aco: Don't store TCS outputs to LDS when we're sure that none are read.
[mesa.git] / src / amd / compiler / aco_instruction_selection.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 * Copyright © 2018 Google
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <algorithm>
27 #include <array>
28 #include <stack>
29 #include <map>
30
31 #include "ac_shader_util.h"
32 #include "aco_ir.h"
33 #include "aco_builder.h"
34 #include "aco_interface.h"
35 #include "aco_instruction_selection_setup.cpp"
36 #include "util/fast_idiv_by_const.h"
37
38 namespace aco {
39 namespace {
40
41 class loop_info_RAII {
42 isel_context* ctx;
43 unsigned header_idx_old;
44 Block* exit_old;
45 bool divergent_cont_old;
46 bool divergent_branch_old;
47 bool divergent_if_old;
48
49 public:
50 loop_info_RAII(isel_context* ctx, unsigned loop_header_idx, Block* loop_exit)
51 : ctx(ctx),
52 header_idx_old(ctx->cf_info.parent_loop.header_idx), exit_old(ctx->cf_info.parent_loop.exit),
53 divergent_cont_old(ctx->cf_info.parent_loop.has_divergent_continue),
54 divergent_branch_old(ctx->cf_info.parent_loop.has_divergent_branch),
55 divergent_if_old(ctx->cf_info.parent_if.is_divergent)
56 {
57 ctx->cf_info.parent_loop.header_idx = loop_header_idx;
58 ctx->cf_info.parent_loop.exit = loop_exit;
59 ctx->cf_info.parent_loop.has_divergent_continue = false;
60 ctx->cf_info.parent_loop.has_divergent_branch = false;
61 ctx->cf_info.parent_if.is_divergent = false;
62 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
63 }
64
65 ~loop_info_RAII()
66 {
67 ctx->cf_info.parent_loop.header_idx = header_idx_old;
68 ctx->cf_info.parent_loop.exit = exit_old;
69 ctx->cf_info.parent_loop.has_divergent_continue = divergent_cont_old;
70 ctx->cf_info.parent_loop.has_divergent_branch = divergent_branch_old;
71 ctx->cf_info.parent_if.is_divergent = divergent_if_old;
72 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth - 1;
73 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent)
74 ctx->cf_info.exec_potentially_empty_discard = false;
75 }
76 };
77
78 struct if_context {
79 Temp cond;
80
81 bool divergent_old;
82 bool exec_potentially_empty_discard_old;
83 bool exec_potentially_empty_break_old;
84 uint16_t exec_potentially_empty_break_depth_old;
85
86 unsigned BB_if_idx;
87 unsigned invert_idx;
88 bool then_branch_divergent;
89 Block BB_invert;
90 Block BB_endif;
91 };
92
93 static void visit_cf_list(struct isel_context *ctx,
94 struct exec_list *list);
95
96 static void add_logical_edge(unsigned pred_idx, Block *succ)
97 {
98 succ->logical_preds.emplace_back(pred_idx);
99 }
100
101
102 static void add_linear_edge(unsigned pred_idx, Block *succ)
103 {
104 succ->linear_preds.emplace_back(pred_idx);
105 }
106
107 static void add_edge(unsigned pred_idx, Block *succ)
108 {
109 add_logical_edge(pred_idx, succ);
110 add_linear_edge(pred_idx, succ);
111 }
112
113 static void append_logical_start(Block *b)
114 {
115 Builder(NULL, b).pseudo(aco_opcode::p_logical_start);
116 }
117
118 static void append_logical_end(Block *b)
119 {
120 Builder(NULL, b).pseudo(aco_opcode::p_logical_end);
121 }
122
123 Temp get_ssa_temp(struct isel_context *ctx, nir_ssa_def *def)
124 {
125 assert(ctx->allocated[def->index].id());
126 return ctx->allocated[def->index];
127 }
128
129 Temp emit_mbcnt(isel_context *ctx, Definition dst,
130 Operand mask_lo = Operand((uint32_t) -1), Operand mask_hi = Operand((uint32_t) -1))
131 {
132 Builder bld(ctx->program, ctx->block);
133 Definition lo_def = ctx->program->wave_size == 32 ? dst : bld.def(v1);
134 Temp thread_id_lo = bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, lo_def, mask_lo, Operand(0u));
135
136 if (ctx->program->wave_size == 32) {
137 return thread_id_lo;
138 } else {
139 Temp thread_id_hi = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32, dst, mask_hi, thread_id_lo);
140 return thread_id_hi;
141 }
142 }
143
144 Temp emit_wqm(isel_context *ctx, Temp src, Temp dst=Temp(0, s1), bool program_needs_wqm = false)
145 {
146 Builder bld(ctx->program, ctx->block);
147
148 if (!dst.id())
149 dst = bld.tmp(src.regClass());
150
151 assert(src.size() == dst.size());
152
153 if (ctx->stage != fragment_fs) {
154 if (!dst.id())
155 return src;
156
157 bld.copy(Definition(dst), src);
158 return dst;
159 }
160
161 bld.pseudo(aco_opcode::p_wqm, Definition(dst), src);
162 ctx->program->needs_wqm |= program_needs_wqm;
163 return dst;
164 }
165
166 static Temp emit_bpermute(isel_context *ctx, Builder &bld, Temp index, Temp data)
167 {
168 if (index.regClass() == s1)
169 return bld.readlane(bld.def(s1), data, index);
170
171 Temp index_x4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), index);
172
173 /* Currently not implemented on GFX6-7 */
174 assert(ctx->options->chip_class >= GFX8);
175
176 if (ctx->options->chip_class <= GFX9 || ctx->program->wave_size == 32) {
177 return bld.ds(aco_opcode::ds_bpermute_b32, bld.def(v1), index_x4, data);
178 }
179
180 /* GFX10, wave64 mode:
181 * The bpermute instruction is limited to half-wave operation, which means that it can't
182 * properly support subgroup shuffle like older generations (or wave32 mode), so we
183 * emulate it here.
184 */
185 if (!ctx->has_gfx10_wave64_bpermute) {
186 ctx->has_gfx10_wave64_bpermute = true;
187 ctx->program->config->num_shared_vgprs = 8; /* Shared VGPRs are allocated in groups of 8 */
188 ctx->program->vgpr_limit -= 4; /* We allocate 8 shared VGPRs, so we'll have 4 fewer normal VGPRs */
189 }
190
191 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
192 Temp lane_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), lane_id);
193 Temp index_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), index);
194 Temp cmp = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm, vcc), lane_is_hi, index_is_hi);
195
196 return bld.reduction(aco_opcode::p_wave64_bpermute, bld.def(v1), bld.def(s2), bld.def(s1, scc),
197 bld.vcc(cmp), Operand(v2.as_linear()), index_x4, data, gfx10_wave64_bpermute);
198 }
199
200 Temp as_vgpr(isel_context *ctx, Temp val)
201 {
202 if (val.type() == RegType::sgpr) {
203 Builder bld(ctx->program, ctx->block);
204 return bld.copy(bld.def(RegType::vgpr, val.size()), val);
205 }
206 assert(val.type() == RegType::vgpr);
207 return val;
208 }
209
210 //assumes a != 0xffffffff
211 void emit_v_div_u32(isel_context *ctx, Temp dst, Temp a, uint32_t b)
212 {
213 assert(b != 0);
214 Builder bld(ctx->program, ctx->block);
215
216 if (util_is_power_of_two_or_zero(b)) {
217 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)util_logbase2(b)), a);
218 return;
219 }
220
221 util_fast_udiv_info info = util_compute_fast_udiv_info(b, 32, 32);
222
223 assert(info.multiplier <= 0xffffffff);
224
225 bool pre_shift = info.pre_shift != 0;
226 bool increment = info.increment != 0;
227 bool multiply = true;
228 bool post_shift = info.post_shift != 0;
229
230 if (!pre_shift && !increment && !multiply && !post_shift) {
231 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), a);
232 return;
233 }
234
235 Temp pre_shift_dst = a;
236 if (pre_shift) {
237 pre_shift_dst = (increment || multiply || post_shift) ? bld.tmp(v1) : dst;
238 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(pre_shift_dst), Operand((uint32_t)info.pre_shift), a);
239 }
240
241 Temp increment_dst = pre_shift_dst;
242 if (increment) {
243 increment_dst = (post_shift || multiply) ? bld.tmp(v1) : dst;
244 bld.vadd32(Definition(increment_dst), Operand((uint32_t) info.increment), pre_shift_dst);
245 }
246
247 Temp multiply_dst = increment_dst;
248 if (multiply) {
249 multiply_dst = post_shift ? bld.tmp(v1) : dst;
250 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(multiply_dst), increment_dst,
251 bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand((uint32_t)info.multiplier)));
252 }
253
254 if (post_shift) {
255 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)info.post_shift), multiply_dst);
256 }
257 }
258
259 void emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, Temp dst)
260 {
261 Builder bld(ctx->program, ctx->block);
262 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(idx));
263 }
264
265
266 Temp emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, RegClass dst_rc)
267 {
268 /* no need to extract the whole vector */
269 if (src.regClass() == dst_rc) {
270 assert(idx == 0);
271 return src;
272 }
273 assert(src.size() > idx);
274 Builder bld(ctx->program, ctx->block);
275 auto it = ctx->allocated_vec.find(src.id());
276 /* the size check needs to be early because elements other than 0 may be garbage */
277 if (it != ctx->allocated_vec.end() && it->second[0].size() == dst_rc.size()) {
278 if (it->second[idx].regClass() == dst_rc) {
279 return it->second[idx];
280 } else {
281 assert(dst_rc.size() == it->second[idx].regClass().size());
282 assert(dst_rc.type() == RegType::vgpr && it->second[idx].type() == RegType::sgpr);
283 return bld.copy(bld.def(dst_rc), it->second[idx]);
284 }
285 }
286
287 if (src.size() == dst_rc.size()) {
288 assert(idx == 0);
289 return bld.copy(bld.def(dst_rc), src);
290 } else {
291 Temp dst = bld.tmp(dst_rc);
292 emit_extract_vector(ctx, src, idx, dst);
293 return dst;
294 }
295 }
296
297 void emit_split_vector(isel_context* ctx, Temp vec_src, unsigned num_components)
298 {
299 if (num_components == 1)
300 return;
301 if (ctx->allocated_vec.find(vec_src.id()) != ctx->allocated_vec.end())
302 return;
303 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_components)};
304 split->operands[0] = Operand(vec_src);
305 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
306 for (unsigned i = 0; i < num_components; i++) {
307 elems[i] = {ctx->program->allocateId(), RegClass(vec_src.type(), vec_src.size() / num_components)};
308 split->definitions[i] = Definition(elems[i]);
309 }
310 ctx->block->instructions.emplace_back(std::move(split));
311 ctx->allocated_vec.emplace(vec_src.id(), elems);
312 }
313
314 /* This vector expansion uses a mask to determine which elements in the new vector
315 * come from the original vector. The other elements are undefined. */
316 void expand_vector(isel_context* ctx, Temp vec_src, Temp dst, unsigned num_components, unsigned mask)
317 {
318 emit_split_vector(ctx, vec_src, util_bitcount(mask));
319
320 if (vec_src == dst)
321 return;
322
323 Builder bld(ctx->program, ctx->block);
324 if (num_components == 1) {
325 if (dst.type() == RegType::sgpr)
326 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec_src);
327 else
328 bld.copy(Definition(dst), vec_src);
329 return;
330 }
331
332 unsigned component_size = dst.size() / num_components;
333 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
334
335 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
336 vec->definitions[0] = Definition(dst);
337 unsigned k = 0;
338 for (unsigned i = 0; i < num_components; i++) {
339 if (mask & (1 << i)) {
340 Temp src = emit_extract_vector(ctx, vec_src, k++, RegClass(vec_src.type(), component_size));
341 if (dst.type() == RegType::sgpr)
342 src = bld.as_uniform(src);
343 vec->operands[i] = Operand(src);
344 } else {
345 vec->operands[i] = Operand(0u);
346 }
347 elems[i] = vec->operands[i].getTemp();
348 }
349 ctx->block->instructions.emplace_back(std::move(vec));
350 ctx->allocated_vec.emplace(dst.id(), elems);
351 }
352
353 Temp bool_to_vector_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s2))
354 {
355 Builder bld(ctx->program, ctx->block);
356 if (!dst.id())
357 dst = bld.tmp(bld.lm);
358
359 assert(val.regClass() == s1);
360 assert(dst.regClass() == bld.lm);
361
362 return bld.sop2(Builder::s_cselect, Definition(dst), Operand((uint32_t) -1), Operand(0u), bld.scc(val));
363 }
364
365 Temp bool_to_scalar_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s1))
366 {
367 Builder bld(ctx->program, ctx->block);
368 if (!dst.id())
369 dst = bld.tmp(s1);
370
371 assert(val.regClass() == bld.lm);
372 assert(dst.regClass() == s1);
373
374 /* if we're currently in WQM mode, ensure that the source is also computed in WQM */
375 Temp tmp = bld.tmp(s1);
376 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.scc(Definition(tmp)), val, Operand(exec, bld.lm));
377 return emit_wqm(ctx, tmp, dst);
378 }
379
380 Temp get_alu_src(struct isel_context *ctx, nir_alu_src src, unsigned size=1)
381 {
382 if (src.src.ssa->num_components == 1 && src.swizzle[0] == 0 && size == 1)
383 return get_ssa_temp(ctx, src.src.ssa);
384
385 if (src.src.ssa->num_components == size) {
386 bool identity_swizzle = true;
387 for (unsigned i = 0; identity_swizzle && i < size; i++) {
388 if (src.swizzle[i] != i)
389 identity_swizzle = false;
390 }
391 if (identity_swizzle)
392 return get_ssa_temp(ctx, src.src.ssa);
393 }
394
395 Temp vec = get_ssa_temp(ctx, src.src.ssa);
396 unsigned elem_size = vec.size() / src.src.ssa->num_components;
397 assert(elem_size > 0); /* TODO: 8 and 16-bit vectors not supported */
398 assert(vec.size() % elem_size == 0);
399
400 RegClass elem_rc = RegClass(vec.type(), elem_size);
401 if (size == 1) {
402 return emit_extract_vector(ctx, vec, src.swizzle[0], elem_rc);
403 } else {
404 assert(size <= 4);
405 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
406 aco_ptr<Pseudo_instruction> vec_instr{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
407 for (unsigned i = 0; i < size; ++i) {
408 elems[i] = emit_extract_vector(ctx, vec, src.swizzle[i], elem_rc);
409 vec_instr->operands[i] = Operand{elems[i]};
410 }
411 Temp dst{ctx->program->allocateId(), RegClass(vec.type(), elem_size * size)};
412 vec_instr->definitions[0] = Definition(dst);
413 ctx->block->instructions.emplace_back(std::move(vec_instr));
414 ctx->allocated_vec.emplace(dst.id(), elems);
415 return dst;
416 }
417 }
418
419 Temp convert_pointer_to_64_bit(isel_context *ctx, Temp ptr)
420 {
421 if (ptr.size() == 2)
422 return ptr;
423 Builder bld(ctx->program, ctx->block);
424 if (ptr.type() == RegType::vgpr)
425 ptr = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), ptr);
426 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s2),
427 ptr, Operand((unsigned)ctx->options->address32_hi));
428 }
429
430 void emit_sop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst, bool writes_scc)
431 {
432 aco_ptr<SOP2_instruction> sop2{create_instruction<SOP2_instruction>(op, Format::SOP2, 2, writes_scc ? 2 : 1)};
433 sop2->operands[0] = Operand(get_alu_src(ctx, instr->src[0]));
434 sop2->operands[1] = Operand(get_alu_src(ctx, instr->src[1]));
435 sop2->definitions[0] = Definition(dst);
436 if (writes_scc)
437 sop2->definitions[1] = Definition(ctx->program->allocateId(), scc, s1);
438 ctx->block->instructions.emplace_back(std::move(sop2));
439 }
440
441 void emit_vop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
442 bool commutative, bool swap_srcs=false, bool flush_denorms = false)
443 {
444 Builder bld(ctx->program, ctx->block);
445 Temp src0 = get_alu_src(ctx, instr->src[swap_srcs ? 1 : 0]);
446 Temp src1 = get_alu_src(ctx, instr->src[swap_srcs ? 0 : 1]);
447 if (src1.type() == RegType::sgpr) {
448 if (commutative && src0.type() == RegType::vgpr) {
449 Temp t = src0;
450 src0 = src1;
451 src1 = t;
452 } else if (src0.type() == RegType::vgpr &&
453 op != aco_opcode::v_madmk_f32 &&
454 op != aco_opcode::v_madak_f32 &&
455 op != aco_opcode::v_madmk_f16 &&
456 op != aco_opcode::v_madak_f16) {
457 /* If the instruction is not commutative, we emit a VOP3A instruction */
458 bld.vop2_e64(op, Definition(dst), src0, src1);
459 return;
460 } else {
461 src1 = bld.copy(bld.def(RegType::vgpr, src1.size()), src1); //TODO: as_vgpr
462 }
463 }
464
465 if (flush_denorms && ctx->program->chip_class < GFX9) {
466 assert(dst.size() == 1);
467 Temp tmp = bld.vop2(op, bld.def(v1), src0, src1);
468 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
469 } else {
470 bld.vop2(op, Definition(dst), src0, src1);
471 }
472 }
473
474 void emit_vop3a_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
475 bool flush_denorms = false)
476 {
477 Temp src0 = get_alu_src(ctx, instr->src[0]);
478 Temp src1 = get_alu_src(ctx, instr->src[1]);
479 Temp src2 = get_alu_src(ctx, instr->src[2]);
480
481 /* ensure that the instruction has at most 1 sgpr operand
482 * The optimizer will inline constants for us */
483 if (src0.type() == RegType::sgpr && src1.type() == RegType::sgpr)
484 src0 = as_vgpr(ctx, src0);
485 if (src1.type() == RegType::sgpr && src2.type() == RegType::sgpr)
486 src1 = as_vgpr(ctx, src1);
487 if (src2.type() == RegType::sgpr && src0.type() == RegType::sgpr)
488 src2 = as_vgpr(ctx, src2);
489
490 Builder bld(ctx->program, ctx->block);
491 if (flush_denorms && ctx->program->chip_class < GFX9) {
492 assert(dst.size() == 1);
493 Temp tmp = bld.vop3(op, Definition(dst), src0, src1, src2);
494 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
495 } else {
496 bld.vop3(op, Definition(dst), src0, src1, src2);
497 }
498 }
499
500 void emit_vop1_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
501 {
502 Builder bld(ctx->program, ctx->block);
503 bld.vop1(op, Definition(dst), get_alu_src(ctx, instr->src[0]));
504 }
505
506 void emit_vopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
507 {
508 Temp src0 = get_alu_src(ctx, instr->src[0]);
509 Temp src1 = get_alu_src(ctx, instr->src[1]);
510 assert(src0.size() == src1.size());
511
512 aco_ptr<Instruction> vopc;
513 if (src1.type() == RegType::sgpr) {
514 if (src0.type() == RegType::vgpr) {
515 /* to swap the operands, we might also have to change the opcode */
516 switch (op) {
517 case aco_opcode::v_cmp_lt_f32:
518 op = aco_opcode::v_cmp_gt_f32;
519 break;
520 case aco_opcode::v_cmp_ge_f32:
521 op = aco_opcode::v_cmp_le_f32;
522 break;
523 case aco_opcode::v_cmp_lt_i32:
524 op = aco_opcode::v_cmp_gt_i32;
525 break;
526 case aco_opcode::v_cmp_ge_i32:
527 op = aco_opcode::v_cmp_le_i32;
528 break;
529 case aco_opcode::v_cmp_lt_u32:
530 op = aco_opcode::v_cmp_gt_u32;
531 break;
532 case aco_opcode::v_cmp_ge_u32:
533 op = aco_opcode::v_cmp_le_u32;
534 break;
535 case aco_opcode::v_cmp_lt_f64:
536 op = aco_opcode::v_cmp_gt_f64;
537 break;
538 case aco_opcode::v_cmp_ge_f64:
539 op = aco_opcode::v_cmp_le_f64;
540 break;
541 case aco_opcode::v_cmp_lt_i64:
542 op = aco_opcode::v_cmp_gt_i64;
543 break;
544 case aco_opcode::v_cmp_ge_i64:
545 op = aco_opcode::v_cmp_le_i64;
546 break;
547 case aco_opcode::v_cmp_lt_u64:
548 op = aco_opcode::v_cmp_gt_u64;
549 break;
550 case aco_opcode::v_cmp_ge_u64:
551 op = aco_opcode::v_cmp_le_u64;
552 break;
553 default: /* eq and ne are commutative */
554 break;
555 }
556 Temp t = src0;
557 src0 = src1;
558 src1 = t;
559 } else {
560 src1 = as_vgpr(ctx, src1);
561 }
562 }
563
564 Builder bld(ctx->program, ctx->block);
565 bld.vopc(op, bld.hint_vcc(Definition(dst)), src0, src1);
566 }
567
568 void emit_sopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
569 {
570 Temp src0 = get_alu_src(ctx, instr->src[0]);
571 Temp src1 = get_alu_src(ctx, instr->src[1]);
572 Builder bld(ctx->program, ctx->block);
573
574 assert(dst.regClass() == bld.lm);
575 assert(src0.type() == RegType::sgpr);
576 assert(src1.type() == RegType::sgpr);
577 assert(src0.regClass() == src1.regClass());
578
579 /* Emit the SALU comparison instruction */
580 Temp cmp = bld.sopc(op, bld.scc(bld.def(s1)), src0, src1);
581 /* Turn the result into a per-lane bool */
582 bool_to_vector_condition(ctx, cmp, dst);
583 }
584
585 void emit_comparison(isel_context *ctx, nir_alu_instr *instr, Temp dst,
586 aco_opcode v32_op, aco_opcode v64_op, aco_opcode s32_op = aco_opcode::num_opcodes, aco_opcode s64_op = aco_opcode::num_opcodes)
587 {
588 aco_opcode s_op = instr->src[0].src.ssa->bit_size == 64 ? s64_op : s32_op;
589 aco_opcode v_op = instr->src[0].src.ssa->bit_size == 64 ? v64_op : v32_op;
590 bool divergent_vals = ctx->divergent_vals[instr->dest.dest.ssa.index];
591 bool use_valu = s_op == aco_opcode::num_opcodes ||
592 divergent_vals ||
593 ctx->allocated[instr->src[0].src.ssa->index].type() == RegType::vgpr ||
594 ctx->allocated[instr->src[1].src.ssa->index].type() == RegType::vgpr;
595 aco_opcode op = use_valu ? v_op : s_op;
596 assert(op != aco_opcode::num_opcodes);
597 assert(dst.regClass() == ctx->program->lane_mask);
598
599 if (use_valu)
600 emit_vopc_instruction(ctx, instr, op, dst);
601 else
602 emit_sopc_instruction(ctx, instr, op, dst);
603 }
604
605 void emit_boolean_logic(isel_context *ctx, nir_alu_instr *instr, Builder::WaveSpecificOpcode op, Temp dst)
606 {
607 Builder bld(ctx->program, ctx->block);
608 Temp src0 = get_alu_src(ctx, instr->src[0]);
609 Temp src1 = get_alu_src(ctx, instr->src[1]);
610
611 assert(dst.regClass() == bld.lm);
612 assert(src0.regClass() == bld.lm);
613 assert(src1.regClass() == bld.lm);
614
615 bld.sop2(op, Definition(dst), bld.def(s1, scc), src0, src1);
616 }
617
618 void emit_bcsel(isel_context *ctx, nir_alu_instr *instr, Temp dst)
619 {
620 Builder bld(ctx->program, ctx->block);
621 Temp cond = get_alu_src(ctx, instr->src[0]);
622 Temp then = get_alu_src(ctx, instr->src[1]);
623 Temp els = get_alu_src(ctx, instr->src[2]);
624
625 assert(cond.regClass() == bld.lm);
626
627 if (dst.type() == RegType::vgpr) {
628 aco_ptr<Instruction> bcsel;
629 if (dst.size() == 1) {
630 then = as_vgpr(ctx, then);
631 els = as_vgpr(ctx, els);
632
633 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), els, then, cond);
634 } else if (dst.size() == 2) {
635 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
636 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), then);
637 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
638 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), els);
639
640 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, cond);
641 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, cond);
642
643 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
644 } else {
645 fprintf(stderr, "Unimplemented NIR instr bit size: ");
646 nir_print_instr(&instr->instr, stderr);
647 fprintf(stderr, "\n");
648 }
649 return;
650 }
651
652 if (instr->dest.dest.ssa.bit_size == 1) {
653 assert(dst.regClass() == bld.lm);
654 assert(then.regClass() == bld.lm);
655 assert(els.regClass() == bld.lm);
656 }
657
658 if (!ctx->divergent_vals[instr->src[0].src.ssa->index]) { /* uniform condition and values in sgpr */
659 if (dst.regClass() == s1 || dst.regClass() == s2) {
660 assert((then.regClass() == s1 || then.regClass() == s2) && els.regClass() == then.regClass());
661 assert(dst.size() == then.size());
662 aco_opcode op = dst.regClass() == s1 ? aco_opcode::s_cselect_b32 : aco_opcode::s_cselect_b64;
663 bld.sop2(op, Definition(dst), then, els, bld.scc(bool_to_scalar_condition(ctx, cond)));
664 } else {
665 fprintf(stderr, "Unimplemented uniform bcsel bit size: ");
666 nir_print_instr(&instr->instr, stderr);
667 fprintf(stderr, "\n");
668 }
669 return;
670 }
671
672 /* divergent boolean bcsel
673 * this implements bcsel on bools: dst = s0 ? s1 : s2
674 * are going to be: dst = (s0 & s1) | (~s0 & s2) */
675 assert(instr->dest.dest.ssa.bit_size == 1);
676
677 if (cond.id() != then.id())
678 then = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), cond, then);
679
680 if (cond.id() == els.id())
681 bld.sop1(Builder::s_mov, Definition(dst), then);
682 else
683 bld.sop2(Builder::s_or, Definition(dst), bld.def(s1, scc), then,
684 bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), els, cond));
685 }
686
687 void emit_scaled_op(isel_context *ctx, Builder& bld, Definition dst, Temp val,
688 aco_opcode op, uint32_t undo)
689 {
690 /* multiply by 16777216 to handle denormals */
691 Temp is_denormal = bld.vopc(aco_opcode::v_cmp_class_f32, bld.hint_vcc(bld.def(bld.lm)),
692 as_vgpr(ctx, val), bld.copy(bld.def(v1), Operand((1u << 7) | (1u << 4))));
693 Temp scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x4b800000u), val);
694 scaled = bld.vop1(op, bld.def(v1), scaled);
695 scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(undo), scaled);
696
697 Temp not_scaled = bld.vop1(op, bld.def(v1), val);
698
699 bld.vop2(aco_opcode::v_cndmask_b32, dst, not_scaled, scaled, is_denormal);
700 }
701
702 void emit_rcp(isel_context *ctx, Builder& bld, Definition dst, Temp val)
703 {
704 if (ctx->block->fp_mode.denorm32 == 0) {
705 bld.vop1(aco_opcode::v_rcp_f32, dst, val);
706 return;
707 }
708
709 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rcp_f32, 0x4b800000u);
710 }
711
712 void emit_rsq(isel_context *ctx, Builder& bld, Definition dst, Temp val)
713 {
714 if (ctx->block->fp_mode.denorm32 == 0) {
715 bld.vop1(aco_opcode::v_rsq_f32, dst, val);
716 return;
717 }
718
719 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rsq_f32, 0x45800000u);
720 }
721
722 void emit_sqrt(isel_context *ctx, Builder& bld, Definition dst, Temp val)
723 {
724 if (ctx->block->fp_mode.denorm32 == 0) {
725 bld.vop1(aco_opcode::v_sqrt_f32, dst, val);
726 return;
727 }
728
729 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_sqrt_f32, 0x39800000u);
730 }
731
732 void emit_log2(isel_context *ctx, Builder& bld, Definition dst, Temp val)
733 {
734 if (ctx->block->fp_mode.denorm32 == 0) {
735 bld.vop1(aco_opcode::v_log_f32, dst, val);
736 return;
737 }
738
739 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_log_f32, 0xc1c00000u);
740 }
741
742 Temp emit_trunc_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
743 {
744 if (ctx->options->chip_class >= GFX7)
745 return bld.vop1(aco_opcode::v_trunc_f64, Definition(dst), val);
746
747 /* GFX6 doesn't support V_TRUNC_F64, lower it. */
748 /* TODO: create more efficient code! */
749 if (val.type() == RegType::sgpr)
750 val = as_vgpr(ctx, val);
751
752 /* Split the input value. */
753 Temp val_lo = bld.tmp(v1), val_hi = bld.tmp(v1);
754 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
755
756 /* Extract the exponent and compute the unbiased value. */
757 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f64, bld.def(v1), val);
758
759 /* Extract the fractional part. */
760 Temp fract_mask = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x000fffffu));
761 fract_mask = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), fract_mask, exponent);
762
763 Temp fract_mask_lo = bld.tmp(v1), fract_mask_hi = bld.tmp(v1);
764 bld.pseudo(aco_opcode::p_split_vector, Definition(fract_mask_lo), Definition(fract_mask_hi), fract_mask);
765
766 Temp fract_lo = bld.tmp(v1), fract_hi = bld.tmp(v1);
767 Temp tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_lo);
768 fract_lo = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_lo, tmp);
769 tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_hi);
770 fract_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_hi, tmp);
771
772 /* Get the sign bit. */
773 Temp sign = bld.vop2(aco_opcode::v_ashr_i32, bld.def(v1), Operand(31u), val_hi);
774
775 /* Decide the operation to apply depending on the unbiased exponent. */
776 Temp exp_lt0 = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)), exponent, Operand(0u));
777 Temp dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_lo, bld.copy(bld.def(v1), Operand(0u)), exp_lt0);
778 Temp dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_hi, sign, exp_lt0);
779 Temp exp_gt51 = bld.vopc_e64(aco_opcode::v_cmp_gt_i32, bld.def(s2), exponent, Operand(51u));
780 dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_lo, val_lo, exp_gt51);
781 dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_hi, val_hi, exp_gt51);
782
783 return bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst_lo, dst_hi);
784 }
785
786 Temp emit_floor_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
787 {
788 if (ctx->options->chip_class >= GFX7)
789 return bld.vop1(aco_opcode::v_floor_f64, Definition(dst), val);
790
791 /* GFX6 doesn't support V_FLOOR_F64, lower it. */
792 Temp src0 = as_vgpr(ctx, val);
793
794 Temp mask = bld.copy(bld.def(s1), Operand(3u)); /* isnan */
795 Temp min_val = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(-1u), Operand(0x3fefffffu));
796
797 Temp isnan = bld.vopc_e64(aco_opcode::v_cmp_class_f64, bld.hint_vcc(bld.def(bld.lm)), src0, mask);
798 Temp fract = bld.vop1(aco_opcode::v_fract_f64, bld.def(v2), src0);
799 Temp min = bld.vop3(aco_opcode::v_min_f64, bld.def(v2), fract, min_val);
800
801 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
802 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), src0);
803 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
804 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), min);
805
806 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, isnan);
807 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, isnan);
808
809 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), dst0, dst1);
810
811 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src0, v);
812 static_cast<VOP3A_instruction*>(add)->neg[1] = true;
813
814 return add->definitions[0].getTemp();
815 }
816
817 void visit_alu_instr(isel_context *ctx, nir_alu_instr *instr)
818 {
819 if (!instr->dest.dest.is_ssa) {
820 fprintf(stderr, "nir alu dst not in ssa: ");
821 nir_print_instr(&instr->instr, stderr);
822 fprintf(stderr, "\n");
823 abort();
824 }
825 Builder bld(ctx->program, ctx->block);
826 Temp dst = get_ssa_temp(ctx, &instr->dest.dest.ssa);
827 switch(instr->op) {
828 case nir_op_vec2:
829 case nir_op_vec3:
830 case nir_op_vec4: {
831 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
832 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.dest.ssa.num_components, 1)};
833 for (unsigned i = 0; i < instr->dest.dest.ssa.num_components; ++i) {
834 elems[i] = get_alu_src(ctx, instr->src[i]);
835 vec->operands[i] = Operand{elems[i]};
836 }
837 vec->definitions[0] = Definition(dst);
838 ctx->block->instructions.emplace_back(std::move(vec));
839 ctx->allocated_vec.emplace(dst.id(), elems);
840 break;
841 }
842 case nir_op_mov: {
843 Temp src = get_alu_src(ctx, instr->src[0]);
844 aco_ptr<Instruction> mov;
845 if (dst.type() == RegType::sgpr) {
846 if (src.type() == RegType::vgpr)
847 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
848 else if (src.regClass() == s1)
849 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
850 else if (src.regClass() == s2)
851 bld.sop1(aco_opcode::s_mov_b64, Definition(dst), src);
852 else
853 unreachable("wrong src register class for nir_op_imov");
854 } else if (dst.regClass() == v1) {
855 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), src);
856 } else if (dst.regClass() == v2) {
857 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
858 } else {
859 nir_print_instr(&instr->instr, stderr);
860 unreachable("Should have been lowered to scalar.");
861 }
862 break;
863 }
864 case nir_op_inot: {
865 Temp src = get_alu_src(ctx, instr->src[0]);
866 if (instr->dest.dest.ssa.bit_size == 1) {
867 assert(src.regClass() == bld.lm);
868 assert(dst.regClass() == bld.lm);
869 /* Don't use s_andn2 here, this allows the optimizer to make a better decision */
870 Temp tmp = bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), src);
871 bld.sop2(Builder::s_and, Definition(dst), bld.def(s1, scc), tmp, Operand(exec, bld.lm));
872 } else if (dst.regClass() == v1) {
873 emit_vop1_instruction(ctx, instr, aco_opcode::v_not_b32, dst);
874 } else if (dst.type() == RegType::sgpr) {
875 aco_opcode opcode = dst.size() == 1 ? aco_opcode::s_not_b32 : aco_opcode::s_not_b64;
876 bld.sop1(opcode, Definition(dst), bld.def(s1, scc), src);
877 } else {
878 fprintf(stderr, "Unimplemented NIR instr bit size: ");
879 nir_print_instr(&instr->instr, stderr);
880 fprintf(stderr, "\n");
881 }
882 break;
883 }
884 case nir_op_ineg: {
885 Temp src = get_alu_src(ctx, instr->src[0]);
886 if (dst.regClass() == v1) {
887 bld.vsub32(Definition(dst), Operand(0u), Operand(src));
888 } else if (dst.regClass() == s1) {
889 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand((uint32_t) -1), src);
890 } else if (dst.size() == 2) {
891 Temp src0 = bld.tmp(dst.type(), 1);
892 Temp src1 = bld.tmp(dst.type(), 1);
893 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
894
895 if (dst.regClass() == s2) {
896 Temp carry = bld.tmp(s1);
897 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), Operand(0u), src0);
898 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), src1, carry);
899 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
900 } else {
901 Temp lower = bld.tmp(v1);
902 Temp borrow = bld.vsub32(Definition(lower), Operand(0u), src0, true).def(1).getTemp();
903 Temp upper = bld.vsub32(bld.def(v1), Operand(0u), src1, false, borrow);
904 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
905 }
906 } else {
907 fprintf(stderr, "Unimplemented NIR instr bit size: ");
908 nir_print_instr(&instr->instr, stderr);
909 fprintf(stderr, "\n");
910 }
911 break;
912 }
913 case nir_op_iabs: {
914 if (dst.regClass() == s1) {
915 bld.sop1(aco_opcode::s_abs_i32, Definition(dst), bld.def(s1, scc), get_alu_src(ctx, instr->src[0]));
916 } else if (dst.regClass() == v1) {
917 Temp src = get_alu_src(ctx, instr->src[0]);
918 bld.vop2(aco_opcode::v_max_i32, Definition(dst), src, bld.vsub32(bld.def(v1), Operand(0u), src));
919 } else {
920 fprintf(stderr, "Unimplemented NIR instr bit size: ");
921 nir_print_instr(&instr->instr, stderr);
922 fprintf(stderr, "\n");
923 }
924 break;
925 }
926 case nir_op_isign: {
927 Temp src = get_alu_src(ctx, instr->src[0]);
928 if (dst.regClass() == s1) {
929 Temp tmp = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
930 Temp gtz = bld.sopc(aco_opcode::s_cmp_gt_i32, bld.def(s1, scc), src, Operand(0u));
931 bld.sop2(aco_opcode::s_add_i32, Definition(dst), bld.def(s1, scc), gtz, tmp);
932 } else if (dst.regClass() == s2) {
933 Temp neg = bld.sop2(aco_opcode::s_ashr_i64, bld.def(s2), bld.def(s1, scc), src, Operand(63u));
934 Temp neqz;
935 if (ctx->program->chip_class >= GFX8)
936 neqz = bld.sopc(aco_opcode::s_cmp_lg_u64, bld.def(s1, scc), src, Operand(0u));
937 else
938 neqz = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), src, Operand(0u)).def(1).getTemp();
939 /* SCC gets zero-extended to 64 bit */
940 bld.sop2(aco_opcode::s_or_b64, Definition(dst), bld.def(s1, scc), neg, bld.scc(neqz));
941 } else if (dst.regClass() == v1) {
942 Temp tmp = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
943 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
944 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(1u), tmp, gtz);
945 } else if (dst.regClass() == v2) {
946 Temp upper = emit_extract_vector(ctx, src, 1, v1);
947 Temp neg = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), upper);
948 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
949 Temp lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(1u), neg, gtz);
950 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), neg, gtz);
951 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
952 } else {
953 fprintf(stderr, "Unimplemented NIR instr bit size: ");
954 nir_print_instr(&instr->instr, stderr);
955 fprintf(stderr, "\n");
956 }
957 break;
958 }
959 case nir_op_imax: {
960 if (dst.regClass() == v1) {
961 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_i32, dst, true);
962 } else if (dst.regClass() == s1) {
963 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_i32, dst, true);
964 } else {
965 fprintf(stderr, "Unimplemented NIR instr bit size: ");
966 nir_print_instr(&instr->instr, stderr);
967 fprintf(stderr, "\n");
968 }
969 break;
970 }
971 case nir_op_umax: {
972 if (dst.regClass() == v1) {
973 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_u32, dst, true);
974 } else if (dst.regClass() == s1) {
975 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_u32, dst, true);
976 } else {
977 fprintf(stderr, "Unimplemented NIR instr bit size: ");
978 nir_print_instr(&instr->instr, stderr);
979 fprintf(stderr, "\n");
980 }
981 break;
982 }
983 case nir_op_imin: {
984 if (dst.regClass() == v1) {
985 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_i32, dst, true);
986 } else if (dst.regClass() == s1) {
987 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_i32, dst, true);
988 } else {
989 fprintf(stderr, "Unimplemented NIR instr bit size: ");
990 nir_print_instr(&instr->instr, stderr);
991 fprintf(stderr, "\n");
992 }
993 break;
994 }
995 case nir_op_umin: {
996 if (dst.regClass() == v1) {
997 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_u32, dst, true);
998 } else if (dst.regClass() == s1) {
999 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_u32, dst, true);
1000 } else {
1001 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1002 nir_print_instr(&instr->instr, stderr);
1003 fprintf(stderr, "\n");
1004 }
1005 break;
1006 }
1007 case nir_op_ior: {
1008 if (instr->dest.dest.ssa.bit_size == 1) {
1009 emit_boolean_logic(ctx, instr, Builder::s_or, dst);
1010 } else if (dst.regClass() == v1) {
1011 emit_vop2_instruction(ctx, instr, aco_opcode::v_or_b32, dst, true);
1012 } else if (dst.regClass() == s1) {
1013 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b32, dst, true);
1014 } else if (dst.regClass() == s2) {
1015 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b64, dst, true);
1016 } else {
1017 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1018 nir_print_instr(&instr->instr, stderr);
1019 fprintf(stderr, "\n");
1020 }
1021 break;
1022 }
1023 case nir_op_iand: {
1024 if (instr->dest.dest.ssa.bit_size == 1) {
1025 emit_boolean_logic(ctx, instr, Builder::s_and, dst);
1026 } else if (dst.regClass() == v1) {
1027 emit_vop2_instruction(ctx, instr, aco_opcode::v_and_b32, dst, true);
1028 } else if (dst.regClass() == s1) {
1029 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b32, dst, true);
1030 } else if (dst.regClass() == s2) {
1031 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b64, dst, true);
1032 } else {
1033 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1034 nir_print_instr(&instr->instr, stderr);
1035 fprintf(stderr, "\n");
1036 }
1037 break;
1038 }
1039 case nir_op_ixor: {
1040 if (instr->dest.dest.ssa.bit_size == 1) {
1041 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
1042 } else if (dst.regClass() == v1) {
1043 emit_vop2_instruction(ctx, instr, aco_opcode::v_xor_b32, dst, true);
1044 } else if (dst.regClass() == s1) {
1045 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b32, dst, true);
1046 } else if (dst.regClass() == s2) {
1047 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b64, dst, true);
1048 } else {
1049 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1050 nir_print_instr(&instr->instr, stderr);
1051 fprintf(stderr, "\n");
1052 }
1053 break;
1054 }
1055 case nir_op_ushr: {
1056 if (dst.regClass() == v1) {
1057 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshrrev_b32, dst, false, true);
1058 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1059 bld.vop3(aco_opcode::v_lshrrev_b64, Definition(dst),
1060 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1061 } else if (dst.regClass() == v2) {
1062 bld.vop3(aco_opcode::v_lshr_b64, Definition(dst),
1063 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1064 } else if (dst.regClass() == s2) {
1065 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b64, dst, true);
1066 } else if (dst.regClass() == s1) {
1067 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b32, dst, true);
1068 } else {
1069 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1070 nir_print_instr(&instr->instr, stderr);
1071 fprintf(stderr, "\n");
1072 }
1073 break;
1074 }
1075 case nir_op_ishl: {
1076 if (dst.regClass() == v1) {
1077 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshlrev_b32, dst, false, true);
1078 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1079 bld.vop3(aco_opcode::v_lshlrev_b64, Definition(dst),
1080 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1081 } else if (dst.regClass() == v2) {
1082 bld.vop3(aco_opcode::v_lshl_b64, Definition(dst),
1083 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1084 } else if (dst.regClass() == s1) {
1085 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b32, dst, true);
1086 } else if (dst.regClass() == s2) {
1087 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b64, dst, true);
1088 } else {
1089 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1090 nir_print_instr(&instr->instr, stderr);
1091 fprintf(stderr, "\n");
1092 }
1093 break;
1094 }
1095 case nir_op_ishr: {
1096 if (dst.regClass() == v1) {
1097 emit_vop2_instruction(ctx, instr, aco_opcode::v_ashrrev_i32, dst, false, true);
1098 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1099 bld.vop3(aco_opcode::v_ashrrev_i64, Definition(dst),
1100 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1101 } else if (dst.regClass() == v2) {
1102 bld.vop3(aco_opcode::v_ashr_i64, Definition(dst),
1103 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1104 } else if (dst.regClass() == s1) {
1105 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i32, dst, true);
1106 } else if (dst.regClass() == s2) {
1107 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i64, dst, true);
1108 } else {
1109 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1110 nir_print_instr(&instr->instr, stderr);
1111 fprintf(stderr, "\n");
1112 }
1113 break;
1114 }
1115 case nir_op_find_lsb: {
1116 Temp src = get_alu_src(ctx, instr->src[0]);
1117 if (src.regClass() == s1) {
1118 bld.sop1(aco_opcode::s_ff1_i32_b32, Definition(dst), src);
1119 } else if (src.regClass() == v1) {
1120 emit_vop1_instruction(ctx, instr, aco_opcode::v_ffbl_b32, dst);
1121 } else if (src.regClass() == s2) {
1122 bld.sop1(aco_opcode::s_ff1_i32_b64, Definition(dst), src);
1123 } else {
1124 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1125 nir_print_instr(&instr->instr, stderr);
1126 fprintf(stderr, "\n");
1127 }
1128 break;
1129 }
1130 case nir_op_ufind_msb:
1131 case nir_op_ifind_msb: {
1132 Temp src = get_alu_src(ctx, instr->src[0]);
1133 if (src.regClass() == s1 || src.regClass() == s2) {
1134 aco_opcode op = src.regClass() == s2 ?
