aco: Store TES outputs when TES runs on the HW VS stage.
[mesa.git] / src / amd / compiler / aco_instruction_selection.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 * Copyright © 2018 Google
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <algorithm>
27 #include <array>
28 #include <stack>
29 #include <map>
30
31 #include "ac_shader_util.h"
32 #include "aco_ir.h"
33 #include "aco_builder.h"
34 #include "aco_interface.h"
35 #include "aco_instruction_selection_setup.cpp"
36 #include "util/fast_idiv_by_const.h"
37
38 namespace aco {
39 namespace {
40
41 class loop_info_RAII {
42 isel_context* ctx;
43 unsigned header_idx_old;
44 Block* exit_old;
45 bool divergent_cont_old;
46 bool divergent_branch_old;
47 bool divergent_if_old;
48
49 public:
50 loop_info_RAII(isel_context* ctx, unsigned loop_header_idx, Block* loop_exit)
51 : ctx(ctx),
52 header_idx_old(ctx->cf_info.parent_loop.header_idx), exit_old(ctx->cf_info.parent_loop.exit),
53 divergent_cont_old(ctx->cf_info.parent_loop.has_divergent_continue),
54 divergent_branch_old(ctx->cf_info.parent_loop.has_divergent_branch),
55 divergent_if_old(ctx->cf_info.parent_if.is_divergent)
56 {
57 ctx->cf_info.parent_loop.header_idx = loop_header_idx;
58 ctx->cf_info.parent_loop.exit = loop_exit;
59 ctx->cf_info.parent_loop.has_divergent_continue = false;
60 ctx->cf_info.parent_loop.has_divergent_branch = false;
61 ctx->cf_info.parent_if.is_divergent = false;
62 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
63 }
64
65 ~loop_info_RAII()
66 {
67 ctx->cf_info.parent_loop.header_idx = header_idx_old;
68 ctx->cf_info.parent_loop.exit = exit_old;
69 ctx->cf_info.parent_loop.has_divergent_continue = divergent_cont_old;
70 ctx->cf_info.parent_loop.has_divergent_branch = divergent_branch_old;
71 ctx->cf_info.parent_if.is_divergent = divergent_if_old;
72 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth - 1;
73 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent)
74 ctx->cf_info.exec_potentially_empty_discard = false;
75 }
76 };
77
78 struct if_context {
79 Temp cond;
80
81 bool divergent_old;
82 bool exec_potentially_empty_discard_old;
83 bool exec_potentially_empty_break_old;
84 uint16_t exec_potentially_empty_break_depth_old;
85
86 unsigned BB_if_idx;
87 unsigned invert_idx;
88 bool then_branch_divergent;
89 Block BB_invert;
90 Block BB_endif;
91 };
92
93 static void visit_cf_list(struct isel_context *ctx,
94 struct exec_list *list);
95
96 static void add_logical_edge(unsigned pred_idx, Block *succ)
97 {
98 succ->logical_preds.emplace_back(pred_idx);
99 }
100
101
102 static void add_linear_edge(unsigned pred_idx, Block *succ)
103 {
104 succ->linear_preds.emplace_back(pred_idx);
105 }
106
107 static void add_edge(unsigned pred_idx, Block *succ)
108 {
109 add_logical_edge(pred_idx, succ);
110 add_linear_edge(pred_idx, succ);
111 }
112
113 static void append_logical_start(Block *b)
114 {
115 Builder(NULL, b).pseudo(aco_opcode::p_logical_start);
116 }
117
118 static void append_logical_end(Block *b)
119 {
120 Builder(NULL, b).pseudo(aco_opcode::p_logical_end);
121 }
122
123 Temp get_ssa_temp(struct isel_context *ctx, nir_ssa_def *def)
124 {
125 assert(ctx->allocated[def->index].id());
126 return ctx->allocated[def->index];
127 }
128
129 Temp emit_mbcnt(isel_context *ctx, Definition dst,
130 Operand mask_lo = Operand((uint32_t) -1), Operand mask_hi = Operand((uint32_t) -1))
131 {
132 Builder bld(ctx->program, ctx->block);
133 Definition lo_def = ctx->program->wave_size == 32 ? dst : bld.def(v1);
134 Temp thread_id_lo = bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, lo_def, mask_lo, Operand(0u));
135
136 if (ctx->program->wave_size == 32) {
137 return thread_id_lo;
138 } else {
139 Temp thread_id_hi = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32, dst, mask_hi, thread_id_lo);
140 return thread_id_hi;
141 }
142 }
143
144 Temp emit_wqm(isel_context *ctx, Temp src, Temp dst=Temp(0, s1), bool program_needs_wqm = false)
145 {
146 Builder bld(ctx->program, ctx->block);
147
148 if (!dst.id())
149 dst = bld.tmp(src.regClass());
150
151 assert(src.size() == dst.size());
152
153 if (ctx->stage != fragment_fs) {
154 if (!dst.id())
155 return src;
156
157 bld.copy(Definition(dst), src);
158 return dst;
159 }
160
161 bld.pseudo(aco_opcode::p_wqm, Definition(dst), src);
162 ctx->program->needs_wqm |= program_needs_wqm;
163 return dst;
164 }
165
166 static Temp emit_bpermute(isel_context *ctx, Builder &bld, Temp index, Temp data)
167 {
168 if (index.regClass() == s1)
169 return bld.readlane(bld.def(s1), data, index);
170
171 Temp index_x4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), index);
172
173 /* Currently not implemented on GFX6-7 */
174 assert(ctx->options->chip_class >= GFX8);
175
176 if (ctx->options->chip_class <= GFX9 || ctx->program->wave_size == 32) {
177 return bld.ds(aco_opcode::ds_bpermute_b32, bld.def(v1), index_x4, data);
178 }
179
180 /* GFX10, wave64 mode:
181 * The bpermute instruction is limited to half-wave operation, which means that it can't
182 * properly support subgroup shuffle like older generations (or wave32 mode), so we
183 * emulate it here.
184 */
185 if (!ctx->has_gfx10_wave64_bpermute) {
186 ctx->has_gfx10_wave64_bpermute = true;
187 ctx->program->config->num_shared_vgprs = 8; /* Shared VGPRs are allocated in groups of 8 */
188 ctx->program->vgpr_limit -= 4; /* We allocate 8 shared VGPRs, so we'll have 4 fewer normal VGPRs */
189 }
190
191 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
192 Temp lane_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), lane_id);
193 Temp index_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), index);
194 Temp cmp = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm, vcc), lane_is_hi, index_is_hi);
195
196 return bld.reduction(aco_opcode::p_wave64_bpermute, bld.def(v1), bld.def(s2), bld.def(s1, scc),
197 bld.vcc(cmp), Operand(v2.as_linear()), index_x4, data, gfx10_wave64_bpermute);
198 }
199
200 Temp as_vgpr(isel_context *ctx, Temp val)
201 {
202 if (val.type() == RegType::sgpr) {
203 Builder bld(ctx->program, ctx->block);
204 return bld.copy(bld.def(RegType::vgpr, val.size()), val);
205 }
206 assert(val.type() == RegType::vgpr);
207 return val;
208 }
209
210 //assumes a != 0xffffffff
211 void emit_v_div_u32(isel_context *ctx, Temp dst, Temp a, uint32_t b)
212 {
213 assert(b != 0);
214 Builder bld(ctx->program, ctx->block);
215
216 if (util_is_power_of_two_or_zero(b)) {
217 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)util_logbase2(b)), a);
218 return;
219 }
220
221 util_fast_udiv_info info = util_compute_fast_udiv_info(b, 32, 32);
222
223 assert(info.multiplier <= 0xffffffff);
224
225 bool pre_shift = info.pre_shift != 0;
226 bool increment = info.increment != 0;
227 bool multiply = true;
228 bool post_shift = info.post_shift != 0;
229
230 if (!pre_shift && !increment && !multiply && !post_shift) {
231 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), a);
232 return;
233 }
234
235 Temp pre_shift_dst = a;
236 if (pre_shift) {
237 pre_shift_dst = (increment || multiply || post_shift) ? bld.tmp(v1) : dst;
238 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(pre_shift_dst), Operand((uint32_t)info.pre_shift), a);
239 }
240
241 Temp increment_dst = pre_shift_dst;
242 if (increment) {
243 increment_dst = (post_shift || multiply) ? bld.tmp(v1) : dst;
244 bld.vadd32(Definition(increment_dst), Operand((uint32_t) info.increment), pre_shift_dst);
245 }
246
247 Temp multiply_dst = increment_dst;
248 if (multiply) {
249 multiply_dst = post_shift ? bld.tmp(v1) : dst;
250 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(multiply_dst), increment_dst,
251 bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand((uint32_t)info.multiplier)));
252 }
253
254 if (post_shift) {
255 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)info.post_shift), multiply_dst);
256 }
257 }
258
259 void emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, Temp dst)
260 {
261 Builder bld(ctx->program, ctx->block);
262 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(idx));
263 }
264
265
266 Temp emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, RegClass dst_rc)
267 {
268 /* no need to extract the whole vector */
269 if (src.regClass() == dst_rc) {
270 assert(idx == 0);
271 return src;
272 }
273 assert(src.size() > idx);
274 Builder bld(ctx->program, ctx->block);
275 auto it = ctx->allocated_vec.find(src.id());
276 /* the size check needs to be early because elements other than 0 may be garbage */
277 if (it != ctx->allocated_vec.end() && it->second[0].size() == dst_rc.size()) {
278 if (it->second[idx].regClass() == dst_rc) {
279 return it->second[idx];
280 } else {
281 assert(dst_rc.size() == it->second[idx].regClass().size());
282 assert(dst_rc.type() == RegType::vgpr && it->second[idx].type() == RegType::sgpr);
283 return bld.copy(bld.def(dst_rc), it->second[idx]);
284 }
285 }
286
287 if (src.size() == dst_rc.size()) {
288 assert(idx == 0);
289 return bld.copy(bld.def(dst_rc), src);
290 } else {
291 Temp dst = bld.tmp(dst_rc);
292 emit_extract_vector(ctx, src, idx, dst);
293 return dst;
294 }
295 }
296
297 void emit_split_vector(isel_context* ctx, Temp vec_src, unsigned num_components)
298 {
299 if (num_components == 1)
300 return;
301 if (ctx->allocated_vec.find(vec_src.id()) != ctx->allocated_vec.end())
302 return;
303 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_components)};
304 split->operands[0] = Operand(vec_src);
305 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
306 for (unsigned i = 0; i < num_components; i++) {
307 elems[i] = {ctx->program->allocateId(), RegClass(vec_src.type(), vec_src.size() / num_components)};
308 split->definitions[i] = Definition(elems[i]);
309 }
310 ctx->block->instructions.emplace_back(std::move(split));
311 ctx->allocated_vec.emplace(vec_src.id(), elems);
312 }
313
314 /* This vector expansion uses a mask to determine which elements in the new vector
315 * come from the original vector. The other elements are undefined. */
316 void expand_vector(isel_context* ctx, Temp vec_src, Temp dst, unsigned num_components, unsigned mask)
317 {
318 emit_split_vector(ctx, vec_src, util_bitcount(mask));
319
320 if (vec_src == dst)
321 return;
322
323 Builder bld(ctx->program, ctx->block);
324 if (num_components == 1) {
325 if (dst.type() == RegType::sgpr)
326 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec_src);
327 else
328 bld.copy(Definition(dst), vec_src);
329 return;
330 }
331
332 unsigned component_size = dst.size() / num_components;
333 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
334
335 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
336 vec->definitions[0] = Definition(dst);
337 unsigned k = 0;
338 for (unsigned i = 0; i < num_components; i++) {
339 if (mask & (1 << i)) {
340 Temp src = emit_extract_vector(ctx, vec_src, k++, RegClass(vec_src.type(), component_size));
341 if (dst.type() == RegType::sgpr)
342 src = bld.as_uniform(src);
343 vec->operands[i] = Operand(src);
344 } else {
345 vec->operands[i] = Operand(0u);
346 }
347 elems[i] = vec->operands[i].getTemp();
348 }
349 ctx->block->instructions.emplace_back(std::move(vec));
350 ctx->allocated_vec.emplace(dst.id(), elems);
351 }
352
353 Temp bool_to_vector_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s2))
354 {
355 Builder bld(ctx->program, ctx->block);
356 if (!dst.id())
357 dst = bld.tmp(bld.lm);
358
359 assert(val.regClass() == s1);
360 assert(dst.regClass() == bld.lm);
361
362 return bld.sop2(Builder::s_cselect, Definition(dst), Operand((uint32_t) -1), Operand(0u), bld.scc(val));
363 }
364
365 Temp bool_to_scalar_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s1))
366 {
367 Builder bld(ctx->program, ctx->block);
368 if (!dst.id())
369 dst = bld.tmp(s1);
370
371 assert(val.regClass() == bld.lm);
372 assert(dst.regClass() == s1);
373
374 /* if we're currently in WQM mode, ensure that the source is also computed in WQM */
375 Temp tmp = bld.tmp(s1);
376 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.scc(Definition(tmp)), val, Operand(exec, bld.lm));
377 return emit_wqm(ctx, tmp, dst);
378 }
379
380 Temp get_alu_src(struct isel_context *ctx, nir_alu_src src, unsigned size=1)
381 {
382 if (src.src.ssa->num_components == 1 && src.swizzle[0] == 0 && size == 1)
383 return get_ssa_temp(ctx, src.src.ssa);
384
385 if (src.src.ssa->num_components == size) {
386 bool identity_swizzle = true;
387 for (unsigned i = 0; identity_swizzle && i < size; i++) {
388 if (src.swizzle[i] != i)
389 identity_swizzle = false;
390 }
391 if (identity_swizzle)
392 return get_ssa_temp(ctx, src.src.ssa);
393 }
394
395 Temp vec = get_ssa_temp(ctx, src.src.ssa);
396 unsigned elem_size = vec.size() / src.src.ssa->num_components;
397 assert(elem_size > 0); /* TODO: 8 and 16-bit vectors not supported */
398 assert(vec.size() % elem_size == 0);
399
400 RegClass elem_rc = RegClass(vec.type(), elem_size);
401 if (size == 1) {
402 return emit_extract_vector(ctx, vec, src.swizzle[0], elem_rc);
403 } else {
404 assert(size <= 4);
405 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
406 aco_ptr<Pseudo_instruction> vec_instr{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
407 for (unsigned i = 0; i < size; ++i) {
408 elems[i] = emit_extract_vector(ctx, vec, src.swizzle[i], elem_rc);
409 vec_instr->operands[i] = Operand{elems[i]};
410 }
411 Temp dst{ctx->program->allocateId(), RegClass(vec.type(), elem_size * size)};
412 vec_instr->definitions[0] = Definition(dst);
413 ctx->block->instructions.emplace_back(std::move(vec_instr));
414 ctx->allocated_vec.emplace(dst.id(), elems);
415 return dst;
416 }
417 }
418
419 Temp convert_pointer_to_64_bit(isel_context *ctx, Temp ptr)
420 {
421 if (ptr.size() == 2)
422 return ptr;
423 Builder bld(ctx->program, ctx->block);
424 if (ptr.type() == RegType::vgpr)
425 ptr = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), ptr);
426 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s2),
427 ptr, Operand((unsigned)ctx->options->address32_hi));
428 }
429
430 void emit_sop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst, bool writes_scc)
431 {
432 aco_ptr<SOP2_instruction> sop2{create_instruction<SOP2_instruction>(op, Format::SOP2, 2, writes_scc ? 2 : 1)};
433 sop2->operands[0] = Operand(get_alu_src(ctx, instr->src[0]));
434 sop2->operands[1] = Operand(get_alu_src(ctx, instr->src[1]));
435 sop2->definitions[0] = Definition(dst);
436 if (writes_scc)
437 sop2->definitions[1] = Definition(ctx->program->allocateId(), scc, s1);
438 ctx->block->instructions.emplace_back(std::move(sop2));
439 }
440
441 void emit_vop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
442 bool commutative, bool swap_srcs=false, bool flush_denorms = false)
443 {
444 Builder bld(ctx->program, ctx->block);
445 Temp src0 = get_alu_src(ctx, instr->src[swap_srcs ? 1 : 0]);
446 Temp src1 = get_alu_src(ctx, instr->src[swap_srcs ? 0 : 1]);
447 if (src1.type() == RegType::sgpr) {
448 if (commutative && src0.type() == RegType::vgpr) {
449 Temp t = src0;
450 src0 = src1;
451 src1 = t;
452 } else if (src0.type() == RegType::vgpr &&
453 op != aco_opcode::v_madmk_f32 &&
454 op != aco_opcode::v_madak_f32 &&
455 op != aco_opcode::v_madmk_f16 &&
456 op != aco_opcode::v_madak_f16) {
457 /* If the instruction is not commutative, we emit a VOP3A instruction */
458 bld.vop2_e64(op, Definition(dst), src0, src1);
459 return;
460 } else {
461 src1 = bld.copy(bld.def(RegType::vgpr, src1.size()), src1); //TODO: as_vgpr
462 }
463 }
464
465 if (flush_denorms && ctx->program->chip_class < GFX9) {
466 assert(dst.size() == 1);
467 Temp tmp = bld.vop2(op, bld.def(v1), src0, src1);
468 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
469 } else {
470 bld.vop2(op, Definition(dst), src0, src1);
471 }
472 }
473
474 void emit_vop3a_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
475 bool flush_denorms = false)
476 {
477 Temp src0 = get_alu_src(ctx, instr->src[0]);
478 Temp src1 = get_alu_src(ctx, instr->src[1]);
479 Temp src2 = get_alu_src(ctx, instr->src[2]);
480
481 /* ensure that the instruction has at most 1 sgpr operand
482 * The optimizer will inline constants for us */
483 if (src0.type() == RegType::sgpr && src1.type() == RegType::sgpr)
484 src0 = as_vgpr(ctx, src0);
485 if (src1.type() == RegType::sgpr && src2.type() == RegType::sgpr)
486 src1 = as_vgpr(ctx, src1);
487 if (src2.type() == RegType::sgpr && src0.type() == RegType::sgpr)
488 src2 = as_vgpr(ctx, src2);
489
490 Builder bld(ctx->program, ctx->block);
491 if (flush_denorms && ctx->program->chip_class < GFX9) {
492 assert(dst.size() == 1);
493 Temp tmp = bld.vop3(op, Definition(dst), src0, src1, src2);
494 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
495 } else {
496 bld.vop3(op, Definition(dst), src0, src1, src2);
497 }
498 }
499
500 void emit_vop1_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
501 {
502 Builder bld(ctx->program, ctx->block);
503 bld.vop1(op, Definition(dst), get_alu_src(ctx, instr->src[0]));
504 }
505
506 void emit_vopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
507 {
508 Temp src0 = get_alu_src(ctx, instr->src[0]);
509 Temp src1 = get_alu_src(ctx, instr->src[1]);
510 assert(src0.size() == src1.size());
511
512 aco_ptr<Instruction> vopc;
513 if (src1.type() == RegType::sgpr) {
514 if (src0.type() == RegType::vgpr) {
515 /* to swap the operands, we might also have to change the opcode */
516 switch (op) {
517 case aco_opcode::v_cmp_lt_f32:
518 op = aco_opcode::v_cmp_gt_f32;
519 break;
520 case aco_opcode::v_cmp_ge_f32:
521 op = aco_opcode::v_cmp_le_f32;
522 break;
523 case aco_opcode::v_cmp_lt_i32:
524 op = aco_opcode::v_cmp_gt_i32;
525 break;
526 case aco_opcode::v_cmp_ge_i32:
527 op = aco_opcode::v_cmp_le_i32;
528 break;
529 case aco_opcode::v_cmp_lt_u32:
530 op = aco_opcode::v_cmp_gt_u32;
531 break;
532 case aco_opcode::v_cmp_ge_u32:
533 op = aco_opcode::v_cmp_le_u32;
534 break;
535 case aco_opcode::v_cmp_lt_f64:
536 op = aco_opcode::v_cmp_gt_f64;
537 break;
538 case aco_opcode::v_cmp_ge_f64:
539 op = aco_opcode::v_cmp_le_f64;
540 break;
541 case aco_opcode::v_cmp_lt_i64:
542 op = aco_opcode::v_cmp_gt_i64;
543 break;
544 case aco_opcode::v_cmp_ge_i64:
545 op = aco_opcode::v_cmp_le_i64;
546 break;
547 case aco_opcode::v_cmp_lt_u64:
548 op = aco_opcode::v_cmp_gt_u64;
549 break;
550 case aco_opcode::v_cmp_ge_u64:
551 op = aco_opcode::v_cmp_le_u64;
552 break;
553 default: /* eq and ne are commutative */
554 break;
555 }
556 Temp t = src0;
557 src0 = src1;
558 src1 = t;
559 } else {
560 src1 = as_vgpr(ctx, src1);
561 }
562 }
563
564 Builder bld(ctx->program, ctx->block);
565 bld.vopc(op, bld.hint_vcc(Definition(dst)), src0, src1);
566 }
567
568 void emit_sopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
569 {
570 Temp src0 = get_alu_src(ctx, instr->src[0]);
571 Temp src1 = get_alu_src(ctx, instr->src[1]);
572 Builder bld(ctx->program, ctx->block);
573
574 assert(dst.regClass() == bld.lm);
575 assert(src0.type() == RegType::sgpr);
576 assert(src1.type() == RegType::sgpr);
577 assert(src0.regClass() == src1.regClass());
578
579 /* Emit the SALU comparison instruction */
580 Temp cmp = bld.sopc(op, bld.scc(bld.def(s1)), src0, src1);
581 /* Turn the result into a per-lane bool */
582 bool_to_vector_condition(ctx, cmp, dst);
583 }
584
585 void emit_comparison(isel_context *ctx, nir_alu_instr *instr, Temp dst,
586 aco_opcode v32_op, aco_opcode v64_op, aco_opcode s32_op = aco_opcode::num_opcodes, aco_opcode s64_op = aco_opcode::num_opcodes)
587 {
588 aco_opcode s_op = instr->src[0].src.ssa->bit_size == 64 ? s64_op : s32_op;
589 aco_opcode v_op = instr->src[0].src.ssa->bit_size == 64 ? v64_op : v32_op;
590 bool divergent_vals = ctx->divergent_vals[instr->dest.dest.ssa.index];
591 bool use_valu = s_op == aco_opcode::num_opcodes ||
592 divergent_vals ||
593 ctx->allocated[instr->src[0].src.ssa->index].type() == RegType::vgpr ||
594 ctx->allocated[instr->src[1].src.ssa->index].type() == RegType::vgpr;
595 aco_opcode op = use_valu ? v_op : s_op;
596 assert(op != aco_opcode::num_opcodes);
597 assert(dst.regClass() == ctx->program->lane_mask);
598
599 if (use_valu)
600 emit_vopc_instruction(ctx, instr, op, dst);
601 else
602 emit_sopc_instruction(ctx, instr, op, dst);
603 }
604
605 void emit_boolean_logic(isel_context *ctx, nir_alu_instr *instr, Builder::WaveSpecificOpcode op, Temp dst)
606 {
607 Builder bld(ctx->program, ctx->block);
608 Temp src0 = get_alu_src(ctx, instr->src[0]);
609 Temp src1 = get_alu_src(ctx, instr->src[1]);
610
611 assert(dst.regClass() == bld.lm);
612 assert(src0.regClass() == bld.lm);
613 assert(src1.regClass() == bld.lm);
614
615 bld.sop2(op, Definition(dst), bld.def(s1, scc), src0, src1);
616 }
617
618 void emit_bcsel(isel_context *ctx, nir_alu_instr *instr, Temp dst)
619 {
620 Builder bld(ctx->program, ctx->block);
621 Temp cond = get_alu_src(ctx, instr->src[0]);
622 Temp then = get_alu_src(ctx, instr->src[1]);
623 Temp els = get_alu_src(ctx, instr->src[2]);
624
625 assert(cond.regClass() == bld.lm);
626
627 if (dst.type() == RegType::vgpr) {
628 aco_ptr<Instruction> bcsel;
629 if (dst.size() == 1) {
630 then = as_vgpr(ctx, then);
631 els = as_vgpr(ctx, els);
632
633 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), els, then, cond);
634 } else if (dst.size() == 2) {
635 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
636 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), then);
637 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
638 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), els);
639
640 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, cond);
641 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, cond);
642
643 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
644 } else {
645 fprintf(stderr, "Unimplemented NIR instr bit size: ");
646 nir_print_instr(&instr->instr, stderr);
647 fprintf(stderr, "\n");
648 }
649 return;
650 }
651
652 if (instr->dest.dest.ssa.bit_size == 1) {
653 assert(dst.regClass() == bld.lm);
654 assert(then.regClass() == bld.lm);
655 assert(els.regClass() == bld.lm);
656 }
657
658 if (!ctx->divergent_vals[instr->src[0].src.ssa->index]) { /* uniform condition and values in sgpr */
659 if (dst.regClass() == s1 || dst.regClass() == s2) {
660 assert((then.regClass() == s1 || then.regClass() == s2) && els.regClass() == then.regClass());
661 assert(dst.size() == then.size());
662 aco_opcode op = dst.regClass() == s1 ? aco_opcode::s_cselect_b32 : aco_opcode::s_cselect_b64;
663 bld.sop2(op, Definition(dst), then, els, bld.scc(bool_to_scalar_condition(ctx, cond)));
664 } else {
665 fprintf(stderr, "Unimplemented uniform bcsel bit size: ");
666 nir_print_instr(&instr->instr, stderr);
667 fprintf(stderr, "\n");
668 }
669 return;
670 }
671
672 /* divergent boolean bcsel
673 * this implements bcsel on bools: dst = s0 ? s1 : s2
674 * are going to be: dst = (s0 & s1) | (~s0 & s2) */
675 assert(instr->dest.dest.ssa.bit_size == 1);
676
677 if (cond.id() != then.id())
678 then = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), cond, then);
679
680 if (cond.id() == els.id())
681 bld.sop1(Builder::s_mov, Definition(dst), then);
682 else
683 bld.sop2(Builder::s_or, Definition(dst), bld.def(s1, scc), then,
684 bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), els, cond));
685 }
686
687 void emit_scaled_op(isel_context *ctx, Builder& bld, Definition dst, Temp val,
688 aco_opcode op, uint32_t undo)
689 {
690 /* multiply by 16777216 to handle denormals */
691 Temp is_denormal = bld.vopc(aco_opcode::v_cmp_class_f32, bld.hint_vcc(bld.def(bld.lm)),
692 as_vgpr(ctx, val), bld.copy(bld.def(v1), Operand((1u << 7) | (1u << 4))));
693 Temp scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x4b800000u), val);
694 scaled = bld.vop1(op, bld.def(v1), scaled);
695 scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(undo), scaled);
696
697 Temp not_scaled = bld.vop1(op, bld.def(v1), val);
698
699 bld.vop2(aco_opcode::v_cndmask_b32, dst, not_scaled, scaled, is_denormal);
700 }
701
702 void emit_rcp(isel_context *ctx, Builder& bld, Definition dst, Temp val)
703 {
704 if (ctx->block->fp_mode.denorm32 == 0) {
705 bld.vop1(aco_opcode::v_rcp_f32, dst, val);
706 return;
707 }
708
709 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rcp_f32, 0x4b800000u);
710 }
711
712 void emit_rsq(isel_context *ctx, Builder& bld, Definition dst, Temp val)
713 {
714 if (ctx->block->fp_mode.denorm32 == 0) {
715 bld.vop1(aco_opcode::v_rsq_f32, dst, val);
716 return;
717 }
718
719 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rsq_f32, 0x45800000u);
720 }
721
722 void emit_sqrt(isel_context *ctx, Builder& bld, Definition dst, Temp val)
723 {
724 if (ctx->block->fp_mode.denorm32 == 0) {
725 bld.vop1(aco_opcode::v_sqrt_f32, dst, val);
726 return;
727 }
728
729 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_sqrt_f32, 0x39800000u);
730 }
731
732 void emit_log2(isel_context *ctx, Builder& bld, Definition dst, Temp val)
733 {
734 if (ctx->block->fp_mode.denorm32 == 0) {
735 bld.vop1(aco_opcode::v_log_f32, dst, val);
736 return;
737 }
738
739 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_log_f32, 0xc1c00000u);
740 }
741
742 Temp emit_trunc_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
743 {
744 if (ctx->options->chip_class >= GFX7)
745 return bld.vop1(aco_opcode::v_trunc_f64, Definition(dst), val);
746
747 /* GFX6 doesn't support V_TRUNC_F64, lower it. */
748 /* TODO: create more efficient code! */
749 if (val.type() == RegType::sgpr)
750 val = as_vgpr(ctx, val);
751
752 /* Split the input value. */
753 Temp val_lo = bld.tmp(v1), val_hi = bld.tmp(v1);
754 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
755
756 /* Extract the exponent and compute the unbiased value. */
757 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f64, bld.def(v1), val);
758
759 /* Extract the fractional part. */
760 Temp fract_mask = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x000fffffu));
761 fract_mask = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), fract_mask, exponent);
762
763 Temp fract_mask_lo = bld.tmp(v1), fract_mask_hi = bld.tmp(v1);
764 bld.pseudo(aco_opcode::p_split_vector, Definition(fract_mask_lo), Definition(fract_mask_hi), fract_mask);
765
766 Temp fract_lo = bld.tmp(v1), fract_hi = bld.tmp(v1);
767 Temp tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_lo);
768 fract_lo = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_lo, tmp);
769 tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_hi);
770 fract_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_hi, tmp);
771
772 /* Get the sign bit. */
773 Temp sign = bld.vop2(aco_opcode::v_ashr_i32, bld.def(v1), Operand(31u), val_hi);
774
775 /* Decide the operation to apply depending on the unbiased exponent. */
776 Temp exp_lt0 = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)), exponent, Operand(0u));
777 Temp dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_lo, bld.copy(bld.def(v1), Operand(0u)), exp_lt0);
778 Temp dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_hi, sign, exp_lt0);
779 Temp exp_gt51 = bld.vopc_e64(aco_opcode::v_cmp_gt_i32, bld.def(s2), exponent, Operand(51u));
780 dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_lo, val_lo, exp_gt51);
781 dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_hi, val_hi, exp_gt51);
782
783 return bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst_lo, dst_hi);
784 }
785
786 Temp emit_floor_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
787 {
788 if (ctx->options->chip_class >= GFX7)
789 return bld.vop1(aco_opcode::v_floor_f64, Definition(dst), val);
790
791 /* GFX6 doesn't support V_FLOOR_F64, lower it. */
792 Temp src0 = as_vgpr(ctx, val);
793
794 Temp mask = bld.copy(bld.def(s1), Operand(3u)); /* isnan */
795 Temp min_val = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(-1u), Operand(0x3fefffffu));
796
797 Temp isnan = bld.vopc_e64(aco_opcode::v_cmp_class_f64, bld.hint_vcc(bld.def(bld.lm)), src0, mask);
798 Temp fract = bld.vop1(aco_opcode::v_fract_f64, bld.def(v2), src0);
799 Temp min = bld.vop3(aco_opcode::v_min_f64, bld.def(v2), fract, min_val);
800
801 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
802 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), src0);
803 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
804 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), min);
805
806 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, isnan);
807 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, isnan);
808
809 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), dst0, dst1);
810
811 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src0, v);
812 static_cast<VOP3A_instruction*>(add)->neg[1] = true;
813
814 return add->definitions[0].getTemp();
815 }
816
817 void visit_alu_instr(isel_context *ctx, nir_alu_instr *instr)
818 {
819 if (!instr->dest.dest.is_ssa) {
820 fprintf(stderr, "nir alu dst not in ssa: ");
821 nir_print_instr(&instr->instr, stderr);
822 fprintf(stderr, "\n");
823 abort();
824 }
825 Builder bld(ctx->program, ctx->block);
826 Temp dst = get_ssa_temp(ctx, &instr->dest.dest.ssa);
827 switch(instr->op) {
828 case nir_op_vec2:
829 case nir_op_vec3:
830 case nir_op_vec4: {
831 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
832 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.dest.ssa.num_components, 1)};
833 for (unsigned i = 0; i < instr->dest.dest.ssa.num_components; ++i) {
834 elems[i] = get_alu_src(ctx, instr->src[i]);
835 vec->operands[i] = Operand{elems[i]};
836 }
837 vec->definitions[0] = Definition(dst);
838 ctx->block->instructions.emplace_back(std::move(vec));
839 ctx->allocated_vec.emplace(dst.id(), elems);
840 break;
841 }
842 case nir_op_mov: {
843 Temp src = get_alu_src(ctx, instr->src[0]);
844 aco_ptr<Instruction> mov;
845 if (dst.type() == RegType::sgpr) {
846 if (src.type() == RegType::vgpr)
847 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
848 else if (src.regClass() == s1)
849 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
850 else if (src.regClass() == s2)
851 bld.sop1(aco_opcode::s_mov_b64, Definition(dst), src);
852 else
853 unreachable("wrong src register class for nir_op_imov");
854 } else if (dst.regClass() == v1) {
855 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), src);
856 } else if (dst.regClass() == v2) {
857 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
858 } else {
859 nir_print_instr(&instr->instr, stderr);
860 unreachable("Should have been lowered to scalar.");
861 }
862 break;
863 }
864 case nir_op_inot: {
865 Temp src = get_alu_src(ctx, instr->src[0]);
866 if (instr->dest.dest.ssa.bit_size == 1) {
867 assert(src.regClass() == bld.lm);
868 assert(dst.regClass() == bld.lm);
869 /* Don't use s_andn2 here, this allows the optimizer to make a better decision */
870 Temp tmp = bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), src);
871 bld.sop2(Builder::s_and, Definition(dst), bld.def(s1, scc), tmp, Operand(exec, bld.lm));
872 } else if (dst.regClass() == v1) {
873 emit_vop1_instruction(ctx, instr, aco_opcode::v_not_b32, dst);
874 } else if (dst.type() == RegType::sgpr) {
875 aco_opcode opcode = dst.size() == 1 ? aco_opcode::s_not_b32 : aco_opcode::s_not_b64;
876 bld.sop1(opcode, Definition(dst), bld.def(s1, scc), src);
877 } else {
878 fprintf(stderr, "Unimplemented NIR instr bit size: ");
879 nir_print_instr(&instr->instr, stderr);
880 fprintf(stderr, "\n");
881 }
882 break;
883 }
884 case nir_op_ineg: {
885 Temp src = get_alu_src(ctx, instr->src[0]);
886 if (dst.regClass() == v1) {
887 bld.vsub32(Definition(dst), Operand(0u), Operand(src));
888 } else if (dst.regClass() == s1) {
889 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand((uint32_t) -1), src);
890 } else if (dst.size() == 2) {
891 Temp src0 = bld.tmp(dst.type(), 1);
892 Temp src1 = bld.tmp(dst.type(), 1);
893 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
894
895 if (dst.regClass() == s2) {
896 Temp carry = bld.tmp(s1);
897 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), Operand(0u), src0);
898 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), src1, carry);
899 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
900 } else {
901 Temp lower = bld.tmp(v1);
902 Temp borrow = bld.vsub32(Definition(lower), Operand(0u), src0, true).def(1).getTemp();
903 Temp upper = bld.vsub32(bld.def(v1), Operand(0u), src1, false, borrow);
904 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
905 }
906 } else {
907 fprintf(stderr, "Unimplemented NIR instr bit size: ");
908 nir_print_instr(&instr->instr, stderr);
909 fprintf(stderr, "\n");
910 }
911 break;
912 }
913 case nir_op_iabs: {
914 if (dst.regClass() == s1) {
915 bld.sop1(aco_opcode::s_abs_i32, Definition(dst), bld.def(s1, scc), get_alu_src(ctx, instr->src[0]));
916 } else if (dst.regClass() == v1) {
917 Temp src = get_alu_src(ctx, instr->src[0]);
918 bld.vop2(aco_opcode::v_max_i32, Definition(dst), src, bld.vsub32(bld.def(v1), Operand(0u), src));
919 } else {
920 fprintf(stderr, "Unimplemented NIR instr bit size: ");
921 nir_print_instr(&instr->instr, stderr);
922 fprintf(stderr, "\n");
923 }
924 break;
925 }
926 case nir_op_isign: {
927 Temp src = get_alu_src(ctx, instr->src[0]);
928 if (dst.regClass() == s1) {
929 Temp tmp = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
930 Temp gtz = bld.sopc(aco_opcode::s_cmp_gt_i32, bld.def(s1, scc), src, Operand(0u));
931 bld.sop2(aco_opcode::s_add_i32, Definition(dst), bld.def(s1, scc), gtz, tmp);
932 } else if (dst.regClass() == s2) {
933 Temp neg = bld.sop2(aco_opcode::s_ashr_i64, bld.def(s2), bld.def(s1, scc), src, Operand(63u));
934 Temp neqz;
935 if (ctx->program->chip_class >= GFX8)
936 neqz = bld.sopc(aco_opcode::s_cmp_lg_u64, bld.def(s1, scc), src, Operand(0u));
937 else
938 neqz = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), src, Operand(0u)).def(1).getTemp();
939 /* SCC gets zero-extended to 64 bit */
940 bld.sop2(aco_opcode::s_or_b64, Definition(dst), bld.def(s1, scc), neg, bld.scc(neqz));
941 } else if (dst.regClass() == v1) {
942 Temp tmp = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
943 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
944 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(1u), tmp, gtz);
945 } else if (dst.regClass() == v2) {
946 Temp upper = emit_extract_vector(ctx, src, 1, v1);
947 Temp neg = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), upper);
948 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
949 Temp lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(1u), neg, gtz);
950 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), neg, gtz);
951 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
952 } else {
953 fprintf(stderr, "Unimplemented NIR instr bit size: ");
954 nir_print_instr(&instr->instr, stderr);
955 fprintf(stderr, "\n");
956 }
957 break;
958 }
959 case nir_op_imax: {
960 if (dst.regClass() == v1) {
961 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_i32, dst, true);
962 } else if (dst.regClass() == s1) {
963 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_i32, dst, true);
964 } else {
965 fprintf(stderr, "Unimplemented NIR instr bit size: ");
966 nir_print_instr(&instr->instr, stderr);
967 fprintf(stderr, "\n");
968 }
969 break;
970 }
971 case nir_op_umax: {
972 if (dst.regClass() == v1) {
973 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_u32, dst, true);
974 } else if (dst.regClass() == s1) {
975 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_u32, dst, true);
976 } else {
977 fprintf(stderr, "Unimplemented NIR instr bit size: ");
978 nir_print_instr(&instr->instr, stderr);
979 fprintf(stderr, "\n");
980 }
981 break;
982 }
983 case nir_op_imin: {
984 if (dst.regClass() == v1) {
985 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_i32, dst, true);
986 } else if (dst.regClass() == s1) {
987 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_i32, dst, true);
988 } else {
989 fprintf(stderr, "Unimplemented NIR instr bit size: ");
990 nir_print_instr(&instr->instr, stderr);
991 fprintf(stderr, "\n");
992 }
993 break;
994 }
995 case nir_op_umin: {
996 if (dst.regClass() == v1) {
997 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_u32, dst, true);
998 } else if (dst.regClass() == s1) {
999 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_u32, dst, true);
1000 } else {
1001 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1002 nir_print_instr(&instr->instr, stderr);
1003 fprintf(stderr, "\n");
1004 }
1005 break;
1006 }
1007 case nir_op_ior: {
1008 if (instr->dest.dest.ssa.bit_size == 1) {
1009 emit_boolean_logic(ctx, instr, Builder::s_or, dst);
1010 } else if (dst.regClass() == v1) {
1011 emit_vop2_instruction(ctx, instr, aco_opcode::v_or_b32, dst, true);
1012 } else if (dst.regClass() == s1) {
1013 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b32, dst, true);
1014 } else if (dst.regClass() == s2) {
1015 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b64, dst, true);
1016 } else {
1017 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1018 nir_print_instr(&instr->instr, stderr);
1019 fprintf(stderr, "\n");
1020 }
1021 break;
1022 }
1023 case nir_op_iand: {
1024 if (instr->dest.dest.ssa.bit_size == 1) {
1025 emit_boolean_logic(ctx, instr, Builder::s_and, dst);
1026 } else if (dst.regClass() == v1) {
1027 emit_vop2_instruction(ctx, instr, aco_opcode::v_and_b32, dst, true);
1028 } else if (dst.regClass() == s1) {
1029 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b32, dst, true);
1030 } else if (dst.regClass() == s2) {
1031 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b64, dst, true);
1032 } else {
1033 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1034 nir_print_instr(&instr->instr, stderr);
1035 fprintf(stderr, "\n");
1036 }
1037 break;
1038 }
1039 case nir_op_ixor: {
1040 if (instr->dest.dest.ssa.bit_size == 1) {
1041 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
1042 } else if (dst.regClass() == v1) {
1043 emit_vop2_instruction(ctx, instr, aco_opcode::v_xor_b32, dst, true);
1044 } else if (dst.regClass() == s1) {
1045 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b32, dst, true);
1046 } else if (dst.regClass() == s2) {
1047 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b64, dst, true);
1048 } else {
1049 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1050 nir_print_instr(&instr->instr, stderr);
1051 fprintf(stderr, "\n");
1052 }
1053 break;
1054 }
1055 case nir_op_ushr: {
1056 if (dst.regClass() == v1) {
1057 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshrrev_b32, dst, false, true);
1058 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1059 bld.vop3(aco_opcode::v_lshrrev_b64, Definition(dst),
1060 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1061 } else if (dst.regClass() == v2) {
1062 bld.vop3(aco_opcode::v_lshr_b64, Definition(dst),
1063 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1064 } else if (dst.regClass() == s2) {
1065 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b64, dst, true);
1066 } else if (dst.regClass() == s1) {
1067 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b32, dst, true);
1068 } else {
1069 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1070 nir_print_instr(&instr->instr, stderr);
1071 fprintf(stderr, "\n");
1072 }
1073 break;
1074 }
1075 case nir_op_ishl: {
1076 if (dst.regClass() == v1) {
1077 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshlrev_b32, dst, false, true);
1078 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1079 bld.vop3(aco_opcode::v_lshlrev_b64, Definition(dst),
1080 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1081 } else if (dst.regClass() == v2) {
1082 bld.vop3(aco_opcode::v_lshl_b64, Definition(dst),
1083 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1084 } else if (dst.regClass() == s1) {
1085 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b32, dst, true);
1086 } else if (dst.regClass() == s2) {
1087 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b64, dst, true);
1088 } else {
1089 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1090 nir_print_instr(&instr->instr, stderr);
1091 fprintf(stderr, "\n");
1092 }
1093 break;
1094 }
1095 case nir_op_ishr: {
1096 if (dst.regClass() == v1) {
1097 emit_vop2_instruction(ctx, instr, aco_opcode::v_ashrrev_i32, dst, false, true);
1098 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1099 bld.vop3(aco_opcode::v_ashrrev_i64, Definition(dst),
1100 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1101 } else if (dst.regClass() == v2) {
1102 bld.vop3(aco_opcode::v_ashr_i64, Definition(dst),
1103 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1104 } else if (dst.regClass() == s1) {
1105 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i32, dst, true);
1106 } else if (dst.regClass() == s2) {
1107 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i64, dst, true);
1108 } else {
1109 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1110 nir_print_instr(&instr->instr, stderr);
1111 fprintf(stderr, "\n");
1112 }
1113 break;
1114 }
1115 case nir_op_find_lsb: {
1116 Temp src = get_alu_src(ctx, instr->src[0]);
1117 if (src.regClass() == s1) {
1118 bld.sop1(aco_opcode::s_ff1_i32_b32, Definition(dst), src);
1119 } else if (src.regClass() == v1) {
1120 emit_vop1_instruction(ctx, instr, aco_opcode::v_ffbl_b32, dst);
1121 } else if (src.regClass() == s2) {
1122 bld.sop1(aco_opcode::s_ff1_i32_b64, Definition(dst), src);
1123 } else {
1124 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1125 nir_print_instr(&instr->instr, stderr);
1126 fprintf(stderr, "\n");
1127 }
1128 break;
1129 }
1130 case nir_op_ufind_msb:
1131 case nir_op_ifind_msb: {
1132 Temp src = get_alu_src(ctx, instr->src[0]);
1133 if (src.regClass() == s1 || src.regClass() == s2) {
1134 aco_opcode op = src.regClass() == s2 ?
