aco: fix f2i64/f2u64 with sgprs if the exponent computation overflow
[mesa.git] / src / amd / compiler / aco_instruction_selection.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 * Copyright © 2018 Google
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <algorithm>
27 #include <array>
28 #include <stack>
29 #include <map>
30
31 #include "ac_shader_util.h"
32 #include "aco_ir.h"
33 #include "aco_builder.h"
34 #include "aco_interface.h"
35 #include "aco_instruction_selection_setup.cpp"
36 #include "util/fast_idiv_by_const.h"
37
38 namespace aco {
39 namespace {
40
41 class loop_info_RAII {
42 isel_context* ctx;
43 unsigned header_idx_old;
44 Block* exit_old;
45 bool divergent_cont_old;
46 bool divergent_branch_old;
47 bool divergent_if_old;
48
49 public:
50 loop_info_RAII(isel_context* ctx, unsigned loop_header_idx, Block* loop_exit)
51 : ctx(ctx),
52 header_idx_old(ctx->cf_info.parent_loop.header_idx), exit_old(ctx->cf_info.parent_loop.exit),
53 divergent_cont_old(ctx->cf_info.parent_loop.has_divergent_continue),
54 divergent_branch_old(ctx->cf_info.parent_loop.has_divergent_branch),
55 divergent_if_old(ctx->cf_info.parent_if.is_divergent)
56 {
57 ctx->cf_info.parent_loop.header_idx = loop_header_idx;
58 ctx->cf_info.parent_loop.exit = loop_exit;
59 ctx->cf_info.parent_loop.has_divergent_continue = false;
60 ctx->cf_info.parent_loop.has_divergent_branch = false;
61 ctx->cf_info.parent_if.is_divergent = false;
62 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
63 }
64
65 ~loop_info_RAII()
66 {
67 ctx->cf_info.parent_loop.header_idx = header_idx_old;
68 ctx->cf_info.parent_loop.exit = exit_old;
69 ctx->cf_info.parent_loop.has_divergent_continue = divergent_cont_old;
70 ctx->cf_info.parent_loop.has_divergent_branch = divergent_branch_old;
71 ctx->cf_info.parent_if.is_divergent = divergent_if_old;
72 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth - 1;
73 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent)
74 ctx->cf_info.exec_potentially_empty_discard = false;
75 }
76 };
77
78 struct if_context {
79 Temp cond;
80
81 bool divergent_old;
82 bool exec_potentially_empty_discard_old;
83 bool exec_potentially_empty_break_old;
84 uint16_t exec_potentially_empty_break_depth_old;
85
86 unsigned BB_if_idx;
87 unsigned invert_idx;
88 bool uniform_has_then_branch;
89 bool then_branch_divergent;
90 Block BB_invert;
91 Block BB_endif;
92 };
93
94 static bool visit_cf_list(struct isel_context *ctx,
95 struct exec_list *list);
96
97 static void add_logical_edge(unsigned pred_idx, Block *succ)
98 {
99 succ->logical_preds.emplace_back(pred_idx);
100 }
101
102
103 static void add_linear_edge(unsigned pred_idx, Block *succ)
104 {
105 succ->linear_preds.emplace_back(pred_idx);
106 }
107
108 static void add_edge(unsigned pred_idx, Block *succ)
109 {
110 add_logical_edge(pred_idx, succ);
111 add_linear_edge(pred_idx, succ);
112 }
113
114 static void append_logical_start(Block *b)
115 {
116 Builder(NULL, b).pseudo(aco_opcode::p_logical_start);
117 }
118
119 static void append_logical_end(Block *b)
120 {
121 Builder(NULL, b).pseudo(aco_opcode::p_logical_end);
122 }
123
124 Temp get_ssa_temp(struct isel_context *ctx, nir_ssa_def *def)
125 {
126 assert(ctx->allocated[def->index].id());
127 return ctx->allocated[def->index];
128 }
129
130 Temp emit_mbcnt(isel_context *ctx, Definition dst,
131 Operand mask_lo = Operand((uint32_t) -1), Operand mask_hi = Operand((uint32_t) -1))
132 {
133 Builder bld(ctx->program, ctx->block);
134 Definition lo_def = ctx->program->wave_size == 32 ? dst : bld.def(v1);
135 Temp thread_id_lo = bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, lo_def, mask_lo, Operand(0u));
136
137 if (ctx->program->wave_size == 32) {
138 return thread_id_lo;
139 } else {
140 Temp thread_id_hi = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32, dst, mask_hi, thread_id_lo);
141 return thread_id_hi;
142 }
143 }
144
145 Temp emit_wqm(isel_context *ctx, Temp src, Temp dst=Temp(0, s1), bool program_needs_wqm = false)
146 {
147 Builder bld(ctx->program, ctx->block);
148
149 if (!dst.id())
150 dst = bld.tmp(src.regClass());
151
152 assert(src.size() == dst.size());
153
154 if (ctx->stage != fragment_fs) {
155 if (!dst.id())
156 return src;
157
158 bld.copy(Definition(dst), src);
159 return dst;
160 }
161
162 bld.pseudo(aco_opcode::p_wqm, Definition(dst), src);
163 ctx->program->needs_wqm |= program_needs_wqm;
164 return dst;
165 }
166
167 static Temp emit_bpermute(isel_context *ctx, Builder &bld, Temp index, Temp data)
168 {
169 if (index.regClass() == s1)
170 return bld.readlane(bld.def(s1), data, index);
171
172 Temp index_x4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), index);
173
174 /* Currently not implemented on GFX6-7 */
175 assert(ctx->options->chip_class >= GFX8);
176
177 if (ctx->options->chip_class <= GFX9 || ctx->program->wave_size == 32) {
178 return bld.ds(aco_opcode::ds_bpermute_b32, bld.def(v1), index_x4, data);
179 }
180
181 /* GFX10, wave64 mode:
182 * The bpermute instruction is limited to half-wave operation, which means that it can't
183 * properly support subgroup shuffle like older generations (or wave32 mode), so we
184 * emulate it here.
185 */
186 if (!ctx->has_gfx10_wave64_bpermute) {
187 ctx->has_gfx10_wave64_bpermute = true;
188 ctx->program->config->num_shared_vgprs = 8; /* Shared VGPRs are allocated in groups of 8 */
189 ctx->program->vgpr_limit -= 4; /* We allocate 8 shared VGPRs, so we'll have 4 fewer normal VGPRs */
190 }
191
192 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
193 Temp lane_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), lane_id);
194 Temp index_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), index);
195 Temp cmp = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm, vcc), lane_is_hi, index_is_hi);
196
197 return bld.reduction(aco_opcode::p_wave64_bpermute, bld.def(v1), bld.def(s2), bld.def(s1, scc),
198 bld.vcc(cmp), Operand(v2.as_linear()), index_x4, data, gfx10_wave64_bpermute);
199 }
200
201 Temp as_vgpr(isel_context *ctx, Temp val)
202 {
203 if (val.type() == RegType::sgpr) {
204 Builder bld(ctx->program, ctx->block);
205 return bld.copy(bld.def(RegType::vgpr, val.size()), val);
206 }
207 assert(val.type() == RegType::vgpr);
208 return val;
209 }
210
211 //assumes a != 0xffffffff
212 void emit_v_div_u32(isel_context *ctx, Temp dst, Temp a, uint32_t b)
213 {
214 assert(b != 0);
215 Builder bld(ctx->program, ctx->block);
216
217 if (util_is_power_of_two_or_zero(b)) {
218 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)util_logbase2(b)), a);
219 return;
220 }
221
222 util_fast_udiv_info info = util_compute_fast_udiv_info(b, 32, 32);
223
224 assert(info.multiplier <= 0xffffffff);
225
226 bool pre_shift = info.pre_shift != 0;
227 bool increment = info.increment != 0;
228 bool multiply = true;
229 bool post_shift = info.post_shift != 0;
230
231 if (!pre_shift && !increment && !multiply && !post_shift) {
232 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), a);
233 return;
234 }
235
236 Temp pre_shift_dst = a;
237 if (pre_shift) {
238 pre_shift_dst = (increment || multiply || post_shift) ? bld.tmp(v1) : dst;
239 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(pre_shift_dst), Operand((uint32_t)info.pre_shift), a);
240 }
241
242 Temp increment_dst = pre_shift_dst;
243 if (increment) {
244 increment_dst = (post_shift || multiply) ? bld.tmp(v1) : dst;
245 bld.vadd32(Definition(increment_dst), Operand((uint32_t) info.increment), pre_shift_dst);
246 }
247
248 Temp multiply_dst = increment_dst;
249 if (multiply) {
250 multiply_dst = post_shift ? bld.tmp(v1) : dst;
251 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(multiply_dst), increment_dst,
252 bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand((uint32_t)info.multiplier)));
253 }
254
255 if (post_shift) {
256 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)info.post_shift), multiply_dst);
257 }
258 }
259
260 void emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, Temp dst)
261 {
262 Builder bld(ctx->program, ctx->block);
263 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(idx));
264 }
265
266
267 Temp emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, RegClass dst_rc)
268 {
269 /* no need to extract the whole vector */
270 if (src.regClass() == dst_rc) {
271 assert(idx == 0);
272 return src;
273 }
274
275 assert(src.bytes() > (idx * dst_rc.bytes()));
276 Builder bld(ctx->program, ctx->block);
277 auto it = ctx->allocated_vec.find(src.id());
278 if (it != ctx->allocated_vec.end() && dst_rc.bytes() == it->second[idx].regClass().bytes()) {
279 if (it->second[idx].regClass() == dst_rc) {
280 return it->second[idx];
281 } else {
282 assert(!dst_rc.is_subdword());
283 assert(dst_rc.type() == RegType::vgpr && it->second[idx].type() == RegType::sgpr);
284 return bld.copy(bld.def(dst_rc), it->second[idx]);
285 }
286 }
287
288 if (dst_rc.is_subdword())
289 src = as_vgpr(ctx, src);
290
291 if (src.bytes() == dst_rc.bytes()) {
292 assert(idx == 0);
293 return bld.copy(bld.def(dst_rc), src);
294 } else {
295 Temp dst = bld.tmp(dst_rc);
296 emit_extract_vector(ctx, src, idx, dst);
297 return dst;
298 }
299 }
300
301 void emit_split_vector(isel_context* ctx, Temp vec_src, unsigned num_components)
302 {
303 if (num_components == 1)
304 return;
305 if (ctx->allocated_vec.find(vec_src.id()) != ctx->allocated_vec.end())
306 return;
307 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_components)};
308 split->operands[0] = Operand(vec_src);
309 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
310 RegClass rc;
311 if (num_components > vec_src.size()) {
312 if (vec_src.type() == RegType::sgpr)
313 return;
314
315 /* sub-dword split */
316 assert(vec_src.type() == RegType::vgpr);
317 rc = RegClass(RegType::vgpr, vec_src.bytes() / num_components).as_subdword();
318 } else {
319 rc = RegClass(vec_src.type(), vec_src.size() / num_components);
320 }
321 for (unsigned i = 0; i < num_components; i++) {
322 elems[i] = {ctx->program->allocateId(), rc};
323 split->definitions[i] = Definition(elems[i]);
324 }
325 ctx->block->instructions.emplace_back(std::move(split));
326 ctx->allocated_vec.emplace(vec_src.id(), elems);
327 }
328
329 /* This vector expansion uses a mask to determine which elements in the new vector
330 * come from the original vector. The other elements are undefined. */
331 void expand_vector(isel_context* ctx, Temp vec_src, Temp dst, unsigned num_components, unsigned mask)
332 {
333 emit_split_vector(ctx, vec_src, util_bitcount(mask));
334
335 if (vec_src == dst)
336 return;
337
338 Builder bld(ctx->program, ctx->block);
339 if (num_components == 1) {
340 if (dst.type() == RegType::sgpr)
341 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec_src);
342 else
343 bld.copy(Definition(dst), vec_src);
344 return;
345 }
346
347 unsigned component_size = dst.size() / num_components;
348 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
349
350 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
351 vec->definitions[0] = Definition(dst);
352 unsigned k = 0;
353 for (unsigned i = 0; i < num_components; i++) {
354 if (mask & (1 << i)) {
355 Temp src = emit_extract_vector(ctx, vec_src, k++, RegClass(vec_src.type(), component_size));
356 if (dst.type() == RegType::sgpr)
357 src = bld.as_uniform(src);
358 vec->operands[i] = Operand(src);
359 } else {
360 vec->operands[i] = Operand(0u);
361 }
362 elems[i] = vec->operands[i].getTemp();
363 }
364 ctx->block->instructions.emplace_back(std::move(vec));
365 ctx->allocated_vec.emplace(dst.id(), elems);
366 }
367
368 /* adjust misaligned small bit size loads */
369 void byte_align_scalar(isel_context *ctx, Temp vec, Operand offset, Temp dst)
370 {
371 Builder bld(ctx->program, ctx->block);
372 Operand shift;
373 Temp select = Temp();
374 if (offset.isConstant()) {
375 assert(offset.constantValue() && offset.constantValue() < 4);
376 shift = Operand(offset.constantValue() * 8);
377 } else {
378 /* bit_offset = 8 * (offset & 0x3) */
379 Temp tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), offset, Operand(3u));
380 select = bld.tmp(s1);
381 shift = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.scc(Definition(select)), tmp, Operand(3u));
382 }
383
384 if (vec.size() == 1) {
385 bld.sop2(aco_opcode::s_lshr_b32, Definition(dst), bld.def(s1, scc), vec, shift);
386 } else if (vec.size() == 2) {
387 Temp tmp = dst.size() == 2 ? dst : bld.tmp(s2);
388 bld.sop2(aco_opcode::s_lshr_b64, Definition(tmp), bld.def(s1, scc), vec, shift);
389 if (tmp == dst)
390 emit_split_vector(ctx, dst, 2);
391 else
392 emit_extract_vector(ctx, tmp, 0, dst);
393 } else if (vec.size() == 4) {
394 Temp lo = bld.tmp(s2), hi = bld.tmp(s2);
395 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), vec);
396 hi = bld.pseudo(aco_opcode::p_extract_vector, bld.def(s1), hi, Operand(0u));
397 if (select != Temp())
398 hi = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), hi, Operand(0u), select);
399 lo = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), lo, shift);
400 Temp mid = bld.tmp(s1);
401 lo = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), Definition(mid), lo);
402 hi = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), hi, shift);
403 mid = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), hi, mid);
404 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, mid);
405 emit_split_vector(ctx, dst, 2);
406 }
407 }
408
409 /* this function trims subdword vectors:
410 * if dst is vgpr - split the src and create a shrunk version according to the mask.
411 * if dst is sgpr - split the src, but move the original to sgpr. */
412 void trim_subdword_vector(isel_context *ctx, Temp vec_src, Temp dst, unsigned num_components, unsigned mask)
413 {
414 assert(vec_src.type() == RegType::vgpr);
415 emit_split_vector(ctx, vec_src, num_components);
416
417 Builder bld(ctx->program, ctx->block);
418 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
419 unsigned component_size = vec_src.bytes() / num_components;
420 RegClass rc = RegClass(RegType::vgpr, component_size).as_subdword();
421
422 unsigned k = 0;
423 for (unsigned i = 0; i < num_components; i++) {
424 if (mask & (1 << i))
425 elems[k++] = emit_extract_vector(ctx, vec_src, i, rc);
426 }
427
428 if (dst.type() == RegType::vgpr) {
429 assert(dst.bytes() == k * component_size);
430 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, k, 1)};
431 for (unsigned i = 0; i < k; i++)
432 vec->operands[i] = Operand(elems[i]);
433 vec->definitions[0] = Definition(dst);
434 bld.insert(std::move(vec));
435 } else {
436 // TODO: alignbyte if mask doesn't start with 1?
