aco: handle when ACO adds new continue edges
[mesa.git] / src / amd / compiler / aco_instruction_selection.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 * Copyright © 2018 Google
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <algorithm>
27 #include <array>
28 #include <stack>
29 #include <map>
30
31 #include "ac_shader_util.h"
32 #include "aco_ir.h"
33 #include "aco_builder.h"
34 #include "aco_interface.h"
35 #include "aco_instruction_selection_setup.cpp"
36 #include "util/fast_idiv_by_const.h"
37
38 namespace aco {
39 namespace {
40
41 class loop_info_RAII {
42 isel_context* ctx;
43 unsigned header_idx_old;
44 Block* exit_old;
45 bool divergent_cont_old;
46 bool divergent_branch_old;
47 bool divergent_if_old;
48
49 public:
50 loop_info_RAII(isel_context* ctx, unsigned loop_header_idx, Block* loop_exit)
51 : ctx(ctx),
52 header_idx_old(ctx->cf_info.parent_loop.header_idx), exit_old(ctx->cf_info.parent_loop.exit),
53 divergent_cont_old(ctx->cf_info.parent_loop.has_divergent_continue),
54 divergent_branch_old(ctx->cf_info.parent_loop.has_divergent_branch),
55 divergent_if_old(ctx->cf_info.parent_if.is_divergent)
56 {
57 ctx->cf_info.parent_loop.header_idx = loop_header_idx;
58 ctx->cf_info.parent_loop.exit = loop_exit;
59 ctx->cf_info.parent_loop.has_divergent_continue = false;
60 ctx->cf_info.parent_loop.has_divergent_branch = false;
61 ctx->cf_info.parent_if.is_divergent = false;
62 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
63 }
64
65 ~loop_info_RAII()
66 {
67 ctx->cf_info.parent_loop.header_idx = header_idx_old;
68 ctx->cf_info.parent_loop.exit = exit_old;
69 ctx->cf_info.parent_loop.has_divergent_continue = divergent_cont_old;
70 ctx->cf_info.parent_loop.has_divergent_branch = divergent_branch_old;
71 ctx->cf_info.parent_if.is_divergent = divergent_if_old;
72 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth - 1;
73 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent)
74 ctx->cf_info.exec_potentially_empty_discard = false;
75 }
76 };
77
78 struct if_context {
79 Temp cond;
80
81 bool divergent_old;
82 bool exec_potentially_empty_discard_old;
83 bool exec_potentially_empty_break_old;
84 uint16_t exec_potentially_empty_break_depth_old;
85
86 unsigned BB_if_idx;
87 unsigned invert_idx;
88 bool then_branch_divergent;
89 Block BB_invert;
90 Block BB_endif;
91 };
92
93 static void visit_cf_list(struct isel_context *ctx,
94 struct exec_list *list);
95
96 static void add_logical_edge(unsigned pred_idx, Block *succ)
97 {
98 succ->logical_preds.emplace_back(pred_idx);
99 }
100
101
102 static void add_linear_edge(unsigned pred_idx, Block *succ)
103 {
104 succ->linear_preds.emplace_back(pred_idx);
105 }
106
107 static void add_edge(unsigned pred_idx, Block *succ)
108 {
109 add_logical_edge(pred_idx, succ);
110 add_linear_edge(pred_idx, succ);
111 }
112
113 static void append_logical_start(Block *b)
114 {
115 Builder(NULL, b).pseudo(aco_opcode::p_logical_start);
116 }
117
118 static void append_logical_end(Block *b)
119 {
120 Builder(NULL, b).pseudo(aco_opcode::p_logical_end);
121 }
122
123 Temp get_ssa_temp(struct isel_context *ctx, nir_ssa_def *def)
124 {
125 assert(ctx->allocated[def->index].id());
126 return ctx->allocated[def->index];
127 }
128
129 Temp emit_mbcnt(isel_context *ctx, Definition dst,
130 Operand mask_lo = Operand((uint32_t) -1), Operand mask_hi = Operand((uint32_t) -1))
131 {
132 Builder bld(ctx->program, ctx->block);
133 Definition lo_def = ctx->program->wave_size == 32 ? dst : bld.def(v1);
134 Temp thread_id_lo = bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, lo_def, mask_lo, Operand(0u));
135
136 if (ctx->program->wave_size == 32) {
137 return thread_id_lo;
138 } else {
139 Temp thread_id_hi = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32, dst, mask_hi, thread_id_lo);
140 return thread_id_hi;
141 }
142 }
143
144 Temp emit_wqm(isel_context *ctx, Temp src, Temp dst=Temp(0, s1), bool program_needs_wqm = false)
145 {
146 Builder bld(ctx->program, ctx->block);
147
148 if (!dst.id())
149 dst = bld.tmp(src.regClass());
150
151 assert(src.size() == dst.size());
152
153 if (ctx->stage != fragment_fs) {
154 if (!dst.id())
155 return src;
156
157 bld.copy(Definition(dst), src);
158 return dst;
159 }
160
161 bld.pseudo(aco_opcode::p_wqm, Definition(dst), src);
162 ctx->program->needs_wqm |= program_needs_wqm;
163 return dst;
164 }
165
166 static Temp emit_bpermute(isel_context *ctx, Builder &bld, Temp index, Temp data)
167 {
168 if (index.regClass() == s1)
169 return bld.readlane(bld.def(s1), data, index);
170
171 Temp index_x4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), index);
172
173 /* Currently not implemented on GFX6-7 */
174 assert(ctx->options->chip_class >= GFX8);
175
176 if (ctx->options->chip_class <= GFX9 || ctx->program->wave_size == 32) {
177 return bld.ds(aco_opcode::ds_bpermute_b32, bld.def(v1), index_x4, data);
178 }
179
180 /* GFX10, wave64 mode:
181 * The bpermute instruction is limited to half-wave operation, which means that it can't
182 * properly support subgroup shuffle like older generations (or wave32 mode), so we
183 * emulate it here.
184 */
185 if (!ctx->has_gfx10_wave64_bpermute) {
186 ctx->has_gfx10_wave64_bpermute = true;
187 ctx->program->config->num_shared_vgprs = 8; /* Shared VGPRs are allocated in groups of 8 */
188 ctx->program->vgpr_limit -= 4; /* We allocate 8 shared VGPRs, so we'll have 4 fewer normal VGPRs */
189 }
190
191 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
192 Temp lane_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), lane_id);
193 Temp index_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), index);
194 Temp cmp = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm, vcc), lane_is_hi, index_is_hi);
195
196 return bld.reduction(aco_opcode::p_wave64_bpermute, bld.def(v1), bld.def(s2), bld.def(s1, scc),
197 bld.vcc(cmp), Operand(v2.as_linear()), index_x4, data, gfx10_wave64_bpermute);
198 }
199
200 Temp as_vgpr(isel_context *ctx, Temp val)
201 {
202 if (val.type() == RegType::sgpr) {
203 Builder bld(ctx->program, ctx->block);
204 return bld.copy(bld.def(RegType::vgpr, val.size()), val);
205 }
206 assert(val.type() == RegType::vgpr);
207 return val;
208 }
209
210 //assumes a != 0xffffffff
211 void emit_v_div_u32(isel_context *ctx, Temp dst, Temp a, uint32_t b)
212 {
213 assert(b != 0);
214 Builder bld(ctx->program, ctx->block);
215
216 if (util_is_power_of_two_or_zero(b)) {
217 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)util_logbase2(b)), a);
218 return;
219 }
220
221 util_fast_udiv_info info = util_compute_fast_udiv_info(b, 32, 32);
222
223 assert(info.multiplier <= 0xffffffff);
224
225 bool pre_shift = info.pre_shift != 0;
226 bool increment = info.increment != 0;
227 bool multiply = true;
228 bool post_shift = info.post_shift != 0;
229
230 if (!pre_shift && !increment && !multiply && !post_shift) {
231 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), a);
232 return;
233 }
234
235 Temp pre_shift_dst = a;
236 if (pre_shift) {
237 pre_shift_dst = (increment || multiply || post_shift) ? bld.tmp(v1) : dst;
238 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(pre_shift_dst), Operand((uint32_t)info.pre_shift), a);
239 }
240
241 Temp increment_dst = pre_shift_dst;
242 if (increment) {
243 increment_dst = (post_shift || multiply) ? bld.tmp(v1) : dst;
244 bld.vadd32(Definition(increment_dst), Operand((uint32_t) info.increment), pre_shift_dst);
245 }
246
247 Temp multiply_dst = increment_dst;
248 if (multiply) {
249 multiply_dst = post_shift ? bld.tmp(v1) : dst;
250 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(multiply_dst), increment_dst,
251 bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand((uint32_t)info.multiplier)));
252 }
253
254 if (post_shift) {
255 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)info.post_shift), multiply_dst);
256 }
257 }
258
259 void emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, Temp dst)
260 {
261 Builder bld(ctx->program, ctx->block);
262 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(idx));
263 }
264
265
266 Temp emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, RegClass dst_rc)
267 {
268 /* no need to extract the whole vector */
269 if (src.regClass() == dst_rc) {
270 assert(idx == 0);
271 return src;
272 }
273 assert(src.size() > idx);
274 Builder bld(ctx->program, ctx->block);
275 auto it = ctx->allocated_vec.find(src.id());
276 /* the size check needs to be early because elements other than 0 may be garbage */
277 if (it != ctx->allocated_vec.end() && it->second[0].size() == dst_rc.size()) {
278 if (it->second[idx].regClass() == dst_rc) {
279 return it->second[idx];
280 } else {
281 assert(dst_rc.size() == it->second[idx].regClass().size());
282 assert(dst_rc.type() == RegType::vgpr && it->second[idx].type() == RegType::sgpr);
283 return bld.copy(bld.def(dst_rc), it->second[idx]);
284 }
285 }
286
287 if (src.size() == dst_rc.size()) {
288 assert(idx == 0);
289 return bld.copy(bld.def(dst_rc), src);
290 } else {
291 Temp dst = bld.tmp(dst_rc);
292 emit_extract_vector(ctx, src, idx, dst);
293 return dst;
294 }
295 }
296
297 void emit_split_vector(isel_context* ctx, Temp vec_src, unsigned num_components)
298 {
299 if (num_components == 1)
300 return;
301 if (ctx->allocated_vec.find(vec_src.id()) != ctx->allocated_vec.end())
302 return;
303 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_components)};
304 split->operands[0] = Operand(vec_src);
305 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
306 for (unsigned i = 0; i < num_components; i++) {
307 elems[i] = {ctx->program->allocateId(), RegClass(vec_src.type(), vec_src.size() / num_components)};
308 split->definitions[i] = Definition(elems[i]);
309 }
310 ctx->block->instructions.emplace_back(std::move(split));
311 ctx->allocated_vec.emplace(vec_src.id(), elems);
312 }
313
314 /* This vector expansion uses a mask to determine which elements in the new vector
315 * come from the original vector. The other elements are undefined. */
316 void expand_vector(isel_context* ctx, Temp vec_src, Temp dst, unsigned num_components, unsigned mask)
317 {
318 emit_split_vector(ctx, vec_src, util_bitcount(mask));
319
320 if (vec_src == dst)
321 return;
322
323 Builder bld(ctx->program, ctx->block);
324 if (num_components == 1) {
325 if (dst.type() == RegType::sgpr)
326 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec_src);
327 else
328 bld.copy(Definition(dst), vec_src);
329 return;
330 }
331
332 unsigned component_size = dst.size() / num_components;
333 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
334
335 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
336 vec->definitions[0] = Definition(dst);
337 unsigned k = 0;
338 for (unsigned i = 0; i < num_components; i++) {
339 if (mask & (1 << i)) {
340 Temp src = emit_extract_vector(ctx, vec_src, k++, RegClass(vec_src.type(), component_size));
341 if (dst.type() == RegType::sgpr)
342 src = bld.as_uniform(src);
343 vec->operands[i] = Operand(src);
344 } else {
345 vec->operands[i] = Operand(0u);
346 }
347 elems[i] = vec->operands[i].getTemp();
348 }
349 ctx->block->instructions.emplace_back(std::move(vec));
350 ctx->allocated_vec.emplace(dst.id(), elems);
351 }
352
353 Temp bool_to_vector_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s2))
354 {
355 Builder bld(ctx->program, ctx->block);
356 if (!dst.id())
357 dst = bld.tmp(bld.lm);
358
359 assert(val.regClass() == s1);
360 assert(dst.regClass() == bld.lm);
361
362 return bld.sop2(Builder::s_cselect, Definition(dst), Operand((uint32_t) -1), Operand(0u), bld.scc(val));
363 }
364
365 Temp bool_to_scalar_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s1))
366 {
367 Builder bld(ctx->program, ctx->block);
368 if (!dst.id())
369 dst = bld.tmp(s1);
370
371 assert(val.regClass() == bld.lm);
372 assert(dst.regClass() == s1);
373
374 /* if we're currently in WQM mode, ensure that the source is also computed in WQM */
375 Temp tmp = bld.tmp(s1);
376 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.scc(Definition(tmp)), val, Operand(exec, bld.lm));
377 return emit_wqm(ctx, tmp, dst);
378 }
379
380 Temp get_alu_src(struct isel_context *ctx, nir_alu_src src, unsigned size=1)
381 {
382 if (src.src.ssa->num_components == 1 && src.swizzle[0] == 0 && size == 1)
383 return get_ssa_temp(ctx, src.src.ssa);
384
385 if (src.src.ssa->num_components == size) {
386 bool identity_swizzle = true;
387 for (unsigned i = 0; identity_swizzle && i < size; i++) {
388 if (src.swizzle[i] != i)
389 identity_swizzle = false;
390 }
391 if (identity_swizzle)
392 return get_ssa_temp(ctx, src.src.ssa);
393 }
394
395 Temp vec = get_ssa_temp(ctx, src.src.ssa);
396 unsigned elem_size = vec.size() / src.src.ssa->num_components;
397 assert(elem_size > 0); /* TODO: 8 and 16-bit vectors not supported */
398 assert(vec.size() % elem_size == 0);
399
400 RegClass elem_rc = RegClass(vec.type(), elem_size);
401 if (size == 1) {
402 return emit_extract_vector(ctx, vec, src.swizzle[0], elem_rc);
403 } else {
404 assert(size <= 4);
405 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
406 aco_ptr<Pseudo_instruction> vec_instr{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
407 for (unsigned i = 0; i < size; ++i) {
408 elems[i] = emit_extract_vector(ctx, vec, src.swizzle[i], elem_rc);
409 vec_instr->operands[i] = Operand{elems[i]};
410 }
411 Temp dst{ctx->program->allocateId(), RegClass(vec.type(), elem_size * size)};
412 vec_instr->definitions[0] = Definition(dst);
413 ctx->block->instructions.emplace_back(std::move(vec_instr));
414 ctx->allocated_vec.emplace(dst.id(), elems);
415 return dst;
416 }
417 }
418
419 Temp convert_pointer_to_64_bit(isel_context *ctx, Temp ptr)
420 {
421 if (ptr.size() == 2)
422 return ptr;
423 Builder bld(ctx->program, ctx->block);
424 if (ptr.type() == RegType::vgpr)
425 ptr = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), ptr);
426 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s2),
427 ptr, Operand((unsigned)ctx->options->address32_hi));
428 }
429
430 void emit_sop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst, bool writes_scc)
431 {
432 aco_ptr<SOP2_instruction> sop2{create_instruction<SOP2_instruction>(op, Format::SOP2, 2, writes_scc ? 2 : 1)};
433 sop2->operands[0] = Operand(get_alu_src(ctx, instr->src[0]));
434 sop2->operands[1] = Operand(get_alu_src(ctx, instr->src[1]));
435 sop2->definitions[0] = Definition(dst);
436 if (writes_scc)
437 sop2->definitions[1] = Definition(ctx->program->allocateId(), scc, s1);
438 ctx->block->instructions.emplace_back(std::move(sop2));
439 }
440
441 void emit_vop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
442 bool commutative, bool swap_srcs=false, bool flush_denorms = false)
443 {
444 Builder bld(ctx->program, ctx->block);
445 Temp src0 = get_alu_src(ctx, instr->src[swap_srcs ? 1 : 0]);
446 Temp src1 = get_alu_src(ctx, instr->src[swap_srcs ? 0 : 1]);
447 if (src1.type() == RegType::sgpr) {
448 if (commutative && src0.type() == RegType::vgpr) {
449 Temp t = src0;
450 src0 = src1;
451 src1 = t;
452 } else if (src0.type() == RegType::vgpr &&
453 op != aco_opcode::v_madmk_f32 &&
454 op != aco_opcode::v_madak_f32 &&
455 op != aco_opcode::v_madmk_f16 &&
456 op != aco_opcode::v_madak_f16) {
457 /* If the instruction is not commutative, we emit a VOP3A instruction */
458 bld.vop2_e64(op, Definition(dst), src0, src1);
459 return;
460 } else {
461 src1 = bld.copy(bld.def(RegType::vgpr, src1.size()), src1); //TODO: as_vgpr
462 }
463 }
464
465 if (flush_denorms && ctx->program->chip_class < GFX9) {
466 assert(dst.size() == 1);
467 Temp tmp = bld.vop2(op, bld.def(v1), src0, src1);
468 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
469 } else {
470 bld.vop2(op, Definition(dst), src0, src1);
471 }
472 }
473
474 void emit_vop3a_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
475 bool flush_denorms = false)
476 {
477 Temp src0 = get_alu_src(ctx, instr->src[0]);
478 Temp src1 = get_alu_src(ctx, instr->src[1]);
479 Temp src2 = get_alu_src(ctx, instr->src[2]);
480
481 /* ensure that the instruction has at most 1 sgpr operand
482 * The optimizer will inline constants for us */
483 if (src0.type() == RegType::sgpr && src1.type() == RegType::sgpr)
484 src0 = as_vgpr(ctx, src0);
485 if (src1.type() == RegType::sgpr && src2.type() == RegType::sgpr)
486 src1 = as_vgpr(ctx, src1);
487 if (src2.type() == RegType::sgpr && src0.type() == RegType::sgpr)
488 src2 = as_vgpr(ctx, src2);
489
490 Builder bld(ctx->program, ctx->block);
491 if (flush_denorms && ctx->program->chip_class < GFX9) {
492 assert(dst.size() == 1);
493 Temp tmp = bld.vop3(op, Definition(dst), src0, src1, src2);
494 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
495 } else {
496 bld.vop3(op, Definition(dst), src0, src1, src2);
497 }
498 }
499
500 void emit_vop1_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
501 {
502 Builder bld(ctx->program, ctx->block);
503 bld.vop1(op, Definition(dst), get_alu_src(ctx, instr->src[0]));
504 }
505
506 void emit_vopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
507 {
508 Temp src0 = get_alu_src(ctx, instr->src[0]);
509 Temp src1 = get_alu_src(ctx, instr->src[1]);
510 assert(src0.size() == src1.size());
511
512 aco_ptr<Instruction> vopc;
513 if (src1.type() == RegType::sgpr) {
514 if (src0.type() == RegType::vgpr) {
515 /* to swap the operands, we might also have to change the opcode */
516 switch (op) {
517 case aco_opcode::v_cmp_lt_f32:
518 op = aco_opcode::v_cmp_gt_f32;
519 break;
520 case aco_opcode::v_cmp_ge_f32:
521 op = aco_opcode::v_cmp_le_f32;
522 break;
523 case aco_opcode::v_cmp_lt_i32:
524 op = aco_opcode::v_cmp_gt_i32;
525 break;
526 case aco_opcode::v_cmp_ge_i32:
527 op = aco_opcode::v_cmp_le_i32;
528 break;
529 case aco_opcode::v_cmp_lt_u32:
530 op = aco_opcode::v_cmp_gt_u32;
531 break;
532 case aco_opcode::v_cmp_ge_u32:
533 op = aco_opcode::v_cmp_le_u32;
534 break;
535 case aco_opcode::v_cmp_lt_f64:
536 op = aco_opcode::v_cmp_gt_f64;
537 break;
538 case aco_opcode::v_cmp_ge_f64:
539 op = aco_opcode::v_cmp_le_f64;
540 break;
541 case aco_opcode::v_cmp_lt_i64:
542 op = aco_opcode::v_cmp_gt_i64;
543 break;
544 case aco_opcode::v_cmp_ge_i64:
545 op = aco_opcode::v_cmp_le_i64;
546 break;
547 case aco_opcode::v_cmp_lt_u64:
548 op = aco_opcode::v_cmp_gt_u64;
549 break;
550 case aco_opcode::v_cmp_ge_u64:
551 op = aco_opcode::v_cmp_le_u64;
552 break;
553 default: /* eq and ne are commutative */
554 break;
555 }
556 Temp t = src0;
557 src0 = src1;
558 src1 = t;
559 } else {
560 src1 = as_vgpr(ctx, src1);
561 }
562 }
563
564 Builder bld(ctx->program, ctx->block);
565 bld.vopc(op, bld.hint_vcc(Definition(dst)), src0, src1);
566 }
567
568 void emit_sopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
569 {
570 Temp src0 = get_alu_src(ctx, instr->src[0]);
571 Temp src1 = get_alu_src(ctx, instr->src[1]);
572 Builder bld(ctx->program, ctx->block);
573
574 assert(dst.regClass() == bld.lm);
575 assert(src0.type() == RegType::sgpr);
576 assert(src1.type() == RegType::sgpr);
577 assert(src0.regClass() == src1.regClass());
578
579 /* Emit the SALU comparison instruction */
580 Temp cmp = bld.sopc(op, bld.scc(bld.def(s1)), src0, src1);
581 /* Turn the result into a per-lane bool */
582 bool_to_vector_condition(ctx, cmp, dst);
583 }
584
585 void emit_comparison(isel_context *ctx, nir_alu_instr *instr, Temp dst,
586 aco_opcode v32_op, aco_opcode v64_op, aco_opcode s32_op = aco_opcode::num_opcodes, aco_opcode s64_op = aco_opcode::num_opcodes)
587 {
588 aco_opcode s_op = instr->src[0].src.ssa->bit_size == 64 ? s64_op : s32_op;
589 aco_opcode v_op = instr->src[0].src.ssa->bit_size == 64 ? v64_op : v32_op;
590 bool divergent_vals = ctx->divergent_vals[instr->dest.dest.ssa.index];
591 bool use_valu = s_op == aco_opcode::num_opcodes ||
592 divergent_vals ||
593 ctx->allocated[instr->src[0].src.ssa->index].type() == RegType::vgpr ||
594 ctx->allocated[instr->src[1].src.ssa->index].type() == RegType::vgpr;
595 aco_opcode op = use_valu ? v_op : s_op;
596 assert(op != aco_opcode::num_opcodes);
597 assert(dst.regClass() == ctx->program->lane_mask);
598
599 if (use_valu)
600 emit_vopc_instruction(ctx, instr, op, dst);
601 else
602 emit_sopc_instruction(ctx, instr, op, dst);
603 }
604
605 void emit_boolean_logic(isel_context *ctx, nir_alu_instr *instr, Builder::WaveSpecificOpcode op, Temp dst)
606 {
607 Builder bld(ctx->program, ctx->block);
608 Temp src0 = get_alu_src(ctx, instr->src[0]);
609 Temp src1 = get_alu_src(ctx, instr->src[1]);
610
611 assert(dst.regClass() == bld.lm);
612 assert(src0.regClass() == bld.lm);
613 assert(src1.regClass() == bld.lm);
614
615 bld.sop2(op, Definition(dst), bld.def(s1, scc), src0, src1);
616 }
617
618 void emit_bcsel(isel_context *ctx, nir_alu_instr *instr, Temp dst)
619 {
620 Builder bld(ctx->program, ctx->block);
621 Temp cond = get_alu_src(ctx, instr->src[0]);
622 Temp then = get_alu_src(ctx, instr->src[1]);
623 Temp els = get_alu_src(ctx, instr->src[2]);
624
625 assert(cond.regClass() == bld.lm);
626
627 if (dst.type() == RegType::vgpr) {
628 aco_ptr<Instruction> bcsel;
629 if (dst.size() == 1) {
630 then = as_vgpr(ctx, then);
631 els = as_vgpr(ctx, els);
632
633 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), els, then, cond);
634 } else if (dst.size() == 2) {
635 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
636 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), then);
637 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
638 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), els);
639
640 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, cond);
641 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, cond);
642
643 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
644 } else {
645 fprintf(stderr, "Unimplemented NIR instr bit size: ");
646 nir_print_instr(&instr->instr, stderr);
647 fprintf(stderr, "\n");
648 }
649 return;
650 }
651
652 if (instr->dest.dest.ssa.bit_size == 1) {
653 assert(dst.regClass() == bld.lm);
654 assert(then.regClass() == bld.lm);
655 assert(els.regClass() == bld.lm);
656 }
657
658 if (!ctx->divergent_vals[instr->src[0].src.ssa->index]) { /* uniform condition and values in sgpr */
659 if (dst.regClass() == s1 || dst.regClass() == s2) {
660 assert((then.regClass() == s1 || then.regClass() == s2) && els.regClass() == then.regClass());
661 assert(dst.size() == then.size());
662 aco_opcode op = dst.regClass() == s1 ? aco_opcode::s_cselect_b32 : aco_opcode::s_cselect_b64;
663 bld.sop2(op, Definition(dst), then, els, bld.scc(bool_to_scalar_condition(ctx, cond)));
664 } else {
665 fprintf(stderr, "Unimplemented uniform bcsel bit size: ");
666 nir_print_instr(&instr->instr, stderr);
667 fprintf(stderr, "\n");
668 }
669 return;
670 }
671
672 /* divergent boolean bcsel
673 * this implements bcsel on bools: dst = s0 ? s1 : s2
674 * are going to be: dst = (s0 & s1) | (~s0 & s2) */
675 assert(instr->dest.dest.ssa.bit_size == 1);
676
677 if (cond.id() != then.id())
678 then = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), cond, then);
679
680 if (cond.id() == els.id())
681 bld.sop1(Builder::s_mov, Definition(dst), then);
682 else
683 bld.sop2(Builder::s_or, Definition(dst), bld.def(s1, scc), then,
684 bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), els, cond));
685 }
686
687 void emit_scaled_op(isel_context *ctx, Builder& bld, Definition dst, Temp val,
688 aco_opcode op, uint32_t undo)
689 {
690 /* multiply by 16777216 to handle denormals */
691 Temp is_denormal = bld.vopc(aco_opcode::v_cmp_class_f32, bld.hint_vcc(bld.def(bld.lm)),
692 as_vgpr(ctx, val), bld.copy(bld.def(v1), Operand((1u << 7) | (1u << 4))));
693 Temp scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x4b800000u), val);
694 scaled = bld.vop1(op, bld.def(v1), scaled);
695 scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(undo), scaled);
696
697 Temp not_scaled = bld.vop1(op, bld.def(v1), val);
698
699 bld.vop2(aco_opcode::v_cndmask_b32, dst, not_scaled, scaled, is_denormal);
700 }
701
702 void emit_rcp(isel_context *ctx, Builder& bld, Definition dst, Temp val)
703 {
704 if (ctx->block->fp_mode.denorm32 == 0) {
705 bld.vop1(aco_opcode::v_rcp_f32, dst, val);
706 return;
707 }
708
709 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rcp_f32, 0x4b800000u);
710 }
711
712 void emit_rsq(isel_context *ctx, Builder& bld, Definition dst, Temp val)
713 {
714 if (ctx->block->fp_mode.denorm32 == 0) {
715 bld.vop1(aco_opcode::v_rsq_f32, dst, val);
716 return;
717 }
718
719 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rsq_f32, 0x45800000u);
720 }
721
722 void emit_sqrt(isel_context *ctx, Builder& bld, Definition dst, Temp val)
723 {
724 if (ctx->block->fp_mode.denorm32 == 0) {
725 bld.vop1(aco_opcode::v_sqrt_f32, dst, val);
726 return;
727 }
728
729 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_sqrt_f32, 0x39800000u);
730 }
731
732 void emit_log2(isel_context *ctx, Builder& bld, Definition dst, Temp val)
733 {
734 if (ctx->block->fp_mode.denorm32 == 0) {
735 bld.vop1(aco_opcode::v_log_f32, dst, val);
736 return;
737 }
738
739 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_log_f32, 0xc1c00000u);
740 }
741
742 Temp emit_trunc_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
743 {
744 if (ctx->options->chip_class >= GFX7)
745 return bld.vop1(aco_opcode::v_trunc_f64, Definition(dst), val);
746
747 /* GFX6 doesn't support V_TRUNC_F64, lower it. */
748 /* TODO: create more efficient code! */
749 if (val.type() == RegType::sgpr)
750 val = as_vgpr(ctx, val);
751
752 /* Split the input value. */
753 Temp val_lo = bld.tmp(v1), val_hi = bld.tmp(v1);
754 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
755
756 /* Extract the exponent and compute the unbiased value. */
757 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f64, bld.def(v1), val);
758
759 /* Extract the fractional part. */
760 Temp fract_mask = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x000fffffu));
761 fract_mask = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), fract_mask, exponent);
762
763 Temp fract_mask_lo = bld.tmp(v1), fract_mask_hi = bld.tmp(v1);
764 bld.pseudo(aco_opcode::p_split_vector, Definition(fract_mask_lo), Definition(fract_mask_hi), fract_mask);
765
766 Temp fract_lo = bld.tmp(v1), fract_hi = bld.tmp(v1);
767 Temp tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_lo);
768 fract_lo = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_lo, tmp);
769 tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_hi);
770 fract_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_hi, tmp);
771
772 /* Get the sign bit. */
773 Temp sign = bld.vop2(aco_opcode::v_ashr_i32, bld.def(v1), Operand(31u), val_hi);
774
775 /* Decide the operation to apply depending on the unbiased exponent. */
776 Temp exp_lt0 = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)), exponent, Operand(0u));
777 Temp dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_lo, bld.copy(bld.def(v1), Operand(0u)), exp_lt0);
778 Temp dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_hi, sign, exp_lt0);
779 Temp exp_gt51 = bld.vopc_e64(aco_opcode::v_cmp_gt_i32, bld.def(s2), exponent, Operand(51u));
780 dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_lo, val_lo, exp_gt51);
781 dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_hi, val_hi, exp_gt51);
782
783 return bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst_lo, dst_hi);
784 }
785
786 Temp emit_floor_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
787 {
788 if (ctx->options->chip_class >= GFX7)
789 return bld.vop1(aco_opcode::v_floor_f64, Definition(dst), val);
790
791 /* GFX6 doesn't support V_FLOOR_F64, lower it. */
792 Temp src0 = as_vgpr(ctx, val);
793
794 Temp mask = bld.copy(bld.def(s1), Operand(3u)); /* isnan */
795 Temp min_val = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(-1u), Operand(0x3fefffffu));
796
797 Temp isnan = bld.vopc_e64(aco_opcode::v_cmp_class_f64, bld.hint_vcc(bld.def(bld.lm)), src0, mask);
798 Temp fract = bld.vop1(aco_opcode::v_fract_f64, bld.def(v2), src0);
799 Temp min = bld.vop3(aco_opcode::v_min_f64, bld.def(v2), fract, min_val);
800
801 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
802 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), src0);
803 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
804 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), min);
805
806 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, isnan);
807 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, isnan);
808
809 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), dst0, dst1);
810
811 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src0, v);
812 static_cast<VOP3A_instruction*>(add)->neg[1] = true;
813
814 return add->definitions[0].getTemp();
815 }
816
817 void visit_alu_instr(isel_context *ctx, nir_alu_instr *instr)
818 {
819 if (!instr->dest.dest.is_ssa) {
820 fprintf(stderr, "nir alu dst not in ssa: ");
821 nir_print_instr(&instr->instr, stderr);
822 fprintf(stderr, "\n");
823 abort();
824 }
825 Builder bld(ctx->program, ctx->block);
826 Temp dst = get_ssa_temp(ctx, &instr->dest.dest.ssa);
827 switch(instr->op) {
828 case nir_op_vec2:
829 case nir_op_vec3:
830 case nir_op_vec4: {
831 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
832 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.dest.ssa.num_components, 1)};
833 for (unsigned i = 0; i < instr->dest.dest.ssa.num_components; ++i) {
834 elems[i] = get_alu_src(ctx, instr->src[i]);
835 vec->operands[i] = Operand{elems[i]};
836 }
837 vec->definitions[0] = Definition(dst);
838 ctx->block->instructions.emplace_back(std::move(vec));
839 ctx->allocated_vec.emplace(dst.id(), elems);
840 break;
841 }
842 case nir_op_mov: {
843 Temp src = get_alu_src(ctx, instr->src[0]);
844 aco_ptr<Instruction> mov;
845 if (dst.type() == RegType::sgpr) {
846 if (src.type() == RegType::vgpr)
847 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
848 else if (src.regClass() == s1)
849 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
850 else if (src.regClass() == s2)
851 bld.sop1(aco_opcode::s_mov_b64, Definition(dst), src);
852 else
853 unreachable("wrong src register class for nir_op_imov");
854 } else if (dst.regClass() == v1) {
855 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), src);
856 } else if (dst.regClass() == v2) {
857 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
858 } else {
859 nir_print_instr(&instr->instr, stderr);
860 unreachable("Should have been lowered to scalar.");
861 }
862 break;
863 }
864 case nir_op_inot: {
865 Temp src = get_alu_src(ctx, instr->src[0]);
866 if (instr->dest.dest.ssa.bit_size == 1) {
867 assert(src.regClass() == bld.lm);
868 assert(dst.regClass() == bld.lm);
869 /* Don't use s_andn2 here, this allows the optimizer to make a better decision */
870 Temp tmp = bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), src);
871 bld.sop2(Builder::s_and, Definition(dst), bld.def(s1, scc), tmp, Operand(exec, bld.lm));
872 } else if (dst.regClass() == v1) {
873 emit_vop1_instruction(ctx, instr, aco_opcode::v_not_b32, dst);
874 } else if (dst.type() == RegType::sgpr) {
875 aco_opcode opcode = dst.size() == 1 ? aco_opcode::s_not_b32 : aco_opcode::s_not_b64;
876 bld.sop1(opcode, Definition(dst), bld.def(s1, scc), src);
877 } else {
878 fprintf(stderr, "Unimplemented NIR instr bit size: ");
879 nir_print_instr(&instr->instr, stderr);
880 fprintf(stderr, "\n");
881 }
882 break;
883 }
884 case nir_op_ineg: {
885 Temp src = get_alu_src(ctx, instr->src[0]);
886 if (dst.regClass() == v1) {
887 bld.vsub32(Definition(dst), Operand(0u), Operand(src));
888 } else if (dst.regClass() == s1) {
889 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand((uint32_t) -1), src);
890 } else if (dst.size() == 2) {
891 Temp src0 = bld.tmp(dst.type(), 1);
892 Temp src1 = bld.tmp(dst.type(), 1);
893 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
894
895 if (dst.regClass() == s2) {
896 Temp carry = bld.tmp(s1);
897 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), Operand(0u), src0);
898 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), src1, carry);
899 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
900 } else {
901 Temp lower = bld.tmp(v1);
902 Temp borrow = bld.vsub32(Definition(lower), Operand(0u), src0, true).def(1).getTemp();
903 Temp upper = bld.vsub32(bld.def(v1), Operand(0u), src1, false, borrow);
904 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
905 }
906 } else {
907 fprintf(stderr, "Unimplemented NIR instr bit size: ");
908 nir_print_instr(&instr->instr, stderr);
909 fprintf(stderr, "\n");
910 }
911 break;
912 }
913 case nir_op_iabs: {
914 if (dst.regClass() == s1) {
915 bld.sop1(aco_opcode::s_abs_i32, Definition(dst), bld.def(s1, scc), get_alu_src(ctx, instr->src[0]));
916 } else if (dst.regClass() == v1) {
917 Temp src = get_alu_src(ctx, instr->src[0]);
918 bld.vop2(aco_opcode::v_max_i32, Definition(dst), src, bld.vsub32(bld.def(v1), Operand(0u), src));
919 } else {
920 fprintf(stderr, "Unimplemented NIR instr bit size: ");
921 nir_print_instr(&instr->instr, stderr);
922 fprintf(stderr, "\n");
923 }
924 break;
925 }
926 case nir_op_isign: {
927 Temp src = get_alu_src(ctx, instr->src[0]);
928 if (dst.regClass() == s1) {
929 Temp tmp = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
930 Temp gtz = bld.sopc(aco_opcode::s_cmp_gt_i32, bld.def(s1, scc), src, Operand(0u));
931 bld.sop2(aco_opcode::s_add_i32, Definition(dst), bld.def(s1, scc), gtz, tmp);
932 } else if (dst.regClass() == s2) {
933 Temp neg = bld.sop2(aco_opcode::s_ashr_i64, bld.def(s2), bld.def(s1, scc), src, Operand(63u));
934 Temp neqz;
935 if (ctx->program->chip_class >= GFX8)
936 neqz = bld.sopc(aco_opcode::s_cmp_lg_u64, bld.def(s1, scc), src, Operand(0u));
937 else
938 neqz = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), src, Operand(0u)).def(1).getTemp();
939 /* SCC gets zero-extended to 64 bit */
940 bld.sop2(aco_opcode::s_or_b64, Definition(dst), bld.def(s1, scc), neg, bld.scc(neqz));
941 } else if (dst.regClass() == v1) {
942 Temp tmp = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
943 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
944 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(1u), tmp, gtz);
945 } else if (dst.regClass() == v2) {
946 Temp upper = emit_extract_vector(ctx, src, 1, v1);
947 Temp neg = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), upper);
948 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
949 Temp lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(1u), neg, gtz);
950 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), neg, gtz);
951 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
952 } else {
953 fprintf(stderr, "Unimplemented NIR instr bit size: ");
954 nir_print_instr(&instr->instr, stderr);
955 fprintf(stderr, "\n");
956 }
957 break;
958 }
959 case nir_op_imax: {
960 if (dst.regClass() == v1) {
961 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_i32, dst, true);
962 } else if (dst.regClass() == s1) {
963 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_i32, dst, true);
964 } else {
965 fprintf(stderr, "Unimplemented NIR instr bit size: ");
966 nir_print_instr(&instr->instr, stderr);
967 fprintf(stderr, "\n");
968 }
969 break;
970 }
971 case nir_op_umax: {
972 if (dst.regClass() == v1) {
973 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_u32, dst, true);
974 } else if (dst.regClass() == s1) {
975 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_u32, dst, true);
976 } else {
977 fprintf(stderr, "Unimplemented NIR instr bit size: ");
978 nir_print_instr(&instr->instr, stderr);
979 fprintf(stderr, "\n");
980 }
981 break;
982 }
983 case nir_op_imin: {
984 if (dst.regClass() == v1) {
985 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_i32, dst, true);
986 } else if (dst.regClass() == s1) {
987 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_i32, dst, true);
988 } else {
989 fprintf(stderr, "Unimplemented NIR instr bit size: ");
990 nir_print_instr(&instr->instr, stderr);
991 fprintf(stderr, "\n");
992 }
993 break;
994 }
995 case nir_op_umin: {
996 if (dst.regClass() == v1) {
997 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_u32, dst, true);
998 } else if (dst.regClass() == s1) {
999 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_u32, dst, true);
1000 } else {
1001 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1002 nir_print_instr(&instr->instr, stderr);
1003 fprintf(stderr, "\n");
1004 }
1005 break;
1006 }
1007 case nir_op_ior: {
1008 if (instr->dest.dest.ssa.bit_size == 1) {
1009 emit_boolean_logic(ctx, instr, Builder::s_or, dst);
1010 } else if (dst.regClass() == v1) {
1011 emit_vop2_instruction(ctx, instr, aco_opcode::v_or_b32, dst, true);
1012 } else if (dst.regClass() == s1) {
1013 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b32, dst, true);
1014 } else if (dst.regClass() == s2) {
1015 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b64, dst, true);
1016 } else {
1017 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1018 nir_print_instr(&instr->instr, stderr);
1019 fprintf(stderr, "\n");
1020 }
1021 break;
1022 }
1023 case nir_op_iand: {
1024 if (instr->dest.dest.ssa.bit_size == 1) {
1025 emit_boolean_logic(ctx, instr, Builder::s_and, dst);
1026 } else if (dst.regClass() == v1) {
1027 emit_vop2_instruction(ctx, instr, aco_opcode::v_and_b32, dst, true);
1028 } else if (dst.regClass() == s1) {
1029 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b32, dst, true);
1030 } else if (dst.regClass() == s2) {
1031 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b64, dst, true);
1032 } else {
1033 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1034 nir_print_instr(&instr->instr, stderr);
1035 fprintf(stderr, "\n");
1036 }
1037 break;
1038 }
1039 case nir_op_ixor: {
1040 if (instr->dest.dest.ssa.bit_size == 1) {
1041 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
1042 } else if (dst.regClass() == v1) {
1043 emit_vop2_instruction(ctx, instr, aco_opcode::v_xor_b32, dst, true);
1044 } else if (dst.regClass() == s1) {
1045 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b32, dst, true);
1046 } else if (dst.regClass() == s2) {
1047 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b64, dst, true);
1048 } else {
1049 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1050 nir_print_instr(&instr->instr, stderr);
1051 fprintf(stderr, "\n");
1052 }
1053 break;
1054 }
1055 case nir_op_ushr: {
1056 if (dst.regClass() == v1) {
1057 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshrrev_b32, dst, false, true);
1058 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1059 bld.vop3(aco_opcode::v_lshrrev_b64, Definition(dst),
1060 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1061 } else if (dst.regClass() == v2) {
1062 bld.vop3(aco_opcode::v_lshr_b64, Definition(dst),
1063 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1064 } else if (dst.regClass() == s2) {
1065 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b64, dst, true);
1066 } else if (dst.regClass() == s1) {
1067 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b32, dst, true);
1068 } else {
1069 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1070 nir_print_instr(&instr->instr, stderr);
1071 fprintf(stderr, "\n");
1072 }
1073 break;
1074 }
1075 case nir_op_ishl: {
1076 if (dst.regClass() == v1) {
1077 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshlrev_b32, dst, false, true);
1078 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1079 bld.vop3(aco_opcode::v_lshlrev_b64, Definition(dst),
1080 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1081 } else if (dst.regClass() == v2) {
1082 bld.vop3(aco_opcode::v_lshl_b64, Definition(dst),
1083 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1084 } else if (dst.regClass() == s1) {
1085 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b32, dst, true);
1086 } else if (dst.regClass() == s2) {
1087 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b64, dst, true);
1088 } else {
1089 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1090 nir_print_instr(&instr->instr, stderr);
1091 fprintf(stderr, "\n");
1092 }
1093 break;
1094 }
1095 case nir_op_ishr: {
1096 if (dst.regClass() == v1) {
1097 emit_vop2_instruction(ctx, instr, aco_opcode::v_ashrrev_i32, dst, false, true);
1098 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1099 bld.vop3(aco_opcode::v_ashrrev_i64, Definition(dst),
1100 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1101 } else if (dst.regClass() == v2) {
1102 bld.vop3(aco_opcode::v_ashr_i64, Definition(dst),
1103 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1104 } else if (dst.regClass() == s1) {
1105 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i32, dst, true);
1106 } else if (dst.regClass() == s2) {
1107 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i64, dst, true);
1108 } else {
1109 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1110 nir_print_instr(&instr->instr, stderr);
1111 fprintf(stderr, "\n");
1112 }
1113 break;
1114 }
1115 case nir_op_find_lsb: {
1116 Temp src = get_alu_src(ctx, instr->src[0]);
1117 if (src.regClass() == s1) {
1118 bld.sop1(aco_opcode::s_ff1_i32_b32, Definition(dst), src);
1119 } else if (src.regClass() == v1) {
1120 emit_vop1_instruction(ctx, instr, aco_opcode::v_ffbl_b32, dst);
1121 } else if (src.regClass() == s2) {
1122 bld.sop1(aco_opcode::s_ff1_i32_b64, Definition(dst), src);
1123 } else {
1124 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1125 nir_print_instr(&instr->instr, stderr);
1126 fprintf(stderr, "\n");
1127 }
1128 break;
1129 }
1130 case nir_op_ufind_msb:
1131 case nir_op_ifind_msb: {
1132 Temp src = get_alu_src(ctx, instr->src[0]);
1133 if (src.regClass() == s1 || src.regClass() == s2) {
1134 aco_opcode op = src.regClass() == s2 ?