1135 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b64 : aco_opcode::s_flbit_i32_i64) :
1136 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b32 : aco_opcode::s_flbit_i32);
1137 Temp msb_rev = bld.sop1(op, bld.def(s1), src);
1138
1139 Builder::Result sub = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc),
1140 Operand(src.size() * 32u - 1u), msb_rev);
1141 Temp msb = sub.def(0).getTemp();
1142 Temp carry = sub.def(1).getTemp();
1143
1144 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t)-1), msb, bld.scc(carry));
1145 } else if (src.regClass() == v1) {
1146 aco_opcode op = instr->op == nir_op_ufind_msb ? aco_opcode::v_ffbh_u32 : aco_opcode::v_ffbh_i32;
1147 Temp msb_rev = bld.tmp(v1);
1148 emit_vop1_instruction(ctx, instr, op, msb_rev);
1149 Temp msb = bld.tmp(v1);
1150 Temp carry = bld.vsub32(Definition(msb), Operand(31u), Operand(msb_rev), true).def(1).getTemp();
1151 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), msb, Operand((uint32_t)-1), carry);
1152 } else {
1153 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1154 nir_print_instr(&instr->instr, stderr);
1155 fprintf(stderr, "\n");
1156 }
1157 break;
1158 }
1159 case nir_op_bitfield_reverse: {
1160 if (dst.regClass() == s1) {
1161 bld.sop1(aco_opcode::s_brev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1162 } else if (dst.regClass() == v1) {
1163 bld.vop1(aco_opcode::v_bfrev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1164 } else {
1165 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1166 nir_print_instr(&instr->instr, stderr);
1167 fprintf(stderr, "\n");
1168 }
1169 break;
1170 }
1171 case nir_op_iadd: {
1172 if (dst.regClass() == s1) {
1173 emit_sop2_instruction(ctx, instr, aco_opcode::s_add_u32, dst, true);
1174 break;
1175 }
1176
1177 Temp src0 = get_alu_src(ctx, instr->src[0]);
1178 Temp src1 = get_alu_src(ctx, instr->src[1]);
1179 if (dst.regClass() == v1) {
1180 bld.vadd32(Definition(dst), Operand(src0), Operand(src1));
1181 break;
1182 }
1183
1184 assert(src0.size() == 2 && src1.size() == 2);
1185 Temp src00 = bld.tmp(src0.type(), 1);
1186 Temp src01 = bld.tmp(dst.type(), 1);
1187 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1188 Temp src10 = bld.tmp(src1.type(), 1);
1189 Temp src11 = bld.tmp(dst.type(), 1);
1190 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1191
1192 if (dst.regClass() == s2) {
1193 Temp carry = bld.tmp(s1);
1194 Temp dst0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1195 Temp dst1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), src01, src11, bld.scc(carry));
1196 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1197 } else if (dst.regClass() == v2) {
1198 Temp dst0 = bld.tmp(v1);
1199 Temp carry = bld.vadd32(Definition(dst0), src00, src10, true).def(1).getTemp();
1200 Temp dst1 = bld.vadd32(bld.def(v1), src01, src11, false, carry);
1201 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1202 } else {
1203 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1204 nir_print_instr(&instr->instr, stderr);
1205 fprintf(stderr, "\n");
1206 }
1207 break;
1208 }
1209 case nir_op_uadd_sat: {
1210 Temp src0 = get_alu_src(ctx, instr->src[0]);
1211 Temp src1 = get_alu_src(ctx, instr->src[1]);
1212 if (dst.regClass() == s1) {
1213 Temp tmp = bld.tmp(s1), carry = bld.tmp(s1);
1214 bld.sop2(aco_opcode::s_add_u32, Definition(tmp), bld.scc(Definition(carry)),
1215 src0, src1);
1216 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t) -1), tmp, bld.scc(carry));
1217 } else if (dst.regClass() == v1) {
1218 if (ctx->options->chip_class >= GFX9) {
1219 aco_ptr<VOP3A_instruction> add{create_instruction<VOP3A_instruction>(aco_opcode::v_add_u32, asVOP3(Format::VOP2), 2, 1)};
1220 add->operands[0] = Operand(src0);
1221 add->operands[1] = Operand(src1);
1222 add->definitions[0] = Definition(dst);
1223 add->clamp = 1;
1224 ctx->block->instructions.emplace_back(std::move(add));
1225 } else {
1226 if (src1.regClass() != v1)
1227 std::swap(src0, src1);
1228 assert(src1.regClass() == v1);
1229 Temp tmp = bld.tmp(v1);
1230 Temp carry = bld.vadd32(Definition(tmp), src0, src1, true).def(1).getTemp();
1231 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), tmp, Operand((uint32_t) -1), carry);
1232 }
1233 } else {
1234 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1235 nir_print_instr(&instr->instr, stderr);
1236 fprintf(stderr, "\n");
1237 }
1238 break;
1239 }
1240 case nir_op_uadd_carry: {
1241 Temp src0 = get_alu_src(ctx, instr->src[0]);
1242 Temp src1 = get_alu_src(ctx, instr->src[1]);
1243 if (dst.regClass() == s1) {
1244 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1245 break;
1246 }
1247 if (dst.regClass() == v1) {
1248 Temp carry = bld.vadd32(bld.def(v1), src0, src1, true).def(1).getTemp();
1249 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), carry);
1250 break;
1251 }
1252
1253 Temp src00 = bld.tmp(src0.type(), 1);
1254 Temp src01 = bld.tmp(dst.type(), 1);
1255 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1256 Temp src10 = bld.tmp(src1.type(), 1);
1257 Temp src11 = bld.tmp(dst.type(), 1);
1258 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1259 if (dst.regClass() == s2) {
1260 Temp carry = bld.tmp(s1);
1261 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1262 carry = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(carry)).def(1).getTemp();
1263 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1264 } else if (dst.regClass() == v2) {
1265 Temp carry = bld.vadd32(bld.def(v1), src00, src10, true).def(1).getTemp();
1266 carry = bld.vadd32(bld.def(v1), src01, src11, true, carry).def(1).getTemp();
1267 carry = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), carry);
1268 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1269 } else {
1270 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1271 nir_print_instr(&instr->instr, stderr);
1272 fprintf(stderr, "\n");
1273 }
1274 break;
1275 }
1276 case nir_op_isub: {
1277 if (dst.regClass() == s1) {
1278 emit_sop2_instruction(ctx, instr, aco_opcode::s_sub_i32, dst, true);
1279 break;
1280 }
1281
1282 Temp src0 = get_alu_src(ctx, instr->src[0]);
1283 Temp src1 = get_alu_src(ctx, instr->src[1]);
1284 if (dst.regClass() == v1) {
1285 bld.vsub32(Definition(dst), src0, src1);
1286 break;
1287 }
1288
1289 Temp src00 = bld.tmp(src0.type(), 1);
1290 Temp src01 = bld.tmp(dst.type(), 1);
1291 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1292 Temp src10 = bld.tmp(src1.type(), 1);
1293 Temp src11 = bld.tmp(dst.type(), 1);
1294 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1295 if (dst.regClass() == s2) {
1296 Temp carry = bld.tmp(s1);
1297 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1298 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), src01, src11, carry);
1299 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1300 } else if (dst.regClass() == v2) {
1301 Temp lower = bld.tmp(v1);
1302 Temp borrow = bld.vsub32(Definition(lower), src00, src10, true).def(1).getTemp();
1303 Temp upper = bld.vsub32(bld.def(v1), src01, src11, false, borrow);
1304 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1305 } else {
1306 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1307 nir_print_instr(&instr->instr, stderr);
1308 fprintf(stderr, "\n");
1309 }
1310 break;
1311 }
1312 case nir_op_usub_borrow: {
1313 Temp src0 = get_alu_src(ctx, instr->src[0]);
1314 Temp src1 = get_alu_src(ctx, instr->src[1]);
1315 if (dst.regClass() == s1) {
1316 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1317 break;
1318 } else if (dst.regClass() == v1) {
1319 Temp borrow = bld.vsub32(bld.def(v1), src0, src1, true).def(1).getTemp();
1320 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), borrow);
1321 break;
1322 }
1323
1324 Temp src00 = bld.tmp(src0.type(), 1);
1325 Temp src01 = bld.tmp(dst.type(), 1);
1326 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1327 Temp src10 = bld.tmp(src1.type(), 1);
1328 Temp src11 = bld.tmp(dst.type(), 1);
1329 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1330 if (dst.regClass() == s2) {
1331 Temp borrow = bld.tmp(s1);
1332 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), src00, src10);
1333 borrow = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(borrow)).def(1).getTemp();
1334 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1335 } else if (dst.regClass() == v2) {
1336 Temp borrow = bld.vsub32(bld.def(v1), src00, src10, true).def(1).getTemp();
1337 borrow = bld.vsub32(bld.def(v1), src01, src11, true, Operand(borrow)).def(1).getTemp();
1338 borrow = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), borrow);
1339 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1340 } else {
1341 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1342 nir_print_instr(&instr->instr, stderr);
1343 fprintf(stderr, "\n");
1344 }
1345 break;
1346 }
1347 case nir_op_imul: {
1348 if (dst.regClass() == v1) {
1349 bld.vop3(aco_opcode::v_mul_lo_u32, Definition(dst),
1350 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1351 } else if (dst.regClass() == s1) {
1352 emit_sop2_instruction(ctx, instr, aco_opcode::s_mul_i32, dst, false);
1353 } else {
1354 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1355 nir_print_instr(&instr->instr, stderr);
1356 fprintf(stderr, "\n");
1357 }
1358 break;
1359 }
1360 case nir_op_umul_high: {
1361 if (dst.regClass() == v1) {
1362 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1363 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1364 bld.sop2(aco_opcode::s_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1365 } else if (dst.regClass() == s1) {
1366 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1367 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1368 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1369 } else {
1370 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1371 nir_print_instr(&instr->instr, stderr);
1372 fprintf(stderr, "\n");
1373 }
1374 break;
1375 }
1376 case nir_op_imul_high: {
1377 if (dst.regClass() == v1) {
1378 bld.vop3(aco_opcode::v_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1379 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1380 bld.sop2(aco_opcode::s_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1381 } else if (dst.regClass() == s1) {
1382 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1383 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1384 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1385 } else {
1386 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1387 nir_print_instr(&instr->instr, stderr);
1388 fprintf(stderr, "\n");
1389 }
1390 break;
1391 }
1392 case nir_op_fmul: {
1393 if (dst.size() == 1) {
1394 emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f32, dst, true);
1395 } else if (dst.size() == 2) {
1396 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), get_alu_src(ctx, instr->src[0]),
1397 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1398 } else {
1399 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1400 nir_print_instr(&instr->instr, stderr);
1401 fprintf(stderr, "\n");
1402 }
1403 break;
1404 }
1405 case nir_op_fadd: {
1406 if (dst.size() == 1) {
1407 emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f32, dst, true);
1408 } else if (dst.size() == 2) {
1409 bld.vop3(aco_opcode::v_add_f64, Definition(dst), get_alu_src(ctx, instr->src[0]),
1410 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1411 } else {
1412 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1413 nir_print_instr(&instr->instr, stderr);
1414 fprintf(stderr, "\n");
1415 }
1416 break;
1417 }
1418 case nir_op_fsub: {
1419 Temp src0 = get_alu_src(ctx, instr->src[0]);
1420 Temp src1 = get_alu_src(ctx, instr->src[1]);
1421 if (dst.size() == 1) {
1422 if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
1423 emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f32, dst, false);
1424 else
1425 emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f32, dst, true);
1426 } else if (dst.size() == 2) {
1427 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst),
1428 get_alu_src(ctx, instr->src[0]),
1429 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1430 VOP3A_instruction* sub = static_cast<VOP3A_instruction*>(add);
1431 sub->neg[1] = true;
1432 } else {
1433 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1434 nir_print_instr(&instr->instr, stderr);
1435 fprintf(stderr, "\n");
1436 }
1437 break;
1438 }
1439 case nir_op_fmax: {
1440 if (dst.size() == 1) {
1441 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1442 } else if (dst.size() == 2) {
1443 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1444 Temp tmp = bld.vop3(aco_opcode::v_max_f64, bld.def(v2),
1445 get_alu_src(ctx, instr->src[0]),
1446 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1447 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1448 } else {
1449 bld.vop3(aco_opcode::v_max_f64, Definition(dst),
1450 get_alu_src(ctx, instr->src[0]),
1451 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1452 }
1453 } else {
1454 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1455 nir_print_instr(&instr->instr, stderr);
1456 fprintf(stderr, "\n");
1457 }
1458 break;
1459 }
1460 case nir_op_fmin: {
1461 if (dst.size() == 1) {
1462 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1463 } else if (dst.size() == 2) {
1464 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1465 Temp tmp = bld.vop3(aco_opcode::v_min_f64, bld.def(v2),
1466 get_alu_src(ctx, instr->src[0]),
1467 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1468 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1469 } else {
1470 bld.vop3(aco_opcode::v_min_f64, Definition(dst),
1471 get_alu_src(ctx, instr->src[0]),
1472 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1473 }
1474 } else {
1475 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1476 nir_print_instr(&instr->instr, stderr);
1477 fprintf(stderr, "\n");
1478 }
1479 break;
1480 }
1481 case nir_op_fmax3: {
1482 if (dst.size() == 1) {
1483 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1484 } else {
1485 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1486 nir_print_instr(&instr->instr, stderr);
1487 fprintf(stderr, "\n");
1488 }
1489 break;
1490 }
1491 case nir_op_fmin3: {
1492 if (dst.size() == 1) {
1493 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1494 } else {
1495 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1496 nir_print_instr(&instr->instr, stderr);
1497 fprintf(stderr, "\n");
1498 }
1499 break;
1500 }
1501 case nir_op_fmed3: {
1502 if (dst.size() == 1) {
1503 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1504 } else {
1505 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1506 nir_print_instr(&instr->instr, stderr);
1507 fprintf(stderr, "\n");
1508 }
1509 break;
1510 }
1511 case nir_op_umax3: {
1512 if (dst.size() == 1) {
1513 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_u32, dst);
1514 } else {
1515 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1516 nir_print_instr(&instr->instr, stderr);
1517 fprintf(stderr, "\n");
1518 }
1519 break;
1520 }
1521 case nir_op_umin3: {
1522 if (dst.size() == 1) {
1523 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_u32, dst);
1524 } else {
1525 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1526 nir_print_instr(&instr->instr, stderr);
1527 fprintf(stderr, "\n");
1528 }
1529 break;
1530 }
1531 case nir_op_umed3: {
1532 if (dst.size() == 1) {
1533 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_u32, dst);
1534 } else {
1535 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1536 nir_print_instr(&instr->instr, stderr);
1537 fprintf(stderr, "\n");
1538 }
1539 break;
1540 }
1541 case nir_op_imax3: {
1542 if (dst.size() == 1) {
1543 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_i32, dst);
1544 } else {
1545 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1546 nir_print_instr(&instr->instr, stderr);
1547 fprintf(stderr, "\n");
1548 }
1549 break;
1550 }
1551 case nir_op_imin3: {
1552 if (dst.size() == 1) {
1553 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_i32, dst);
1554 } else {
1555 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1556 nir_print_instr(&instr->instr, stderr);
1557 fprintf(stderr, "\n");
1558 }
1559 break;
1560 }
1561 case nir_op_imed3: {
1562 if (dst.size() == 1) {
1563 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_i32, dst);
1564 } else {
1565 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1566 nir_print_instr(&instr->instr, stderr);
1567 fprintf(stderr, "\n");
1568 }
1569 break;
1570 }
1571 case nir_op_cube_face_coord: {
1572 Temp in = get_alu_src(ctx, instr->src[0], 3);
1573 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1574 emit_extract_vector(ctx, in, 1, v1),
1575 emit_extract_vector(ctx, in, 2, v1) };
1576 Temp ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), src[0], src[1], src[2]);
1577 ma = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), ma);
1578 Temp sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), src[0], src[1], src[2]);
1579 Temp tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), src[0], src[1], src[2]);
1580 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, ma, Operand(0x3f000000u/*0.5*/));
1581 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, ma, Operand(0x3f000000u/*0.5*/));
1582 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), sc, tc);
1583 break;
1584 }
1585 case nir_op_cube_face_index: {
1586 Temp in = get_alu_src(ctx, instr->src[0], 3);
1587 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1588 emit_extract_vector(ctx, in, 1, v1),
1589 emit_extract_vector(ctx, in, 2, v1) };
1590 bld.vop3(aco_opcode::v_cubeid_f32, Definition(dst), src[0], src[1], src[2]);
1591 break;
1592 }
1593 case nir_op_bcsel: {
1594 emit_bcsel(ctx, instr, dst);
1595 break;
1596 }
1597 case nir_op_frsq: {
1598 if (dst.size() == 1) {
1599 emit_rsq(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1600 } else if (dst.size() == 2) {
1601 emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f64, dst);
1602 } else {
1603 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1604 nir_print_instr(&instr->instr, stderr);
1605 fprintf(stderr, "\n");
1606 }
1607 break;
1608 }
1609 case nir_op_fneg: {
1610 Temp src = get_alu_src(ctx, instr->src[0]);
1611 if (dst.size() == 1) {
1612 if (ctx->block->fp_mode.must_flush_denorms32)
1613 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1614 bld.vop2(aco_opcode::v_xor_b32, Definition(dst), Operand(0x80000000u), as_vgpr(ctx, src));
1615 } else if (dst.size() == 2) {
1616 if (ctx->block->fp_mode.must_flush_denorms16_64)
1617 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1618 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1619 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1620 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), Operand(0x80000000u), upper);
1621 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1622 } else {
1623 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1624 nir_print_instr(&instr->instr, stderr);
1625 fprintf(stderr, "\n");
1626 }
1627 break;
1628 }
1629 case nir_op_fabs: {
1630 Temp src = get_alu_src(ctx, instr->src[0]);
1631 if (dst.size() == 1) {
1632 if (ctx->block->fp_mode.must_flush_denorms32)
1633 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1634 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0x7FFFFFFFu), as_vgpr(ctx, src));
1635 } else if (dst.size() == 2) {
1636 if (ctx->block->fp_mode.must_flush_denorms16_64)
1637 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1638 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1639 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1640 upper = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7FFFFFFFu), upper);
1641 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1642 } else {
1643 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1644 nir_print_instr(&instr->instr, stderr);
1645 fprintf(stderr, "\n");
1646 }
1647 break;
1648 }
1649 case nir_op_fsat: {
1650 Temp src = get_alu_src(ctx, instr->src[0]);
1651 if (dst.size() == 1) {
1652 bld.vop3(aco_opcode::v_med3_f32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
1653 /* apparently, it is not necessary to flush denorms if this instruction is used with these operands */
1654 // TODO: confirm that this holds under any circumstances
1655 } else if (dst.size() == 2) {
1656 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src, Operand(0u));
1657 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(add);
1658 vop3->clamp = true;
1659 } else {
1660 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1661 nir_print_instr(&instr->instr, stderr);
1662 fprintf(stderr, "\n");
1663 }
1664 break;
1665 }
1666 case nir_op_flog2: {
1667 if (dst.size() == 1) {
1668 emit_log2(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1669 } else {
1670 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1671 nir_print_instr(&instr->instr, stderr);
1672 fprintf(stderr, "\n");
1673 }
1674 break;
1675 }
1676 case nir_op_frcp: {
1677 if (dst.size() == 1) {
1678 emit_rcp(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1679 } else if (dst.size() == 2) {
1680 emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f64, dst);
1681 } else {
1682 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1683 nir_print_instr(&instr->instr, stderr);
1684 fprintf(stderr, "\n");
1685 }
1686 break;
1687 }
1688 case nir_op_fexp2: {
1689 if (dst.size() == 1) {
1690 emit_vop1_instruction(ctx, instr, aco_opcode::v_exp_f32, dst);
1691 } else {
1692 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1693 nir_print_instr(&instr->instr, stderr);
1694 fprintf(stderr, "\n");
1695 }
1696 break;
1697 }
1698 case nir_op_fsqrt: {
1699 if (dst.size() == 1) {
1700 emit_sqrt(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1701 } else if (dst.size() == 2) {
1702 emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f64, dst);
1703 } else {
1704 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1705 nir_print_instr(&instr->instr, stderr);
1706 fprintf(stderr, "\n");
1707 }
1708 break;
1709 }
1710 case nir_op_ffract: {
1711 if (dst.size() == 1) {
1712 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f32, dst);
1713 } else if (dst.size() == 2) {
1714 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f64, dst);
1715 } else {
1716 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1717 nir_print_instr(&instr->instr, stderr);
1718 fprintf(stderr, "\n");
1719 }
1720 break;
1721 }
1722 case nir_op_ffloor: {
1723 if (dst.size() == 1) {
1724 emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f32, dst);
1725 } else if (dst.size() == 2) {
1726 emit_floor_f64(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1727 } else {
1728 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1729 nir_print_instr(&instr->instr, stderr);
1730 fprintf(stderr, "\n");
1731 }
1732 break;
1733 }
1734 case nir_op_fceil: {
1735 if (dst.size() == 1) {
1736 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f32, dst);
1737 } else if (dst.size() == 2) {
1738 if (ctx->options->chip_class >= GFX7) {
1739 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f64, dst);
1740 } else {
1741 /* GFX6 doesn't support V_CEIL_F64, lower it. */
1742 Temp src0 = get_alu_src(ctx, instr->src[0]);
1743
1744 /* trunc = trunc(src0)
1745 * if (src0 > 0.0 && src0 != trunc)
1746 * trunc += 1.0
1747 */
1748 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src0);
1749 Temp tmp0 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.def(bld.lm), src0, Operand(0u));
1750 Temp tmp1 = bld.vopc(aco_opcode::v_cmp_lg_f64, bld.hint_vcc(bld.def(bld.lm)), src0, trunc);
1751 Temp cond = bld.sop2(aco_opcode::s_and_b64, bld.hint_vcc(bld.def(s2)), bld.def(s1, scc), tmp0, tmp1);
1752 Temp add = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), bld.copy(bld.def(v1), Operand(0u)), bld.copy(bld.def(v1), Operand(0x3ff00000u)), cond);
1753 add = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), bld.copy(bld.def(v1), Operand(0u)), add);
1754 bld.vop3(aco_opcode::v_add_f64, Definition(dst), trunc, add);
1755 }
1756 } else {
1757 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1758 nir_print_instr(&instr->instr, stderr);
1759 fprintf(stderr, "\n");
1760 }
1761 break;
1762 }
1763 case nir_op_ftrunc: {
1764 if (dst.size() == 1) {
1765 emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f32, dst);
1766 } else if (dst.size() == 2) {
1767 emit_trunc_f64(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1768 } else {
1769 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1770 nir_print_instr(&instr->instr, stderr);
1771 fprintf(stderr, "\n");
1772 }
1773 break;
1774 }
1775 case nir_op_fround_even: {
1776 if (dst.size() == 1) {
1777 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f32, dst);
1778 } else if (dst.size() == 2) {
1779 if (ctx->options->chip_class >= GFX7) {
1780 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f64, dst);
1781 } else {
1782 /* GFX6 doesn't support V_RNDNE_F64, lower it. */
1783 Temp src0 = get_alu_src(ctx, instr->src[0]);
1784
1785 Temp src0_lo = bld.tmp(v1), src0_hi = bld.tmp(v1);
1786 bld.pseudo(aco_opcode::p_split_vector, Definition(src0_lo), Definition(src0_hi), src0);
1787
1788 Temp bitmask = bld.sop1(aco_opcode::s_brev_b32, bld.def(s1), bld.copy(bld.def(s1), Operand(-2u)));
1789 Temp bfi = bld.vop3(aco_opcode::v_bfi_b32, bld.def(v1), bitmask, bld.copy(bld.def(v1), Operand(0x43300000u)), as_vgpr(ctx, src0_hi));
1790 Temp tmp = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), src0, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
1791 Instruction *sub = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), tmp, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
1792 static_cast<VOP3A_instruction*>(sub)->neg[1] = true;
1793 tmp = sub->definitions[0].getTemp();
1794
1795 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x432fffffu));
1796 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.hint_vcc(bld.def(bld.lm)), src0, v);
1797 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
1798 Temp cond = vop3->definitions[0].getTemp();
1799
1800 Temp tmp_lo = bld.tmp(v1), tmp_hi = bld.tmp(v1);
1801 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp_lo), Definition(tmp_hi), tmp);
1802 Temp dst0 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_lo, as_vgpr(ctx, src0_lo), cond);
1803 Temp dst1 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_hi, as_vgpr(ctx, src0_hi), cond);
1804
1805 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1806 }
1807 } else {
1808 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1809 nir_print_instr(&instr->instr, stderr);
1810 fprintf(stderr, "\n");
1811 }
1812 break;
1813 }
1814 case nir_op_fsin:
1815 case nir_op_fcos: {
1816 Temp src = get_alu_src(ctx, instr->src[0]);
1817 aco_ptr<Instruction> norm;
1818 if (dst.size() == 1) {
1819 Temp half_pi = bld.copy(bld.def(s1), Operand(0x3e22f983u));
1820 Temp tmp = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), half_pi, as_vgpr(ctx, src));
1821
1822 /* before GFX9, v_sin_f32 and v_cos_f32 had a valid input domain of [-256, +256] */
1823 if (ctx->options->chip_class < GFX9)
1824 tmp = bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), tmp);
1825
1826 aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f32 : aco_opcode::v_cos_f32;
1827 bld.vop1(opcode, Definition(dst), tmp);
1828 } else {
1829 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1830 nir_print_instr(&instr->instr, stderr);
1831 fprintf(stderr, "\n");
1832 }
1833 break;
1834 }
1835 case nir_op_ldexp: {
1836 if (dst.size() == 1) {
1837 bld.vop3(aco_opcode::v_ldexp_f32, Definition(dst),
1838 as_vgpr(ctx, get_alu_src(ctx, instr->src[0])),
1839 get_alu_src(ctx, instr->src[1]));
1840 } else if (dst.size() == 2) {
1841 bld.vop3(aco_opcode::v_ldexp_f64, Definition(dst),
1842 as_vgpr(ctx, get_alu_src(ctx, instr->src[0])),
1843 get_alu_src(ctx, instr->src[1]));
1844 } else {
1845 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1846 nir_print_instr(&instr->instr, stderr);
1847 fprintf(stderr, "\n");
1848 }
1849 break;
1850 }
1851 case nir_op_frexp_sig: {
1852 if (dst.size() == 1) {
1853 bld.vop1(aco_opcode::v_frexp_mant_f32, Definition(dst),
1854 get_alu_src(ctx, instr->src[0]));
1855 } else if (dst.size() == 2) {
1856 bld.vop1(aco_opcode::v_frexp_mant_f64, Definition(dst),
1857 get_alu_src(ctx, instr->src[0]));
1858 } else {
1859 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1860 nir_print_instr(&instr->instr, stderr);
1861 fprintf(stderr, "\n");
1862 }
1863 break;
1864 }
1865 case nir_op_frexp_exp: {
1866 if (instr->src[0].src.ssa->bit_size == 32) {
1867 bld.vop1(aco_opcode::v_frexp_exp_i32_f32, Definition(dst),
1868 get_alu_src(ctx, instr->src[0]));
1869 } else if (instr->src[0].src.ssa->bit_size == 64) {
1870 bld.vop1(aco_opcode::v_frexp_exp_i32_f64, Definition(dst),
1871 get_alu_src(ctx, instr->src[0]));
1872 } else {
1873 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1874 nir_print_instr(&instr->instr, stderr);
1875 fprintf(stderr, "\n");
1876 }
1877 break;
1878 }
1879 case nir_op_fsign: {
1880 Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
1881 if (dst.size() == 1) {
1882 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1883 src = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0x3f800000u), src, cond);
1884 cond = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1885 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0xbf800000u), src, cond);
1886 } else if (dst.size() == 2) {
1887 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1888 Temp tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0x3FF00000u));
1889 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, emit_extract_vector(ctx, src, 1, v1), cond);
1890
1891 cond = bld.vopc(aco_opcode::v_cmp_le_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1892 tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0xBFF00000u));
1893 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, upper, cond);
1894
1895 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
1896 } else {
1897 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1898 nir_print_instr(&instr->instr, stderr);
1899 fprintf(stderr, "\n");
1900 }
1901 break;
1902 }
1903 case nir_op_f2f32: {
1904 if (instr->src[0].src.ssa->bit_size == 64) {
1905 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f64, dst);
1906 } else {
1907 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1908 nir_print_instr(&instr->instr, stderr);
1909 fprintf(stderr, "\n");
1910 }
1911 break;
1912 }
1913 case nir_op_f2f64: {
1914 if (instr->src[0].src.ssa->bit_size == 32) {
1915 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_f32, dst);
1916 } else {
1917 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1918 nir_print_instr(&instr->instr, stderr);
1919 fprintf(stderr, "\n");
1920 }
1921 break;
1922 }
1923 case nir_op_i2f32: {
1924 assert(dst.size() == 1);
1925 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_i32, dst);
1926 break;
1927 }
1928 case nir_op_i2f64: {
1929 if (instr->src[0].src.ssa->bit_size == 32) {
1930 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_i32, dst);
1931 } else if (instr->src[0].src.ssa->bit_size == 64) {
1932 Temp src = get_alu_src(ctx, instr->src[0]);
1933 RegClass rc = RegClass(src.type(), 1);
1934 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
1935 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1936 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
1937 upper = bld.vop1(aco_opcode::v_cvt_f64_i32, bld.def(v2), upper);
1938 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
1939 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
1940
1941 } else {
1942 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1943 nir_print_instr(&instr->instr, stderr);
1944 fprintf(stderr, "\n");
1945 }
1946 break;
1947 }
1948 case nir_op_u2f32: {
1949 assert(dst.size() == 1);
1950 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_u32, dst);
1951 break;
1952 }
1953 case nir_op_u2f64: {
1954 if (instr->src[0].src.ssa->bit_size == 32) {
1955 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_u32, dst);
1956 } else if (instr->src[0].src.ssa->bit_size == 64) {
1957 Temp src = get_alu_src(ctx, instr->src[0]);
1958 RegClass rc = RegClass(src.type(), 1);
1959 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
1960 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1961 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
1962 upper = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), upper);
1963 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
1964 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
1965 } else {
1966 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1967 nir_print_instr(&instr->instr, stderr);
1968 fprintf(stderr, "\n");
1969 }
1970 break;
1971 }
1972 case nir_op_f2i32: {
1973 Temp src = get_alu_src(ctx, instr->src[0]);
1974 if (instr->src[0].src.ssa->bit_size == 32) {
1975 if (dst.type() == RegType::vgpr)
1976 bld.vop1(aco_opcode::v_cvt_i32_f32, Definition(dst), src);
1977 else
1978 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
1979 bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), src));
1980
1981 } else if (instr->src[0].src.ssa->bit_size == 64) {
1982 if (dst.type() == RegType::vgpr)
1983 bld.vop1(aco_opcode::v_cvt_i32_f64, Definition(dst), src);
1984 else
1985 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
1986 bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), src));
1987
1988 } else {
1989 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1990 nir_print_instr(&instr->instr, stderr);
1991 fprintf(stderr, "\n");
1992 }
1993 break;
1994 }
1995 case nir_op_f2u32: {
1996 Temp src = get_alu_src(ctx, instr->src[0]);
1997 if (instr->src[0].src.ssa->bit_size == 32) {
1998 if (dst.type() == RegType::vgpr)
1999 bld.vop1(aco_opcode::v_cvt_u32_f32, Definition(dst), src);
2000 else
2001 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2002 bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), src));
2003
2004 } else if (instr->src[0].src.ssa->bit_size == 64) {
2005 if (dst.type() == RegType::vgpr)
2006 bld.vop1(aco_opcode::v_cvt_u32_f64, Definition(dst), src);
2007 else
2008 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2009 bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), src));
2010
2011 } else {
2012 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2013 nir_print_instr(&instr->instr, stderr);
2014 fprintf(stderr, "\n");
2015 }
2016 break;
2017 }
2018 case nir_op_f2i64: {
2019 Temp src = get_alu_src(ctx, instr->src[0]);
2020 if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::vgpr) {
2021 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2022 exponent = bld.vop3(aco_opcode::v_med3_i32, bld.def(v1), Operand(0x0u), exponent, Operand(64u));
2023 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2024 Temp sign = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
2025 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2026 mantissa = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(7u), mantissa);
2027 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2028 Temp new_exponent = bld.tmp(v1);
2029 Temp borrow = bld.vsub32(Definition(new_exponent), Operand(63u), exponent, true).def(1).getTemp();
2030 if (ctx->program->chip_class >= GFX8)
2031 mantissa = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), new_exponent, mantissa);
2032 else
2033 mantissa = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), mantissa, new_exponent);
2034 Temp saturate = bld.vop1(aco_opcode::v_bfrev_b32, bld.def(v1), Operand(0xfffffffeu));
2035 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2036 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2037 lower = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), lower, Operand(0xffffffffu), borrow);
2038 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), upper, saturate, borrow);
2039 lower = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, lower);
2040 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, upper);
2041 Temp new_lower = bld.tmp(v1);
2042 borrow = bld.vsub32(Definition(new_lower), lower, sign, true).def(1).getTemp();
2043 Temp new_upper = bld.vsub32(bld.def(v1), upper, sign, false, borrow);
2044 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), new_lower, new_upper);
2045
2046 } else if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::sgpr) {
2047 if (src.type() == RegType::vgpr)
2048 src = bld.as_uniform(src);
2049 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2050 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2051 exponent = bld.sop2(aco_opcode::s_max_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2052 exponent = bld.sop2(aco_opcode::s_min_u32, bld.def(s1), bld.def(s1, scc), Operand(64u), exponent);
2053 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2054 Temp sign = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
2055 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2056 mantissa = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), mantissa, Operand(7u));
2057 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2058 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(63u), exponent);
2059 mantissa = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent);
2060 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), exponent, Operand(0xffffffffu)); // exp >= 64
2061 Temp saturate = bld.sop1(aco_opcode::s_brev_b64, bld.def(s2), Operand(0xfffffffeu));
2062 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), saturate, mantissa, cond);
2063 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2064 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2065 lower = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, lower);
2066 upper = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, upper);
2067 Temp borrow = bld.tmp(s1);
2068 lower = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), lower, sign);
2069 upper = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), upper, sign, borrow);
2070 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2071
2072 } else if (instr->src[0].src.ssa->bit_size == 64) {
2073 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2074 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2075 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2076 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2077 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2078 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2079 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2080 Temp upper = bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), floor);
2081 if (dst.type() == RegType::sgpr) {
2082 lower = bld.as_uniform(lower);
2083 upper = bld.as_uniform(upper);
2084 }
2085 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2086
2087 } else {
2088 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2089 nir_print_instr(&instr->instr, stderr);
2090 fprintf(stderr, "\n");
2091 }
2092 break;
2093 }
2094 case nir_op_f2u64: {
2095 Temp src = get_alu_src(ctx, instr->src[0]);
2096 if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::vgpr) {
2097 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2098 Temp exponent_in_range = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(64u), exponent);
2099 exponent = bld.vop2(aco_opcode::v_max_i32, bld.def(v1), Operand(0x0u), exponent);
2100 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2101 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2102 Temp exponent_small = bld.vsub32(bld.def(v1), Operand(24u), exponent);
2103 Temp small = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), exponent_small, mantissa);
2104 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2105 Temp new_exponent = bld.tmp(v1);
2106 Temp cond_small = bld.vsub32(Definition(new_exponent), exponent, Operand(24u), true).def(1).getTemp();
2107 if (ctx->program->chip_class >= GFX8)
2108 mantissa = bld.vop3(aco_opcode::v_lshlrev_b64, bld.def(v2), new_exponent, mantissa);
2109 else
2110 mantissa = bld.vop3(aco_opcode::v_lshl_b64, bld.def(v2), mantissa, new_exponent);
2111 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2112 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2113 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), lower, small, cond_small);
2114 upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), upper, Operand(0u), cond_small);
2115 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), lower, exponent_in_range);
2116 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), upper, exponent_in_range);
2117 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2118
2119 } else if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::sgpr) {
2120 if (src.type() == RegType::vgpr)
2121 src = bld.as_uniform(src);
2122 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2123 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2124 exponent = bld.sop2(aco_opcode::s_max_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2125 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2126 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2127 Temp exponent_small = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(24u), exponent);
2128 Temp small = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), mantissa, exponent_small);
2129 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2130 Temp exponent_large = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(24u));
2131 mantissa = bld.sop2(aco_opcode::s_lshl_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent_large);
2132 Temp cond = bld.sopc(aco_opcode::s_cmp_ge_i32, bld.def(s1, scc), Operand(64u), exponent);
2133 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), mantissa, Operand(0xffffffffu), cond);
2134 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2135 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2136 Temp cond_small = bld.sopc(aco_opcode::s_cmp_le_i32, bld.def(s1, scc), exponent, Operand(24u));
2137 lower = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), small, lower, cond_small);
2138 upper = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), Operand(0u), upper, cond_small);
2139 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2140
2141 } else if (instr->src[0].src.ssa->bit_size == 64) {
2142 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2143 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2144 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2145 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2146 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2147 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2148 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2149 Temp upper = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), floor);
2150 if (dst.type() == RegType::sgpr) {
2151 lower = bld.as_uniform(lower);
2152 upper = bld.as_uniform(upper);
2153 }
2154 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2155
2156 } else {
2157 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2158 nir_print_instr(&instr->instr, stderr);
2159 fprintf(stderr, "\n");
2160 }
2161 break;
2162 }
2163 case nir_op_b2f32: {
2164 Temp src = get_alu_src(ctx, instr->src[0]);
2165 assert(src.regClass() == bld.lm);
2166
2167 if (dst.regClass() == s1) {
2168 src = bool_to_scalar_condition(ctx, src);
2169 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3f800000u), src);
2170 } else if (dst.regClass() == v1) {
2171 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
2172 } else {
2173 unreachable("Wrong destination register class for nir_op_b2f32.");
2174 }
2175 break;
2176 }
2177 case nir_op_b2f64: {
2178 Temp src = get_alu_src(ctx, instr->src[0]);
2179 assert(src.regClass() == bld.lm);
2180
2181 if (dst.regClass() == s2) {
2182 src = bool_to_scalar_condition(ctx, src);
2183 bld.sop2(aco_opcode::s_cselect_b64, Definition(dst), Operand(0x3f800000u), Operand(0u), bld.scc(src));
2184 } else if (dst.regClass() == v2) {
2185 Temp one = bld.vop1(aco_opcode::v_mov_b32, bld.def(v2), Operand(0x3FF00000u));
2186 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), one, src);
2187 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
2188 } else {
2189 unreachable("Wrong destination register class for nir_op_b2f64.");
2190 }
2191 break;
2192 }
2193 case nir_op_i2i32: {
2194 Temp src = get_alu_src(ctx, instr->src[0]);
2195 if (instr->src[0].src.ssa->bit_size == 64) {
2196 /* we can actually just say dst = src, as it would map the lower register */
2197 emit_extract_vector(ctx, src, 0, dst);
2198 } else {
2199 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2200 nir_print_instr(&instr->instr, stderr);
2201 fprintf(stderr, "\n");
2202 }
2203 break;
2204 }
2205 case nir_op_u2u32: {
2206 Temp src = get_alu_src(ctx, instr->src[0]);
2207 if (instr->src[0].src.ssa->bit_size == 16) {
2208 if (dst.regClass() == s1) {
2209 bld.sop2(aco_opcode::s_and_b32, Definition(dst), bld.def(s1, scc), Operand(0xFFFFu), src);
2210 } else {
2211 // TODO: do better with SDWA
2212 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0xFFFFu), src);
2213 }
2214 } else if (instr->src[0].src.ssa->bit_size == 64) {
2215 /* we can actually just say dst = src, as it would map the lower register */
2216 emit_extract_vector(ctx, src, 0, dst);
2217 } else {
2218 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2219 nir_print_instr(&instr->instr, stderr);
2220 fprintf(stderr, "\n");
2221 }
2222 break;
2223 }
2224 case nir_op_i2i64: {
2225 Temp src = get_alu_src(ctx, instr->src[0]);
2226 if (src.regClass() == s1) {
2227 Temp high = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
2228 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, high);
2229 } else if (src.regClass() == v1) {
2230 Temp high = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
2231 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, high);
2232 } else {
2233 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2234 nir_print_instr(&instr->instr, stderr);
2235 fprintf(stderr, "\n");
2236 }
2237 break;
2238 }
2239 case nir_op_u2u64: {
2240 Temp src = get_alu_src(ctx, instr->src[0]);
2241 if (instr->src[0].src.ssa->bit_size == 32) {
2242 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, Operand(0u));
2243 } else {
2244 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2245 nir_print_instr(&instr->instr, stderr);
2246 fprintf(stderr, "\n");
2247 }
2248 break;
2249 }
2250 case nir_op_b2i32: {
2251 Temp src = get_alu_src(ctx, instr->src[0]);
2252 assert(src.regClass() == bld.lm);
2253
2254 if (dst.regClass() == s1) {
2255 // TODO: in a post-RA optimization, we can check if src is in VCC, and directly use VCCNZ
2256 bool_to_scalar_condition(ctx, src, dst);
2257 } else if (dst.regClass() == v1) {
2258 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), src);
2259 } else {
2260 unreachable("Invalid register class for b2i32");
2261 }
2262 break;
2263 }
2264 case nir_op_i2b1: {
2265 Temp src = get_alu_src(ctx, instr->src[0]);
2266 assert(dst.regClass() == bld.lm);
2267
2268 if (src.type() == RegType::vgpr) {
2269 assert(src.regClass() == v1 || src.regClass() == v2);
2270 assert(dst.regClass() == bld.lm);
2271 bld.vopc(src.size() == 2 ? aco_opcode::v_cmp_lg_u64 : aco_opcode::v_cmp_lg_u32,
2272 Definition(dst), Operand(0u), src).def(0).setHint(vcc);
2273 } else {
2274 assert(src.regClass() == s1 || src.regClass() == s2);
2275 Temp tmp;
2276 if (src.regClass() == s2 && ctx->program->chip_class <= GFX7) {
2277 tmp = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), Operand(0u), src).def(1).getTemp();
2278 } else {
2279 tmp = bld.sopc(src.size() == 2 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::s_cmp_lg_u32,
2280 bld.scc(bld.def(s1)), Operand(0u), src);
2281 }
2282 bool_to_vector_condition(ctx, tmp, dst);
2283 }
2284 break;
2285 }
2286 case nir_op_pack_64_2x32_split: {
2287 Temp src0 = get_alu_src(ctx, instr->src[0]);
2288 Temp src1 = get_alu_src(ctx, instr->src[1]);
2289
2290 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
2291 break;
2292 }
2293 case nir_op_unpack_64_2x32_split_x:
2294 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
2295 break;
2296 case nir_op_unpack_64_2x32_split_y:
2297 bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
2298 break;
2299 case nir_op_pack_half_2x16: {
2300 Temp src = get_alu_src(ctx, instr->src[0], 2);
2301
2302 if (dst.regClass() == v1) {
2303 Temp src0 = bld.tmp(v1);
2304 Temp src1 = bld.tmp(v1);
2305 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
2306 if (!ctx->block->fp_mode.care_about_round32 || ctx->block->fp_mode.round32 == fp_round_tz)
2307 bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, Definition(dst), src0, src1);
2308 else
2309 bld.vop3(aco_opcode::v_cvt_pk_u16_u32, Definition(dst),
2310 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src0),
2311 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src1));
2312 } else {
2313 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2314 nir_print_instr(&instr->instr, stderr);
2315 fprintf(stderr, "\n");
2316 }
2317 break;
2318 }
2319 case nir_op_unpack_half_2x16_split_x: {
2320 if (dst.regClass() == v1) {
2321 Builder bld(ctx->program, ctx->block);
2322 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst), get_alu_src(ctx, instr->src[0]));
2323 } else {
2324 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2325 nir_print_instr(&instr->instr, stderr);
2326 fprintf(stderr, "\n");
2327 }
2328 break;
2329 }
2330 case nir_op_unpack_half_2x16_split_y: {
2331 if (dst.regClass() == v1) {
2332 Builder bld(ctx->program, ctx->block);
2333 /* TODO: use SDWA here */
2334 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst),
2335 bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), as_vgpr(ctx, get_alu_src(ctx, instr->src[0]))));
2336 } else {
2337 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2338 nir_print_instr(&instr->instr, stderr);
2339 fprintf(stderr, "\n");
2340 }
2341 break;
2342 }
2343 case nir_op_fquantize2f16: {
2344 Temp src = get_alu_src(ctx, instr->src[0]);
2345 Temp f16 = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), src);
2346 Temp f32, cmp_res;
2347
2348 if (ctx->program->chip_class >= GFX8) {
2349 Temp mask = bld.copy(bld.def(s1), Operand(0x36Fu)); /* value is NOT negative/positive denormal value */
2350 cmp_res = bld.vopc_e64(aco_opcode::v_cmp_class_f16, bld.hint_vcc(bld.def(bld.lm)), f16, mask);
2351 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2352 } else {
2353 /* 0x38800000 is smallest half float value (2^-14) in 32-bit float,
2354 * so compare the result and flush to 0 if it's smaller.