437 assert(mask & 1);
438 assert(dst.size() == vec_src.size());
439 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec_src);
440 }
441 ctx->allocated_vec.emplace(dst.id(), elems);
442 }
443
444 Temp bool_to_vector_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s2))
445 {
446 Builder bld(ctx->program, ctx->block);
447 if (!dst.id())
448 dst = bld.tmp(bld.lm);
449
450 assert(val.regClass() == s1);
451 assert(dst.regClass() == bld.lm);
452
453 return bld.sop2(Builder::s_cselect, Definition(dst), Operand((uint32_t) -1), Operand(0u), bld.scc(val));
454 }
455
456 Temp bool_to_scalar_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s1))
457 {
458 Builder bld(ctx->program, ctx->block);
459 if (!dst.id())
460 dst = bld.tmp(s1);
461
462 assert(val.regClass() == bld.lm);
463 assert(dst.regClass() == s1);
464
465 /* if we're currently in WQM mode, ensure that the source is also computed in WQM */
466 Temp tmp = bld.tmp(s1);
467 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.scc(Definition(tmp)), val, Operand(exec, bld.lm));
468 return emit_wqm(ctx, tmp, dst);
469 }
470
471 Temp get_alu_src(struct isel_context *ctx, nir_alu_src src, unsigned size=1)
472 {
473 if (src.src.ssa->num_components == 1 && src.swizzle[0] == 0 && size == 1)
474 return get_ssa_temp(ctx, src.src.ssa);
475
476 if (src.src.ssa->num_components == size) {
477 bool identity_swizzle = true;
478 for (unsigned i = 0; identity_swizzle && i < size; i++) {
479 if (src.swizzle[i] != i)
480 identity_swizzle = false;
481 }
482 if (identity_swizzle)
483 return get_ssa_temp(ctx, src.src.ssa);
484 }
485
486 Temp vec = get_ssa_temp(ctx, src.src.ssa);
487 unsigned elem_size = vec.bytes() / src.src.ssa->num_components;
488 assert(elem_size > 0);
489 assert(vec.bytes() % elem_size == 0);
490
491 if (elem_size < 4 && vec.type() == RegType::sgpr) {
492 assert(src.src.ssa->bit_size == 8 || src.src.ssa->bit_size == 16);
493 assert(size == 1);
494 unsigned swizzle = src.swizzle[0];
495 if (vec.size() > 1) {
496 assert(src.src.ssa->bit_size == 16);
497 vec = emit_extract_vector(ctx, vec, swizzle / 2, s1);
498 swizzle = swizzle & 1;
499 }
500 if (swizzle == 0)
501 return vec;
502
503 Temp dst{ctx->program->allocateId(), s1};
504 aco_ptr<SOP2_instruction> bfe{create_instruction<SOP2_instruction>(aco_opcode::s_bfe_u32, Format::SOP2, 2, 1)};
505 bfe->operands[0] = Operand(vec);
506 bfe->operands[1] = Operand(uint32_t((src.src.ssa->bit_size << 16) | (src.src.ssa->bit_size * swizzle)));
507 bfe->definitions[0] = Definition(dst);
508 ctx->block->instructions.emplace_back(std::move(bfe));
509 return dst;
510 }
511
512 RegClass elem_rc = elem_size < 4 ? RegClass(vec.type(), elem_size).as_subdword() : RegClass(vec.type(), elem_size / 4);
513 if (size == 1) {
514 return emit_extract_vector(ctx, vec, src.swizzle[0], elem_rc);
515 } else {
516 assert(size <= 4);
517 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
518 aco_ptr<Pseudo_instruction> vec_instr{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
519 for (unsigned i = 0; i < size; ++i) {
520 elems[i] = emit_extract_vector(ctx, vec, src.swizzle[i], elem_rc);
521 vec_instr->operands[i] = Operand{elems[i]};
522 }
523 Temp dst{ctx->program->allocateId(), RegClass(vec.type(), elem_size * size / 4)};
524 vec_instr->definitions[0] = Definition(dst);
525 ctx->block->instructions.emplace_back(std::move(vec_instr));
526 ctx->allocated_vec.emplace(dst.id(), elems);
527 return dst;
528 }
529 }
530
531 Temp convert_pointer_to_64_bit(isel_context *ctx, Temp ptr)
532 {
533 if (ptr.size() == 2)
534 return ptr;
535 Builder bld(ctx->program, ctx->block);
536 if (ptr.type() == RegType::vgpr)
537 ptr = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), ptr);
538 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s2),
539 ptr, Operand((unsigned)ctx->options->address32_hi));
540 }
541
542 void emit_sop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst, bool writes_scc)
543 {
544 aco_ptr<SOP2_instruction> sop2{create_instruction<SOP2_instruction>(op, Format::SOP2, 2, writes_scc ? 2 : 1)};
545 sop2->operands[0] = Operand(get_alu_src(ctx, instr->src[0]));
546 sop2->operands[1] = Operand(get_alu_src(ctx, instr->src[1]));
547 sop2->definitions[0] = Definition(dst);
548 if (writes_scc)
549 sop2->definitions[1] = Definition(ctx->program->allocateId(), scc, s1);
550 ctx->block->instructions.emplace_back(std::move(sop2));
551 }
552
553 void emit_vop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
554 bool commutative, bool swap_srcs=false, bool flush_denorms = false)
555 {
556 Builder bld(ctx->program, ctx->block);
557 Temp src0 = get_alu_src(ctx, instr->src[swap_srcs ? 1 : 0]);
558 Temp src1 = get_alu_src(ctx, instr->src[swap_srcs ? 0 : 1]);
559 if (src1.type() == RegType::sgpr) {
560 if (commutative && src0.type() == RegType::vgpr) {
561 Temp t = src0;
562 src0 = src1;
563 src1 = t;
564 } else if (src0.type() == RegType::vgpr &&
565 op != aco_opcode::v_madmk_f32 &&
566 op != aco_opcode::v_madak_f32 &&
567 op != aco_opcode::v_madmk_f16 &&
568 op != aco_opcode::v_madak_f16) {
569 /* If the instruction is not commutative, we emit a VOP3A instruction */
570 bld.vop2_e64(op, Definition(dst), src0, src1);
571 return;
572 } else {
573 src1 = bld.copy(bld.def(RegType::vgpr, src1.size()), src1); //TODO: as_vgpr
574 }
575 }
576
577 if (flush_denorms && ctx->program->chip_class < GFX9) {
578 assert(dst.size() == 1);
579 Temp tmp = bld.vop2(op, bld.def(v1), src0, src1);
580 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
581 } else {
582 bld.vop2(op, Definition(dst), src0, src1);
583 }
584 }
585
586 void emit_vop3a_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
587 bool flush_denorms = false)
588 {
589 Temp src0 = get_alu_src(ctx, instr->src[0]);
590 Temp src1 = get_alu_src(ctx, instr->src[1]);
591 Temp src2 = get_alu_src(ctx, instr->src[2]);
592
593 /* ensure that the instruction has at most 1 sgpr operand
594 * The optimizer will inline constants for us */
595 if (src0.type() == RegType::sgpr && src1.type() == RegType::sgpr)
596 src0 = as_vgpr(ctx, src0);
597 if (src1.type() == RegType::sgpr && src2.type() == RegType::sgpr)
598 src1 = as_vgpr(ctx, src1);
599 if (src2.type() == RegType::sgpr && src0.type() == RegType::sgpr)
600 src2 = as_vgpr(ctx, src2);
601
602 Builder bld(ctx->program, ctx->block);
603 if (flush_denorms && ctx->program->chip_class < GFX9) {
604 assert(dst.size() == 1);
605 Temp tmp = bld.vop3(op, Definition(dst), src0, src1, src2);
606 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
607 } else {
608 bld.vop3(op, Definition(dst), src0, src1, src2);
609 }
610 }
611
612 void emit_vop1_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
613 {
614 Builder bld(ctx->program, ctx->block);
615 bld.vop1(op, Definition(dst), get_alu_src(ctx, instr->src[0]));
616 }
617
618 void emit_vopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
619 {
620 Temp src0 = get_alu_src(ctx, instr->src[0]);
621 Temp src1 = get_alu_src(ctx, instr->src[1]);
622 assert(src0.size() == src1.size());
623
624 aco_ptr<Instruction> vopc;
625 if (src1.type() == RegType::sgpr) {
626 if (src0.type() == RegType::vgpr) {
627 /* to swap the operands, we might also have to change the opcode */
628 switch (op) {
629 case aco_opcode::v_cmp_lt_f16:
630 op = aco_opcode::v_cmp_gt_f16;
631 break;
632 case aco_opcode::v_cmp_ge_f16:
633 op = aco_opcode::v_cmp_le_f16;
634 break;
635 case aco_opcode::v_cmp_lt_i16:
636 op = aco_opcode::v_cmp_gt_i16;
637 break;
638 case aco_opcode::v_cmp_ge_i16:
639 op = aco_opcode::v_cmp_le_i16;
640 break;
641 case aco_opcode::v_cmp_lt_u16:
642 op = aco_opcode::v_cmp_gt_u16;
643 break;
644 case aco_opcode::v_cmp_ge_u16:
645 op = aco_opcode::v_cmp_le_u16;
646 break;
647 case aco_opcode::v_cmp_lt_f32:
648 op = aco_opcode::v_cmp_gt_f32;
649 break;
650 case aco_opcode::v_cmp_ge_f32:
651 op = aco_opcode::v_cmp_le_f32;
652 break;
653 case aco_opcode::v_cmp_lt_i32:
654 op = aco_opcode::v_cmp_gt_i32;
655 break;
656 case aco_opcode::v_cmp_ge_i32:
657 op = aco_opcode::v_cmp_le_i32;
658 break;
659 case aco_opcode::v_cmp_lt_u32:
660 op = aco_opcode::v_cmp_gt_u32;
661 break;
662 case aco_opcode::v_cmp_ge_u32:
663 op = aco_opcode::v_cmp_le_u32;
664 break;
665 case aco_opcode::v_cmp_lt_f64:
666 op = aco_opcode::v_cmp_gt_f64;
667 break;
668 case aco_opcode::v_cmp_ge_f64:
669 op = aco_opcode::v_cmp_le_f64;
670 break;
671 case aco_opcode::v_cmp_lt_i64:
672 op = aco_opcode::v_cmp_gt_i64;
673 break;
674 case aco_opcode::v_cmp_ge_i64:
675 op = aco_opcode::v_cmp_le_i64;
676 break;
677 case aco_opcode::v_cmp_lt_u64:
678 op = aco_opcode::v_cmp_gt_u64;
679 break;
680 case aco_opcode::v_cmp_ge_u64:
681 op = aco_opcode::v_cmp_le_u64;
682 break;
683 default: /* eq and ne are commutative */
684 break;
685 }
686 Temp t = src0;
687 src0 = src1;
688 src1 = t;
689 } else {
690 src1 = as_vgpr(ctx, src1);
691 }
692 }
693
694 Builder bld(ctx->program, ctx->block);
695 bld.vopc(op, bld.hint_vcc(Definition(dst)), src0, src1);
696 }
697
698 void emit_sopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
699 {
700 Temp src0 = get_alu_src(ctx, instr->src[0]);
701 Temp src1 = get_alu_src(ctx, instr->src[1]);
702 Builder bld(ctx->program, ctx->block);
703
704 assert(dst.regClass() == bld.lm);
705 assert(src0.type() == RegType::sgpr);
706 assert(src1.type() == RegType::sgpr);
707 assert(src0.regClass() == src1.regClass());
708
709 /* Emit the SALU comparison instruction */
710 Temp cmp = bld.sopc(op, bld.scc(bld.def(s1)), src0, src1);
711 /* Turn the result into a per-lane bool */
712 bool_to_vector_condition(ctx, cmp, dst);
713 }
714
715 void emit_comparison(isel_context *ctx, nir_alu_instr *instr, Temp dst,
716 aco_opcode v16_op, aco_opcode v32_op, aco_opcode v64_op, aco_opcode s32_op = aco_opcode::num_opcodes, aco_opcode s64_op = aco_opcode::num_opcodes)
717 {
718 aco_opcode s_op = instr->src[0].src.ssa->bit_size == 64 ? s64_op : instr->src[0].src.ssa->bit_size == 32 ? s32_op : aco_opcode::num_opcodes;
719 aco_opcode v_op = instr->src[0].src.ssa->bit_size == 64 ? v64_op : instr->src[0].src.ssa->bit_size == 32 ? v32_op : v16_op;
720 bool divergent_vals = ctx->divergent_vals[instr->dest.dest.ssa.index];
721 bool use_valu = s_op == aco_opcode::num_opcodes ||
722 divergent_vals ||
723 ctx->allocated[instr->src[0].src.ssa->index].type() == RegType::vgpr ||
724 ctx->allocated[instr->src[1].src.ssa->index].type() == RegType::vgpr;
725 aco_opcode op = use_valu ? v_op : s_op;
726 assert(op != aco_opcode::num_opcodes);
727 assert(dst.regClass() == ctx->program->lane_mask);
728
729 if (use_valu)
730 emit_vopc_instruction(ctx, instr, op, dst);
731 else
732 emit_sopc_instruction(ctx, instr, op, dst);
733 }
734
735 void emit_boolean_logic(isel_context *ctx, nir_alu_instr *instr, Builder::WaveSpecificOpcode op, Temp dst)
736 {
737 Builder bld(ctx->program, ctx->block);
738 Temp src0 = get_alu_src(ctx, instr->src[0]);
739 Temp src1 = get_alu_src(ctx, instr->src[1]);
740
741 assert(dst.regClass() == bld.lm);
742 assert(src0.regClass() == bld.lm);
743 assert(src1.regClass() == bld.lm);
744
745 bld.sop2(op, Definition(dst), bld.def(s1, scc), src0, src1);
746 }
747
748 void emit_bcsel(isel_context *ctx, nir_alu_instr *instr, Temp dst)
749 {
750 Builder bld(ctx->program, ctx->block);
751 Temp cond = get_alu_src(ctx, instr->src[0]);
752 Temp then = get_alu_src(ctx, instr->src[1]);
753 Temp els = get_alu_src(ctx, instr->src[2]);
754
755 assert(cond.regClass() == bld.lm);
756
757 if (dst.type() == RegType::vgpr) {
758 aco_ptr<Instruction> bcsel;
759 if (dst.regClass() == v2b) {
760 then = as_vgpr(ctx, then);
761 els = as_vgpr(ctx, els);
762
763 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), els, then, cond);
764 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
765 } else if (dst.regClass() == v1) {
766 then = as_vgpr(ctx, then);
767 els = as_vgpr(ctx, els);
768
769 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), els, then, cond);
770 } else if (dst.regClass() == v2) {
771 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
772 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), then);
773 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
774 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), els);
775
776 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, cond);
777 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, cond);
778
779 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
780 } else {
781 fprintf(stderr, "Unimplemented NIR instr bit size: ");
782 nir_print_instr(&instr->instr, stderr);
783 fprintf(stderr, "\n");
784 }
785 return;
786 }
787
788 if (instr->dest.dest.ssa.bit_size == 1) {
789 assert(dst.regClass() == bld.lm);
790 assert(then.regClass() == bld.lm);
791 assert(els.regClass() == bld.lm);
792 }
793
794 if (!ctx->divergent_vals[instr->src[0].src.ssa->index]) { /* uniform condition and values in sgpr */
795 if (dst.regClass() == s1 || dst.regClass() == s2) {
796 assert((then.regClass() == s1 || then.regClass() == s2) && els.regClass() == then.regClass());
797 assert(dst.size() == then.size());
798 aco_opcode op = dst.regClass() == s1 ? aco_opcode::s_cselect_b32 : aco_opcode::s_cselect_b64;
799 bld.sop2(op, Definition(dst), then, els, bld.scc(bool_to_scalar_condition(ctx, cond)));
800 } else {
801 fprintf(stderr, "Unimplemented uniform bcsel bit size: ");
802 nir_print_instr(&instr->instr, stderr);
803 fprintf(stderr, "\n");
804 }
805 return;
806 }
807
808 /* divergent boolean bcsel
809 * this implements bcsel on bools: dst = s0 ? s1 : s2
810 * are going to be: dst = (s0 & s1) | (~s0 & s2) */
811 assert(instr->dest.dest.ssa.bit_size == 1);
812
813 if (cond.id() != then.id())
814 then = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), cond, then);
815
816 if (cond.id() == els.id())
817 bld.sop1(Builder::s_mov, Definition(dst), then);
818 else
819 bld.sop2(Builder::s_or, Definition(dst), bld.def(s1, scc), then,
820 bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), els, cond));
821 }
822
823 void emit_scaled_op(isel_context *ctx, Builder& bld, Definition dst, Temp val,
824 aco_opcode op, uint32_t undo)
825 {
826 /* multiply by 16777216 to handle denormals */
827 Temp is_denormal = bld.vopc(aco_opcode::v_cmp_class_f32, bld.hint_vcc(bld.def(bld.lm)),
828 as_vgpr(ctx, val), bld.copy(bld.def(v1), Operand((1u << 7) | (1u << 4))));
829 Temp scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x4b800000u), val);
830 scaled = bld.vop1(op, bld.def(v1), scaled);
831 scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(undo), scaled);
832
833 Temp not_scaled = bld.vop1(op, bld.def(v1), val);
834
835 bld.vop2(aco_opcode::v_cndmask_b32, dst, not_scaled, scaled, is_denormal);
836 }
837
838 void emit_rcp(isel_context *ctx, Builder& bld, Definition dst, Temp val)
839 {
840 if (ctx->block->fp_mode.denorm32 == 0) {
841 bld.vop1(aco_opcode::v_rcp_f32, dst, val);
842 return;
843 }
844
845 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rcp_f32, 0x4b800000u);
846 }
847
848 void emit_rsq(isel_context *ctx, Builder& bld, Definition dst, Temp val)
849 {
850 if (ctx->block->fp_mode.denorm32 == 0) {
851 bld.vop1(aco_opcode::v_rsq_f32, dst, val);
852 return;
853 }
854
855 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rsq_f32, 0x45800000u);
856 }
857
858 void emit_sqrt(isel_context *ctx, Builder& bld, Definition dst, Temp val)
859 {
860 if (ctx->block->fp_mode.denorm32 == 0) {
861 bld.vop1(aco_opcode::v_sqrt_f32, dst, val);
862 return;
863 }
864
865 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_sqrt_f32, 0x39800000u);
866 }
867
868 void emit_log2(isel_context *ctx, Builder& bld, Definition dst, Temp val)
869 {
870 if (ctx->block->fp_mode.denorm32 == 0) {
871 bld.vop1(aco_opcode::v_log_f32, dst, val);
872 return;
873 }
874
875 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_log_f32, 0xc1c00000u);
876 }
877
878 Temp emit_trunc_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
879 {
880 if (ctx->options->chip_class >= GFX7)
881 return bld.vop1(aco_opcode::v_trunc_f64, Definition(dst), val);
882
883 /* GFX6 doesn't support V_TRUNC_F64, lower it. */
884 /* TODO: create more efficient code! */
885 if (val.type() == RegType::sgpr)
886 val = as_vgpr(ctx, val);
887
888 /* Split the input value. */
889 Temp val_lo = bld.tmp(v1), val_hi = bld.tmp(v1);
890 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
891
892 /* Extract the exponent and compute the unbiased value. */
893 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f64, bld.def(v1), val);
894
895 /* Extract the fractional part. */
896 Temp fract_mask = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x000fffffu));
897 fract_mask = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), fract_mask, exponent);
898
899 Temp fract_mask_lo = bld.tmp(v1), fract_mask_hi = bld.tmp(v1);
900 bld.pseudo(aco_opcode::p_split_vector, Definition(fract_mask_lo), Definition(fract_mask_hi), fract_mask);
901
902 Temp fract_lo = bld.tmp(v1), fract_hi = bld.tmp(v1);
903 Temp tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_lo);
904 fract_lo = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_lo, tmp);
905 tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_hi);
906 fract_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_hi, tmp);
907
908 /* Get the sign bit. */
909 Temp sign = bld.vop2(aco_opcode::v_ashr_i32, bld.def(v1), Operand(31u), val_hi);
910
911 /* Decide the operation to apply depending on the unbiased exponent. */
912 Temp exp_lt0 = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)), exponent, Operand(0u));
913 Temp dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_lo, bld.copy(bld.def(v1), Operand(0u)), exp_lt0);
914 Temp dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_hi, sign, exp_lt0);
915 Temp exp_gt51 = bld.vopc_e64(aco_opcode::v_cmp_gt_i32, bld.def(s2), exponent, Operand(51u));
916 dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_lo, val_lo, exp_gt51);
917 dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_hi, val_hi, exp_gt51);
918
919 return bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst_lo, dst_hi);
920 }
921
922 Temp emit_floor_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
923 {
924 if (ctx->options->chip_class >= GFX7)
925 return bld.vop1(aco_opcode::v_floor_f64, Definition(dst), val);
926
927 /* GFX6 doesn't support V_FLOOR_F64, lower it. */
928 Temp src0 = as_vgpr(ctx, val);
929
930 Temp mask = bld.copy(bld.def(s1), Operand(3u)); /* isnan */
931 Temp min_val = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(-1u), Operand(0x3fefffffu));
932
933 Temp isnan = bld.vopc_e64(aco_opcode::v_cmp_class_f64, bld.hint_vcc(bld.def(bld.lm)), src0, mask);
934 Temp fract = bld.vop1(aco_opcode::v_fract_f64, bld.def(v2), src0);
935 Temp min = bld.vop3(aco_opcode::v_min_f64, bld.def(v2), fract, min_val);
936
937 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
938 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), src0);
939 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
940 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), min);
941
942 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, isnan);
943 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, isnan);
944
945 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), dst0, dst1);
946
947 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src0, v);
948 static_cast<VOP3A_instruction*>(add)->neg[1] = true;
949
950 return add->definitions[0].getTemp();
951 }
952
953 void visit_alu_instr(isel_context *ctx, nir_alu_instr *instr)
954 {
955 if (!instr->dest.dest.is_ssa) {
956 fprintf(stderr, "nir alu dst not in ssa: ");
957 nir_print_instr(&instr->instr, stderr);
958 fprintf(stderr, "\n");
959 abort();
960 }
961 Builder bld(ctx->program, ctx->block);
962 Temp dst = get_ssa_temp(ctx, &instr->dest.dest.ssa);
963 switch(instr->op) {
964 case nir_op_vec2:
965 case nir_op_vec3:
966 case nir_op_vec4: {
967 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
968 unsigned num = instr->dest.dest.ssa.num_components;
969 for (unsigned i = 0; i < num; ++i)
970 elems[i] = get_alu_src(ctx, instr->src[i]);
971
972 if (instr->dest.dest.ssa.bit_size >= 32 || dst.type() == RegType::vgpr) {
973 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.dest.ssa.num_components, 1)};
974 for (unsigned i = 0; i < num; ++i)
975 vec->operands[i] = Operand{elems[i]};
976 vec->definitions[0] = Definition(dst);
977 ctx->block->instructions.emplace_back(std::move(vec));
978 ctx->allocated_vec.emplace(dst.id(), elems);
979 } else {
980 // TODO: that is a bit suboptimal..