1135 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b64 : aco_opcode::s_flbit_i32_i64) :
1136 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b32 : aco_opcode::s_flbit_i32);
1137 Temp msb_rev = bld.sop1(op, bld.def(s1), src);
1138
1139 Builder::Result sub = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc),
1140 Operand(src.size() * 32u - 1u), msb_rev);
1141 Temp msb = sub.def(0).getTemp();
1142 Temp carry = sub.def(1).getTemp();
1143
1144 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t)-1), msb, bld.scc(carry));
1145 } else if (src.regClass() == v1) {
1146 aco_opcode op = instr->op == nir_op_ufind_msb ? aco_opcode::v_ffbh_u32 : aco_opcode::v_ffbh_i32;
1147 Temp msb_rev = bld.tmp(v1);
1148 emit_vop1_instruction(ctx, instr, op, msb_rev);
1149 Temp msb = bld.tmp(v1);
1150 Temp carry = bld.vsub32(Definition(msb), Operand(31u), Operand(msb_rev), true).def(1).getTemp();
1151 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), msb, Operand((uint32_t)-1), carry);
1152 } else {
1153 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1154 nir_print_instr(&instr->instr, stderr);
1155 fprintf(stderr, "\n");
1156 }
1157 break;
1158 }
1159 case nir_op_bitfield_reverse: {
1160 if (dst.regClass() == s1) {
1161 bld.sop1(aco_opcode::s_brev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1162 } else if (dst.regClass() == v1) {
1163 bld.vop1(aco_opcode::v_bfrev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1164 } else {
1165 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1166 nir_print_instr(&instr->instr, stderr);
1167 fprintf(stderr, "\n");
1168 }
1169 break;
1170 }
1171 case nir_op_iadd: {
1172 if (dst.regClass() == s1) {
1173 emit_sop2_instruction(ctx, instr, aco_opcode::s_add_u32, dst, true);
1174 break;
1175 }
1176
1177 Temp src0 = get_alu_src(ctx, instr->src[0]);
1178 Temp src1 = get_alu_src(ctx, instr->src[1]);
1179 if (dst.regClass() == v1) {
1180 bld.vadd32(Definition(dst), Operand(src0), Operand(src1));
1181 break;
1182 }
1183
1184 assert(src0.size() == 2 && src1.size() == 2);
1185 Temp src00 = bld.tmp(src0.type(), 1);
1186 Temp src01 = bld.tmp(dst.type(), 1);
1187 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1188 Temp src10 = bld.tmp(src1.type(), 1);
1189 Temp src11 = bld.tmp(dst.type(), 1);
1190 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1191
1192 if (dst.regClass() == s2) {
1193 Temp carry = bld.tmp(s1);
1194 Temp dst0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1195 Temp dst1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), src01, src11, bld.scc(carry));
1196 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1197 } else if (dst.regClass() == v2) {
1198 Temp dst0 = bld.tmp(v1);
1199 Temp carry = bld.vadd32(Definition(dst0), src00, src10, true).def(1).getTemp();
1200 Temp dst1 = bld.vadd32(bld.def(v1), src01, src11, false, carry);
1201 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1202 } else {
1203 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1204 nir_print_instr(&instr->instr, stderr);
1205 fprintf(stderr, "\n");
1206 }
1207 break;
1208 }
1209 case nir_op_uadd_sat: {
1210 Temp src0 = get_alu_src(ctx, instr->src[0]);
1211 Temp src1 = get_alu_src(ctx, instr->src[1]);
1212 if (dst.regClass() == s1) {
1213 Temp tmp = bld.tmp(s1), carry = bld.tmp(s1);
1214 bld.sop2(aco_opcode::s_add_u32, Definition(tmp), bld.scc(Definition(carry)),
1215 src0, src1);
1216 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t) -1), tmp, bld.scc(carry));
1217 } else if (dst.regClass() == v1) {
1218 if (ctx->options->chip_class >= GFX9) {
1219 aco_ptr<VOP3A_instruction> add{create_instruction<VOP3A_instruction>(aco_opcode::v_add_u32, asVOP3(Format::VOP2), 2, 1)};
1220 add->operands[0] = Operand(src0);
1221 add->operands[1] = Operand(src1);
1222 add->definitions[0] = Definition(dst);
1223 add->clamp = 1;
1224 ctx->block->instructions.emplace_back(std::move(add));
1225 } else {
1226 if (src1.regClass() != v1)
1227 std::swap(src0, src1);
1228 assert(src1.regClass() == v1);
1229 Temp tmp = bld.tmp(v1);
1230 Temp carry = bld.vadd32(Definition(tmp), src0, src1, true).def(1).getTemp();
1231 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), tmp, Operand((uint32_t) -1), carry);
1232 }
1233 } else {
1234 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1235 nir_print_instr(&instr->instr, stderr);
1236 fprintf(stderr, "\n");
1237 }
1238 break;
1239 }
1240 case nir_op_uadd_carry: {
1241 Temp src0 = get_alu_src(ctx, instr->src[0]);
1242 Temp src1 = get_alu_src(ctx, instr->src[1]);
1243 if (dst.regClass() == s1) {
1244 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1245 break;
1246 }
1247 if (dst.regClass() == v1) {
1248 Temp carry = bld.vadd32(bld.def(v1), src0, src1, true).def(1).getTemp();
1249 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), carry);
1250 break;
1251 }
1252
1253 Temp src00 = bld.tmp(src0.type(), 1);
1254 Temp src01 = bld.tmp(dst.type(), 1);
1255 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1256 Temp src10 = bld.tmp(src1.type(), 1);
1257 Temp src11 = bld.tmp(dst.type(), 1);
1258 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1259 if (dst.regClass() == s2) {
1260 Temp carry = bld.tmp(s1);
1261 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1262 carry = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(carry)).def(1).getTemp();
1263 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1264 } else if (dst.regClass() == v2) {
1265 Temp carry = bld.vadd32(bld.def(v1), src00, src10, true).def(1).getTemp();
1266 carry = bld.vadd32(bld.def(v1), src01, src11, true, carry).def(1).getTemp();
1267 carry = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), carry);
1268 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1269 } else {
1270 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1271 nir_print_instr(&instr->instr, stderr);
1272 fprintf(stderr, "\n");
1273 }
1274 break;
1275 }
1276 case nir_op_isub: {
1277 if (dst.regClass() == s1) {
1278 emit_sop2_instruction(ctx, instr, aco_opcode::s_sub_i32, dst, true);
1279 break;
1280 }
1281
1282 Temp src0 = get_alu_src(ctx, instr->src[0]);
1283 Temp src1 = get_alu_src(ctx, instr->src[1]);
1284 if (dst.regClass() == v1) {
1285 bld.vsub32(Definition(dst), src0, src1);
1286 break;
1287 }
1288
1289 Temp src00 = bld.tmp(src0.type(), 1);
1290 Temp src01 = bld.tmp(dst.type(), 1);
1291 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1292 Temp src10 = bld.tmp(src1.type(), 1);
1293 Temp src11 = bld.tmp(dst.type(), 1);
1294 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1295 if (dst.regClass() == s2) {
1296 Temp carry = bld.tmp(s1);
1297 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1298 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), src01, src11, carry);
1299 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1300 } else if (dst.regClass() == v2) {
1301 Temp lower = bld.tmp(v1);
1302 Temp borrow = bld.vsub32(Definition(lower), src00, src10, true).def(1).getTemp();
1303 Temp upper = bld.vsub32(bld.def(v1), src01, src11, false, borrow);
1304 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1305 } else {
1306 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1307 nir_print_instr(&instr->instr, stderr);
1308 fprintf(stderr, "\n");
1309 }
1310 break;
1311 }
1312 case nir_op_usub_borrow: {
1313 Temp src0 = get_alu_src(ctx, instr->src[0]);
1314 Temp src1 = get_alu_src(ctx, instr->src[1]);
1315 if (dst.regClass() == s1) {
1316 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1317 break;
1318 } else if (dst.regClass() == v1) {
1319 Temp borrow = bld.vsub32(bld.def(v1), src0, src1, true).def(1).getTemp();
1320 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), borrow);
1321 break;
1322 }
1323
1324 Temp src00 = bld.tmp(src0.type(), 1);
1325 Temp src01 = bld.tmp(dst.type(), 1);
1326 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1327 Temp src10 = bld.tmp(src1.type(), 1);
1328 Temp src11 = bld.tmp(dst.type(), 1);
1329 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1330 if (dst.regClass() == s2) {
1331 Temp borrow = bld.tmp(s1);
1332 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), src00, src10);
1333 borrow = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(borrow)).def(1).getTemp();
1334 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1335 } else if (dst.regClass() == v2) {
1336 Temp borrow = bld.vsub32(bld.def(v1), src00, src10, true).def(1).getTemp();
1337 borrow = bld.vsub32(bld.def(v1), src01, src11, true, Operand(borrow)).def(1).getTemp();
1338 borrow = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), borrow);
1339 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1340 } else {
1341 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1342 nir_print_instr(&instr->instr, stderr);
1343 fprintf(stderr, "\n");
1344 }
1345 break;
1346 }
1347 case nir_op_imul: {
1348 if (dst.regClass() == v1) {
1349 bld.vop3(aco_opcode::v_mul_lo_u32, Definition(dst),
1350 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1351 } else if (dst.regClass() == s1) {
1352 emit_sop2_instruction(ctx, instr, aco_opcode::s_mul_i32, dst, false);
1353 } else {
1354 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1355 nir_print_instr(&instr->instr, stderr);
1356 fprintf(stderr, "\n");
1357 }
1358 break;
1359 }
1360 case nir_op_umul_high: {
1361 if (dst.regClass() == v1) {
1362 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1363 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1364 bld.sop2(aco_opcode::s_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1365 } else if (dst.regClass() == s1) {
1366 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1367 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1368 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1369 } else {
1370 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1371 nir_print_instr(&instr->instr, stderr);
1372 fprintf(stderr, "\n");
1373 }
1374 break;
1375 }
1376 case nir_op_imul_high: {
1377 if (dst.regClass() == v1) {
1378 bld.vop3(aco_opcode::v_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1379 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1380 bld.sop2(aco_opcode::s_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1381 } else if (dst.regClass() == s1) {
1382 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1383 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1384 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1385 } else {
1386 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1387 nir_print_instr(&instr->instr, stderr);
1388 fprintf(stderr, "\n");
1389 }
1390 break;
1391 }
1392 case nir_op_fmul: {
1393 if (dst.size() == 1) {
1394 emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f32, dst, true);
1395 } else if (dst.size() == 2) {
1396 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), get_alu_src(ctx, instr->src[0]),
1397 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1398 } else {
1399 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1400 nir_print_instr(&instr->instr, stderr);
1401 fprintf(stderr, "\n");
1402 }
1403 break;
1404 }
1405 case nir_op_fadd: {
1406 if (dst.size() == 1) {
1407 emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f32, dst, true);
1408 } else if (dst.size() == 2) {
1409 bld.vop3(aco_opcode::v_add_f64, Definition(dst), get_alu_src(ctx, instr->src[0]),
1410 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1411 } else {
1412 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1413 nir_print_instr(&instr->instr, stderr);
1414 fprintf(stderr, "\n");
1415 }
1416 break;
1417 }
1418 case nir_op_fsub: {
1419 Temp src0 = get_alu_src(ctx, instr->src[0]);
1420 Temp src1 = get_alu_src(ctx, instr->src[1]);
1421 if (dst.size() == 1) {
1422 if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
1423 emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f32, dst, false);
1424 else
1425 emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f32, dst, true);
1426 } else if (dst.size() == 2) {
1427 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst),
1428 get_alu_src(ctx, instr->src[0]),
1429 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1430 VOP3A_instruction* sub = static_cast<VOP3A_instruction*>(add);
1431 sub->neg[1] = true;
1432 } else {
1433 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1434 nir_print_instr(&instr->instr, stderr);
1435 fprintf(stderr, "\n");
1436 }
1437 break;
1438 }
1439 case nir_op_fmax: {
1440 if (dst.size() == 1) {
1441 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1442 } else if (dst.size() == 2) {
1443 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1444 Temp tmp = bld.vop3(aco_opcode::v_max_f64, bld.def(v2),
1445 get_alu_src(ctx, instr->src[0]),
1446 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1447 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1448 } else {
1449 bld.vop3(aco_opcode::v_max_f64, Definition(dst),
1450 get_alu_src(ctx, instr->src[0]),
1451 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1452 }
1453 } else {
1454 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1455 nir_print_instr(&instr->instr, stderr);
1456 fprintf(stderr, "\n");
1457 }
1458 break;
1459 }
1460 case nir_op_fmin: {
1461 if (dst.size() == 1) {
1462 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1463 } else if (dst.size() == 2) {
1464 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1465 Temp tmp = bld.vop3(aco_opcode::v_min_f64, bld.def(v2),
1466 get_alu_src(ctx, instr->src[0]),
1467 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1468 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1469 } else {
1470 bld.vop3(aco_opcode::v_min_f64, Definition(dst),
1471 get_alu_src(ctx, instr->src[0]),
1472 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1473 }
1474 } else {
1475 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1476 nir_print_instr(&instr->instr, stderr);
1477 fprintf(stderr, "\n");
1478 }
1479 break;
1480 }
1481 case nir_op_fmax3: {
1482 if (dst.size() == 1) {
1483 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1484 } else {
1485 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1486 nir_print_instr(&instr->instr, stderr);
1487 fprintf(stderr, "\n");
1488 }
1489 break;
1490 }
1491 case nir_op_fmin3: {
1492 if (dst.size() == 1) {
1493 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1494 } else {
1495 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1496 nir_print_instr(&instr->instr, stderr);
1497 fprintf(stderr, "\n");
1498 }
1499 break;
1500 }
1501 case nir_op_fmed3: {
1502 if (dst.size() == 1) {
1503 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1504 } else {
1505 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1506 nir_print_instr(&instr->instr, stderr);
1507 fprintf(stderr, "\n");
1508 }
1509 break;
1510 }
1511 case nir_op_umax3: {
1512 if (dst.size() == 1) {
1513 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_u32, dst);
1514 } else {
1515 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1516 nir_print_instr(&instr->instr, stderr);
1517 fprintf(stderr, "\n");
1518 }
1519 break;
1520 }
1521 case nir_op_umin3: {
1522 if (dst.size() == 1) {
1523 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_u32, dst);
1524 } else {
1525 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1526 nir_print_instr(&instr->instr, stderr);
1527 fprintf(stderr, "\n");
1528 }
1529 break;
1530 }
1531 case nir_op_umed3: {
1532 if (dst.size() == 1) {
1533 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_u32, dst);
1534 } else {
1535 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1536 nir_print_instr(&instr->instr, stderr);
1537 fprintf(stderr, "\n");
1538 }
1539 break;
1540 }
1541 case nir_op_imax3: {
1542 if (dst.size() == 1) {
1543 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_i32, dst);
1544 } else {
1545 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1546 nir_print_instr(&instr->instr, stderr);
1547 fprintf(stderr, "\n");
1548 }
1549 break;
1550 }
1551 case nir_op_imin3: {
1552 if (dst.size() == 1) {
1553 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_i32, dst);
1554 } else {
1555 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1556 nir_print_instr(&instr->instr, stderr);
1557 fprintf(stderr, "\n");
1558 }
1559 break;
1560 }
1561 case nir_op_imed3: {
1562 if (dst.size() == 1) {
1563 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_i32, dst);
1564 } else {
1565 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1566 nir_print_instr(&instr->instr, stderr);
1567 fprintf(stderr, "\n");
1568 }
1569 break;
1570 }
1571 case nir_op_cube_face_coord: {
1572 Temp in = get_alu_src(ctx, instr->src[0], 3);
1573 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1574 emit_extract_vector(ctx, in, 1, v1),
1575 emit_extract_vector(ctx, in, 2, v1) };
1576 Temp ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), src[0], src[1], src[2]);
1577 ma = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), ma);
1578 Temp sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), src[0], src[1], src[2]);
1579 Temp tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), src[0], src[1], src[2]);
1580 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, ma, Operand(0x3f000000u/*0.5*/));
1581 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, ma, Operand(0x3f000000u/*0.5*/));
1582 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), sc, tc);
1583 break;
1584 }
1585 case nir_op_cube_face_index: {
1586 Temp in = get_alu_src(ctx, instr->src[0], 3);
1587 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1588 emit_extract_vector(ctx, in, 1, v1),
1589 emit_extract_vector(ctx, in, 2, v1) };
1590 bld.vop3(aco_opcode::v_cubeid_f32, Definition(dst), src[0], src[1], src[2]);
1591 break;
1592 }
1593 case nir_op_bcsel: {
1594 emit_bcsel(ctx, instr, dst);
1595 break;
1596 }
1597 case nir_op_frsq: {
1598 if (dst.size() == 1) {
1599 emit_rsq(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1600 } else if (dst.size() == 2) {
1601 emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f64, dst);
1602 } else {
1603 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1604 nir_print_instr(&instr->instr, stderr);
1605 fprintf(stderr, "\n");
1606 }
1607 break;
1608 }
1609 case nir_op_fneg: {
1610 Temp src = get_alu_src(ctx, instr->src[0]);
1611 if (dst.size() == 1) {
1612 if (ctx->block->fp_mode.must_flush_denorms32)
1613 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1614 bld.vop2(aco_opcode::v_xor_b32, Definition(dst), Operand(0x80000000u), as_vgpr(ctx, src));
1615 } else if (dst.size() == 2) {
1616 if (ctx->block->fp_mode.must_flush_denorms16_64)
1617 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1618 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1619 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1620 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), Operand(0x80000000u), upper);
1621 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1622 } else {
1623 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1624 nir_print_instr(&instr->instr, stderr);
1625 fprintf(stderr, "\n");
1626 }
1627 break;
1628 }
1629 case nir_op_fabs: {
1630 Temp src = get_alu_src(ctx, instr->src[0]);
1631 if (dst.size() == 1) {
1632 if (ctx->block->fp_mode.must_flush_denorms32)
1633 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1634 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0x7FFFFFFFu), as_vgpr(ctx, src));
1635 } else if (dst.size() == 2) {
1636 if (ctx->block->fp_mode.must_flush_denorms16_64)
1637 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1638 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1639 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1640 upper = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7FFFFFFFu), upper);
1641 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1642 } else {
1643 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1644 nir_print_instr(&instr->instr, stderr);
1645 fprintf(stderr, "\n");
1646 }
1647 break;
1648 }
1649 case nir_op_fsat: {
1650 Temp src = get_alu_src(ctx, instr->src[0]);
1651 if (dst.size() == 1) {
1652 bld.vop3(aco_opcode::v_med3_f32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
1653 /* apparently, it is not necessary to flush denorms if this instruction is used with these operands */
1654 // TODO: confirm that this holds under any circumstances
1655 } else if (dst.size() == 2) {
1656 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src, Operand(0u));
1657 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(add);
1658 vop3->clamp = true;
1659 } else {
1660 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1661 nir_print_instr(&instr->instr, stderr);
1662 fprintf(stderr, "\n");
1663 }
1664 break;
1665 }
1666 case nir_op_flog2: {
1667 if (dst.size() == 1) {
1668 emit_log2(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1669 } else {
1670 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1671 nir_print_instr(&instr->instr, stderr);
1672 fprintf(stderr, "\n");
1673 }
1674 break;
1675 }
1676 case nir_op_frcp: {
1677 if (dst.size() == 1) {
1678 emit_rcp(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1679 } else if (dst.size() == 2) {
1680 emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f64, dst);
1681 } else {
1682 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1683 nir_print_instr(&instr->instr, stderr);
1684 fprintf(stderr, "\n");
1685 }
1686 break;
1687 }
1688 case nir_op_fexp2: {
1689 if (dst.size() == 1) {
1690 emit_vop1_instruction(ctx, instr, aco_opcode::v_exp_f32, dst);
1691 } else {
1692 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1693 nir_print_instr(&instr->instr, stderr);
1694 fprintf(stderr, "\n");
1695 }
1696 break;
1697 }
1698 case nir_op_fsqrt: {
1699 if (dst.size() == 1) {
1700 emit_sqrt(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1701 } else if (dst.size() == 2) {
1702 emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f64, dst);
1703 } else {
1704 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1705 nir_print_instr(&instr->instr, stderr);
1706 fprintf(stderr, "\n");
1707 }
1708 break;
1709 }
1710 case nir_op_ffract: {
1711 if (dst.size() == 1) {
1712 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f32, dst);
1713 } else if (dst.size() == 2) {
1714 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f64, dst);
1715 } else {
1716 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1717 nir_print_instr(&instr->instr, stderr);
1718 fprintf(stderr, "\n");
1719 }
1720 break;
1721 }
1722 case nir_op_ffloor: {
1723 if (dst.size() == 1) {
1724 emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f32, dst);
1725 } else if (dst.size() == 2) {
1726 emit_floor_f64(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1727 } else {
1728 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1729 nir_print_instr(&instr->instr, stderr);
1730 fprintf(stderr, "\n");
1731 }
1732 break;
1733 }
1734 case nir_op_fceil: {
1735 if (dst.size() == 1) {
1736 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f32, dst);
1737 } else if (dst.size() == 2) {
1738 if (ctx->options->chip_class >= GFX7) {
1739 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f64, dst);
1740 } else {
1741 /* GFX6 doesn't support V_CEIL_F64, lower it. */
1742 Temp src0 = get_alu_src(ctx, instr->src[0]);
1743
1744 /* trunc = trunc(src0)
1745 * if (src0 > 0.0 && src0 != trunc)
1746 * trunc += 1.0
1747 */
1748 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src0);
1749 Temp tmp0 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.def(bld.lm), src0, Operand(0u));
1750 Temp tmp1 = bld.vopc(aco_opcode::v_cmp_lg_f64, bld.hint_vcc(bld.def(bld.lm)), src0, trunc);
1751 Temp cond = bld.sop2(aco_opcode::s_and_b64, bld.hint_vcc(bld.def(s2)), bld.def(s1, scc), tmp0, tmp1);
1752 Temp add = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), bld.copy(bld.def(v1), Operand(0u)), bld.copy(bld.def(v1), Operand(0x3ff00000u)), cond);
1753 add = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), bld.copy(bld.def(v1), Operand(0u)), add);
1754 bld.vop3(aco_opcode::v_add_f64, Definition(dst), trunc, add);
1755 }
1756 } else {
1757 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1758 nir_print_instr(&instr->instr, stderr);
1759 fprintf(stderr, "\n");
1760 }
1761 break;
1762 }
1763 case nir_op_ftrunc: {
1764 if (dst.size() == 1) {
1765 emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f32, dst);
1766 } else if (dst.size() == 2) {
1767 emit_trunc_f64(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1768 } else {
1769 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1770 nir_print_instr(&instr->instr, stderr);
1771 fprintf(stderr, "\n");
1772 }
1773 break;
1774 }
1775 case nir_op_fround_even: {
1776 if (dst.size() == 1) {
1777 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f32, dst);
1778 } else if (dst.size() == 2) {
1779 if (ctx->options->chip_class >= GFX7) {
1780 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f64, dst);
1781 } else {
1782 /* GFX6 doesn't support V_RNDNE_F64, lower it. */
1783 Temp src0 = get_alu_src(ctx, instr->src[0]);
1784
1785 Temp src0_lo = bld.tmp(v1), src0_hi = bld.tmp(v1);
1786 bld.pseudo(aco_opcode::p_split_vector, Definition(src0_lo), Definition(src0_hi), src0);
1787
1788 Temp bitmask = bld.sop1(aco_opcode::s_brev_b32, bld.def(s1), bld.copy(bld.def(s1), Operand(-2u)));
1789 Temp bfi = bld.vop3(aco_opcode::v_bfi_b32, bld.def(v1), bitmask, bld.copy(bld.def(v1), Operand(0x43300000u)), as_vgpr(ctx, src0_hi));
1790 Temp tmp = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), src0, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
1791 Instruction *sub = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), tmp, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
1792 static_cast<VOP3A_instruction*>(sub)->neg[1] = true;
1793 tmp = sub->definitions[0].getTemp();
1794
1795 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x432fffffu));
1796 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.hint_vcc(bld.def(bld.lm)), src0, v);
1797 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
1798 Temp cond = vop3->definitions[0].getTemp();
1799
1800 Temp tmp_lo = bld.tmp(v1), tmp_hi = bld.tmp(v1);
1801 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp_lo), Definition(tmp_hi), tmp);
1802 Temp dst0 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_lo, as_vgpr(ctx, src0_lo), cond);
1803 Temp dst1 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_hi, as_vgpr(ctx, src0_hi), cond);
1804
1805 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1806 }
1807 } else {
1808 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1809 nir_print_instr(&instr->instr, stderr);
1810 fprintf(stderr, "\n");
1811 }
1812 break;
1813 }
1814 case nir_op_fsin:
1815 case nir_op_fcos: {
1816 Temp src = get_alu_src(ctx, instr->src[0]);
1817 aco_ptr<Instruction> norm;
1818 if (dst.size() == 1) {
1819 Temp half_pi = bld.copy(bld.def(s1), Operand(0x3e22f983u));
1820 Temp tmp = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), half_pi, as_vgpr(ctx, src));
1821
1822 /* before GFX9, v_sin_f32 and v_cos_f32 had a valid input domain of [-256, +256] */
1823 if (ctx->options->chip_class < GFX9)
1824 tmp = bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), tmp);
1825
1826 aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f32 : aco_opcode::v_cos_f32;
1827 bld.vop1(opcode, Definition(dst), tmp);
1828 } else {
1829 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1830 nir_print_instr(&instr->instr, stderr);
1831 fprintf(stderr, "\n");
1832 }
1833 break;
1834 }
1835 case nir_op_ldexp: {
1836 if (dst.size() == 1) {
1837 bld.vop3(aco_opcode::v_ldexp_f32, Definition(dst),
1838 as_vgpr(ctx, get_alu_src(ctx, instr->src[0])),
1839 get_alu_src(ctx, instr->src[1]));
1840 } else if (dst.size() == 2) {
1841 bld.vop3(aco_opcode::v_ldexp_f64, Definition(dst),
1842 as_vgpr(ctx, get_alu_src(ctx, instr->src[0])),
1843 get_alu_src(ctx, instr->src[1]));
1844 } else {
1845 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1846 nir_print_instr(&instr->instr, stderr);
1847 fprintf(stderr, "\n");
1848 }
1849 break;
1850 }
1851 case nir_op_frexp_sig: {
1852 if (dst.size() == 1) {
1853 bld.vop1(aco_opcode::v_frexp_mant_f32, Definition(dst),
1854 get_alu_src(ctx, instr->src[0]));
1855 } else if (dst.size() == 2) {
1856 bld.vop1(aco_opcode::v_frexp_mant_f64, Definition(dst),
1857 get_alu_src(ctx, instr->src[0]));
1858 } else {
1859 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1860 nir_print_instr(&instr->instr, stderr);
1861 fprintf(stderr, "\n");
1862 }
1863 break;
1864 }
1865 case nir_op_frexp_exp: {
1866 if (instr->src[0].src.ssa->bit_size == 32) {
1867 bld.vop1(aco_opcode::v_frexp_exp_i32_f32, Definition(dst),
1868 get_alu_src(ctx, instr->src[0]));
1869 } else if (instr->src[0].src.ssa->bit_size == 64) {
1870 bld.vop1(aco_opcode::v_frexp_exp_i32_f64, Definition(dst),
1871 get_alu_src(ctx, instr->src[0]));
1872 } else {
1873 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1874 nir_print_instr(&instr->instr, stderr);
1875 fprintf(stderr, "\n");
1876 }
1877 break;
1878 }
1879 case nir_op_fsign: {
1880 Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
1881 if (dst.size() == 1) {
1882 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1883 src = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0x3f800000u), src, cond);
1884 cond = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1885 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0xbf800000u), src, cond);
1886 } else if (dst.size() == 2) {
1887 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1888 Temp tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0x3FF00000u));
1889 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, emit_extract_vector(ctx, src, 1, v1), cond);
1890
1891 cond = bld.vopc(aco_opcode::v_cmp_le_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1892 tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0xBFF00000u));
1893 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, upper, cond);
1894
1895 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
1896 } else {
1897 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1898 nir_print_instr(&instr->instr, stderr);
1899 fprintf(stderr, "\n");
1900 }
1901 break;
1902 }
1903 case nir_op_f2f32: {
1904 if (instr->src[0].src.ssa->bit_size == 64) {
1905 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f64, dst);
1906 } else {
1907 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1908 nir_print_instr(&instr->instr, stderr);
1909 fprintf(stderr, "\n");
1910 }
1911 break;
1912 }
1913 case nir_op_f2f64: {
1914 if (instr->src[0].src.ssa->bit_size == 32) {
1915 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_f32, dst);
1916 } else {
1917 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1918 nir_print_instr(&instr->instr, stderr);
1919 fprintf(stderr, "\n");
1920 }
1921 break;
1922 }
1923 case nir_op_i2f32: {
1924 assert(dst.size() == 1);
1925 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_i32, dst);
1926 break;
1927 }
1928 case nir_op_i2f64: {
1929 if (instr->src[0].src.ssa->bit_size == 32) {
1930 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_i32, dst);
1931 } else if (instr->src[0].src.ssa->bit_size == 64) {
1932 Temp src = get_alu_src(ctx, instr->src[0]);
1933 RegClass rc = RegClass(src.type(), 1);
1934 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
1935 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1936 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
1937 upper = bld.vop1(aco_opcode::v_cvt_f64_i32, bld.def(v2), upper);
1938 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
1939 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
1940
1941 } else {
1942 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1943 nir_print_instr(&instr->instr, stderr);
1944 fprintf(stderr, "\n");
1945 }
1946 break;
1947 }
1948 case nir_op_u2f32: {
1949 assert(dst.size() == 1);
1950 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_u32, dst);
1951 break;
1952 }
1953 case nir_op_u2f64: {
1954 if (instr->src[0].src.ssa->bit_size == 32) {
1955 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_u32, dst);
1956 } else if (instr->src[0].src.ssa->bit_size == 64) {
1957 Temp src = get_alu_src(ctx, instr->src[0]);
1958 RegClass rc = RegClass(src.type(), 1);
1959 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
1960 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1961 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
1962 upper = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), upper);
1963 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
1964 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
1965 } else {
1966 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1967 nir_print_instr(&instr->instr, stderr);
1968 fprintf(stderr, "\n");
1969 }
1970 break;
1971 }
1972 case nir_op_f2i32: {
1973 Temp src = get_alu_src(ctx, instr->src[0]);
1974 if (instr->src[0].src.ssa->bit_size == 32) {
1975 if (dst.type() == RegType::vgpr)
1976 bld.vop1(aco_opcode::v_cvt_i32_f32, Definition(dst), src);
1977 else
1978 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
1979 bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), src));
1980
1981 } else if (instr->src[0].src.ssa->bit_size == 64) {
1982 if (dst.type() == RegType::vgpr)
1983 bld.vop1(aco_opcode::v_cvt_i32_f64, Definition(dst), src);
1984 else
1985 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
1986 bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), src));
1987
1988 } else {
1989 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1990 nir_print_instr(&instr->instr, stderr);
1991 fprintf(stderr, "\n");
1992 }
1993 break;
1994 }
1995 case nir_op_f2u32: {
1996 Temp src = get_alu_src(ctx, instr->src[0]);
1997 if (instr->src[0].src.ssa->bit_size == 32) {
1998 if (dst.type() == RegType::vgpr)
1999 bld.vop1(aco_opcode::v_cvt_u32_f32, Definition(dst), src);
2000 else
2001 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2002 bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), src));
2003
2004 } else if (instr->src[0].src.ssa->bit_size == 64) {
2005 if (dst.type() == RegType::vgpr)
2006 bld.vop1(aco_opcode::v_cvt_u32_f64, Definition(dst), src);
2007 else
2008 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2009 bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), src));
2010
2011 } else {
2012 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2013 nir_print_instr(&instr->instr, stderr);
2014 fprintf(stderr, "\n");
2015 }
2016 break;
2017 }
2018 case nir_op_f2i64: {
2019 Temp src = get_alu_src(ctx, instr->src[0]);
2020 if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::vgpr) {
2021 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2022 exponent = bld.vop3(aco_opcode::v_med3_i32, bld.def(v1), Operand(0x0u), exponent, Operand(64u));
2023 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2024 Temp sign = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
2025 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2026 mantissa = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(7u), mantissa);
2027 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2028 Temp new_exponent = bld.tmp(v1);
2029 Temp borrow = bld.vsub32(Definition(new_exponent), Operand(63u), exponent, true).def(1).getTemp();
2030 if (ctx->program->chip_class >= GFX8)
2031 mantissa = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), new_exponent, mantissa);
2032 else
2033 mantissa = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), mantissa, new_exponent);
2034 Temp saturate = bld.vop1(aco_opcode::v_bfrev_b32, bld.def(v1), Operand(0xfffffffeu));
2035 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2036 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2037 lower = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), lower, Operand(0xffffffffu), borrow);
2038 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), upper, saturate, borrow);
2039 lower = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, lower);
2040 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, upper);
2041 Temp new_lower = bld.tmp(v1);
2042 borrow = bld.vsub32(Definition(new_lower), lower, sign, true).def(1).getTemp();
2043 Temp new_upper = bld.vsub32(bld.def(v1), upper, sign, false, borrow);
2044 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), new_lower, new_upper);
2045
2046 } else if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::sgpr) {
2047 if (src.type() == RegType::vgpr)
2048 src = bld.as_uniform(src);
2049 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2050 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2051 exponent = bld.sop2(aco_opcode::s_max_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2052 exponent = bld.sop2(aco_opcode::s_min_u32, bld.def(s1), bld.def(s1, scc), Operand(64u), exponent);
2053 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2054 Temp sign = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
2055 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2056 mantissa = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), mantissa, Operand(7u));
2057 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2058 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(63u), exponent);
2059 mantissa = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent);
2060 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), exponent, Operand(0xffffffffu)); // exp >= 64
2061 Temp saturate = bld.sop1(aco_opcode::s_brev_b64, bld.def(s2), Operand(0xfffffffeu));
2062 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), saturate, mantissa, cond);
2063 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2064 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2065 lower = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, lower);
2066 upper = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, upper);
2067 Temp borrow = bld.tmp(s1);
2068 lower = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), lower, sign);
2069 upper = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), upper, sign, borrow);
2070 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2071
2072 } else if (instr->src[0].src.ssa->bit_size == 64) {
2073 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2074 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2075 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2076 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2077 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2078 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2079 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2080 Temp upper = bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), floor);
2081 if (dst.type() == RegType::sgpr) {
2082 lower = bld.as_uniform(lower);
2083 upper = bld.as_uniform(upper);
2084 }
2085 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2086
2087 } else {
2088 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2089 nir_print_instr(&instr->instr, stderr);
2090 fprintf(stderr, "\n");
2091 }
2092 break;
2093 }
2094 case nir_op_f2u64: {
2095 Temp src = get_alu_src(ctx, instr->src[0]);
2096 if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::vgpr) {
2097 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2098 Temp exponent_in_range = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(64u), exponent);
2099 exponent = bld.vop2(aco_opcode::v_max_i32, bld.def(v1), Operand(0x0u), exponent);
2100 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2101 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2102 Temp exponent_small = bld.vsub32(bld.def(v1), Operand(24u), exponent);
2103 Temp small = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), exponent_small, mantissa);
2104 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2105 Temp new_exponent = bld.tmp(v1);
2106 Temp cond_small = bld.vsub32(Definition(new_exponent), exponent, Operand(24u), true).def(1).getTemp();
2107 if (ctx->program->chip_class >= GFX8)
2108 mantissa = bld.vop3(aco_opcode::v_lshlrev_b64, bld.def(v2), new_exponent, mantissa);
2109 else
2110 mantissa = bld.vop3(aco_opcode::v_lshl_b64, bld.def(v2), mantissa, new_exponent);
2111 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2112 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2113 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), lower, small, cond_small);
2114 upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), upper, Operand(0u), cond_small);
2115 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), lower, exponent_in_range);
2116 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), upper, exponent_in_range);
2117 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2118
2119 } else if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::sgpr) {
2120 if (src.type() == RegType::vgpr)
2121 src = bld.as_uniform(src);
2122 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2123 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2124 exponent = bld.sop2(aco_opcode::s_max_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2125 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2126 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2127 Temp exponent_small = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(24u), exponent);
2128 Temp small = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), mantissa, exponent_small);
2129 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2130 Temp exponent_large = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(24u));
2131 mantissa = bld.sop2(aco_opcode::s_lshl_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent_large);
2132 Temp cond = bld.sopc(aco_opcode::s_cmp_ge_i32, bld.def(s1, scc), Operand(64u), exponent);
2133 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), mantissa, Operand(0xffffffffu), cond);
2134 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2135 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2136 Temp cond_small = bld.sopc(aco_opcode::s_cmp_le_i32, bld.def(s1, scc), exponent, Operand(24u));
2137 lower = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), small, lower, cond_small);
2138 upper = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), Operand(0u), upper, cond_small);
2139 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2140
2141 } else if (instr->src[0].src.ssa->bit_size == 64) {
2142 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2143 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2144 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2145 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2146 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2147 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2148 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2149 Temp upper = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), floor);
2150 if (dst.type() == RegType::sgpr) {
2151 lower = bld.as_uniform(lower);
2152 upper = bld.as_uniform(upper);
2153 }
2154 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2155
2156 } else {
2157 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2158 nir_print_instr(&instr->instr, stderr);
2159 fprintf(stderr, "\n");
2160 }
2161 break;
2162 }
2163 case nir_op_b2f32: {
2164 Temp src = get_alu_src(ctx, instr->src[0]);
2165 assert(src.regClass() == bld.lm);
2166
2167 if (dst.regClass() == s1) {
2168 src = bool_to_scalar_condition(ctx, src);
2169 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3f800000u), src);
2170 } else if (dst.regClass() == v1) {
2171 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
2172 } else {
2173 unreachable("Wrong destination register class for nir_op_b2f32.");
2174 }
2175 break;
2176 }
2177 case nir_op_b2f64: {
2178 Temp src = get_alu_src(ctx, instr->src[0]);
2179 assert(src.regClass() == bld.lm);
2180
2181 if (dst.regClass() == s2) {
2182 src = bool_to_scalar_condition(ctx, src);
2183 bld.sop2(aco_opcode::s_cselect_b64, Definition(dst), Operand(0x3f800000u), Operand(0u), bld.scc(src));
2184 } else if (dst.regClass() == v2) {
2185 Temp one = bld.vop1(aco_opcode::v_mov_b32, bld.def(v2), Operand(0x3FF00000u));
2186 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), one, src);
2187 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
2188 } else {
2189 unreachable("Wrong destination register class for nir_op_b2f64.");
2190 }
2191 break;
2192 }
2193 case nir_op_i2i32: {
2194 Temp src = get_alu_src(ctx, instr->src[0]);
2195 if (instr->src[0].src.ssa->bit_size == 64) {
2196 /* we can actually just say dst = src, as it would map the lower register */
2197 emit_extract_vector(ctx, src, 0, dst);
2198 } else {
2199 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2200 nir_print_instr(&instr->instr, stderr);
2201 fprintf(stderr, "\n");
2202 }
2203 break;
2204 }
2205 case nir_op_u2u32: {
2206 Temp src = get_alu_src(ctx, instr->src[0]);
2207 if (instr->src[0].src.ssa->bit_size == 16) {
2208 if (dst.regClass() == s1) {
2209 bld.sop2(aco_opcode::s_and_b32, Definition(dst), bld.def(s1, scc), Operand(0xFFFFu), src);
2210 } else {
2211 // TODO: do better with SDWA
2212 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0xFFFFu), src);
2213 }
2214 } else if (instr->src[0].src.ssa->bit_size == 64) {
2215 /* we can actually just say dst = src, as it would map the lower register */
2216 emit_extract_vector(ctx, src, 0, dst);
2217 } else {
2218 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2219 nir_print_instr(&instr->instr, stderr);
2220 fprintf(stderr, "\n");
2221 }
2222 break;
2223 }
2224 case nir_op_i2i64: {
2225 Temp src = get_alu_src(ctx, instr->src[0]);
2226 if (src.regClass() == s1) {
2227 Temp high = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
2228 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, high);
2229 } else if (src.regClass() == v1) {
2230 Temp high = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
2231 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, high);
2232 } else {
2233 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2234 nir_print_instr(&instr->instr, stderr);
2235 fprintf(stderr, "\n");
2236 }
2237 break;
2238 }
2239 case nir_op_u2u64: {
2240 Temp src = get_alu_src(ctx, instr->src[0]);
2241 if (instr->src[0].src.ssa->bit_size == 32) {
2242 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, Operand(0u));
2243 } else {
2244 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2245 nir_print_instr(&instr->instr, stderr);
2246 fprintf(stderr, "\n");
2247 }
2248 break;
2249 }
2250 case nir_op_b2i32: {
2251 Temp src = get_alu_src(ctx, instr->src[0]);
2252 assert(src.regClass() == bld.lm);
2253
2254 if (dst.regClass() == s1) {
2255 // TODO: in a post-RA optimization, we can check if src is in VCC, and directly use VCCNZ
2256 bool_to_scalar_condition(ctx, src, dst);
2257 } else if (dst.regClass() == v1) {
2258 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), src);
2259 } else {
2260 unreachable("Invalid register class for b2i32");
2261 }
2262 break;
2263 }
2264 case nir_op_i2b1: {
2265 Temp src = get_alu_src(ctx, instr->src[0]);
2266 assert(dst.regClass() == bld.lm);
2267
2268 if (src.type() == RegType::vgpr) {
2269 assert(src.regClass() == v1 || src.regClass() == v2);
2270 assert(dst.regClass() == bld.lm);
2271 bld.vopc(src.size() == 2 ? aco_opcode::v_cmp_lg_u64 : aco_opcode::v_cmp_lg_u32,
2272 Definition(dst), Operand(0u), src).def(0).setHint(vcc);
2273 } else {
2274 assert(src.regClass() == s1 || src.regClass() == s2);
2275 Temp tmp;
2276 if (src.regClass() == s2 && ctx->program->chip_class <= GFX7) {
2277 tmp = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), Operand(0u), src).def(1).getTemp();
2278 } else {
2279 tmp = bld.sopc(src.size() == 2 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::s_cmp_lg_u32,
2280 bld.scc(bld.def(s1)), Operand(0u), src);
2281 }
2282 bool_to_vector_condition(ctx, tmp, dst);
2283 }
2284 break;
2285 }
2286 case nir_op_pack_64_2x32_split: {
2287 Temp src0 = get_alu_src(ctx, instr->src[0]);
2288 Temp src1 = get_alu_src(ctx, instr->src[1]);
2289
2290 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
2291 break;
2292 }
2293 case nir_op_unpack_64_2x32_split_x:
2294 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
2295 break;
2296 case nir_op_unpack_64_2x32_split_y:
2297 bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
2298 break;
2299 case nir_op_pack_half_2x16: {
2300 Temp src = get_alu_src(ctx, instr->src[0], 2);
2301
2302 if (dst.regClass() == v1) {
2303 Temp src0 = bld.tmp(v1);
2304 Temp src1 = bld.tmp(v1);
2305 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
2306 if (!ctx->block->fp_mode.care_about_round32 || ctx->block->fp_mode.round32 == fp_round_tz)
2307 bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, Definition(dst), src0, src1);
2308 else
2309 bld.vop3(aco_opcode::v_cvt_pk_u16_u32, Definition(dst),
2310 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src0),
2311 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src1));
2312 } else {
2313 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2314 nir_print_instr(&instr->instr, stderr);
2315 fprintf(stderr, "\n");
2316 }
2317 break;
2318 }
2319 case nir_op_unpack_half_2x16_split_x: {
2320 if (dst.regClass() == v1) {
2321 Builder bld(ctx->program, ctx->block);
2322 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst), get_alu_src(ctx, instr->src[0]));
2323 } else {
2324 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2325 nir_print_instr(&instr->instr, stderr);
2326 fprintf(stderr, "\n");
2327 }
2328 break;
2329 }
2330 case nir_op_unpack_half_2x16_split_y: {
2331 if (dst.regClass() == v1) {
2332 Builder bld(ctx->program, ctx->block);
2333 /* TODO: use SDWA here */
2334 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst),
2335 bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), as_vgpr(ctx, get_alu_src(ctx, instr->src[0]))));
2336 } else {
2337 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2338 nir_print_instr(&instr->instr, stderr);
2339 fprintf(stderr, "\n");
2340 }
2341 break;
2342 }
2343 case nir_op_fquantize2f16: {
2344 Temp src = get_alu_src(ctx, instr->src[0]);
2345 Temp f16 = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), src);
2346 Temp f32, cmp_res;
2347
2348 if (ctx->program->chip_class >= GFX8) {
2349 Temp mask = bld.copy(bld.def(s1), Operand(0x36Fu)); /* value is NOT negative/positive denormal value */
2350 cmp_res = bld.vopc_e64(aco_opcode::v_cmp_class_f16, bld.hint_vcc(bld.def(bld.lm)), f16, mask);
2351 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2352 } else {
2353 /* 0x38800000 is smallest half float value (2^-14) in 32-bit float,
2354 * so compare the result and flush to 0 if it's smaller.