2355 */
2356 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2357 Temp smallest = bld.copy(bld.def(s1), Operand(0x38800000u));
2358 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), f32, smallest);
2359 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
2360 cmp_res = vop3->definitions[0].getTemp();
2361 }
2362
2363 if (ctx->block->fp_mode.preserve_signed_zero_inf_nan32 || ctx->program->chip_class < GFX8) {
2364 Temp copysign_0 = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0u), as_vgpr(ctx, src));
2365 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), copysign_0, f32, cmp_res);
2366 } else {
2367 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), f32, cmp_res);
2368 }
2369 break;
2370 }
2371 case nir_op_bfm: {
2372 Temp bits = get_alu_src(ctx, instr->src[0]);
2373 Temp offset = get_alu_src(ctx, instr->src[1]);
2374
2375 if (dst.regClass() == s1) {
2376 bld.sop2(aco_opcode::s_bfm_b32, Definition(dst), bits, offset);
2377 } else if (dst.regClass() == v1) {
2378 bld.vop3(aco_opcode::v_bfm_b32, Definition(dst), bits, offset);
2379 } else {
2380 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2381 nir_print_instr(&instr->instr, stderr);
2382 fprintf(stderr, "\n");
2383 }
2384 break;
2385 }
2386 case nir_op_bitfield_select: {
2387 /* (mask & insert) | (~mask & base) */
2388 Temp bitmask = get_alu_src(ctx, instr->src[0]);
2389 Temp insert = get_alu_src(ctx, instr->src[1]);
2390 Temp base = get_alu_src(ctx, instr->src[2]);
2391
2392 /* dst = (insert & bitmask) | (base & ~bitmask) */
2393 if (dst.regClass() == s1) {
2394 aco_ptr<Instruction> sop2;
2395 nir_const_value* const_bitmask = nir_src_as_const_value(instr->src[0].src);
2396 nir_const_value* const_insert = nir_src_as_const_value(instr->src[1].src);
2397 Operand lhs;
2398 if (const_insert && const_bitmask) {
2399 lhs = Operand(const_insert->u32 & const_bitmask->u32);
2400 } else {
2401 insert = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), insert, bitmask);
2402 lhs = Operand(insert);
2403 }
2404
2405 Operand rhs;
2406 nir_const_value* const_base = nir_src_as_const_value(instr->src[2].src);
2407 if (const_base && const_bitmask) {
2408 rhs = Operand(const_base->u32 & ~const_bitmask->u32);
2409 } else {
2410 base = bld.sop2(aco_opcode::s_andn2_b32, bld.def(s1), bld.def(s1, scc), base, bitmask);
2411 rhs = Operand(base);
2412 }
2413
2414 bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), rhs, lhs);
2415
2416 } else if (dst.regClass() == v1) {
2417 if (base.type() == RegType::sgpr && (bitmask.type() == RegType::sgpr || (insert.type() == RegType::sgpr)))
2418 base = as_vgpr(ctx, base);
2419 if (insert.type() == RegType::sgpr && bitmask.type() == RegType::sgpr)
2420 insert = as_vgpr(ctx, insert);
2421
2422 bld.vop3(aco_opcode::v_bfi_b32, Definition(dst), bitmask, insert, base);
2423
2424 } else {
2425 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2426 nir_print_instr(&instr->instr, stderr);
2427 fprintf(stderr, "\n");
2428 }
2429 break;
2430 }
2431 case nir_op_ubfe:
2432 case nir_op_ibfe: {
2433 Temp base = get_alu_src(ctx, instr->src[0]);
2434 Temp offset = get_alu_src(ctx, instr->src[1]);
2435 Temp bits = get_alu_src(ctx, instr->src[2]);
2436
2437 if (dst.type() == RegType::sgpr) {
2438 Operand extract;
2439 nir_const_value* const_offset = nir_src_as_const_value(instr->src[1].src);
2440 nir_const_value* const_bits = nir_src_as_const_value(instr->src[2].src);
2441 if (const_offset && const_bits) {
2442 uint32_t const_extract = (const_bits->u32 << 16) | const_offset->u32;
2443 extract = Operand(const_extract);
2444 } else {
2445 Operand width;
2446 if (const_bits) {
2447 width = Operand(const_bits->u32 << 16);
2448 } else {
2449 width = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), bits, Operand(16u));
2450 }
2451 extract = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), offset, width);
2452 }
2453
2454 aco_opcode opcode;
2455 if (dst.regClass() == s1) {
2456 if (instr->op == nir_op_ubfe)
2457 opcode = aco_opcode::s_bfe_u32;
2458 else
2459 opcode = aco_opcode::s_bfe_i32;
2460 } else if (dst.regClass() == s2) {
2461 if (instr->op == nir_op_ubfe)
2462 opcode = aco_opcode::s_bfe_u64;
2463 else
2464 opcode = aco_opcode::s_bfe_i64;
2465 } else {
2466 unreachable("Unsupported BFE bit size");
2467 }
2468
2469 bld.sop2(opcode, Definition(dst), bld.def(s1, scc), base, extract);
2470
2471 } else {
2472 aco_opcode opcode;
2473 if (dst.regClass() == v1) {
2474 if (instr->op == nir_op_ubfe)
2475 opcode = aco_opcode::v_bfe_u32;
2476 else
2477 opcode = aco_opcode::v_bfe_i32;
2478 } else {
2479 unreachable("Unsupported BFE bit size");
2480 }
2481
2482 emit_vop3a_instruction(ctx, instr, opcode, dst);
2483 }
2484 break;
2485 }
2486 case nir_op_bit_count: {
2487 Temp src = get_alu_src(ctx, instr->src[0]);
2488 if (src.regClass() == s1) {
2489 bld.sop1(aco_opcode::s_bcnt1_i32_b32, Definition(dst), bld.def(s1, scc), src);
2490 } else if (src.regClass() == v1) {
2491 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst), src, Operand(0u));
2492 } else if (src.regClass() == v2) {
2493 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst),
2494 emit_extract_vector(ctx, src, 1, v1),
2495 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1),
2496 emit_extract_vector(ctx, src, 0, v1), Operand(0u)));
2497 } else if (src.regClass() == s2) {
2498 bld.sop1(aco_opcode::s_bcnt1_i32_b64, Definition(dst), bld.def(s1, scc), src);
2499 } else {
2500 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2501 nir_print_instr(&instr->instr, stderr);
2502 fprintf(stderr, "\n");
2503 }
2504 break;
2505 }
2506 case nir_op_flt: {
2507 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_f32, aco_opcode::v_cmp_lt_f64);
2508 break;
2509 }
2510 case nir_op_fge: {
2511 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_f32, aco_opcode::v_cmp_ge_f64);
2512 break;
2513 }
2514 case nir_op_feq: {
2515 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_f32, aco_opcode::v_cmp_eq_f64);
2516 break;
2517 }
2518 case nir_op_fne: {
2519 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_neq_f32, aco_opcode::v_cmp_neq_f64);
2520 break;
2521 }
2522 case nir_op_ilt: {
2523 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_i32, aco_opcode::v_cmp_lt_i64, aco_opcode::s_cmp_lt_i32);
2524 break;
2525 }
2526 case nir_op_ige: {
2527 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_i32, aco_opcode::v_cmp_ge_i64, aco_opcode::s_cmp_ge_i32);
2528 break;
2529 }
2530 case nir_op_ieq: {
2531 if (instr->src[0].src.ssa->bit_size == 1)
2532 emit_boolean_logic(ctx, instr, Builder::s_xnor, dst);
2533 else
2534 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_i32, aco_opcode::v_cmp_eq_i64, aco_opcode::s_cmp_eq_i32,
2535 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_eq_u64 : aco_opcode::num_opcodes);
2536 break;
2537 }
2538 case nir_op_ine: {
2539 if (instr->src[0].src.ssa->bit_size == 1)
2540 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
2541 else
2542 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lg_i32, aco_opcode::v_cmp_lg_i64, aco_opcode::s_cmp_lg_i32,
2543 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::num_opcodes);
2544 break;
2545 }
2546 case nir_op_ult: {
2547 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_u32, aco_opcode::v_cmp_lt_u64, aco_opcode::s_cmp_lt_u32);
2548 break;
2549 }
2550 case nir_op_uge: {
2551 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_u32, aco_opcode::v_cmp_ge_u64, aco_opcode::s_cmp_ge_u32);
2552 break;
2553 }
2554 case nir_op_fddx:
2555 case nir_op_fddy:
2556 case nir_op_fddx_fine:
2557 case nir_op_fddy_fine:
2558 case nir_op_fddx_coarse:
2559 case nir_op_fddy_coarse: {
2560 Temp src = get_alu_src(ctx, instr->src[0]);
2561 uint16_t dpp_ctrl1, dpp_ctrl2;
2562 if (instr->op == nir_op_fddx_fine) {
2563 dpp_ctrl1 = dpp_quad_perm(0, 0, 2, 2);
2564 dpp_ctrl2 = dpp_quad_perm(1, 1, 3, 3);
2565 } else if (instr->op == nir_op_fddy_fine) {
2566 dpp_ctrl1 = dpp_quad_perm(0, 1, 0, 1);
2567 dpp_ctrl2 = dpp_quad_perm(2, 3, 2, 3);
2568 } else {
2569 dpp_ctrl1 = dpp_quad_perm(0, 0, 0, 0);
2570 if (instr->op == nir_op_fddx || instr->op == nir_op_fddx_coarse)
2571 dpp_ctrl2 = dpp_quad_perm(1, 1, 1, 1);
2572 else
2573 dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
2574 }
2575
2576 Temp tmp;
2577 if (ctx->program->chip_class >= GFX8) {
2578 Temp tl = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl1);
2579 tmp = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), src, tl, dpp_ctrl2);
2580 } else {
2581 Temp tl = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl1);
2582 Temp tr = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl2);
2583 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), tr, tl);
2584 }
2585 emit_wqm(ctx, tmp, dst, true);
2586 break;
2587 }
2588 default:
2589 fprintf(stderr, "Unknown NIR ALU instr: ");
2590 nir_print_instr(&instr->instr, stderr);
2591 fprintf(stderr, "\n");
2592 }
2593 }
2594
2595 void visit_load_const(isel_context *ctx, nir_load_const_instr *instr)
2596 {
2597 Temp dst = get_ssa_temp(ctx, &instr->def);
2598
2599 // TODO: we really want to have the resulting type as this would allow for 64bit literals
2600 // which get truncated the lsb if double and msb if int
2601 // for now, we only use s_mov_b64 with 64bit inline constants
2602 assert(instr->def.num_components == 1 && "Vector load_const should be lowered to scalar.");
2603 assert(dst.type() == RegType::sgpr);
2604
2605 Builder bld(ctx->program, ctx->block);
2606
2607 if (instr->def.bit_size == 1) {
2608 assert(dst.regClass() == bld.lm);
2609 int val = instr->value[0].b ? -1 : 0;
2610 Operand op = bld.lm.size() == 1 ? Operand((uint32_t) val) : Operand((uint64_t) val);
2611 bld.sop1(Builder::s_mov, Definition(dst), op);
2612 } else if (dst.size() == 1) {
2613 bld.copy(Definition(dst), Operand(instr->value[0].u32));
2614 } else {
2615 assert(dst.size() != 1);
2616 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
2617 if (instr->def.bit_size == 64)
2618 for (unsigned i = 0; i < dst.size(); i++)
2619 vec->operands[i] = Operand{(uint32_t)(instr->value[0].u64 >> i * 32)};
2620 else {
2621 for (unsigned i = 0; i < dst.size(); i++)
2622 vec->operands[i] = Operand{instr->value[i].u32};
2623 }
2624 vec->definitions[0] = Definition(dst);
2625 ctx->block->instructions.emplace_back(std::move(vec));
2626 }
2627 }
2628
2629 uint32_t widen_mask(uint32_t mask, unsigned multiplier)
2630 {
2631 uint32_t new_mask = 0;
2632 for(unsigned i = 0; i < 32 && (1u << i) <= mask; ++i)
2633 if (mask & (1u << i))
2634 new_mask |= ((1u << multiplier) - 1u) << (i * multiplier);
2635 return new_mask;
2636 }
2637
2638 Operand load_lds_size_m0(isel_context *ctx)
2639 {
2640 /* TODO: m0 does not need to be initialized on GFX9+ */
2641 Builder bld(ctx->program, ctx->block);
2642 return bld.m0((Temp)bld.sopk(aco_opcode::s_movk_i32, bld.def(s1, m0), 0xffff));
2643 }
2644
2645 Temp load_lds(isel_context *ctx, unsigned elem_size_bytes, Temp dst,
2646 Temp address, unsigned base_offset, unsigned align)
2647 {
2648 assert(util_is_power_of_two_nonzero(align) && align >= 4);
2649
2650 Builder bld(ctx->program, ctx->block);
2651
2652 Operand m = load_lds_size_m0(ctx);
2653
2654 unsigned num_components = dst.size() * 4u / elem_size_bytes;
2655 unsigned bytes_read = 0;
2656 unsigned result_size = 0;
2657 unsigned total_bytes = num_components * elem_size_bytes;
2658 std::array<Temp, NIR_MAX_VEC_COMPONENTS> result;
2659 bool large_ds_read = ctx->options->chip_class >= GFX7;
2660 bool usable_read2 = ctx->options->chip_class >= GFX7;
2661
2662 while (bytes_read < total_bytes) {
2663 unsigned todo = total_bytes - bytes_read;
2664 bool aligned8 = bytes_read % 8 == 0 && align % 8 == 0;
2665 bool aligned16 = bytes_read % 16 == 0 && align % 16 == 0;
2666
2667 aco_opcode op = aco_opcode::last_opcode;
2668 bool read2 = false;
2669 if (todo >= 16 && aligned16 && large_ds_read) {
2670 op = aco_opcode::ds_read_b128;
2671 todo = 16;
2672 } else if (todo >= 16 && aligned8 && usable_read2) {
2673 op = aco_opcode::ds_read2_b64;
2674 read2 = true;
2675 todo = 16;
2676 } else if (todo >= 12 && aligned16 && large_ds_read) {
2677 op = aco_opcode::ds_read_b96;
2678 todo = 12;
2679 } else if (todo >= 8 && aligned8) {
2680 op = aco_opcode::ds_read_b64;
2681 todo = 8;
2682 } else if (todo >= 8 && usable_read2) {
2683 op = aco_opcode::ds_read2_b32;
2684 read2 = true;
2685 todo = 8;
2686 } else if (todo >= 4) {
2687 op = aco_opcode::ds_read_b32;
2688 todo = 4;
2689 } else {
2690 assert(false);
2691 }
2692 assert(todo % elem_size_bytes == 0);
2693 unsigned num_elements = todo / elem_size_bytes;
2694 unsigned offset = base_offset + bytes_read;
2695 unsigned max_offset = read2 ? 1019 : 65535;
2696
2697 Temp address_offset = address;
2698 if (offset > max_offset) {
2699 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
2700 offset = bytes_read;
2701 }
2702 assert(offset <= max_offset); /* bytes_read shouldn't be large enough for this to happen */
2703
2704 Temp res;
2705 if (num_components == 1 && dst.type() == RegType::vgpr)
2706 res = dst;
2707 else
2708 res = bld.tmp(RegClass(RegType::vgpr, todo / 4));
2709
2710 if (read2)
2711 res = bld.ds(op, Definition(res), address_offset, m, offset / (todo / 2), (offset / (todo / 2)) + 1);
2712 else
2713 res = bld.ds(op, Definition(res), address_offset, m, offset);
2714
2715 if (num_components == 1) {
2716 assert(todo == total_bytes);
2717 if (dst.type() == RegType::sgpr)
2718 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), res);
2719 return dst;
2720 }
2721
2722 if (dst.type() == RegType::sgpr) {
2723 Temp new_res = bld.tmp(RegType::sgpr, res.size());
2724 expand_vector(ctx, res, new_res, res.size(), (1 << res.size()) - 1);
2725 res = new_res;
2726 }
2727
2728 if (num_elements == 1) {
2729 result[result_size++] = res;
2730 } else {
2731 assert(res != dst && res.size() % num_elements == 0);
2732 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_elements)};
2733 split->operands[0] = Operand(res);
2734 for (unsigned i = 0; i < num_elements; i++)
2735 split->definitions[i] = Definition(result[result_size++] = bld.tmp(res.type(), elem_size_bytes / 4));
2736 ctx->block->instructions.emplace_back(std::move(split));
2737 }
2738
2739 bytes_read += todo;
2740 }
2741
2742 assert(result_size == num_components && result_size > 1);
2743 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, result_size, 1)};
2744 for (unsigned i = 0; i < result_size; i++)
2745 vec->operands[i] = Operand(result[i]);
2746 vec->definitions[0] = Definition(dst);
2747 ctx->block->instructions.emplace_back(std::move(vec));
2748 ctx->allocated_vec.emplace(dst.id(), result);
2749
2750 return dst;
2751 }
2752
2753 Temp extract_subvector(isel_context *ctx, Temp data, unsigned start, unsigned size, RegType type)
2754 {
2755 if (start == 0 && size == data.size())
2756 return type == RegType::vgpr ? as_vgpr(ctx, data) : data;
2757
2758 unsigned size_hint = 1;
2759 auto it = ctx->allocated_vec.find(data.id());
2760 if (it != ctx->allocated_vec.end())
2761 size_hint = it->second[0].size();
2762 if (size % size_hint || start % size_hint)
2763 size_hint = 1;
2764
2765 start /= size_hint;
2766 size /= size_hint;
2767
2768 Temp elems[size];
2769 for (unsigned i = 0; i < size; i++)
2770 elems[i] = emit_extract_vector(ctx, data, start + i, RegClass(type, size_hint));
2771
2772 if (size == 1)
2773 return type == RegType::vgpr ? as_vgpr(ctx, elems[0]) : elems[0];
2774
2775 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
2776 for (unsigned i = 0; i < size; i++)
2777 vec->operands[i] = Operand(elems[i]);
2778 Temp res = {ctx->program->allocateId(), RegClass(type, size * size_hint)};
2779 vec->definitions[0] = Definition(res);
2780 ctx->block->instructions.emplace_back(std::move(vec));
2781 return res;
2782 }
2783
2784 void ds_write_helper(isel_context *ctx, Operand m, Temp address, Temp data, unsigned data_start, unsigned total_size, unsigned offset0, unsigned offset1, unsigned align)
2785 {
2786 Builder bld(ctx->program, ctx->block);
2787 unsigned bytes_written = 0;
2788 bool large_ds_write = ctx->options->chip_class >= GFX7;
2789 bool usable_write2 = ctx->options->chip_class >= GFX7;
2790
2791 while (bytes_written < total_size * 4) {
2792 unsigned todo = total_size * 4 - bytes_written;
2793 bool aligned8 = bytes_written % 8 == 0 && align % 8 == 0;
2794 bool aligned16 = bytes_written % 16 == 0 && align % 16 == 0;
2795
2796 aco_opcode op = aco_opcode::last_opcode;
2797 bool write2 = false;
2798 unsigned size = 0;
2799 if (todo >= 16 && aligned16 && large_ds_write) {
2800 op = aco_opcode::ds_write_b128;
2801 size = 4;
2802 } else if (todo >= 16 && aligned8 && usable_write2) {
2803 op = aco_opcode::ds_write2_b64;
2804 write2 = true;
2805 size = 4;
2806 } else if (todo >= 12 && aligned16 && large_ds_write) {
2807 op = aco_opcode::ds_write_b96;
2808 size = 3;
2809 } else if (todo >= 8 && aligned8) {
2810 op = aco_opcode::ds_write_b64;
2811 size = 2;
2812 } else if (todo >= 8 && usable_write2) {
2813 op = aco_opcode::ds_write2_b32;
2814 write2 = true;
2815 size = 2;
2816 } else if (todo >= 4) {
2817 op = aco_opcode::ds_write_b32;
2818 size = 1;
2819 } else {
2820 assert(false);
2821 }
2822
2823 unsigned offset = offset0 + offset1 + bytes_written;
2824 unsigned max_offset = write2 ? 1020 : 65535;
2825 Temp address_offset = address;
2826 if (offset > max_offset) {
2827 address_offset = bld.vadd32(bld.def(v1), Operand(offset0), address_offset);
2828 offset = offset1 + bytes_written;
2829 }
2830 assert(offset <= max_offset); /* offset1 shouldn't be large enough for this to happen */
2831
2832 if (write2) {
2833 Temp val0 = extract_subvector(ctx, data, data_start + (bytes_written >> 2), size / 2, RegType::vgpr);
2834 Temp val1 = extract_subvector(ctx, data, data_start + (bytes_written >> 2) + 1, size / 2, RegType::vgpr);
2835 bld.ds(op, address_offset, val0, val1, m, offset / size / 2, (offset / size / 2) + 1);
2836 } else {
2837 Temp val = extract_subvector(ctx, data, data_start + (bytes_written >> 2), size, RegType::vgpr);
2838 bld.ds(op, address_offset, val, m, offset);
2839 }
2840
2841 bytes_written += size * 4;
2842 }
2843 }
2844
2845 void store_lds(isel_context *ctx, unsigned elem_size_bytes, Temp data, uint32_t wrmask,
2846 Temp address, unsigned base_offset, unsigned align)
2847 {
2848 assert(util_is_power_of_two_nonzero(align) && align >= 4);
2849 assert(elem_size_bytes == 4 || elem_size_bytes == 8);
2850
2851 Operand m = load_lds_size_m0(ctx);
2852
2853 /* we need at most two stores, assuming that the writemask is at most 4 bits wide */
2854 assert(wrmask <= 0x0f);
2855 int start[2], count[2];
2856 u_bit_scan_consecutive_range(&wrmask, &start[0], &count[0]);
2857 u_bit_scan_consecutive_range(&wrmask, &start[1], &count[1]);
2858 assert(wrmask == 0);
2859
2860 /* one combined store is sufficient */
2861 if (count[0] == count[1] && (align % elem_size_bytes) == 0 && (base_offset % elem_size_bytes) == 0) {
2862 Builder bld(ctx->program, ctx->block);
2863
2864 Temp address_offset = address;
2865 if ((base_offset / elem_size_bytes) + start[1] > 255) {
2866 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
2867 base_offset = 0;
2868 }
2869
2870 assert(count[0] == 1);
2871 RegClass xtract_rc(RegType::vgpr, elem_size_bytes / 4);
2872
2873 Temp val0 = emit_extract_vector(ctx, data, start[0], xtract_rc);
2874 Temp val1 = emit_extract_vector(ctx, data, start[1], xtract_rc);
2875 aco_opcode op = elem_size_bytes == 4 ? aco_opcode::ds_write2_b32 : aco_opcode::ds_write2_b64;
2876 base_offset = base_offset / elem_size_bytes;
2877 bld.ds(op, address_offset, val0, val1, m,
2878 base_offset + start[0], base_offset + start[1]);
2879 return;
2880 }
2881
2882 for (unsigned i = 0; i < 2; i++) {
2883 if (count[i] == 0)
2884 continue;
2885
2886 unsigned elem_size_words = elem_size_bytes / 4;
2887 ds_write_helper(ctx, m, address, data, start[i] * elem_size_words, count[i] * elem_size_words,
2888 base_offset, start[i] * elem_size_bytes, align);
2889 }
2890 return;
2891 }
2892
2893 unsigned calculate_lds_alignment(isel_context *ctx, unsigned const_offset)
2894 {
2895 unsigned align = 16;
2896 if (const_offset)
2897 align = std::min(align, 1u << (ffs(const_offset) - 1));
2898
2899 return align;
2900 }
2901
2902
2903 Temp create_vec_from_array(isel_context *ctx, Temp arr[], unsigned cnt, RegType reg_type, unsigned split_cnt = 0u, Temp dst = Temp())
2904 {
2905 Builder bld(ctx->program, ctx->block);
2906
2907 if (!dst.id())
2908 dst = bld.tmp(RegClass(reg_type, cnt * arr[0].size()));
2909
2910 std::array<Temp, NIR_MAX_VEC_COMPONENTS> allocated_vec;
2911 aco_ptr<Pseudo_instruction> instr {create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, cnt, 1)};
2912 instr->definitions[0] = Definition(dst);
2913
2914 for (unsigned i = 0; i < cnt; ++i) {
2915 assert(arr[i].size() == arr[0].size());
2916 allocated_vec[i] = arr[i];
2917 instr->operands[i] = Operand(arr[i]);
2918 }
2919
2920 bld.insert(std::move(instr));
2921
2922 if (split_cnt)
2923 emit_split_vector(ctx, dst, split_cnt);
2924 else
2925 ctx->allocated_vec.emplace(dst.id(), allocated_vec); /* emit_split_vector already does this */
2926
2927 return dst;
2928 }
2929
2930 inline unsigned resolve_excess_vmem_const_offset(Builder &bld, Temp &voffset, unsigned const_offset)
2931 {
2932 if (const_offset >= 4096) {
2933 unsigned excess_const_offset = const_offset / 4096u * 4096u;
2934 const_offset %= 4096u;
2935
2936 if (!voffset.id())
2937 voffset = bld.copy(bld.def(v1), Operand(excess_const_offset));
2938 else if (unlikely(voffset.regClass() == s1))
2939 voffset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), Operand(excess_const_offset), Operand(voffset));
2940 else if (likely(voffset.regClass() == v1))
2941 voffset = bld.vadd32(bld.def(v1), Operand(voffset), Operand(excess_const_offset));
2942 else
2943 unreachable("Unsupported register class of voffset");
2944 }
2945
2946 return const_offset;
2947 }
2948
2949 void emit_single_mubuf_store(isel_context *ctx, Temp descriptor, Temp voffset, Temp soffset, Temp vdata,
2950 unsigned const_offset = 0u, bool allow_reorder = true, bool slc = false)
2951 {
2952 assert(vdata.id());
2953 assert(vdata.size() != 3 || ctx->program->chip_class != GFX6);
2954 assert(vdata.size() >= 1 && vdata.size() <= 4);
2955
2956 Builder bld(ctx->program, ctx->block);
2957 aco_opcode op = (aco_opcode) ((unsigned) aco_opcode::buffer_store_dword + vdata.size() - 1);
2958 const_offset = resolve_excess_vmem_const_offset(bld, voffset, const_offset);
2959
2960 Operand voffset_op = voffset.id() ? Operand(as_vgpr(ctx, voffset)) : Operand(v1);
2961 Operand soffset_op = soffset.id() ? Operand(soffset) : Operand(0u);
2962 Builder::Result r = bld.mubuf(op, Operand(descriptor), voffset_op, soffset_op, Operand(vdata), const_offset,
2963 /* offen */ !voffset_op.isUndefined(), /* idxen*/ false, /* addr64 */ false,
2964 /* disable_wqm */ false, /* glc */ true, /* dlc*/ false, /* slc */ slc);
2965
2966 static_cast<MUBUF_instruction *>(r.instr)->can_reorder = allow_reorder;
2967 }
2968
2969 void store_vmem_mubuf(isel_context *ctx, Temp src, Temp descriptor, Temp voffset, Temp soffset,
2970 unsigned base_const_offset, unsigned elem_size_bytes, unsigned write_mask,
2971 bool allow_combining = true, bool reorder = true, bool slc = false)
2972 {
2973 Builder bld(ctx->program, ctx->block);
2974 assert(elem_size_bytes == 4 || elem_size_bytes == 8);
2975 assert(write_mask);
2976
2977 if (elem_size_bytes == 8) {
2978 elem_size_bytes = 4;
2979 write_mask = widen_mask(write_mask, 2);
2980 }
2981
2982 while (write_mask) {
2983 int start = 0;
2984 int count = 0;
2985 u_bit_scan_consecutive_range(&write_mask, &start, &count);
2986 assert(count > 0);
2987 assert(start >= 0);
2988
2989 while (count > 0) {
2990 unsigned sub_count = allow_combining ? MIN2(count, 4) : 1;
2991 unsigned const_offset = (unsigned) start * elem_size_bytes + base_const_offset;
2992
2993 /* GFX6 doesn't have buffer_store_dwordx3, so make sure not to emit that here either. */
2994 if (unlikely(ctx->program->chip_class == GFX6 && sub_count == 3))
2995 sub_count = 2;
2996
2997 Temp elem = extract_subvector(ctx, src, start, sub_count, RegType::vgpr);
2998 emit_single_mubuf_store(ctx, descriptor, voffset, soffset, elem, const_offset, reorder, slc);
2999
3000 count -= sub_count;
3001 start += sub_count;
3002 }
3003
3004 assert(count == 0);
3005 }
3006 }
3007
3008 Temp emit_single_mubuf_load(isel_context *ctx, Temp descriptor, Temp voffset, Temp soffset,
3009 unsigned const_offset, unsigned size_dwords, bool allow_reorder = true)
3010 {
3011 assert(size_dwords != 3 || ctx->program->chip_class != GFX6);
3012 assert(size_dwords >= 1 && size_dwords <= 4);
3013
3014 Builder bld(ctx->program, ctx->block);
3015 Temp vdata = bld.tmp(RegClass(RegType::vgpr, size_dwords));
3016 aco_opcode op = (aco_opcode) ((unsigned) aco_opcode::buffer_load_dword + size_dwords - 1);
3017 const_offset = resolve_excess_vmem_const_offset(bld, voffset, const_offset);
3018
3019 Operand voffset_op = voffset.id() ? Operand(as_vgpr(ctx, voffset)) : Operand(v1);
3020 Operand soffset_op = soffset.id() ? Operand(soffset) : Operand(0u);
3021 Builder::Result r = bld.mubuf(op, Definition(vdata), Operand(descriptor), voffset_op, soffset_op, const_offset,
3022 /* offen */ !voffset_op.isUndefined(), /* idxen*/ false, /* addr64 */ false,
3023 /* disable_wqm */ false, /* glc */ true,
3024 /* dlc*/ ctx->program->chip_class >= GFX10, /* slc */ false);
3025
3026 static_cast<MUBUF_instruction *>(r.instr)->can_reorder = allow_reorder;
3027
3028 return vdata;
3029 }
3030
3031 void load_vmem_mubuf(isel_context *ctx, Temp dst, Temp descriptor, Temp voffset, Temp soffset,
3032 unsigned base_const_offset, unsigned elem_size_bytes, unsigned num_components,
3033 unsigned stride = 0u, bool allow_combining = true, bool allow_reorder = true)
3034 {
3035 assert(elem_size_bytes == 4 || elem_size_bytes == 8);
3036 assert((num_components * elem_size_bytes / 4) == dst.size());
3037 assert(!!stride != allow_combining);
3038
3039 Builder bld(ctx->program, ctx->block);
3040 unsigned split_cnt = num_components;
3041
3042 if (elem_size_bytes == 8) {
3043 elem_size_bytes = 4;
3044 num_components *= 2;
3045 }
3046
3047 if (!stride)
3048 stride = elem_size_bytes;
3049
3050 unsigned load_size = 1;
3051 if (allow_combining) {
3052 if ((num_components % 4) == 0)
3053 load_size = 4;
3054 else if ((num_components % 3) == 0 && ctx->program->chip_class != GFX6)
3055 load_size = 3;
3056 else if ((num_components % 2) == 0)
3057 load_size = 2;
3058 }
3059
3060 unsigned num_loads = num_components / load_size;
3061 std::array<Temp, NIR_MAX_VEC_COMPONENTS> elems;
3062
3063 for (unsigned i = 0; i < num_loads; ++i) {
3064 unsigned const_offset = i * stride * load_size + base_const_offset;
3065 elems[i] = emit_single_mubuf_load(ctx, descriptor, voffset, soffset, const_offset, load_size, allow_reorder);
3066 }
3067
3068 create_vec_from_array(ctx, elems.data(), num_loads, RegType::vgpr, split_cnt, dst);
3069 }
3070
3071 std::pair<Temp, unsigned> offset_add_from_nir(isel_context *ctx, const std::pair<Temp, unsigned> &base_offset, nir_src *off_src, unsigned stride = 1u)
3072 {
3073 Builder bld(ctx->program, ctx->block);
3074 Temp offset = base_offset.first;
3075 unsigned const_offset = base_offset.second;
3076
3077 if (!nir_src_is_const(*off_src)) {
3078 Temp indirect_offset_arg = get_ssa_temp(ctx, off_src->ssa);
3079 Temp with_stride;
3080
3081 /* Calculate indirect offset with stride */
3082 if (likely(indirect_offset_arg.regClass() == v1))
3083 with_stride = bld.v_mul_imm(bld.def(v1), indirect_offset_arg, stride);
3084 else if (indirect_offset_arg.regClass() == s1)
3085 with_stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), indirect_offset_arg);
3086 else
3087 unreachable("Unsupported register class of indirect offset");
3088
3089 /* Add to the supplied base offset */
3090 if (offset.id() == 0)
3091 offset = with_stride;
3092 else if (unlikely(offset.regClass() == s1 && with_stride.regClass() == s1))
3093 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), with_stride, offset);
3094 else if (offset.size() == 1 && with_stride.size() == 1)
3095 offset = bld.vadd32(bld.def(v1), with_stride, offset);
3096 else
3097 unreachable("Unsupported register class of indirect offset");
3098 } else {
3099 unsigned const_offset_arg = nir_src_as_uint(*off_src);
3100 const_offset += const_offset_arg * stride;
3101 }
3102
3103 return std::make_pair(offset, const_offset);
3104 }
3105
3106 std::pair<Temp, unsigned> offset_add(isel_context *ctx, const std::pair<Temp, unsigned> &off1, const std::pair<Temp, unsigned> &off2)
3107 {
3108 Builder bld(ctx->program, ctx->block);
3109 Temp offset;
3110
3111 if (off1.first.id() && off2.first.id()) {
3112 if (unlikely(off1.first.regClass() == s1 && off2.first.regClass() == s1))
3113 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), off1.first, off2.first);
3114 else if (off1.first.size() == 1 && off2.first.size() == 1)
3115 offset = bld.vadd32(bld.def(v1), off1.first, off2.first);
3116 else
3117 unreachable("Unsupported register class of indirect offset");
3118 } else {
3119 offset = off1.first.id() ? off1.first : off2.first;
3120 }
3121
3122 return std::make_pair(offset, off1.second + off2.second);
3123 }
3124
3125 std::pair<Temp, unsigned> offset_mul(isel_context *ctx, const std::pair<Temp, unsigned> &offs, unsigned multiplier)
3126 {
3127 Builder bld(ctx->program, ctx->block);
3128 unsigned const_offset = offs.second * multiplier;
3129
3130 if (!offs.first.id())
3131 return std::make_pair(offs.first, const_offset);
3132
3133 Temp offset = unlikely(offs.first.regClass() == s1)
3134 ? bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(multiplier), offs.first)
3135 : bld.v_mul_imm(bld.def(v1), offs.first, multiplier);
3136
3137 return std::make_pair(offset, const_offset);
3138 }
3139
3140 std::pair<Temp, unsigned> get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned base_stride, unsigned component_stride)
3141 {
3142 Builder bld(ctx->program, ctx->block);
3143
3144 /* base is the driver_location, which is already multiplied by 4, so is in dwords */
3145 unsigned const_offset = nir_intrinsic_base(instr) * base_stride;
3146 /* component is in bytes */
3147 const_offset += nir_intrinsic_component(instr) * component_stride;
3148
3149 /* offset should be interpreted in relation to the base, so the instruction effectively reads/writes another input/output when it has an offset */
3150 nir_src *off_src = nir_get_io_offset_src(instr);
3151 return offset_add_from_nir(ctx, std::make_pair(Temp(), const_offset), off_src, 4u * base_stride);
3152 }
3153
3154 std::pair<Temp, unsigned> get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned stride = 1u)
3155 {
3156 return get_intrinsic_io_basic_offset(ctx, instr, stride, stride);
3157 }
3158
3159 Temp get_tess_rel_patch_id(isel_context *ctx)
3160 {
3161 Builder bld(ctx->program, ctx->block);
3162
3163 switch (ctx->shader->info.stage) {
3164 case MESA_SHADER_TESS_CTRL:
3165 return bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffu),
3166 get_arg(ctx, ctx->args->ac.tcs_rel_ids));
3167 case MESA_SHADER_TESS_EVAL:
3168 return get_arg(ctx, ctx->args->tes_rel_patch_id);
3169 default:
3170 unreachable("Unsupported stage in get_tess_rel_patch_id");
3171 }
3172 }
3173
3174 std::pair<Temp, unsigned> get_tcs_per_vertex_input_lds_offset(isel_context *ctx, nir_intrinsic_instr *instr)
3175 {
3176 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3177 Builder bld(ctx->program, ctx->block);
3178
3179 uint32_t tcs_in_patch_stride = ctx->args->options->key.tcs.input_vertices * ctx->tcs_num_inputs * 4;
3180 uint32_t tcs_in_vertex_stride = ctx->tcs_num_inputs * 4;
3181
3182 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr);
3183
3184 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
3185 offs = offset_add_from_nir(ctx, offs, vertex_index_src, tcs_in_vertex_stride);
3186
3187 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3188 Temp tcs_in_current_patch_offset = bld.v_mul24_imm(bld.def(v1), rel_patch_id, tcs_in_patch_stride);
3189 offs = offset_add(ctx, offs, std::make_pair(tcs_in_current_patch_offset, 0));
3190
3191 return offset_mul(ctx, offs, 4u);
3192 }
3193
3194 std::pair<Temp, unsigned> get_tcs_output_lds_offset(isel_context *ctx, nir_intrinsic_instr *instr = nullptr, bool per_vertex = false)
3195 {
3196 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3197 Builder bld(ctx->program, ctx->block);
3198
3199 uint32_t input_patch_size = ctx->args->options->key.tcs.input_vertices * ctx->tcs_num_inputs * 16;
3200 uint32_t num_tcs_outputs = util_last_bit64(ctx->args->shader_info->tcs.outputs_written);
3201 uint32_t num_tcs_patch_outputs = util_last_bit64(ctx->args->shader_info->tcs.patch_outputs_written);
3202 uint32_t output_vertex_size = num_tcs_outputs * 16;
3203 uint32_t pervertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
3204 uint32_t output_patch_stride = pervertex_output_patch_size + num_tcs_patch_outputs * 16;
3205
3206 std::pair<Temp, unsigned> offs = instr
3207 ? get_intrinsic_io_basic_offset(ctx, instr, 4u)
3208 : std::make_pair(Temp(), 0u);
3209
3210 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3211 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, output_patch_stride);
3212
3213 if (per_vertex) {
3214 assert(instr);
3215
3216 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
3217 offs = offset_add_from_nir(ctx, offs, vertex_index_src, output_vertex_size);
3218
3219 uint32_t output_patch0_offset = (input_patch_size * ctx->tcs_num_patches);
3220 offs = offset_add(ctx, offs, std::make_pair(patch_off, output_patch0_offset));
3221 } else {
3222 uint32_t output_patch0_patch_data_offset = (input_patch_size * ctx->tcs_num_patches + pervertex_output_patch_size);
3223 offs = offset_add(ctx, offs, std::make_pair(patch_off, output_patch0_patch_data_offset));
3224 }
3225
3226 return offs;
3227 }
3228
3229 std::pair<Temp, unsigned> get_tcs_per_vertex_output_vmem_offset(isel_context *ctx, nir_intrinsic_instr *instr)
3230 {
3231 Builder bld(ctx->program, ctx->block);
3232
3233 unsigned vertices_per_patch = ctx->shader->info.tess.tcs_vertices_out;
3234 unsigned attr_stride = vertices_per_patch * ctx->tcs_num_patches;
3235
3236 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, attr_stride * 4u, 4u);
3237
3238 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3239 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, vertices_per_patch * 16u);
3240 offs = offset_add(ctx, offs, std::make_pair(patch_off, 0u));
3241
3242 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
3243 offs = offset_add_from_nir(ctx, offs, vertex_index_src, 16u);
3244
3245 return offs;
3246 }
3247
3248 std::pair<Temp, unsigned> get_tcs_per_patch_output_vmem_offset(isel_context *ctx, nir_intrinsic_instr *instr = nullptr, unsigned const_base_offset = 0u)
3249 {
3250 Builder bld(ctx->program, ctx->block);
3251
3252 unsigned num_tcs_outputs = ctx->shader->info.stage == MESA_SHADER_TESS_CTRL
3253 ? util_last_bit64(ctx->args->shader_info->tcs.outputs_written)
3254 : ctx->args->options->key.tes.tcs_num_outputs;
3255
3256 unsigned output_vertex_size = num_tcs_outputs * 16;
3257 unsigned per_vertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
3258 unsigned per_patch_data_offset = per_vertex_output_patch_size * ctx->tcs_num_patches;
3259 unsigned attr_stride = ctx->tcs_num_patches;
3260
3261 std::pair<Temp, unsigned> offs = instr
3262 ? get_intrinsic_io_basic_offset(ctx, instr, attr_stride * 4u, 4u)
3263 : std::make_pair(Temp(), 0u);
3264
3265 if (const_base_offset)
3266 offs.second += const_base_offset * attr_stride;
3267
3268 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3269 Temp patch_off = bld.v_mul_imm(bld.def(v1), rel_patch_id, 16u);
3270 offs = offset_add(ctx, offs, std::make_pair(patch_off, per_patch_data_offset));
3271
3272 return offs;
3273 }
3274
3275 void visit_store_ls_or_es_output(isel_context *ctx, nir_intrinsic_instr *instr)
3276 {
3277 Builder bld(ctx->program, ctx->block);
3278
3279 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, 4u);
3280 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
3281 unsigned write_mask = nir_intrinsic_write_mask(instr);
3282 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8u;
3283
3284 if (ctx->stage == vertex_es) {
3285 /* GFX6-8: ES stage is not merged into GS, data is passed from ES to GS in VMEM. */
3286 Temp esgs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_VS * 16u));
3287 Temp es2gs_offset = get_arg(ctx, ctx->args->es2gs_offset);
3288 store_vmem_mubuf(ctx, src, esgs_ring, offs.first, es2gs_offset, offs.second, elem_size_bytes, write_mask, false, true, true);
3289 } else {
3290 Temp lds_base;
3291
3292 if (ctx->stage == vertex_geometry_gs) {
3293 /* GFX9+: ES stage is merged into GS, data is passed between them using LDS. */
3294 unsigned itemsize = ctx->program->info->vs.es_info.esgs_itemsize;
3295 Temp thread_id = emit_mbcnt(ctx, bld.def(v1));
3296 Temp wave_idx = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(ctx, ctx->args->merged_wave_info), Operand(4u << 16 | 24));
3297 Temp vertex_idx = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), thread_id,
3298 bld.v_mul24_imm(bld.def(v1), as_vgpr(ctx, wave_idx), ctx->program->wave_size));
3299 lds_base = bld.v_mul24_imm(bld.def(v1), vertex_idx, itemsize);
3300 } else if (ctx->stage == vertex_ls || ctx->stage == vertex_tess_control_hs) {
3301 /* GFX6-8: VS runs on LS stage when tessellation is used, but LS shares LDS space with HS.
3302 * GFX9+: LS is merged into HS, but still uses the same LDS layout.
3303 */
3304 unsigned num_tcs_inputs = util_last_bit64(ctx->args->shader_info->vs.ls_outputs_written);
3305 Temp vertex_idx = get_arg(ctx, ctx->args->rel_auto_id);
3306 lds_base = bld.v_mul_imm(bld.def(v1), vertex_idx, num_tcs_inputs * 16u);
3307 } else {
3308 unreachable("Invalid LS or ES stage");
3309 }
3310
3311 offs = offset_add(ctx, offs, std::make_pair(lds_base, 0u));
3312 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
3313 store_lds(ctx, elem_size_bytes, src, write_mask, offs.first, offs.second, lds_align);
3314 }
3315 }
3316
3317 void visit_store_tcs_output(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
3318 {
3319 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
3320 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3321
3322 Builder bld(ctx->program, ctx->block);
3323
3324 Temp store_val = get_ssa_temp(ctx, instr->src[0].ssa);
3325 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
3326 unsigned write_mask = nir_intrinsic_write_mask(instr);
3327
3328 /* TODO: Only write to VMEM if the output is per-vertex or it's per-patch non tess factor */
3329 bool write_to_vmem = true;
3330 /* TODO: Only write to LDS if the output is read by the shader, or it's per-patch tess factor */
3331 bool write_to_lds = true;
3332
3333 if (write_to_vmem) {
3334 std::pair<Temp, unsigned> vmem_offs = per_vertex
3335 ? get_tcs_per_vertex_output_vmem_offset(ctx, instr)
3336 : get_tcs_per_patch_output_vmem_offset(ctx, instr);
3337
3338 Temp hs_ring_tess_offchip = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
3339 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
3340 store_vmem_mubuf(ctx, store_val, hs_ring_tess_offchip, vmem_offs.first, oc_lds, vmem_offs.second, elem_size_bytes, write_mask, false, false);
3341 }
3342
3343 if (write_to_lds) {
3344 std::pair<Temp, unsigned> lds_offs = get_tcs_output_lds_offset(ctx, instr, per_vertex);
3345 unsigned lds_align = calculate_lds_alignment(ctx, lds_offs.second);
3346 store_lds(ctx, elem_size_bytes, store_val, write_mask, lds_offs.first, lds_offs.second, lds_align);
3347 }
3348 }
3349
3350 void visit_load_tcs_output(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
3351 {
3352 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
3353 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3354
3355 Builder bld(ctx->program, ctx->block);
3356
3357 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3358 std::pair<Temp, unsigned> lds_offs = get_tcs_output_lds_offset(ctx, instr, per_vertex);
3359 unsigned lds_align = calculate_lds_alignment(ctx, lds_offs.second);
3360 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
3361
3362 load_lds(ctx, elem_size_bytes, dst, lds_offs.first, lds_offs.second, lds_align);
3363 }
3364
3365 void visit_store_output(isel_context *ctx, nir_intrinsic_instr *instr)
3366 {
3367 if (ctx->stage == vertex_vs ||
3368 ctx->stage == tess_eval_vs ||
3369 ctx->stage == fragment_fs ||
3370 ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
3371 unsigned write_mask = nir_intrinsic_write_mask(instr);
3372 unsigned component = nir_intrinsic_component(instr);
3373 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
3374 unsigned idx = nir_intrinsic_base(instr) + component;
3375
3376 nir_instr *off_instr = instr->src[1].ssa->parent_instr;
3377 if (off_instr->type != nir_instr_type_load_const) {
3378 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
3379 nir_print_instr(off_instr, stderr);
3380 fprintf(stderr, "\n");
3381 }
3382 idx += nir_instr_as_load_const(off_instr)->value[0].u32 * 4u;
3383
3384 if (instr->src[0].ssa->bit_size == 64)
3385 write_mask = widen_mask(write_mask, 2);
3386
3387 for (unsigned i = 0; i < 8; ++i) {
3388 if (write_mask & (1 << i)) {
3389 ctx->outputs.mask[idx / 4u] |= 1 << (idx % 4u);
3390 ctx->outputs.outputs[idx / 4u][idx % 4u] = emit_extract_vector(ctx, src, i, v1);
3391 }
3392 idx++;
3393 }
3394 } else if (ctx->stage == vertex_es ||
3395 ctx->stage == vertex_ls ||
3396 (ctx->stage == vertex_tess_control_hs && ctx->shader->info.stage == MESA_SHADER_VERTEX) ||
3397 (ctx->stage == vertex_geometry_gs && ctx->shader->info.stage == MESA_SHADER_VERTEX)) {
3398 visit_store_ls_or_es_output(ctx, instr);
3399 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
3400 visit_store_tcs_output(ctx, instr, false);
3401 } else {
3402 unreachable("Shader stage not implemented");
3403 }
3404 }
3405
3406 void visit_load_output(isel_context *ctx, nir_intrinsic_instr *instr)
3407 {
3408 visit_load_tcs_output(ctx, instr, false);
3409 }
3410
3411 void emit_interp_instr(isel_context *ctx, unsigned idx, unsigned component, Temp src, Temp dst, Temp prim_mask)
3412 {
3413 Temp coord1 = emit_extract_vector(ctx, src, 0, v1);
3414 Temp coord2 = emit_extract_vector(ctx, src, 1, v1);
3415
3416 Builder bld(ctx->program, ctx->block);
3417 Temp tmp = bld.vintrp(aco_opcode::v_interp_p1_f32, bld.def(v1), coord1, bld.m0(prim_mask), idx, component);
3418 bld.vintrp(aco_opcode::v_interp_p2_f32, Definition(dst), coord2, bld.m0(prim_mask), tmp, idx, component);
3419 }
3420
3421 void emit_load_frag_coord(isel_context *ctx, Temp dst, unsigned num_components)
3422 {
3423 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1));
3424 for (unsigned i = 0; i < num_components; i++)
3425 vec->operands[i] = Operand(get_arg(ctx, ctx->args->ac.frag_pos[i]));
3426 if (G_0286CC_POS_W_FLOAT_ENA(ctx->program->config->spi_ps_input_ena)) {
3427 assert(num_components == 4);
3428 Builder bld(ctx->program, ctx->block);
3429 vec->operands[3] = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), get_arg(ctx, ctx->args->ac.frag_pos[3]));
3430 }
3431
3432 for (Operand& op : vec->operands)
3433 op = op.isUndefined() ? Operand(0u) : op;
3434
3435 vec->definitions[0] = Definition(dst);
3436 ctx->block->instructions.emplace_back(std::move(vec));
3437 emit_split_vector(ctx, dst, num_components);
3438 return;
3439 }
3440
3441 void visit_load_interpolated_input(isel_context *ctx, nir_intrinsic_instr *instr)
3442 {
3443 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3444 Temp coords = get_ssa_temp(ctx, instr->src[0].ssa);
3445 unsigned idx = nir_intrinsic_base(instr);
3446 unsigned component = nir_intrinsic_component(instr);
3447 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
3448
3449 nir_const_value* offset = nir_src_as_const_value(instr->src[1]);
3450 if (offset) {
3451 assert(offset->u32 == 0);
3452 } else {
3453 /* the lower 15bit of the prim_mask contain the offset into LDS
3454 * while the upper bits contain the number of prims */
3455 Temp offset_src = get_ssa_temp(ctx, instr->src[1].ssa);
3456 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
3457 Builder bld(ctx->program, ctx->block);
3458 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
3459 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
3460 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
3461 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
3462 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
3463 }
3464
3465 if (instr->dest.ssa.num_components == 1) {
3466 emit_interp_instr(ctx, idx, component, coords, dst, prim_mask);
3467 } else {
3468 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.ssa.num_components, 1));
3469 for (unsigned i = 0; i < instr->dest.ssa.num_components; i++)
3470 {
3471 Temp tmp = {ctx->program->allocateId(), v1};
3472 emit_interp_instr(ctx, idx, component+i, coords, tmp, prim_mask);
3473 vec->operands[i] = Operand(tmp);
3474 }
3475 vec->definitions[0] = Definition(dst);
3476 ctx->block->instructions.emplace_back(std::move(vec));
3477 }
3478 }
3479
3480 bool check_vertex_fetch_size(isel_context *ctx, const ac_data_format_info *vtx_info,
3481 unsigned offset, unsigned stride, unsigned channels)
3482 {
3483 unsigned vertex_byte_size = vtx_info->chan_byte_size * channels;
3484 if (vtx_info->chan_byte_size != 4 && channels == 3)
3485 return false;
3486 return (ctx->options->chip_class != GFX6 && ctx->options->chip_class != GFX10) ||
3487 (offset % vertex_byte_size == 0 && stride % vertex_byte_size == 0);
3488 }
3489
3490 uint8_t get_fetch_data_format(isel_context *ctx, const ac_data_format_info *vtx_info,
3491 unsigned offset, unsigned stride, unsigned *channels)
3492 {
3493 if (!vtx_info->chan_byte_size) {
3494 *channels = vtx_info->num_channels;
3495 return vtx_info->chan_format;
3496 }
3497
3498 unsigned num_channels = *channels;
3499 if (!check_vertex_fetch_size(ctx, vtx_info, offset, stride, *channels)) {
3500 unsigned new_channels = num_channels + 1;
3501 /* first, assume more loads is worse and try using a larger data format */
3502 while (new_channels <= 4 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels)) {
3503 new_channels++;
3504 /* don't make the attribute potentially out-of-bounds */
3505 if (offset + new_channels * vtx_info->chan_byte_size > stride)
3506 new_channels = 5;
3507 }
3508
3509 if (new_channels == 5) {
3510 /* then try decreasing load size (at the cost of more loads) */
3511 new_channels = *channels;
3512 while (new_channels > 1 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels))
3513 new_channels--;
3514 }
3515
3516 if (new_channels < *channels)
3517 *channels = new_channels;
3518 num_channels = new_channels;
3519 }
3520
3521 switch (vtx_info->chan_format) {
3522 case V_008F0C_BUF_DATA_FORMAT_8:
3523 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_8, V_008F0C_BUF_DATA_FORMAT_8_8,
3524 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_8_8_8_8}[num_channels - 1];
3525 case V_008F0C_BUF_DATA_FORMAT_16:
3526 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_16, V_008F0C_BUF_DATA_FORMAT_16_16,
3527 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_16_16_16_16}[num_channels - 1];
3528 case V_008F0C_BUF_DATA_FORMAT_32:
3529 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_32, V_008F0C_BUF_DATA_FORMAT_32_32,
3530 V_008F0C_BUF_DATA_FORMAT_32_32_32, V_008F0C_BUF_DATA_FORMAT_32_32_32_32}[num_channels - 1];
3531 }
3532 unreachable("shouldn't reach here");
3533 return V_008F0C_BUF_DATA_FORMAT_INVALID;
3534 }
3535
3536 /* For 2_10_10_10 formats the alpha is handled as unsigned by pre-vega HW.
3537 * so we may need to fix it up. */
3538 Temp adjust_vertex_fetch_alpha(isel_context *ctx, unsigned adjustment, Temp alpha)
3539 {
3540 Builder bld(ctx->program, ctx->block);
3541
3542 if (adjustment == RADV_ALPHA_ADJUST_SSCALED)
3543 alpha = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), alpha);
3544
3545 /* For the integer-like cases, do a natural sign extension.
3546 *
3547 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
3548 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
3549 * exponent.