981 Temp mask = bld.copy(bld.def(s1), Operand((1u << instr->dest.dest.ssa.bit_size) - 1));
982 for (unsigned i = 0; i < num - 1; ++i)
983 if (((i+1) * instr->dest.dest.ssa.bit_size) % 32)
984 elems[i] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), elems[i], mask);
985 for (unsigned i = 0; i < num; ++i) {
986 unsigned bit = i * instr->dest.dest.ssa.bit_size;
987 if (bit % 32 == 0) {
988 elems[bit / 32] = elems[i];
989 } else {
990 elems[i] = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc),
991 elems[i], Operand((i * instr->dest.dest.ssa.bit_size) % 32));
992 elems[bit / 32] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), elems[bit / 32], elems[i]);
993 }
994 }
995 if (dst.size() == 1)
996 bld.copy(Definition(dst), elems[0]);
997 else
998 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), elems[0], elems[1]);
999 }
1000 break;
1001 }
1002 case nir_op_mov: {
1003 Temp src = get_alu_src(ctx, instr->src[0]);
1004 aco_ptr<Instruction> mov;
1005 if (dst.type() == RegType::sgpr) {
1006 if (src.type() == RegType::vgpr)
1007 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
1008 else if (src.regClass() == s1)
1009 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
1010 else if (src.regClass() == s2)
1011 bld.sop1(aco_opcode::s_mov_b64, Definition(dst), src);
1012 else
1013 unreachable("wrong src register class for nir_op_imov");
1014 } else if (dst.regClass() == v1) {
1015 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), src);
1016 } else if (dst.regClass() == v2) {
1017 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
1018 } else {
1019 nir_print_instr(&instr->instr, stderr);
1020 unreachable("Should have been lowered to scalar.");
1021 }
1022 break;
1023 }
1024 case nir_op_inot: {
1025 Temp src = get_alu_src(ctx, instr->src[0]);
1026 if (instr->dest.dest.ssa.bit_size == 1) {
1027 assert(src.regClass() == bld.lm);
1028 assert(dst.regClass() == bld.lm);
1029 /* Don't use s_andn2 here, this allows the optimizer to make a better decision */
1030 Temp tmp = bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), src);
1031 bld.sop2(Builder::s_and, Definition(dst), bld.def(s1, scc), tmp, Operand(exec, bld.lm));
1032 } else if (dst.regClass() == v1) {
1033 emit_vop1_instruction(ctx, instr, aco_opcode::v_not_b32, dst);
1034 } else if (dst.type() == RegType::sgpr) {
1035 aco_opcode opcode = dst.size() == 1 ? aco_opcode::s_not_b32 : aco_opcode::s_not_b64;
1036 bld.sop1(opcode, Definition(dst), bld.def(s1, scc), src);
1037 } else {
1038 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1039 nir_print_instr(&instr->instr, stderr);
1040 fprintf(stderr, "\n");
1041 }
1042 break;
1043 }
1044 case nir_op_ineg: {
1045 Temp src = get_alu_src(ctx, instr->src[0]);
1046 if (dst.regClass() == v1) {
1047 bld.vsub32(Definition(dst), Operand(0u), Operand(src));
1048 } else if (dst.regClass() == s1) {
1049 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand((uint32_t) -1), src);
1050 } else if (dst.size() == 2) {
1051 Temp src0 = bld.tmp(dst.type(), 1);
1052 Temp src1 = bld.tmp(dst.type(), 1);
1053 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
1054
1055 if (dst.regClass() == s2) {
1056 Temp carry = bld.tmp(s1);
1057 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), Operand(0u), src0);
1058 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), src1, carry);
1059 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1060 } else {
1061 Temp lower = bld.tmp(v1);
1062 Temp borrow = bld.vsub32(Definition(lower), Operand(0u), src0, true).def(1).getTemp();
1063 Temp upper = bld.vsub32(bld.def(v1), Operand(0u), src1, false, borrow);
1064 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1065 }
1066 } else {
1067 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1068 nir_print_instr(&instr->instr, stderr);
1069 fprintf(stderr, "\n");
1070 }
1071 break;
1072 }
1073 case nir_op_iabs: {
1074 if (dst.regClass() == s1) {
1075 bld.sop1(aco_opcode::s_abs_i32, Definition(dst), bld.def(s1, scc), get_alu_src(ctx, instr->src[0]));
1076 } else if (dst.regClass() == v1) {
1077 Temp src = get_alu_src(ctx, instr->src[0]);
1078 bld.vop2(aco_opcode::v_max_i32, Definition(dst), src, bld.vsub32(bld.def(v1), Operand(0u), src));
1079 } else {
1080 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1081 nir_print_instr(&instr->instr, stderr);
1082 fprintf(stderr, "\n");
1083 }
1084 break;
1085 }
1086 case nir_op_isign: {
1087 Temp src = get_alu_src(ctx, instr->src[0]);
1088 if (dst.regClass() == s1) {
1089 Temp tmp = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
1090 Temp gtz = bld.sopc(aco_opcode::s_cmp_gt_i32, bld.def(s1, scc), src, Operand(0u));
1091 bld.sop2(aco_opcode::s_add_i32, Definition(dst), bld.def(s1, scc), gtz, tmp);
1092 } else if (dst.regClass() == s2) {
1093 Temp neg = bld.sop2(aco_opcode::s_ashr_i64, bld.def(s2), bld.def(s1, scc), src, Operand(63u));
1094 Temp neqz;
1095 if (ctx->program->chip_class >= GFX8)
1096 neqz = bld.sopc(aco_opcode::s_cmp_lg_u64, bld.def(s1, scc), src, Operand(0u));
1097 else
1098 neqz = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), src, Operand(0u)).def(1).getTemp();
1099 /* SCC gets zero-extended to 64 bit */
1100 bld.sop2(aco_opcode::s_or_b64, Definition(dst), bld.def(s1, scc), neg, bld.scc(neqz));
1101 } else if (dst.regClass() == v1) {
1102 Temp tmp = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
1103 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1104 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(1u), tmp, gtz);
1105 } else if (dst.regClass() == v2) {
1106 Temp upper = emit_extract_vector(ctx, src, 1, v1);
1107 Temp neg = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), upper);
1108 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1109 Temp lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(1u), neg, gtz);
1110 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), neg, gtz);
1111 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1112 } else {
1113 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1114 nir_print_instr(&instr->instr, stderr);
1115 fprintf(stderr, "\n");
1116 }
1117 break;
1118 }
1119 case nir_op_imax: {
1120 if (dst.regClass() == v1) {
1121 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_i32, dst, true);
1122 } else if (dst.regClass() == s1) {
1123 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_i32, dst, true);
1124 } else {
1125 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1126 nir_print_instr(&instr->instr, stderr);
1127 fprintf(stderr, "\n");
1128 }
1129 break;
1130 }
1131 case nir_op_umax: {
1132 if (dst.regClass() == v1) {
1133 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_u32, dst, true);
1134 } else if (dst.regClass() == s1) {
1135 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_u32, dst, true);
1136 } else {
1137 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1138 nir_print_instr(&instr->instr, stderr);
1139 fprintf(stderr, "\n");
1140 }
1141 break;
1142 }
1143 case nir_op_imin: {
1144 if (dst.regClass() == v1) {
1145 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_i32, dst, true);
1146 } else if (dst.regClass() == s1) {
1147 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_i32, dst, true);
1148 } else {
1149 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1150 nir_print_instr(&instr->instr, stderr);
1151 fprintf(stderr, "\n");
1152 }
1153 break;
1154 }
1155 case nir_op_umin: {
1156 if (dst.regClass() == v1) {
1157 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_u32, dst, true);
1158 } else if (dst.regClass() == s1) {
1159 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_u32, dst, true);
1160 } else {
1161 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1162 nir_print_instr(&instr->instr, stderr);
1163 fprintf(stderr, "\n");
1164 }
1165 break;
1166 }
1167 case nir_op_ior: {
1168 if (instr->dest.dest.ssa.bit_size == 1) {
1169 emit_boolean_logic(ctx, instr, Builder::s_or, dst);
1170 } else if (dst.regClass() == v1) {
1171 emit_vop2_instruction(ctx, instr, aco_opcode::v_or_b32, dst, true);
1172 } else if (dst.regClass() == s1) {
1173 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b32, dst, true);
1174 } else if (dst.regClass() == s2) {
1175 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b64, dst, true);
1176 } else {
1177 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1178 nir_print_instr(&instr->instr, stderr);
1179 fprintf(stderr, "\n");
1180 }
1181 break;
1182 }
1183 case nir_op_iand: {
1184 if (instr->dest.dest.ssa.bit_size == 1) {
1185 emit_boolean_logic(ctx, instr, Builder::s_and, dst);
1186 } else if (dst.regClass() == v1) {
1187 emit_vop2_instruction(ctx, instr, aco_opcode::v_and_b32, dst, true);
1188 } else if (dst.regClass() == s1) {
1189 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b32, dst, true);
1190 } else if (dst.regClass() == s2) {
1191 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b64, dst, true);
1192 } else {
1193 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1194 nir_print_instr(&instr->instr, stderr);
1195 fprintf(stderr, "\n");
1196 }
1197 break;
1198 }
1199 case nir_op_ixor: {
1200 if (instr->dest.dest.ssa.bit_size == 1) {
1201 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
1202 } else if (dst.regClass() == v1) {
1203 emit_vop2_instruction(ctx, instr, aco_opcode::v_xor_b32, dst, true);
1204 } else if (dst.regClass() == s1) {
1205 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b32, dst, true);
1206 } else if (dst.regClass() == s2) {
1207 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b64, dst, true);
1208 } else {
1209 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1210 nir_print_instr(&instr->instr, stderr);
1211 fprintf(stderr, "\n");
1212 }
1213 break;
1214 }
1215 case nir_op_ushr: {
1216 if (dst.regClass() == v1) {
1217 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshrrev_b32, dst, false, true);
1218 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1219 bld.vop3(aco_opcode::v_lshrrev_b64, Definition(dst),
1220 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1221 } else if (dst.regClass() == v2) {
1222 bld.vop3(aco_opcode::v_lshr_b64, Definition(dst),
1223 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1224 } else if (dst.regClass() == s2) {
1225 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b64, dst, true);
1226 } else if (dst.regClass() == s1) {
1227 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b32, dst, true);
1228 } else {
1229 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1230 nir_print_instr(&instr->instr, stderr);
1231 fprintf(stderr, "\n");
1232 }
1233 break;
1234 }
1235 case nir_op_ishl: {
1236 if (dst.regClass() == v1) {
1237 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshlrev_b32, dst, false, true);
1238 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1239 bld.vop3(aco_opcode::v_lshlrev_b64, Definition(dst),
1240 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1241 } else if (dst.regClass() == v2) {
1242 bld.vop3(aco_opcode::v_lshl_b64, Definition(dst),
1243 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1244 } else if (dst.regClass() == s1) {
1245 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b32, dst, true);
1246 } else if (dst.regClass() == s2) {
1247 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b64, dst, true);
1248 } else {
1249 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1250 nir_print_instr(&instr->instr, stderr);
1251 fprintf(stderr, "\n");
1252 }
1253 break;
1254 }
1255 case nir_op_ishr: {
1256 if (dst.regClass() == v1) {
1257 emit_vop2_instruction(ctx, instr, aco_opcode::v_ashrrev_i32, dst, false, true);
1258 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1259 bld.vop3(aco_opcode::v_ashrrev_i64, Definition(dst),
1260 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1261 } else if (dst.regClass() == v2) {
1262 bld.vop3(aco_opcode::v_ashr_i64, Definition(dst),
1263 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1264 } else if (dst.regClass() == s1) {
1265 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i32, dst, true);
1266 } else if (dst.regClass() == s2) {
1267 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i64, dst, true);
1268 } else {
1269 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1270 nir_print_instr(&instr->instr, stderr);
1271 fprintf(stderr, "\n");
1272 }
1273 break;
1274 }
1275 case nir_op_find_lsb: {
1276 Temp src = get_alu_src(ctx, instr->src[0]);
1277 if (src.regClass() == s1) {
1278 bld.sop1(aco_opcode::s_ff1_i32_b32, Definition(dst), src);
1279 } else if (src.regClass() == v1) {
1280 emit_vop1_instruction(ctx, instr, aco_opcode::v_ffbl_b32, dst);
1281 } else if (src.regClass() == s2) {
1282 bld.sop1(aco_opcode::s_ff1_i32_b64, Definition(dst), src);
1283 } else {
1284 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1285 nir_print_instr(&instr->instr, stderr);
1286 fprintf(stderr, "\n");
1287 }
1288 break;
1289 }
1290 case nir_op_ufind_msb:
1291 case nir_op_ifind_msb: {
1292 Temp src = get_alu_src(ctx, instr->src[0]);
1293 if (src.regClass() == s1 || src.regClass() == s2) {
1294 aco_opcode op = src.regClass() == s2 ?