2355 */
2356 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2357 Temp smallest = bld.copy(bld.def(s1), Operand(0x38800000u));
2358 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), f32, smallest);
2359 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
2360 cmp_res = vop3->definitions[0].getTemp();
2361 }
2362
2363 if (ctx->block->fp_mode.preserve_signed_zero_inf_nan32 || ctx->program->chip_class < GFX8) {
2364 Temp copysign_0 = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0u), as_vgpr(ctx, src));
2365 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), copysign_0, f32, cmp_res);
2366 } else {
2367 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), f32, cmp_res);
2368 }
2369 break;
2370 }
2371 case nir_op_bfm: {
2372 Temp bits = get_alu_src(ctx, instr->src[0]);
2373 Temp offset = get_alu_src(ctx, instr->src[1]);
2374
2375 if (dst.regClass() == s1) {
2376 bld.sop2(aco_opcode::s_bfm_b32, Definition(dst), bits, offset);
2377 } else if (dst.regClass() == v1) {
2378 bld.vop3(aco_opcode::v_bfm_b32, Definition(dst), bits, offset);
2379 } else {
2380 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2381 nir_print_instr(&instr->instr, stderr);
2382 fprintf(stderr, "\n");
2383 }
2384 break;
2385 }
2386 case nir_op_bitfield_select: {
2387 /* (mask & insert) | (~mask & base) */
2388 Temp bitmask = get_alu_src(ctx, instr->src[0]);
2389 Temp insert = get_alu_src(ctx, instr->src[1]);
2390 Temp base = get_alu_src(ctx, instr->src[2]);
2391
2392 /* dst = (insert & bitmask) | (base & ~bitmask) */
2393 if (dst.regClass() == s1) {
2394 aco_ptr<Instruction> sop2;
2395 nir_const_value* const_bitmask = nir_src_as_const_value(instr->src[0].src);
2396 nir_const_value* const_insert = nir_src_as_const_value(instr->src[1].src);
2397 Operand lhs;
2398 if (const_insert && const_bitmask) {
2399 lhs = Operand(const_insert->u32 & const_bitmask->u32);
2400 } else {
2401 insert = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), insert, bitmask);
2402 lhs = Operand(insert);
2403 }
2404
2405 Operand rhs;
2406 nir_const_value* const_base = nir_src_as_const_value(instr->src[2].src);
2407 if (const_base && const_bitmask) {
2408 rhs = Operand(const_base->u32 & ~const_bitmask->u32);
2409 } else {
2410 base = bld.sop2(aco_opcode::s_andn2_b32, bld.def(s1), bld.def(s1, scc), base, bitmask);
2411 rhs = Operand(base);
2412 }
2413
2414 bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), rhs, lhs);
2415
2416 } else if (dst.regClass() == v1) {
2417 if (base.type() == RegType::sgpr && (bitmask.type() == RegType::sgpr || (insert.type() == RegType::sgpr)))
2418 base = as_vgpr(ctx, base);
2419 if (insert.type() == RegType::sgpr && bitmask.type() == RegType::sgpr)
2420 insert = as_vgpr(ctx, insert);
2421
2422 bld.vop3(aco_opcode::v_bfi_b32, Definition(dst), bitmask, insert, base);
2423
2424 } else {
2425 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2426 nir_print_instr(&instr->instr, stderr);
2427 fprintf(stderr, "\n");
2428 }
2429 break;
2430 }
2431 case nir_op_ubfe:
2432 case nir_op_ibfe: {
2433 Temp base = get_alu_src(ctx, instr->src[0]);
2434 Temp offset = get_alu_src(ctx, instr->src[1]);
2435 Temp bits = get_alu_src(ctx, instr->src[2]);
2436
2437 if (dst.type() == RegType::sgpr) {
2438 Operand extract;
2439 nir_const_value* const_offset = nir_src_as_const_value(instr->src[1].src);
2440 nir_const_value* const_bits = nir_src_as_const_value(instr->src[2].src);
2441 if (const_offset && const_bits) {
2442 uint32_t const_extract = (const_bits->u32 << 16) | const_offset->u32;
2443 extract = Operand(const_extract);
2444 } else {
2445 Operand width;
2446 if (const_bits) {
2447 width = Operand(const_bits->u32 << 16);
2448 } else {
2449 width = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), bits, Operand(16u));
2450 }
2451 extract = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), offset, width);
2452 }
2453
2454 aco_opcode opcode;
2455 if (dst.regClass() == s1) {
2456 if (instr->op == nir_op_ubfe)
2457 opcode = aco_opcode::s_bfe_u32;
2458 else
2459 opcode = aco_opcode::s_bfe_i32;
2460 } else if (dst.regClass() == s2) {
2461 if (instr->op == nir_op_ubfe)
2462 opcode = aco_opcode::s_bfe_u64;
2463 else
2464 opcode = aco_opcode::s_bfe_i64;
2465 } else {
2466 unreachable("Unsupported BFE bit size");
2467 }
2468
2469 bld.sop2(opcode, Definition(dst), bld.def(s1, scc), base, extract);
2470
2471 } else {
2472 aco_opcode opcode;
2473 if (dst.regClass() == v1) {
2474 if (instr->op == nir_op_ubfe)
2475 opcode = aco_opcode::v_bfe_u32;
2476 else
2477 opcode = aco_opcode::v_bfe_i32;
2478 } else {
2479 unreachable("Unsupported BFE bit size");
2480 }
2481
2482 emit_vop3a_instruction(ctx, instr, opcode, dst);
2483 }
2484 break;
2485 }
2486 case nir_op_bit_count: {
2487 Temp src = get_alu_src(ctx, instr->src[0]);
2488 if (src.regClass() == s1) {
2489 bld.sop1(aco_opcode::s_bcnt1_i32_b32, Definition(dst), bld.def(s1, scc), src);
2490 } else if (src.regClass() == v1) {
2491 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst), src, Operand(0u));
2492 } else if (src.regClass() == v2) {
2493 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst),
2494 emit_extract_vector(ctx, src, 1, v1),
2495 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1),
2496 emit_extract_vector(ctx, src, 0, v1), Operand(0u)));
2497 } else if (src.regClass() == s2) {
2498 bld.sop1(aco_opcode::s_bcnt1_i32_b64, Definition(dst), bld.def(s1, scc), src);
2499 } else {
2500 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2501 nir_print_instr(&instr->instr, stderr);
2502 fprintf(stderr, "\n");
2503 }
2504 break;
2505 }
2506 case nir_op_flt: {
2507 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_f32, aco_opcode::v_cmp_lt_f64);
2508 break;
2509 }
2510 case nir_op_fge: {
2511 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_f32, aco_opcode::v_cmp_ge_f64);
2512 break;
2513 }
2514 case nir_op_feq: {
2515 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_f32, aco_opcode::v_cmp_eq_f64);
2516 break;
2517 }
2518 case nir_op_fne: {
2519 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_neq_f32, aco_opcode::v_cmp_neq_f64);
2520 break;
2521 }
2522 case nir_op_ilt: {
2523 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_i32, aco_opcode::v_cmp_lt_i64, aco_opcode::s_cmp_lt_i32);
2524 break;
2525 }
2526 case nir_op_ige: {
2527 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_i32, aco_opcode::v_cmp_ge_i64, aco_opcode::s_cmp_ge_i32);
2528 break;
2529 }
2530 case nir_op_ieq: {
2531 if (instr->src[0].src.ssa->bit_size == 1)
2532 emit_boolean_logic(ctx, instr, Builder::s_xnor, dst);
2533 else
2534 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_i32, aco_opcode::v_cmp_eq_i64, aco_opcode::s_cmp_eq_i32,
2535 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_eq_u64 : aco_opcode::num_opcodes);
2536 break;
2537 }
2538 case nir_op_ine: {
2539 if (instr->src[0].src.ssa->bit_size == 1)
2540 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
2541 else
2542 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lg_i32, aco_opcode::v_cmp_lg_i64, aco_opcode::s_cmp_lg_i32,
2543 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::num_opcodes);
2544 break;
2545 }
2546 case nir_op_ult: {
2547 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_u32, aco_opcode::v_cmp_lt_u64, aco_opcode::s_cmp_lt_u32);
2548 break;
2549 }
2550 case nir_op_uge: {
2551 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_u32, aco_opcode::v_cmp_ge_u64, aco_opcode::s_cmp_ge_u32);
2552 break;
2553 }
2554 case nir_op_fddx:
2555 case nir_op_fddy:
2556 case nir_op_fddx_fine:
2557 case nir_op_fddy_fine:
2558 case nir_op_fddx_coarse:
2559 case nir_op_fddy_coarse: {
2560 Temp src = get_alu_src(ctx, instr->src[0]);
2561 uint16_t dpp_ctrl1, dpp_ctrl2;
2562 if (instr->op == nir_op_fddx_fine) {
2563 dpp_ctrl1 = dpp_quad_perm(0, 0, 2, 2);
2564 dpp_ctrl2 = dpp_quad_perm(1, 1, 3, 3);
2565 } else if (instr->op == nir_op_fddy_fine) {
2566 dpp_ctrl1 = dpp_quad_perm(0, 1, 0, 1);
2567 dpp_ctrl2 = dpp_quad_perm(2, 3, 2, 3);
2568 } else {
2569 dpp_ctrl1 = dpp_quad_perm(0, 0, 0, 0);
2570 if (instr->op == nir_op_fddx || instr->op == nir_op_fddx_coarse)
2571 dpp_ctrl2 = dpp_quad_perm(1, 1, 1, 1);
2572 else
2573 dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
2574 }
2575
2576 Temp tmp;
2577 if (ctx->program->chip_class >= GFX8) {
2578 Temp tl = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl1);
2579 tmp = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), src, tl, dpp_ctrl2);
2580 } else {
2581 Temp tl = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl1);
2582 Temp tr = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl2);
2583 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), tr, tl);
2584 }
2585 emit_wqm(ctx, tmp, dst, true);
2586 break;
2587 }
2588 default:
2589 fprintf(stderr, "Unknown NIR ALU instr: ");
2590 nir_print_instr(&instr->instr, stderr);
2591 fprintf(stderr, "\n");
2592 }
2593 }
2594
2595 void visit_load_const(isel_context *ctx, nir_load_const_instr *instr)
2596 {
2597 Temp dst = get_ssa_temp(ctx, &instr->def);
2598
2599 // TODO: we really want to have the resulting type as this would allow for 64bit literals
2600 // which get truncated the lsb if double and msb if int
2601 // for now, we only use s_mov_b64 with 64bit inline constants
2602 assert(instr->def.num_components == 1 && "Vector load_const should be lowered to scalar.");
2603 assert(dst.type() == RegType::sgpr);
2604
2605 Builder bld(ctx->program, ctx->block);
2606
2607 if (instr->def.bit_size == 1) {
2608 assert(dst.regClass() == bld.lm);
2609 int val = instr->value[0].b ? -1 : 0;
2610 Operand op = bld.lm.size() == 1 ? Operand((uint32_t) val) : Operand((uint64_t) val);
2611 bld.sop1(Builder::s_mov, Definition(dst), op);
2612 } else if (dst.size() == 1) {
2613 bld.copy(Definition(dst), Operand(instr->value[0].u32));
2614 } else {
2615 assert(dst.size() != 1);
2616 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
2617 if (instr->def.bit_size == 64)
2618 for (unsigned i = 0; i < dst.size(); i++)
2619 vec->operands[i] = Operand{(uint32_t)(instr->value[0].u64 >> i * 32)};
2620 else {
2621 for (unsigned i = 0; i < dst.size(); i++)
2622 vec->operands[i] = Operand{instr->value[i].u32};
2623 }
2624 vec->definitions[0] = Definition(dst);
2625 ctx->block->instructions.emplace_back(std::move(vec));
2626 }
2627 }
2628
2629 uint32_t widen_mask(uint32_t mask, unsigned multiplier)
2630 {
2631 uint32_t new_mask = 0;
2632 for(unsigned i = 0; i < 32 && (1u << i) <= mask; ++i)
2633 if (mask & (1u << i))
2634 new_mask |= ((1u << multiplier) - 1u) << (i * multiplier);
2635 return new_mask;
2636 }
2637
2638 Operand load_lds_size_m0(isel_context *ctx)
2639 {
2640 /* TODO: m0 does not need to be initialized on GFX9+ */
2641 Builder bld(ctx->program, ctx->block);
2642 return bld.m0((Temp)bld.sopk(aco_opcode::s_movk_i32, bld.def(s1, m0), 0xffff));
2643 }
2644
2645 Temp load_lds(isel_context *ctx, unsigned elem_size_bytes, Temp dst,
2646 Temp address, unsigned base_offset, unsigned align)
2647 {
2648 assert(util_is_power_of_two_nonzero(align) && align >= 4);
2649
2650 Builder bld(ctx->program, ctx->block);
2651
2652 Operand m = load_lds_size_m0(ctx);
2653
2654 unsigned num_components = dst.size() * 4u / elem_size_bytes;
2655 unsigned bytes_read = 0;
2656 unsigned result_size = 0;
2657 unsigned total_bytes = num_components * elem_size_bytes;
2658 std::array<Temp, NIR_MAX_VEC_COMPONENTS> result;
2659 bool large_ds_read = ctx->options->chip_class >= GFX7;
2660 bool usable_read2 = ctx->options->chip_class >= GFX7;
2661
2662 while (bytes_read < total_bytes) {
2663 unsigned todo = total_bytes - bytes_read;
2664 bool aligned8 = bytes_read % 8 == 0 && align % 8 == 0;
2665 bool aligned16 = bytes_read % 16 == 0 && align % 16 == 0;
2666
2667 aco_opcode op = aco_opcode::last_opcode;
2668 bool read2 = false;
2669 if (todo >= 16 && aligned16 && large_ds_read) {
2670 op = aco_opcode::ds_read_b128;
2671 todo = 16;
2672 } else if (todo >= 16 && aligned8 && usable_read2) {
2673 op = aco_opcode::ds_read2_b64;
2674 read2 = true;
2675 todo = 16;
2676 } else if (todo >= 12 && aligned16 && large_ds_read) {
2677 op = aco_opcode::ds_read_b96;
2678 todo = 12;
2679 } else if (todo >= 8 && aligned8) {
2680 op = aco_opcode::ds_read_b64;
2681 todo = 8;
2682 } else if (todo >= 8 && usable_read2) {
2683 op = aco_opcode::ds_read2_b32;
2684 read2 = true;
2685 todo = 8;
2686 } else if (todo >= 4) {
2687 op = aco_opcode::ds_read_b32;
2688 todo = 4;
2689 } else {
2690 assert(false);
2691 }
2692 assert(todo % elem_size_bytes == 0);
2693 unsigned num_elements = todo / elem_size_bytes;
2694 unsigned offset = base_offset + bytes_read;
2695 unsigned max_offset = read2 ? 1019 : 65535;
2696
2697 Temp address_offset = address;
2698 if (offset > max_offset) {
2699 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
2700 offset = bytes_read;
2701 }
2702 assert(offset <= max_offset); /* bytes_read shouldn't be large enough for this to happen */
2703
2704 Temp res;
2705 if (num_components == 1 && dst.type() == RegType::vgpr)
2706 res = dst;
2707 else
2708 res = bld.tmp(RegClass(RegType::vgpr, todo / 4));
2709
2710 if (read2)
2711 res = bld.ds(op, Definition(res), address_offset, m, offset / (todo / 2), (offset / (todo / 2)) + 1);
2712 else
2713 res = bld.ds(op, Definition(res), address_offset, m, offset);
2714
2715 if (num_components == 1) {
2716 assert(todo == total_bytes);
2717 if (dst.type() == RegType::sgpr)
2718 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), res);
2719 return dst;
2720 }
2721
2722 if (dst.type() == RegType::sgpr) {
2723 Temp new_res = bld.tmp(RegType::sgpr, res.size());
2724 expand_vector(ctx, res, new_res, res.size(), (1 << res.size()) - 1);
2725 res = new_res;
2726 }
2727
2728 if (num_elements == 1) {
2729 result[result_size++] = res;
2730 } else {
2731 assert(res != dst && res.size() % num_elements == 0);
2732 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_elements)};
2733 split->operands[0] = Operand(res);
2734 for (unsigned i = 0; i < num_elements; i++)
2735 split->definitions[i] = Definition(result[result_size++] = bld.tmp(res.type(), elem_size_bytes / 4));
2736 ctx->block->instructions.emplace_back(std::move(split));
2737 }
2738
2739 bytes_read += todo;
2740 }
2741
2742 assert(result_size == num_components && result_size > 1);
2743 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, result_size, 1)};
2744 for (unsigned i = 0; i < result_size; i++)
2745 vec->operands[i] = Operand(result[i]);
2746 vec->definitions[0] = Definition(dst);
2747 ctx->block->instructions.emplace_back(std::move(vec));
2748 ctx->allocated_vec.emplace(dst.id(), result);
2749
2750 return dst;
2751 }
2752
2753 Temp extract_subvector(isel_context *ctx, Temp data, unsigned start, unsigned size, RegType type)
2754 {
2755 if (start == 0 && size == data.size())
2756 return type == RegType::vgpr ? as_vgpr(ctx, data) : data;
2757
2758 unsigned size_hint = 1;
2759 auto it = ctx->allocated_vec.find(data.id());
2760 if (it != ctx->allocated_vec.end())
2761 size_hint = it->second[0].size();
2762 if (size % size_hint || start % size_hint)
2763 size_hint = 1;
2764
2765 start /= size_hint;
2766 size /= size_hint;
2767
2768 Temp elems[size];
2769 for (unsigned i = 0; i < size; i++)
2770 elems[i] = emit_extract_vector(ctx, data, start + i, RegClass(type, size_hint));
2771
2772 if (size == 1)
2773 return type == RegType::vgpr ? as_vgpr(ctx, elems[0]) : elems[0];
2774
2775 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
2776 for (unsigned i = 0; i < size; i++)
2777 vec->operands[i] = Operand(elems[i]);
2778 Temp res = {ctx->program->allocateId(), RegClass(type, size * size_hint)};
2779 vec->definitions[0] = Definition(res);
2780 ctx->block->instructions.emplace_back(std::move(vec));
2781 return res;
2782 }
2783
2784 void ds_write_helper(isel_context *ctx, Operand m, Temp address, Temp data, unsigned data_start, unsigned total_size, unsigned offset0, unsigned offset1, unsigned align)
2785 {
2786 Builder bld(ctx->program, ctx->block);
2787 unsigned bytes_written = 0;
2788 bool large_ds_write = ctx->options->chip_class >= GFX7;
2789 bool usable_write2 = ctx->options->chip_class >= GFX7;
2790
2791 while (bytes_written < total_size * 4) {
2792 unsigned todo = total_size * 4 - bytes_written;
2793 bool aligned8 = bytes_written % 8 == 0 && align % 8 == 0;
2794 bool aligned16 = bytes_written % 16 == 0 && align % 16 == 0;
2795
2796 aco_opcode op = aco_opcode::last_opcode;
2797 bool write2 = false;
2798 unsigned size = 0;
2799 if (todo >= 16 && aligned16 && large_ds_write) {
2800 op = aco_opcode::ds_write_b128;
2801 size = 4;
2802 } else if (todo >= 16 && aligned8 && usable_write2) {
2803 op = aco_opcode::ds_write2_b64;
2804 write2 = true;
2805 size = 4;
2806 } else if (todo >= 12 && aligned16 && large_ds_write) {
2807 op = aco_opcode::ds_write_b96;
2808 size = 3;
2809 } else if (todo >= 8 && aligned8) {
2810 op = aco_opcode::ds_write_b64;
2811 size = 2;
2812 } else if (todo >= 8 && usable_write2) {
2813 op = aco_opcode::ds_write2_b32;
2814 write2 = true;
2815 size = 2;
2816 } else if (todo >= 4) {
2817 op = aco_opcode::ds_write_b32;
2818 size = 1;
2819 } else {
2820 assert(false);
2821 }
2822
2823 unsigned offset = offset0 + offset1 + bytes_written;
2824 unsigned max_offset = write2 ? 1020 : 65535;
2825 Temp address_offset = address;
2826 if (offset > max_offset) {
2827 address_offset = bld.vadd32(bld.def(v1), Operand(offset0), address_offset);
2828 offset = offset1 + bytes_written;
2829 }
2830 assert(offset <= max_offset); /* offset1 shouldn't be large enough for this to happen */
2831
2832 if (write2) {
2833 Temp val0 = extract_subvector(ctx, data, data_start + (bytes_written >> 2), size / 2, RegType::vgpr);
2834 Temp val1 = extract_subvector(ctx, data, data_start + (bytes_written >> 2) + 1, size / 2, RegType::vgpr);
2835 bld.ds(op, address_offset, val0, val1, m, offset / size / 2, (offset / size / 2) + 1);
2836 } else {
2837 Temp val = extract_subvector(ctx, data, data_start + (bytes_written >> 2), size, RegType::vgpr);
2838 bld.ds(op, address_offset, val, m, offset);
2839 }
2840
2841 bytes_written += size * 4;
2842 }
2843 }
2844
2845 void store_lds(isel_context *ctx, unsigned elem_size_bytes, Temp data, uint32_t wrmask,
2846 Temp address, unsigned base_offset, unsigned align)
2847 {
2848 assert(util_is_power_of_two_nonzero(align) && align >= 4);
2849 assert(elem_size_bytes == 4 || elem_size_bytes == 8);
2850
2851 Operand m = load_lds_size_m0(ctx);
2852
2853 /* we need at most two stores, assuming that the writemask is at most 4 bits wide */
2854 assert(wrmask <= 0x0f);
2855 int start[2], count[2];
2856 u_bit_scan_consecutive_range(&wrmask, &start[0], &count[0]);
2857 u_bit_scan_consecutive_range(&wrmask, &start[1], &count[1]);
2858 assert(wrmask == 0);
2859
2860 /* one combined store is sufficient */
2861 if (count[0] == count[1] && (align % elem_size_bytes) == 0 && (base_offset % elem_size_bytes) == 0) {
2862 Builder bld(ctx->program, ctx->block);
2863
2864 Temp address_offset = address;
2865 if ((base_offset / elem_size_bytes) + start[1] > 255) {
2866 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
2867 base_offset = 0;
2868 }
2869
2870 assert(count[0] == 1);
2871 RegClass xtract_rc(RegType::vgpr, elem_size_bytes / 4);
2872
2873 Temp val0 = emit_extract_vector(ctx, data, start[0], xtract_rc);
2874 Temp val1 = emit_extract_vector(ctx, data, start[1], xtract_rc);
2875 aco_opcode op = elem_size_bytes == 4 ? aco_opcode::ds_write2_b32 : aco_opcode::ds_write2_b64;
2876 base_offset = base_offset / elem_size_bytes;
2877 bld.ds(op, address_offset, val0, val1, m,
2878 base_offset + start[0], base_offset + start[1]);
2879 return;
2880 }
2881
2882 for (unsigned i = 0; i < 2; i++) {
2883 if (count[i] == 0)
2884 continue;
2885
2886 unsigned elem_size_words = elem_size_bytes / 4;
2887 ds_write_helper(ctx, m, address, data, start[i] * elem_size_words, count[i] * elem_size_words,
2888 base_offset, start[i] * elem_size_bytes, align);
2889 }
2890 return;
2891 }
2892
2893 unsigned calculate_lds_alignment(isel_context *ctx, unsigned const_offset)
2894 {
2895 unsigned align = 16;
2896 if (const_offset)
2897 align = std::min(align, 1u << (ffs(const_offset) - 1));
2898
2899 return align;
2900 }
2901
2902
2903 Temp create_vec_from_array(isel_context *ctx, Temp arr[], unsigned cnt, RegType reg_type, unsigned split_cnt = 0u, Temp dst = Temp())
2904 {
2905 Builder bld(ctx->program, ctx->block);
2906
2907 if (!dst.id())
2908 dst = bld.tmp(RegClass(reg_type, cnt * arr[0].size()));
2909
2910 std::array<Temp, NIR_MAX_VEC_COMPONENTS> allocated_vec;
2911 aco_ptr<Pseudo_instruction> instr {create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, cnt, 1)};
2912 instr->definitions[0] = Definition(dst);
2913
2914 for (unsigned i = 0; i < cnt; ++i) {
2915 assert(arr[i].size() == arr[0].size());
2916 allocated_vec[i] = arr[i];
2917 instr->operands[i] = Operand(arr[i]);
2918 }
2919
2920 bld.insert(std::move(instr));
2921
2922 if (split_cnt)
2923 emit_split_vector(ctx, dst, split_cnt);
2924 else
2925 ctx->allocated_vec.emplace(dst.id(), allocated_vec); /* emit_split_vector already does this */
2926
2927 return dst;
2928 }
2929
2930 inline unsigned resolve_excess_vmem_const_offset(Builder &bld, Temp &voffset, unsigned const_offset)
2931 {
2932 if (const_offset >= 4096) {
2933 unsigned excess_const_offset = const_offset / 4096u * 4096u;
2934 const_offset %= 4096u;
2935
2936 if (!voffset.id())
2937 voffset = bld.copy(bld.def(v1), Operand(excess_const_offset));
2938 else if (unlikely(voffset.regClass() == s1))
2939 voffset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), Operand(excess_const_offset), Operand(voffset));
2940 else if (likely(voffset.regClass() == v1))
2941 voffset = bld.vadd32(bld.def(v1), Operand(voffset), Operand(excess_const_offset));
2942 else
2943 unreachable("Unsupported register class of voffset");
2944 }
2945
2946 return const_offset;
2947 }
2948
2949 void emit_single_mubuf_store(isel_context *ctx, Temp descriptor, Temp voffset, Temp soffset, Temp vdata,
2950 unsigned const_offset = 0u, bool allow_reorder = true, bool slc = false)
2951 {
2952 assert(vdata.id());
2953 assert(vdata.size() != 3 || ctx->program->chip_class != GFX6);
2954 assert(vdata.size() >= 1 && vdata.size() <= 4);
2955
2956 Builder bld(ctx->program, ctx->block);
2957 aco_opcode op = (aco_opcode) ((unsigned) aco_opcode::buffer_store_dword + vdata.size() - 1);
2958 const_offset = resolve_excess_vmem_const_offset(bld, voffset, const_offset);
2959
2960 Operand voffset_op = voffset.id() ? Operand(as_vgpr(ctx, voffset)) : Operand(v1);
2961 Operand soffset_op = soffset.id() ? Operand(soffset) : Operand(0u);
2962 Builder::Result r = bld.mubuf(op, Operand(descriptor), voffset_op, soffset_op, Operand(vdata), const_offset,
2963 /* offen */ !voffset_op.isUndefined(), /* idxen*/ false, /* addr64 */ false,
2964 /* disable_wqm */ false, /* glc */ true, /* dlc*/ false, /* slc */ slc);
2965
2966 static_cast<MUBUF_instruction *>(r.instr)->can_reorder = allow_reorder;
2967 }
2968
2969 void store_vmem_mubuf(isel_context *ctx, Temp src, Temp descriptor, Temp voffset, Temp soffset,
2970 unsigned base_const_offset, unsigned elem_size_bytes, unsigned write_mask,
2971 bool allow_combining = true, bool reorder = true, bool slc = false)
2972 {
2973 Builder bld(ctx->program, ctx->block);
2974 assert(elem_size_bytes == 4 || elem_size_bytes == 8);
2975 assert(write_mask);
2976
2977 if (elem_size_bytes == 8) {
2978 elem_size_bytes = 4;
2979 write_mask = widen_mask(write_mask, 2);
2980 }
2981
2982 while (write_mask) {
2983 int start = 0;
2984 int count = 0;
2985 u_bit_scan_consecutive_range(&write_mask, &start, &count);
2986 assert(count > 0);
2987 assert(start >= 0);
2988
2989 while (count > 0) {
2990 unsigned sub_count = allow_combining ? MIN2(count, 4) : 1;
2991 unsigned const_offset = (unsigned) start * elem_size_bytes + base_const_offset;
2992
2993 /* GFX6 doesn't have buffer_store_dwordx3, so make sure not to emit that here either. */
2994 if (unlikely(ctx->program->chip_class == GFX6 && sub_count == 3))
2995 sub_count = 2;
2996
2997 Temp elem = extract_subvector(ctx, src, start, sub_count, RegType::vgpr);
2998 emit_single_mubuf_store(ctx, descriptor, voffset, soffset, elem, const_offset, reorder, slc);
2999
3000 count -= sub_count;
3001 start += sub_count;
3002 }
3003
3004 assert(count == 0);
3005 }
3006 }
3007
3008 Temp emit_single_mubuf_load(isel_context *ctx, Temp descriptor, Temp voffset, Temp soffset,
3009 unsigned const_offset, unsigned size_dwords, bool allow_reorder = true)
3010 {
3011 assert(size_dwords != 3 || ctx->program->chip_class != GFX6);
3012 assert(size_dwords >= 1 && size_dwords <= 4);
3013
3014 Builder bld(ctx->program, ctx->block);
3015 Temp vdata = bld.tmp(RegClass(RegType::vgpr, size_dwords));
3016 aco_opcode op = (aco_opcode) ((unsigned) aco_opcode::buffer_load_dword + size_dwords - 1);
3017 const_offset = resolve_excess_vmem_const_offset(bld, voffset, const_offset);
3018
3019 Operand voffset_op = voffset.id() ? Operand(as_vgpr(ctx, voffset)) : Operand(v1);
3020 Operand soffset_op = soffset.id() ? Operand(soffset) : Operand(0u);
3021 Builder::Result r = bld.mubuf(op, Definition(vdata), Operand(descriptor), voffset_op, soffset_op, const_offset,
3022 /* offen */ !voffset_op.isUndefined(), /* idxen*/ false, /* addr64 */ false,
3023 /* disable_wqm */ false, /* glc */ true,
3024 /* dlc*/ ctx->program->chip_class >= GFX10, /* slc */ false);
3025
3026 static_cast<MUBUF_instruction *>(r.instr)->can_reorder = allow_reorder;
3027
3028 return vdata;
3029 }
3030
3031 void load_vmem_mubuf(isel_context *ctx, Temp dst, Temp descriptor, Temp voffset, Temp soffset,
3032 unsigned base_const_offset, unsigned elem_size_bytes, unsigned num_components,
3033 unsigned stride = 0u, bool allow_combining = true, bool allow_reorder = true)
3034 {
3035 assert(elem_size_bytes == 4 || elem_size_bytes == 8);
3036 assert((num_components * elem_size_bytes / 4) == dst.size());
3037 assert(!!stride != allow_combining);
3038
3039 Builder bld(ctx->program, ctx->block);
3040 unsigned split_cnt = num_components;
3041
3042 if (elem_size_bytes == 8) {
3043 elem_size_bytes = 4;
3044 num_components *= 2;
3045 }
3046
3047 if (!stride)
3048 stride = elem_size_bytes;
3049
3050 unsigned load_size = 1;
3051 if (allow_combining) {
3052 if ((num_components % 4) == 0)
3053 load_size = 4;
3054 else if ((num_components % 3) == 0 && ctx->program->chip_class != GFX6)
3055 load_size = 3;
3056 else if ((num_components % 2) == 0)
3057 load_size = 2;
3058 }
3059
3060 unsigned num_loads = num_components / load_size;
3061 std::array<Temp, NIR_MAX_VEC_COMPONENTS> elems;
3062
3063 for (unsigned i = 0; i < num_loads; ++i) {
3064 unsigned const_offset = i * stride * load_size + base_const_offset;
3065 elems[i] = emit_single_mubuf_load(ctx, descriptor, voffset, soffset, const_offset, load_size, allow_reorder);
3066 }
3067
3068 create_vec_from_array(ctx, elems.data(), num_loads, RegType::vgpr, split_cnt, dst);
3069 }
3070
3071 std::pair<Temp, unsigned> offset_add_from_nir(isel_context *ctx, const std::pair<Temp, unsigned> &base_offset, nir_src *off_src, unsigned stride = 1u)
3072 {
3073 Builder bld(ctx->program, ctx->block);
3074 Temp offset = base_offset.first;
3075 unsigned const_offset = base_offset.second;
3076
3077 if (!nir_src_is_const(*off_src)) {
3078 Temp indirect_offset_arg = get_ssa_temp(ctx, off_src->ssa);
3079 Temp with_stride;
3080
3081 /* Calculate indirect offset with stride */
3082 if (likely(indirect_offset_arg.regClass() == v1))
3083 with_stride = bld.v_mul_imm(bld.def(v1), indirect_offset_arg, stride);
3084 else if (indirect_offset_arg.regClass() == s1)
3085 with_stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), indirect_offset_arg);
3086 else
3087 unreachable("Unsupported register class of indirect offset");
3088
3089 /* Add to the supplied base offset */
3090 if (offset.id() == 0)
3091 offset = with_stride;
3092 else if (unlikely(offset.regClass() == s1 && with_stride.regClass() == s1))
3093 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), with_stride, offset);
3094 else if (offset.size() == 1 && with_stride.size() == 1)
3095 offset = bld.vadd32(bld.def(v1), with_stride, offset);
3096 else
3097 unreachable("Unsupported register class of indirect offset");
3098 } else {
3099 unsigned const_offset_arg = nir_src_as_uint(*off_src);
3100 const_offset += const_offset_arg * stride;
3101 }
3102
3103 return std::make_pair(offset, const_offset);
3104 }
3105
3106 std::pair<Temp, unsigned> offset_add(isel_context *ctx, const std::pair<Temp, unsigned> &off1, const std::pair<Temp, unsigned> &off2)
3107 {
3108 Builder bld(ctx->program, ctx->block);
3109 Temp offset;
3110
3111 if (off1.first.id() && off2.first.id()) {
3112 if (unlikely(off1.first.regClass() == s1 && off2.first.regClass() == s1))
3113 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), off1.first, off2.first);
3114 else if (off1.first.size() == 1 && off2.first.size() == 1)
3115 offset = bld.vadd32(bld.def(v1), off1.first, off2.first);
3116 else
3117 unreachable("Unsupported register class of indirect offset");
3118 } else {
3119 offset = off1.first.id() ? off1.first : off2.first;
3120 }
3121
3122 return std::make_pair(offset, off1.second + off2.second);
3123 }
3124
3125 std::pair<Temp, unsigned> offset_mul(isel_context *ctx, const std::pair<Temp, unsigned> &offs, unsigned multiplier)
3126 {
3127 Builder bld(ctx->program, ctx->block);
3128 unsigned const_offset = offs.second * multiplier;
3129
3130 if (!offs.first.id())
3131 return std::make_pair(offs.first, const_offset);
3132
3133 Temp offset = unlikely(offs.first.regClass() == s1)
3134 ? bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(multiplier), offs.first)
3135 : bld.v_mul_imm(bld.def(v1), offs.first, multiplier);
3136
3137 return std::make_pair(offset, const_offset);
3138 }
3139
3140 std::pair<Temp, unsigned> get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned base_stride, unsigned component_stride)
3141 {
3142 Builder bld(ctx->program, ctx->block);
3143
3144 /* base is the driver_location, which is already multiplied by 4, so is in dwords */
3145 unsigned const_offset = nir_intrinsic_base(instr) * base_stride;
3146 /* component is in bytes */
3147 const_offset += nir_intrinsic_component(instr) * component_stride;
3148
3149 /* offset should be interpreted in relation to the base, so the instruction effectively reads/writes another input/output when it has an offset */
3150 nir_src *off_src = nir_get_io_offset_src(instr);
3151 return offset_add_from_nir(ctx, std::make_pair(Temp(), const_offset), off_src, 4u * base_stride);
3152 }
3153
3154 std::pair<Temp, unsigned> get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned stride = 1u)
3155 {
3156 return get_intrinsic_io_basic_offset(ctx, instr, stride, stride);
3157 }
3158
3159 Temp get_tess_rel_patch_id(isel_context *ctx)
3160 {
3161 Builder bld(ctx->program, ctx->block);
3162
3163 switch (ctx->shader->info.stage) {
3164 case MESA_SHADER_TESS_CTRL:
3165 return bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffu),
3166 get_arg(ctx, ctx->args->ac.tcs_rel_ids));
3167 case MESA_SHADER_TESS_EVAL:
3168 return get_arg(ctx, ctx->args->tes_rel_patch_id);
3169 default:
3170 unreachable("Unsupported stage in get_tess_rel_patch_id");
3171 }
3172 }
3173
3174 std::pair<Temp, unsigned> get_tcs_per_vertex_input_lds_offset(isel_context *ctx, nir_intrinsic_instr *instr)
3175 {
3176 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3177 Builder bld(ctx->program, ctx->block);
3178
3179 uint32_t tcs_in_patch_stride = ctx->args->options->key.tcs.input_vertices * ctx->tcs_num_inputs * 4;
3180 uint32_t tcs_in_vertex_stride = ctx->tcs_num_inputs * 4;
3181
3182 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr);
3183
3184 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
3185 offs = offset_add_from_nir(ctx, offs, vertex_index_src, tcs_in_vertex_stride);
3186
3187 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3188 Temp tcs_in_current_patch_offset = bld.v_mul24_imm(bld.def(v1), rel_patch_id, tcs_in_patch_stride);
3189 offs = offset_add(ctx, offs, std::make_pair(tcs_in_current_patch_offset, 0));
3190
3191 return offset_mul(ctx, offs, 4u);
3192 }
3193
3194 std::pair<Temp, unsigned> get_tcs_output_lds_offset(isel_context *ctx, nir_intrinsic_instr *instr = nullptr, bool per_vertex = false)
3195 {
3196 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3197 Builder bld(ctx->program, ctx->block);
3198
3199 uint32_t input_patch_size = ctx->args->options->key.tcs.input_vertices * ctx->tcs_num_inputs * 16;
3200 uint32_t num_tcs_outputs = util_last_bit64(ctx->args->shader_info->tcs.outputs_written);
3201 uint32_t num_tcs_patch_outputs = util_last_bit64(ctx->args->shader_info->tcs.patch_outputs_written);
3202 uint32_t output_vertex_size = num_tcs_outputs * 16;
3203 uint32_t pervertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
3204 uint32_t output_patch_stride = pervertex_output_patch_size + num_tcs_patch_outputs * 16;
3205
3206 std::pair<Temp, unsigned> offs = instr
3207 ? get_intrinsic_io_basic_offset(ctx, instr, 4u)
3208 : std::make_pair(Temp(), 0u);
3209
3210 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3211 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, output_patch_stride);
3212
3213 if (per_vertex) {
3214 assert(instr);
3215
3216 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
3217 offs = offset_add_from_nir(ctx, offs, vertex_index_src, output_vertex_size);
3218
3219 uint32_t output_patch0_offset = (input_patch_size * ctx->tcs_num_patches);
3220 offs = offset_add(ctx, offs, std::make_pair(patch_off, output_patch0_offset));
3221 } else {
3222 uint32_t output_patch0_patch_data_offset = (input_patch_size * ctx->tcs_num_patches + pervertex_output_patch_size);
3223 offs = offset_add(ctx, offs, std::make_pair(patch_off, output_patch0_patch_data_offset));
3224 }
3225
3226 return offs;
3227 }
3228
3229 std::pair<Temp, unsigned> get_tcs_per_vertex_output_vmem_offset(isel_context *ctx, nir_intrinsic_instr *instr)
3230 {
3231 Builder bld(ctx->program, ctx->block);
3232
3233 unsigned vertices_per_patch = ctx->shader->info.tess.tcs_vertices_out;
3234 unsigned attr_stride = vertices_per_patch * ctx->tcs_num_patches;
3235
3236 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, attr_stride * 4u, 4u);
3237
3238 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3239 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, vertices_per_patch * 16u);
3240 offs = offset_add(ctx, offs, std::make_pair(patch_off, 0u));
3241
3242 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
3243 offs = offset_add_from_nir(ctx, offs, vertex_index_src, 16u);
3244
3245 return offs;
3246 }
3247
3248 std::pair<Temp, unsigned> get_tcs_per_patch_output_vmem_offset(isel_context *ctx, nir_intrinsic_instr *instr = nullptr, unsigned const_base_offset = 0u)
3249 {
3250 Builder bld(ctx->program, ctx->block);
3251
3252 unsigned num_tcs_outputs = ctx->shader->info.stage == MESA_SHADER_TESS_CTRL
3253 ? util_last_bit64(ctx->args->shader_info->tcs.outputs_written)
3254 : ctx->args->options->key.tes.tcs_num_outputs;
3255
3256 unsigned output_vertex_size = num_tcs_outputs * 16;
3257 unsigned per_vertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
3258 unsigned per_patch_data_offset = per_vertex_output_patch_size * ctx->tcs_num_patches;
3259 unsigned attr_stride = ctx->tcs_num_patches;
3260
3261 std::pair<Temp, unsigned> offs = instr
3262 ? get_intrinsic_io_basic_offset(ctx, instr, attr_stride * 4u, 4u)
3263 : std::make_pair(Temp(), 0u);
3264
3265 if (const_base_offset)
3266 offs.second += const_base_offset * attr_stride;
3267
3268 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3269 Temp patch_off = bld.v_mul_imm(bld.def(v1), rel_patch_id, 16u);
3270 offs = offset_add(ctx, offs, std::make_pair(patch_off, per_patch_data_offset));
3271
3272 return offs;
3273 }
3274
3275 void visit_store_ls_or_es_output(isel_context *ctx, nir_intrinsic_instr *instr)
3276 {
3277 Builder bld(ctx->program, ctx->block);
3278
3279 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, 4u);
3280 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
3281 unsigned write_mask = nir_intrinsic_write_mask(instr);
3282 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8u;
3283
3284 if (ctx->stage == vertex_es || ctx->stage == tess_eval_es) {
3285 /* GFX6-8: ES stage is not merged into GS, data is passed from ES to GS in VMEM. */
3286 Temp esgs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_VS * 16u));
3287 Temp es2gs_offset = get_arg(ctx, ctx->args->es2gs_offset);
3288 store_vmem_mubuf(ctx, src, esgs_ring, offs.first, es2gs_offset, offs.second, elem_size_bytes, write_mask, false, true, true);
3289 } else {
3290 Temp lds_base;
3291
3292 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
3293 /* GFX9+: ES stage is merged into GS, data is passed between them using LDS. */
3294 unsigned itemsize = ctx->stage == vertex_geometry_gs
3295 ? ctx->program->info->vs.es_info.esgs_itemsize
3296 : ctx->program->info->tes.es_info.esgs_itemsize;
3297 Temp thread_id = emit_mbcnt(ctx, bld.def(v1));
3298 Temp wave_idx = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(ctx, ctx->args->merged_wave_info), Operand(4u << 16 | 24));
3299 Temp vertex_idx = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), thread_id,
3300 bld.v_mul24_imm(bld.def(v1), as_vgpr(ctx, wave_idx), ctx->program->wave_size));
3301 lds_base = bld.v_mul24_imm(bld.def(v1), vertex_idx, itemsize);
3302 } else if (ctx->stage == vertex_ls || ctx->stage == vertex_tess_control_hs) {
3303 /* GFX6-8: VS runs on LS stage when tessellation is used, but LS shares LDS space with HS.
3304 * GFX9+: LS is merged into HS, but still uses the same LDS layout.
3305 */
3306 unsigned num_tcs_inputs = util_last_bit64(ctx->args->shader_info->vs.ls_outputs_written);
3307 Temp vertex_idx = get_arg(ctx, ctx->args->rel_auto_id);
3308 lds_base = bld.v_mul_imm(bld.def(v1), vertex_idx, num_tcs_inputs * 16u);
3309 } else {
3310 unreachable("Invalid LS or ES stage");
3311 }
3312
3313 offs = offset_add(ctx, offs, std::make_pair(lds_base, 0u));
3314 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
3315 store_lds(ctx, elem_size_bytes, src, write_mask, offs.first, offs.second, lds_align);
3316 }
3317 }
3318
3319 bool should_write_tcs_patch_output_to_vmem(isel_context *ctx, nir_intrinsic_instr *instr)
3320 {
3321 unsigned off = nir_intrinsic_base(instr) * 4u;
3322 nir_src *off_src = nir_get_io_offset_src(instr);
3323
3324 /* Indirect offset, we can't be sure if this is a tess factor, always write to VMEM */
3325 if (!nir_src_is_const(*off_src))
3326 return true;
3327
3328 off += nir_src_as_uint(*off_src) * 16u;
3329
3330 const unsigned tess_index_inner = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_INNER);
3331 const unsigned tess_index_outer = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_OUTER);
3332
3333 return (off != (tess_index_inner * 16u)) &&
3334 (off != (tess_index_outer * 16u));
3335 }
3336
3337 bool should_write_tcs_patch_output_to_lds(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
3338 {
3339 unsigned off = nir_intrinsic_base(instr) * 4u;
3340 nir_src *off_src = nir_get_io_offset_src(instr);
3341
3342 /* When none of the appropriate outputs are read, we are OK to never write to LDS */
3343 if (per_vertex ? ctx->shader->info.outputs_read == 0U : ctx->shader->info.patch_outputs_read == 0u)
3344 return false;
3345
3346 /* Indirect offset, we can't be sure if this is read or not, always write to LDS */
3347 if (!nir_src_is_const(*off_src))
3348 return true;
3349
3350 off += nir_src_as_uint(*off_src) * 16u;
3351
3352 uint64_t out_rd = per_vertex
3353 ? ctx->shader->info.outputs_read
3354 : ctx->shader->info.patch_outputs_read;
3355 while (out_rd) {
3356 unsigned slot = u_bit_scan64(&out_rd) + (per_vertex ? 0 : VARYING_SLOT_PATCH0);
3357 if (off == shader_io_get_unique_index((gl_varying_slot) slot) * 16u)
3358 return true;
3359 }
3360
3361 return false;
3362 }
3363
3364 void visit_store_tcs_output(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
3365 {
3366 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
3367 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3368
3369 Builder bld(ctx->program, ctx->block);
3370
3371 Temp store_val = get_ssa_temp(ctx, instr->src[0].ssa);
3372 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
3373 unsigned write_mask = nir_intrinsic_write_mask(instr);
3374
3375 /* Only write to VMEM if the output is per-vertex or it's per-patch non tess factor */
3376 bool write_to_vmem = per_vertex || should_write_tcs_patch_output_to_vmem(ctx, instr);
3377 /* Only write to LDS if the output is read by the shader, or it's per-patch tess factor */
3378 bool write_to_lds = !write_to_vmem || should_write_tcs_patch_output_to_lds(ctx, instr, per_vertex);
3379
3380 if (write_to_vmem) {
3381 std::pair<Temp, unsigned> vmem_offs = per_vertex
3382 ? get_tcs_per_vertex_output_vmem_offset(ctx, instr)
3383 : get_tcs_per_patch_output_vmem_offset(ctx, instr);
3384
3385 Temp hs_ring_tess_offchip = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
3386 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
3387 store_vmem_mubuf(ctx, store_val, hs_ring_tess_offchip, vmem_offs.first, oc_lds, vmem_offs.second, elem_size_bytes, write_mask, false, false);
3388 }
3389
3390 if (write_to_lds) {
3391 std::pair<Temp, unsigned> lds_offs = get_tcs_output_lds_offset(ctx, instr, per_vertex);
3392 unsigned lds_align = calculate_lds_alignment(ctx, lds_offs.second);
3393 store_lds(ctx, elem_size_bytes, store_val, write_mask, lds_offs.first, lds_offs.second, lds_align);
3394 }
3395 }
3396
3397 void visit_load_tcs_output(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
3398 {
3399 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
3400 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3401
3402 Builder bld(ctx->program, ctx->block);
3403
3404 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3405 std::pair<Temp, unsigned> lds_offs = get_tcs_output_lds_offset(ctx, instr, per_vertex);
3406 unsigned lds_align = calculate_lds_alignment(ctx, lds_offs.second);
3407 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
3408
3409 load_lds(ctx, elem_size_bytes, dst, lds_offs.first, lds_offs.second, lds_align);
3410 }
3411
3412 void visit_store_output(isel_context *ctx, nir_intrinsic_instr *instr)
3413 {
3414 if (ctx->stage == vertex_vs ||
3415 ctx->stage == tess_eval_vs ||
3416 ctx->stage == fragment_fs ||
3417 ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
3418 unsigned write_mask = nir_intrinsic_write_mask(instr);
3419 unsigned component = nir_intrinsic_component(instr);
3420 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
3421 unsigned idx = nir_intrinsic_base(instr) + component;
3422
3423 nir_instr *off_instr = instr->src[1].ssa->parent_instr;
3424 if (off_instr->type != nir_instr_type_load_const) {
3425 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
3426 nir_print_instr(off_instr, stderr);
3427 fprintf(stderr, "\n");
3428 }
3429 idx += nir_instr_as_load_const(off_instr)->value[0].u32 * 4u;
3430
3431 if (instr->src[0].ssa->bit_size == 64)
3432 write_mask = widen_mask(write_mask, 2);
3433
3434 for (unsigned i = 0; i < 8; ++i) {
3435 if (write_mask & (1 << i)) {
3436 ctx->outputs.mask[idx / 4u] |= 1 << (idx % 4u);
3437 ctx->outputs.outputs[idx / 4u][idx % 4u] = emit_extract_vector(ctx, src, i, v1);
3438 }
3439 idx++;
3440 }
3441 } else if (ctx->stage == vertex_es ||
3442 ctx->stage == vertex_ls ||
3443 ctx->stage == tess_eval_es ||
3444 (ctx->stage == vertex_tess_control_hs && ctx->shader->info.stage == MESA_SHADER_VERTEX) ||
3445 (ctx->stage == vertex_geometry_gs && ctx->shader->info.stage == MESA_SHADER_VERTEX) ||
3446 (ctx->stage == tess_eval_geometry_gs && ctx->shader->info.stage == MESA_SHADER_TESS_EVAL)) {
3447 visit_store_ls_or_es_output(ctx, instr);
3448 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
3449 visit_store_tcs_output(ctx, instr, false);
3450 } else {
3451 unreachable("Shader stage not implemented");
3452 }
3453 }
3454
3455 void visit_load_output(isel_context *ctx, nir_intrinsic_instr *instr)
3456 {
3457 visit_load_tcs_output(ctx, instr, false);
3458 }
3459
3460 void emit_interp_instr(isel_context *ctx, unsigned idx, unsigned component, Temp src, Temp dst, Temp prim_mask)
3461 {
3462 Temp coord1 = emit_extract_vector(ctx, src, 0, v1);
3463 Temp coord2 = emit_extract_vector(ctx, src, 1, v1);
3464
3465 Builder bld(ctx->program, ctx->block);
3466 Builder::Result interp_p1 = bld.vintrp(aco_opcode::v_interp_p1_f32, bld.def(v1), coord1, bld.m0(prim_mask), idx, component);
3467 if (ctx->program->has_16bank_lds)
3468 interp_p1.instr->operands[0].setLateKill(true);
3469 bld.vintrp(aco_opcode::v_interp_p2_f32, Definition(dst), coord2, bld.m0(prim_mask), interp_p1, idx, component);
3470 }
3471
3472 void emit_load_frag_coord(isel_context *ctx, Temp dst, unsigned num_components)
3473 {
3474 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1));
3475 for (unsigned i = 0; i < num_components; i++)
3476 vec->operands[i] = Operand(get_arg(ctx, ctx->args->ac.frag_pos[i]));
3477 if (G_0286CC_POS_W_FLOAT_ENA(ctx->program->config->spi_ps_input_ena)) {
3478 assert(num_components == 4);
3479 Builder bld(ctx->program, ctx->block);
3480 vec->operands[3] = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), get_arg(ctx, ctx->args->ac.frag_pos[3]));
3481 }
3482
3483 for (Operand& op : vec->operands)
3484 op = op.isUndefined() ? Operand(0u) : op;
3485
3486 vec->definitions[0] = Definition(dst);
3487 ctx->block->instructions.emplace_back(std::move(vec));
3488 emit_split_vector(ctx, dst, num_components);
3489 return;
3490 }
3491
3492 void visit_load_interpolated_input(isel_context *ctx, nir_intrinsic_instr *instr)
3493 {
3494 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3495 Temp coords = get_ssa_temp(ctx, instr->src[0].ssa);
3496 unsigned idx = nir_intrinsic_base(instr);
3497 unsigned component = nir_intrinsic_component(instr);
3498 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
3499
3500 nir_const_value* offset = nir_src_as_const_value(instr->src[1]);
3501 if (offset) {
3502 assert(offset->u32 == 0);
3503 } else {
3504 /* the lower 15bit of the prim_mask contain the offset into LDS
3505 * while the upper bits contain the number of prims */
3506 Temp offset_src = get_ssa_temp(ctx, instr->src[1].ssa);
3507 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
3508 Builder bld(ctx->program, ctx->block);
3509 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
3510 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
3511 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
3512 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
3513 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
3514 }
3515
3516 if (instr->dest.ssa.num_components == 1) {
3517 emit_interp_instr(ctx, idx, component, coords, dst, prim_mask);
3518 } else {
3519 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.ssa.num_components, 1));
3520 for (unsigned i = 0; i < instr->dest.ssa.num_components; i++)
3521 {
3522 Temp tmp = {ctx->program->allocateId(), v1};
3523 emit_interp_instr(ctx, idx, component+i, coords, tmp, prim_mask);
3524 vec->operands[i] = Operand(tmp);
3525 }
3526 vec->definitions[0] = Definition(dst);
3527 ctx->block->instructions.emplace_back(std::move(vec));
3528 }
3529 }
3530
3531 bool check_vertex_fetch_size(isel_context *ctx, const ac_data_format_info *vtx_info,
3532 unsigned offset, unsigned stride, unsigned channels)
3533 {
3534 unsigned vertex_byte_size = vtx_info->chan_byte_size * channels;
3535 if (vtx_info->chan_byte_size != 4 && channels == 3)
3536 return false;
3537 return (ctx->options->chip_class != GFX6 && ctx->options->chip_class != GFX10) ||
3538 (offset % vertex_byte_size == 0 && stride % vertex_byte_size == 0);
3539 }
3540
3541 uint8_t get_fetch_data_format(isel_context *ctx, const ac_data_format_info *vtx_info,
3542 unsigned offset, unsigned stride, unsigned *channels)
3543 {
3544 if (!vtx_info->chan_byte_size) {
3545 *channels = vtx_info->num_channels;
3546 return vtx_info->chan_format;
3547 }
3548
3549 unsigned num_channels = *channels;
3550 if (!check_vertex_fetch_size(ctx, vtx_info, offset, stride, *channels)) {
3551 unsigned new_channels = num_channels + 1;
3552 /* first, assume more loads is worse and try using a larger data format */
3553 while (new_channels <= 4 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels)) {
3554 new_channels++;
3555 /* don't make the attribute potentially out-of-bounds */
3556 if (offset + new_channels * vtx_info->chan_byte_size > stride)
3557 new_channels = 5;
3558 }
3559
3560 if (new_channels == 5) {
3561 /* then try decreasing load size (at the cost of more loads) */
3562 new_channels = *channels;
3563 while (new_channels > 1 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels))
3564 new_channels--;
3565 }
3566
3567 if (new_channels < *channels)
3568 *channels = new_channels;
3569 num_channels = new_channels;
3570 }
3571
3572 switch (vtx_info->chan_format) {
3573 case V_008F0C_BUF_DATA_FORMAT_8:
3574 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_8, V_008F0C_BUF_DATA_FORMAT_8_8,
3575 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_8_8_8_8}[num_channels - 1];
3576 case V_008F0C_BUF_DATA_FORMAT_16:
3577 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_16, V_008F0C_BUF_DATA_FORMAT_16_16,
3578 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_16_16_16_16}[num_channels - 1];
3579 case V_008F0C_BUF_DATA_FORMAT_32:
3580 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_32, V_008F0C_BUF_DATA_FORMAT_32_32,
3581 V_008F0C_BUF_DATA_FORMAT_32_32_32, V_008F0C_BUF_DATA_FORMAT_32_32_32_32}[num_channels - 1];
3582 }
3583 unreachable("shouldn't reach here");
3584 return V_008F0C_BUF_DATA_FORMAT_INVALID;
3585 }
3586
3587 /* For 2_10_10_10 formats the alpha is handled as unsigned by pre-vega HW.
3588 * so we may need to fix it up. */
3589 Temp adjust_vertex_fetch_alpha(isel_context *ctx, unsigned adjustment, Temp alpha)
3590 {
3591 Builder bld(ctx->program, ctx->block);
3592
3593 if (adjustment == RADV_ALPHA_ADJUST_SSCALED)
3594 alpha = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), alpha);
3595
3596 /* For the integer-like cases, do a natural sign extension.
3597 *
3598 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
3599 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
3600 * exponent.