1135 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b64 : aco_opcode::s_flbit_i32_i64) :
1136 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b32 : aco_opcode::s_flbit_i32);
1137 Temp msb_rev = bld.sop1(op, bld.def(s1), src);
1138
1139 Builder::Result sub = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc),
1140 Operand(src.size() * 32u - 1u), msb_rev);
1141 Temp msb = sub.def(0).getTemp();
1142 Temp carry = sub.def(1).getTemp();
1143
1144 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t)-1), msb, bld.scc(carry));
1145 } else if (src.regClass() == v1) {
1146 aco_opcode op = instr->op == nir_op_ufind_msb ? aco_opcode::v_ffbh_u32 : aco_opcode::v_ffbh_i32;
1147 Temp msb_rev = bld.tmp(v1);
1148 emit_vop1_instruction(ctx, instr, op, msb_rev);
1149 Temp msb = bld.tmp(v1);
1150 Temp carry = bld.vsub32(Definition(msb), Operand(31u), Operand(msb_rev), true).def(1).getTemp();
1151 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), msb, Operand((uint32_t)-1), carry);
1152 } else {
1153 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1154 nir_print_instr(&instr->instr, stderr);
1155 fprintf(stderr, "\n");
1156 }
1157 break;
1158 }
1159 case nir_op_bitfield_reverse: {
1160 if (dst.regClass() == s1) {
1161 bld.sop1(aco_opcode::s_brev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1162 } else if (dst.regClass() == v1) {
1163 bld.vop1(aco_opcode::v_bfrev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1164 } else {
1165 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1166 nir_print_instr(&instr->instr, stderr);
1167 fprintf(stderr, "\n");
1168 }
1169 break;
1170 }
1171 case nir_op_iadd: {
1172 if (dst.regClass() == s1) {
1173 emit_sop2_instruction(ctx, instr, aco_opcode::s_add_u32, dst, true);
1174 break;
1175 }
1176
1177 Temp src0 = get_alu_src(ctx, instr->src[0]);
1178 Temp src1 = get_alu_src(ctx, instr->src[1]);
1179 if (dst.regClass() == v1) {
1180 bld.vadd32(Definition(dst), Operand(src0), Operand(src1));
1181 break;
1182 }
1183
1184 assert(src0.size() == 2 && src1.size() == 2);
1185 Temp src00 = bld.tmp(src0.type(), 1);
1186 Temp src01 = bld.tmp(dst.type(), 1);
1187 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1188 Temp src10 = bld.tmp(src1.type(), 1);
1189 Temp src11 = bld.tmp(dst.type(), 1);
1190 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1191
1192 if (dst.regClass() == s2) {
1193 Temp carry = bld.tmp(s1);
1194 Temp dst0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1195 Temp dst1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), src01, src11, bld.scc(carry));
1196 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1197 } else if (dst.regClass() == v2) {
1198 Temp dst0 = bld.tmp(v1);
1199 Temp carry = bld.vadd32(Definition(dst0), src00, src10, true).def(1).getTemp();
1200 Temp dst1 = bld.vadd32(bld.def(v1), src01, src11, false, carry);
1201 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1202 } else {
1203 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1204 nir_print_instr(&instr->instr, stderr);
1205 fprintf(stderr, "\n");
1206 }
1207 break;
1208 }
1209 case nir_op_uadd_sat: {
1210 Temp src0 = get_alu_src(ctx, instr->src[0]);
1211 Temp src1 = get_alu_src(ctx, instr->src[1]);
1212 if (dst.regClass() == s1) {
1213 Temp tmp = bld.tmp(s1), carry = bld.tmp(s1);
1214 bld.sop2(aco_opcode::s_add_u32, Definition(tmp), bld.scc(Definition(carry)),
1215 src0, src1);
1216 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t) -1), tmp, bld.scc(carry));
1217 } else if (dst.regClass() == v1) {
1218 if (ctx->options->chip_class >= GFX9) {
1219 aco_ptr<VOP3A_instruction> add{create_instruction<VOP3A_instruction>(aco_opcode::v_add_u32, asVOP3(Format::VOP2), 2, 1)};
1220 add->operands[0] = Operand(src0);
1221 add->operands[1] = Operand(src1);
1222 add->definitions[0] = Definition(dst);
1223 add->clamp = 1;
1224 ctx->block->instructions.emplace_back(std::move(add));
1225 } else {
1226 if (src1.regClass() != v1)
1227 std::swap(src0, src1);
1228 assert(src1.regClass() == v1);
1229 Temp tmp = bld.tmp(v1);
1230 Temp carry = bld.vadd32(Definition(tmp), src0, src1, true).def(1).getTemp();
1231 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), tmp, Operand((uint32_t) -1), carry);
1232 }
1233 } else {
1234 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1235 nir_print_instr(&instr->instr, stderr);
1236 fprintf(stderr, "\n");
1237 }
1238 break;
1239 }
1240 case nir_op_uadd_carry: {
1241 Temp src0 = get_alu_src(ctx, instr->src[0]);
1242 Temp src1 = get_alu_src(ctx, instr->src[1]);
1243 if (dst.regClass() == s1) {
1244 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1245 break;
1246 }
1247 if (dst.regClass() == v1) {
1248 Temp carry = bld.vadd32(bld.def(v1), src0, src1, true).def(1).getTemp();
1249 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), carry);
1250 break;
1251 }
1252
1253 Temp src00 = bld.tmp(src0.type(), 1);
1254 Temp src01 = bld.tmp(dst.type(), 1);
1255 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1256 Temp src10 = bld.tmp(src1.type(), 1);
1257 Temp src11 = bld.tmp(dst.type(), 1);
1258 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1259 if (dst.regClass() == s2) {
1260 Temp carry = bld.tmp(s1);
1261 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1262 carry = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(carry)).def(1).getTemp();
1263 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1264 } else if (dst.regClass() == v2) {
1265 Temp carry = bld.vadd32(bld.def(v1), src00, src10, true).def(1).getTemp();
1266 carry = bld.vadd32(bld.def(v1), src01, src11, true, carry).def(1).getTemp();
1267 carry = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), carry);
1268 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1269 } else {
1270 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1271 nir_print_instr(&instr->instr, stderr);
1272 fprintf(stderr, "\n");
1273 }
1274 break;
1275 }
1276 case nir_op_isub: {
1277 if (dst.regClass() == s1) {
1278 emit_sop2_instruction(ctx, instr, aco_opcode::s_sub_i32, dst, true);
1279 break;
1280 }
1281
1282 Temp src0 = get_alu_src(ctx, instr->src[0]);
1283 Temp src1 = get_alu_src(ctx, instr->src[1]);
1284 if (dst.regClass() == v1) {
1285 bld.vsub32(Definition(dst), src0, src1);
1286 break;
1287 }
1288
1289 Temp src00 = bld.tmp(src0.type(), 1);
1290 Temp src01 = bld.tmp(dst.type(), 1);
1291 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1292 Temp src10 = bld.tmp(src1.type(), 1);
1293 Temp src11 = bld.tmp(dst.type(), 1);
1294 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1295 if (dst.regClass() == s2) {
1296 Temp carry = bld.tmp(s1);
1297 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1298 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), src01, src11, carry);
1299 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1300 } else if (dst.regClass() == v2) {
1301 Temp lower = bld.tmp(v1);
1302 Temp borrow = bld.vsub32(Definition(lower), src00, src10, true).def(1).getTemp();
1303 Temp upper = bld.vsub32(bld.def(v1), src01, src11, false, borrow);
1304 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1305 } else {
1306 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1307 nir_print_instr(&instr->instr, stderr);
1308 fprintf(stderr, "\n");
1309 }
1310 break;
1311 }
1312 case nir_op_usub_borrow: {
1313 Temp src0 = get_alu_src(ctx, instr->src[0]);
1314 Temp src1 = get_alu_src(ctx, instr->src[1]);
1315 if (dst.regClass() == s1) {
1316 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1317 break;
1318 } else if (dst.regClass() == v1) {
1319 Temp borrow = bld.vsub32(bld.def(v1), src0, src1, true).def(1).getTemp();
1320 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), borrow);
1321 break;
1322 }
1323
1324 Temp src00 = bld.tmp(src0.type(), 1);
1325 Temp src01 = bld.tmp(dst.type(), 1);
1326 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1327 Temp src10 = bld.tmp(src1.type(), 1);
1328 Temp src11 = bld.tmp(dst.type(), 1);
1329 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1330 if (dst.regClass() == s2) {
1331 Temp borrow = bld.tmp(s1);
1332 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), src00, src10);
1333 borrow = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(borrow)).def(1).getTemp();
1334 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1335 } else if (dst.regClass() == v2) {
1336 Temp borrow = bld.vsub32(bld.def(v1), src00, src10, true).def(1).getTemp();
1337 borrow = bld.vsub32(bld.def(v1), src01, src11, true, Operand(borrow)).def(1).getTemp();
1338 borrow = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), borrow);
1339 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1340 } else {
1341 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1342 nir_print_instr(&instr->instr, stderr);
1343 fprintf(stderr, "\n");
1344 }
1345 break;
1346 }
1347 case nir_op_imul: {
1348 if (dst.regClass() == v1) {
1349 bld.vop3(aco_opcode::v_mul_lo_u32, Definition(dst),
1350 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1351 } else if (dst.regClass() == s1) {
1352 emit_sop2_instruction(ctx, instr, aco_opcode::s_mul_i32, dst, false);
1353 } else {
1354 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1355 nir_print_instr(&instr->instr, stderr);
1356 fprintf(stderr, "\n");
1357 }
1358 break;
1359 }
1360 case nir_op_umul_high: {
1361 if (dst.regClass() == v1) {
1362 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1363 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1364 bld.sop2(aco_opcode::s_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1365 } else if (dst.regClass() == s1) {
1366 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1367 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1368 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1369 } else {
1370 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1371 nir_print_instr(&instr->instr, stderr);
1372 fprintf(stderr, "\n");
1373 }
1374 break;
1375 }
1376 case nir_op_imul_high: {
1377 if (dst.regClass() == v1) {
1378 bld.vop3(aco_opcode::v_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1379 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1380 bld.sop2(aco_opcode::s_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1381 } else if (dst.regClass() == s1) {
1382 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1383 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1384 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1385 } else {
1386 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1387 nir_print_instr(&instr->instr, stderr);
1388 fprintf(stderr, "\n");
1389 }
1390 break;
1391 }
1392 case nir_op_fmul: {
1393 if (dst.size() == 1) {
1394 emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f32, dst, true);
1395 } else if (dst.size() == 2) {
1396 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), get_alu_src(ctx, instr->src[0]),
1397 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1398 } else {
1399 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1400 nir_print_instr(&instr->instr, stderr);
1401 fprintf(stderr, "\n");
1402 }
1403 break;
1404 }
1405 case nir_op_fadd: {
1406 if (dst.size() == 1) {
1407 emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f32, dst, true);
1408 } else if (dst.size() == 2) {
1409 bld.vop3(aco_opcode::v_add_f64, Definition(dst), get_alu_src(ctx, instr->src[0]),
1410 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1411 } else {
1412 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1413 nir_print_instr(&instr->instr, stderr);
1414 fprintf(stderr, "\n");
1415 }
1416 break;
1417 }
1418 case nir_op_fsub: {
1419 Temp src0 = get_alu_src(ctx, instr->src[0]);
1420 Temp src1 = get_alu_src(ctx, instr->src[1]);
1421 if (dst.size() == 1) {
1422 if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
1423 emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f32, dst, false);
1424 else
1425 emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f32, dst, true);
1426 } else if (dst.size() == 2) {
1427 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst),
1428 get_alu_src(ctx, instr->src[0]),
1429 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1430 VOP3A_instruction* sub = static_cast<VOP3A_instruction*>(add);
1431 sub->neg[1] = true;
1432 } else {
1433 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1434 nir_print_instr(&instr->instr, stderr);
1435 fprintf(stderr, "\n");
1436 }
1437 break;
1438 }
1439 case nir_op_fmax: {
1440 if (dst.size() == 1) {
1441 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1442 } else if (dst.size() == 2) {
1443 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1444 Temp tmp = bld.vop3(aco_opcode::v_max_f64, bld.def(v2),
1445 get_alu_src(ctx, instr->src[0]),
1446 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1447 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1448 } else {
1449 bld.vop3(aco_opcode::v_max_f64, Definition(dst),
1450 get_alu_src(ctx, instr->src[0]),
1451 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1452 }
1453 } else {
1454 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1455 nir_print_instr(&instr->instr, stderr);
1456 fprintf(stderr, "\n");
1457 }
1458 break;
1459 }
1460 case nir_op_fmin: {
1461 if (dst.size() == 1) {
1462 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1463 } else if (dst.size() == 2) {
1464 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1465 Temp tmp = bld.vop3(aco_opcode::v_min_f64, bld.def(v2),
1466 get_alu_src(ctx, instr->src[0]),
1467 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1468 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1469 } else {
1470 bld.vop3(aco_opcode::v_min_f64, Definition(dst),
1471 get_alu_src(ctx, instr->src[0]),
1472 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1473 }
1474 } else {
1475 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1476 nir_print_instr(&instr->instr, stderr);
1477 fprintf(stderr, "\n");
1478 }
1479 break;
1480 }
1481 case nir_op_fmax3: {
1482 if (dst.size() == 1) {
1483 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1484 } else {
1485 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1486 nir_print_instr(&instr->instr, stderr);
1487 fprintf(stderr, "\n");
1488 }
1489 break;
1490 }
1491 case nir_op_fmin3: {
1492 if (dst.size() == 1) {
1493 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1494 } else {
1495 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1496 nir_print_instr(&instr->instr, stderr);
1497 fprintf(stderr, "\n");
1498 }
1499 break;
1500 }
1501 case nir_op_fmed3: {
1502 if (dst.size() == 1) {
1503 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1504 } else {
1505 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1506 nir_print_instr(&instr->instr, stderr);
1507 fprintf(stderr, "\n");
1508 }
1509 break;
1510 }
1511 case nir_op_umax3: {
1512 if (dst.size() == 1) {
1513 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_u32, dst);
1514 } else {
1515 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1516 nir_print_instr(&instr->instr, stderr);
1517 fprintf(stderr, "\n");
1518 }
1519 break;
1520 }
1521 case nir_op_umin3: {
1522 if (dst.size() == 1) {
1523 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_u32, dst);
1524 } else {
1525 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1526 nir_print_instr(&instr->instr, stderr);
1527 fprintf(stderr, "\n");
1528 }
1529 break;
1530 }
1531 case nir_op_umed3: {
1532 if (dst.size() == 1) {
1533 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_u32, dst);
1534 } else {
1535 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1536 nir_print_instr(&instr->instr, stderr);
1537 fprintf(stderr, "\n");
1538 }
1539 break;
1540 }
1541 case nir_op_imax3: {
1542 if (dst.size() == 1) {
1543 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_i32, dst);
1544 } else {
1545 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1546 nir_print_instr(&instr->instr, stderr);
1547 fprintf(stderr, "\n");
1548 }
1549 break;
1550 }
1551 case nir_op_imin3: {
1552 if (dst.size() == 1) {
1553 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_i32, dst);
1554 } else {
1555 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1556 nir_print_instr(&instr->instr, stderr);
1557 fprintf(stderr, "\n");
1558 }
1559 break;
1560 }
1561 case nir_op_imed3: {
1562 if (dst.size() == 1) {
1563 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_i32, dst);
1564 } else {
1565 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1566 nir_print_instr(&instr->instr, stderr);
1567 fprintf(stderr, "\n");
1568 }
1569 break;
1570 }
1571 case nir_op_cube_face_coord: {
1572 Temp in = get_alu_src(ctx, instr->src[0], 3);
1573 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1574 emit_extract_vector(ctx, in, 1, v1),
1575 emit_extract_vector(ctx, in, 2, v1) };
1576 Temp ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), src[0], src[1], src[2]);
1577 ma = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), ma);
1578 Temp sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), src[0], src[1], src[2]);
1579 Temp tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), src[0], src[1], src[2]);
1580 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, ma, Operand(0x3f000000u/*0.5*/));
1581 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, ma, Operand(0x3f000000u/*0.5*/));
1582 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), sc, tc);
1583 break;
1584 }
1585 case nir_op_cube_face_index: {
1586 Temp in = get_alu_src(ctx, instr->src[0], 3);
1587 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1588 emit_extract_vector(ctx, in, 1, v1),
1589 emit_extract_vector(ctx, in, 2, v1) };
1590 bld.vop3(aco_opcode::v_cubeid_f32, Definition(dst), src[0], src[1], src[2]);
1591 break;
1592 }
1593 case nir_op_bcsel: {
1594 emit_bcsel(ctx, instr, dst);
1595 break;
1596 }
1597 case nir_op_frsq: {
1598 if (dst.size() == 1) {
1599 emit_rsq(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1600 } else if (dst.size() == 2) {
1601 emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f64, dst);
1602 } else {
1603 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1604 nir_print_instr(&instr->instr, stderr);
1605 fprintf(stderr, "\n");
1606 }
1607 break;
1608 }
1609 case nir_op_fneg: {
1610 Temp src = get_alu_src(ctx, instr->src[0]);
1611 if (dst.size() == 1) {
1612 if (ctx->block->fp_mode.must_flush_denorms32)
1613 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1614 bld.vop2(aco_opcode::v_xor_b32, Definition(dst), Operand(0x80000000u), as_vgpr(ctx, src));
1615 } else if (dst.size() == 2) {
1616 if (ctx->block->fp_mode.must_flush_denorms16_64)
1617 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1618 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1619 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1620 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), Operand(0x80000000u), upper);
1621 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1622 } else {
1623 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1624 nir_print_instr(&instr->instr, stderr);
1625 fprintf(stderr, "\n");
1626 }
1627 break;
1628 }
1629 case nir_op_fabs: {
1630 Temp src = get_alu_src(ctx, instr->src[0]);
1631 if (dst.size() == 1) {
1632 if (ctx->block->fp_mode.must_flush_denorms32)
1633 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1634 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0x7FFFFFFFu), as_vgpr(ctx, src));
1635 } else if (dst.size() == 2) {
1636 if (ctx->block->fp_mode.must_flush_denorms16_64)
1637 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1638 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1639 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1640 upper = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7FFFFFFFu), upper);
1641 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1642 } else {
1643 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1644 nir_print_instr(&instr->instr, stderr);
1645 fprintf(stderr, "\n");
1646 }
1647 break;
1648 }
1649 case nir_op_fsat: {
1650 Temp src = get_alu_src(ctx, instr->src[0]);
1651 if (dst.size() == 1) {
1652 bld.vop3(aco_opcode::v_med3_f32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
1653 /* apparently, it is not necessary to flush denorms if this instruction is used with these operands */
1654 // TODO: confirm that this holds under any circumstances
1655 } else if (dst.size() == 2) {
1656 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src, Operand(0u));
1657 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(add);
1658 vop3->clamp = true;
1659 } else {
1660 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1661 nir_print_instr(&instr->instr, stderr);
1662 fprintf(stderr, "\n");
1663 }
1664 break;
1665 }
1666 case nir_op_flog2: {
1667 if (dst.size() == 1) {
1668 emit_log2(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1669 } else {
1670 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1671 nir_print_instr(&instr->instr, stderr);
1672 fprintf(stderr, "\n");
1673 }
1674 break;
1675 }
1676 case nir_op_frcp: {
1677 if (dst.size() == 1) {
1678 emit_rcp(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1679 } else if (dst.size() == 2) {
1680 emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f64, dst);
1681 } else {
1682 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1683 nir_print_instr(&instr->instr, stderr);
1684 fprintf(stderr, "\n");
1685 }
1686 break;
1687 }
1688 case nir_op_fexp2: {
1689 if (dst.size() == 1) {
1690 emit_vop1_instruction(ctx, instr, aco_opcode::v_exp_f32, dst);
1691 } else {
1692 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1693 nir_print_instr(&instr->instr, stderr);
1694 fprintf(stderr, "\n");
1695 }
1696 break;
1697 }
1698 case nir_op_fsqrt: {
1699 if (dst.size() == 1) {
1700 emit_sqrt(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1701 } else if (dst.size() == 2) {
1702 emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f64, dst);
1703 } else {
1704 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1705 nir_print_instr(&instr->instr, stderr);
1706 fprintf(stderr, "\n");
1707 }
1708 break;
1709 }
1710 case nir_op_ffract: {
1711 if (dst.size() == 1) {
1712 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f32, dst);
1713 } else if (dst.size() == 2) {
1714 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f64, dst);
1715 } else {
1716 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1717 nir_print_instr(&instr->instr, stderr);
1718 fprintf(stderr, "\n");
1719 }
1720 break;
1721 }
1722 case nir_op_ffloor: {
1723 if (dst.size() == 1) {
1724 emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f32, dst);
1725 } else if (dst.size() == 2) {
1726 emit_floor_f64(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1727 } else {
1728 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1729 nir_print_instr(&instr->instr, stderr);
1730 fprintf(stderr, "\n");
1731 }
1732 break;
1733 }
1734 case nir_op_fceil: {
1735 if (dst.size() == 1) {
1736 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f32, dst);
1737 } else if (dst.size() == 2) {
1738 if (ctx->options->chip_class >= GFX7) {
1739 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f64, dst);
1740 } else {
1741 /* GFX6 doesn't support V_CEIL_F64, lower it. */
1742 Temp src0 = get_alu_src(ctx, instr->src[0]);
1743
1744 /* trunc = trunc(src0)
1745 * if (src0 > 0.0 && src0 != trunc)
1746 * trunc += 1.0
1747 */
1748 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src0);
1749 Temp tmp0 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.def(bld.lm), src0, Operand(0u));
1750 Temp tmp1 = bld.vopc(aco_opcode::v_cmp_lg_f64, bld.hint_vcc(bld.def(bld.lm)), src0, trunc);
1751 Temp cond = bld.sop2(aco_opcode::s_and_b64, bld.hint_vcc(bld.def(s2)), bld.def(s1, scc), tmp0, tmp1);
1752 Temp add = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), bld.copy(bld.def(v1), Operand(0u)), bld.copy(bld.def(v1), Operand(0x3ff00000u)), cond);
1753 add = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), bld.copy(bld.def(v1), Operand(0u)), add);
1754 bld.vop3(aco_opcode::v_add_f64, Definition(dst), trunc, add);
1755 }
1756 } else {
1757 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1758 nir_print_instr(&instr->instr, stderr);
1759 fprintf(stderr, "\n");
1760 }
1761 break;
1762 }
1763 case nir_op_ftrunc: {
1764 if (dst.size() == 1) {
1765 emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f32, dst);
1766 } else if (dst.size() == 2) {
1767 emit_trunc_f64(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1768 } else {
1769 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1770 nir_print_instr(&instr->instr, stderr);
1771 fprintf(stderr, "\n");
1772 }
1773 break;
1774 }
1775 case nir_op_fround_even: {
1776 if (dst.size() == 1) {
1777 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f32, dst);
1778 } else if (dst.size() == 2) {
1779 if (ctx->options->chip_class >= GFX7) {
1780 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f64, dst);
1781 } else {
1782 /* GFX6 doesn't support V_RNDNE_F64, lower it. */
1783 Temp src0 = get_alu_src(ctx, instr->src[0]);
1784
1785 Temp src0_lo = bld.tmp(v1), src0_hi = bld.tmp(v1);
1786 bld.pseudo(aco_opcode::p_split_vector, Definition(src0_lo), Definition(src0_hi), src0);
1787
1788 Temp bitmask = bld.sop1(aco_opcode::s_brev_b32, bld.def(s1), bld.copy(bld.def(s1), Operand(-2u)));
1789 Temp bfi = bld.vop3(aco_opcode::v_bfi_b32, bld.def(v1), bitmask, bld.copy(bld.def(v1), Operand(0x43300000u)), as_vgpr(ctx, src0_hi));
1790 Temp tmp = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), src0, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
1791 Instruction *sub = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), tmp, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
1792 static_cast<VOP3A_instruction*>(sub)->neg[1] = true;
1793 tmp = sub->definitions[0].getTemp();
1794
1795 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x432fffffu));
1796 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.hint_vcc(bld.def(bld.lm)), src0, v);
1797 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
1798 Temp cond = vop3->definitions[0].getTemp();
1799
1800 Temp tmp_lo = bld.tmp(v1), tmp_hi = bld.tmp(v1);
1801 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp_lo), Definition(tmp_hi), tmp);
1802 Temp dst0 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_lo, as_vgpr(ctx, src0_lo), cond);
1803 Temp dst1 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_hi, as_vgpr(ctx, src0_hi), cond);
1804
1805 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1806 }
1807 } else {
1808 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1809 nir_print_instr(&instr->instr, stderr);
1810 fprintf(stderr, "\n");
1811 }
1812 break;
1813 }
1814 case nir_op_fsin:
1815 case nir_op_fcos: {
1816 Temp src = get_alu_src(ctx, instr->src[0]);
1817 aco_ptr<Instruction> norm;
1818 if (dst.size() == 1) {
1819 Temp half_pi = bld.copy(bld.def(s1), Operand(0x3e22f983u));
1820 Temp tmp = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), half_pi, as_vgpr(ctx, src));
1821
1822 /* before GFX9, v_sin_f32 and v_cos_f32 had a valid input domain of [-256, +256] */
1823 if (ctx->options->chip_class < GFX9)
1824 tmp = bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), tmp);
1825
1826 aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f32 : aco_opcode::v_cos_f32;
1827 bld.vop1(opcode, Definition(dst), tmp);
1828 } else {
1829 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1830 nir_print_instr(&instr->instr, stderr);
1831 fprintf(stderr, "\n");
1832 }
1833 break;
1834 }
1835 case nir_op_ldexp: {
1836 if (dst.size() == 1) {
1837 bld.vop3(aco_opcode::v_ldexp_f32, Definition(dst),
1838 as_vgpr(ctx, get_alu_src(ctx, instr->src[0])),
1839 get_alu_src(ctx, instr->src[1]));
1840 } else if (dst.size() == 2) {
1841 bld.vop3(aco_opcode::v_ldexp_f64, Definition(dst),
1842 as_vgpr(ctx, get_alu_src(ctx, instr->src[0])),
1843 get_alu_src(ctx, instr->src[1]));
1844 } else {
1845 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1846 nir_print_instr(&instr->instr, stderr);
1847 fprintf(stderr, "\n");
1848 }
1849 break;
1850 }
1851 case nir_op_frexp_sig: {
1852 if (dst.size() == 1) {
1853 bld.vop1(aco_opcode::v_frexp_mant_f32, Definition(dst),
1854 get_alu_src(ctx, instr->src[0]));
1855 } else if (dst.size() == 2) {
1856 bld.vop1(aco_opcode::v_frexp_mant_f64, Definition(dst),
1857 get_alu_src(ctx, instr->src[0]));
1858 } else {
1859 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1860 nir_print_instr(&instr->instr, stderr);
1861 fprintf(stderr, "\n");
1862 }
1863 break;
1864 }
1865 case nir_op_frexp_exp: {
1866 if (instr->src[0].src.ssa->bit_size == 32) {
1867 bld.vop1(aco_opcode::v_frexp_exp_i32_f32, Definition(dst),
1868 get_alu_src(ctx, instr->src[0]));
1869 } else if (instr->src[0].src.ssa->bit_size == 64) {
1870 bld.vop1(aco_opcode::v_frexp_exp_i32_f64, Definition(dst),
1871 get_alu_src(ctx, instr->src[0]));
1872 } else {
1873 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1874 nir_print_instr(&instr->instr, stderr);
1875 fprintf(stderr, "\n");
1876 }
1877 break;
1878 }
1879 case nir_op_fsign: {
1880 Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
1881 if (dst.size() == 1) {
1882 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1883 src = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0x3f800000u), src, cond);
1884 cond = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1885 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0xbf800000u), src, cond);
1886 } else if (dst.size() == 2) {
1887 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1888 Temp tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0x3FF00000u));
1889 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, emit_extract_vector(ctx, src, 1, v1), cond);
1890
1891 cond = bld.vopc(aco_opcode::v_cmp_le_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1892 tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0xBFF00000u));
1893 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, upper, cond);
1894
1895 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
1896 } else {
1897 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1898 nir_print_instr(&instr->instr, stderr);
1899 fprintf(stderr, "\n");
1900 }
1901 break;
1902 }
1903 case nir_op_f2f32: {
1904 if (instr->src[0].src.ssa->bit_size == 64) {
1905 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f64, dst);
1906 } else {
1907 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1908 nir_print_instr(&instr->instr, stderr);
1909 fprintf(stderr, "\n");
1910 }
1911 break;
1912 }
1913 case nir_op_f2f64: {
1914 if (instr->src[0].src.ssa->bit_size == 32) {
1915 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_f32, dst);
1916 } else {
1917 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1918 nir_print_instr(&instr->instr, stderr);
1919 fprintf(stderr, "\n");
1920 }
1921 break;
1922 }
1923 case nir_op_i2f32: {
1924 assert(dst.size() == 1);
1925 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_i32, dst);
1926 break;
1927 }
1928 case nir_op_i2f64: {
1929 if (instr->src[0].src.ssa->bit_size == 32) {
1930 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_i32, dst);
1931 } else if (instr->src[0].src.ssa->bit_size == 64) {
1932 Temp src = get_alu_src(ctx, instr->src[0]);
1933 RegClass rc = RegClass(src.type(), 1);
1934 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
1935 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1936 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
1937 upper = bld.vop1(aco_opcode::v_cvt_f64_i32, bld.def(v2), upper);
1938 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
1939 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
1940
1941 } else {
1942 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1943 nir_print_instr(&instr->instr, stderr);
1944 fprintf(stderr, "\n");
1945 }
1946 break;
1947 }
1948 case nir_op_u2f32: {
1949 assert(dst.size() == 1);
1950 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_u32, dst);
1951 break;
1952 }
1953 case nir_op_u2f64: {
1954 if (instr->src[0].src.ssa->bit_size == 32) {
1955 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_u32, dst);
1956 } else if (instr->src[0].src.ssa->bit_size == 64) {
1957 Temp src = get_alu_src(ctx, instr->src[0]);
1958 RegClass rc = RegClass(src.type(), 1);
1959 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
1960 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1961 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
1962 upper = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), upper);
1963 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
1964 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
1965 } else {
1966 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1967 nir_print_instr(&instr->instr, stderr);
1968 fprintf(stderr, "\n");
1969 }
1970 break;
1971 }
1972 case nir_op_f2i32: {
1973 Temp src = get_alu_src(ctx, instr->src[0]);
1974 if (instr->src[0].src.ssa->bit_size == 32) {
1975 if (dst.type() == RegType::vgpr)
1976 bld.vop1(aco_opcode::v_cvt_i32_f32, Definition(dst), src);
1977 else
1978 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
1979 bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), src));
1980
1981 } else if (instr->src[0].src.ssa->bit_size == 64) {
1982 if (dst.type() == RegType::vgpr)
1983 bld.vop1(aco_opcode::v_cvt_i32_f64, Definition(dst), src);
1984 else
1985 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
1986 bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), src));
1987
1988 } else {
1989 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1990 nir_print_instr(&instr->instr, stderr);
1991 fprintf(stderr, "\n");
1992 }
1993 break;
1994 }
1995 case nir_op_f2u32: {
1996 Temp src = get_alu_src(ctx, instr->src[0]);
1997 if (instr->src[0].src.ssa->bit_size == 32) {
1998 if (dst.type() == RegType::vgpr)
1999 bld.vop1(aco_opcode::v_cvt_u32_f32, Definition(dst), src);
2000 else
2001 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2002 bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), src));
2003
2004 } else if (instr->src[0].src.ssa->bit_size == 64) {
2005 if (dst.type() == RegType::vgpr)
2006 bld.vop1(aco_opcode::v_cvt_u32_f64, Definition(dst), src);
2007 else
2008 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2009 bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), src));
2010
2011 } else {
2012 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2013 nir_print_instr(&instr->instr, stderr);
2014 fprintf(stderr, "\n");
2015 }
2016 break;
2017 }
2018 case nir_op_f2i64: {
2019 Temp src = get_alu_src(ctx, instr->src[0]);
2020 if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::vgpr) {
2021 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2022 exponent = bld.vop3(aco_opcode::v_med3_i32, bld.def(v1), Operand(0x0u), exponent, Operand(64u));
2023 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2024 Temp sign = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
2025 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2026 mantissa = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(7u), mantissa);
2027 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2028 Temp new_exponent = bld.tmp(v1);
2029 Temp borrow = bld.vsub32(Definition(new_exponent), Operand(63u), exponent, true).def(1).getTemp();
2030 if (ctx->program->chip_class >= GFX8)
2031 mantissa = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), new_exponent, mantissa);
2032 else
2033 mantissa = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), mantissa, new_exponent);
2034 Temp saturate = bld.vop1(aco_opcode::v_bfrev_b32, bld.def(v1), Operand(0xfffffffeu));
2035 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2036 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2037 lower = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), lower, Operand(0xffffffffu), borrow);
2038 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), upper, saturate, borrow);
2039 lower = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, lower);
2040 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, upper);
2041 Temp new_lower = bld.tmp(v1);
2042 borrow = bld.vsub32(Definition(new_lower), lower, sign, true).def(1).getTemp();
2043 Temp new_upper = bld.vsub32(bld.def(v1), upper, sign, false, borrow);
2044 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), new_lower, new_upper);
2045
2046 } else if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::sgpr) {
2047 if (src.type() == RegType::vgpr)
2048 src = bld.as_uniform(src);
2049 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2050 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2051 exponent = bld.sop2(aco_opcode::s_max_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2052 exponent = bld.sop2(aco_opcode::s_min_u32, bld.def(s1), bld.def(s1, scc), Operand(64u), exponent);
2053 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2054 Temp sign = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
2055 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2056 mantissa = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), mantissa, Operand(7u));
2057 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2058 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(63u), exponent);
2059 mantissa = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent);
2060 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), exponent, Operand(0xffffffffu)); // exp >= 64
2061 Temp saturate = bld.sop1(aco_opcode::s_brev_b64, bld.def(s2), Operand(0xfffffffeu));
2062 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), saturate, mantissa, cond);
2063 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2064 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2065 lower = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, lower);
2066 upper = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, upper);
2067 Temp borrow = bld.tmp(s1);
2068 lower = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), lower, sign);
2069 upper = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), upper, sign, borrow);
2070 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2071
2072 } else if (instr->src[0].src.ssa->bit_size == 64) {
2073 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2074 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2075 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2076 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2077 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2078 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2079 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2080 Temp upper = bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), floor);
2081 if (dst.type() == RegType::sgpr) {
2082 lower = bld.as_uniform(lower);
2083 upper = bld.as_uniform(upper);
2084 }
2085 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2086
2087 } else {
2088 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2089 nir_print_instr(&instr->instr, stderr);
2090 fprintf(stderr, "\n");
2091 }
2092 break;
2093 }
2094 case nir_op_f2u64: {
2095 Temp src = get_alu_src(ctx, instr->src[0]);
2096 if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::vgpr) {
2097 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2098 Temp exponent_in_range = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(64u), exponent);
2099 exponent = bld.vop2(aco_opcode::v_max_i32, bld.def(v1), Operand(0x0u), exponent);
2100 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2101 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2102 Temp exponent_small = bld.vsub32(bld.def(v1), Operand(24u), exponent);
2103 Temp small = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), exponent_small, mantissa);
2104 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2105 Temp new_exponent = bld.tmp(v1);
2106 Temp cond_small = bld.vsub32(Definition(new_exponent), exponent, Operand(24u), true).def(1).getTemp();
2107 if (ctx->program->chip_class >= GFX8)
2108 mantissa = bld.vop3(aco_opcode::v_lshlrev_b64, bld.def(v2), new_exponent, mantissa);
2109 else
2110 mantissa = bld.vop3(aco_opcode::v_lshl_b64, bld.def(v2), mantissa, new_exponent);
2111 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2112 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2113 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), lower, small, cond_small);
2114 upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), upper, Operand(0u), cond_small);
2115 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), lower, exponent_in_range);
2116 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), upper, exponent_in_range);
2117 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2118
2119 } else if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::sgpr) {
2120 if (src.type() == RegType::vgpr)
2121 src = bld.as_uniform(src);
2122 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2123 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2124 exponent = bld.sop2(aco_opcode::s_max_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2125 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2126 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2127 Temp exponent_small = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(24u), exponent);
2128 Temp small = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), mantissa, exponent_small);
2129 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2130 Temp exponent_large = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(24u));
2131 mantissa = bld.sop2(aco_opcode::s_lshl_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent_large);
2132 Temp cond = bld.sopc(aco_opcode::s_cmp_ge_i32, bld.def(s1, scc), Operand(64u), exponent);
2133 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), mantissa, Operand(0xffffffffu), cond);
2134 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2135 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2136 Temp cond_small = bld.sopc(aco_opcode::s_cmp_le_i32, bld.def(s1, scc), exponent, Operand(24u));
2137 lower = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), small, lower, cond_small);
2138 upper = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), Operand(0u), upper, cond_small);
2139 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2140
2141 } else if (instr->src[0].src.ssa->bit_size == 64) {
2142 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2143 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2144 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2145 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2146 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2147 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2148 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2149 Temp upper = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), floor);
2150 if (dst.type() == RegType::sgpr) {
2151 lower = bld.as_uniform(lower);
2152 upper = bld.as_uniform(upper);
2153 }
2154 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2155
2156 } else {
2157 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2158 nir_print_instr(&instr->instr, stderr);
2159 fprintf(stderr, "\n");
2160 }
2161 break;
2162 }
2163 case nir_op_b2f32: {
2164 Temp src = get_alu_src(ctx, instr->src[0]);
2165 assert(src.regClass() == bld.lm);
2166
2167 if (dst.regClass() == s1) {
2168 src = bool_to_scalar_condition(ctx, src);
2169 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3f800000u), src);
2170 } else if (dst.regClass() == v1) {
2171 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
2172 } else {
2173 unreachable("Wrong destination register class for nir_op_b2f32.");
2174 }
2175 break;
2176 }
2177 case nir_op_b2f64: {
2178 Temp src = get_alu_src(ctx, instr->src[0]);
2179 assert(src.regClass() == bld.lm);
2180
2181 if (dst.regClass() == s2) {
2182 src = bool_to_scalar_condition(ctx, src);
2183 bld.sop2(aco_opcode::s_cselect_b64, Definition(dst), Operand(0x3f800000u), Operand(0u), bld.scc(src));
2184 } else if (dst.regClass() == v2) {
2185 Temp one = bld.vop1(aco_opcode::v_mov_b32, bld.def(v2), Operand(0x3FF00000u));
2186 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), one, src);
2187 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
2188 } else {
2189 unreachable("Wrong destination register class for nir_op_b2f64.");
2190 }
2191 break;
2192 }
2193 case nir_op_i2i32: {
2194 Temp src = get_alu_src(ctx, instr->src[0]);
2195 if (instr->src[0].src.ssa->bit_size == 64) {
2196 /* we can actually just say dst = src, as it would map the lower register */
2197 emit_extract_vector(ctx, src, 0, dst);
2198 } else {
2199 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2200 nir_print_instr(&instr->instr, stderr);
2201 fprintf(stderr, "\n");
2202 }
2203 break;
2204 }
2205 case nir_op_u2u32: {
2206 Temp src = get_alu_src(ctx, instr->src[0]);
2207 if (instr->src[0].src.ssa->bit_size == 16) {
2208 if (dst.regClass() == s1) {
2209 bld.sop2(aco_opcode::s_and_b32, Definition(dst), bld.def(s1, scc), Operand(0xFFFFu), src);
2210 } else {
2211 // TODO: do better with SDWA
2212 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0xFFFFu), src);
2213 }
2214 } else if (instr->src[0].src.ssa->bit_size == 64) {
2215 /* we can actually just say dst = src, as it would map the lower register */
2216 emit_extract_vector(ctx, src, 0, dst);
2217 } else {
2218 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2219 nir_print_instr(&instr->instr, stderr);
2220 fprintf(stderr, "\n");
2221 }
2222 break;
2223 }
2224 case nir_op_i2i64: {
2225 Temp src = get_alu_src(ctx, instr->src[0]);
2226 if (src.regClass() == s1) {
2227 Temp high = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
2228 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, high);
2229 } else if (src.regClass() == v1) {
2230 Temp high = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
2231 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, high);
2232 } else {
2233 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2234 nir_print_instr(&instr->instr, stderr);
2235 fprintf(stderr, "\n");
2236 }
2237 break;
2238 }
2239 case nir_op_u2u64: {
2240 Temp src = get_alu_src(ctx, instr->src[0]);
2241 if (instr->src[0].src.ssa->bit_size == 32) {
2242 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, Operand(0u));
2243 } else {
2244 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2245 nir_print_instr(&instr->instr, stderr);
2246 fprintf(stderr, "\n");
2247 }
2248 break;
2249 }
2250 case nir_op_b2i32: {
2251 Temp src = get_alu_src(ctx, instr->src[0]);
2252 assert(src.regClass() == bld.lm);
2253
2254 if (dst.regClass() == s1) {
2255 // TODO: in a post-RA optimization, we can check if src is in VCC, and directly use VCCNZ
2256 bool_to_scalar_condition(ctx, src, dst);
2257 } else if (dst.regClass() == v1) {
2258 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), src);
2259 } else {
2260 unreachable("Invalid register class for b2i32");
2261 }
2262 break;
2263 }
2264 case nir_op_i2b1: {
2265 Temp src = get_alu_src(ctx, instr->src[0]);
2266 assert(dst.regClass() == bld.lm);
2267
2268 if (src.type() == RegType::vgpr) {
2269 assert(src.regClass() == v1 || src.regClass() == v2);
2270 assert(dst.regClass() == bld.lm);
2271 bld.vopc(src.size() == 2 ? aco_opcode::v_cmp_lg_u64 : aco_opcode::v_cmp_lg_u32,
2272 Definition(dst), Operand(0u), src).def(0).setHint(vcc);
2273 } else {
2274 assert(src.regClass() == s1 || src.regClass() == s2);
2275 Temp tmp;
2276 if (src.regClass() == s2 && ctx->program->chip_class <= GFX7) {
2277 tmp = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), Operand(0u), src).def(1).getTemp();
2278 } else {
2279 tmp = bld.sopc(src.size() == 2 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::s_cmp_lg_u32,
2280 bld.scc(bld.def(s1)), Operand(0u), src);
2281 }
2282 bool_to_vector_condition(ctx, tmp, dst);
2283 }
2284 break;
2285 }
2286 case nir_op_pack_64_2x32_split: {
2287 Temp src0 = get_alu_src(ctx, instr->src[0]);
2288 Temp src1 = get_alu_src(ctx, instr->src[1]);
2289
2290 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
2291 break;
2292 }
2293 case nir_op_unpack_64_2x32_split_x:
2294 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
2295 break;
2296 case nir_op_unpack_64_2x32_split_y:
2297 bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
2298 break;
2299 case nir_op_pack_half_2x16: {
2300 Temp src = get_alu_src(ctx, instr->src[0], 2);
2301
2302 if (dst.regClass() == v1) {
2303 Temp src0 = bld.tmp(v1);
2304 Temp src1 = bld.tmp(v1);
2305 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
2306 if (!ctx->block->fp_mode.care_about_round32 || ctx->block->fp_mode.round32 == fp_round_tz)
2307 bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, Definition(dst), src0, src1);
2308 else
2309 bld.vop3(aco_opcode::v_cvt_pk_u16_u32, Definition(dst),
2310 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src0),
2311 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src1));
2312 } else {
2313 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2314 nir_print_instr(&instr->instr, stderr);
2315 fprintf(stderr, "\n");
2316 }
2317 break;
2318 }
2319 case nir_op_unpack_half_2x16_split_x: {
2320 if (dst.regClass() == v1) {
2321 Builder bld(ctx->program, ctx->block);
2322 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst), get_alu_src(ctx, instr->src[0]));
2323 } else {
2324 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2325 nir_print_instr(&instr->instr, stderr);
2326 fprintf(stderr, "\n");
2327 }
2328 break;
2329 }
2330 case nir_op_unpack_half_2x16_split_y: {
2331 if (dst.regClass() == v1) {
2332 Builder bld(ctx->program, ctx->block);
2333 /* TODO: use SDWA here */
2334 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst),
2335 bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), as_vgpr(ctx, get_alu_src(ctx, instr->src[0]))));
2336 } else {
2337 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2338 nir_print_instr(&instr->instr, stderr);
2339 fprintf(stderr, "\n");
2340 }
2341 break;
2342 }
2343 case nir_op_fquantize2f16: {
2344 Temp src = get_alu_src(ctx, instr->src[0]);
2345 Temp f16 = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), src);
2346 Temp f32, cmp_res;
2347
2348 if (ctx->program->chip_class >= GFX8) {
2349 Temp mask = bld.copy(bld.def(s1), Operand(0x36Fu)); /* value is NOT negative/positive denormal value */
2350 cmp_res = bld.vopc_e64(aco_opcode::v_cmp_class_f16, bld.hint_vcc(bld.def(bld.lm)), f16, mask);
2351 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2352 } else {
2353 /* 0x38800000 is smallest half float value (2^-14) in 32-bit float,
2354 * so compare the result and flush to 0 if it's smaller.