1295 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b64 : aco_opcode::s_flbit_i32_i64) :
1296 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b32 : aco_opcode::s_flbit_i32);
1297 Temp msb_rev = bld.sop1(op, bld.def(s1), src);
1298
1299 Builder::Result sub = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc),
1300 Operand(src.size() * 32u - 1u), msb_rev);
1301 Temp msb = sub.def(0).getTemp();
1302 Temp carry = sub.def(1).getTemp();
1303
1304 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t)-1), msb, bld.scc(carry));
1305 } else if (src.regClass() == v1) {
1306 aco_opcode op = instr->op == nir_op_ufind_msb ? aco_opcode::v_ffbh_u32 : aco_opcode::v_ffbh_i32;
1307 Temp msb_rev = bld.tmp(v1);
1308 emit_vop1_instruction(ctx, instr, op, msb_rev);
1309 Temp msb = bld.tmp(v1);
1310 Temp carry = bld.vsub32(Definition(msb), Operand(31u), Operand(msb_rev), true).def(1).getTemp();
1311 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), msb, Operand((uint32_t)-1), carry);
1312 } else {
1313 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1314 nir_print_instr(&instr->instr, stderr);
1315 fprintf(stderr, "\n");
1316 }
1317 break;
1318 }
1319 case nir_op_bitfield_reverse: {
1320 if (dst.regClass() == s1) {
1321 bld.sop1(aco_opcode::s_brev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1322 } else if (dst.regClass() == v1) {
1323 bld.vop1(aco_opcode::v_bfrev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1324 } else {
1325 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1326 nir_print_instr(&instr->instr, stderr);
1327 fprintf(stderr, "\n");
1328 }
1329 break;
1330 }
1331 case nir_op_iadd: {
1332 if (dst.regClass() == s1) {
1333 emit_sop2_instruction(ctx, instr, aco_opcode::s_add_u32, dst, true);
1334 break;
1335 }
1336
1337 Temp src0 = get_alu_src(ctx, instr->src[0]);
1338 Temp src1 = get_alu_src(ctx, instr->src[1]);
1339 if (dst.regClass() == v1) {
1340 bld.vadd32(Definition(dst), Operand(src0), Operand(src1));
1341 break;
1342 }
1343
1344 assert(src0.size() == 2 && src1.size() == 2);
1345 Temp src00 = bld.tmp(src0.type(), 1);
1346 Temp src01 = bld.tmp(dst.type(), 1);
1347 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1348 Temp src10 = bld.tmp(src1.type(), 1);
1349 Temp src11 = bld.tmp(dst.type(), 1);
1350 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1351
1352 if (dst.regClass() == s2) {
1353 Temp carry = bld.tmp(s1);
1354 Temp dst0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1355 Temp dst1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), src01, src11, bld.scc(carry));
1356 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1357 } else if (dst.regClass() == v2) {
1358 Temp dst0 = bld.tmp(v1);
1359 Temp carry = bld.vadd32(Definition(dst0), src00, src10, true).def(1).getTemp();
1360 Temp dst1 = bld.vadd32(bld.def(v1), src01, src11, false, carry);
1361 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1362 } else {
1363 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1364 nir_print_instr(&instr->instr, stderr);
1365 fprintf(stderr, "\n");
1366 }
1367 break;
1368 }
1369 case nir_op_uadd_sat: {
1370 Temp src0 = get_alu_src(ctx, instr->src[0]);
1371 Temp src1 = get_alu_src(ctx, instr->src[1]);
1372 if (dst.regClass() == s1) {
1373 Temp tmp = bld.tmp(s1), carry = bld.tmp(s1);
1374 bld.sop2(aco_opcode::s_add_u32, Definition(tmp), bld.scc(Definition(carry)),
1375 src0, src1);
1376 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t) -1), tmp, bld.scc(carry));
1377 } else if (dst.regClass() == v1) {
1378 if (ctx->options->chip_class >= GFX9) {
1379 aco_ptr<VOP3A_instruction> add{create_instruction<VOP3A_instruction>(aco_opcode::v_add_u32, asVOP3(Format::VOP2), 2, 1)};
1380 add->operands[0] = Operand(src0);
1381 add->operands[1] = Operand(src1);
1382 add->definitions[0] = Definition(dst);
1383 add->clamp = 1;
1384 ctx->block->instructions.emplace_back(std::move(add));
1385 } else {
1386 if (src1.regClass() != v1)
1387 std::swap(src0, src1);
1388 assert(src1.regClass() == v1);
1389 Temp tmp = bld.tmp(v1);
1390 Temp carry = bld.vadd32(Definition(tmp), src0, src1, true).def(1).getTemp();
1391 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), tmp, Operand((uint32_t) -1), carry);
1392 }
1393 } else {
1394 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1395 nir_print_instr(&instr->instr, stderr);
1396 fprintf(stderr, "\n");
1397 }
1398 break;
1399 }
1400 case nir_op_uadd_carry: {
1401 Temp src0 = get_alu_src(ctx, instr->src[0]);
1402 Temp src1 = get_alu_src(ctx, instr->src[1]);
1403 if (dst.regClass() == s1) {
1404 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1405 break;
1406 }
1407 if (dst.regClass() == v1) {
1408 Temp carry = bld.vadd32(bld.def(v1), src0, src1, true).def(1).getTemp();
1409 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), carry);
1410 break;
1411 }
1412
1413 Temp src00 = bld.tmp(src0.type(), 1);
1414 Temp src01 = bld.tmp(dst.type(), 1);
1415 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1416 Temp src10 = bld.tmp(src1.type(), 1);
1417 Temp src11 = bld.tmp(dst.type(), 1);
1418 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1419 if (dst.regClass() == s2) {
1420 Temp carry = bld.tmp(s1);
1421 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1422 carry = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(carry)).def(1).getTemp();
1423 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1424 } else if (dst.regClass() == v2) {
1425 Temp carry = bld.vadd32(bld.def(v1), src00, src10, true).def(1).getTemp();
1426 carry = bld.vadd32(bld.def(v1), src01, src11, true, carry).def(1).getTemp();
1427 carry = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), carry);
1428 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1429 } else {
1430 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1431 nir_print_instr(&instr->instr, stderr);
1432 fprintf(stderr, "\n");
1433 }
1434 break;
1435 }
1436 case nir_op_isub: {
1437 if (dst.regClass() == s1) {
1438 emit_sop2_instruction(ctx, instr, aco_opcode::s_sub_i32, dst, true);
1439 break;
1440 }
1441
1442 Temp src0 = get_alu_src(ctx, instr->src[0]);
1443 Temp src1 = get_alu_src(ctx, instr->src[1]);
1444 if (dst.regClass() == v1) {
1445 bld.vsub32(Definition(dst), src0, src1);
1446 break;
1447 }
1448
1449 Temp src00 = bld.tmp(src0.type(), 1);
1450 Temp src01 = bld.tmp(dst.type(), 1);
1451 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1452 Temp src10 = bld.tmp(src1.type(), 1);
1453 Temp src11 = bld.tmp(dst.type(), 1);
1454 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1455 if (dst.regClass() == s2) {
1456 Temp carry = bld.tmp(s1);
1457 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1458 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), src01, src11, carry);
1459 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1460 } else if (dst.regClass() == v2) {
1461 Temp lower = bld.tmp(v1);
1462 Temp borrow = bld.vsub32(Definition(lower), src00, src10, true).def(1).getTemp();
1463 Temp upper = bld.vsub32(bld.def(v1), src01, src11, false, borrow);
1464 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1465 } else {
1466 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1467 nir_print_instr(&instr->instr, stderr);
1468 fprintf(stderr, "\n");
1469 }
1470 break;
1471 }
1472 case nir_op_usub_borrow: {
1473 Temp src0 = get_alu_src(ctx, instr->src[0]);
1474 Temp src1 = get_alu_src(ctx, instr->src[1]);
1475 if (dst.regClass() == s1) {
1476 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1477 break;
1478 } else if (dst.regClass() == v1) {
1479 Temp borrow = bld.vsub32(bld.def(v1), src0, src1, true).def(1).getTemp();
1480 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), borrow);
1481 break;
1482 }
1483
1484 Temp src00 = bld.tmp(src0.type(), 1);
1485 Temp src01 = bld.tmp(dst.type(), 1);
1486 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1487 Temp src10 = bld.tmp(src1.type(), 1);
1488 Temp src11 = bld.tmp(dst.type(), 1);
1489 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1490 if (dst.regClass() == s2) {
1491 Temp borrow = bld.tmp(s1);
1492 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), src00, src10);
1493 borrow = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(borrow)).def(1).getTemp();
1494 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1495 } else if (dst.regClass() == v2) {
1496 Temp borrow = bld.vsub32(bld.def(v1), src00, src10, true).def(1).getTemp();
1497 borrow = bld.vsub32(bld.def(v1), src01, src11, true, Operand(borrow)).def(1).getTemp();
1498 borrow = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), borrow);
1499 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1500 } else {
1501 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1502 nir_print_instr(&instr->instr, stderr);
1503 fprintf(stderr, "\n");
1504 }
1505 break;
1506 }
1507 case nir_op_imul: {
1508 if (dst.regClass() == v1) {
1509 bld.vop3(aco_opcode::v_mul_lo_u32, Definition(dst),
1510 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1511 } else if (dst.regClass() == s1) {
1512 emit_sop2_instruction(ctx, instr, aco_opcode::s_mul_i32, dst, false);
1513 } else {
1514 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1515 nir_print_instr(&instr->instr, stderr);
1516 fprintf(stderr, "\n");
1517 }
1518 break;
1519 }
1520 case nir_op_umul_high: {
1521 if (dst.regClass() == v1) {
1522 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1523 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1524 bld.sop2(aco_opcode::s_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1525 } else if (dst.regClass() == s1) {
1526 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1527 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1528 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1529 } else {
1530 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1531 nir_print_instr(&instr->instr, stderr);
1532 fprintf(stderr, "\n");
1533 }
1534 break;
1535 }
1536 case nir_op_imul_high: {
1537 if (dst.regClass() == v1) {
1538 bld.vop3(aco_opcode::v_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1539 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1540 bld.sop2(aco_opcode::s_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1541 } else if (dst.regClass() == s1) {
1542 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1543 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1544 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1545 } else {
1546 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1547 nir_print_instr(&instr->instr, stderr);
1548 fprintf(stderr, "\n");
1549 }
1550 break;
1551 }
1552 case nir_op_fmul: {
1553 Temp src0 = get_alu_src(ctx, instr->src[0]);
1554 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1555 if (dst.regClass() == v2b) {
1556 Temp tmp = bld.tmp(v1);
1557 emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f16, tmp, true);
1558 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1559 } else if (dst.regClass() == v1) {
1560 emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f32, dst, true);
1561 } else if (dst.regClass() == v2) {
1562 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), src0, src1);
1563 } else {
1564 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1565 nir_print_instr(&instr->instr, stderr);
1566 fprintf(stderr, "\n");
1567 }
1568 break;
1569 }
1570 case nir_op_fadd: {
1571 Temp src0 = get_alu_src(ctx, instr->src[0]);
1572 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1573 if (dst.regClass() == v2b) {
1574 Temp tmp = bld.tmp(v1);
1575 emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f16, tmp, true);
1576 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1577 } else if (dst.regClass() == v1) {
1578 emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f32, dst, true);
1579 } else if (dst.regClass() == v2) {
1580 bld.vop3(aco_opcode::v_add_f64, Definition(dst), src0, src1);
1581 } else {
1582 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1583 nir_print_instr(&instr->instr, stderr);
1584 fprintf(stderr, "\n");
1585 }
1586 break;
1587 }
1588 case nir_op_fsub: {
1589 Temp src0 = get_alu_src(ctx, instr->src[0]);
1590 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1591 if (dst.regClass() == v2b) {
1592 Temp tmp = bld.tmp(v1);
1593 if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
1594 emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f16, tmp, false);
1595 else
1596 emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f16, tmp, true);
1597 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1598 } else if (dst.regClass() == v1) {
1599 if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
1600 emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f32, dst, false);
1601 else
1602 emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f32, dst, true);
1603 } else if (dst.regClass() == v2) {
1604 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst),
1605 src0, src1);
1606 VOP3A_instruction* sub = static_cast<VOP3A_instruction*>(add);
1607 sub->neg[1] = true;
1608 } else {
1609 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1610 nir_print_instr(&instr->instr, stderr);
1611 fprintf(stderr, "\n");
1612 }
1613 break;
1614 }
1615 case nir_op_fmax: {
1616 Temp src0 = get_alu_src(ctx, instr->src[0]);
1617 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1618 if (dst.regClass() == v2b) {
1619 // TODO: check fp_mode.must_flush_denorms16_64
1620 Temp tmp = bld.tmp(v1);
1621 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f16, tmp, true);
1622 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1623 } else if (dst.regClass() == v1) {
1624 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1625 } else if (dst.regClass() == v2) {
1626 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1627 Temp tmp = bld.vop3(aco_opcode::v_max_f64, bld.def(v2), src0, src1);
1628 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1629 } else {
1630 bld.vop3(aco_opcode::v_max_f64, Definition(dst), src0, src1);
1631 }
1632 } else {
1633 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1634 nir_print_instr(&instr->instr, stderr);
1635 fprintf(stderr, "\n");
1636 }
1637 break;
1638 }
1639 case nir_op_fmin: {
1640 Temp src0 = get_alu_src(ctx, instr->src[0]);
1641 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1642 if (dst.regClass() == v2b) {
1643 // TODO: check fp_mode.must_flush_denorms16_64
1644 Temp tmp = bld.tmp(v1);
1645 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f16, tmp, true);
1646 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1647 } else if (dst.regClass() == v1) {
1648 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1649 } else if (dst.regClass() == v2) {
1650 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1651 Temp tmp = bld.vop3(aco_opcode::v_min_f64, bld.def(v2), src0, src1);
1652 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1653 } else {
1654 bld.vop3(aco_opcode::v_min_f64, Definition(dst), src0, src1);
1655 }
1656 } else {
1657 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1658 nir_print_instr(&instr->instr, stderr);
1659 fprintf(stderr, "\n");
1660 }
1661 break;
1662 }
1663 case nir_op_fmax3: {
1664 if (dst.regClass() == v2b) {
1665 Temp tmp = bld.tmp(v1);
1666 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_f16, tmp, false);
1667 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1668 } else if (dst.regClass() == v1) {
1669 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1670 } else {
1671 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1672 nir_print_instr(&instr->instr, stderr);
1673 fprintf(stderr, "\n");
1674 }
1675 break;
1676 }
1677 case nir_op_fmin3: {
1678 if (dst.regClass() == v2b) {
1679 Temp tmp = bld.tmp(v1);
1680 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_f16, tmp, false);
1681 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1682 } else if (dst.regClass() == v1) {
1683 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1684 } else {
1685 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1686 nir_print_instr(&instr->instr, stderr);
1687 fprintf(stderr, "\n");
1688 }
1689 break;
1690 }
1691 case nir_op_fmed3: {
1692 if (dst.regClass() == v2b) {
1693 Temp tmp = bld.tmp(v1);
1694 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_f16, tmp, false);
1695 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1696 } else if (dst.regClass() == v1) {
1697 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1698 } else {
1699 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1700 nir_print_instr(&instr->instr, stderr);
1701 fprintf(stderr, "\n");
1702 }
1703 break;
1704 }
1705 case nir_op_umax3: {
1706 if (dst.size() == 1) {
1707 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_u32, dst);
1708 } else {
1709 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1710 nir_print_instr(&instr->instr, stderr);
1711 fprintf(stderr, "\n");
1712 }
1713 break;
1714 }
1715 case nir_op_umin3: {
1716 if (dst.size() == 1) {
1717 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_u32, dst);
1718 } else {
1719 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1720 nir_print_instr(&instr->instr, stderr);
1721 fprintf(stderr, "\n");
1722 }
1723 break;
1724 }
1725 case nir_op_umed3: {
1726 if (dst.size() == 1) {
1727 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_u32, dst);
1728 } else {
1729 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1730 nir_print_instr(&instr->instr, stderr);
1731 fprintf(stderr, "\n");
1732 }
1733 break;
1734 }
1735 case nir_op_imax3: {
1736 if (dst.size() == 1) {
1737 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_i32, dst);
1738 } else {
1739 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1740 nir_print_instr(&instr->instr, stderr);
1741 fprintf(stderr, "\n");
1742 }
1743 break;
1744 }
1745 case nir_op_imin3: {
1746 if (dst.size() == 1) {
1747 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_i32, dst);
1748 } else {
1749 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1750 nir_print_instr(&instr->instr, stderr);
1751 fprintf(stderr, "\n");
1752 }
1753 break;
1754 }
1755 case nir_op_imed3: {
1756 if (dst.size() == 1) {
1757 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_i32, dst);
1758 } else {
1759 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1760 nir_print_instr(&instr->instr, stderr);
1761 fprintf(stderr, "\n");
1762 }
1763 break;
1764 }
1765 case nir_op_cube_face_coord: {
1766 Temp in = get_alu_src(ctx, instr->src[0], 3);
1767 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1768 emit_extract_vector(ctx, in, 1, v1),
1769 emit_extract_vector(ctx, in, 2, v1) };
1770 Temp ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), src[0], src[1], src[2]);
1771 ma = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), ma);
1772 Temp sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), src[0], src[1], src[2]);
1773 Temp tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), src[0], src[1], src[2]);
1774 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, ma, Operand(0x3f000000u/*0.5*/));
1775 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, ma, Operand(0x3f000000u/*0.5*/));
1776 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), sc, tc);
1777 break;
1778 }
1779 case nir_op_cube_face_index: {
1780 Temp in = get_alu_src(ctx, instr->src[0], 3);
1781 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1782 emit_extract_vector(ctx, in, 1, v1),
1783 emit_extract_vector(ctx, in, 2, v1) };
1784 bld.vop3(aco_opcode::v_cubeid_f32, Definition(dst), src[0], src[1], src[2]);
1785 break;
1786 }
1787 case nir_op_bcsel: {
1788 emit_bcsel(ctx, instr, dst);
1789 break;
1790 }
1791 case nir_op_frsq: {
1792 Temp src = get_alu_src(ctx, instr->src[0]);
1793 if (dst.regClass() == v2b) {
1794 Temp tmp = bld.vop1(aco_opcode::v_rsq_f16, bld.def(v1), src);
1795 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1796 } else if (dst.regClass() == v1) {
1797 emit_rsq(ctx, bld, Definition(dst), src);
1798 } else if (dst.regClass() == v2) {
1799 emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f64, dst);
1800 } else {
1801 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1802 nir_print_instr(&instr->instr, stderr);
1803 fprintf(stderr, "\n");
1804 }
1805 break;
1806 }
1807 case nir_op_fneg: {
1808 Temp src = get_alu_src(ctx, instr->src[0]);
1809 if (dst.regClass() == v2b) {
1810 Temp tmp = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), Operand(0x8000u), as_vgpr(ctx, src));
1811 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1812 } else if (dst.regClass() == v1) {
1813 if (ctx->block->fp_mode.must_flush_denorms32)
1814 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1815 bld.vop2(aco_opcode::v_xor_b32, Definition(dst), Operand(0x80000000u), as_vgpr(ctx, src));
1816 } else if (dst.regClass() == v2) {
1817 if (ctx->block->fp_mode.must_flush_denorms16_64)
1818 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1819 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1820 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1821 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), Operand(0x80000000u), upper);
1822 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1823 } else {
1824 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1825 nir_print_instr(&instr->instr, stderr);
1826 fprintf(stderr, "\n");
1827 }
1828 break;
1829 }
1830 case nir_op_fabs: {
1831 Temp src = get_alu_src(ctx, instr->src[0]);
1832 if (dst.regClass() == v2b) {
1833 Temp tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7FFFu), as_vgpr(ctx, src));
1834 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1835 } else if (dst.regClass() == v1) {
1836 if (ctx->block->fp_mode.must_flush_denorms32)
1837 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1838 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0x7FFFFFFFu), as_vgpr(ctx, src));