3601 */
3602 alpha = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(adjustment == RADV_ALPHA_ADJUST_SNORM ? 7u : 30u), alpha);
3603 alpha = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(30u), alpha);
3604
3605 /* Convert back to the right type. */
3606 if (adjustment == RADV_ALPHA_ADJUST_SNORM) {
3607 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
3608 Temp clamp = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0xbf800000u), alpha);
3609 alpha = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xbf800000u), alpha, clamp);
3610 } else if (adjustment == RADV_ALPHA_ADJUST_SSCALED) {
3611 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
3612 }
3613
3614 return alpha;
3615 }
3616
3617 void visit_load_input(isel_context *ctx, nir_intrinsic_instr *instr)
3618 {
3619 Builder bld(ctx->program, ctx->block);
3620 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3621 if (ctx->shader->info.stage == MESA_SHADER_VERTEX) {
3622
3623 nir_instr *off_instr = instr->src[0].ssa->parent_instr;
3624 if (off_instr->type != nir_instr_type_load_const) {
3625 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
3626 nir_print_instr(off_instr, stderr);
3627 fprintf(stderr, "\n");
3628 }
3629 uint32_t offset = nir_instr_as_load_const(off_instr)->value[0].u32;
3630
3631 Temp vertex_buffers = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->vertex_buffers));
3632
3633 unsigned location = nir_intrinsic_base(instr) / 4 - VERT_ATTRIB_GENERIC0 + offset;
3634 unsigned component = nir_intrinsic_component(instr);
3635 unsigned attrib_binding = ctx->options->key.vs.vertex_attribute_bindings[location];
3636 uint32_t attrib_offset = ctx->options->key.vs.vertex_attribute_offsets[location];
3637 uint32_t attrib_stride = ctx->options->key.vs.vertex_attribute_strides[location];
3638 unsigned attrib_format = ctx->options->key.vs.vertex_attribute_formats[location];
3639
3640 unsigned dfmt = attrib_format & 0xf;
3641 unsigned nfmt = (attrib_format >> 4) & 0x7;
3642 const struct ac_data_format_info *vtx_info = ac_get_data_format_info(dfmt);
3643
3644 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa) << component;
3645 unsigned num_channels = MIN2(util_last_bit(mask), vtx_info->num_channels);
3646 unsigned alpha_adjust = (ctx->options->key.vs.alpha_adjust >> (location * 2)) & 3;
3647 bool post_shuffle = ctx->options->key.vs.post_shuffle & (1 << location);
3648 if (post_shuffle)
3649 num_channels = MAX2(num_channels, 3);
3650
3651 Operand off = bld.copy(bld.def(s1), Operand(attrib_binding * 16u));
3652 Temp list = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), vertex_buffers, off);
3653
3654 Temp index;
3655 if (ctx->options->key.vs.instance_rate_inputs & (1u << location)) {
3656 uint32_t divisor = ctx->options->key.vs.instance_rate_divisors[location];
3657 Temp start_instance = get_arg(ctx, ctx->args->ac.start_instance);
3658 if (divisor) {
3659 Temp instance_id = get_arg(ctx, ctx->args->ac.instance_id);
3660 if (divisor != 1) {
3661 Temp divided = bld.tmp(v1);
3662 emit_v_div_u32(ctx, divided, as_vgpr(ctx, instance_id), divisor);
3663 index = bld.vadd32(bld.def(v1), start_instance, divided);
3664 } else {
3665 index = bld.vadd32(bld.def(v1), start_instance, instance_id);
3666 }
3667 } else {
3668 index = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), start_instance);
3669 }
3670 } else {
3671 index = bld.vadd32(bld.def(v1),
3672 get_arg(ctx, ctx->args->ac.base_vertex),
3673 get_arg(ctx, ctx->args->ac.vertex_id));
3674 }
3675
3676 Temp channels[num_channels];
3677 unsigned channel_start = 0;
3678 bool direct_fetch = false;
3679
3680 /* skip unused channels at the start */
3681 if (vtx_info->chan_byte_size && !post_shuffle) {
3682 channel_start = ffs(mask) - 1;
3683 for (unsigned i = 0; i < channel_start; i++)
3684 channels[i] = Temp(0, s1);
3685 } else if (vtx_info->chan_byte_size && post_shuffle && !(mask & 0x8)) {
3686 num_channels = 3 - (ffs(mask) - 1);
3687 }
3688
3689 /* load channels */
3690 while (channel_start < num_channels) {
3691 unsigned fetch_size = num_channels - channel_start;
3692 unsigned fetch_offset = attrib_offset + channel_start * vtx_info->chan_byte_size;
3693 bool expanded = false;
3694
3695 /* use MUBUF when possible to avoid possible alignment issues */
3696 /* TODO: we could use SDWA to unpack 8/16-bit attributes without extra instructions */
3697 bool use_mubuf = (nfmt == V_008F0C_BUF_NUM_FORMAT_FLOAT ||
3698 nfmt == V_008F0C_BUF_NUM_FORMAT_UINT ||
3699 nfmt == V_008F0C_BUF_NUM_FORMAT_SINT) &&
3700 vtx_info->chan_byte_size == 4;
3701 unsigned fetch_dfmt = V_008F0C_BUF_DATA_FORMAT_INVALID;
3702 if (!use_mubuf) {
3703 fetch_dfmt = get_fetch_data_format(ctx, vtx_info, fetch_offset, attrib_stride, &fetch_size);
3704 } else {
3705 if (fetch_size == 3 && ctx->options->chip_class == GFX6) {
3706 /* GFX6 only supports loading vec3 with MTBUF, expand to vec4. */
3707 fetch_size = 4;
3708 expanded = true;
3709 }
3710 }
3711
3712 Temp fetch_index = index;
3713 if (attrib_stride != 0 && fetch_offset > attrib_stride) {
3714 fetch_index = bld.vadd32(bld.def(v1), Operand(fetch_offset / attrib_stride), fetch_index);
3715 fetch_offset = fetch_offset % attrib_stride;
3716 }
3717
3718 Operand soffset(0u);
3719 if (fetch_offset >= 4096) {
3720 soffset = bld.copy(bld.def(s1), Operand(fetch_offset / 4096 * 4096));
3721 fetch_offset %= 4096;
3722 }
3723
3724 aco_opcode opcode;
3725 switch (fetch_size) {
3726 case 1:
3727 opcode = use_mubuf ? aco_opcode::buffer_load_dword : aco_opcode::tbuffer_load_format_x;
3728 break;
3729 case 2:
3730 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx2 : aco_opcode::tbuffer_load_format_xy;
3731 break;
3732 case 3:
3733 assert(ctx->options->chip_class >= GFX7 ||
3734 (!use_mubuf && ctx->options->chip_class == GFX6));
3735 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx3 : aco_opcode::tbuffer_load_format_xyz;
3736 break;
3737 case 4:
3738 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx4 : aco_opcode::tbuffer_load_format_xyzw;
3739 break;
3740 default:
3741 unreachable("Unimplemented load_input vector size");
3742 }
3743
3744 Temp fetch_dst;
3745 if (channel_start == 0 && fetch_size == dst.size() && !post_shuffle &&
3746 !expanded && (alpha_adjust == RADV_ALPHA_ADJUST_NONE ||
3747 num_channels <= 3)) {
3748 direct_fetch = true;
3749 fetch_dst = dst;
3750 } else {
3751 fetch_dst = bld.tmp(RegType::vgpr, fetch_size);
3752 }
3753
3754 if (use_mubuf) {
3755 Instruction *mubuf = bld.mubuf(opcode,
3756 Definition(fetch_dst), list, fetch_index, soffset,
3757 fetch_offset, false, true).instr;
3758 static_cast<MUBUF_instruction*>(mubuf)->can_reorder = true;
3759 } else {
3760 Instruction *mtbuf = bld.mtbuf(opcode,
3761 Definition(fetch_dst), list, fetch_index, soffset,
3762 fetch_dfmt, nfmt, fetch_offset, false, true).instr;
3763 static_cast<MTBUF_instruction*>(mtbuf)->can_reorder = true;
3764 }
3765
3766 emit_split_vector(ctx, fetch_dst, fetch_dst.size());
3767
3768 if (fetch_size == 1) {
3769 channels[channel_start] = fetch_dst;
3770 } else {
3771 for (unsigned i = 0; i < MIN2(fetch_size, num_channels - channel_start); i++)
3772 channels[channel_start + i] = emit_extract_vector(ctx, fetch_dst, i, v1);
3773 }
3774
3775 channel_start += fetch_size;
3776 }
3777
3778 if (!direct_fetch) {
3779 bool is_float = nfmt != V_008F0C_BUF_NUM_FORMAT_UINT &&
3780 nfmt != V_008F0C_BUF_NUM_FORMAT_SINT;
3781
3782 static const unsigned swizzle_normal[4] = {0, 1, 2, 3};
3783 static const unsigned swizzle_post_shuffle[4] = {2, 1, 0, 3};
3784 const unsigned *swizzle = post_shuffle ? swizzle_post_shuffle : swizzle_normal;
3785
3786 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
3787 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
3788 unsigned num_temp = 0;
3789 for (unsigned i = 0; i < dst.size(); i++) {
3790 unsigned idx = i + component;
3791 if (swizzle[idx] < num_channels && channels[swizzle[idx]].id()) {
3792 Temp channel = channels[swizzle[idx]];
3793 if (idx == 3 && alpha_adjust != RADV_ALPHA_ADJUST_NONE)
3794 channel = adjust_vertex_fetch_alpha(ctx, alpha_adjust, channel);
3795 vec->operands[i] = Operand(channel);
3796
3797 num_temp++;
3798 elems[i] = channel;
3799 } else if (is_float && idx == 3) {
3800 vec->operands[i] = Operand(0x3f800000u);
3801 } else if (!is_float && idx == 3) {
3802 vec->operands[i] = Operand(1u);
3803 } else {
3804 vec->operands[i] = Operand(0u);
3805 }
3806 }
3807 vec->definitions[0] = Definition(dst);
3808 ctx->block->instructions.emplace_back(std::move(vec));
3809 emit_split_vector(ctx, dst, dst.size());
3810
3811 if (num_temp == dst.size())
3812 ctx->allocated_vec.emplace(dst.id(), elems);
3813 }
3814 } else if (ctx->shader->info.stage == MESA_SHADER_FRAGMENT) {
3815 unsigned offset_idx = instr->intrinsic == nir_intrinsic_load_input ? 0 : 1;
3816 nir_instr *off_instr = instr->src[offset_idx].ssa->parent_instr;
3817 if (off_instr->type != nir_instr_type_load_const ||
3818 nir_instr_as_load_const(off_instr)->value[0].u32 != 0) {
3819 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
3820 nir_print_instr(off_instr, stderr);
3821 fprintf(stderr, "\n");
3822 }
3823
3824 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
3825 nir_const_value* offset = nir_src_as_const_value(instr->src[offset_idx]);
3826 if (offset) {
3827 assert(offset->u32 == 0);
3828 } else {
3829 /* the lower 15bit of the prim_mask contain the offset into LDS
3830 * while the upper bits contain the number of prims */
3831 Temp offset_src = get_ssa_temp(ctx, instr->src[offset_idx].ssa);
3832 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
3833 Builder bld(ctx->program, ctx->block);
3834 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
3835 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
3836 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
3837 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
3838 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
3839 }
3840
3841 unsigned idx = nir_intrinsic_base(instr);
3842 unsigned component = nir_intrinsic_component(instr);
3843 unsigned vertex_id = 2; /* P0 */
3844
3845 if (instr->intrinsic == nir_intrinsic_load_input_vertex) {
3846 nir_const_value* src0 = nir_src_as_const_value(instr->src[0]);
3847 switch (src0->u32) {
3848 case 0:
3849 vertex_id = 2; /* P0 */
3850 break;
3851 case 1:
3852 vertex_id = 0; /* P10 */
3853 break;
3854 case 2:
3855 vertex_id = 1; /* P20 */
3856 break;
3857 default:
3858 unreachable("invalid vertex index");
3859 }
3860 }
3861
3862 if (dst.size() == 1) {
3863 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(dst), Operand(vertex_id), bld.m0(prim_mask), idx, component);
3864 } else {
3865 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
3866 for (unsigned i = 0; i < dst.size(); i++)
3867 vec->operands[i] = bld.vintrp(aco_opcode::v_interp_mov_f32, bld.def(v1), Operand(vertex_id), bld.m0(prim_mask), idx, component + i);
3868 vec->definitions[0] = Definition(dst);
3869 bld.insert(std::move(vec));
3870 }
3871
3872 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_EVAL) {
3873 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
3874 Temp soffset = get_arg(ctx, ctx->args->oc_lds);
3875 std::pair<Temp, unsigned> offs = get_tcs_per_patch_output_vmem_offset(ctx, instr);
3876 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8u;
3877
3878 load_vmem_mubuf(ctx, dst, ring, offs.first, soffset, offs.second, elem_size_bytes, instr->dest.ssa.num_components);
3879 } else {
3880 unreachable("Shader stage not implemented");
3881 }
3882 }
3883
3884 std::pair<Temp, unsigned> get_gs_per_vertex_input_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned base_stride = 1u)
3885 {
3886 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
3887
3888 Builder bld(ctx->program, ctx->block);
3889 nir_src *vertex_src = nir_get_io_vertex_index_src(instr);
3890 Temp vertex_offset;
3891
3892 if (!nir_src_is_const(*vertex_src)) {
3893 /* better code could be created, but this case probably doesn't happen
3894 * much in practice */
3895 Temp indirect_vertex = as_vgpr(ctx, get_ssa_temp(ctx, vertex_src->ssa));
3896 for (unsigned i = 0; i < ctx->shader->info.gs.vertices_in; i++) {
3897 Temp elem;
3898
3899 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
3900 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i / 2u * 2u]);
3901 if (i % 2u)
3902 elem = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), elem);
3903 } else {
3904 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i]);
3905 }
3906
3907 if (vertex_offset.id()) {
3908 Temp cond = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)),
3909 Operand(i), indirect_vertex);
3910 vertex_offset = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), vertex_offset, elem, cond);
3911 } else {
3912 vertex_offset = elem;
3913 }
3914 }
3915
3916 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs)
3917 vertex_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu), vertex_offset);
3918 } else {
3919 unsigned vertex = nir_src_as_uint(*vertex_src);
3920 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs)
3921 vertex_offset = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
3922 get_arg(ctx, ctx->args->gs_vtx_offset[vertex / 2u * 2u]),
3923 Operand((vertex % 2u) * 16u), Operand(16u));
3924 else
3925 vertex_offset = get_arg(ctx, ctx->args->gs_vtx_offset[vertex]);
3926 }
3927
3928 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, base_stride);
3929 offs = offset_add(ctx, offs, std::make_pair(vertex_offset, 0u));
3930 return offset_mul(ctx, offs, 4u);
3931 }
3932
3933 void visit_load_gs_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
3934 {
3935 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
3936
3937 Builder bld(ctx->program, ctx->block);
3938 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3939 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
3940
3941 if (ctx->stage == geometry_gs) {
3942 std::pair<Temp, unsigned> offs = get_gs_per_vertex_input_offset(ctx, instr, ctx->program->wave_size);
3943 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_GS * 16u));
3944 load_vmem_mubuf(ctx, dst, ring, offs.first, Temp(), offs.second, elem_size_bytes, instr->dest.ssa.num_components, 4u * ctx->program->wave_size, false, true);
3945 } else if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
3946 std::pair<Temp, unsigned> offs = get_gs_per_vertex_input_offset(ctx, instr);
3947 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
3948 load_lds(ctx, elem_size_bytes, dst, offs.first, offs.second, lds_align);
3949 } else {
3950 unreachable("Unsupported GS stage.");
3951 }
3952 }
3953
3954 void visit_load_tcs_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
3955 {
3956 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3957
3958 Builder bld(ctx->program, ctx->block);
3959 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3960 std::pair<Temp, unsigned> offs = get_tcs_per_vertex_input_lds_offset(ctx, instr);
3961 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
3962 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
3963
3964 load_lds(ctx, elem_size_bytes, dst, offs.first, offs.second, lds_align);
3965 }
3966
3967 void visit_load_tes_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
3968 {
3969 assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
3970
3971 Builder bld(ctx->program, ctx->block);
3972
3973 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
3974 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
3975 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3976
3977 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
3978 std::pair<Temp, unsigned> offs = get_tcs_per_vertex_output_vmem_offset(ctx, instr);
3979
3980 load_vmem_mubuf(ctx, dst, ring, offs.first, oc_lds, offs.second, elem_size_bytes, instr->dest.ssa.num_components, 0u, true, true);
3981 }
3982
3983 void visit_load_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
3984 {
3985 switch (ctx->shader->info.stage) {
3986 case MESA_SHADER_GEOMETRY:
3987 visit_load_gs_per_vertex_input(ctx, instr);
3988 break;
3989 case MESA_SHADER_TESS_CTRL:
3990 visit_load_tcs_per_vertex_input(ctx, instr);
3991 break;
3992 case MESA_SHADER_TESS_EVAL:
3993 visit_load_tes_per_vertex_input(ctx, instr);
3994 break;
3995 default:
3996 unreachable("Unimplemented shader stage");
3997 }
3998 }
3999
4000 void visit_load_per_vertex_output(isel_context *ctx, nir_intrinsic_instr *instr)
4001 {
4002 visit_load_tcs_output(ctx, instr, true);
4003 }
4004
4005 void visit_store_per_vertex_output(isel_context *ctx, nir_intrinsic_instr *instr)
4006 {
4007 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
4008 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4009
4010 visit_store_tcs_output(ctx, instr, true);
4011 }
4012
4013 void visit_load_tess_coord(isel_context *ctx, nir_intrinsic_instr *instr)
4014 {
4015 assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
4016
4017 Builder bld(ctx->program, ctx->block);
4018 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4019
4020 Operand tes_u(get_arg(ctx, ctx->args->tes_u));
4021 Operand tes_v(get_arg(ctx, ctx->args->tes_v));
4022 Operand tes_w(0u);
4023
4024 if (ctx->shader->info.tess.primitive_mode == GL_TRIANGLES) {
4025 Temp tmp = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), tes_u, tes_v);
4026 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0x3f800000u /* 1.0f */), tmp);
4027 tes_w = Operand(tmp);
4028 }
4029
4030 Temp tess_coord = bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tes_u, tes_v, tes_w);
4031 emit_split_vector(ctx, tess_coord, 3);
4032 }
4033
4034 Temp load_desc_ptr(isel_context *ctx, unsigned desc_set)
4035 {
4036 if (ctx->program->info->need_indirect_descriptor_sets) {
4037 Builder bld(ctx->program, ctx->block);
4038 Temp ptr64 = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->descriptor_sets[0]));
4039 Operand off = bld.copy(bld.def(s1), Operand(desc_set << 2));
4040 return bld.smem(aco_opcode::s_load_dword, bld.def(s1), ptr64, off);//, false, false, false);
4041 }
4042
4043 return get_arg(ctx, ctx->args->descriptor_sets[desc_set]);
4044 }
4045
4046
4047 void visit_load_resource(isel_context *ctx, nir_intrinsic_instr *instr)
4048 {
4049 Builder bld(ctx->program, ctx->block);
4050 Temp index = get_ssa_temp(ctx, instr->src[0].ssa);
4051 if (!ctx->divergent_vals[instr->dest.ssa.index])
4052 index = bld.as_uniform(index);
4053 unsigned desc_set = nir_intrinsic_desc_set(instr);
4054 unsigned binding = nir_intrinsic_binding(instr);
4055
4056 Temp desc_ptr;
4057 radv_pipeline_layout *pipeline_layout = ctx->options->layout;
4058 radv_descriptor_set_layout *layout = pipeline_layout->set[desc_set].layout;
4059 unsigned offset = layout->binding[binding].offset;
4060 unsigned stride;
4061 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
4062 layout->binding[binding].type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
4063 unsigned idx = pipeline_layout->set[desc_set].dynamic_offset_start + layout->binding[binding].dynamic_offset_offset;
4064 desc_ptr = get_arg(ctx, ctx->args->ac.push_constants);
4065 offset = pipeline_layout->push_constant_size + 16 * idx;
4066 stride = 16;
4067 } else {
4068 desc_ptr = load_desc_ptr(ctx, desc_set);
4069 stride = layout->binding[binding].size;
4070 }
4071
4072 nir_const_value* nir_const_index = nir_src_as_const_value(instr->src[0]);
4073 unsigned const_index = nir_const_index ? nir_const_index->u32 : 0;
4074 if (stride != 1) {
4075 if (nir_const_index) {
4076 const_index = const_index * stride;
4077 } else if (index.type() == RegType::vgpr) {
4078 bool index24bit = layout->binding[binding].array_size <= 0x1000000;
4079 index = bld.v_mul_imm(bld.def(v1), index, stride, index24bit);
4080 } else {
4081 index = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), Operand(index));
4082 }
4083 }
4084 if (offset) {
4085 if (nir_const_index) {
4086 const_index = const_index + offset;
4087 } else if (index.type() == RegType::vgpr) {
4088 index = bld.vadd32(bld.def(v1), Operand(offset), index);
4089 } else {
4090 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), Operand(index));
4091 }
4092 }
4093
4094 if (nir_const_index && const_index == 0) {
4095 index = desc_ptr;
4096 } else if (index.type() == RegType::vgpr) {
4097 index = bld.vadd32(bld.def(v1),
4098 nir_const_index ? Operand(const_index) : Operand(index),
4099 Operand(desc_ptr));
4100 } else {
4101 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
4102 nir_const_index ? Operand(const_index) : Operand(index),
4103 Operand(desc_ptr));
4104 }
4105
4106 bld.copy(Definition(get_ssa_temp(ctx, &instr->dest.ssa)), index);
4107 }
4108
4109 void load_buffer(isel_context *ctx, unsigned num_components, Temp dst,
4110 Temp rsrc, Temp offset, bool glc=false, bool readonly=true)
4111 {
4112 Builder bld(ctx->program, ctx->block);
4113
4114 unsigned num_bytes = dst.size() * 4;
4115 bool dlc = glc && ctx->options->chip_class >= GFX10;
4116
4117 aco_opcode op;
4118 if (dst.type() == RegType::vgpr || (ctx->options->chip_class < GFX8 && !readonly)) {
4119 Operand vaddr = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
4120 Operand soffset = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
4121 unsigned const_offset = 0;
4122
4123 Temp lower = Temp();
4124 if (num_bytes > 16) {
4125 assert(num_components == 3 || num_components == 4);
4126 op = aco_opcode::buffer_load_dwordx4;
4127 lower = bld.tmp(v4);
4128 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
4129 mubuf->definitions[0] = Definition(lower);
4130 mubuf->operands[0] = Operand(rsrc);
4131 mubuf->operands[1] = vaddr;
4132 mubuf->operands[2] = soffset;
4133 mubuf->offen = (offset.type() == RegType::vgpr);
4134 mubuf->glc = glc;
4135 mubuf->dlc = dlc;
4136 mubuf->barrier = readonly ? barrier_none : barrier_buffer;
4137 mubuf->can_reorder = readonly;
4138 bld.insert(std::move(mubuf));
4139 emit_split_vector(ctx, lower, 2);
4140 num_bytes -= 16;
4141 const_offset = 16;
4142 } else if (num_bytes == 12 && ctx->options->chip_class == GFX6) {
4143 /* GFX6 doesn't support loading vec3, expand to vec4. */
4144 num_bytes = 16;
4145 }
4146
4147 switch (num_bytes) {
4148 case 4:
4149 op = aco_opcode::buffer_load_dword;
4150 break;
4151 case 8:
4152 op = aco_opcode::buffer_load_dwordx2;
4153 break;
4154 case 12:
4155 assert(ctx->options->chip_class > GFX6);
4156 op = aco_opcode::buffer_load_dwordx3;
4157 break;
4158 case 16:
4159 op = aco_opcode::buffer_load_dwordx4;
4160 break;
4161 default:
4162 unreachable("Load SSBO not implemented for this size.");
4163 }
4164 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
4165 mubuf->operands[0] = Operand(rsrc);
4166 mubuf->operands[1] = vaddr;
4167 mubuf->operands[2] = soffset;
4168 mubuf->offen = (offset.type() == RegType::vgpr);
4169 mubuf->glc = glc;
4170 mubuf->dlc = dlc;
4171 mubuf->barrier = readonly ? barrier_none : barrier_buffer;
4172 mubuf->can_reorder = readonly;
4173 mubuf->offset = const_offset;
4174 aco_ptr<Instruction> instr = std::move(mubuf);
4175
4176 if (dst.size() > 4) {
4177 assert(lower != Temp());
4178 Temp upper = bld.tmp(RegType::vgpr, dst.size() - lower.size());
4179 instr->definitions[0] = Definition(upper);
4180 bld.insert(std::move(instr));
4181 if (dst.size() == 8)
4182 emit_split_vector(ctx, upper, 2);
4183 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size() / 2, 1));
4184 instr->operands[0] = Operand(emit_extract_vector(ctx, lower, 0, v2));
4185 instr->operands[1] = Operand(emit_extract_vector(ctx, lower, 1, v2));
4186 instr->operands[2] = Operand(emit_extract_vector(ctx, upper, 0, v2));
4187 if (dst.size() == 8)
4188 instr->operands[3] = Operand(emit_extract_vector(ctx, upper, 1, v2));
4189 } else if (dst.size() == 3 && ctx->options->chip_class == GFX6) {
4190 Temp vec = bld.tmp(v4);
4191 instr->definitions[0] = Definition(vec);
4192 bld.insert(std::move(instr));
4193 emit_split_vector(ctx, vec, 4);
4194
4195 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 3, 1));
4196 instr->operands[0] = Operand(emit_extract_vector(ctx, vec, 0, v1));
4197 instr->operands[1] = Operand(emit_extract_vector(ctx, vec, 1, v1));
4198 instr->operands[2] = Operand(emit_extract_vector(ctx, vec, 2, v1));
4199 }
4200
4201 if (dst.type() == RegType::sgpr) {
4202 Temp vec = bld.tmp(RegType::vgpr, dst.size());
4203 instr->definitions[0] = Definition(vec);
4204 bld.insert(std::move(instr));
4205 expand_vector(ctx, vec, dst, num_components, (1 << num_components) - 1);
4206 } else {
4207 instr->definitions[0] = Definition(dst);
4208 bld.insert(std::move(instr));
4209 emit_split_vector(ctx, dst, num_components);
4210 }
4211 } else {
4212 switch (num_bytes) {
4213 case 4:
4214 op = aco_opcode::s_buffer_load_dword;
4215 break;
4216 case 8:
4217 op = aco_opcode::s_buffer_load_dwordx2;
4218 break;
4219 case 12:
4220 case 16:
4221 op = aco_opcode::s_buffer_load_dwordx4;
4222 break;
4223 case 24:
4224 case 32:
4225 op = aco_opcode::s_buffer_load_dwordx8;
4226 break;
4227 default:
4228 unreachable("Load SSBO not implemented for this size.");
4229 }
4230 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
4231 load->operands[0] = Operand(rsrc);
4232 load->operands[1] = Operand(bld.as_uniform(offset));
4233 assert(load->operands[1].getTemp().type() == RegType::sgpr);
4234 load->definitions[0] = Definition(dst);
4235 load->glc = glc;
4236 load->dlc = dlc;
4237 load->barrier = readonly ? barrier_none : barrier_buffer;
4238 load->can_reorder = false; // FIXME: currently, it doesn't seem beneficial due to how our scheduler works
4239 assert(ctx->options->chip_class >= GFX8 || !glc);
4240
4241 /* trim vector */
4242 if (dst.size() == 3) {
4243 Temp vec = bld.tmp(s4);
4244 load->definitions[0] = Definition(vec);
4245 bld.insert(std::move(load));
4246 emit_split_vector(ctx, vec, 4);
4247
4248 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4249 emit_extract_vector(ctx, vec, 0, s1),
4250 emit_extract_vector(ctx, vec, 1, s1),
4251 emit_extract_vector(ctx, vec, 2, s1));
4252 } else if (dst.size() == 6) {
4253 Temp vec = bld.tmp(s8);
4254 load->definitions[0] = Definition(vec);
4255 bld.insert(std::move(load));
4256 emit_split_vector(ctx, vec, 4);
4257
4258 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4259 emit_extract_vector(ctx, vec, 0, s2),
4260 emit_extract_vector(ctx, vec, 1, s2),
4261 emit_extract_vector(ctx, vec, 2, s2));
4262 } else {
4263 bld.insert(std::move(load));
4264 }
4265 emit_split_vector(ctx, dst, num_components);
4266 }
4267 }
4268
4269 void visit_load_ubo(isel_context *ctx, nir_intrinsic_instr *instr)
4270 {
4271 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4272 Temp rsrc = get_ssa_temp(ctx, instr->src[0].ssa);
4273
4274 Builder bld(ctx->program, ctx->block);
4275
4276 nir_intrinsic_instr* idx_instr = nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
4277 unsigned desc_set = nir_intrinsic_desc_set(idx_instr);
4278 unsigned binding = nir_intrinsic_binding(idx_instr);
4279 radv_descriptor_set_layout *layout = ctx->options->layout->set[desc_set].layout;
4280
4281 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
4282 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
4283 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
4284 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
4285 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
4286 if (ctx->options->chip_class >= GFX10) {
4287 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
4288 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
4289 S_008F0C_RESOURCE_LEVEL(1);
4290 } else {
4291 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
4292 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
4293 }
4294 Temp upper_dwords = bld.pseudo(aco_opcode::p_create_vector, bld.def(s3),
4295 Operand(S_008F04_BASE_ADDRESS_HI(ctx->options->address32_hi)),
4296 Operand(0xFFFFFFFFu),
4297 Operand(desc_type));
4298 rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
4299 rsrc, upper_dwords);
4300 } else {
4301 rsrc = convert_pointer_to_64_bit(ctx, rsrc);
4302 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
4303 }
4304
4305 load_buffer(ctx, instr->num_components, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa));
4306 }
4307
4308 void visit_load_push_constant(isel_context *ctx, nir_intrinsic_instr *instr)
4309 {
4310 Builder bld(ctx->program, ctx->block);
4311 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4312
4313 unsigned offset = nir_intrinsic_base(instr);
4314 nir_const_value *index_cv = nir_src_as_const_value(instr->src[0]);
4315 if (index_cv && instr->dest.ssa.bit_size == 32) {
4316
4317 unsigned count = instr->dest.ssa.num_components;
4318 unsigned start = (offset + index_cv->u32) / 4u;
4319 start -= ctx->args->ac.base_inline_push_consts;
4320 if (start + count <= ctx->args->ac.num_inline_push_consts) {
4321 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
4322 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
4323 for (unsigned i = 0; i < count; ++i) {
4324 elems[i] = get_arg(ctx, ctx->args->ac.inline_push_consts[start + i]);
4325 vec->operands[i] = Operand{elems[i]};
4326 }
4327 vec->definitions[0] = Definition(dst);
4328 ctx->block->instructions.emplace_back(std::move(vec));
4329 ctx->allocated_vec.emplace(dst.id(), elems);
4330 return;
4331 }
4332 }
4333
4334 Temp index = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa));
4335 if (offset != 0) // TODO check if index != 0 as well
4336 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), index);
4337 Temp ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->ac.push_constants));
4338 Temp vec = dst;
4339 bool trim = false;
4340 aco_opcode op;
4341
4342 switch (dst.size()) {
4343 case 1:
4344 op = aco_opcode::s_load_dword;
4345 break;
4346 case 2:
4347 op = aco_opcode::s_load_dwordx2;
4348 break;
4349 case 3:
4350 vec = bld.tmp(s4);
4351 trim = true;
4352 case 4:
4353 op = aco_opcode::s_load_dwordx4;
4354 break;
4355 case 6:
4356 vec = bld.tmp(s8);
4357 trim = true;
4358 case 8:
4359 op = aco_opcode::s_load_dwordx8;
4360 break;
4361 default:
4362 unreachable("unimplemented or forbidden load_push_constant.");
4363 }
4364
4365 bld.smem(op, Definition(vec), ptr, index);
4366
4367 if (trim) {
4368 emit_split_vector(ctx, vec, 4);
4369 RegClass rc = dst.size() == 3 ? s1 : s2;
4370 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4371 emit_extract_vector(ctx, vec, 0, rc),
4372 emit_extract_vector(ctx, vec, 1, rc),
4373 emit_extract_vector(ctx, vec, 2, rc));
4374
4375 }
4376 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
4377 }
4378
4379 void visit_load_constant(isel_context *ctx, nir_intrinsic_instr *instr)
4380 {
4381 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4382
4383 Builder bld(ctx->program, ctx->block);
4384
4385 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
4386 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
4387 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
4388 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
4389 if (ctx->options->chip_class >= GFX10) {
4390 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
4391 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
4392 S_008F0C_RESOURCE_LEVEL(1);
4393 } else {
4394 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
4395 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
4396 }
4397
4398 unsigned base = nir_intrinsic_base(instr);
4399 unsigned range = nir_intrinsic_range(instr);
4400
4401 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
4402 if (base && offset.type() == RegType::sgpr)
4403 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), offset, Operand(base));
4404 else if (base && offset.type() == RegType::vgpr)
4405 offset = bld.vadd32(bld.def(v1), Operand(base), offset);
4406
4407 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
4408 bld.sop1(aco_opcode::p_constaddr, bld.def(s2), bld.def(s1, scc), Operand(ctx->constant_data_offset)),
4409 Operand(MIN2(base + range, ctx->shader->constant_data_size)),
4410 Operand(desc_type));
4411
4412 load_buffer(ctx, instr->num_components, dst, rsrc, offset);
4413 }
4414
4415 void visit_discard_if(isel_context *ctx, nir_intrinsic_instr *instr)
4416 {
4417 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
4418 ctx->cf_info.exec_potentially_empty_discard = true;
4419
4420 ctx->program->needs_exact = true;
4421
4422 // TODO: optimize uniform conditions
4423 Builder bld(ctx->program, ctx->block);
4424 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
4425 assert(src.regClass() == bld.lm);
4426 src = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
4427 bld.pseudo(aco_opcode::p_discard_if, src);
4428 ctx->block->kind |= block_kind_uses_discard_if;
4429 return;
4430 }
4431
4432 void visit_discard(isel_context* ctx, nir_intrinsic_instr *instr)
4433 {
4434 Builder bld(ctx->program, ctx->block);
4435
4436 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
4437 ctx->cf_info.exec_potentially_empty_discard = true;
4438
4439 bool divergent = ctx->cf_info.parent_if.is_divergent ||
4440 ctx->cf_info.parent_loop.has_divergent_continue;
4441
4442 if (ctx->block->loop_nest_depth &&
4443 ((nir_instr_is_last(&instr->instr) && !divergent) || divergent)) {
4444 /* we handle discards the same way as jump instructions */
4445 append_logical_end(ctx->block);
4446
4447 /* in loops, discard behaves like break */
4448 Block *linear_target = ctx->cf_info.parent_loop.exit;
4449 ctx->block->kind |= block_kind_discard;
4450
4451 if (!divergent) {
4452 /* uniform discard - loop ends here */
4453 assert(nir_instr_is_last(&instr->instr));
4454 ctx->block->kind |= block_kind_uniform;
4455 ctx->cf_info.has_branch = true;
4456 bld.branch(aco_opcode::p_branch);
4457 add_linear_edge(ctx->block->index, linear_target);
4458 return;
4459 }
4460
4461 /* we add a break right behind the discard() instructions */
4462 ctx->block->kind |= block_kind_break;
4463 unsigned idx = ctx->block->index;
4464
4465 ctx->cf_info.parent_loop.has_divergent_branch = true;
4466 ctx->cf_info.nir_to_aco[instr->instr.block->index] = idx;
4467
4468 /* remove critical edges from linear CFG */
4469 bld.branch(aco_opcode::p_branch);
4470 Block* break_block = ctx->program->create_and_insert_block();
4471 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
4472 break_block->kind |= block_kind_uniform;
4473 add_linear_edge(idx, break_block);
4474 add_linear_edge(break_block->index, linear_target);
4475 bld.reset(break_block);
4476 bld.branch(aco_opcode::p_branch);
4477
4478 Block* continue_block = ctx->program->create_and_insert_block();
4479 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
4480 add_linear_edge(idx, continue_block);
4481 append_logical_start(continue_block);
4482 ctx->block = continue_block;
4483
4484 return;
4485 }
4486
4487 /* it can currently happen that NIR doesn't remove the unreachable code */
4488 if (!nir_instr_is_last(&instr->instr)) {
4489 ctx->program->needs_exact = true;
4490 /* save exec somewhere temporarily so that it doesn't get
4491 * overwritten before the discard from outer exec masks */
4492 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), Operand(0xFFFFFFFF), Operand(exec, bld.lm));
4493 bld.pseudo(aco_opcode::p_discard_if, cond);
4494 ctx->block->kind |= block_kind_uses_discard_if;
4495 return;
4496 }
4497
4498 /* This condition is incorrect for uniformly branched discards in a loop
4499 * predicated by a divergent condition, but the above code catches that case
4500 * and the discard would end up turning into a discard_if.
4501 * For example:
4502 * if (divergent) {
4503 * while (...) {
4504 * if (uniform) {
4505 * discard;
4506 * }
4507 * }
4508 * }
4509 */
4510 if (!ctx->cf_info.parent_if.is_divergent) {
4511 /* program just ends here */
4512 ctx->block->kind |= block_kind_uniform;
4513 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
4514 0 /* enabled mask */, 9 /* dest */,
4515 false /* compressed */, true/* done */, true /* valid mask */);
4516 bld.sopp(aco_opcode::s_endpgm);
4517 // TODO: it will potentially be followed by a branch which is dead code to sanitize NIR phis
4518 } else {
4519 ctx->block->kind |= block_kind_discard;
4520 /* branch and linear edge is added by visit_if() */
4521 }
4522 }
4523
4524 enum aco_descriptor_type {
4525 ACO_DESC_IMAGE,
4526 ACO_DESC_FMASK,
4527 ACO_DESC_SAMPLER,
4528 ACO_DESC_BUFFER,
4529 ACO_DESC_PLANE_0,
4530 ACO_DESC_PLANE_1,
4531 ACO_DESC_PLANE_2,
4532 };
4533
4534 static bool
4535 should_declare_array(isel_context *ctx, enum glsl_sampler_dim sampler_dim, bool is_array) {
4536 if (sampler_dim == GLSL_SAMPLER_DIM_BUF)
4537 return false;
4538 ac_image_dim dim = ac_get_sampler_dim(ctx->options->chip_class, sampler_dim, is_array);
4539 return dim == ac_image_cube ||
4540 dim == ac_image_1darray ||
4541 dim == ac_image_2darray ||
4542 dim == ac_image_2darraymsaa;
4543 }
4544
4545 Temp get_sampler_desc(isel_context *ctx, nir_deref_instr *deref_instr,
4546 enum aco_descriptor_type desc_type,
4547 const nir_tex_instr *tex_instr, bool image, bool write)
4548 {
4549 /* FIXME: we should lower the deref with some new nir_intrinsic_load_desc
4550 std::unordered_map<uint64_t, Temp>::iterator it = ctx->tex_desc.find((uint64_t) desc_type << 32 | deref_instr->dest.ssa.index);
4551 if (it != ctx->tex_desc.end())
4552 return it->second;
4553 */
4554 Temp index = Temp();
4555 bool index_set = false;
4556 unsigned constant_index = 0;
4557 unsigned descriptor_set;
4558 unsigned base_index;
4559 Builder bld(ctx->program, ctx->block);
4560
4561 if (!deref_instr) {
4562 assert(tex_instr && !image);
4563 descriptor_set = 0;
4564 base_index = tex_instr->sampler_index;
4565 } else {
4566 while(deref_instr->deref_type != nir_deref_type_var) {
4567 unsigned array_size = glsl_get_aoa_size(deref_instr->type);
4568 if (!array_size)
4569 array_size = 1;
4570
4571 assert(deref_instr->deref_type == nir_deref_type_array);
4572 nir_const_value *const_value = nir_src_as_const_value(deref_instr->arr.index);
4573 if (const_value) {
4574 constant_index += array_size * const_value->u32;
4575 } else {
4576 Temp indirect = get_ssa_temp(ctx, deref_instr->arr.index.ssa);
4577 if (indirect.type() == RegType::vgpr)
4578 indirect = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), indirect);
4579
4580 if (array_size != 1)
4581 indirect = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(array_size), indirect);
4582
4583 if (!index_set) {
4584 index = indirect;
4585 index_set = true;
4586 } else {
4587 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), index, indirect);
4588 }
4589 }
4590
4591 deref_instr = nir_src_as_deref(deref_instr->parent);
4592 }
4593 descriptor_set = deref_instr->var->data.descriptor_set;
4594 base_index = deref_instr->var->data.binding;
4595 }
4596
4597 Temp list = load_desc_ptr(ctx, descriptor_set);
4598 list = convert_pointer_to_64_bit(ctx, list);
4599
4600 struct radv_descriptor_set_layout *layout = ctx->options->layout->set[descriptor_set].layout;
4601 struct radv_descriptor_set_binding_layout *binding = layout->binding + base_index;
4602 unsigned offset = binding->offset;
4603 unsigned stride = binding->size;
4604 aco_opcode opcode;
4605 RegClass type;
4606
4607 assert(base_index < layout->binding_count);
4608
4609 switch (desc_type) {
4610 case ACO_DESC_IMAGE:
4611 type = s8;
4612 opcode = aco_opcode::s_load_dwordx8;
4613 break;
4614 case ACO_DESC_FMASK:
4615 type = s8;
4616 opcode = aco_opcode::s_load_dwordx8;
4617 offset += 32;
4618 break;
4619 case ACO_DESC_SAMPLER:
4620 type = s4;
4621 opcode = aco_opcode::s_load_dwordx4;
4622 if (binding->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
4623 offset += radv_combined_image_descriptor_sampler_offset(binding);
4624 break;
4625 case ACO_DESC_BUFFER:
4626 type = s4;
4627 opcode = aco_opcode::s_load_dwordx4;
4628 break;
4629 case ACO_DESC_PLANE_0:
4630 case ACO_DESC_PLANE_1:
4631 type = s8;
4632 opcode = aco_opcode::s_load_dwordx8;
4633 offset += 32 * (desc_type - ACO_DESC_PLANE_0);
4634 break;
4635 case ACO_DESC_PLANE_2:
4636 type = s4;
4637 opcode = aco_opcode::s_load_dwordx4;
4638 offset += 64;
4639 break;
4640 default:
4641 unreachable("invalid desc_type\n");
4642 }
4643
4644 offset += constant_index * stride;
4645
4646 if (desc_type == ACO_DESC_SAMPLER && binding->immutable_samplers_offset &&
4647 (!index_set || binding->immutable_samplers_equal)) {
4648 if (binding->immutable_samplers_equal)
4649 constant_index = 0;
4650
4651 const uint32_t *samplers = radv_immutable_samplers(layout, binding);
4652 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
4653 Operand(samplers[constant_index * 4 + 0]),
4654 Operand(samplers[constant_index * 4 + 1]),
4655 Operand(samplers[constant_index * 4 + 2]),
4656 Operand(samplers[constant_index * 4 + 3]));
4657 }
4658
4659 Operand off;
4660 if (!index_set) {
4661 off = bld.copy(bld.def(s1), Operand(offset));
4662 } else {
4663 off = Operand((Temp)bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset),
4664 bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), index)));
4665 }
4666
4667 Temp res = bld.smem(opcode, bld.def(type), list, off);
4668
4669 if (desc_type == ACO_DESC_PLANE_2) {
4670 Temp components[8];
4671 for (unsigned i = 0; i < 8; i++)
4672 components[i] = bld.tmp(s1);
4673 bld.pseudo(aco_opcode::p_split_vector,
4674 Definition(components[0]),
4675 Definition(components[1]),
4676 Definition(components[2]),
4677 Definition(components[3]),
4678 res);
4679
4680 Temp desc2 = get_sampler_desc(ctx, deref_instr, ACO_DESC_PLANE_1, tex_instr, image, write);
4681 bld.pseudo(aco_opcode::p_split_vector,
4682 bld.def(s1), bld.def(s1), bld.def(s1), bld.def(s1),
4683 Definition(components[4]),
4684 Definition(components[5]),
4685 Definition(components[6]),
4686 Definition(components[7]),
4687 desc2);
4688
4689 res = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
4690 components[0], components[1], components[2], components[3],
4691 components[4], components[5], components[6], components[7]);
4692 }
4693
4694 return res;
4695 }
4696
4697 static int image_type_to_components_count(enum glsl_sampler_dim dim, bool array)
4698 {
4699 switch (dim) {
4700 case GLSL_SAMPLER_DIM_BUF:
4701 return 1;
4702 case GLSL_SAMPLER_DIM_1D:
4703 return array ? 2 : 1;
4704 case GLSL_SAMPLER_DIM_2D:
4705 return array ? 3 : 2;
4706 case GLSL_SAMPLER_DIM_MS:
4707 return array ? 4 : 3;
4708 case GLSL_SAMPLER_DIM_3D:
4709 case GLSL_SAMPLER_DIM_CUBE:
4710 return 3;
4711 case GLSL_SAMPLER_DIM_RECT:
4712 case GLSL_SAMPLER_DIM_SUBPASS:
4713 return 2;
4714 case GLSL_SAMPLER_DIM_SUBPASS_MS:
4715 return 3;
4716 default:
4717 break;
4718 }
4719 return 0;
4720 }
4721
4722
4723 /* Adjust the sample index according to FMASK.
4724 *
4725 * For uncompressed MSAA surfaces, FMASK should return 0x76543210,
4726 * which is the identity mapping. Each nibble says which physical sample
4727 * should be fetched to get that sample.
4728 *
4729 * For example, 0x11111100 means there are only 2 samples stored and
4730 * the second sample covers 3/4 of the pixel. When reading samples 0
4731 * and 1, return physical sample 0 (determined by the first two 0s
4732 * in FMASK), otherwise return physical sample 1.