2355 */
2356 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2357 Temp smallest = bld.copy(bld.def(s1), Operand(0x38800000u));
2358 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), f32, smallest);
2359 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
2360 cmp_res = vop3->definitions[0].getTemp();
2361 }
2362
2363 if (ctx->block->fp_mode.preserve_signed_zero_inf_nan32 || ctx->program->chip_class < GFX8) {
2364 Temp copysign_0 = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0u), as_vgpr(ctx, src));
2365 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), copysign_0, f32, cmp_res);
2366 } else {
2367 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), f32, cmp_res);
2368 }
2369 break;
2370 }
2371 case nir_op_bfm: {
2372 Temp bits = get_alu_src(ctx, instr->src[0]);
2373 Temp offset = get_alu_src(ctx, instr->src[1]);
2374
2375 if (dst.regClass() == s1) {
2376 bld.sop2(aco_opcode::s_bfm_b32, Definition(dst), bits, offset);
2377 } else if (dst.regClass() == v1) {
2378 bld.vop3(aco_opcode::v_bfm_b32, Definition(dst), bits, offset);
2379 } else {
2380 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2381 nir_print_instr(&instr->instr, stderr);
2382 fprintf(stderr, "\n");
2383 }
2384 break;
2385 }
2386 case nir_op_bitfield_select: {
2387 /* (mask & insert) | (~mask & base) */
2388 Temp bitmask = get_alu_src(ctx, instr->src[0]);
2389 Temp insert = get_alu_src(ctx, instr->src[1]);
2390 Temp base = get_alu_src(ctx, instr->src[2]);
2391
2392 /* dst = (insert & bitmask) | (base & ~bitmask) */
2393 if (dst.regClass() == s1) {
2394 aco_ptr<Instruction> sop2;
2395 nir_const_value* const_bitmask = nir_src_as_const_value(instr->src[0].src);
2396 nir_const_value* const_insert = nir_src_as_const_value(instr->src[1].src);
2397 Operand lhs;
2398 if (const_insert && const_bitmask) {
2399 lhs = Operand(const_insert->u32 & const_bitmask->u32);
2400 } else {
2401 insert = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), insert, bitmask);
2402 lhs = Operand(insert);
2403 }
2404
2405 Operand rhs;
2406 nir_const_value* const_base = nir_src_as_const_value(instr->src[2].src);
2407 if (const_base && const_bitmask) {
2408 rhs = Operand(const_base->u32 & ~const_bitmask->u32);
2409 } else {
2410 base = bld.sop2(aco_opcode::s_andn2_b32, bld.def(s1), bld.def(s1, scc), base, bitmask);
2411 rhs = Operand(base);
2412 }
2413
2414 bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), rhs, lhs);
2415
2416 } else if (dst.regClass() == v1) {
2417 if (base.type() == RegType::sgpr && (bitmask.type() == RegType::sgpr || (insert.type() == RegType::sgpr)))
2418 base = as_vgpr(ctx, base);
2419 if (insert.type() == RegType::sgpr && bitmask.type() == RegType::sgpr)
2420 insert = as_vgpr(ctx, insert);
2421
2422 bld.vop3(aco_opcode::v_bfi_b32, Definition(dst), bitmask, insert, base);
2423
2424 } else {
2425 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2426 nir_print_instr(&instr->instr, stderr);
2427 fprintf(stderr, "\n");
2428 }
2429 break;
2430 }
2431 case nir_op_ubfe:
2432 case nir_op_ibfe: {
2433 Temp base = get_alu_src(ctx, instr->src[0]);
2434 Temp offset = get_alu_src(ctx, instr->src[1]);
2435 Temp bits = get_alu_src(ctx, instr->src[2]);
2436
2437 if (dst.type() == RegType::sgpr) {
2438 Operand extract;
2439 nir_const_value* const_offset = nir_src_as_const_value(instr->src[1].src);
2440 nir_const_value* const_bits = nir_src_as_const_value(instr->src[2].src);
2441 if (const_offset && const_bits) {
2442 uint32_t const_extract = (const_bits->u32 << 16) | const_offset->u32;
2443 extract = Operand(const_extract);
2444 } else {
2445 Operand width;
2446 if (const_bits) {
2447 width = Operand(const_bits->u32 << 16);
2448 } else {
2449 width = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), bits, Operand(16u));
2450 }
2451 extract = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), offset, width);
2452 }
2453
2454 aco_opcode opcode;
2455 if (dst.regClass() == s1) {
2456 if (instr->op == nir_op_ubfe)
2457 opcode = aco_opcode::s_bfe_u32;
2458 else
2459 opcode = aco_opcode::s_bfe_i32;
2460 } else if (dst.regClass() == s2) {
2461 if (instr->op == nir_op_ubfe)
2462 opcode = aco_opcode::s_bfe_u64;
2463 else
2464 opcode = aco_opcode::s_bfe_i64;
2465 } else {
2466 unreachable("Unsupported BFE bit size");
2467 }
2468
2469 bld.sop2(opcode, Definition(dst), bld.def(s1, scc), base, extract);
2470
2471 } else {
2472 aco_opcode opcode;
2473 if (dst.regClass() == v1) {
2474 if (instr->op == nir_op_ubfe)
2475 opcode = aco_opcode::v_bfe_u32;
2476 else
2477 opcode = aco_opcode::v_bfe_i32;
2478 } else {
2479 unreachable("Unsupported BFE bit size");
2480 }
2481
2482 emit_vop3a_instruction(ctx, instr, opcode, dst);
2483 }
2484 break;
2485 }
2486 case nir_op_bit_count: {
2487 Temp src = get_alu_src(ctx, instr->src[0]);
2488 if (src.regClass() == s1) {
2489 bld.sop1(aco_opcode::s_bcnt1_i32_b32, Definition(dst), bld.def(s1, scc), src);
2490 } else if (src.regClass() == v1) {
2491 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst), src, Operand(0u));
2492 } else if (src.regClass() == v2) {
2493 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst),
2494 emit_extract_vector(ctx, src, 1, v1),
2495 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1),
2496 emit_extract_vector(ctx, src, 0, v1), Operand(0u)));
2497 } else if (src.regClass() == s2) {
2498 bld.sop1(aco_opcode::s_bcnt1_i32_b64, Definition(dst), bld.def(s1, scc), src);
2499 } else {
2500 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2501 nir_print_instr(&instr->instr, stderr);
2502 fprintf(stderr, "\n");
2503 }
2504 break;
2505 }
2506 case nir_op_flt: {
2507 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_f32, aco_opcode::v_cmp_lt_f64);
2508 break;
2509 }
2510 case nir_op_fge: {
2511 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_f32, aco_opcode::v_cmp_ge_f64);
2512 break;
2513 }
2514 case nir_op_feq: {
2515 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_f32, aco_opcode::v_cmp_eq_f64);
2516 break;
2517 }
2518 case nir_op_fne: {
2519 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_neq_f32, aco_opcode::v_cmp_neq_f64);
2520 break;
2521 }
2522 case nir_op_ilt: {
2523 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_i32, aco_opcode::v_cmp_lt_i64, aco_opcode::s_cmp_lt_i32);
2524 break;
2525 }
2526 case nir_op_ige: {
2527 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_i32, aco_opcode::v_cmp_ge_i64, aco_opcode::s_cmp_ge_i32);
2528 break;
2529 }
2530 case nir_op_ieq: {
2531 if (instr->src[0].src.ssa->bit_size == 1)
2532 emit_boolean_logic(ctx, instr, Builder::s_xnor, dst);
2533 else
2534 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_i32, aco_opcode::v_cmp_eq_i64, aco_opcode::s_cmp_eq_i32,
2535 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_eq_u64 : aco_opcode::num_opcodes);
2536 break;
2537 }
2538 case nir_op_ine: {
2539 if (instr->src[0].src.ssa->bit_size == 1)
2540 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
2541 else
2542 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lg_i32, aco_opcode::v_cmp_lg_i64, aco_opcode::s_cmp_lg_i32,
2543 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::num_opcodes);
2544 break;
2545 }
2546 case nir_op_ult: {
2547 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_u32, aco_opcode::v_cmp_lt_u64, aco_opcode::s_cmp_lt_u32);
2548 break;
2549 }
2550 case nir_op_uge: {
2551 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_u32, aco_opcode::v_cmp_ge_u64, aco_opcode::s_cmp_ge_u32);
2552 break;
2553 }
2554 case nir_op_fddx:
2555 case nir_op_fddy:
2556 case nir_op_fddx_fine:
2557 case nir_op_fddy_fine:
2558 case nir_op_fddx_coarse:
2559 case nir_op_fddy_coarse: {
2560 Temp src = get_alu_src(ctx, instr->src[0]);
2561 uint16_t dpp_ctrl1, dpp_ctrl2;
2562 if (instr->op == nir_op_fddx_fine) {
2563 dpp_ctrl1 = dpp_quad_perm(0, 0, 2, 2);
2564 dpp_ctrl2 = dpp_quad_perm(1, 1, 3, 3);
2565 } else if (instr->op == nir_op_fddy_fine) {
2566 dpp_ctrl1 = dpp_quad_perm(0, 1, 0, 1);
2567 dpp_ctrl2 = dpp_quad_perm(2, 3, 2, 3);
2568 } else {
2569 dpp_ctrl1 = dpp_quad_perm(0, 0, 0, 0);
2570 if (instr->op == nir_op_fddx || instr->op == nir_op_fddx_coarse)
2571 dpp_ctrl2 = dpp_quad_perm(1, 1, 1, 1);
2572 else
2573 dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
2574 }
2575
2576 Temp tmp;
2577 if (ctx->program->chip_class >= GFX8) {
2578 Temp tl = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl1);
2579 tmp = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), src, tl, dpp_ctrl2);
2580 } else {
2581 Temp tl = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl1);
2582 Temp tr = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl2);
2583 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), tr, tl);
2584 }
2585 emit_wqm(ctx, tmp, dst, true);
2586 break;
2587 }
2588 default:
2589 fprintf(stderr, "Unknown NIR ALU instr: ");
2590 nir_print_instr(&instr->instr, stderr);
2591 fprintf(stderr, "\n");
2592 }
2593 }
2594
2595 void visit_load_const(isel_context *ctx, nir_load_const_instr *instr)
2596 {
2597 Temp dst = get_ssa_temp(ctx, &instr->def);
2598
2599 // TODO: we really want to have the resulting type as this would allow for 64bit literals
2600 // which get truncated the lsb if double and msb if int
2601 // for now, we only use s_mov_b64 with 64bit inline constants
2602 assert(instr->def.num_components == 1 && "Vector load_const should be lowered to scalar.");
2603 assert(dst.type() == RegType::sgpr);
2604
2605 Builder bld(ctx->program, ctx->block);
2606
2607 if (instr->def.bit_size == 1) {
2608 assert(dst.regClass() == bld.lm);
2609 int val = instr->value[0].b ? -1 : 0;
2610 Operand op = bld.lm.size() == 1 ? Operand((uint32_t) val) : Operand((uint64_t) val);
2611 bld.sop1(Builder::s_mov, Definition(dst), op);
2612 } else if (dst.size() == 1) {
2613 bld.copy(Definition(dst), Operand(instr->value[0].u32));
2614 } else {
2615 assert(dst.size() != 1);
2616 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
2617 if (instr->def.bit_size == 64)
2618 for (unsigned i = 0; i < dst.size(); i++)
2619 vec->operands[i] = Operand{(uint32_t)(instr->value[0].u64 >> i * 32)};
2620 else {
2621 for (unsigned i = 0; i < dst.size(); i++)
2622 vec->operands[i] = Operand{instr->value[i].u32};
2623 }
2624 vec->definitions[0] = Definition(dst);
2625 ctx->block->instructions.emplace_back(std::move(vec));
2626 }
2627 }
2628
2629 uint32_t widen_mask(uint32_t mask, unsigned multiplier)
2630 {
2631 uint32_t new_mask = 0;
2632 for(unsigned i = 0; i < 32 && (1u << i) <= mask; ++i)
2633 if (mask & (1u << i))
2634 new_mask |= ((1u << multiplier) - 1u) << (i * multiplier);
2635 return new_mask;
2636 }
2637
2638 Operand load_lds_size_m0(isel_context *ctx)
2639 {
2640 /* TODO: m0 does not need to be initialized on GFX9+ */
2641 Builder bld(ctx->program, ctx->block);
2642 return bld.m0((Temp)bld.sopk(aco_opcode::s_movk_i32, bld.def(s1, m0), 0xffff));
2643 }
2644
2645 Temp load_lds(isel_context *ctx, unsigned elem_size_bytes, Temp dst,
2646 Temp address, unsigned base_offset, unsigned align)
2647 {
2648 assert(util_is_power_of_two_nonzero(align) && align >= 4);
2649
2650 Builder bld(ctx->program, ctx->block);
2651
2652 Operand m = load_lds_size_m0(ctx);
2653
2654 unsigned num_components = dst.size() * 4u / elem_size_bytes;
2655 unsigned bytes_read = 0;
2656 unsigned result_size = 0;
2657 unsigned total_bytes = num_components * elem_size_bytes;
2658 std::array<Temp, NIR_MAX_VEC_COMPONENTS> result;
2659 bool large_ds_read = ctx->options->chip_class >= GFX7;
2660 bool usable_read2 = ctx->options->chip_class >= GFX7;
2661
2662 while (bytes_read < total_bytes) {
2663 unsigned todo = total_bytes - bytes_read;
2664 bool aligned8 = bytes_read % 8 == 0 && align % 8 == 0;
2665 bool aligned16 = bytes_read % 16 == 0 && align % 16 == 0;
2666
2667 aco_opcode op = aco_opcode::last_opcode;
2668 bool read2 = false;
2669 if (todo >= 16 && aligned16 && large_ds_read) {
2670 op = aco_opcode::ds_read_b128;
2671 todo = 16;
2672 } else if (todo >= 16 && aligned8 && usable_read2) {
2673 op = aco_opcode::ds_read2_b64;
2674 read2 = true;
2675 todo = 16;
2676 } else if (todo >= 12 && aligned16 && large_ds_read) {
2677 op = aco_opcode::ds_read_b96;
2678 todo = 12;
2679 } else if (todo >= 8 && aligned8) {
2680 op = aco_opcode::ds_read_b64;
2681 todo = 8;
2682 } else if (todo >= 8 && usable_read2) {
2683 op = aco_opcode::ds_read2_b32;
2684 read2 = true;
2685 todo = 8;
2686 } else if (todo >= 4) {
2687 op = aco_opcode::ds_read_b32;
2688 todo = 4;
2689 } else {
2690 assert(false);
2691 }
2692 assert(todo % elem_size_bytes == 0);
2693 unsigned num_elements = todo / elem_size_bytes;
2694 unsigned offset = base_offset + bytes_read;
2695 unsigned max_offset = read2 ? 1019 : 65535;
2696
2697 Temp address_offset = address;
2698 if (offset > max_offset) {
2699 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
2700 offset = bytes_read;
2701 }
2702 assert(offset <= max_offset); /* bytes_read shouldn't be large enough for this to happen */
2703
2704 Temp res;
2705 if (num_components == 1 && dst.type() == RegType::vgpr)
2706 res = dst;
2707 else
2708 res = bld.tmp(RegClass(RegType::vgpr, todo / 4));
2709
2710 if (read2)
2711 res = bld.ds(op, Definition(res), address_offset, m, offset / (todo / 2), (offset / (todo / 2)) + 1);
2712 else
2713 res = bld.ds(op, Definition(res), address_offset, m, offset);
2714
2715 if (num_components == 1) {
2716 assert(todo == total_bytes);
2717 if (dst.type() == RegType::sgpr)
2718 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), res);
2719 return dst;
2720 }
2721
2722 if (dst.type() == RegType::sgpr) {
2723 Temp new_res = bld.tmp(RegType::sgpr, res.size());
2724 expand_vector(ctx, res, new_res, res.size(), (1 << res.size()) - 1);
2725 res = new_res;
2726 }
2727
2728 if (num_elements == 1) {
2729 result[result_size++] = res;
2730 } else {
2731 assert(res != dst && res.size() % num_elements == 0);
2732 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_elements)};
2733 split->operands[0] = Operand(res);
2734 for (unsigned i = 0; i < num_elements; i++)
2735 split->definitions[i] = Definition(result[result_size++] = bld.tmp(res.type(), elem_size_bytes / 4));
2736 ctx->block->instructions.emplace_back(std::move(split));
2737 }
2738
2739 bytes_read += todo;
2740 }
2741
2742 assert(result_size == num_components && result_size > 1);
2743 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, result_size, 1)};
2744 for (unsigned i = 0; i < result_size; i++)
2745 vec->operands[i] = Operand(result[i]);
2746 vec->definitions[0] = Definition(dst);
2747 ctx->block->instructions.emplace_back(std::move(vec));
2748 ctx->allocated_vec.emplace(dst.id(), result);
2749
2750 return dst;
2751 }
2752
2753 Temp extract_subvector(isel_context *ctx, Temp data, unsigned start, unsigned size, RegType type)
2754 {
2755 if (start == 0 && size == data.size())
2756 return type == RegType::vgpr ? as_vgpr(ctx, data) : data;
2757
2758 unsigned size_hint = 1;
2759 auto it = ctx->allocated_vec.find(data.id());
2760 if (it != ctx->allocated_vec.end())
2761 size_hint = it->second[0].size();
2762 if (size % size_hint || start % size_hint)
2763 size_hint = 1;
2764
2765 start /= size_hint;
2766 size /= size_hint;
2767
2768 Temp elems[size];
2769 for (unsigned i = 0; i < size; i++)
2770 elems[i] = emit_extract_vector(ctx, data, start + i, RegClass(type, size_hint));
2771
2772 if (size == 1)
2773 return type == RegType::vgpr ? as_vgpr(ctx, elems[0]) : elems[0];
2774
2775 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
2776 for (unsigned i = 0; i < size; i++)
2777 vec->operands[i] = Operand(elems[i]);
2778 Temp res = {ctx->program->allocateId(), RegClass(type, size * size_hint)};
2779 vec->definitions[0] = Definition(res);
2780 ctx->block->instructions.emplace_back(std::move(vec));
2781 return res;
2782 }
2783
2784 void ds_write_helper(isel_context *ctx, Operand m, Temp address, Temp data, unsigned data_start, unsigned total_size, unsigned offset0, unsigned offset1, unsigned align)
2785 {
2786 Builder bld(ctx->program, ctx->block);
2787 unsigned bytes_written = 0;
2788 bool large_ds_write = ctx->options->chip_class >= GFX7;
2789 bool usable_write2 = ctx->options->chip_class >= GFX7;
2790
2791 while (bytes_written < total_size * 4) {
2792 unsigned todo = total_size * 4 - bytes_written;
2793 bool aligned8 = bytes_written % 8 == 0 && align % 8 == 0;
2794 bool aligned16 = bytes_written % 16 == 0 && align % 16 == 0;
2795
2796 aco_opcode op = aco_opcode::last_opcode;
2797 bool write2 = false;
2798 unsigned size = 0;
2799 if (todo >= 16 && aligned16 && large_ds_write) {
2800 op = aco_opcode::ds_write_b128;
2801 size = 4;
2802 } else if (todo >= 16 && aligned8 && usable_write2) {
2803 op = aco_opcode::ds_write2_b64;
2804 write2 = true;
2805 size = 4;
2806 } else if (todo >= 12 && aligned16 && large_ds_write) {
2807 op = aco_opcode::ds_write_b96;
2808 size = 3;
2809 } else if (todo >= 8 && aligned8) {
2810 op = aco_opcode::ds_write_b64;
2811 size = 2;
2812 } else if (todo >= 8 && usable_write2) {
2813 op = aco_opcode::ds_write2_b32;
2814 write2 = true;
2815 size = 2;
2816 } else if (todo >= 4) {
2817 op = aco_opcode::ds_write_b32;
2818 size = 1;
2819 } else {
2820 assert(false);
2821 }
2822
2823 unsigned offset = offset0 + offset1 + bytes_written;
2824 unsigned max_offset = write2 ? 1020 : 65535;
2825 Temp address_offset = address;
2826 if (offset > max_offset) {
2827 address_offset = bld.vadd32(bld.def(v1), Operand(offset0), address_offset);
2828 offset = offset1 + bytes_written;
2829 }
2830 assert(offset <= max_offset); /* offset1 shouldn't be large enough for this to happen */
2831
2832 if (write2) {
2833 Temp val0 = extract_subvector(ctx, data, data_start + (bytes_written >> 2), size / 2, RegType::vgpr);
2834 Temp val1 = extract_subvector(ctx, data, data_start + (bytes_written >> 2) + 1, size / 2, RegType::vgpr);
2835 bld.ds(op, address_offset, val0, val1, m, offset / size / 2, (offset / size / 2) + 1);
2836 } else {
2837 Temp val = extract_subvector(ctx, data, data_start + (bytes_written >> 2), size, RegType::vgpr);
2838 bld.ds(op, address_offset, val, m, offset);
2839 }
2840
2841 bytes_written += size * 4;
2842 }
2843 }
2844
2845 void store_lds(isel_context *ctx, unsigned elem_size_bytes, Temp data, uint32_t wrmask,
2846 Temp address, unsigned base_offset, unsigned align)
2847 {
2848 assert(util_is_power_of_two_nonzero(align) && align >= 4);
2849 assert(elem_size_bytes == 4 || elem_size_bytes == 8);
2850
2851 Operand m = load_lds_size_m0(ctx);
2852
2853 /* we need at most two stores, assuming that the writemask is at most 4 bits wide */
2854 assert(wrmask <= 0x0f);
2855 int start[2], count[2];
2856 u_bit_scan_consecutive_range(&wrmask, &start[0], &count[0]);
2857 u_bit_scan_consecutive_range(&wrmask, &start[1], &count[1]);
2858 assert(wrmask == 0);
2859
2860 /* one combined store is sufficient */
2861 if (count[0] == count[1] && (align % elem_size_bytes) == 0 && (base_offset % elem_size_bytes) == 0) {
2862 Builder bld(ctx->program, ctx->block);
2863
2864 Temp address_offset = address;
2865 if ((base_offset / elem_size_bytes) + start[1] > 255) {
2866 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
2867 base_offset = 0;
2868 }
2869
2870 assert(count[0] == 1);
2871 RegClass xtract_rc(RegType::vgpr, elem_size_bytes / 4);
2872
2873 Temp val0 = emit_extract_vector(ctx, data, start[0], xtract_rc);
2874 Temp val1 = emit_extract_vector(ctx, data, start[1], xtract_rc);
2875 aco_opcode op = elem_size_bytes == 4 ? aco_opcode::ds_write2_b32 : aco_opcode::ds_write2_b64;
2876 base_offset = base_offset / elem_size_bytes;
2877 bld.ds(op, address_offset, val0, val1, m,
2878 base_offset + start[0], base_offset + start[1]);
2879 return;
2880 }
2881
2882 for (unsigned i = 0; i < 2; i++) {
2883 if (count[i] == 0)
2884 continue;
2885
2886 unsigned elem_size_words = elem_size_bytes / 4;
2887 ds_write_helper(ctx, m, address, data, start[i] * elem_size_words, count[i] * elem_size_words,
2888 base_offset, start[i] * elem_size_bytes, align);
2889 }
2890 return;
2891 }
2892
2893 unsigned calculate_lds_alignment(isel_context *ctx, unsigned const_offset)
2894 {
2895 unsigned align = 16;
2896 if (const_offset)
2897 align = std::min(align, 1u << (ffs(const_offset) - 1));
2898
2899 return align;
2900 }
2901
2902
2903 Temp create_vec_from_array(isel_context *ctx, Temp arr[], unsigned cnt, RegType reg_type, unsigned split_cnt = 0u, Temp dst = Temp())
2904 {
2905 Builder bld(ctx->program, ctx->block);
2906
2907 if (!dst.id())
2908 dst = bld.tmp(RegClass(reg_type, cnt * arr[0].size()));
2909
2910 std::array<Temp, NIR_MAX_VEC_COMPONENTS> allocated_vec;
2911 aco_ptr<Pseudo_instruction> instr {create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, cnt, 1)};
2912 instr->definitions[0] = Definition(dst);
2913
2914 for (unsigned i = 0; i < cnt; ++i) {
2915 assert(arr[i].size() == arr[0].size());
2916 allocated_vec[i] = arr[i];
2917 instr->operands[i] = Operand(arr[i]);
2918 }
2919
2920 bld.insert(std::move(instr));
2921
2922 if (split_cnt)
2923 emit_split_vector(ctx, dst, split_cnt);
2924 else
2925 ctx->allocated_vec.emplace(dst.id(), allocated_vec); /* emit_split_vector already does this */
2926
2927 return dst;
2928 }
2929
2930 inline unsigned resolve_excess_vmem_const_offset(Builder &bld, Temp &voffset, unsigned const_offset)
2931 {
2932 if (const_offset >= 4096) {
2933 unsigned excess_const_offset = const_offset / 4096u * 4096u;
2934 const_offset %= 4096u;
2935
2936 if (!voffset.id())
2937 voffset = bld.copy(bld.def(v1), Operand(excess_const_offset));
2938 else if (unlikely(voffset.regClass() == s1))
2939 voffset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), Operand(excess_const_offset), Operand(voffset));
2940 else if (likely(voffset.regClass() == v1))
2941 voffset = bld.vadd32(bld.def(v1), Operand(voffset), Operand(excess_const_offset));
2942 else
2943 unreachable("Unsupported register class of voffset");
2944 }
2945
2946 return const_offset;
2947 }
2948
2949 void emit_single_mubuf_store(isel_context *ctx, Temp descriptor, Temp voffset, Temp soffset, Temp vdata,
2950 unsigned const_offset = 0u, bool allow_reorder = true, bool slc = false)
2951 {
2952 assert(vdata.id());
2953 assert(vdata.size() != 3 || ctx->program->chip_class != GFX6);
2954 assert(vdata.size() >= 1 && vdata.size() <= 4);
2955
2956 Builder bld(ctx->program, ctx->block);
2957 aco_opcode op = (aco_opcode) ((unsigned) aco_opcode::buffer_store_dword + vdata.size() - 1);
2958 const_offset = resolve_excess_vmem_const_offset(bld, voffset, const_offset);
2959
2960 Operand voffset_op = voffset.id() ? Operand(as_vgpr(ctx, voffset)) : Operand(v1);
2961 Operand soffset_op = soffset.id() ? Operand(soffset) : Operand(0u);
2962 Builder::Result r = bld.mubuf(op, Operand(descriptor), voffset_op, soffset_op, Operand(vdata), const_offset,
2963 /* offen */ !voffset_op.isUndefined(), /* idxen*/ false, /* addr64 */ false,
2964 /* disable_wqm */ false, /* glc */ true, /* dlc*/ false, /* slc */ slc);
2965
2966 static_cast<MUBUF_instruction *>(r.instr)->can_reorder = allow_reorder;
2967 }
2968
2969 void store_vmem_mubuf(isel_context *ctx, Temp src, Temp descriptor, Temp voffset, Temp soffset,
2970 unsigned base_const_offset, unsigned elem_size_bytes, unsigned write_mask,
2971 bool allow_combining = true, bool reorder = true, bool slc = false)
2972 {
2973 Builder bld(ctx->program, ctx->block);
2974 assert(elem_size_bytes == 4 || elem_size_bytes == 8);
2975 assert(write_mask);
2976
2977 if (elem_size_bytes == 8) {
2978 elem_size_bytes = 4;
2979 write_mask = widen_mask(write_mask, 2);
2980 }
2981
2982 while (write_mask) {
2983 int start = 0;
2984 int count = 0;
2985 u_bit_scan_consecutive_range(&write_mask, &start, &count);
2986 assert(count > 0);
2987 assert(start >= 0);
2988
2989 while (count > 0) {
2990 unsigned sub_count = allow_combining ? MIN2(count, 4) : 1;
2991 unsigned const_offset = (unsigned) start * elem_size_bytes + base_const_offset;
2992
2993 /* GFX6 doesn't have buffer_store_dwordx3, so make sure not to emit that here either. */
2994 if (unlikely(ctx->program->chip_class == GFX6 && sub_count == 3))
2995 sub_count = 2;
2996
2997 Temp elem = extract_subvector(ctx, src, start, sub_count, RegType::vgpr);
2998 emit_single_mubuf_store(ctx, descriptor, voffset, soffset, elem, const_offset, reorder, slc);
2999
3000 count -= sub_count;
3001 start += sub_count;
3002 }
3003
3004 assert(count == 0);
3005 }
3006 }
3007
3008 Temp emit_single_mubuf_load(isel_context *ctx, Temp descriptor, Temp voffset, Temp soffset,
3009 unsigned const_offset, unsigned size_dwords, bool allow_reorder = true)
3010 {
3011 assert(size_dwords != 3 || ctx->program->chip_class != GFX6);
3012 assert(size_dwords >= 1 && size_dwords <= 4);
3013
3014 Builder bld(ctx->program, ctx->block);
3015 Temp vdata = bld.tmp(RegClass(RegType::vgpr, size_dwords));
3016 aco_opcode op = (aco_opcode) ((unsigned) aco_opcode::buffer_load_dword + size_dwords - 1);
3017 const_offset = resolve_excess_vmem_const_offset(bld, voffset, const_offset);
3018
3019 Operand voffset_op = voffset.id() ? Operand(as_vgpr(ctx, voffset)) : Operand(v1);
3020 Operand soffset_op = soffset.id() ? Operand(soffset) : Operand(0u);
3021 Builder::Result r = bld.mubuf(op, Definition(vdata), Operand(descriptor), voffset_op, soffset_op, const_offset,
3022 /* offen */ !voffset_op.isUndefined(), /* idxen*/ false, /* addr64 */ false,
3023 /* disable_wqm */ false, /* glc */ true,
3024 /* dlc*/ ctx->program->chip_class >= GFX10, /* slc */ false);
3025
3026 static_cast<MUBUF_instruction *>(r.instr)->can_reorder = allow_reorder;
3027
3028 return vdata;
3029 }
3030
3031 void load_vmem_mubuf(isel_context *ctx, Temp dst, Temp descriptor, Temp voffset, Temp soffset,
3032 unsigned base_const_offset, unsigned elem_size_bytes, unsigned num_components,
3033 unsigned stride = 0u, bool allow_combining = true, bool allow_reorder = true)
3034 {
3035 assert(elem_size_bytes == 4 || elem_size_bytes == 8);
3036 assert((num_components * elem_size_bytes / 4) == dst.size());
3037 assert(!!stride != allow_combining);
3038
3039 Builder bld(ctx->program, ctx->block);
3040 unsigned split_cnt = num_components;
3041
3042 if (elem_size_bytes == 8) {
3043 elem_size_bytes = 4;
3044 num_components *= 2;
3045 }
3046
3047 if (!stride)
3048 stride = elem_size_bytes;
3049
3050 unsigned load_size = 1;
3051 if (allow_combining) {
3052 if ((num_components % 4) == 0)
3053 load_size = 4;
3054 else if ((num_components % 3) == 0 && ctx->program->chip_class != GFX6)
3055 load_size = 3;
3056 else if ((num_components % 2) == 0)
3057 load_size = 2;
3058 }
3059
3060 unsigned num_loads = num_components / load_size;
3061 std::array<Temp, NIR_MAX_VEC_COMPONENTS> elems;
3062
3063 for (unsigned i = 0; i < num_loads; ++i) {
3064 unsigned const_offset = i * stride * load_size + base_const_offset;
3065 elems[i] = emit_single_mubuf_load(ctx, descriptor, voffset, soffset, const_offset, load_size, allow_reorder);
3066 }
3067
3068 create_vec_from_array(ctx, elems.data(), num_loads, RegType::vgpr, split_cnt, dst);
3069 }
3070
3071 std::pair<Temp, unsigned> offset_add_from_nir(isel_context *ctx, const std::pair<Temp, unsigned> &base_offset, nir_src *off_src, unsigned stride = 1u)
3072 {
3073 Builder bld(ctx->program, ctx->block);
3074 Temp offset = base_offset.first;
3075 unsigned const_offset = base_offset.second;
3076
3077 if (!nir_src_is_const(*off_src)) {
3078 Temp indirect_offset_arg = get_ssa_temp(ctx, off_src->ssa);
3079 Temp with_stride;
3080
3081 /* Calculate indirect offset with stride */
3082 if (likely(indirect_offset_arg.regClass() == v1))
3083 with_stride = bld.v_mul_imm(bld.def(v1), indirect_offset_arg, stride);
3084 else if (indirect_offset_arg.regClass() == s1)
3085 with_stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), indirect_offset_arg);
3086 else
3087 unreachable("Unsupported register class of indirect offset");
3088
3089 /* Add to the supplied base offset */
3090 if (offset.id() == 0)
3091 offset = with_stride;
3092 else if (unlikely(offset.regClass() == s1 && with_stride.regClass() == s1))
3093 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), with_stride, offset);
3094 else if (offset.size() == 1 && with_stride.size() == 1)
3095 offset = bld.vadd32(bld.def(v1), with_stride, offset);
3096 else
3097 unreachable("Unsupported register class of indirect offset");
3098 } else {
3099 unsigned const_offset_arg = nir_src_as_uint(*off_src);
3100 const_offset += const_offset_arg * stride;
3101 }
3102
3103 return std::make_pair(offset, const_offset);
3104 }
3105
3106 std::pair<Temp, unsigned> offset_add(isel_context *ctx, const std::pair<Temp, unsigned> &off1, const std::pair<Temp, unsigned> &off2)
3107 {
3108 Builder bld(ctx->program, ctx->block);
3109 Temp offset;
3110
3111 if (off1.first.id() && off2.first.id()) {
3112 if (unlikely(off1.first.regClass() == s1 && off2.first.regClass() == s1))
3113 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), off1.first, off2.first);
3114 else if (off1.first.size() == 1 && off2.first.size() == 1)
3115 offset = bld.vadd32(bld.def(v1), off1.first, off2.first);
3116 else
3117 unreachable("Unsupported register class of indirect offset");
3118 } else {
3119 offset = off1.first.id() ? off1.first : off2.first;
3120 }
3121
3122 return std::make_pair(offset, off1.second + off2.second);
3123 }
3124
3125 std::pair<Temp, unsigned> offset_mul(isel_context *ctx, const std::pair<Temp, unsigned> &offs, unsigned multiplier)
3126 {
3127 Builder bld(ctx->program, ctx->block);
3128 unsigned const_offset = offs.second * multiplier;
3129
3130 if (!offs.first.id())
3131 return std::make_pair(offs.first, const_offset);
3132
3133 Temp offset = unlikely(offs.first.regClass() == s1)
3134 ? bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(multiplier), offs.first)
3135 : bld.v_mul_imm(bld.def(v1), offs.first, multiplier);
3136
3137 return std::make_pair(offset, const_offset);
3138 }
3139
3140 std::pair<Temp, unsigned> get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned base_stride, unsigned component_stride)
3141 {
3142 Builder bld(ctx->program, ctx->block);
3143
3144 /* base is the driver_location, which is already multiplied by 4, so is in dwords */
3145 unsigned const_offset = nir_intrinsic_base(instr) * base_stride;
3146 /* component is in bytes */
3147 const_offset += nir_intrinsic_component(instr) * component_stride;
3148
3149 /* offset should be interpreted in relation to the base, so the instruction effectively reads/writes another input/output when it has an offset */
3150 nir_src *off_src = nir_get_io_offset_src(instr);
3151 return offset_add_from_nir(ctx, std::make_pair(Temp(), const_offset), off_src, 4u * base_stride);
3152 }
3153
3154 std::pair<Temp, unsigned> get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned stride = 1u)
3155 {
3156 return get_intrinsic_io_basic_offset(ctx, instr, stride, stride);
3157 }
3158
3159 Temp get_tess_rel_patch_id(isel_context *ctx)
3160 {
3161 Builder bld(ctx->program, ctx->block);
3162
3163 switch (ctx->shader->info.stage) {
3164 case MESA_SHADER_TESS_CTRL:
3165 return bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffu),
3166 get_arg(ctx, ctx->args->ac.tcs_rel_ids));
3167 case MESA_SHADER_TESS_EVAL:
3168 return get_arg(ctx, ctx->args->tes_rel_patch_id);
3169 default:
3170 unreachable("Unsupported stage in get_tess_rel_patch_id");
3171 }
3172 }
3173
3174 std::pair<Temp, unsigned> get_tcs_per_vertex_input_lds_offset(isel_context *ctx, nir_intrinsic_instr *instr)
3175 {
3176 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3177 Builder bld(ctx->program, ctx->block);
3178
3179 uint32_t tcs_in_patch_stride = ctx->args->options->key.tcs.input_vertices * ctx->tcs_num_inputs * 4;
3180 uint32_t tcs_in_vertex_stride = ctx->tcs_num_inputs * 4;
3181
3182 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr);
3183
3184 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
3185 offs = offset_add_from_nir(ctx, offs, vertex_index_src, tcs_in_vertex_stride);
3186
3187 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3188 Temp tcs_in_current_patch_offset = bld.v_mul24_imm(bld.def(v1), rel_patch_id, tcs_in_patch_stride);
3189 offs = offset_add(ctx, offs, std::make_pair(tcs_in_current_patch_offset, 0));
3190
3191 return offset_mul(ctx, offs, 4u);
3192 }
3193
3194 std::pair<Temp, unsigned> get_tcs_output_lds_offset(isel_context *ctx, nir_intrinsic_instr *instr = nullptr, bool per_vertex = false)
3195 {
3196 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3197 Builder bld(ctx->program, ctx->block);
3198
3199 uint32_t input_patch_size = ctx->args->options->key.tcs.input_vertices * ctx->tcs_num_inputs * 16;
3200 uint32_t num_tcs_outputs = util_last_bit64(ctx->args->shader_info->tcs.outputs_written);
3201 uint32_t num_tcs_patch_outputs = util_last_bit64(ctx->args->shader_info->tcs.patch_outputs_written);
3202 uint32_t output_vertex_size = num_tcs_outputs * 16;
3203 uint32_t pervertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
3204 uint32_t output_patch_stride = pervertex_output_patch_size + num_tcs_patch_outputs * 16;
3205
3206 std::pair<Temp, unsigned> offs = instr
3207 ? get_intrinsic_io_basic_offset(ctx, instr, 4u)
3208 : std::make_pair(Temp(), 0u);
3209
3210 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3211 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, output_patch_stride);
3212
3213 if (per_vertex) {
3214 assert(instr);
3215
3216 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
3217 offs = offset_add_from_nir(ctx, offs, vertex_index_src, output_vertex_size);
3218
3219 uint32_t output_patch0_offset = (input_patch_size * ctx->tcs_num_patches);
3220 offs = offset_add(ctx, offs, std::make_pair(patch_off, output_patch0_offset));
3221 } else {
3222 uint32_t output_patch0_patch_data_offset = (input_patch_size * ctx->tcs_num_patches + pervertex_output_patch_size);
3223 offs = offset_add(ctx, offs, std::make_pair(patch_off, output_patch0_patch_data_offset));
3224 }
3225
3226 return offs;
3227 }
3228
3229 std::pair<Temp, unsigned> get_tcs_per_vertex_output_vmem_offset(isel_context *ctx, nir_intrinsic_instr *instr)
3230 {
3231 Builder bld(ctx->program, ctx->block);
3232
3233 unsigned vertices_per_patch = ctx->shader->info.tess.tcs_vertices_out;
3234 unsigned attr_stride = vertices_per_patch * ctx->tcs_num_patches;
3235
3236 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, attr_stride * 4u, 4u);
3237
3238 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3239 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, vertices_per_patch * 16u);
3240 offs = offset_add(ctx, offs, std::make_pair(patch_off, 0u));
3241
3242 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
3243 offs = offset_add_from_nir(ctx, offs, vertex_index_src, 16u);
3244
3245 return offs;
3246 }
3247
3248 std::pair<Temp, unsigned> get_tcs_per_patch_output_vmem_offset(isel_context *ctx, nir_intrinsic_instr *instr = nullptr, unsigned const_base_offset = 0u)
3249 {
3250 Builder bld(ctx->program, ctx->block);
3251
3252 unsigned num_tcs_outputs = ctx->shader->info.stage == MESA_SHADER_TESS_CTRL
3253 ? util_last_bit64(ctx->args->shader_info->tcs.outputs_written)
3254 : ctx->args->options->key.tes.tcs_num_outputs;
3255
3256 unsigned output_vertex_size = num_tcs_outputs * 16;
3257 unsigned per_vertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
3258 unsigned per_patch_data_offset = per_vertex_output_patch_size * ctx->tcs_num_patches;
3259 unsigned attr_stride = ctx->tcs_num_patches;
3260
3261 std::pair<Temp, unsigned> offs = instr
3262 ? get_intrinsic_io_basic_offset(ctx, instr, attr_stride * 4u, 4u)
3263 : std::make_pair(Temp(), 0u);
3264
3265 if (const_base_offset)
3266 offs.second += const_base_offset * attr_stride;
3267
3268 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3269 Temp patch_off = bld.v_mul_imm(bld.def(v1), rel_patch_id, 16u);
3270 offs = offset_add(ctx, offs, std::make_pair(patch_off, per_patch_data_offset));
3271
3272 return offs;
3273 }
3274
3275 void visit_store_ls_or_es_output(isel_context *ctx, nir_intrinsic_instr *instr)
3276 {
3277 Builder bld(ctx->program, ctx->block);
3278
3279 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, 4u);
3280 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
3281 unsigned write_mask = nir_intrinsic_write_mask(instr);
3282 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8u;
3283
3284 if (ctx->stage == vertex_es || ctx->stage == tess_eval_es) {
3285 /* GFX6-8: ES stage is not merged into GS, data is passed from ES to GS in VMEM. */
3286 Temp esgs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_VS * 16u));
3287 Temp es2gs_offset = get_arg(ctx, ctx->args->es2gs_offset);
3288 store_vmem_mubuf(ctx, src, esgs_ring, offs.first, es2gs_offset, offs.second, elem_size_bytes, write_mask, false, true, true);
3289 } else {
3290 Temp lds_base;
3291
3292 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
3293 /* GFX9+: ES stage is merged into GS, data is passed between them using LDS. */
3294 unsigned itemsize = ctx->stage == vertex_geometry_gs
3295 ? ctx->program->info->vs.es_info.esgs_itemsize
3296 : ctx->program->info->tes.es_info.esgs_itemsize;
3297 Temp thread_id = emit_mbcnt(ctx, bld.def(v1));
3298 Temp wave_idx = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(ctx, ctx->args->merged_wave_info), Operand(4u << 16 | 24));
3299 Temp vertex_idx = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), thread_id,
3300 bld.v_mul24_imm(bld.def(v1), as_vgpr(ctx, wave_idx), ctx->program->wave_size));
3301 lds_base = bld.v_mul24_imm(bld.def(v1), vertex_idx, itemsize);
3302 } else if (ctx->stage == vertex_ls || ctx->stage == vertex_tess_control_hs) {
3303 /* GFX6-8: VS runs on LS stage when tessellation is used, but LS shares LDS space with HS.
3304 * GFX9+: LS is merged into HS, but still uses the same LDS layout.
3305 */
3306 unsigned num_tcs_inputs = util_last_bit64(ctx->args->shader_info->vs.ls_outputs_written);
3307 Temp vertex_idx = get_arg(ctx, ctx->args->rel_auto_id);
3308 lds_base = bld.v_mul_imm(bld.def(v1), vertex_idx, num_tcs_inputs * 16u);
3309 } else {
3310 unreachable("Invalid LS or ES stage");
3311 }
3312
3313 offs = offset_add(ctx, offs, std::make_pair(lds_base, 0u));
3314 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
3315 store_lds(ctx, elem_size_bytes, src, write_mask, offs.first, offs.second, lds_align);
3316 }
3317 }
3318
3319 bool should_write_tcs_patch_output_to_vmem(isel_context *ctx, nir_intrinsic_instr *instr)
3320 {
3321 unsigned off = nir_intrinsic_base(instr) * 4u;
3322 nir_src *off_src = nir_get_io_offset_src(instr);
3323
3324 /* Indirect offset, we can't be sure if this is a tess factor, always write to VMEM */
3325 if (!nir_src_is_const(*off_src))
3326 return true;
3327
3328 off += nir_src_as_uint(*off_src) * 16u;
3329
3330 const unsigned tess_index_inner = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_INNER);
3331 const unsigned tess_index_outer = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_OUTER);
3332
3333 return (off != (tess_index_inner * 16u)) &&
3334 (off != (tess_index_outer * 16u));
3335 }
3336
3337 bool should_write_tcs_patch_output_to_lds(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
3338 {
3339 unsigned off = nir_intrinsic_base(instr) * 4u;
3340 nir_src *off_src = nir_get_io_offset_src(instr);
3341
3342 /* When none of the appropriate outputs are read, we are OK to never write to LDS */
3343 if (per_vertex ? ctx->shader->info.outputs_read == 0U : ctx->shader->info.patch_outputs_read == 0u)
3344 return false;
3345
3346 /* Indirect offset, we can't be sure if this is read or not, always write to LDS */
3347 if (!nir_src_is_const(*off_src))
3348 return true;
3349
3350 off += nir_src_as_uint(*off_src) * 16u;
3351
3352 uint64_t out_rd = per_vertex
3353 ? ctx->shader->info.outputs_read
3354 : ctx->shader->info.patch_outputs_read;
3355 while (out_rd) {
3356 unsigned slot = u_bit_scan64(&out_rd) + (per_vertex ? 0 : VARYING_SLOT_PATCH0);
3357 if (off == shader_io_get_unique_index((gl_varying_slot) slot) * 16u)
3358 return true;
3359 }
3360
3361 return false;
3362 }
3363
3364 void visit_store_tcs_output(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
3365 {
3366 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
3367 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3368
3369 Builder bld(ctx->program, ctx->block);
3370
3371 Temp store_val = get_ssa_temp(ctx, instr->src[0].ssa);
3372 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
3373 unsigned write_mask = nir_intrinsic_write_mask(instr);
3374
3375 /* Only write to VMEM if the output is per-vertex or it's per-patch non tess factor */
3376 bool write_to_vmem = per_vertex || should_write_tcs_patch_output_to_vmem(ctx, instr);
3377 /* Only write to LDS if the output is read by the shader, or it's per-patch tess factor */
3378 bool write_to_lds = !write_to_vmem || should_write_tcs_patch_output_to_lds(ctx, instr, per_vertex);
3379
3380 if (write_to_vmem) {
3381 std::pair<Temp, unsigned> vmem_offs = per_vertex
3382 ? get_tcs_per_vertex_output_vmem_offset(ctx, instr)
3383 : get_tcs_per_patch_output_vmem_offset(ctx, instr);
3384
3385 Temp hs_ring_tess_offchip = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
3386 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
3387 store_vmem_mubuf(ctx, store_val, hs_ring_tess_offchip, vmem_offs.first, oc_lds, vmem_offs.second, elem_size_bytes, write_mask, false, false);
3388 }
3389
3390 if (write_to_lds) {
3391 std::pair<Temp, unsigned> lds_offs = get_tcs_output_lds_offset(ctx, instr, per_vertex);
3392 unsigned lds_align = calculate_lds_alignment(ctx, lds_offs.second);
3393 store_lds(ctx, elem_size_bytes, store_val, write_mask, lds_offs.first, lds_offs.second, lds_align);
3394 }
3395 }
3396
3397 void visit_load_tcs_output(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
3398 {
3399 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
3400 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3401
3402 Builder bld(ctx->program, ctx->block);
3403
3404 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3405 std::pair<Temp, unsigned> lds_offs = get_tcs_output_lds_offset(ctx, instr, per_vertex);
3406 unsigned lds_align = calculate_lds_alignment(ctx, lds_offs.second);
3407 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
3408
3409 load_lds(ctx, elem_size_bytes, dst, lds_offs.first, lds_offs.second, lds_align);
3410 }
3411
3412 void visit_store_output(isel_context *ctx, nir_intrinsic_instr *instr)
3413 {
3414 if (ctx->stage == vertex_vs ||
3415 ctx->stage == tess_eval_vs ||
3416 ctx->stage == fragment_fs ||
3417 ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
3418 unsigned write_mask = nir_intrinsic_write_mask(instr);
3419 unsigned component = nir_intrinsic_component(instr);
3420 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
3421 unsigned idx = nir_intrinsic_base(instr) + component;
3422
3423 nir_instr *off_instr = instr->src[1].ssa->parent_instr;
3424 if (off_instr->type != nir_instr_type_load_const) {
3425 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
3426 nir_print_instr(off_instr, stderr);
3427 fprintf(stderr, "\n");
3428 }
3429 idx += nir_instr_as_load_const(off_instr)->value[0].u32 * 4u;
3430
3431 if (instr->src[0].ssa->bit_size == 64)
3432 write_mask = widen_mask(write_mask, 2);
3433
3434 for (unsigned i = 0; i < 8; ++i) {
3435 if (write_mask & (1 << i)) {
3436 ctx->outputs.mask[idx / 4u] |= 1 << (idx % 4u);
3437 ctx->outputs.outputs[idx / 4u][idx % 4u] = emit_extract_vector(ctx, src, i, v1);
3438 }
3439 idx++;
3440 }
3441 } else if (ctx->stage == vertex_es ||
3442 ctx->stage == vertex_ls ||
3443 ctx->stage == tess_eval_es ||
3444 (ctx->stage == vertex_tess_control_hs && ctx->shader->info.stage == MESA_SHADER_VERTEX) ||
3445 (ctx->stage == vertex_geometry_gs && ctx->shader->info.stage == MESA_SHADER_VERTEX) ||
3446 (ctx->stage == tess_eval_geometry_gs && ctx->shader->info.stage == MESA_SHADER_TESS_EVAL)) {
3447 visit_store_ls_or_es_output(ctx, instr);
3448 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
3449 visit_store_tcs_output(ctx, instr, false);
3450 } else {
3451 unreachable("Shader stage not implemented");
3452 }
3453 }
3454
3455 void visit_load_output(isel_context *ctx, nir_intrinsic_instr *instr)
3456 {
3457 visit_load_tcs_output(ctx, instr, false);
3458 }
3459
3460 void emit_interp_instr(isel_context *ctx, unsigned idx, unsigned component, Temp src, Temp dst, Temp prim_mask)
3461 {
3462 Temp coord1 = emit_extract_vector(ctx, src, 0, v1);
3463 Temp coord2 = emit_extract_vector(ctx, src, 1, v1);
3464
3465 Builder bld(ctx->program, ctx->block);
3466 Temp tmp = bld.vintrp(aco_opcode::v_interp_p1_f32, bld.def(v1), coord1, bld.m0(prim_mask), idx, component);
3467 bld.vintrp(aco_opcode::v_interp_p2_f32, Definition(dst), coord2, bld.m0(prim_mask), tmp, idx, component);
3468 }
3469
3470 void emit_load_frag_coord(isel_context *ctx, Temp dst, unsigned num_components)
3471 {
3472 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1));
3473 for (unsigned i = 0; i < num_components; i++)
3474 vec->operands[i] = Operand(get_arg(ctx, ctx->args->ac.frag_pos[i]));
3475 if (G_0286CC_POS_W_FLOAT_ENA(ctx->program->config->spi_ps_input_ena)) {
3476 assert(num_components == 4);
3477 Builder bld(ctx->program, ctx->block);
3478 vec->operands[3] = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), get_arg(ctx, ctx->args->ac.frag_pos[3]));
3479 }
3480
3481 for (Operand& op : vec->operands)
3482 op = op.isUndefined() ? Operand(0u) : op;
3483
3484 vec->definitions[0] = Definition(dst);
3485 ctx->block->instructions.emplace_back(std::move(vec));
3486 emit_split_vector(ctx, dst, num_components);
3487 return;
3488 }
3489
3490 void visit_load_interpolated_input(isel_context *ctx, nir_intrinsic_instr *instr)
3491 {
3492 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3493 Temp coords = get_ssa_temp(ctx, instr->src[0].ssa);
3494 unsigned idx = nir_intrinsic_base(instr);
3495 unsigned component = nir_intrinsic_component(instr);
3496 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
3497
3498 nir_const_value* offset = nir_src_as_const_value(instr->src[1]);
3499 if (offset) {
3500 assert(offset->u32 == 0);
3501 } else {
3502 /* the lower 15bit of the prim_mask contain the offset into LDS
3503 * while the upper bits contain the number of prims */
3504 Temp offset_src = get_ssa_temp(ctx, instr->src[1].ssa);
3505 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
3506 Builder bld(ctx->program, ctx->block);
3507 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
3508 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
3509 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
3510 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
3511 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
3512 }
3513
3514 if (instr->dest.ssa.num_components == 1) {
3515 emit_interp_instr(ctx, idx, component, coords, dst, prim_mask);
3516 } else {
3517 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.ssa.num_components, 1));
3518 for (unsigned i = 0; i < instr->dest.ssa.num_components; i++)
3519 {
3520 Temp tmp = {ctx->program->allocateId(), v1};
3521 emit_interp_instr(ctx, idx, component+i, coords, tmp, prim_mask);
3522 vec->operands[i] = Operand(tmp);
3523 }
3524 vec->definitions[0] = Definition(dst);
3525 ctx->block->instructions.emplace_back(std::move(vec));
3526 }
3527 }
3528
3529 bool check_vertex_fetch_size(isel_context *ctx, const ac_data_format_info *vtx_info,
3530 unsigned offset, unsigned stride, unsigned channels)
3531 {
3532 unsigned vertex_byte_size = vtx_info->chan_byte_size * channels;
3533 if (vtx_info->chan_byte_size != 4 && channels == 3)
3534 return false;
3535 return (ctx->options->chip_class != GFX6 && ctx->options->chip_class != GFX10) ||
3536 (offset % vertex_byte_size == 0 && stride % vertex_byte_size == 0);
3537 }
3538
3539 uint8_t get_fetch_data_format(isel_context *ctx, const ac_data_format_info *vtx_info,
3540 unsigned offset, unsigned stride, unsigned *channels)
3541 {
3542 if (!vtx_info->chan_byte_size) {
3543 *channels = vtx_info->num_channels;
3544 return vtx_info->chan_format;
3545 }
3546
3547 unsigned num_channels = *channels;
3548 if (!check_vertex_fetch_size(ctx, vtx_info, offset, stride, *channels)) {
3549 unsigned new_channels = num_channels + 1;
3550 /* first, assume more loads is worse and try using a larger data format */
3551 while (new_channels <= 4 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels)) {
3552 new_channels++;
3553 /* don't make the attribute potentially out-of-bounds */
3554 if (offset + new_channels * vtx_info->chan_byte_size > stride)
3555 new_channels = 5;
3556 }
3557
3558 if (new_channels == 5) {
3559 /* then try decreasing load size (at the cost of more loads) */
3560 new_channels = *channels;
3561 while (new_channels > 1 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels))
3562 new_channels--;
3563 }
3564
3565 if (new_channels < *channels)
3566 *channels = new_channels;
3567 num_channels = new_channels;
3568 }
3569
3570 switch (vtx_info->chan_format) {
3571 case V_008F0C_BUF_DATA_FORMAT_8:
3572 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_8, V_008F0C_BUF_DATA_FORMAT_8_8,
3573 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_8_8_8_8}[num_channels - 1];
3574 case V_008F0C_BUF_DATA_FORMAT_16:
3575 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_16, V_008F0C_BUF_DATA_FORMAT_16_16,
3576 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_16_16_16_16}[num_channels - 1];
3577 case V_008F0C_BUF_DATA_FORMAT_32:
3578 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_32, V_008F0C_BUF_DATA_FORMAT_32_32,
3579 V_008F0C_BUF_DATA_FORMAT_32_32_32, V_008F0C_BUF_DATA_FORMAT_32_32_32_32}[num_channels - 1];
3580 }
3581 unreachable("shouldn't reach here");
3582 return V_008F0C_BUF_DATA_FORMAT_INVALID;
3583 }
3584
3585 /* For 2_10_10_10 formats the alpha is handled as unsigned by pre-vega HW.
3586 * so we may need to fix it up. */
3587 Temp adjust_vertex_fetch_alpha(isel_context *ctx, unsigned adjustment, Temp alpha)
3588 {
3589 Builder bld(ctx->program, ctx->block);
3590
3591 if (adjustment == RADV_ALPHA_ADJUST_SSCALED)
3592 alpha = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), alpha);
3593
3594 /* For the integer-like cases, do a natural sign extension.
3595 *
3596 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
3597 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
3598 * exponent.