1839 } else if (dst.regClass() == v2) {
1840 if (ctx->block->fp_mode.must_flush_denorms16_64)
1841 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1842 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1843 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1844 upper = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7FFFFFFFu), upper);
1845 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1846 } else {
1847 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1848 nir_print_instr(&instr->instr, stderr);
1849 fprintf(stderr, "\n");
1850 }
1851 break;
1852 }
1853 case nir_op_fsat: {
1854 Temp src = get_alu_src(ctx, instr->src[0]);
1855 if (dst.regClass() == v2b) {
1856 Temp tmp = bld.vop3(aco_opcode::v_med3_f16, bld.def(v1), Operand(0u), Operand(0x3f800000u), src);
1857 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1858 } else if (dst.regClass() == v1) {
1859 bld.vop3(aco_opcode::v_med3_f32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
1860 /* apparently, it is not necessary to flush denorms if this instruction is used with these operands */
1861 // TODO: confirm that this holds under any circumstances
1862 } else if (dst.regClass() == v2) {
1863 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src, Operand(0u));
1864 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(add);
1865 vop3->clamp = true;
1866 } else {
1867 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1868 nir_print_instr(&instr->instr, stderr);
1869 fprintf(stderr, "\n");
1870 }
1871 break;
1872 }
1873 case nir_op_flog2: {
1874 Temp src = get_alu_src(ctx, instr->src[0]);
1875 if (dst.regClass() == v2b) {
1876 Temp tmp = bld.vop1(aco_opcode::v_log_f16, bld.def(v1), src);
1877 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1878 } else if (dst.regClass() == v1) {
1879 emit_log2(ctx, bld, Definition(dst), src);
1880 } else {
1881 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1882 nir_print_instr(&instr->instr, stderr);
1883 fprintf(stderr, "\n");
1884 }
1885 break;
1886 }
1887 case nir_op_frcp: {
1888 Temp src = get_alu_src(ctx, instr->src[0]);
1889 if (dst.regClass() == v2b) {
1890 Temp tmp = bld.vop1(aco_opcode::v_rcp_f16, bld.def(v1), src);
1891 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1892 } else if (dst.regClass() == v1) {
1893 emit_rcp(ctx, bld, Definition(dst), src);
1894 } else if (dst.regClass() == v2) {
1895 emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f64, dst);
1896 } else {
1897 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1898 nir_print_instr(&instr->instr, stderr);
1899 fprintf(stderr, "\n");
1900 }
1901 break;
1902 }
1903 case nir_op_fexp2: {
1904 if (dst.regClass() == v2b) {
1905 Temp src = get_alu_src(ctx, instr->src[0]);
1906 Temp tmp = bld.vop1(aco_opcode::v_exp_f16, bld.def(v1), src);
1907 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1908 } else if (dst.regClass() == v1) {
1909 emit_vop1_instruction(ctx, instr, aco_opcode::v_exp_f32, dst);
1910 } else {
1911 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1912 nir_print_instr(&instr->instr, stderr);
1913 fprintf(stderr, "\n");
1914 }
1915 break;
1916 }
1917 case nir_op_fsqrt: {
1918 Temp src = get_alu_src(ctx, instr->src[0]);
1919 if (dst.regClass() == v2b) {
1920 Temp tmp = bld.vop1(aco_opcode::v_sqrt_f16, bld.def(v1), src);
1921 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1922 } else if (dst.regClass() == v1) {
1923 emit_sqrt(ctx, bld, Definition(dst), src);
1924 } else if (dst.regClass() == v2) {
1925 emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f64, dst);
1926 } else {
1927 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1928 nir_print_instr(&instr->instr, stderr);
1929 fprintf(stderr, "\n");
1930 }
1931 break;
1932 }
1933 case nir_op_ffract: {
1934 if (dst.regClass() == v2b) {
1935 Temp src = get_alu_src(ctx, instr->src[0]);
1936 Temp tmp = bld.vop1(aco_opcode::v_fract_f16, bld.def(v1), src);
1937 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1938 } else if (dst.regClass() == v1) {
1939 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f32, dst);
1940 } else if (dst.regClass() == v2) {
1941 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f64, dst);
1942 } else {
1943 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1944 nir_print_instr(&instr->instr, stderr);
1945 fprintf(stderr, "\n");
1946 }
1947 break;
1948 }
1949 case nir_op_ffloor: {
1950 Temp src = get_alu_src(ctx, instr->src[0]);
1951 if (dst.regClass() == v2b) {
1952 Temp tmp = bld.vop1(aco_opcode::v_floor_f16, bld.def(v1), src);
1953 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1954 } else if (dst.regClass() == v1) {
1955 emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f32, dst);
1956 } else if (dst.regClass() == v2) {
1957 emit_floor_f64(ctx, bld, Definition(dst), src);
1958 } else {
1959 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1960 nir_print_instr(&instr->instr, stderr);
1961 fprintf(stderr, "\n");
1962 }
1963 break;
1964 }
1965 case nir_op_fceil: {
1966 Temp src0 = get_alu_src(ctx, instr->src[0]);
1967 if (dst.regClass() == v2b) {
1968 Temp tmp = bld.vop1(aco_opcode::v_ceil_f16, bld.def(v1), src0);
1969 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1970 } else if (dst.regClass() == v1) {
1971 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f32, dst);
1972 } else if (dst.regClass() == v2) {
1973 if (ctx->options->chip_class >= GFX7) {
1974 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f64, dst);
1975 } else {
1976 /* GFX6 doesn't support V_CEIL_F64, lower it. */
1977 /* trunc = trunc(src0)
1978 * if (src0 > 0.0 && src0 != trunc)
1979 * trunc += 1.0
1980 */
1981 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src0);
1982 Temp tmp0 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.def(bld.lm), src0, Operand(0u));
1983 Temp tmp1 = bld.vopc(aco_opcode::v_cmp_lg_f64, bld.hint_vcc(bld.def(bld.lm)), src0, trunc);
1984 Temp cond = bld.sop2(aco_opcode::s_and_b64, bld.hint_vcc(bld.def(s2)), bld.def(s1, scc), tmp0, tmp1);
1985 Temp add = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), bld.copy(bld.def(v1), Operand(0u)), bld.copy(bld.def(v1), Operand(0x3ff00000u)), cond);
1986 add = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), bld.copy(bld.def(v1), Operand(0u)), add);
1987 bld.vop3(aco_opcode::v_add_f64, Definition(dst), trunc, add);
1988 }
1989 } else {
1990 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1991 nir_print_instr(&instr->instr, stderr);
1992 fprintf(stderr, "\n");
1993 }
1994 break;
1995 }
1996 case nir_op_ftrunc: {
1997 Temp src = get_alu_src(ctx, instr->src[0]);
1998 if (dst.regClass() == v2b) {
1999 Temp tmp = bld.vop1(aco_opcode::v_trunc_f16, bld.def(v1), src);
2000 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2001 } else if (dst.regClass() == v1) {
2002 emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f32, dst);
2003 } else if (dst.regClass() == v2) {
2004 emit_trunc_f64(ctx, bld, Definition(dst), src);
2005 } else {
2006 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2007 nir_print_instr(&instr->instr, stderr);
2008 fprintf(stderr, "\n");
2009 }
2010 break;
2011 }
2012 case nir_op_fround_even: {
2013 Temp src0 = get_alu_src(ctx, instr->src[0]);
2014 if (dst.regClass() == v2b) {
2015 Temp tmp = bld.vop1(aco_opcode::v_rndne_f16, bld.def(v1), src0);
2016 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2017 } else if (dst.regClass() == v1) {
2018 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f32, dst);
2019 } else if (dst.regClass() == v2) {
2020 if (ctx->options->chip_class >= GFX7) {
2021 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f64, dst);
2022 } else {
2023 /* GFX6 doesn't support V_RNDNE_F64, lower it. */
2024 Temp src0_lo = bld.tmp(v1), src0_hi = bld.tmp(v1);
2025 bld.pseudo(aco_opcode::p_split_vector, Definition(src0_lo), Definition(src0_hi), src0);
2026
2027 Temp bitmask = bld.sop1(aco_opcode::s_brev_b32, bld.def(s1), bld.copy(bld.def(s1), Operand(-2u)));
2028 Temp bfi = bld.vop3(aco_opcode::v_bfi_b32, bld.def(v1), bitmask, bld.copy(bld.def(v1), Operand(0x43300000u)), as_vgpr(ctx, src0_hi));
2029 Temp tmp = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), src0, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
2030 Instruction *sub = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), tmp, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
2031 static_cast<VOP3A_instruction*>(sub)->neg[1] = true;
2032 tmp = sub->definitions[0].getTemp();
2033
2034 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x432fffffu));
2035 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.hint_vcc(bld.def(bld.lm)), src0, v);
2036 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
2037 Temp cond = vop3->definitions[0].getTemp();
2038
2039 Temp tmp_lo = bld.tmp(v1), tmp_hi = bld.tmp(v1);
2040 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp_lo), Definition(tmp_hi), tmp);
2041 Temp dst0 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_lo, as_vgpr(ctx, src0_lo), cond);
2042 Temp dst1 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_hi, as_vgpr(ctx, src0_hi), cond);
2043
2044 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
2045 }
2046 } else {
2047 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2048 nir_print_instr(&instr->instr, stderr);
2049 fprintf(stderr, "\n");
2050 }
2051 break;
2052 }
2053 case nir_op_fsin:
2054 case nir_op_fcos: {
2055 Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
2056 aco_ptr<Instruction> norm;
2057 Temp half_pi = bld.copy(bld.def(s1), Operand(0x3e22f983u));
2058 if (dst.regClass() == v2b) {
2059 Temp tmp = bld.vop2(aco_opcode::v_mul_f16, bld.def(v1), half_pi, src);
2060 aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f16 : aco_opcode::v_cos_f16;
2061 tmp = bld.vop1(opcode, bld.def(v1), tmp);
2062 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2063 } else if (dst.regClass() == v1) {
2064 Temp tmp = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), half_pi, src);
2065
2066 /* before GFX9, v_sin_f32 and v_cos_f32 had a valid input domain of [-256, +256] */
2067 if (ctx->options->chip_class < GFX9)
2068 tmp = bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), tmp);
2069
2070 aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f32 : aco_opcode::v_cos_f32;
2071 bld.vop1(opcode, Definition(dst), tmp);
2072 } else {
2073 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2074 nir_print_instr(&instr->instr, stderr);
2075 fprintf(stderr, "\n");
2076 }
2077 break;
2078 }
2079 case nir_op_ldexp: {
2080 Temp src0 = get_alu_src(ctx, instr->src[0]);
2081 Temp src1 = get_alu_src(ctx, instr->src[1]);
2082 if (dst.regClass() == v2b) {
2083 Temp tmp = bld.tmp(v1);
2084 emit_vop2_instruction(ctx, instr, aco_opcode::v_ldexp_f16, tmp, false);
2085 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2086 } else if (dst.regClass() == v1) {
2087 bld.vop3(aco_opcode::v_ldexp_f32, Definition(dst), as_vgpr(ctx, src0), src1);
2088 } else if (dst.regClass() == v2) {
2089 bld.vop3(aco_opcode::v_ldexp_f64, Definition(dst), as_vgpr(ctx, src0), src1);
2090 } else {
2091 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2092 nir_print_instr(&instr->instr, stderr);
2093 fprintf(stderr, "\n");
2094 }
2095 break;
2096 }
2097 case nir_op_frexp_sig: {
2098 Temp src = get_alu_src(ctx, instr->src[0]);
2099 if (dst.regClass() == v2b) {
2100 Temp tmp = bld.vop1(aco_opcode::v_frexp_mant_f16, bld.def(v1), src);
2101 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2102 } else if (dst.regClass() == v1) {
2103 bld.vop1(aco_opcode::v_frexp_mant_f32, Definition(dst), src);
2104 } else if (dst.regClass() == v2) {
2105 bld.vop1(aco_opcode::v_frexp_mant_f64, Definition(dst), src);
2106 } else {
2107 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2108 nir_print_instr(&instr->instr, stderr);
2109 fprintf(stderr, "\n");
2110 }
2111 break;
2112 }
2113 case nir_op_frexp_exp: {
2114 Temp src = get_alu_src(ctx, instr->src[0]);
2115 if (instr->src[0].src.ssa->bit_size == 16) {
2116 Temp tmp = bld.vop1(aco_opcode::v_frexp_exp_i16_f16, bld.def(v1), src);
2117 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), tmp, Operand(0u));
2118 } else if (instr->src[0].src.ssa->bit_size == 32) {
2119 bld.vop1(aco_opcode::v_frexp_exp_i32_f32, Definition(dst), src);
2120 } else if (instr->src[0].src.ssa->bit_size == 64) {
2121 bld.vop1(aco_opcode::v_frexp_exp_i32_f64, Definition(dst), src);
2122 } else {
2123 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2124 nir_print_instr(&instr->instr, stderr);
2125 fprintf(stderr, "\n");
2126 }
2127 break;
2128 }
2129 case nir_op_fsign: {
2130 Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
2131 if (dst.regClass() == v2b) {
2132 Temp one = bld.copy(bld.def(v1), Operand(0x3c00u));
2133 Temp minus_one = bld.copy(bld.def(v1), Operand(0xbc00u));
2134 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f16, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2135 src = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), one, src, cond);
2136 cond = bld.vopc(aco_opcode::v_cmp_le_f16, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2137 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), minus_one, src, cond);
2138 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2139 } else if (dst.regClass() == v1) {
2140 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2141 src = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0x3f800000u), src, cond);
2142 cond = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2143 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0xbf800000u), src, cond);
2144 } else if (dst.regClass() == v2) {
2145 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2146 Temp tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0x3FF00000u));
2147 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, emit_extract_vector(ctx, src, 1, v1), cond);
2148
2149 cond = bld.vopc(aco_opcode::v_cmp_le_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2150 tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0xBFF00000u));
2151 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, upper, cond);
2152
2153 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
2154 } else {
2155 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2156 nir_print_instr(&instr->instr, stderr);
2157 fprintf(stderr, "\n");
2158 }
2159 break;
2160 }
2161 case nir_op_f2f16:
2162 case nir_op_f2f16_rtne: {
2163 Temp src = get_alu_src(ctx, instr->src[0]);
2164 if (instr->src[0].src.ssa->bit_size == 64)
2165 src = bld.vop1(aco_opcode::v_cvt_f32_f64, bld.def(v1), src);
2166 src = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), src);
2167 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), src);
2168 break;
2169 }
2170 case nir_op_f2f16_rtz: {
2171 Temp src = get_alu_src(ctx, instr->src[0]);
2172 if (instr->src[0].src.ssa->bit_size == 64)
2173 src = bld.vop1(aco_opcode::v_cvt_f32_f64, bld.def(v1), src);
2174 src = bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, bld.def(v1), src, Operand(0u));
2175 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), src);
2176 break;
2177 }
2178 case nir_op_f2f32: {
2179 if (instr->src[0].src.ssa->bit_size == 16) {
2180 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f16, dst);
2181 } else if (instr->src[0].src.ssa->bit_size == 64) {
2182 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f64, dst);
2183 } else {
2184 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2185 nir_print_instr(&instr->instr, stderr);
2186 fprintf(stderr, "\n");
2187 }
2188 break;
2189 }
2190 case nir_op_f2f64: {
2191 Temp src = get_alu_src(ctx, instr->src[0]);
2192 if (instr->src[0].src.ssa->bit_size == 16)
2193 src = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2194 bld.vop1(aco_opcode::v_cvt_f64_f32, Definition(dst), src);
2195 break;
2196 }
2197 case nir_op_i2f16: {
2198 assert(dst.regClass() == v2b);
2199 Temp tmp = bld.vop1(aco_opcode::v_cvt_f16_i16, bld.def(v1),
2200 get_alu_src(ctx, instr->src[0]));
2201 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2202 break;
2203 }
2204 case nir_op_i2f32: {
2205 assert(dst.size() == 1);
2206 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_i32, dst);
2207 break;
2208 }
2209 case nir_op_i2f64: {
2210 if (instr->src[0].src.ssa->bit_size == 32) {
2211 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_i32, dst);
2212 } else if (instr->src[0].src.ssa->bit_size == 64) {
2213 Temp src = get_alu_src(ctx, instr->src[0]);
2214 RegClass rc = RegClass(src.type(), 1);
2215 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
2216 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
2217 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
2218 upper = bld.vop1(aco_opcode::v_cvt_f64_i32, bld.def(v2), upper);
2219 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
2220 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
2221
2222 } else {
2223 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2224 nir_print_instr(&instr->instr, stderr);
2225 fprintf(stderr, "\n");
2226 }
2227 break;
2228 }
2229 case nir_op_u2f16: {
2230 assert(dst.regClass() == v2b);
2231 Temp tmp = bld.vop1(aco_opcode::v_cvt_f16_u16, bld.def(v1),
2232 get_alu_src(ctx, instr->src[0]));
2233 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2234 break;
2235 }
2236 case nir_op_u2f32: {
2237 assert(dst.size() == 1);
2238 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_u32, dst);
2239 break;
2240 }
2241 case nir_op_u2f64: {
2242 if (instr->src[0].src.ssa->bit_size == 32) {
2243 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_u32, dst);
2244 } else if (instr->src[0].src.ssa->bit_size == 64) {
2245 Temp src = get_alu_src(ctx, instr->src[0]);
2246 RegClass rc = RegClass(src.type(), 1);
2247 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
2248 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
2249 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
2250 upper = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), upper);
2251 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
2252 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
2253 } else {
2254 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2255 nir_print_instr(&instr->instr, stderr);
2256 fprintf(stderr, "\n");
2257 }
2258 break;
2259 }
2260 case nir_op_f2i16: {
2261 Temp src = get_alu_src(ctx, instr->src[0]);
2262 if (instr->src[0].src.ssa->bit_size == 16)
2263 src = bld.vop1(aco_opcode::v_cvt_i16_f16, bld.def(v1), src);
2264 else if (instr->src[0].src.ssa->bit_size == 32)
2265 src = bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), src);
2266 else
2267 src = bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), src);
2268
2269 if (dst.type() == RegType::vgpr)
2270 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), src);
2271 else
2272 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
2273 break;
2274 }
2275 case nir_op_f2u16: {
2276 Temp src = get_alu_src(ctx, instr->src[0]);
2277 if (instr->src[0].src.ssa->bit_size == 16)
2278 src = bld.vop1(aco_opcode::v_cvt_u16_f16, bld.def(v1), src);
2279 else if (instr->src[0].src.ssa->bit_size == 32)
2280 src = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), src);
2281 else
2282 src = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), src);
2283
2284 if (dst.type() == RegType::vgpr)
2285 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), src);
2286 else
2287 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
2288 break;
2289 }
2290 case nir_op_f2i32: {
2291 Temp src = get_alu_src(ctx, instr->src[0]);
2292 if (instr->src[0].src.ssa->bit_size == 16) {
2293 Temp tmp = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2294 if (dst.type() == RegType::vgpr) {
2295 bld.vop1(aco_opcode::v_cvt_i32_f32, Definition(dst), tmp);
2296 } else {
2297 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2298 bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), tmp));
2299 }
2300 } else if (instr->src[0].src.ssa->bit_size == 32) {
2301 if (dst.type() == RegType::vgpr)
2302 bld.vop1(aco_opcode::v_cvt_i32_f32, Definition(dst), src);
2303 else
2304 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2305 bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), src));
2306
2307 } else if (instr->src[0].src.ssa->bit_size == 64) {
2308 if (dst.type() == RegType::vgpr)
2309 bld.vop1(aco_opcode::v_cvt_i32_f64, Definition(dst), src);
2310 else
2311 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2312 bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), src));
2313
2314 } else {
2315 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2316 nir_print_instr(&instr->instr, stderr);
2317 fprintf(stderr, "\n");
2318 }
2319 break;
2320 }
2321 case nir_op_f2u32: {
2322 Temp src = get_alu_src(ctx, instr->src[0]);
2323 if (instr->src[0].src.ssa->bit_size == 16) {
2324 Temp tmp = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2325 if (dst.type() == RegType::vgpr) {
2326 bld.vop1(aco_opcode::v_cvt_u32_f32, Definition(dst), tmp);
2327 } else {
2328 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2329 bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), tmp));
2330 }
2331 } else if (instr->src[0].src.ssa->bit_size == 32) {
2332 if (dst.type() == RegType::vgpr)
2333 bld.vop1(aco_opcode::v_cvt_u32_f32, Definition(dst), src);
2334 else
2335 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2336 bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), src));
2337
2338 } else if (instr->src[0].src.ssa->bit_size == 64) {
2339 if (dst.type() == RegType::vgpr)
2340 bld.vop1(aco_opcode::v_cvt_u32_f64, Definition(dst), src);
2341 else
2342 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2343 bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), src));