4733 *
4734 * The sample index should be adjusted as follows:
4735 * sample_index = (fmask >> (sample_index * 4)) & 0xF;
4736 */
4737 static Temp adjust_sample_index_using_fmask(isel_context *ctx, bool da, std::vector<Temp>& coords, Operand sample_index, Temp fmask_desc_ptr)
4738 {
4739 Builder bld(ctx->program, ctx->block);
4740 Temp fmask = bld.tmp(v1);
4741 unsigned dim = ctx->options->chip_class >= GFX10
4742 ? ac_get_sampler_dim(ctx->options->chip_class, GLSL_SAMPLER_DIM_2D, da)
4743 : 0;
4744
4745 Temp coord = da ? bld.pseudo(aco_opcode::p_create_vector, bld.def(v3), coords[0], coords[1], coords[2]) :
4746 bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), coords[0], coords[1]);
4747 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(aco_opcode::image_load, Format::MIMG, 3, 1)};
4748 load->operands[0] = Operand(fmask_desc_ptr);
4749 load->operands[1] = Operand(s4); /* no sampler */
4750 load->operands[2] = Operand(coord);
4751 load->definitions[0] = Definition(fmask);
4752 load->glc = false;
4753 load->dlc = false;
4754 load->dmask = 0x1;
4755 load->unrm = true;
4756 load->da = da;
4757 load->dim = dim;
4758 load->can_reorder = true; /* fmask images shouldn't be modified */
4759 ctx->block->instructions.emplace_back(std::move(load));
4760
4761 Operand sample_index4;
4762 if (sample_index.isConstant() && sample_index.constantValue() < 16) {
4763 sample_index4 = Operand(sample_index.constantValue() << 2);
4764 } else if (sample_index.regClass() == s1) {
4765 sample_index4 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), sample_index, Operand(2u));
4766 } else {
4767 assert(sample_index.regClass() == v1);
4768 sample_index4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), sample_index);
4769 }
4770
4771 Temp final_sample;
4772 if (sample_index4.isConstant() && sample_index4.constantValue() == 0)
4773 final_sample = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(15u), fmask);
4774 else if (sample_index4.isConstant() && sample_index4.constantValue() == 28)
4775 final_sample = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(28u), fmask);
4776 else
4777 final_sample = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), fmask, sample_index4, Operand(4u));
4778
4779 /* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK
4780 * resource descriptor is 0 (invalid),
4781 */
4782 Temp compare = bld.tmp(bld.lm);
4783 bld.vopc_e64(aco_opcode::v_cmp_lg_u32, Definition(compare),
4784 Operand(0u), emit_extract_vector(ctx, fmask_desc_ptr, 1, s1)).def(0).setHint(vcc);
4785
4786 Temp sample_index_v = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), sample_index);
4787
4788 /* Replace the MSAA sample index. */
4789 return bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), sample_index_v, final_sample, compare);
4790 }
4791
4792 static Temp get_image_coords(isel_context *ctx, const nir_intrinsic_instr *instr, const struct glsl_type *type)
4793 {
4794
4795 Temp src0 = get_ssa_temp(ctx, instr->src[1].ssa);
4796 enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4797 bool is_array = glsl_sampler_type_is_array(type);
4798 ASSERTED bool add_frag_pos = (dim == GLSL_SAMPLER_DIM_SUBPASS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
4799 assert(!add_frag_pos && "Input attachments should be lowered.");
4800 bool is_ms = (dim == GLSL_SAMPLER_DIM_MS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
4801 bool gfx9_1d = ctx->options->chip_class == GFX9 && dim == GLSL_SAMPLER_DIM_1D;
4802 int count = image_type_to_components_count(dim, is_array);
4803 std::vector<Temp> coords(count);
4804 Builder bld(ctx->program, ctx->block);
4805
4806 if (is_ms) {
4807 count--;
4808 Temp src2 = get_ssa_temp(ctx, instr->src[2].ssa);
4809 /* get sample index */
4810 if (instr->intrinsic == nir_intrinsic_image_deref_load) {
4811 nir_const_value *sample_cv = nir_src_as_const_value(instr->src[2]);
4812 Operand sample_index = sample_cv ? Operand(sample_cv->u32) : Operand(emit_extract_vector(ctx, src2, 0, v1));
4813 std::vector<Temp> fmask_load_address;
4814 for (unsigned i = 0; i < (is_array ? 3 : 2); i++)
4815 fmask_load_address.emplace_back(emit_extract_vector(ctx, src0, i, v1));
4816
4817 Temp fmask_desc_ptr = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_FMASK, nullptr, false, false);
4818 coords[count] = adjust_sample_index_using_fmask(ctx, is_array, fmask_load_address, sample_index, fmask_desc_ptr);
4819 } else {
4820 coords[count] = emit_extract_vector(ctx, src2, 0, v1);
4821 }
4822 }
4823
4824 if (gfx9_1d) {
4825 coords[0] = emit_extract_vector(ctx, src0, 0, v1);
4826 coords.resize(coords.size() + 1);
4827 coords[1] = bld.copy(bld.def(v1), Operand(0u));
4828 if (is_array)
4829 coords[2] = emit_extract_vector(ctx, src0, 1, v1);
4830 } else {
4831 for (int i = 0; i < count; i++)
4832 coords[i] = emit_extract_vector(ctx, src0, i, v1);
4833 }
4834
4835 if (instr->intrinsic == nir_intrinsic_image_deref_load ||
4836 instr->intrinsic == nir_intrinsic_image_deref_store) {
4837 int lod_index = instr->intrinsic == nir_intrinsic_image_deref_load ? 3 : 4;
4838 bool level_zero = nir_src_is_const(instr->src[lod_index]) && nir_src_as_uint(instr->src[lod_index]) == 0;
4839
4840 if (!level_zero)
4841 coords.emplace_back(get_ssa_temp(ctx, instr->src[lod_index].ssa));
4842 }
4843
4844 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
4845 for (unsigned i = 0; i < coords.size(); i++)
4846 vec->operands[i] = Operand(coords[i]);
4847 Temp res = {ctx->program->allocateId(), RegClass(RegType::vgpr, coords.size())};
4848 vec->definitions[0] = Definition(res);
4849 ctx->block->instructions.emplace_back(std::move(vec));
4850 return res;
4851 }
4852
4853
4854 void visit_image_load(isel_context *ctx, nir_intrinsic_instr *instr)
4855 {
4856 Builder bld(ctx->program, ctx->block);
4857 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
4858 const struct glsl_type *type = glsl_without_array(var->type);
4859 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4860 bool is_array = glsl_sampler_type_is_array(type);
4861 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4862
4863 if (dim == GLSL_SAMPLER_DIM_BUF) {
4864 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa);
4865 unsigned num_channels = util_last_bit(mask);
4866 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
4867 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
4868
4869 aco_opcode opcode;
4870 switch (num_channels) {
4871 case 1:
4872 opcode = aco_opcode::buffer_load_format_x;
4873 break;
4874 case 2:
4875 opcode = aco_opcode::buffer_load_format_xy;
4876 break;
4877 case 3:
4878 opcode = aco_opcode::buffer_load_format_xyz;
4879 break;
4880 case 4:
4881 opcode = aco_opcode::buffer_load_format_xyzw;
4882 break;
4883 default:
4884 unreachable(">4 channel buffer image load");
4885 }
4886 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 3, 1)};
4887 load->operands[0] = Operand(rsrc);
4888 load->operands[1] = Operand(vindex);
4889 load->operands[2] = Operand((uint32_t) 0);
4890 Temp tmp;
4891 if (num_channels == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
4892 tmp = dst;
4893 else
4894 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_channels)};
4895 load->definitions[0] = Definition(tmp);
4896 load->idxen = true;
4897 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT);
4898 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
4899 load->barrier = barrier_image;
4900 ctx->block->instructions.emplace_back(std::move(load));
4901
4902 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, (1 << num_channels) - 1);
4903 return;
4904 }
4905
4906 Temp coords = get_image_coords(ctx, instr, type);
4907 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
4908
4909 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
4910 unsigned num_components = util_bitcount(dmask);
4911 Temp tmp;
4912 if (num_components == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
4913 tmp = dst;
4914 else
4915 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_components)};
4916
4917 bool level_zero = nir_src_is_const(instr->src[3]) && nir_src_as_uint(instr->src[3]) == 0;
4918 aco_opcode opcode = level_zero ? aco_opcode::image_load : aco_opcode::image_load_mip;
4919
4920 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1)};
4921 load->operands[0] = Operand(resource);
4922 load->operands[1] = Operand(s4); /* no sampler */
4923 load->operands[2] = Operand(coords);
4924 load->definitions[0] = Definition(tmp);
4925 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT) ? 1 : 0;
4926 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
4927 load->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
4928 load->dmask = dmask;
4929 load->unrm = true;
4930 load->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
4931 load->barrier = barrier_image;
4932 ctx->block->instructions.emplace_back(std::move(load));
4933
4934 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, dmask);
4935 return;
4936 }
4937
4938 void visit_image_store(isel_context *ctx, nir_intrinsic_instr *instr)
4939 {
4940 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
4941 const struct glsl_type *type = glsl_without_array(var->type);
4942 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4943 bool is_array = glsl_sampler_type_is_array(type);
4944 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
4945
4946 bool glc = ctx->options->chip_class == GFX6 || var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE) ? 1 : 0;
4947
4948 if (dim == GLSL_SAMPLER_DIM_BUF) {
4949 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
4950 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
4951 aco_opcode opcode;
4952 switch (data.size()) {
4953 case 1:
4954 opcode = aco_opcode::buffer_store_format_x;
4955 break;
4956 case 2:
4957 opcode = aco_opcode::buffer_store_format_xy;
4958 break;
4959 case 3:
4960 opcode = aco_opcode::buffer_store_format_xyz;
4961 break;
4962 case 4:
4963 opcode = aco_opcode::buffer_store_format_xyzw;
4964 break;
4965 default:
4966 unreachable(">4 channel buffer image store");
4967 }
4968 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
4969 store->operands[0] = Operand(rsrc);
4970 store->operands[1] = Operand(vindex);
4971 store->operands[2] = Operand((uint32_t) 0);
4972 store->operands[3] = Operand(data);
4973 store->idxen = true;
4974 store->glc = glc;
4975 store->dlc = false;
4976 store->disable_wqm = true;
4977 store->barrier = barrier_image;
4978 ctx->program->needs_exact = true;
4979 ctx->block->instructions.emplace_back(std::move(store));
4980 return;
4981 }
4982
4983 assert(data.type() == RegType::vgpr);
4984 Temp coords = get_image_coords(ctx, instr, type);
4985 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
4986
4987 bool level_zero = nir_src_is_const(instr->src[4]) && nir_src_as_uint(instr->src[4]) == 0;
4988 aco_opcode opcode = level_zero ? aco_opcode::image_store : aco_opcode::image_store_mip;
4989
4990 aco_ptr<MIMG_instruction> store{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 0)};
4991 store->operands[0] = Operand(resource);
4992 store->operands[1] = Operand(data);
4993 store->operands[2] = Operand(coords);
4994 store->glc = glc;
4995 store->dlc = false;
4996 store->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
4997 store->dmask = (1 << data.size()) - 1;
4998 store->unrm = true;
4999 store->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5000 store->disable_wqm = true;
5001 store->barrier = barrier_image;
5002 ctx->program->needs_exact = true;
5003 ctx->block->instructions.emplace_back(std::move(store));
5004 return;
5005 }
5006
5007 void visit_image_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
5008 {
5009 /* return the previous value if dest is ever used */
5010 bool return_previous = false;
5011 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5012 return_previous = true;
5013 break;
5014 }
5015 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5016 return_previous = true;
5017 break;
5018 }
5019
5020 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5021 const struct glsl_type *type = glsl_without_array(var->type);
5022 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5023 bool is_array = glsl_sampler_type_is_array(type);
5024 Builder bld(ctx->program, ctx->block);
5025
5026 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
5027 assert(data.size() == 1 && "64bit ssbo atomics not yet implemented.");
5028
5029 if (instr->intrinsic == nir_intrinsic_image_deref_atomic_comp_swap)
5030 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), get_ssa_temp(ctx, instr->src[4].ssa), data);
5031
5032 aco_opcode buf_op, image_op;
5033 switch (instr->intrinsic) {
5034 case nir_intrinsic_image_deref_atomic_add:
5035 buf_op = aco_opcode::buffer_atomic_add;
5036 image_op = aco_opcode::image_atomic_add;
5037 break;
5038 case nir_intrinsic_image_deref_atomic_umin:
5039 buf_op = aco_opcode::buffer_atomic_umin;
5040 image_op = aco_opcode::image_atomic_umin;
5041 break;
5042 case nir_intrinsic_image_deref_atomic_imin:
5043 buf_op = aco_opcode::buffer_atomic_smin;
5044 image_op = aco_opcode::image_atomic_smin;
5045 break;
5046 case nir_intrinsic_image_deref_atomic_umax:
5047 buf_op = aco_opcode::buffer_atomic_umax;
5048 image_op = aco_opcode::image_atomic_umax;
5049 break;
5050 case nir_intrinsic_image_deref_atomic_imax:
5051 buf_op = aco_opcode::buffer_atomic_smax;
5052 image_op = aco_opcode::image_atomic_smax;
5053 break;
5054 case nir_intrinsic_image_deref_atomic_and:
5055 buf_op = aco_opcode::buffer_atomic_and;
5056 image_op = aco_opcode::image_atomic_and;
5057 break;
5058 case nir_intrinsic_image_deref_atomic_or:
5059 buf_op = aco_opcode::buffer_atomic_or;
5060 image_op = aco_opcode::image_atomic_or;
5061 break;
5062 case nir_intrinsic_image_deref_atomic_xor:
5063 buf_op = aco_opcode::buffer_atomic_xor;
5064 image_op = aco_opcode::image_atomic_xor;
5065 break;
5066 case nir_intrinsic_image_deref_atomic_exchange:
5067 buf_op = aco_opcode::buffer_atomic_swap;
5068 image_op = aco_opcode::image_atomic_swap;
5069 break;
5070 case nir_intrinsic_image_deref_atomic_comp_swap:
5071 buf_op = aco_opcode::buffer_atomic_cmpswap;
5072 image_op = aco_opcode::image_atomic_cmpswap;
5073 break;
5074 default:
5075 unreachable("visit_image_atomic should only be called with nir_intrinsic_image_deref_atomic_* instructions.");
5076 }
5077
5078 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5079
5080 if (dim == GLSL_SAMPLER_DIM_BUF) {
5081 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5082 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5083 //assert(ctx->options->chip_class < GFX9 && "GFX9 stride size workaround not yet implemented.");
5084 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(buf_op, Format::MUBUF, 4, return_previous ? 1 : 0)};
5085 mubuf->operands[0] = Operand(resource);
5086 mubuf->operands[1] = Operand(vindex);
5087 mubuf->operands[2] = Operand((uint32_t)0);
5088 mubuf->operands[3] = Operand(data);
5089 if (return_previous)
5090 mubuf->definitions[0] = Definition(dst);
5091 mubuf->offset = 0;
5092 mubuf->idxen = true;
5093 mubuf->glc = return_previous;
5094 mubuf->dlc = false; /* Not needed for atomics */
5095 mubuf->disable_wqm = true;
5096 mubuf->barrier = barrier_image;
5097 ctx->program->needs_exact = true;
5098 ctx->block->instructions.emplace_back(std::move(mubuf));
5099 return;
5100 }
5101
5102 Temp coords = get_image_coords(ctx, instr, type);
5103 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5104 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(image_op, Format::MIMG, 3, return_previous ? 1 : 0)};
5105 mimg->operands[0] = Operand(resource);
5106 mimg->operands[1] = Operand(data);
5107 mimg->operands[2] = Operand(coords);
5108 if (return_previous)
5109 mimg->definitions[0] = Definition(dst);
5110 mimg->glc = return_previous;
5111 mimg->dlc = false; /* Not needed for atomics */
5112 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5113 mimg->dmask = (1 << data.size()) - 1;
5114 mimg->unrm = true;
5115 mimg->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5116 mimg->disable_wqm = true;
5117 mimg->barrier = barrier_image;
5118 ctx->program->needs_exact = true;
5119 ctx->block->instructions.emplace_back(std::move(mimg));
5120 return;
5121 }
5122
5123 void get_buffer_size(isel_context *ctx, Temp desc, Temp dst, bool in_elements)
5124 {
5125 if (in_elements && ctx->options->chip_class == GFX8) {
5126 /* we only have to divide by 1, 2, 4, 8, 12 or 16 */
5127 Builder bld(ctx->program, ctx->block);
5128
5129 Temp size = emit_extract_vector(ctx, desc, 2, s1);
5130
5131 Temp size_div3 = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), bld.copy(bld.def(v1), Operand(0xaaaaaaabu)), size);
5132 size_div3 = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.as_uniform(size_div3), Operand(1u));
5133
5134 Temp stride = emit_extract_vector(ctx, desc, 1, s1);
5135 stride = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), stride, Operand((5u << 16) | 16u));
5136
5137 Temp is12 = bld.sopc(aco_opcode::s_cmp_eq_i32, bld.def(s1, scc), stride, Operand(12u));
5138 size = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), size_div3, size, bld.scc(is12));
5139
5140 Temp shr_dst = dst.type() == RegType::vgpr ? bld.tmp(s1) : dst;
5141 bld.sop2(aco_opcode::s_lshr_b32, Definition(shr_dst), bld.def(s1, scc),
5142 size, bld.sop1(aco_opcode::s_ff1_i32_b32, bld.def(s1), stride));
5143 if (dst.type() == RegType::vgpr)
5144 bld.copy(Definition(dst), shr_dst);
5145
5146 /* TODO: we can probably calculate this faster with v_skip when stride != 12 */
5147 } else {
5148 emit_extract_vector(ctx, desc, 2, dst);
5149 }
5150 }
5151
5152 void visit_image_size(isel_context *ctx, nir_intrinsic_instr *instr)
5153 {
5154 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5155 const struct glsl_type *type = glsl_without_array(var->type);
5156 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5157 bool is_array = glsl_sampler_type_is_array(type);
5158 Builder bld(ctx->program, ctx->block);
5159
5160 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF) {
5161 Temp desc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, NULL, true, false);
5162 return get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), true);
5163 }
5164
5165 /* LOD */
5166 Temp lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
5167
5168 /* Resource */
5169 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, NULL, true, false);
5170
5171 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5172
5173 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1)};
5174 mimg->operands[0] = Operand(resource);
5175 mimg->operands[1] = Operand(s4); /* no sampler */
5176 mimg->operands[2] = Operand(lod);
5177 uint8_t& dmask = mimg->dmask;
5178 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5179 mimg->dmask = (1 << instr->dest.ssa.num_components) - 1;
5180 mimg->da = glsl_sampler_type_is_array(type);
5181 mimg->can_reorder = true;
5182 Definition& def = mimg->definitions[0];
5183 ctx->block->instructions.emplace_back(std::move(mimg));
5184
5185 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE &&
5186 glsl_sampler_type_is_array(type)) {
5187
5188 assert(instr->dest.ssa.num_components == 3);
5189 Temp tmp = {ctx->program->allocateId(), v3};
5190 def = Definition(tmp);
5191 emit_split_vector(ctx, tmp, 3);
5192
5193 /* divide 3rd value by 6 by multiplying with magic number */
5194 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
5195 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp, 2, v1), c);
5196
5197 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5198 emit_extract_vector(ctx, tmp, 0, v1),
5199 emit_extract_vector(ctx, tmp, 1, v1),
5200 by_6);
5201
5202 } else if (ctx->options->chip_class == GFX9 &&
5203 glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_1D &&
5204 glsl_sampler_type_is_array(type)) {
5205 assert(instr->dest.ssa.num_components == 2);
5206 def = Definition(dst);
5207 dmask = 0x5;
5208 } else {
5209 def = Definition(dst);
5210 }
5211
5212 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
5213 }
5214
5215 void visit_load_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
5216 {
5217 Builder bld(ctx->program, ctx->block);
5218 unsigned num_components = instr->num_components;
5219
5220 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5221 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5222 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
5223
5224 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
5225 load_buffer(ctx, num_components, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa), glc, false);
5226 }
5227
5228 void visit_store_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
5229 {
5230 Builder bld(ctx->program, ctx->block);
5231 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
5232 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
5233 unsigned writemask = nir_intrinsic_write_mask(instr);
5234 Temp offset = get_ssa_temp(ctx, instr->src[2].ssa);
5235
5236 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5237 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
5238
5239 bool smem = !ctx->divergent_vals[instr->src[2].ssa->index] &&
5240 ctx->options->chip_class >= GFX8;
5241 if (smem)
5242 offset = bld.as_uniform(offset);
5243 bool smem_nonfs = smem && ctx->stage != fragment_fs;
5244
5245 while (writemask) {
5246 int start, count;
5247 u_bit_scan_consecutive_range(&writemask, &start, &count);
5248 if (count == 3 && (smem || ctx->options->chip_class == GFX6)) {
5249 /* GFX6 doesn't support storing vec3, split it. */
5250 writemask |= 1u << (start + 2);
5251 count = 2;
5252 }
5253 int num_bytes = count * elem_size_bytes;
5254
5255 if (num_bytes > 16) {
5256 assert(elem_size_bytes == 8);
5257 writemask |= (((count - 2) << 1) - 1) << (start + 2);
5258 count = 2;
5259 num_bytes = 16;
5260 }
5261
5262 // TODO: check alignment of sub-dword stores
5263 // TODO: split 3 bytes. there is no store instruction for that
5264
5265 Temp write_data;
5266 if (count != instr->num_components) {
5267 emit_split_vector(ctx, data, instr->num_components);
5268 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
5269 for (int i = 0; i < count; i++) {
5270 Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(data.type(), elem_size_bytes / 4));
5271 vec->operands[i] = Operand(smem_nonfs ? bld.as_uniform(elem) : elem);
5272 }
5273 write_data = bld.tmp(!smem ? RegType::vgpr : smem_nonfs ? RegType::sgpr : data.type(), count * elem_size_bytes / 4);
5274 vec->definitions[0] = Definition(write_data);
5275 ctx->block->instructions.emplace_back(std::move(vec));
5276 } else if (!smem && data.type() != RegType::vgpr) {
5277 assert(num_bytes % 4 == 0);
5278 write_data = bld.copy(bld.def(RegType::vgpr, num_bytes / 4), data);
5279 } else if (smem_nonfs && data.type() == RegType::vgpr) {
5280 assert(num_bytes % 4 == 0);
5281 write_data = bld.as_uniform(data);
5282 } else {
5283 write_data = data;
5284 }
5285
5286 aco_opcode vmem_op, smem_op;
5287 switch (num_bytes) {
5288 case 4:
5289 vmem_op = aco_opcode::buffer_store_dword;
5290 smem_op = aco_opcode::s_buffer_store_dword;
5291 break;
5292 case 8:
5293 vmem_op = aco_opcode::buffer_store_dwordx2;
5294 smem_op = aco_opcode::s_buffer_store_dwordx2;
5295 break;
5296 case 12:
5297 vmem_op = aco_opcode::buffer_store_dwordx3;
5298 smem_op = aco_opcode::last_opcode;
5299 assert(!smem && ctx->options->chip_class > GFX6);
5300 break;
5301 case 16:
5302 vmem_op = aco_opcode::buffer_store_dwordx4;
5303 smem_op = aco_opcode::s_buffer_store_dwordx4;
5304 break;
5305 default:
5306 unreachable("Store SSBO not implemented for this size.");
5307 }
5308 if (ctx->stage == fragment_fs)
5309 smem_op = aco_opcode::p_fs_buffer_store_smem;
5310
5311 if (smem) {
5312 aco_ptr<SMEM_instruction> store{create_instruction<SMEM_instruction>(smem_op, Format::SMEM, 3, 0)};
5313 store->operands[0] = Operand(rsrc);
5314 if (start) {
5315 Temp off = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
5316 offset, Operand(start * elem_size_bytes));
5317 store->operands[1] = Operand(off);
5318 } else {
5319 store->operands[1] = Operand(offset);
5320 }
5321 if (smem_op != aco_opcode::p_fs_buffer_store_smem)
5322 store->operands[1].setFixed(m0);
5323 store->operands[2] = Operand(write_data);
5324 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
5325 store->dlc = false;
5326 store->disable_wqm = true;
5327 store->barrier = barrier_buffer;
5328 ctx->block->instructions.emplace_back(std::move(store));
5329 ctx->program->wb_smem_l1_on_end = true;
5330 if (smem_op == aco_opcode::p_fs_buffer_store_smem) {
5331 ctx->block->kind |= block_kind_needs_lowering;
5332 ctx->program->needs_exact = true;
5333 }
5334 } else {
5335 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(vmem_op, Format::MUBUF, 4, 0)};
5336 store->operands[0] = Operand(rsrc);
5337 store->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
5338 store->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
5339 store->operands[3] = Operand(write_data);
5340 store->offset = start * elem_size_bytes;
5341 store->offen = (offset.type() == RegType::vgpr);
5342 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
5343 store->dlc = false;
5344 store->disable_wqm = true;
5345 store->barrier = barrier_buffer;
5346 ctx->program->needs_exact = true;
5347 ctx->block->instructions.emplace_back(std::move(store));
5348 }
5349 }
5350 }
5351
5352 void visit_atomic_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
5353 {
5354 /* return the previous value if dest is ever used */
5355 bool return_previous = false;
5356 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5357 return_previous = true;
5358 break;
5359 }
5360 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5361 return_previous = true;
5362 break;
5363 }
5364
5365 Builder bld(ctx->program, ctx->block);
5366 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[2].ssa));
5367
5368 if (instr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap)
5369 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
5370 get_ssa_temp(ctx, instr->src[3].ssa), data);
5371
5372 Temp offset = get_ssa_temp(ctx, instr->src[1].ssa);
5373 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5374 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
5375
5376 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5377
5378 aco_opcode op32, op64;
5379 switch (instr->intrinsic) {
5380 case nir_intrinsic_ssbo_atomic_add:
5381 op32 = aco_opcode::buffer_atomic_add;
5382 op64 = aco_opcode::buffer_atomic_add_x2;
5383 break;
5384 case nir_intrinsic_ssbo_atomic_imin:
5385 op32 = aco_opcode::buffer_atomic_smin;
5386 op64 = aco_opcode::buffer_atomic_smin_x2;
5387 break;
5388 case nir_intrinsic_ssbo_atomic_umin:
5389 op32 = aco_opcode::buffer_atomic_umin;
5390 op64 = aco_opcode::buffer_atomic_umin_x2;
5391 break;
5392 case nir_intrinsic_ssbo_atomic_imax:
5393 op32 = aco_opcode::buffer_atomic_smax;
5394 op64 = aco_opcode::buffer_atomic_smax_x2;
5395 break;
5396 case nir_intrinsic_ssbo_atomic_umax:
5397 op32 = aco_opcode::buffer_atomic_umax;
5398 op64 = aco_opcode::buffer_atomic_umax_x2;
5399 break;
5400 case nir_intrinsic_ssbo_atomic_and:
5401 op32 = aco_opcode::buffer_atomic_and;
5402 op64 = aco_opcode::buffer_atomic_and_x2;
5403 break;
5404 case nir_intrinsic_ssbo_atomic_or:
5405 op32 = aco_opcode::buffer_atomic_or;
5406 op64 = aco_opcode::buffer_atomic_or_x2;
5407 break;
5408 case nir_intrinsic_ssbo_atomic_xor:
5409 op32 = aco_opcode::buffer_atomic_xor;
5410 op64 = aco_opcode::buffer_atomic_xor_x2;
5411 break;
5412 case nir_intrinsic_ssbo_atomic_exchange:
5413 op32 = aco_opcode::buffer_atomic_swap;
5414 op64 = aco_opcode::buffer_atomic_swap_x2;
5415 break;
5416 case nir_intrinsic_ssbo_atomic_comp_swap:
5417 op32 = aco_opcode::buffer_atomic_cmpswap;
5418 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
5419 break;
5420 default:
5421 unreachable("visit_atomic_ssbo should only be called with nir_intrinsic_ssbo_atomic_* instructions.");
5422 }
5423 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
5424 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
5425 mubuf->operands[0] = Operand(rsrc);
5426 mubuf->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
5427 mubuf->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
5428 mubuf->operands[3] = Operand(data);
5429 if (return_previous)
5430 mubuf->definitions[0] = Definition(dst);
5431 mubuf->offset = 0;
5432 mubuf->offen = (offset.type() == RegType::vgpr);
5433 mubuf->glc = return_previous;
5434 mubuf->dlc = false; /* Not needed for atomics */
5435 mubuf->disable_wqm = true;
5436 mubuf->barrier = barrier_buffer;
5437 ctx->program->needs_exact = true;
5438 ctx->block->instructions.emplace_back(std::move(mubuf));
5439 }
5440
5441 void visit_get_buffer_size(isel_context *ctx, nir_intrinsic_instr *instr) {
5442
5443 Temp index = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5444 Builder bld(ctx->program, ctx->block);
5445 Temp desc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), index, Operand(0u));
5446 get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), false);
5447 }
5448
5449 Temp get_gfx6_global_rsrc(Builder& bld, Temp addr)
5450 {
5451 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5452 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
5453
5454 if (addr.type() == RegType::vgpr)
5455 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), Operand(0u), Operand(0u), Operand(-1u), Operand(rsrc_conf));
5456 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), addr, Operand(-1u), Operand(rsrc_conf));
5457 }
5458
5459 void visit_load_global(isel_context *ctx, nir_intrinsic_instr *instr)
5460 {
5461 Builder bld(ctx->program, ctx->block);
5462 unsigned num_components = instr->num_components;
5463 unsigned num_bytes = num_components * instr->dest.ssa.bit_size / 8;
5464
5465 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5466 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
5467
5468 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
5469 bool dlc = glc && ctx->options->chip_class >= GFX10;
5470 aco_opcode op;
5471 if (dst.type() == RegType::vgpr || (glc && ctx->options->chip_class < GFX8)) {
5472 bool global = ctx->options->chip_class >= GFX9;
5473
5474 if (ctx->options->chip_class >= GFX7) {
5475 aco_opcode op;
5476 switch (num_bytes) {
5477 case 4:
5478 op = global ? aco_opcode::global_load_dword : aco_opcode::flat_load_dword;
5479 break;
5480 case 8:
5481 op = global ? aco_opcode::global_load_dwordx2 : aco_opcode::flat_load_dwordx2;
5482 break;
5483 case 12:
5484 op = global ? aco_opcode::global_load_dwordx3 : aco_opcode::flat_load_dwordx3;
5485 break;
5486 case 16:
5487 op = global ? aco_opcode::global_load_dwordx4 : aco_opcode::flat_load_dwordx4;
5488 break;
5489 default:
5490 unreachable("load_global not implemented for this size.");
5491 }
5492
5493 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 2, 1)};
5494 flat->operands[0] = Operand(addr);
5495 flat->operands[1] = Operand(s1);
5496 flat->glc = glc;
5497 flat->dlc = dlc;
5498 flat->barrier = barrier_buffer;
5499
5500 if (dst.type() == RegType::sgpr) {
5501 Temp vec = bld.tmp(RegType::vgpr, dst.size());
5502 flat->definitions[0] = Definition(vec);
5503 ctx->block->instructions.emplace_back(std::move(flat));
5504 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
5505 } else {
5506 flat->definitions[0] = Definition(dst);
5507 ctx->block->instructions.emplace_back(std::move(flat));
5508 }
5509 emit_split_vector(ctx, dst, num_components);
5510 } else {
5511 assert(ctx->options->chip_class == GFX6);
5512
5513 /* GFX6 doesn't support loading vec3, expand to vec4. */
5514 num_bytes = num_bytes == 12 ? 16 : num_bytes;
5515
5516 aco_opcode op;
5517 switch (num_bytes) {
5518 case 4:
5519 op = aco_opcode::buffer_load_dword;
5520 break;
5521 case 8:
5522 op = aco_opcode::buffer_load_dwordx2;
5523 break;
5524 case 16:
5525 op = aco_opcode::buffer_load_dwordx4;
5526 break;
5527 default:
5528 unreachable("load_global not implemented for this size.");
5529 }
5530
5531 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
5532
5533 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
5534 mubuf->operands[0] = Operand(rsrc);
5535 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
5536 mubuf->operands[2] = Operand(0u);
5537 mubuf->glc = glc;
5538 mubuf->dlc = false;
5539 mubuf->offset = 0;
5540 mubuf->addr64 = addr.type() == RegType::vgpr;
5541 mubuf->disable_wqm = false;
5542 mubuf->barrier = barrier_buffer;
5543 aco_ptr<Instruction> instr = std::move(mubuf);
5544
5545 /* expand vector */
5546 if (dst.size() == 3) {
5547 Temp vec = bld.tmp(v4);
5548 instr->definitions[0] = Definition(vec);
5549 bld.insert(std::move(instr));
5550 emit_split_vector(ctx, vec, 4);
5551
5552 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 3, 1));
5553 instr->operands[0] = Operand(emit_extract_vector(ctx, vec, 0, v1));
5554 instr->operands[1] = Operand(emit_extract_vector(ctx, vec, 1, v1));
5555 instr->operands[2] = Operand(emit_extract_vector(ctx, vec, 2, v1));
5556 }
5557
5558 if (dst.type() == RegType::sgpr) {
5559 Temp vec = bld.tmp(RegType::vgpr, dst.size());
5560 instr->definitions[0] = Definition(vec);
5561 bld.insert(std::move(instr));
5562 expand_vector(ctx, vec, dst, num_components, (1 << num_components) - 1);
5563 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
5564 } else {
5565 instr->definitions[0] = Definition(dst);
5566 bld.insert(std::move(instr));
5567 emit_split_vector(ctx, dst, num_components);
5568 }
5569 }
5570 } else {
5571 switch (num_bytes) {
5572 case 4:
5573 op = aco_opcode::s_load_dword;
5574 break;
5575 case 8:
5576 op = aco_opcode::s_load_dwordx2;
5577 break;
5578 case 12:
5579 case 16:
5580 op = aco_opcode::s_load_dwordx4;
5581 break;
5582 default:
5583 unreachable("load_global not implemented for this size.");
5584 }
5585 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
5586 load->operands[0] = Operand(addr);
5587 load->operands[1] = Operand(0u);
5588 load->definitions[0] = Definition(dst);
5589 load->glc = glc;
5590 load->dlc = dlc;
5591 load->barrier = barrier_buffer;
5592 assert(ctx->options->chip_class >= GFX8 || !glc);
5593
5594 if (dst.size() == 3) {
5595 /* trim vector */
5596 Temp vec = bld.tmp(s4);
5597 load->definitions[0] = Definition(vec);
5598 ctx->block->instructions.emplace_back(std::move(load));
5599 emit_split_vector(ctx, vec, 4);
5600
5601 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5602 emit_extract_vector(ctx, vec, 0, s1),
5603 emit_extract_vector(ctx, vec, 1, s1),
5604 emit_extract_vector(ctx, vec, 2, s1));
5605 } else {
5606 ctx->block->instructions.emplace_back(std::move(load));
5607 }
5608 }
5609 }
5610
5611 void visit_store_global(isel_context *ctx, nir_intrinsic_instr *instr)
5612 {
5613 Builder bld(ctx->program, ctx->block);
5614 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
5615
5616 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5617 Temp addr = get_ssa_temp(ctx, instr->src[1].ssa);
5618
5619 if (ctx->options->chip_class >= GFX7)
5620 addr = as_vgpr(ctx, addr);
5621
5622 unsigned writemask = nir_intrinsic_write_mask(instr);
5623 while (writemask) {
5624 int start, count;
5625 u_bit_scan_consecutive_range(&writemask, &start, &count);
5626 if (count == 3 && ctx->options->chip_class == GFX6) {
5627 /* GFX6 doesn't support storing vec3, split it. */
5628 writemask |= 1u << (start + 2);
5629 count = 2;
5630 }
5631 unsigned num_bytes = count * elem_size_bytes;
5632
5633 Temp write_data = data;
5634 if (count != instr->num_components) {
5635 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
5636 for (int i = 0; i < count; i++)
5637 vec->operands[i] = Operand(emit_extract_vector(ctx, data, start + i, v1));
5638 write_data = bld.tmp(RegType::vgpr, count);
5639 vec->definitions[0] = Definition(write_data);
5640 ctx->block->instructions.emplace_back(std::move(vec));
5641 }
5642
5643 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
5644 unsigned offset = start * elem_size_bytes;
5645
5646 if (ctx->options->chip_class >= GFX7) {
5647 if (offset > 0 && ctx->options->chip_class < GFX9) {
5648 Temp addr0 = bld.tmp(v1), addr1 = bld.tmp(v1);
5649 Temp new_addr0 = bld.tmp(v1), new_addr1 = bld.tmp(v1);
5650 Temp carry = bld.tmp(bld.lm);
5651 bld.pseudo(aco_opcode::p_split_vector, Definition(addr0), Definition(addr1), addr);
5652
5653 bld.vop2(aco_opcode::v_add_co_u32, Definition(new_addr0), bld.hint_vcc(Definition(carry)),
5654 Operand(offset), addr0);
5655 bld.vop2(aco_opcode::v_addc_co_u32, Definition(new_addr1), bld.def(bld.lm),
5656 Operand(0u), addr1,
5657 carry).def(1).setHint(vcc);
5658
5659 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_addr0, new_addr1);
5660
5661 offset = 0;
5662 }
5663
5664 bool global = ctx->options->chip_class >= GFX9;
5665 aco_opcode op;
5666 switch (num_bytes) {
5667 case 4:
5668 op = global ? aco_opcode::global_store_dword : aco_opcode::flat_store_dword;
5669 break;
5670 case 8:
5671 op = global ? aco_opcode::global_store_dwordx2 : aco_opcode::flat_store_dwordx2;
5672 break;
5673 case 12:
5674 op = global ? aco_opcode::global_store_dwordx3 : aco_opcode::flat_store_dwordx3;
5675 break;
5676 case 16:
5677 op = global ? aco_opcode::global_store_dwordx4 : aco_opcode::flat_store_dwordx4;
5678 break;
5679 default:
5680 unreachable("store_global not implemented for this size.");
5681 }
5682
5683 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, 0)};
5684 flat->operands[0] = Operand(addr);
5685 flat->operands[1] = Operand(s1);
5686 flat->operands[2] = Operand(data);
5687 flat->glc = glc;
5688 flat->dlc = false;
5689 flat->offset = offset;
5690 flat->disable_wqm = true;
5691 flat->barrier = barrier_buffer;
5692 ctx->program->needs_exact = true;
5693 ctx->block->instructions.emplace_back(std::move(flat));
5694 } else {
5695 assert(ctx->options->chip_class == GFX6);
5696
5697 aco_opcode op;
5698 switch (num_bytes) {
5699 case 4:
5700 op = aco_opcode::buffer_store_dword;
5701 break;
5702 case 8:
5703 op = aco_opcode::buffer_store_dwordx2;
5704 break;
5705 case 16:
5706 op = aco_opcode::buffer_store_dwordx4;
5707 break;
5708 default:
5709 unreachable("store_global not implemented for this size.");
5710 }
5711
5712 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
5713
5714 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, 0)};
5715 mubuf->operands[0] = Operand(rsrc);
5716 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
5717 mubuf->operands[2] = Operand(0u);
5718 mubuf->operands[3] = Operand(write_data);
5719 mubuf->glc = glc;
5720 mubuf->dlc = false;
5721 mubuf->offset = offset;
5722 mubuf->addr64 = addr.type() == RegType::vgpr;
5723 mubuf->disable_wqm = true;
5724 mubuf->barrier = barrier_buffer;
5725 ctx->program->needs_exact = true;
5726 ctx->block->instructions.emplace_back(std::move(mubuf));
5727 }
5728 }
5729 }
5730
5731 void visit_global_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
5732 {
5733 /* return the previous value if dest is ever used */
5734 bool return_previous = false;
5735 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5736 return_previous = true;
5737 break;
5738 }
5739 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5740 return_previous = true;
5741 break;
5742 }
5743
5744 Builder bld(ctx->program, ctx->block);
5745 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
5746 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5747
5748 if (ctx->options->chip_class >= GFX7)
5749 addr = as_vgpr(ctx, addr);
5750
5751 if (instr->intrinsic == nir_intrinsic_global_atomic_comp_swap)
5752 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
5753 get_ssa_temp(ctx, instr->src[2].ssa), data);
5754
5755 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5756
5757 aco_opcode op32, op64;
5758
5759 if (ctx->options->chip_class >= GFX7) {
5760 bool global = ctx->options->chip_class >= GFX9;
5761 switch (instr->intrinsic) {
5762 case nir_intrinsic_global_atomic_add:
5763 op32 = global ? aco_opcode::global_atomic_add : aco_opcode::flat_atomic_add;
5764 op64 = global ? aco_opcode::global_atomic_add_x2 : aco_opcode::flat_atomic_add_x2;
5765 break;
5766 case nir_intrinsic_global_atomic_imin:
5767 op32 = global ? aco_opcode::global_atomic_smin : aco_opcode::flat_atomic_smin;
5768 op64 = global ? aco_opcode::global_atomic_smin_x2 : aco_opcode::flat_atomic_smin_x2;
5769 break;
5770 case nir_intrinsic_global_atomic_umin:
5771 op32 = global ? aco_opcode::global_atomic_umin : aco_opcode::flat_atomic_umin;
5772 op64 = global ? aco_opcode::global_atomic_umin_x2 : aco_opcode::flat_atomic_umin_x2;
5773 break;
5774 case nir_intrinsic_global_atomic_imax:
5775 op32 = global ? aco_opcode::global_atomic_smax : aco_opcode::flat_atomic_smax;
5776 op64 = global ? aco_opcode::global_atomic_smax_x2 : aco_opcode::flat_atomic_smax_x2;
5777 break;
5778 case nir_intrinsic_global_atomic_umax:
5779 op32 = global ? aco_opcode::global_atomic_umax : aco_opcode::flat_atomic_umax;
5780 op64 = global ? aco_opcode::global_atomic_umax_x2 : aco_opcode::flat_atomic_umax_x2;
5781 break;
5782 case nir_intrinsic_global_atomic_and:
5783 op32 = global ? aco_opcode::global_atomic_and : aco_opcode::flat_atomic_and;
5784 op64 = global ? aco_opcode::global_atomic_and_x2 : aco_opcode::flat_atomic_and_x2;
5785 break;
5786 case nir_intrinsic_global_atomic_or:
5787 op32 = global ? aco_opcode::global_atomic_or : aco_opcode::flat_atomic_or;
5788 op64 = global ? aco_opcode::global_atomic_or_x2 : aco_opcode::flat_atomic_or_x2;
5789 break;
5790 case nir_intrinsic_global_atomic_xor:
5791 op32 = global ? aco_opcode::global_atomic_xor : aco_opcode::flat_atomic_xor;
5792 op64 = global ? aco_opcode::global_atomic_xor_x2 : aco_opcode::flat_atomic_xor_x2;
5793 break;
5794 case nir_intrinsic_global_atomic_exchange:
5795 op32 = global ? aco_opcode::global_atomic_swap : aco_opcode::flat_atomic_swap;
5796 op64 = global ? aco_opcode::global_atomic_swap_x2 : aco_opcode::flat_atomic_swap_x2;
5797 break;
5798 case nir_intrinsic_global_atomic_comp_swap:
5799 op32 = global ? aco_opcode::global_atomic_cmpswap : aco_opcode::flat_atomic_cmpswap;
5800 op64 = global ? aco_opcode::global_atomic_cmpswap_x2 : aco_opcode::flat_atomic_cmpswap_x2;
5801 break;
5802 default:
5803 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
5804 }
5805
5806 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
5807 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, return_previous ? 1 : 0)};
5808 flat->operands[0] = Operand(addr);
5809 flat->operands[1] = Operand(s1);
5810 flat->operands[2] = Operand(data);
5811 if (return_previous)
5812 flat->definitions[0] = Definition(dst);
5813 flat->glc = return_previous;
5814 flat->dlc = false; /* Not needed for atomics */
5815 flat->offset = 0;
5816 flat->disable_wqm = true;
5817 flat->barrier = barrier_buffer;
5818 ctx->program->needs_exact = true;
5819 ctx->block->instructions.emplace_back(std::move(flat));
5820 } else {
5821 assert(ctx->options->chip_class == GFX6);
5822
5823 switch (instr->intrinsic) {
5824 case nir_intrinsic_global_atomic_add:
5825 op32 = aco_opcode::buffer_atomic_add;
5826 op64 = aco_opcode::buffer_atomic_add_x2;
5827 break;
5828 case nir_intrinsic_global_atomic_imin:
5829 op32 = aco_opcode::buffer_atomic_smin;
5830 op64 = aco_opcode::buffer_atomic_smin_x2;
5831 break;
5832 case nir_intrinsic_global_atomic_umin:
5833 op32 = aco_opcode::buffer_atomic_umin;
5834 op64 = aco_opcode::buffer_atomic_umin_x2;
5835 break;
5836 case nir_intrinsic_global_atomic_imax:
5837 op32 = aco_opcode::buffer_atomic_smax;
5838 op64 = aco_opcode::buffer_atomic_smax_x2;
5839 break;
5840 case nir_intrinsic_global_atomic_umax:
5841 op32 = aco_opcode::buffer_atomic_umax;
5842 op64 = aco_opcode::buffer_atomic_umax_x2;
5843 break;
5844 case nir_intrinsic_global_atomic_and:
5845 op32 = aco_opcode::buffer_atomic_and;
5846 op64 = aco_opcode::buffer_atomic_and_x2;
5847 break;
5848 case nir_intrinsic_global_atomic_or:
5849 op32 = aco_opcode::buffer_atomic_or;
5850 op64 = aco_opcode::buffer_atomic_or_x2;
5851 break;
5852 case nir_intrinsic_global_atomic_xor:
5853 op32 = aco_opcode::buffer_atomic_xor;
5854 op64 = aco_opcode::buffer_atomic_xor_x2;
5855 break;
5856 case nir_intrinsic_global_atomic_exchange:
5857 op32 = aco_opcode::buffer_atomic_swap;
5858 op64 = aco_opcode::buffer_atomic_swap_x2;
5859 break;
5860 case nir_intrinsic_global_atomic_comp_swap:
5861 op32 = aco_opcode::buffer_atomic_cmpswap;
5862 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
5863 break;
5864 default:
5865 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
5866 }
5867
5868 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
5869
5870 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
5871
5872 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
5873 mubuf->operands[0] = Operand(rsrc);
5874 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
5875 mubuf->operands[2] = Operand(0u);
5876 mubuf->operands[3] = Operand(data);
5877 if (return_previous)
5878 mubuf->definitions[0] = Definition(dst);
5879 mubuf->glc = return_previous;
5880 mubuf->dlc = false;
5881 mubuf->offset = 0;
5882 mubuf->addr64 = addr.type() == RegType::vgpr;
5883 mubuf->disable_wqm = true;
5884 mubuf->barrier = barrier_buffer;
5885 ctx->program->needs_exact = true;
5886 ctx->block->instructions.emplace_back(std::move(mubuf));
5887 }
5888 }
5889
5890 void emit_memory_barrier(isel_context *ctx, nir_intrinsic_instr *instr) {
5891 Builder bld(ctx->program, ctx->block);
5892 switch(instr->intrinsic) {
5893 case nir_intrinsic_group_memory_barrier:
5894 case nir_intrinsic_memory_barrier:
5895 bld.barrier(aco_opcode::p_memory_barrier_common);
5896 break;
5897 case nir_intrinsic_memory_barrier_buffer:
5898 bld.barrier(aco_opcode::p_memory_barrier_buffer);
5899 break;
5900 case nir_intrinsic_memory_barrier_image:
5901 bld.barrier(aco_opcode::p_memory_barrier_image);
5902 break;
5903 case nir_intrinsic_memory_barrier_tcs_patch:
5904 case nir_intrinsic_memory_barrier_shared:
5905 bld.barrier(aco_opcode::p_memory_barrier_shared);
5906 break;
5907 default:
5908 unreachable("Unimplemented memory barrier intrinsic");
5909 break;
5910 }
5911 }
5912
5913 void visit_load_shared(isel_context *ctx, nir_intrinsic_instr *instr)
5914 {
5915 // TODO: implement sparse reads using ds_read2_b32 and nir_ssa_def_components_read()
5916 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5917 assert(instr->dest.ssa.bit_size >= 32 && "Bitsize not supported in load_shared.");
5918 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5919 Builder bld(ctx->program, ctx->block);
5920
5921 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
5922 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
5923 load_lds(ctx, elem_size_bytes, dst, address, nir_intrinsic_base(instr), align);
5924 }
5925
5926 void visit_store_shared(isel_context *ctx, nir_intrinsic_instr *instr)
5927 {
5928 unsigned writemask = nir_intrinsic_write_mask(instr);
5929 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
5930 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5931 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
5932 assert(elem_size_bytes >= 4 && "Only 32bit & 64bit store_shared currently supported.");
5933
5934 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
5935 store_lds(ctx, elem_size_bytes, data, writemask, address, nir_intrinsic_base(instr), align);
5936 }
5937
5938 void visit_shared_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
5939 {
5940 unsigned offset = nir_intrinsic_base(instr);
5941 Operand m = load_lds_size_m0(ctx);
5942 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5943 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5944
5945 unsigned num_operands = 3;
5946 aco_opcode op32, op64, op32_rtn, op64_rtn;
5947 switch(instr->intrinsic) {
5948 case nir_intrinsic_shared_atomic_add:
5949 op32 = aco_opcode::ds_add_u32;
5950 op64 = aco_opcode::ds_add_u64;
5951 op32_rtn = aco_opcode::ds_add_rtn_u32;
5952 op64_rtn = aco_opcode::ds_add_rtn_u64;
5953 break;
5954 case nir_intrinsic_shared_atomic_imin:
5955 op32 = aco_opcode::ds_min_i32;
5956 op64 = aco_opcode::ds_min_i64;
5957 op32_rtn = aco_opcode::ds_min_rtn_i32;
5958 op64_rtn = aco_opcode::ds_min_rtn_i64;
5959 break;
5960 case nir_intrinsic_shared_atomic_umin:
5961 op32 = aco_opcode::ds_min_u32;
5962 op64 = aco_opcode::ds_min_u64;
5963 op32_rtn = aco_opcode::ds_min_rtn_u32;
5964 op64_rtn = aco_opcode::ds_min_rtn_u64;
5965 break;
5966 case nir_intrinsic_shared_atomic_imax:
5967 op32 = aco_opcode::ds_max_i32;
5968 op64 = aco_opcode::ds_max_i64;
5969 op32_rtn = aco_opcode::ds_max_rtn_i32;
5970 op64_rtn = aco_opcode::ds_max_rtn_i64;
5971 break;
5972 case nir_intrinsic_shared_atomic_umax:
5973 op32 = aco_opcode::ds_max_u32;
5974 op64 = aco_opcode::ds_max_u64;
5975 op32_rtn = aco_opcode::ds_max_rtn_u32;
5976 op64_rtn = aco_opcode::ds_max_rtn_u64;
5977 break;
5978 case nir_intrinsic_shared_atomic_and:
5979 op32 = aco_opcode::ds_and_b32;
5980 op64 = aco_opcode::ds_and_b64;
5981 op32_rtn = aco_opcode::ds_and_rtn_b32;
5982 op64_rtn = aco_opcode::ds_and_rtn_b64;
5983 break;
5984 case nir_intrinsic_shared_atomic_or:
5985 op32 = aco_opcode::ds_or_b32;
5986 op64 = aco_opcode::ds_or_b64;
5987 op32_rtn = aco_opcode::ds_or_rtn_b32;
5988 op64_rtn = aco_opcode::ds_or_rtn_b64;
5989 break;
5990 case nir_intrinsic_shared_atomic_xor:
5991 op32 = aco_opcode::ds_xor_b32;
5992 op64 = aco_opcode::ds_xor_b64;
5993 op32_rtn = aco_opcode::ds_xor_rtn_b32;
5994 op64_rtn = aco_opcode::ds_xor_rtn_b64;
5995 break;
5996 case nir_intrinsic_shared_atomic_exchange:
5997 op32 = aco_opcode::ds_write_b32;
5998 op64 = aco_opcode::ds_write_b64;
5999 op32_rtn = aco_opcode::ds_wrxchg_rtn_b32;
6000 op64_rtn = aco_opcode::ds_wrxchg2_rtn_b64;
6001 break;
6002 case nir_intrinsic_shared_atomic_comp_swap:
6003 op32 = aco_opcode::ds_cmpst_b32;
6004 op64 = aco_opcode::ds_cmpst_b64;
6005 op32_rtn = aco_opcode::ds_cmpst_rtn_b32;
6006 op64_rtn = aco_opcode::ds_cmpst_rtn_b64;
6007 num_operands = 4;
6008 break;
6009 default:
6010 unreachable("Unhandled shared atomic intrinsic");
6011 }
6012
6013 /* return the previous value if dest is ever used */
6014 bool return_previous = false;
6015 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6016 return_previous = true;
6017 break;
6018 }
6019 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6020 return_previous = true;
6021 break;
6022 }
6023
6024 aco_opcode op;
6025 if (data.size() == 1) {
6026 assert(instr->dest.ssa.bit_size == 32);
6027 op = return_previous ? op32_rtn : op32;
6028 } else {
6029 assert(instr->dest.ssa.bit_size == 64);
6030 op = return_previous ? op64_rtn : op64;
6031 }
6032
6033 if (offset > 65535) {
6034 Builder bld(ctx->program, ctx->block);
6035 address = bld.vadd32(bld.def(v1), Operand(offset), address);
6036 offset = 0;
6037 }
6038
6039 aco_ptr<DS_instruction> ds;
6040 ds.reset(create_instruction<DS_instruction>(op, Format::DS, num_operands, return_previous ? 1 : 0));
6041 ds->operands[0] = Operand(address);
6042 ds->operands[1] = Operand(data);
6043 if (num_operands == 4)
6044 ds->operands[2] = Operand(get_ssa_temp(ctx, instr->src[2].ssa));
6045 ds->operands[num_operands - 1] = m;
6046 ds->offset0 = offset;
6047 if (return_previous)
6048 ds->definitions[0] = Definition(get_ssa_temp(ctx, &instr->dest.ssa));
6049 ctx->block->instructions.emplace_back(std::move(ds));
6050 }
6051
6052 Temp get_scratch_resource(isel_context *ctx)
6053 {
6054 Builder bld(ctx->program, ctx->block);
6055 Temp scratch_addr = ctx->program->private_segment_buffer;
6056 if (ctx->stage != compute_cs)
6057 scratch_addr = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), scratch_addr, Operand(0u));
6058
6059 uint32_t rsrc_conf = S_008F0C_ADD_TID_ENABLE(1) |
6060 S_008F0C_INDEX_STRIDE(ctx->program->wave_size == 64 ? 3 : 2);;
6061
6062 if (ctx->program->chip_class >= GFX10) {
6063 rsrc_conf |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
6064 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
6065 S_008F0C_RESOURCE_LEVEL(1);
6066 } else if (ctx->program->chip_class <= GFX7) { /* dfmt modifies stride on GFX8/GFX9 when ADD_TID_EN=1 */
6067 rsrc_conf |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
6068 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
6069 }
6070
6071 /* older generations need element size = 16 bytes. element size removed in GFX9 */
6072 if (ctx->program->chip_class <= GFX8)
6073 rsrc_conf |= S_008F0C_ELEMENT_SIZE(3);
6074
6075 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), scratch_addr, Operand(-1u), Operand(rsrc_conf));
6076 }
6077
6078 void visit_load_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
6079 assert(instr->dest.ssa.bit_size == 32 || instr->dest.ssa.bit_size == 64);
6080 Builder bld(ctx->program, ctx->block);
6081 Temp rsrc = get_scratch_resource(ctx);
6082 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6083 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6084
6085 aco_opcode op;
6086 switch (dst.size()) {
6087 case 1:
6088 op = aco_opcode::buffer_load_dword;
6089 break;
6090 case 2:
6091 op = aco_opcode::buffer_load_dwordx2;
6092 break;
6093 case 3:
6094 op = aco_opcode::buffer_load_dwordx3;
6095 break;
6096 case 4:
6097 op = aco_opcode::buffer_load_dwordx4;
6098 break;
6099 case 6:
6100 case 8: {
6101 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
6102 Temp lower = bld.mubuf(aco_opcode::buffer_load_dwordx4,
6103 bld.def(v4), rsrc, offset,
6104 ctx->program->scratch_offset, 0, true);
6105 Temp upper = bld.mubuf(dst.size() == 6 ? aco_opcode::buffer_load_dwordx2 :
6106 aco_opcode::buffer_load_dwordx4,
6107 dst.size() == 6 ? bld.def(v2) : bld.def(v4),
6108 rsrc, offset, ctx->program->scratch_offset, 16, true);
6109 emit_split_vector(ctx, lower, 2);
6110 elems[0] = emit_extract_vector(ctx, lower, 0, v2);
6111 elems[1] = emit_extract_vector(ctx, lower, 1, v2);
6112 if (dst.size() == 8) {
6113 emit_split_vector(ctx, upper, 2);
6114 elems[2] = emit_extract_vector(ctx, upper, 0, v2);
6115 elems[3] = emit_extract_vector(ctx, upper, 1, v2);
6116 } else {
6117 elems[2] = upper;
6118 }
6119
6120 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
6121 Format::PSEUDO, dst.size() / 2, 1)};
6122 for (unsigned i = 0; i < dst.size() / 2; i++)
6123 vec->operands[i] = Operand(elems[i]);
6124 vec->definitions[0] = Definition(dst);
6125 bld.insert(std::move(vec));
6126 ctx->allocated_vec.emplace(dst.id(), elems);
6127 return;
6128 }
6129 default:
6130 unreachable("Wrong dst size for nir_intrinsic_load_scratch");
6131 }
6132
6133 bld.mubuf(op, Definition(dst), rsrc, offset, ctx->program->scratch_offset, 0, true);
6134 emit_split_vector(ctx, dst, instr->num_components);
6135 }
6136
6137 void visit_store_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
6138 assert(instr->src[0].ssa->bit_size == 32 || instr->src[0].ssa->bit_size == 64);
6139 Builder bld(ctx->program, ctx->block);
6140 Temp rsrc = get_scratch_resource(ctx);
6141 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6142 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6143
6144 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6145 unsigned writemask = nir_intrinsic_write_mask(instr);
6146
6147 while (writemask) {
6148 int start, count;
6149 u_bit_scan_consecutive_range(&writemask, &start, &count);
6150 int num_bytes = count * elem_size_bytes;
6151
6152 if (num_bytes > 16) {
6153 assert(elem_size_bytes == 8);
6154 writemask |= (((count - 2) << 1) - 1) << (start + 2);
6155 count = 2;
6156 num_bytes = 16;
6157 }
6158
6159 // TODO: check alignment of sub-dword stores
6160 // TODO: split 3 bytes. there is no store instruction for that
6161
6162 Temp write_data;
6163 if (count != instr->num_components) {
6164 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
6165 for (int i = 0; i < count; i++) {
6166 Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(RegType::vgpr, elem_size_bytes / 4));
6167 vec->operands[i] = Operand(elem);
6168 }
6169 write_data = bld.tmp(RegClass(RegType::vgpr, count * elem_size_bytes / 4));
6170 vec->definitions[0] = Definition(write_data);
6171 ctx->block->instructions.emplace_back(std::move(vec));
6172 } else {
6173 write_data = data;
6174 }
6175
6176 aco_opcode op;
6177 switch (num_bytes) {
6178 case 4:
6179 op = aco_opcode::buffer_store_dword;
6180 break;
6181 case 8:
6182 op = aco_opcode::buffer_store_dwordx2;
6183 break;
6184 case 12:
6185 op = aco_opcode::buffer_store_dwordx3;
6186 break;
6187 case 16:
6188 op = aco_opcode::buffer_store_dwordx4;
6189 break;
6190 default:
6191 unreachable("Invalid data size for nir_intrinsic_store_scratch.");
6192 }
6193
6194 bld.mubuf(op, rsrc, offset, ctx->program->scratch_offset, write_data, start * elem_size_bytes, true);
6195 }
6196 }
6197
6198 void visit_load_sample_mask_in(isel_context *ctx, nir_intrinsic_instr *instr) {
6199 uint8_t log2_ps_iter_samples;
6200 if (ctx->program->info->ps.force_persample) {
6201 log2_ps_iter_samples =
6202 util_logbase2(ctx->options->key.fs.num_samples);
6203 } else {
6204 log2_ps_iter_samples = ctx->options->key.fs.log2_ps_iter_samples;
6205 }
6206
6207 /* The bit pattern matches that used by fixed function fragment
6208 * processing. */
6209 static const unsigned ps_iter_masks[] = {
6210 0xffff, /* not used */
6211 0x5555,
6212 0x1111,
6213 0x0101,
6214 0x0001,
6215 };
6216 assert(log2_ps_iter_samples < ARRAY_SIZE(ps_iter_masks));
6217
6218 Builder bld(ctx->program, ctx->block);
6219
6220 Temp sample_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
6221 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
6222 Temp ps_iter_mask = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(ps_iter_masks[log2_ps_iter_samples]));
6223 Temp mask = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), sample_id, ps_iter_mask);
6224 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6225 bld.vop2(aco_opcode::v_and_b32, Definition(dst), mask, get_arg(ctx, ctx->args->ac.sample_coverage));
6226 }
6227
6228 void visit_emit_vertex_with_counter(isel_context *ctx, nir_intrinsic_instr *instr) {
6229 Builder bld(ctx->program, ctx->block);
6230
6231 unsigned stream = nir_intrinsic_stream_id(instr);
6232 Temp next_vertex = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6233 next_vertex = bld.v_mul_imm(bld.def(v1), next_vertex, 4u);
6234 nir_const_value *next_vertex_cv = nir_src_as_const_value(instr->src[0]);
6235
6236 /* get GSVS ring */
6237 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_GSVS_GS * 16u));
6238
6239 unsigned num_components =
6240 ctx->program->info->gs.num_stream_output_components[stream];