3599 */
3600 alpha = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(adjustment == RADV_ALPHA_ADJUST_SNORM ? 7u : 30u), alpha);
3601 alpha = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(30u), alpha);
3602
3603 /* Convert back to the right type. */
3604 if (adjustment == RADV_ALPHA_ADJUST_SNORM) {
3605 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
3606 Temp clamp = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0xbf800000u), alpha);
3607 alpha = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xbf800000u), alpha, clamp);
3608 } else if (adjustment == RADV_ALPHA_ADJUST_SSCALED) {
3609 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
3610 }
3611
3612 return alpha;
3613 }
3614
3615 void visit_load_input(isel_context *ctx, nir_intrinsic_instr *instr)
3616 {
3617 Builder bld(ctx->program, ctx->block);
3618 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3619 if (ctx->shader->info.stage == MESA_SHADER_VERTEX) {
3620
3621 nir_instr *off_instr = instr->src[0].ssa->parent_instr;
3622 if (off_instr->type != nir_instr_type_load_const) {
3623 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
3624 nir_print_instr(off_instr, stderr);
3625 fprintf(stderr, "\n");
3626 }
3627 uint32_t offset = nir_instr_as_load_const(off_instr)->value[0].u32;
3628
3629 Temp vertex_buffers = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->vertex_buffers));
3630
3631 unsigned location = nir_intrinsic_base(instr) / 4 - VERT_ATTRIB_GENERIC0 + offset;
3632 unsigned component = nir_intrinsic_component(instr);
3633 unsigned attrib_binding = ctx->options->key.vs.vertex_attribute_bindings[location];
3634 uint32_t attrib_offset = ctx->options->key.vs.vertex_attribute_offsets[location];
3635 uint32_t attrib_stride = ctx->options->key.vs.vertex_attribute_strides[location];
3636 unsigned attrib_format = ctx->options->key.vs.vertex_attribute_formats[location];
3637
3638 unsigned dfmt = attrib_format & 0xf;
3639 unsigned nfmt = (attrib_format >> 4) & 0x7;
3640 const struct ac_data_format_info *vtx_info = ac_get_data_format_info(dfmt);
3641
3642 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa) << component;
3643 unsigned num_channels = MIN2(util_last_bit(mask), vtx_info->num_channels);
3644 unsigned alpha_adjust = (ctx->options->key.vs.alpha_adjust >> (location * 2)) & 3;
3645 bool post_shuffle = ctx->options->key.vs.post_shuffle & (1 << location);
3646 if (post_shuffle)
3647 num_channels = MAX2(num_channels, 3);
3648
3649 Operand off = bld.copy(bld.def(s1), Operand(attrib_binding * 16u));
3650 Temp list = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), vertex_buffers, off);
3651
3652 Temp index;
3653 if (ctx->options->key.vs.instance_rate_inputs & (1u << location)) {
3654 uint32_t divisor = ctx->options->key.vs.instance_rate_divisors[location];
3655 Temp start_instance = get_arg(ctx, ctx->args->ac.start_instance);
3656 if (divisor) {
3657 Temp instance_id = get_arg(ctx, ctx->args->ac.instance_id);
3658 if (divisor != 1) {
3659 Temp divided = bld.tmp(v1);
3660 emit_v_div_u32(ctx, divided, as_vgpr(ctx, instance_id), divisor);
3661 index = bld.vadd32(bld.def(v1), start_instance, divided);
3662 } else {
3663 index = bld.vadd32(bld.def(v1), start_instance, instance_id);
3664 }
3665 } else {
3666 index = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), start_instance);
3667 }
3668 } else {
3669 index = bld.vadd32(bld.def(v1),
3670 get_arg(ctx, ctx->args->ac.base_vertex),
3671 get_arg(ctx, ctx->args->ac.vertex_id));
3672 }
3673
3674 Temp channels[num_channels];
3675 unsigned channel_start = 0;
3676 bool direct_fetch = false;
3677
3678 /* skip unused channels at the start */
3679 if (vtx_info->chan_byte_size && !post_shuffle) {
3680 channel_start = ffs(mask) - 1;
3681 for (unsigned i = 0; i < channel_start; i++)
3682 channels[i] = Temp(0, s1);
3683 } else if (vtx_info->chan_byte_size && post_shuffle && !(mask & 0x8)) {
3684 num_channels = 3 - (ffs(mask) - 1);
3685 }
3686
3687 /* load channels */
3688 while (channel_start < num_channels) {
3689 unsigned fetch_size = num_channels - channel_start;
3690 unsigned fetch_offset = attrib_offset + channel_start * vtx_info->chan_byte_size;
3691 bool expanded = false;
3692
3693 /* use MUBUF when possible to avoid possible alignment issues */
3694 /* TODO: we could use SDWA to unpack 8/16-bit attributes without extra instructions */
3695 bool use_mubuf = (nfmt == V_008F0C_BUF_NUM_FORMAT_FLOAT ||
3696 nfmt == V_008F0C_BUF_NUM_FORMAT_UINT ||
3697 nfmt == V_008F0C_BUF_NUM_FORMAT_SINT) &&
3698 vtx_info->chan_byte_size == 4;
3699 unsigned fetch_dfmt = V_008F0C_BUF_DATA_FORMAT_INVALID;
3700 if (!use_mubuf) {
3701 fetch_dfmt = get_fetch_data_format(ctx, vtx_info, fetch_offset, attrib_stride, &fetch_size);
3702 } else {
3703 if (fetch_size == 3 && ctx->options->chip_class == GFX6) {
3704 /* GFX6 only supports loading vec3 with MTBUF, expand to vec4. */
3705 fetch_size = 4;
3706 expanded = true;
3707 }
3708 }
3709
3710 Temp fetch_index = index;
3711 if (attrib_stride != 0 && fetch_offset > attrib_stride) {
3712 fetch_index = bld.vadd32(bld.def(v1), Operand(fetch_offset / attrib_stride), fetch_index);
3713 fetch_offset = fetch_offset % attrib_stride;
3714 }
3715
3716 Operand soffset(0u);
3717 if (fetch_offset >= 4096) {
3718 soffset = bld.copy(bld.def(s1), Operand(fetch_offset / 4096 * 4096));
3719 fetch_offset %= 4096;
3720 }
3721
3722 aco_opcode opcode;
3723 switch (fetch_size) {
3724 case 1:
3725 opcode = use_mubuf ? aco_opcode::buffer_load_dword : aco_opcode::tbuffer_load_format_x;
3726 break;
3727 case 2:
3728 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx2 : aco_opcode::tbuffer_load_format_xy;
3729 break;
3730 case 3:
3731 assert(ctx->options->chip_class >= GFX7 ||
3732 (!use_mubuf && ctx->options->chip_class == GFX6));
3733 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx3 : aco_opcode::tbuffer_load_format_xyz;
3734 break;
3735 case 4:
3736 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx4 : aco_opcode::tbuffer_load_format_xyzw;
3737 break;
3738 default:
3739 unreachable("Unimplemented load_input vector size");
3740 }
3741
3742 Temp fetch_dst;
3743 if (channel_start == 0 && fetch_size == dst.size() && !post_shuffle &&
3744 !expanded && (alpha_adjust == RADV_ALPHA_ADJUST_NONE ||
3745 num_channels <= 3)) {
3746 direct_fetch = true;
3747 fetch_dst = dst;
3748 } else {
3749 fetch_dst = bld.tmp(RegType::vgpr, fetch_size);
3750 }
3751
3752 if (use_mubuf) {
3753 Instruction *mubuf = bld.mubuf(opcode,
3754 Definition(fetch_dst), list, fetch_index, soffset,
3755 fetch_offset, false, true).instr;
3756 static_cast<MUBUF_instruction*>(mubuf)->can_reorder = true;
3757 } else {
3758 Instruction *mtbuf = bld.mtbuf(opcode,
3759 Definition(fetch_dst), list, fetch_index, soffset,
3760 fetch_dfmt, nfmt, fetch_offset, false, true).instr;
3761 static_cast<MTBUF_instruction*>(mtbuf)->can_reorder = true;
3762 }
3763
3764 emit_split_vector(ctx, fetch_dst, fetch_dst.size());
3765
3766 if (fetch_size == 1) {
3767 channels[channel_start] = fetch_dst;
3768 } else {
3769 for (unsigned i = 0; i < MIN2(fetch_size, num_channels - channel_start); i++)
3770 channels[channel_start + i] = emit_extract_vector(ctx, fetch_dst, i, v1);
3771 }
3772
3773 channel_start += fetch_size;
3774 }
3775
3776 if (!direct_fetch) {
3777 bool is_float = nfmt != V_008F0C_BUF_NUM_FORMAT_UINT &&
3778 nfmt != V_008F0C_BUF_NUM_FORMAT_SINT;
3779
3780 static const unsigned swizzle_normal[4] = {0, 1, 2, 3};
3781 static const unsigned swizzle_post_shuffle[4] = {2, 1, 0, 3};
3782 const unsigned *swizzle = post_shuffle ? swizzle_post_shuffle : swizzle_normal;
3783
3784 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
3785 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
3786 unsigned num_temp = 0;
3787 for (unsigned i = 0; i < dst.size(); i++) {
3788 unsigned idx = i + component;
3789 if (swizzle[idx] < num_channels && channels[swizzle[idx]].id()) {
3790 Temp channel = channels[swizzle[idx]];
3791 if (idx == 3 && alpha_adjust != RADV_ALPHA_ADJUST_NONE)
3792 channel = adjust_vertex_fetch_alpha(ctx, alpha_adjust, channel);
3793 vec->operands[i] = Operand(channel);
3794
3795 num_temp++;
3796 elems[i] = channel;
3797 } else if (is_float && idx == 3) {
3798 vec->operands[i] = Operand(0x3f800000u);
3799 } else if (!is_float && idx == 3) {
3800 vec->operands[i] = Operand(1u);
3801 } else {
3802 vec->operands[i] = Operand(0u);
3803 }
3804 }
3805 vec->definitions[0] = Definition(dst);
3806 ctx->block->instructions.emplace_back(std::move(vec));
3807 emit_split_vector(ctx, dst, dst.size());
3808
3809 if (num_temp == dst.size())
3810 ctx->allocated_vec.emplace(dst.id(), elems);
3811 }
3812 } else if (ctx->shader->info.stage == MESA_SHADER_FRAGMENT) {
3813 unsigned offset_idx = instr->intrinsic == nir_intrinsic_load_input ? 0 : 1;
3814 nir_instr *off_instr = instr->src[offset_idx].ssa->parent_instr;
3815 if (off_instr->type != nir_instr_type_load_const ||
3816 nir_instr_as_load_const(off_instr)->value[0].u32 != 0) {
3817 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
3818 nir_print_instr(off_instr, stderr);
3819 fprintf(stderr, "\n");
3820 }
3821
3822 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
3823 nir_const_value* offset = nir_src_as_const_value(instr->src[offset_idx]);
3824 if (offset) {
3825 assert(offset->u32 == 0);
3826 } else {
3827 /* the lower 15bit of the prim_mask contain the offset into LDS
3828 * while the upper bits contain the number of prims */
3829 Temp offset_src = get_ssa_temp(ctx, instr->src[offset_idx].ssa);
3830 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
3831 Builder bld(ctx->program, ctx->block);
3832 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
3833 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
3834 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
3835 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
3836 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
3837 }
3838
3839 unsigned idx = nir_intrinsic_base(instr);
3840 unsigned component = nir_intrinsic_component(instr);
3841 unsigned vertex_id = 2; /* P0 */
3842
3843 if (instr->intrinsic == nir_intrinsic_load_input_vertex) {
3844 nir_const_value* src0 = nir_src_as_const_value(instr->src[0]);
3845 switch (src0->u32) {
3846 case 0:
3847 vertex_id = 2; /* P0 */
3848 break;
3849 case 1:
3850 vertex_id = 0; /* P10 */
3851 break;
3852 case 2:
3853 vertex_id = 1; /* P20 */
3854 break;
3855 default:
3856 unreachable("invalid vertex index");
3857 }
3858 }
3859
3860 if (dst.size() == 1) {
3861 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(dst), Operand(vertex_id), bld.m0(prim_mask), idx, component);
3862 } else {
3863 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
3864 for (unsigned i = 0; i < dst.size(); i++)
3865 vec->operands[i] = bld.vintrp(aco_opcode::v_interp_mov_f32, bld.def(v1), Operand(vertex_id), bld.m0(prim_mask), idx, component + i);
3866 vec->definitions[0] = Definition(dst);
3867 bld.insert(std::move(vec));
3868 }
3869
3870 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_EVAL) {
3871 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
3872 Temp soffset = get_arg(ctx, ctx->args->oc_lds);
3873 std::pair<Temp, unsigned> offs = get_tcs_per_patch_output_vmem_offset(ctx, instr);
3874 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8u;
3875
3876 load_vmem_mubuf(ctx, dst, ring, offs.first, soffset, offs.second, elem_size_bytes, instr->dest.ssa.num_components);
3877 } else {
3878 unreachable("Shader stage not implemented");
3879 }
3880 }
3881
3882 std::pair<Temp, unsigned> get_gs_per_vertex_input_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned base_stride = 1u)
3883 {
3884 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
3885
3886 Builder bld(ctx->program, ctx->block);
3887 nir_src *vertex_src = nir_get_io_vertex_index_src(instr);
3888 Temp vertex_offset;
3889
3890 if (!nir_src_is_const(*vertex_src)) {
3891 /* better code could be created, but this case probably doesn't happen
3892 * much in practice */
3893 Temp indirect_vertex = as_vgpr(ctx, get_ssa_temp(ctx, vertex_src->ssa));
3894 for (unsigned i = 0; i < ctx->shader->info.gs.vertices_in; i++) {
3895 Temp elem;
3896
3897 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
3898 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i / 2u * 2u]);
3899 if (i % 2u)
3900 elem = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), elem);
3901 } else {
3902 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i]);
3903 }
3904
3905 if (vertex_offset.id()) {
3906 Temp cond = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)),
3907 Operand(i), indirect_vertex);
3908 vertex_offset = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), vertex_offset, elem, cond);
3909 } else {
3910 vertex_offset = elem;
3911 }
3912 }
3913
3914 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs)
3915 vertex_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu), vertex_offset);
3916 } else {
3917 unsigned vertex = nir_src_as_uint(*vertex_src);
3918 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs)
3919 vertex_offset = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
3920 get_arg(ctx, ctx->args->gs_vtx_offset[vertex / 2u * 2u]),
3921 Operand((vertex % 2u) * 16u), Operand(16u));
3922 else
3923 vertex_offset = get_arg(ctx, ctx->args->gs_vtx_offset[vertex]);
3924 }
3925
3926 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, base_stride);
3927 offs = offset_add(ctx, offs, std::make_pair(vertex_offset, 0u));
3928 return offset_mul(ctx, offs, 4u);
3929 }
3930
3931 void visit_load_gs_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
3932 {
3933 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
3934
3935 Builder bld(ctx->program, ctx->block);
3936 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3937 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
3938
3939 if (ctx->stage == geometry_gs) {
3940 std::pair<Temp, unsigned> offs = get_gs_per_vertex_input_offset(ctx, instr, ctx->program->wave_size);
3941 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_GS * 16u));
3942 load_vmem_mubuf(ctx, dst, ring, offs.first, Temp(), offs.second, elem_size_bytes, instr->dest.ssa.num_components, 4u * ctx->program->wave_size, false, true);
3943 } else if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
3944 std::pair<Temp, unsigned> offs = get_gs_per_vertex_input_offset(ctx, instr);
3945 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
3946 load_lds(ctx, elem_size_bytes, dst, offs.first, offs.second, lds_align);
3947 } else {
3948 unreachable("Unsupported GS stage.");
3949 }
3950 }
3951
3952 void visit_load_tcs_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
3953 {
3954 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3955
3956 Builder bld(ctx->program, ctx->block);
3957 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3958 std::pair<Temp, unsigned> offs = get_tcs_per_vertex_input_lds_offset(ctx, instr);
3959 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
3960 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
3961
3962 load_lds(ctx, elem_size_bytes, dst, offs.first, offs.second, lds_align);
3963 }
3964
3965 void visit_load_tes_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
3966 {
3967 assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
3968
3969 Builder bld(ctx->program, ctx->block);
3970
3971 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
3972 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
3973 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3974
3975 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
3976 std::pair<Temp, unsigned> offs = get_tcs_per_vertex_output_vmem_offset(ctx, instr);
3977
3978 load_vmem_mubuf(ctx, dst, ring, offs.first, oc_lds, offs.second, elem_size_bytes, instr->dest.ssa.num_components, 0u, true, true);
3979 }
3980
3981 void visit_load_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
3982 {
3983 switch (ctx->shader->info.stage) {
3984 case MESA_SHADER_GEOMETRY:
3985 visit_load_gs_per_vertex_input(ctx, instr);
3986 break;
3987 case MESA_SHADER_TESS_CTRL:
3988 visit_load_tcs_per_vertex_input(ctx, instr);
3989 break;
3990 case MESA_SHADER_TESS_EVAL:
3991 visit_load_tes_per_vertex_input(ctx, instr);
3992 break;
3993 default:
3994 unreachable("Unimplemented shader stage");
3995 }
3996 }
3997
3998 void visit_load_per_vertex_output(isel_context *ctx, nir_intrinsic_instr *instr)
3999 {
4000 visit_load_tcs_output(ctx, instr, true);
4001 }
4002
4003 void visit_store_per_vertex_output(isel_context *ctx, nir_intrinsic_instr *instr)
4004 {
4005 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
4006 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4007
4008 visit_store_tcs_output(ctx, instr, true);
4009 }
4010
4011 void visit_load_tess_coord(isel_context *ctx, nir_intrinsic_instr *instr)
4012 {
4013 assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
4014
4015 Builder bld(ctx->program, ctx->block);
4016 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4017
4018 Operand tes_u(get_arg(ctx, ctx->args->tes_u));
4019 Operand tes_v(get_arg(ctx, ctx->args->tes_v));
4020 Operand tes_w(0u);
4021
4022 if (ctx->shader->info.tess.primitive_mode == GL_TRIANGLES) {
4023 Temp tmp = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), tes_u, tes_v);
4024 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0x3f800000u /* 1.0f */), tmp);
4025 tes_w = Operand(tmp);
4026 }
4027
4028 Temp tess_coord = bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tes_u, tes_v, tes_w);
4029 emit_split_vector(ctx, tess_coord, 3);
4030 }
4031
4032 Temp load_desc_ptr(isel_context *ctx, unsigned desc_set)
4033 {
4034 if (ctx->program->info->need_indirect_descriptor_sets) {
4035 Builder bld(ctx->program, ctx->block);
4036 Temp ptr64 = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->descriptor_sets[0]));
4037 Operand off = bld.copy(bld.def(s1), Operand(desc_set << 2));
4038 return bld.smem(aco_opcode::s_load_dword, bld.def(s1), ptr64, off);//, false, false, false);
4039 }
4040
4041 return get_arg(ctx, ctx->args->descriptor_sets[desc_set]);
4042 }
4043
4044
4045 void visit_load_resource(isel_context *ctx, nir_intrinsic_instr *instr)
4046 {
4047 Builder bld(ctx->program, ctx->block);
4048 Temp index = get_ssa_temp(ctx, instr->src[0].ssa);
4049 if (!ctx->divergent_vals[instr->dest.ssa.index])
4050 index = bld.as_uniform(index);
4051 unsigned desc_set = nir_intrinsic_desc_set(instr);
4052 unsigned binding = nir_intrinsic_binding(instr);
4053
4054 Temp desc_ptr;
4055 radv_pipeline_layout *pipeline_layout = ctx->options->layout;
4056 radv_descriptor_set_layout *layout = pipeline_layout->set[desc_set].layout;
4057 unsigned offset = layout->binding[binding].offset;
4058 unsigned stride;
4059 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
4060 layout->binding[binding].type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
4061 unsigned idx = pipeline_layout->set[desc_set].dynamic_offset_start + layout->binding[binding].dynamic_offset_offset;
4062 desc_ptr = get_arg(ctx, ctx->args->ac.push_constants);
4063 offset = pipeline_layout->push_constant_size + 16 * idx;
4064 stride = 16;
4065 } else {
4066 desc_ptr = load_desc_ptr(ctx, desc_set);
4067 stride = layout->binding[binding].size;
4068 }
4069
4070 nir_const_value* nir_const_index = nir_src_as_const_value(instr->src[0]);
4071 unsigned const_index = nir_const_index ? nir_const_index->u32 : 0;
4072 if (stride != 1) {
4073 if (nir_const_index) {
4074 const_index = const_index * stride;
4075 } else if (index.type() == RegType::vgpr) {
4076 bool index24bit = layout->binding[binding].array_size <= 0x1000000;
4077 index = bld.v_mul_imm(bld.def(v1), index, stride, index24bit);
4078 } else {
4079 index = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), Operand(index));
4080 }
4081 }
4082 if (offset) {
4083 if (nir_const_index) {
4084 const_index = const_index + offset;
4085 } else if (index.type() == RegType::vgpr) {
4086 index = bld.vadd32(bld.def(v1), Operand(offset), index);
4087 } else {
4088 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), Operand(index));
4089 }
4090 }
4091
4092 if (nir_const_index && const_index == 0) {
4093 index = desc_ptr;
4094 } else if (index.type() == RegType::vgpr) {
4095 index = bld.vadd32(bld.def(v1),
4096 nir_const_index ? Operand(const_index) : Operand(index),
4097 Operand(desc_ptr));
4098 } else {
4099 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
4100 nir_const_index ? Operand(const_index) : Operand(index),
4101 Operand(desc_ptr));
4102 }
4103
4104 bld.copy(Definition(get_ssa_temp(ctx, &instr->dest.ssa)), index);
4105 }
4106
4107 void load_buffer(isel_context *ctx, unsigned num_components, Temp dst,
4108 Temp rsrc, Temp offset, bool glc=false, bool readonly=true)
4109 {
4110 Builder bld(ctx->program, ctx->block);
4111
4112 unsigned num_bytes = dst.size() * 4;
4113 bool dlc = glc && ctx->options->chip_class >= GFX10;
4114
4115 aco_opcode op;
4116 if (dst.type() == RegType::vgpr || (ctx->options->chip_class < GFX8 && !readonly)) {
4117 Operand vaddr = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
4118 Operand soffset = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
4119 unsigned const_offset = 0;
4120
4121 Temp lower = Temp();
4122 if (num_bytes > 16) {
4123 assert(num_components == 3 || num_components == 4);
4124 op = aco_opcode::buffer_load_dwordx4;
4125 lower = bld.tmp(v4);
4126 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
4127 mubuf->definitions[0] = Definition(lower);
4128 mubuf->operands[0] = Operand(rsrc);
4129 mubuf->operands[1] = vaddr;
4130 mubuf->operands[2] = soffset;
4131 mubuf->offen = (offset.type() == RegType::vgpr);
4132 mubuf->glc = glc;
4133 mubuf->dlc = dlc;
4134 mubuf->barrier = readonly ? barrier_none : barrier_buffer;
4135 mubuf->can_reorder = readonly;
4136 bld.insert(std::move(mubuf));
4137 emit_split_vector(ctx, lower, 2);
4138 num_bytes -= 16;
4139 const_offset = 16;
4140 } else if (num_bytes == 12 && ctx->options->chip_class == GFX6) {
4141 /* GFX6 doesn't support loading vec3, expand to vec4. */
4142 num_bytes = 16;
4143 }
4144
4145 switch (num_bytes) {
4146 case 4:
4147 op = aco_opcode::buffer_load_dword;
4148 break;
4149 case 8:
4150 op = aco_opcode::buffer_load_dwordx2;
4151 break;
4152 case 12:
4153 assert(ctx->options->chip_class > GFX6);
4154 op = aco_opcode::buffer_load_dwordx3;
4155 break;
4156 case 16:
4157 op = aco_opcode::buffer_load_dwordx4;
4158 break;
4159 default:
4160 unreachable("Load SSBO not implemented for this size.");
4161 }
4162 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
4163 mubuf->operands[0] = Operand(rsrc);
4164 mubuf->operands[1] = vaddr;
4165 mubuf->operands[2] = soffset;
4166 mubuf->offen = (offset.type() == RegType::vgpr);
4167 mubuf->glc = glc;
4168 mubuf->dlc = dlc;
4169 mubuf->barrier = readonly ? barrier_none : barrier_buffer;
4170 mubuf->can_reorder = readonly;
4171 mubuf->offset = const_offset;
4172 aco_ptr<Instruction> instr = std::move(mubuf);
4173
4174 if (dst.size() > 4) {
4175 assert(lower != Temp());
4176 Temp upper = bld.tmp(RegType::vgpr, dst.size() - lower.size());
4177 instr->definitions[0] = Definition(upper);
4178 bld.insert(std::move(instr));
4179 if (dst.size() == 8)
4180 emit_split_vector(ctx, upper, 2);
4181 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size() / 2, 1));
4182 instr->operands[0] = Operand(emit_extract_vector(ctx, lower, 0, v2));
4183 instr->operands[1] = Operand(emit_extract_vector(ctx, lower, 1, v2));
4184 instr->operands[2] = Operand(emit_extract_vector(ctx, upper, 0, v2));
4185 if (dst.size() == 8)
4186 instr->operands[3] = Operand(emit_extract_vector(ctx, upper, 1, v2));
4187 } else if (dst.size() == 3 && ctx->options->chip_class == GFX6) {
4188 Temp vec = bld.tmp(v4);
4189 instr->definitions[0] = Definition(vec);
4190 bld.insert(std::move(instr));
4191 emit_split_vector(ctx, vec, 4);
4192
4193 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 3, 1));
4194 instr->operands[0] = Operand(emit_extract_vector(ctx, vec, 0, v1));
4195 instr->operands[1] = Operand(emit_extract_vector(ctx, vec, 1, v1));
4196 instr->operands[2] = Operand(emit_extract_vector(ctx, vec, 2, v1));
4197 }
4198
4199 if (dst.type() == RegType::sgpr) {
4200 Temp vec = bld.tmp(RegType::vgpr, dst.size());
4201 instr->definitions[0] = Definition(vec);
4202 bld.insert(std::move(instr));
4203 expand_vector(ctx, vec, dst, num_components, (1 << num_components) - 1);
4204 } else {
4205 instr->definitions[0] = Definition(dst);
4206 bld.insert(std::move(instr));
4207 emit_split_vector(ctx, dst, num_components);
4208 }
4209 } else {
4210 switch (num_bytes) {
4211 case 4:
4212 op = aco_opcode::s_buffer_load_dword;
4213 break;
4214 case 8:
4215 op = aco_opcode::s_buffer_load_dwordx2;
4216 break;
4217 case 12:
4218 case 16:
4219 op = aco_opcode::s_buffer_load_dwordx4;
4220 break;
4221 case 24:
4222 case 32:
4223 op = aco_opcode::s_buffer_load_dwordx8;
4224 break;
4225 default:
4226 unreachable("Load SSBO not implemented for this size.");
4227 }
4228 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
4229 load->operands[0] = Operand(rsrc);
4230 load->operands[1] = Operand(bld.as_uniform(offset));
4231 assert(load->operands[1].getTemp().type() == RegType::sgpr);
4232 load->definitions[0] = Definition(dst);
4233 load->glc = glc;
4234 load->dlc = dlc;
4235 load->barrier = readonly ? barrier_none : barrier_buffer;
4236 load->can_reorder = false; // FIXME: currently, it doesn't seem beneficial due to how our scheduler works
4237 assert(ctx->options->chip_class >= GFX8 || !glc);
4238
4239 /* trim vector */
4240 if (dst.size() == 3) {
4241 Temp vec = bld.tmp(s4);
4242 load->definitions[0] = Definition(vec);
4243 bld.insert(std::move(load));
4244 emit_split_vector(ctx, vec, 4);
4245
4246 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4247 emit_extract_vector(ctx, vec, 0, s1),
4248 emit_extract_vector(ctx, vec, 1, s1),
4249 emit_extract_vector(ctx, vec, 2, s1));
4250 } else if (dst.size() == 6) {
4251 Temp vec = bld.tmp(s8);
4252 load->definitions[0] = Definition(vec);
4253 bld.insert(std::move(load));
4254 emit_split_vector(ctx, vec, 4);
4255
4256 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4257 emit_extract_vector(ctx, vec, 0, s2),
4258 emit_extract_vector(ctx, vec, 1, s2),
4259 emit_extract_vector(ctx, vec, 2, s2));
4260 } else {
4261 bld.insert(std::move(load));
4262 }
4263 emit_split_vector(ctx, dst, num_components);
4264 }
4265 }
4266
4267 void visit_load_ubo(isel_context *ctx, nir_intrinsic_instr *instr)
4268 {
4269 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4270 Temp rsrc = get_ssa_temp(ctx, instr->src[0].ssa);
4271
4272 Builder bld(ctx->program, ctx->block);
4273
4274 nir_intrinsic_instr* idx_instr = nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
4275 unsigned desc_set = nir_intrinsic_desc_set(idx_instr);
4276 unsigned binding = nir_intrinsic_binding(idx_instr);
4277 radv_descriptor_set_layout *layout = ctx->options->layout->set[desc_set].layout;
4278
4279 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
4280 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
4281 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
4282 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
4283 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
4284 if (ctx->options->chip_class >= GFX10) {
4285 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
4286 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
4287 S_008F0C_RESOURCE_LEVEL(1);
4288 } else {
4289 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
4290 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
4291 }
4292 Temp upper_dwords = bld.pseudo(aco_opcode::p_create_vector, bld.def(s3),
4293 Operand(S_008F04_BASE_ADDRESS_HI(ctx->options->address32_hi)),
4294 Operand(0xFFFFFFFFu),
4295 Operand(desc_type));
4296 rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
4297 rsrc, upper_dwords);
4298 } else {
4299 rsrc = convert_pointer_to_64_bit(ctx, rsrc);
4300 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
4301 }
4302
4303 load_buffer(ctx, instr->num_components, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa));
4304 }
4305
4306 void visit_load_push_constant(isel_context *ctx, nir_intrinsic_instr *instr)
4307 {
4308 Builder bld(ctx->program, ctx->block);
4309 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4310
4311 unsigned offset = nir_intrinsic_base(instr);
4312 nir_const_value *index_cv = nir_src_as_const_value(instr->src[0]);
4313 if (index_cv && instr->dest.ssa.bit_size == 32) {
4314
4315 unsigned count = instr->dest.ssa.num_components;
4316 unsigned start = (offset + index_cv->u32) / 4u;
4317 start -= ctx->args->ac.base_inline_push_consts;
4318 if (start + count <= ctx->args->ac.num_inline_push_consts) {
4319 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
4320 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
4321 for (unsigned i = 0; i < count; ++i) {
4322 elems[i] = get_arg(ctx, ctx->args->ac.inline_push_consts[start + i]);
4323 vec->operands[i] = Operand{elems[i]};
4324 }
4325 vec->definitions[0] = Definition(dst);
4326 ctx->block->instructions.emplace_back(std::move(vec));
4327 ctx->allocated_vec.emplace(dst.id(), elems);
4328 return;
4329 }
4330 }
4331
4332 Temp index = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa));
4333 if (offset != 0) // TODO check if index != 0 as well
4334 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), index);
4335 Temp ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->ac.push_constants));
4336 Temp vec = dst;
4337 bool trim = false;
4338 aco_opcode op;
4339
4340 switch (dst.size()) {
4341 case 1:
4342 op = aco_opcode::s_load_dword;
4343 break;
4344 case 2:
4345 op = aco_opcode::s_load_dwordx2;
4346 break;
4347 case 3:
4348 vec = bld.tmp(s4);
4349 trim = true;
4350 case 4:
4351 op = aco_opcode::s_load_dwordx4;
4352 break;
4353 case 6:
4354 vec = bld.tmp(s8);
4355 trim = true;
4356 case 8:
4357 op = aco_opcode::s_load_dwordx8;
4358 break;
4359 default:
4360 unreachable("unimplemented or forbidden load_push_constant.");
4361 }
4362
4363 bld.smem(op, Definition(vec), ptr, index);
4364
4365 if (trim) {
4366 emit_split_vector(ctx, vec, 4);
4367 RegClass rc = dst.size() == 3 ? s1 : s2;
4368 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4369 emit_extract_vector(ctx, vec, 0, rc),
4370 emit_extract_vector(ctx, vec, 1, rc),
4371 emit_extract_vector(ctx, vec, 2, rc));
4372
4373 }
4374 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
4375 }
4376
4377 void visit_load_constant(isel_context *ctx, nir_intrinsic_instr *instr)
4378 {
4379 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4380
4381 Builder bld(ctx->program, ctx->block);
4382
4383 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
4384 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
4385 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
4386 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
4387 if (ctx->options->chip_class >= GFX10) {
4388 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
4389 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
4390 S_008F0C_RESOURCE_LEVEL(1);
4391 } else {
4392 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
4393 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
4394 }
4395
4396 unsigned base = nir_intrinsic_base(instr);
4397 unsigned range = nir_intrinsic_range(instr);
4398
4399 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
4400 if (base && offset.type() == RegType::sgpr)
4401 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), offset, Operand(base));
4402 else if (base && offset.type() == RegType::vgpr)
4403 offset = bld.vadd32(bld.def(v1), Operand(base), offset);
4404
4405 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
4406 bld.sop1(aco_opcode::p_constaddr, bld.def(s2), bld.def(s1, scc), Operand(ctx->constant_data_offset)),
4407 Operand(MIN2(base + range, ctx->shader->constant_data_size)),
4408 Operand(desc_type));
4409
4410 load_buffer(ctx, instr->num_components, dst, rsrc, offset);
4411 }
4412
4413 void visit_discard_if(isel_context *ctx, nir_intrinsic_instr *instr)
4414 {
4415 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
4416 ctx->cf_info.exec_potentially_empty_discard = true;
4417
4418 ctx->program->needs_exact = true;
4419
4420 // TODO: optimize uniform conditions
4421 Builder bld(ctx->program, ctx->block);
4422 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
4423 assert(src.regClass() == bld.lm);
4424 src = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
4425 bld.pseudo(aco_opcode::p_discard_if, src);
4426 ctx->block->kind |= block_kind_uses_discard_if;
4427 return;
4428 }
4429
4430 void visit_discard(isel_context* ctx, nir_intrinsic_instr *instr)
4431 {
4432 Builder bld(ctx->program, ctx->block);
4433
4434 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
4435 ctx->cf_info.exec_potentially_empty_discard = true;
4436
4437 bool divergent = ctx->cf_info.parent_if.is_divergent ||
4438 ctx->cf_info.parent_loop.has_divergent_continue;
4439
4440 if (ctx->block->loop_nest_depth &&
4441 ((nir_instr_is_last(&instr->instr) && !divergent) || divergent)) {
4442 /* we handle discards the same way as jump instructions */
4443 append_logical_end(ctx->block);
4444
4445 /* in loops, discard behaves like break */
4446 Block *linear_target = ctx->cf_info.parent_loop.exit;
4447 ctx->block->kind |= block_kind_discard;
4448
4449 if (!divergent) {
4450 /* uniform discard - loop ends here */
4451 assert(nir_instr_is_last(&instr->instr));
4452 ctx->block->kind |= block_kind_uniform;
4453 ctx->cf_info.has_branch = true;
4454 bld.branch(aco_opcode::p_branch);
4455 add_linear_edge(ctx->block->index, linear_target);
4456 return;
4457 }
4458
4459 /* we add a break right behind the discard() instructions */
4460 ctx->block->kind |= block_kind_break;
4461 unsigned idx = ctx->block->index;
4462
4463 /* remove critical edges from linear CFG */
4464 bld.branch(aco_opcode::p_branch);
4465 Block* break_block = ctx->program->create_and_insert_block();
4466 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
4467 break_block->kind |= block_kind_uniform;
4468 add_linear_edge(idx, break_block);
4469 add_linear_edge(break_block->index, linear_target);
4470 bld.reset(break_block);
4471 bld.branch(aco_opcode::p_branch);
4472
4473 Block* continue_block = ctx->program->create_and_insert_block();
4474 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
4475 add_linear_edge(idx, continue_block);
4476 append_logical_start(continue_block);
4477 ctx->block = continue_block;
4478
4479 return;
4480 }
4481
4482 /* it can currently happen that NIR doesn't remove the unreachable code */
4483 if (!nir_instr_is_last(&instr->instr)) {
4484 ctx->program->needs_exact = true;
4485 /* save exec somewhere temporarily so that it doesn't get
4486 * overwritten before the discard from outer exec masks */
4487 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), Operand(0xFFFFFFFF), Operand(exec, bld.lm));
4488 bld.pseudo(aco_opcode::p_discard_if, cond);
4489 ctx->block->kind |= block_kind_uses_discard_if;
4490 return;
4491 }
4492
4493 /* This condition is incorrect for uniformly branched discards in a loop
4494 * predicated by a divergent condition, but the above code catches that case
4495 * and the discard would end up turning into a discard_if.
4496 * For example:
4497 * if (divergent) {
4498 * while (...) {
4499 * if (uniform) {
4500 * discard;
4501 * }
4502 * }
4503 * }
4504 */
4505 if (!ctx->cf_info.parent_if.is_divergent) {
4506 /* program just ends here */
4507 ctx->block->kind |= block_kind_uniform;
4508 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
4509 0 /* enabled mask */, 9 /* dest */,
4510 false /* compressed */, true/* done */, true /* valid mask */);
4511 bld.sopp(aco_opcode::s_endpgm);
4512 // TODO: it will potentially be followed by a branch which is dead code to sanitize NIR phis
4513 } else {
4514 ctx->block->kind |= block_kind_discard;
4515 /* branch and linear edge is added by visit_if() */
4516 }
4517 }
4518
4519 enum aco_descriptor_type {
4520 ACO_DESC_IMAGE,
4521 ACO_DESC_FMASK,
4522 ACO_DESC_SAMPLER,
4523 ACO_DESC_BUFFER,
4524 ACO_DESC_PLANE_0,
4525 ACO_DESC_PLANE_1,
4526 ACO_DESC_PLANE_2,
4527 };
4528
4529 static bool
4530 should_declare_array(isel_context *ctx, enum glsl_sampler_dim sampler_dim, bool is_array) {
4531 if (sampler_dim == GLSL_SAMPLER_DIM_BUF)
4532 return false;
4533 ac_image_dim dim = ac_get_sampler_dim(ctx->options->chip_class, sampler_dim, is_array);
4534 return dim == ac_image_cube ||
4535 dim == ac_image_1darray ||
4536 dim == ac_image_2darray ||
4537 dim == ac_image_2darraymsaa;
4538 }
4539
4540 Temp get_sampler_desc(isel_context *ctx, nir_deref_instr *deref_instr,
4541 enum aco_descriptor_type desc_type,
4542 const nir_tex_instr *tex_instr, bool image, bool write)
4543 {
4544 /* FIXME: we should lower the deref with some new nir_intrinsic_load_desc
4545 std::unordered_map<uint64_t, Temp>::iterator it = ctx->tex_desc.find((uint64_t) desc_type << 32 | deref_instr->dest.ssa.index);
4546 if (it != ctx->tex_desc.end())
4547 return it->second;
4548 */
4549 Temp index = Temp();
4550 bool index_set = false;
4551 unsigned constant_index = 0;
4552 unsigned descriptor_set;
4553 unsigned base_index;
4554 Builder bld(ctx->program, ctx->block);
4555
4556 if (!deref_instr) {
4557 assert(tex_instr && !image);
4558 descriptor_set = 0;
4559 base_index = tex_instr->sampler_index;
4560 } else {
4561 while(deref_instr->deref_type != nir_deref_type_var) {
4562 unsigned array_size = glsl_get_aoa_size(deref_instr->type);
4563 if (!array_size)
4564 array_size = 1;
4565
4566 assert(deref_instr->deref_type == nir_deref_type_array);
4567 nir_const_value *const_value = nir_src_as_const_value(deref_instr->arr.index);
4568 if (const_value) {
4569 constant_index += array_size * const_value->u32;
4570 } else {
4571 Temp indirect = get_ssa_temp(ctx, deref_instr->arr.index.ssa);
4572 if (indirect.type() == RegType::vgpr)
4573 indirect = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), indirect);
4574
4575 if (array_size != 1)
4576 indirect = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(array_size), indirect);
4577
4578 if (!index_set) {
4579 index = indirect;
4580 index_set = true;
4581 } else {
4582 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), index, indirect);
4583 }
4584 }
4585
4586 deref_instr = nir_src_as_deref(deref_instr->parent);
4587 }
4588 descriptor_set = deref_instr->var->data.descriptor_set;
4589 base_index = deref_instr->var->data.binding;
4590 }
4591
4592 Temp list = load_desc_ptr(ctx, descriptor_set);
4593 list = convert_pointer_to_64_bit(ctx, list);
4594
4595 struct radv_descriptor_set_layout *layout = ctx->options->layout->set[descriptor_set].layout;
4596 struct radv_descriptor_set_binding_layout *binding = layout->binding + base_index;
4597 unsigned offset = binding->offset;
4598 unsigned stride = binding->size;
4599 aco_opcode opcode;
4600 RegClass type;
4601
4602 assert(base_index < layout->binding_count);
4603
4604 switch (desc_type) {
4605 case ACO_DESC_IMAGE:
4606 type = s8;
4607 opcode = aco_opcode::s_load_dwordx8;
4608 break;
4609 case ACO_DESC_FMASK:
4610 type = s8;
4611 opcode = aco_opcode::s_load_dwordx8;
4612 offset += 32;
4613 break;
4614 case ACO_DESC_SAMPLER:
4615 type = s4;
4616 opcode = aco_opcode::s_load_dwordx4;
4617 if (binding->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
4618 offset += radv_combined_image_descriptor_sampler_offset(binding);
4619 break;
4620 case ACO_DESC_BUFFER:
4621 type = s4;
4622 opcode = aco_opcode::s_load_dwordx4;
4623 break;
4624 case ACO_DESC_PLANE_0:
4625 case ACO_DESC_PLANE_1:
4626 type = s8;
4627 opcode = aco_opcode::s_load_dwordx8;
4628 offset += 32 * (desc_type - ACO_DESC_PLANE_0);
4629 break;
4630 case ACO_DESC_PLANE_2:
4631 type = s4;
4632 opcode = aco_opcode::s_load_dwordx4;
4633 offset += 64;
4634 break;
4635 default:
4636 unreachable("invalid desc_type\n");
4637 }
4638
4639 offset += constant_index * stride;
4640
4641 if (desc_type == ACO_DESC_SAMPLER && binding->immutable_samplers_offset &&
4642 (!index_set || binding->immutable_samplers_equal)) {
4643 if (binding->immutable_samplers_equal)
4644 constant_index = 0;
4645
4646 const uint32_t *samplers = radv_immutable_samplers(layout, binding);
4647 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
4648 Operand(samplers[constant_index * 4 + 0]),
4649 Operand(samplers[constant_index * 4 + 1]),
4650 Operand(samplers[constant_index * 4 + 2]),
4651 Operand(samplers[constant_index * 4 + 3]));
4652 }
4653
4654 Operand off;
4655 if (!index_set) {
4656 off = bld.copy(bld.def(s1), Operand(offset));
4657 } else {
4658 off = Operand((Temp)bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset),
4659 bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), index)));
4660 }
4661
4662 Temp res = bld.smem(opcode, bld.def(type), list, off);
4663
4664 if (desc_type == ACO_DESC_PLANE_2) {
4665 Temp components[8];
4666 for (unsigned i = 0; i < 8; i++)
4667 components[i] = bld.tmp(s1);
4668 bld.pseudo(aco_opcode::p_split_vector,
4669 Definition(components[0]),
4670 Definition(components[1]),
4671 Definition(components[2]),
4672 Definition(components[3]),
4673 res);
4674
4675 Temp desc2 = get_sampler_desc(ctx, deref_instr, ACO_DESC_PLANE_1, tex_instr, image, write);
4676 bld.pseudo(aco_opcode::p_split_vector,
4677 bld.def(s1), bld.def(s1), bld.def(s1), bld.def(s1),
4678 Definition(components[4]),
4679 Definition(components[5]),
4680 Definition(components[6]),
4681 Definition(components[7]),
4682 desc2);
4683
4684 res = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
4685 components[0], components[1], components[2], components[3],
4686 components[4], components[5], components[6], components[7]);
4687 }
4688
4689 return res;
4690 }
4691
4692 static int image_type_to_components_count(enum glsl_sampler_dim dim, bool array)
4693 {
4694 switch (dim) {
4695 case GLSL_SAMPLER_DIM_BUF:
4696 return 1;
4697 case GLSL_SAMPLER_DIM_1D:
4698 return array ? 2 : 1;
4699 case GLSL_SAMPLER_DIM_2D:
4700 return array ? 3 : 2;
4701 case GLSL_SAMPLER_DIM_MS:
4702 return array ? 4 : 3;
4703 case GLSL_SAMPLER_DIM_3D:
4704 case GLSL_SAMPLER_DIM_CUBE:
4705 return 3;
4706 case GLSL_SAMPLER_DIM_RECT:
4707 case GLSL_SAMPLER_DIM_SUBPASS:
4708 return 2;
4709 case GLSL_SAMPLER_DIM_SUBPASS_MS:
4710 return 3;
4711 default:
4712 break;
4713 }
4714 return 0;
4715 }
4716
4717
4718 /* Adjust the sample index according to FMASK.
4719 *
4720 * For uncompressed MSAA surfaces, FMASK should return 0x76543210,
4721 * which is the identity mapping. Each nibble says which physical sample
4722 * should be fetched to get that sample.
4723 *
4724 * For example, 0x11111100 means there are only 2 samples stored and
4725 * the second sample covers 3/4 of the pixel. When reading samples 0
4726 * and 1, return physical sample 0 (determined by the first two 0s
4727 * in FMASK), otherwise return physical sample 1.