3550 */
3551 alpha = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(adjustment == RADV_ALPHA_ADJUST_SNORM ? 7u : 30u), alpha);
3552 alpha = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(30u), alpha);
3553
3554 /* Convert back to the right type. */
3555 if (adjustment == RADV_ALPHA_ADJUST_SNORM) {
3556 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
3557 Temp clamp = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0xbf800000u), alpha);
3558 alpha = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xbf800000u), alpha, clamp);
3559 } else if (adjustment == RADV_ALPHA_ADJUST_SSCALED) {
3560 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
3561 }
3562
3563 return alpha;
3564 }
3565
3566 void visit_load_input(isel_context *ctx, nir_intrinsic_instr *instr)
3567 {
3568 Builder bld(ctx->program, ctx->block);
3569 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3570 if (ctx->shader->info.stage == MESA_SHADER_VERTEX) {
3571
3572 nir_instr *off_instr = instr->src[0].ssa->parent_instr;
3573 if (off_instr->type != nir_instr_type_load_const) {
3574 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
3575 nir_print_instr(off_instr, stderr);
3576 fprintf(stderr, "\n");
3577 }
3578 uint32_t offset = nir_instr_as_load_const(off_instr)->value[0].u32;
3579
3580 Temp vertex_buffers = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->vertex_buffers));
3581
3582 unsigned location = nir_intrinsic_base(instr) / 4 - VERT_ATTRIB_GENERIC0 + offset;
3583 unsigned component = nir_intrinsic_component(instr);
3584 unsigned attrib_binding = ctx->options->key.vs.vertex_attribute_bindings[location];
3585 uint32_t attrib_offset = ctx->options->key.vs.vertex_attribute_offsets[location];
3586 uint32_t attrib_stride = ctx->options->key.vs.vertex_attribute_strides[location];
3587 unsigned attrib_format = ctx->options->key.vs.vertex_attribute_formats[location];
3588
3589 unsigned dfmt = attrib_format & 0xf;
3590 unsigned nfmt = (attrib_format >> 4) & 0x7;
3591 const struct ac_data_format_info *vtx_info = ac_get_data_format_info(dfmt);
3592
3593 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa) << component;
3594 unsigned num_channels = MIN2(util_last_bit(mask), vtx_info->num_channels);
3595 unsigned alpha_adjust = (ctx->options->key.vs.alpha_adjust >> (location * 2)) & 3;
3596 bool post_shuffle = ctx->options->key.vs.post_shuffle & (1 << location);
3597 if (post_shuffle)
3598 num_channels = MAX2(num_channels, 3);
3599
3600 Operand off = bld.copy(bld.def(s1), Operand(attrib_binding * 16u));
3601 Temp list = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), vertex_buffers, off);
3602
3603 Temp index;
3604 if (ctx->options->key.vs.instance_rate_inputs & (1u << location)) {
3605 uint32_t divisor = ctx->options->key.vs.instance_rate_divisors[location];
3606 Temp start_instance = get_arg(ctx, ctx->args->ac.start_instance);
3607 if (divisor) {
3608 Temp instance_id = get_arg(ctx, ctx->args->ac.instance_id);
3609 if (divisor != 1) {
3610 Temp divided = bld.tmp(v1);
3611 emit_v_div_u32(ctx, divided, as_vgpr(ctx, instance_id), divisor);
3612 index = bld.vadd32(bld.def(v1), start_instance, divided);
3613 } else {
3614 index = bld.vadd32(bld.def(v1), start_instance, instance_id);
3615 }
3616 } else {
3617 index = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), start_instance);
3618 }
3619 } else {
3620 index = bld.vadd32(bld.def(v1),
3621 get_arg(ctx, ctx->args->ac.base_vertex),
3622 get_arg(ctx, ctx->args->ac.vertex_id));
3623 }
3624
3625 Temp channels[num_channels];
3626 unsigned channel_start = 0;
3627 bool direct_fetch = false;
3628
3629 /* skip unused channels at the start */
3630 if (vtx_info->chan_byte_size && !post_shuffle) {
3631 channel_start = ffs(mask) - 1;
3632 for (unsigned i = 0; i < channel_start; i++)
3633 channels[i] = Temp(0, s1);
3634 } else if (vtx_info->chan_byte_size && post_shuffle && !(mask & 0x8)) {
3635 num_channels = 3 - (ffs(mask) - 1);
3636 }
3637
3638 /* load channels */
3639 while (channel_start < num_channels) {
3640 unsigned fetch_size = num_channels - channel_start;
3641 unsigned fetch_offset = attrib_offset + channel_start * vtx_info->chan_byte_size;
3642 bool expanded = false;
3643
3644 /* use MUBUF when possible to avoid possible alignment issues */
3645 /* TODO: we could use SDWA to unpack 8/16-bit attributes without extra instructions */
3646 bool use_mubuf = (nfmt == V_008F0C_BUF_NUM_FORMAT_FLOAT ||
3647 nfmt == V_008F0C_BUF_NUM_FORMAT_UINT ||
3648 nfmt == V_008F0C_BUF_NUM_FORMAT_SINT) &&
3649 vtx_info->chan_byte_size == 4;
3650 unsigned fetch_dfmt = V_008F0C_BUF_DATA_FORMAT_INVALID;
3651 if (!use_mubuf) {
3652 fetch_dfmt = get_fetch_data_format(ctx, vtx_info, fetch_offset, attrib_stride, &fetch_size);
3653 } else {
3654 if (fetch_size == 3 && ctx->options->chip_class == GFX6) {
3655 /* GFX6 only supports loading vec3 with MTBUF, expand to vec4. */
3656 fetch_size = 4;
3657 expanded = true;
3658 }
3659 }
3660
3661 Temp fetch_index = index;
3662 if (attrib_stride != 0 && fetch_offset > attrib_stride) {
3663 fetch_index = bld.vadd32(bld.def(v1), Operand(fetch_offset / attrib_stride), fetch_index);
3664 fetch_offset = fetch_offset % attrib_stride;
3665 }
3666
3667 Operand soffset(0u);
3668 if (fetch_offset >= 4096) {
3669 soffset = bld.copy(bld.def(s1), Operand(fetch_offset / 4096 * 4096));
3670 fetch_offset %= 4096;
3671 }
3672
3673 aco_opcode opcode;
3674 switch (fetch_size) {
3675 case 1:
3676 opcode = use_mubuf ? aco_opcode::buffer_load_dword : aco_opcode::tbuffer_load_format_x;
3677 break;
3678 case 2:
3679 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx2 : aco_opcode::tbuffer_load_format_xy;
3680 break;
3681 case 3:
3682 assert(ctx->options->chip_class >= GFX7 ||
3683 (!use_mubuf && ctx->options->chip_class == GFX6));
3684 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx3 : aco_opcode::tbuffer_load_format_xyz;
3685 break;
3686 case 4:
3687 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx4 : aco_opcode::tbuffer_load_format_xyzw;
3688 break;
3689 default:
3690 unreachable("Unimplemented load_input vector size");
3691 }
3692
3693 Temp fetch_dst;
3694 if (channel_start == 0 && fetch_size == dst.size() && !post_shuffle &&
3695 !expanded && (alpha_adjust == RADV_ALPHA_ADJUST_NONE ||
3696 num_channels <= 3)) {
3697 direct_fetch = true;
3698 fetch_dst = dst;
3699 } else {
3700 fetch_dst = bld.tmp(RegType::vgpr, fetch_size);
3701 }
3702
3703 if (use_mubuf) {
3704 Instruction *mubuf = bld.mubuf(opcode,
3705 Definition(fetch_dst), list, fetch_index, soffset,
3706 fetch_offset, false, true).instr;
3707 static_cast<MUBUF_instruction*>(mubuf)->can_reorder = true;
3708 } else {
3709 Instruction *mtbuf = bld.mtbuf(opcode,
3710 Definition(fetch_dst), list, fetch_index, soffset,
3711 fetch_dfmt, nfmt, fetch_offset, false, true).instr;
3712 static_cast<MTBUF_instruction*>(mtbuf)->can_reorder = true;
3713 }
3714
3715 emit_split_vector(ctx, fetch_dst, fetch_dst.size());
3716
3717 if (fetch_size == 1) {
3718 channels[channel_start] = fetch_dst;
3719 } else {
3720 for (unsigned i = 0; i < MIN2(fetch_size, num_channels - channel_start); i++)
3721 channels[channel_start + i] = emit_extract_vector(ctx, fetch_dst, i, v1);
3722 }
3723
3724 channel_start += fetch_size;
3725 }
3726
3727 if (!direct_fetch) {
3728 bool is_float = nfmt != V_008F0C_BUF_NUM_FORMAT_UINT &&
3729 nfmt != V_008F0C_BUF_NUM_FORMAT_SINT;
3730
3731 static const unsigned swizzle_normal[4] = {0, 1, 2, 3};
3732 static const unsigned swizzle_post_shuffle[4] = {2, 1, 0, 3};
3733 const unsigned *swizzle = post_shuffle ? swizzle_post_shuffle : swizzle_normal;
3734
3735 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
3736 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
3737 unsigned num_temp = 0;
3738 for (unsigned i = 0; i < dst.size(); i++) {
3739 unsigned idx = i + component;
3740 if (swizzle[idx] < num_channels && channels[swizzle[idx]].id()) {
3741 Temp channel = channels[swizzle[idx]];
3742 if (idx == 3 && alpha_adjust != RADV_ALPHA_ADJUST_NONE)
3743 channel = adjust_vertex_fetch_alpha(ctx, alpha_adjust, channel);
3744 vec->operands[i] = Operand(channel);
3745
3746 num_temp++;
3747 elems[i] = channel;
3748 } else if (is_float && idx == 3) {
3749 vec->operands[i] = Operand(0x3f800000u);
3750 } else if (!is_float && idx == 3) {
3751 vec->operands[i] = Operand(1u);
3752 } else {
3753 vec->operands[i] = Operand(0u);
3754 }
3755 }
3756 vec->definitions[0] = Definition(dst);
3757 ctx->block->instructions.emplace_back(std::move(vec));
3758 emit_split_vector(ctx, dst, dst.size());
3759
3760 if (num_temp == dst.size())
3761 ctx->allocated_vec.emplace(dst.id(), elems);
3762 }
3763 } else if (ctx->shader->info.stage == MESA_SHADER_FRAGMENT) {
3764 unsigned offset_idx = instr->intrinsic == nir_intrinsic_load_input ? 0 : 1;
3765 nir_instr *off_instr = instr->src[offset_idx].ssa->parent_instr;
3766 if (off_instr->type != nir_instr_type_load_const ||
3767 nir_instr_as_load_const(off_instr)->value[0].u32 != 0) {
3768 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
3769 nir_print_instr(off_instr, stderr);
3770 fprintf(stderr, "\n");
3771 }
3772
3773 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
3774 nir_const_value* offset = nir_src_as_const_value(instr->src[offset_idx]);
3775 if (offset) {
3776 assert(offset->u32 == 0);
3777 } else {
3778 /* the lower 15bit of the prim_mask contain the offset into LDS
3779 * while the upper bits contain the number of prims */
3780 Temp offset_src = get_ssa_temp(ctx, instr->src[offset_idx].ssa);
3781 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
3782 Builder bld(ctx->program, ctx->block);
3783 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
3784 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
3785 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
3786 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
3787 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
3788 }
3789
3790 unsigned idx = nir_intrinsic_base(instr);
3791 unsigned component = nir_intrinsic_component(instr);
3792 unsigned vertex_id = 2; /* P0 */
3793
3794 if (instr->intrinsic == nir_intrinsic_load_input_vertex) {
3795 nir_const_value* src0 = nir_src_as_const_value(instr->src[0]);
3796 switch (src0->u32) {
3797 case 0:
3798 vertex_id = 2; /* P0 */
3799 break;
3800 case 1:
3801 vertex_id = 0; /* P10 */
3802 break;
3803 case 2:
3804 vertex_id = 1; /* P20 */
3805 break;
3806 default:
3807 unreachable("invalid vertex index");
3808 }
3809 }
3810
3811 if (dst.size() == 1) {
3812 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(dst), Operand(vertex_id), bld.m0(prim_mask), idx, component);
3813 } else {
3814 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
3815 for (unsigned i = 0; i < dst.size(); i++)
3816 vec->operands[i] = bld.vintrp(aco_opcode::v_interp_mov_f32, bld.def(v1), Operand(vertex_id), bld.m0(prim_mask), idx, component + i);
3817 vec->definitions[0] = Definition(dst);
3818 bld.insert(std::move(vec));
3819 }
3820
3821 } else {
3822 unreachable("Shader stage not implemented");
3823 }
3824 }
3825
3826 std::pair<Temp, unsigned> get_gs_per_vertex_input_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned base_stride = 1u)
3827 {
3828 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
3829
3830 Builder bld(ctx->program, ctx->block);
3831 nir_src *vertex_src = nir_get_io_vertex_index_src(instr);
3832 Temp vertex_offset;
3833
3834 if (!nir_src_is_const(*vertex_src)) {
3835 /* better code could be created, but this case probably doesn't happen
3836 * much in practice */
3837 Temp indirect_vertex = as_vgpr(ctx, get_ssa_temp(ctx, vertex_src->ssa));
3838 for (unsigned i = 0; i < ctx->shader->info.gs.vertices_in; i++) {
3839 Temp elem;
3840
3841 if (ctx->stage == vertex_geometry_gs) {
3842 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i / 2u * 2u]);
3843 if (i % 2u)
3844 elem = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), elem);
3845 } else {
3846 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i]);
3847 }
3848
3849 if (vertex_offset.id()) {
3850 Temp cond = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)),
3851 Operand(i), indirect_vertex);
3852 vertex_offset = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), vertex_offset, elem, cond);
3853 } else {
3854 vertex_offset = elem;
3855 }
3856 }
3857
3858 if (ctx->stage == vertex_geometry_gs)
3859 vertex_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu), vertex_offset);
3860 } else {
3861 unsigned vertex = nir_src_as_uint(*vertex_src);
3862 if (ctx->stage == vertex_geometry_gs)
3863 vertex_offset = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
3864 get_arg(ctx, ctx->args->gs_vtx_offset[vertex / 2u * 2u]),
3865 Operand((vertex % 2u) * 16u), Operand(16u));
3866 else
3867 vertex_offset = get_arg(ctx, ctx->args->gs_vtx_offset[vertex]);
3868 }
3869
3870 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, base_stride);
3871 offs = offset_add(ctx, offs, std::make_pair(vertex_offset, 0u));
3872 return offset_mul(ctx, offs, 4u);
3873 }
3874
3875 void visit_load_gs_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
3876 {
3877 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
3878
3879 Builder bld(ctx->program, ctx->block);
3880 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3881 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
3882
3883 if (ctx->stage == geometry_gs) {
3884 std::pair<Temp, unsigned> offs = get_gs_per_vertex_input_offset(ctx, instr, ctx->program->wave_size);
3885 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_GS * 16u));
3886 load_vmem_mubuf(ctx, dst, ring, offs.first, Temp(), offs.second, elem_size_bytes, instr->dest.ssa.num_components, 4u * ctx->program->wave_size, false, true);
3887 } else if (ctx->stage == vertex_geometry_gs) {
3888 std::pair<Temp, unsigned> offs = get_gs_per_vertex_input_offset(ctx, instr);
3889 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
3890 load_lds(ctx, elem_size_bytes, dst, offs.first, offs.second, lds_align);
3891 } else {
3892 unreachable("Unsupported GS stage.");
3893 }
3894 }
3895
3896 void visit_load_tcs_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
3897 {
3898 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3899
3900 Builder bld(ctx->program, ctx->block);
3901 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3902 std::pair<Temp, unsigned> offs = get_tcs_per_vertex_input_lds_offset(ctx, instr);
3903 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
3904 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
3905
3906 load_lds(ctx, elem_size_bytes, dst, offs.first, offs.second, lds_align);
3907 }
3908
3909 void visit_load_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
3910 {
3911 switch (ctx->shader->info.stage) {
3912 case MESA_SHADER_GEOMETRY:
3913 visit_load_gs_per_vertex_input(ctx, instr);
3914 break;
3915 case MESA_SHADER_TESS_CTRL:
3916 visit_load_tcs_per_vertex_input(ctx, instr);
3917 break;
3918 default:
3919 unreachable("Unimplemented shader stage");
3920 }
3921 }
3922
3923 void visit_load_per_vertex_output(isel_context *ctx, nir_intrinsic_instr *instr)
3924 {
3925 visit_load_tcs_output(ctx, instr, true);
3926 }
3927
3928 void visit_store_per_vertex_output(isel_context *ctx, nir_intrinsic_instr *instr)
3929 {
3930 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
3931 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3932
3933 visit_store_tcs_output(ctx, instr, true);
3934 }
3935
3936 void visit_load_tess_coord(isel_context *ctx, nir_intrinsic_instr *instr)
3937 {
3938 assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
3939
3940 Builder bld(ctx->program, ctx->block);
3941 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3942
3943 Operand tes_u(get_arg(ctx, ctx->args->tes_u));
3944 Operand tes_v(get_arg(ctx, ctx->args->tes_v));
3945 Operand tes_w(0u);
3946
3947 if (ctx->shader->info.tess.primitive_mode == GL_TRIANGLES) {
3948 Temp tmp = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), tes_u, tes_v);
3949 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0x3f800000u /* 1.0f */), tmp);
3950 tes_w = Operand(tmp);
3951 }
3952
3953 Temp tess_coord = bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tes_u, tes_v, tes_w);
3954 emit_split_vector(ctx, tess_coord, 3);
3955 }
3956
3957 Temp load_desc_ptr(isel_context *ctx, unsigned desc_set)
3958 {
3959 if (ctx->program->info->need_indirect_descriptor_sets) {
3960 Builder bld(ctx->program, ctx->block);
3961 Temp ptr64 = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->descriptor_sets[0]));
3962 Operand off = bld.copy(bld.def(s1), Operand(desc_set << 2));
3963 return bld.smem(aco_opcode::s_load_dword, bld.def(s1), ptr64, off);//, false, false, false);
3964 }
3965
3966 return get_arg(ctx, ctx->args->descriptor_sets[desc_set]);
3967 }
3968
3969
3970 void visit_load_resource(isel_context *ctx, nir_intrinsic_instr *instr)
3971 {
3972 Builder bld(ctx->program, ctx->block);
3973 Temp index = get_ssa_temp(ctx, instr->src[0].ssa);
3974 if (!ctx->divergent_vals[instr->dest.ssa.index])
3975 index = bld.as_uniform(index);
3976 unsigned desc_set = nir_intrinsic_desc_set(instr);
3977 unsigned binding = nir_intrinsic_binding(instr);
3978
3979 Temp desc_ptr;
3980 radv_pipeline_layout *pipeline_layout = ctx->options->layout;
3981 radv_descriptor_set_layout *layout = pipeline_layout->set[desc_set].layout;
3982 unsigned offset = layout->binding[binding].offset;
3983 unsigned stride;
3984 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
3985 layout->binding[binding].type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
3986 unsigned idx = pipeline_layout->set[desc_set].dynamic_offset_start + layout->binding[binding].dynamic_offset_offset;
3987 desc_ptr = get_arg(ctx, ctx->args->ac.push_constants);
3988 offset = pipeline_layout->push_constant_size + 16 * idx;
3989 stride = 16;
3990 } else {
3991 desc_ptr = load_desc_ptr(ctx, desc_set);
3992 stride = layout->binding[binding].size;
3993 }
3994
3995 nir_const_value* nir_const_index = nir_src_as_const_value(instr->src[0]);
3996 unsigned const_index = nir_const_index ? nir_const_index->u32 : 0;
3997 if (stride != 1) {
3998 if (nir_const_index) {
3999 const_index = const_index * stride;
4000 } else if (index.type() == RegType::vgpr) {
4001 bool index24bit = layout->binding[binding].array_size <= 0x1000000;
4002 index = bld.v_mul_imm(bld.def(v1), index, stride, index24bit);
4003 } else {
4004 index = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), Operand(index));
4005 }
4006 }
4007 if (offset) {
4008 if (nir_const_index) {
4009 const_index = const_index + offset;
4010 } else if (index.type() == RegType::vgpr) {
4011 index = bld.vadd32(bld.def(v1), Operand(offset), index);
4012 } else {
4013 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), Operand(index));
4014 }
4015 }
4016
4017 if (nir_const_index && const_index == 0) {
4018 index = desc_ptr;
4019 } else if (index.type() == RegType::vgpr) {
4020 index = bld.vadd32(bld.def(v1),
4021 nir_const_index ? Operand(const_index) : Operand(index),
4022 Operand(desc_ptr));
4023 } else {
4024 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
4025 nir_const_index ? Operand(const_index) : Operand(index),
4026 Operand(desc_ptr));
4027 }
4028
4029 bld.copy(Definition(get_ssa_temp(ctx, &instr->dest.ssa)), index);
4030 }
4031
4032 void load_buffer(isel_context *ctx, unsigned num_components, Temp dst,
4033 Temp rsrc, Temp offset, bool glc=false, bool readonly=true)
4034 {
4035 Builder bld(ctx->program, ctx->block);
4036
4037 unsigned num_bytes = dst.size() * 4;
4038 bool dlc = glc && ctx->options->chip_class >= GFX10;
4039
4040 aco_opcode op;
4041 if (dst.type() == RegType::vgpr || (ctx->options->chip_class < GFX8 && !readonly)) {
4042 Operand vaddr = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
4043 Operand soffset = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
4044 unsigned const_offset = 0;
4045
4046 Temp lower = Temp();
4047 if (num_bytes > 16) {
4048 assert(num_components == 3 || num_components == 4);
4049 op = aco_opcode::buffer_load_dwordx4;
4050 lower = bld.tmp(v4);
4051 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
4052 mubuf->definitions[0] = Definition(lower);
4053 mubuf->operands[0] = Operand(rsrc);
4054 mubuf->operands[1] = vaddr;
4055 mubuf->operands[2] = soffset;
4056 mubuf->offen = (offset.type() == RegType::vgpr);
4057 mubuf->glc = glc;
4058 mubuf->dlc = dlc;
4059 mubuf->barrier = readonly ? barrier_none : barrier_buffer;
4060 mubuf->can_reorder = readonly;
4061 bld.insert(std::move(mubuf));
4062 emit_split_vector(ctx, lower, 2);
4063 num_bytes -= 16;
4064 const_offset = 16;
4065 } else if (num_bytes == 12 && ctx->options->chip_class == GFX6) {
4066 /* GFX6 doesn't support loading vec3, expand to vec4. */
4067 num_bytes = 16;
4068 }
4069
4070 switch (num_bytes) {
4071 case 4:
4072 op = aco_opcode::buffer_load_dword;
4073 break;
4074 case 8:
4075 op = aco_opcode::buffer_load_dwordx2;
4076 break;
4077 case 12:
4078 assert(ctx->options->chip_class > GFX6);
4079 op = aco_opcode::buffer_load_dwordx3;
4080 break;
4081 case 16:
4082 op = aco_opcode::buffer_load_dwordx4;
4083 break;
4084 default:
4085 unreachable("Load SSBO not implemented for this size.");
4086 }
4087 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
4088 mubuf->operands[0] = Operand(rsrc);
4089 mubuf->operands[1] = vaddr;
4090 mubuf->operands[2] = soffset;
4091 mubuf->offen = (offset.type() == RegType::vgpr);
4092 mubuf->glc = glc;
4093 mubuf->dlc = dlc;
4094 mubuf->barrier = readonly ? barrier_none : barrier_buffer;
4095 mubuf->can_reorder = readonly;
4096 mubuf->offset = const_offset;
4097 aco_ptr<Instruction> instr = std::move(mubuf);
4098
4099 if (dst.size() > 4) {
4100 assert(lower != Temp());
4101 Temp upper = bld.tmp(RegType::vgpr, dst.size() - lower.size());
4102 instr->definitions[0] = Definition(upper);
4103 bld.insert(std::move(instr));
4104 if (dst.size() == 8)
4105 emit_split_vector(ctx, upper, 2);
4106 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size() / 2, 1));
4107 instr->operands[0] = Operand(emit_extract_vector(ctx, lower, 0, v2));
4108 instr->operands[1] = Operand(emit_extract_vector(ctx, lower, 1, v2));
4109 instr->operands[2] = Operand(emit_extract_vector(ctx, upper, 0, v2));
4110 if (dst.size() == 8)
4111 instr->operands[3] = Operand(emit_extract_vector(ctx, upper, 1, v2));
4112 } else if (dst.size() == 3 && ctx->options->chip_class == GFX6) {
4113 Temp vec = bld.tmp(v4);
4114 instr->definitions[0] = Definition(vec);
4115 bld.insert(std::move(instr));
4116 emit_split_vector(ctx, vec, 4);
4117
4118 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 3, 1));
4119 instr->operands[0] = Operand(emit_extract_vector(ctx, vec, 0, v1));
4120 instr->operands[1] = Operand(emit_extract_vector(ctx, vec, 1, v1));
4121 instr->operands[2] = Operand(emit_extract_vector(ctx, vec, 2, v1));
4122 }
4123
4124 if (dst.type() == RegType::sgpr) {
4125 Temp vec = bld.tmp(RegType::vgpr, dst.size());
4126 instr->definitions[0] = Definition(vec);
4127 bld.insert(std::move(instr));
4128 expand_vector(ctx, vec, dst, num_components, (1 << num_components) - 1);
4129 } else {
4130 instr->definitions[0] = Definition(dst);
4131 bld.insert(std::move(instr));
4132 emit_split_vector(ctx, dst, num_components);
4133 }
4134 } else {
4135 switch (num_bytes) {
4136 case 4:
4137 op = aco_opcode::s_buffer_load_dword;
4138 break;
4139 case 8:
4140 op = aco_opcode::s_buffer_load_dwordx2;
4141 break;
4142 case 12:
4143 case 16:
4144 op = aco_opcode::s_buffer_load_dwordx4;
4145 break;
4146 case 24:
4147 case 32:
4148 op = aco_opcode::s_buffer_load_dwordx8;
4149 break;
4150 default:
4151 unreachable("Load SSBO not implemented for this size.");
4152 }
4153 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
4154 load->operands[0] = Operand(rsrc);
4155 load->operands[1] = Operand(bld.as_uniform(offset));
4156 assert(load->operands[1].getTemp().type() == RegType::sgpr);
4157 load->definitions[0] = Definition(dst);
4158 load->glc = glc;
4159 load->dlc = dlc;
4160 load->barrier = readonly ? barrier_none : barrier_buffer;
4161 load->can_reorder = false; // FIXME: currently, it doesn't seem beneficial due to how our scheduler works
4162 assert(ctx->options->chip_class >= GFX8 || !glc);
4163
4164 /* trim vector */
4165 if (dst.size() == 3) {
4166 Temp vec = bld.tmp(s4);
4167 load->definitions[0] = Definition(vec);
4168 bld.insert(std::move(load));
4169 emit_split_vector(ctx, vec, 4);
4170
4171 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4172 emit_extract_vector(ctx, vec, 0, s1),
4173 emit_extract_vector(ctx, vec, 1, s1),
4174 emit_extract_vector(ctx, vec, 2, s1));
4175 } else if (dst.size() == 6) {
4176 Temp vec = bld.tmp(s8);
4177 load->definitions[0] = Definition(vec);
4178 bld.insert(std::move(load));
4179 emit_split_vector(ctx, vec, 4);
4180
4181 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4182 emit_extract_vector(ctx, vec, 0, s2),
4183 emit_extract_vector(ctx, vec, 1, s2),
4184 emit_extract_vector(ctx, vec, 2, s2));
4185 } else {
4186 bld.insert(std::move(load));
4187 }
4188 emit_split_vector(ctx, dst, num_components);
4189 }
4190 }
4191
4192 void visit_load_ubo(isel_context *ctx, nir_intrinsic_instr *instr)
4193 {
4194 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4195 Temp rsrc = get_ssa_temp(ctx, instr->src[0].ssa);
4196
4197 Builder bld(ctx->program, ctx->block);
4198
4199 nir_intrinsic_instr* idx_instr = nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
4200 unsigned desc_set = nir_intrinsic_desc_set(idx_instr);
4201 unsigned binding = nir_intrinsic_binding(idx_instr);
4202 radv_descriptor_set_layout *layout = ctx->options->layout->set[desc_set].layout;
4203
4204 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
4205 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
4206 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
4207 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
4208 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
4209 if (ctx->options->chip_class >= GFX10) {
4210 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
4211 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
4212 S_008F0C_RESOURCE_LEVEL(1);
4213 } else {
4214 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
4215 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
4216 }
4217 Temp upper_dwords = bld.pseudo(aco_opcode::p_create_vector, bld.def(s3),
4218 Operand(S_008F04_BASE_ADDRESS_HI(ctx->options->address32_hi)),
4219 Operand(0xFFFFFFFFu),
4220 Operand(desc_type));
4221 rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
4222 rsrc, upper_dwords);
4223 } else {
4224 rsrc = convert_pointer_to_64_bit(ctx, rsrc);
4225 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
4226 }
4227
4228 load_buffer(ctx, instr->num_components, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa));
4229 }
4230
4231 void visit_load_push_constant(isel_context *ctx, nir_intrinsic_instr *instr)
4232 {
4233 Builder bld(ctx->program, ctx->block);
4234 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4235
4236 unsigned offset = nir_intrinsic_base(instr);
4237 nir_const_value *index_cv = nir_src_as_const_value(instr->src[0]);
4238 if (index_cv && instr->dest.ssa.bit_size == 32) {
4239
4240 unsigned count = instr->dest.ssa.num_components;
4241 unsigned start = (offset + index_cv->u32) / 4u;
4242 start -= ctx->args->ac.base_inline_push_consts;
4243 if (start + count <= ctx->args->ac.num_inline_push_consts) {
4244 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
4245 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
4246 for (unsigned i = 0; i < count; ++i) {
4247 elems[i] = get_arg(ctx, ctx->args->ac.inline_push_consts[start + i]);
4248 vec->operands[i] = Operand{elems[i]};
4249 }
4250 vec->definitions[0] = Definition(dst);
4251 ctx->block->instructions.emplace_back(std::move(vec));
4252 ctx->allocated_vec.emplace(dst.id(), elems);
4253 return;
4254 }
4255 }
4256
4257 Temp index = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa));
4258 if (offset != 0) // TODO check if index != 0 as well
4259 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), index);
4260 Temp ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->ac.push_constants));
4261 Temp vec = dst;
4262 bool trim = false;
4263 aco_opcode op;
4264
4265 switch (dst.size()) {
4266 case 1:
4267 op = aco_opcode::s_load_dword;
4268 break;
4269 case 2:
4270 op = aco_opcode::s_load_dwordx2;
4271 break;
4272 case 3:
4273 vec = bld.tmp(s4);
4274 trim = true;
4275 case 4:
4276 op = aco_opcode::s_load_dwordx4;
4277 break;
4278 case 6:
4279 vec = bld.tmp(s8);
4280 trim = true;
4281 case 8:
4282 op = aco_opcode::s_load_dwordx8;
4283 break;
4284 default:
4285 unreachable("unimplemented or forbidden load_push_constant.");
4286 }
4287
4288 bld.smem(op, Definition(vec), ptr, index);
4289
4290 if (trim) {
4291 emit_split_vector(ctx, vec, 4);
4292 RegClass rc = dst.size() == 3 ? s1 : s2;
4293 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4294 emit_extract_vector(ctx, vec, 0, rc),
4295 emit_extract_vector(ctx, vec, 1, rc),
4296 emit_extract_vector(ctx, vec, 2, rc));
4297
4298 }
4299 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
4300 }
4301
4302 void visit_load_constant(isel_context *ctx, nir_intrinsic_instr *instr)
4303 {
4304 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4305
4306 Builder bld(ctx->program, ctx->block);
4307
4308 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
4309 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
4310 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
4311 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
4312 if (ctx->options->chip_class >= GFX10) {
4313 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
4314 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
4315 S_008F0C_RESOURCE_LEVEL(1);
4316 } else {
4317 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
4318 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
4319 }
4320
4321 unsigned base = nir_intrinsic_base(instr);
4322 unsigned range = nir_intrinsic_range(instr);
4323
4324 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
4325 if (base && offset.type() == RegType::sgpr)
4326 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), offset, Operand(base));
4327 else if (base && offset.type() == RegType::vgpr)
4328 offset = bld.vadd32(bld.def(v1), Operand(base), offset);
4329
4330 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
4331 bld.sop1(aco_opcode::p_constaddr, bld.def(s2), bld.def(s1, scc), Operand(ctx->constant_data_offset)),
4332 Operand(MIN2(base + range, ctx->shader->constant_data_size)),
4333 Operand(desc_type));
4334
4335 load_buffer(ctx, instr->num_components, dst, rsrc, offset);
4336 }
4337
4338 void visit_discard_if(isel_context *ctx, nir_intrinsic_instr *instr)
4339 {
4340 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
4341 ctx->cf_info.exec_potentially_empty_discard = true;
4342
4343 ctx->program->needs_exact = true;
4344
4345 // TODO: optimize uniform conditions
4346 Builder bld(ctx->program, ctx->block);
4347 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
4348 assert(src.regClass() == bld.lm);
4349 src = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
4350 bld.pseudo(aco_opcode::p_discard_if, src);
4351 ctx->block->kind |= block_kind_uses_discard_if;
4352 return;
4353 }
4354
4355 void visit_discard(isel_context* ctx, nir_intrinsic_instr *instr)
4356 {
4357 Builder bld(ctx->program, ctx->block);
4358
4359 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
4360 ctx->cf_info.exec_potentially_empty_discard = true;
4361
4362 bool divergent = ctx->cf_info.parent_if.is_divergent ||
4363 ctx->cf_info.parent_loop.has_divergent_continue;
4364
4365 if (ctx->block->loop_nest_depth &&
4366 ((nir_instr_is_last(&instr->instr) && !divergent) || divergent)) {
4367 /* we handle discards the same way as jump instructions */
4368 append_logical_end(ctx->block);
4369
4370 /* in loops, discard behaves like break */
4371 Block *linear_target = ctx->cf_info.parent_loop.exit;
4372 ctx->block->kind |= block_kind_discard;
4373
4374 if (!divergent) {
4375 /* uniform discard - loop ends here */
4376 assert(nir_instr_is_last(&instr->instr));
4377 ctx->block->kind |= block_kind_uniform;
4378 ctx->cf_info.has_branch = true;
4379 bld.branch(aco_opcode::p_branch);
4380 add_linear_edge(ctx->block->index, linear_target);
4381 return;
4382 }
4383
4384 /* we add a break right behind the discard() instructions */
4385 ctx->block->kind |= block_kind_break;
4386 unsigned idx = ctx->block->index;
4387
4388 /* remove critical edges from linear CFG */
4389 bld.branch(aco_opcode::p_branch);
4390 Block* break_block = ctx->program->create_and_insert_block();
4391 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
4392 break_block->kind |= block_kind_uniform;
4393 add_linear_edge(idx, break_block);
4394 add_linear_edge(break_block->index, linear_target);
4395 bld.reset(break_block);
4396 bld.branch(aco_opcode::p_branch);
4397
4398 Block* continue_block = ctx->program->create_and_insert_block();
4399 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
4400 add_linear_edge(idx, continue_block);
4401 append_logical_start(continue_block);
4402 ctx->block = continue_block;
4403
4404 return;
4405 }
4406
4407 /* it can currently happen that NIR doesn't remove the unreachable code */
4408 if (!nir_instr_is_last(&instr->instr)) {
4409 ctx->program->needs_exact = true;
4410 /* save exec somewhere temporarily so that it doesn't get
4411 * overwritten before the discard from outer exec masks */
4412 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), Operand(0xFFFFFFFF), Operand(exec, bld.lm));
4413 bld.pseudo(aco_opcode::p_discard_if, cond);
4414 ctx->block->kind |= block_kind_uses_discard_if;
4415 return;
4416 }
4417
4418 /* This condition is incorrect for uniformly branched discards in a loop
4419 * predicated by a divergent condition, but the above code catches that case
4420 * and the discard would end up turning into a discard_if.
4421 * For example:
4422 * if (divergent) {
4423 * while (...) {
4424 * if (uniform) {
4425 * discard;
4426 * }
4427 * }
4428 * }
4429 */
4430 if (!ctx->cf_info.parent_if.is_divergent) {
4431 /* program just ends here */
4432 ctx->block->kind |= block_kind_uniform;
4433 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
4434 0 /* enabled mask */, 9 /* dest */,
4435 false /* compressed */, true/* done */, true /* valid mask */);
4436 bld.sopp(aco_opcode::s_endpgm);
4437 // TODO: it will potentially be followed by a branch which is dead code to sanitize NIR phis
4438 } else {
4439 ctx->block->kind |= block_kind_discard;
4440 /* branch and linear edge is added by visit_if() */
4441 }
4442 }
4443
4444 enum aco_descriptor_type {
4445 ACO_DESC_IMAGE,
4446 ACO_DESC_FMASK,
4447 ACO_DESC_SAMPLER,
4448 ACO_DESC_BUFFER,
4449 ACO_DESC_PLANE_0,
4450 ACO_DESC_PLANE_1,
4451 ACO_DESC_PLANE_2,
4452 };
4453
4454 static bool
4455 should_declare_array(isel_context *ctx, enum glsl_sampler_dim sampler_dim, bool is_array) {
4456 if (sampler_dim == GLSL_SAMPLER_DIM_BUF)
4457 return false;
4458 ac_image_dim dim = ac_get_sampler_dim(ctx->options->chip_class, sampler_dim, is_array);
4459 return dim == ac_image_cube ||
4460 dim == ac_image_1darray ||
4461 dim == ac_image_2darray ||
4462 dim == ac_image_2darraymsaa;
4463 }
4464
4465 Temp get_sampler_desc(isel_context *ctx, nir_deref_instr *deref_instr,
4466 enum aco_descriptor_type desc_type,
4467 const nir_tex_instr *tex_instr, bool image, bool write)
4468 {
4469 /* FIXME: we should lower the deref with some new nir_intrinsic_load_desc
4470 std::unordered_map<uint64_t, Temp>::iterator it = ctx->tex_desc.find((uint64_t) desc_type << 32 | deref_instr->dest.ssa.index);
4471 if (it != ctx->tex_desc.end())
4472 return it->second;
4473 */
4474 Temp index = Temp();
4475 bool index_set = false;
4476 unsigned constant_index = 0;
4477 unsigned descriptor_set;
4478 unsigned base_index;
4479 Builder bld(ctx->program, ctx->block);
4480
4481 if (!deref_instr) {
4482 assert(tex_instr && !image);
4483 descriptor_set = 0;
4484 base_index = tex_instr->sampler_index;
4485 } else {
4486 while(deref_instr->deref_type != nir_deref_type_var) {
4487 unsigned array_size = glsl_get_aoa_size(deref_instr->type);
4488 if (!array_size)
4489 array_size = 1;
4490
4491 assert(deref_instr->deref_type == nir_deref_type_array);
4492 nir_const_value *const_value = nir_src_as_const_value(deref_instr->arr.index);
4493 if (const_value) {
4494 constant_index += array_size * const_value->u32;
4495 } else {
4496 Temp indirect = get_ssa_temp(ctx, deref_instr->arr.index.ssa);
4497 if (indirect.type() == RegType::vgpr)
4498 indirect = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), indirect);
4499
4500 if (array_size != 1)
4501 indirect = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(array_size), indirect);
4502
4503 if (!index_set) {
4504 index = indirect;
4505 index_set = true;
4506 } else {
4507 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), index, indirect);
4508 }
4509 }
4510
4511 deref_instr = nir_src_as_deref(deref_instr->parent);
4512 }
4513 descriptor_set = deref_instr->var->data.descriptor_set;
4514 base_index = deref_instr->var->data.binding;
4515 }
4516
4517 Temp list = load_desc_ptr(ctx, descriptor_set);
4518 list = convert_pointer_to_64_bit(ctx, list);
4519
4520 struct radv_descriptor_set_layout *layout = ctx->options->layout->set[descriptor_set].layout;
4521 struct radv_descriptor_set_binding_layout *binding = layout->binding + base_index;
4522 unsigned offset = binding->offset;
4523 unsigned stride = binding->size;
4524 aco_opcode opcode;
4525 RegClass type;
4526
4527 assert(base_index < layout->binding_count);
4528
4529 switch (desc_type) {
4530 case ACO_DESC_IMAGE:
4531 type = s8;
4532 opcode = aco_opcode::s_load_dwordx8;
4533 break;
4534 case ACO_DESC_FMASK:
4535 type = s8;
4536 opcode = aco_opcode::s_load_dwordx8;
4537 offset += 32;
4538 break;
4539 case ACO_DESC_SAMPLER:
4540 type = s4;
4541 opcode = aco_opcode::s_load_dwordx4;
4542 if (binding->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
4543 offset += radv_combined_image_descriptor_sampler_offset(binding);
4544 break;
4545 case ACO_DESC_BUFFER:
4546 type = s4;
4547 opcode = aco_opcode::s_load_dwordx4;
4548 break;
4549 case ACO_DESC_PLANE_0:
4550 case ACO_DESC_PLANE_1:
4551 type = s8;
4552 opcode = aco_opcode::s_load_dwordx8;
4553 offset += 32 * (desc_type - ACO_DESC_PLANE_0);
4554 break;
4555 case ACO_DESC_PLANE_2:
4556 type = s4;
4557 opcode = aco_opcode::s_load_dwordx4;
4558 offset += 64;
4559 break;
4560 default:
4561 unreachable("invalid desc_type\n");
4562 }
4563
4564 offset += constant_index * stride;
4565
4566 if (desc_type == ACO_DESC_SAMPLER && binding->immutable_samplers_offset &&
4567 (!index_set || binding->immutable_samplers_equal)) {
4568 if (binding->immutable_samplers_equal)
4569 constant_index = 0;
4570
4571 const uint32_t *samplers = radv_immutable_samplers(layout, binding);
4572 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
4573 Operand(samplers[constant_index * 4 + 0]),
4574 Operand(samplers[constant_index * 4 + 1]),
4575 Operand(samplers[constant_index * 4 + 2]),
4576 Operand(samplers[constant_index * 4 + 3]));
4577 }
4578
4579 Operand off;
4580 if (!index_set) {
4581 off = bld.copy(bld.def(s1), Operand(offset));
4582 } else {
4583 off = Operand((Temp)bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset),
4584 bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), index)));
4585 }
4586
4587 Temp res = bld.smem(opcode, bld.def(type), list, off);
4588
4589 if (desc_type == ACO_DESC_PLANE_2) {
4590 Temp components[8];
4591 for (unsigned i = 0; i < 8; i++)
4592 components[i] = bld.tmp(s1);
4593 bld.pseudo(aco_opcode::p_split_vector,
4594 Definition(components[0]),
4595 Definition(components[1]),
4596 Definition(components[2]),
4597 Definition(components[3]),
4598 res);
4599
4600 Temp desc2 = get_sampler_desc(ctx, deref_instr, ACO_DESC_PLANE_1, tex_instr, image, write);
4601 bld.pseudo(aco_opcode::p_split_vector,
4602 bld.def(s1), bld.def(s1), bld.def(s1), bld.def(s1),
4603 Definition(components[4]),
4604 Definition(components[5]),
4605 Definition(components[6]),
4606 Definition(components[7]),
4607 desc2);
4608
4609 res = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
4610 components[0], components[1], components[2], components[3],
4611 components[4], components[5], components[6], components[7]);
4612 }
4613
4614 return res;
4615 }
4616
4617 static int image_type_to_components_count(enum glsl_sampler_dim dim, bool array)
4618 {
4619 switch (dim) {
4620 case GLSL_SAMPLER_DIM_BUF:
4621 return 1;
4622 case GLSL_SAMPLER_DIM_1D:
4623 return array ? 2 : 1;
4624 case GLSL_SAMPLER_DIM_2D:
4625 return array ? 3 : 2;
4626 case GLSL_SAMPLER_DIM_MS:
4627 return array ? 4 : 3;
4628 case GLSL_SAMPLER_DIM_3D:
4629 case GLSL_SAMPLER_DIM_CUBE:
4630 return 3;
4631 case GLSL_SAMPLER_DIM_RECT:
4632 case GLSL_SAMPLER_DIM_SUBPASS:
4633 return 2;
4634 case GLSL_SAMPLER_DIM_SUBPASS_MS:
4635 return 3;
4636 default:
4637 break;
4638 }
4639 return 0;
4640 }
4641
4642
4643 /* Adjust the sample index according to FMASK.
4644 *
4645 * For uncompressed MSAA surfaces, FMASK should return 0x76543210,
4646 * which is the identity mapping. Each nibble says which physical sample
4647 * should be fetched to get that sample.
4648 *
4649 * For example, 0x11111100 means there are only 2 samples stored and
4650 * the second sample covers 3/4 of the pixel. When reading samples 0
4651 * and 1, return physical sample 0 (determined by the first two 0s
4652 * in FMASK), otherwise return physical sample 1.