6241 assert(num_components);
6242
6243 unsigned stride = 4u * num_components * ctx->shader->info.gs.vertices_out;
6244 unsigned stream_offset = 0;
6245 for (unsigned i = 0; i < stream; i++) {
6246 unsigned prev_stride = 4u * ctx->program->info->gs.num_stream_output_components[i] * ctx->shader->info.gs.vertices_out;
6247 stream_offset += prev_stride * ctx->program->wave_size;
6248 }
6249
6250 /* Limit on the stride field for <= GFX7. */
6251 assert(stride < (1 << 14));
6252
6253 Temp gsvs_dwords[4];
6254 for (unsigned i = 0; i < 4; i++)
6255 gsvs_dwords[i] = bld.tmp(s1);
6256 bld.pseudo(aco_opcode::p_split_vector,
6257 Definition(gsvs_dwords[0]),
6258 Definition(gsvs_dwords[1]),
6259 Definition(gsvs_dwords[2]),
6260 Definition(gsvs_dwords[3]),
6261 gsvs_ring);
6262
6263 if (stream_offset) {
6264 Temp stream_offset_tmp = bld.copy(bld.def(s1), Operand(stream_offset));
6265
6266 Temp carry = bld.tmp(s1);
6267 gsvs_dwords[0] = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), gsvs_dwords[0], stream_offset_tmp);
6268 gsvs_dwords[1] = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(0u), bld.scc(carry));
6269 }
6270
6271 gsvs_dwords[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(S_008F04_STRIDE(stride)));
6272 gsvs_dwords[2] = bld.copy(bld.def(s1), Operand((uint32_t)ctx->program->wave_size));
6273
6274 gsvs_ring = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
6275 gsvs_dwords[0], gsvs_dwords[1], gsvs_dwords[2], gsvs_dwords[3]);
6276
6277 unsigned offset = 0;
6278 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; i++) {
6279 if (ctx->program->info->gs.output_streams[i] != stream)
6280 continue;
6281
6282 for (unsigned j = 0; j < 4; j++) {
6283 if (!(ctx->program->info->gs.output_usage_mask[i] & (1 << j)))
6284 continue;
6285
6286 if (ctx->outputs.mask[i] & (1 << j)) {
6287 Operand vaddr_offset = next_vertex_cv ? Operand(v1) : Operand(next_vertex);
6288 unsigned const_offset = (offset + (next_vertex_cv ? next_vertex_cv->u32 : 0u)) * 4u;
6289 if (const_offset >= 4096u) {
6290 if (vaddr_offset.isUndefined())
6291 vaddr_offset = bld.copy(bld.def(v1), Operand(const_offset / 4096u * 4096u));
6292 else
6293 vaddr_offset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), vaddr_offset);
6294 const_offset %= 4096u;
6295 }
6296
6297 aco_ptr<MTBUF_instruction> mtbuf{create_instruction<MTBUF_instruction>(aco_opcode::tbuffer_store_format_x, Format::MTBUF, 4, 0)};
6298 mtbuf->operands[0] = Operand(gsvs_ring);
6299 mtbuf->operands[1] = vaddr_offset;
6300 mtbuf->operands[2] = Operand(get_arg(ctx, ctx->args->gs2vs_offset));
6301 mtbuf->operands[3] = Operand(ctx->outputs.outputs[i][j]);
6302 mtbuf->offen = !vaddr_offset.isUndefined();
6303 mtbuf->dfmt = V_008F0C_BUF_DATA_FORMAT_32;
6304 mtbuf->nfmt = V_008F0C_BUF_NUM_FORMAT_UINT;
6305 mtbuf->offset = const_offset;
6306 mtbuf->glc = true;
6307 mtbuf->slc = true;
6308 mtbuf->barrier = barrier_gs_data;
6309 mtbuf->can_reorder = true;
6310 bld.insert(std::move(mtbuf));
6311 }
6312
6313 offset += ctx->shader->info.gs.vertices_out;
6314 }
6315
6316 /* outputs for the next vertex are undefined and keeping them around can
6317 * create invalid IR with control flow */
6318 ctx->outputs.mask[i] = 0;
6319 }
6320
6321 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(false, true, stream));
6322 }
6323
6324 Temp emit_boolean_reduce(isel_context *ctx, nir_op op, unsigned cluster_size, Temp src)
6325 {
6326 Builder bld(ctx->program, ctx->block);
6327
6328 if (cluster_size == 1) {
6329 return src;
6330 } if (op == nir_op_iand && cluster_size == 4) {
6331 //subgroupClusteredAnd(val, 4) -> ~wqm(exec & ~val)
6332 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
6333 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc),
6334 bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc), tmp));
6335 } else if (op == nir_op_ior && cluster_size == 4) {
6336 //subgroupClusteredOr(val, 4) -> wqm(val & exec)
6337 return bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc),
6338 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)));
6339 } else if (op == nir_op_iand && cluster_size == ctx->program->wave_size) {
6340 //subgroupAnd(val) -> (exec & ~val) == 0
6341 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
6342 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
6343 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), cond);
6344 } else if (op == nir_op_ior && cluster_size == ctx->program->wave_size) {
6345 //subgroupOr(val) -> (val & exec) != 0
6346 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)).def(1).getTemp();
6347 return bool_to_vector_condition(ctx, tmp);
6348 } else if (op == nir_op_ixor && cluster_size == ctx->program->wave_size) {
6349 //subgroupXor(val) -> s_bcnt1_i32_b64(val & exec) & 1
6350 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
6351 tmp = bld.sop1(Builder::s_bcnt1_i32, bld.def(s1), bld.def(s1, scc), tmp);
6352 tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), tmp, Operand(1u)).def(1).getTemp();
6353 return bool_to_vector_condition(ctx, tmp);
6354 } else {
6355 //subgroupClustered{And,Or,Xor}(val, n) ->
6356 //lane_id = v_mbcnt_hi_u32_b32(-1, v_mbcnt_lo_u32_b32(-1, 0)) ; just v_mbcnt_lo_u32_b32 on wave32
6357 //cluster_offset = ~(n - 1) & lane_id
6358 //cluster_mask = ((1 << n) - 1)
6359 //subgroupClusteredAnd():
6360 // return ((val | ~exec) >> cluster_offset) & cluster_mask == cluster_mask
6361 //subgroupClusteredOr():
6362 // return ((val & exec) >> cluster_offset) & cluster_mask != 0
6363 //subgroupClusteredXor():
6364 // return v_bnt_u32_b32(((val & exec) >> cluster_offset) & cluster_mask, 0) & 1 != 0
6365 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
6366 Temp cluster_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(~uint32_t(cluster_size - 1)), lane_id);
6367
6368 Temp tmp;
6369 if (op == nir_op_iand)
6370 tmp = bld.sop2(Builder::s_orn2, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
6371 else
6372 tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
6373
6374 uint32_t cluster_mask = cluster_size == 32 ? -1 : (1u << cluster_size) - 1u;
6375
6376 if (ctx->program->chip_class <= GFX7)
6377 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), tmp, cluster_offset);
6378 else if (ctx->program->wave_size == 64)
6379 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), cluster_offset, tmp);
6380 else
6381 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), cluster_offset, tmp);
6382 tmp = emit_extract_vector(ctx, tmp, 0, v1);
6383 if (cluster_mask != 0xffffffff)
6384 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(cluster_mask), tmp);
6385
6386 Definition cmp_def = Definition();
6387 if (op == nir_op_iand) {
6388 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(cluster_mask), tmp).def(0);
6389 } else if (op == nir_op_ior) {
6390 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
6391 } else if (op == nir_op_ixor) {
6392 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u),
6393 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1), tmp, Operand(0u)));
6394 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
6395 }
6396 cmp_def.setHint(vcc);
6397 return cmp_def.getTemp();
6398 }
6399 }
6400
6401 Temp emit_boolean_exclusive_scan(isel_context *ctx, nir_op op, Temp src)
6402 {
6403 Builder bld(ctx->program, ctx->block);
6404
6405 //subgroupExclusiveAnd(val) -> mbcnt(exec & ~val) == 0
6406 //subgroupExclusiveOr(val) -> mbcnt(val & exec) != 0
6407 //subgroupExclusiveXor(val) -> mbcnt(val & exec) & 1 != 0
6408 Temp tmp;
6409 if (op == nir_op_iand)
6410 tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
6411 else
6412 tmp = bld.sop2(Builder::s_and, bld.def(s2), bld.def(s1, scc), src, Operand(exec, bld.lm));
6413
6414 Builder::Result lohi = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), bld.def(s1), tmp);
6415 Temp lo = lohi.def(0).getTemp();
6416 Temp hi = lohi.def(1).getTemp();
6417 Temp mbcnt = emit_mbcnt(ctx, bld.def(v1), Operand(lo), Operand(hi));
6418
6419 Definition cmp_def = Definition();
6420 if (op == nir_op_iand)
6421 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
6422 else if (op == nir_op_ior)
6423 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
6424 else if (op == nir_op_ixor)
6425 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u),
6426 bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), mbcnt)).def(0);
6427 cmp_def.setHint(vcc);
6428 return cmp_def.getTemp();
6429 }
6430
6431 Temp emit_boolean_inclusive_scan(isel_context *ctx, nir_op op, Temp src)
6432 {
6433 Builder bld(ctx->program, ctx->block);
6434
6435 //subgroupInclusiveAnd(val) -> subgroupExclusiveAnd(val) && val
6436 //subgroupInclusiveOr(val) -> subgroupExclusiveOr(val) || val
6437 //subgroupInclusiveXor(val) -> subgroupExclusiveXor(val) ^^ val
6438 Temp tmp = emit_boolean_exclusive_scan(ctx, op, src);
6439 if (op == nir_op_iand)
6440 return bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
6441 else if (op == nir_op_ior)
6442 return bld.sop2(Builder::s_or, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
6443 else if (op == nir_op_ixor)
6444 return bld.sop2(Builder::s_xor, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
6445
6446 assert(false);
6447 return Temp();
6448 }
6449
6450 void emit_uniform_subgroup(isel_context *ctx, nir_intrinsic_instr *instr, Temp src)
6451 {
6452 Builder bld(ctx->program, ctx->block);
6453 Definition dst(get_ssa_temp(ctx, &instr->dest.ssa));
6454 if (src.regClass().type() == RegType::vgpr) {
6455 bld.pseudo(aco_opcode::p_as_uniform, dst, src);
6456 } else if (src.regClass() == s1) {
6457 bld.sop1(aco_opcode::s_mov_b32, dst, src);
6458 } else if (src.regClass() == s2) {
6459 bld.sop1(aco_opcode::s_mov_b64, dst, src);
6460 } else {
6461 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6462 nir_print_instr(&instr->instr, stderr);
6463 fprintf(stderr, "\n");
6464 }
6465 }
6466
6467 void emit_interp_center(isel_context *ctx, Temp dst, Temp pos1, Temp pos2)
6468 {
6469 Builder bld(ctx->program, ctx->block);
6470 Temp persp_center = get_arg(ctx, ctx->args->ac.persp_center);
6471 Temp p1 = emit_extract_vector(ctx, persp_center, 0, v1);
6472 Temp p2 = emit_extract_vector(ctx, persp_center, 1, v1);
6473
6474 Temp ddx_1, ddx_2, ddy_1, ddy_2;
6475 uint32_t dpp_ctrl0 = dpp_quad_perm(0, 0, 0, 0);
6476 uint32_t dpp_ctrl1 = dpp_quad_perm(1, 1, 1, 1);
6477 uint32_t dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
6478
6479 /* Build DD X/Y */
6480 if (ctx->program->chip_class >= GFX8) {
6481 Temp tl_1 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p1, dpp_ctrl0);
6482 ddx_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl1);
6483 ddy_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl2);
6484 Temp tl_2 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p2, dpp_ctrl0);
6485 ddx_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl1);
6486 ddy_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl2);
6487 } else {
6488 Temp tl_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl0);
6489 ddx_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl1);
6490 ddx_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_1, tl_1);
6491 ddx_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl2);
6492 ddx_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_2, tl_1);
6493 Temp tl_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl0);
6494 ddy_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl1);
6495 ddy_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_1, tl_2);
6496 ddy_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl2);
6497 ddy_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_2, tl_2);
6498 }
6499
6500 /* res_k = p_k + ddx_k * pos1 + ddy_k * pos2 */
6501 Temp tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_1, pos1, p1);
6502 Temp tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_2, pos1, p2);
6503 tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_1, pos2, tmp1);
6504 tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_2, pos2, tmp2);
6505 Temp wqm1 = bld.tmp(v1);
6506 emit_wqm(ctx, tmp1, wqm1, true);
6507 Temp wqm2 = bld.tmp(v1);
6508 emit_wqm(ctx, tmp2, wqm2, true);
6509 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), wqm1, wqm2);
6510 return;
6511 }
6512
6513 void visit_intrinsic(isel_context *ctx, nir_intrinsic_instr *instr)
6514 {
6515 Builder bld(ctx->program, ctx->block);
6516 switch(instr->intrinsic) {
6517 case nir_intrinsic_load_barycentric_sample:
6518 case nir_intrinsic_load_barycentric_pixel:
6519 case nir_intrinsic_load_barycentric_centroid: {
6520 glsl_interp_mode mode = (glsl_interp_mode)nir_intrinsic_interp_mode(instr);
6521 Temp bary = Temp(0, s2);
6522 switch (mode) {
6523 case INTERP_MODE_SMOOTH:
6524 case INTERP_MODE_NONE:
6525 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
6526 bary = get_arg(ctx, ctx->args->ac.persp_center);
6527 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
6528 bary = ctx->persp_centroid;
6529 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
6530 bary = get_arg(ctx, ctx->args->ac.persp_sample);
6531 break;
6532 case INTERP_MODE_NOPERSPECTIVE:
6533 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
6534 bary = get_arg(ctx, ctx->args->ac.linear_center);
6535 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
6536 bary = ctx->linear_centroid;
6537 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
6538 bary = get_arg(ctx, ctx->args->ac.linear_sample);
6539 break;
6540 default:
6541 break;
6542 }
6543 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6544 Temp p1 = emit_extract_vector(ctx, bary, 0, v1);
6545 Temp p2 = emit_extract_vector(ctx, bary, 1, v1);
6546 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6547 Operand(p1), Operand(p2));
6548 emit_split_vector(ctx, dst, 2);
6549 break;
6550 }
6551 case nir_intrinsic_load_barycentric_model: {
6552 Temp model = get_arg(ctx, ctx->args->ac.pull_model);
6553
6554 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6555 Temp p1 = emit_extract_vector(ctx, model, 0, v1);
6556 Temp p2 = emit_extract_vector(ctx, model, 1, v1);
6557 Temp p3 = emit_extract_vector(ctx, model, 2, v1);
6558 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6559 Operand(p1), Operand(p2), Operand(p3));
6560 emit_split_vector(ctx, dst, 3);
6561 break;
6562 }
6563 case nir_intrinsic_load_barycentric_at_sample: {
6564 uint32_t sample_pos_offset = RING_PS_SAMPLE_POSITIONS * 16;
6565 switch (ctx->options->key.fs.num_samples) {
6566 case 2: sample_pos_offset += 1 << 3; break;
6567 case 4: sample_pos_offset += 3 << 3; break;
6568 case 8: sample_pos_offset += 7 << 3; break;
6569 default: break;
6570 }
6571 Temp sample_pos;
6572 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
6573 nir_const_value* const_addr = nir_src_as_const_value(instr->src[0]);
6574 Temp private_segment_buffer = ctx->program->private_segment_buffer;
6575 if (addr.type() == RegType::sgpr) {
6576 Operand offset;
6577 if (const_addr) {
6578 sample_pos_offset += const_addr->u32 << 3;
6579 offset = Operand(sample_pos_offset);
6580 } else if (ctx->options->chip_class >= GFX9) {
6581 offset = bld.sop2(aco_opcode::s_lshl3_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
6582 } else {
6583 offset = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), addr, Operand(3u));
6584 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
6585 }
6586
6587 Operand off = bld.copy(bld.def(s1), Operand(offset));
6588 sample_pos = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), private_segment_buffer, off);
6589
6590 } else if (ctx->options->chip_class >= GFX9) {
6591 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
6592 sample_pos = bld.global(aco_opcode::global_load_dwordx2, bld.def(v2), addr, private_segment_buffer, sample_pos_offset);
6593 } else if (ctx->options->chip_class >= GFX7) {
6594 /* addr += private_segment_buffer + sample_pos_offset */
6595 Temp tmp0 = bld.tmp(s1);
6596 Temp tmp1 = bld.tmp(s1);
6597 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp0), Definition(tmp1), private_segment_buffer);
6598 Definition scc_tmp = bld.def(s1, scc);
6599 tmp0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), scc_tmp, tmp0, Operand(sample_pos_offset));
6600 tmp1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), tmp1, Operand(0u), bld.scc(scc_tmp.getTemp()));
6601 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
6602 Temp pck0 = bld.tmp(v1);
6603 Temp carry = bld.vadd32(Definition(pck0), tmp0, addr, true).def(1).getTemp();
6604 tmp1 = as_vgpr(ctx, tmp1);
6605 Temp pck1 = bld.vop2_e64(aco_opcode::v_addc_co_u32, bld.def(v1), bld.hint_vcc(bld.def(bld.lm)), tmp1, Operand(0u), carry);
6606 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), pck0, pck1);
6607
6608 /* sample_pos = flat_load_dwordx2 addr */
6609 sample_pos = bld.flat(aco_opcode::flat_load_dwordx2, bld.def(v2), addr, Operand(s1));
6610 } else {
6611 assert(ctx->options->chip_class == GFX6);
6612
6613 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
6614 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
6615 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), private_segment_buffer, Operand(0u), Operand(rsrc_conf));
6616
6617 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
6618 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), addr, Operand(0u));
6619
6620 sample_pos = bld.tmp(v2);
6621
6622 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dwordx2, Format::MUBUF, 3, 1)};
6623 load->definitions[0] = Definition(sample_pos);
6624 load->operands[0] = Operand(rsrc);
6625 load->operands[1] = Operand(addr);
6626 load->operands[2] = Operand(0u);
6627 load->offset = sample_pos_offset;
6628 load->offen = 0;
6629 load->addr64 = true;
6630 load->glc = false;
6631 load->dlc = false;
6632 load->disable_wqm = false;
6633 load->barrier = barrier_none;
6634 load->can_reorder = true;
6635 ctx->block->instructions.emplace_back(std::move(load));
6636 }
6637
6638 /* sample_pos -= 0.5 */
6639 Temp pos1 = bld.tmp(RegClass(sample_pos.type(), 1));
6640 Temp pos2 = bld.tmp(RegClass(sample_pos.type(), 1));
6641 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), sample_pos);
6642 pos1 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos1, Operand(0x3f000000u));
6643 pos2 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos2, Operand(0x3f000000u));
6644
6645 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
6646 break;
6647 }
6648 case nir_intrinsic_load_barycentric_at_offset: {
6649 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
6650 RegClass rc = RegClass(offset.type(), 1);
6651 Temp pos1 = bld.tmp(rc), pos2 = bld.tmp(rc);
6652 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), offset);
6653 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
6654 break;
6655 }
6656 case nir_intrinsic_load_front_face: {
6657 bld.vopc(aco_opcode::v_cmp_lg_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6658 Operand(0u), get_arg(ctx, ctx->args->ac.front_face)).def(0).setHint(vcc);
6659 break;
6660 }
6661 case nir_intrinsic_load_view_index: {
6662 if (ctx->stage & (sw_vs | sw_gs | sw_tcs | sw_tes)) {
6663 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6664 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.view_index)));
6665 break;
6666 }
6667
6668 /* fallthrough */
6669 }
6670 case nir_intrinsic_load_layer_id: {
6671 unsigned idx = nir_intrinsic_base(instr);
6672 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6673 Operand(2u), bld.m0(get_arg(ctx, ctx->args->ac.prim_mask)), idx, 0);
6674 break;
6675 }
6676 case nir_intrinsic_load_frag_coord: {
6677 emit_load_frag_coord(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 4);
6678 break;
6679 }
6680 case nir_intrinsic_load_sample_pos: {
6681 Temp posx = get_arg(ctx, ctx->args->ac.frag_pos[0]);
6682 Temp posy = get_arg(ctx, ctx->args->ac.frag_pos[1]);
6683 bld.pseudo(aco_opcode::p_create_vector, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6684 posx.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posx) : Operand(0u),
6685 posy.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posy) : Operand(0u));
6686 break;
6687 }
6688 case nir_intrinsic_load_tess_coord:
6689 visit_load_tess_coord(ctx, instr);
6690 break;
6691 case nir_intrinsic_load_interpolated_input:
6692 visit_load_interpolated_input(ctx, instr);
6693 break;
6694 case nir_intrinsic_store_output:
6695 visit_store_output(ctx, instr);
6696 break;
6697 case nir_intrinsic_load_input:
6698 case nir_intrinsic_load_input_vertex:
6699 visit_load_input(ctx, instr);
6700 break;
6701 case nir_intrinsic_load_output:
6702 visit_load_output(ctx, instr);
6703 break;
6704 case nir_intrinsic_load_per_vertex_input:
6705 visit_load_per_vertex_input(ctx, instr);
6706 break;
6707 case nir_intrinsic_load_per_vertex_output:
6708 visit_load_per_vertex_output(ctx, instr);
6709 break;
6710 case nir_intrinsic_store_per_vertex_output:
6711 visit_store_per_vertex_output(ctx, instr);
6712 break;
6713 case nir_intrinsic_load_ubo:
6714 visit_load_ubo(ctx, instr);
6715 break;
6716 case nir_intrinsic_load_push_constant:
6717 visit_load_push_constant(ctx, instr);
6718 break;
6719 case nir_intrinsic_load_constant:
6720 visit_load_constant(ctx, instr);
6721 break;
6722 case nir_intrinsic_vulkan_resource_index:
6723 visit_load_resource(ctx, instr);
6724 break;
6725 case nir_intrinsic_discard:
6726 visit_discard(ctx, instr);
6727 break;
6728 case nir_intrinsic_discard_if:
6729 visit_discard_if(ctx, instr);
6730 break;
6731 case nir_intrinsic_load_shared:
6732 visit_load_shared(ctx, instr);
6733 break;
6734 case nir_intrinsic_store_shared:
6735 visit_store_shared(ctx, instr);
6736 break;
6737 case nir_intrinsic_shared_atomic_add:
6738 case nir_intrinsic_shared_atomic_imin:
6739 case nir_intrinsic_shared_atomic_umin:
6740 case nir_intrinsic_shared_atomic_imax:
6741 case nir_intrinsic_shared_atomic_umax:
6742 case nir_intrinsic_shared_atomic_and:
6743 case nir_intrinsic_shared_atomic_or:
6744 case nir_intrinsic_shared_atomic_xor:
6745 case nir_intrinsic_shared_atomic_exchange:
6746 case nir_intrinsic_shared_atomic_comp_swap:
6747 visit_shared_atomic(ctx, instr);
6748 break;
6749 case nir_intrinsic_image_deref_load:
6750 visit_image_load(ctx, instr);
6751 break;
6752 case nir_intrinsic_image_deref_store:
6753 visit_image_store(ctx, instr);
6754 break;
6755 case nir_intrinsic_image_deref_atomic_add:
6756 case nir_intrinsic_image_deref_atomic_umin:
6757 case nir_intrinsic_image_deref_atomic_imin:
6758 case nir_intrinsic_image_deref_atomic_umax:
6759 case nir_intrinsic_image_deref_atomic_imax:
6760 case nir_intrinsic_image_deref_atomic_and:
6761 case nir_intrinsic_image_deref_atomic_or:
6762 case nir_intrinsic_image_deref_atomic_xor:
6763 case nir_intrinsic_image_deref_atomic_exchange:
6764 case nir_intrinsic_image_deref_atomic_comp_swap:
6765 visit_image_atomic(ctx, instr);
6766 break;
6767 case nir_intrinsic_image_deref_size:
6768 visit_image_size(ctx, instr);
6769 break;
6770 case nir_intrinsic_load_ssbo:
6771 visit_load_ssbo(ctx, instr);
6772 break;
6773 case nir_intrinsic_store_ssbo:
6774 visit_store_ssbo(ctx, instr);
6775 break;
6776 case nir_intrinsic_load_global:
6777 visit_load_global(ctx, instr);
6778 break;
6779 case nir_intrinsic_store_global:
6780 visit_store_global(ctx, instr);
6781 break;
6782 case nir_intrinsic_global_atomic_add:
6783 case nir_intrinsic_global_atomic_imin:
6784 case nir_intrinsic_global_atomic_umin:
6785 case nir_intrinsic_global_atomic_imax:
6786 case nir_intrinsic_global_atomic_umax:
6787 case nir_intrinsic_global_atomic_and:
6788 case nir_intrinsic_global_atomic_or:
6789 case nir_intrinsic_global_atomic_xor:
6790 case nir_intrinsic_global_atomic_exchange:
6791 case nir_intrinsic_global_atomic_comp_swap:
6792 visit_global_atomic(ctx, instr);
6793 break;
6794 case nir_intrinsic_ssbo_atomic_add:
6795 case nir_intrinsic_ssbo_atomic_imin:
6796 case nir_intrinsic_ssbo_atomic_umin:
6797 case nir_intrinsic_ssbo_atomic_imax:
6798 case nir_intrinsic_ssbo_atomic_umax:
6799 case nir_intrinsic_ssbo_atomic_and:
6800 case nir_intrinsic_ssbo_atomic_or:
6801 case nir_intrinsic_ssbo_atomic_xor:
6802 case nir_intrinsic_ssbo_atomic_exchange:
6803 case nir_intrinsic_ssbo_atomic_comp_swap:
6804 visit_atomic_ssbo(ctx, instr);
6805 break;
6806 case nir_intrinsic_load_scratch:
6807 visit_load_scratch(ctx, instr);
6808 break;
6809 case nir_intrinsic_store_scratch:
6810 visit_store_scratch(ctx, instr);
6811 break;
6812 case nir_intrinsic_get_buffer_size:
6813 visit_get_buffer_size(ctx, instr);
6814 break;
6815 case nir_intrinsic_control_barrier: {
6816 if (ctx->program->chip_class == GFX6 && ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
6817 /* GFX6 only (thanks to a hw bug workaround):
6818 * The real barrier instruction isn’t needed, because an entire patch
6819 * always fits into a single wave.
6820 */
6821 break;
6822 }
6823
6824 if (ctx->shader->info.stage == MESA_SHADER_COMPUTE) {
6825 unsigned* bsize = ctx->program->info->cs.block_size;
6826 unsigned workgroup_size = bsize[0] * bsize[1] * bsize[2];
6827 if (workgroup_size > ctx->program->wave_size)
6828 bld.sopp(aco_opcode::s_barrier);
6829 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
6830 /* For each patch provided during rendering, n​ TCS shader invocations will be processed,
6831 * where n​ is the number of vertices in the output patch.
6832 */
6833 unsigned workgroup_size = ctx->tcs_num_patches * ctx->shader->info.tess.tcs_vertices_out;
6834 if (workgroup_size > ctx->program->wave_size)
6835 bld.sopp(aco_opcode::s_barrier);
6836 } else {
6837 /* We don't know the workgroup size, so always emit the s_barrier. */
6838 bld.sopp(aco_opcode::s_barrier);
6839 }
6840
6841 break;
6842 }
6843 case nir_intrinsic_memory_barrier_tcs_patch:
6844 case nir_intrinsic_group_memory_barrier:
6845 case nir_intrinsic_memory_barrier:
6846 case nir_intrinsic_memory_barrier_buffer:
6847 case nir_intrinsic_memory_barrier_image:
6848 case nir_intrinsic_memory_barrier_shared:
6849 emit_memory_barrier(ctx, instr);
6850 break;
6851 case nir_intrinsic_load_num_work_groups: {
6852 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6853 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.num_work_groups)));
6854 emit_split_vector(ctx, dst, 3);
6855 break;
6856 }
6857 case nir_intrinsic_load_local_invocation_id: {
6858 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6859 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.local_invocation_ids)));
6860 emit_split_vector(ctx, dst, 3);
6861 break;
6862 }
6863 case nir_intrinsic_load_work_group_id: {
6864 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6865 struct ac_arg *args = ctx->args->ac.workgroup_ids;
6866 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6867 args[0].used ? Operand(get_arg(ctx, args[0])) : Operand(0u),
6868 args[1].used ? Operand(get_arg(ctx, args[1])) : Operand(0u),
6869 args[2].used ? Operand(get_arg(ctx, args[2])) : Operand(0u));
6870 emit_split_vector(ctx, dst, 3);
6871 break;
6872 }
6873 case nir_intrinsic_load_local_invocation_index: {
6874 Temp id = emit_mbcnt(ctx, bld.def(v1));
6875
6876 /* The tg_size bits [6:11] contain the subgroup id,
6877 * we need this multiplied by the wave size, and then OR the thread id to it.
6878 */
6879 if (ctx->program->wave_size == 64) {
6880 /* After the s_and the bits are already multiplied by 64 (left shifted by 6) so we can just feed that to v_or */
6881 Temp tg_num = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfc0u),
6882 get_arg(ctx, ctx->args->ac.tg_size));
6883 bld.vop2(aco_opcode::v_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, id);
6884 } else {
6885 /* Extract the bit field and multiply the result by 32 (left shift by 5), then do the OR */
6886 Temp tg_num = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
6887 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
6888 bld.vop3(aco_opcode::v_lshl_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, Operand(0x5u), id);
6889 }
6890 break;
6891 }
6892 case nir_intrinsic_load_subgroup_id: {
6893 if (ctx->stage == compute_cs) {
6894 bld.sop2(aco_opcode::s_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc),
6895 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
6896 } else {
6897 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x0u));
6898 }
6899 break;
6900 }
6901 case nir_intrinsic_load_subgroup_invocation: {
6902 emit_mbcnt(ctx, Definition(get_ssa_temp(ctx, &instr->dest.ssa)));
6903 break;
6904 }
6905 case nir_intrinsic_load_num_subgroups: {
6906 if (ctx->stage == compute_cs)
6907 bld.sop2(aco_opcode::s_and_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc), Operand(0x3fu),
6908 get_arg(ctx, ctx->args->ac.tg_size));
6909 else
6910 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x1u));
6911 break;
6912 }
6913 case nir_intrinsic_ballot: {
6914 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6915 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6916 Definition tmp = bld.def(dst.regClass());
6917 Definition lanemask_tmp = dst.size() == bld.lm.size() ? tmp : bld.def(src.regClass());
6918 if (instr->src[0].ssa->bit_size == 1) {
6919 assert(src.regClass() == bld.lm);
6920 bld.sop2(Builder::s_and, lanemask_tmp, bld.def(s1, scc), Operand(exec, bld.lm), src);
6921 } else if (instr->src[0].ssa->bit_size == 32 && src.regClass() == v1) {
6922 bld.vopc(aco_opcode::v_cmp_lg_u32, lanemask_tmp, Operand(0u), src);
6923 } else if (instr->src[0].ssa->bit_size == 64 && src.regClass() == v2) {
6924 bld.vopc(aco_opcode::v_cmp_lg_u64, lanemask_tmp, Operand(0u), src);
6925 } else {
6926 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6927 nir_print_instr(&instr->instr, stderr);
6928 fprintf(stderr, "\n");
6929 }
6930 if (dst.size() != bld.lm.size()) {
6931 /* Wave32 with ballot size set to 64 */
6932 bld.pseudo(aco_opcode::p_create_vector, Definition(tmp), lanemask_tmp.getTemp(), Operand(0u));
6933 }
6934 emit_wqm(ctx, tmp.getTemp(), dst);
6935 break;
6936 }
6937 case nir_intrinsic_shuffle:
6938 case nir_intrinsic_read_invocation: {
6939 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6940 if (!ctx->divergent_vals[instr->src[0].ssa->index]) {
6941 emit_uniform_subgroup(ctx, instr, src);
6942 } else {
6943 Temp tid = get_ssa_temp(ctx, instr->src[1].ssa);
6944 if (instr->intrinsic == nir_intrinsic_read_invocation || !ctx->divergent_vals[instr->src[1].ssa->index])
6945 tid = bld.as_uniform(tid);
6946 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6947 if (src.regClass() == v1) {
6948 emit_wqm(ctx, emit_bpermute(ctx, bld, tid, src), dst);
6949 } else if (src.regClass() == v2) {
6950 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
6951 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
6952 lo = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, lo));
6953 hi = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, hi));
6954 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6955 emit_split_vector(ctx, dst, 2);
6956 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == s1) {
6957 assert(src.regClass() == bld.lm);
6958 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src, tid);
6959 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
6960 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == v1) {
6961 assert(src.regClass() == bld.lm);
6962 Temp tmp;
6963 if (ctx->program->chip_class <= GFX7)
6964 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), src, tid);
6965 else if (ctx->program->wave_size == 64)
6966 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), tid, src);
6967 else
6968 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), tid, src);
6969 tmp = emit_extract_vector(ctx, tmp, 0, v1);
6970 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), tmp);
6971 emit_wqm(ctx, bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp), dst);
6972 } else {
6973 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6974 nir_print_instr(&instr->instr, stderr);
6975 fprintf(stderr, "\n");
6976 }
6977 }
6978 break;
6979 }
6980 case nir_intrinsic_load_sample_id: {
6981 bld.vop3(aco_opcode::v_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6982 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
6983 break;
6984 }
6985 case nir_intrinsic_load_sample_mask_in: {
6986 visit_load_sample_mask_in(ctx, instr);
6987 break;
6988 }
6989 case nir_intrinsic_read_first_invocation: {
6990 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6991 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6992 if (src.regClass() == v1) {
6993 emit_wqm(ctx,
6994 bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), src),
6995 dst);
6996 } else if (src.regClass() == v2) {
6997 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
6998 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
6999 lo = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), lo));
7000 hi = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), hi));
7001 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7002 emit_split_vector(ctx, dst, 2);
7003 } else if (instr->dest.ssa.bit_size == 1) {
7004 assert(src.regClass() == bld.lm);
7005 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src,
7006 bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)));
7007 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7008 } else if (src.regClass() == s1) {
7009 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
7010 } else if (src.regClass() == s2) {
7011 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
7012 } else {
7013 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7014 nir_print_instr(&instr->instr, stderr);
7015 fprintf(stderr, "\n");
7016 }
7017 break;
7018 }
7019 case nir_intrinsic_vote_all: {
7020 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7021 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7022 assert(src.regClass() == bld.lm);
7023 assert(dst.regClass() == bld.lm);
7024
7025 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
7026 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
7027 bld.sop1(Builder::s_not, Definition(dst), bld.def(s1, scc), cond);
7028 break;
7029 }
7030 case nir_intrinsic_vote_any: {
7031 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7032 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7033 assert(src.regClass() == bld.lm);
7034 assert(dst.regClass() == bld.lm);
7035
7036 Temp tmp = bool_to_scalar_condition(ctx, src);
7037 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7038 break;
7039 }
7040 case nir_intrinsic_reduce:
7041 case nir_intrinsic_inclusive_scan:
7042 case nir_intrinsic_exclusive_scan: {
7043 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7044 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7045 nir_op op = (nir_op) nir_intrinsic_reduction_op(instr);
7046 unsigned cluster_size = instr->intrinsic == nir_intrinsic_reduce ?
7047 nir_intrinsic_cluster_size(instr) : 0;
7048 cluster_size = util_next_power_of_two(MIN2(cluster_size ? cluster_size : ctx->program->wave_size, ctx->program->wave_size));
7049
7050 if (!ctx->divergent_vals[instr->src[0].ssa->index] && (op == nir_op_ior || op == nir_op_iand)) {
7051 emit_uniform_subgroup(ctx, instr, src);
7052 } else if (instr->dest.ssa.bit_size == 1) {
7053 if (op == nir_op_imul || op == nir_op_umin || op == nir_op_imin)
7054 op = nir_op_iand;
7055 else if (op == nir_op_iadd)
7056 op = nir_op_ixor;
7057 else if (op == nir_op_umax || op == nir_op_imax)
7058 op = nir_op_ior;
7059 assert(op == nir_op_iand || op == nir_op_ior || op == nir_op_ixor);
7060
7061 switch (instr->intrinsic) {
7062 case nir_intrinsic_reduce:
7063 emit_wqm(ctx, emit_boolean_reduce(ctx, op, cluster_size, src), dst);
7064 break;
7065 case nir_intrinsic_exclusive_scan:
7066 emit_wqm(ctx, emit_boolean_exclusive_scan(ctx, op, src), dst);
7067 break;
7068 case nir_intrinsic_inclusive_scan:
7069 emit_wqm(ctx, emit_boolean_inclusive_scan(ctx, op, src), dst);
7070 break;
7071 default:
7072 assert(false);
7073 }
7074 } else if (cluster_size == 1) {
7075 bld.copy(Definition(dst), src);
7076 } else {
7077 src = as_vgpr(ctx, src);
7078
7079 ReduceOp reduce_op;
7080 switch (op) {
7081 #define CASE(name) case nir_op_##name: reduce_op = (src.regClass() == v1) ? name##32 : name##64; break;
7082 CASE(iadd)
7083 CASE(imul)
7084 CASE(fadd)
7085 CASE(fmul)
7086 CASE(imin)
7087 CASE(umin)
7088 CASE(fmin)
7089 CASE(imax)
7090 CASE(umax)
7091 CASE(fmax)
7092 CASE(iand)
7093 CASE(ior)
7094 CASE(ixor)
7095 default:
7096 unreachable("unknown reduction op");
7097 #undef CASE
7098 }
7099
7100 aco_opcode aco_op;
7101 switch (instr->intrinsic) {
7102 case nir_intrinsic_reduce: aco_op = aco_opcode::p_reduce; break;
7103 case nir_intrinsic_inclusive_scan: aco_op = aco_opcode::p_inclusive_scan; break;
7104 case nir_intrinsic_exclusive_scan: aco_op = aco_opcode::p_exclusive_scan; break;
7105 default:
7106 unreachable("unknown reduce intrinsic");
7107 }
7108
7109 aco_ptr<Pseudo_reduction_instruction> reduce{create_instruction<Pseudo_reduction_instruction>(aco_op, Format::PSEUDO_REDUCTION, 3, 5)};
7110 reduce->operands[0] = Operand(src);
7111 // filled in by aco_reduce_assign.cpp, used internally as part of the
7112 // reduce sequence
7113 assert(dst.size() == 1 || dst.size() == 2);
7114 reduce->operands[1] = Operand(RegClass(RegType::vgpr, dst.size()).as_linear());
7115 reduce->operands[2] = Operand(v1.as_linear());
7116
7117 Temp tmp_dst = bld.tmp(dst.regClass());
7118 reduce->definitions[0] = Definition(tmp_dst);
7119 reduce->definitions[1] = bld.def(ctx->program->lane_mask); // used internally
7120 reduce->definitions[2] = Definition();
7121 reduce->definitions[3] = Definition(scc, s1);
7122 reduce->definitions[4] = Definition();
7123 reduce->reduce_op = reduce_op;
7124 reduce->cluster_size = cluster_size;
7125 ctx->block->instructions.emplace_back(std::move(reduce));
7126
7127 emit_wqm(ctx, tmp_dst, dst);
7128 }
7129 break;
7130 }
7131 case nir_intrinsic_quad_broadcast: {
7132 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7133 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
7134 emit_uniform_subgroup(ctx, instr, src);
7135 } else {
7136 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7137 unsigned lane = nir_src_as_const_value(instr->src[1])->u32;
7138 uint32_t dpp_ctrl = dpp_quad_perm(lane, lane, lane, lane);
7139
7140 if (instr->dest.ssa.bit_size == 1) {
7141 assert(src.regClass() == bld.lm);
7142 assert(dst.regClass() == bld.lm);
7143 uint32_t half_mask = 0x11111111u << lane;
7144 Temp mask_tmp = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(half_mask), Operand(half_mask));
7145 Temp tmp = bld.tmp(bld.lm);
7146 bld.sop1(Builder::s_wqm, Definition(tmp),
7147 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), mask_tmp,
7148 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm))));
7149 emit_wqm(ctx, tmp, dst);
7150 } else if (instr->dest.ssa.bit_size == 32) {
7151 if (ctx->program->chip_class >= GFX8)
7152 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), dst);
7153 else
7154 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), dst);
7155 } else if (instr->dest.ssa.bit_size == 64) {
7156 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7157 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7158 if (ctx->program->chip_class >= GFX8) {
7159 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
7160 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
7161 } else {
7162 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, (1 << 15) | dpp_ctrl));
7163 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, (1 << 15) | dpp_ctrl));
7164 }
7165 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7166 emit_split_vector(ctx, dst, 2);
7167 } else {
7168 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7169 nir_print_instr(&instr->instr, stderr);
7170 fprintf(stderr, "\n");
7171 }
7172 }
7173 break;
7174 }
7175 case nir_intrinsic_quad_swap_horizontal:
7176 case nir_intrinsic_quad_swap_vertical:
7177 case nir_intrinsic_quad_swap_diagonal:
7178 case nir_intrinsic_quad_swizzle_amd: {
7179 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7180 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
7181 emit_uniform_subgroup(ctx, instr, src);
7182 break;
7183 }
7184 uint16_t dpp_ctrl = 0;
7185 switch (instr->intrinsic) {
7186 case nir_intrinsic_quad_swap_horizontal:
7187 dpp_ctrl = dpp_quad_perm(1, 0, 3, 2);
7188 break;
7189 case nir_intrinsic_quad_swap_vertical:
7190 dpp_ctrl = dpp_quad_perm(2, 3, 0, 1);
7191 break;
7192 case nir_intrinsic_quad_swap_diagonal:
7193 dpp_ctrl = dpp_quad_perm(3, 2, 1, 0);
7194 break;
7195 case nir_intrinsic_quad_swizzle_amd:
7196 dpp_ctrl = nir_intrinsic_swizzle_mask(instr);
7197 break;
7198 default:
7199 break;
7200 }
7201 if (ctx->program->chip_class < GFX8)
7202 dpp_ctrl |= (1 << 15);
7203
7204 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7205 if (instr->dest.ssa.bit_size == 1) {
7206 assert(src.regClass() == bld.lm);
7207 src = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand((uint32_t)-1), src);
7208 if (ctx->program->chip_class >= GFX8)
7209 src = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
7210 else
7211 src = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
7212 Temp tmp = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), src);
7213 emit_wqm(ctx, tmp, dst);
7214 } else if (instr->dest.ssa.bit_size == 32) {
7215 Temp tmp;
7216 if (ctx->program->chip_class >= GFX8)
7217 tmp = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
7218 else
7219 tmp = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
7220 emit_wqm(ctx, tmp, dst);
7221 } else if (instr->dest.ssa.bit_size == 64) {
7222 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7223 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7224 if (ctx->program->chip_class >= GFX8) {
7225 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
7226 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
7227 } else {
7228 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, dpp_ctrl));
7229 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, dpp_ctrl));
7230 }
7231 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7232 emit_split_vector(ctx, dst, 2);
7233 } else {
7234 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7235 nir_print_instr(&instr->instr, stderr);
7236 fprintf(stderr, "\n");
7237 }
7238 break;
7239 }
7240 case nir_intrinsic_masked_swizzle_amd: {
7241 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7242 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
7243 emit_uniform_subgroup(ctx, instr, src);
7244 break;
7245 }
7246 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7247 uint32_t mask = nir_intrinsic_swizzle_mask(instr);
7248 if (dst.regClass() == v1) {
7249 emit_wqm(ctx,
7250 bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, mask, 0, false),
7251 dst);
7252 } else if (dst.regClass() == v2) {
7253 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7254 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7255 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, mask, 0, false));
7256 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, mask, 0, false));
7257 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7258 emit_split_vector(ctx, dst, 2);
7259 } else {
7260 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7261 nir_print_instr(&instr->instr, stderr);
7262 fprintf(stderr, "\n");
7263 }
7264 break;
7265 }
7266 case nir_intrinsic_write_invocation_amd: {
7267 Temp src = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
7268 Temp val = bld.as_uniform(get_ssa_temp(ctx, instr->src[1].ssa));
7269 Temp lane = bld.as_uniform(get_ssa_temp(ctx, instr->src[2].ssa));
7270 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7271 if (dst.regClass() == v1) {
7272 /* src2 is ignored for writelane. RA assigns the same reg for dst */
7273 emit_wqm(ctx, bld.writelane(bld.def(v1), val, lane, src), dst);
7274 } else if (dst.regClass() == v2) {
7275 Temp src_lo = bld.tmp(v1), src_hi = bld.tmp(v1);
7276 Temp val_lo = bld.tmp(s1), val_hi = bld.tmp(s1);
7277 bld.pseudo(aco_opcode::p_split_vector, Definition(src_lo), Definition(src_hi), src);
7278 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
7279 Temp lo = emit_wqm(ctx, bld.writelane(bld.def(v1), val_lo, lane, src_hi));
7280 Temp hi = emit_wqm(ctx, bld.writelane(bld.def(v1), val_hi, lane, src_hi));
7281 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7282 emit_split_vector(ctx, dst, 2);
7283 } else {
7284 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7285 nir_print_instr(&instr->instr, stderr);
7286 fprintf(stderr, "\n");
7287 }
7288 break;
7289 }
7290 case nir_intrinsic_mbcnt_amd: {
7291 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7292 RegClass rc = RegClass(src.type(), 1);
7293 Temp mask_lo = bld.tmp(rc), mask_hi = bld.tmp(rc);
7294 bld.pseudo(aco_opcode::p_split_vector, Definition(mask_lo), Definition(mask_hi), src);
7295 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7296 Temp wqm_tmp = emit_mbcnt(ctx, bld.def(v1), Operand(mask_lo), Operand(mask_hi));
7297 emit_wqm(ctx, wqm_tmp, dst);
7298 break;
7299 }
7300 case nir_intrinsic_load_helper_invocation: {
7301 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7302 bld.pseudo(aco_opcode::p_load_helper, Definition(dst));
7303 ctx->block->kind |= block_kind_needs_lowering;
7304 ctx->program->needs_exact = true;
7305 break;
7306 }
7307 case nir_intrinsic_is_helper_invocation: {
7308 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7309 bld.pseudo(aco_opcode::p_is_helper, Definition(dst));
7310 ctx->block->kind |= block_kind_needs_lowering;
7311 ctx->program->needs_exact = true;
7312 break;
7313 }
7314 case nir_intrinsic_demote:
7315 bld.pseudo(aco_opcode::p_demote_to_helper, Operand(-1u));
7316
7317 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
7318 ctx->cf_info.exec_potentially_empty_discard = true;
7319 ctx->block->kind |= block_kind_uses_demote;
7320 ctx->program->needs_exact = true;
7321 break;
7322 case nir_intrinsic_demote_if: {
7323 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7324 assert(src.regClass() == bld.lm);
7325 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
7326 bld.pseudo(aco_opcode::p_demote_to_helper, cond);
7327
7328 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
7329 ctx->cf_info.exec_potentially_empty_discard = true;
7330 ctx->block->kind |= block_kind_uses_demote;
7331 ctx->program->needs_exact = true;
7332 break;
7333 }
7334 case nir_intrinsic_first_invocation: {
7335 emit_wqm(ctx, bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)),
7336 get_ssa_temp(ctx, &instr->dest.ssa));
7337 break;
7338 }
7339 case nir_intrinsic_shader_clock:
7340 bld.smem(aco_opcode::s_memtime, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), false);
7341 emit_split_vector(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 2);
7342 break;
7343 case nir_intrinsic_load_vertex_id_zero_base: {
7344 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7345 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.vertex_id));
7346 break;
7347 }
7348 case nir_intrinsic_load_first_vertex: {
7349 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7350 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.base_vertex));
7351 break;
7352 }
7353 case nir_intrinsic_load_base_instance: {
7354 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7355 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.start_instance));
7356 break;
7357 }
7358 case nir_intrinsic_load_instance_id: {
7359 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7360 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.instance_id));
7361 break;
7362 }
7363 case nir_intrinsic_load_draw_id: {
7364 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7365 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.draw_id));
7366 break;
7367 }
7368 case nir_intrinsic_load_invocation_id: {
7369 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7370
7371 if (ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
7372 if (ctx->options->chip_class >= GFX10)
7373 bld.vop2_e64(aco_opcode::v_and_b32, Definition(dst), Operand(127u), get_arg(ctx, ctx->args->ac.gs_invocation_id));
7374 else
7375 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_invocation_id));
7376 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
7377 bld.vop3(aco_opcode::v_bfe_u32, Definition(dst),
7378 get_arg(ctx, ctx->args->ac.tcs_rel_ids), Operand(8u), Operand(5u));
7379 } else {
7380 unreachable("Unsupported stage for load_invocation_id");
7381 }
7382
7383 break;
7384 }
7385 case nir_intrinsic_load_primitive_id: {
7386 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7387
7388 switch (ctx->shader->info.stage) {
7389 case MESA_SHADER_GEOMETRY:
7390 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_prim_id));
7391 break;
7392 case MESA_SHADER_TESS_CTRL:
7393 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tcs_patch_id));
7394 break;
7395 case MESA_SHADER_TESS_EVAL:
7396 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tes_patch_id));
7397 break;
7398 default:
7399 unreachable("Unimplemented shader stage for nir_intrinsic_load_primitive_id");
7400 }
7401
7402 break;
7403 }
7404 case nir_intrinsic_load_patch_vertices_in: {
7405 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL ||
7406 ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
7407
7408 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7409 bld.copy(Definition(dst), Operand(ctx->args->options->key.tcs.input_vertices));
7410 break;
7411 }
7412 case nir_intrinsic_emit_vertex_with_counter: {
7413 visit_emit_vertex_with_counter(ctx, instr);
7414 break;
7415 }
7416 case nir_intrinsic_end_primitive_with_counter: {
7417 unsigned stream = nir_intrinsic_stream_id(instr);
7418 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(true, false, stream));
7419 break;
7420 }
7421 case nir_intrinsic_set_vertex_count: {
7422 /* unused, the HW keeps track of this for us */
7423 break;
7424 }
7425 default:
7426 fprintf(stderr, "Unimplemented intrinsic instr: ");
7427 nir_print_instr(&instr->instr, stderr);
7428 fprintf(stderr, "\n");
7429 abort();
7430
7431 break;
7432 }
7433 }
7434
7435
7436 void tex_fetch_ptrs(isel_context *ctx, nir_tex_instr *instr,
7437 Temp *res_ptr, Temp *samp_ptr, Temp *fmask_ptr,
7438 enum glsl_base_type *stype)
7439 {
7440 nir_deref_instr *texture_deref_instr = NULL;
7441 nir_deref_instr *sampler_deref_instr = NULL;
7442 int plane = -1;
7443
7444 for (unsigned i = 0; i < instr->num_srcs; i++) {
7445 switch (instr->src[i].src_type) {
7446 case nir_tex_src_texture_deref:
7447 texture_deref_instr = nir_src_as_deref(instr->src[i].src);
7448 break;
7449 case nir_tex_src_sampler_deref:
7450 sampler_deref_instr = nir_src_as_deref(instr->src[i].src);
7451 break;
7452 case nir_tex_src_plane:
7453 plane = nir_src_as_int(instr->src[i].src);
7454 break;
7455 default:
7456 break;
7457 }
7458 }
7459
7460 *stype = glsl_get_sampler_result_type(texture_deref_instr->type);
7461
7462 if (!sampler_deref_instr)
7463 sampler_deref_instr = texture_deref_instr;
7464
7465 if (plane >= 0) {
7466 assert(instr->op != nir_texop_txf_ms &&
7467 instr->op != nir_texop_samples_identical);
7468 assert(instr->sampler_dim != GLSL_SAMPLER_DIM_BUF);
7469 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, (aco_descriptor_type)(ACO_DESC_PLANE_0 + plane), instr, false, false);
7470 } else if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
7471 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_BUFFER, instr, false, false);
7472 } else if (instr->op == nir_texop_fragment_mask_fetch) {
7473 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
7474 } else {
7475 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_IMAGE, instr, false, false);
7476 }
7477 if (samp_ptr) {
7478 *samp_ptr = get_sampler_desc(ctx, sampler_deref_instr, ACO_DESC_SAMPLER, instr, false, false);
7479
7480 if (instr->sampler_dim < GLSL_SAMPLER_DIM_RECT && ctx->options->chip_class < GFX8) {
7481 /* fix sampler aniso on SI/CI: samp[0] = samp[0] & img[7] */
7482 Builder bld(ctx->program, ctx->block);
7483
7484 /* to avoid unnecessary moves, we split and recombine sampler and image */
7485 Temp img[8] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1),
7486 bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
7487 Temp samp[4] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
7488 bld.pseudo(aco_opcode::p_split_vector, Definition(img[0]), Definition(img[1]),
7489 Definition(img[2]), Definition(img[3]), Definition(img[4]),
7490 Definition(img[5]), Definition(img[6]), Definition(img[7]), *res_ptr);
7491 bld.pseudo(aco_opcode::p_split_vector, Definition(samp[0]), Definition(samp[1]),
7492 Definition(samp[2]), Definition(samp[3]), *samp_ptr);
7493
7494 samp[0] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), samp[0], img[7]);
7495 *res_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
7496 img[0], img[1], img[2], img[3],
7497 img[4], img[5], img[6], img[7]);
7498 *samp_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
7499 samp[0], samp[1], samp[2], samp[3]);
7500 }
7501 }
7502 if (fmask_ptr && (instr->op == nir_texop_txf_ms ||
7503 instr->op == nir_texop_samples_identical))
7504 *fmask_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
7505 }
7506
7507 void build_cube_select(isel_context *ctx, Temp ma, Temp id, Temp deriv,
7508 Temp *out_ma, Temp *out_sc, Temp *out_tc)
7509 {
7510 Builder bld(ctx->program, ctx->block);
7511
7512 Temp deriv_x = emit_extract_vector(ctx, deriv, 0, v1);
7513 Temp deriv_y = emit_extract_vector(ctx, deriv, 1, v1);
7514 Temp deriv_z = emit_extract_vector(ctx, deriv, 2, v1);
7515
7516 Operand neg_one(0xbf800000u);
7517 Operand one(0x3f800000u);
7518 Operand two(0x40000000u);
7519 Operand four(0x40800000u);
7520
7521 Temp is_ma_positive = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), ma);
7522 Temp sgn_ma = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, one, is_ma_positive);
7523 Temp neg_sgn_ma = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0u), sgn_ma);
7524
7525 Temp is_ma_z = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), four, id);
7526 Temp is_ma_y = bld.vopc(aco_opcode::v_cmp_le_f32, bld.def(bld.lm), two, id);
7527 is_ma_y = bld.sop2(Builder::s_andn2, bld.hint_vcc(bld.def(bld.lm)), is_ma_y, is_ma_z);
7528 Temp is_not_ma_x = bld.sop2(aco_opcode::s_or_b64, bld.hint_vcc(bld.def(bld.lm)), bld.def(s1, scc), is_ma_z, is_ma_y);
7529
7530 // select sc
7531 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_z, deriv_x, is_not_ma_x);
7532 Temp sgn = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1),
7533 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_sgn_ma, sgn_ma, is_ma_z),
7534 one, is_ma_y);
7535 *out_sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
7536
7537 // select tc
7538 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_y, deriv_z, is_ma_y);
7539 sgn = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, sgn_ma, is_ma_y);
7540 *out_tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
7541
7542 // select ma
7543 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
7544 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_x, deriv_y, is_ma_y),
7545 deriv_z, is_ma_z);
7546 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffffu), tmp);
7547 *out_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), two, tmp);
7548 }
7549
7550 void prepare_cube_coords(isel_context *ctx, std::vector<Temp>& coords, Temp* ddx, Temp* ddy, bool is_deriv, bool is_array)
7551 {
7552 Builder bld(ctx->program, ctx->block);
7553 Temp ma, tc, sc, id;
7554
7555 if (is_array) {
7556 coords[3] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[3]);
7557
7558 // see comment in ac_prepare_cube_coords()
7559 if (ctx->options->chip_class <= GFX8)
7560 coords[3] = bld.vop2(aco_opcode::v_max_f32, bld.def(v1), Operand(0u), coords[3]);
7561 }
7562
7563 ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), coords[0], coords[1], coords[2]);
7564
7565 aco_ptr<VOP3A_instruction> vop3a{create_instruction<VOP3A_instruction>(aco_opcode::v_rcp_f32, asVOP3(Format::VOP1), 1, 1)};
7566 vop3a->operands[0] = Operand(ma);
7567 vop3a->abs[0] = true;
7568 Temp invma = bld.tmp(v1);
7569 vop3a->definitions[0] = Definition(invma);
7570 ctx->block->instructions.emplace_back(std::move(vop3a));
7571
7572 sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
7573 if (!is_deriv)
7574 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, invma, Operand(0x3fc00000u/*1.5*/));
7575
7576 tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
7577 if (!is_deriv)
7578 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, invma, Operand(0x3fc00000u/*1.5*/));
7579
7580 id = bld.vop3(aco_opcode::v_cubeid_f32, bld.def(v1), coords[0], coords[1], coords[2]);
7581
7582 if (is_deriv) {
7583 sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), sc, invma);
7584 tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tc, invma);
7585
7586 for (unsigned i = 0; i < 2; i++) {
7587 // see comment in ac_prepare_cube_coords()
7588 Temp deriv_ma;
7589 Temp deriv_sc, deriv_tc;
7590 build_cube_select(ctx, ma, id, i ? *ddy : *ddx,
7591 &deriv_ma, &deriv_sc, &deriv_tc);
7592
7593 deriv_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, invma);
7594
7595 Temp x = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
7596 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_sc, invma),
7597 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, sc));
7598 Temp y = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
7599 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_tc, invma),
7600 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, tc));
7601 *(i ? ddy : ddx) = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), x, y);
7602 }
7603
7604 sc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), sc);
7605 tc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), tc);
7606 }
7607
7608 if (is_array)
7609 id = bld.vop2(aco_opcode::v_madmk_f32, bld.def(v1), coords[3], id, Operand(0x41000000u/*8.0*/));
7610 coords.resize(3);
7611 coords[0] = sc;
7612 coords[1] = tc;
7613 coords[2] = id;
7614 }
7615
7616 void get_const_vec(nir_ssa_def *vec, nir_const_value *cv[4])
7617 {
7618 if (vec->parent_instr->type != nir_instr_type_alu)
7619 return;
7620 nir_alu_instr *vec_instr = nir_instr_as_alu(vec->parent_instr);
7621 if (vec_instr->op != nir_op_vec(vec->num_components))
7622 return;
7623
7624 for (unsigned i = 0; i < vec->num_components; i++) {
7625 cv[i] = vec_instr->src[i].swizzle[0] == 0 ?