2344
2345 } else {
2346 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2347 nir_print_instr(&instr->instr, stderr);
2348 fprintf(stderr, "\n");
2349 }
2350 break;
2351 }
2352 case nir_op_f2i64: {
2353 Temp src = get_alu_src(ctx, instr->src[0]);
2354 if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::vgpr) {
2355 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2356 exponent = bld.vop3(aco_opcode::v_med3_i32, bld.def(v1), Operand(0x0u), exponent, Operand(64u));
2357 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2358 Temp sign = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
2359 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2360 mantissa = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(7u), mantissa);
2361 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2362 Temp new_exponent = bld.tmp(v1);
2363 Temp borrow = bld.vsub32(Definition(new_exponent), Operand(63u), exponent, true).def(1).getTemp();
2364 if (ctx->program->chip_class >= GFX8)
2365 mantissa = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), new_exponent, mantissa);
2366 else
2367 mantissa = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), mantissa, new_exponent);
2368 Temp saturate = bld.vop1(aco_opcode::v_bfrev_b32, bld.def(v1), Operand(0xfffffffeu));
2369 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2370 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2371 lower = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), lower, Operand(0xffffffffu), borrow);
2372 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), upper, saturate, borrow);
2373 lower = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, lower);
2374 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, upper);
2375 Temp new_lower = bld.tmp(v1);
2376 borrow = bld.vsub32(Definition(new_lower), lower, sign, true).def(1).getTemp();
2377 Temp new_upper = bld.vsub32(bld.def(v1), upper, sign, false, borrow);
2378 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), new_lower, new_upper);
2379
2380 } else if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::sgpr) {
2381 if (src.type() == RegType::vgpr)
2382 src = bld.as_uniform(src);
2383 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2384 exponent = bld.sop2(aco_opcode::s_sub_i32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2385 exponent = bld.sop2(aco_opcode::s_max_i32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2386 exponent = bld.sop2(aco_opcode::s_min_i32, bld.def(s1), bld.def(s1, scc), Operand(64u), exponent);
2387 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2388 Temp sign = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
2389 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2390 mantissa = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), mantissa, Operand(7u));
2391 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2392 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(63u), exponent);
2393 mantissa = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent);
2394 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), exponent, Operand(0xffffffffu)); // exp >= 64
2395 Temp saturate = bld.sop1(aco_opcode::s_brev_b64, bld.def(s2), Operand(0xfffffffeu));
2396 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), saturate, mantissa, cond);
2397 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2398 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2399 lower = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, lower);
2400 upper = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, upper);
2401 Temp borrow = bld.tmp(s1);
2402 lower = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), lower, sign);
2403 upper = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), upper, sign, borrow);
2404 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2405
2406 } else if (instr->src[0].src.ssa->bit_size == 64) {
2407 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2408 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2409 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2410 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2411 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2412 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2413 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2414 Temp upper = bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), floor);
2415 if (dst.type() == RegType::sgpr) {
2416 lower = bld.as_uniform(lower);
2417 upper = bld.as_uniform(upper);
2418 }
2419 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2420
2421 } else {
2422 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2423 nir_print_instr(&instr->instr, stderr);
2424 fprintf(stderr, "\n");
2425 }
2426 break;
2427 }
2428 case nir_op_f2u64: {
2429 Temp src = get_alu_src(ctx, instr->src[0]);
2430 if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::vgpr) {
2431 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2432 Temp exponent_in_range = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(64u), exponent);
2433 exponent = bld.vop2(aco_opcode::v_max_i32, bld.def(v1), Operand(0x0u), exponent);
2434 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2435 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2436 Temp exponent_small = bld.vsub32(bld.def(v1), Operand(24u), exponent);
2437 Temp small = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), exponent_small, mantissa);
2438 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2439 Temp new_exponent = bld.tmp(v1);
2440 Temp cond_small = bld.vsub32(Definition(new_exponent), exponent, Operand(24u), true).def(1).getTemp();
2441 if (ctx->program->chip_class >= GFX8)
2442 mantissa = bld.vop3(aco_opcode::v_lshlrev_b64, bld.def(v2), new_exponent, mantissa);
2443 else
2444 mantissa = bld.vop3(aco_opcode::v_lshl_b64, bld.def(v2), mantissa, new_exponent);
2445 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2446 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2447 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), lower, small, cond_small);
2448 upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), upper, Operand(0u), cond_small);
2449 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), lower, exponent_in_range);
2450 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), upper, exponent_in_range);
2451 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2452
2453 } else if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::sgpr) {
2454 if (src.type() == RegType::vgpr)
2455 src = bld.as_uniform(src);
2456 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2457 exponent = bld.sop2(aco_opcode::s_sub_i32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2458 exponent = bld.sop2(aco_opcode::s_max_i32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2459 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2460 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2461 Temp exponent_small = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(24u), exponent);
2462 Temp small = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), mantissa, exponent_small);
2463 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2464 Temp exponent_large = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(24u));
2465 mantissa = bld.sop2(aco_opcode::s_lshl_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent_large);
2466 Temp cond = bld.sopc(aco_opcode::s_cmp_ge_i32, bld.def(s1, scc), Operand(64u), exponent);
2467 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), mantissa, Operand(0xffffffffu), cond);
2468 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2469 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2470 Temp cond_small = bld.sopc(aco_opcode::s_cmp_le_i32, bld.def(s1, scc), exponent, Operand(24u));
2471 lower = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), small, lower, cond_small);
2472 upper = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), Operand(0u), upper, cond_small);
2473 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2474
2475 } else if (instr->src[0].src.ssa->bit_size == 64) {
2476 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2477 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2478 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2479 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2480 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2481 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2482 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2483 Temp upper = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), floor);
2484 if (dst.type() == RegType::sgpr) {
2485 lower = bld.as_uniform(lower);
2486 upper = bld.as_uniform(upper);
2487 }
2488 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2489
2490 } else {
2491 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2492 nir_print_instr(&instr->instr, stderr);
2493 fprintf(stderr, "\n");
2494 }
2495 break;
2496 }
2497 case nir_op_b2f16: {
2498 Temp src = get_alu_src(ctx, instr->src[0]);
2499 assert(src.regClass() == bld.lm);
2500
2501 if (dst.regClass() == s1) {
2502 src = bool_to_scalar_condition(ctx, src);
2503 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3c00u), src);
2504 } else if (dst.regClass() == v2b) {
2505 Temp one = bld.copy(bld.def(v1), Operand(0x3c00u));
2506 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), one, src);
2507 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2508 } else {
2509 unreachable("Wrong destination register class for nir_op_b2f16.");
2510 }
2511 break;
2512 }
2513 case nir_op_b2f32: {
2514 Temp src = get_alu_src(ctx, instr->src[0]);
2515 assert(src.regClass() == bld.lm);
2516
2517 if (dst.regClass() == s1) {
2518 src = bool_to_scalar_condition(ctx, src);
2519 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3f800000u), src);
2520 } else if (dst.regClass() == v1) {
2521 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
2522 } else {
2523 unreachable("Wrong destination register class for nir_op_b2f32.");
2524 }
2525 break;
2526 }
2527 case nir_op_b2f64: {
2528 Temp src = get_alu_src(ctx, instr->src[0]);
2529 assert(src.regClass() == bld.lm);
2530
2531 if (dst.regClass() == s2) {
2532 src = bool_to_scalar_condition(ctx, src);
2533 bld.sop2(aco_opcode::s_cselect_b64, Definition(dst), Operand(0x3f800000u), Operand(0u), bld.scc(src));
2534 } else if (dst.regClass() == v2) {
2535 Temp one = bld.vop1(aco_opcode::v_mov_b32, bld.def(v2), Operand(0x3FF00000u));
2536 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), one, src);
2537 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
2538 } else {
2539 unreachable("Wrong destination register class for nir_op_b2f64.");
2540 }
2541 break;
2542 }
2543 case nir_op_i2i8:
2544 case nir_op_u2u8: {
2545 Temp src = get_alu_src(ctx, instr->src[0]);
2546 /* we can actually just say dst = src */
2547 if (src.regClass() == s1)
2548 bld.copy(Definition(dst), src);
2549 else
2550 emit_extract_vector(ctx, src, 0, dst);
2551 break;
2552 }
2553 case nir_op_i2i16: {
2554 Temp src = get_alu_src(ctx, instr->src[0]);
2555 if (instr->src[0].src.ssa->bit_size == 8) {
2556 if (dst.regClass() == s1) {
2557 bld.sop1(aco_opcode::s_sext_i32_i8, Definition(dst), Operand(src));
2558 } else {
2559 assert(src.regClass() == v1b);
2560 aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
2561 sdwa->operands[0] = Operand(src);
2562 sdwa->definitions[0] = Definition(dst);
2563 sdwa->sel[0] = sdwa_sbyte;
2564 sdwa->dst_sel = sdwa_sword;
2565 ctx->block->instructions.emplace_back(std::move(sdwa));
2566 }
2567 } else {
2568 Temp src = get_alu_src(ctx, instr->src[0]);
2569 /* we can actually just say dst = src */
2570 if (src.regClass() == s1)
2571 bld.copy(Definition(dst), src);
2572 else
2573 emit_extract_vector(ctx, src, 0, dst);
2574 }
2575 break;
2576 }
2577 case nir_op_u2u16: {
2578 Temp src = get_alu_src(ctx, instr->src[0]);
2579 if (instr->src[0].src.ssa->bit_size == 8) {
2580 if (dst.regClass() == s1)
2581 bld.sop2(aco_opcode::s_and_b32, Definition(dst), bld.def(s1, scc), Operand(0xFFu), src);
2582 else {
2583 assert(src.regClass() == v1b);
2584 aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
2585 sdwa->operands[0] = Operand(src);
2586 sdwa->definitions[0] = Definition(dst);
2587 sdwa->sel[0] = sdwa_ubyte;
2588 sdwa->dst_sel = sdwa_uword;
2589 ctx->block->instructions.emplace_back(std::move(sdwa));
2590 }
2591 } else {
2592 Temp src = get_alu_src(ctx, instr->src[0]);
2593 /* we can actually just say dst = src */
2594 if (src.regClass() == s1)
2595 bld.copy(Definition(dst), src);
2596 else
2597 emit_extract_vector(ctx, src, 0, dst);
2598 }
2599 break;
2600 }
2601 case nir_op_i2i32: {
2602 Temp src = get_alu_src(ctx, instr->src[0]);
2603 if (instr->src[0].src.ssa->bit_size == 8) {
2604 if (dst.regClass() == s1) {
2605 bld.sop1(aco_opcode::s_sext_i32_i8, Definition(dst), Operand(src));
2606 } else {
2607 assert(src.regClass() == v1b);
2608 aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
2609 sdwa->operands[0] = Operand(src);
2610 sdwa->definitions[0] = Definition(dst);
2611 sdwa->sel[0] = sdwa_sbyte;
2612 sdwa->dst_sel = sdwa_sdword;
2613 ctx->block->instructions.emplace_back(std::move(sdwa));
2614 }
2615 } else if (instr->src[0].src.ssa->bit_size == 16) {
2616 if (dst.regClass() == s1) {
2617 bld.sop1(aco_opcode::s_sext_i32_i16, Definition(dst), Operand(src));
2618 } else {
2619 assert(src.regClass() == v2b);
2620 aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
2621 sdwa->operands[0] = Operand(src);
2622 sdwa->definitions[0] = Definition(dst);
2623 sdwa->sel[0] = sdwa_sword;
2624 sdwa->dst_sel = sdwa_udword;
2625 ctx->block->instructions.emplace_back(std::move(sdwa));
2626 }
2627 } else if (instr->src[0].src.ssa->bit_size == 64) {
2628 /* we can actually just say dst = src, as it would map the lower register */
2629 emit_extract_vector(ctx, src, 0, dst);
2630 } else {
2631 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2632 nir_print_instr(&instr->instr, stderr);
2633 fprintf(stderr, "\n");
2634 }
2635 break;
2636 }
2637 case nir_op_u2u32: {
2638 Temp src = get_alu_src(ctx, instr->src[0]);
2639 if (instr->src[0].src.ssa->bit_size == 8) {
2640 if (dst.regClass() == s1)
2641 bld.sop2(aco_opcode::s_and_b32, Definition(dst), bld.def(s1, scc), Operand(0xFFu), src);
2642 else {
2643 assert(src.regClass() == v1b);
2644 aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
2645 sdwa->operands[0] = Operand(src);
2646 sdwa->definitions[0] = Definition(dst);
2647 sdwa->sel[0] = sdwa_ubyte;
2648 sdwa->dst_sel = sdwa_udword;
2649 ctx->block->instructions.emplace_back(std::move(sdwa));
2650 }
2651 } else if (instr->src[0].src.ssa->bit_size == 16) {
2652 if (dst.regClass() == s1) {
2653 bld.sop2(aco_opcode::s_and_b32, Definition(dst), bld.def(s1, scc), Operand(0xFFFFu), src);
2654 } else {
2655 assert(src.regClass() == v2b);
2656 aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
2657 sdwa->operands[0] = Operand(src);
2658 sdwa->definitions[0] = Definition(dst);
2659 sdwa->sel[0] = sdwa_uword;
2660 sdwa->dst_sel = sdwa_udword;
2661 ctx->block->instructions.emplace_back(std::move(sdwa));
2662 }
2663 } else if (instr->src[0].src.ssa->bit_size == 64) {
2664 /* we can actually just say dst = src, as it would map the lower register */
2665 emit_extract_vector(ctx, src, 0, dst);
2666 } else {
2667 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2668 nir_print_instr(&instr->instr, stderr);
2669 fprintf(stderr, "\n");
2670 }
2671 break;
2672 }
2673 case nir_op_i2i64: {
2674 Temp src = get_alu_src(ctx, instr->src[0]);
2675 if (src.regClass() == s1) {
2676 Temp high = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
2677 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, high);
2678 } else if (src.regClass() == v1) {
2679 Temp high = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
2680 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, high);
2681 } else {
2682 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2683 nir_print_instr(&instr->instr, stderr);
2684 fprintf(stderr, "\n");
2685 }
2686 break;
2687 }
2688 case nir_op_u2u64: {
2689 Temp src = get_alu_src(ctx, instr->src[0]);
2690 if (instr->src[0].src.ssa->bit_size == 32) {
2691 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, Operand(0u));
2692 } else {
2693 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2694 nir_print_instr(&instr->instr, stderr);
2695 fprintf(stderr, "\n");
2696 }
2697 break;
2698 }
2699 case nir_op_b2b32:
2700 case nir_op_b2i32: {
2701 Temp src = get_alu_src(ctx, instr->src[0]);
2702 assert(src.regClass() == bld.lm);
2703
2704 if (dst.regClass() == s1) {
2705 // TODO: in a post-RA optimization, we can check if src is in VCC, and directly use VCCNZ
2706 bool_to_scalar_condition(ctx, src, dst);
2707 } else if (dst.regClass() == v1) {
2708 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), src);
2709 } else {
2710 unreachable("Invalid register class for b2i32");
2711 }
2712 break;
2713 }
2714 case nir_op_b2b1:
2715 case nir_op_i2b1: {
2716 Temp src = get_alu_src(ctx, instr->src[0]);
2717 assert(dst.regClass() == bld.lm);
2718
2719 if (src.type() == RegType::vgpr) {
2720 assert(src.regClass() == v1 || src.regClass() == v2);
2721 assert(dst.regClass() == bld.lm);
2722 bld.vopc(src.size() == 2 ? aco_opcode::v_cmp_lg_u64 : aco_opcode::v_cmp_lg_u32,
2723 Definition(dst), Operand(0u), src).def(0).setHint(vcc);
2724 } else {
2725 assert(src.regClass() == s1 || src.regClass() == s2);
2726 Temp tmp;
2727 if (src.regClass() == s2 && ctx->program->chip_class <= GFX7) {
2728 tmp = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), Operand(0u), src).def(1).getTemp();
2729 } else {
2730 tmp = bld.sopc(src.size() == 2 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::s_cmp_lg_u32,
2731 bld.scc(bld.def(s1)), Operand(0u), src);
2732 }
2733 bool_to_vector_condition(ctx, tmp, dst);
2734 }
2735 break;
2736 }
2737 case nir_op_pack_64_2x32_split: {
2738 Temp src0 = get_alu_src(ctx, instr->src[0]);
2739 Temp src1 = get_alu_src(ctx, instr->src[1]);
2740
2741 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
2742 break;
2743 }
2744 case nir_op_unpack_64_2x32_split_x:
2745 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
2746 break;
2747 case nir_op_unpack_64_2x32_split_y:
2748 bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
2749 break;
2750 case nir_op_unpack_32_2x16_split_x:
2751 if (dst.type() == RegType::vgpr) {
2752 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
2753 } else {
2754 bld.copy(Definition(dst), get_alu_src(ctx, instr->src[0]));
2755 }
2756 break;
2757 case nir_op_unpack_32_2x16_split_y:
2758 if (dst.type() == RegType::vgpr) {
2759 bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
2760 } else {
2761 bld.sop2(aco_opcode::s_bfe_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), Operand(uint32_t(16 << 16 | 16)));
2762 }
2763 break;
2764 case nir_op_pack_32_2x16_split: {
2765 Temp src0 = get_alu_src(ctx, instr->src[0]);
2766 Temp src1 = get_alu_src(ctx, instr->src[1]);
2767 if (dst.regClass() == v1) {
2768 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
2769 } else {
2770 src0 = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), src0, Operand(0xFFFFu));
2771 src1 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), src1, Operand(16u));
2772 bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), src0, src1);
2773 }
2774 break;
2775 }
2776 case nir_op_pack_half_2x16: {
2777 Temp src = get_alu_src(ctx, instr->src[0], 2);
2778
2779 if (dst.regClass() == v1) {
2780 Temp src0 = bld.tmp(v1);
2781 Temp src1 = bld.tmp(v1);
2782 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
2783 if (!ctx->block->fp_mode.care_about_round32 || ctx->block->fp_mode.round32 == fp_round_tz)
2784 bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, Definition(dst), src0, src1);
2785 else
2786 bld.vop3(aco_opcode::v_cvt_pk_u16_u32, Definition(dst),
2787 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src0),
2788 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src1));
2789 } else {
2790 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2791 nir_print_instr(&instr->instr, stderr);
2792 fprintf(stderr, "\n");
2793 }
2794 break;
2795 }
2796 case nir_op_unpack_half_2x16_split_x: {
2797 if (dst.regClass() == v1) {
2798 Builder bld(ctx->program, ctx->block);
2799 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst), get_alu_src(ctx, instr->src[0]));
2800 } else {
2801 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2802 nir_print_instr(&instr->instr, stderr);
2803 fprintf(stderr, "\n");
2804 }
2805 break;
2806 }
2807 case nir_op_unpack_half_2x16_split_y: {
2808 if (dst.regClass() == v1) {
2809 Builder bld(ctx->program, ctx->block);
2810 /* TODO: use SDWA here */
2811 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst),
2812 bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), as_vgpr(ctx, get_alu_src(ctx, instr->src[0]))));
2813 } else {
2814 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2815 nir_print_instr(&instr->instr, stderr);
2816 fprintf(stderr, "\n");
2817 }
2818 break;
2819 }
2820 case nir_op_fquantize2f16: {
2821 Temp src = get_alu_src(ctx, instr->src[0]);
2822 Temp f16 = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), src);
2823 Temp f32, cmp_res;
2824
2825 if (ctx->program->chip_class >= GFX8) {
2826 Temp mask = bld.copy(bld.def(s1), Operand(0x36Fu)); /* value is NOT negative/positive denormal value */
2827 cmp_res = bld.vopc_e64(aco_opcode::v_cmp_class_f16, bld.hint_vcc(bld.def(bld.lm)), f16, mask);
2828 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2829 } else {
2830 /* 0x38800000 is smallest half float value (2^-14) in 32-bit float,
2831 * so compare the result and flush to 0 if it's smaller.