4728 *
4729 * The sample index should be adjusted as follows:
4730 * sample_index = (fmask >> (sample_index * 4)) & 0xF;
4731 */
4732 static Temp adjust_sample_index_using_fmask(isel_context *ctx, bool da, std::vector<Temp>& coords, Operand sample_index, Temp fmask_desc_ptr)
4733 {
4734 Builder bld(ctx->program, ctx->block);
4735 Temp fmask = bld.tmp(v1);
4736 unsigned dim = ctx->options->chip_class >= GFX10
4737 ? ac_get_sampler_dim(ctx->options->chip_class, GLSL_SAMPLER_DIM_2D, da)
4738 : 0;
4739
4740 Temp coord = da ? bld.pseudo(aco_opcode::p_create_vector, bld.def(v3), coords[0], coords[1], coords[2]) :
4741 bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), coords[0], coords[1]);
4742 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(aco_opcode::image_load, Format::MIMG, 3, 1)};
4743 load->operands[0] = Operand(fmask_desc_ptr);
4744 load->operands[1] = Operand(s4); /* no sampler */
4745 load->operands[2] = Operand(coord);
4746 load->definitions[0] = Definition(fmask);
4747 load->glc = false;
4748 load->dlc = false;
4749 load->dmask = 0x1;
4750 load->unrm = true;
4751 load->da = da;
4752 load->dim = dim;
4753 load->can_reorder = true; /* fmask images shouldn't be modified */
4754 ctx->block->instructions.emplace_back(std::move(load));
4755
4756 Operand sample_index4;
4757 if (sample_index.isConstant() && sample_index.constantValue() < 16) {
4758 sample_index4 = Operand(sample_index.constantValue() << 2);
4759 } else if (sample_index.regClass() == s1) {
4760 sample_index4 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), sample_index, Operand(2u));
4761 } else {
4762 assert(sample_index.regClass() == v1);
4763 sample_index4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), sample_index);
4764 }
4765
4766 Temp final_sample;
4767 if (sample_index4.isConstant() && sample_index4.constantValue() == 0)
4768 final_sample = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(15u), fmask);
4769 else if (sample_index4.isConstant() && sample_index4.constantValue() == 28)
4770 final_sample = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(28u), fmask);
4771 else
4772 final_sample = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), fmask, sample_index4, Operand(4u));
4773
4774 /* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK
4775 * resource descriptor is 0 (invalid),
4776 */
4777 Temp compare = bld.tmp(bld.lm);
4778 bld.vopc_e64(aco_opcode::v_cmp_lg_u32, Definition(compare),
4779 Operand(0u), emit_extract_vector(ctx, fmask_desc_ptr, 1, s1)).def(0).setHint(vcc);
4780
4781 Temp sample_index_v = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), sample_index);
4782
4783 /* Replace the MSAA sample index. */
4784 return bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), sample_index_v, final_sample, compare);
4785 }
4786
4787 static Temp get_image_coords(isel_context *ctx, const nir_intrinsic_instr *instr, const struct glsl_type *type)
4788 {
4789
4790 Temp src0 = get_ssa_temp(ctx, instr->src[1].ssa);
4791 enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4792 bool is_array = glsl_sampler_type_is_array(type);
4793 ASSERTED bool add_frag_pos = (dim == GLSL_SAMPLER_DIM_SUBPASS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
4794 assert(!add_frag_pos && "Input attachments should be lowered.");
4795 bool is_ms = (dim == GLSL_SAMPLER_DIM_MS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
4796 bool gfx9_1d = ctx->options->chip_class == GFX9 && dim == GLSL_SAMPLER_DIM_1D;
4797 int count = image_type_to_components_count(dim, is_array);
4798 std::vector<Temp> coords(count);
4799 Builder bld(ctx->program, ctx->block);
4800
4801 if (is_ms) {
4802 count--;
4803 Temp src2 = get_ssa_temp(ctx, instr->src[2].ssa);
4804 /* get sample index */
4805 if (instr->intrinsic == nir_intrinsic_image_deref_load) {
4806 nir_const_value *sample_cv = nir_src_as_const_value(instr->src[2]);
4807 Operand sample_index = sample_cv ? Operand(sample_cv->u32) : Operand(emit_extract_vector(ctx, src2, 0, v1));
4808 std::vector<Temp> fmask_load_address;
4809 for (unsigned i = 0; i < (is_array ? 3 : 2); i++)
4810 fmask_load_address.emplace_back(emit_extract_vector(ctx, src0, i, v1));
4811
4812 Temp fmask_desc_ptr = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_FMASK, nullptr, false, false);
4813 coords[count] = adjust_sample_index_using_fmask(ctx, is_array, fmask_load_address, sample_index, fmask_desc_ptr);
4814 } else {
4815 coords[count] = emit_extract_vector(ctx, src2, 0, v1);
4816 }
4817 }
4818
4819 if (gfx9_1d) {
4820 coords[0] = emit_extract_vector(ctx, src0, 0, v1);
4821 coords.resize(coords.size() + 1);
4822 coords[1] = bld.copy(bld.def(v1), Operand(0u));
4823 if (is_array)
4824 coords[2] = emit_extract_vector(ctx, src0, 1, v1);
4825 } else {
4826 for (int i = 0; i < count; i++)
4827 coords[i] = emit_extract_vector(ctx, src0, i, v1);
4828 }
4829
4830 if (instr->intrinsic == nir_intrinsic_image_deref_load ||
4831 instr->intrinsic == nir_intrinsic_image_deref_store) {
4832 int lod_index = instr->intrinsic == nir_intrinsic_image_deref_load ? 3 : 4;
4833 bool level_zero = nir_src_is_const(instr->src[lod_index]) && nir_src_as_uint(instr->src[lod_index]) == 0;
4834
4835 if (!level_zero)
4836 coords.emplace_back(get_ssa_temp(ctx, instr->src[lod_index].ssa));
4837 }
4838
4839 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
4840 for (unsigned i = 0; i < coords.size(); i++)
4841 vec->operands[i] = Operand(coords[i]);
4842 Temp res = {ctx->program->allocateId(), RegClass(RegType::vgpr, coords.size())};
4843 vec->definitions[0] = Definition(res);
4844 ctx->block->instructions.emplace_back(std::move(vec));
4845 return res;
4846 }
4847
4848
4849 void visit_image_load(isel_context *ctx, nir_intrinsic_instr *instr)
4850 {
4851 Builder bld(ctx->program, ctx->block);
4852 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
4853 const struct glsl_type *type = glsl_without_array(var->type);
4854 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4855 bool is_array = glsl_sampler_type_is_array(type);
4856 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4857
4858 if (dim == GLSL_SAMPLER_DIM_BUF) {
4859 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa);
4860 unsigned num_channels = util_last_bit(mask);
4861 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
4862 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
4863
4864 aco_opcode opcode;
4865 switch (num_channels) {
4866 case 1:
4867 opcode = aco_opcode::buffer_load_format_x;
4868 break;
4869 case 2:
4870 opcode = aco_opcode::buffer_load_format_xy;
4871 break;
4872 case 3:
4873 opcode = aco_opcode::buffer_load_format_xyz;
4874 break;
4875 case 4:
4876 opcode = aco_opcode::buffer_load_format_xyzw;
4877 break;
4878 default:
4879 unreachable(">4 channel buffer image load");
4880 }
4881 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 3, 1)};
4882 load->operands[0] = Operand(rsrc);
4883 load->operands[1] = Operand(vindex);
4884 load->operands[2] = Operand((uint32_t) 0);
4885 Temp tmp;
4886 if (num_channels == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
4887 tmp = dst;
4888 else
4889 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_channels)};
4890 load->definitions[0] = Definition(tmp);
4891 load->idxen = true;
4892 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT);
4893 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
4894 load->barrier = barrier_image;
4895 ctx->block->instructions.emplace_back(std::move(load));
4896
4897 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, (1 << num_channels) - 1);
4898 return;
4899 }
4900
4901 Temp coords = get_image_coords(ctx, instr, type);
4902 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
4903
4904 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
4905 unsigned num_components = util_bitcount(dmask);
4906 Temp tmp;
4907 if (num_components == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
4908 tmp = dst;
4909 else
4910 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_components)};
4911
4912 bool level_zero = nir_src_is_const(instr->src[3]) && nir_src_as_uint(instr->src[3]) == 0;
4913 aco_opcode opcode = level_zero ? aco_opcode::image_load : aco_opcode::image_load_mip;
4914
4915 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1)};
4916 load->operands[0] = Operand(resource);
4917 load->operands[1] = Operand(s4); /* no sampler */
4918 load->operands[2] = Operand(coords);
4919 load->definitions[0] = Definition(tmp);
4920 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT) ? 1 : 0;
4921 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
4922 load->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
4923 load->dmask = dmask;
4924 load->unrm = true;
4925 load->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
4926 load->barrier = barrier_image;
4927 ctx->block->instructions.emplace_back(std::move(load));
4928
4929 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, dmask);
4930 return;
4931 }
4932
4933 void visit_image_store(isel_context *ctx, nir_intrinsic_instr *instr)
4934 {
4935 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
4936 const struct glsl_type *type = glsl_without_array(var->type);
4937 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4938 bool is_array = glsl_sampler_type_is_array(type);
4939 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
4940
4941 bool glc = ctx->options->chip_class == GFX6 || var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE) ? 1 : 0;
4942
4943 if (dim == GLSL_SAMPLER_DIM_BUF) {
4944 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
4945 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
4946 aco_opcode opcode;
4947 switch (data.size()) {
4948 case 1:
4949 opcode = aco_opcode::buffer_store_format_x;
4950 break;
4951 case 2:
4952 opcode = aco_opcode::buffer_store_format_xy;
4953 break;
4954 case 3:
4955 opcode = aco_opcode::buffer_store_format_xyz;
4956 break;
4957 case 4:
4958 opcode = aco_opcode::buffer_store_format_xyzw;
4959 break;
4960 default:
4961 unreachable(">4 channel buffer image store");
4962 }
4963 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
4964 store->operands[0] = Operand(rsrc);
4965 store->operands[1] = Operand(vindex);
4966 store->operands[2] = Operand((uint32_t) 0);
4967 store->operands[3] = Operand(data);
4968 store->idxen = true;
4969 store->glc = glc;
4970 store->dlc = false;
4971 store->disable_wqm = true;
4972 store->barrier = barrier_image;
4973 ctx->program->needs_exact = true;
4974 ctx->block->instructions.emplace_back(std::move(store));
4975 return;
4976 }
4977
4978 assert(data.type() == RegType::vgpr);
4979 Temp coords = get_image_coords(ctx, instr, type);
4980 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
4981
4982 bool level_zero = nir_src_is_const(instr->src[4]) && nir_src_as_uint(instr->src[4]) == 0;
4983 aco_opcode opcode = level_zero ? aco_opcode::image_store : aco_opcode::image_store_mip;
4984
4985 aco_ptr<MIMG_instruction> store{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 0)};
4986 store->operands[0] = Operand(resource);
4987 store->operands[1] = Operand(data);
4988 store->operands[2] = Operand(coords);
4989 store->glc = glc;
4990 store->dlc = false;
4991 store->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
4992 store->dmask = (1 << data.size()) - 1;
4993 store->unrm = true;
4994 store->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
4995 store->disable_wqm = true;
4996 store->barrier = barrier_image;
4997 ctx->program->needs_exact = true;
4998 ctx->block->instructions.emplace_back(std::move(store));
4999 return;
5000 }
5001
5002 void visit_image_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
5003 {
5004 /* return the previous value if dest is ever used */
5005 bool return_previous = false;
5006 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5007 return_previous = true;
5008 break;
5009 }
5010 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5011 return_previous = true;
5012 break;
5013 }
5014
5015 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5016 const struct glsl_type *type = glsl_without_array(var->type);
5017 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5018 bool is_array = glsl_sampler_type_is_array(type);
5019 Builder bld(ctx->program, ctx->block);
5020
5021 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
5022 assert(data.size() == 1 && "64bit ssbo atomics not yet implemented.");
5023
5024 if (instr->intrinsic == nir_intrinsic_image_deref_atomic_comp_swap)
5025 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), get_ssa_temp(ctx, instr->src[4].ssa), data);
5026
5027 aco_opcode buf_op, image_op;
5028 switch (instr->intrinsic) {
5029 case nir_intrinsic_image_deref_atomic_add:
5030 buf_op = aco_opcode::buffer_atomic_add;
5031 image_op = aco_opcode::image_atomic_add;
5032 break;
5033 case nir_intrinsic_image_deref_atomic_umin:
5034 buf_op = aco_opcode::buffer_atomic_umin;
5035 image_op = aco_opcode::image_atomic_umin;
5036 break;
5037 case nir_intrinsic_image_deref_atomic_imin:
5038 buf_op = aco_opcode::buffer_atomic_smin;
5039 image_op = aco_opcode::image_atomic_smin;
5040 break;
5041 case nir_intrinsic_image_deref_atomic_umax:
5042 buf_op = aco_opcode::buffer_atomic_umax;
5043 image_op = aco_opcode::image_atomic_umax;
5044 break;
5045 case nir_intrinsic_image_deref_atomic_imax:
5046 buf_op = aco_opcode::buffer_atomic_smax;
5047 image_op = aco_opcode::image_atomic_smax;
5048 break;
5049 case nir_intrinsic_image_deref_atomic_and:
5050 buf_op = aco_opcode::buffer_atomic_and;
5051 image_op = aco_opcode::image_atomic_and;
5052 break;
5053 case nir_intrinsic_image_deref_atomic_or:
5054 buf_op = aco_opcode::buffer_atomic_or;
5055 image_op = aco_opcode::image_atomic_or;
5056 break;
5057 case nir_intrinsic_image_deref_atomic_xor:
5058 buf_op = aco_opcode::buffer_atomic_xor;
5059 image_op = aco_opcode::image_atomic_xor;
5060 break;
5061 case nir_intrinsic_image_deref_atomic_exchange:
5062 buf_op = aco_opcode::buffer_atomic_swap;
5063 image_op = aco_opcode::image_atomic_swap;
5064 break;
5065 case nir_intrinsic_image_deref_atomic_comp_swap:
5066 buf_op = aco_opcode::buffer_atomic_cmpswap;
5067 image_op = aco_opcode::image_atomic_cmpswap;
5068 break;
5069 default:
5070 unreachable("visit_image_atomic should only be called with nir_intrinsic_image_deref_atomic_* instructions.");
5071 }
5072
5073 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5074
5075 if (dim == GLSL_SAMPLER_DIM_BUF) {
5076 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5077 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5078 //assert(ctx->options->chip_class < GFX9 && "GFX9 stride size workaround not yet implemented.");
5079 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(buf_op, Format::MUBUF, 4, return_previous ? 1 : 0)};
5080 mubuf->operands[0] = Operand(resource);
5081 mubuf->operands[1] = Operand(vindex);
5082 mubuf->operands[2] = Operand((uint32_t)0);
5083 mubuf->operands[3] = Operand(data);
5084 if (return_previous)
5085 mubuf->definitions[0] = Definition(dst);
5086 mubuf->offset = 0;
5087 mubuf->idxen = true;
5088 mubuf->glc = return_previous;
5089 mubuf->dlc = false; /* Not needed for atomics */
5090 mubuf->disable_wqm = true;
5091 mubuf->barrier = barrier_image;
5092 ctx->program->needs_exact = true;
5093 ctx->block->instructions.emplace_back(std::move(mubuf));
5094 return;
5095 }
5096
5097 Temp coords = get_image_coords(ctx, instr, type);
5098 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5099 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(image_op, Format::MIMG, 3, return_previous ? 1 : 0)};
5100 mimg->operands[0] = Operand(resource);
5101 mimg->operands[1] = Operand(data);
5102 mimg->operands[2] = Operand(coords);
5103 if (return_previous)
5104 mimg->definitions[0] = Definition(dst);
5105 mimg->glc = return_previous;
5106 mimg->dlc = false; /* Not needed for atomics */
5107 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5108 mimg->dmask = (1 << data.size()) - 1;
5109 mimg->unrm = true;
5110 mimg->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5111 mimg->disable_wqm = true;
5112 mimg->barrier = barrier_image;
5113 ctx->program->needs_exact = true;
5114 ctx->block->instructions.emplace_back(std::move(mimg));
5115 return;
5116 }
5117
5118 void get_buffer_size(isel_context *ctx, Temp desc, Temp dst, bool in_elements)
5119 {
5120 if (in_elements && ctx->options->chip_class == GFX8) {
5121 /* we only have to divide by 1, 2, 4, 8, 12 or 16 */
5122 Builder bld(ctx->program, ctx->block);
5123
5124 Temp size = emit_extract_vector(ctx, desc, 2, s1);
5125
5126 Temp size_div3 = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), bld.copy(bld.def(v1), Operand(0xaaaaaaabu)), size);
5127 size_div3 = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.as_uniform(size_div3), Operand(1u));
5128
5129 Temp stride = emit_extract_vector(ctx, desc, 1, s1);
5130 stride = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), stride, Operand((5u << 16) | 16u));
5131
5132 Temp is12 = bld.sopc(aco_opcode::s_cmp_eq_i32, bld.def(s1, scc), stride, Operand(12u));
5133 size = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), size_div3, size, bld.scc(is12));
5134
5135 Temp shr_dst = dst.type() == RegType::vgpr ? bld.tmp(s1) : dst;
5136 bld.sop2(aco_opcode::s_lshr_b32, Definition(shr_dst), bld.def(s1, scc),
5137 size, bld.sop1(aco_opcode::s_ff1_i32_b32, bld.def(s1), stride));
5138 if (dst.type() == RegType::vgpr)
5139 bld.copy(Definition(dst), shr_dst);
5140
5141 /* TODO: we can probably calculate this faster with v_skip when stride != 12 */
5142 } else {
5143 emit_extract_vector(ctx, desc, 2, dst);
5144 }
5145 }
5146
5147 void visit_image_size(isel_context *ctx, nir_intrinsic_instr *instr)
5148 {
5149 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5150 const struct glsl_type *type = glsl_without_array(var->type);
5151 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5152 bool is_array = glsl_sampler_type_is_array(type);
5153 Builder bld(ctx->program, ctx->block);
5154
5155 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF) {
5156 Temp desc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, NULL, true, false);
5157 return get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), true);
5158 }
5159
5160 /* LOD */
5161 Temp lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
5162
5163 /* Resource */
5164 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, NULL, true, false);
5165
5166 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5167
5168 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1)};
5169 mimg->operands[0] = Operand(resource);
5170 mimg->operands[1] = Operand(s4); /* no sampler */
5171 mimg->operands[2] = Operand(lod);
5172 uint8_t& dmask = mimg->dmask;
5173 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5174 mimg->dmask = (1 << instr->dest.ssa.num_components) - 1;
5175 mimg->da = glsl_sampler_type_is_array(type);
5176 mimg->can_reorder = true;
5177 Definition& def = mimg->definitions[0];
5178 ctx->block->instructions.emplace_back(std::move(mimg));
5179
5180 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE &&
5181 glsl_sampler_type_is_array(type)) {
5182
5183 assert(instr->dest.ssa.num_components == 3);
5184 Temp tmp = {ctx->program->allocateId(), v3};
5185 def = Definition(tmp);
5186 emit_split_vector(ctx, tmp, 3);
5187
5188 /* divide 3rd value by 6 by multiplying with magic number */
5189 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
5190 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp, 2, v1), c);
5191
5192 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5193 emit_extract_vector(ctx, tmp, 0, v1),
5194 emit_extract_vector(ctx, tmp, 1, v1),
5195 by_6);
5196
5197 } else if (ctx->options->chip_class == GFX9 &&
5198 glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_1D &&
5199 glsl_sampler_type_is_array(type)) {
5200 assert(instr->dest.ssa.num_components == 2);
5201 def = Definition(dst);
5202 dmask = 0x5;
5203 } else {
5204 def = Definition(dst);
5205 }
5206
5207 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
5208 }
5209
5210 void visit_load_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
5211 {
5212 Builder bld(ctx->program, ctx->block);
5213 unsigned num_components = instr->num_components;
5214
5215 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5216 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5217 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
5218
5219 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
5220 load_buffer(ctx, num_components, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa), glc, false);
5221 }
5222
5223 void visit_store_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
5224 {
5225 Builder bld(ctx->program, ctx->block);
5226 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
5227 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
5228 unsigned writemask = nir_intrinsic_write_mask(instr);
5229 Temp offset = get_ssa_temp(ctx, instr->src[2].ssa);
5230
5231 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5232 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
5233
5234 bool smem = !ctx->divergent_vals[instr->src[2].ssa->index] &&
5235 ctx->options->chip_class >= GFX8;
5236 if (smem)
5237 offset = bld.as_uniform(offset);
5238 bool smem_nonfs = smem && ctx->stage != fragment_fs;
5239
5240 while (writemask) {
5241 int start, count;
5242 u_bit_scan_consecutive_range(&writemask, &start, &count);
5243 if (count == 3 && (smem || ctx->options->chip_class == GFX6)) {
5244 /* GFX6 doesn't support storing vec3, split it. */
5245 writemask |= 1u << (start + 2);
5246 count = 2;
5247 }
5248 int num_bytes = count * elem_size_bytes;
5249
5250 if (num_bytes > 16) {
5251 assert(elem_size_bytes == 8);
5252 writemask |= (((count - 2) << 1) - 1) << (start + 2);
5253 count = 2;
5254 num_bytes = 16;
5255 }
5256
5257 // TODO: check alignment of sub-dword stores
5258 // TODO: split 3 bytes. there is no store instruction for that
5259
5260 Temp write_data;
5261 if (count != instr->num_components) {
5262 emit_split_vector(ctx, data, instr->num_components);
5263 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
5264 for (int i = 0; i < count; i++) {
5265 Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(data.type(), elem_size_bytes / 4));
5266 vec->operands[i] = Operand(smem_nonfs ? bld.as_uniform(elem) : elem);
5267 }
5268 write_data = bld.tmp(!smem ? RegType::vgpr : smem_nonfs ? RegType::sgpr : data.type(), count * elem_size_bytes / 4);
5269 vec->definitions[0] = Definition(write_data);
5270 ctx->block->instructions.emplace_back(std::move(vec));
5271 } else if (!smem && data.type() != RegType::vgpr) {
5272 assert(num_bytes % 4 == 0);
5273 write_data = bld.copy(bld.def(RegType::vgpr, num_bytes / 4), data);
5274 } else if (smem_nonfs && data.type() == RegType::vgpr) {
5275 assert(num_bytes % 4 == 0);
5276 write_data = bld.as_uniform(data);
5277 } else {
5278 write_data = data;
5279 }
5280
5281 aco_opcode vmem_op, smem_op;
5282 switch (num_bytes) {
5283 case 4:
5284 vmem_op = aco_opcode::buffer_store_dword;
5285 smem_op = aco_opcode::s_buffer_store_dword;
5286 break;
5287 case 8:
5288 vmem_op = aco_opcode::buffer_store_dwordx2;
5289 smem_op = aco_opcode::s_buffer_store_dwordx2;
5290 break;
5291 case 12:
5292 vmem_op = aco_opcode::buffer_store_dwordx3;
5293 smem_op = aco_opcode::last_opcode;
5294 assert(!smem && ctx->options->chip_class > GFX6);
5295 break;
5296 case 16:
5297 vmem_op = aco_opcode::buffer_store_dwordx4;
5298 smem_op = aco_opcode::s_buffer_store_dwordx4;
5299 break;
5300 default:
5301 unreachable("Store SSBO not implemented for this size.");
5302 }
5303 if (ctx->stage == fragment_fs)
5304 smem_op = aco_opcode::p_fs_buffer_store_smem;
5305
5306 if (smem) {
5307 aco_ptr<SMEM_instruction> store{create_instruction<SMEM_instruction>(smem_op, Format::SMEM, 3, 0)};
5308 store->operands[0] = Operand(rsrc);
5309 if (start) {
5310 Temp off = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
5311 offset, Operand(start * elem_size_bytes));
5312 store->operands[1] = Operand(off);
5313 } else {
5314 store->operands[1] = Operand(offset);
5315 }
5316 if (smem_op != aco_opcode::p_fs_buffer_store_smem)
5317 store->operands[1].setFixed(m0);
5318 store->operands[2] = Operand(write_data);
5319 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
5320 store->dlc = false;
5321 store->disable_wqm = true;
5322 store->barrier = barrier_buffer;
5323 ctx->block->instructions.emplace_back(std::move(store));
5324 ctx->program->wb_smem_l1_on_end = true;
5325 if (smem_op == aco_opcode::p_fs_buffer_store_smem) {
5326 ctx->block->kind |= block_kind_needs_lowering;
5327 ctx->program->needs_exact = true;
5328 }
5329 } else {
5330 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(vmem_op, Format::MUBUF, 4, 0)};
5331 store->operands[0] = Operand(rsrc);
5332 store->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
5333 store->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
5334 store->operands[3] = Operand(write_data);
5335 store->offset = start * elem_size_bytes;
5336 store->offen = (offset.type() == RegType::vgpr);
5337 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
5338 store->dlc = false;
5339 store->disable_wqm = true;
5340 store->barrier = barrier_buffer;
5341 ctx->program->needs_exact = true;
5342 ctx->block->instructions.emplace_back(std::move(store));
5343 }
5344 }
5345 }
5346
5347 void visit_atomic_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
5348 {
5349 /* return the previous value if dest is ever used */
5350 bool return_previous = false;
5351 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5352 return_previous = true;
5353 break;
5354 }
5355 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5356 return_previous = true;
5357 break;
5358 }
5359
5360 Builder bld(ctx->program, ctx->block);
5361 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[2].ssa));
5362
5363 if (instr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap)
5364 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
5365 get_ssa_temp(ctx, instr->src[3].ssa), data);
5366
5367 Temp offset = get_ssa_temp(ctx, instr->src[1].ssa);
5368 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5369 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
5370
5371 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5372
5373 aco_opcode op32, op64;
5374 switch (instr->intrinsic) {
5375 case nir_intrinsic_ssbo_atomic_add:
5376 op32 = aco_opcode::buffer_atomic_add;
5377 op64 = aco_opcode::buffer_atomic_add_x2;
5378 break;
5379 case nir_intrinsic_ssbo_atomic_imin:
5380 op32 = aco_opcode::buffer_atomic_smin;
5381 op64 = aco_opcode::buffer_atomic_smin_x2;
5382 break;
5383 case nir_intrinsic_ssbo_atomic_umin:
5384 op32 = aco_opcode::buffer_atomic_umin;
5385 op64 = aco_opcode::buffer_atomic_umin_x2;
5386 break;
5387 case nir_intrinsic_ssbo_atomic_imax:
5388 op32 = aco_opcode::buffer_atomic_smax;
5389 op64 = aco_opcode::buffer_atomic_smax_x2;
5390 break;
5391 case nir_intrinsic_ssbo_atomic_umax:
5392 op32 = aco_opcode::buffer_atomic_umax;
5393 op64 = aco_opcode::buffer_atomic_umax_x2;
5394 break;
5395 case nir_intrinsic_ssbo_atomic_and:
5396 op32 = aco_opcode::buffer_atomic_and;
5397 op64 = aco_opcode::buffer_atomic_and_x2;
5398 break;
5399 case nir_intrinsic_ssbo_atomic_or:
5400 op32 = aco_opcode::buffer_atomic_or;
5401 op64 = aco_opcode::buffer_atomic_or_x2;
5402 break;
5403 case nir_intrinsic_ssbo_atomic_xor:
5404 op32 = aco_opcode::buffer_atomic_xor;
5405 op64 = aco_opcode::buffer_atomic_xor_x2;
5406 break;
5407 case nir_intrinsic_ssbo_atomic_exchange:
5408 op32 = aco_opcode::buffer_atomic_swap;
5409 op64 = aco_opcode::buffer_atomic_swap_x2;
5410 break;
5411 case nir_intrinsic_ssbo_atomic_comp_swap:
5412 op32 = aco_opcode::buffer_atomic_cmpswap;
5413 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
5414 break;
5415 default:
5416 unreachable("visit_atomic_ssbo should only be called with nir_intrinsic_ssbo_atomic_* instructions.");
5417 }
5418 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
5419 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
5420 mubuf->operands[0] = Operand(rsrc);
5421 mubuf->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
5422 mubuf->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
5423 mubuf->operands[3] = Operand(data);
5424 if (return_previous)
5425 mubuf->definitions[0] = Definition(dst);
5426 mubuf->offset = 0;
5427 mubuf->offen = (offset.type() == RegType::vgpr);
5428 mubuf->glc = return_previous;
5429 mubuf->dlc = false; /* Not needed for atomics */
5430 mubuf->disable_wqm = true;
5431 mubuf->barrier = barrier_buffer;
5432 ctx->program->needs_exact = true;
5433 ctx->block->instructions.emplace_back(std::move(mubuf));
5434 }
5435
5436 void visit_get_buffer_size(isel_context *ctx, nir_intrinsic_instr *instr) {
5437
5438 Temp index = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5439 Builder bld(ctx->program, ctx->block);
5440 Temp desc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), index, Operand(0u));
5441 get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), false);
5442 }
5443
5444 Temp get_gfx6_global_rsrc(Builder& bld, Temp addr)
5445 {
5446 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5447 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
5448
5449 if (addr.type() == RegType::vgpr)
5450 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), Operand(0u), Operand(0u), Operand(-1u), Operand(rsrc_conf));
5451 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), addr, Operand(-1u), Operand(rsrc_conf));
5452 }
5453
5454 void visit_load_global(isel_context *ctx, nir_intrinsic_instr *instr)
5455 {
5456 Builder bld(ctx->program, ctx->block);
5457 unsigned num_components = instr->num_components;
5458 unsigned num_bytes = num_components * instr->dest.ssa.bit_size / 8;
5459
5460 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5461 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
5462
5463 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
5464 bool dlc = glc && ctx->options->chip_class >= GFX10;
5465 aco_opcode op;
5466 if (dst.type() == RegType::vgpr || (glc && ctx->options->chip_class < GFX8)) {
5467 bool global = ctx->options->chip_class >= GFX9;
5468
5469 if (ctx->options->chip_class >= GFX7) {
5470 aco_opcode op;
5471 switch (num_bytes) {
5472 case 4:
5473 op = global ? aco_opcode::global_load_dword : aco_opcode::flat_load_dword;
5474 break;
5475 case 8:
5476 op = global ? aco_opcode::global_load_dwordx2 : aco_opcode::flat_load_dwordx2;
5477 break;
5478 case 12:
5479 op = global ? aco_opcode::global_load_dwordx3 : aco_opcode::flat_load_dwordx3;
5480 break;
5481 case 16:
5482 op = global ? aco_opcode::global_load_dwordx4 : aco_opcode::flat_load_dwordx4;
5483 break;
5484 default:
5485 unreachable("load_global not implemented for this size.");
5486 }
5487
5488 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 2, 1)};
5489 flat->operands[0] = Operand(addr);
5490 flat->operands[1] = Operand(s1);
5491 flat->glc = glc;
5492 flat->dlc = dlc;
5493 flat->barrier = barrier_buffer;
5494
5495 if (dst.type() == RegType::sgpr) {
5496 Temp vec = bld.tmp(RegType::vgpr, dst.size());
5497 flat->definitions[0] = Definition(vec);
5498 ctx->block->instructions.emplace_back(std::move(flat));
5499 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
5500 } else {
5501 flat->definitions[0] = Definition(dst);
5502 ctx->block->instructions.emplace_back(std::move(flat));
5503 }
5504 emit_split_vector(ctx, dst, num_components);
5505 } else {
5506 assert(ctx->options->chip_class == GFX6);
5507
5508 /* GFX6 doesn't support loading vec3, expand to vec4. */
5509 num_bytes = num_bytes == 12 ? 16 : num_bytes;
5510
5511 aco_opcode op;
5512 switch (num_bytes) {
5513 case 4:
5514 op = aco_opcode::buffer_load_dword;
5515 break;
5516 case 8:
5517 op = aco_opcode::buffer_load_dwordx2;
5518 break;
5519 case 16:
5520 op = aco_opcode::buffer_load_dwordx4;
5521 break;
5522 default:
5523 unreachable("load_global not implemented for this size.");
5524 }
5525
5526 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
5527
5528 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
5529 mubuf->operands[0] = Operand(rsrc);
5530 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
5531 mubuf->operands[2] = Operand(0u);
5532 mubuf->glc = glc;
5533 mubuf->dlc = false;
5534 mubuf->offset = 0;
5535 mubuf->addr64 = addr.type() == RegType::vgpr;
5536 mubuf->disable_wqm = false;
5537 mubuf->barrier = barrier_buffer;
5538 aco_ptr<Instruction> instr = std::move(mubuf);
5539
5540 /* expand vector */
5541 if (dst.size() == 3) {
5542 Temp vec = bld.tmp(v4);
5543 instr->definitions[0] = Definition(vec);
5544 bld.insert(std::move(instr));
5545 emit_split_vector(ctx, vec, 4);
5546
5547 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 3, 1));
5548 instr->operands[0] = Operand(emit_extract_vector(ctx, vec, 0, v1));
5549 instr->operands[1] = Operand(emit_extract_vector(ctx, vec, 1, v1));
5550 instr->operands[2] = Operand(emit_extract_vector(ctx, vec, 2, v1));
5551 }
5552
5553 if (dst.type() == RegType::sgpr) {
5554 Temp vec = bld.tmp(RegType::vgpr, dst.size());
5555 instr->definitions[0] = Definition(vec);
5556 bld.insert(std::move(instr));
5557 expand_vector(ctx, vec, dst, num_components, (1 << num_components) - 1);
5558 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
5559 } else {
5560 instr->definitions[0] = Definition(dst);
5561 bld.insert(std::move(instr));
5562 emit_split_vector(ctx, dst, num_components);
5563 }
5564 }
5565 } else {
5566 switch (num_bytes) {
5567 case 4:
5568 op = aco_opcode::s_load_dword;
5569 break;
5570 case 8:
5571 op = aco_opcode::s_load_dwordx2;
5572 break;
5573 case 12:
5574 case 16:
5575 op = aco_opcode::s_load_dwordx4;
5576 break;
5577 default:
5578 unreachable("load_global not implemented for this size.");
5579 }
5580 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
5581 load->operands[0] = Operand(addr);
5582 load->operands[1] = Operand(0u);
5583 load->definitions[0] = Definition(dst);
5584 load->glc = glc;
5585 load->dlc = dlc;
5586 load->barrier = barrier_buffer;
5587 assert(ctx->options->chip_class >= GFX8 || !glc);
5588
5589 if (dst.size() == 3) {
5590 /* trim vector */
5591 Temp vec = bld.tmp(s4);
5592 load->definitions[0] = Definition(vec);
5593 ctx->block->instructions.emplace_back(std::move(load));
5594 emit_split_vector(ctx, vec, 4);
5595
5596 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5597 emit_extract_vector(ctx, vec, 0, s1),
5598 emit_extract_vector(ctx, vec, 1, s1),
5599 emit_extract_vector(ctx, vec, 2, s1));
5600 } else {
5601 ctx->block->instructions.emplace_back(std::move(load));
5602 }
5603 }
5604 }
5605
5606 void visit_store_global(isel_context *ctx, nir_intrinsic_instr *instr)
5607 {
5608 Builder bld(ctx->program, ctx->block);
5609 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
5610
5611 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5612 Temp addr = get_ssa_temp(ctx, instr->src[1].ssa);
5613
5614 if (ctx->options->chip_class >= GFX7)
5615 addr = as_vgpr(ctx, addr);
5616
5617 unsigned writemask = nir_intrinsic_write_mask(instr);
5618 while (writemask) {
5619 int start, count;
5620 u_bit_scan_consecutive_range(&writemask, &start, &count);
5621 if (count == 3 && ctx->options->chip_class == GFX6) {
5622 /* GFX6 doesn't support storing vec3, split it. */
5623 writemask |= 1u << (start + 2);
5624 count = 2;
5625 }
5626 unsigned num_bytes = count * elem_size_bytes;
5627
5628 Temp write_data = data;
5629 if (count != instr->num_components) {
5630 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
5631 for (int i = 0; i < count; i++)
5632 vec->operands[i] = Operand(emit_extract_vector(ctx, data, start + i, v1));
5633 write_data = bld.tmp(RegType::vgpr, count);
5634 vec->definitions[0] = Definition(write_data);
5635 ctx->block->instructions.emplace_back(std::move(vec));
5636 }
5637
5638 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
5639 unsigned offset = start * elem_size_bytes;
5640
5641 if (ctx->options->chip_class >= GFX7) {
5642 if (offset > 0 && ctx->options->chip_class < GFX9) {
5643 Temp addr0 = bld.tmp(v1), addr1 = bld.tmp(v1);
5644 Temp new_addr0 = bld.tmp(v1), new_addr1 = bld.tmp(v1);
5645 Temp carry = bld.tmp(bld.lm);
5646 bld.pseudo(aco_opcode::p_split_vector, Definition(addr0), Definition(addr1), addr);
5647
5648 bld.vop2(aco_opcode::v_add_co_u32, Definition(new_addr0), bld.hint_vcc(Definition(carry)),
5649 Operand(offset), addr0);
5650 bld.vop2(aco_opcode::v_addc_co_u32, Definition(new_addr1), bld.def(bld.lm),
5651 Operand(0u), addr1,
5652 carry).def(1).setHint(vcc);
5653
5654 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_addr0, new_addr1);
5655
5656 offset = 0;
5657 }
5658
5659 bool global = ctx->options->chip_class >= GFX9;
5660 aco_opcode op;
5661 switch (num_bytes) {
5662 case 4:
5663 op = global ? aco_opcode::global_store_dword : aco_opcode::flat_store_dword;
5664 break;
5665 case 8:
5666 op = global ? aco_opcode::global_store_dwordx2 : aco_opcode::flat_store_dwordx2;
5667 break;
5668 case 12:
5669 op = global ? aco_opcode::global_store_dwordx3 : aco_opcode::flat_store_dwordx3;
5670 break;
5671 case 16:
5672 op = global ? aco_opcode::global_store_dwordx4 : aco_opcode::flat_store_dwordx4;
5673 break;
5674 default:
5675 unreachable("store_global not implemented for this size.");
5676 }
5677
5678 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, 0)};
5679 flat->operands[0] = Operand(addr);
5680 flat->operands[1] = Operand(s1);
5681 flat->operands[2] = Operand(data);
5682 flat->glc = glc;
5683 flat->dlc = false;
5684 flat->offset = offset;
5685 flat->disable_wqm = true;
5686 flat->barrier = barrier_buffer;
5687 ctx->program->needs_exact = true;
5688 ctx->block->instructions.emplace_back(std::move(flat));
5689 } else {
5690 assert(ctx->options->chip_class == GFX6);
5691
5692 aco_opcode op;
5693 switch (num_bytes) {
5694 case 4:
5695 op = aco_opcode::buffer_store_dword;
5696 break;
5697 case 8:
5698 op = aco_opcode::buffer_store_dwordx2;
5699 break;
5700 case 16:
5701 op = aco_opcode::buffer_store_dwordx4;
5702 break;
5703 default:
5704 unreachable("store_global not implemented for this size.");
5705 }
5706
5707 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
5708
5709 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, 0)};
5710 mubuf->operands[0] = Operand(rsrc);
5711 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
5712 mubuf->operands[2] = Operand(0u);
5713 mubuf->operands[3] = Operand(write_data);
5714 mubuf->glc = glc;
5715 mubuf->dlc = false;
5716 mubuf->offset = offset;
5717 mubuf->addr64 = addr.type() == RegType::vgpr;
5718 mubuf->disable_wqm = true;
5719 mubuf->barrier = barrier_buffer;
5720 ctx->program->needs_exact = true;
5721 ctx->block->instructions.emplace_back(std::move(mubuf));
5722 }
5723 }
5724 }
5725
5726 void visit_global_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
5727 {
5728 /* return the previous value if dest is ever used */
5729 bool return_previous = false;
5730 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5731 return_previous = true;
5732 break;
5733 }
5734 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5735 return_previous = true;
5736 break;
5737 }
5738
5739 Builder bld(ctx->program, ctx->block);
5740 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
5741 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5742
5743 if (ctx->options->chip_class >= GFX7)
5744 addr = as_vgpr(ctx, addr);
5745
5746 if (instr->intrinsic == nir_intrinsic_global_atomic_comp_swap)
5747 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
5748 get_ssa_temp(ctx, instr->src[2].ssa), data);
5749
5750 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5751
5752 aco_opcode op32, op64;
5753
5754 if (ctx->options->chip_class >= GFX7) {
5755 bool global = ctx->options->chip_class >= GFX9;
5756 switch (instr->intrinsic) {
5757 case nir_intrinsic_global_atomic_add:
5758 op32 = global ? aco_opcode::global_atomic_add : aco_opcode::flat_atomic_add;
5759 op64 = global ? aco_opcode::global_atomic_add_x2 : aco_opcode::flat_atomic_add_x2;
5760 break;
5761 case nir_intrinsic_global_atomic_imin:
5762 op32 = global ? aco_opcode::global_atomic_smin : aco_opcode::flat_atomic_smin;
5763 op64 = global ? aco_opcode::global_atomic_smin_x2 : aco_opcode::flat_atomic_smin_x2;
5764 break;
5765 case nir_intrinsic_global_atomic_umin:
5766 op32 = global ? aco_opcode::global_atomic_umin : aco_opcode::flat_atomic_umin;
5767 op64 = global ? aco_opcode::global_atomic_umin_x2 : aco_opcode::flat_atomic_umin_x2;
5768 break;
5769 case nir_intrinsic_global_atomic_imax:
5770 op32 = global ? aco_opcode::global_atomic_smax : aco_opcode::flat_atomic_smax;
5771 op64 = global ? aco_opcode::global_atomic_smax_x2 : aco_opcode::flat_atomic_smax_x2;
5772 break;
5773 case nir_intrinsic_global_atomic_umax:
5774 op32 = global ? aco_opcode::global_atomic_umax : aco_opcode::flat_atomic_umax;
5775 op64 = global ? aco_opcode::global_atomic_umax_x2 : aco_opcode::flat_atomic_umax_x2;
5776 break;
5777 case nir_intrinsic_global_atomic_and:
5778 op32 = global ? aco_opcode::global_atomic_and : aco_opcode::flat_atomic_and;
5779 op64 = global ? aco_opcode::global_atomic_and_x2 : aco_opcode::flat_atomic_and_x2;
5780 break;
5781 case nir_intrinsic_global_atomic_or:
5782 op32 = global ? aco_opcode::global_atomic_or : aco_opcode::flat_atomic_or;
5783 op64 = global ? aco_opcode::global_atomic_or_x2 : aco_opcode::flat_atomic_or_x2;
5784 break;
5785 case nir_intrinsic_global_atomic_xor:
5786 op32 = global ? aco_opcode::global_atomic_xor : aco_opcode::flat_atomic_xor;
5787 op64 = global ? aco_opcode::global_atomic_xor_x2 : aco_opcode::flat_atomic_xor_x2;
5788 break;
5789 case nir_intrinsic_global_atomic_exchange:
5790 op32 = global ? aco_opcode::global_atomic_swap : aco_opcode::flat_atomic_swap;
5791 op64 = global ? aco_opcode::global_atomic_swap_x2 : aco_opcode::flat_atomic_swap_x2;
5792 break;
5793 case nir_intrinsic_global_atomic_comp_swap:
5794 op32 = global ? aco_opcode::global_atomic_cmpswap : aco_opcode::flat_atomic_cmpswap;
5795 op64 = global ? aco_opcode::global_atomic_cmpswap_x2 : aco_opcode::flat_atomic_cmpswap_x2;
5796 break;
5797 default:
5798 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
5799 }
5800
5801 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
5802 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, return_previous ? 1 : 0)};
5803 flat->operands[0] = Operand(addr);
5804 flat->operands[1] = Operand(s1);
5805 flat->operands[2] = Operand(data);
5806 if (return_previous)
5807 flat->definitions[0] = Definition(dst);
5808 flat->glc = return_previous;
5809 flat->dlc = false; /* Not needed for atomics */
5810 flat->offset = 0;
5811 flat->disable_wqm = true;
5812 flat->barrier = barrier_buffer;
5813 ctx->program->needs_exact = true;
5814 ctx->block->instructions.emplace_back(std::move(flat));
5815 } else {
5816 assert(ctx->options->chip_class == GFX6);
5817
5818 switch (instr->intrinsic) {
5819 case nir_intrinsic_global_atomic_add:
5820 op32 = aco_opcode::buffer_atomic_add;
5821 op64 = aco_opcode::buffer_atomic_add_x2;
5822 break;
5823 case nir_intrinsic_global_atomic_imin:
5824 op32 = aco_opcode::buffer_atomic_smin;
5825 op64 = aco_opcode::buffer_atomic_smin_x2;
5826 break;
5827 case nir_intrinsic_global_atomic_umin:
5828 op32 = aco_opcode::buffer_atomic_umin;
5829 op64 = aco_opcode::buffer_atomic_umin_x2;
5830 break;
5831 case nir_intrinsic_global_atomic_imax:
5832 op32 = aco_opcode::buffer_atomic_smax;
5833 op64 = aco_opcode::buffer_atomic_smax_x2;
5834 break;
5835 case nir_intrinsic_global_atomic_umax:
5836 op32 = aco_opcode::buffer_atomic_umax;
5837 op64 = aco_opcode::buffer_atomic_umax_x2;
5838 break;
5839 case nir_intrinsic_global_atomic_and:
5840 op32 = aco_opcode::buffer_atomic_and;
5841 op64 = aco_opcode::buffer_atomic_and_x2;
5842 break;
5843 case nir_intrinsic_global_atomic_or:
5844 op32 = aco_opcode::buffer_atomic_or;
5845 op64 = aco_opcode::buffer_atomic_or_x2;
5846 break;
5847 case nir_intrinsic_global_atomic_xor:
5848 op32 = aco_opcode::buffer_atomic_xor;
5849 op64 = aco_opcode::buffer_atomic_xor_x2;
5850 break;
5851 case nir_intrinsic_global_atomic_exchange:
5852 op32 = aco_opcode::buffer_atomic_swap;
5853 op64 = aco_opcode::buffer_atomic_swap_x2;
5854 break;
5855 case nir_intrinsic_global_atomic_comp_swap:
5856 op32 = aco_opcode::buffer_atomic_cmpswap;
5857 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
5858 break;
5859 default:
5860 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
5861 }
5862
5863 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
5864
5865 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
5866
5867 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
5868 mubuf->operands[0] = Operand(rsrc);
5869 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
5870 mubuf->operands[2] = Operand(0u);
5871 mubuf->operands[3] = Operand(data);
5872 if (return_previous)
5873 mubuf->definitions[0] = Definition(dst);
5874 mubuf->glc = return_previous;
5875 mubuf->dlc = false;
5876 mubuf->offset = 0;
5877 mubuf->addr64 = addr.type() == RegType::vgpr;
5878 mubuf->disable_wqm = true;
5879 mubuf->barrier = barrier_buffer;
5880 ctx->program->needs_exact = true;
5881 ctx->block->instructions.emplace_back(std::move(mubuf));
5882 }
5883 }
5884
5885 void emit_memory_barrier(isel_context *ctx, nir_intrinsic_instr *instr) {
5886 Builder bld(ctx->program, ctx->block);
5887 switch(instr->intrinsic) {
5888 case nir_intrinsic_group_memory_barrier:
5889 case nir_intrinsic_memory_barrier:
5890 bld.barrier(aco_opcode::p_memory_barrier_common);
5891 break;
5892 case nir_intrinsic_memory_barrier_buffer:
5893 bld.barrier(aco_opcode::p_memory_barrier_buffer);
5894 break;
5895 case nir_intrinsic_memory_barrier_image:
5896 bld.barrier(aco_opcode::p_memory_barrier_image);
5897 break;
5898 case nir_intrinsic_memory_barrier_tcs_patch:
5899 case nir_intrinsic_memory_barrier_shared:
5900 bld.barrier(aco_opcode::p_memory_barrier_shared);
5901 break;
5902 default:
5903 unreachable("Unimplemented memory barrier intrinsic");
5904 break;
5905 }
5906 }
5907
5908 void visit_load_shared(isel_context *ctx, nir_intrinsic_instr *instr)
5909 {
5910 // TODO: implement sparse reads using ds_read2_b32 and nir_ssa_def_components_read()
5911 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5912 assert(instr->dest.ssa.bit_size >= 32 && "Bitsize not supported in load_shared.");
5913 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5914 Builder bld(ctx->program, ctx->block);
5915
5916 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
5917 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
5918 load_lds(ctx, elem_size_bytes, dst, address, nir_intrinsic_base(instr), align);
5919 }
5920
5921 void visit_store_shared(isel_context *ctx, nir_intrinsic_instr *instr)
5922 {
5923 unsigned writemask = nir_intrinsic_write_mask(instr);
5924 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
5925 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5926 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
5927 assert(elem_size_bytes >= 4 && "Only 32bit & 64bit store_shared currently supported.");
5928
5929 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
5930 store_lds(ctx, elem_size_bytes, data, writemask, address, nir_intrinsic_base(instr), align);
5931 }
5932
5933 void visit_shared_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
5934 {
5935 unsigned offset = nir_intrinsic_base(instr);
5936 Operand m = load_lds_size_m0(ctx);
5937 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5938 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5939
5940 unsigned num_operands = 3;
5941 aco_opcode op32, op64, op32_rtn, op64_rtn;
5942 switch(instr->intrinsic) {
5943 case nir_intrinsic_shared_atomic_add:
5944 op32 = aco_opcode::ds_add_u32;
5945 op64 = aco_opcode::ds_add_u64;
5946 op32_rtn = aco_opcode::ds_add_rtn_u32;
5947 op64_rtn = aco_opcode::ds_add_rtn_u64;
5948 break;
5949 case nir_intrinsic_shared_atomic_imin:
5950 op32 = aco_opcode::ds_min_i32;
5951 op64 = aco_opcode::ds_min_i64;
5952 op32_rtn = aco_opcode::ds_min_rtn_i32;
5953 op64_rtn = aco_opcode::ds_min_rtn_i64;
5954 break;
5955 case nir_intrinsic_shared_atomic_umin:
5956 op32 = aco_opcode::ds_min_u32;
5957 op64 = aco_opcode::ds_min_u64;
5958 op32_rtn = aco_opcode::ds_min_rtn_u32;
5959 op64_rtn = aco_opcode::ds_min_rtn_u64;
5960 break;
5961 case nir_intrinsic_shared_atomic_imax:
5962 op32 = aco_opcode::ds_max_i32;
5963 op64 = aco_opcode::ds_max_i64;
5964 op32_rtn = aco_opcode::ds_max_rtn_i32;
5965 op64_rtn = aco_opcode::ds_max_rtn_i64;
5966 break;
5967 case nir_intrinsic_shared_atomic_umax:
5968 op32 = aco_opcode::ds_max_u32;
5969 op64 = aco_opcode::ds_max_u64;
5970 op32_rtn = aco_opcode::ds_max_rtn_u32;
5971 op64_rtn = aco_opcode::ds_max_rtn_u64;
5972 break;
5973 case nir_intrinsic_shared_atomic_and:
5974 op32 = aco_opcode::ds_and_b32;
5975 op64 = aco_opcode::ds_and_b64;
5976 op32_rtn = aco_opcode::ds_and_rtn_b32;
5977 op64_rtn = aco_opcode::ds_and_rtn_b64;
5978 break;
5979 case nir_intrinsic_shared_atomic_or:
5980 op32 = aco_opcode::ds_or_b32;
5981 op64 = aco_opcode::ds_or_b64;
5982 op32_rtn = aco_opcode::ds_or_rtn_b32;
5983 op64_rtn = aco_opcode::ds_or_rtn_b64;
5984 break;
5985 case nir_intrinsic_shared_atomic_xor:
5986 op32 = aco_opcode::ds_xor_b32;
5987 op64 = aco_opcode::ds_xor_b64;
5988 op32_rtn = aco_opcode::ds_xor_rtn_b32;
5989 op64_rtn = aco_opcode::ds_xor_rtn_b64;
5990 break;
5991 case nir_intrinsic_shared_atomic_exchange:
5992 op32 = aco_opcode::ds_write_b32;
5993 op64 = aco_opcode::ds_write_b64;
5994 op32_rtn = aco_opcode::ds_wrxchg_rtn_b32;
5995 op64_rtn = aco_opcode::ds_wrxchg2_rtn_b64;
5996 break;
5997 case nir_intrinsic_shared_atomic_comp_swap:
5998 op32 = aco_opcode::ds_cmpst_b32;
5999 op64 = aco_opcode::ds_cmpst_b64;
6000 op32_rtn = aco_opcode::ds_cmpst_rtn_b32;
6001 op64_rtn = aco_opcode::ds_cmpst_rtn_b64;
6002 num_operands = 4;
6003 break;
6004 default:
6005 unreachable("Unhandled shared atomic intrinsic");
6006 }
6007
6008 /* return the previous value if dest is ever used */
6009 bool return_previous = false;
6010 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6011 return_previous = true;
6012 break;
6013 }
6014 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6015 return_previous = true;
6016 break;
6017 }
6018
6019 aco_opcode op;
6020 if (data.size() == 1) {
6021 assert(instr->dest.ssa.bit_size == 32);
6022 op = return_previous ? op32_rtn : op32;
6023 } else {
6024 assert(instr->dest.ssa.bit_size == 64);
6025 op = return_previous ? op64_rtn : op64;
6026 }
6027
6028 if (offset > 65535) {
6029 Builder bld(ctx->program, ctx->block);
6030 address = bld.vadd32(bld.def(v1), Operand(offset), address);
6031 offset = 0;
6032 }
6033
6034 aco_ptr<DS_instruction> ds;
6035 ds.reset(create_instruction<DS_instruction>(op, Format::DS, num_operands, return_previous ? 1 : 0));
6036 ds->operands[0] = Operand(address);
6037 ds->operands[1] = Operand(data);
6038 if (num_operands == 4)
6039 ds->operands[2] = Operand(get_ssa_temp(ctx, instr->src[2].ssa));
6040 ds->operands[num_operands - 1] = m;
6041 ds->offset0 = offset;
6042 if (return_previous)
6043 ds->definitions[0] = Definition(get_ssa_temp(ctx, &instr->dest.ssa));
6044 ctx->block->instructions.emplace_back(std::move(ds));
6045 }
6046
6047 Temp get_scratch_resource(isel_context *ctx)
6048 {
6049 Builder bld(ctx->program, ctx->block);
6050 Temp scratch_addr = ctx->program->private_segment_buffer;
6051 if (ctx->stage != compute_cs)
6052 scratch_addr = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), scratch_addr, Operand(0u));
6053
6054 uint32_t rsrc_conf = S_008F0C_ADD_TID_ENABLE(1) |
6055 S_008F0C_INDEX_STRIDE(ctx->program->wave_size == 64 ? 3 : 2);;
6056
6057 if (ctx->program->chip_class >= GFX10) {
6058 rsrc_conf |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
6059 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
6060 S_008F0C_RESOURCE_LEVEL(1);
6061 } else if (ctx->program->chip_class <= GFX7) { /* dfmt modifies stride on GFX8/GFX9 when ADD_TID_EN=1 */
6062 rsrc_conf |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
6063 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
6064 }
6065
6066 /* older generations need element size = 16 bytes. element size removed in GFX9 */
6067 if (ctx->program->chip_class <= GFX8)
6068 rsrc_conf |= S_008F0C_ELEMENT_SIZE(3);
6069
6070 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), scratch_addr, Operand(-1u), Operand(rsrc_conf));
6071 }
6072
6073 void visit_load_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
6074 assert(instr->dest.ssa.bit_size == 32 || instr->dest.ssa.bit_size == 64);
6075 Builder bld(ctx->program, ctx->block);
6076 Temp rsrc = get_scratch_resource(ctx);
6077 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6078 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6079
6080 aco_opcode op;
6081 switch (dst.size()) {
6082 case 1:
6083 op = aco_opcode::buffer_load_dword;
6084 break;
6085 case 2:
6086 op = aco_opcode::buffer_load_dwordx2;
6087 break;
6088 case 3:
6089 op = aco_opcode::buffer_load_dwordx3;
6090 break;
6091 case 4:
6092 op = aco_opcode::buffer_load_dwordx4;
6093 break;
6094 case 6:
6095 case 8: {
6096 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
6097 Temp lower = bld.mubuf(aco_opcode::buffer_load_dwordx4,
6098 bld.def(v4), rsrc, offset,
6099 ctx->program->scratch_offset, 0, true);
6100 Temp upper = bld.mubuf(dst.size() == 6 ? aco_opcode::buffer_load_dwordx2 :
6101 aco_opcode::buffer_load_dwordx4,
6102 dst.size() == 6 ? bld.def(v2) : bld.def(v4),
6103 rsrc, offset, ctx->program->scratch_offset, 16, true);
6104 emit_split_vector(ctx, lower, 2);
6105 elems[0] = emit_extract_vector(ctx, lower, 0, v2);
6106 elems[1] = emit_extract_vector(ctx, lower, 1, v2);
6107 if (dst.size() == 8) {
6108 emit_split_vector(ctx, upper, 2);
6109 elems[2] = emit_extract_vector(ctx, upper, 0, v2);
6110 elems[3] = emit_extract_vector(ctx, upper, 1, v2);
6111 } else {
6112 elems[2] = upper;
6113 }
6114
6115 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
6116 Format::PSEUDO, dst.size() / 2, 1)};
6117 for (unsigned i = 0; i < dst.size() / 2; i++)
6118 vec->operands[i] = Operand(elems[i]);
6119 vec->definitions[0] = Definition(dst);
6120 bld.insert(std::move(vec));
6121 ctx->allocated_vec.emplace(dst.id(), elems);
6122 return;
6123 }
6124 default:
6125 unreachable("Wrong dst size for nir_intrinsic_load_scratch");
6126 }
6127
6128 bld.mubuf(op, Definition(dst), rsrc, offset, ctx->program->scratch_offset, 0, true);
6129 emit_split_vector(ctx, dst, instr->num_components);
6130 }
6131
6132 void visit_store_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
6133 assert(instr->src[0].ssa->bit_size == 32 || instr->src[0].ssa->bit_size == 64);
6134 Builder bld(ctx->program, ctx->block);
6135 Temp rsrc = get_scratch_resource(ctx);
6136 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6137 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6138
6139 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6140 unsigned writemask = nir_intrinsic_write_mask(instr);
6141
6142 while (writemask) {
6143 int start, count;
6144 u_bit_scan_consecutive_range(&writemask, &start, &count);
6145 int num_bytes = count * elem_size_bytes;
6146
6147 if (num_bytes > 16) {
6148 assert(elem_size_bytes == 8);
6149 writemask |= (((count - 2) << 1) - 1) << (start + 2);
6150 count = 2;
6151 num_bytes = 16;
6152 }
6153
6154 // TODO: check alignment of sub-dword stores
6155 // TODO: split 3 bytes. there is no store instruction for that
6156
6157 Temp write_data;
6158 if (count != instr->num_components) {
6159 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
6160 for (int i = 0; i < count; i++) {
6161 Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(RegType::vgpr, elem_size_bytes / 4));
6162 vec->operands[i] = Operand(elem);
6163 }
6164 write_data = bld.tmp(RegClass(RegType::vgpr, count * elem_size_bytes / 4));
6165 vec->definitions[0] = Definition(write_data);
6166 ctx->block->instructions.emplace_back(std::move(vec));
6167 } else {
6168 write_data = data;
6169 }
6170
6171 aco_opcode op;
6172 switch (num_bytes) {
6173 case 4:
6174 op = aco_opcode::buffer_store_dword;
6175 break;
6176 case 8:
6177 op = aco_opcode::buffer_store_dwordx2;
6178 break;
6179 case 12:
6180 op = aco_opcode::buffer_store_dwordx3;
6181 break;
6182 case 16:
6183 op = aco_opcode::buffer_store_dwordx4;
6184 break;
6185 default:
6186 unreachable("Invalid data size for nir_intrinsic_store_scratch.");
6187 }
6188
6189 bld.mubuf(op, rsrc, offset, ctx->program->scratch_offset, write_data, start * elem_size_bytes, true);
6190 }
6191 }
6192
6193 void visit_load_sample_mask_in(isel_context *ctx, nir_intrinsic_instr *instr) {
6194 uint8_t log2_ps_iter_samples;
6195 if (ctx->program->info->ps.force_persample) {
6196 log2_ps_iter_samples =
6197 util_logbase2(ctx->options->key.fs.num_samples);
6198 } else {
6199 log2_ps_iter_samples = ctx->options->key.fs.log2_ps_iter_samples;
6200 }
6201
6202 /* The bit pattern matches that used by fixed function fragment
6203 * processing. */
6204 static const unsigned ps_iter_masks[] = {
6205 0xffff, /* not used */
6206 0x5555,
6207 0x1111,
6208 0x0101,
6209 0x0001,
6210 };
6211 assert(log2_ps_iter_samples < ARRAY_SIZE(ps_iter_masks));
6212
6213 Builder bld(ctx->program, ctx->block);
6214
6215 Temp sample_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
6216 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
6217 Temp ps_iter_mask = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(ps_iter_masks[log2_ps_iter_samples]));
6218 Temp mask = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), sample_id, ps_iter_mask);
6219 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6220 bld.vop2(aco_opcode::v_and_b32, Definition(dst), mask, get_arg(ctx, ctx->args->ac.sample_coverage));
6221 }
6222
6223 void visit_emit_vertex_with_counter(isel_context *ctx, nir_intrinsic_instr *instr) {
6224 Builder bld(ctx->program, ctx->block);
6225
6226 unsigned stream = nir_intrinsic_stream_id(instr);
6227 Temp next_vertex = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6228 next_vertex = bld.v_mul_imm(bld.def(v1), next_vertex, 4u);
6229 nir_const_value *next_vertex_cv = nir_src_as_const_value(instr->src[0]);
6230
6231 /* get GSVS ring */
6232 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_GSVS_GS * 16u));
6233
6234 unsigned num_components =
6235 ctx->program->info->gs.num_stream_output_components[stream];