7626 nir_src_as_const_value(vec_instr->src[i].src) : NULL;
7627 }
7628 }
7629
7630 void visit_tex(isel_context *ctx, nir_tex_instr *instr)
7631 {
7632 Builder bld(ctx->program, ctx->block);
7633 bool has_bias = false, has_lod = false, level_zero = false, has_compare = false,
7634 has_offset = false, has_ddx = false, has_ddy = false, has_derivs = false, has_sample_index = false;
7635 Temp resource, sampler, fmask_ptr, bias = Temp(), compare = Temp(), sample_index = Temp(),
7636 lod = Temp(), offset = Temp(), ddx = Temp(), ddy = Temp();
7637 std::vector<Temp> coords;
7638 std::vector<Temp> derivs;
7639 nir_const_value *sample_index_cv = NULL;
7640 nir_const_value *const_offset[4] = {NULL, NULL, NULL, NULL};
7641 enum glsl_base_type stype;
7642 tex_fetch_ptrs(ctx, instr, &resource, &sampler, &fmask_ptr, &stype);
7643
7644 bool tg4_integer_workarounds = ctx->options->chip_class <= GFX8 && instr->op == nir_texop_tg4 &&
7645 (stype == GLSL_TYPE_UINT || stype == GLSL_TYPE_INT);
7646 bool tg4_integer_cube_workaround = tg4_integer_workarounds &&
7647 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE;
7648
7649 for (unsigned i = 0; i < instr->num_srcs; i++) {
7650 switch (instr->src[i].src_type) {
7651 case nir_tex_src_coord: {
7652 Temp coord = get_ssa_temp(ctx, instr->src[i].src.ssa);
7653 for (unsigned i = 0; i < coord.size(); i++)
7654 coords.emplace_back(emit_extract_vector(ctx, coord, i, v1));
7655 break;
7656 }
7657 case nir_tex_src_bias:
7658 if (instr->op == nir_texop_txb) {
7659 bias = get_ssa_temp(ctx, instr->src[i].src.ssa);
7660 has_bias = true;
7661 }
7662 break;
7663 case nir_tex_src_lod: {
7664 nir_const_value *val = nir_src_as_const_value(instr->src[i].src);
7665
7666 if (val && val->f32 <= 0.0) {
7667 level_zero = true;
7668 } else {
7669 lod = get_ssa_temp(ctx, instr->src[i].src.ssa);
7670 has_lod = true;
7671 }
7672 break;
7673 }
7674 case nir_tex_src_comparator:
7675 if (instr->is_shadow) {
7676 compare = get_ssa_temp(ctx, instr->src[i].src.ssa);
7677 has_compare = true;
7678 }
7679 break;
7680 case nir_tex_src_offset:
7681 offset = get_ssa_temp(ctx, instr->src[i].src.ssa);
7682 get_const_vec(instr->src[i].src.ssa, const_offset);
7683 has_offset = true;
7684 break;
7685 case nir_tex_src_ddx:
7686 ddx = get_ssa_temp(ctx, instr->src[i].src.ssa);
7687 has_ddx = true;
7688 break;
7689 case nir_tex_src_ddy:
7690 ddy = get_ssa_temp(ctx, instr->src[i].src.ssa);
7691 has_ddy = true;
7692 break;
7693 case nir_tex_src_ms_index:
7694 sample_index = get_ssa_temp(ctx, instr->src[i].src.ssa);
7695 sample_index_cv = nir_src_as_const_value(instr->src[i].src);
7696 has_sample_index = true;
7697 break;
7698 case nir_tex_src_texture_offset:
7699 case nir_tex_src_sampler_offset:
7700 default:
7701 break;
7702 }
7703 }
7704
7705 if (instr->op == nir_texop_txs && instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
7706 return get_buffer_size(ctx, resource, get_ssa_temp(ctx, &instr->dest.ssa), true);
7707
7708 if (instr->op == nir_texop_texture_samples) {
7709 Temp dword3 = emit_extract_vector(ctx, resource, 3, s1);
7710
7711 Temp samples_log2 = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(16u | 4u<<16));
7712 Temp samples = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), Operand(1u), samples_log2);
7713 Temp type = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(28u | 4u<<16 /* offset=28, width=4 */));
7714 Temp is_msaa = bld.sopc(aco_opcode::s_cmp_ge_u32, bld.def(s1, scc), type, Operand(14u));
7715
7716 bld.sop2(aco_opcode::s_cselect_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7717 samples, Operand(1u), bld.scc(is_msaa));
7718 return;
7719 }
7720
7721 if (has_offset && instr->op != nir_texop_txf && instr->op != nir_texop_txf_ms) {
7722 aco_ptr<Instruction> tmp_instr;
7723 Temp acc, pack = Temp();
7724
7725 uint32_t pack_const = 0;
7726 for (unsigned i = 0; i < offset.size(); i++) {
7727 if (!const_offset[i])
7728 continue;
7729 pack_const |= (const_offset[i]->u32 & 0x3Fu) << (8u * i);
7730 }
7731
7732 if (offset.type() == RegType::sgpr) {
7733 for (unsigned i = 0; i < offset.size(); i++) {
7734 if (const_offset[i])
7735 continue;
7736
7737 acc = emit_extract_vector(ctx, offset, i, s1);
7738 acc = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(0x3Fu));
7739
7740 if (i) {
7741 acc = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(8u * i));
7742 }
7743
7744 if (pack == Temp()) {
7745 pack = acc;
7746 } else {
7747 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), pack, acc);
7748 }
7749 }
7750
7751 if (pack_const && pack != Temp())
7752 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(pack_const), pack);
7753 } else {
7754 for (unsigned i = 0; i < offset.size(); i++) {
7755 if (const_offset[i])
7756 continue;
7757
7758 acc = emit_extract_vector(ctx, offset, i, v1);
7759 acc = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x3Fu), acc);
7760
7761 if (i) {
7762 acc = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(8u * i), acc);
7763 }
7764
7765 if (pack == Temp()) {
7766 pack = acc;
7767 } else {
7768 pack = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), pack, acc);
7769 }
7770 }
7771
7772 if (pack_const && pack != Temp())
7773 pack = bld.sop2(aco_opcode::v_or_b32, bld.def(v1), Operand(pack_const), pack);
7774 }
7775 if (pack_const && pack == Temp())
7776 offset = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(pack_const));
7777 else if (pack == Temp())
7778 has_offset = false;
7779 else
7780 offset = pack;
7781 }
7782
7783 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE && instr->coord_components)
7784 prepare_cube_coords(ctx, coords, &ddx, &ddy, instr->op == nir_texop_txd, instr->is_array && instr->op != nir_texop_lod);
7785
7786 /* pack derivatives */
7787 if (has_ddx || has_ddy) {
7788 if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D && ctx->options->chip_class == GFX9) {
7789 assert(has_ddx && has_ddy && ddx.size() == 1 && ddy.size() == 1);
7790 Temp zero = bld.copy(bld.def(v1), Operand(0u));
7791 derivs = {ddy, zero, ddy, zero};
7792 } else {
7793 for (unsigned i = 0; has_ddx && i < ddx.size(); i++)
7794 derivs.emplace_back(emit_extract_vector(ctx, ddx, i, v1));
7795 for (unsigned i = 0; has_ddy && i < ddy.size(); i++)
7796 derivs.emplace_back(emit_extract_vector(ctx, ddy, i, v1));
7797 }
7798 has_derivs = true;
7799 }
7800
7801 if (instr->coord_components > 1 &&
7802 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
7803 instr->is_array &&
7804 instr->op != nir_texop_txf)
7805 coords[1] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[1]);
7806
7807 if (instr->coord_components > 2 &&
7808 (instr->sampler_dim == GLSL_SAMPLER_DIM_2D ||
7809 instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
7810 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS ||
7811 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
7812 instr->is_array &&
7813 instr->op != nir_texop_txf &&
7814 instr->op != nir_texop_txf_ms &&
7815 instr->op != nir_texop_fragment_fetch &&
7816 instr->op != nir_texop_fragment_mask_fetch)
7817 coords[2] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[2]);
7818
7819 if (ctx->options->chip_class == GFX9 &&
7820 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
7821 instr->op != nir_texop_lod && instr->coord_components) {
7822 assert(coords.size() > 0 && coords.size() < 3);
7823
7824 coords.insert(std::next(coords.begin()), bld.copy(bld.def(v1), instr->op == nir_texop_txf ?
7825 Operand((uint32_t) 0) :
7826 Operand((uint32_t) 0x3f000000)));
7827 }
7828
7829 bool da = should_declare_array(ctx, instr->sampler_dim, instr->is_array);
7830
7831 if (instr->op == nir_texop_samples_identical)
7832 resource = fmask_ptr;
7833
7834 else if ((instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
7835 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
7836 instr->op != nir_texop_txs &&
7837 instr->op != nir_texop_fragment_fetch &&
7838 instr->op != nir_texop_fragment_mask_fetch) {
7839 assert(has_sample_index);
7840 Operand op(sample_index);
7841 if (sample_index_cv)
7842 op = Operand(sample_index_cv->u32);
7843 sample_index = adjust_sample_index_using_fmask(ctx, da, coords, op, fmask_ptr);
7844 }
7845
7846 if (has_offset && (instr->op == nir_texop_txf || instr->op == nir_texop_txf_ms)) {
7847 for (unsigned i = 0; i < std::min(offset.size(), instr->coord_components); i++) {
7848 Temp off = emit_extract_vector(ctx, offset, i, v1);
7849 coords[i] = bld.vadd32(bld.def(v1), coords[i], off);
7850 }
7851 has_offset = false;
7852 }
7853
7854 /* Build tex instruction */
7855 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
7856 unsigned dim = ctx->options->chip_class >= GFX10 && instr->sampler_dim != GLSL_SAMPLER_DIM_BUF
7857 ? ac_get_sampler_dim(ctx->options->chip_class, instr->sampler_dim, instr->is_array)
7858 : 0;
7859 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7860 Temp tmp_dst = dst;
7861
7862 /* gather4 selects the component by dmask and always returns vec4 */
7863 if (instr->op == nir_texop_tg4) {
7864 assert(instr->dest.ssa.num_components == 4);
7865 if (instr->is_shadow)
7866 dmask = 1;
7867 else
7868 dmask = 1 << instr->component;
7869 if (tg4_integer_cube_workaround || dst.type() == RegType::sgpr)
7870 tmp_dst = bld.tmp(v4);
7871 } else if (instr->op == nir_texop_samples_identical) {
7872 tmp_dst = bld.tmp(v1);
7873 } else if (util_bitcount(dmask) != instr->dest.ssa.num_components || dst.type() == RegType::sgpr) {
7874 tmp_dst = bld.tmp(RegClass(RegType::vgpr, util_bitcount(dmask)));
7875 }
7876
7877 aco_ptr<MIMG_instruction> tex;
7878 if (instr->op == nir_texop_txs || instr->op == nir_texop_query_levels) {
7879 if (!has_lod)
7880 lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
7881
7882 bool div_by_6 = instr->op == nir_texop_txs &&
7883 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
7884 instr->is_array &&
7885 (dmask & (1 << 2));
7886 if (tmp_dst.id() == dst.id() && div_by_6)
7887 tmp_dst = bld.tmp(tmp_dst.regClass());
7888
7889 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
7890 tex->operands[0] = Operand(resource);
7891 tex->operands[1] = Operand(s4); /* no sampler */
7892 tex->operands[2] = Operand(as_vgpr(ctx,lod));
7893 if (ctx->options->chip_class == GFX9 &&
7894 instr->op == nir_texop_txs &&
7895 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
7896 instr->is_array) {
7897 tex->dmask = (dmask & 0x1) | ((dmask & 0x2) << 1);
7898 } else if (instr->op == nir_texop_query_levels) {
7899 tex->dmask = 1 << 3;
7900 } else {
7901 tex->dmask = dmask;
7902 }
7903 tex->da = da;
7904 tex->definitions[0] = Definition(tmp_dst);
7905 tex->dim = dim;
7906 tex->can_reorder = true;
7907 ctx->block->instructions.emplace_back(std::move(tex));
7908
7909 if (div_by_6) {
7910 /* divide 3rd value by 6 by multiplying with magic number */
7911 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
7912 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
7913 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp_dst, 2, v1), c);
7914 assert(instr->dest.ssa.num_components == 3);
7915 Temp tmp = dst.type() == RegType::vgpr ? dst : bld.tmp(v3);
7916 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
7917 emit_extract_vector(ctx, tmp_dst, 0, v1),
7918 emit_extract_vector(ctx, tmp_dst, 1, v1),
7919 by_6);
7920
7921 }
7922
7923 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
7924 return;
7925 }
7926
7927 Temp tg4_compare_cube_wa64 = Temp();
7928
7929 if (tg4_integer_workarounds) {
7930 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
7931 tex->operands[0] = Operand(resource);
7932 tex->operands[1] = Operand(s4); /* no sampler */
7933 tex->operands[2] = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
7934 tex->dim = dim;
7935 tex->dmask = 0x3;
7936 tex->da = da;
7937 Temp size = bld.tmp(v2);
7938 tex->definitions[0] = Definition(size);
7939 tex->can_reorder = true;
7940 ctx->block->instructions.emplace_back(std::move(tex));
7941 emit_split_vector(ctx, size, size.size());
7942
7943 Temp half_texel[2];
7944 for (unsigned i = 0; i < 2; i++) {
7945 half_texel[i] = emit_extract_vector(ctx, size, i, v1);
7946 half_texel[i] = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), half_texel[i]);
7947 half_texel[i] = bld.vop1(aco_opcode::v_rcp_iflag_f32, bld.def(v1), half_texel[i]);
7948 half_texel[i] = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0xbf000000/*-0.5*/), half_texel[i]);
7949 }
7950
7951 Temp new_coords[2] = {
7952 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[0], half_texel[0]),
7953 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[1], half_texel[1])
7954 };
7955
7956 if (tg4_integer_cube_workaround) {
7957 // see comment in ac_nir_to_llvm.c's lower_gather4_integer()
7958 Temp desc[resource.size()];
7959 aco_ptr<Instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector,
7960 Format::PSEUDO, 1, resource.size())};
7961 split->operands[0] = Operand(resource);
7962 for (unsigned i = 0; i < resource.size(); i++) {
7963 desc[i] = bld.tmp(s1);
7964 split->definitions[i] = Definition(desc[i]);
7965 }
7966 ctx->block->instructions.emplace_back(std::move(split));
7967
7968 Temp dfmt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), desc[1], Operand(20u | (6u << 16)));
7969 Temp compare_cube_wa = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), dfmt,
7970 Operand((uint32_t)V_008F14_IMG_DATA_FORMAT_8_8_8_8));
7971
7972 Temp nfmt;
7973 if (stype == GLSL_TYPE_UINT) {
7974 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
7975 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_USCALED),
7976 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_UINT),
7977 bld.scc(compare_cube_wa));
7978 } else {
7979 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
7980 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SSCALED),
7981 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SINT),
7982 bld.scc(compare_cube_wa));
7983 }
7984 tg4_compare_cube_wa64 = bld.tmp(bld.lm);
7985 bool_to_vector_condition(ctx, compare_cube_wa, tg4_compare_cube_wa64);
7986
7987 nfmt = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), nfmt, Operand(26u));
7988
7989 desc[1] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), desc[1],
7990 Operand((uint32_t)C_008F14_NUM_FORMAT));
7991 desc[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), desc[1], nfmt);
7992
7993 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
7994 Format::PSEUDO, resource.size(), 1)};
7995 for (unsigned i = 0; i < resource.size(); i++)
7996 vec->operands[i] = Operand(desc[i]);
7997 resource = bld.tmp(resource.regClass());
7998 vec->definitions[0] = Definition(resource);
7999 ctx->block->instructions.emplace_back(std::move(vec));
8000
8001 new_coords[0] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8002 new_coords[0], coords[0], tg4_compare_cube_wa64);
8003 new_coords[1] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8004 new_coords[1], coords[1], tg4_compare_cube_wa64);
8005 }
8006 coords[0] = new_coords[0];
8007 coords[1] = new_coords[1];
8008 }
8009
8010 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
8011 //FIXME: if (ctx->abi->gfx9_stride_size_workaround) return ac_build_buffer_load_format_gfx9_safe()
8012
8013 assert(coords.size() == 1);
8014 unsigned last_bit = util_last_bit(nir_ssa_def_components_read(&instr->dest.ssa));
8015 aco_opcode op;
8016 switch (last_bit) {
8017 case 1:
8018 op = aco_opcode::buffer_load_format_x; break;
8019 case 2:
8020 op = aco_opcode::buffer_load_format_xy; break;
8021 case 3:
8022 op = aco_opcode::buffer_load_format_xyz; break;
8023 case 4:
8024 op = aco_opcode::buffer_load_format_xyzw; break;
8025 default:
8026 unreachable("Tex instruction loads more than 4 components.");
8027 }
8028
8029 /* if the instruction return value matches exactly the nir dest ssa, we can use it directly */
8030 if (last_bit == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
8031 tmp_dst = dst;
8032 else
8033 tmp_dst = bld.tmp(RegType::vgpr, last_bit);
8034
8035 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
8036 mubuf->operands[0] = Operand(resource);
8037 mubuf->operands[1] = Operand(coords[0]);
8038 mubuf->operands[2] = Operand((uint32_t) 0);
8039 mubuf->definitions[0] = Definition(tmp_dst);
8040 mubuf->idxen = true;
8041 mubuf->can_reorder = true;
8042 ctx->block->instructions.emplace_back(std::move(mubuf));
8043
8044 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, (1 << last_bit) - 1);
8045 return;
8046 }
8047
8048 /* gather MIMG address components */
8049 std::vector<Temp> args;
8050 if (has_offset)
8051 args.emplace_back(offset);
8052 if (has_bias)
8053 args.emplace_back(bias);
8054 if (has_compare)
8055 args.emplace_back(compare);
8056 if (has_derivs)
8057 args.insert(args.end(), derivs.begin(), derivs.end());
8058
8059 args.insert(args.end(), coords.begin(), coords.end());
8060 if (has_sample_index)
8061 args.emplace_back(sample_index);
8062 if (has_lod)
8063 args.emplace_back(lod);
8064
8065 Temp arg = bld.tmp(RegClass(RegType::vgpr, args.size()));
8066 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, args.size(), 1)};
8067 vec->definitions[0] = Definition(arg);
8068 for (unsigned i = 0; i < args.size(); i++)
8069 vec->operands[i] = Operand(args[i]);
8070 ctx->block->instructions.emplace_back(std::move(vec));
8071
8072
8073 if (instr->op == nir_texop_txf ||
8074 instr->op == nir_texop_txf_ms ||
8075 instr->op == nir_texop_samples_identical ||
8076 instr->op == nir_texop_fragment_fetch ||
8077 instr->op == nir_texop_fragment_mask_fetch) {
8078 aco_opcode op = level_zero || instr->sampler_dim == GLSL_SAMPLER_DIM_MS || instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS ? aco_opcode::image_load : aco_opcode::image_load_mip;
8079 tex.reset(create_instruction<MIMG_instruction>(op, Format::MIMG, 3, 1));
8080 tex->operands[0] = Operand(resource);
8081 tex->operands[1] = Operand(s4); /* no sampler */
8082 tex->operands[2] = Operand(arg);
8083 tex->dim = dim;
8084 tex->dmask = dmask;
8085 tex->unrm = true;
8086 tex->da = da;
8087 tex->definitions[0] = Definition(tmp_dst);
8088 tex->can_reorder = true;
8089 ctx->block->instructions.emplace_back(std::move(tex));
8090
8091 if (instr->op == nir_texop_samples_identical) {
8092 assert(dmask == 1 && dst.regClass() == v1);
8093 assert(dst.id() != tmp_dst.id());
8094
8095 Temp tmp = bld.tmp(bld.lm);
8096 bld.vopc(aco_opcode::v_cmp_eq_u32, Definition(tmp), Operand(0u), tmp_dst).def(0).setHint(vcc);
8097 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand((uint32_t)-1), tmp);
8098
8099 } else {
8100 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
8101 }
8102 return;
8103 }
8104
8105 // TODO: would be better to do this by adding offsets, but needs the opcodes ordered.
8106 aco_opcode opcode = aco_opcode::image_sample;
8107 if (has_offset) { /* image_sample_*_o */
8108 if (has_compare) {
8109 opcode = aco_opcode::image_sample_c_o;
8110 if (has_derivs)
8111 opcode = aco_opcode::image_sample_c_d_o;
8112 if (has_bias)
8113 opcode = aco_opcode::image_sample_c_b_o;
8114 if (level_zero)
8115 opcode = aco_opcode::image_sample_c_lz_o;
8116 if (has_lod)
8117 opcode = aco_opcode::image_sample_c_l_o;
8118 } else {
8119 opcode = aco_opcode::image_sample_o;
8120 if (has_derivs)
8121 opcode = aco_opcode::image_sample_d_o;
8122 if (has_bias)
8123 opcode = aco_opcode::image_sample_b_o;
8124 if (level_zero)
8125 opcode = aco_opcode::image_sample_lz_o;
8126 if (has_lod)
8127 opcode = aco_opcode::image_sample_l_o;
8128 }
8129 } else { /* no offset */
8130 if (has_compare) {
8131 opcode = aco_opcode::image_sample_c;
8132 if (has_derivs)
8133 opcode = aco_opcode::image_sample_c_d;
8134 if (has_bias)
8135 opcode = aco_opcode::image_sample_c_b;
8136 if (level_zero)
8137 opcode = aco_opcode::image_sample_c_lz;
8138 if (has_lod)
8139 opcode = aco_opcode::image_sample_c_l;
8140 } else {
8141 opcode = aco_opcode::image_sample;
8142 if (has_derivs)
8143 opcode = aco_opcode::image_sample_d;
8144 if (has_bias)
8145 opcode = aco_opcode::image_sample_b;
8146 if (level_zero)
8147 opcode = aco_opcode::image_sample_lz;
8148 if (has_lod)
8149 opcode = aco_opcode::image_sample_l;
8150 }
8151 }
8152
8153 if (instr->op == nir_texop_tg4) {
8154 if (has_offset) {
8155 opcode = aco_opcode::image_gather4_lz_o;
8156 if (has_compare)
8157 opcode = aco_opcode::image_gather4_c_lz_o;
8158 } else {
8159 opcode = aco_opcode::image_gather4_lz;
8160 if (has_compare)
8161 opcode = aco_opcode::image_gather4_c_lz;
8162 }
8163 } else if (instr->op == nir_texop_lod) {
8164 opcode = aco_opcode::image_get_lod;
8165 }
8166
8167 /* we don't need the bias, sample index, compare value or offset to be
8168 * computed in WQM but if the p_create_vector copies the coordinates, then it
8169 * needs to be in WQM */
8170 if (ctx->stage == fragment_fs &&
8171 !has_derivs && !has_lod && !level_zero &&
8172 instr->sampler_dim != GLSL_SAMPLER_DIM_MS &&
8173 instr->sampler_dim != GLSL_SAMPLER_DIM_SUBPASS_MS)
8174 arg = emit_wqm(ctx, arg, bld.tmp(arg.regClass()), true);
8175
8176 tex.reset(create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1));
8177 tex->operands[0] = Operand(resource);
8178 tex->operands[1] = Operand(sampler);
8179 tex->operands[2] = Operand(arg);
8180 tex->dim = dim;
8181 tex->dmask = dmask;
8182 tex->da = da;
8183 tex->definitions[0] = Definition(tmp_dst);
8184 tex->can_reorder = true;
8185 ctx->block->instructions.emplace_back(std::move(tex));
8186
8187 if (tg4_integer_cube_workaround) {
8188 assert(tmp_dst.id() != dst.id());
8189 assert(tmp_dst.size() == dst.size() && dst.size() == 4);
8190
8191 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
8192 Temp val[4];
8193 for (unsigned i = 0; i < dst.size(); i++) {
8194 val[i] = emit_extract_vector(ctx, tmp_dst, i, v1);
8195 Temp cvt_val;
8196 if (stype == GLSL_TYPE_UINT)
8197 cvt_val = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), val[i]);
8198 else
8199 cvt_val = bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), val[i]);
8200 val[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), val[i], cvt_val, tg4_compare_cube_wa64);
8201 }
8202 Temp tmp = dst.regClass() == v4 ? dst : bld.tmp(v4);
8203 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
8204 val[0], val[1], val[2], val[3]);
8205 }
8206 unsigned mask = instr->op == nir_texop_tg4 ? 0xF : dmask;
8207 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, mask);
8208
8209 }
8210
8211
8212 Operand get_phi_operand(isel_context *ctx, nir_ssa_def *ssa)
8213 {
8214 Temp tmp = get_ssa_temp(ctx, ssa);
8215 if (ssa->parent_instr->type == nir_instr_type_ssa_undef)
8216 return Operand(tmp.regClass());
8217 else
8218 return Operand(tmp);
8219 }
8220
8221 void visit_phi(isel_context *ctx, nir_phi_instr *instr)
8222 {
8223 aco_ptr<Pseudo_instruction> phi;
8224 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8225 assert(instr->dest.ssa.bit_size != 1 || dst.regClass() == ctx->program->lane_mask);
8226
8227 bool logical = !dst.is_linear() || ctx->divergent_vals[instr->dest.ssa.index];
8228 logical |= ctx->block->kind & block_kind_merge;
8229 aco_opcode opcode = logical ? aco_opcode::p_phi : aco_opcode::p_linear_phi;
8230
8231 /* we want a sorted list of sources, since the predecessor list is also sorted */
8232 std::map<unsigned, nir_ssa_def*> phi_src;
8233 nir_foreach_phi_src(src, instr)
8234 phi_src[src->pred->index] = src->src.ssa;
8235
8236 std::vector<unsigned>& preds = logical ? ctx->block->logical_preds : ctx->block->linear_preds;
8237 unsigned num_operands = 0;
8238 Operand operands[std::max(exec_list_length(&instr->srcs), (unsigned)preds.size()) + 1];
8239 unsigned num_defined = 0;
8240 unsigned cur_pred_idx = 0;
8241 for (std::pair<unsigned, nir_ssa_def *> src : phi_src) {
8242 if (cur_pred_idx < preds.size()) {
8243 /* handle missing preds (IF merges with discard/break) and extra preds (loop exit with discard) */
8244 unsigned block = ctx->cf_info.nir_to_aco[src.first];
8245 unsigned skipped = 0;
8246 while (cur_pred_idx + skipped < preds.size() && preds[cur_pred_idx + skipped] != block)
8247 skipped++;
8248 if (cur_pred_idx + skipped < preds.size()) {
8249 for (unsigned i = 0; i < skipped; i++)
8250 operands[num_operands++] = Operand(dst.regClass());
8251 cur_pred_idx += skipped;
8252 } else {
8253 continue;
8254 }
8255 }
8256 /* Handle missing predecessors at the end. This shouldn't happen with loop
8257 * headers and we can't ignore these sources for loop header phis. */
8258 if (!(ctx->block->kind & block_kind_loop_header) && cur_pred_idx >= preds.size())
8259 continue;
8260 cur_pred_idx++;
8261 Operand op = get_phi_operand(ctx, src.second);
8262 operands[num_operands++] = op;
8263 num_defined += !op.isUndefined();
8264 }
8265 /* handle block_kind_continue_or_break at loop exit blocks */
8266 while (cur_pred_idx++ < preds.size())
8267 operands[num_operands++] = Operand(dst.regClass());
8268
8269 /* If the loop ends with a break, still add a linear continue edge in case
8270 * that break is divergent or continue_or_break is used. We'll either remove
8271 * this operand later in visit_loop() if it's not necessary or replace the
8272 * undef with something correct. */
8273 if (!logical && ctx->block->kind & block_kind_loop_header) {
8274 nir_loop *loop = nir_cf_node_as_loop(instr->instr.block->cf_node.parent);
8275 nir_block *last = nir_loop_last_block(loop);
8276 if (last->successors[0] != instr->instr.block)
8277 operands[num_operands++] = Operand(RegClass());
8278 }
8279
8280 if (num_defined == 0) {
8281 Builder bld(ctx->program, ctx->block);
8282 if (dst.regClass() == s1) {
8283 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), Operand(0u));
8284 } else if (dst.regClass() == v1) {
8285 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), Operand(0u));
8286 } else {
8287 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
8288 for (unsigned i = 0; i < dst.size(); i++)
8289 vec->operands[i] = Operand(0u);
8290 vec->definitions[0] = Definition(dst);
8291 ctx->block->instructions.emplace_back(std::move(vec));
8292 }
8293 return;
8294 }
8295
8296 /* we can use a linear phi in some cases if one src is undef */
8297 if (dst.is_linear() && ctx->block->kind & block_kind_merge && num_defined == 1) {
8298 phi.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, num_operands, 1));
8299
8300 Block *linear_else = &ctx->program->blocks[ctx->block->linear_preds[1]];
8301 Block *invert = &ctx->program->blocks[linear_else->linear_preds[0]];
8302 assert(invert->kind & block_kind_invert);
8303
8304 unsigned then_block = invert->linear_preds[0];
8305
8306 Block* insert_block = NULL;
8307 for (unsigned i = 0; i < num_operands; i++) {
8308 Operand op = operands[i];
8309 if (op.isUndefined())
8310 continue;
8311 insert_block = ctx->block->logical_preds[i] == then_block ? invert : ctx->block;
8312 phi->operands[0] = op;
8313 break;
8314 }
8315 assert(insert_block); /* should be handled by the "num_defined == 0" case above */
8316 phi->operands[1] = Operand(dst.regClass());
8317 phi->definitions[0] = Definition(dst);
8318 insert_block->instructions.emplace(insert_block->instructions.begin(), std::move(phi));
8319 return;
8320 }
8321
8322 /* try to scalarize vector phis */
8323 if (instr->dest.ssa.bit_size != 1 && dst.size() > 1) {
8324 // TODO: scalarize linear phis on divergent ifs
8325 bool can_scalarize = (opcode == aco_opcode::p_phi || !(ctx->block->kind & block_kind_merge));
8326 std::array<Temp, NIR_MAX_VEC_COMPONENTS> new_vec;
8327 for (unsigned i = 0; can_scalarize && (i < num_operands); i++) {
8328 Operand src = operands[i];
8329 if (src.isTemp() && ctx->allocated_vec.find(src.tempId()) == ctx->allocated_vec.end())
8330 can_scalarize = false;
8331 }
8332 if (can_scalarize) {
8333 unsigned num_components = instr->dest.ssa.num_components;
8334 assert(dst.size() % num_components == 0);
8335 RegClass rc = RegClass(dst.type(), dst.size() / num_components);
8336
8337 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
8338 for (unsigned k = 0; k < num_components; k++) {
8339 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
8340 for (unsigned i = 0; i < num_operands; i++) {
8341 Operand src = operands[i];
8342 phi->operands[i] = src.isTemp() ? Operand(ctx->allocated_vec[src.tempId()][k]) : Operand(rc);
8343 }
8344 Temp phi_dst = {ctx->program->allocateId(), rc};
8345 phi->definitions[0] = Definition(phi_dst);
8346 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
8347 new_vec[k] = phi_dst;
8348 vec->operands[k] = Operand(phi_dst);
8349 }
8350 vec->definitions[0] = Definition(dst);
8351 ctx->block->instructions.emplace_back(std::move(vec));
8352 ctx->allocated_vec.emplace(dst.id(), new_vec);
8353 return;
8354 }
8355 }
8356
8357 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
8358 for (unsigned i = 0; i < num_operands; i++)
8359 phi->operands[i] = operands[i];
8360 phi->definitions[0] = Definition(dst);
8361 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
8362 }
8363
8364
8365 void visit_undef(isel_context *ctx, nir_ssa_undef_instr *instr)
8366 {
8367 Temp dst = get_ssa_temp(ctx, &instr->def);
8368
8369 assert(dst.type() == RegType::sgpr);
8370
8371 if (dst.size() == 1) {
8372 Builder(ctx->program, ctx->block).copy(Definition(dst), Operand(0u));
8373 } else {
8374 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
8375 for (unsigned i = 0; i < dst.size(); i++)
8376 vec->operands[i] = Operand(0u);
8377 vec->definitions[0] = Definition(dst);
8378 ctx->block->instructions.emplace_back(std::move(vec));
8379 }
8380 }
8381
8382 void visit_jump(isel_context *ctx, nir_jump_instr *instr)
8383 {
8384 Builder bld(ctx->program, ctx->block);
8385 Block *logical_target;
8386 append_logical_end(ctx->block);
8387 unsigned idx = ctx->block->index;
8388
8389 switch (instr->type) {
8390 case nir_jump_break:
8391 logical_target = ctx->cf_info.parent_loop.exit;
8392 add_logical_edge(idx, logical_target);
8393 ctx->block->kind |= block_kind_break;
8394
8395 if (!ctx->cf_info.parent_if.is_divergent &&
8396 !ctx->cf_info.parent_loop.has_divergent_continue) {
8397 /* uniform break - directly jump out of the loop */
8398 ctx->block->kind |= block_kind_uniform;
8399 ctx->cf_info.has_branch = true;
8400 bld.branch(aco_opcode::p_branch);
8401 add_linear_edge(idx, logical_target);
8402 return;
8403 }
8404 ctx->cf_info.parent_loop.has_divergent_branch = true;
8405 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
8406 break;
8407 case nir_jump_continue:
8408 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
8409 add_logical_edge(idx, logical_target);
8410 ctx->block->kind |= block_kind_continue;
8411
8412 if (ctx->cf_info.parent_if.is_divergent) {
8413 /* for potential uniform breaks after this continue,
8414 we must ensure that they are handled correctly */
8415 ctx->cf_info.parent_loop.has_divergent_continue = true;
8416 ctx->cf_info.parent_loop.has_divergent_branch = true;
8417 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
8418 } else {
8419 /* uniform continue - directly jump to the loop header */
8420 ctx->block->kind |= block_kind_uniform;
8421 ctx->cf_info.has_branch = true;
8422 bld.branch(aco_opcode::p_branch);
8423 add_linear_edge(idx, logical_target);
8424 return;
8425 }
8426 break;
8427 default:
8428 fprintf(stderr, "Unknown NIR jump instr: ");
8429 nir_print_instr(&instr->instr, stderr);
8430 fprintf(stderr, "\n");
8431 abort();
8432 }
8433
8434 if (ctx->cf_info.parent_if.is_divergent && !ctx->cf_info.exec_potentially_empty_break) {
8435 ctx->cf_info.exec_potentially_empty_break = true;
8436 ctx->cf_info.exec_potentially_empty_break_depth = ctx->cf_info.loop_nest_depth;
8437 }
8438
8439 /* remove critical edges from linear CFG */
8440 bld.branch(aco_opcode::p_branch);
8441 Block* break_block = ctx->program->create_and_insert_block();
8442 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8443 break_block->kind |= block_kind_uniform;
8444 add_linear_edge(idx, break_block);
8445 /* the loop_header pointer might be invalidated by this point */
8446 if (instr->type == nir_jump_continue)
8447 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
8448 add_linear_edge(break_block->index, logical_target);
8449 bld.reset(break_block);
8450 bld.branch(aco_opcode::p_branch);
8451
8452 Block* continue_block = ctx->program->create_and_insert_block();
8453 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8454 add_linear_edge(idx, continue_block);
8455 append_logical_start(continue_block);
8456 ctx->block = continue_block;
8457 return;
8458 }
8459
8460 void visit_block(isel_context *ctx, nir_block *block)
8461 {
8462 nir_foreach_instr(instr, block) {
8463 switch (instr->type) {
8464 case nir_instr_type_alu:
8465 visit_alu_instr(ctx, nir_instr_as_alu(instr));
8466 break;
8467 case nir_instr_type_load_const:
8468 visit_load_const(ctx, nir_instr_as_load_const(instr));
8469 break;
8470 case nir_instr_type_intrinsic:
8471 visit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
8472 break;
8473 case nir_instr_type_tex:
8474 visit_tex(ctx, nir_instr_as_tex(instr));
8475 break;
8476 case nir_instr_type_phi:
8477 visit_phi(ctx, nir_instr_as_phi(instr));
8478 break;
8479 case nir_instr_type_ssa_undef:
8480 visit_undef(ctx, nir_instr_as_ssa_undef(instr));
8481 break;
8482 case nir_instr_type_deref:
8483 break;
8484 case nir_instr_type_jump:
8485 visit_jump(ctx, nir_instr_as_jump(instr));
8486 break;
8487 default:
8488 fprintf(stderr, "Unknown NIR instr type: ");
8489 nir_print_instr(instr, stderr);
8490 fprintf(stderr, "\n");
8491 //abort();
8492 }
8493 }
8494
8495 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8496 ctx->cf_info.nir_to_aco[block->index] = ctx->block->index;
8497 }
8498
8499
8500
8501 static Operand create_continue_phis(isel_context *ctx, unsigned first, unsigned last,
8502 aco_ptr<Instruction>& header_phi, Operand *vals)
8503 {
8504 vals[0] = Operand(header_phi->definitions[0].getTemp());
8505 RegClass rc = vals[0].regClass();
8506
8507 unsigned loop_nest_depth = ctx->program->blocks[first].loop_nest_depth;
8508
8509 unsigned next_pred = 1;
8510
8511 for (unsigned idx = first + 1; idx <= last; idx++) {
8512 Block& block = ctx->program->blocks[idx];
8513 if (block.loop_nest_depth != loop_nest_depth) {
8514 vals[idx - first] = vals[idx - 1 - first];
8515 continue;
8516 }
8517
8518 if (block.kind & block_kind_continue) {
8519 vals[idx - first] = header_phi->operands[next_pred];
8520 next_pred++;
8521 continue;
8522 }
8523
8524 bool all_same = true;
8525 for (unsigned i = 1; all_same && (i < block.linear_preds.size()); i++)
8526 all_same = vals[block.linear_preds[i] - first] == vals[block.linear_preds[0] - first];
8527
8528 Operand val;
8529 if (all_same) {
8530 val = vals[block.linear_preds[0] - first];
8531 } else {
8532 aco_ptr<Instruction> phi(create_instruction<Pseudo_instruction>(
8533 aco_opcode::p_linear_phi, Format::PSEUDO, block.linear_preds.size(), 1));
8534 for (unsigned i = 0; i < block.linear_preds.size(); i++)
8535 phi->operands[i] = vals[block.linear_preds[i] - first];
8536 val = Operand(Temp(ctx->program->allocateId(), rc));
8537 phi->definitions[0] = Definition(val.getTemp());
8538 block.instructions.emplace(block.instructions.begin(), std::move(phi));
8539 }
8540 vals[idx - first] = val;
8541 }
8542
8543 return vals[last - first];
8544 }
8545
8546 static void visit_loop(isel_context *ctx, nir_loop *loop)
8547 {
8548 //TODO: we might want to wrap the loop around a branch if exec_potentially_empty=true
8549 append_logical_end(ctx->block);
8550 ctx->block->kind |= block_kind_loop_preheader | block_kind_uniform;
8551 Builder bld(ctx->program, ctx->block);
8552 bld.branch(aco_opcode::p_branch);
8553 unsigned loop_preheader_idx = ctx->block->index;
8554
8555 Block loop_exit = Block();
8556 loop_exit.loop_nest_depth = ctx->cf_info.loop_nest_depth;
8557 loop_exit.kind |= (block_kind_loop_exit | (ctx->block->kind & block_kind_top_level));
8558
8559 Block* loop_header = ctx->program->create_and_insert_block();
8560 loop_header->loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
8561 loop_header->kind |= block_kind_loop_header;
8562 add_edge(loop_preheader_idx, loop_header);
8563 ctx->block = loop_header;
8564
8565 /* emit loop body */
8566 unsigned loop_header_idx = loop_header->index;
8567 loop_info_RAII loop_raii(ctx, loop_header_idx, &loop_exit);
8568 append_logical_start(ctx->block);
8569 visit_cf_list(ctx, &loop->body);
8570
8571 //TODO: what if a loop ends with a unconditional or uniformly branched continue and this branch is never taken?
8572 if (!ctx->cf_info.has_branch) {
8573 append_logical_end(ctx->block);
8574 if (ctx->cf_info.exec_potentially_empty_discard || ctx->cf_info.exec_potentially_empty_break) {
8575 /* Discards can result in code running with an empty exec mask.
8576 * This would result in divergent breaks not ever being taken. As a
8577 * workaround, break the loop when the loop mask is empty instead of
8578 * always continuing. */
8579 ctx->block->kind |= (block_kind_continue_or_break | block_kind_uniform);
8580 unsigned block_idx = ctx->block->index;
8581
8582 /* create helper blocks to avoid critical edges */
8583 Block *break_block = ctx->program->create_and_insert_block();
8584 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8585 break_block->kind = block_kind_uniform;
8586 bld.reset(break_block);
8587 bld.branch(aco_opcode::p_branch);
8588 add_linear_edge(block_idx, break_block);
8589 add_linear_edge(break_block->index, &loop_exit);
8590
8591 Block *continue_block = ctx->program->create_and_insert_block();
8592 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8593 continue_block->kind = block_kind_uniform;
8594 bld.reset(continue_block);
8595 bld.branch(aco_opcode::p_branch);
8596 add_linear_edge(block_idx, continue_block);
8597 add_linear_edge(continue_block->index, &ctx->program->blocks[loop_header_idx]);
8598
8599 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8600 add_logical_edge(block_idx, &ctx->program->blocks[loop_header_idx]);
8601 ctx->block = &ctx->program->blocks[block_idx];
8602 } else {
8603 ctx->block->kind |= (block_kind_continue | block_kind_uniform);
8604 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8605 add_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
8606 else
8607 add_linear_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
8608 }
8609
8610 bld.reset(ctx->block);
8611 bld.branch(aco_opcode::p_branch);
8612 }
8613
8614 /* fixup phis in loop header from unreachable blocks */
8615 if (ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch) {
8616 bool linear = ctx->cf_info.has_branch;
8617 bool logical = ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch;
8618 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
8619 if ((logical && instr->opcode == aco_opcode::p_phi) ||
8620 (linear && instr->opcode == aco_opcode::p_linear_phi)) {
8621 /* the last operand should be the one that needs to be removed */
8622 instr->operands.pop_back();
8623 } else if (!is_phi(instr)) {
8624 break;
8625 }
8626 }
8627 }
8628
8629 /* Fixup linear phis in loop header from expecting a continue. Both this fixup
8630 * and the previous one shouldn't both happen at once because a break in the
8631 * merge block would get CSE'd */
8632 if (nir_loop_last_block(loop)->successors[0] != nir_loop_first_block(loop)) {
8633 unsigned num_vals = ctx->cf_info.has_branch ? 1 : (ctx->block->index - loop_header_idx + 1);
8634 Operand vals[num_vals];
8635 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
8636 if (instr->opcode == aco_opcode::p_linear_phi) {
8637 if (ctx->cf_info.has_branch)
8638 instr->operands.pop_back();
8639 else
8640 instr->operands.back() = create_continue_phis(ctx, loop_header_idx, ctx->block->index, instr, vals);
8641 } else if (!is_phi(instr)) {
8642 break;
8643 }
8644 }
8645 }
8646
8647 ctx->cf_info.has_branch = false;
8648
8649 // TODO: if the loop has not a single exit, we must add one °°
8650 /* emit loop successor block */
8651 ctx->block = ctx->program->insert_block(std::move(loop_exit));
8652 append_logical_start(ctx->block);
8653
8654 #if 0
8655 // TODO: check if it is beneficial to not branch on continues
8656 /* trim linear phis in loop header */
8657 for (auto&& instr : loop_entry->instructions) {
8658 if (instr->opcode == aco_opcode::p_linear_phi) {
8659 aco_ptr<Pseudo_instruction> new_phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, loop_entry->linear_predecessors.size(), 1)};
8660 new_phi->definitions[0] = instr->definitions[0];
8661 for (unsigned i = 0; i < new_phi->operands.size(); i++)
8662 new_phi->operands[i] = instr->operands[i];
8663 /* check that the remaining operands are all the same */
8664 for (unsigned i = new_phi->operands.size(); i < instr->operands.size(); i++)
8665 assert(instr->operands[i].tempId() == instr->operands.back().tempId());
8666 instr.swap(new_phi);
8667 } else if (instr->opcode == aco_opcode::p_phi) {
8668 continue;
8669 } else {
8670 break;
8671 }
8672 }
8673 #endif
8674 }
8675
8676 static void begin_divergent_if_then(isel_context *ctx, if_context *ic, Temp cond)
8677 {
8678 ic->cond = cond;
8679
8680 append_logical_end(ctx->block);
8681 ctx->block->kind |= block_kind_branch;
8682
8683 /* branch to linear then block */
8684 assert(cond.regClass() == ctx->program->lane_mask);
8685 aco_ptr<Pseudo_branch_instruction> branch;
8686 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
8687 branch->operands[0] = Operand(cond);
8688 ctx->block->instructions.push_back(std::move(branch));
8689
8690 ic->BB_if_idx = ctx->block->index;
8691 ic->BB_invert = Block();
8692 ic->BB_invert.loop_nest_depth = ctx->cf_info.loop_nest_depth;
8693 /* Invert blocks are intentionally not marked as top level because they
8694 * are not part of the logical cfg. */
8695 ic->BB_invert.kind |= block_kind_invert;
8696 ic->BB_endif = Block();
8697 ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
8698 ic->BB_endif.kind |= (block_kind_merge | (ctx->block->kind & block_kind_top_level));
8699
8700 ic->exec_potentially_empty_discard_old = ctx->cf_info.exec_potentially_empty_discard;
8701 ic->exec_potentially_empty_break_old = ctx->cf_info.exec_potentially_empty_break;
8702 ic->exec_potentially_empty_break_depth_old = ctx->cf_info.exec_potentially_empty_break_depth;
8703 ic->divergent_old = ctx->cf_info.parent_if.is_divergent;
8704 ctx->cf_info.parent_if.is_divergent = true;
8705
8706 /* divergent branches use cbranch_execz */
8707 ctx->cf_info.exec_potentially_empty_discard = false;
8708 ctx->cf_info.exec_potentially_empty_break = false;
8709 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
8710
8711 /** emit logical then block */
8712 Block* BB_then_logical = ctx->program->create_and_insert_block();
8713 BB_then_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8714 add_edge(ic->BB_if_idx, BB_then_logical);
8715 ctx->block = BB_then_logical;
8716 append_logical_start(BB_then_logical);
8717 }
8718
8719 static void begin_divergent_if_else(isel_context *ctx, if_context *ic)
8720 {
8721 Block *BB_then_logical = ctx->block;
8722 append_logical_end(BB_then_logical);
8723 /* branch from logical then block to invert block */
8724 aco_ptr<Pseudo_branch_instruction> branch;
8725 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8726 BB_then_logical->instructions.emplace_back(std::move(branch));
8727 add_linear_edge(BB_then_logical->index, &ic->BB_invert);
8728 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8729 add_logical_edge(BB_then_logical->index, &ic->BB_endif);
8730 BB_then_logical->kind |= block_kind_uniform;
8731 assert(!ctx->cf_info.has_branch);
8732 ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
8733 ctx->cf_info.parent_loop.has_divergent_branch = false;
8734
8735 /** emit linear then block */
8736 Block* BB_then_linear = ctx->program->create_and_insert_block();
8737 BB_then_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8738 BB_then_linear->kind |= block_kind_uniform;
8739 add_linear_edge(ic->BB_if_idx, BB_then_linear);
8740 /* branch from linear then block to invert block */
8741 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8742 BB_then_linear->instructions.emplace_back(std::move(branch));
8743 add_linear_edge(BB_then_linear->index, &ic->BB_invert);
8744
8745 /** emit invert merge block */
8746 ctx->block = ctx->program->insert_block(std::move(ic->BB_invert));
8747 ic->invert_idx = ctx->block->index;
8748
8749 /* branch to linear else block (skip else) */
8750 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_nz, Format::PSEUDO_BRANCH, 1, 0));
8751 branch->operands[0] = Operand(ic->cond);
8752 ctx->block->instructions.push_back(std::move(branch));
8753
8754 ic->exec_potentially_empty_discard_old |= ctx->cf_info.exec_potentially_empty_discard;
8755 ic->exec_potentially_empty_break_old |= ctx->cf_info.exec_potentially_empty_break;
8756 ic->exec_potentially_empty_break_depth_old =
8757 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
8758 /* divergent branches use cbranch_execz */
8759 ctx->cf_info.exec_potentially_empty_discard = false;
8760 ctx->cf_info.exec_potentially_empty_break = false;
8761 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
8762
8763 /** emit logical else block */
8764 Block* BB_else_logical = ctx->program->create_and_insert_block();
8765 BB_else_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8766 add_logical_edge(ic->BB_if_idx, BB_else_logical);
8767 add_linear_edge(ic->invert_idx, BB_else_logical);
8768 ctx->block = BB_else_logical;
8769 append_logical_start(BB_else_logical);
8770 }
8771
8772 static void end_divergent_if(isel_context *ctx, if_context *ic)
8773 {
8774 Block *BB_else_logical = ctx->block;
8775 append_logical_end(BB_else_logical);
8776
8777 /* branch from logical else block to endif block */
8778 aco_ptr<Pseudo_branch_instruction> branch;
8779 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8780 BB_else_logical->instructions.emplace_back(std::move(branch));
8781 add_linear_edge(BB_else_logical->index, &ic->BB_endif);
8782 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8783 add_logical_edge(BB_else_logical->index, &ic->BB_endif);
8784 BB_else_logical->kind |= block_kind_uniform;
8785
8786 assert(!ctx->cf_info.has_branch);
8787 ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
8788
8789
8790 /** emit linear else block */
8791 Block* BB_else_linear = ctx->program->create_and_insert_block();
8792 BB_else_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8793 BB_else_linear->kind |= block_kind_uniform;
8794 add_linear_edge(ic->invert_idx, BB_else_linear);
8795
8796 /* branch from linear else block to endif block */
8797 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8798 BB_else_linear->instructions.emplace_back(std::move(branch));
8799 add_linear_edge(BB_else_linear->index, &ic->BB_endif);
8800
8801
8802 /** emit endif merge block */
8803 ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
8804 append_logical_start(ctx->block);
8805
8806
8807 ctx->cf_info.parent_if.is_divergent = ic->divergent_old;
8808 ctx->cf_info.exec_potentially_empty_discard |= ic->exec_potentially_empty_discard_old;
8809 ctx->cf_info.exec_potentially_empty_break |= ic->exec_potentially_empty_break_old;
8810 ctx->cf_info.exec_potentially_empty_break_depth =
8811 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
8812 if (ctx->cf_info.loop_nest_depth == ctx->cf_info.exec_potentially_empty_break_depth &&
8813 !ctx->cf_info.parent_if.is_divergent) {
8814 ctx->cf_info.exec_potentially_empty_break = false;
8815 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
8816 }
8817 /* uniform control flow never has an empty exec-mask */
8818 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent) {
8819 ctx->cf_info.exec_potentially_empty_discard = false;
8820 ctx->cf_info.exec_potentially_empty_break = false;
8821 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
8822 }
8823 }
8824
8825 static void visit_if(isel_context *ctx, nir_if *if_stmt)
8826 {
8827 Temp cond = get_ssa_temp(ctx, if_stmt->condition.ssa);
8828 Builder bld(ctx->program, ctx->block);
8829 aco_ptr<Pseudo_branch_instruction> branch;
8830
8831 if (!ctx->divergent_vals[if_stmt->condition.ssa->index]) { /* uniform condition */
8832 /**
8833 * Uniform conditionals are represented in the following way*) :
8834 *
8835 * The linear and logical CFG:
8836 * BB_IF
8837 * / \
8838 * BB_THEN (logical) BB_ELSE (logical)
8839 * \ /
8840 * BB_ENDIF
8841 *
8842 * *) Exceptions may be due to break and continue statements within loops
8843 * If a break/continue happens within uniform control flow, it branches
8844 * to the loop exit/entry block. Otherwise, it branches to the next
8845 * merge block.