2832 */
2833 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2834 Temp smallest = bld.copy(bld.def(s1), Operand(0x38800000u));
2835 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), f32, smallest);
2836 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
2837 cmp_res = vop3->definitions[0].getTemp();
2838 }
2839
2840 if (ctx->block->fp_mode.preserve_signed_zero_inf_nan32 || ctx->program->chip_class < GFX8) {
2841 Temp copysign_0 = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0u), as_vgpr(ctx, src));
2842 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), copysign_0, f32, cmp_res);
2843 } else {
2844 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), f32, cmp_res);
2845 }
2846 break;
2847 }
2848 case nir_op_bfm: {
2849 Temp bits = get_alu_src(ctx, instr->src[0]);
2850 Temp offset = get_alu_src(ctx, instr->src[1]);
2851
2852 if (dst.regClass() == s1) {
2853 bld.sop2(aco_opcode::s_bfm_b32, Definition(dst), bits, offset);
2854 } else if (dst.regClass() == v1) {
2855 bld.vop3(aco_opcode::v_bfm_b32, Definition(dst), bits, offset);
2856 } else {
2857 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2858 nir_print_instr(&instr->instr, stderr);
2859 fprintf(stderr, "\n");
2860 }
2861 break;
2862 }
2863 case nir_op_bitfield_select: {
2864 /* (mask & insert) | (~mask & base) */
2865 Temp bitmask = get_alu_src(ctx, instr->src[0]);
2866 Temp insert = get_alu_src(ctx, instr->src[1]);
2867 Temp base = get_alu_src(ctx, instr->src[2]);
2868
2869 /* dst = (insert & bitmask) | (base & ~bitmask) */
2870 if (dst.regClass() == s1) {
2871 aco_ptr<Instruction> sop2;
2872 nir_const_value* const_bitmask = nir_src_as_const_value(instr->src[0].src);
2873 nir_const_value* const_insert = nir_src_as_const_value(instr->src[1].src);
2874 Operand lhs;
2875 if (const_insert && const_bitmask) {
2876 lhs = Operand(const_insert->u32 & const_bitmask->u32);
2877 } else {
2878 insert = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), insert, bitmask);
2879 lhs = Operand(insert);
2880 }
2881
2882 Operand rhs;
2883 nir_const_value* const_base = nir_src_as_const_value(instr->src[2].src);
2884 if (const_base && const_bitmask) {
2885 rhs = Operand(const_base->u32 & ~const_bitmask->u32);
2886 } else {
2887 base = bld.sop2(aco_opcode::s_andn2_b32, bld.def(s1), bld.def(s1, scc), base, bitmask);
2888 rhs = Operand(base);
2889 }
2890
2891 bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), rhs, lhs);
2892
2893 } else if (dst.regClass() == v1) {
2894 if (base.type() == RegType::sgpr && (bitmask.type() == RegType::sgpr || (insert.type() == RegType::sgpr)))
2895 base = as_vgpr(ctx, base);
2896 if (insert.type() == RegType::sgpr && bitmask.type() == RegType::sgpr)
2897 insert = as_vgpr(ctx, insert);
2898
2899 bld.vop3(aco_opcode::v_bfi_b32, Definition(dst), bitmask, insert, base);
2900
2901 } else {
2902 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2903 nir_print_instr(&instr->instr, stderr);
2904 fprintf(stderr, "\n");
2905 }
2906 break;
2907 }
2908 case nir_op_ubfe:
2909 case nir_op_ibfe: {
2910 Temp base = get_alu_src(ctx, instr->src[0]);
2911 Temp offset = get_alu_src(ctx, instr->src[1]);
2912 Temp bits = get_alu_src(ctx, instr->src[2]);
2913
2914 if (dst.type() == RegType::sgpr) {
2915 Operand extract;
2916 nir_const_value* const_offset = nir_src_as_const_value(instr->src[1].src);
2917 nir_const_value* const_bits = nir_src_as_const_value(instr->src[2].src);
2918 if (const_offset && const_bits) {
2919 uint32_t const_extract = (const_bits->u32 << 16) | const_offset->u32;
2920 extract = Operand(const_extract);
2921 } else {
2922 Operand width;
2923 if (const_bits) {
2924 width = Operand(const_bits->u32 << 16);
2925 } else {
2926 width = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), bits, Operand(16u));
2927 }
2928 extract = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), offset, width);
2929 }
2930
2931 aco_opcode opcode;
2932 if (dst.regClass() == s1) {
2933 if (instr->op == nir_op_ubfe)
2934 opcode = aco_opcode::s_bfe_u32;
2935 else
2936 opcode = aco_opcode::s_bfe_i32;
2937 } else if (dst.regClass() == s2) {
2938 if (instr->op == nir_op_ubfe)
2939 opcode = aco_opcode::s_bfe_u64;
2940 else
2941 opcode = aco_opcode::s_bfe_i64;
2942 } else {
2943 unreachable("Unsupported BFE bit size");
2944 }
2945
2946 bld.sop2(opcode, Definition(dst), bld.def(s1, scc), base, extract);
2947
2948 } else {
2949 aco_opcode opcode;
2950 if (dst.regClass() == v1) {
2951 if (instr->op == nir_op_ubfe)
2952 opcode = aco_opcode::v_bfe_u32;
2953 else
2954 opcode = aco_opcode::v_bfe_i32;
2955 } else {
2956 unreachable("Unsupported BFE bit size");
2957 }
2958
2959 emit_vop3a_instruction(ctx, instr, opcode, dst);
2960 }
2961 break;
2962 }
2963 case nir_op_bit_count: {
2964 Temp src = get_alu_src(ctx, instr->src[0]);
2965 if (src.regClass() == s1) {
2966 bld.sop1(aco_opcode::s_bcnt1_i32_b32, Definition(dst), bld.def(s1, scc), src);
2967 } else if (src.regClass() == v1) {
2968 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst), src, Operand(0u));
2969 } else if (src.regClass() == v2) {
2970 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst),
2971 emit_extract_vector(ctx, src, 1, v1),
2972 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1),
2973 emit_extract_vector(ctx, src, 0, v1), Operand(0u)));
2974 } else if (src.regClass() == s2) {
2975 bld.sop1(aco_opcode::s_bcnt1_i32_b64, Definition(dst), bld.def(s1, scc), src);
2976 } else {
2977 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2978 nir_print_instr(&instr->instr, stderr);
2979 fprintf(stderr, "\n");
2980 }
2981 break;
2982 }
2983 case nir_op_flt: {
2984 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_f16, aco_opcode::v_cmp_lt_f32, aco_opcode::v_cmp_lt_f64);
2985 break;
2986 }
2987 case nir_op_fge: {
2988 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_f16, aco_opcode::v_cmp_ge_f32, aco_opcode::v_cmp_ge_f64);
2989 break;
2990 }
2991 case nir_op_feq: {
2992 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_f16, aco_opcode::v_cmp_eq_f32, aco_opcode::v_cmp_eq_f64);
2993 break;
2994 }
2995 case nir_op_fne: {
2996 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_neq_f16, aco_opcode::v_cmp_neq_f32, aco_opcode::v_cmp_neq_f64);
2997 break;
2998 }
2999 case nir_op_ilt: {
3000 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_i16, aco_opcode::v_cmp_lt_i32, aco_opcode::v_cmp_lt_i64, aco_opcode::s_cmp_lt_i32);
3001 break;
3002 }
3003 case nir_op_ige: {
3004 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_i16, aco_opcode::v_cmp_ge_i32, aco_opcode::v_cmp_ge_i64, aco_opcode::s_cmp_ge_i32);
3005 break;
3006 }
3007 case nir_op_ieq: {
3008 if (instr->src[0].src.ssa->bit_size == 1)
3009 emit_boolean_logic(ctx, instr, Builder::s_xnor, dst);
3010 else
3011 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_i16, aco_opcode::v_cmp_eq_i32, aco_opcode::v_cmp_eq_i64, aco_opcode::s_cmp_eq_i32,
3012 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_eq_u64 : aco_opcode::num_opcodes);
3013 break;
3014 }
3015 case nir_op_ine: {
3016 if (instr->src[0].src.ssa->bit_size == 1)
3017 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
3018 else
3019 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lg_i16, aco_opcode::v_cmp_lg_i32, aco_opcode::v_cmp_lg_i64, aco_opcode::s_cmp_lg_i32,
3020 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::num_opcodes);
3021 break;
3022 }
3023 case nir_op_ult: {
3024 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_u16, aco_opcode::v_cmp_lt_u32, aco_opcode::v_cmp_lt_u64, aco_opcode::s_cmp_lt_u32);
3025 break;
3026 }
3027 case nir_op_uge: {
3028 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_u16, aco_opcode::v_cmp_ge_u32, aco_opcode::v_cmp_ge_u64, aco_opcode::s_cmp_ge_u32);
3029 break;
3030 }
3031 case nir_op_fddx:
3032 case nir_op_fddy:
3033 case nir_op_fddx_fine:
3034 case nir_op_fddy_fine:
3035 case nir_op_fddx_coarse:
3036 case nir_op_fddy_coarse: {
3037 Temp src = get_alu_src(ctx, instr->src[0]);
3038 uint16_t dpp_ctrl1, dpp_ctrl2;
3039 if (instr->op == nir_op_fddx_fine) {
3040 dpp_ctrl1 = dpp_quad_perm(0, 0, 2, 2);
3041 dpp_ctrl2 = dpp_quad_perm(1, 1, 3, 3);
3042 } else if (instr->op == nir_op_fddy_fine) {
3043 dpp_ctrl1 = dpp_quad_perm(0, 1, 0, 1);
3044 dpp_ctrl2 = dpp_quad_perm(2, 3, 2, 3);
3045 } else {
3046 dpp_ctrl1 = dpp_quad_perm(0, 0, 0, 0);
3047 if (instr->op == nir_op_fddx || instr->op == nir_op_fddx_coarse)
3048 dpp_ctrl2 = dpp_quad_perm(1, 1, 1, 1);
3049 else
3050 dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
3051 }
3052
3053 Temp tmp;
3054 if (ctx->program->chip_class >= GFX8) {
3055 Temp tl = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl1);
3056 tmp = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), src, tl, dpp_ctrl2);
3057 } else {
3058 Temp tl = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl1);
3059 Temp tr = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl2);
3060 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), tr, tl);
3061 }
3062 emit_wqm(ctx, tmp, dst, true);
3063 break;
3064 }
3065 default:
3066 fprintf(stderr, "Unknown NIR ALU instr: ");
3067 nir_print_instr(&instr->instr, stderr);
3068 fprintf(stderr, "\n");
3069 }
3070 }
3071
3072 void visit_load_const(isel_context *ctx, nir_load_const_instr *instr)
3073 {
3074 Temp dst = get_ssa_temp(ctx, &instr->def);
3075
3076 // TODO: we really want to have the resulting type as this would allow for 64bit literals
3077 // which get truncated the lsb if double and msb if int
3078 // for now, we only use s_mov_b64 with 64bit inline constants
3079 assert(instr->def.num_components == 1 && "Vector load_const should be lowered to scalar.");
3080 assert(dst.type() == RegType::sgpr);
3081
3082 Builder bld(ctx->program, ctx->block);
3083
3084 if (instr->def.bit_size == 1) {
3085 assert(dst.regClass() == bld.lm);
3086 int val = instr->value[0].b ? -1 : 0;
3087 Operand op = bld.lm.size() == 1 ? Operand((uint32_t) val) : Operand((uint64_t) val);
3088 bld.sop1(Builder::s_mov, Definition(dst), op);
3089 } else if (instr->def.bit_size == 8) {
3090 /* ensure that the value is correctly represented in the low byte of the register */
3091 bld.sopk(aco_opcode::s_movk_i32, Definition(dst), instr->value[0].u8);
3092 } else if (instr->def.bit_size == 16) {
3093 /* ensure that the value is correctly represented in the low half of the register */
3094 bld.sopk(aco_opcode::s_movk_i32, Definition(dst), instr->value[0].u16);
3095 } else if (dst.size() == 1) {
3096 bld.copy(Definition(dst), Operand(instr->value[0].u32));
3097 } else {
3098 assert(dst.size() != 1);
3099 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
3100 if (instr->def.bit_size == 64)
3101 for (unsigned i = 0; i < dst.size(); i++)
3102 vec->operands[i] = Operand{(uint32_t)(instr->value[0].u64 >> i * 32)};
3103 else {
3104 for (unsigned i = 0; i < dst.size(); i++)
3105 vec->operands[i] = Operand{instr->value[i].u32};
3106 }
3107 vec->definitions[0] = Definition(dst);
3108 ctx->block->instructions.emplace_back(std::move(vec));
3109 }
3110 }
3111
3112 uint32_t widen_mask(uint32_t mask, unsigned multiplier)
3113 {
3114 uint32_t new_mask = 0;
3115 for(unsigned i = 0; i < 32 && (1u << i) <= mask; ++i)
3116 if (mask & (1u << i))
3117 new_mask |= ((1u << multiplier) - 1u) << (i * multiplier);
3118 return new_mask;
3119 }
3120
3121 Operand load_lds_size_m0(isel_context *ctx)
3122 {
3123 /* TODO: m0 does not need to be initialized on GFX9+ */
3124 Builder bld(ctx->program, ctx->block);
3125 return bld.m0((Temp)bld.sopk(aco_opcode::s_movk_i32, bld.def(s1, m0), 0xffff));
3126 }
3127
3128 Temp load_lds(isel_context *ctx, unsigned elem_size_bytes, Temp dst,
3129 Temp address, unsigned base_offset, unsigned align)
3130 {
3131 assert(util_is_power_of_two_nonzero(align) && align >= 4);
3132
3133 Builder bld(ctx->program, ctx->block);
3134
3135 Operand m = load_lds_size_m0(ctx);
3136
3137 unsigned num_components = dst.size() * 4u / elem_size_bytes;
3138 unsigned bytes_read = 0;
3139 unsigned result_size = 0;
3140 unsigned total_bytes = num_components * elem_size_bytes;
3141 std::array<Temp, NIR_MAX_VEC_COMPONENTS> result;
3142 bool large_ds_read = ctx->options->chip_class >= GFX7;
3143 bool usable_read2 = ctx->options->chip_class >= GFX7;
3144
3145 while (bytes_read < total_bytes) {
3146 unsigned todo = total_bytes - bytes_read;
3147 bool aligned8 = bytes_read % 8 == 0 && align % 8 == 0;
3148 bool aligned16 = bytes_read % 16 == 0 && align % 16 == 0;
3149
3150 aco_opcode op = aco_opcode::last_opcode;
3151 bool read2 = false;
3152 if (todo >= 16 && aligned16 && large_ds_read) {
3153 op = aco_opcode::ds_read_b128;
3154 todo = 16;
3155 } else if (todo >= 16 && aligned8 && usable_read2) {
3156 op = aco_opcode::ds_read2_b64;
3157 read2 = true;
3158 todo = 16;
3159 } else if (todo >= 12 && aligned16 && large_ds_read) {
3160 op = aco_opcode::ds_read_b96;
3161 todo = 12;
3162 } else if (todo >= 8 && aligned8) {
3163 op = aco_opcode::ds_read_b64;
3164 todo = 8;
3165 } else if (todo >= 8 && usable_read2) {
3166 op = aco_opcode::ds_read2_b32;
3167 read2 = true;
3168 todo = 8;
3169 } else if (todo >= 4) {
3170 op = aco_opcode::ds_read_b32;
3171 todo = 4;
3172 } else {
3173 assert(false);
3174 }
3175 assert(todo % elem_size_bytes == 0);
3176 unsigned num_elements = todo / elem_size_bytes;
3177 unsigned offset = base_offset + bytes_read;
3178 unsigned max_offset = read2 ? 1019 : 65535;
3179
3180 Temp address_offset = address;
3181 if (offset > max_offset) {
3182 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
3183 offset = bytes_read;
3184 }
3185 assert(offset <= max_offset); /* bytes_read shouldn't be large enough for this to happen */
3186
3187 Temp res;
3188 if (num_components == 1 && dst.type() == RegType::vgpr)
3189 res = dst;
3190 else
3191 res = bld.tmp(RegClass(RegType::vgpr, todo / 4));
3192
3193 if (read2)
3194 res = bld.ds(op, Definition(res), address_offset, m, offset / (todo / 2), (offset / (todo / 2)) + 1);
3195 else
3196 res = bld.ds(op, Definition(res), address_offset, m, offset);
3197
3198 if (num_components == 1) {
3199 assert(todo == total_bytes);
3200 if (dst.type() == RegType::sgpr)
3201 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), res);
3202 return dst;
3203 }
3204
3205 if (dst.type() == RegType::sgpr) {
3206 Temp new_res = bld.tmp(RegType::sgpr, res.size());
3207 expand_vector(ctx, res, new_res, res.size(), (1 << res.size()) - 1);
3208 res = new_res;
3209 }
3210
3211 if (num_elements == 1) {
3212 result[result_size++] = res;
3213 } else {
3214 assert(res != dst && res.size() % num_elements == 0);
3215 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_elements)};
3216 split->operands[0] = Operand(res);
3217 for (unsigned i = 0; i < num_elements; i++)
3218 split->definitions[i] = Definition(result[result_size++] = bld.tmp(res.type(), elem_size_bytes / 4));
3219 ctx->block->instructions.emplace_back(std::move(split));
3220 }
3221
3222 bytes_read += todo;
3223 }
3224
3225 assert(result_size == num_components && result_size > 1);
3226 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, result_size, 1)};
3227 for (unsigned i = 0; i < result_size; i++)
3228 vec->operands[i] = Operand(result[i]);
3229 vec->definitions[0] = Definition(dst);
3230 ctx->block->instructions.emplace_back(std::move(vec));
3231 ctx->allocated_vec.emplace(dst.id(), result);
3232
3233 return dst;
3234 }
3235
3236 Temp extract_subvector(isel_context *ctx, Temp data, unsigned start, unsigned size, RegType type)
3237 {
3238 if (start == 0 && size == data.size())
3239 return type == RegType::vgpr ? as_vgpr(ctx, data) : data;
3240
3241 unsigned size_hint = 1;
3242 auto it = ctx->allocated_vec.find(data.id());
3243 if (it != ctx->allocated_vec.end())
3244 size_hint = it->second[0].size();
3245 if (size % size_hint || start % size_hint)
3246 size_hint = 1;
3247
3248 start /= size_hint;
3249 size /= size_hint;
3250
3251 Temp elems[size];
3252 for (unsigned i = 0; i < size; i++)
3253 elems[i] = emit_extract_vector(ctx, data, start + i, RegClass(type, size_hint));
3254
3255 if (size == 1)
3256 return type == RegType::vgpr ? as_vgpr(ctx, elems[0]) : elems[0];
3257
3258 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
3259 for (unsigned i = 0; i < size; i++)
3260 vec->operands[i] = Operand(elems[i]);
3261 Temp res = {ctx->program->allocateId(), RegClass(type, size * size_hint)};
3262 vec->definitions[0] = Definition(res);
3263 ctx->block->instructions.emplace_back(std::move(vec));
3264 return res;
3265 }
3266
3267 void ds_write_helper(isel_context *ctx, Operand m, Temp address, Temp data, unsigned data_start, unsigned total_size, unsigned offset0, unsigned offset1, unsigned align)
3268 {
3269 Builder bld(ctx->program, ctx->block);
3270 unsigned bytes_written = 0;
3271 bool large_ds_write = ctx->options->chip_class >= GFX7;
3272 bool usable_write2 = ctx->options->chip_class >= GFX7;
3273
3274 while (bytes_written < total_size * 4) {
3275 unsigned todo = total_size * 4 - bytes_written;
3276 bool aligned8 = bytes_written % 8 == 0 && align % 8 == 0;
3277 bool aligned16 = bytes_written % 16 == 0 && align % 16 == 0;
