
9447
9448 /* branch from then block to endif block */
9449 bld.branch(aco_opcode::p_branch);
9450 add_edge(ctx.block->index, &BB_endif);
9451 ctx.block->kind |= block_kind_uniform;
9452
9453 /* emit else block */
9454 ctx.block = ctx.program->create_and_insert_block();
9455 add_edge(BB_if_idx, ctx.block);
9456 bld.reset(ctx.block);
9457 append_logical_start(ctx.block);
9458
9459 endif_blocks.push(std::move(BB_endif));
9460 }
9461 }
9462
9463 while (!endif_blocks.empty()) {
9464 Block BB_endif = std::move(endif_blocks.top());
9465 endif_blocks.pop();
9466
9467 Block *BB_else = ctx.block;
9468
9469 append_logical_end(BB_else);
9470 /* branch from else block to endif block */
9471 bld.branch(aco_opcode::p_branch);
9472 add_edge(BB_else->index, &BB_endif);
9473 BB_else->kind |= block_kind_uniform;
9474
9475 /** emit endif merge block */
9476 ctx.block = program->insert_block(std::move(BB_endif));
9477 bld.reset(ctx.block);
9478 append_logical_start(ctx.block);
9479 }
9480
9481 program->config->float_mode = program->blocks[0].fp_mode.val;
9482
9483 append_logical_end(ctx.block);
9484 ctx.block->kind |= block_kind_uniform;
9485 bld.sopp(aco_opcode::s_endpgm);
9486
9487 cleanup_cfg(program);
9488 }
9489 }