6236 assert(num_components);
6237
6238 unsigned stride = 4u * num_components * ctx->shader->info.gs.vertices_out;
6239 unsigned stream_offset = 0;
6240 for (unsigned i = 0; i < stream; i++) {
6241 unsigned prev_stride = 4u * ctx->program->info->gs.num_stream_output_components[i] * ctx->shader->info.gs.vertices_out;
6242 stream_offset += prev_stride * ctx->program->wave_size;
6243 }
6244
6245 /* Limit on the stride field for <= GFX7. */
6246 assert(stride < (1 << 14));
6247
6248 Temp gsvs_dwords[4];
6249 for (unsigned i = 0; i < 4; i++)
6250 gsvs_dwords[i] = bld.tmp(s1);
6251 bld.pseudo(aco_opcode::p_split_vector,
6252 Definition(gsvs_dwords[0]),
6253 Definition(gsvs_dwords[1]),
6254 Definition(gsvs_dwords[2]),
6255 Definition(gsvs_dwords[3]),
6256 gsvs_ring);
6257
6258 if (stream_offset) {
6259 Temp stream_offset_tmp = bld.copy(bld.def(s1), Operand(stream_offset));
6260
6261 Temp carry = bld.tmp(s1);
6262 gsvs_dwords[0] = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), gsvs_dwords[0], stream_offset_tmp);
6263 gsvs_dwords[1] = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(0u), bld.scc(carry));
6264 }
6265
6266 gsvs_dwords[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(S_008F04_STRIDE(stride)));
6267 gsvs_dwords[2] = bld.copy(bld.def(s1), Operand((uint32_t)ctx->program->wave_size));
6268
6269 gsvs_ring = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
6270 gsvs_dwords[0], gsvs_dwords[1], gsvs_dwords[2], gsvs_dwords[3]);
6271
6272 unsigned offset = 0;
6273 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; i++) {
6274 if (ctx->program->info->gs.output_streams[i] != stream)
6275 continue;
6276
6277 for (unsigned j = 0; j < 4; j++) {
6278 if (!(ctx->program->info->gs.output_usage_mask[i] & (1 << j)))
6279 continue;
6280
6281 if (ctx->outputs.mask[i] & (1 << j)) {
6282 Operand vaddr_offset = next_vertex_cv ? Operand(v1) : Operand(next_vertex);
6283 unsigned const_offset = (offset + (next_vertex_cv ? next_vertex_cv->u32 : 0u)) * 4u;
6284 if (const_offset >= 4096u) {
6285 if (vaddr_offset.isUndefined())
6286 vaddr_offset = bld.copy(bld.def(v1), Operand(const_offset / 4096u * 4096u));
6287 else
6288 vaddr_offset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), vaddr_offset);
6289 const_offset %= 4096u;
6290 }
6291
6292 aco_ptr<MTBUF_instruction> mtbuf{create_instruction<MTBUF_instruction>(aco_opcode::tbuffer_store_format_x, Format::MTBUF, 4, 0)};
6293 mtbuf->operands[0] = Operand(gsvs_ring);
6294 mtbuf->operands[1] = vaddr_offset;
6295 mtbuf->operands[2] = Operand(get_arg(ctx, ctx->args->gs2vs_offset));
6296 mtbuf->operands[3] = Operand(ctx->outputs.outputs[i][j]);
6297 mtbuf->offen = !vaddr_offset.isUndefined();
6298 mtbuf->dfmt = V_008F0C_BUF_DATA_FORMAT_32;
6299 mtbuf->nfmt = V_008F0C_BUF_NUM_FORMAT_UINT;
6300 mtbuf->offset = const_offset;
6301 mtbuf->glc = true;
6302 mtbuf->slc = true;
6303 mtbuf->barrier = barrier_gs_data;
6304 mtbuf->can_reorder = true;
6305 bld.insert(std::move(mtbuf));
6306 }
6307
6308 offset += ctx->shader->info.gs.vertices_out;
6309 }
6310
6311 /* outputs for the next vertex are undefined and keeping them around can
6312 * create invalid IR with control flow */
6313 ctx->outputs.mask[i] = 0;
6314 }
6315
6316 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(false, true, stream));
6317 }
6318
6319 Temp emit_boolean_reduce(isel_context *ctx, nir_op op, unsigned cluster_size, Temp src)
6320 {
6321 Builder bld(ctx->program, ctx->block);
6322
6323 if (cluster_size == 1) {
6324 return src;
6325 } if (op == nir_op_iand && cluster_size == 4) {
6326 //subgroupClusteredAnd(val, 4) -> ~wqm(exec & ~val)
6327 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
6328 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc),
6329 bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc), tmp));
6330 } else if (op == nir_op_ior && cluster_size == 4) {
6331 //subgroupClusteredOr(val, 4) -> wqm(val & exec)
6332 return bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc),
6333 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)));
6334 } else if (op == nir_op_iand && cluster_size == ctx->program->wave_size) {
6335 //subgroupAnd(val) -> (exec & ~val) == 0
6336 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
6337 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
6338 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), cond);
6339 } else if (op == nir_op_ior && cluster_size == ctx->program->wave_size) {
6340 //subgroupOr(val) -> (val & exec) != 0
6341 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)).def(1).getTemp();
6342 return bool_to_vector_condition(ctx, tmp);
6343 } else if (op == nir_op_ixor && cluster_size == ctx->program->wave_size) {
6344 //subgroupXor(val) -> s_bcnt1_i32_b64(val & exec) & 1
6345 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
6346 tmp = bld.sop1(Builder::s_bcnt1_i32, bld.def(s1), bld.def(s1, scc), tmp);
6347 tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), tmp, Operand(1u)).def(1).getTemp();
6348 return bool_to_vector_condition(ctx, tmp);
6349 } else {
6350 //subgroupClustered{And,Or,Xor}(val, n) ->
6351 //lane_id = v_mbcnt_hi_u32_b32(-1, v_mbcnt_lo_u32_b32(-1, 0)) ; just v_mbcnt_lo_u32_b32 on wave32
6352 //cluster_offset = ~(n - 1) & lane_id
6353 //cluster_mask = ((1 << n) - 1)
6354 //subgroupClusteredAnd():
6355 // return ((val | ~exec) >> cluster_offset) & cluster_mask == cluster_mask
6356 //subgroupClusteredOr():
6357 // return ((val & exec) >> cluster_offset) & cluster_mask != 0
6358 //subgroupClusteredXor():
6359 // return v_bnt_u32_b32(((val & exec) >> cluster_offset) & cluster_mask, 0) & 1 != 0
6360 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
6361 Temp cluster_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(~uint32_t(cluster_size - 1)), lane_id);
6362
6363 Temp tmp;
6364 if (op == nir_op_iand)
6365 tmp = bld.sop2(Builder::s_orn2, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
6366 else
6367 tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
6368
6369 uint32_t cluster_mask = cluster_size == 32 ? -1 : (1u << cluster_size) - 1u;
6370
6371 if (ctx->program->chip_class <= GFX7)
6372 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), tmp, cluster_offset);
6373 else if (ctx->program->wave_size == 64)
6374 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), cluster_offset, tmp);
6375 else
6376 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), cluster_offset, tmp);
6377 tmp = emit_extract_vector(ctx, tmp, 0, v1);
6378 if (cluster_mask != 0xffffffff)
6379 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(cluster_mask), tmp);
6380
6381 Definition cmp_def = Definition();
6382 if (op == nir_op_iand) {
6383 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(cluster_mask), tmp).def(0);
6384 } else if (op == nir_op_ior) {
6385 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
6386 } else if (op == nir_op_ixor) {
6387 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u),
6388 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1), tmp, Operand(0u)));
6389 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
6390 }
6391 cmp_def.setHint(vcc);
6392 return cmp_def.getTemp();
6393 }
6394 }
6395
6396 Temp emit_boolean_exclusive_scan(isel_context *ctx, nir_op op, Temp src)
6397 {
6398 Builder bld(ctx->program, ctx->block);
6399
6400 //subgroupExclusiveAnd(val) -> mbcnt(exec & ~val) == 0
6401 //subgroupExclusiveOr(val) -> mbcnt(val & exec) != 0
6402 //subgroupExclusiveXor(val) -> mbcnt(val & exec) & 1 != 0
6403 Temp tmp;
6404 if (op == nir_op_iand)
6405 tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
6406 else
6407 tmp = bld.sop2(Builder::s_and, bld.def(s2), bld.def(s1, scc), src, Operand(exec, bld.lm));
6408
6409 Builder::Result lohi = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), bld.def(s1), tmp);
6410 Temp lo = lohi.def(0).getTemp();
6411 Temp hi = lohi.def(1).getTemp();
6412 Temp mbcnt = emit_mbcnt(ctx, bld.def(v1), Operand(lo), Operand(hi));
6413
6414 Definition cmp_def = Definition();
6415 if (op == nir_op_iand)
6416 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
6417 else if (op == nir_op_ior)
6418 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
6419 else if (op == nir_op_ixor)
6420 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u),
6421 bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), mbcnt)).def(0);
6422 cmp_def.setHint(vcc);
6423 return cmp_def.getTemp();
6424 }
6425
6426 Temp emit_boolean_inclusive_scan(isel_context *ctx, nir_op op, Temp src)
6427 {
6428 Builder bld(ctx->program, ctx->block);
6429
6430 //subgroupInclusiveAnd(val) -> subgroupExclusiveAnd(val) && val
6431 //subgroupInclusiveOr(val) -> subgroupExclusiveOr(val) || val
6432 //subgroupInclusiveXor(val) -> subgroupExclusiveXor(val) ^^ val
6433 Temp tmp = emit_boolean_exclusive_scan(ctx, op, src);
6434 if (op == nir_op_iand)
6435 return bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
6436 else if (op == nir_op_ior)
6437 return bld.sop2(Builder::s_or, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
6438 else if (op == nir_op_ixor)
6439 return bld.sop2(Builder::s_xor, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
6440
6441 assert(false);
6442 return Temp();
6443 }
6444
6445 void emit_uniform_subgroup(isel_context *ctx, nir_intrinsic_instr *instr, Temp src)
6446 {
6447 Builder bld(ctx->program, ctx->block);
6448 Definition dst(get_ssa_temp(ctx, &instr->dest.ssa));
6449 if (src.regClass().type() == RegType::vgpr) {
6450 bld.pseudo(aco_opcode::p_as_uniform, dst, src);
6451 } else if (src.regClass() == s1) {
6452 bld.sop1(aco_opcode::s_mov_b32, dst, src);
6453 } else if (src.regClass() == s2) {
6454 bld.sop1(aco_opcode::s_mov_b64, dst, src);
6455 } else {
6456 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6457 nir_print_instr(&instr->instr, stderr);
6458 fprintf(stderr, "\n");
6459 }
6460 }
6461
6462 void emit_interp_center(isel_context *ctx, Temp dst, Temp pos1, Temp pos2)
6463 {
6464 Builder bld(ctx->program, ctx->block);
6465 Temp persp_center = get_arg(ctx, ctx->args->ac.persp_center);
6466 Temp p1 = emit_extract_vector(ctx, persp_center, 0, v1);
6467 Temp p2 = emit_extract_vector(ctx, persp_center, 1, v1);
6468
6469 Temp ddx_1, ddx_2, ddy_1, ddy_2;
6470 uint32_t dpp_ctrl0 = dpp_quad_perm(0, 0, 0, 0);
6471 uint32_t dpp_ctrl1 = dpp_quad_perm(1, 1, 1, 1);
6472 uint32_t dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
6473
6474 /* Build DD X/Y */
6475 if (ctx->program->chip_class >= GFX8) {
6476 Temp tl_1 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p1, dpp_ctrl0);
6477 ddx_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl1);
6478 ddy_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl2);
6479 Temp tl_2 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p2, dpp_ctrl0);
6480 ddx_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl1);
6481 ddy_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl2);
6482 } else {
6483 Temp tl_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl0);
6484 ddx_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl1);
6485 ddx_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_1, tl_1);
6486 ddx_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl2);
6487 ddx_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_2, tl_1);
6488 Temp tl_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl0);
6489 ddy_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl1);
6490 ddy_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_1, tl_2);
6491 ddy_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl2);
6492 ddy_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_2, tl_2);
6493 }
6494
6495 /* res_k = p_k + ddx_k * pos1 + ddy_k * pos2 */
6496 Temp tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_1, pos1, p1);
6497 Temp tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_2, pos1, p2);
6498 tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_1, pos2, tmp1);
6499 tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_2, pos2, tmp2);
6500 Temp wqm1 = bld.tmp(v1);
6501 emit_wqm(ctx, tmp1, wqm1, true);
6502 Temp wqm2 = bld.tmp(v1);
6503 emit_wqm(ctx, tmp2, wqm2, true);
6504 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), wqm1, wqm2);
6505 return;
6506 }
6507
6508 void visit_intrinsic(isel_context *ctx, nir_intrinsic_instr *instr)
6509 {
6510 Builder bld(ctx->program, ctx->block);
6511 switch(instr->intrinsic) {
6512 case nir_intrinsic_load_barycentric_sample:
6513 case nir_intrinsic_load_barycentric_pixel:
6514 case nir_intrinsic_load_barycentric_centroid: {
6515 glsl_interp_mode mode = (glsl_interp_mode)nir_intrinsic_interp_mode(instr);
6516 Temp bary = Temp(0, s2);
6517 switch (mode) {
6518 case INTERP_MODE_SMOOTH:
6519 case INTERP_MODE_NONE:
6520 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
6521 bary = get_arg(ctx, ctx->args->ac.persp_center);
6522 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
6523 bary = ctx->persp_centroid;
6524 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
6525 bary = get_arg(ctx, ctx->args->ac.persp_sample);
6526 break;
6527 case INTERP_MODE_NOPERSPECTIVE:
6528 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
6529 bary = get_arg(ctx, ctx->args->ac.linear_center);
6530 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
6531 bary = ctx->linear_centroid;
6532 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
6533 bary = get_arg(ctx, ctx->args->ac.linear_sample);
6534 break;
6535 default:
6536 break;
6537 }
6538 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6539 Temp p1 = emit_extract_vector(ctx, bary, 0, v1);
6540 Temp p2 = emit_extract_vector(ctx, bary, 1, v1);
6541 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6542 Operand(p1), Operand(p2));
6543 emit_split_vector(ctx, dst, 2);
6544 break;
6545 }
6546 case nir_intrinsic_load_barycentric_model: {
6547 Temp model = get_arg(ctx, ctx->args->ac.pull_model);
6548
6549 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6550 Temp p1 = emit_extract_vector(ctx, model, 0, v1);
6551 Temp p2 = emit_extract_vector(ctx, model, 1, v1);
6552 Temp p3 = emit_extract_vector(ctx, model, 2, v1);
6553 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6554 Operand(p1), Operand(p2), Operand(p3));
6555 emit_split_vector(ctx, dst, 3);
6556 break;
6557 }
6558 case nir_intrinsic_load_barycentric_at_sample: {
6559 uint32_t sample_pos_offset = RING_PS_SAMPLE_POSITIONS * 16;
6560 switch (ctx->options->key.fs.num_samples) {
6561 case 2: sample_pos_offset += 1 << 3; break;
6562 case 4: sample_pos_offset += 3 << 3; break;
6563 case 8: sample_pos_offset += 7 << 3; break;
6564 default: break;
6565 }
6566 Temp sample_pos;
6567 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
6568 nir_const_value* const_addr = nir_src_as_const_value(instr->src[0]);
6569 Temp private_segment_buffer = ctx->program->private_segment_buffer;
6570 if (addr.type() == RegType::sgpr) {
6571 Operand offset;
6572 if (const_addr) {
6573 sample_pos_offset += const_addr->u32 << 3;
6574 offset = Operand(sample_pos_offset);
6575 } else if (ctx->options->chip_class >= GFX9) {
6576 offset = bld.sop2(aco_opcode::s_lshl3_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
6577 } else {
6578 offset = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), addr, Operand(3u));
6579 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
6580 }
6581
6582 Operand off = bld.copy(bld.def(s1), Operand(offset));
6583 sample_pos = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), private_segment_buffer, off);
6584
6585 } else if (ctx->options->chip_class >= GFX9) {
6586 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
6587 sample_pos = bld.global(aco_opcode::global_load_dwordx2, bld.def(v2), addr, private_segment_buffer, sample_pos_offset);
6588 } else if (ctx->options->chip_class >= GFX7) {
6589 /* addr += private_segment_buffer + sample_pos_offset */
6590 Temp tmp0 = bld.tmp(s1);
6591 Temp tmp1 = bld.tmp(s1);
6592 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp0), Definition(tmp1), private_segment_buffer);
6593 Definition scc_tmp = bld.def(s1, scc);
6594 tmp0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), scc_tmp, tmp0, Operand(sample_pos_offset));
6595 tmp1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), tmp1, Operand(0u), bld.scc(scc_tmp.getTemp()));
6596 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
6597 Temp pck0 = bld.tmp(v1);
6598 Temp carry = bld.vadd32(Definition(pck0), tmp0, addr, true).def(1).getTemp();
6599 tmp1 = as_vgpr(ctx, tmp1);
6600 Temp pck1 = bld.vop2_e64(aco_opcode::v_addc_co_u32, bld.def(v1), bld.hint_vcc(bld.def(bld.lm)), tmp1, Operand(0u), carry);
6601 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), pck0, pck1);
6602
6603 /* sample_pos = flat_load_dwordx2 addr */
6604 sample_pos = bld.flat(aco_opcode::flat_load_dwordx2, bld.def(v2), addr, Operand(s1));
6605 } else {
6606 assert(ctx->options->chip_class == GFX6);
6607
6608 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
6609 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
6610 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), private_segment_buffer, Operand(0u), Operand(rsrc_conf));
6611
6612 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
6613 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), addr, Operand(0u));
6614
6615 sample_pos = bld.tmp(v2);
6616
6617 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dwordx2, Format::MUBUF, 3, 1)};
6618 load->definitions[0] = Definition(sample_pos);
6619 load->operands[0] = Operand(rsrc);
6620 load->operands[1] = Operand(addr);
6621 load->operands[2] = Operand(0u);
6622 load->offset = sample_pos_offset;
6623 load->offen = 0;
6624 load->addr64 = true;
6625 load->glc = false;
6626 load->dlc = false;
6627 load->disable_wqm = false;
6628 load->barrier = barrier_none;
6629 load->can_reorder = true;
6630 ctx->block->instructions.emplace_back(std::move(load));
6631 }
6632
6633 /* sample_pos -= 0.5 */
6634 Temp pos1 = bld.tmp(RegClass(sample_pos.type(), 1));
6635 Temp pos2 = bld.tmp(RegClass(sample_pos.type(), 1));
6636 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), sample_pos);
6637 pos1 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos1, Operand(0x3f000000u));
6638 pos2 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos2, Operand(0x3f000000u));
6639
6640 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
6641 break;
6642 }
6643 case nir_intrinsic_load_barycentric_at_offset: {
6644 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
6645 RegClass rc = RegClass(offset.type(), 1);
6646 Temp pos1 = bld.tmp(rc), pos2 = bld.tmp(rc);
6647 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), offset);
6648 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
6649 break;
6650 }
6651 case nir_intrinsic_load_front_face: {
6652 bld.vopc(aco_opcode::v_cmp_lg_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6653 Operand(0u), get_arg(ctx, ctx->args->ac.front_face)).def(0).setHint(vcc);
6654 break;
6655 }
6656 case nir_intrinsic_load_view_index: {
6657 if (ctx->stage & (sw_vs | sw_gs | sw_tcs | sw_tes)) {
6658 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6659 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.view_index)));
6660 break;
6661 }
6662
6663 /* fallthrough */
6664 }
6665 case nir_intrinsic_load_layer_id: {
6666 unsigned idx = nir_intrinsic_base(instr);
6667 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6668 Operand(2u), bld.m0(get_arg(ctx, ctx->args->ac.prim_mask)), idx, 0);
6669 break;
6670 }
6671 case nir_intrinsic_load_frag_coord: {
6672 emit_load_frag_coord(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 4);
6673 break;
6674 }
6675 case nir_intrinsic_load_sample_pos: {
6676 Temp posx = get_arg(ctx, ctx->args->ac.frag_pos[0]);
6677 Temp posy = get_arg(ctx, ctx->args->ac.frag_pos[1]);
6678 bld.pseudo(aco_opcode::p_create_vector, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6679 posx.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posx) : Operand(0u),
6680 posy.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posy) : Operand(0u));
6681 break;
6682 }
6683 case nir_intrinsic_load_tess_coord:
6684 visit_load_tess_coord(ctx, instr);
6685 break;
6686 case nir_intrinsic_load_interpolated_input:
6687 visit_load_interpolated_input(ctx, instr);
6688 break;
6689 case nir_intrinsic_store_output:
6690 visit_store_output(ctx, instr);
6691 break;
6692 case nir_intrinsic_load_input:
6693 case nir_intrinsic_load_input_vertex:
6694 visit_load_input(ctx, instr);
6695 break;
6696 case nir_intrinsic_load_output:
6697 visit_load_output(ctx, instr);
6698 break;
6699 case nir_intrinsic_load_per_vertex_input:
6700 visit_load_per_vertex_input(ctx, instr);
6701 break;
6702 case nir_intrinsic_load_per_vertex_output:
6703 visit_load_per_vertex_output(ctx, instr);
6704 break;
6705 case nir_intrinsic_store_per_vertex_output:
6706 visit_store_per_vertex_output(ctx, instr);
6707 break;
6708 case nir_intrinsic_load_ubo:
6709 visit_load_ubo(ctx, instr);
6710 break;
6711 case nir_intrinsic_load_push_constant:
6712 visit_load_push_constant(ctx, instr);
6713 break;
6714 case nir_intrinsic_load_constant:
6715 visit_load_constant(ctx, instr);
6716 break;
6717 case nir_intrinsic_vulkan_resource_index:
6718 visit_load_resource(ctx, instr);
6719 break;
6720 case nir_intrinsic_discard:
6721 visit_discard(ctx, instr);
6722 break;
6723 case nir_intrinsic_discard_if:
6724 visit_discard_if(ctx, instr);
6725 break;
6726 case nir_intrinsic_load_shared:
6727 visit_load_shared(ctx, instr);
6728 break;
6729 case nir_intrinsic_store_shared:
6730 visit_store_shared(ctx, instr);
6731 break;
6732 case nir_intrinsic_shared_atomic_add:
6733 case nir_intrinsic_shared_atomic_imin:
6734 case nir_intrinsic_shared_atomic_umin:
6735 case nir_intrinsic_shared_atomic_imax:
6736 case nir_intrinsic_shared_atomic_umax:
6737 case nir_intrinsic_shared_atomic_and:
6738 case nir_intrinsic_shared_atomic_or:
6739 case nir_intrinsic_shared_atomic_xor:
6740 case nir_intrinsic_shared_atomic_exchange:
6741 case nir_intrinsic_shared_atomic_comp_swap:
6742 visit_shared_atomic(ctx, instr);
6743 break;
6744 case nir_intrinsic_image_deref_load:
6745 visit_image_load(ctx, instr);
6746 break;
6747 case nir_intrinsic_image_deref_store:
6748 visit_image_store(ctx, instr);
6749 break;
6750 case nir_intrinsic_image_deref_atomic_add:
6751 case nir_intrinsic_image_deref_atomic_umin:
6752 case nir_intrinsic_image_deref_atomic_imin:
6753 case nir_intrinsic_image_deref_atomic_umax:
6754 case nir_intrinsic_image_deref_atomic_imax:
6755 case nir_intrinsic_image_deref_atomic_and:
6756 case nir_intrinsic_image_deref_atomic_or:
6757 case nir_intrinsic_image_deref_atomic_xor:
6758 case nir_intrinsic_image_deref_atomic_exchange:
6759 case nir_intrinsic_image_deref_atomic_comp_swap:
6760 visit_image_atomic(ctx, instr);
6761 break;
6762 case nir_intrinsic_image_deref_size:
6763 visit_image_size(ctx, instr);
6764 break;
6765 case nir_intrinsic_load_ssbo:
6766 visit_load_ssbo(ctx, instr);
6767 break;
6768 case nir_intrinsic_store_ssbo:
6769 visit_store_ssbo(ctx, instr);
6770 break;
6771 case nir_intrinsic_load_global:
6772 visit_load_global(ctx, instr);
6773 break;
6774 case nir_intrinsic_store_global:
6775 visit_store_global(ctx, instr);
6776 break;
6777 case nir_intrinsic_global_atomic_add:
6778 case nir_intrinsic_global_atomic_imin:
6779 case nir_intrinsic_global_atomic_umin:
6780 case nir_intrinsic_global_atomic_imax:
6781 case nir_intrinsic_global_atomic_umax:
6782 case nir_intrinsic_global_atomic_and:
6783 case nir_intrinsic_global_atomic_or:
6784 case nir_intrinsic_global_atomic_xor:
6785 case nir_intrinsic_global_atomic_exchange:
6786 case nir_intrinsic_global_atomic_comp_swap:
6787 visit_global_atomic(ctx, instr);
6788 break;
6789 case nir_intrinsic_ssbo_atomic_add:
6790 case nir_intrinsic_ssbo_atomic_imin:
6791 case nir_intrinsic_ssbo_atomic_umin:
6792 case nir_intrinsic_ssbo_atomic_imax:
6793 case nir_intrinsic_ssbo_atomic_umax:
6794 case nir_intrinsic_ssbo_atomic_and:
6795 case nir_intrinsic_ssbo_atomic_or:
6796 case nir_intrinsic_ssbo_atomic_xor:
6797 case nir_intrinsic_ssbo_atomic_exchange:
6798 case nir_intrinsic_ssbo_atomic_comp_swap:
6799 visit_atomic_ssbo(ctx, instr);
6800 break;
6801 case nir_intrinsic_load_scratch:
6802 visit_load_scratch(ctx, instr);
6803 break;
6804 case nir_intrinsic_store_scratch:
6805 visit_store_scratch(ctx, instr);
6806 break;
6807 case nir_intrinsic_get_buffer_size:
6808 visit_get_buffer_size(ctx, instr);
6809 break;
6810 case nir_intrinsic_control_barrier: {
6811 if (ctx->program->chip_class == GFX6 && ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
6812 /* GFX6 only (thanks to a hw bug workaround):
6813 * The real barrier instruction isn’t needed, because an entire patch
6814 * always fits into a single wave.
6815 */
6816 break;
6817 }
6818
6819 if (ctx->shader->info.stage == MESA_SHADER_COMPUTE) {
6820 unsigned* bsize = ctx->program->info->cs.block_size;
6821 unsigned workgroup_size = bsize[0] * bsize[1] * bsize[2];
6822 if (workgroup_size > ctx->program->wave_size)
6823 bld.sopp(aco_opcode::s_barrier);
6824 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
6825 /* For each patch provided during rendering, n​ TCS shader invocations will be processed,
6826 * where n​ is the number of vertices in the output patch.
6827 */
6828 unsigned workgroup_size = ctx->tcs_num_patches * ctx->shader->info.tess.tcs_vertices_out;
6829 if (workgroup_size > ctx->program->wave_size)
6830 bld.sopp(aco_opcode::s_barrier);
6831 } else {
6832 /* We don't know the workgroup size, so always emit the s_barrier. */
6833 bld.sopp(aco_opcode::s_barrier);
6834 }
6835
6836 break;
6837 }
6838 case nir_intrinsic_memory_barrier_tcs_patch:
6839 case nir_intrinsic_group_memory_barrier:
6840 case nir_intrinsic_memory_barrier:
6841 case nir_intrinsic_memory_barrier_buffer:
6842 case nir_intrinsic_memory_barrier_image:
6843 case nir_intrinsic_memory_barrier_shared:
6844 emit_memory_barrier(ctx, instr);
6845 break;
6846 case nir_intrinsic_load_num_work_groups: {
6847 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6848 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.num_work_groups)));
6849 emit_split_vector(ctx, dst, 3);
6850 break;
6851 }
6852 case nir_intrinsic_load_local_invocation_id: {
6853 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6854 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.local_invocation_ids)));
6855 emit_split_vector(ctx, dst, 3);
6856 break;
6857 }
6858 case nir_intrinsic_load_work_group_id: {
6859 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6860 struct ac_arg *args = ctx->args->ac.workgroup_ids;
6861 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6862 args[0].used ? Operand(get_arg(ctx, args[0])) : Operand(0u),
6863 args[1].used ? Operand(get_arg(ctx, args[1])) : Operand(0u),
6864 args[2].used ? Operand(get_arg(ctx, args[2])) : Operand(0u));
6865 emit_split_vector(ctx, dst, 3);
6866 break;
6867 }
6868 case nir_intrinsic_load_local_invocation_index: {
6869 Temp id = emit_mbcnt(ctx, bld.def(v1));
6870
6871 /* The tg_size bits [6:11] contain the subgroup id,
6872 * we need this multiplied by the wave size, and then OR the thread id to it.
6873 */
6874 if (ctx->program->wave_size == 64) {
6875 /* After the s_and the bits are already multiplied by 64 (left shifted by 6) so we can just feed that to v_or */
6876 Temp tg_num = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfc0u),
6877 get_arg(ctx, ctx->args->ac.tg_size));
6878 bld.vop2(aco_opcode::v_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, id);
6879 } else {
6880 /* Extract the bit field and multiply the result by 32 (left shift by 5), then do the OR */
6881 Temp tg_num = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
6882 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
6883 bld.vop3(aco_opcode::v_lshl_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, Operand(0x5u), id);
6884 }
6885 break;
6886 }
6887 case nir_intrinsic_load_subgroup_id: {
6888 if (ctx->stage == compute_cs) {
6889 bld.sop2(aco_opcode::s_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc),
6890 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
6891 } else {
6892 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x0u));
6893 }
6894 break;
6895 }
6896 case nir_intrinsic_load_subgroup_invocation: {
6897 emit_mbcnt(ctx, Definition(get_ssa_temp(ctx, &instr->dest.ssa)));
6898 break;
6899 }
6900 case nir_intrinsic_load_num_subgroups: {
6901 if (ctx->stage == compute_cs)
6902 bld.sop2(aco_opcode::s_and_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc), Operand(0x3fu),
6903 get_arg(ctx, ctx->args->ac.tg_size));
6904 else
6905 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x1u));
6906 break;
6907 }
6908 case nir_intrinsic_ballot: {
6909 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6910 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6911 Definition tmp = bld.def(dst.regClass());
6912 Definition lanemask_tmp = dst.size() == bld.lm.size() ? tmp : bld.def(src.regClass());
6913 if (instr->src[0].ssa->bit_size == 1) {
6914 assert(src.regClass() == bld.lm);
6915 bld.sop2(Builder::s_and, lanemask_tmp, bld.def(s1, scc), Operand(exec, bld.lm), src);
6916 } else if (instr->src[0].ssa->bit_size == 32 && src.regClass() == v1) {
6917 bld.vopc(aco_opcode::v_cmp_lg_u32, lanemask_tmp, Operand(0u), src);
6918 } else if (instr->src[0].ssa->bit_size == 64 && src.regClass() == v2) {
6919 bld.vopc(aco_opcode::v_cmp_lg_u64, lanemask_tmp, Operand(0u), src);
6920 } else {
6921 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6922 nir_print_instr(&instr->instr, stderr);
6923 fprintf(stderr, "\n");
6924 }
6925 if (dst.size() != bld.lm.size()) {
6926 /* Wave32 with ballot size set to 64 */
6927 bld.pseudo(aco_opcode::p_create_vector, Definition(tmp), lanemask_tmp.getTemp(), Operand(0u));
6928 }
6929 emit_wqm(ctx, tmp.getTemp(), dst);
6930 break;
6931 }
6932 case nir_intrinsic_shuffle:
6933 case nir_intrinsic_read_invocation: {
6934 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6935 if (!ctx->divergent_vals[instr->src[0].ssa->index]) {
6936 emit_uniform_subgroup(ctx, instr, src);
6937 } else {
6938 Temp tid = get_ssa_temp(ctx, instr->src[1].ssa);
6939 if (instr->intrinsic == nir_intrinsic_read_invocation || !ctx->divergent_vals[instr->src[1].ssa->index])
6940 tid = bld.as_uniform(tid);
6941 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6942 if (src.regClass() == v1) {
6943 emit_wqm(ctx, emit_bpermute(ctx, bld, tid, src), dst);
6944 } else if (src.regClass() == v2) {
6945 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
6946 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
6947 lo = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, lo));
6948 hi = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, hi));
6949 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6950 emit_split_vector(ctx, dst, 2);
6951 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == s1) {
6952 assert(src.regClass() == bld.lm);
6953 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src, tid);
6954 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
6955 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == v1) {
6956 assert(src.regClass() == bld.lm);
6957 Temp tmp;
6958 if (ctx->program->chip_class <= GFX7)
6959 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), src, tid);
6960 else if (ctx->program->wave_size == 64)
6961 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), tid, src);
6962 else
6963 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), tid, src);
6964 tmp = emit_extract_vector(ctx, tmp, 0, v1);
6965 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), tmp);
6966 emit_wqm(ctx, bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp), dst);
6967 } else {
6968 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6969 nir_print_instr(&instr->instr, stderr);
6970 fprintf(stderr, "\n");
6971 }
6972 }
6973 break;
6974 }
6975 case nir_intrinsic_load_sample_id: {
6976 bld.vop3(aco_opcode::v_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6977 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
6978 break;
6979 }
6980 case nir_intrinsic_load_sample_mask_in: {
6981 visit_load_sample_mask_in(ctx, instr);
6982 break;
6983 }
6984 case nir_intrinsic_read_first_invocation: {
6985 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6986 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6987 if (src.regClass() == v1) {
6988 emit_wqm(ctx,
6989 bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), src),
6990 dst);
6991 } else if (src.regClass() == v2) {
6992 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
6993 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
6994 lo = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), lo));
6995 hi = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), hi));
6996 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6997 emit_split_vector(ctx, dst, 2);
6998 } else if (instr->dest.ssa.bit_size == 1) {
6999 assert(src.regClass() == bld.lm);
7000 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src,
7001 bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)));
7002 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7003 } else if (src.regClass() == s1) {
7004 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
7005 } else if (src.regClass() == s2) {
7006 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
7007 } else {
7008 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7009 nir_print_instr(&instr->instr, stderr);
7010 fprintf(stderr, "\n");
7011 }
7012 break;
7013 }
7014 case nir_intrinsic_vote_all: {
7015 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7016 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7017 assert(src.regClass() == bld.lm);
7018 assert(dst.regClass() == bld.lm);
7019
7020 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
7021 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
7022 bld.sop1(Builder::s_not, Definition(dst), bld.def(s1, scc), cond);
7023 break;
7024 }
7025 case nir_intrinsic_vote_any: {
7026 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7027 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7028 assert(src.regClass() == bld.lm);
7029 assert(dst.regClass() == bld.lm);
7030
7031 Temp tmp = bool_to_scalar_condition(ctx, src);
7032 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7033 break;
7034 }
7035 case nir_intrinsic_reduce:
7036 case nir_intrinsic_inclusive_scan:
7037 case nir_intrinsic_exclusive_scan: {
7038 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7039 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7040 nir_op op = (nir_op) nir_intrinsic_reduction_op(instr);
7041 unsigned cluster_size = instr->intrinsic == nir_intrinsic_reduce ?
7042 nir_intrinsic_cluster_size(instr) : 0;
7043 cluster_size = util_next_power_of_two(MIN2(cluster_size ? cluster_size : ctx->program->wave_size, ctx->program->wave_size));
7044
7045 if (!ctx->divergent_vals[instr->src[0].ssa->index] && (op == nir_op_ior || op == nir_op_iand)) {
7046 emit_uniform_subgroup(ctx, instr, src);
7047 } else if (instr->dest.ssa.bit_size == 1) {
7048 if (op == nir_op_imul || op == nir_op_umin || op == nir_op_imin)
7049 op = nir_op_iand;
7050 else if (op == nir_op_iadd)
7051 op = nir_op_ixor;
7052 else if (op == nir_op_umax || op == nir_op_imax)
7053 op = nir_op_ior;
7054 assert(op == nir_op_iand || op == nir_op_ior || op == nir_op_ixor);
7055
7056 switch (instr->intrinsic) {
7057 case nir_intrinsic_reduce:
7058 emit_wqm(ctx, emit_boolean_reduce(ctx, op, cluster_size, src), dst);
7059 break;
7060 case nir_intrinsic_exclusive_scan:
7061 emit_wqm(ctx, emit_boolean_exclusive_scan(ctx, op, src), dst);
7062 break;
7063 case nir_intrinsic_inclusive_scan:
7064 emit_wqm(ctx, emit_boolean_inclusive_scan(ctx, op, src), dst);
7065 break;
7066 default:
7067 assert(false);
7068 }
7069 } else if (cluster_size == 1) {
7070 bld.copy(Definition(dst), src);
7071 } else {
7072 src = as_vgpr(ctx, src);
7073
7074 ReduceOp reduce_op;
7075 switch (op) {
7076 #define CASE(name) case nir_op_##name: reduce_op = (src.regClass() == v1) ? name##32 : name##64; break;
7077 CASE(iadd)
7078 CASE(imul)
7079 CASE(fadd)
7080 CASE(fmul)
7081 CASE(imin)
7082 CASE(umin)
7083 CASE(fmin)
7084 CASE(imax)
7085 CASE(umax)
7086 CASE(fmax)
7087 CASE(iand)
7088 CASE(ior)
7089 CASE(ixor)
7090 default:
7091 unreachable("unknown reduction op");
7092 #undef CASE
7093 }
7094
7095 aco_opcode aco_op;
7096 switch (instr->intrinsic) {
7097 case nir_intrinsic_reduce: aco_op = aco_opcode::p_reduce; break;
7098 case nir_intrinsic_inclusive_scan: aco_op = aco_opcode::p_inclusive_scan; break;
7099 case nir_intrinsic_exclusive_scan: aco_op = aco_opcode::p_exclusive_scan; break;
7100 default:
7101 unreachable("unknown reduce intrinsic");
7102 }
7103
7104 aco_ptr<Pseudo_reduction_instruction> reduce{create_instruction<Pseudo_reduction_instruction>(aco_op, Format::PSEUDO_REDUCTION, 3, 5)};
7105 reduce->operands[0] = Operand(src);
7106 // filled in by aco_reduce_assign.cpp, used internally as part of the
7107 // reduce sequence
7108 assert(dst.size() == 1 || dst.size() == 2);
7109 reduce->operands[1] = Operand(RegClass(RegType::vgpr, dst.size()).as_linear());
7110 reduce->operands[2] = Operand(v1.as_linear());
7111
7112 Temp tmp_dst = bld.tmp(dst.regClass());
7113 reduce->definitions[0] = Definition(tmp_dst);
7114 reduce->definitions[1] = bld.def(ctx->program->lane_mask); // used internally
7115 reduce->definitions[2] = Definition();
7116 reduce->definitions[3] = Definition(scc, s1);
7117 reduce->definitions[4] = Definition();
7118 reduce->reduce_op = reduce_op;
7119 reduce->cluster_size = cluster_size;
7120 ctx->block->instructions.emplace_back(std::move(reduce));
7121
7122 emit_wqm(ctx, tmp_dst, dst);
7123 }
7124 break;
7125 }
7126 case nir_intrinsic_quad_broadcast: {
7127 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7128 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
7129 emit_uniform_subgroup(ctx, instr, src);
7130 } else {
7131 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7132 unsigned lane = nir_src_as_const_value(instr->src[1])->u32;
7133 uint32_t dpp_ctrl = dpp_quad_perm(lane, lane, lane, lane);
7134
7135 if (instr->dest.ssa.bit_size == 1) {
7136 assert(src.regClass() == bld.lm);
7137 assert(dst.regClass() == bld.lm);
7138 uint32_t half_mask = 0x11111111u << lane;
7139 Temp mask_tmp = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(half_mask), Operand(half_mask));
7140 Temp tmp = bld.tmp(bld.lm);
7141 bld.sop1(Builder::s_wqm, Definition(tmp),
7142 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), mask_tmp,
7143 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm))));
7144 emit_wqm(ctx, tmp, dst);
7145 } else if (instr->dest.ssa.bit_size == 32) {
7146 if (ctx->program->chip_class >= GFX8)
7147 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), dst);
7148 else
7149 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), dst);
7150 } else if (instr->dest.ssa.bit_size == 64) {
7151 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7152 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7153 if (ctx->program->chip_class >= GFX8) {
7154 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
7155 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
7156 } else {
7157 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, (1 << 15) | dpp_ctrl));
7158 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, (1 << 15) | dpp_ctrl));
7159 }
7160 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7161 emit_split_vector(ctx, dst, 2);
7162 } else {
7163 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7164 nir_print_instr(&instr->instr, stderr);
7165 fprintf(stderr, "\n");
7166 }
7167 }
7168 break;
7169 }
7170 case nir_intrinsic_quad_swap_horizontal:
7171 case nir_intrinsic_quad_swap_vertical:
7172 case nir_intrinsic_quad_swap_diagonal:
7173 case nir_intrinsic_quad_swizzle_amd: {
7174 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7175 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
7176 emit_uniform_subgroup(ctx, instr, src);
7177 break;
7178 }
7179 uint16_t dpp_ctrl = 0;
7180 switch (instr->intrinsic) {
7181 case nir_intrinsic_quad_swap_horizontal:
7182 dpp_ctrl = dpp_quad_perm(1, 0, 3, 2);
7183 break;
7184 case nir_intrinsic_quad_swap_vertical:
7185 dpp_ctrl = dpp_quad_perm(2, 3, 0, 1);
7186 break;
7187 case nir_intrinsic_quad_swap_diagonal:
7188 dpp_ctrl = dpp_quad_perm(3, 2, 1, 0);
7189 break;
7190 case nir_intrinsic_quad_swizzle_amd:
7191 dpp_ctrl = nir_intrinsic_swizzle_mask(instr);
7192 break;
7193 default:
7194 break;
7195 }
7196 if (ctx->program->chip_class < GFX8)
7197 dpp_ctrl |= (1 << 15);
7198
7199 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7200 if (instr->dest.ssa.bit_size == 1) {
7201 assert(src.regClass() == bld.lm);
7202 src = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand((uint32_t)-1), src);
7203 if (ctx->program->chip_class >= GFX8)
7204 src = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
7205 else
7206 src = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
7207 Temp tmp = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), src);
7208 emit_wqm(ctx, tmp, dst);
7209 } else if (instr->dest.ssa.bit_size == 32) {
7210 Temp tmp;
7211 if (ctx->program->chip_class >= GFX8)
7212 tmp = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
7213 else
7214 tmp = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
7215 emit_wqm(ctx, tmp, dst);
7216 } else if (instr->dest.ssa.bit_size == 64) {
7217 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7218 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7219 if (ctx->program->chip_class >= GFX8) {
7220 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
7221 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
7222 } else {
7223 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, dpp_ctrl));
7224 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, dpp_ctrl));
7225 }
7226 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7227 emit_split_vector(ctx, dst, 2);
7228 } else {
7229 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7230 nir_print_instr(&instr->instr, stderr);
7231 fprintf(stderr, "\n");
7232 }
7233 break;
7234 }
7235 case nir_intrinsic_masked_swizzle_amd: {
7236 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7237 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
7238 emit_uniform_subgroup(ctx, instr, src);
7239 break;
7240 }
7241 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7242 uint32_t mask = nir_intrinsic_swizzle_mask(instr);
7243 if (dst.regClass() == v1) {
7244 emit_wqm(ctx,
7245 bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, mask, 0, false),
7246 dst);
7247 } else if (dst.regClass() == v2) {
7248 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7249 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7250 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, mask, 0, false));
7251 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, mask, 0, false));
7252 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7253 emit_split_vector(ctx, dst, 2);
7254 } else {
7255 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7256 nir_print_instr(&instr->instr, stderr);
7257 fprintf(stderr, "\n");
7258 }
7259 break;
7260 }
7261 case nir_intrinsic_write_invocation_amd: {
7262 Temp src = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
7263 Temp val = bld.as_uniform(get_ssa_temp(ctx, instr->src[1].ssa));
7264 Temp lane = bld.as_uniform(get_ssa_temp(ctx, instr->src[2].ssa));
7265 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7266 if (dst.regClass() == v1) {
7267 /* src2 is ignored for writelane. RA assigns the same reg for dst */
7268 emit_wqm(ctx, bld.writelane(bld.def(v1), val, lane, src), dst);
7269 } else if (dst.regClass() == v2) {
7270 Temp src_lo = bld.tmp(v1), src_hi = bld.tmp(v1);
7271 Temp val_lo = bld.tmp(s1), val_hi = bld.tmp(s1);
7272 bld.pseudo(aco_opcode::p_split_vector, Definition(src_lo), Definition(src_hi), src);
7273 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
7274 Temp lo = emit_wqm(ctx, bld.writelane(bld.def(v1), val_lo, lane, src_hi));
7275 Temp hi = emit_wqm(ctx, bld.writelane(bld.def(v1), val_hi, lane, src_hi));
7276 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7277 emit_split_vector(ctx, dst, 2);
7278 } else {
7279 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7280 nir_print_instr(&instr->instr, stderr);
7281 fprintf(stderr, "\n");
7282 }
7283 break;
7284 }
7285 case nir_intrinsic_mbcnt_amd: {
7286 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7287 RegClass rc = RegClass(src.type(), 1);
7288 Temp mask_lo = bld.tmp(rc), mask_hi = bld.tmp(rc);
7289 bld.pseudo(aco_opcode::p_split_vector, Definition(mask_lo), Definition(mask_hi), src);
7290 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7291 Temp wqm_tmp = emit_mbcnt(ctx, bld.def(v1), Operand(mask_lo), Operand(mask_hi));
7292 emit_wqm(ctx, wqm_tmp, dst);
7293 break;
7294 }
7295 case nir_intrinsic_load_helper_invocation: {
7296 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7297 bld.pseudo(aco_opcode::p_load_helper, Definition(dst));
7298 ctx->block->kind |= block_kind_needs_lowering;
7299 ctx->program->needs_exact = true;
7300 break;
7301 }
7302 case nir_intrinsic_is_helper_invocation: {
7303 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7304 bld.pseudo(aco_opcode::p_is_helper, Definition(dst));
7305 ctx->block->kind |= block_kind_needs_lowering;
7306 ctx->program->needs_exact = true;
7307 break;
7308 }
7309 case nir_intrinsic_demote:
7310 bld.pseudo(aco_opcode::p_demote_to_helper, Operand(-1u));
7311
7312 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
7313 ctx->cf_info.exec_potentially_empty_discard = true;
7314 ctx->block->kind |= block_kind_uses_demote;
7315 ctx->program->needs_exact = true;
7316 break;
7317 case nir_intrinsic_demote_if: {
7318 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7319 assert(src.regClass() == bld.lm);
7320 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
7321 bld.pseudo(aco_opcode::p_demote_to_helper, cond);
7322
7323 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
7324 ctx->cf_info.exec_potentially_empty_discard = true;
7325 ctx->block->kind |= block_kind_uses_demote;
7326 ctx->program->needs_exact = true;
7327 break;
7328 }
7329 case nir_intrinsic_first_invocation: {
7330 emit_wqm(ctx, bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)),
7331 get_ssa_temp(ctx, &instr->dest.ssa));
7332 break;
7333 }
7334 case nir_intrinsic_shader_clock:
7335 bld.smem(aco_opcode::s_memtime, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), false);
7336 emit_split_vector(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 2);
7337 break;
7338 case nir_intrinsic_load_vertex_id_zero_base: {
7339 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7340 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.vertex_id));
7341 break;
7342 }
7343 case nir_intrinsic_load_first_vertex: {
7344 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7345 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.base_vertex));
7346 break;
7347 }
7348 case nir_intrinsic_load_base_instance: {
7349 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7350 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.start_instance));
7351 break;
7352 }
7353 case nir_intrinsic_load_instance_id: {
7354 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7355 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.instance_id));
7356 break;
7357 }
7358 case nir_intrinsic_load_draw_id: {
7359 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7360 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.draw_id));
7361 break;
7362 }
7363 case nir_intrinsic_load_invocation_id: {
7364 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7365
7366 if (ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
7367 if (ctx->options->chip_class >= GFX10)
7368 bld.vop2_e64(aco_opcode::v_and_b32, Definition(dst), Operand(127u), get_arg(ctx, ctx->args->ac.gs_invocation_id));
7369 else
7370 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_invocation_id));
7371 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
7372 bld.vop3(aco_opcode::v_bfe_u32, Definition(dst),
7373 get_arg(ctx, ctx->args->ac.tcs_rel_ids), Operand(8u), Operand(5u));
7374 } else {
7375 unreachable("Unsupported stage for load_invocation_id");
7376 }
7377
7378 break;
7379 }
7380 case nir_intrinsic_load_primitive_id: {
7381 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7382
7383 switch (ctx->shader->info.stage) {
7384 case MESA_SHADER_GEOMETRY:
7385 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_prim_id));
7386 break;
7387 case MESA_SHADER_TESS_CTRL:
7388 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tcs_patch_id));
7389 break;
7390 case MESA_SHADER_TESS_EVAL:
7391 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tes_patch_id));
7392 break;
7393 default:
7394 unreachable("Unimplemented shader stage for nir_intrinsic_load_primitive_id");
7395 }
7396
7397 break;
7398 }
7399 case nir_intrinsic_load_patch_vertices_in: {
7400 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL ||
7401 ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
7402
7403 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7404 bld.copy(Definition(dst), Operand(ctx->args->options->key.tcs.input_vertices));
7405 break;
7406 }
7407 case nir_intrinsic_emit_vertex_with_counter: {
7408 visit_emit_vertex_with_counter(ctx, instr);
7409 break;
7410 }
7411 case nir_intrinsic_end_primitive_with_counter: {
7412 unsigned stream = nir_intrinsic_stream_id(instr);
7413 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(true, false, stream));
7414 break;
7415 }
7416 case nir_intrinsic_set_vertex_count: {
7417 /* unused, the HW keeps track of this for us */
7418 break;
7419 }
7420 default:
7421 fprintf(stderr, "Unimplemented intrinsic instr: ");
7422 nir_print_instr(&instr->instr, stderr);
7423 fprintf(stderr, "\n");
7424 abort();
7425
7426 break;
7427 }
7428 }
7429
7430
7431 void tex_fetch_ptrs(isel_context *ctx, nir_tex_instr *instr,
7432 Temp *res_ptr, Temp *samp_ptr, Temp *fmask_ptr,
7433 enum glsl_base_type *stype)
7434 {
7435 nir_deref_instr *texture_deref_instr = NULL;
7436 nir_deref_instr *sampler_deref_instr = NULL;
7437 int plane = -1;
7438
7439 for (unsigned i = 0; i < instr->num_srcs; i++) {
7440 switch (instr->src[i].src_type) {
7441 case nir_tex_src_texture_deref:
7442 texture_deref_instr = nir_src_as_deref(instr->src[i].src);
7443 break;
7444 case nir_tex_src_sampler_deref:
7445 sampler_deref_instr = nir_src_as_deref(instr->src[i].src);
7446 break;
7447 case nir_tex_src_plane:
7448 plane = nir_src_as_int(instr->src[i].src);
7449 break;
7450 default:
7451 break;
7452 }
7453 }
7454
7455 *stype = glsl_get_sampler_result_type(texture_deref_instr->type);
7456
7457 if (!sampler_deref_instr)
7458 sampler_deref_instr = texture_deref_instr;
7459
7460 if (plane >= 0) {
7461 assert(instr->op != nir_texop_txf_ms &&
7462 instr->op != nir_texop_samples_identical);
7463 assert(instr->sampler_dim != GLSL_SAMPLER_DIM_BUF);
7464 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, (aco_descriptor_type)(ACO_DESC_PLANE_0 + plane), instr, false, false);
7465 } else if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
7466 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_BUFFER, instr, false, false);
7467 } else if (instr->op == nir_texop_fragment_mask_fetch) {
7468 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
7469 } else {
7470 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_IMAGE, instr, false, false);
7471 }
7472 if (samp_ptr) {
7473 *samp_ptr = get_sampler_desc(ctx, sampler_deref_instr, ACO_DESC_SAMPLER, instr, false, false);
7474
7475 if (instr->sampler_dim < GLSL_SAMPLER_DIM_RECT && ctx->options->chip_class < GFX8) {
7476 /* fix sampler aniso on SI/CI: samp[0] = samp[0] & img[7] */
7477 Builder bld(ctx->program, ctx->block);
7478
7479 /* to avoid unnecessary moves, we split and recombine sampler and image */
7480 Temp img[8] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1),
7481 bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
7482 Temp samp[4] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
7483 bld.pseudo(aco_opcode::p_split_vector, Definition(img[0]), Definition(img[1]),
7484 Definition(img[2]), Definition(img[3]), Definition(img[4]),
7485 Definition(img[5]), Definition(img[6]), Definition(img[7]), *res_ptr);
7486 bld.pseudo(aco_opcode::p_split_vector, Definition(samp[0]), Definition(samp[1]),
7487 Definition(samp[2]), Definition(samp[3]), *samp_ptr);
7488
7489 samp[0] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), samp[0], img[7]);
7490 *res_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
7491 img[0], img[1], img[2], img[3],
7492 img[4], img[5], img[6], img[7]);
7493 *samp_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
7494 samp[0], samp[1], samp[2], samp[3]);
7495 }
7496 }
7497 if (fmask_ptr && (instr->op == nir_texop_txf_ms ||
7498 instr->op == nir_texop_samples_identical))
7499 *fmask_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
7500 }
7501
7502 void build_cube_select(isel_context *ctx, Temp ma, Temp id, Temp deriv,
7503 Temp *out_ma, Temp *out_sc, Temp *out_tc)
7504 {
7505 Builder bld(ctx->program, ctx->block);
7506
7507 Temp deriv_x = emit_extract_vector(ctx, deriv, 0, v1);
7508 Temp deriv_y = emit_extract_vector(ctx, deriv, 1, v1);
7509 Temp deriv_z = emit_extract_vector(ctx, deriv, 2, v1);
7510
7511 Operand neg_one(0xbf800000u);
7512 Operand one(0x3f800000u);
7513 Operand two(0x40000000u);
7514 Operand four(0x40800000u);
7515
7516 Temp is_ma_positive = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), ma);
7517 Temp sgn_ma = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, one, is_ma_positive);
7518 Temp neg_sgn_ma = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0u), sgn_ma);
7519
7520 Temp is_ma_z = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), four, id);
7521 Temp is_ma_y = bld.vopc(aco_opcode::v_cmp_le_f32, bld.def(bld.lm), two, id);
7522 is_ma_y = bld.sop2(Builder::s_andn2, bld.hint_vcc(bld.def(bld.lm)), is_ma_y, is_ma_z);
7523 Temp is_not_ma_x = bld.sop2(aco_opcode::s_or_b64, bld.hint_vcc(bld.def(bld.lm)), bld.def(s1, scc), is_ma_z, is_ma_y);
7524
7525 // select sc
7526 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_z, deriv_x, is_not_ma_x);
7527 Temp sgn = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1),
7528 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_sgn_ma, sgn_ma, is_ma_z),
7529 one, is_ma_y);
7530 *out_sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
7531
7532 // select tc
7533 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_y, deriv_z, is_ma_y);
7534 sgn = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, sgn_ma, is_ma_y);
7535 *out_tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
7536
7537 // select ma
7538 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
7539 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_x, deriv_y, is_ma_y),
7540 deriv_z, is_ma_z);
7541 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffffu), tmp);
7542 *out_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), two, tmp);
7543 }
7544
7545 void prepare_cube_coords(isel_context *ctx, std::vector<Temp>& coords, Temp* ddx, Temp* ddy, bool is_deriv, bool is_array)
7546 {
7547 Builder bld(ctx->program, ctx->block);
7548 Temp ma, tc, sc, id;
7549
7550 if (is_array) {
7551 coords[3] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[3]);
7552
7553 // see comment in ac_prepare_cube_coords()
7554 if (ctx->options->chip_class <= GFX8)
7555 coords[3] = bld.vop2(aco_opcode::v_max_f32, bld.def(v1), Operand(0u), coords[3]);
7556 }
7557
7558 ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), coords[0], coords[1], coords[2]);
7559
7560 aco_ptr<VOP3A_instruction> vop3a{create_instruction<VOP3A_instruction>(aco_opcode::v_rcp_f32, asVOP3(Format::VOP1), 1, 1)};
7561 vop3a->operands[0] = Operand(ma);
7562 vop3a->abs[0] = true;
7563 Temp invma = bld.tmp(v1);
7564 vop3a->definitions[0] = Definition(invma);
7565 ctx->block->instructions.emplace_back(std::move(vop3a));
7566
7567 sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
7568 if (!is_deriv)
7569 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, invma, Operand(0x3fc00000u/*1.5*/));
7570
7571 tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
7572 if (!is_deriv)
7573 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, invma, Operand(0x3fc00000u/*1.5*/));
7574
7575 id = bld.vop3(aco_opcode::v_cubeid_f32, bld.def(v1), coords[0], coords[1], coords[2]);
7576
7577 if (is_deriv) {
7578 sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), sc, invma);
7579 tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tc, invma);
7580
7581 for (unsigned i = 0; i < 2; i++) {
7582 // see comment in ac_prepare_cube_coords()
7583 Temp deriv_ma;
7584 Temp deriv_sc, deriv_tc;
7585 build_cube_select(ctx, ma, id, i ? *ddy : *ddx,
7586 &deriv_ma, &deriv_sc, &deriv_tc);
7587
7588 deriv_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, invma);
7589
7590 Temp x = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
7591 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_sc, invma),
7592 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, sc));
7593 Temp y = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
7594 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_tc, invma),
7595 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, tc));
7596 *(i ? ddy : ddx) = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), x, y);
7597 }
7598
7599 sc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), sc);
7600 tc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), tc);
7601 }
7602
7603 if (is_array)
7604 id = bld.vop2(aco_opcode::v_madmk_f32, bld.def(v1), coords[3], id, Operand(0x41000000u/*8.0*/));
7605 coords.resize(3);
7606 coords[0] = sc;
7607 coords[1] = tc;
7608 coords[2] = id;
7609 }
7610
7611 void get_const_vec(nir_ssa_def *vec, nir_const_value *cv[4])
7612 {
7613 if (vec->parent_instr->type != nir_instr_type_alu)
7614 return;
7615 nir_alu_instr *vec_instr = nir_instr_as_alu(vec->parent_instr);
7616 if (vec_instr->op != nir_op_vec(vec->num_components))
7617 return;
7618
7619 for (unsigned i = 0; i < vec->num_components; i++) {
7620 cv[i] = vec_instr->src[i].swizzle[0] == 0 ?