4653 *
4654 * The sample index should be adjusted as follows:
4655 * sample_index = (fmask >> (sample_index * 4)) & 0xF;
4656 */
4657 static Temp adjust_sample_index_using_fmask(isel_context *ctx, bool da, std::vector<Temp>& coords, Operand sample_index, Temp fmask_desc_ptr)
4658 {
4659 Builder bld(ctx->program, ctx->block);
4660 Temp fmask = bld.tmp(v1);
4661 unsigned dim = ctx->options->chip_class >= GFX10
4662 ? ac_get_sampler_dim(ctx->options->chip_class, GLSL_SAMPLER_DIM_2D, da)
4663 : 0;
4664
4665 Temp coord = da ? bld.pseudo(aco_opcode::p_create_vector, bld.def(v3), coords[0], coords[1], coords[2]) :
4666 bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), coords[0], coords[1]);
4667 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(aco_opcode::image_load, Format::MIMG, 3, 1)};
4668 load->operands[0] = Operand(fmask_desc_ptr);
4669 load->operands[1] = Operand(s4); /* no sampler */
4670 load->operands[2] = Operand(coord);
4671 load->definitions[0] = Definition(fmask);
4672 load->glc = false;
4673 load->dlc = false;
4674 load->dmask = 0x1;
4675 load->unrm = true;
4676 load->da = da;
4677 load->dim = dim;
4678 load->can_reorder = true; /* fmask images shouldn't be modified */
4679 ctx->block->instructions.emplace_back(std::move(load));
4680
4681 Operand sample_index4;
4682 if (sample_index.isConstant() && sample_index.constantValue() < 16) {
4683 sample_index4 = Operand(sample_index.constantValue() << 2);
4684 } else if (sample_index.regClass() == s1) {
4685 sample_index4 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), sample_index, Operand(2u));
4686 } else {
4687 assert(sample_index.regClass() == v1);
4688 sample_index4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), sample_index);
4689 }
4690
4691 Temp final_sample;
4692 if (sample_index4.isConstant() && sample_index4.constantValue() == 0)
4693 final_sample = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(15u), fmask);
4694 else if (sample_index4.isConstant() && sample_index4.constantValue() == 28)
4695 final_sample = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(28u), fmask);
4696 else
4697 final_sample = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), fmask, sample_index4, Operand(4u));
4698
4699 /* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK
4700 * resource descriptor is 0 (invalid),
4701 */
4702 Temp compare = bld.tmp(bld.lm);
4703 bld.vopc_e64(aco_opcode::v_cmp_lg_u32, Definition(compare),
4704 Operand(0u), emit_extract_vector(ctx, fmask_desc_ptr, 1, s1)).def(0).setHint(vcc);
4705
4706 Temp sample_index_v = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), sample_index);
4707
4708 /* Replace the MSAA sample index. */
4709 return bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), sample_index_v, final_sample, compare);
4710 }
4711
4712 static Temp get_image_coords(isel_context *ctx, const nir_intrinsic_instr *instr, const struct glsl_type *type)
4713 {
4714
4715 Temp src0 = get_ssa_temp(ctx, instr->src[1].ssa);
4716 enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4717 bool is_array = glsl_sampler_type_is_array(type);
4718 ASSERTED bool add_frag_pos = (dim == GLSL_SAMPLER_DIM_SUBPASS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
4719 assert(!add_frag_pos && "Input attachments should be lowered.");
4720 bool is_ms = (dim == GLSL_SAMPLER_DIM_MS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
4721 bool gfx9_1d = ctx->options->chip_class == GFX9 && dim == GLSL_SAMPLER_DIM_1D;
4722 int count = image_type_to_components_count(dim, is_array);
4723 std::vector<Temp> coords(count);
4724 Builder bld(ctx->program, ctx->block);
4725
4726 if (is_ms) {
4727 count--;
4728 Temp src2 = get_ssa_temp(ctx, instr->src[2].ssa);
4729 /* get sample index */
4730 if (instr->intrinsic == nir_intrinsic_image_deref_load) {
4731 nir_const_value *sample_cv = nir_src_as_const_value(instr->src[2]);
4732 Operand sample_index = sample_cv ? Operand(sample_cv->u32) : Operand(emit_extract_vector(ctx, src2, 0, v1));
4733 std::vector<Temp> fmask_load_address;
4734 for (unsigned i = 0; i < (is_array ? 3 : 2); i++)
4735 fmask_load_address.emplace_back(emit_extract_vector(ctx, src0, i, v1));
4736
4737 Temp fmask_desc_ptr = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_FMASK, nullptr, false, false);
4738 coords[count] = adjust_sample_index_using_fmask(ctx, is_array, fmask_load_address, sample_index, fmask_desc_ptr);
4739 } else {
4740 coords[count] = emit_extract_vector(ctx, src2, 0, v1);
4741 }
4742 }
4743
4744 if (gfx9_1d) {
4745 coords[0] = emit_extract_vector(ctx, src0, 0, v1);
4746 coords.resize(coords.size() + 1);
4747 coords[1] = bld.copy(bld.def(v1), Operand(0u));
4748 if (is_array)
4749 coords[2] = emit_extract_vector(ctx, src0, 1, v1);
4750 } else {
4751 for (int i = 0; i < count; i++)
4752 coords[i] = emit_extract_vector(ctx, src0, i, v1);
4753 }
4754
4755 if (instr->intrinsic == nir_intrinsic_image_deref_load ||
4756 instr->intrinsic == nir_intrinsic_image_deref_store) {
4757 int lod_index = instr->intrinsic == nir_intrinsic_image_deref_load ? 3 : 4;
4758 bool level_zero = nir_src_is_const(instr->src[lod_index]) && nir_src_as_uint(instr->src[lod_index]) == 0;
4759
4760 if (!level_zero)
4761 coords.emplace_back(get_ssa_temp(ctx, instr->src[lod_index].ssa));
4762 }
4763
4764 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
4765 for (unsigned i = 0; i < coords.size(); i++)
4766 vec->operands[i] = Operand(coords[i]);
4767 Temp res = {ctx->program->allocateId(), RegClass(RegType::vgpr, coords.size())};
4768 vec->definitions[0] = Definition(res);
4769 ctx->block->instructions.emplace_back(std::move(vec));
4770 return res;
4771 }
4772
4773
4774 void visit_image_load(isel_context *ctx, nir_intrinsic_instr *instr)
4775 {
4776 Builder bld(ctx->program, ctx->block);
4777 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
4778 const struct glsl_type *type = glsl_without_array(var->type);
4779 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4780 bool is_array = glsl_sampler_type_is_array(type);
4781 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4782
4783 if (dim == GLSL_SAMPLER_DIM_BUF) {
4784 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa);
4785 unsigned num_channels = util_last_bit(mask);
4786 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
4787 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
4788
4789 aco_opcode opcode;
4790 switch (num_channels) {
4791 case 1:
4792 opcode = aco_opcode::buffer_load_format_x;
4793 break;
4794 case 2:
4795 opcode = aco_opcode::buffer_load_format_xy;
4796 break;
4797 case 3:
4798 opcode = aco_opcode::buffer_load_format_xyz;
4799 break;
4800 case 4:
4801 opcode = aco_opcode::buffer_load_format_xyzw;
4802 break;
4803 default:
4804 unreachable(">4 channel buffer image load");
4805 }
4806 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 3, 1)};
4807 load->operands[0] = Operand(rsrc);
4808 load->operands[1] = Operand(vindex);
4809 load->operands[2] = Operand((uint32_t) 0);
4810 Temp tmp;
4811 if (num_channels == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
4812 tmp = dst;
4813 else
4814 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_channels)};
4815 load->definitions[0] = Definition(tmp);
4816 load->idxen = true;
4817 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT);
4818 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
4819 load->barrier = barrier_image;
4820 ctx->block->instructions.emplace_back(std::move(load));
4821
4822 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, (1 << num_channels) - 1);
4823 return;
4824 }
4825
4826 Temp coords = get_image_coords(ctx, instr, type);
4827 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
4828
4829 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
4830 unsigned num_components = util_bitcount(dmask);
4831 Temp tmp;
4832 if (num_components == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
4833 tmp = dst;
4834 else
4835 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_components)};
4836
4837 bool level_zero = nir_src_is_const(instr->src[3]) && nir_src_as_uint(instr->src[3]) == 0;
4838 aco_opcode opcode = level_zero ? aco_opcode::image_load : aco_opcode::image_load_mip;
4839
4840 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1)};
4841 load->operands[0] = Operand(resource);
4842 load->operands[1] = Operand(s4); /* no sampler */
4843 load->operands[2] = Operand(coords);
4844 load->definitions[0] = Definition(tmp);
4845 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT) ? 1 : 0;
4846 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
4847 load->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
4848 load->dmask = dmask;
4849 load->unrm = true;
4850 load->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
4851 load->barrier = barrier_image;
4852 ctx->block->instructions.emplace_back(std::move(load));
4853
4854 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, dmask);
4855 return;
4856 }
4857
4858 void visit_image_store(isel_context *ctx, nir_intrinsic_instr *instr)
4859 {
4860 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
4861 const struct glsl_type *type = glsl_without_array(var->type);
4862 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4863 bool is_array = glsl_sampler_type_is_array(type);
4864 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
4865
4866 bool glc = ctx->options->chip_class == GFX6 || var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE) ? 1 : 0;
4867
4868 if (dim == GLSL_SAMPLER_DIM_BUF) {
4869 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
4870 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
4871 aco_opcode opcode;
4872 switch (data.size()) {
4873 case 1:
4874 opcode = aco_opcode::buffer_store_format_x;
4875 break;
4876 case 2:
4877 opcode = aco_opcode::buffer_store_format_xy;
4878 break;
4879 case 3:
4880 opcode = aco_opcode::buffer_store_format_xyz;
4881 break;
4882 case 4:
4883 opcode = aco_opcode::buffer_store_format_xyzw;
4884 break;
4885 default:
4886 unreachable(">4 channel buffer image store");
4887 }
4888 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
4889 store->operands[0] = Operand(rsrc);
4890 store->operands[1] = Operand(vindex);
4891 store->operands[2] = Operand((uint32_t) 0);
4892 store->operands[3] = Operand(data);
4893 store->idxen = true;
4894 store->glc = glc;
4895 store->dlc = false;
4896 store->disable_wqm = true;
4897 store->barrier = barrier_image;
4898 ctx->program->needs_exact = true;
4899 ctx->block->instructions.emplace_back(std::move(store));
4900 return;
4901 }
4902
4903 assert(data.type() == RegType::vgpr);
4904 Temp coords = get_image_coords(ctx, instr, type);
4905 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
4906
4907 bool level_zero = nir_src_is_const(instr->src[4]) && nir_src_as_uint(instr->src[4]) == 0;
4908 aco_opcode opcode = level_zero ? aco_opcode::image_store : aco_opcode::image_store_mip;
4909
4910 aco_ptr<MIMG_instruction> store{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 0)};
4911 store->operands[0] = Operand(resource);
4912 store->operands[1] = Operand(data);
4913 store->operands[2] = Operand(coords);
4914 store->glc = glc;
4915 store->dlc = false;
4916 store->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
4917 store->dmask = (1 << data.size()) - 1;
4918 store->unrm = true;
4919 store->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
4920 store->disable_wqm = true;
4921 store->barrier = barrier_image;
4922 ctx->program->needs_exact = true;
4923 ctx->block->instructions.emplace_back(std::move(store));
4924 return;
4925 }
4926
4927 void visit_image_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
4928 {
4929 /* return the previous value if dest is ever used */
4930 bool return_previous = false;
4931 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
4932 return_previous = true;
4933 break;
4934 }
4935 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
4936 return_previous = true;
4937 break;
4938 }
4939
4940 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
4941 const struct glsl_type *type = glsl_without_array(var->type);
4942 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4943 bool is_array = glsl_sampler_type_is_array(type);
4944 Builder bld(ctx->program, ctx->block);
4945
4946 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
4947 assert(data.size() == 1 && "64bit ssbo atomics not yet implemented.");
4948
4949 if (instr->intrinsic == nir_intrinsic_image_deref_atomic_comp_swap)
4950 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), get_ssa_temp(ctx, instr->src[4].ssa), data);
4951
4952 aco_opcode buf_op, image_op;
4953 switch (instr->intrinsic) {
4954 case nir_intrinsic_image_deref_atomic_add:
4955 buf_op = aco_opcode::buffer_atomic_add;
4956 image_op = aco_opcode::image_atomic_add;
4957 break;
4958 case nir_intrinsic_image_deref_atomic_umin:
4959 buf_op = aco_opcode::buffer_atomic_umin;
4960 image_op = aco_opcode::image_atomic_umin;
4961 break;
4962 case nir_intrinsic_image_deref_atomic_imin:
4963 buf_op = aco_opcode::buffer_atomic_smin;
4964 image_op = aco_opcode::image_atomic_smin;
4965 break;
4966 case nir_intrinsic_image_deref_atomic_umax:
4967 buf_op = aco_opcode::buffer_atomic_umax;
4968 image_op = aco_opcode::image_atomic_umax;
4969 break;
4970 case nir_intrinsic_image_deref_atomic_imax:
4971 buf_op = aco_opcode::buffer_atomic_smax;
4972 image_op = aco_opcode::image_atomic_smax;
4973 break;
4974 case nir_intrinsic_image_deref_atomic_and:
4975 buf_op = aco_opcode::buffer_atomic_and;
4976 image_op = aco_opcode::image_atomic_and;
4977 break;
4978 case nir_intrinsic_image_deref_atomic_or:
4979 buf_op = aco_opcode::buffer_atomic_or;
4980 image_op = aco_opcode::image_atomic_or;
4981 break;
4982 case nir_intrinsic_image_deref_atomic_xor:
4983 buf_op = aco_opcode::buffer_atomic_xor;
4984 image_op = aco_opcode::image_atomic_xor;
4985 break;
4986 case nir_intrinsic_image_deref_atomic_exchange:
4987 buf_op = aco_opcode::buffer_atomic_swap;
4988 image_op = aco_opcode::image_atomic_swap;
4989 break;
4990 case nir_intrinsic_image_deref_atomic_comp_swap:
4991 buf_op = aco_opcode::buffer_atomic_cmpswap;
4992 image_op = aco_opcode::image_atomic_cmpswap;
4993 break;
4994 default:
4995 unreachable("visit_image_atomic should only be called with nir_intrinsic_image_deref_atomic_* instructions.");
4996 }
4997
4998 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4999
5000 if (dim == GLSL_SAMPLER_DIM_BUF) {
5001 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5002 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5003 //assert(ctx->options->chip_class < GFX9 && "GFX9 stride size workaround not yet implemented.");
5004 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(buf_op, Format::MUBUF, 4, return_previous ? 1 : 0)};
5005 mubuf->operands[0] = Operand(resource);
5006 mubuf->operands[1] = Operand(vindex);
5007 mubuf->operands[2] = Operand((uint32_t)0);
5008 mubuf->operands[3] = Operand(data);
5009 if (return_previous)
5010 mubuf->definitions[0] = Definition(dst);
5011 mubuf->offset = 0;
5012 mubuf->idxen = true;
5013 mubuf->glc = return_previous;
5014 mubuf->dlc = false; /* Not needed for atomics */
5015 mubuf->disable_wqm = true;
5016 mubuf->barrier = barrier_image;
5017 ctx->program->needs_exact = true;
5018 ctx->block->instructions.emplace_back(std::move(mubuf));
5019 return;
5020 }
5021
5022 Temp coords = get_image_coords(ctx, instr, type);
5023 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5024 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(image_op, Format::MIMG, 3, return_previous ? 1 : 0)};
5025 mimg->operands[0] = Operand(resource);
5026 mimg->operands[1] = Operand(data);
5027 mimg->operands[2] = Operand(coords);
5028 if (return_previous)
5029 mimg->definitions[0] = Definition(dst);
5030 mimg->glc = return_previous;
5031 mimg->dlc = false; /* Not needed for atomics */
5032 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5033 mimg->dmask = (1 << data.size()) - 1;
5034 mimg->unrm = true;
5035 mimg->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5036 mimg->disable_wqm = true;
5037 mimg->barrier = barrier_image;
5038 ctx->program->needs_exact = true;
5039 ctx->block->instructions.emplace_back(std::move(mimg));
5040 return;
5041 }
5042
5043 void get_buffer_size(isel_context *ctx, Temp desc, Temp dst, bool in_elements)
5044 {
5045 if (in_elements && ctx->options->chip_class == GFX8) {
5046 /* we only have to divide by 1, 2, 4, 8, 12 or 16 */
5047 Builder bld(ctx->program, ctx->block);
5048
5049 Temp size = emit_extract_vector(ctx, desc, 2, s1);
5050
5051 Temp size_div3 = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), bld.copy(bld.def(v1), Operand(0xaaaaaaabu)), size);
5052 size_div3 = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.as_uniform(size_div3), Operand(1u));
5053
5054 Temp stride = emit_extract_vector(ctx, desc, 1, s1);
5055 stride = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), stride, Operand((5u << 16) | 16u));
5056
5057 Temp is12 = bld.sopc(aco_opcode::s_cmp_eq_i32, bld.def(s1, scc), stride, Operand(12u));
5058 size = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), size_div3, size, bld.scc(is12));
5059
5060 Temp shr_dst = dst.type() == RegType::vgpr ? bld.tmp(s1) : dst;
5061 bld.sop2(aco_opcode::s_lshr_b32, Definition(shr_dst), bld.def(s1, scc),
5062 size, bld.sop1(aco_opcode::s_ff1_i32_b32, bld.def(s1), stride));
5063 if (dst.type() == RegType::vgpr)
5064 bld.copy(Definition(dst), shr_dst);
5065
5066 /* TODO: we can probably calculate this faster with v_skip when stride != 12 */
5067 } else {
5068 emit_extract_vector(ctx, desc, 2, dst);
5069 }
5070 }
5071
5072 void visit_image_size(isel_context *ctx, nir_intrinsic_instr *instr)
5073 {
5074 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5075 const struct glsl_type *type = glsl_without_array(var->type);
5076 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5077 bool is_array = glsl_sampler_type_is_array(type);
5078 Builder bld(ctx->program, ctx->block);
5079
5080 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF) {
5081 Temp desc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, NULL, true, false);
5082 return get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), true);
5083 }
5084
5085 /* LOD */
5086 Temp lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
5087
5088 /* Resource */
5089 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, NULL, true, false);
5090
5091 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5092
5093 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1)};
5094 mimg->operands[0] = Operand(resource);
5095 mimg->operands[1] = Operand(s4); /* no sampler */
5096 mimg->operands[2] = Operand(lod);
5097 uint8_t& dmask = mimg->dmask;
5098 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5099 mimg->dmask = (1 << instr->dest.ssa.num_components) - 1;
5100 mimg->da = glsl_sampler_type_is_array(type);
5101 mimg->can_reorder = true;
5102 Definition& def = mimg->definitions[0];
5103 ctx->block->instructions.emplace_back(std::move(mimg));
5104
5105 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE &&
5106 glsl_sampler_type_is_array(type)) {
5107
5108 assert(instr->dest.ssa.num_components == 3);
5109 Temp tmp = {ctx->program->allocateId(), v3};
5110 def = Definition(tmp);
5111 emit_split_vector(ctx, tmp, 3);
5112
5113 /* divide 3rd value by 6 by multiplying with magic number */
5114 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
5115 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp, 2, v1), c);
5116
5117 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5118 emit_extract_vector(ctx, tmp, 0, v1),
5119 emit_extract_vector(ctx, tmp, 1, v1),
5120 by_6);
5121
5122 } else if (ctx->options->chip_class == GFX9 &&
5123 glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_1D &&
5124 glsl_sampler_type_is_array(type)) {
5125 assert(instr->dest.ssa.num_components == 2);
5126 def = Definition(dst);
5127 dmask = 0x5;
5128 } else {
5129 def = Definition(dst);
5130 }
5131
5132 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
5133 }
5134
5135 void visit_load_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
5136 {
5137 Builder bld(ctx->program, ctx->block);
5138 unsigned num_components = instr->num_components;
5139
5140 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5141 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5142 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
5143
5144 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
5145 load_buffer(ctx, num_components, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa), glc, false);
5146 }
5147
5148 void visit_store_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
5149 {
5150 Builder bld(ctx->program, ctx->block);
5151 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
5152 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
5153 unsigned writemask = nir_intrinsic_write_mask(instr);
5154 Temp offset = get_ssa_temp(ctx, instr->src[2].ssa);
5155
5156 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5157 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
5158
5159 bool smem = !ctx->divergent_vals[instr->src[2].ssa->index] &&
5160 ctx->options->chip_class >= GFX8;
5161 if (smem)
5162 offset = bld.as_uniform(offset);
5163 bool smem_nonfs = smem && ctx->stage != fragment_fs;
5164
5165 while (writemask) {
5166 int start, count;
5167 u_bit_scan_consecutive_range(&writemask, &start, &count);
5168 if (count == 3 && (smem || ctx->options->chip_class == GFX6)) {
5169 /* GFX6 doesn't support storing vec3, split it. */
5170 writemask |= 1u << (start + 2);
5171 count = 2;
5172 }
5173 int num_bytes = count * elem_size_bytes;
5174
5175 if (num_bytes > 16) {
5176 assert(elem_size_bytes == 8);
5177 writemask |= (((count - 2) << 1) - 1) << (start + 2);
5178 count = 2;
5179 num_bytes = 16;
5180 }
5181
5182 // TODO: check alignment of sub-dword stores
5183 // TODO: split 3 bytes. there is no store instruction for that
5184
5185 Temp write_data;
5186 if (count != instr->num_components) {
5187 emit_split_vector(ctx, data, instr->num_components);
5188 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
5189 for (int i = 0; i < count; i++) {
5190 Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(data.type(), elem_size_bytes / 4));
5191 vec->operands[i] = Operand(smem_nonfs ? bld.as_uniform(elem) : elem);
5192 }
5193 write_data = bld.tmp(!smem ? RegType::vgpr : smem_nonfs ? RegType::sgpr : data.type(), count * elem_size_bytes / 4);
5194 vec->definitions[0] = Definition(write_data);
5195 ctx->block->instructions.emplace_back(std::move(vec));
5196 } else if (!smem && data.type() != RegType::vgpr) {
5197 assert(num_bytes % 4 == 0);
5198 write_data = bld.copy(bld.def(RegType::vgpr, num_bytes / 4), data);
5199 } else if (smem_nonfs && data.type() == RegType::vgpr) {
5200 assert(num_bytes % 4 == 0);
5201 write_data = bld.as_uniform(data);
5202 } else {
5203 write_data = data;
5204 }
5205
5206 aco_opcode vmem_op, smem_op;
5207 switch (num_bytes) {
5208 case 4:
5209 vmem_op = aco_opcode::buffer_store_dword;
5210 smem_op = aco_opcode::s_buffer_store_dword;
5211 break;
5212 case 8:
5213 vmem_op = aco_opcode::buffer_store_dwordx2;
5214 smem_op = aco_opcode::s_buffer_store_dwordx2;
5215 break;
5216 case 12:
5217 vmem_op = aco_opcode::buffer_store_dwordx3;
5218 smem_op = aco_opcode::last_opcode;
5219 assert(!smem && ctx->options->chip_class > GFX6);
5220 break;
5221 case 16:
5222 vmem_op = aco_opcode::buffer_store_dwordx4;
5223 smem_op = aco_opcode::s_buffer_store_dwordx4;
5224 break;
5225 default:
5226 unreachable("Store SSBO not implemented for this size.");
5227 }
5228 if (ctx->stage == fragment_fs)
5229 smem_op = aco_opcode::p_fs_buffer_store_smem;
5230
5231 if (smem) {
5232 aco_ptr<SMEM_instruction> store{create_instruction<SMEM_instruction>(smem_op, Format::SMEM, 3, 0)};
5233 store->operands[0] = Operand(rsrc);
5234 if (start) {
5235 Temp off = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
5236 offset, Operand(start * elem_size_bytes));
5237 store->operands[1] = Operand(off);
5238 } else {
5239 store->operands[1] = Operand(offset);
5240 }
5241 if (smem_op != aco_opcode::p_fs_buffer_store_smem)
5242 store->operands[1].setFixed(m0);
5243 store->operands[2] = Operand(write_data);
5244 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
5245 store->dlc = false;
5246 store->disable_wqm = true;
5247 store->barrier = barrier_buffer;
5248 ctx->block->instructions.emplace_back(std::move(store));
5249 ctx->program->wb_smem_l1_on_end = true;
5250 if (smem_op == aco_opcode::p_fs_buffer_store_smem) {
5251 ctx->block->kind |= block_kind_needs_lowering;
5252 ctx->program->needs_exact = true;
5253 }
5254 } else {
5255 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(vmem_op, Format::MUBUF, 4, 0)};
5256 store->operands[0] = Operand(rsrc);
5257 store->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
5258 store->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
5259 store->operands[3] = Operand(write_data);
5260 store->offset = start * elem_size_bytes;
5261 store->offen = (offset.type() == RegType::vgpr);
5262 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
5263 store->dlc = false;
5264 store->disable_wqm = true;
5265 store->barrier = barrier_buffer;
5266 ctx->program->needs_exact = true;
5267 ctx->block->instructions.emplace_back(std::move(store));
5268 }
5269 }
5270 }
5271
5272 void visit_atomic_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
5273 {
5274 /* return the previous value if dest is ever used */
5275 bool return_previous = false;
5276 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5277 return_previous = true;
5278 break;
5279 }
5280 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5281 return_previous = true;
5282 break;
5283 }
5284
5285 Builder bld(ctx->program, ctx->block);
5286 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[2].ssa));
5287
5288 if (instr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap)
5289 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
5290 get_ssa_temp(ctx, instr->src[3].ssa), data);
5291
5292 Temp offset = get_ssa_temp(ctx, instr->src[1].ssa);
5293 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5294 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
5295
5296 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5297
5298 aco_opcode op32, op64;
5299 switch (instr->intrinsic) {
5300 case nir_intrinsic_ssbo_atomic_add:
5301 op32 = aco_opcode::buffer_atomic_add;
5302 op64 = aco_opcode::buffer_atomic_add_x2;
5303 break;
5304 case nir_intrinsic_ssbo_atomic_imin:
5305 op32 = aco_opcode::buffer_atomic_smin;
5306 op64 = aco_opcode::buffer_atomic_smin_x2;
5307 break;
5308 case nir_intrinsic_ssbo_atomic_umin:
5309 op32 = aco_opcode::buffer_atomic_umin;
5310 op64 = aco_opcode::buffer_atomic_umin_x2;
5311 break;
5312 case nir_intrinsic_ssbo_atomic_imax:
5313 op32 = aco_opcode::buffer_atomic_smax;
5314 op64 = aco_opcode::buffer_atomic_smax_x2;
5315 break;
5316 case nir_intrinsic_ssbo_atomic_umax:
5317 op32 = aco_opcode::buffer_atomic_umax;
5318 op64 = aco_opcode::buffer_atomic_umax_x2;
5319 break;
5320 case nir_intrinsic_ssbo_atomic_and:
5321 op32 = aco_opcode::buffer_atomic_and;
5322 op64 = aco_opcode::buffer_atomic_and_x2;
5323 break;
5324 case nir_intrinsic_ssbo_atomic_or:
5325 op32 = aco_opcode::buffer_atomic_or;
5326 op64 = aco_opcode::buffer_atomic_or_x2;
5327 break;
5328 case nir_intrinsic_ssbo_atomic_xor:
5329 op32 = aco_opcode::buffer_atomic_xor;
5330 op64 = aco_opcode::buffer_atomic_xor_x2;
5331 break;
5332 case nir_intrinsic_ssbo_atomic_exchange:
5333 op32 = aco_opcode::buffer_atomic_swap;
5334 op64 = aco_opcode::buffer_atomic_swap_x2;
5335 break;
5336 case nir_intrinsic_ssbo_atomic_comp_swap:
5337 op32 = aco_opcode::buffer_atomic_cmpswap;
5338 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
5339 break;
5340 default:
5341 unreachable("visit_atomic_ssbo should only be called with nir_intrinsic_ssbo_atomic_* instructions.");
5342 }
5343 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
5344 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
5345 mubuf->operands[0] = Operand(rsrc);
5346 mubuf->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
5347 mubuf->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
5348 mubuf->operands[3] = Operand(data);
5349 if (return_previous)
5350 mubuf->definitions[0] = Definition(dst);
5351 mubuf->offset = 0;
5352 mubuf->offen = (offset.type() == RegType::vgpr);
5353 mubuf->glc = return_previous;
5354 mubuf->dlc = false; /* Not needed for atomics */
5355 mubuf->disable_wqm = true;
5356 mubuf->barrier = barrier_buffer;
5357 ctx->program->needs_exact = true;
5358 ctx->block->instructions.emplace_back(std::move(mubuf));
5359 }
5360
5361 void visit_get_buffer_size(isel_context *ctx, nir_intrinsic_instr *instr) {
5362
5363 Temp index = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5364 Builder bld(ctx->program, ctx->block);
5365 Temp desc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), index, Operand(0u));
5366 get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), false);
5367 }
5368
5369 Temp get_gfx6_global_rsrc(Builder& bld, Temp addr)
5370 {
5371 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5372 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
5373
5374 if (addr.type() == RegType::vgpr)
5375 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), Operand(0u), Operand(0u), Operand(-1u), Operand(rsrc_conf));
5376 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), addr, Operand(-1u), Operand(rsrc_conf));
5377 }
5378
5379 void visit_load_global(isel_context *ctx, nir_intrinsic_instr *instr)
5380 {
5381 Builder bld(ctx->program, ctx->block);
5382 unsigned num_components = instr->num_components;
5383 unsigned num_bytes = num_components * instr->dest.ssa.bit_size / 8;
5384
5385 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5386 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
5387
5388 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
5389 bool dlc = glc && ctx->options->chip_class >= GFX10;
5390 aco_opcode op;
5391 if (dst.type() == RegType::vgpr || (glc && ctx->options->chip_class < GFX8)) {
5392 bool global = ctx->options->chip_class >= GFX9;
5393
5394 if (ctx->options->chip_class >= GFX7) {
5395 aco_opcode op;
5396 switch (num_bytes) {
5397 case 4:
5398 op = global ? aco_opcode::global_load_dword : aco_opcode::flat_load_dword;
5399 break;
5400 case 8:
5401 op = global ? aco_opcode::global_load_dwordx2 : aco_opcode::flat_load_dwordx2;
5402 break;
5403 case 12:
5404 op = global ? aco_opcode::global_load_dwordx3 : aco_opcode::flat_load_dwordx3;
5405 break;
5406 case 16:
5407 op = global ? aco_opcode::global_load_dwordx4 : aco_opcode::flat_load_dwordx4;
5408 break;
5409 default:
5410 unreachable("load_global not implemented for this size.");
5411 }
5412
5413 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 2, 1)};
5414 flat->operands[0] = Operand(addr);
5415 flat->operands[1] = Operand(s1);
5416 flat->glc = glc;
5417 flat->dlc = dlc;
5418 flat->barrier = barrier_buffer;
5419
5420 if (dst.type() == RegType::sgpr) {
5421 Temp vec = bld.tmp(RegType::vgpr, dst.size());
5422 flat->definitions[0] = Definition(vec);
5423 ctx->block->instructions.emplace_back(std::move(flat));
5424 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
5425 } else {
5426 flat->definitions[0] = Definition(dst);
5427 ctx->block->instructions.emplace_back(std::move(flat));
5428 }
5429 emit_split_vector(ctx, dst, num_components);
5430 } else {
5431 assert(ctx->options->chip_class == GFX6);
5432
5433 /* GFX6 doesn't support loading vec3, expand to vec4. */
5434 num_bytes = num_bytes == 12 ? 16 : num_bytes;
5435
5436 aco_opcode op;
5437 switch (num_bytes) {
5438 case 4:
5439 op = aco_opcode::buffer_load_dword;
5440 break;
5441 case 8:
5442 op = aco_opcode::buffer_load_dwordx2;
5443 break;
5444 case 16:
5445 op = aco_opcode::buffer_load_dwordx4;
5446 break;
5447 default:
5448 unreachable("load_global not implemented for this size.");
5449 }
5450
5451 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
5452
5453 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
5454 mubuf->operands[0] = Operand(rsrc);
5455 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
5456 mubuf->operands[2] = Operand(0u);
5457 mubuf->glc = glc;
5458 mubuf->dlc = false;
5459 mubuf->offset = 0;
5460 mubuf->addr64 = addr.type() == RegType::vgpr;
5461 mubuf->disable_wqm = false;
5462 mubuf->barrier = barrier_buffer;
5463 aco_ptr<Instruction> instr = std::move(mubuf);
5464
5465 /* expand vector */
5466 if (dst.size() == 3) {
5467 Temp vec = bld.tmp(v4);
5468 instr->definitions[0] = Definition(vec);
5469 bld.insert(std::move(instr));
5470 emit_split_vector(ctx, vec, 4);
5471
5472 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 3, 1));
5473 instr->operands[0] = Operand(emit_extract_vector(ctx, vec, 0, v1));
5474 instr->operands[1] = Operand(emit_extract_vector(ctx, vec, 1, v1));
5475 instr->operands[2] = Operand(emit_extract_vector(ctx, vec, 2, v1));
5476 }
5477
5478 if (dst.type() == RegType::sgpr) {
5479 Temp vec = bld.tmp(RegType::vgpr, dst.size());
5480 instr->definitions[0] = Definition(vec);
5481 bld.insert(std::move(instr));
5482 expand_vector(ctx, vec, dst, num_components, (1 << num_components) - 1);
5483 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
5484 } else {
5485 instr->definitions[0] = Definition(dst);
5486 bld.insert(std::move(instr));
5487 emit_split_vector(ctx, dst, num_components);
5488 }
5489 }
5490 } else {
5491 switch (num_bytes) {
5492 case 4:
5493 op = aco_opcode::s_load_dword;
5494 break;
5495 case 8:
5496 op = aco_opcode::s_load_dwordx2;
5497 break;
5498 case 12:
5499 case 16:
5500 op = aco_opcode::s_load_dwordx4;
5501 break;
5502 default:
5503 unreachable("load_global not implemented for this size.");
5504 }
5505 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
5506 load->operands[0] = Operand(addr);
5507 load->operands[1] = Operand(0u);
5508 load->definitions[0] = Definition(dst);
5509 load->glc = glc;
5510 load->dlc = dlc;
5511 load->barrier = barrier_buffer;
5512 assert(ctx->options->chip_class >= GFX8 || !glc);
5513
5514 if (dst.size() == 3) {
5515 /* trim vector */
5516 Temp vec = bld.tmp(s4);
5517 load->definitions[0] = Definition(vec);
5518 ctx->block->instructions.emplace_back(std::move(load));
5519 emit_split_vector(ctx, vec, 4);
5520
5521 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5522 emit_extract_vector(ctx, vec, 0, s1),
5523 emit_extract_vector(ctx, vec, 1, s1),
5524 emit_extract_vector(ctx, vec, 2, s1));
5525 } else {
5526 ctx->block->instructions.emplace_back(std::move(load));
5527 }
5528 }
5529 }
5530
5531 void visit_store_global(isel_context *ctx, nir_intrinsic_instr *instr)
5532 {
5533 Builder bld(ctx->program, ctx->block);
5534 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
5535
5536 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5537 Temp addr = get_ssa_temp(ctx, instr->src[1].ssa);
5538
5539 if (ctx->options->chip_class >= GFX7)
5540 addr = as_vgpr(ctx, addr);
5541
5542 unsigned writemask = nir_intrinsic_write_mask(instr);
5543 while (writemask) {
5544 int start, count;
5545 u_bit_scan_consecutive_range(&writemask, &start, &count);
5546 if (count == 3 && ctx->options->chip_class == GFX6) {
5547 /* GFX6 doesn't support storing vec3, split it. */
5548 writemask |= 1u << (start + 2);
5549 count = 2;
5550 }
5551 unsigned num_bytes = count * elem_size_bytes;
5552
5553 Temp write_data = data;
5554 if (count != instr->num_components) {
5555 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
5556 for (int i = 0; i < count; i++)
5557 vec->operands[i] = Operand(emit_extract_vector(ctx, data, start + i, v1));
5558 write_data = bld.tmp(RegType::vgpr, count);
5559 vec->definitions[0] = Definition(write_data);
5560 ctx->block->instructions.emplace_back(std::move(vec));
5561 }
5562
5563 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
5564 unsigned offset = start * elem_size_bytes;
5565
5566 if (ctx->options->chip_class >= GFX7) {
5567 if (offset > 0 && ctx->options->chip_class < GFX9) {
5568 Temp addr0 = bld.tmp(v1), addr1 = bld.tmp(v1);
5569 Temp new_addr0 = bld.tmp(v1), new_addr1 = bld.tmp(v1);
5570 Temp carry = bld.tmp(bld.lm);
5571 bld.pseudo(aco_opcode::p_split_vector, Definition(addr0), Definition(addr1), addr);
5572
5573 bld.vop2(aco_opcode::v_add_co_u32, Definition(new_addr0), bld.hint_vcc(Definition(carry)),
5574 Operand(offset), addr0);
5575 bld.vop2(aco_opcode::v_addc_co_u32, Definition(new_addr1), bld.def(bld.lm),
5576 Operand(0u), addr1,
5577 carry).def(1).setHint(vcc);
5578
5579 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_addr0, new_addr1);
5580
5581 offset = 0;
5582 }
5583
5584 bool global = ctx->options->chip_class >= GFX9;
5585 aco_opcode op;
5586 switch (num_bytes) {
5587 case 4:
5588 op = global ? aco_opcode::global_store_dword : aco_opcode::flat_store_dword;
5589 break;
5590 case 8:
5591 op = global ? aco_opcode::global_store_dwordx2 : aco_opcode::flat_store_dwordx2;
5592 break;
5593 case 12:
5594 op = global ? aco_opcode::global_store_dwordx3 : aco_opcode::flat_store_dwordx3;
5595 break;
5596 case 16:
5597 op = global ? aco_opcode::global_store_dwordx4 : aco_opcode::flat_store_dwordx4;
5598 break;
5599 default:
5600 unreachable("store_global not implemented for this size.");
5601 }
5602
5603 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, 0)};
5604 flat->operands[0] = Operand(addr);
5605 flat->operands[1] = Operand(s1);
5606 flat->operands[2] = Operand(data);
5607 flat->glc = glc;
5608 flat->dlc = false;
5609 flat->offset = offset;
5610 flat->disable_wqm = true;
5611 flat->barrier = barrier_buffer;
5612 ctx->program->needs_exact = true;
5613 ctx->block->instructions.emplace_back(std::move(flat));
5614 } else {
5615 assert(ctx->options->chip_class == GFX6);
5616
5617 aco_opcode op;
5618 switch (num_bytes) {
5619 case 4:
5620 op = aco_opcode::buffer_store_dword;
5621 break;
5622 case 8:
5623 op = aco_opcode::buffer_store_dwordx2;
5624 break;
5625 case 16:
5626 op = aco_opcode::buffer_store_dwordx4;
5627 break;
5628 default:
5629 unreachable("store_global not implemented for this size.");
5630 }
5631
5632 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
5633
5634 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, 0)};
5635 mubuf->operands[0] = Operand(rsrc);
5636 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
5637 mubuf->operands[2] = Operand(0u);
5638 mubuf->operands[3] = Operand(write_data);
5639 mubuf->glc = glc;
5640 mubuf->dlc = false;
5641 mubuf->offset = offset;
5642 mubuf->addr64 = addr.type() == RegType::vgpr;
5643 mubuf->disable_wqm = true;
5644 mubuf->barrier = barrier_buffer;
5645 ctx->program->needs_exact = true;
5646 ctx->block->instructions.emplace_back(std::move(mubuf));
5647 }
5648 }
5649 }
5650
5651 void visit_global_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
5652 {
5653 /* return the previous value if dest is ever used */
5654 bool return_previous = false;
5655 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5656 return_previous = true;
5657 break;
5658 }
5659 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5660 return_previous = true;
5661 break;
5662 }
5663
5664 Builder bld(ctx->program, ctx->block);
5665 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
5666 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5667
5668 if (ctx->options->chip_class >= GFX7)
5669 addr = as_vgpr(ctx, addr);
5670
5671 if (instr->intrinsic == nir_intrinsic_global_atomic_comp_swap)
5672 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
5673 get_ssa_temp(ctx, instr->src[2].ssa), data);
5674
5675 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5676
5677 aco_opcode op32, op64;
5678
5679 if (ctx->options->chip_class >= GFX7) {
5680 bool global = ctx->options->chip_class >= GFX9;
5681 switch (instr->intrinsic) {
5682 case nir_intrinsic_global_atomic_add:
5683 op32 = global ? aco_opcode::global_atomic_add : aco_opcode::flat_atomic_add;
5684 op64 = global ? aco_opcode::global_atomic_add_x2 : aco_opcode::flat_atomic_add_x2;
5685 break;
5686 case nir_intrinsic_global_atomic_imin:
5687 op32 = global ? aco_opcode::global_atomic_smin : aco_opcode::flat_atomic_smin;
5688 op64 = global ? aco_opcode::global_atomic_smin_x2 : aco_opcode::flat_atomic_smin_x2;
5689 break;
5690 case nir_intrinsic_global_atomic_umin:
5691 op32 = global ? aco_opcode::global_atomic_umin : aco_opcode::flat_atomic_umin;
5692 op64 = global ? aco_opcode::global_atomic_umin_x2 : aco_opcode::flat_atomic_umin_x2;
5693 break;
5694 case nir_intrinsic_global_atomic_imax:
5695 op32 = global ? aco_opcode::global_atomic_smax : aco_opcode::flat_atomic_smax;
5696 op64 = global ? aco_opcode::global_atomic_smax_x2 : aco_opcode::flat_atomic_smax_x2;
5697 break;
5698 case nir_intrinsic_global_atomic_umax:
5699 op32 = global ? aco_opcode::global_atomic_umax : aco_opcode::flat_atomic_umax;
5700 op64 = global ? aco_opcode::global_atomic_umax_x2 : aco_opcode::flat_atomic_umax_x2;
5701 break;
5702 case nir_intrinsic_global_atomic_and:
5703 op32 = global ? aco_opcode::global_atomic_and : aco_opcode::flat_atomic_and;
5704 op64 = global ? aco_opcode::global_atomic_and_x2 : aco_opcode::flat_atomic_and_x2;
5705 break;
5706 case nir_intrinsic_global_atomic_or:
5707 op32 = global ? aco_opcode::global_atomic_or : aco_opcode::flat_atomic_or;
5708 op64 = global ? aco_opcode::global_atomic_or_x2 : aco_opcode::flat_atomic_or_x2;
5709 break;
5710 case nir_intrinsic_global_atomic_xor:
5711 op32 = global ? aco_opcode::global_atomic_xor : aco_opcode::flat_atomic_xor;
5712 op64 = global ? aco_opcode::global_atomic_xor_x2 : aco_opcode::flat_atomic_xor_x2;
5713 break;
5714 case nir_intrinsic_global_atomic_exchange:
5715 op32 = global ? aco_opcode::global_atomic_swap : aco_opcode::flat_atomic_swap;
5716 op64 = global ? aco_opcode::global_atomic_swap_x2 : aco_opcode::flat_atomic_swap_x2;
5717 break;
5718 case nir_intrinsic_global_atomic_comp_swap:
5719 op32 = global ? aco_opcode::global_atomic_cmpswap : aco_opcode::flat_atomic_cmpswap;
5720 op64 = global ? aco_opcode::global_atomic_cmpswap_x2 : aco_opcode::flat_atomic_cmpswap_x2;
5721 break;
5722 default:
5723 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
5724 }
5725
5726 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
5727 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, return_previous ? 1 : 0)};
5728 flat->operands[0] = Operand(addr);
5729 flat->operands[1] = Operand(s1);
5730 flat->operands[2] = Operand(data);
5731 if (return_previous)
5732 flat->definitions[0] = Definition(dst);
5733 flat->glc = return_previous;
5734 flat->dlc = false; /* Not needed for atomics */
5735 flat->offset = 0;
5736 flat->disable_wqm = true;
5737 flat->barrier = barrier_buffer;
5738 ctx->program->needs_exact = true;
5739 ctx->block->instructions.emplace_back(std::move(flat));
5740 } else {
5741 assert(ctx->options->chip_class == GFX6);
5742
5743 switch (instr->intrinsic) {
5744 case nir_intrinsic_global_atomic_add:
5745 op32 = aco_opcode::buffer_atomic_add;
5746 op64 = aco_opcode::buffer_atomic_add_x2;
5747 break;
5748 case nir_intrinsic_global_atomic_imin:
5749 op32 = aco_opcode::buffer_atomic_smin;
5750 op64 = aco_opcode::buffer_atomic_smin_x2;
5751 break;
5752 case nir_intrinsic_global_atomic_umin:
5753 op32 = aco_opcode::buffer_atomic_umin;
5754 op64 = aco_opcode::buffer_atomic_umin_x2;
5755 break;
5756 case nir_intrinsic_global_atomic_imax:
5757 op32 = aco_opcode::buffer_atomic_smax;
5758 op64 = aco_opcode::buffer_atomic_smax_x2;
5759 break;
5760 case nir_intrinsic_global_atomic_umax:
5761 op32 = aco_opcode::buffer_atomic_umax;
5762 op64 = aco_opcode::buffer_atomic_umax_x2;
5763 break;
5764 case nir_intrinsic_global_atomic_and:
5765 op32 = aco_opcode::buffer_atomic_and;
5766 op64 = aco_opcode::buffer_atomic_and_x2;
5767 break;
5768 case nir_intrinsic_global_atomic_or:
5769 op32 = aco_opcode::buffer_atomic_or;
5770 op64 = aco_opcode::buffer_atomic_or_x2;
5771 break;
5772 case nir_intrinsic_global_atomic_xor:
5773 op32 = aco_opcode::buffer_atomic_xor;
5774 op64 = aco_opcode::buffer_atomic_xor_x2;
5775 break;
5776 case nir_intrinsic_global_atomic_exchange:
5777 op32 = aco_opcode::buffer_atomic_swap;
5778 op64 = aco_opcode::buffer_atomic_swap_x2;
5779 break;
5780 case nir_intrinsic_global_atomic_comp_swap:
5781 op32 = aco_opcode::buffer_atomic_cmpswap;
5782 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
5783 break;
5784 default:
5785 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
5786 }
5787
5788 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
5789
5790 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
5791
5792 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
5793 mubuf->operands[0] = Operand(rsrc);
5794 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
5795 mubuf->operands[2] = Operand(0u);
5796 mubuf->operands[3] = Operand(data);
5797 if (return_previous)
5798 mubuf->definitions[0] = Definition(dst);
5799 mubuf->glc = return_previous;
5800 mubuf->dlc = false;
5801 mubuf->offset = 0;
5802 mubuf->addr64 = addr.type() == RegType::vgpr;
5803 mubuf->disable_wqm = true;
5804 mubuf->barrier = barrier_buffer;
5805 ctx->program->needs_exact = true;
5806 ctx->block->instructions.emplace_back(std::move(mubuf));
5807 }
5808 }
5809
5810 void emit_memory_barrier(isel_context *ctx, nir_intrinsic_instr *instr) {
5811 Builder bld(ctx->program, ctx->block);
5812 switch(instr->intrinsic) {
5813 case nir_intrinsic_group_memory_barrier:
5814 case nir_intrinsic_memory_barrier:
5815 bld.barrier(aco_opcode::p_memory_barrier_common);
5816 break;
5817 case nir_intrinsic_memory_barrier_buffer:
5818 bld.barrier(aco_opcode::p_memory_barrier_buffer);
5819 break;
5820 case nir_intrinsic_memory_barrier_image:
5821 bld.barrier(aco_opcode::p_memory_barrier_image);
5822 break;
5823 case nir_intrinsic_memory_barrier_tcs_patch:
5824 case nir_intrinsic_memory_barrier_shared:
5825 bld.barrier(aco_opcode::p_memory_barrier_shared);
5826 break;
5827 default:
5828 unreachable("Unimplemented memory barrier intrinsic");
5829 break;
5830 }
5831 }
5832
5833 void visit_load_shared(isel_context *ctx, nir_intrinsic_instr *instr)
5834 {
5835 // TODO: implement sparse reads using ds_read2_b32 and nir_ssa_def_components_read()
5836 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5837 assert(instr->dest.ssa.bit_size >= 32 && "Bitsize not supported in load_shared.");
5838 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5839 Builder bld(ctx->program, ctx->block);
5840
5841 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
5842 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
5843 load_lds(ctx, elem_size_bytes, dst, address, nir_intrinsic_base(instr), align);
5844 }
5845
5846 void visit_store_shared(isel_context *ctx, nir_intrinsic_instr *instr)
5847 {
5848 unsigned writemask = nir_intrinsic_write_mask(instr);
5849 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
5850 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5851 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
5852 assert(elem_size_bytes >= 4 && "Only 32bit & 64bit store_shared currently supported.");
5853
5854 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
5855 store_lds(ctx, elem_size_bytes, data, writemask, address, nir_intrinsic_base(instr), align);
5856 }
5857
5858 void visit_shared_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
5859 {
5860 unsigned offset = nir_intrinsic_base(instr);
5861 Operand m = load_lds_size_m0(ctx);
5862 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5863 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5864
5865 unsigned num_operands = 3;
5866 aco_opcode op32, op64, op32_rtn, op64_rtn;
5867 switch(instr->intrinsic) {
5868 case nir_intrinsic_shared_atomic_add:
5869 op32 = aco_opcode::ds_add_u32;
5870 op64 = aco_opcode::ds_add_u64;
5871 op32_rtn = aco_opcode::ds_add_rtn_u32;
5872 op64_rtn = aco_opcode::ds_add_rtn_u64;
5873 break;
5874 case nir_intrinsic_shared_atomic_imin:
5875 op32 = aco_opcode::ds_min_i32;
5876 op64 = aco_opcode::ds_min_i64;
5877 op32_rtn = aco_opcode::ds_min_rtn_i32;
5878 op64_rtn = aco_opcode::ds_min_rtn_i64;
5879 break;
5880 case nir_intrinsic_shared_atomic_umin:
5881 op32 = aco_opcode::ds_min_u32;
5882 op64 = aco_opcode::ds_min_u64;
5883 op32_rtn = aco_opcode::ds_min_rtn_u32;
5884 op64_rtn = aco_opcode::ds_min_rtn_u64;
5885 break;
5886 case nir_intrinsic_shared_atomic_imax:
5887 op32 = aco_opcode::ds_max_i32;
5888 op64 = aco_opcode::ds_max_i64;
5889 op32_rtn = aco_opcode::ds_max_rtn_i32;
5890 op64_rtn = aco_opcode::ds_max_rtn_i64;
5891 break;
5892 case nir_intrinsic_shared_atomic_umax:
5893 op32 = aco_opcode::ds_max_u32;
5894 op64 = aco_opcode::ds_max_u64;
5895 op32_rtn = aco_opcode::ds_max_rtn_u32;
5896 op64_rtn = aco_opcode::ds_max_rtn_u64;
5897 break;
5898 case nir_intrinsic_shared_atomic_and:
5899 op32 = aco_opcode::ds_and_b32;
5900 op64 = aco_opcode::ds_and_b64;
5901 op32_rtn = aco_opcode::ds_and_rtn_b32;
5902 op64_rtn = aco_opcode::ds_and_rtn_b64;
5903 break;
5904 case nir_intrinsic_shared_atomic_or:
5905 op32 = aco_opcode::ds_or_b32;
5906 op64 = aco_opcode::ds_or_b64;
5907 op32_rtn = aco_opcode::ds_or_rtn_b32;
5908 op64_rtn = aco_opcode::ds_or_rtn_b64;
5909 break;
5910 case nir_intrinsic_shared_atomic_xor:
5911 op32 = aco_opcode::ds_xor_b32;
5912 op64 = aco_opcode::ds_xor_b64;
5913 op32_rtn = aco_opcode::ds_xor_rtn_b32;
5914 op64_rtn = aco_opcode::ds_xor_rtn_b64;
5915 break;
5916 case nir_intrinsic_shared_atomic_exchange:
5917 op32 = aco_opcode::ds_write_b32;
5918 op64 = aco_opcode::ds_write_b64;
5919 op32_rtn = aco_opcode::ds_wrxchg_rtn_b32;
5920 op64_rtn = aco_opcode::ds_wrxchg2_rtn_b64;
5921 break;
5922 case nir_intrinsic_shared_atomic_comp_swap:
5923 op32 = aco_opcode::ds_cmpst_b32;
5924 op64 = aco_opcode::ds_cmpst_b64;
5925 op32_rtn = aco_opcode::ds_cmpst_rtn_b32;
5926 op64_rtn = aco_opcode::ds_cmpst_rtn_b64;
5927 num_operands = 4;
5928 break;
5929 default:
5930 unreachable("Unhandled shared atomic intrinsic");
5931 }
5932
5933 /* return the previous value if dest is ever used */
5934 bool return_previous = false;
5935 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5936 return_previous = true;
5937 break;
5938 }
5939 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5940 return_previous = true;
5941 break;
5942 }
5943
5944 aco_opcode op;
5945 if (data.size() == 1) {
5946 assert(instr->dest.ssa.bit_size == 32);
5947 op = return_previous ? op32_rtn : op32;
5948 } else {
5949 assert(instr->dest.ssa.bit_size == 64);
5950 op = return_previous ? op64_rtn : op64;
5951 }
5952
5953 if (offset > 65535) {
5954 Builder bld(ctx->program, ctx->block);
5955 address = bld.vadd32(bld.def(v1), Operand(offset), address);
5956 offset = 0;
5957 }
5958
5959 aco_ptr<DS_instruction> ds;
5960 ds.reset(create_instruction<DS_instruction>(op, Format::DS, num_operands, return_previous ? 1 : 0));
5961 ds->operands[0] = Operand(address);
5962 ds->operands[1] = Operand(data);
5963 if (num_operands == 4)
5964 ds->operands[2] = Operand(get_ssa_temp(ctx, instr->src[2].ssa));
5965 ds->operands[num_operands - 1] = m;
5966 ds->offset0 = offset;
5967 if (return_previous)
5968 ds->definitions[0] = Definition(get_ssa_temp(ctx, &instr->dest.ssa));
5969 ctx->block->instructions.emplace_back(std::move(ds));
5970 }
5971
5972 Temp get_scratch_resource(isel_context *ctx)
5973 {
5974 Builder bld(ctx->program, ctx->block);
5975 Temp scratch_addr = ctx->program->private_segment_buffer;
5976 if (ctx->stage != compute_cs)
5977 scratch_addr = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), scratch_addr, Operand(0u));
5978
5979 uint32_t rsrc_conf = S_008F0C_ADD_TID_ENABLE(1) |
5980 S_008F0C_INDEX_STRIDE(ctx->program->wave_size == 64 ? 3 : 2);;
5981
5982 if (ctx->program->chip_class >= GFX10) {
5983 rsrc_conf |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
5984 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
5985 S_008F0C_RESOURCE_LEVEL(1);
5986 } else if (ctx->program->chip_class <= GFX7) { /* dfmt modifies stride on GFX8/GFX9 when ADD_TID_EN=1 */
5987 rsrc_conf |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5988 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
5989 }
5990
5991 /* older generations need element size = 16 bytes. element size removed in GFX9 */
5992 if (ctx->program->chip_class <= GFX8)
5993 rsrc_conf |= S_008F0C_ELEMENT_SIZE(3);
5994
5995 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), scratch_addr, Operand(-1u), Operand(rsrc_conf));
5996 }
5997
5998 void visit_load_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
5999 assert(instr->dest.ssa.bit_size == 32 || instr->dest.ssa.bit_size == 64);
6000 Builder bld(ctx->program, ctx->block);
6001 Temp rsrc = get_scratch_resource(ctx);
6002 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6003 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6004
6005 aco_opcode op;
6006 switch (dst.size()) {
6007 case 1:
6008 op = aco_opcode::buffer_load_dword;
6009 break;
6010 case 2:
6011 op = aco_opcode::buffer_load_dwordx2;
6012 break;
6013 case 3:
6014 op = aco_opcode::buffer_load_dwordx3;
6015 break;
6016 case 4:
6017 op = aco_opcode::buffer_load_dwordx4;
6018 break;
6019 case 6:
6020 case 8: {
6021 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
6022 Temp lower = bld.mubuf(aco_opcode::buffer_load_dwordx4,
6023 bld.def(v4), rsrc, offset,
6024 ctx->program->scratch_offset, 0, true);
6025 Temp upper = bld.mubuf(dst.size() == 6 ? aco_opcode::buffer_load_dwordx2 :
6026 aco_opcode::buffer_load_dwordx4,
6027 dst.size() == 6 ? bld.def(v2) : bld.def(v4),
6028 rsrc, offset, ctx->program->scratch_offset, 16, true);
6029 emit_split_vector(ctx, lower, 2);
6030 elems[0] = emit_extract_vector(ctx, lower, 0, v2);
6031 elems[1] = emit_extract_vector(ctx, lower, 1, v2);
6032 if (dst.size() == 8) {
6033 emit_split_vector(ctx, upper, 2);
6034 elems[2] = emit_extract_vector(ctx, upper, 0, v2);
6035 elems[3] = emit_extract_vector(ctx, upper, 1, v2);
6036 } else {
6037 elems[2] = upper;
6038 }
6039
6040 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
6041 Format::PSEUDO, dst.size() / 2, 1)};
6042 for (unsigned i = 0; i < dst.size() / 2; i++)
6043 vec->operands[i] = Operand(elems[i]);
6044 vec->definitions[0] = Definition(dst);
6045 bld.insert(std::move(vec));
6046 ctx->allocated_vec.emplace(dst.id(), elems);
6047 return;
6048 }
6049 default:
6050 unreachable("Wrong dst size for nir_intrinsic_load_scratch");
6051 }
6052
6053 bld.mubuf(op, Definition(dst), rsrc, offset, ctx->program->scratch_offset, 0, true);
6054 emit_split_vector(ctx, dst, instr->num_components);
6055 }
6056
6057 void visit_store_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
6058 assert(instr->src[0].ssa->bit_size == 32 || instr->src[0].ssa->bit_size == 64);
6059 Builder bld(ctx->program, ctx->block);
6060 Temp rsrc = get_scratch_resource(ctx);
6061 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6062 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6063
6064 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6065 unsigned writemask = nir_intrinsic_write_mask(instr);
6066
6067 while (writemask) {
6068 int start, count;
6069 u_bit_scan_consecutive_range(&writemask, &start, &count);
6070 int num_bytes = count * elem_size_bytes;
6071
6072 if (num_bytes > 16) {
6073 assert(elem_size_bytes == 8);
6074 writemask |= (((count - 2) << 1) - 1) << (start + 2);
6075 count = 2;
6076 num_bytes = 16;
6077 }
6078
6079 // TODO: check alignment of sub-dword stores
6080 // TODO: split 3 bytes. there is no store instruction for that
6081
6082 Temp write_data;
6083 if (count != instr->num_components) {
6084 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
6085 for (int i = 0; i < count; i++) {
6086 Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(RegType::vgpr, elem_size_bytes / 4));
6087 vec->operands[i] = Operand(elem);
6088 }
6089 write_data = bld.tmp(RegClass(RegType::vgpr, count * elem_size_bytes / 4));
6090 vec->definitions[0] = Definition(write_data);
6091 ctx->block->instructions.emplace_back(std::move(vec));
6092 } else {
6093 write_data = data;
6094 }
6095
6096 aco_opcode op;
6097 switch (num_bytes) {
6098 case 4:
6099 op = aco_opcode::buffer_store_dword;
6100 break;
6101 case 8:
6102 op = aco_opcode::buffer_store_dwordx2;
6103 break;
6104 case 12:
6105 op = aco_opcode::buffer_store_dwordx3;
6106 break;
6107 case 16:
6108 op = aco_opcode::buffer_store_dwordx4;
6109 break;
6110 default:
6111 unreachable("Invalid data size for nir_intrinsic_store_scratch.");
6112 }
6113
6114 bld.mubuf(op, rsrc, offset, ctx->program->scratch_offset, write_data, start * elem_size_bytes, true);
6115 }
6116 }
6117
6118 void visit_load_sample_mask_in(isel_context *ctx, nir_intrinsic_instr *instr) {
6119 uint8_t log2_ps_iter_samples;
6120 if (ctx->program->info->ps.force_persample) {
6121 log2_ps_iter_samples =
6122 util_logbase2(ctx->options->key.fs.num_samples);
6123 } else {
6124 log2_ps_iter_samples = ctx->options->key.fs.log2_ps_iter_samples;
6125 }
6126
6127 /* The bit pattern matches that used by fixed function fragment
6128 * processing. */
6129 static const unsigned ps_iter_masks[] = {
6130 0xffff, /* not used */
6131 0x5555,
6132 0x1111,
6133 0x0101,
6134 0x0001,
6135 };
6136 assert(log2_ps_iter_samples < ARRAY_SIZE(ps_iter_masks));
6137
6138 Builder bld(ctx->program, ctx->block);
6139
6140 Temp sample_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
6141 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
6142 Temp ps_iter_mask = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(ps_iter_masks[log2_ps_iter_samples]));
6143 Temp mask = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), sample_id, ps_iter_mask);
6144 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6145 bld.vop2(aco_opcode::v_and_b32, Definition(dst), mask, get_arg(ctx, ctx->args->ac.sample_coverage));
6146 }
6147
6148 void visit_emit_vertex_with_counter(isel_context *ctx, nir_intrinsic_instr *instr) {
6149 Builder bld(ctx->program, ctx->block);
6150
6151 unsigned stream = nir_intrinsic_stream_id(instr);
6152 Temp next_vertex = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6153 next_vertex = bld.v_mul_imm(bld.def(v1), next_vertex, 4u);
6154 nir_const_value *next_vertex_cv = nir_src_as_const_value(instr->src[0]);
6155
6156 /* get GSVS ring */
6157 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_GSVS_GS * 16u));
6158
6159 unsigned num_components =
6160 ctx->program->info->gs.num_stream_output_components[stream];