8846 **/
8847 append_logical_end(ctx->block);
8848 ctx->block->kind |= block_kind_uniform;
8849
8850 /* emit branch */
8851 assert(cond.regClass() == bld.lm);
8852 // TODO: in a post-RA optimizer, we could check if the condition is in VCC and omit this instruction
8853 cond = bool_to_scalar_condition(ctx, cond);
8854
8855 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
8856 branch->operands[0] = Operand(cond);
8857 branch->operands[0].setFixed(scc);
8858 ctx->block->instructions.emplace_back(std::move(branch));
8859
8860 unsigned BB_if_idx = ctx->block->index;
8861 Block BB_endif = Block();
8862 BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
8863 BB_endif.kind |= ctx->block->kind & block_kind_top_level;
8864
8865 /** emit then block */
8866 Block* BB_then = ctx->program->create_and_insert_block();
8867 BB_then->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8868 add_edge(BB_if_idx, BB_then);
8869 append_logical_start(BB_then);
8870 ctx->block = BB_then;
8871 visit_cf_list(ctx, &if_stmt->then_list);
8872 BB_then = ctx->block;
8873 bool then_branch = ctx->cf_info.has_branch;
8874 bool then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
8875
8876 if (!then_branch) {
8877 append_logical_end(BB_then);
8878 /* branch from then block to endif block */
8879 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8880 BB_then->instructions.emplace_back(std::move(branch));
8881 add_linear_edge(BB_then->index, &BB_endif);
8882 if (!then_branch_divergent)
8883 add_logical_edge(BB_then->index, &BB_endif);
8884 BB_then->kind |= block_kind_uniform;
8885 }
8886
8887 ctx->cf_info.has_branch = false;
8888 ctx->cf_info.parent_loop.has_divergent_branch = false;
8889
8890 /** emit else block */
8891 Block* BB_else = ctx->program->create_and_insert_block();
8892 BB_else->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8893 add_edge(BB_if_idx, BB_else);
8894 append_logical_start(BB_else);
8895 ctx->block = BB_else;
8896 visit_cf_list(ctx, &if_stmt->else_list);
8897 BB_else = ctx->block;
8898
8899 if (!ctx->cf_info.has_branch) {
8900 append_logical_end(BB_else);
8901 /* branch from then block to endif block */
8902 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8903 BB_else->instructions.emplace_back(std::move(branch));
8904 add_linear_edge(BB_else->index, &BB_endif);
8905 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8906 add_logical_edge(BB_else->index, &BB_endif);
8907 BB_else->kind |= block_kind_uniform;
8908 }
8909
8910 ctx->cf_info.has_branch &= then_branch;
8911 ctx->cf_info.parent_loop.has_divergent_branch &= then_branch_divergent;
8912
8913 /** emit endif merge block */
8914 if (!ctx->cf_info.has_branch) {
8915 ctx->block = ctx->program->insert_block(std::move(BB_endif));
8916 append_logical_start(ctx->block);
8917 }
8918 } else { /* non-uniform condition */
8919 /**
8920 * To maintain a logical and linear CFG without critical edges,
8921 * non-uniform conditionals are represented in the following way*) :
8922 *
8923 * The linear CFG:
8924 * BB_IF
8925 * / \
8926 * BB_THEN (logical) BB_THEN (linear)
8927 * \ /
8928 * BB_INVERT (linear)
8929 * / \
8930 * BB_ELSE (logical) BB_ELSE (linear)
8931 * \ /
8932 * BB_ENDIF
8933 *
8934 * The logical CFG:
8935 * BB_IF
8936 * / \
8937 * BB_THEN (logical) BB_ELSE (logical)
8938 * \ /
8939 * BB_ENDIF
8940 *
8941 * *) Exceptions may be due to break and continue statements within loops
8942 **/
8943
8944 if_context ic;
8945
8946 begin_divergent_if_then(ctx, &ic, cond);
8947 visit_cf_list(ctx, &if_stmt->then_list);
8948
8949 begin_divergent_if_else(ctx, &ic);
8950 visit_cf_list(ctx, &if_stmt->else_list);
8951
8952 end_divergent_if(ctx, &ic);
8953 }
8954 }
8955
8956 static void visit_cf_list(isel_context *ctx,
8957 struct exec_list *list)
8958 {
8959 foreach_list_typed(nir_cf_node, node, node, list) {
8960 switch (node->type) {
8961 case nir_cf_node_block:
8962 visit_block(ctx, nir_cf_node_as_block(node));
8963 break;
8964 case nir_cf_node_if:
8965 visit_if(ctx, nir_cf_node_as_if(node));
8966 break;
8967 case nir_cf_node_loop:
8968 visit_loop(ctx, nir_cf_node_as_loop(node));
8969 break;
8970 default:
8971 unreachable("unimplemented cf list type");
8972 }
8973 }
8974 }
8975
8976 static void export_vs_varying(isel_context *ctx, int slot, bool is_pos, int *next_pos)
8977 {
8978 assert(ctx->stage == vertex_vs ||
8979 ctx->stage == tess_eval_vs ||
8980 ctx->stage == gs_copy_vs);
8981
8982 int offset = ctx->stage == tess_eval_vs
8983 ? ctx->program->info->tes.outinfo.vs_output_param_offset[slot]
8984 : ctx->program->info->vs.outinfo.vs_output_param_offset[slot];
8985 uint64_t mask = ctx->outputs.mask[slot];
8986 if (!is_pos && !mask)
8987 return;
8988 if (!is_pos && offset == AC_EXP_PARAM_UNDEFINED)
8989 return;
8990 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
8991 exp->enabled_mask = mask;
8992 for (unsigned i = 0; i < 4; ++i) {
8993 if (mask & (1 << i))
8994 exp->operands[i] = Operand(ctx->outputs.outputs[slot][i]);
8995 else
8996 exp->operands[i] = Operand(v1);
8997 }
8998 /* Navi10-14 skip POS0 exports if EXEC=0 and DONE=0, causing a hang.
8999 * Setting valid_mask=1 prevents it and has no other effect.
9000 */
9001 exp->valid_mask = ctx->options->chip_class >= GFX10 && is_pos && *next_pos == 0;
9002 exp->done = false;
9003 exp->compressed = false;
9004 if (is_pos)
9005 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
9006 else
9007 exp->dest = V_008DFC_SQ_EXP_PARAM + offset;
9008 ctx->block->instructions.emplace_back(std::move(exp));
9009 }
9010
9011 static void export_vs_psiz_layer_viewport(isel_context *ctx, int *next_pos)
9012 {
9013 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
9014 exp->enabled_mask = 0;
9015 for (unsigned i = 0; i < 4; ++i)
9016 exp->operands[i] = Operand(v1);
9017 if (ctx->outputs.mask[VARYING_SLOT_PSIZ]) {
9018 exp->operands[0] = Operand(ctx->outputs.outputs[VARYING_SLOT_PSIZ][0]);
9019 exp->enabled_mask |= 0x1;
9020 }
9021 if (ctx->outputs.mask[VARYING_SLOT_LAYER]) {
9022 exp->operands[2] = Operand(ctx->outputs.outputs[VARYING_SLOT_LAYER][0]);
9023 exp->enabled_mask |= 0x4;
9024 }
9025 if (ctx->outputs.mask[VARYING_SLOT_VIEWPORT]) {
9026 if (ctx->options->chip_class < GFX9) {
9027 exp->operands[3] = Operand(ctx->outputs.outputs[VARYING_SLOT_VIEWPORT][0]);
9028 exp->enabled_mask |= 0x8;
9029 } else {
9030 Builder bld(ctx->program, ctx->block);
9031
9032 Temp out = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u),
9033 Operand(ctx->outputs.outputs[VARYING_SLOT_VIEWPORT][0]));
9034 if (exp->operands[2].isTemp())
9035 out = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(out), exp->operands[2]);
9036
9037 exp->operands[2] = Operand(out);
9038 exp->enabled_mask |= 0x4;
9039 }
9040 }
9041 exp->valid_mask = ctx->options->chip_class >= GFX10 && *next_pos == 0;
9042 exp->done = false;
9043 exp->compressed = false;
9044 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
9045 ctx->block->instructions.emplace_back(std::move(exp));
9046 }
9047
9048 static void create_vs_exports(isel_context *ctx)
9049 {
9050 assert(ctx->stage == vertex_vs ||
9051 ctx->stage == tess_eval_vs ||
9052 ctx->stage == gs_copy_vs);
9053
9054 radv_vs_output_info *outinfo = ctx->stage == tess_eval_vs
9055 ? &ctx->program->info->tes.outinfo
9056 : &ctx->program->info->vs.outinfo;
9057
9058 if (outinfo->export_prim_id) {
9059 ctx->outputs.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
9060 ctx->outputs.outputs[VARYING_SLOT_PRIMITIVE_ID][0] = get_arg(ctx, ctx->args->vs_prim_id);
9061 }
9062
9063 if (ctx->options->key.has_multiview_view_index) {
9064 ctx->outputs.mask[VARYING_SLOT_LAYER] |= 0x1;
9065 ctx->outputs.outputs[VARYING_SLOT_LAYER][0] = as_vgpr(ctx, get_arg(ctx, ctx->args->ac.view_index));
9066 }
9067
9068 /* the order these position exports are created is important */
9069 int next_pos = 0;
9070 export_vs_varying(ctx, VARYING_SLOT_POS, true, &next_pos);
9071 if (outinfo->writes_pointsize || outinfo->writes_layer || outinfo->writes_viewport_index) {
9072 export_vs_psiz_layer_viewport(ctx, &next_pos);
9073 }
9074 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
9075 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, true, &next_pos);
9076 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
9077 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, true, &next_pos);
9078
9079 if (ctx->export_clip_dists) {
9080 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
9081 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, false, &next_pos);
9082 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
9083 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, false, &next_pos);
9084 }
9085
9086 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
9087 if (i < VARYING_SLOT_VAR0 && i != VARYING_SLOT_LAYER &&
9088 i != VARYING_SLOT_PRIMITIVE_ID)
9089 continue;
9090
9091 export_vs_varying(ctx, i, false, NULL);
9092 }
9093 }
9094
9095 static void export_fs_mrt_z(isel_context *ctx)
9096 {
9097 Builder bld(ctx->program, ctx->block);
9098 unsigned enabled_channels = 0;
9099 bool compr = false;
9100 Operand values[4];
9101
9102 for (unsigned i = 0; i < 4; ++i) {
9103 values[i] = Operand(v1);
9104 }
9105
9106 /* Both stencil and sample mask only need 16-bits. */
9107 if (!ctx->program->info->ps.writes_z &&
9108 (ctx->program->info->ps.writes_stencil ||
9109 ctx->program->info->ps.writes_sample_mask)) {
9110 compr = true; /* COMPR flag */
9111
9112 if (ctx->program->info->ps.writes_stencil) {
9113 /* Stencil should be in X[23:16]. */
9114 values[0] = Operand(ctx->outputs.outputs[FRAG_RESULT_STENCIL][0]);
9115 values[0] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u), values[0]);
9116 enabled_channels |= 0x3;
9117 }
9118
9119 if (ctx->program->info->ps.writes_sample_mask) {
9120 /* SampleMask should be in Y[15:0]. */
9121 values[1] = Operand(ctx->outputs.outputs[FRAG_RESULT_SAMPLE_MASK][0]);
9122 enabled_channels |= 0xc;
9123 }
9124 } else {
9125 if (ctx->program->info->ps.writes_z) {
9126 values[0] = Operand(ctx->outputs.outputs[FRAG_RESULT_DEPTH][0]);
9127 enabled_channels |= 0x1;
9128 }
9129
9130 if (ctx->program->info->ps.writes_stencil) {
9131 values[1] = Operand(ctx->outputs.outputs[FRAG_RESULT_STENCIL][0]);
9132 enabled_channels |= 0x2;
9133 }
9134
9135 if (ctx->program->info->ps.writes_sample_mask) {
9136 values[2] = Operand(ctx->outputs.outputs[FRAG_RESULT_SAMPLE_MASK][0]);
9137 enabled_channels |= 0x4;
9138 }
9139 }
9140
9141 /* GFX6 (except OLAND and HAINAN) has a bug that it only looks at the X
9142 * writemask component.
9143 */
9144 if (ctx->options->chip_class == GFX6 &&
9145 ctx->options->family != CHIP_OLAND &&
9146 ctx->options->family != CHIP_HAINAN) {
9147 enabled_channels |= 0x1;
9148 }
9149
9150 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
9151 enabled_channels, V_008DFC_SQ_EXP_MRTZ, compr);
9152 }
9153
9154 static void export_fs_mrt_color(isel_context *ctx, int slot)
9155 {
9156 Builder bld(ctx->program, ctx->block);
9157 unsigned write_mask = ctx->outputs.mask[slot];
9158 Operand values[4];
9159
9160 for (unsigned i = 0; i < 4; ++i) {
9161 if (write_mask & (1 << i)) {
9162 values[i] = Operand(ctx->outputs.outputs[slot][i]);
9163 } else {
9164 values[i] = Operand(v1);
9165 }
9166 }
9167
9168 unsigned target, col_format;
9169 unsigned enabled_channels = 0;
9170 aco_opcode compr_op = (aco_opcode)0;
9171
9172 slot -= FRAG_RESULT_DATA0;
9173 target = V_008DFC_SQ_EXP_MRT + slot;
9174 col_format = (ctx->options->key.fs.col_format >> (4 * slot)) & 0xf;
9175
9176 bool is_int8 = (ctx->options->key.fs.is_int8 >> slot) & 1;
9177 bool is_int10 = (ctx->options->key.fs.is_int10 >> slot) & 1;
9178
9179 switch (col_format)
9180 {
9181 case V_028714_SPI_SHADER_ZERO:
9182 enabled_channels = 0; /* writemask */
9183 target = V_008DFC_SQ_EXP_NULL;
9184 break;
9185
9186 case V_028714_SPI_SHADER_32_R:
9187 enabled_channels = 1;
9188 break;
9189
9190 case V_028714_SPI_SHADER_32_GR:
9191 enabled_channels = 0x3;
9192 break;
9193
9194 case V_028714_SPI_SHADER_32_AR:
9195 if (ctx->options->chip_class >= GFX10) {
9196 /* Special case: on GFX10, the outputs are different for 32_AR */
9197 enabled_channels = 0x3;
9198 values[1] = values[3];
9199 values[3] = Operand(v1);
9200 } else {
9201 enabled_channels = 0x9;
9202 }
9203 break;
9204
9205 case V_028714_SPI_SHADER_FP16_ABGR:
9206 enabled_channels = 0x5;
9207 compr_op = aco_opcode::v_cvt_pkrtz_f16_f32;
9208 break;
9209
9210 case V_028714_SPI_SHADER_UNORM16_ABGR:
9211 enabled_channels = 0x5;
9212 compr_op = aco_opcode::v_cvt_pknorm_u16_f32;
9213 break;
9214
9215 case V_028714_SPI_SHADER_SNORM16_ABGR:
9216 enabled_channels = 0x5;
9217 compr_op = aco_opcode::v_cvt_pknorm_i16_f32;
9218 break;
9219
9220 case V_028714_SPI_SHADER_UINT16_ABGR: {
9221 enabled_channels = 0x5;
9222 compr_op = aco_opcode::v_cvt_pk_u16_u32;
9223 if (is_int8 || is_int10) {
9224 /* clamp */
9225 uint32_t max_rgb = is_int8 ? 255 : is_int10 ? 1023 : 0;
9226 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
9227
9228 for (unsigned i = 0; i < 4; i++) {
9229 if ((write_mask >> i) & 1) {
9230 values[i] = bld.vop2(aco_opcode::v_min_u32, bld.def(v1),
9231 i == 3 && is_int10 ? Operand(3u) : Operand(max_rgb_val),
9232 values[i]);
9233 }
9234 }
9235 }
9236 break;
9237 }
9238
9239 case V_028714_SPI_SHADER_SINT16_ABGR:
9240 enabled_channels = 0x5;
9241 compr_op = aco_opcode::v_cvt_pk_i16_i32;
9242 if (is_int8 || is_int10) {
9243 /* clamp */
9244 uint32_t max_rgb = is_int8 ? 127 : is_int10 ? 511 : 0;
9245 uint32_t min_rgb = is_int8 ? -128 :is_int10 ? -512 : 0;
9246 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
9247 Temp min_rgb_val = bld.copy(bld.def(s1), Operand(min_rgb));
9248
9249 for (unsigned i = 0; i < 4; i++) {
9250 if ((write_mask >> i) & 1) {
9251 values[i] = bld.vop2(aco_opcode::v_min_i32, bld.def(v1),
9252 i == 3 && is_int10 ? Operand(1u) : Operand(max_rgb_val),
9253 values[i]);
9254 values[i] = bld.vop2(aco_opcode::v_max_i32, bld.def(v1),
9255 i == 3 && is_int10 ? Operand(-2u) : Operand(min_rgb_val),
9256 values[i]);
9257 }
9258 }
9259 }
9260 break;
9261
9262 case V_028714_SPI_SHADER_32_ABGR:
9263 enabled_channels = 0xF;
9264 break;
9265
9266 default:
9267 break;
9268 }
9269
9270 if (target == V_008DFC_SQ_EXP_NULL)
9271 return;
9272
9273 if ((bool) compr_op) {
9274 for (int i = 0; i < 2; i++) {
9275 /* check if at least one of the values to be compressed is enabled */
9276 unsigned enabled = (write_mask >> (i*2) | write_mask >> (i*2+1)) & 0x1;
9277 if (enabled) {
9278 enabled_channels |= enabled << (i*2);
9279 values[i] = bld.vop3(compr_op, bld.def(v1),
9280 values[i*2].isUndefined() ? Operand(0u) : values[i*2],
9281 values[i*2+1].isUndefined() ? Operand(0u): values[i*2+1]);
9282 } else {
9283 values[i] = Operand(v1);
9284 }
9285 }
9286 values[2] = Operand(v1);
9287 values[3] = Operand(v1);
9288 } else {
9289 for (int i = 0; i < 4; i++)
9290 values[i] = enabled_channels & (1 << i) ? values[i] : Operand(v1);
9291 }
9292
9293 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
9294 enabled_channels, target, (bool) compr_op);
9295 }
9296
9297 static void create_fs_exports(isel_context *ctx)
9298 {
9299 /* Export depth, stencil and sample mask. */
9300 if (ctx->outputs.mask[FRAG_RESULT_DEPTH] ||
9301 ctx->outputs.mask[FRAG_RESULT_STENCIL] ||
9302 ctx->outputs.mask[FRAG_RESULT_SAMPLE_MASK]) {
9303 export_fs_mrt_z(ctx);
9304 }
9305
9306 /* Export all color render targets. */
9307 for (unsigned i = FRAG_RESULT_DATA0; i < FRAG_RESULT_DATA7 + 1; ++i) {
9308 if (ctx->outputs.mask[i])
9309 export_fs_mrt_color(ctx, i);
9310 }
9311 }
9312
9313 static void write_tcs_tess_factors(isel_context *ctx)
9314 {
9315 unsigned outer_comps;
9316 unsigned inner_comps;
9317
9318 switch (ctx->args->options->key.tcs.primitive_mode) {
9319 case GL_ISOLINES:
9320 outer_comps = 2;
9321 inner_comps = 0;
9322 break;
9323 case GL_TRIANGLES:
9324 outer_comps = 3;
9325 inner_comps = 1;
9326 break;
9327 case GL_QUADS:
9328 outer_comps = 4;
9329 inner_comps = 2;
9330 break;
9331 default:
9332 return;
9333 }
9334
9335 const unsigned tess_index_inner = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_INNER);
9336 const unsigned tess_index_outer = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_OUTER);
9337
9338 Builder bld(ctx->program, ctx->block);
9339
9340 bld.barrier(aco_opcode::p_memory_barrier_shared);
9341 unsigned workgroup_size = ctx->tcs_num_patches * ctx->shader->info.tess.tcs_vertices_out;
9342 if (unlikely(ctx->program->chip_class != GFX6 && workgroup_size > ctx->program->wave_size))
9343 bld.sopp(aco_opcode::s_barrier);
9344
9345 Temp tcs_rel_ids = get_arg(ctx, ctx->args->ac.tcs_rel_ids);
9346 Temp invocation_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), tcs_rel_ids, Operand(8u), Operand(5u));
9347
9348 Temp invocation_id_is_zero = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), invocation_id);
9349 if_context ic_invocation_id_is_zero;
9350 begin_divergent_if_then(ctx, &ic_invocation_id_is_zero, invocation_id_is_zero);
9351 bld.reset(ctx->block);
9352
9353 Temp hs_ring_tess_factor = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_FACTOR * 16u));
9354
9355 std::pair<Temp, unsigned> lds_base = get_tcs_output_lds_offset(ctx);
9356 unsigned stride = inner_comps + outer_comps;
9357 Temp inner[4];
9358 Temp outer[4];
9359 Temp out[6];
9360 assert(inner_comps <= (sizeof(inner) / sizeof(Temp)));
9361 assert(outer_comps <= (sizeof(outer) / sizeof(Temp)));
9362 assert(stride <= (sizeof(out) / sizeof(Temp)));
9363
9364 if (ctx->args->options->key.tcs.primitive_mode == GL_ISOLINES) {
9365 // LINES reversal
9366 outer[0] = out[1] = load_lds(ctx, 4, bld.tmp(v1), lds_base.first, lds_base.second + tess_index_outer * 16 + 0 * 4, 4);
9367 outer[1] = out[0] = load_lds(ctx, 4, bld.tmp(v1), lds_base.first, lds_base.second + tess_index_outer * 16 + 1 * 4, 4);
9368 } else {
9369 for (unsigned i = 0; i < outer_comps; ++i)
9370 outer[i] = out[i] = load_lds(ctx, 4, bld.tmp(v1), lds_base.first, lds_base.second + tess_index_outer * 16 + i * 4, 4);
9371
9372 for (unsigned i = 0; i < inner_comps; ++i)
9373 inner[i] = out[outer_comps + i] = load_lds(ctx, 4, bld.tmp(v1), lds_base.first, lds_base.second + tess_index_inner * 16 + i * 4, 4);
9374 }
9375
9376 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
9377 Temp tf_base = get_arg(ctx, ctx->args->tess_factor_offset);
9378 Temp byte_offset = bld.v_mul_imm(bld.def(v1), rel_patch_id, stride * 4u);
9379 unsigned tf_const_offset = 0;
9380
9381 if (ctx->program->chip_class <= GFX8) {
9382 Temp rel_patch_id_is_zero = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), rel_patch_id);
9383 if_context ic_rel_patch_id_is_zero;
9384 begin_divergent_if_then(ctx, &ic_rel_patch_id_is_zero, rel_patch_id_is_zero);
9385 bld.reset(ctx->block);
9386
9387 /* Store the dynamic HS control word. */
9388 Temp control_word = bld.copy(bld.def(v1), Operand(0x80000000u));
9389 bld.mubuf(aco_opcode::buffer_store_dword,
9390 /* SRSRC */ hs_ring_tess_factor, /* VADDR */ Operand(v1), /* SOFFSET */ tf_base, /* VDATA */ control_word,
9391 /* immediate OFFSET */ 0, /* OFFEN */ false, /* idxen*/ false, /* addr64 */ false,
9392 /* disable_wqm */ false, /* glc */ true);
9393 tf_const_offset += 4;
9394
9395 begin_divergent_if_else(ctx, &ic_rel_patch_id_is_zero);
9396 end_divergent_if(ctx, &ic_rel_patch_id_is_zero);
9397 bld.reset(ctx->block);
9398 }
9399
9400 assert(stride == 2 || stride == 4 || stride == 6);
9401 Temp tf_vec = create_vec_from_array(ctx, out, stride, RegType::vgpr);
9402 store_vmem_mubuf(ctx, tf_vec, hs_ring_tess_factor, byte_offset, tf_base, tf_const_offset, 4, (1 << stride) - 1, true, false);
9403
9404 /* Store to offchip for TES to read - only if TES reads them */
9405 if (ctx->args->options->key.tcs.tes_reads_tess_factors) {
9406 Temp hs_ring_tess_offchip = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
9407 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
9408
9409 std::pair<Temp, unsigned> vmem_offs_outer = get_tcs_per_patch_output_vmem_offset(ctx, nullptr, tess_index_outer * 16);
9410 Temp outer_vec = create_vec_from_array(ctx, outer, outer_comps, RegType::vgpr);
9411 store_vmem_mubuf(ctx, outer_vec, hs_ring_tess_offchip, vmem_offs_outer.first, oc_lds, vmem_offs_outer.second, 4, (1 << outer_comps) - 1, true, false);
9412
9413 if (likely(inner_comps)) {
9414 std::pair<Temp, unsigned> vmem_offs_inner = get_tcs_per_patch_output_vmem_offset(ctx, nullptr, tess_index_inner * 16);
9415 Temp inner_vec = create_vec_from_array(ctx, inner, inner_comps, RegType::vgpr);
9416 store_vmem_mubuf(ctx, inner_vec, hs_ring_tess_offchip, vmem_offs_inner.first, oc_lds, vmem_offs_inner.second, 4, (1 << inner_comps) - 1, true, false);
9417 }
9418 }
9419
9420 begin_divergent_if_else(ctx, &ic_invocation_id_is_zero);
9421 end_divergent_if(ctx, &ic_invocation_id_is_zero);
9422 }
9423
9424 static void emit_stream_output(isel_context *ctx,
9425 Temp const *so_buffers,
9426 Temp const *so_write_offset,
9427 const struct radv_stream_output *output)
9428 {
9429 unsigned num_comps = util_bitcount(output->component_mask);
9430 unsigned writemask = (1 << num_comps) - 1;
9431 unsigned loc = output->location;
9432 unsigned buf = output->buffer;
9433
9434 assert(num_comps && num_comps <= 4);
9435 if (!num_comps || num_comps > 4)
9436 return;
9437
9438 unsigned start = ffs(output->component_mask) - 1;
9439
9440 Temp out[4];
9441 bool all_undef = true;
9442 assert(ctx->stage == vertex_vs || ctx->stage == gs_copy_vs);
9443 for (unsigned i = 0; i < num_comps; i++) {
9444 out[i] = ctx->outputs.outputs[loc][start + i];
9445 all_undef = all_undef && !out[i].id();
9446 }
9447 if (all_undef)
9448 return;
9449
9450 while (writemask) {
9451 int start, count;
9452 u_bit_scan_consecutive_range(&writemask, &start, &count);
9453 if (count == 3 && ctx->options->chip_class == GFX6) {
9454 /* GFX6 doesn't support storing vec3, split it. */
9455 writemask |= 1u << (start + 2);
9456 count = 2;
9457 }
9458
9459 unsigned offset = output->offset + start * 4;
9460
9461 Temp write_data = {ctx->program->allocateId(), RegClass(RegType::vgpr, count)};
9462 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
9463 for (int i = 0; i < count; ++i)
9464 vec->operands[i] = (ctx->outputs.mask[loc] & 1 << (start + i)) ? Operand(out[start + i]) : Operand(0u);
9465 vec->definitions[0] = Definition(write_data);
9466 ctx->block->instructions.emplace_back(std::move(vec));
9467
9468 aco_opcode opcode;
9469 switch (count) {
9470 case 1:
9471 opcode = aco_opcode::buffer_store_dword;
9472 break;
9473 case 2:
9474 opcode = aco_opcode::buffer_store_dwordx2;
9475 break;
9476 case 3:
9477 opcode = aco_opcode::buffer_store_dwordx3;
9478 break;
9479 case 4:
9480 opcode = aco_opcode::buffer_store_dwordx4;
9481 break;
9482 default:
9483 unreachable("Unsupported dword count.");
9484 }
9485
9486 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
9487 store->operands[0] = Operand(so_buffers[buf]);
9488 store->operands[1] = Operand(so_write_offset[buf]);
9489 store->operands[2] = Operand((uint32_t) 0);
9490 store->operands[3] = Operand(write_data);
9491 if (offset > 4095) {
9492 /* Don't think this can happen in RADV, but maybe GL? It's easy to do this anyway. */
9493 Builder bld(ctx->program, ctx->block);
9494 store->operands[0] = bld.vadd32(bld.def(v1), Operand(offset), Operand(so_write_offset[buf]));
9495 } else {
9496 store->offset = offset;
9497 }
9498 store->offen = true;
9499 store->glc = true;
9500 store->dlc = false;
9501 store->slc = true;
9502 store->can_reorder = true;
9503 ctx->block->instructions.emplace_back(std::move(store));
9504 }
9505 }
9506
9507 static void emit_streamout(isel_context *ctx, unsigned stream)
9508 {
9509 Builder bld(ctx->program, ctx->block);
9510
9511 Temp so_buffers[4];
9512 Temp buf_ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->streamout_buffers));
9513 for (unsigned i = 0; i < 4; i++) {
9514 unsigned stride = ctx->program->info->so.strides[i];
9515 if (!stride)
9516 continue;
9517
9518 Operand off = bld.copy(bld.def(s1), Operand(i * 16u));
9519 so_buffers[i] = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), buf_ptr, off);
9520 }
9521
9522 Temp so_vtx_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
9523 get_arg(ctx, ctx->args->streamout_config), Operand(0x70010u));
9524
9525 Temp tid = emit_mbcnt(ctx, bld.def(v1));
9526
9527 Temp can_emit = bld.vopc(aco_opcode::v_cmp_gt_i32, bld.def(bld.lm), so_vtx_count, tid);
9528
9529 if_context ic;
9530 begin_divergent_if_then(ctx, &ic, can_emit);
9531
9532 bld.reset(ctx->block);
9533
9534 Temp so_write_index = bld.vadd32(bld.def(v1), get_arg(ctx, ctx->args->streamout_write_idx), tid);
9535
9536 Temp so_write_offset[4];
9537
9538 for (unsigned i = 0; i < 4; i++) {
9539 unsigned stride = ctx->program->info->so.strides[i];
9540 if (!stride)
9541 continue;
9542
9543 if (stride == 1) {
9544 Temp offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
9545 get_arg(ctx, ctx->args->streamout_write_idx),
9546 get_arg(ctx, ctx->args->streamout_offset[i]));
9547 Temp new_offset = bld.vadd32(bld.def(v1), offset, tid);
9548
9549 so_write_offset[i] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), new_offset);
9550 } else {
9551 Temp offset = bld.v_mul_imm(bld.def(v1), so_write_index, stride * 4u);
9552 Temp offset2 = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(4u),
9553 get_arg(ctx, ctx->args->streamout_offset[i]));
9554 so_write_offset[i] = bld.vadd32(bld.def(v1), offset, offset2);
9555 }
9556 }
9557
9558 for (unsigned i = 0; i < ctx->program->info->so.num_outputs; i++) {
9559 struct radv_stream_output *output =
9560 &ctx->program->info->so.outputs[i];
9561 if (stream != output->stream)
9562 continue;
9563
9564 emit_stream_output(ctx, so_buffers, so_write_offset, output);
9565 }
9566
9567 begin_divergent_if_else(ctx, &ic);
9568 end_divergent_if(ctx, &ic);
9569 }
9570
9571 } /* end namespace */
9572
9573 void fix_ls_vgpr_init_bug(isel_context *ctx, Pseudo_instruction *startpgm)
9574 {
9575 assert(ctx->shader->info.stage == MESA_SHADER_VERTEX);
9576 Builder bld(ctx->program, ctx->block);
9577 constexpr unsigned hs_idx = 1u;
9578 Builder::Result hs_thread_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
9579 get_arg(ctx, ctx->args->merged_wave_info),
9580 Operand((8u << 16) | (hs_idx * 8u)));
9581 Temp ls_has_nonzero_hs_threads = bool_to_vector_condition(ctx, hs_thread_count.def(1).getTemp());
9582
9583 /* If there are no HS threads, SPI mistakenly loads the LS VGPRs starting at VGPR 0. */
9584
9585 Temp instance_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
9586 get_arg(ctx, ctx->args->rel_auto_id),
9587 get_arg(ctx, ctx->args->ac.instance_id),
9588 ls_has_nonzero_hs_threads);
9589 Temp rel_auto_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
9590 get_arg(ctx, ctx->args->ac.tcs_rel_ids),
9591 get_arg(ctx, ctx->args->rel_auto_id),
9592 ls_has_nonzero_hs_threads);
9593 Temp vertex_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
9594 get_arg(ctx, ctx->args->ac.tcs_patch_id),
9595 get_arg(ctx, ctx->args->ac.vertex_id),
9596 ls_has_nonzero_hs_threads);
9597
9598 ctx->arg_temps[ctx->args->ac.instance_id.arg_index] = instance_id;
9599 ctx->arg_temps[ctx->args->rel_auto_id.arg_index] = rel_auto_id;
9600 ctx->arg_temps[ctx->args->ac.vertex_id.arg_index] = vertex_id;
9601 }
9602
9603 void split_arguments(isel_context *ctx, Pseudo_instruction *startpgm)
9604 {
9605 /* Split all arguments except for the first (ring_offsets) and the last
9606 * (exec) so that the dead channels don't stay live throughout the program.
9607 */
9608 for (int i = 1; i < startpgm->definitions.size() - 1; i++) {
9609 if (startpgm->definitions[i].regClass().size() > 1) {
9610 emit_split_vector(ctx, startpgm->definitions[i].getTemp(),
9611 startpgm->definitions[i].regClass().size());
9612 }
9613 }
9614 }
9615
9616 void handle_bc_optimize(isel_context *ctx)
9617 {
9618 /* needed when SPI_PS_IN_CONTROL.BC_OPTIMIZE_DISABLE is set to 0 */
9619 Builder bld(ctx->program, ctx->block);
9620 uint32_t spi_ps_input_ena = ctx->program->config->spi_ps_input_ena;
9621 bool uses_center = G_0286CC_PERSP_CENTER_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTER_ENA(spi_ps_input_ena);
9622 bool uses_centroid = G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena);
9623 ctx->persp_centroid = get_arg(ctx, ctx->args->ac.persp_centroid);
9624 ctx->linear_centroid = get_arg(ctx, ctx->args->ac.linear_centroid);
9625 if (uses_center && uses_centroid) {
9626 Temp sel = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)),
9627 get_arg(ctx, ctx->args->ac.prim_mask), Operand(0u));
9628
9629 if (G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena)) {
9630 Temp new_coord[2];
9631 for (unsigned i = 0; i < 2; i++) {
9632 Temp persp_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_centroid), i, v1);
9633 Temp persp_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_center), i, v1);
9634 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
9635 persp_centroid, persp_center, sel);
9636 }
9637 ctx->persp_centroid = bld.tmp(v2);
9638 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->persp_centroid),
9639 Operand(new_coord[0]), Operand(new_coord[1]));
9640 emit_split_vector(ctx, ctx->persp_centroid, 2);
9641 }
9642
9643 if (G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena)) {
9644 Temp new_coord[2];
9645 for (unsigned i = 0; i < 2; i++) {
9646 Temp linear_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_centroid), i, v1);
9647 Temp linear_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_center), i, v1);
9648 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
9649 linear_centroid, linear_center, sel);
9650 }
9651 ctx->linear_centroid = bld.tmp(v2);
9652 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->linear_centroid),
9653 Operand(new_coord[0]), Operand(new_coord[1]));
9654 emit_split_vector(ctx, ctx->linear_centroid, 2);
9655 }
9656 }
9657 }
9658
9659 void setup_fp_mode(isel_context *ctx, nir_shader *shader)
9660 {
9661 Program *program = ctx->program;
9662
9663 unsigned float_controls = shader->info.float_controls_execution_mode;
9664
9665 program->next_fp_mode.preserve_signed_zero_inf_nan32 =
9666 float_controls & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32;
9667 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 =
9668 float_controls & (FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16 |
9669 FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64);
9670
9671 program->next_fp_mode.must_flush_denorms32 =
9672 float_controls & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32;
9673 program->next_fp_mode.must_flush_denorms16_64 =
9674 float_controls & (FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 |
9675 FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64);
9676
9677 program->next_fp_mode.care_about_round32 =
9678 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32);
9679
9680 program->next_fp_mode.care_about_round16_64 =
9681 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64 |
9682 FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
9683
9684 /* default to preserving fp16 and fp64 denorms, since it's free */
9685 if (program->next_fp_mode.must_flush_denorms16_64)
9686 program->next_fp_mode.denorm16_64 = 0;
9687 else
9688 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
9689
9690 /* preserving fp32 denorms is expensive, so only do it if asked */
9691 if (float_controls & FLOAT_CONTROLS_DENORM_PRESERVE_FP32)
9692 program->next_fp_mode.denorm32 = fp_denorm_keep;
9693 else
9694 program->next_fp_mode.denorm32 = 0;
9695
9696 if (float_controls & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32)
9697 program->next_fp_mode.round32 = fp_round_tz;
9698 else
9699 program->next_fp_mode.round32 = fp_round_ne;
9700
9701 if (float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64))
9702 program->next_fp_mode.round16_64 = fp_round_tz;
9703 else
9704 program->next_fp_mode.round16_64 = fp_round_ne;
9705
9706 ctx->block->fp_mode = program->next_fp_mode;
9707 }
9708
9709 void cleanup_cfg(Program *program)
9710 {
9711 /* create linear_succs/logical_succs */
9712 for (Block& BB : program->blocks) {
9713 for (unsigned idx : BB.linear_preds)
9714 program->blocks[idx].linear_succs.emplace_back(BB.index);
9715 for (unsigned idx : BB.logical_preds)
9716 program->blocks[idx].logical_succs.emplace_back(BB.index);
9717 }
9718 }
9719
9720 void select_program(Program *program,
9721 unsigned shader_count,
9722 struct nir_shader *const *shaders,
9723 ac_shader_config* config,
9724 struct radv_shader_args *args)
9725 {
9726 isel_context ctx = setup_isel_context(program, shader_count, shaders, config, args, false);
9727
9728 for (unsigned i = 0; i < shader_count; i++) {
9729 nir_shader *nir = shaders[i];
9730 init_context(&ctx, nir);
9731
9732 setup_fp_mode(&ctx, nir);
9733
9734 if (!i) {
9735 /* needs to be after init_context() for FS */
9736 Pseudo_instruction *startpgm = add_startpgm(&ctx);
9737 append_logical_start(ctx.block);
9738
9739 if (unlikely(args->options->has_ls_vgpr_init_bug && ctx.stage == vertex_tess_control_hs))
9740 fix_ls_vgpr_init_bug(&ctx, startpgm);
9741
9742 split_arguments(&ctx, startpgm);
9743 }
9744
9745 /* In a merged VS+TCS HS, the VS implementation can be completely empty. */
9746 nir_function_impl *func = nir_shader_get_entrypoint(nir);
9747 bool empty_shader = nir_cf_list_is_empty_block(&func->body) &&
9748 ((nir->info.stage == MESA_SHADER_VERTEX &&
9749 (ctx.stage == vertex_tess_control_hs || ctx.stage == vertex_geometry_gs)) ||
9750 (nir->info.stage == MESA_SHADER_TESS_EVAL &&
9751 ctx.stage == tess_eval_geometry_gs));
9752
9753 if_context ic;
9754 if (shader_count >= 2 && !empty_shader) {
9755 Builder bld(ctx.program, ctx.block);
9756 Temp count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(&ctx, args->merged_wave_info), Operand((8u << 16) | (i * 8u)));
9757 Temp thread_id = emit_mbcnt(&ctx, bld.def(v1));
9758 Temp cond = bld.vopc(aco_opcode::v_cmp_gt_u32, bld.hint_vcc(bld.def(bld.lm)), count, thread_id);
9759
9760 begin_divergent_if_then(&ctx, &ic, cond);
9761 }
9762
9763 if (i) {
9764 Builder bld(ctx.program, ctx.block);
9765
9766 bld.barrier(aco_opcode::p_memory_barrier_shared);
9767 bld.sopp(aco_opcode::s_barrier);
9768
9769 if (ctx.stage == vertex_geometry_gs || ctx.stage == tess_eval_geometry_gs) {
9770 ctx.gs_wave_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1, m0), bld.def(s1, scc), get_arg(&ctx, args->merged_wave_info), Operand((8u << 16) | 16u));
9771 }
9772 } else if (ctx.stage == geometry_gs)
9773 ctx.gs_wave_id = get_arg(&ctx, args->gs_wave_id);
9774
9775 if (ctx.stage == fragment_fs)
9776 handle_bc_optimize(&ctx);
9777
9778 visit_cf_list(&ctx, &func->body);
9779
9780 if (ctx.program->info->so.num_outputs && (ctx.stage == vertex_vs || ctx.stage == tess_eval_vs))
9781 emit_streamout(&ctx, 0);
9782
9783 if (ctx.stage == vertex_vs || ctx.stage == tess_eval_vs) {
9784 create_vs_exports(&ctx);
9785 } else if (nir->info.stage == MESA_SHADER_GEOMETRY) {
9786 Builder bld(ctx.program, ctx.block);
9787 bld.barrier(aco_opcode::p_memory_barrier_gs_data);
9788 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx.gs_wave_id), -1, sendmsg_gs_done(false, false, 0));
9789 } else if (nir->info.stage == MESA_SHADER_TESS_CTRL) {
9790 write_tcs_tess_factors(&ctx);
9791 }
9792
9793 if (ctx.stage == fragment_fs)
9794 create_fs_exports(&ctx);
9795
9796 if (shader_count >= 2 && !empty_shader) {
9797 begin_divergent_if_else(&ctx, &ic);
9798 end_divergent_if(&ctx, &ic);
9799 }
9800
9801 ralloc_free(ctx.divergent_vals);
9802 }
9803
9804 program->config->float_mode = program->blocks[0].fp_mode.val;
9805
9806 append_logical_end(ctx.block);
9807 ctx.block->kind |= block_kind_uniform | block_kind_export_end;
9808 Builder bld(ctx.program, ctx.block);
9809 if (ctx.program->wb_smem_l1_on_end)
9810 bld.smem(aco_opcode::s_dcache_wb, false);
9811 bld.sopp(aco_opcode::s_endpgm);
9812
9813 cleanup_cfg(program);
9814 }
9815
9816 void select_gs_copy_shader(Program *program, struct nir_shader *gs_shader,
9817 ac_shader_config* config,
9818 struct radv_shader_args *args)
9819 {
9820 isel_context ctx = setup_isel_context(program, 1, &gs_shader, config, args, true);
9821
9822 program->next_fp_mode.preserve_signed_zero_inf_nan32 = false;
9823 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 = false;
9824 program->next_fp_mode.must_flush_denorms32 = false;
9825 program->next_fp_mode.must_flush_denorms16_64 = false;
9826 program->next_fp_mode.care_about_round32 = false;
9827 program->next_fp_mode.care_about_round16_64 = false;
9828 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
9829 program->next_fp_mode.denorm32 = 0;
9830 program->next_fp_mode.round32 = fp_round_ne;
9831 program->next_fp_mode.round16_64 = fp_round_ne;
9832 ctx.block->fp_mode = program->next_fp_mode;
9833
9834 add_startpgm(&ctx);
9835 append_logical_start(ctx.block);
9836
9837 Builder bld(ctx.program, ctx.block);
9838
9839 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), program->private_segment_buffer, Operand(RING_GSVS_VS * 16u));
9840
9841 Operand stream_id(0u);
9842 if (args->shader_info->so.num_outputs)
9843 stream_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
9844 get_arg(&ctx, ctx.args->streamout_config), Operand(0x20018u));
9845
9846 Temp vtx_offset = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), get_arg(&ctx, ctx.args->ac.vertex_id));
9847
9848 std::stack<Block> endif_blocks;
9849
9850 for (unsigned stream = 0; stream < 4; stream++) {
9851 if (stream_id.isConstant() && stream != stream_id.constantValue())
9852 continue;
9853
9854 unsigned num_components = args->shader_info->gs.num_stream_output_components[stream];
9855 if (stream > 0 && (!num_components || !args->shader_info->so.num_outputs))
9856 continue;
9857
9858 memset(ctx.outputs.mask, 0, sizeof(ctx.outputs.mask));
9859
9860 unsigned BB_if_idx = ctx.block->index;
9861 Block BB_endif = Block();
9862 if (!stream_id.isConstant()) {
9863 /* begin IF */
9864 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), stream_id, Operand(stream));
9865 append_logical_end(ctx.block);
9866 ctx.block->kind |= block_kind_uniform;
9867 bld.branch(aco_opcode::p_cbranch_z, cond);
9868
9869 BB_endif.kind |= ctx.block->kind & block_kind_top_level;
9870
9871 ctx.block = ctx.program->create_and_insert_block();
9872 add_edge(BB_if_idx, ctx.block);
9873 bld.reset(ctx.block);
9874 append_logical_start(ctx.block);
9875 }
9876
9877 unsigned offset = 0;
9878 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
9879 if (args->shader_info->gs.output_streams[i] != stream)
9880 continue;
9881
9882 unsigned output_usage_mask = args->shader_info->gs.output_usage_mask[i];
9883 unsigned length = util_last_bit(output_usage_mask);
9884 for (unsigned j = 0; j < length; ++j) {
9885 if (!(output_usage_mask & (1 << j)))
9886 continue;
9887
9888 unsigned const_offset = offset * args->shader_info->gs.vertices_out * 16 * 4;
9889 Temp voffset = vtx_offset;
9890 if (const_offset >= 4096u) {
9891 voffset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), voffset);
9892 const_offset %= 4096u;
9893 }
9894
9895 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dword, Format::MUBUF, 3, 1)};
9896 mubuf->definitions[0] = bld.def(v1);
9897 mubuf->operands[0] = Operand(gsvs_ring);
9898 mubuf->operands[1] = Operand(voffset);
9899 mubuf->operands[2] = Operand(0u);
9900 mubuf->offen = true;
9901 mubuf->offset = const_offset;
9902 mubuf->glc = true;
9903 mubuf->slc = true;
9904 mubuf->dlc = args->options->chip_class >= GFX10;
9905 mubuf->barrier = barrier_none;
9906 mubuf->can_reorder = true;
9907
9908 ctx.outputs.mask[i] |= 1 << j;
9909 ctx.outputs.outputs[i][j] = mubuf->definitions[0].getTemp();
9910
9911 bld.insert(std::move(mubuf));
9912
9913 offset++;
9914 }
9915 }
9916
9917 if (args->shader_info->so.num_outputs) {
9918 emit_streamout(&ctx, stream);
9919 bld.reset(ctx.block);
9920 }
9921
9922 if (stream == 0) {
9923 create_vs_exports(&ctx);
9924 ctx.block->kind |= block_kind_export_end;
9925 }
9926
9927 if (!stream_id.isConstant()) {
9928 append_logical_end(ctx.block);
9929
9930 /* branch from then block to endif block */
9931 bld.branch(aco_opcode::p_branch);
9932 add_edge(ctx.block->index, &BB_endif);
9933 ctx.block->kind |= block_kind_uniform;
9934
9935 /* emit else block */
9936 ctx.block = ctx.program->create_and_insert_block();
9937 add_edge(BB_if_idx, ctx.block);
9938 bld.reset(ctx.block);
9939 append_logical_start(ctx.block);
9940
9941 endif_blocks.push(std::move(BB_endif));
9942 }
9943 }
9944
9945 while (!endif_blocks.empty()) {
9946 Block BB_endif = std::move(endif_blocks.top());
9947 endif_blocks.pop();
9948
9949 Block *BB_else = ctx.block;
9950
9951 append_logical_end(BB_else);
9952 /* branch from else block to endif block */
9953 bld.branch(aco_opcode::p_branch);
9954 add_edge(BB_else->index, &BB_endif);
9955 BB_else->kind |= block_kind_uniform;
9956
9957 /** emit endif merge block */
9958 ctx.block = program->insert_block(std::move(BB_endif));
9959 bld.reset(ctx.block);
9960 append_logical_start(ctx.block);
9961 }
9962
9963 program->config->float_mode = program->blocks[0].fp_mode.val;
9964
9965 append_logical_end(ctx.block);
9966 ctx.block->kind |= block_kind_uniform;
9967 bld.sopp(aco_opcode::s_endpgm);
9968
9969 cleanup_cfg(program);
9970 }
9971 }