7621 nir_src_as_const_value(vec_instr->src[i].src) : NULL;
7622 }
7623 }
7624
7625 void visit_tex(isel_context *ctx, nir_tex_instr *instr)
7626 {
7627 Builder bld(ctx->program, ctx->block);
7628 bool has_bias = false, has_lod = false, level_zero = false, has_compare = false,
7629 has_offset = false, has_ddx = false, has_ddy = false, has_derivs = false, has_sample_index = false;
7630 Temp resource, sampler, fmask_ptr, bias = Temp(), compare = Temp(), sample_index = Temp(),
7631 lod = Temp(), offset = Temp(), ddx = Temp(), ddy = Temp();
7632 std::vector<Temp> coords;
7633 std::vector<Temp> derivs;
7634 nir_const_value *sample_index_cv = NULL;
7635 nir_const_value *const_offset[4] = {NULL, NULL, NULL, NULL};
7636 enum glsl_base_type stype;
7637 tex_fetch_ptrs(ctx, instr, &resource, &sampler, &fmask_ptr, &stype);
7638
7639 bool tg4_integer_workarounds = ctx->options->chip_class <= GFX8 && instr->op == nir_texop_tg4 &&
7640 (stype == GLSL_TYPE_UINT || stype == GLSL_TYPE_INT);
7641 bool tg4_integer_cube_workaround = tg4_integer_workarounds &&
7642 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE;
7643
7644 for (unsigned i = 0; i < instr->num_srcs; i++) {
7645 switch (instr->src[i].src_type) {
7646 case nir_tex_src_coord: {
7647 Temp coord = get_ssa_temp(ctx, instr->src[i].src.ssa);
7648 for (unsigned i = 0; i < coord.size(); i++)
7649 coords.emplace_back(emit_extract_vector(ctx, coord, i, v1));
7650 break;
7651 }
7652 case nir_tex_src_bias:
7653 if (instr->op == nir_texop_txb) {
7654 bias = get_ssa_temp(ctx, instr->src[i].src.ssa);
7655 has_bias = true;
7656 }
7657 break;
7658 case nir_tex_src_lod: {
7659 nir_const_value *val = nir_src_as_const_value(instr->src[i].src);
7660
7661 if (val && val->f32 <= 0.0) {
7662 level_zero = true;
7663 } else {
7664 lod = get_ssa_temp(ctx, instr->src[i].src.ssa);
7665 has_lod = true;
7666 }
7667 break;
7668 }
7669 case nir_tex_src_comparator:
7670 if (instr->is_shadow) {
7671 compare = get_ssa_temp(ctx, instr->src[i].src.ssa);
7672 has_compare = true;
7673 }
7674 break;
7675 case nir_tex_src_offset:
7676 offset = get_ssa_temp(ctx, instr->src[i].src.ssa);
7677 get_const_vec(instr->src[i].src.ssa, const_offset);
7678 has_offset = true;
7679 break;
7680 case nir_tex_src_ddx:
7681 ddx = get_ssa_temp(ctx, instr->src[i].src.ssa);
7682 has_ddx = true;
7683 break;
7684 case nir_tex_src_ddy:
7685 ddy = get_ssa_temp(ctx, instr->src[i].src.ssa);
7686 has_ddy = true;
7687 break;
7688 case nir_tex_src_ms_index:
7689 sample_index = get_ssa_temp(ctx, instr->src[i].src.ssa);
7690 sample_index_cv = nir_src_as_const_value(instr->src[i].src);
7691 has_sample_index = true;
7692 break;
7693 case nir_tex_src_texture_offset:
7694 case nir_tex_src_sampler_offset:
7695 default:
7696 break;
7697 }
7698 }
7699
7700 if (instr->op == nir_texop_txs && instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
7701 return get_buffer_size(ctx, resource, get_ssa_temp(ctx, &instr->dest.ssa), true);
7702
7703 if (instr->op == nir_texop_texture_samples) {
7704 Temp dword3 = emit_extract_vector(ctx, resource, 3, s1);
7705
7706 Temp samples_log2 = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(16u | 4u<<16));
7707 Temp samples = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), Operand(1u), samples_log2);
7708 Temp type = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(28u | 4u<<16 /* offset=28, width=4 */));
7709 Temp is_msaa = bld.sopc(aco_opcode::s_cmp_ge_u32, bld.def(s1, scc), type, Operand(14u));
7710
7711 bld.sop2(aco_opcode::s_cselect_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7712 samples, Operand(1u), bld.scc(is_msaa));
7713 return;
7714 }
7715
7716 if (has_offset && instr->op != nir_texop_txf && instr->op != nir_texop_txf_ms) {
7717 aco_ptr<Instruction> tmp_instr;
7718 Temp acc, pack = Temp();
7719
7720 uint32_t pack_const = 0;
7721 for (unsigned i = 0; i < offset.size(); i++) {
7722 if (!const_offset[i])
7723 continue;
7724 pack_const |= (const_offset[i]->u32 & 0x3Fu) << (8u * i);
7725 }
7726
7727 if (offset.type() == RegType::sgpr) {
7728 for (unsigned i = 0; i < offset.size(); i++) {
7729 if (const_offset[i])
7730 continue;
7731
7732 acc = emit_extract_vector(ctx, offset, i, s1);
7733 acc = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(0x3Fu));
7734
7735 if (i) {
7736 acc = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(8u * i));
7737 }
7738
7739 if (pack == Temp()) {
7740 pack = acc;
7741 } else {
7742 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), pack, acc);
7743 }
7744 }
7745
7746 if (pack_const && pack != Temp())
7747 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(pack_const), pack);
7748 } else {
7749 for (unsigned i = 0; i < offset.size(); i++) {
7750 if (const_offset[i])
7751 continue;
7752
7753 acc = emit_extract_vector(ctx, offset, i, v1);
7754 acc = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x3Fu), acc);
7755
7756 if (i) {
7757 acc = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(8u * i), acc);
7758 }
7759
7760 if (pack == Temp()) {
7761 pack = acc;
7762 } else {
7763 pack = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), pack, acc);
7764 }
7765 }
7766
7767 if (pack_const && pack != Temp())
7768 pack = bld.sop2(aco_opcode::v_or_b32, bld.def(v1), Operand(pack_const), pack);
7769 }
7770 if (pack_const && pack == Temp())
7771 offset = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(pack_const));
7772 else if (pack == Temp())
7773 has_offset = false;
7774 else
7775 offset = pack;
7776 }
7777
7778 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE && instr->coord_components)
7779 prepare_cube_coords(ctx, coords, &ddx, &ddy, instr->op == nir_texop_txd, instr->is_array && instr->op != nir_texop_lod);
7780
7781 /* pack derivatives */
7782 if (has_ddx || has_ddy) {
7783 if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D && ctx->options->chip_class == GFX9) {
7784 assert(has_ddx && has_ddy && ddx.size() == 1 && ddy.size() == 1);
7785 Temp zero = bld.copy(bld.def(v1), Operand(0u));
7786 derivs = {ddy, zero, ddy, zero};
7787 } else {
7788 for (unsigned i = 0; has_ddx && i < ddx.size(); i++)
7789 derivs.emplace_back(emit_extract_vector(ctx, ddx, i, v1));
7790 for (unsigned i = 0; has_ddy && i < ddy.size(); i++)
7791 derivs.emplace_back(emit_extract_vector(ctx, ddy, i, v1));
7792 }
7793 has_derivs = true;
7794 }
7795
7796 if (instr->coord_components > 1 &&
7797 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
7798 instr->is_array &&
7799 instr->op != nir_texop_txf)
7800 coords[1] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[1]);
7801
7802 if (instr->coord_components > 2 &&
7803 (instr->sampler_dim == GLSL_SAMPLER_DIM_2D ||
7804 instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
7805 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS ||
7806 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
7807 instr->is_array &&
7808 instr->op != nir_texop_txf &&
7809 instr->op != nir_texop_txf_ms &&
7810 instr->op != nir_texop_fragment_fetch &&
7811 instr->op != nir_texop_fragment_mask_fetch)
7812 coords[2] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[2]);
7813
7814 if (ctx->options->chip_class == GFX9 &&
7815 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
7816 instr->op != nir_texop_lod && instr->coord_components) {
7817 assert(coords.size() > 0 && coords.size() < 3);
7818
7819 coords.insert(std::next(coords.begin()), bld.copy(bld.def(v1), instr->op == nir_texop_txf ?
7820 Operand((uint32_t) 0) :
7821 Operand((uint32_t) 0x3f000000)));
7822 }
7823
7824 bool da = should_declare_array(ctx, instr->sampler_dim, instr->is_array);
7825
7826 if (instr->op == nir_texop_samples_identical)
7827 resource = fmask_ptr;
7828
7829 else if ((instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
7830 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
7831 instr->op != nir_texop_txs &&
7832 instr->op != nir_texop_fragment_fetch &&
7833 instr->op != nir_texop_fragment_mask_fetch) {
7834 assert(has_sample_index);
7835 Operand op(sample_index);
7836 if (sample_index_cv)
7837 op = Operand(sample_index_cv->u32);
7838 sample_index = adjust_sample_index_using_fmask(ctx, da, coords, op, fmask_ptr);
7839 }
7840
7841 if (has_offset && (instr->op == nir_texop_txf || instr->op == nir_texop_txf_ms)) {
7842 for (unsigned i = 0; i < std::min(offset.size(), instr->coord_components); i++) {
7843 Temp off = emit_extract_vector(ctx, offset, i, v1);
7844 coords[i] = bld.vadd32(bld.def(v1), coords[i], off);
7845 }
7846 has_offset = false;
7847 }
7848
7849 /* Build tex instruction */
7850 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
7851 unsigned dim = ctx->options->chip_class >= GFX10 && instr->sampler_dim != GLSL_SAMPLER_DIM_BUF
7852 ? ac_get_sampler_dim(ctx->options->chip_class, instr->sampler_dim, instr->is_array)
7853 : 0;
7854 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7855 Temp tmp_dst = dst;
7856
7857 /* gather4 selects the component by dmask and always returns vec4 */
7858 if (instr->op == nir_texop_tg4) {
7859 assert(instr->dest.ssa.num_components == 4);
7860 if (instr->is_shadow)
7861 dmask = 1;
7862 else
7863 dmask = 1 << instr->component;
7864 if (tg4_integer_cube_workaround || dst.type() == RegType::sgpr)
7865 tmp_dst = bld.tmp(v4);
7866 } else if (instr->op == nir_texop_samples_identical) {
7867 tmp_dst = bld.tmp(v1);
7868 } else if (util_bitcount(dmask) != instr->dest.ssa.num_components || dst.type() == RegType::sgpr) {
7869 tmp_dst = bld.tmp(RegClass(RegType::vgpr, util_bitcount(dmask)));
7870 }
7871
7872 aco_ptr<MIMG_instruction> tex;
7873 if (instr->op == nir_texop_txs || instr->op == nir_texop_query_levels) {
7874 if (!has_lod)
7875 lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
7876
7877 bool div_by_6 = instr->op == nir_texop_txs &&
7878 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
7879 instr->is_array &&
7880 (dmask & (1 << 2));
7881 if (tmp_dst.id() == dst.id() && div_by_6)
7882 tmp_dst = bld.tmp(tmp_dst.regClass());
7883
7884 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
7885 tex->operands[0] = Operand(resource);
7886 tex->operands[1] = Operand(s4); /* no sampler */
7887 tex->operands[2] = Operand(as_vgpr(ctx,lod));
7888 if (ctx->options->chip_class == GFX9 &&
7889 instr->op == nir_texop_txs &&
7890 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
7891 instr->is_array) {
7892 tex->dmask = (dmask & 0x1) | ((dmask & 0x2) << 1);
7893 } else if (instr->op == nir_texop_query_levels) {
7894 tex->dmask = 1 << 3;
7895 } else {
7896 tex->dmask = dmask;
7897 }
7898 tex->da = da;
7899 tex->definitions[0] = Definition(tmp_dst);
7900 tex->dim = dim;
7901 tex->can_reorder = true;
7902 ctx->block->instructions.emplace_back(std::move(tex));
7903
7904 if (div_by_6) {
7905 /* divide 3rd value by 6 by multiplying with magic number */
7906 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
7907 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
7908 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp_dst, 2, v1), c);
7909 assert(instr->dest.ssa.num_components == 3);
7910 Temp tmp = dst.type() == RegType::vgpr ? dst : bld.tmp(v3);
7911 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
7912 emit_extract_vector(ctx, tmp_dst, 0, v1),
7913 emit_extract_vector(ctx, tmp_dst, 1, v1),
7914 by_6);
7915
7916 }
7917
7918 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
7919 return;
7920 }
7921
7922 Temp tg4_compare_cube_wa64 = Temp();
7923
7924 if (tg4_integer_workarounds) {
7925 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
7926 tex->operands[0] = Operand(resource);
7927 tex->operands[1] = Operand(s4); /* no sampler */
7928 tex->operands[2] = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
7929 tex->dim = dim;
7930 tex->dmask = 0x3;
7931 tex->da = da;
7932 Temp size = bld.tmp(v2);
7933 tex->definitions[0] = Definition(size);
7934 tex->can_reorder = true;
7935 ctx->block->instructions.emplace_back(std::move(tex));
7936 emit_split_vector(ctx, size, size.size());
7937
7938 Temp half_texel[2];
7939 for (unsigned i = 0; i < 2; i++) {
7940 half_texel[i] = emit_extract_vector(ctx, size, i, v1);
7941 half_texel[i] = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), half_texel[i]);
7942 half_texel[i] = bld.vop1(aco_opcode::v_rcp_iflag_f32, bld.def(v1), half_texel[i]);
7943 half_texel[i] = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0xbf000000/*-0.5*/), half_texel[i]);
7944 }
7945
7946 Temp new_coords[2] = {
7947 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[0], half_texel[0]),
7948 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[1], half_texel[1])
7949 };
7950
7951 if (tg4_integer_cube_workaround) {
7952 // see comment in ac_nir_to_llvm.c's lower_gather4_integer()
7953 Temp desc[resource.size()];
7954 aco_ptr<Instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector,
7955 Format::PSEUDO, 1, resource.size())};
7956 split->operands[0] = Operand(resource);
7957 for (unsigned i = 0; i < resource.size(); i++) {
7958 desc[i] = bld.tmp(s1);
7959 split->definitions[i] = Definition(desc[i]);
7960 }
7961 ctx->block->instructions.emplace_back(std::move(split));
7962
7963 Temp dfmt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), desc[1], Operand(20u | (6u << 16)));
7964 Temp compare_cube_wa = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), dfmt,
7965 Operand((uint32_t)V_008F14_IMG_DATA_FORMAT_8_8_8_8));
7966
7967 Temp nfmt;
7968 if (stype == GLSL_TYPE_UINT) {
7969 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
7970 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_USCALED),
7971 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_UINT),
7972 bld.scc(compare_cube_wa));
7973 } else {
7974 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
7975 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SSCALED),
7976 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SINT),
7977 bld.scc(compare_cube_wa));
7978 }
7979 tg4_compare_cube_wa64 = bld.tmp(bld.lm);
7980 bool_to_vector_condition(ctx, compare_cube_wa, tg4_compare_cube_wa64);
7981
7982 nfmt = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), nfmt, Operand(26u));
7983
7984 desc[1] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), desc[1],
7985 Operand((uint32_t)C_008F14_NUM_FORMAT));
7986 desc[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), desc[1], nfmt);
7987
7988 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
7989 Format::PSEUDO, resource.size(), 1)};
7990 for (unsigned i = 0; i < resource.size(); i++)
7991 vec->operands[i] = Operand(desc[i]);
7992 resource = bld.tmp(resource.regClass());
7993 vec->definitions[0] = Definition(resource);
7994 ctx->block->instructions.emplace_back(std::move(vec));
7995
7996 new_coords[0] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
7997 new_coords[0], coords[0], tg4_compare_cube_wa64);
7998 new_coords[1] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
7999 new_coords[1], coords[1], tg4_compare_cube_wa64);
8000 }
8001 coords[0] = new_coords[0];
8002 coords[1] = new_coords[1];
8003 }
8004
8005 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
8006 //FIXME: if (ctx->abi->gfx9_stride_size_workaround) return ac_build_buffer_load_format_gfx9_safe()
8007
8008 assert(coords.size() == 1);
8009 unsigned last_bit = util_last_bit(nir_ssa_def_components_read(&instr->dest.ssa));
8010 aco_opcode op;
8011 switch (last_bit) {
8012 case 1:
8013 op = aco_opcode::buffer_load_format_x; break;
8014 case 2:
8015 op = aco_opcode::buffer_load_format_xy; break;
8016 case 3:
8017 op = aco_opcode::buffer_load_format_xyz; break;
8018 case 4:
8019 op = aco_opcode::buffer_load_format_xyzw; break;
8020 default:
8021 unreachable("Tex instruction loads more than 4 components.");
8022 }
8023
8024 /* if the instruction return value matches exactly the nir dest ssa, we can use it directly */
8025 if (last_bit == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
8026 tmp_dst = dst;
8027 else
8028 tmp_dst = bld.tmp(RegType::vgpr, last_bit);
8029
8030 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
8031 mubuf->operands[0] = Operand(resource);
8032 mubuf->operands[1] = Operand(coords[0]);
8033 mubuf->operands[2] = Operand((uint32_t) 0);
8034 mubuf->definitions[0] = Definition(tmp_dst);
8035 mubuf->idxen = true;
8036 mubuf->can_reorder = true;
8037 ctx->block->instructions.emplace_back(std::move(mubuf));
8038
8039 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, (1 << last_bit) - 1);
8040 return;
8041 }
8042
8043 /* gather MIMG address components */
8044 std::vector<Temp> args;
8045 if (has_offset)
8046 args.emplace_back(offset);
8047 if (has_bias)
8048 args.emplace_back(bias);
8049 if (has_compare)
8050 args.emplace_back(compare);
8051 if (has_derivs)
8052 args.insert(args.end(), derivs.begin(), derivs.end());
8053
8054 args.insert(args.end(), coords.begin(), coords.end());
8055 if (has_sample_index)
8056 args.emplace_back(sample_index);
8057 if (has_lod)
8058 args.emplace_back(lod);
8059
8060 Temp arg = bld.tmp(RegClass(RegType::vgpr, args.size()));
8061 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, args.size(), 1)};
8062 vec->definitions[0] = Definition(arg);
8063 for (unsigned i = 0; i < args.size(); i++)
8064 vec->operands[i] = Operand(args[i]);
8065 ctx->block->instructions.emplace_back(std::move(vec));
8066
8067
8068 if (instr->op == nir_texop_txf ||
8069 instr->op == nir_texop_txf_ms ||
8070 instr->op == nir_texop_samples_identical ||
8071 instr->op == nir_texop_fragment_fetch ||
8072 instr->op == nir_texop_fragment_mask_fetch) {
8073 aco_opcode op = level_zero || instr->sampler_dim == GLSL_SAMPLER_DIM_MS || instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS ? aco_opcode::image_load : aco_opcode::image_load_mip;
8074 tex.reset(create_instruction<MIMG_instruction>(op, Format::MIMG, 3, 1));
8075 tex->operands[0] = Operand(resource);
8076 tex->operands[1] = Operand(s4); /* no sampler */
8077 tex->operands[2] = Operand(arg);
8078 tex->dim = dim;
8079 tex->dmask = dmask;
8080 tex->unrm = true;
8081 tex->da = da;
8082 tex->definitions[0] = Definition(tmp_dst);
8083 tex->can_reorder = true;
8084 ctx->block->instructions.emplace_back(std::move(tex));
8085
8086 if (instr->op == nir_texop_samples_identical) {
8087 assert(dmask == 1 && dst.regClass() == v1);
8088 assert(dst.id() != tmp_dst.id());
8089
8090 Temp tmp = bld.tmp(bld.lm);
8091 bld.vopc(aco_opcode::v_cmp_eq_u32, Definition(tmp), Operand(0u), tmp_dst).def(0).setHint(vcc);
8092 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand((uint32_t)-1), tmp);
8093
8094 } else {
8095 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
8096 }
8097 return;
8098 }
8099
8100 // TODO: would be better to do this by adding offsets, but needs the opcodes ordered.
8101 aco_opcode opcode = aco_opcode::image_sample;
8102 if (has_offset) { /* image_sample_*_o */
8103 if (has_compare) {
8104 opcode = aco_opcode::image_sample_c_o;
8105 if (has_derivs)
8106 opcode = aco_opcode::image_sample_c_d_o;
8107 if (has_bias)
8108 opcode = aco_opcode::image_sample_c_b_o;
8109 if (level_zero)
8110 opcode = aco_opcode::image_sample_c_lz_o;
8111 if (has_lod)
8112 opcode = aco_opcode::image_sample_c_l_o;
8113 } else {
8114 opcode = aco_opcode::image_sample_o;
8115 if (has_derivs)
8116 opcode = aco_opcode::image_sample_d_o;
8117 if (has_bias)
8118 opcode = aco_opcode::image_sample_b_o;
8119 if (level_zero)
8120 opcode = aco_opcode::image_sample_lz_o;
8121 if (has_lod)
8122 opcode = aco_opcode::image_sample_l_o;
8123 }
8124 } else { /* no offset */
8125 if (has_compare) {
8126 opcode = aco_opcode::image_sample_c;
8127 if (has_derivs)
8128 opcode = aco_opcode::image_sample_c_d;
8129 if (has_bias)
8130 opcode = aco_opcode::image_sample_c_b;
8131 if (level_zero)
8132 opcode = aco_opcode::image_sample_c_lz;
8133 if (has_lod)
8134 opcode = aco_opcode::image_sample_c_l;
8135 } else {
8136 opcode = aco_opcode::image_sample;
8137 if (has_derivs)
8138 opcode = aco_opcode::image_sample_d;
8139 if (has_bias)
8140 opcode = aco_opcode::image_sample_b;
8141 if (level_zero)
8142 opcode = aco_opcode::image_sample_lz;
8143 if (has_lod)
8144 opcode = aco_opcode::image_sample_l;
8145 }
8146 }
8147
8148 if (instr->op == nir_texop_tg4) {
8149 if (has_offset) {
8150 opcode = aco_opcode::image_gather4_lz_o;
8151 if (has_compare)
8152 opcode = aco_opcode::image_gather4_c_lz_o;
8153 } else {
8154 opcode = aco_opcode::image_gather4_lz;
8155 if (has_compare)
8156 opcode = aco_opcode::image_gather4_c_lz;
8157 }
8158 } else if (instr->op == nir_texop_lod) {
8159 opcode = aco_opcode::image_get_lod;
8160 }
8161
8162 /* we don't need the bias, sample index, compare value or offset to be
8163 * computed in WQM but if the p_create_vector copies the coordinates, then it
8164 * needs to be in WQM */
8165 if (ctx->stage == fragment_fs &&
8166 !has_derivs && !has_lod && !level_zero &&
8167 instr->sampler_dim != GLSL_SAMPLER_DIM_MS &&
8168 instr->sampler_dim != GLSL_SAMPLER_DIM_SUBPASS_MS)
8169 arg = emit_wqm(ctx, arg, bld.tmp(arg.regClass()), true);
8170
8171 tex.reset(create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1));
8172 tex->operands[0] = Operand(resource);
8173 tex->operands[1] = Operand(sampler);
8174 tex->operands[2] = Operand(arg);
8175 tex->dim = dim;
8176 tex->dmask = dmask;
8177 tex->da = da;
8178 tex->definitions[0] = Definition(tmp_dst);
8179 tex->can_reorder = true;
8180 ctx->block->instructions.emplace_back(std::move(tex));
8181
8182 if (tg4_integer_cube_workaround) {
8183 assert(tmp_dst.id() != dst.id());
8184 assert(tmp_dst.size() == dst.size() && dst.size() == 4);
8185
8186 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
8187 Temp val[4];
8188 for (unsigned i = 0; i < dst.size(); i++) {
8189 val[i] = emit_extract_vector(ctx, tmp_dst, i, v1);
8190 Temp cvt_val;
8191 if (stype == GLSL_TYPE_UINT)
8192 cvt_val = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), val[i]);
8193 else
8194 cvt_val = bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), val[i]);
8195 val[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), val[i], cvt_val, tg4_compare_cube_wa64);
8196 }
8197 Temp tmp = dst.regClass() == v4 ? dst : bld.tmp(v4);
8198 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
8199 val[0], val[1], val[2], val[3]);
8200 }
8201 unsigned mask = instr->op == nir_texop_tg4 ? 0xF : dmask;
8202 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, mask);
8203
8204 }
8205
8206
8207 Operand get_phi_operand(isel_context *ctx, nir_ssa_def *ssa)
8208 {
8209 Temp tmp = get_ssa_temp(ctx, ssa);
8210 if (ssa->parent_instr->type == nir_instr_type_ssa_undef)
8211 return Operand(tmp.regClass());
8212 else
8213 return Operand(tmp);
8214 }
8215
8216 void visit_phi(isel_context *ctx, nir_phi_instr *instr)
8217 {
8218 aco_ptr<Pseudo_instruction> phi;
8219 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8220 assert(instr->dest.ssa.bit_size != 1 || dst.regClass() == ctx->program->lane_mask);
8221
8222 bool logical = !dst.is_linear() || ctx->divergent_vals[instr->dest.ssa.index];
8223 logical |= ctx->block->kind & block_kind_merge;
8224 aco_opcode opcode = logical ? aco_opcode::p_phi : aco_opcode::p_linear_phi;
8225
8226 /* we want a sorted list of sources, since the predecessor list is also sorted */
8227 std::map<unsigned, nir_ssa_def*> phi_src;
8228 nir_foreach_phi_src(src, instr)
8229 phi_src[src->pred->index] = src->src.ssa;
8230
8231 std::vector<unsigned>& preds = logical ? ctx->block->logical_preds : ctx->block->linear_preds;
8232 unsigned num_operands = 0;
8233 Operand operands[std::max(exec_list_length(&instr->srcs), (unsigned)preds.size())];
8234 unsigned num_defined = 0;
8235 unsigned cur_pred_idx = 0;
8236 for (std::pair<unsigned, nir_ssa_def *> src : phi_src) {
8237 if (cur_pred_idx < preds.size()) {
8238 /* handle missing preds (IF merges with discard/break) and extra preds (loop exit with discard) */
8239 unsigned block = ctx->cf_info.nir_to_aco[src.first];
8240 unsigned skipped = 0;
8241 while (cur_pred_idx + skipped < preds.size() && preds[cur_pred_idx + skipped] != block)
8242 skipped++;
8243 if (cur_pred_idx + skipped < preds.size()) {
8244 for (unsigned i = 0; i < skipped; i++)
8245 operands[num_operands++] = Operand(dst.regClass());
8246 cur_pred_idx += skipped;
8247 } else {
8248 continue;
8249 }
8250 }
8251 cur_pred_idx++;
8252 Operand op = get_phi_operand(ctx, src.second);
8253 operands[num_operands++] = op;
8254 num_defined += !op.isUndefined();
8255 }
8256 /* handle block_kind_continue_or_break at loop exit blocks */
8257 while (cur_pred_idx++ < preds.size())
8258 operands[num_operands++] = Operand(dst.regClass());
8259
8260 if (num_defined == 0) {
8261 Builder bld(ctx->program, ctx->block);
8262 if (dst.regClass() == s1) {
8263 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), Operand(0u));
8264 } else if (dst.regClass() == v1) {
8265 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), Operand(0u));
8266 } else {
8267 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
8268 for (unsigned i = 0; i < dst.size(); i++)
8269 vec->operands[i] = Operand(0u);
8270 vec->definitions[0] = Definition(dst);
8271 ctx->block->instructions.emplace_back(std::move(vec));
8272 }
8273 return;
8274 }
8275
8276 /* we can use a linear phi in some cases if one src is undef */
8277 if (dst.is_linear() && ctx->block->kind & block_kind_merge && num_defined == 1) {
8278 phi.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, num_operands, 1));
8279
8280 Block *linear_else = &ctx->program->blocks[ctx->block->linear_preds[1]];
8281 Block *invert = &ctx->program->blocks[linear_else->linear_preds[0]];
8282 assert(invert->kind & block_kind_invert);
8283
8284 unsigned then_block = invert->linear_preds[0];
8285
8286 Block* insert_block = NULL;
8287 for (unsigned i = 0; i < num_operands; i++) {
8288 Operand op = operands[i];
8289 if (op.isUndefined())
8290 continue;
8291 insert_block = ctx->block->logical_preds[i] == then_block ? invert : ctx->block;
8292 phi->operands[0] = op;
8293 break;
8294 }
8295 assert(insert_block); /* should be handled by the "num_defined == 0" case above */
8296 phi->operands[1] = Operand(dst.regClass());
8297 phi->definitions[0] = Definition(dst);
8298 insert_block->instructions.emplace(insert_block->instructions.begin(), std::move(phi));
8299 return;
8300 }
8301
8302 /* try to scalarize vector phis */
8303 if (instr->dest.ssa.bit_size != 1 && dst.size() > 1) {
8304 // TODO: scalarize linear phis on divergent ifs
8305 bool can_scalarize = (opcode == aco_opcode::p_phi || !(ctx->block->kind & block_kind_merge));
8306 std::array<Temp, NIR_MAX_VEC_COMPONENTS> new_vec;
8307 for (unsigned i = 0; can_scalarize && (i < num_operands); i++) {
8308 Operand src = operands[i];
8309 if (src.isTemp() && ctx->allocated_vec.find(src.tempId()) == ctx->allocated_vec.end())
8310 can_scalarize = false;
8311 }
8312 if (can_scalarize) {
8313 unsigned num_components = instr->dest.ssa.num_components;
8314 assert(dst.size() % num_components == 0);
8315 RegClass rc = RegClass(dst.type(), dst.size() / num_components);
8316
8317 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
8318 for (unsigned k = 0; k < num_components; k++) {
8319 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
8320 for (unsigned i = 0; i < num_operands; i++) {
8321 Operand src = operands[i];
8322 phi->operands[i] = src.isTemp() ? Operand(ctx->allocated_vec[src.tempId()][k]) : Operand(rc);
8323 }
8324 Temp phi_dst = {ctx->program->allocateId(), rc};
8325 phi->definitions[0] = Definition(phi_dst);
8326 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
8327 new_vec[k] = phi_dst;
8328 vec->operands[k] = Operand(phi_dst);
8329 }
8330 vec->definitions[0] = Definition(dst);
8331 ctx->block->instructions.emplace_back(std::move(vec));
8332 ctx->allocated_vec.emplace(dst.id(), new_vec);
8333 return;
8334 }
8335 }
8336
8337 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
8338 for (unsigned i = 0; i < num_operands; i++)
8339 phi->operands[i] = operands[i];
8340 phi->definitions[0] = Definition(dst);
8341 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
8342 }
8343
8344
8345 void visit_undef(isel_context *ctx, nir_ssa_undef_instr *instr)
8346 {
8347 Temp dst = get_ssa_temp(ctx, &instr->def);
8348
8349 assert(dst.type() == RegType::sgpr);
8350
8351 if (dst.size() == 1) {
8352 Builder(ctx->program, ctx->block).copy(Definition(dst), Operand(0u));
8353 } else {
8354 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
8355 for (unsigned i = 0; i < dst.size(); i++)
8356 vec->operands[i] = Operand(0u);
8357 vec->definitions[0] = Definition(dst);
8358 ctx->block->instructions.emplace_back(std::move(vec));
8359 }
8360 }
8361
8362 void visit_jump(isel_context *ctx, nir_jump_instr *instr)
8363 {
8364 Builder bld(ctx->program, ctx->block);
8365 Block *logical_target;
8366 append_logical_end(ctx->block);
8367 unsigned idx = ctx->block->index;
8368
8369 switch (instr->type) {
8370 case nir_jump_break:
8371 logical_target = ctx->cf_info.parent_loop.exit;
8372 add_logical_edge(idx, logical_target);
8373 ctx->block->kind |= block_kind_break;
8374
8375 if (!ctx->cf_info.parent_if.is_divergent &&
8376 !ctx->cf_info.parent_loop.has_divergent_continue) {
8377 /* uniform break - directly jump out of the loop */
8378 ctx->block->kind |= block_kind_uniform;
8379 ctx->cf_info.has_branch = true;
8380 bld.branch(aco_opcode::p_branch);
8381 add_linear_edge(idx, logical_target);
8382 return;
8383 }
8384 ctx->cf_info.parent_loop.has_divergent_branch = true;
8385 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
8386 break;
8387 case nir_jump_continue:
8388 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
8389 add_logical_edge(idx, logical_target);
8390 ctx->block->kind |= block_kind_continue;
8391
8392 if (ctx->cf_info.parent_if.is_divergent) {
8393 /* for potential uniform breaks after this continue,
8394 we must ensure that they are handled correctly */
8395 ctx->cf_info.parent_loop.has_divergent_continue = true;
8396 ctx->cf_info.parent_loop.has_divergent_branch = true;
8397 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
8398 } else {
8399 /* uniform continue - directly jump to the loop header */
8400 ctx->block->kind |= block_kind_uniform;
8401 ctx->cf_info.has_branch = true;
8402 bld.branch(aco_opcode::p_branch);
8403 add_linear_edge(idx, logical_target);
8404 return;
8405 }
8406 break;
8407 default:
8408 fprintf(stderr, "Unknown NIR jump instr: ");
8409 nir_print_instr(&instr->instr, stderr);
8410 fprintf(stderr, "\n");
8411 abort();
8412 }
8413
8414 if (ctx->cf_info.parent_if.is_divergent && !ctx->cf_info.exec_potentially_empty_break) {
8415 ctx->cf_info.exec_potentially_empty_break = true;
8416 ctx->cf_info.exec_potentially_empty_break_depth = ctx->cf_info.loop_nest_depth;
8417 }
8418
8419 /* remove critical edges from linear CFG */
8420 bld.branch(aco_opcode::p_branch);
8421 Block* break_block = ctx->program->create_and_insert_block();
8422 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8423 break_block->kind |= block_kind_uniform;
8424 add_linear_edge(idx, break_block);
8425 /* the loop_header pointer might be invalidated by this point */
8426 if (instr->type == nir_jump_continue)
8427 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
8428 add_linear_edge(break_block->index, logical_target);
8429 bld.reset(break_block);
8430 bld.branch(aco_opcode::p_branch);
8431
8432 Block* continue_block = ctx->program->create_and_insert_block();
8433 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8434 add_linear_edge(idx, continue_block);
8435 append_logical_start(continue_block);
8436 ctx->block = continue_block;
8437 return;
8438 }
8439
8440 void visit_block(isel_context *ctx, nir_block *block)
8441 {
8442 nir_foreach_instr(instr, block) {
8443 switch (instr->type) {
8444 case nir_instr_type_alu:
8445 visit_alu_instr(ctx, nir_instr_as_alu(instr));
8446 break;
8447 case nir_instr_type_load_const:
8448 visit_load_const(ctx, nir_instr_as_load_const(instr));
8449 break;
8450 case nir_instr_type_intrinsic:
8451 visit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
8452 break;
8453 case nir_instr_type_tex:
8454 visit_tex(ctx, nir_instr_as_tex(instr));
8455 break;
8456 case nir_instr_type_phi:
8457 visit_phi(ctx, nir_instr_as_phi(instr));
8458 break;
8459 case nir_instr_type_ssa_undef:
8460 visit_undef(ctx, nir_instr_as_ssa_undef(instr));
8461 break;
8462 case nir_instr_type_deref:
8463 break;
8464 case nir_instr_type_jump:
8465 visit_jump(ctx, nir_instr_as_jump(instr));
8466 break;
8467 default:
8468 fprintf(stderr, "Unknown NIR instr type: ");
8469 nir_print_instr(instr, stderr);
8470 fprintf(stderr, "\n");
8471 //abort();
8472 }
8473 }
8474
8475 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8476 ctx->cf_info.nir_to_aco[block->index] = ctx->block->index;
8477 }
8478
8479
8480
8481 static void visit_loop(isel_context *ctx, nir_loop *loop)
8482 {
8483 //TODO: we might want to wrap the loop around a branch if exec_potentially_empty=true
8484 append_logical_end(ctx->block);
8485 ctx->block->kind |= block_kind_loop_preheader | block_kind_uniform;
8486 Builder bld(ctx->program, ctx->block);
8487 bld.branch(aco_opcode::p_branch);
8488 unsigned loop_preheader_idx = ctx->block->index;
8489
8490 Block loop_exit = Block();
8491 loop_exit.loop_nest_depth = ctx->cf_info.loop_nest_depth;
8492 loop_exit.kind |= (block_kind_loop_exit | (ctx->block->kind & block_kind_top_level));
8493
8494 Block* loop_header = ctx->program->create_and_insert_block();
8495 loop_header->loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
8496 loop_header->kind |= block_kind_loop_header;
8497 add_edge(loop_preheader_idx, loop_header);
8498 ctx->block = loop_header;
8499
8500 /* emit loop body */
8501 unsigned loop_header_idx = loop_header->index;
8502 loop_info_RAII loop_raii(ctx, loop_header_idx, &loop_exit);
8503 append_logical_start(ctx->block);
8504 visit_cf_list(ctx, &loop->body);
8505
8506 //TODO: what if a loop ends with a unconditional or uniformly branched continue and this branch is never taken?
8507 if (!ctx->cf_info.has_branch) {
8508 append_logical_end(ctx->block);
8509 if (ctx->cf_info.exec_potentially_empty_discard || ctx->cf_info.exec_potentially_empty_break) {
8510 /* Discards can result in code running with an empty exec mask.
8511 * This would result in divergent breaks not ever being taken. As a
8512 * workaround, break the loop when the loop mask is empty instead of
8513 * always continuing. */
8514 ctx->block->kind |= (block_kind_continue_or_break | block_kind_uniform);
8515 unsigned block_idx = ctx->block->index;
8516
8517 /* create helper blocks to avoid critical edges */
8518 Block *break_block = ctx->program->create_and_insert_block();
8519 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8520 break_block->kind = block_kind_uniform;
8521 bld.reset(break_block);
8522 bld.branch(aco_opcode::p_branch);
8523 add_linear_edge(block_idx, break_block);
8524 add_linear_edge(break_block->index, &loop_exit);
8525
8526 Block *continue_block = ctx->program->create_and_insert_block();
8527 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8528 continue_block->kind = block_kind_uniform;
8529 bld.reset(continue_block);
8530 bld.branch(aco_opcode::p_branch);
8531 add_linear_edge(block_idx, continue_block);
8532 add_linear_edge(continue_block->index, &ctx->program->blocks[loop_header_idx]);
8533
8534 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8535 add_logical_edge(block_idx, &ctx->program->blocks[loop_header_idx]);
8536 ctx->block = &ctx->program->blocks[block_idx];
8537 } else {
8538 ctx->block->kind |= (block_kind_continue | block_kind_uniform);
8539 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8540 add_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
8541 else
8542 add_linear_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
8543 }
8544
8545 bld.reset(ctx->block);
8546 bld.branch(aco_opcode::p_branch);
8547 }
8548
8549 /* fixup phis in loop header from unreachable blocks */
8550 if (ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch) {
8551 bool linear = ctx->cf_info.has_branch;
8552 bool logical = ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch;
8553 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
8554 if ((logical && instr->opcode == aco_opcode::p_phi) ||
8555 (linear && instr->opcode == aco_opcode::p_linear_phi)) {
8556 /* the last operand should be the one that needs to be removed */
8557 instr->operands.pop_back();
8558 } else if (!is_phi(instr)) {
8559 break;
8560 }
8561 }
8562 }
8563
8564 ctx->cf_info.has_branch = false;
8565
8566 // TODO: if the loop has not a single exit, we must add one °°
8567 /* emit loop successor block */
8568 ctx->block = ctx->program->insert_block(std::move(loop_exit));
8569 append_logical_start(ctx->block);
8570
8571 #if 0
8572 // TODO: check if it is beneficial to not branch on continues
8573 /* trim linear phis in loop header */
8574 for (auto&& instr : loop_entry->instructions) {
8575 if (instr->opcode == aco_opcode::p_linear_phi) {
8576 aco_ptr<Pseudo_instruction> new_phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, loop_entry->linear_predecessors.size(), 1)};
8577 new_phi->definitions[0] = instr->definitions[0];
8578 for (unsigned i = 0; i < new_phi->operands.size(); i++)
8579 new_phi->operands[i] = instr->operands[i];
8580 /* check that the remaining operands are all the same */
8581 for (unsigned i = new_phi->operands.size(); i < instr->operands.size(); i++)
8582 assert(instr->operands[i].tempId() == instr->operands.back().tempId());
8583 instr.swap(new_phi);
8584 } else if (instr->opcode == aco_opcode::p_phi) {
8585 continue;
8586 } else {
8587 break;
8588 }
8589 }
8590 #endif
8591 }
8592
8593 static void begin_divergent_if_then(isel_context *ctx, if_context *ic, Temp cond)
8594 {
8595 ic->cond = cond;
8596
8597 append_logical_end(ctx->block);
8598 ctx->block->kind |= block_kind_branch;
8599
8600 /* branch to linear then block */
8601 assert(cond.regClass() == ctx->program->lane_mask);
8602 aco_ptr<Pseudo_branch_instruction> branch;
8603 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
8604 branch->operands[0] = Operand(cond);
8605 ctx->block->instructions.push_back(std::move(branch));
8606
8607 ic->BB_if_idx = ctx->block->index;
8608 ic->BB_invert = Block();
8609 ic->BB_invert.loop_nest_depth = ctx->cf_info.loop_nest_depth;
8610 /* Invert blocks are intentionally not marked as top level because they
8611 * are not part of the logical cfg. */
8612 ic->BB_invert.kind |= block_kind_invert;
8613 ic->BB_endif = Block();
8614 ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
8615 ic->BB_endif.kind |= (block_kind_merge | (ctx->block->kind & block_kind_top_level));
8616
8617 ic->exec_potentially_empty_discard_old = ctx->cf_info.exec_potentially_empty_discard;
8618 ic->exec_potentially_empty_break_old = ctx->cf_info.exec_potentially_empty_break;
8619 ic->exec_potentially_empty_break_depth_old = ctx->cf_info.exec_potentially_empty_break_depth;
8620 ic->divergent_old = ctx->cf_info.parent_if.is_divergent;
8621 ctx->cf_info.parent_if.is_divergent = true;
8622
8623 /* divergent branches use cbranch_execz */
8624 ctx->cf_info.exec_potentially_empty_discard = false;
8625 ctx->cf_info.exec_potentially_empty_break = false;
8626 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
8627
8628 /** emit logical then block */
8629 Block* BB_then_logical = ctx->program->create_and_insert_block();
8630 BB_then_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8631 add_edge(ic->BB_if_idx, BB_then_logical);
8632 ctx->block = BB_then_logical;
8633 append_logical_start(BB_then_logical);
8634 }
8635
8636 static void begin_divergent_if_else(isel_context *ctx, if_context *ic)
8637 {
8638 Block *BB_then_logical = ctx->block;
8639 append_logical_end(BB_then_logical);
8640 /* branch from logical then block to invert block */
8641 aco_ptr<Pseudo_branch_instruction> branch;
8642 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8643 BB_then_logical->instructions.emplace_back(std::move(branch));
8644 add_linear_edge(BB_then_logical->index, &ic->BB_invert);
8645 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8646 add_logical_edge(BB_then_logical->index, &ic->BB_endif);
8647 BB_then_logical->kind |= block_kind_uniform;
8648 assert(!ctx->cf_info.has_branch);
8649 ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
8650 ctx->cf_info.parent_loop.has_divergent_branch = false;
8651
8652 /** emit linear then block */
8653 Block* BB_then_linear = ctx->program->create_and_insert_block();
8654 BB_then_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8655 BB_then_linear->kind |= block_kind_uniform;
8656 add_linear_edge(ic->BB_if_idx, BB_then_linear);
8657 /* branch from linear then block to invert block */
8658 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8659 BB_then_linear->instructions.emplace_back(std::move(branch));
8660 add_linear_edge(BB_then_linear->index, &ic->BB_invert);
8661
8662 /** emit invert merge block */
8663 ctx->block = ctx->program->insert_block(std::move(ic->BB_invert));
8664 ic->invert_idx = ctx->block->index;
8665
8666 /* branch to linear else block (skip else) */
8667 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_nz, Format::PSEUDO_BRANCH, 1, 0));
8668 branch->operands[0] = Operand(ic->cond);
8669 ctx->block->instructions.push_back(std::move(branch));
8670
8671 ic->exec_potentially_empty_discard_old |= ctx->cf_info.exec_potentially_empty_discard;
8672 ic->exec_potentially_empty_break_old |= ctx->cf_info.exec_potentially_empty_break;
8673 ic->exec_potentially_empty_break_depth_old =
8674 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
8675 /* divergent branches use cbranch_execz */
8676 ctx->cf_info.exec_potentially_empty_discard = false;
8677 ctx->cf_info.exec_potentially_empty_break = false;
8678 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
8679
8680 /** emit logical else block */
8681 Block* BB_else_logical = ctx->program->create_and_insert_block();
8682 BB_else_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8683 add_logical_edge(ic->BB_if_idx, BB_else_logical);
8684 add_linear_edge(ic->invert_idx, BB_else_logical);
8685 ctx->block = BB_else_logical;
8686 append_logical_start(BB_else_logical);
8687 }
8688
8689 static void end_divergent_if(isel_context *ctx, if_context *ic)
8690 {
8691 Block *BB_else_logical = ctx->block;
8692 append_logical_end(BB_else_logical);
8693
8694 /* branch from logical else block to endif block */
8695 aco_ptr<Pseudo_branch_instruction> branch;
8696 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8697 BB_else_logical->instructions.emplace_back(std::move(branch));
8698 add_linear_edge(BB_else_logical->index, &ic->BB_endif);
8699 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8700 add_logical_edge(BB_else_logical->index, &ic->BB_endif);
8701 BB_else_logical->kind |= block_kind_uniform;
8702
8703 assert(!ctx->cf_info.has_branch);
8704 ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
8705
8706
8707 /** emit linear else block */
8708 Block* BB_else_linear = ctx->program->create_and_insert_block();
8709 BB_else_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8710 BB_else_linear->kind |= block_kind_uniform;
8711 add_linear_edge(ic->invert_idx, BB_else_linear);
8712
8713 /* branch from linear else block to endif block */
8714 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8715 BB_else_linear->instructions.emplace_back(std::move(branch));
8716 add_linear_edge(BB_else_linear->index, &ic->BB_endif);
8717
8718
8719 /** emit endif merge block */
8720 ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
8721 append_logical_start(ctx->block);
8722
8723
8724 ctx->cf_info.parent_if.is_divergent = ic->divergent_old;
8725 ctx->cf_info.exec_potentially_empty_discard |= ic->exec_potentially_empty_discard_old;
8726 ctx->cf_info.exec_potentially_empty_break |= ic->exec_potentially_empty_break_old;
8727 ctx->cf_info.exec_potentially_empty_break_depth =
8728 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
8729 if (ctx->cf_info.loop_nest_depth == ctx->cf_info.exec_potentially_empty_break_depth &&
8730 !ctx->cf_info.parent_if.is_divergent) {
8731 ctx->cf_info.exec_potentially_empty_break = false;
8732 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
8733 }
8734 /* uniform control flow never has an empty exec-mask */
8735 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent) {
8736 ctx->cf_info.exec_potentially_empty_discard = false;
8737 ctx->cf_info.exec_potentially_empty_break = false;
8738 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
8739 }
8740 }
8741
8742 static void visit_if(isel_context *ctx, nir_if *if_stmt)
8743 {
8744 Temp cond = get_ssa_temp(ctx, if_stmt->condition.ssa);
8745 Builder bld(ctx->program, ctx->block);
8746 aco_ptr<Pseudo_branch_instruction> branch;
8747
8748 if (!ctx->divergent_vals[if_stmt->condition.ssa->index]) { /* uniform condition */
8749 /**
8750 * Uniform conditionals are represented in the following way*) :
8751 *
8752 * The linear and logical CFG:
8753 * BB_IF
8754 * / \
8755 * BB_THEN (logical) BB_ELSE (logical)
8756 * \ /
8757 * BB_ENDIF
8758 *
8759 * *) Exceptions may be due to break and continue statements within loops
8760 * If a break/continue happens within uniform control flow, it branches
8761 * to the loop exit/entry block. Otherwise, it branches to the next
8762 * merge block.