6161 assert(num_components);
6162
6163 unsigned stride = 4u * num_components * ctx->shader->info.gs.vertices_out;
6164 unsigned stream_offset = 0;
6165 for (unsigned i = 0; i < stream; i++) {
6166 unsigned prev_stride = 4u * ctx->program->info->gs.num_stream_output_components[i] * ctx->shader->info.gs.vertices_out;
6167 stream_offset += prev_stride * ctx->program->wave_size;
6168 }
6169
6170 /* Limit on the stride field for <= GFX7. */
6171 assert(stride < (1 << 14));
6172
6173 Temp gsvs_dwords[4];
6174 for (unsigned i = 0; i < 4; i++)
6175 gsvs_dwords[i] = bld.tmp(s1);
6176 bld.pseudo(aco_opcode::p_split_vector,
6177 Definition(gsvs_dwords[0]),
6178 Definition(gsvs_dwords[1]),
6179 Definition(gsvs_dwords[2]),
6180 Definition(gsvs_dwords[3]),
6181 gsvs_ring);
6182
6183 if (stream_offset) {
6184 Temp stream_offset_tmp = bld.copy(bld.def(s1), Operand(stream_offset));
6185
6186 Temp carry = bld.tmp(s1);
6187 gsvs_dwords[0] = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), gsvs_dwords[0], stream_offset_tmp);
6188 gsvs_dwords[1] = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(0u), bld.scc(carry));
6189 }
6190
6191 gsvs_dwords[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(S_008F04_STRIDE(stride)));
6192 gsvs_dwords[2] = bld.copy(bld.def(s1), Operand((uint32_t)ctx->program->wave_size));
6193
6194 gsvs_ring = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
6195 gsvs_dwords[0], gsvs_dwords[1], gsvs_dwords[2], gsvs_dwords[3]);
6196
6197 unsigned offset = 0;
6198 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; i++) {
6199 if (ctx->program->info->gs.output_streams[i] != stream)
6200 continue;
6201
6202 for (unsigned j = 0; j < 4; j++) {
6203 if (!(ctx->program->info->gs.output_usage_mask[i] & (1 << j)))
6204 continue;
6205
6206 if (ctx->outputs.mask[i] & (1 << j)) {
6207 Operand vaddr_offset = next_vertex_cv ? Operand(v1) : Operand(next_vertex);
6208 unsigned const_offset = (offset + (next_vertex_cv ? next_vertex_cv->u32 : 0u)) * 4u;
6209 if (const_offset >= 4096u) {
6210 if (vaddr_offset.isUndefined())
6211 vaddr_offset = bld.copy(bld.def(v1), Operand(const_offset / 4096u * 4096u));
6212 else
6213 vaddr_offset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), vaddr_offset);
6214 const_offset %= 4096u;
6215 }
6216
6217 aco_ptr<MTBUF_instruction> mtbuf{create_instruction<MTBUF_instruction>(aco_opcode::tbuffer_store_format_x, Format::MTBUF, 4, 0)};
6218 mtbuf->operands[0] = Operand(gsvs_ring);
6219 mtbuf->operands[1] = vaddr_offset;
6220 mtbuf->operands[2] = Operand(get_arg(ctx, ctx->args->gs2vs_offset));
6221 mtbuf->operands[3] = Operand(ctx->outputs.outputs[i][j]);
6222 mtbuf->offen = !vaddr_offset.isUndefined();
6223 mtbuf->dfmt = V_008F0C_BUF_DATA_FORMAT_32;
6224 mtbuf->nfmt = V_008F0C_BUF_NUM_FORMAT_UINT;
6225 mtbuf->offset = const_offset;
6226 mtbuf->glc = true;
6227 mtbuf->slc = true;
6228 mtbuf->barrier = barrier_gs_data;
6229 mtbuf->can_reorder = true;
6230 bld.insert(std::move(mtbuf));
6231 }
6232
6233 offset += ctx->shader->info.gs.vertices_out;
6234 }
6235
6236 /* outputs for the next vertex are undefined and keeping them around can
6237 * create invalid IR with control flow */
6238 ctx->outputs.mask[i] = 0;
6239 }
6240
6241 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(false, true, stream));
6242 }
6243
6244 Temp emit_boolean_reduce(isel_context *ctx, nir_op op, unsigned cluster_size, Temp src)
6245 {
6246 Builder bld(ctx->program, ctx->block);
6247
6248 if (cluster_size == 1) {
6249 return src;
6250 } if (op == nir_op_iand && cluster_size == 4) {
6251 //subgroupClusteredAnd(val, 4) -> ~wqm(exec & ~val)
6252 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
6253 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc),
6254 bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc), tmp));
6255 } else if (op == nir_op_ior && cluster_size == 4) {
6256 //subgroupClusteredOr(val, 4) -> wqm(val & exec)
6257 return bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc),
6258 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)));
6259 } else if (op == nir_op_iand && cluster_size == ctx->program->wave_size) {
6260 //subgroupAnd(val) -> (exec & ~val) == 0
6261 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
6262 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
6263 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), cond);
6264 } else if (op == nir_op_ior && cluster_size == ctx->program->wave_size) {
6265 //subgroupOr(val) -> (val & exec) != 0
6266 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)).def(1).getTemp();
6267 return bool_to_vector_condition(ctx, tmp);
6268 } else if (op == nir_op_ixor && cluster_size == ctx->program->wave_size) {
6269 //subgroupXor(val) -> s_bcnt1_i32_b64(val & exec) & 1
6270 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
6271 tmp = bld.sop1(Builder::s_bcnt1_i32, bld.def(s1), bld.def(s1, scc), tmp);
6272 tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), tmp, Operand(1u)).def(1).getTemp();
6273 return bool_to_vector_condition(ctx, tmp);
6274 } else {
6275 //subgroupClustered{And,Or,Xor}(val, n) ->
6276 //lane_id = v_mbcnt_hi_u32_b32(-1, v_mbcnt_lo_u32_b32(-1, 0)) ; just v_mbcnt_lo_u32_b32 on wave32
6277 //cluster_offset = ~(n - 1) & lane_id
6278 //cluster_mask = ((1 << n) - 1)
6279 //subgroupClusteredAnd():
6280 // return ((val | ~exec) >> cluster_offset) & cluster_mask == cluster_mask
6281 //subgroupClusteredOr():
6282 // return ((val & exec) >> cluster_offset) & cluster_mask != 0
6283 //subgroupClusteredXor():
6284 // return v_bnt_u32_b32(((val & exec) >> cluster_offset) & cluster_mask, 0) & 1 != 0
6285 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
6286 Temp cluster_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(~uint32_t(cluster_size - 1)), lane_id);
6287
6288 Temp tmp;
6289 if (op == nir_op_iand)
6290 tmp = bld.sop2(Builder::s_orn2, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
6291 else
6292 tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
6293
6294 uint32_t cluster_mask = cluster_size == 32 ? -1 : (1u << cluster_size) - 1u;
6295
6296 if (ctx->program->chip_class <= GFX7)
6297 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), tmp, cluster_offset);
6298 else if (ctx->program->wave_size == 64)
6299 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), cluster_offset, tmp);
6300 else
6301 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), cluster_offset, tmp);
6302 tmp = emit_extract_vector(ctx, tmp, 0, v1);
6303 if (cluster_mask != 0xffffffff)
6304 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(cluster_mask), tmp);
6305
6306 Definition cmp_def = Definition();
6307 if (op == nir_op_iand) {
6308 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(cluster_mask), tmp).def(0);
6309 } else if (op == nir_op_ior) {
6310 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
6311 } else if (op == nir_op_ixor) {
6312 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u),
6313 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1), tmp, Operand(0u)));
6314 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
6315 }
6316 cmp_def.setHint(vcc);
6317 return cmp_def.getTemp();
6318 }
6319 }
6320
6321 Temp emit_boolean_exclusive_scan(isel_context *ctx, nir_op op, Temp src)
6322 {
6323 Builder bld(ctx->program, ctx->block);
6324
6325 //subgroupExclusiveAnd(val) -> mbcnt(exec & ~val) == 0
6326 //subgroupExclusiveOr(val) -> mbcnt(val & exec) != 0
6327 //subgroupExclusiveXor(val) -> mbcnt(val & exec) & 1 != 0
6328 Temp tmp;
6329 if (op == nir_op_iand)
6330 tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
6331 else
6332 tmp = bld.sop2(Builder::s_and, bld.def(s2), bld.def(s1, scc), src, Operand(exec, bld.lm));
6333
6334 Builder::Result lohi = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), bld.def(s1), tmp);
6335 Temp lo = lohi.def(0).getTemp();
6336 Temp hi = lohi.def(1).getTemp();
6337 Temp mbcnt = emit_mbcnt(ctx, bld.def(v1), Operand(lo), Operand(hi));
6338
6339 Definition cmp_def = Definition();
6340 if (op == nir_op_iand)
6341 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
6342 else if (op == nir_op_ior)
6343 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
6344 else if (op == nir_op_ixor)
6345 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u),
6346 bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), mbcnt)).def(0);
6347 cmp_def.setHint(vcc);
6348 return cmp_def.getTemp();
6349 }
6350
6351 Temp emit_boolean_inclusive_scan(isel_context *ctx, nir_op op, Temp src)
6352 {
6353 Builder bld(ctx->program, ctx->block);
6354
6355 //subgroupInclusiveAnd(val) -> subgroupExclusiveAnd(val) && val
6356 //subgroupInclusiveOr(val) -> subgroupExclusiveOr(val) || val
6357 //subgroupInclusiveXor(val) -> subgroupExclusiveXor(val) ^^ val
6358 Temp tmp = emit_boolean_exclusive_scan(ctx, op, src);
6359 if (op == nir_op_iand)
6360 return bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
6361 else if (op == nir_op_ior)
6362 return bld.sop2(Builder::s_or, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
6363 else if (op == nir_op_ixor)
6364 return bld.sop2(Builder::s_xor, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
6365
6366 assert(false);
6367 return Temp();
6368 }
6369
6370 void emit_uniform_subgroup(isel_context *ctx, nir_intrinsic_instr *instr, Temp src)
6371 {
6372 Builder bld(ctx->program, ctx->block);
6373 Definition dst(get_ssa_temp(ctx, &instr->dest.ssa));
6374 if (src.regClass().type() == RegType::vgpr) {
6375 bld.pseudo(aco_opcode::p_as_uniform, dst, src);
6376 } else if (src.regClass() == s1) {
6377 bld.sop1(aco_opcode::s_mov_b32, dst, src);
6378 } else if (src.regClass() == s2) {
6379 bld.sop1(aco_opcode::s_mov_b64, dst, src);
6380 } else {
6381 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6382 nir_print_instr(&instr->instr, stderr);
6383 fprintf(stderr, "\n");
6384 }
6385 }
6386
6387 void emit_interp_center(isel_context *ctx, Temp dst, Temp pos1, Temp pos2)
6388 {
6389 Builder bld(ctx->program, ctx->block);
6390 Temp persp_center = get_arg(ctx, ctx->args->ac.persp_center);
6391 Temp p1 = emit_extract_vector(ctx, persp_center, 0, v1);
6392 Temp p2 = emit_extract_vector(ctx, persp_center, 1, v1);
6393
6394 Temp ddx_1, ddx_2, ddy_1, ddy_2;
6395 uint32_t dpp_ctrl0 = dpp_quad_perm(0, 0, 0, 0);
6396 uint32_t dpp_ctrl1 = dpp_quad_perm(1, 1, 1, 1);
6397 uint32_t dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
6398
6399 /* Build DD X/Y */
6400 if (ctx->program->chip_class >= GFX8) {
6401 Temp tl_1 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p1, dpp_ctrl0);
6402 ddx_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl1);
6403 ddy_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl2);
6404 Temp tl_2 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p2, dpp_ctrl0);
6405 ddx_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl1);
6406 ddy_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl2);
6407 } else {
6408 Temp tl_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl0);
6409 ddx_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl1);
6410 ddx_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_1, tl_1);
6411 ddx_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl2);
6412 ddx_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_2, tl_1);
6413 Temp tl_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl0);
6414 ddy_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl1);
6415 ddy_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_1, tl_2);
6416 ddy_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl2);
6417 ddy_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_2, tl_2);
6418 }
6419
6420 /* res_k = p_k + ddx_k * pos1 + ddy_k * pos2 */
6421 Temp tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_1, pos1, p1);
6422 Temp tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_2, pos1, p2);
6423 tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_1, pos2, tmp1);
6424 tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_2, pos2, tmp2);
6425 Temp wqm1 = bld.tmp(v1);
6426 emit_wqm(ctx, tmp1, wqm1, true);
6427 Temp wqm2 = bld.tmp(v1);
6428 emit_wqm(ctx, tmp2, wqm2, true);
6429 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), wqm1, wqm2);
6430 return;
6431 }
6432
6433 void visit_intrinsic(isel_context *ctx, nir_intrinsic_instr *instr)
6434 {
6435 Builder bld(ctx->program, ctx->block);
6436 switch(instr->intrinsic) {
6437 case nir_intrinsic_load_barycentric_sample:
6438 case nir_intrinsic_load_barycentric_pixel:
6439 case nir_intrinsic_load_barycentric_centroid: {
6440 glsl_interp_mode mode = (glsl_interp_mode)nir_intrinsic_interp_mode(instr);
6441 Temp bary = Temp(0, s2);
6442 switch (mode) {
6443 case INTERP_MODE_SMOOTH:
6444 case INTERP_MODE_NONE:
6445 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
6446 bary = get_arg(ctx, ctx->args->ac.persp_center);
6447 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
6448 bary = ctx->persp_centroid;
6449 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
6450 bary = get_arg(ctx, ctx->args->ac.persp_sample);
6451 break;
6452 case INTERP_MODE_NOPERSPECTIVE:
6453 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
6454 bary = get_arg(ctx, ctx->args->ac.linear_center);
6455 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
6456 bary = ctx->linear_centroid;
6457 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
6458 bary = get_arg(ctx, ctx->args->ac.linear_sample);
6459 break;
6460 default:
6461 break;
6462 }
6463 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6464 Temp p1 = emit_extract_vector(ctx, bary, 0, v1);
6465 Temp p2 = emit_extract_vector(ctx, bary, 1, v1);
6466 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6467 Operand(p1), Operand(p2));
6468 emit_split_vector(ctx, dst, 2);
6469 break;
6470 }
6471 case nir_intrinsic_load_barycentric_model: {
6472 Temp model = get_arg(ctx, ctx->args->ac.pull_model);
6473
6474 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6475 Temp p1 = emit_extract_vector(ctx, model, 0, v1);
6476 Temp p2 = emit_extract_vector(ctx, model, 1, v1);
6477 Temp p3 = emit_extract_vector(ctx, model, 2, v1);
6478 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6479 Operand(p1), Operand(p2), Operand(p3));
6480 emit_split_vector(ctx, dst, 3);
6481 break;
6482 }
6483 case nir_intrinsic_load_barycentric_at_sample: {
6484 uint32_t sample_pos_offset = RING_PS_SAMPLE_POSITIONS * 16;
6485 switch (ctx->options->key.fs.num_samples) {
6486 case 2: sample_pos_offset += 1 << 3; break;
6487 case 4: sample_pos_offset += 3 << 3; break;
6488 case 8: sample_pos_offset += 7 << 3; break;
6489 default: break;
6490 }
6491 Temp sample_pos;
6492 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
6493 nir_const_value* const_addr = nir_src_as_const_value(instr->src[0]);
6494 Temp private_segment_buffer = ctx->program->private_segment_buffer;
6495 if (addr.type() == RegType::sgpr) {
6496 Operand offset;
6497 if (const_addr) {
6498 sample_pos_offset += const_addr->u32 << 3;
6499 offset = Operand(sample_pos_offset);
6500 } else if (ctx->options->chip_class >= GFX9) {
6501 offset = bld.sop2(aco_opcode::s_lshl3_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
6502 } else {
6503 offset = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), addr, Operand(3u));
6504 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
6505 }
6506
6507 Operand off = bld.copy(bld.def(s1), Operand(offset));
6508 sample_pos = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), private_segment_buffer, off);
6509
6510 } else if (ctx->options->chip_class >= GFX9) {
6511 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
6512 sample_pos = bld.global(aco_opcode::global_load_dwordx2, bld.def(v2), addr, private_segment_buffer, sample_pos_offset);
6513 } else if (ctx->options->chip_class >= GFX7) {
6514 /* addr += private_segment_buffer + sample_pos_offset */
6515 Temp tmp0 = bld.tmp(s1);
6516 Temp tmp1 = bld.tmp(s1);
6517 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp0), Definition(tmp1), private_segment_buffer);
6518 Definition scc_tmp = bld.def(s1, scc);
6519 tmp0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), scc_tmp, tmp0, Operand(sample_pos_offset));
6520 tmp1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), tmp1, Operand(0u), bld.scc(scc_tmp.getTemp()));
6521 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
6522 Temp pck0 = bld.tmp(v1);
6523 Temp carry = bld.vadd32(Definition(pck0), tmp0, addr, true).def(1).getTemp();
6524 tmp1 = as_vgpr(ctx, tmp1);
6525 Temp pck1 = bld.vop2_e64(aco_opcode::v_addc_co_u32, bld.def(v1), bld.hint_vcc(bld.def(bld.lm)), tmp1, Operand(0u), carry);
6526 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), pck0, pck1);
6527
6528 /* sample_pos = flat_load_dwordx2 addr */
6529 sample_pos = bld.flat(aco_opcode::flat_load_dwordx2, bld.def(v2), addr, Operand(s1));
6530 } else {
6531 assert(ctx->options->chip_class == GFX6);
6532
6533 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
6534 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
6535 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), private_segment_buffer, Operand(0u), Operand(rsrc_conf));
6536
6537 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
6538 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), addr, Operand(0u));
6539
6540 sample_pos = bld.tmp(v2);
6541
6542 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dwordx2, Format::MUBUF, 3, 1)};
6543 load->definitions[0] = Definition(sample_pos);
6544 load->operands[0] = Operand(rsrc);
6545 load->operands[1] = Operand(addr);
6546 load->operands[2] = Operand(0u);
6547 load->offset = sample_pos_offset;
6548 load->offen = 0;
6549 load->addr64 = true;
6550 load->glc = false;
6551 load->dlc = false;
6552 load->disable_wqm = false;
6553 load->barrier = barrier_none;
6554 load->can_reorder = true;
6555 ctx->block->instructions.emplace_back(std::move(load));
6556 }
6557
6558 /* sample_pos -= 0.5 */
6559 Temp pos1 = bld.tmp(RegClass(sample_pos.type(), 1));
6560 Temp pos2 = bld.tmp(RegClass(sample_pos.type(), 1));
6561 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), sample_pos);
6562 pos1 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos1, Operand(0x3f000000u));
6563 pos2 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos2, Operand(0x3f000000u));
6564
6565 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
6566 break;
6567 }
6568 case nir_intrinsic_load_barycentric_at_offset: {
6569 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
6570 RegClass rc = RegClass(offset.type(), 1);
6571 Temp pos1 = bld.tmp(rc), pos2 = bld.tmp(rc);
6572 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), offset);
6573 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
6574 break;
6575 }
6576 case nir_intrinsic_load_front_face: {
6577 bld.vopc(aco_opcode::v_cmp_lg_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6578 Operand(0u), get_arg(ctx, ctx->args->ac.front_face)).def(0).setHint(vcc);
6579 break;
6580 }
6581 case nir_intrinsic_load_view_index: {
6582 if (ctx->stage & (sw_vs | sw_gs | sw_tcs | sw_tes)) {
6583 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6584 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.view_index)));
6585 break;
6586 }
6587
6588 /* fallthrough */
6589 }
6590 case nir_intrinsic_load_layer_id: {
6591 unsigned idx = nir_intrinsic_base(instr);
6592 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6593 Operand(2u), bld.m0(get_arg(ctx, ctx->args->ac.prim_mask)), idx, 0);
6594 break;
6595 }
6596 case nir_intrinsic_load_frag_coord: {
6597 emit_load_frag_coord(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 4);
6598 break;
6599 }
6600 case nir_intrinsic_load_sample_pos: {
6601 Temp posx = get_arg(ctx, ctx->args->ac.frag_pos[0]);
6602 Temp posy = get_arg(ctx, ctx->args->ac.frag_pos[1]);
6603 bld.pseudo(aco_opcode::p_create_vector, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6604 posx.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posx) : Operand(0u),
6605 posy.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posy) : Operand(0u));
6606 break;
6607 }
6608 case nir_intrinsic_load_tess_coord:
6609 visit_load_tess_coord(ctx, instr);
6610 break;
6611 case nir_intrinsic_load_interpolated_input:
6612 visit_load_interpolated_input(ctx, instr);
6613 break;
6614 case nir_intrinsic_store_output:
6615 visit_store_output(ctx, instr);
6616 break;
6617 case nir_intrinsic_load_input:
6618 case nir_intrinsic_load_input_vertex:
6619 visit_load_input(ctx, instr);
6620 break;
6621 case nir_intrinsic_load_output:
6622 visit_load_output(ctx, instr);
6623 break;
6624 case nir_intrinsic_load_per_vertex_input:
6625 visit_load_per_vertex_input(ctx, instr);
6626 break;
6627 case nir_intrinsic_load_per_vertex_output:
6628 visit_load_per_vertex_output(ctx, instr);
6629 break;
6630 case nir_intrinsic_store_per_vertex_output:
6631 visit_store_per_vertex_output(ctx, instr);
6632 break;
6633 case nir_intrinsic_load_ubo:
6634 visit_load_ubo(ctx, instr);
6635 break;
6636 case nir_intrinsic_load_push_constant:
6637 visit_load_push_constant(ctx, instr);
6638 break;
6639 case nir_intrinsic_load_constant:
6640 visit_load_constant(ctx, instr);
6641 break;
6642 case nir_intrinsic_vulkan_resource_index:
6643 visit_load_resource(ctx, instr);
6644 break;
6645 case nir_intrinsic_discard:
6646 visit_discard(ctx, instr);
6647 break;
6648 case nir_intrinsic_discard_if:
6649 visit_discard_if(ctx, instr);
6650 break;
6651 case nir_intrinsic_load_shared:
6652 visit_load_shared(ctx, instr);
6653 break;
6654 case nir_intrinsic_store_shared:
6655 visit_store_shared(ctx, instr);
6656 break;
6657 case nir_intrinsic_shared_atomic_add:
6658 case nir_intrinsic_shared_atomic_imin:
6659 case nir_intrinsic_shared_atomic_umin:
6660 case nir_intrinsic_shared_atomic_imax:
6661 case nir_intrinsic_shared_atomic_umax:
6662 case nir_intrinsic_shared_atomic_and:
6663 case nir_intrinsic_shared_atomic_or:
6664 case nir_intrinsic_shared_atomic_xor:
6665 case nir_intrinsic_shared_atomic_exchange:
6666 case nir_intrinsic_shared_atomic_comp_swap:
6667 visit_shared_atomic(ctx, instr);
6668 break;
6669 case nir_intrinsic_image_deref_load:
6670 visit_image_load(ctx, instr);
6671 break;
6672 case nir_intrinsic_image_deref_store:
6673 visit_image_store(ctx, instr);
6674 break;
6675 case nir_intrinsic_image_deref_atomic_add:
6676 case nir_intrinsic_image_deref_atomic_umin:
6677 case nir_intrinsic_image_deref_atomic_imin:
6678 case nir_intrinsic_image_deref_atomic_umax:
6679 case nir_intrinsic_image_deref_atomic_imax:
6680 case nir_intrinsic_image_deref_atomic_and:
6681 case nir_intrinsic_image_deref_atomic_or:
6682 case nir_intrinsic_image_deref_atomic_xor:
6683 case nir_intrinsic_image_deref_atomic_exchange:
6684 case nir_intrinsic_image_deref_atomic_comp_swap:
6685 visit_image_atomic(ctx, instr);
6686 break;
6687 case nir_intrinsic_image_deref_size:
6688 visit_image_size(ctx, instr);
6689 break;
6690 case nir_intrinsic_load_ssbo:
6691 visit_load_ssbo(ctx, instr);
6692 break;
6693 case nir_intrinsic_store_ssbo:
6694 visit_store_ssbo(ctx, instr);
6695 break;
6696 case nir_intrinsic_load_global:
6697 visit_load_global(ctx, instr);
6698 break;
6699 case nir_intrinsic_store_global:
6700 visit_store_global(ctx, instr);
6701 break;
6702 case nir_intrinsic_global_atomic_add:
6703 case nir_intrinsic_global_atomic_imin:
6704 case nir_intrinsic_global_atomic_umin:
6705 case nir_intrinsic_global_atomic_imax:
6706 case nir_intrinsic_global_atomic_umax:
6707 case nir_intrinsic_global_atomic_and:
6708 case nir_intrinsic_global_atomic_or:
6709 case nir_intrinsic_global_atomic_xor:
6710 case nir_intrinsic_global_atomic_exchange:
6711 case nir_intrinsic_global_atomic_comp_swap:
6712 visit_global_atomic(ctx, instr);
6713 break;
6714 case nir_intrinsic_ssbo_atomic_add:
6715 case nir_intrinsic_ssbo_atomic_imin:
6716 case nir_intrinsic_ssbo_atomic_umin:
6717 case nir_intrinsic_ssbo_atomic_imax:
6718 case nir_intrinsic_ssbo_atomic_umax:
6719 case nir_intrinsic_ssbo_atomic_and:
6720 case nir_intrinsic_ssbo_atomic_or:
6721 case nir_intrinsic_ssbo_atomic_xor:
6722 case nir_intrinsic_ssbo_atomic_exchange:
6723 case nir_intrinsic_ssbo_atomic_comp_swap:
6724 visit_atomic_ssbo(ctx, instr);
6725 break;
6726 case nir_intrinsic_load_scratch:
6727 visit_load_scratch(ctx, instr);
6728 break;
6729 case nir_intrinsic_store_scratch:
6730 visit_store_scratch(ctx, instr);
6731 break;
6732 case nir_intrinsic_get_buffer_size:
6733 visit_get_buffer_size(ctx, instr);
6734 break;
6735 case nir_intrinsic_control_barrier: {
6736 if (ctx->program->chip_class == GFX6 && ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
6737 /* GFX6 only (thanks to a hw bug workaround):
6738 * The real barrier instruction isn’t needed, because an entire patch
6739 * always fits into a single wave.
6740 */
6741 break;
6742 }
6743
6744 if (ctx->shader->info.stage == MESA_SHADER_COMPUTE) {
6745 unsigned* bsize = ctx->program->info->cs.block_size;
6746 unsigned workgroup_size = bsize[0] * bsize[1] * bsize[2];
6747 if (workgroup_size > ctx->program->wave_size)
6748 bld.sopp(aco_opcode::s_barrier);
6749 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
6750 /* For each patch provided during rendering, n​ TCS shader invocations will be processed,
6751 * where n​ is the number of vertices in the output patch.
6752 */
6753 unsigned workgroup_size = ctx->tcs_num_patches * ctx->shader->info.tess.tcs_vertices_out;
6754 if (workgroup_size > ctx->program->wave_size)
6755 bld.sopp(aco_opcode::s_barrier);
6756 } else {
6757 /* We don't know the workgroup size, so always emit the s_barrier. */
6758 bld.sopp(aco_opcode::s_barrier);
6759 }
6760
6761 break;
6762 }
6763 case nir_intrinsic_memory_barrier_tcs_patch:
6764 case nir_intrinsic_group_memory_barrier:
6765 case nir_intrinsic_memory_barrier:
6766 case nir_intrinsic_memory_barrier_buffer:
6767 case nir_intrinsic_memory_barrier_image:
6768 case nir_intrinsic_memory_barrier_shared:
6769 emit_memory_barrier(ctx, instr);
6770 break;
6771 case nir_intrinsic_load_num_work_groups: {
6772 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6773 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.num_work_groups)));
6774 emit_split_vector(ctx, dst, 3);
6775 break;
6776 }
6777 case nir_intrinsic_load_local_invocation_id: {
6778 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6779 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.local_invocation_ids)));
6780 emit_split_vector(ctx, dst, 3);
6781 break;
6782 }
6783 case nir_intrinsic_load_work_group_id: {
6784 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6785 struct ac_arg *args = ctx->args->ac.workgroup_ids;
6786 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6787 args[0].used ? Operand(get_arg(ctx, args[0])) : Operand(0u),
6788 args[1].used ? Operand(get_arg(ctx, args[1])) : Operand(0u),
6789 args[2].used ? Operand(get_arg(ctx, args[2])) : Operand(0u));
6790 emit_split_vector(ctx, dst, 3);
6791 break;
6792 }
6793 case nir_intrinsic_load_local_invocation_index: {
6794 Temp id = emit_mbcnt(ctx, bld.def(v1));
6795
6796 /* The tg_size bits [6:11] contain the subgroup id,
6797 * we need this multiplied by the wave size, and then OR the thread id to it.
6798 */
6799 if (ctx->program->wave_size == 64) {
6800 /* After the s_and the bits are already multiplied by 64 (left shifted by 6) so we can just feed that to v_or */
6801 Temp tg_num = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfc0u),
6802 get_arg(ctx, ctx->args->ac.tg_size));
6803 bld.vop2(aco_opcode::v_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, id);
6804 } else {
6805 /* Extract the bit field and multiply the result by 32 (left shift by 5), then do the OR */
6806 Temp tg_num = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
6807 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
6808 bld.vop3(aco_opcode::v_lshl_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, Operand(0x5u), id);
6809 }
6810 break;
6811 }
6812 case nir_intrinsic_load_subgroup_id: {
6813 if (ctx->stage == compute_cs) {
6814 bld.sop2(aco_opcode::s_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc),
6815 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
6816 } else {
6817 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x0u));
6818 }
6819 break;
6820 }
6821 case nir_intrinsic_load_subgroup_invocation: {
6822 emit_mbcnt(ctx, Definition(get_ssa_temp(ctx, &instr->dest.ssa)));
6823 break;
6824 }
6825 case nir_intrinsic_load_num_subgroups: {
6826 if (ctx->stage == compute_cs)
6827 bld.sop2(aco_opcode::s_and_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc), Operand(0x3fu),
6828 get_arg(ctx, ctx->args->ac.tg_size));
6829 else
6830 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x1u));
6831 break;
6832 }
6833 case nir_intrinsic_ballot: {
6834 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6835 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6836 Definition tmp = bld.def(dst.regClass());
6837 Definition lanemask_tmp = dst.size() == bld.lm.size() ? tmp : bld.def(src.regClass());
6838 if (instr->src[0].ssa->bit_size == 1) {
6839 assert(src.regClass() == bld.lm);
6840 bld.sop2(Builder::s_and, lanemask_tmp, bld.def(s1, scc), Operand(exec, bld.lm), src);
6841 } else if (instr->src[0].ssa->bit_size == 32 && src.regClass() == v1) {
6842 bld.vopc(aco_opcode::v_cmp_lg_u32, lanemask_tmp, Operand(0u), src);
6843 } else if (instr->src[0].ssa->bit_size == 64 && src.regClass() == v2) {
6844 bld.vopc(aco_opcode::v_cmp_lg_u64, lanemask_tmp, Operand(0u), src);
6845 } else {
6846 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6847 nir_print_instr(&instr->instr, stderr);
6848 fprintf(stderr, "\n");
6849 }
6850 if (dst.size() != bld.lm.size()) {
6851 /* Wave32 with ballot size set to 64 */
6852 bld.pseudo(aco_opcode::p_create_vector, Definition(tmp), lanemask_tmp.getTemp(), Operand(0u));
6853 }
6854 emit_wqm(ctx, tmp.getTemp(), dst);
6855 break;
6856 }
6857 case nir_intrinsic_shuffle:
6858 case nir_intrinsic_read_invocation: {
6859 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6860 if (!ctx->divergent_vals[instr->src[0].ssa->index]) {
6861 emit_uniform_subgroup(ctx, instr, src);
6862 } else {
6863 Temp tid = get_ssa_temp(ctx, instr->src[1].ssa);
6864 if (instr->intrinsic == nir_intrinsic_read_invocation || !ctx->divergent_vals[instr->src[1].ssa->index])
6865 tid = bld.as_uniform(tid);
6866 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6867 if (src.regClass() == v1) {
6868 emit_wqm(ctx, emit_bpermute(ctx, bld, tid, src), dst);
6869 } else if (src.regClass() == v2) {
6870 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
6871 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
6872 lo = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, lo));
6873 hi = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, hi));
6874 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6875 emit_split_vector(ctx, dst, 2);
6876 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == s1) {
6877 assert(src.regClass() == bld.lm);
6878 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src, tid);
6879 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
6880 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == v1) {
6881 assert(src.regClass() == bld.lm);
6882 Temp tmp;
6883 if (ctx->program->chip_class <= GFX7)
6884 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), src, tid);
6885 else if (ctx->program->wave_size == 64)
6886 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), tid, src);
6887 else
6888 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), tid, src);
6889 tmp = emit_extract_vector(ctx, tmp, 0, v1);
6890 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), tmp);
6891 emit_wqm(ctx, bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp), dst);
6892 } else {
6893 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6894 nir_print_instr(&instr->instr, stderr);
6895 fprintf(stderr, "\n");
6896 }
6897 }
6898 break;
6899 }
6900 case nir_intrinsic_load_sample_id: {
6901 bld.vop3(aco_opcode::v_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6902 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
6903 break;
6904 }
6905 case nir_intrinsic_load_sample_mask_in: {
6906 visit_load_sample_mask_in(ctx, instr);
6907 break;
6908 }
6909 case nir_intrinsic_read_first_invocation: {
6910 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6911 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6912 if (src.regClass() == v1) {
6913 emit_wqm(ctx,
6914 bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), src),
6915 dst);
6916 } else if (src.regClass() == v2) {
6917 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
6918 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
6919 lo = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), lo));
6920 hi = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), hi));
6921 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6922 emit_split_vector(ctx, dst, 2);
6923 } else if (instr->dest.ssa.bit_size == 1) {
6924 assert(src.regClass() == bld.lm);
6925 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src,
6926 bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)));
6927 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
6928 } else if (src.regClass() == s1) {
6929 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
6930 } else if (src.regClass() == s2) {
6931 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
6932 } else {
6933 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6934 nir_print_instr(&instr->instr, stderr);
6935 fprintf(stderr, "\n");
6936 }
6937 break;
6938 }
6939 case nir_intrinsic_vote_all: {
6940 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6941 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6942 assert(src.regClass() == bld.lm);
6943 assert(dst.regClass() == bld.lm);
6944
6945 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
6946 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
6947 bld.sop1(Builder::s_not, Definition(dst), bld.def(s1, scc), cond);
6948 break;
6949 }
6950 case nir_intrinsic_vote_any: {
6951 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6952 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6953 assert(src.regClass() == bld.lm);
6954 assert(dst.regClass() == bld.lm);
6955
6956 Temp tmp = bool_to_scalar_condition(ctx, src);
6957 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
6958 break;
6959 }
6960 case nir_intrinsic_reduce:
6961 case nir_intrinsic_inclusive_scan:
6962 case nir_intrinsic_exclusive_scan: {
6963 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6964 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6965 nir_op op = (nir_op) nir_intrinsic_reduction_op(instr);
6966 unsigned cluster_size = instr->intrinsic == nir_intrinsic_reduce ?
6967 nir_intrinsic_cluster_size(instr) : 0;
6968 cluster_size = util_next_power_of_two(MIN2(cluster_size ? cluster_size : ctx->program->wave_size, ctx->program->wave_size));
6969
6970 if (!ctx->divergent_vals[instr->src[0].ssa->index] && (op == nir_op_ior || op == nir_op_iand)) {
6971 emit_uniform_subgroup(ctx, instr, src);
6972 } else if (instr->dest.ssa.bit_size == 1) {
6973 if (op == nir_op_imul || op == nir_op_umin || op == nir_op_imin)
6974 op = nir_op_iand;
6975 else if (op == nir_op_iadd)
6976 op = nir_op_ixor;
6977 else if (op == nir_op_umax || op == nir_op_imax)
6978 op = nir_op_ior;
6979 assert(op == nir_op_iand || op == nir_op_ior || op == nir_op_ixor);
6980
6981 switch (instr->intrinsic) {
6982 case nir_intrinsic_reduce:
6983 emit_wqm(ctx, emit_boolean_reduce(ctx, op, cluster_size, src), dst);
6984 break;
6985 case nir_intrinsic_exclusive_scan:
6986 emit_wqm(ctx, emit_boolean_exclusive_scan(ctx, op, src), dst);
6987 break;
6988 case nir_intrinsic_inclusive_scan:
6989 emit_wqm(ctx, emit_boolean_inclusive_scan(ctx, op, src), dst);
6990 break;
6991 default:
6992 assert(false);
6993 }
6994 } else if (cluster_size == 1) {
6995 bld.copy(Definition(dst), src);
6996 } else {
6997 src = as_vgpr(ctx, src);
6998
6999 ReduceOp reduce_op;
7000 switch (op) {
7001 #define CASE(name) case nir_op_##name: reduce_op = (src.regClass() == v1) ? name##32 : name##64; break;
7002 CASE(iadd)
7003 CASE(imul)
7004 CASE(fadd)
7005 CASE(fmul)
7006 CASE(imin)
7007 CASE(umin)
7008 CASE(fmin)
7009 CASE(imax)
7010 CASE(umax)
7011 CASE(fmax)
7012 CASE(iand)
7013 CASE(ior)
7014 CASE(ixor)
7015 default:
7016 unreachable("unknown reduction op");
7017 #undef CASE
7018 }
7019
7020 aco_opcode aco_op;
7021 switch (instr->intrinsic) {
7022 case nir_intrinsic_reduce: aco_op = aco_opcode::p_reduce; break;
7023 case nir_intrinsic_inclusive_scan: aco_op = aco_opcode::p_inclusive_scan; break;
7024 case nir_intrinsic_exclusive_scan: aco_op = aco_opcode::p_exclusive_scan; break;
7025 default:
7026 unreachable("unknown reduce intrinsic");
7027 }
7028
7029 aco_ptr<Pseudo_reduction_instruction> reduce{create_instruction<Pseudo_reduction_instruction>(aco_op, Format::PSEUDO_REDUCTION, 3, 5)};
7030 reduce->operands[0] = Operand(src);
7031 // filled in by aco_reduce_assign.cpp, used internally as part of the
7032 // reduce sequence
7033 assert(dst.size() == 1 || dst.size() == 2);
7034 reduce->operands[1] = Operand(RegClass(RegType::vgpr, dst.size()).as_linear());
7035 reduce->operands[2] = Operand(v1.as_linear());
7036
7037 Temp tmp_dst = bld.tmp(dst.regClass());
7038 reduce->definitions[0] = Definition(tmp_dst);
7039 reduce->definitions[1] = bld.def(ctx->program->lane_mask); // used internally
7040 reduce->definitions[2] = Definition();
7041 reduce->definitions[3] = Definition(scc, s1);
7042 reduce->definitions[4] = Definition();
7043 reduce->reduce_op = reduce_op;
7044 reduce->cluster_size = cluster_size;
7045 ctx->block->instructions.emplace_back(std::move(reduce));
7046
7047 emit_wqm(ctx, tmp_dst, dst);
7048 }
7049 break;
7050 }
7051 case nir_intrinsic_quad_broadcast: {
7052 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7053 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
7054 emit_uniform_subgroup(ctx, instr, src);
7055 } else {
7056 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7057 unsigned lane = nir_src_as_const_value(instr->src[1])->u32;
7058 uint32_t dpp_ctrl = dpp_quad_perm(lane, lane, lane, lane);
7059
7060 if (instr->dest.ssa.bit_size == 1) {
7061 assert(src.regClass() == bld.lm);
7062 assert(dst.regClass() == bld.lm);
7063 uint32_t half_mask = 0x11111111u << lane;
7064 Temp mask_tmp = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(half_mask), Operand(half_mask));
7065 Temp tmp = bld.tmp(bld.lm);
7066 bld.sop1(Builder::s_wqm, Definition(tmp),
7067 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), mask_tmp,
7068 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm))));
7069 emit_wqm(ctx, tmp, dst);
7070 } else if (instr->dest.ssa.bit_size == 32) {
7071 if (ctx->program->chip_class >= GFX8)
7072 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), dst);
7073 else
7074 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), dst);
7075 } else if (instr->dest.ssa.bit_size == 64) {
7076 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7077 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7078 if (ctx->program->chip_class >= GFX8) {
7079 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
7080 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
7081 } else {
7082 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, (1 << 15) | dpp_ctrl));
7083 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, (1 << 15) | dpp_ctrl));
7084 }
7085 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7086 emit_split_vector(ctx, dst, 2);
7087 } else {
7088 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7089 nir_print_instr(&instr->instr, stderr);
7090 fprintf(stderr, "\n");
7091 }
7092 }
7093 break;
7094 }
7095 case nir_intrinsic_quad_swap_horizontal:
7096 case nir_intrinsic_quad_swap_vertical:
7097 case nir_intrinsic_quad_swap_diagonal:
7098 case nir_intrinsic_quad_swizzle_amd: {
7099 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7100 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
7101 emit_uniform_subgroup(ctx, instr, src);
7102 break;
7103 }
7104 uint16_t dpp_ctrl = 0;
7105 switch (instr->intrinsic) {
7106 case nir_intrinsic_quad_swap_horizontal:
7107 dpp_ctrl = dpp_quad_perm(1, 0, 3, 2);
7108 break;
7109 case nir_intrinsic_quad_swap_vertical:
7110 dpp_ctrl = dpp_quad_perm(2, 3, 0, 1);
7111 break;
7112 case nir_intrinsic_quad_swap_diagonal:
7113 dpp_ctrl = dpp_quad_perm(3, 2, 1, 0);
7114 break;
7115 case nir_intrinsic_quad_swizzle_amd:
7116 dpp_ctrl = nir_intrinsic_swizzle_mask(instr);
7117 break;
7118 default:
7119 break;
7120 }
7121 if (ctx->program->chip_class < GFX8)
7122 dpp_ctrl |= (1 << 15);
7123
7124 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7125 if (instr->dest.ssa.bit_size == 1) {
7126 assert(src.regClass() == bld.lm);
7127 src = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand((uint32_t)-1), src);
7128 if (ctx->program->chip_class >= GFX8)
7129 src = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
7130 else
7131 src = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
7132 Temp tmp = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), src);
7133 emit_wqm(ctx, tmp, dst);
7134 } else if (instr->dest.ssa.bit_size == 32) {
7135 Temp tmp;
7136 if (ctx->program->chip_class >= GFX8)
7137 tmp = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
7138 else
7139 tmp = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
7140 emit_wqm(ctx, tmp, dst);
7141 } else if (instr->dest.ssa.bit_size == 64) {
7142 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7143 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7144 if (ctx->program->chip_class >= GFX8) {
7145 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
7146 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
7147 } else {
7148 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, dpp_ctrl));
7149 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, dpp_ctrl));
7150 }
7151 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7152 emit_split_vector(ctx, dst, 2);
7153 } else {
7154 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7155 nir_print_instr(&instr->instr, stderr);
7156 fprintf(stderr, "\n");
7157 }
7158 break;
7159 }
7160 case nir_intrinsic_masked_swizzle_amd: {
7161 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7162 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
7163 emit_uniform_subgroup(ctx, instr, src);
7164 break;
7165 }
7166 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7167 uint32_t mask = nir_intrinsic_swizzle_mask(instr);
7168 if (dst.regClass() == v1) {
7169 emit_wqm(ctx,
7170 bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, mask, 0, false),
7171 dst);
7172 } else if (dst.regClass() == v2) {
7173 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7174 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7175 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, mask, 0, false));
7176 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, mask, 0, false));
7177 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7178 emit_split_vector(ctx, dst, 2);
7179 } else {
7180 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7181 nir_print_instr(&instr->instr, stderr);
7182 fprintf(stderr, "\n");
7183 }
7184 break;
7185 }
7186 case nir_intrinsic_write_invocation_amd: {
7187 Temp src = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
7188 Temp val = bld.as_uniform(get_ssa_temp(ctx, instr->src[1].ssa));
7189 Temp lane = bld.as_uniform(get_ssa_temp(ctx, instr->src[2].ssa));
7190 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7191 if (dst.regClass() == v1) {
7192 /* src2 is ignored for writelane. RA assigns the same reg for dst */
7193 emit_wqm(ctx, bld.writelane(bld.def(v1), val, lane, src), dst);
7194 } else if (dst.regClass() == v2) {
7195 Temp src_lo = bld.tmp(v1), src_hi = bld.tmp(v1);
7196 Temp val_lo = bld.tmp(s1), val_hi = bld.tmp(s1);
7197 bld.pseudo(aco_opcode::p_split_vector, Definition(src_lo), Definition(src_hi), src);
7198 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
7199 Temp lo = emit_wqm(ctx, bld.writelane(bld.def(v1), val_lo, lane, src_hi));
7200 Temp hi = emit_wqm(ctx, bld.writelane(bld.def(v1), val_hi, lane, src_hi));
7201 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7202 emit_split_vector(ctx, dst, 2);
7203 } else {
7204 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7205 nir_print_instr(&instr->instr, stderr);
7206 fprintf(stderr, "\n");
7207 }
7208 break;
7209 }
7210 case nir_intrinsic_mbcnt_amd: {
7211 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7212 RegClass rc = RegClass(src.type(), 1);
7213 Temp mask_lo = bld.tmp(rc), mask_hi = bld.tmp(rc);
7214 bld.pseudo(aco_opcode::p_split_vector, Definition(mask_lo), Definition(mask_hi), src);
7215 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7216 Temp wqm_tmp = emit_mbcnt(ctx, bld.def(v1), Operand(mask_lo), Operand(mask_hi));
7217 emit_wqm(ctx, wqm_tmp, dst);
7218 break;
7219 }
7220 case nir_intrinsic_load_helper_invocation: {
7221 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7222 bld.pseudo(aco_opcode::p_load_helper, Definition(dst));
7223 ctx->block->kind |= block_kind_needs_lowering;
7224 ctx->program->needs_exact = true;
7225 break;
7226 }
7227 case nir_intrinsic_is_helper_invocation: {
7228 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7229 bld.pseudo(aco_opcode::p_is_helper, Definition(dst));
7230 ctx->block->kind |= block_kind_needs_lowering;
7231 ctx->program->needs_exact = true;
7232 break;
7233 }
7234 case nir_intrinsic_demote:
7235 bld.pseudo(aco_opcode::p_demote_to_helper, Operand(-1u));
7236
7237 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
7238 ctx->cf_info.exec_potentially_empty_discard = true;
7239 ctx->block->kind |= block_kind_uses_demote;
7240 ctx->program->needs_exact = true;
7241 break;
7242 case nir_intrinsic_demote_if: {
7243 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7244 assert(src.regClass() == bld.lm);
7245 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
7246 bld.pseudo(aco_opcode::p_demote_to_helper, cond);
7247
7248 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
7249 ctx->cf_info.exec_potentially_empty_discard = true;
7250 ctx->block->kind |= block_kind_uses_demote;
7251 ctx->program->needs_exact = true;
7252 break;
7253 }
7254 case nir_intrinsic_first_invocation: {
7255 emit_wqm(ctx, bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)),
7256 get_ssa_temp(ctx, &instr->dest.ssa));
7257 break;
7258 }
7259 case nir_intrinsic_shader_clock:
7260 bld.smem(aco_opcode::s_memtime, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), false);
7261 emit_split_vector(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 2);
7262 break;
7263 case nir_intrinsic_load_vertex_id_zero_base: {
7264 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7265 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.vertex_id));
7266 break;
7267 }
7268 case nir_intrinsic_load_first_vertex: {
7269 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7270 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.base_vertex));
7271 break;
7272 }
7273 case nir_intrinsic_load_base_instance: {
7274 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7275 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.start_instance));
7276 break;
7277 }
7278 case nir_intrinsic_load_instance_id: {
7279 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7280 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.instance_id));
7281 break;
7282 }
7283 case nir_intrinsic_load_draw_id: {
7284 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7285 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.draw_id));
7286 break;
7287 }
7288 case nir_intrinsic_load_invocation_id: {
7289 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7290
7291 if (ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
7292 if (ctx->options->chip_class >= GFX10)
7293 bld.vop2_e64(aco_opcode::v_and_b32, Definition(dst), Operand(127u), get_arg(ctx, ctx->args->ac.gs_invocation_id));
7294 else
7295 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_invocation_id));
7296 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
7297 bld.vop3(aco_opcode::v_bfe_u32, Definition(dst),
7298 get_arg(ctx, ctx->args->ac.tcs_rel_ids), Operand(8u), Operand(5u));
7299 } else {
7300 unreachable("Unsupported stage for load_invocation_id");
7301 }
7302
7303 break;
7304 }
7305 case nir_intrinsic_load_primitive_id: {
7306 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7307
7308 switch (ctx->shader->info.stage) {
7309 case MESA_SHADER_GEOMETRY:
7310 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_prim_id));
7311 break;
7312 case MESA_SHADER_TESS_CTRL:
7313 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tcs_patch_id));
7314 break;
7315 case MESA_SHADER_TESS_EVAL:
7316 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tes_patch_id));
7317 break;
7318 default:
7319 unreachable("Unimplemented shader stage for nir_intrinsic_load_primitive_id");
7320 }
7321
7322 break;
7323 }
7324 case nir_intrinsic_load_patch_vertices_in: {
7325 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL ||
7326 ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
7327
7328 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7329 bld.copy(Definition(dst), Operand(ctx->args->options->key.tcs.input_vertices));
7330 break;
7331 }
7332 case nir_intrinsic_emit_vertex_with_counter: {
7333 visit_emit_vertex_with_counter(ctx, instr);
7334 break;
7335 }
7336 case nir_intrinsic_end_primitive_with_counter: {
7337 unsigned stream = nir_intrinsic_stream_id(instr);
7338 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(true, false, stream));
7339 break;
7340 }
7341 case nir_intrinsic_set_vertex_count: {
7342 /* unused, the HW keeps track of this for us */
7343 break;
7344 }
7345 default:
7346 fprintf(stderr, "Unimplemented intrinsic instr: ");
7347 nir_print_instr(&instr->instr, stderr);
7348 fprintf(stderr, "\n");
7349 abort();
7350
7351 break;
7352 }
7353 }
7354
7355
7356 void tex_fetch_ptrs(isel_context *ctx, nir_tex_instr *instr,
7357 Temp *res_ptr, Temp *samp_ptr, Temp *fmask_ptr,
7358 enum glsl_base_type *stype)
7359 {
7360 nir_deref_instr *texture_deref_instr = NULL;
7361 nir_deref_instr *sampler_deref_instr = NULL;
7362 int plane = -1;
7363
7364 for (unsigned i = 0; i < instr->num_srcs; i++) {
7365 switch (instr->src[i].src_type) {
7366 case nir_tex_src_texture_deref:
7367 texture_deref_instr = nir_src_as_deref(instr->src[i].src);
7368 break;
7369 case nir_tex_src_sampler_deref:
7370 sampler_deref_instr = nir_src_as_deref(instr->src[i].src);
7371 break;
7372 case nir_tex_src_plane:
7373 plane = nir_src_as_int(instr->src[i].src);
7374 break;
7375 default:
7376 break;
7377 }
7378 }
7379
7380 *stype = glsl_get_sampler_result_type(texture_deref_instr->type);
7381
7382 if (!sampler_deref_instr)
7383 sampler_deref_instr = texture_deref_instr;
7384
7385 if (plane >= 0) {
7386 assert(instr->op != nir_texop_txf_ms &&
7387 instr->op != nir_texop_samples_identical);
7388 assert(instr->sampler_dim != GLSL_SAMPLER_DIM_BUF);
7389 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, (aco_descriptor_type)(ACO_DESC_PLANE_0 + plane), instr, false, false);
7390 } else if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
7391 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_BUFFER, instr, false, false);
7392 } else if (instr->op == nir_texop_fragment_mask_fetch) {
7393 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
7394 } else {
7395 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_IMAGE, instr, false, false);
7396 }
7397 if (samp_ptr) {
7398 *samp_ptr = get_sampler_desc(ctx, sampler_deref_instr, ACO_DESC_SAMPLER, instr, false, false);
7399
7400 if (instr->sampler_dim < GLSL_SAMPLER_DIM_RECT && ctx->options->chip_class < GFX8) {
7401 /* fix sampler aniso on SI/CI: samp[0] = samp[0] & img[7] */
7402 Builder bld(ctx->program, ctx->block);
7403
7404 /* to avoid unnecessary moves, we split and recombine sampler and image */
7405 Temp img[8] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1),
7406 bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
7407 Temp samp[4] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
7408 bld.pseudo(aco_opcode::p_split_vector, Definition(img[0]), Definition(img[1]),
7409 Definition(img[2]), Definition(img[3]), Definition(img[4]),
7410 Definition(img[5]), Definition(img[6]), Definition(img[7]), *res_ptr);
7411 bld.pseudo(aco_opcode::p_split_vector, Definition(samp[0]), Definition(samp[1]),
7412 Definition(samp[2]), Definition(samp[3]), *samp_ptr);
7413
7414 samp[0] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), samp[0], img[7]);
7415 *res_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
7416 img[0], img[1], img[2], img[3],
7417 img[4], img[5], img[6], img[7]);
7418 *samp_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
7419 samp[0], samp[1], samp[2], samp[3]);
7420 }
7421 }
7422 if (fmask_ptr && (instr->op == nir_texop_txf_ms ||
7423 instr->op == nir_texop_samples_identical))
7424 *fmask_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
7425 }
7426
7427 void build_cube_select(isel_context *ctx, Temp ma, Temp id, Temp deriv,
7428 Temp *out_ma, Temp *out_sc, Temp *out_tc)
7429 {
7430 Builder bld(ctx->program, ctx->block);
7431
7432 Temp deriv_x = emit_extract_vector(ctx, deriv, 0, v1);
7433 Temp deriv_y = emit_extract_vector(ctx, deriv, 1, v1);
7434 Temp deriv_z = emit_extract_vector(ctx, deriv, 2, v1);
7435
7436 Operand neg_one(0xbf800000u);
7437 Operand one(0x3f800000u);
7438 Operand two(0x40000000u);
7439 Operand four(0x40800000u);
7440
7441 Temp is_ma_positive = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), ma);
7442 Temp sgn_ma = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, one, is_ma_positive);
7443 Temp neg_sgn_ma = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0u), sgn_ma);
7444
7445 Temp is_ma_z = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), four, id);
7446 Temp is_ma_y = bld.vopc(aco_opcode::v_cmp_le_f32, bld.def(bld.lm), two, id);
7447 is_ma_y = bld.sop2(Builder::s_andn2, bld.hint_vcc(bld.def(bld.lm)), is_ma_y, is_ma_z);
7448 Temp is_not_ma_x = bld.sop2(aco_opcode::s_or_b64, bld.hint_vcc(bld.def(bld.lm)), bld.def(s1, scc), is_ma_z, is_ma_y);
7449
7450 // select sc
7451 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_z, deriv_x, is_not_ma_x);
7452 Temp sgn = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1),
7453 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_sgn_ma, sgn_ma, is_ma_z),
7454 one, is_ma_y);
7455 *out_sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
7456
7457 // select tc
7458 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_y, deriv_z, is_ma_y);
7459 sgn = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, sgn_ma, is_ma_y);
7460 *out_tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
7461
7462 // select ma
7463 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
7464 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_x, deriv_y, is_ma_y),
7465 deriv_z, is_ma_z);
7466 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffffu), tmp);
7467 *out_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), two, tmp);
7468 }
7469
7470 void prepare_cube_coords(isel_context *ctx, std::vector<Temp>& coords, Temp* ddx, Temp* ddy, bool is_deriv, bool is_array)
7471 {
7472 Builder bld(ctx->program, ctx->block);
7473 Temp ma, tc, sc, id;
7474
7475 if (is_array) {
7476 coords[3] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[3]);
7477
7478 // see comment in ac_prepare_cube_coords()
7479 if (ctx->options->chip_class <= GFX8)
7480 coords[3] = bld.vop2(aco_opcode::v_max_f32, bld.def(v1), Operand(0u), coords[3]);
7481 }
7482
7483 ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), coords[0], coords[1], coords[2]);
7484
7485 aco_ptr<VOP3A_instruction> vop3a{create_instruction<VOP3A_instruction>(aco_opcode::v_rcp_f32, asVOP3(Format::VOP1), 1, 1)};
7486 vop3a->operands[0] = Operand(ma);
7487 vop3a->abs[0] = true;
7488 Temp invma = bld.tmp(v1);
7489 vop3a->definitions[0] = Definition(invma);
7490 ctx->block->instructions.emplace_back(std::move(vop3a));
7491
7492 sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
7493 if (!is_deriv)
7494 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, invma, Operand(0x3fc00000u/*1.5*/));
7495
7496 tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
7497 if (!is_deriv)
7498 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, invma, Operand(0x3fc00000u/*1.5*/));
7499
7500 id = bld.vop3(aco_opcode::v_cubeid_f32, bld.def(v1), coords[0], coords[1], coords[2]);
7501
7502 if (is_deriv) {
7503 sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), sc, invma);
7504 tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tc, invma);
7505
7506 for (unsigned i = 0; i < 2; i++) {
7507 // see comment in ac_prepare_cube_coords()
7508 Temp deriv_ma;
7509 Temp deriv_sc, deriv_tc;
7510 build_cube_select(ctx, ma, id, i ? *ddy : *ddx,
7511 &deriv_ma, &deriv_sc, &deriv_tc);
7512
7513 deriv_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, invma);
7514
7515 Temp x = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
7516 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_sc, invma),
7517 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, sc));
7518 Temp y = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
7519 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_tc, invma),
7520 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, tc));
7521 *(i ? ddy : ddx) = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), x, y);
7522 }
7523
7524 sc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), sc);
7525 tc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), tc);
7526 }
7527
7528 if (is_array)
7529 id = bld.vop2(aco_opcode::v_madmk_f32, bld.def(v1), coords[3], id, Operand(0x41000000u/*8.0*/));
7530 coords.resize(3);
7531 coords[0] = sc;
7532 coords[1] = tc;
7533 coords[2] = id;
7534 }
7535
7536 void get_const_vec(nir_ssa_def *vec, nir_const_value *cv[4])
7537 {
7538 if (vec->parent_instr->type != nir_instr_type_alu)
7539 return;
7540 nir_alu_instr *vec_instr = nir_instr_as_alu(vec->parent_instr);
7541 if (vec_instr->op != nir_op_vec(vec->num_components))
7542 return;
7543
7544 for (unsigned i = 0; i < vec->num_components; i++) {
7545 cv[i] = vec_instr->src[i].swizzle[0] == 0 ?
7546 nir_src_as_const_value(vec_instr->src[i].src) : NULL;
7547 }
7548 }
7549
7550 void visit_tex(isel_context *ctx, nir_tex_instr *instr)
7551 {
7552 Builder bld(ctx->program, ctx->block);
7553 bool has_bias = false, has_lod = false, level_zero = false, has_compare = false,
7554 has_offset = false, has_ddx = false, has_ddy = false, has_derivs = false, has_sample_index = false;
7555 Temp resource, sampler, fmask_ptr, bias = Temp(), compare = Temp(), sample_index = Temp(),
7556 lod = Temp(), offset = Temp(), ddx = Temp(), ddy = Temp();
7557 std::vector<Temp> coords;
7558 std::vector<Temp> derivs;
7559 nir_const_value *sample_index_cv = NULL;
7560 nir_const_value *const_offset[4] = {NULL, NULL, NULL, NULL};
7561 enum glsl_base_type stype;
7562 tex_fetch_ptrs(ctx, instr, &resource, &sampler, &fmask_ptr, &stype);
7563
7564 bool tg4_integer_workarounds = ctx->options->chip_class <= GFX8 && instr->op == nir_texop_tg4 &&
7565 (stype == GLSL_TYPE_UINT || stype == GLSL_TYPE_INT);
7566 bool tg4_integer_cube_workaround = tg4_integer_workarounds &&
7567 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE;
7568
7569 for (unsigned i = 0; i < instr->num_srcs; i++) {
7570 switch (instr->src[i].src_type) {
7571 case nir_tex_src_coord: {
7572 Temp coord = get_ssa_temp(ctx, instr->src[i].src.ssa);
7573 for (unsigned i = 0; i < coord.size(); i++)
7574 coords.emplace_back(emit_extract_vector(ctx, coord, i, v1));
7575 break;
7576 }
7577 case nir_tex_src_bias:
7578 if (instr->op == nir_texop_txb) {
7579 bias = get_ssa_temp(ctx, instr->src[i].src.ssa);
7580 has_bias = true;
7581 }
7582 break;
7583 case nir_tex_src_lod: {
7584 nir_const_value *val = nir_src_as_const_value(instr->src[i].src);
7585
7586 if (val && val->f32 <= 0.0) {
7587 level_zero = true;
7588 } else {
7589 lod = get_ssa_temp(ctx, instr->src[i].src.ssa);
7590 has_lod = true;
7591 }
7592 break;
7593 }
7594 case nir_tex_src_comparator:
7595 if (instr->is_shadow) {
7596 compare = get_ssa_temp(ctx, instr->src[i].src.ssa);
7597 has_compare = true;
7598 }
7599 break;
7600 case nir_tex_src_offset:
7601 offset = get_ssa_temp(ctx, instr->src[i].src.ssa);
7602 get_const_vec(instr->src[i].src.ssa, const_offset);
7603 has_offset = true;
7604 break;
7605 case nir_tex_src_ddx:
7606 ddx = get_ssa_temp(ctx, instr->src[i].src.ssa);
7607 has_ddx = true;
7608 break;
7609 case nir_tex_src_ddy:
7610 ddy = get_ssa_temp(ctx, instr->src[i].src.ssa);
7611 has_ddy = true;
7612 break;
7613 case nir_tex_src_ms_index:
7614 sample_index = get_ssa_temp(ctx, instr->src[i].src.ssa);
7615 sample_index_cv = nir_src_as_const_value(instr->src[i].src);
7616 has_sample_index = true;
7617 break;
7618 case nir_tex_src_texture_offset:
7619 case nir_tex_src_sampler_offset:
7620 default:
7621 break;
7622 }
7623 }
7624
7625 if (instr->op == nir_texop_txs && instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
7626 return get_buffer_size(ctx, resource, get_ssa_temp(ctx, &instr->dest.ssa), true);
7627
7628 if (instr->op == nir_texop_texture_samples) {
7629 Temp dword3 = emit_extract_vector(ctx, resource, 3, s1);
7630
7631 Temp samples_log2 = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(16u | 4u<<16));
7632 Temp samples = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), Operand(1u), samples_log2);
7633 Temp type = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(28u | 4u<<16 /* offset=28, width=4 */));
7634 Temp is_msaa = bld.sopc(aco_opcode::s_cmp_ge_u32, bld.def(s1, scc), type, Operand(14u));
7635
7636 bld.sop2(aco_opcode::s_cselect_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7637 samples, Operand(1u), bld.scc(is_msaa));
7638 return;
7639 }
7640
7641 if (has_offset && instr->op != nir_texop_txf && instr->op != nir_texop_txf_ms) {
7642 aco_ptr<Instruction> tmp_instr;
7643 Temp acc, pack = Temp();
7644
7645 uint32_t pack_const = 0;
7646 for (unsigned i = 0; i < offset.size(); i++) {
7647 if (!const_offset[i])
7648 continue;
7649 pack_const |= (const_offset[i]->u32 & 0x3Fu) << (8u * i);
7650 }
7651
7652 if (offset.type() == RegType::sgpr) {
7653 for (unsigned i = 0; i < offset.size(); i++) {
7654 if (const_offset[i])
7655 continue;
7656
7657 acc = emit_extract_vector(ctx, offset, i, s1);
7658 acc = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(0x3Fu));
7659
7660 if (i) {
7661 acc = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(8u * i));
7662 }
7663
7664 if (pack == Temp()) {
7665 pack = acc;
7666 } else {
7667 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), pack, acc);
7668 }
7669 }
7670
7671 if (pack_const && pack != Temp())
7672 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(pack_const), pack);
7673 } else {
7674 for (unsigned i = 0; i < offset.size(); i++) {
7675 if (const_offset[i])
7676 continue;
7677
7678 acc = emit_extract_vector(ctx, offset, i, v1);
7679 acc = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x3Fu), acc);
7680
7681 if (i) {
7682 acc = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(8u * i), acc);
7683 }
7684
7685 if (pack == Temp()) {
7686 pack = acc;
7687 } else {
7688 pack = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), pack, acc);
7689 }
7690 }
7691
7692 if (pack_const && pack != Temp())
7693 pack = bld.sop2(aco_opcode::v_or_b32, bld.def(v1), Operand(pack_const), pack);
7694 }
7695 if (pack_const && pack == Temp())
7696 offset = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(pack_const));
7697 else if (pack == Temp())
7698 has_offset = false;
7699 else
7700 offset = pack;
7701 }
7702
7703 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE && instr->coord_components)
7704 prepare_cube_coords(ctx, coords, &ddx, &ddy, instr->op == nir_texop_txd, instr->is_array && instr->op != nir_texop_lod);
7705
7706 /* pack derivatives */
7707 if (has_ddx || has_ddy) {
7708 if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D && ctx->options->chip_class == GFX9) {
7709 assert(has_ddx && has_ddy && ddx.size() == 1 && ddy.size() == 1);
7710 Temp zero = bld.copy(bld.def(v1), Operand(0u));
7711 derivs = {ddy, zero, ddy, zero};
7712 } else {
7713 for (unsigned i = 0; has_ddx && i < ddx.size(); i++)
7714 derivs.emplace_back(emit_extract_vector(ctx, ddx, i, v1));
7715 for (unsigned i = 0; has_ddy && i < ddy.size(); i++)
7716 derivs.emplace_back(emit_extract_vector(ctx, ddy, i, v1));
7717 }
7718 has_derivs = true;
7719 }
7720
7721 if (instr->coord_components > 1 &&
7722 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
7723 instr->is_array &&
7724 instr->op != nir_texop_txf)
7725 coords[1] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[1]);
7726
7727 if (instr->coord_components > 2 &&
7728 (instr->sampler_dim == GLSL_SAMPLER_DIM_2D ||
7729 instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
7730 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS ||
7731 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
7732 instr->is_array &&
7733 instr->op != nir_texop_txf &&
7734 instr->op != nir_texop_txf_ms &&
7735 instr->op != nir_texop_fragment_fetch &&
7736 instr->op != nir_texop_fragment_mask_fetch)
7737 coords[2] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[2]);
7738
7739 if (ctx->options->chip_class == GFX9 &&
7740 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
7741 instr->op != nir_texop_lod && instr->coord_components) {
7742 assert(coords.size() > 0 && coords.size() < 3);
7743
7744 coords.insert(std::next(coords.begin()), bld.copy(bld.def(v1), instr->op == nir_texop_txf ?
7745 Operand((uint32_t) 0) :
7746 Operand((uint32_t) 0x3f000000)));
7747 }
7748
7749 bool da = should_declare_array(ctx, instr->sampler_dim, instr->is_array);
7750
7751 if (instr->op == nir_texop_samples_identical)
7752 resource = fmask_ptr;
7753
7754 else if ((instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
7755 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
7756 instr->op != nir_texop_txs &&
7757 instr->op != nir_texop_fragment_fetch &&
7758 instr->op != nir_texop_fragment_mask_fetch) {
7759 assert(has_sample_index);
7760 Operand op(sample_index);
7761 if (sample_index_cv)
7762 op = Operand(sample_index_cv->u32);
7763 sample_index = adjust_sample_index_using_fmask(ctx, da, coords, op, fmask_ptr);
7764 }
7765
7766 if (has_offset && (instr->op == nir_texop_txf || instr->op == nir_texop_txf_ms)) {
7767 for (unsigned i = 0; i < std::min(offset.size(), instr->coord_components); i++) {
7768 Temp off = emit_extract_vector(ctx, offset, i, v1);
7769 coords[i] = bld.vadd32(bld.def(v1), coords[i], off);
7770 }
7771 has_offset = false;
7772 }
7773
7774 /* Build tex instruction */
7775 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
7776 unsigned dim = ctx->options->chip_class >= GFX10 && instr->sampler_dim != GLSL_SAMPLER_DIM_BUF
7777 ? ac_get_sampler_dim(ctx->options->chip_class, instr->sampler_dim, instr->is_array)
7778 : 0;
7779 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7780 Temp tmp_dst = dst;
7781
7782 /* gather4 selects the component by dmask and always returns vec4 */
7783 if (instr->op == nir_texop_tg4) {
7784 assert(instr->dest.ssa.num_components == 4);
7785 if (instr->is_shadow)
7786 dmask = 1;
7787 else
7788 dmask = 1 << instr->component;
7789 if (tg4_integer_cube_workaround || dst.type() == RegType::sgpr)
7790 tmp_dst = bld.tmp(v4);
7791 } else if (instr->op == nir_texop_samples_identical) {
7792 tmp_dst = bld.tmp(v1);
7793 } else if (util_bitcount(dmask) != instr->dest.ssa.num_components || dst.type() == RegType::sgpr) {
7794 tmp_dst = bld.tmp(RegClass(RegType::vgpr, util_bitcount(dmask)));
7795 }
7796
7797 aco_ptr<MIMG_instruction> tex;
7798 if (instr->op == nir_texop_txs || instr->op == nir_texop_query_levels) {
7799 if (!has_lod)
7800 lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
7801
7802 bool div_by_6 = instr->op == nir_texop_txs &&
7803 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
7804 instr->is_array &&
7805 (dmask & (1 << 2));
7806 if (tmp_dst.id() == dst.id() && div_by_6)
7807 tmp_dst = bld.tmp(tmp_dst.regClass());
7808
7809 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
7810 tex->operands[0] = Operand(resource);
7811 tex->operands[1] = Operand(s4); /* no sampler */
7812 tex->operands[2] = Operand(as_vgpr(ctx,lod));
7813 if (ctx->options->chip_class == GFX9 &&
7814 instr->op == nir_texop_txs &&
7815 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
7816 instr->is_array) {
7817 tex->dmask = (dmask & 0x1) | ((dmask & 0x2) << 1);
7818 } else if (instr->op == nir_texop_query_levels) {
7819 tex->dmask = 1 << 3;
7820 } else {
7821 tex->dmask = dmask;
7822 }
7823 tex->da = da;
7824 tex->definitions[0] = Definition(tmp_dst);
7825 tex->dim = dim;
7826 tex->can_reorder = true;
7827 ctx->block->instructions.emplace_back(std::move(tex));
7828
7829 if (div_by_6) {
7830 /* divide 3rd value by 6 by multiplying with magic number */
7831 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
7832 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
7833 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp_dst, 2, v1), c);
7834 assert(instr->dest.ssa.num_components == 3);
7835 Temp tmp = dst.type() == RegType::vgpr ? dst : bld.tmp(v3);
7836 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
7837 emit_extract_vector(ctx, tmp_dst, 0, v1),
7838 emit_extract_vector(ctx, tmp_dst, 1, v1),
7839 by_6);
7840
7841 }
7842
7843 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
7844 return;
7845 }
7846
7847 Temp tg4_compare_cube_wa64 = Temp();
7848
7849 if (tg4_integer_workarounds) {
7850 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
7851 tex->operands[0] = Operand(resource);
7852 tex->operands[1] = Operand(s4); /* no sampler */
7853 tex->operands[2] = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
7854 tex->dim = dim;
7855 tex->dmask = 0x3;
7856 tex->da = da;
7857 Temp size = bld.tmp(v2);
7858 tex->definitions[0] = Definition(size);
7859 tex->can_reorder = true;
7860 ctx->block->instructions.emplace_back(std::move(tex));
7861 emit_split_vector(ctx, size, size.size());
7862
7863 Temp half_texel[2];
7864 for (unsigned i = 0; i < 2; i++) {
7865 half_texel[i] = emit_extract_vector(ctx, size, i, v1);
7866 half_texel[i] = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), half_texel[i]);
7867 half_texel[i] = bld.vop1(aco_opcode::v_rcp_iflag_f32, bld.def(v1), half_texel[i]);
7868 half_texel[i] = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0xbf000000/*-0.5*/), half_texel[i]);
7869 }
7870
7871 Temp new_coords[2] = {
7872 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[0], half_texel[0]),
7873 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[1], half_texel[1])
7874 };
7875
7876 if (tg4_integer_cube_workaround) {
7877 // see comment in ac_nir_to_llvm.c's lower_gather4_integer()
7878 Temp desc[resource.size()];
7879 aco_ptr<Instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector,
7880 Format::PSEUDO, 1, resource.size())};
7881 split->operands[0] = Operand(resource);
7882 for (unsigned i = 0; i < resource.size(); i++) {
7883 desc[i] = bld.tmp(s1);
7884 split->definitions[i] = Definition(desc[i]);
7885 }
7886 ctx->block->instructions.emplace_back(std::move(split));
7887
7888 Temp dfmt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), desc[1], Operand(20u | (6u << 16)));
7889 Temp compare_cube_wa = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), dfmt,
7890 Operand((uint32_t)V_008F14_IMG_DATA_FORMAT_8_8_8_8));
7891
7892 Temp nfmt;
7893 if (stype == GLSL_TYPE_UINT) {
7894 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
7895 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_USCALED),
7896 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_UINT),
7897 bld.scc(compare_cube_wa));
7898 } else {
7899 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
7900 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SSCALED),
7901 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SINT),
7902 bld.scc(compare_cube_wa));
7903 }
7904 tg4_compare_cube_wa64 = bld.tmp(bld.lm);
7905 bool_to_vector_condition(ctx, compare_cube_wa, tg4_compare_cube_wa64);
7906
7907 nfmt = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), nfmt, Operand(26u));
7908
7909 desc[1] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), desc[1],
7910 Operand((uint32_t)C_008F14_NUM_FORMAT));
7911 desc[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), desc[1], nfmt);
7912
7913 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
7914 Format::PSEUDO, resource.size(), 1)};
7915 for (unsigned i = 0; i < resource.size(); i++)
7916 vec->operands[i] = Operand(desc[i]);
7917 resource = bld.tmp(resource.regClass());
7918 vec->definitions[0] = Definition(resource);
7919 ctx->block->instructions.emplace_back(std::move(vec));
7920
7921 new_coords[0] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
7922 new_coords[0], coords[0], tg4_compare_cube_wa64);
7923 new_coords[1] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
7924 new_coords[1], coords[1], tg4_compare_cube_wa64);
7925 }
7926 coords[0] = new_coords[0];
7927 coords[1] = new_coords[1];
7928 }
7929
7930 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
7931 //FIXME: if (ctx->abi->gfx9_stride_size_workaround) return ac_build_buffer_load_format_gfx9_safe()
7932
7933 assert(coords.size() == 1);
7934 unsigned last_bit = util_last_bit(nir_ssa_def_components_read(&instr->dest.ssa));
7935 aco_opcode op;
7936 switch (last_bit) {
7937 case 1:
7938 op = aco_opcode::buffer_load_format_x; break;
7939 case 2:
7940 op = aco_opcode::buffer_load_format_xy; break;
7941 case 3:
7942 op = aco_opcode::buffer_load_format_xyz; break;
7943 case 4:
7944 op = aco_opcode::buffer_load_format_xyzw; break;
7945 default:
7946 unreachable("Tex instruction loads more than 4 components.");
7947 }
7948
7949 /* if the instruction return value matches exactly the nir dest ssa, we can use it directly */
7950 if (last_bit == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
7951 tmp_dst = dst;
7952 else
7953 tmp_dst = bld.tmp(RegType::vgpr, last_bit);
7954
7955 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
7956 mubuf->operands[0] = Operand(resource);
7957 mubuf->operands[1] = Operand(coords[0]);
7958 mubuf->operands[2] = Operand((uint32_t) 0);
7959 mubuf->definitions[0] = Definition(tmp_dst);
7960 mubuf->idxen = true;
7961 mubuf->can_reorder = true;
7962 ctx->block->instructions.emplace_back(std::move(mubuf));
7963
7964 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, (1 << last_bit) - 1);
7965 return;
7966 }
7967
7968 /* gather MIMG address components */
7969 std::vector<Temp> args;
7970 if (has_offset)
7971 args.emplace_back(offset);
7972 if (has_bias)
7973 args.emplace_back(bias);
7974 if (has_compare)
7975 args.emplace_back(compare);
7976 if (has_derivs)
7977 args.insert(args.end(), derivs.begin(), derivs.end());
7978
7979 args.insert(args.end(), coords.begin(), coords.end());
7980 if (has_sample_index)
7981 args.emplace_back(sample_index);
7982 if (has_lod)
7983 args.emplace_back(lod);
7984
7985 Temp arg = bld.tmp(RegClass(RegType::vgpr, args.size()));
7986 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, args.size(), 1)};
7987 vec->definitions[0] = Definition(arg);
7988 for (unsigned i = 0; i < args.size(); i++)
7989 vec->operands[i] = Operand(args[i]);
7990 ctx->block->instructions.emplace_back(std::move(vec));
7991
7992
7993 if (instr->op == nir_texop_txf ||
7994 instr->op == nir_texop_txf_ms ||
7995 instr->op == nir_texop_samples_identical ||
7996 instr->op == nir_texop_fragment_fetch ||
7997 instr->op == nir_texop_fragment_mask_fetch) {
7998 aco_opcode op = level_zero || instr->sampler_dim == GLSL_SAMPLER_DIM_MS || instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS ? aco_opcode::image_load : aco_opcode::image_load_mip;
7999 tex.reset(create_instruction<MIMG_instruction>(op, Format::MIMG, 3, 1));
8000 tex->operands[0] = Operand(resource);
8001 tex->operands[1] = Operand(s4); /* no sampler */
8002 tex->operands[2] = Operand(arg);
8003 tex->dim = dim;
8004 tex->dmask = dmask;
8005 tex->unrm = true;
8006 tex->da = da;
8007 tex->definitions[0] = Definition(tmp_dst);
8008 tex->can_reorder = true;
8009 ctx->block->instructions.emplace_back(std::move(tex));
8010
8011 if (instr->op == nir_texop_samples_identical) {
8012 assert(dmask == 1 && dst.regClass() == v1);
8013 assert(dst.id() != tmp_dst.id());
8014
8015 Temp tmp = bld.tmp(bld.lm);
8016 bld.vopc(aco_opcode::v_cmp_eq_u32, Definition(tmp), Operand(0u), tmp_dst).def(0).setHint(vcc);
8017 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand((uint32_t)-1), tmp);
8018
8019 } else {
8020 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
8021 }
8022 return;
8023 }
8024
8025 // TODO: would be better to do this by adding offsets, but needs the opcodes ordered.
8026 aco_opcode opcode = aco_opcode::image_sample;
8027 if (has_offset) { /* image_sample_*_o */
8028 if (has_compare) {
8029 opcode = aco_opcode::image_sample_c_o;
8030 if (has_derivs)
8031 opcode = aco_opcode::image_sample_c_d_o;
8032 if (has_bias)
8033 opcode = aco_opcode::image_sample_c_b_o;
8034 if (level_zero)
8035 opcode = aco_opcode::image_sample_c_lz_o;
8036 if (has_lod)
8037 opcode = aco_opcode::image_sample_c_l_o;
8038 } else {
8039 opcode = aco_opcode::image_sample_o;
8040 if (has_derivs)
8041 opcode = aco_opcode::image_sample_d_o;
8042 if (has_bias)
8043 opcode = aco_opcode::image_sample_b_o;
8044 if (level_zero)
8045 opcode = aco_opcode::image_sample_lz_o;
8046 if (has_lod)
8047 opcode = aco_opcode::image_sample_l_o;
8048 }
8049 } else { /* no offset */
8050 if (has_compare) {
8051 opcode = aco_opcode::image_sample_c;
8052 if (has_derivs)
8053 opcode = aco_opcode::image_sample_c_d;
8054 if (has_bias)
8055 opcode = aco_opcode::image_sample_c_b;
8056 if (level_zero)
8057 opcode = aco_opcode::image_sample_c_lz;
8058 if (has_lod)
8059 opcode = aco_opcode::image_sample_c_l;
8060 } else {
8061 opcode = aco_opcode::image_sample;
8062 if (has_derivs)
8063 opcode = aco_opcode::image_sample_d;
8064 if (has_bias)
8065 opcode = aco_opcode::image_sample_b;
8066 if (level_zero)
8067 opcode = aco_opcode::image_sample_lz;
8068 if (has_lod)
8069 opcode = aco_opcode::image_sample_l;
8070 }
8071 }
8072
8073 if (instr->op == nir_texop_tg4) {
8074 if (has_offset) {
8075 opcode = aco_opcode::image_gather4_lz_o;
8076 if (has_compare)
8077 opcode = aco_opcode::image_gather4_c_lz_o;
8078 } else {
8079 opcode = aco_opcode::image_gather4_lz;
8080 if (has_compare)
8081 opcode = aco_opcode::image_gather4_c_lz;
8082 }
8083 } else if (instr->op == nir_texop_lod) {
8084 opcode = aco_opcode::image_get_lod;
8085 }
8086
8087 /* we don't need the bias, sample index, compare value or offset to be
8088 * computed in WQM but if the p_create_vector copies the coordinates, then it
8089 * needs to be in WQM */
8090 if (ctx->stage == fragment_fs &&
8091 !has_derivs && !has_lod && !level_zero &&
8092 instr->sampler_dim != GLSL_SAMPLER_DIM_MS &&
8093 instr->sampler_dim != GLSL_SAMPLER_DIM_SUBPASS_MS)
8094 arg = emit_wqm(ctx, arg, bld.tmp(arg.regClass()), true);
8095
8096 tex.reset(create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1));
8097 tex->operands[0] = Operand(resource);
8098 tex->operands[1] = Operand(sampler);
8099 tex->operands[2] = Operand(arg);
8100 tex->dim = dim;
8101 tex->dmask = dmask;
8102 tex->da = da;
8103 tex->definitions[0] = Definition(tmp_dst);
8104 tex->can_reorder = true;
8105 ctx->block->instructions.emplace_back(std::move(tex));
8106
8107 if (tg4_integer_cube_workaround) {
8108 assert(tmp_dst.id() != dst.id());
8109 assert(tmp_dst.size() == dst.size() && dst.size() == 4);
8110
8111 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
8112 Temp val[4];
8113 for (unsigned i = 0; i < dst.size(); i++) {
8114 val[i] = emit_extract_vector(ctx, tmp_dst, i, v1);
8115 Temp cvt_val;
8116 if (stype == GLSL_TYPE_UINT)
8117 cvt_val = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), val[i]);
8118 else
8119 cvt_val = bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), val[i]);
8120 val[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), val[i], cvt_val, tg4_compare_cube_wa64);
8121 }
8122 Temp tmp = dst.regClass() == v4 ? dst : bld.tmp(v4);
8123 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
8124 val[0], val[1], val[2], val[3]);
8125 }
8126 unsigned mask = instr->op == nir_texop_tg4 ? 0xF : dmask;
8127 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, mask);
8128
8129 }
8130
8131
8132 Operand get_phi_operand(isel_context *ctx, nir_ssa_def *ssa)
8133 {
8134 Temp tmp = get_ssa_temp(ctx, ssa);
8135 if (ssa->parent_instr->type == nir_instr_type_ssa_undef)
8136 return Operand(tmp.regClass());
8137 else
8138 return Operand(tmp);
8139 }
8140
8141 void visit_phi(isel_context *ctx, nir_phi_instr *instr)
8142 {
8143 aco_ptr<Pseudo_instruction> phi;
8144 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8145 assert(instr->dest.ssa.bit_size != 1 || dst.regClass() == ctx->program->lane_mask);
8146
8147 bool logical = !dst.is_linear() || ctx->divergent_vals[instr->dest.ssa.index];
8148 logical |= ctx->block->kind & block_kind_merge;
8149 aco_opcode opcode = logical ? aco_opcode::p_phi : aco_opcode::p_linear_phi;
8150
8151 /* we want a sorted list of sources, since the predecessor list is also sorted */
8152 std::map<unsigned, nir_ssa_def*> phi_src;
8153 nir_foreach_phi_src(src, instr)
8154 phi_src[src->pred->index] = src->src.ssa;
8155
8156 std::vector<unsigned>& preds = logical ? ctx->block->logical_preds : ctx->block->linear_preds;
8157 unsigned num_operands = 0;
8158 Operand operands[std::max(exec_list_length(&instr->srcs), (unsigned)preds.size())];
8159 unsigned num_defined = 0;
8160 unsigned cur_pred_idx = 0;
8161 for (std::pair<unsigned, nir_ssa_def *> src : phi_src) {
8162 if (cur_pred_idx < preds.size()) {
8163 /* handle missing preds (IF merges with discard/break) and extra preds (loop exit with discard) */
8164 unsigned block = ctx->cf_info.nir_to_aco[src.first];
8165 unsigned skipped = 0;
8166 while (cur_pred_idx + skipped < preds.size() && preds[cur_pred_idx + skipped] != block)
8167 skipped++;
8168 if (cur_pred_idx + skipped < preds.size()) {
8169 for (unsigned i = 0; i < skipped; i++)
8170 operands[num_operands++] = Operand(dst.regClass());
8171 cur_pred_idx += skipped;
8172 } else {
8173 continue;
8174 }
8175 }
8176 cur_pred_idx++;
8177 Operand op = get_phi_operand(ctx, src.second);
8178 operands[num_operands++] = op;
8179 num_defined += !op.isUndefined();
8180 }
8181 /* handle block_kind_continue_or_break at loop exit blocks */
8182 while (cur_pred_idx++ < preds.size())
8183 operands[num_operands++] = Operand(dst.regClass());
8184
8185 if (num_defined == 0) {
8186 Builder bld(ctx->program, ctx->block);
8187 if (dst.regClass() == s1) {
8188 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), Operand(0u));
8189 } else if (dst.regClass() == v1) {
8190 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), Operand(0u));
8191 } else {
8192 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
8193 for (unsigned i = 0; i < dst.size(); i++)
8194 vec->operands[i] = Operand(0u);
8195 vec->definitions[0] = Definition(dst);
8196 ctx->block->instructions.emplace_back(std::move(vec));
8197 }
8198 return;
8199 }
8200
8201 /* we can use a linear phi in some cases if one src is undef */
8202 if (dst.is_linear() && ctx->block->kind & block_kind_merge && num_defined == 1) {
8203 phi.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, num_operands, 1));
8204
8205 Block *linear_else = &ctx->program->blocks[ctx->block->linear_preds[1]];
8206 Block *invert = &ctx->program->blocks[linear_else->linear_preds[0]];
8207 assert(invert->kind & block_kind_invert);
8208
8209 unsigned then_block = invert->linear_preds[0];
8210
8211 Block* insert_block = NULL;
8212 for (unsigned i = 0; i < num_operands; i++) {
8213 Operand op = operands[i];
8214 if (op.isUndefined())
8215 continue;
8216 insert_block = ctx->block->logical_preds[i] == then_block ? invert : ctx->block;
8217 phi->operands[0] = op;
8218 break;
8219 }
8220 assert(insert_block); /* should be handled by the "num_defined == 0" case above */
8221 phi->operands[1] = Operand(dst.regClass());
8222 phi->definitions[0] = Definition(dst);
8223 insert_block->instructions.emplace(insert_block->instructions.begin(), std::move(phi));
8224 return;
8225 }
8226
8227 /* try to scalarize vector phis */
8228 if (instr->dest.ssa.bit_size != 1 && dst.size() > 1) {
8229 // TODO: scalarize linear phis on divergent ifs
8230 bool can_scalarize = (opcode == aco_opcode::p_phi || !(ctx->block->kind & block_kind_merge));
8231 std::array<Temp, NIR_MAX_VEC_COMPONENTS> new_vec;
8232 for (unsigned i = 0; can_scalarize && (i < num_operands); i++) {
8233 Operand src = operands[i];
8234 if (src.isTemp() && ctx->allocated_vec.find(src.tempId()) == ctx->allocated_vec.end())
8235 can_scalarize = false;
8236 }
8237 if (can_scalarize) {
8238 unsigned num_components = instr->dest.ssa.num_components;
8239 assert(dst.size() % num_components == 0);
8240 RegClass rc = RegClass(dst.type(), dst.size() / num_components);
8241
8242 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
8243 for (unsigned k = 0; k < num_components; k++) {
8244 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
8245 for (unsigned i = 0; i < num_operands; i++) {
8246 Operand src = operands[i];
8247 phi->operands[i] = src.isTemp() ? Operand(ctx->allocated_vec[src.tempId()][k]) : Operand(rc);
8248 }
8249 Temp phi_dst = {ctx->program->allocateId(), rc};
8250 phi->definitions[0] = Definition(phi_dst);
8251 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
8252 new_vec[k] = phi_dst;
8253 vec->operands[k] = Operand(phi_dst);
8254 }
8255 vec->definitions[0] = Definition(dst);
8256 ctx->block->instructions.emplace_back(std::move(vec));
8257 ctx->allocated_vec.emplace(dst.id(), new_vec);
8258 return;
8259 }
8260 }
8261
8262 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
8263 for (unsigned i = 0; i < num_operands; i++)
8264 phi->operands[i] = operands[i];
8265 phi->definitions[0] = Definition(dst);
8266 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
8267 }
8268
8269
8270 void visit_undef(isel_context *ctx, nir_ssa_undef_instr *instr)
8271 {
8272 Temp dst = get_ssa_temp(ctx, &instr->def);
8273
8274 assert(dst.type() == RegType::sgpr);
8275
8276 if (dst.size() == 1) {
8277 Builder(ctx->program, ctx->block).copy(Definition(dst), Operand(0u));
8278 } else {
8279 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
8280 for (unsigned i = 0; i < dst.size(); i++)
8281 vec->operands[i] = Operand(0u);
8282 vec->definitions[0] = Definition(dst);
8283 ctx->block->instructions.emplace_back(std::move(vec));
8284 }
8285 }
8286
8287 void visit_jump(isel_context *ctx, nir_jump_instr *instr)
8288 {
8289 Builder bld(ctx->program, ctx->block);
8290 Block *logical_target;
8291 append_logical_end(ctx->block);
8292 unsigned idx = ctx->block->index;
8293
8294 switch (instr->type) {
8295 case nir_jump_break:
8296 logical_target = ctx->cf_info.parent_loop.exit;
8297 add_logical_edge(idx, logical_target);
8298 ctx->block->kind |= block_kind_break;
8299
8300 if (!ctx->cf_info.parent_if.is_divergent &&
8301 !ctx->cf_info.parent_loop.has_divergent_continue) {
8302 /* uniform break - directly jump out of the loop */
8303 ctx->block->kind |= block_kind_uniform;
8304 ctx->cf_info.has_branch = true;
8305 bld.branch(aco_opcode::p_branch);
8306 add_linear_edge(idx, logical_target);
8307 return;
8308 }
8309 ctx->cf_info.parent_loop.has_divergent_branch = true;
8310 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
8311 break;
8312 case nir_jump_continue:
8313 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
8314 add_logical_edge(idx, logical_target);
8315 ctx->block->kind |= block_kind_continue;
8316
8317 if (ctx->cf_info.parent_if.is_divergent) {
8318 /* for potential uniform breaks after this continue,
8319 we must ensure that they are handled correctly */
8320 ctx->cf_info.parent_loop.has_divergent_continue = true;
8321 ctx->cf_info.parent_loop.has_divergent_branch = true;
8322 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
8323 } else {
8324 /* uniform continue - directly jump to the loop header */
8325 ctx->block->kind |= block_kind_uniform;
8326 ctx->cf_info.has_branch = true;
8327 bld.branch(aco_opcode::p_branch);
8328 add_linear_edge(idx, logical_target);
8329 return;
8330 }
8331 break;
8332 default:
8333 fprintf(stderr, "Unknown NIR jump instr: ");
8334 nir_print_instr(&instr->instr, stderr);
8335 fprintf(stderr, "\n");
8336 abort();
8337 }
8338
8339 if (ctx->cf_info.parent_if.is_divergent && !ctx->cf_info.exec_potentially_empty_break) {
8340 ctx->cf_info.exec_potentially_empty_break = true;
8341 ctx->cf_info.exec_potentially_empty_break_depth = ctx->cf_info.loop_nest_depth;
8342 }
8343
8344 /* remove critical edges from linear CFG */
8345 bld.branch(aco_opcode::p_branch);
8346 Block* break_block = ctx->program->create_and_insert_block();
8347 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8348 break_block->kind |= block_kind_uniform;
8349 add_linear_edge(idx, break_block);
8350 /* the loop_header pointer might be invalidated by this point */
8351 if (instr->type == nir_jump_continue)
8352 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
8353 add_linear_edge(break_block->index, logical_target);
8354 bld.reset(break_block);
8355 bld.branch(aco_opcode::p_branch);
8356
8357 Block* continue_block = ctx->program->create_and_insert_block();
8358 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8359 add_linear_edge(idx, continue_block);
8360 append_logical_start(continue_block);
8361 ctx->block = continue_block;
8362 return;
8363 }
8364
8365 void visit_block(isel_context *ctx, nir_block *block)
8366 {
8367 nir_foreach_instr(instr, block) {
8368 switch (instr->type) {
8369 case nir_instr_type_alu:
8370 visit_alu_instr(ctx, nir_instr_as_alu(instr));
8371 break;
8372 case nir_instr_type_load_const:
8373 visit_load_const(ctx, nir_instr_as_load_const(instr));
8374 break;
8375 case nir_instr_type_intrinsic:
8376 visit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
8377 break;
8378 case nir_instr_type_tex:
8379 visit_tex(ctx, nir_instr_as_tex(instr));
8380 break;
8381 case nir_instr_type_phi:
8382 visit_phi(ctx, nir_instr_as_phi(instr));
8383 break;
8384 case nir_instr_type_ssa_undef:
8385 visit_undef(ctx, nir_instr_as_ssa_undef(instr));
8386 break;
8387 case nir_instr_type_deref:
8388 break;
8389 case nir_instr_type_jump:
8390 visit_jump(ctx, nir_instr_as_jump(instr));
8391 break;
8392 default:
8393 fprintf(stderr, "Unknown NIR instr type: ");
8394 nir_print_instr(instr, stderr);
8395 fprintf(stderr, "\n");
8396 //abort();
8397 }
8398 }
8399
8400 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8401 ctx->cf_info.nir_to_aco[block->index] = ctx->block->index;
8402 }
8403
8404
8405
8406 static void visit_loop(isel_context *ctx, nir_loop *loop)
8407 {
8408 //TODO: we might want to wrap the loop around a branch if exec_potentially_empty=true
8409 append_logical_end(ctx->block);
8410 ctx->block->kind |= block_kind_loop_preheader | block_kind_uniform;
8411 Builder bld(ctx->program, ctx->block);
8412 bld.branch(aco_opcode::p_branch);
8413 unsigned loop_preheader_idx = ctx->block->index;
8414
8415 Block loop_exit = Block();
8416 loop_exit.loop_nest_depth = ctx->cf_info.loop_nest_depth;
8417 loop_exit.kind |= (block_kind_loop_exit | (ctx->block->kind & block_kind_top_level));
8418
8419 Block* loop_header = ctx->program->create_and_insert_block();
8420 loop_header->loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
8421 loop_header->kind |= block_kind_loop_header;
8422 add_edge(loop_preheader_idx, loop_header);
8423 ctx->block = loop_header;
8424
8425 /* emit loop body */
8426 unsigned loop_header_idx = loop_header->index;
8427 loop_info_RAII loop_raii(ctx, loop_header_idx, &loop_exit);
8428 append_logical_start(ctx->block);
8429 visit_cf_list(ctx, &loop->body);
8430
8431 //TODO: what if a loop ends with a unconditional or uniformly branched continue and this branch is never taken?
8432 if (!ctx->cf_info.has_branch) {
8433 append_logical_end(ctx->block);
8434 if (ctx->cf_info.exec_potentially_empty_discard || ctx->cf_info.exec_potentially_empty_break) {
8435 /* Discards can result in code running with an empty exec mask.
8436 * This would result in divergent breaks not ever being taken. As a
8437 * workaround, break the loop when the loop mask is empty instead of
8438 * always continuing. */
8439 ctx->block->kind |= (block_kind_continue_or_break | block_kind_uniform);
8440 unsigned block_idx = ctx->block->index;
8441
8442 /* create helper blocks to avoid critical edges */
8443 Block *break_block = ctx->program->create_and_insert_block();
8444 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8445 break_block->kind = block_kind_uniform;
8446 bld.reset(break_block);
8447 bld.branch(aco_opcode::p_branch);
8448 add_linear_edge(block_idx, break_block);
8449 add_linear_edge(break_block->index, &loop_exit);
8450
8451 Block *continue_block = ctx->program->create_and_insert_block();
8452 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8453 continue_block->kind = block_kind_uniform;
8454 bld.reset(continue_block);
8455 bld.branch(aco_opcode::p_branch);
8456 add_linear_edge(block_idx, continue_block);
8457 add_linear_edge(continue_block->index, &ctx->program->blocks[loop_header_idx]);
8458
8459 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8460 add_logical_edge(block_idx, &ctx->program->blocks[loop_header_idx]);
8461 ctx->block = &ctx->program->blocks[block_idx];
8462 } else {
8463 ctx->block->kind |= (block_kind_continue | block_kind_uniform);
8464 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8465 add_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
8466 else
8467 add_linear_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
8468 }
8469
8470 bld.reset(ctx->block);
8471 bld.branch(aco_opcode::p_branch);
8472 }
8473
8474 /* fixup phis in loop header from unreachable blocks */
8475 if (ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch) {
8476 bool linear = ctx->cf_info.has_branch;
8477 bool logical = ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch;
8478 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
8479 if ((logical && instr->opcode == aco_opcode::p_phi) ||
8480 (linear && instr->opcode == aco_opcode::p_linear_phi)) {
8481 /* the last operand should be the one that needs to be removed */
8482 instr->operands.pop_back();
8483 } else if (!is_phi(instr)) {
8484 break;
8485 }
8486 }
8487 }
8488
8489 ctx->cf_info.has_branch = false;
8490
8491 // TODO: if the loop has not a single exit, we must add one °°
8492 /* emit loop successor block */
8493 ctx->block = ctx->program->insert_block(std::move(loop_exit));
8494 append_logical_start(ctx->block);
8495
8496 #if 0
8497 // TODO: check if it is beneficial to not branch on continues
8498 /* trim linear phis in loop header */
8499 for (auto&& instr : loop_entry->instructions) {
8500 if (instr->opcode == aco_opcode::p_linear_phi) {
8501 aco_ptr<Pseudo_instruction> new_phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, loop_entry->linear_predecessors.size(), 1)};
8502 new_phi->definitions[0] = instr->definitions[0];
8503 for (unsigned i = 0; i < new_phi->operands.size(); i++)
8504 new_phi->operands[i] = instr->operands[i];
8505 /* check that the remaining operands are all the same */
8506 for (unsigned i = new_phi->operands.size(); i < instr->operands.size(); i++)
8507 assert(instr->operands[i].tempId() == instr->operands.back().tempId());
8508 instr.swap(new_phi);
8509 } else if (instr->opcode == aco_opcode::p_phi) {
8510 continue;
8511 } else {
8512 break;
8513 }
8514 }
8515 #endif
8516 }
8517
8518 static void begin_divergent_if_then(isel_context *ctx, if_context *ic, Temp cond)
8519 {
8520 ic->cond = cond;
8521
8522 append_logical_end(ctx->block);
8523 ctx->block->kind |= block_kind_branch;
8524
8525 /* branch to linear then block */
8526 assert(cond.regClass() == ctx->program->lane_mask);
8527 aco_ptr<Pseudo_branch_instruction> branch;
8528 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
8529 branch->operands[0] = Operand(cond);
8530 ctx->block->instructions.push_back(std::move(branch));
8531
8532 ic->BB_if_idx = ctx->block->index;
8533 ic->BB_invert = Block();
8534 ic->BB_invert.loop_nest_depth = ctx->cf_info.loop_nest_depth;
8535 /* Invert blocks are intentionally not marked as top level because they
8536 * are not part of the logical cfg. */
8537 ic->BB_invert.kind |= block_kind_invert;
8538 ic->BB_endif = Block();
8539 ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
8540 ic->BB_endif.kind |= (block_kind_merge | (ctx->block->kind & block_kind_top_level));
8541
8542 ic->exec_potentially_empty_discard_old = ctx->cf_info.exec_potentially_empty_discard;
8543 ic->exec_potentially_empty_break_old = ctx->cf_info.exec_potentially_empty_break;
8544 ic->exec_potentially_empty_break_depth_old = ctx->cf_info.exec_potentially_empty_break_depth;
8545 ic->divergent_old = ctx->cf_info.parent_if.is_divergent;
8546 ctx->cf_info.parent_if.is_divergent = true;
8547
8548 /* divergent branches use cbranch_execz */
8549 ctx->cf_info.exec_potentially_empty_discard = false;
8550 ctx->cf_info.exec_potentially_empty_break = false;
8551 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
8552
8553 /** emit logical then block */
8554 Block* BB_then_logical = ctx->program->create_and_insert_block();
8555 BB_then_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8556 add_edge(ic->BB_if_idx, BB_then_logical);
8557 ctx->block = BB_then_logical;
8558 append_logical_start(BB_then_logical);
8559 }
8560
8561 static void begin_divergent_if_else(isel_context *ctx, if_context *ic)
8562 {
8563 Block *BB_then_logical = ctx->block;
8564 append_logical_end(BB_then_logical);
8565 /* branch from logical then block to invert block */
8566 aco_ptr<Pseudo_branch_instruction> branch;
8567 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8568 BB_then_logical->instructions.emplace_back(std::move(branch));
8569 add_linear_edge(BB_then_logical->index, &ic->BB_invert);
8570 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8571 add_logical_edge(BB_then_logical->index, &ic->BB_endif);
8572 BB_then_logical->kind |= block_kind_uniform;
8573 assert(!ctx->cf_info.has_branch);
8574 ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
8575 ctx->cf_info.parent_loop.has_divergent_branch = false;
8576
8577 /** emit linear then block */
8578 Block* BB_then_linear = ctx->program->create_and_insert_block();
8579 BB_then_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8580 BB_then_linear->kind |= block_kind_uniform;
8581 add_linear_edge(ic->BB_if_idx, BB_then_linear);
8582 /* branch from linear then block to invert block */
8583 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8584 BB_then_linear->instructions.emplace_back(std::move(branch));
8585 add_linear_edge(BB_then_linear->index, &ic->BB_invert);
8586
8587 /** emit invert merge block */
8588 ctx->block = ctx->program->insert_block(std::move(ic->BB_invert));
8589 ic->invert_idx = ctx->block->index;
8590
8591 /* branch to linear else block (skip else) */
8592 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_nz, Format::PSEUDO_BRANCH, 1, 0));
8593 branch->operands[0] = Operand(ic->cond);
8594 ctx->block->instructions.push_back(std::move(branch));
8595
8596 ic->exec_potentially_empty_discard_old |= ctx->cf_info.exec_potentially_empty_discard;
8597 ic->exec_potentially_empty_break_old |= ctx->cf_info.exec_potentially_empty_break;
8598 ic->exec_potentially_empty_break_depth_old =
8599 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
8600 /* divergent branches use cbranch_execz */
8601 ctx->cf_info.exec_potentially_empty_discard = false;
8602 ctx->cf_info.exec_potentially_empty_break = false;
8603 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
8604
8605 /** emit logical else block */
8606 Block* BB_else_logical = ctx->program->create_and_insert_block();
8607 BB_else_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8608 add_logical_edge(ic->BB_if_idx, BB_else_logical);
8609 add_linear_edge(ic->invert_idx, BB_else_logical);
8610 ctx->block = BB_else_logical;
8611 append_logical_start(BB_else_logical);
8612 }
8613
8614 static void end_divergent_if(isel_context *ctx, if_context *ic)
8615 {
8616 Block *BB_else_logical = ctx->block;
8617 append_logical_end(BB_else_logical);
8618
8619 /* branch from logical else block to endif block */
8620 aco_ptr<Pseudo_branch_instruction> branch;
8621 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8622 BB_else_logical->instructions.emplace_back(std::move(branch));
8623 add_linear_edge(BB_else_logical->index, &ic->BB_endif);
8624 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8625 add_logical_edge(BB_else_logical->index, &ic->BB_endif);
8626 BB_else_logical->kind |= block_kind_uniform;
8627
8628 assert(!ctx->cf_info.has_branch);
8629 ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
8630
8631
8632 /** emit linear else block */
8633 Block* BB_else_linear = ctx->program->create_and_insert_block();
8634 BB_else_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8635 BB_else_linear->kind |= block_kind_uniform;
8636 add_linear_edge(ic->invert_idx, BB_else_linear);
8637
8638 /* branch from linear else block to endif block */
8639 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8640 BB_else_linear->instructions.emplace_back(std::move(branch));
8641 add_linear_edge(BB_else_linear->index, &ic->BB_endif);
8642
8643
8644 /** emit endif merge block */
8645 ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
8646 append_logical_start(ctx->block);
8647
8648
8649 ctx->cf_info.parent_if.is_divergent = ic->divergent_old;
8650 ctx->cf_info.exec_potentially_empty_discard |= ic->exec_potentially_empty_discard_old;
8651 ctx->cf_info.exec_potentially_empty_break |= ic->exec_potentially_empty_break_old;
8652 ctx->cf_info.exec_potentially_empty_break_depth =
8653 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
8654 if (ctx->cf_info.loop_nest_depth == ctx->cf_info.exec_potentially_empty_break_depth &&
8655 !ctx->cf_info.parent_if.is_divergent) {
8656 ctx->cf_info.exec_potentially_empty_break = false;
8657 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
8658 }
8659 /* uniform control flow never has an empty exec-mask */
8660 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent) {
8661 ctx->cf_info.exec_potentially_empty_discard = false;
8662 ctx->cf_info.exec_potentially_empty_break = false;
8663 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
8664 }
8665 }
8666
8667 static void visit_if(isel_context *ctx, nir_if *if_stmt)
8668 {
8669 Temp cond = get_ssa_temp(ctx, if_stmt->condition.ssa);
8670 Builder bld(ctx->program, ctx->block);
8671 aco_ptr<Pseudo_branch_instruction> branch;
8672
8673 if (!ctx->divergent_vals[if_stmt->condition.ssa->index]) { /* uniform condition */
8674 /**
8675 * Uniform conditionals are represented in the following way*) :
8676 *
8677 * The linear and logical CFG:
8678 * BB_IF
8679 * / \
8680 * BB_THEN (logical) BB_ELSE (logical)
8681 * \ /
8682 * BB_ENDIF
8683 *
8684 * *) Exceptions may be due to break and continue statements within loops
8685 * If a break/continue happens within uniform control flow, it branches
8686 * to the loop exit/entry block. Otherwise, it branches to the next
8687 * merge block.