8763 **/
8764 append_logical_end(ctx->block);
8765 ctx->block->kind |= block_kind_uniform;
8766
8767 /* emit branch */
8768 assert(cond.regClass() == bld.lm);
8769 // TODO: in a post-RA optimizer, we could check if the condition is in VCC and omit this instruction
8770 cond = bool_to_scalar_condition(ctx, cond);
8771
8772 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
8773 branch->operands[0] = Operand(cond);
8774 branch->operands[0].setFixed(scc);
8775 ctx->block->instructions.emplace_back(std::move(branch));
8776
8777 unsigned BB_if_idx = ctx->block->index;
8778 Block BB_endif = Block();
8779 BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
8780 BB_endif.kind |= ctx->block->kind & block_kind_top_level;
8781
8782 /** emit then block */
8783 Block* BB_then = ctx->program->create_and_insert_block();
8784 BB_then->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8785 add_edge(BB_if_idx, BB_then);
8786 append_logical_start(BB_then);
8787 ctx->block = BB_then;
8788 visit_cf_list(ctx, &if_stmt->then_list);
8789 BB_then = ctx->block;
8790 bool then_branch = ctx->cf_info.has_branch;
8791 bool then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
8792
8793 if (!then_branch) {
8794 append_logical_end(BB_then);
8795 /* branch from then block to endif block */
8796 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8797 BB_then->instructions.emplace_back(std::move(branch));
8798 add_linear_edge(BB_then->index, &BB_endif);
8799 if (!then_branch_divergent)
8800 add_logical_edge(BB_then->index, &BB_endif);
8801 BB_then->kind |= block_kind_uniform;
8802 }
8803
8804 ctx->cf_info.has_branch = false;
8805 ctx->cf_info.parent_loop.has_divergent_branch = false;
8806
8807 /** emit else block */
8808 Block* BB_else = ctx->program->create_and_insert_block();
8809 BB_else->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8810 add_edge(BB_if_idx, BB_else);
8811 append_logical_start(BB_else);
8812 ctx->block = BB_else;
8813 visit_cf_list(ctx, &if_stmt->else_list);
8814 BB_else = ctx->block;
8815
8816 if (!ctx->cf_info.has_branch) {
8817 append_logical_end(BB_else);
8818 /* branch from then block to endif block */
8819 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8820 BB_else->instructions.emplace_back(std::move(branch));
8821 add_linear_edge(BB_else->index, &BB_endif);
8822 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8823 add_logical_edge(BB_else->index, &BB_endif);
8824 BB_else->kind |= block_kind_uniform;
8825 }
8826
8827 ctx->cf_info.has_branch &= then_branch;
8828 ctx->cf_info.parent_loop.has_divergent_branch &= then_branch_divergent;
8829
8830 /** emit endif merge block */
8831 if (!ctx->cf_info.has_branch) {
8832 ctx->block = ctx->program->insert_block(std::move(BB_endif));
8833 append_logical_start(ctx->block);
8834 }
8835 } else { /* non-uniform condition */
8836 /**
8837 * To maintain a logical and linear CFG without critical edges,
8838 * non-uniform conditionals are represented in the following way*) :
8839 *
8840 * The linear CFG:
8841 * BB_IF
8842 * / \
8843 * BB_THEN (logical) BB_THEN (linear)
8844 * \ /
8845 * BB_INVERT (linear)
8846 * / \
8847 * BB_ELSE (logical) BB_ELSE (linear)
8848 * \ /
8849 * BB_ENDIF
8850 *
8851 * The logical CFG:
8852 * BB_IF
8853 * / \
8854 * BB_THEN (logical) BB_ELSE (logical)
8855 * \ /
8856 * BB_ENDIF
8857 *
8858 * *) Exceptions may be due to break and continue statements within loops
8859 **/
8860
8861 if_context ic;
8862
8863 begin_divergent_if_then(ctx, &ic, cond);
8864 visit_cf_list(ctx, &if_stmt->then_list);
8865
8866 begin_divergent_if_else(ctx, &ic);
8867 visit_cf_list(ctx, &if_stmt->else_list);
8868
8869 end_divergent_if(ctx, &ic);
8870 }
8871 }
8872
8873 static void visit_cf_list(isel_context *ctx,
8874 struct exec_list *list)
8875 {
8876 foreach_list_typed(nir_cf_node, node, node, list) {
8877 switch (node->type) {
8878 case nir_cf_node_block:
8879 visit_block(ctx, nir_cf_node_as_block(node));
8880 break;
8881 case nir_cf_node_if:
8882 visit_if(ctx, nir_cf_node_as_if(node));
8883 break;
8884 case nir_cf_node_loop:
8885 visit_loop(ctx, nir_cf_node_as_loop(node));
8886 break;
8887 default:
8888 unreachable("unimplemented cf list type");
8889 }
8890 }
8891 }
8892
8893 static void export_vs_varying(isel_context *ctx, int slot, bool is_pos, int *next_pos)
8894 {
8895 assert(ctx->stage == vertex_vs ||
8896 ctx->stage == tess_eval_vs ||
8897 ctx->stage == gs_copy_vs);
8898
8899 int offset = ctx->stage == tess_eval_vs
8900 ? ctx->program->info->tes.outinfo.vs_output_param_offset[slot]
8901 : ctx->program->info->vs.outinfo.vs_output_param_offset[slot];
8902 uint64_t mask = ctx->outputs.mask[slot];
8903 if (!is_pos && !mask)
8904 return;
8905 if (!is_pos && offset == AC_EXP_PARAM_UNDEFINED)
8906 return;
8907 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
8908 exp->enabled_mask = mask;
8909 for (unsigned i = 0; i < 4; ++i) {
8910 if (mask & (1 << i))
8911 exp->operands[i] = Operand(ctx->outputs.outputs[slot][i]);
8912 else
8913 exp->operands[i] = Operand(v1);
8914 }
8915 /* Navi10-14 skip POS0 exports if EXEC=0 and DONE=0, causing a hang.
8916 * Setting valid_mask=1 prevents it and has no other effect.
8917 */
8918 exp->valid_mask = ctx->options->chip_class >= GFX10 && is_pos && *next_pos == 0;
8919 exp->done = false;
8920 exp->compressed = false;
8921 if (is_pos)
8922 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
8923 else
8924 exp->dest = V_008DFC_SQ_EXP_PARAM + offset;
8925 ctx->block->instructions.emplace_back(std::move(exp));
8926 }
8927
8928 static void export_vs_psiz_layer_viewport(isel_context *ctx, int *next_pos)
8929 {
8930 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
8931 exp->enabled_mask = 0;
8932 for (unsigned i = 0; i < 4; ++i)
8933 exp->operands[i] = Operand(v1);
8934 if (ctx->outputs.mask[VARYING_SLOT_PSIZ]) {
8935 exp->operands[0] = Operand(ctx->outputs.outputs[VARYING_SLOT_PSIZ][0]);
8936 exp->enabled_mask |= 0x1;
8937 }
8938 if (ctx->outputs.mask[VARYING_SLOT_LAYER]) {
8939 exp->operands[2] = Operand(ctx->outputs.outputs[VARYING_SLOT_LAYER][0]);
8940 exp->enabled_mask |= 0x4;
8941 }
8942 if (ctx->outputs.mask[VARYING_SLOT_VIEWPORT]) {
8943 if (ctx->options->chip_class < GFX9) {
8944 exp->operands[3] = Operand(ctx->outputs.outputs[VARYING_SLOT_VIEWPORT][0]);
8945 exp->enabled_mask |= 0x8;
8946 } else {
8947 Builder bld(ctx->program, ctx->block);
8948
8949 Temp out = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u),
8950 Operand(ctx->outputs.outputs[VARYING_SLOT_VIEWPORT][0]));
8951 if (exp->operands[2].isTemp())
8952 out = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(out), exp->operands[2]);
8953
8954 exp->operands[2] = Operand(out);
8955 exp->enabled_mask |= 0x4;
8956 }
8957 }
8958 exp->valid_mask = ctx->options->chip_class >= GFX10 && *next_pos == 0;
8959 exp->done = false;
8960 exp->compressed = false;
8961 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
8962 ctx->block->instructions.emplace_back(std::move(exp));
8963 }
8964
8965 static void create_vs_exports(isel_context *ctx)
8966 {
8967 assert(ctx->stage == vertex_vs ||
8968 ctx->stage == tess_eval_vs ||
8969 ctx->stage == gs_copy_vs);
8970
8971 radv_vs_output_info *outinfo = ctx->stage == tess_eval_vs
8972 ? &ctx->program->info->tes.outinfo
8973 : &ctx->program->info->vs.outinfo;
8974
8975 if (outinfo->export_prim_id) {
8976 ctx->outputs.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
8977 ctx->outputs.outputs[VARYING_SLOT_PRIMITIVE_ID][0] = get_arg(ctx, ctx->args->vs_prim_id);
8978 }
8979
8980 if (ctx->options->key.has_multiview_view_index) {
8981 ctx->outputs.mask[VARYING_SLOT_LAYER] |= 0x1;
8982 ctx->outputs.outputs[VARYING_SLOT_LAYER][0] = as_vgpr(ctx, get_arg(ctx, ctx->args->ac.view_index));
8983 }
8984
8985 /* the order these position exports are created is important */
8986 int next_pos = 0;
8987 export_vs_varying(ctx, VARYING_SLOT_POS, true, &next_pos);
8988 if (outinfo->writes_pointsize || outinfo->writes_layer || outinfo->writes_viewport_index) {
8989 export_vs_psiz_layer_viewport(ctx, &next_pos);
8990 }
8991 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
8992 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, true, &next_pos);
8993 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
8994 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, true, &next_pos);
8995
8996 if (ctx->export_clip_dists) {
8997 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
8998 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, false, &next_pos);
8999 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
9000 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, false, &next_pos);
9001 }
9002
9003 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
9004 if (i < VARYING_SLOT_VAR0 && i != VARYING_SLOT_LAYER &&
9005 i != VARYING_SLOT_PRIMITIVE_ID)
9006 continue;
9007
9008 export_vs_varying(ctx, i, false, NULL);
9009 }
9010 }
9011
9012 static void export_fs_mrt_z(isel_context *ctx)
9013 {
9014 Builder bld(ctx->program, ctx->block);
9015 unsigned enabled_channels = 0;
9016 bool compr = false;
9017 Operand values[4];
9018
9019 for (unsigned i = 0; i < 4; ++i) {
9020 values[i] = Operand(v1);
9021 }
9022
9023 /* Both stencil and sample mask only need 16-bits. */
9024 if (!ctx->program->info->ps.writes_z &&
9025 (ctx->program->info->ps.writes_stencil ||
9026 ctx->program->info->ps.writes_sample_mask)) {
9027 compr = true; /* COMPR flag */
9028
9029 if (ctx->program->info->ps.writes_stencil) {
9030 /* Stencil should be in X[23:16]. */
9031 values[0] = Operand(ctx->outputs.outputs[FRAG_RESULT_STENCIL][0]);
9032 values[0] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u), values[0]);
9033 enabled_channels |= 0x3;
9034 }
9035
9036 if (ctx->program->info->ps.writes_sample_mask) {
9037 /* SampleMask should be in Y[15:0]. */
9038 values[1] = Operand(ctx->outputs.outputs[FRAG_RESULT_SAMPLE_MASK][0]);
9039 enabled_channels |= 0xc;
9040 }
9041 } else {
9042 if (ctx->program->info->ps.writes_z) {
9043 values[0] = Operand(ctx->outputs.outputs[FRAG_RESULT_DEPTH][0]);
9044 enabled_channels |= 0x1;
9045 }
9046
9047 if (ctx->program->info->ps.writes_stencil) {
9048 values[1] = Operand(ctx->outputs.outputs[FRAG_RESULT_STENCIL][0]);
9049 enabled_channels |= 0x2;
9050 }
9051
9052 if (ctx->program->info->ps.writes_sample_mask) {
9053 values[2] = Operand(ctx->outputs.outputs[FRAG_RESULT_SAMPLE_MASK][0]);
9054 enabled_channels |= 0x4;
9055 }
9056 }
9057
9058 /* GFX6 (except OLAND and HAINAN) has a bug that it only looks at the X
9059 * writemask component.
9060 */
9061 if (ctx->options->chip_class == GFX6 &&
9062 ctx->options->family != CHIP_OLAND &&
9063 ctx->options->family != CHIP_HAINAN) {
9064 enabled_channels |= 0x1;
9065 }
9066
9067 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
9068 enabled_channels, V_008DFC_SQ_EXP_MRTZ, compr);
9069 }
9070
9071 static void export_fs_mrt_color(isel_context *ctx, int slot)
9072 {
9073 Builder bld(ctx->program, ctx->block);
9074 unsigned write_mask = ctx->outputs.mask[slot];
9075 Operand values[4];
9076
9077 for (unsigned i = 0; i < 4; ++i) {
9078 if (write_mask & (1 << i)) {
9079 values[i] = Operand(ctx->outputs.outputs[slot][i]);
9080 } else {
9081 values[i] = Operand(v1);
9082 }
9083 }
9084
9085 unsigned target, col_format;
9086 unsigned enabled_channels = 0;
9087 aco_opcode compr_op = (aco_opcode)0;
9088
9089 slot -= FRAG_RESULT_DATA0;
9090 target = V_008DFC_SQ_EXP_MRT + slot;
9091 col_format = (ctx->options->key.fs.col_format >> (4 * slot)) & 0xf;
9092
9093 bool is_int8 = (ctx->options->key.fs.is_int8 >> slot) & 1;
9094 bool is_int10 = (ctx->options->key.fs.is_int10 >> slot) & 1;
9095
9096 switch (col_format)
9097 {
9098 case V_028714_SPI_SHADER_ZERO:
9099 enabled_channels = 0; /* writemask */
9100 target = V_008DFC_SQ_EXP_NULL;
9101 break;
9102
9103 case V_028714_SPI_SHADER_32_R:
9104 enabled_channels = 1;
9105 break;
9106
9107 case V_028714_SPI_SHADER_32_GR:
9108 enabled_channels = 0x3;
9109 break;
9110
9111 case V_028714_SPI_SHADER_32_AR:
9112 if (ctx->options->chip_class >= GFX10) {
9113 /* Special case: on GFX10, the outputs are different for 32_AR */
9114 enabled_channels = 0x3;
9115 values[1] = values[3];
9116 values[3] = Operand(v1);
9117 } else {
9118 enabled_channels = 0x9;
9119 }
9120 break;
9121
9122 case V_028714_SPI_SHADER_FP16_ABGR:
9123 enabled_channels = 0x5;
9124 compr_op = aco_opcode::v_cvt_pkrtz_f16_f32;
9125 break;
9126
9127 case V_028714_SPI_SHADER_UNORM16_ABGR:
9128 enabled_channels = 0x5;
9129 compr_op = aco_opcode::v_cvt_pknorm_u16_f32;
9130 break;
9131
9132 case V_028714_SPI_SHADER_SNORM16_ABGR:
9133 enabled_channels = 0x5;
9134 compr_op = aco_opcode::v_cvt_pknorm_i16_f32;
9135 break;
9136
9137 case V_028714_SPI_SHADER_UINT16_ABGR: {
9138 enabled_channels = 0x5;
9139 compr_op = aco_opcode::v_cvt_pk_u16_u32;
9140 if (is_int8 || is_int10) {
9141 /* clamp */
9142 uint32_t max_rgb = is_int8 ? 255 : is_int10 ? 1023 : 0;
9143 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
9144
9145 for (unsigned i = 0; i < 4; i++) {
9146 if ((write_mask >> i) & 1) {
9147 values[i] = bld.vop2(aco_opcode::v_min_u32, bld.def(v1),
9148 i == 3 && is_int10 ? Operand(3u) : Operand(max_rgb_val),
9149 values[i]);
9150 }
9151 }
9152 }
9153 break;
9154 }
9155
9156 case V_028714_SPI_SHADER_SINT16_ABGR:
9157 enabled_channels = 0x5;
9158 compr_op = aco_opcode::v_cvt_pk_i16_i32;
9159 if (is_int8 || is_int10) {
9160 /* clamp */
9161 uint32_t max_rgb = is_int8 ? 127 : is_int10 ? 511 : 0;
9162 uint32_t min_rgb = is_int8 ? -128 :is_int10 ? -512 : 0;
9163 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
9164 Temp min_rgb_val = bld.copy(bld.def(s1), Operand(min_rgb));
9165
9166 for (unsigned i = 0; i < 4; i++) {
9167 if ((write_mask >> i) & 1) {
9168 values[i] = bld.vop2(aco_opcode::v_min_i32, bld.def(v1),
9169 i == 3 && is_int10 ? Operand(1u) : Operand(max_rgb_val),
9170 values[i]);
9171 values[i] = bld.vop2(aco_opcode::v_max_i32, bld.def(v1),
9172 i == 3 && is_int10 ? Operand(-2u) : Operand(min_rgb_val),
9173 values[i]);
9174 }
9175 }
9176 }
9177 break;
9178
9179 case V_028714_SPI_SHADER_32_ABGR:
9180 enabled_channels = 0xF;
9181 break;
9182
9183 default:
9184 break;
9185 }
9186
9187 if (target == V_008DFC_SQ_EXP_NULL)
9188 return;
9189
9190 if ((bool) compr_op) {
9191 for (int i = 0; i < 2; i++) {
9192 /* check if at least one of the values to be compressed is enabled */
9193 unsigned enabled = (write_mask >> (i*2) | write_mask >> (i*2+1)) & 0x1;
9194 if (enabled) {
9195 enabled_channels |= enabled << (i*2);
9196 values[i] = bld.vop3(compr_op, bld.def(v1),
9197 values[i*2].isUndefined() ? Operand(0u) : values[i*2],
9198 values[i*2+1].isUndefined() ? Operand(0u): values[i*2+1]);
9199 } else {
9200 values[i] = Operand(v1);
9201 }
9202 }
9203 values[2] = Operand(v1);
9204 values[3] = Operand(v1);
9205 } else {
9206 for (int i = 0; i < 4; i++)
9207 values[i] = enabled_channels & (1 << i) ? values[i] : Operand(v1);
9208 }
9209
9210 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
9211 enabled_channels, target, (bool) compr_op);
9212 }
9213
9214 static void create_fs_exports(isel_context *ctx)
9215 {
9216 /* Export depth, stencil and sample mask. */
9217 if (ctx->outputs.mask[FRAG_RESULT_DEPTH] ||
9218 ctx->outputs.mask[FRAG_RESULT_STENCIL] ||
9219 ctx->outputs.mask[FRAG_RESULT_SAMPLE_MASK]) {
9220 export_fs_mrt_z(ctx);
9221 }
9222
9223 /* Export all color render targets. */
9224 for (unsigned i = FRAG_RESULT_DATA0; i < FRAG_RESULT_DATA7 + 1; ++i) {
9225 if (ctx->outputs.mask[i])
9226 export_fs_mrt_color(ctx, i);
9227 }
9228 }
9229
9230 static void write_tcs_tess_factors(isel_context *ctx)
9231 {
9232 unsigned outer_comps;
9233 unsigned inner_comps;
9234
9235 switch (ctx->args->options->key.tcs.primitive_mode) {
9236 case GL_ISOLINES:
9237 outer_comps = 2;
9238 inner_comps = 0;
9239 break;
9240 case GL_TRIANGLES:
9241 outer_comps = 3;
9242 inner_comps = 1;
9243 break;
9244 case GL_QUADS:
9245 outer_comps = 4;
9246 inner_comps = 2;
9247 break;
9248 default:
9249 return;
9250 }
9251
9252 const unsigned tess_index_inner = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_INNER);
9253 const unsigned tess_index_outer = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_OUTER);
9254
9255 Builder bld(ctx->program, ctx->block);
9256
9257 bld.barrier(aco_opcode::p_memory_barrier_shared);
9258 unsigned workgroup_size = ctx->tcs_num_patches * ctx->shader->info.tess.tcs_vertices_out;
9259 if (unlikely(ctx->program->chip_class != GFX6 && workgroup_size > ctx->program->wave_size))
9260 bld.sopp(aco_opcode::s_barrier);
9261
9262 Temp tcs_rel_ids = get_arg(ctx, ctx->args->ac.tcs_rel_ids);
9263 Temp invocation_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), tcs_rel_ids, Operand(8u), Operand(5u));
9264
9265 Temp invocation_id_is_zero = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), invocation_id);
9266 if_context ic_invocation_id_is_zero;
9267 begin_divergent_if_then(ctx, &ic_invocation_id_is_zero, invocation_id_is_zero);
9268 bld.reset(ctx->block);
9269
9270 Temp hs_ring_tess_factor = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_FACTOR * 16u));
9271
9272 std::pair<Temp, unsigned> lds_base = get_tcs_output_lds_offset(ctx);
9273 unsigned stride = inner_comps + outer_comps;
9274 Temp inner[4];
9275 Temp outer[4];
9276 Temp out[6];
9277 assert(inner_comps <= (sizeof(inner) / sizeof(Temp)));
9278 assert(outer_comps <= (sizeof(outer) / sizeof(Temp)));
9279 assert(stride <= (sizeof(out) / sizeof(Temp)));
9280
9281 if (ctx->args->options->key.tcs.primitive_mode == GL_ISOLINES) {
9282 // LINES reversal
9283 outer[0] = out[1] = load_lds(ctx, 4, bld.tmp(v1), lds_base.first, lds_base.second + tess_index_outer * 16 + 0 * 4, 4);
9284 outer[1] = out[0] = load_lds(ctx, 4, bld.tmp(v1), lds_base.first, lds_base.second + tess_index_outer * 16 + 1 * 4, 4);
9285 } else {
9286 for (unsigned i = 0; i < outer_comps; ++i)
9287 outer[i] = out[i] = load_lds(ctx, 4, bld.tmp(v1), lds_base.first, lds_base.second + tess_index_outer * 16 + i * 4, 4);
9288
9289 for (unsigned i = 0; i < inner_comps; ++i)
9290 inner[i] = out[outer_comps + i] = load_lds(ctx, 4, bld.tmp(v1), lds_base.first, lds_base.second + tess_index_inner * 16 + i * 4, 4);
9291 }
9292
9293 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
9294 Temp tf_base = get_arg(ctx, ctx->args->tess_factor_offset);
9295 Temp byte_offset = bld.v_mul_imm(bld.def(v1), rel_patch_id, stride * 4u);
9296 unsigned tf_const_offset = 0;
9297
9298 if (ctx->program->chip_class <= GFX8) {
9299 Temp rel_patch_id_is_zero = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), rel_patch_id);
9300 if_context ic_rel_patch_id_is_zero;
9301 begin_divergent_if_then(ctx, &ic_rel_patch_id_is_zero, rel_patch_id_is_zero);
9302 bld.reset(ctx->block);
9303
9304 /* Store the dynamic HS control word. */
9305 Temp control_word = bld.copy(bld.def(v1), Operand(0x80000000u));
9306 bld.mubuf(aco_opcode::buffer_store_dword,
9307 /* SRSRC */ hs_ring_tess_factor, /* VADDR */ Operand(v1), /* SOFFSET */ tf_base, /* VDATA */ control_word,
9308 /* immediate OFFSET */ 0, /* OFFEN */ false, /* idxen*/ false, /* addr64 */ false,
9309 /* disable_wqm */ false, /* glc */ true);
9310 tf_const_offset += 4;
9311
9312 begin_divergent_if_else(ctx, &ic_rel_patch_id_is_zero);
9313 end_divergent_if(ctx, &ic_rel_patch_id_is_zero);
9314 bld.reset(ctx->block);
9315 }
9316
9317 assert(stride == 2 || stride == 4 || stride == 6);
9318 Temp tf_vec = create_vec_from_array(ctx, out, stride, RegType::vgpr);
9319 store_vmem_mubuf(ctx, tf_vec, hs_ring_tess_factor, byte_offset, tf_base, tf_const_offset, 4, (1 << stride) - 1, true, false);
9320
9321 /* Store to offchip for TES to read - only if TES reads them */
9322 if (ctx->args->options->key.tcs.tes_reads_tess_factors) {
9323 Temp hs_ring_tess_offchip = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
9324 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
9325
9326 std::pair<Temp, unsigned> vmem_offs_outer = get_tcs_per_patch_output_vmem_offset(ctx, nullptr, tess_index_outer * 16);
9327 Temp outer_vec = create_vec_from_array(ctx, outer, outer_comps, RegType::vgpr);
9328 store_vmem_mubuf(ctx, outer_vec, hs_ring_tess_offchip, vmem_offs_outer.first, oc_lds, vmem_offs_outer.second, 4, (1 << outer_comps) - 1, true, false);
9329
9330 if (likely(inner_comps)) {
9331 std::pair<Temp, unsigned> vmem_offs_inner = get_tcs_per_patch_output_vmem_offset(ctx, nullptr, tess_index_inner * 16);
9332 Temp inner_vec = create_vec_from_array(ctx, inner, inner_comps, RegType::vgpr);
9333 store_vmem_mubuf(ctx, inner_vec, hs_ring_tess_offchip, vmem_offs_inner.first, oc_lds, vmem_offs_inner.second, 4, (1 << inner_comps) - 1, true, false);
9334 }
9335 }
9336
9337 begin_divergent_if_else(ctx, &ic_invocation_id_is_zero);
9338 end_divergent_if(ctx, &ic_invocation_id_is_zero);
9339 }
9340
9341 static void emit_stream_output(isel_context *ctx,
9342 Temp const *so_buffers,
9343 Temp const *so_write_offset,
9344 const struct radv_stream_output *output)
9345 {
9346 unsigned num_comps = util_bitcount(output->component_mask);
9347 unsigned writemask = (1 << num_comps) - 1;
9348 unsigned loc = output->location;
9349 unsigned buf = output->buffer;
9350
9351 assert(num_comps && num_comps <= 4);
9352 if (!num_comps || num_comps > 4)
9353 return;
9354
9355 unsigned start = ffs(output->component_mask) - 1;
9356
9357 Temp out[4];
9358 bool all_undef = true;
9359 assert(ctx->stage == vertex_vs || ctx->stage == gs_copy_vs);
9360 for (unsigned i = 0; i < num_comps; i++) {
9361 out[i] = ctx->outputs.outputs[loc][start + i];
9362 all_undef = all_undef && !out[i].id();
9363 }
9364 if (all_undef)
9365 return;
9366
9367 while (writemask) {
9368 int start, count;
9369 u_bit_scan_consecutive_range(&writemask, &start, &count);
9370 if (count == 3 && ctx->options->chip_class == GFX6) {
9371 /* GFX6 doesn't support storing vec3, split it. */
9372 writemask |= 1u << (start + 2);
9373 count = 2;
9374 }
9375
9376 unsigned offset = output->offset + start * 4;
9377
9378 Temp write_data = {ctx->program->allocateId(), RegClass(RegType::vgpr, count)};
9379 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
9380 for (int i = 0; i < count; ++i)
9381 vec->operands[i] = (ctx->outputs.mask[loc] & 1 << (start + i)) ? Operand(out[start + i]) : Operand(0u);
9382 vec->definitions[0] = Definition(write_data);
9383 ctx->block->instructions.emplace_back(std::move(vec));
9384
9385 aco_opcode opcode;
9386 switch (count) {
9387 case 1:
9388 opcode = aco_opcode::buffer_store_dword;
9389 break;
9390 case 2:
9391 opcode = aco_opcode::buffer_store_dwordx2;
9392 break;
9393 case 3:
9394 opcode = aco_opcode::buffer_store_dwordx3;
9395 break;
9396 case 4:
9397 opcode = aco_opcode::buffer_store_dwordx4;
9398 break;
9399 default:
9400 unreachable("Unsupported dword count.");
9401 }
9402
9403 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
9404 store->operands[0] = Operand(so_buffers[buf]);
9405 store->operands[1] = Operand(so_write_offset[buf]);
9406 store->operands[2] = Operand((uint32_t) 0);
9407 store->operands[3] = Operand(write_data);
9408 if (offset > 4095) {
9409 /* Don't think this can happen in RADV, but maybe GL? It's easy to do this anyway. */
9410 Builder bld(ctx->program, ctx->block);
9411 store->operands[0] = bld.vadd32(bld.def(v1), Operand(offset), Operand(so_write_offset[buf]));
9412 } else {
9413 store->offset = offset;
9414 }
9415 store->offen = true;
9416 store->glc = true;
9417 store->dlc = false;
9418 store->slc = true;
9419 store->can_reorder = true;
9420 ctx->block->instructions.emplace_back(std::move(store));
9421 }
9422 }
9423
9424 static void emit_streamout(isel_context *ctx, unsigned stream)
9425 {
9426 Builder bld(ctx->program, ctx->block);
9427
9428 Temp so_buffers[4];
9429 Temp buf_ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->streamout_buffers));
9430 for (unsigned i = 0; i < 4; i++) {
9431 unsigned stride = ctx->program->info->so.strides[i];
9432 if (!stride)
9433 continue;
9434
9435 Operand off = bld.copy(bld.def(s1), Operand(i * 16u));
9436 so_buffers[i] = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), buf_ptr, off);
9437 }
9438
9439 Temp so_vtx_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
9440 get_arg(ctx, ctx->args->streamout_config), Operand(0x70010u));
9441
9442 Temp tid = emit_mbcnt(ctx, bld.def(v1));
9443
9444 Temp can_emit = bld.vopc(aco_opcode::v_cmp_gt_i32, bld.def(bld.lm), so_vtx_count, tid);
9445
9446 if_context ic;
9447 begin_divergent_if_then(ctx, &ic, can_emit);
9448
9449 bld.reset(ctx->block);
9450
9451 Temp so_write_index = bld.vadd32(bld.def(v1), get_arg(ctx, ctx->args->streamout_write_idx), tid);
9452
9453 Temp so_write_offset[4];
9454
9455 for (unsigned i = 0; i < 4; i++) {
9456 unsigned stride = ctx->program->info->so.strides[i];
9457 if (!stride)
9458 continue;
9459
9460 if (stride == 1) {
9461 Temp offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
9462 get_arg(ctx, ctx->args->streamout_write_idx),
9463 get_arg(ctx, ctx->args->streamout_offset[i]));
9464 Temp new_offset = bld.vadd32(bld.def(v1), offset, tid);
9465
9466 so_write_offset[i] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), new_offset);
9467 } else {
9468 Temp offset = bld.v_mul_imm(bld.def(v1), so_write_index, stride * 4u);
9469 Temp offset2 = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(4u),
9470 get_arg(ctx, ctx->args->streamout_offset[i]));
9471 so_write_offset[i] = bld.vadd32(bld.def(v1), offset, offset2);
9472 }
9473 }
9474
9475 for (unsigned i = 0; i < ctx->program->info->so.num_outputs; i++) {
9476 struct radv_stream_output *output =
9477 &ctx->program->info->so.outputs[i];
9478 if (stream != output->stream)
9479 continue;
9480
9481 emit_stream_output(ctx, so_buffers, so_write_offset, output);
9482 }
9483
9484 begin_divergent_if_else(ctx, &ic);
9485 end_divergent_if(ctx, &ic);
9486 }
9487
9488 } /* end namespace */
9489
9490 void fix_ls_vgpr_init_bug(isel_context *ctx, Pseudo_instruction *startpgm)
9491 {
9492 assert(ctx->shader->info.stage == MESA_SHADER_VERTEX);
9493 Builder bld(ctx->program, ctx->block);
9494 constexpr unsigned hs_idx = 1u;
9495 Builder::Result hs_thread_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
9496 get_arg(ctx, ctx->args->merged_wave_info),
9497 Operand((8u << 16) | (hs_idx * 8u)));
9498 Temp ls_has_nonzero_hs_threads = bool_to_vector_condition(ctx, hs_thread_count.def(1).getTemp());
9499
9500 /* If there are no HS threads, SPI mistakenly loads the LS VGPRs starting at VGPR 0. */
9501
9502 Temp instance_id = bld.sop2(aco_opcode::v_cndmask_b32, bld.def(v1),
9503 get_arg(ctx, ctx->args->ac.instance_id),
9504 get_arg(ctx, ctx->args->rel_auto_id),
9505 ls_has_nonzero_hs_threads);
9506 Temp rel_auto_id = bld.sop2(aco_opcode::v_cndmask_b32, bld.def(v1),
9507 get_arg(ctx, ctx->args->rel_auto_id),
9508 get_arg(ctx, ctx->args->ac.tcs_rel_ids),
9509 ls_has_nonzero_hs_threads);
9510 Temp vertex_id = bld.sop2(aco_opcode::v_cndmask_b32, bld.def(v1),
9511 get_arg(ctx, ctx->args->ac.vertex_id),
9512 get_arg(ctx, ctx->args->ac.tcs_patch_id),
9513 ls_has_nonzero_hs_threads);
9514
9515 ctx->arg_temps[ctx->args->ac.instance_id.arg_index] = instance_id;
9516 ctx->arg_temps[ctx->args->rel_auto_id.arg_index] = rel_auto_id;
9517 ctx->arg_temps[ctx->args->ac.vertex_id.arg_index] = vertex_id;
9518 }
9519
9520 void split_arguments(isel_context *ctx, Pseudo_instruction *startpgm)
9521 {
9522 /* Split all arguments except for the first (ring_offsets) and the last
9523 * (exec) so that the dead channels don't stay live throughout the program.
9524 */
9525 for (int i = 1; i < startpgm->definitions.size() - 1; i++) {
9526 if (startpgm->definitions[i].regClass().size() > 1) {
9527 emit_split_vector(ctx, startpgm->definitions[i].getTemp(),
9528 startpgm->definitions[i].regClass().size());
9529 }
9530 }
9531 }
9532
9533 void handle_bc_optimize(isel_context *ctx)
9534 {
9535 /* needed when SPI_PS_IN_CONTROL.BC_OPTIMIZE_DISABLE is set to 0 */
9536 Builder bld(ctx->program, ctx->block);
9537 uint32_t spi_ps_input_ena = ctx->program->config->spi_ps_input_ena;
9538 bool uses_center = G_0286CC_PERSP_CENTER_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTER_ENA(spi_ps_input_ena);
9539 bool uses_centroid = G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena);
9540 ctx->persp_centroid = get_arg(ctx, ctx->args->ac.persp_centroid);
9541 ctx->linear_centroid = get_arg(ctx, ctx->args->ac.linear_centroid);
9542 if (uses_center && uses_centroid) {
9543 Temp sel = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)),
9544 get_arg(ctx, ctx->args->ac.prim_mask), Operand(0u));
9545
9546 if (G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena)) {
9547 Temp new_coord[2];
9548 for (unsigned i = 0; i < 2; i++) {
9549 Temp persp_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_centroid), i, v1);
9550 Temp persp_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_center), i, v1);
9551 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
9552 persp_centroid, persp_center, sel);
9553 }
9554 ctx->persp_centroid = bld.tmp(v2);
9555 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->persp_centroid),
9556 Operand(new_coord[0]), Operand(new_coord[1]));
9557 emit_split_vector(ctx, ctx->persp_centroid, 2);
9558 }
9559
9560 if (G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena)) {
9561 Temp new_coord[2];
9562 for (unsigned i = 0; i < 2; i++) {
9563 Temp linear_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_centroid), i, v1);
9564 Temp linear_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_center), i, v1);
9565 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
9566 linear_centroid, linear_center, sel);
9567 }
9568 ctx->linear_centroid = bld.tmp(v2);
9569 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->linear_centroid),
9570 Operand(new_coord[0]), Operand(new_coord[1]));
9571 emit_split_vector(ctx, ctx->linear_centroid, 2);
9572 }
9573 }
9574 }
9575
9576 void setup_fp_mode(isel_context *ctx, nir_shader *shader)
9577 {
9578 Program *program = ctx->program;
9579
9580 unsigned float_controls = shader->info.float_controls_execution_mode;
9581
9582 program->next_fp_mode.preserve_signed_zero_inf_nan32 =
9583 float_controls & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32;
9584 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 =
9585 float_controls & (FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16 |
9586 FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64);
9587
9588 program->next_fp_mode.must_flush_denorms32 =
9589 float_controls & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32;
9590 program->next_fp_mode.must_flush_denorms16_64 =
9591 float_controls & (FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 |
9592 FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64);
9593
9594 program->next_fp_mode.care_about_round32 =
9595 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32);
9596
9597 program->next_fp_mode.care_about_round16_64 =
9598 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64 |
9599 FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
9600
9601 /* default to preserving fp16 and fp64 denorms, since it's free */
9602 if (program->next_fp_mode.must_flush_denorms16_64)
9603 program->next_fp_mode.denorm16_64 = 0;
9604 else
9605 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
9606
9607 /* preserving fp32 denorms is expensive, so only do it if asked */
9608 if (float_controls & FLOAT_CONTROLS_DENORM_PRESERVE_FP32)
9609 program->next_fp_mode.denorm32 = fp_denorm_keep;
9610 else
9611 program->next_fp_mode.denorm32 = 0;
9612
9613 if (float_controls & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32)
9614 program->next_fp_mode.round32 = fp_round_tz;
9615 else
9616 program->next_fp_mode.round32 = fp_round_ne;
9617
9618 if (float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64))
9619 program->next_fp_mode.round16_64 = fp_round_tz;
9620 else
9621 program->next_fp_mode.round16_64 = fp_round_ne;
9622
9623 ctx->block->fp_mode = program->next_fp_mode;
9624 }
9625
9626 void cleanup_cfg(Program *program)
9627 {
9628 /* create linear_succs/logical_succs */
9629 for (Block& BB : program->blocks) {
9630 for (unsigned idx : BB.linear_preds)
9631 program->blocks[idx].linear_succs.emplace_back(BB.index);
9632 for (unsigned idx : BB.logical_preds)
9633 program->blocks[idx].logical_succs.emplace_back(BB.index);
9634 }
9635 }
9636
9637 void select_program(Program *program,
9638 unsigned shader_count,
9639 struct nir_shader *const *shaders,
9640 ac_shader_config* config,
9641 struct radv_shader_args *args)
9642 {
9643 isel_context ctx = setup_isel_context(program, shader_count, shaders, config, args, false);
9644
9645 for (unsigned i = 0; i < shader_count; i++) {
9646 nir_shader *nir = shaders[i];
9647 init_context(&ctx, nir);
9648
9649 setup_fp_mode(&ctx, nir);
9650
9651 if (!i) {
9652 /* needs to be after init_context() for FS */
9653 Pseudo_instruction *startpgm = add_startpgm(&ctx);
9654 append_logical_start(ctx.block);
9655
9656 if (unlikely(args->options->has_ls_vgpr_init_bug && ctx.stage == vertex_tess_control_hs))
9657 fix_ls_vgpr_init_bug(&ctx, startpgm);
9658
9659 split_arguments(&ctx, startpgm);
9660 }
9661
9662 /* In a merged VS+TCS HS, the VS implementation can be completely empty. */
9663 nir_function_impl *func = nir_shader_get_entrypoint(nir);
9664 bool empty_shader = nir_cf_list_is_empty_block(&func->body) &&
9665 ((nir->info.stage == MESA_SHADER_VERTEX &&
9666 (ctx.stage == vertex_tess_control_hs || ctx.stage == vertex_geometry_gs)) ||
9667 (nir->info.stage == MESA_SHADER_TESS_EVAL &&
9668 ctx.stage == tess_eval_geometry_gs));
9669
9670 if_context ic;
9671 if (shader_count >= 2 && !empty_shader) {
9672 Builder bld(ctx.program, ctx.block);
9673 Temp count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(&ctx, args->merged_wave_info), Operand((8u << 16) | (i * 8u)));
9674 Temp thread_id = emit_mbcnt(&ctx, bld.def(v1));
9675 Temp cond = bld.vopc(aco_opcode::v_cmp_gt_u32, bld.hint_vcc(bld.def(bld.lm)), count, thread_id);
9676
9677 begin_divergent_if_then(&ctx, &ic, cond);
9678 }
9679
9680 if (i) {
9681 Builder bld(ctx.program, ctx.block);
9682
9683 bld.barrier(aco_opcode::p_memory_barrier_shared);
9684 bld.sopp(aco_opcode::s_barrier);
9685
9686 if (ctx.stage == vertex_geometry_gs || ctx.stage == tess_eval_geometry_gs) {
9687 ctx.gs_wave_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1, m0), bld.def(s1, scc), get_arg(&ctx, args->merged_wave_info), Operand((8u << 16) | 16u));
9688 }
9689 } else if (ctx.stage == geometry_gs)
9690 ctx.gs_wave_id = get_arg(&ctx, args->gs_wave_id);
9691
9692 if (ctx.stage == fragment_fs)
9693 handle_bc_optimize(&ctx);
9694
9695 visit_cf_list(&ctx, &func->body);
9696
9697 if (ctx.program->info->so.num_outputs && (ctx.stage == vertex_vs || ctx.stage == tess_eval_vs))
9698 emit_streamout(&ctx, 0);
9699
9700 if (ctx.stage == vertex_vs || ctx.stage == tess_eval_vs) {
9701 create_vs_exports(&ctx);
9702 } else if (nir->info.stage == MESA_SHADER_GEOMETRY) {
9703 Builder bld(ctx.program, ctx.block);
9704 bld.barrier(aco_opcode::p_memory_barrier_gs_data);
9705 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx.gs_wave_id), -1, sendmsg_gs_done(false, false, 0));
9706 } else if (nir->info.stage == MESA_SHADER_TESS_CTRL) {
9707 write_tcs_tess_factors(&ctx);
9708 }
9709
9710 if (ctx.stage == fragment_fs)
9711 create_fs_exports(&ctx);
9712
9713 if (shader_count >= 2 && !empty_shader) {
9714 begin_divergent_if_else(&ctx, &ic);
9715 end_divergent_if(&ctx, &ic);
9716 }
9717
9718 ralloc_free(ctx.divergent_vals);
9719 }
9720
9721 program->config->float_mode = program->blocks[0].fp_mode.val;
9722
9723 append_logical_end(ctx.block);
9724 ctx.block->kind |= block_kind_uniform | block_kind_export_end;
9725 Builder bld(ctx.program, ctx.block);
9726 if (ctx.program->wb_smem_l1_on_end)
9727 bld.smem(aco_opcode::s_dcache_wb, false);
9728 bld.sopp(aco_opcode::s_endpgm);
9729
9730 cleanup_cfg(program);
9731 }
9732
9733 void select_gs_copy_shader(Program *program, struct nir_shader *gs_shader,
9734 ac_shader_config* config,
9735 struct radv_shader_args *args)
9736 {
9737 isel_context ctx = setup_isel_context(program, 1, &gs_shader, config, args, true);
9738
9739 program->next_fp_mode.preserve_signed_zero_inf_nan32 = false;
9740 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 = false;
9741 program->next_fp_mode.must_flush_denorms32 = false;
9742 program->next_fp_mode.must_flush_denorms16_64 = false;
9743 program->next_fp_mode.care_about_round32 = false;
9744 program->next_fp_mode.care_about_round16_64 = false;
9745 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
9746 program->next_fp_mode.denorm32 = 0;
9747 program->next_fp_mode.round32 = fp_round_ne;
9748 program->next_fp_mode.round16_64 = fp_round_ne;
9749 ctx.block->fp_mode = program->next_fp_mode;
9750
9751 add_startpgm(&ctx);
9752 append_logical_start(ctx.block);
9753
9754 Builder bld(ctx.program, ctx.block);
9755
9756 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), program->private_segment_buffer, Operand(RING_GSVS_VS * 16u));
9757
9758 Operand stream_id(0u);
9759 if (args->shader_info->so.num_outputs)
9760 stream_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
9761 get_arg(&ctx, ctx.args->streamout_config), Operand(0x20018u));
9762
9763 Temp vtx_offset = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), get_arg(&ctx, ctx.args->ac.vertex_id));
9764
9765 std::stack<Block> endif_blocks;
9766
9767 for (unsigned stream = 0; stream < 4; stream++) {
9768 if (stream_id.isConstant() && stream != stream_id.constantValue())
9769 continue;
9770
9771 unsigned num_components = args->shader_info->gs.num_stream_output_components[stream];
9772 if (stream > 0 && (!num_components || !args->shader_info->so.num_outputs))
9773 continue;
9774
9775 memset(ctx.outputs.mask, 0, sizeof(ctx.outputs.mask));
9776
9777 unsigned BB_if_idx = ctx.block->index;
9778 Block BB_endif = Block();
9779 if (!stream_id.isConstant()) {
9780 /* begin IF */
9781 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), stream_id, Operand(stream));
9782 append_logical_end(ctx.block);
9783 ctx.block->kind |= block_kind_uniform;
9784 bld.branch(aco_opcode::p_cbranch_z, cond);
9785
9786 BB_endif.kind |= ctx.block->kind & block_kind_top_level;
9787
9788 ctx.block = ctx.program->create_and_insert_block();
9789 add_edge(BB_if_idx, ctx.block);
9790 bld.reset(ctx.block);
9791 append_logical_start(ctx.block);
9792 }
9793
9794 unsigned offset = 0;
9795 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
9796 if (args->shader_info->gs.output_streams[i] != stream)
9797 continue;
9798
9799 unsigned output_usage_mask = args->shader_info->gs.output_usage_mask[i];
9800 unsigned length = util_last_bit(output_usage_mask);
9801 for (unsigned j = 0; j < length; ++j) {
9802 if (!(output_usage_mask & (1 << j)))
9803 continue;
9804
9805 unsigned const_offset = offset * args->shader_info->gs.vertices_out * 16 * 4;
9806 Temp voffset = vtx_offset;
9807 if (const_offset >= 4096u) {
9808 voffset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), voffset);
9809 const_offset %= 4096u;
9810 }
9811
9812 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dword, Format::MUBUF, 3, 1)};
9813 mubuf->definitions[0] = bld.def(v1);
9814 mubuf->operands[0] = Operand(gsvs_ring);
9815 mubuf->operands[1] = Operand(voffset);
9816 mubuf->operands[2] = Operand(0u);
9817 mubuf->offen = true;
9818 mubuf->offset = const_offset;
9819 mubuf->glc = true;
9820 mubuf->slc = true;
9821 mubuf->dlc = args->options->chip_class >= GFX10;
9822 mubuf->barrier = barrier_none;
9823 mubuf->can_reorder = true;
9824
9825 ctx.outputs.mask[i] |= 1 << j;
9826 ctx.outputs.outputs[i][j] = mubuf->definitions[0].getTemp();
9827
9828 bld.insert(std::move(mubuf));
9829
9830 offset++;
9831 }
9832 }
9833
9834 if (args->shader_info->so.num_outputs) {
9835 emit_streamout(&ctx, stream);
9836 bld.reset(ctx.block);
9837 }
9838
9839 if (stream == 0) {
9840 create_vs_exports(&ctx);
9841 ctx.block->kind |= block_kind_export_end;
9842 }
9843
9844 if (!stream_id.isConstant()) {
9845 append_logical_end(ctx.block);
9846
9847 /* branch from then block to endif block */
9848 bld.branch(aco_opcode::p_branch);
9849 add_edge(ctx.block->index, &BB_endif);
9850 ctx.block->kind |= block_kind_uniform;
9851
9852 /* emit else block */
9853 ctx.block = ctx.program->create_and_insert_block();
9854 add_edge(BB_if_idx, ctx.block);
9855 bld.reset(ctx.block);
9856 append_logical_start(ctx.block);
9857
9858 endif_blocks.push(std::move(BB_endif));
9859 }
9860 }
9861
9862 while (!endif_blocks.empty()) {
9863 Block BB_endif = std::move(endif_blocks.top());
9864 endif_blocks.pop();
9865
9866 Block *BB_else = ctx.block;
9867
9868 append_logical_end(BB_else);
9869 /* branch from else block to endif block */
9870 bld.branch(aco_opcode::p_branch);
9871 add_edge(BB_else->index, &BB_endif);
9872 BB_else->kind |= block_kind_uniform;
9873
9874 /** emit endif merge block */
9875 ctx.block = program->insert_block(std::move(BB_endif));
9876 bld.reset(ctx.block);
9877 append_logical_start(ctx.block);
9878 }
9879
9880 program->config->float_mode = program->blocks[0].fp_mode.val;
9881
9882 append_logical_end(ctx.block);
9883 ctx.block->kind |= block_kind_uniform;
9884 bld.sopp(aco_opcode::s_endpgm);
9885
9886 cleanup_cfg(program);
9887 }
9888 }