8688 **/
8689 append_logical_end(ctx->block);
8690 ctx->block->kind |= block_kind_uniform;
8691
8692 /* emit branch */
8693 assert(cond.regClass() == bld.lm);
8694 // TODO: in a post-RA optimizer, we could check if the condition is in VCC and omit this instruction
8695 cond = bool_to_scalar_condition(ctx, cond);
8696
8697 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
8698 branch->operands[0] = Operand(cond);
8699 branch->operands[0].setFixed(scc);
8700 ctx->block->instructions.emplace_back(std::move(branch));
8701
8702 unsigned BB_if_idx = ctx->block->index;
8703 Block BB_endif = Block();
8704 BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
8705 BB_endif.kind |= ctx->block->kind & block_kind_top_level;
8706
8707 /** emit then block */
8708 Block* BB_then = ctx->program->create_and_insert_block();
8709 BB_then->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8710 add_edge(BB_if_idx, BB_then);
8711 append_logical_start(BB_then);
8712 ctx->block = BB_then;
8713 visit_cf_list(ctx, &if_stmt->then_list);
8714 BB_then = ctx->block;
8715 bool then_branch = ctx->cf_info.has_branch;
8716 bool then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
8717
8718 if (!then_branch) {
8719 append_logical_end(BB_then);
8720 /* branch from then block to endif block */
8721 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8722 BB_then->instructions.emplace_back(std::move(branch));
8723 add_linear_edge(BB_then->index, &BB_endif);
8724 if (!then_branch_divergent)
8725 add_logical_edge(BB_then->index, &BB_endif);
8726 BB_then->kind |= block_kind_uniform;
8727 }
8728
8729 ctx->cf_info.has_branch = false;
8730 ctx->cf_info.parent_loop.has_divergent_branch = false;
8731
8732 /** emit else block */
8733 Block* BB_else = ctx->program->create_and_insert_block();
8734 BB_else->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8735 add_edge(BB_if_idx, BB_else);
8736 append_logical_start(BB_else);
8737 ctx->block = BB_else;
8738 visit_cf_list(ctx, &if_stmt->else_list);
8739 BB_else = ctx->block;
8740
8741 if (!ctx->cf_info.has_branch) {
8742 append_logical_end(BB_else);
8743 /* branch from then block to endif block */
8744 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8745 BB_else->instructions.emplace_back(std::move(branch));
8746 add_linear_edge(BB_else->index, &BB_endif);
8747 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8748 add_logical_edge(BB_else->index, &BB_endif);
8749 BB_else->kind |= block_kind_uniform;
8750 }
8751
8752 ctx->cf_info.has_branch &= then_branch;
8753 ctx->cf_info.parent_loop.has_divergent_branch &= then_branch_divergent;
8754
8755 /** emit endif merge block */
8756 if (!ctx->cf_info.has_branch) {
8757 ctx->block = ctx->program->insert_block(std::move(BB_endif));
8758 append_logical_start(ctx->block);
8759 }
8760 } else { /* non-uniform condition */
8761 /**
8762 * To maintain a logical and linear CFG without critical edges,
8763 * non-uniform conditionals are represented in the following way*) :
8764 *
8765 * The linear CFG:
8766 * BB_IF
8767 * / \
8768 * BB_THEN (logical) BB_THEN (linear)
8769 * \ /
8770 * BB_INVERT (linear)
8771 * / \
8772 * BB_ELSE (logical) BB_ELSE (linear)
8773 * \ /
8774 * BB_ENDIF
8775 *
8776 * The logical CFG:
8777 * BB_IF
8778 * / \
8779 * BB_THEN (logical) BB_ELSE (logical)
8780 * \ /
8781 * BB_ENDIF
8782 *
8783 * *) Exceptions may be due to break and continue statements within loops
8784 **/
8785
8786 if_context ic;
8787
8788 begin_divergent_if_then(ctx, &ic, cond);
8789 visit_cf_list(ctx, &if_stmt->then_list);
8790
8791 begin_divergent_if_else(ctx, &ic);
8792 visit_cf_list(ctx, &if_stmt->else_list);
8793
8794 end_divergent_if(ctx, &ic);
8795 }
8796 }
8797
8798 static void visit_cf_list(isel_context *ctx,
8799 struct exec_list *list)
8800 {
8801 foreach_list_typed(nir_cf_node, node, node, list) {
8802 switch (node->type) {
8803 case nir_cf_node_block:
8804 visit_block(ctx, nir_cf_node_as_block(node));
8805 break;
8806 case nir_cf_node_if:
8807 visit_if(ctx, nir_cf_node_as_if(node));
8808 break;
8809 case nir_cf_node_loop:
8810 visit_loop(ctx, nir_cf_node_as_loop(node));
8811 break;
8812 default:
8813 unreachable("unimplemented cf list type");
8814 }
8815 }
8816 }
8817
8818 static void export_vs_varying(isel_context *ctx, int slot, bool is_pos, int *next_pos)
8819 {
8820 assert(ctx->stage == vertex_vs ||
8821 ctx->stage == tess_eval_vs ||
8822 ctx->stage == gs_copy_vs);
8823
8824 int offset = ctx->stage == tess_eval_vs
8825 ? ctx->program->info->tes.outinfo.vs_output_param_offset[slot]
8826 : ctx->program->info->vs.outinfo.vs_output_param_offset[slot];
8827 uint64_t mask = ctx->outputs.mask[slot];
8828 if (!is_pos && !mask)
8829 return;
8830 if (!is_pos && offset == AC_EXP_PARAM_UNDEFINED)
8831 return;
8832 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
8833 exp->enabled_mask = mask;
8834 for (unsigned i = 0; i < 4; ++i) {
8835 if (mask & (1 << i))
8836 exp->operands[i] = Operand(ctx->outputs.outputs[slot][i]);
8837 else
8838 exp->operands[i] = Operand(v1);
8839 }
8840 /* Navi10-14 skip POS0 exports if EXEC=0 and DONE=0, causing a hang.
8841 * Setting valid_mask=1 prevents it and has no other effect.
8842 */
8843 exp->valid_mask = ctx->options->chip_class >= GFX10 && is_pos && *next_pos == 0;
8844 exp->done = false;
8845 exp->compressed = false;
8846 if (is_pos)
8847 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
8848 else
8849 exp->dest = V_008DFC_SQ_EXP_PARAM + offset;
8850 ctx->block->instructions.emplace_back(std::move(exp));
8851 }
8852
8853 static void export_vs_psiz_layer_viewport(isel_context *ctx, int *next_pos)
8854 {
8855 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
8856 exp->enabled_mask = 0;
8857 for (unsigned i = 0; i < 4; ++i)
8858 exp->operands[i] = Operand(v1);
8859 if (ctx->outputs.mask[VARYING_SLOT_PSIZ]) {
8860 exp->operands[0] = Operand(ctx->outputs.outputs[VARYING_SLOT_PSIZ][0]);
8861 exp->enabled_mask |= 0x1;
8862 }
8863 if (ctx->outputs.mask[VARYING_SLOT_LAYER]) {
8864 exp->operands[2] = Operand(ctx->outputs.outputs[VARYING_SLOT_LAYER][0]);
8865 exp->enabled_mask |= 0x4;
8866 }
8867 if (ctx->outputs.mask[VARYING_SLOT_VIEWPORT]) {
8868 if (ctx->options->chip_class < GFX9) {
8869 exp->operands[3] = Operand(ctx->outputs.outputs[VARYING_SLOT_VIEWPORT][0]);
8870 exp->enabled_mask |= 0x8;
8871 } else {
8872 Builder bld(ctx->program, ctx->block);
8873
8874 Temp out = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u),
8875 Operand(ctx->outputs.outputs[VARYING_SLOT_VIEWPORT][0]));
8876 if (exp->operands[2].isTemp())
8877 out = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(out), exp->operands[2]);
8878
8879 exp->operands[2] = Operand(out);
8880 exp->enabled_mask |= 0x4;
8881 }
8882 }
8883 exp->valid_mask = ctx->options->chip_class >= GFX10 && *next_pos == 0;
8884 exp->done = false;
8885 exp->compressed = false;
8886 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
8887 ctx->block->instructions.emplace_back(std::move(exp));
8888 }
8889
8890 static void create_vs_exports(isel_context *ctx)
8891 {
8892 assert(ctx->stage == vertex_vs ||
8893 ctx->stage == tess_eval_vs ||
8894 ctx->stage == gs_copy_vs);
8895
8896 radv_vs_output_info *outinfo = ctx->stage == tess_eval_vs
8897 ? &ctx->program->info->tes.outinfo
8898 : &ctx->program->info->vs.outinfo;
8899
8900 if (outinfo->export_prim_id) {
8901 ctx->outputs.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
8902 ctx->outputs.outputs[VARYING_SLOT_PRIMITIVE_ID][0] = get_arg(ctx, ctx->args->vs_prim_id);
8903 }
8904
8905 if (ctx->options->key.has_multiview_view_index) {
8906 ctx->outputs.mask[VARYING_SLOT_LAYER] |= 0x1;
8907 ctx->outputs.outputs[VARYING_SLOT_LAYER][0] = as_vgpr(ctx, get_arg(ctx, ctx->args->ac.view_index));
8908 }
8909
8910 /* the order these position exports are created is important */
8911 int next_pos = 0;
8912 export_vs_varying(ctx, VARYING_SLOT_POS, true, &next_pos);
8913 if (outinfo->writes_pointsize || outinfo->writes_layer || outinfo->writes_viewport_index) {
8914 export_vs_psiz_layer_viewport(ctx, &next_pos);
8915 }
8916 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
8917 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, true, &next_pos);
8918 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
8919 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, true, &next_pos);
8920
8921 if (ctx->export_clip_dists) {
8922 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
8923 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, false, &next_pos);
8924 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
8925 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, false, &next_pos);
8926 }
8927
8928 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
8929 if (i < VARYING_SLOT_VAR0 && i != VARYING_SLOT_LAYER &&
8930 i != VARYING_SLOT_PRIMITIVE_ID)
8931 continue;
8932
8933 export_vs_varying(ctx, i, false, NULL);
8934 }
8935 }
8936
8937 static void export_fs_mrt_z(isel_context *ctx)
8938 {
8939 Builder bld(ctx->program, ctx->block);
8940 unsigned enabled_channels = 0;
8941 bool compr = false;
8942 Operand values[4];
8943
8944 for (unsigned i = 0; i < 4; ++i) {
8945 values[i] = Operand(v1);
8946 }
8947
8948 /* Both stencil and sample mask only need 16-bits. */
8949 if (!ctx->program->info->ps.writes_z &&
8950 (ctx->program->info->ps.writes_stencil ||
8951 ctx->program->info->ps.writes_sample_mask)) {
8952 compr = true; /* COMPR flag */
8953
8954 if (ctx->program->info->ps.writes_stencil) {
8955 /* Stencil should be in X[23:16]. */
8956 values[0] = Operand(ctx->outputs.outputs[FRAG_RESULT_STENCIL][0]);
8957 values[0] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u), values[0]);
8958 enabled_channels |= 0x3;
8959 }
8960
8961 if (ctx->program->info->ps.writes_sample_mask) {
8962 /* SampleMask should be in Y[15:0]. */
8963 values[1] = Operand(ctx->outputs.outputs[FRAG_RESULT_SAMPLE_MASK][0]);
8964 enabled_channels |= 0xc;
8965 }
8966 } else {
8967 if (ctx->program->info->ps.writes_z) {
8968 values[0] = Operand(ctx->outputs.outputs[FRAG_RESULT_DEPTH][0]);
8969 enabled_channels |= 0x1;
8970 }
8971
8972 if (ctx->program->info->ps.writes_stencil) {
8973 values[1] = Operand(ctx->outputs.outputs[FRAG_RESULT_STENCIL][0]);
8974 enabled_channels |= 0x2;
8975 }
8976
8977 if (ctx->program->info->ps.writes_sample_mask) {
8978 values[2] = Operand(ctx->outputs.outputs[FRAG_RESULT_SAMPLE_MASK][0]);
8979 enabled_channels |= 0x4;
8980 }
8981 }
8982
8983 /* GFX6 (except OLAND and HAINAN) has a bug that it only looks at the X
8984 * writemask component.
8985 */
8986 if (ctx->options->chip_class == GFX6 &&
8987 ctx->options->family != CHIP_OLAND &&
8988 ctx->options->family != CHIP_HAINAN) {
8989 enabled_channels |= 0x1;
8990 }
8991
8992 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
8993 enabled_channels, V_008DFC_SQ_EXP_MRTZ, compr);
8994 }
8995
8996 static void export_fs_mrt_color(isel_context *ctx, int slot)
8997 {
8998 Builder bld(ctx->program, ctx->block);
8999 unsigned write_mask = ctx->outputs.mask[slot];
9000 Operand values[4];
9001
9002 for (unsigned i = 0; i < 4; ++i) {
9003 if (write_mask & (1 << i)) {
9004 values[i] = Operand(ctx->outputs.outputs[slot][i]);
9005 } else {
9006 values[i] = Operand(v1);
9007 }
9008 }
9009
9010 unsigned target, col_format;
9011 unsigned enabled_channels = 0;
9012 aco_opcode compr_op = (aco_opcode)0;
9013
9014 slot -= FRAG_RESULT_DATA0;
9015 target = V_008DFC_SQ_EXP_MRT + slot;
9016 col_format = (ctx->options->key.fs.col_format >> (4 * slot)) & 0xf;
9017
9018 bool is_int8 = (ctx->options->key.fs.is_int8 >> slot) & 1;
9019 bool is_int10 = (ctx->options->key.fs.is_int10 >> slot) & 1;
9020
9021 switch (col_format)
9022 {
9023 case V_028714_SPI_SHADER_ZERO:
9024 enabled_channels = 0; /* writemask */
9025 target = V_008DFC_SQ_EXP_NULL;
9026 break;
9027
9028 case V_028714_SPI_SHADER_32_R:
9029 enabled_channels = 1;
9030 break;
9031
9032 case V_028714_SPI_SHADER_32_GR:
9033 enabled_channels = 0x3;
9034 break;
9035
9036 case V_028714_SPI_SHADER_32_AR:
9037 if (ctx->options->chip_class >= GFX10) {
9038 /* Special case: on GFX10, the outputs are different for 32_AR */
9039 enabled_channels = 0x3;
9040 values[1] = values[3];
9041 values[3] = Operand(v1);
9042 } else {
9043 enabled_channels = 0x9;
9044 }
9045 break;
9046
9047 case V_028714_SPI_SHADER_FP16_ABGR:
9048 enabled_channels = 0x5;
9049 compr_op = aco_opcode::v_cvt_pkrtz_f16_f32;
9050 break;
9051
9052 case V_028714_SPI_SHADER_UNORM16_ABGR:
9053 enabled_channels = 0x5;
9054 compr_op = aco_opcode::v_cvt_pknorm_u16_f32;
9055 break;
9056
9057 case V_028714_SPI_SHADER_SNORM16_ABGR:
9058 enabled_channels = 0x5;
9059 compr_op = aco_opcode::v_cvt_pknorm_i16_f32;
9060 break;
9061
9062 case V_028714_SPI_SHADER_UINT16_ABGR: {
9063 enabled_channels = 0x5;
9064 compr_op = aco_opcode::v_cvt_pk_u16_u32;
9065 if (is_int8 || is_int10) {
9066 /* clamp */
9067 uint32_t max_rgb = is_int8 ? 255 : is_int10 ? 1023 : 0;
9068 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
9069
9070 for (unsigned i = 0; i < 4; i++) {
9071 if ((write_mask >> i) & 1) {
9072 values[i] = bld.vop2(aco_opcode::v_min_u32, bld.def(v1),
9073 i == 3 && is_int10 ? Operand(3u) : Operand(max_rgb_val),
9074 values[i]);
9075 }
9076 }
9077 }
9078 break;
9079 }
9080
9081 case V_028714_SPI_SHADER_SINT16_ABGR:
9082 enabled_channels = 0x5;
9083 compr_op = aco_opcode::v_cvt_pk_i16_i32;
9084 if (is_int8 || is_int10) {
9085 /* clamp */
9086 uint32_t max_rgb = is_int8 ? 127 : is_int10 ? 511 : 0;
9087 uint32_t min_rgb = is_int8 ? -128 :is_int10 ? -512 : 0;
9088 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
9089 Temp min_rgb_val = bld.copy(bld.def(s1), Operand(min_rgb));
9090
9091 for (unsigned i = 0; i < 4; i++) {
9092 if ((write_mask >> i) & 1) {
9093 values[i] = bld.vop2(aco_opcode::v_min_i32, bld.def(v1),
9094 i == 3 && is_int10 ? Operand(1u) : Operand(max_rgb_val),
9095 values[i]);
9096 values[i] = bld.vop2(aco_opcode::v_max_i32, bld.def(v1),
9097 i == 3 && is_int10 ? Operand(-2u) : Operand(min_rgb_val),
9098 values[i]);
9099 }
9100 }
9101 }
9102 break;
9103
9104 case V_028714_SPI_SHADER_32_ABGR:
9105 enabled_channels = 0xF;
9106 break;
9107
9108 default:
9109 break;
9110 }
9111
9112 if (target == V_008DFC_SQ_EXP_NULL)
9113 return;
9114
9115 if ((bool) compr_op) {
9116 for (int i = 0; i < 2; i++) {
9117 /* check if at least one of the values to be compressed is enabled */
9118 unsigned enabled = (write_mask >> (i*2) | write_mask >> (i*2+1)) & 0x1;
9119 if (enabled) {
9120 enabled_channels |= enabled << (i*2);
9121 values[i] = bld.vop3(compr_op, bld.def(v1),
9122 values[i*2].isUndefined() ? Operand(0u) : values[i*2],
9123 values[i*2+1].isUndefined() ? Operand(0u): values[i*2+1]);
9124 } else {
9125 values[i] = Operand(v1);
9126 }
9127 }
9128 values[2] = Operand(v1);
9129 values[3] = Operand(v1);
9130 } else {
9131 for (int i = 0; i < 4; i++)
9132 values[i] = enabled_channels & (1 << i) ? values[i] : Operand(v1);
9133 }
9134
9135 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
9136 enabled_channels, target, (bool) compr_op);
9137 }
9138
9139 static void create_fs_exports(isel_context *ctx)
9140 {
9141 /* Export depth, stencil and sample mask. */
9142 if (ctx->outputs.mask[FRAG_RESULT_DEPTH] ||
9143 ctx->outputs.mask[FRAG_RESULT_STENCIL] ||
9144 ctx->outputs.mask[FRAG_RESULT_SAMPLE_MASK]) {
9145 export_fs_mrt_z(ctx);
9146 }
9147
9148 /* Export all color render targets. */
9149 for (unsigned i = FRAG_RESULT_DATA0; i < FRAG_RESULT_DATA7 + 1; ++i) {
9150 if (ctx->outputs.mask[i])
9151 export_fs_mrt_color(ctx, i);
9152 }
9153 }
9154
9155 static void write_tcs_tess_factors(isel_context *ctx)
9156 {
9157 unsigned outer_comps;
9158 unsigned inner_comps;
9159
9160 switch (ctx->args->options->key.tcs.primitive_mode) {
9161 case GL_ISOLINES:
9162 outer_comps = 2;
9163 inner_comps = 0;
9164 break;
9165 case GL_TRIANGLES:
9166 outer_comps = 3;
9167 inner_comps = 1;
9168 break;
9169 case GL_QUADS:
9170 outer_comps = 4;
9171 inner_comps = 2;
9172 break;
9173 default:
9174 return;
9175 }
9176
9177 const unsigned tess_index_inner = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_INNER);
9178 const unsigned tess_index_outer = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_OUTER);
9179
9180 Builder bld(ctx->program, ctx->block);
9181
9182 bld.barrier(aco_opcode::p_memory_barrier_shared);
9183 unsigned workgroup_size = ctx->tcs_num_patches * ctx->shader->info.tess.tcs_vertices_out;
9184 if (unlikely(ctx->program->chip_class != GFX6 && workgroup_size > ctx->program->wave_size))
9185 bld.sopp(aco_opcode::s_barrier);
9186
9187 Temp tcs_rel_ids = get_arg(ctx, ctx->args->ac.tcs_rel_ids);
9188 Temp invocation_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), tcs_rel_ids, Operand(8u), Operand(5u));
9189
9190 Temp invocation_id_is_zero = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), invocation_id);
9191 if_context ic_invocation_id_is_zero;
9192 begin_divergent_if_then(ctx, &ic_invocation_id_is_zero, invocation_id_is_zero);
9193 bld.reset(ctx->block);
9194
9195 Temp hs_ring_tess_factor = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_FACTOR * 16u));
9196
9197 std::pair<Temp, unsigned> lds_base = get_tcs_output_lds_offset(ctx);
9198 unsigned stride = inner_comps + outer_comps;
9199 Temp inner[4];
9200 Temp outer[4];
9201 Temp out[6];
9202 assert(inner_comps <= (sizeof(inner) / sizeof(Temp)));
9203 assert(outer_comps <= (sizeof(outer) / sizeof(Temp)));
9204 assert(stride <= (sizeof(out) / sizeof(Temp)));
9205
9206 if (ctx->args->options->key.tcs.primitive_mode == GL_ISOLINES) {
9207 // LINES reversal
9208 outer[0] = out[1] = load_lds(ctx, 4, bld.tmp(v1), lds_base.first, lds_base.second + tess_index_outer * 16 + 0 * 4, 4);
9209 outer[1] = out[0] = load_lds(ctx, 4, bld.tmp(v1), lds_base.first, lds_base.second + tess_index_outer * 16 + 1 * 4, 4);
9210 } else {
9211 for (unsigned i = 0; i < outer_comps; ++i)
9212 outer[i] = out[i] = load_lds(ctx, 4, bld.tmp(v1), lds_base.first, lds_base.second + tess_index_outer * 16 + i * 4, 4);
9213
9214 for (unsigned i = 0; i < inner_comps; ++i)
9215 inner[i] = out[outer_comps + i] = load_lds(ctx, 4, bld.tmp(v1), lds_base.first, lds_base.second + tess_index_inner * 16 + i * 4, 4);
9216 }
9217
9218 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
9219 Temp tf_base = get_arg(ctx, ctx->args->tess_factor_offset);
9220 Temp byte_offset = bld.v_mul_imm(bld.def(v1), rel_patch_id, stride * 4u);
9221 unsigned tf_const_offset = 0;
9222
9223 if (ctx->program->chip_class <= GFX8) {
9224 Temp rel_patch_id_is_zero = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), rel_patch_id);
9225 if_context ic_rel_patch_id_is_zero;
9226 begin_divergent_if_then(ctx, &ic_rel_patch_id_is_zero, rel_patch_id_is_zero);
9227 bld.reset(ctx->block);
9228
9229 /* Store the dynamic HS control word. */
9230 Temp control_word = bld.copy(bld.def(v1), Operand(0x80000000u));
9231 bld.mubuf(aco_opcode::buffer_store_dword,
9232 /* SRSRC */ hs_ring_tess_factor, /* VADDR */ Operand(v1), /* SOFFSET */ tf_base, /* VDATA */ control_word,
9233 /* immediate OFFSET */ 0, /* OFFEN */ false, /* idxen*/ false, /* addr64 */ false,
9234 /* disable_wqm */ false, /* glc */ true);
9235 tf_const_offset += 4;
9236
9237 begin_divergent_if_else(ctx, &ic_rel_patch_id_is_zero);
9238 end_divergent_if(ctx, &ic_rel_patch_id_is_zero);
9239 bld.reset(ctx->block);
9240 }
9241
9242 assert(stride == 2 || stride == 4 || stride == 6);
9243 Temp tf_vec = create_vec_from_array(ctx, out, stride, RegType::vgpr);
9244 store_vmem_mubuf(ctx, tf_vec, hs_ring_tess_factor, byte_offset, tf_base, tf_const_offset, 4, (1 << stride) - 1, true, false);
9245
9246 begin_divergent_if_else(ctx, &ic_invocation_id_is_zero);
9247 end_divergent_if(ctx, &ic_invocation_id_is_zero);
9248 }
9249
9250 static void emit_stream_output(isel_context *ctx,
9251 Temp const *so_buffers,
9252 Temp const *so_write_offset,
9253 const struct radv_stream_output *output)
9254 {
9255 unsigned num_comps = util_bitcount(output->component_mask);
9256 unsigned writemask = (1 << num_comps) - 1;
9257 unsigned loc = output->location;
9258 unsigned buf = output->buffer;
9259
9260 assert(num_comps && num_comps <= 4);
9261 if (!num_comps || num_comps > 4)
9262 return;
9263
9264 unsigned start = ffs(output->component_mask) - 1;
9265
9266 Temp out[4];
9267 bool all_undef = true;
9268 assert(ctx->stage == vertex_vs || ctx->stage == gs_copy_vs);
9269 for (unsigned i = 0; i < num_comps; i++) {
9270 out[i] = ctx->outputs.outputs[loc][start + i];
9271 all_undef = all_undef && !out[i].id();
9272 }
9273 if (all_undef)
9274 return;
9275
9276 while (writemask) {
9277 int start, count;
9278 u_bit_scan_consecutive_range(&writemask, &start, &count);
9279 if (count == 3 && ctx->options->chip_class == GFX6) {
9280 /* GFX6 doesn't support storing vec3, split it. */
9281 writemask |= 1u << (start + 2);
9282 count = 2;
9283 }
9284
9285 unsigned offset = output->offset + start * 4;
9286
9287 Temp write_data = {ctx->program->allocateId(), RegClass(RegType::vgpr, count)};
9288 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
9289 for (int i = 0; i < count; ++i)
9290 vec->operands[i] = (ctx->outputs.mask[loc] & 1 << (start + i)) ? Operand(out[start + i]) : Operand(0u);
9291 vec->definitions[0] = Definition(write_data);
9292 ctx->block->instructions.emplace_back(std::move(vec));
9293
9294 aco_opcode opcode;
9295 switch (count) {
9296 case 1:
9297 opcode = aco_opcode::buffer_store_dword;
9298 break;
9299 case 2:
9300 opcode = aco_opcode::buffer_store_dwordx2;
9301 break;
9302 case 3:
9303 opcode = aco_opcode::buffer_store_dwordx3;
9304 break;
9305 case 4:
9306 opcode = aco_opcode::buffer_store_dwordx4;
9307 break;
9308 default:
9309 unreachable("Unsupported dword count.");
9310 }
9311
9312 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
9313 store->operands[0] = Operand(so_buffers[buf]);
9314 store->operands[1] = Operand(so_write_offset[buf]);
9315 store->operands[2] = Operand((uint32_t) 0);
9316 store->operands[3] = Operand(write_data);
9317 if (offset > 4095) {
9318 /* Don't think this can happen in RADV, but maybe GL? It's easy to do this anyway. */
9319 Builder bld(ctx->program, ctx->block);
9320 store->operands[0] = bld.vadd32(bld.def(v1), Operand(offset), Operand(so_write_offset[buf]));
9321 } else {
9322 store->offset = offset;
9323 }
9324 store->offen = true;
9325 store->glc = true;
9326 store->dlc = false;
9327 store->slc = true;
9328 store->can_reorder = true;
9329 ctx->block->instructions.emplace_back(std::move(store));
9330 }
9331 }
9332
9333 static void emit_streamout(isel_context *ctx, unsigned stream)
9334 {
9335 Builder bld(ctx->program, ctx->block);
9336
9337 Temp so_buffers[4];
9338 Temp buf_ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->streamout_buffers));
9339 for (unsigned i = 0; i < 4; i++) {
9340 unsigned stride = ctx->program->info->so.strides[i];
9341 if (!stride)
9342 continue;
9343
9344 Operand off = bld.copy(bld.def(s1), Operand(i * 16u));
9345 so_buffers[i] = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), buf_ptr, off);
9346 }
9347
9348 Temp so_vtx_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
9349 get_arg(ctx, ctx->args->streamout_config), Operand(0x70010u));
9350
9351 Temp tid = emit_mbcnt(ctx, bld.def(v1));
9352
9353 Temp can_emit = bld.vopc(aco_opcode::v_cmp_gt_i32, bld.def(bld.lm), so_vtx_count, tid);
9354
9355 if_context ic;
9356 begin_divergent_if_then(ctx, &ic, can_emit);
9357
9358 bld.reset(ctx->block);
9359
9360 Temp so_write_index = bld.vadd32(bld.def(v1), get_arg(ctx, ctx->args->streamout_write_idx), tid);
9361
9362 Temp so_write_offset[4];
9363
9364 for (unsigned i = 0; i < 4; i++) {
9365 unsigned stride = ctx->program->info->so.strides[i];
9366 if (!stride)
9367 continue;
9368
9369 if (stride == 1) {
9370 Temp offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
9371 get_arg(ctx, ctx->args->streamout_write_idx),
9372 get_arg(ctx, ctx->args->streamout_offset[i]));
9373 Temp new_offset = bld.vadd32(bld.def(v1), offset, tid);
9374
9375 so_write_offset[i] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), new_offset);
9376 } else {
9377 Temp offset = bld.v_mul_imm(bld.def(v1), so_write_index, stride * 4u);
9378 Temp offset2 = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(4u),
9379 get_arg(ctx, ctx->args->streamout_offset[i]));
9380 so_write_offset[i] = bld.vadd32(bld.def(v1), offset, offset2);
9381 }
9382 }
9383
9384 for (unsigned i = 0; i < ctx->program->info->so.num_outputs; i++) {
9385 struct radv_stream_output *output =
9386 &ctx->program->info->so.outputs[i];
9387 if (stream != output->stream)
9388 continue;
9389
9390 emit_stream_output(ctx, so_buffers, so_write_offset, output);
9391 }
9392
9393 begin_divergent_if_else(ctx, &ic);
9394 end_divergent_if(ctx, &ic);
9395 }
9396
9397 } /* end namespace */
9398
9399 void fix_ls_vgpr_init_bug(isel_context *ctx, Pseudo_instruction *startpgm)
9400 {
9401 assert(ctx->shader->info.stage == MESA_SHADER_VERTEX);
9402 Builder bld(ctx->program, ctx->block);
9403 constexpr unsigned hs_idx = 1u;
9404 Builder::Result hs_thread_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
9405 get_arg(ctx, ctx->args->merged_wave_info),
9406 Operand((8u << 16) | (hs_idx * 8u)));
9407 Temp ls_has_nonzero_hs_threads = bool_to_vector_condition(ctx, hs_thread_count.def(1).getTemp());
9408
9409 /* If there are no HS threads, SPI mistakenly loads the LS VGPRs starting at VGPR 0. */
9410
9411 Temp instance_id = bld.sop2(aco_opcode::v_cndmask_b32, bld.def(v1),
9412 get_arg(ctx, ctx->args->ac.instance_id),
9413 get_arg(ctx, ctx->args->rel_auto_id),
9414 ls_has_nonzero_hs_threads);
9415 Temp rel_auto_id = bld.sop2(aco_opcode::v_cndmask_b32, bld.def(v1),
9416 get_arg(ctx, ctx->args->rel_auto_id),
9417 get_arg(ctx, ctx->args->ac.tcs_rel_ids),
9418 ls_has_nonzero_hs_threads);
9419 Temp vertex_id = bld.sop2(aco_opcode::v_cndmask_b32, bld.def(v1),
9420 get_arg(ctx, ctx->args->ac.vertex_id),
9421 get_arg(ctx, ctx->args->ac.tcs_patch_id),
9422 ls_has_nonzero_hs_threads);
9423
9424 ctx->arg_temps[ctx->args->ac.instance_id.arg_index] = instance_id;
9425 ctx->arg_temps[ctx->args->rel_auto_id.arg_index] = rel_auto_id;
9426 ctx->arg_temps[ctx->args->ac.vertex_id.arg_index] = vertex_id;
9427 }
9428
9429 void split_arguments(isel_context *ctx, Pseudo_instruction *startpgm)
9430 {
9431 /* Split all arguments except for the first (ring_offsets) and the last
9432 * (exec) so that the dead channels don't stay live throughout the program.
9433 */
9434 for (int i = 1; i < startpgm->definitions.size() - 1; i++) {
9435 if (startpgm->definitions[i].regClass().size() > 1) {
9436 emit_split_vector(ctx, startpgm->definitions[i].getTemp(),
9437 startpgm->definitions[i].regClass().size());
9438 }
9439 }
9440 }
9441
9442 void handle_bc_optimize(isel_context *ctx)
9443 {
9444 /* needed when SPI_PS_IN_CONTROL.BC_OPTIMIZE_DISABLE is set to 0 */
9445 Builder bld(ctx->program, ctx->block);
9446 uint32_t spi_ps_input_ena = ctx->program->config->spi_ps_input_ena;
9447 bool uses_center = G_0286CC_PERSP_CENTER_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTER_ENA(spi_ps_input_ena);
9448 bool uses_centroid = G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena);
9449 ctx->persp_centroid = get_arg(ctx, ctx->args->ac.persp_centroid);
9450 ctx->linear_centroid = get_arg(ctx, ctx->args->ac.linear_centroid);
9451 if (uses_center && uses_centroid) {
9452 Temp sel = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)),
9453 get_arg(ctx, ctx->args->ac.prim_mask), Operand(0u));
9454
9455 if (G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena)) {
9456 Temp new_coord[2];
9457 for (unsigned i = 0; i < 2; i++) {
9458 Temp persp_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_centroid), i, v1);
9459 Temp persp_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_center), i, v1);
9460 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
9461 persp_centroid, persp_center, sel);
9462 }
9463 ctx->persp_centroid = bld.tmp(v2);
9464 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->persp_centroid),
9465 Operand(new_coord[0]), Operand(new_coord[1]));
9466 emit_split_vector(ctx, ctx->persp_centroid, 2);
9467 }
9468
9469 if (G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena)) {
9470 Temp new_coord[2];
9471 for (unsigned i = 0; i < 2; i++) {
9472 Temp linear_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_centroid), i, v1);
9473 Temp linear_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_center), i, v1);
9474 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
9475 linear_centroid, linear_center, sel);
9476 }
9477 ctx->linear_centroid = bld.tmp(v2);
9478 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->linear_centroid),
9479 Operand(new_coord[0]), Operand(new_coord[1]));
9480 emit_split_vector(ctx, ctx->linear_centroid, 2);
9481 }
9482 }
9483 }
9484
9485 void setup_fp_mode(isel_context *ctx, nir_shader *shader)
9486 {
9487 Program *program = ctx->program;
9488
9489 unsigned float_controls = shader->info.float_controls_execution_mode;
9490
9491 program->next_fp_mode.preserve_signed_zero_inf_nan32 =
9492 float_controls & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32;
9493 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 =
9494 float_controls & (FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16 |
9495 FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64);
9496
9497 program->next_fp_mode.must_flush_denorms32 =
9498 float_controls & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32;
9499 program->next_fp_mode.must_flush_denorms16_64 =
9500 float_controls & (FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 |
9501 FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64);
9502
9503 program->next_fp_mode.care_about_round32 =
9504 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32);
9505
9506 program->next_fp_mode.care_about_round16_64 =
9507 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64 |
9508 FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
9509
9510 /* default to preserving fp16 and fp64 denorms, since it's free */
9511 if (program->next_fp_mode.must_flush_denorms16_64)
9512 program->next_fp_mode.denorm16_64 = 0;
9513 else
9514 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
9515
9516 /* preserving fp32 denorms is expensive, so only do it if asked */
9517 if (float_controls & FLOAT_CONTROLS_DENORM_PRESERVE_FP32)
9518 program->next_fp_mode.denorm32 = fp_denorm_keep;
9519 else
9520 program->next_fp_mode.denorm32 = 0;
9521
9522 if (float_controls & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32)
9523 program->next_fp_mode.round32 = fp_round_tz;
9524 else
9525 program->next_fp_mode.round32 = fp_round_ne;
9526
9527 if (float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64))
9528 program->next_fp_mode.round16_64 = fp_round_tz;
9529 else
9530 program->next_fp_mode.round16_64 = fp_round_ne;
9531
9532 ctx->block->fp_mode = program->next_fp_mode;
9533 }
9534
9535 void cleanup_cfg(Program *program)
9536 {
9537 /* create linear_succs/logical_succs */
9538 for (Block& BB : program->blocks) {
9539 for (unsigned idx : BB.linear_preds)
9540 program->blocks[idx].linear_succs.emplace_back(BB.index);
9541 for (unsigned idx : BB.logical_preds)
9542 program->blocks[idx].logical_succs.emplace_back(BB.index);
9543 }
9544 }
9545
9546 void select_program(Program *program,
9547 unsigned shader_count,
9548 struct nir_shader *const *shaders,
9549 ac_shader_config* config,
9550 struct radv_shader_args *args)
9551 {
9552 isel_context ctx = setup_isel_context(program, shader_count, shaders, config, args, false);
9553
9554 for (unsigned i = 0; i < shader_count; i++) {
9555 nir_shader *nir = shaders[i];
9556 init_context(&ctx, nir);
9557
9558 setup_fp_mode(&ctx, nir);
9559
9560 if (!i) {
9561 /* needs to be after init_context() for FS */
9562 Pseudo_instruction *startpgm = add_startpgm(&ctx);
9563 append_logical_start(ctx.block);
9564
9565 if (unlikely(args->options->has_ls_vgpr_init_bug && ctx.stage == vertex_tess_control_hs))
9566 fix_ls_vgpr_init_bug(&ctx, startpgm);
9567
9568 split_arguments(&ctx, startpgm);
9569 }
9570
9571 if_context ic;
9572 if (shader_count >= 2) {
9573 Builder bld(ctx.program, ctx.block);
9574 Temp count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(&ctx, args->merged_wave_info), Operand((8u << 16) | (i * 8u)));
9575 Temp thread_id = emit_mbcnt(&ctx, bld.def(v1));
9576 Temp cond = bld.vopc(aco_opcode::v_cmp_gt_u32, bld.hint_vcc(bld.def(bld.lm)), count, thread_id);
9577
9578 begin_divergent_if_then(&ctx, &ic, cond);
9579 }
9580
9581 if (i) {
9582 Builder bld(ctx.program, ctx.block);
9583
9584 bld.barrier(aco_opcode::p_memory_barrier_shared);
9585 bld.sopp(aco_opcode::s_barrier);
9586
9587 if (ctx.stage == vertex_geometry_gs) {
9588 ctx.gs_wave_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1, m0), bld.def(s1, scc), get_arg(&ctx, args->merged_wave_info), Operand((8u << 16) | 16u));
9589 }
9590 } else if (ctx.stage == geometry_gs)
9591 ctx.gs_wave_id = get_arg(&ctx, args->gs_wave_id);
9592
9593 if (ctx.stage == fragment_fs)
9594 handle_bc_optimize(&ctx);
9595
9596 nir_function_impl *func = nir_shader_get_entrypoint(nir);
9597 visit_cf_list(&ctx, &func->body);
9598
9599 if (ctx.program->info->so.num_outputs && ctx.stage == vertex_vs)
9600 emit_streamout(&ctx, 0);
9601
9602 if (ctx.stage == vertex_vs || ctx.stage == tess_eval_vs) {
9603 create_vs_exports(&ctx);
9604 } else if (nir->info.stage == MESA_SHADER_GEOMETRY) {
9605 Builder bld(ctx.program, ctx.block);
9606 bld.barrier(aco_opcode::p_memory_barrier_gs_data);
9607 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx.gs_wave_id), -1, sendmsg_gs_done(false, false, 0));
9608 } else if (nir->info.stage == MESA_SHADER_TESS_CTRL) {
9609 write_tcs_tess_factors(&ctx);
9610 }
9611
9612 if (ctx.stage == fragment_fs)
9613 create_fs_exports(&ctx);
9614
9615 if (shader_count >= 2) {
9616 begin_divergent_if_else(&ctx, &ic);
9617 end_divergent_if(&ctx, &ic);
9618 }
9619
9620 ralloc_free(ctx.divergent_vals);
9621 }
9622
9623 program->config->float_mode = program->blocks[0].fp_mode.val;
9624
9625 append_logical_end(ctx.block);
9626 ctx.block->kind |= block_kind_uniform | block_kind_export_end;
9627 Builder bld(ctx.program, ctx.block);
9628 if (ctx.program->wb_smem_l1_on_end)
9629 bld.smem(aco_opcode::s_dcache_wb, false);
9630 bld.sopp(aco_opcode::s_endpgm);
9631
9632 cleanup_cfg(program);
9633 }
9634
9635 void select_gs_copy_shader(Program *program, struct nir_shader *gs_shader,
9636 ac_shader_config* config,
9637 struct radv_shader_args *args)
9638 {
9639 isel_context ctx = setup_isel_context(program, 1, &gs_shader, config, args, true);
9640
9641 program->next_fp_mode.preserve_signed_zero_inf_nan32 = false;
9642 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 = false;
9643 program->next_fp_mode.must_flush_denorms32 = false;
9644 program->next_fp_mode.must_flush_denorms16_64 = false;
9645 program->next_fp_mode.care_about_round32 = false;
9646 program->next_fp_mode.care_about_round16_64 = false;
9647 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
9648 program->next_fp_mode.denorm32 = 0;
9649 program->next_fp_mode.round32 = fp_round_ne;
9650 program->next_fp_mode.round16_64 = fp_round_ne;
9651 ctx.block->fp_mode = program->next_fp_mode;
9652
9653 add_startpgm(&ctx);
9654 append_logical_start(ctx.block);
9655
9656 Builder bld(ctx.program, ctx.block);
9657
9658 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), program->private_segment_buffer, Operand(RING_GSVS_VS * 16u));
9659
9660 Operand stream_id(0u);
9661 if (args->shader_info->so.num_outputs)
9662 stream_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
9663 get_arg(&ctx, ctx.args->streamout_config), Operand(0x20018u));
9664
9665 Temp vtx_offset = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), get_arg(&ctx, ctx.args->ac.vertex_id));
9666
9667 std::stack<Block> endif_blocks;
9668
9669 for (unsigned stream = 0; stream < 4; stream++) {
9670 if (stream_id.isConstant() && stream != stream_id.constantValue())
9671 continue;
9672
9673 unsigned num_components = args->shader_info->gs.num_stream_output_components[stream];
9674 if (stream > 0 && (!num_components || !args->shader_info->so.num_outputs))
9675 continue;
9676
9677 memset(ctx.outputs.mask, 0, sizeof(ctx.outputs.mask));
9678
9679 unsigned BB_if_idx = ctx.block->index;
9680 Block BB_endif = Block();
9681 if (!stream_id.isConstant()) {
9682 /* begin IF */
9683 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), stream_id, Operand(stream));
9684 append_logical_end(ctx.block);
9685 ctx.block->kind |= block_kind_uniform;
9686 bld.branch(aco_opcode::p_cbranch_z, cond);
9687
9688 BB_endif.kind |= ctx.block->kind & block_kind_top_level;
9689
9690 ctx.block = ctx.program->create_and_insert_block();
9691 add_edge(BB_if_idx, ctx.block);
9692 bld.reset(ctx.block);
9693 append_logical_start(ctx.block);
9694 }
9695
9696 unsigned offset = 0;
9697 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
9698 if (args->shader_info->gs.output_streams[i] != stream)
9699 continue;
9700
9701 unsigned output_usage_mask = args->shader_info->gs.output_usage_mask[i];
9702 unsigned length = util_last_bit(output_usage_mask);
9703 for (unsigned j = 0; j < length; ++j) {
9704 if (!(output_usage_mask & (1 << j)))
9705 continue;
9706
9707 unsigned const_offset = offset * args->shader_info->gs.vertices_out * 16 * 4;
9708 Temp voffset = vtx_offset;
9709 if (const_offset >= 4096u) {
9710 voffset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), voffset);
9711 const_offset %= 4096u;
9712 }
9713
9714 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dword, Format::MUBUF, 3, 1)};
9715 mubuf->definitions[0] = bld.def(v1);
9716 mubuf->operands[0] = Operand(gsvs_ring);
9717 mubuf->operands[1] = Operand(voffset);
9718 mubuf->operands[2] = Operand(0u);
9719 mubuf->offen = true;
9720 mubuf->offset = const_offset;
9721 mubuf->glc = true;
9722 mubuf->slc = true;
9723 mubuf->dlc = args->options->chip_class >= GFX10;
9724 mubuf->barrier = barrier_none;
9725 mubuf->can_reorder = true;
9726
9727 ctx.outputs.mask[i] |= 1 << j;
9728 ctx.outputs.outputs[i][j] = mubuf->definitions[0].getTemp();
9729
9730 bld.insert(std::move(mubuf));
9731
9732 offset++;
9733 }
9734 }
9735
9736 if (args->shader_info->so.num_outputs) {
9737 emit_streamout(&ctx, stream);
9738 bld.reset(ctx.block);
9739 }
9740
9741 if (stream == 0) {
9742 create_vs_exports(&ctx);
9743 ctx.block->kind |= block_kind_export_end;
9744 }
9745
9746 if (!stream_id.isConstant()) {
9747 append_logical_end(ctx.block);
9748
9749 /* branch from then block to endif block */
9750 bld.branch(aco_opcode::p_branch);
9751 add_edge(ctx.block->index, &BB_endif);
9752 ctx.block->kind |= block_kind_uniform;
9753
9754 /* emit else block */
9755 ctx.block = ctx.program->create_and_insert_block();
9756 add_edge(BB_if_idx, ctx.block);
9757 bld.reset(ctx.block);
9758 append_logical_start(ctx.block);
9759
9760 endif_blocks.push(std::move(BB_endif));
9761 }
9762 }
9763
9764 while (!endif_blocks.empty()) {
9765 Block BB_endif = std::move(endif_blocks.top());
9766 endif_blocks.pop();
9767
9768 Block *BB_else = ctx.block;
9769
9770 append_logical_end(BB_else);
9771 /* branch from else block to endif block */
9772 bld.branch(aco_opcode::p_branch);
9773 add_edge(BB_else->index, &BB_endif);
9774 BB_else->kind |= block_kind_uniform;
9775
9776 /** emit endif merge block */
9777 ctx.block = program->insert_block(std::move(BB_endif));
9778 bld.reset(ctx.block);
9779 append_logical_start(ctx.block);
9780 }
9781
9782 program->config->float_mode = program->blocks[0].fp_mode.val;
9783
9784 append_logical_end(ctx.block);
9785 ctx.block->kind |= block_kind_uniform;
9786 bld.sopp(aco_opcode::s_endpgm);
9787
9788 cleanup_cfg(program);
9789 }
9790 }