3278
3279 aco_opcode op = aco_opcode::last_opcode;
3280 bool write2 = false;
3281 unsigned size = 0;
3282 if (todo >= 16 && aligned16 && large_ds_write) {
3283 op = aco_opcode::ds_write_b128;
3284 size = 4;
3285 } else if (todo >= 16 && aligned8 && usable_write2) {
3286 op = aco_opcode::ds_write2_b64;
3287 write2 = true;
3288 size = 4;
3289 } else if (todo >= 12 && aligned16 && large_ds_write) {
3290 op = aco_opcode::ds_write_b96;
3291 size = 3;
3292 } else if (todo >= 8 && aligned8) {
3293 op = aco_opcode::ds_write_b64;
3294 size = 2;
3295 } else if (todo >= 8 && usable_write2) {
3296 op = aco_opcode::ds_write2_b32;
3297 write2 = true;
3298 size = 2;
3299 } else if (todo >= 4) {
3300 op = aco_opcode::ds_write_b32;
3301 size = 1;
3302 } else {
3303 assert(false);
3304 }
3305
3306 unsigned offset = offset0 + offset1 + bytes_written;
3307 unsigned max_offset = write2 ? 1020 : 65535;
3308 Temp address_offset = address;
3309 if (offset > max_offset) {
3310 address_offset = bld.vadd32(bld.def(v1), Operand(offset0), address_offset);
3311 offset = offset1 + bytes_written;
3312 }
3313 assert(offset <= max_offset); /* offset1 shouldn't be large enough for this to happen */
3314
3315 if (write2) {
3316 Temp val0 = extract_subvector(ctx, data, data_start + (bytes_written >> 2), size / 2, RegType::vgpr);
3317 Temp val1 = extract_subvector(ctx, data, data_start + (bytes_written >> 2) + 1, size / 2, RegType::vgpr);
3318 bld.ds(op, address_offset, val0, val1, m, offset / size / 2, (offset / size / 2) + 1);
3319 } else {
3320 Temp val = extract_subvector(ctx, data, data_start + (bytes_written >> 2), size, RegType::vgpr);
3321 bld.ds(op, address_offset, val, m, offset);
3322 }
3323
3324 bytes_written += size * 4;
3325 }
3326 }
3327
3328 void store_lds(isel_context *ctx, unsigned elem_size_bytes, Temp data, uint32_t wrmask,
3329 Temp address, unsigned base_offset, unsigned align)
3330 {
3331 assert(util_is_power_of_two_nonzero(align) && align >= 4);
3332 assert(elem_size_bytes == 4 || elem_size_bytes == 8);
3333
3334 Operand m = load_lds_size_m0(ctx);
3335
3336 /* we need at most two stores, assuming that the writemask is at most 4 bits wide */
3337 assert(wrmask <= 0x0f);
3338 int start[2], count[2];
3339 u_bit_scan_consecutive_range(&wrmask, &start[0], &count[0]);
3340 u_bit_scan_consecutive_range(&wrmask, &start[1], &count[1]);
3341 assert(wrmask == 0);
3342
3343 /* one combined store is sufficient */
3344 if (count[0] == count[1] && (align % elem_size_bytes) == 0 && (base_offset % elem_size_bytes) == 0) {
3345 Builder bld(ctx->program, ctx->block);
3346
3347 Temp address_offset = address;
3348 if ((base_offset / elem_size_bytes) + start[1] > 255) {
3349 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
3350 base_offset = 0;
3351 }
3352
3353 assert(count[0] == 1);
3354 RegClass xtract_rc(RegType::vgpr, elem_size_bytes / 4);
3355
3356 Temp val0 = emit_extract_vector(ctx, data, start[0], xtract_rc);
3357 Temp val1 = emit_extract_vector(ctx, data, start[1], xtract_rc);
3358 aco_opcode op = elem_size_bytes == 4 ? aco_opcode::ds_write2_b32 : aco_opcode::ds_write2_b64;
3359 base_offset = base_offset / elem_size_bytes;
3360 bld.ds(op, address_offset, val0, val1, m,
3361 base_offset + start[0], base_offset + start[1]);
3362 return;
3363 }
3364
3365 for (unsigned i = 0; i < 2; i++) {
3366 if (count[i] == 0)
3367 continue;
3368
3369 unsigned elem_size_words = elem_size_bytes / 4;
3370 ds_write_helper(ctx, m, address, data, start[i] * elem_size_words, count[i] * elem_size_words,
3371 base_offset, start[i] * elem_size_bytes, align);
3372 }
3373 return;
3374 }
3375
3376 unsigned calculate_lds_alignment(isel_context *ctx, unsigned const_offset)
3377 {
3378 unsigned align = 16;
3379 if (const_offset)
3380 align = std::min(align, 1u << (ffs(const_offset) - 1));
3381
3382 return align;
3383 }
3384
3385
3386 Temp create_vec_from_array(isel_context *ctx, Temp arr[], unsigned cnt, RegType reg_type, unsigned elem_size_bytes,
3387 unsigned split_cnt = 0u, Temp dst = Temp())
3388 {
3389 Builder bld(ctx->program, ctx->block);
3390 unsigned dword_size = elem_size_bytes / 4;
3391
3392 if (!dst.id())
3393 dst = bld.tmp(RegClass(reg_type, cnt * dword_size));
3394
3395 std::array<Temp, NIR_MAX_VEC_COMPONENTS> allocated_vec;
3396 aco_ptr<Pseudo_instruction> instr {create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, cnt, 1)};
3397 instr->definitions[0] = Definition(dst);
3398
3399 for (unsigned i = 0; i < cnt; ++i) {
3400 if (arr[i].id()) {
3401 assert(arr[i].size() == dword_size);
3402 allocated_vec[i] = arr[i];
3403 instr->operands[i] = Operand(arr[i]);
3404 } else {
3405 Temp zero = bld.copy(bld.def(RegClass(reg_type, dword_size)), Operand(0u, dword_size == 2));
3406 allocated_vec[i] = zero;
3407 instr->operands[i] = Operand(zero);
3408 }
3409 }
3410
3411 bld.insert(std::move(instr));
3412
3413 if (split_cnt)
3414 emit_split_vector(ctx, dst, split_cnt);
3415 else
3416 ctx->allocated_vec.emplace(dst.id(), allocated_vec); /* emit_split_vector already does this */
3417
3418 return dst;
3419 }
3420
3421 inline unsigned resolve_excess_vmem_const_offset(Builder &bld, Temp &voffset, unsigned const_offset)
3422 {
3423 if (const_offset >= 4096) {
3424 unsigned excess_const_offset = const_offset / 4096u * 4096u;
3425 const_offset %= 4096u;
3426
3427 if (!voffset.id())
3428 voffset = bld.copy(bld.def(v1), Operand(excess_const_offset));
3429 else if (unlikely(voffset.regClass() == s1))
3430 voffset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), Operand(excess_const_offset), Operand(voffset));
3431 else if (likely(voffset.regClass() == v1))
3432 voffset = bld.vadd32(bld.def(v1), Operand(voffset), Operand(excess_const_offset));
3433 else
3434 unreachable("Unsupported register class of voffset");
3435 }
3436
3437 return const_offset;
3438 }
3439
3440 void emit_single_mubuf_store(isel_context *ctx, Temp descriptor, Temp voffset, Temp soffset, Temp vdata,
3441 unsigned const_offset = 0u, bool allow_reorder = true, bool slc = false)
3442 {
3443 assert(vdata.id());
3444 assert(vdata.size() != 3 || ctx->program->chip_class != GFX6);
3445 assert(vdata.size() >= 1 && vdata.size() <= 4);
3446
3447 Builder bld(ctx->program, ctx->block);
3448 aco_opcode op = (aco_opcode) ((unsigned) aco_opcode::buffer_store_dword + vdata.size() - 1);
3449 const_offset = resolve_excess_vmem_const_offset(bld, voffset, const_offset);
3450
3451 Operand voffset_op = voffset.id() ? Operand(as_vgpr(ctx, voffset)) : Operand(v1);
3452 Operand soffset_op = soffset.id() ? Operand(soffset) : Operand(0u);
3453 Builder::Result r = bld.mubuf(op, Operand(descriptor), voffset_op, soffset_op, Operand(vdata), const_offset,
3454 /* offen */ !voffset_op.isUndefined(), /* idxen*/ false, /* addr64 */ false,
3455 /* disable_wqm */ false, /* glc */ true, /* dlc*/ false, /* slc */ slc);
3456
3457 static_cast<MUBUF_instruction *>(r.instr)->can_reorder = allow_reorder;
3458 }
3459
3460 void store_vmem_mubuf(isel_context *ctx, Temp src, Temp descriptor, Temp voffset, Temp soffset,
3461 unsigned base_const_offset, unsigned elem_size_bytes, unsigned write_mask,
3462 bool allow_combining = true, bool reorder = true, bool slc = false)
3463 {
3464 Builder bld(ctx->program, ctx->block);
3465 assert(elem_size_bytes == 4 || elem_size_bytes == 8);
3466 assert(write_mask);
3467
3468 if (elem_size_bytes == 8) {
3469 elem_size_bytes = 4;
3470 write_mask = widen_mask(write_mask, 2);
3471 }
3472
3473 while (write_mask) {
3474 int start = 0;
3475 int count = 0;
3476 u_bit_scan_consecutive_range(&write_mask, &start, &count);
3477 assert(count > 0);
3478 assert(start >= 0);
3479
3480 while (count > 0) {
3481 unsigned sub_count = allow_combining ? MIN2(count, 4) : 1;
3482 unsigned const_offset = (unsigned) start * elem_size_bytes + base_const_offset;
3483
3484 /* GFX6 doesn't have buffer_store_dwordx3, so make sure not to emit that here either. */
3485 if (unlikely(ctx->program->chip_class == GFX6 && sub_count == 3))
3486 sub_count = 2;
3487
3488 Temp elem = extract_subvector(ctx, src, start, sub_count, RegType::vgpr);
3489 emit_single_mubuf_store(ctx, descriptor, voffset, soffset, elem, const_offset, reorder, slc);
3490
3491 count -= sub_count;
3492 start += sub_count;
3493 }
3494
3495 assert(count == 0);
3496 }
3497 }
3498
3499 Temp emit_single_mubuf_load(isel_context *ctx, Temp descriptor, Temp voffset, Temp soffset,
3500 unsigned const_offset, unsigned size_dwords, bool allow_reorder = true)
3501 {
3502 assert(size_dwords != 3 || ctx->program->chip_class != GFX6);
3503 assert(size_dwords >= 1 && size_dwords <= 4);
3504
3505 Builder bld(ctx->program, ctx->block);
3506 Temp vdata = bld.tmp(RegClass(RegType::vgpr, size_dwords));
3507 aco_opcode op = (aco_opcode) ((unsigned) aco_opcode::buffer_load_dword + size_dwords - 1);
3508 const_offset = resolve_excess_vmem_const_offset(bld, voffset, const_offset);
3509
3510 Operand voffset_op = voffset.id() ? Operand(as_vgpr(ctx, voffset)) : Operand(v1);
3511 Operand soffset_op = soffset.id() ? Operand(soffset) : Operand(0u);
3512 Builder::Result r = bld.mubuf(op, Definition(vdata), Operand(descriptor), voffset_op, soffset_op, const_offset,
3513 /* offen */ !voffset_op.isUndefined(), /* idxen*/ false, /* addr64 */ false,
3514 /* disable_wqm */ false, /* glc */ true,
3515 /* dlc*/ ctx->program->chip_class >= GFX10, /* slc */ false);
3516
3517 static_cast<MUBUF_instruction *>(r.instr)->can_reorder = allow_reorder;
3518
3519 return vdata;
3520 }
3521
3522 void load_vmem_mubuf(isel_context *ctx, Temp dst, Temp descriptor, Temp voffset, Temp soffset,
3523 unsigned base_const_offset, unsigned elem_size_bytes, unsigned num_components,
3524 unsigned stride = 0u, bool allow_combining = true, bool allow_reorder = true)
3525 {
3526 assert(elem_size_bytes == 4 || elem_size_bytes == 8);
3527 assert((num_components * elem_size_bytes / 4) == dst.size());
3528 assert(!!stride != allow_combining);
3529
3530 Builder bld(ctx->program, ctx->block);
3531 unsigned split_cnt = num_components;
3532
3533 if (elem_size_bytes == 8) {
3534 elem_size_bytes = 4;
3535 num_components *= 2;
3536 }
3537
3538 if (!stride)
3539 stride = elem_size_bytes;
3540
3541 unsigned load_size = 1;
3542 if (allow_combining) {
3543 if ((num_components % 4) == 0)
3544 load_size = 4;
3545 else if ((num_components % 3) == 0 && ctx->program->chip_class != GFX6)
3546 load_size = 3;
3547 else if ((num_components % 2) == 0)
3548 load_size = 2;
3549 }
3550
3551 unsigned num_loads = num_components / load_size;
3552 std::array<Temp, NIR_MAX_VEC_COMPONENTS> elems;
3553
3554 for (unsigned i = 0; i < num_loads; ++i) {
3555 unsigned const_offset = i * stride * load_size + base_const_offset;
3556 elems[i] = emit_single_mubuf_load(ctx, descriptor, voffset, soffset, const_offset, load_size, allow_reorder);
3557 }
3558
3559 create_vec_from_array(ctx, elems.data(), num_loads, RegType::vgpr, load_size * 4u, split_cnt, dst);
3560 }
3561
3562 std::pair<Temp, unsigned> offset_add_from_nir(isel_context *ctx, const std::pair<Temp, unsigned> &base_offset, nir_src *off_src, unsigned stride = 1u)
3563 {
3564 Builder bld(ctx->program, ctx->block);
3565 Temp offset = base_offset.first;
3566 unsigned const_offset = base_offset.second;
3567
3568 if (!nir_src_is_const(*off_src)) {
3569 Temp indirect_offset_arg = get_ssa_temp(ctx, off_src->ssa);
3570 Temp with_stride;
3571
3572 /* Calculate indirect offset with stride */
3573 if (likely(indirect_offset_arg.regClass() == v1))
3574 with_stride = bld.v_mul_imm(bld.def(v1), indirect_offset_arg, stride);
3575 else if (indirect_offset_arg.regClass() == s1)
3576 with_stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), indirect_offset_arg);
3577 else
3578 unreachable("Unsupported register class of indirect offset");
3579
3580 /* Add to the supplied base offset */
3581 if (offset.id() == 0)
3582 offset = with_stride;
3583 else if (unlikely(offset.regClass() == s1 && with_stride.regClass() == s1))
3584 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), with_stride, offset);
3585 else if (offset.size() == 1 && with_stride.size() == 1)
3586 offset = bld.vadd32(bld.def(v1), with_stride, offset);
3587 else
3588 unreachable("Unsupported register class of indirect offset");
3589 } else {
3590 unsigned const_offset_arg = nir_src_as_uint(*off_src);
3591 const_offset += const_offset_arg * stride;
3592 }
3593
3594 return std::make_pair(offset, const_offset);
3595 }
3596
3597 std::pair<Temp, unsigned> offset_add(isel_context *ctx, const std::pair<Temp, unsigned> &off1, const std::pair<Temp, unsigned> &off2)
3598 {
3599 Builder bld(ctx->program, ctx->block);
3600 Temp offset;
3601
3602 if (off1.first.id() && off2.first.id()) {
3603 if (unlikely(off1.first.regClass() == s1 && off2.first.regClass() == s1))
3604 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), off1.first, off2.first);
3605 else if (off1.first.size() == 1 && off2.first.size() == 1)
3606 offset = bld.vadd32(bld.def(v1), off1.first, off2.first);
3607 else
3608 unreachable("Unsupported register class of indirect offset");
3609 } else {
3610 offset = off1.first.id() ? off1.first : off2.first;
3611 }
3612
3613 return std::make_pair(offset, off1.second + off2.second);
3614 }
3615
3616 std::pair<Temp, unsigned> offset_mul(isel_context *ctx, const std::pair<Temp, unsigned> &offs, unsigned multiplier)
3617 {
3618 Builder bld(ctx->program, ctx->block);
3619 unsigned const_offset = offs.second * multiplier;
3620
3621 if (!offs.first.id())
3622 return std::make_pair(offs.first, const_offset);
3623
3624 Temp offset = unlikely(offs.first.regClass() == s1)
3625 ? bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(multiplier), offs.first)
3626 : bld.v_mul_imm(bld.def(v1), offs.first, multiplier);
3627
3628 return std::make_pair(offset, const_offset);
3629 }
3630
3631 std::pair<Temp, unsigned> get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned base_stride, unsigned component_stride)
3632 {
3633 Builder bld(ctx->program, ctx->block);
3634
3635 /* base is the driver_location, which is already multiplied by 4, so is in dwords */
3636 unsigned const_offset = nir_intrinsic_base(instr) * base_stride;
3637 /* component is in bytes */
3638 const_offset += nir_intrinsic_component(instr) * component_stride;
3639
3640 /* offset should be interpreted in relation to the base, so the instruction effectively reads/writes another input/output when it has an offset */
3641 nir_src *off_src = nir_get_io_offset_src(instr);
3642 return offset_add_from_nir(ctx, std::make_pair(Temp(), const_offset), off_src, 4u * base_stride);
3643 }
3644
3645 std::pair<Temp, unsigned> get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned stride = 1u)
3646 {
3647 return get_intrinsic_io_basic_offset(ctx, instr, stride, stride);
3648 }
3649
3650 Temp get_tess_rel_patch_id(isel_context *ctx)
3651 {
3652 Builder bld(ctx->program, ctx->block);
3653
3654 switch (ctx->shader->info.stage) {
3655 case MESA_SHADER_TESS_CTRL:
3656 return bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffu),
3657 get_arg(ctx, ctx->args->ac.tcs_rel_ids));
3658 case MESA_SHADER_TESS_EVAL:
3659 return get_arg(ctx, ctx->args->tes_rel_patch_id);
3660 default:
3661 unreachable("Unsupported stage in get_tess_rel_patch_id");
3662 }
3663 }
3664
3665 std::pair<Temp, unsigned> get_tcs_per_vertex_input_lds_offset(isel_context *ctx, nir_intrinsic_instr *instr)
3666 {
3667 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3668 Builder bld(ctx->program, ctx->block);
3669
3670 uint32_t tcs_in_patch_stride = ctx->args->options->key.tcs.input_vertices * ctx->tcs_num_inputs * 4;
3671 uint32_t tcs_in_vertex_stride = ctx->tcs_num_inputs * 4;
3672
3673 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr);
3674
3675 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
3676 offs = offset_add_from_nir(ctx, offs, vertex_index_src, tcs_in_vertex_stride);
3677
3678 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3679 Temp tcs_in_current_patch_offset = bld.v_mul24_imm(bld.def(v1), rel_patch_id, tcs_in_patch_stride);
3680 offs = offset_add(ctx, offs, std::make_pair(tcs_in_current_patch_offset, 0));
3681
3682 return offset_mul(ctx, offs, 4u);
3683 }
3684
3685 std::pair<Temp, unsigned> get_tcs_output_lds_offset(isel_context *ctx, nir_intrinsic_instr *instr = nullptr, bool per_vertex = false)
3686 {
3687 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3688 Builder bld(ctx->program, ctx->block);
3689
3690 uint32_t input_patch_size = ctx->args->options->key.tcs.input_vertices * ctx->tcs_num_inputs * 16;
3691 uint32_t num_tcs_outputs = util_last_bit64(ctx->args->shader_info->tcs.outputs_written);
3692 uint32_t num_tcs_patch_outputs = util_last_bit64(ctx->args->shader_info->tcs.patch_outputs_written);
3693 uint32_t output_vertex_size = num_tcs_outputs * 16;
3694 uint32_t pervertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
3695 uint32_t output_patch_stride = pervertex_output_patch_size + num_tcs_patch_outputs * 16;
3696
3697 std::pair<Temp, unsigned> offs = instr
3698 ? get_intrinsic_io_basic_offset(ctx, instr, 4u)
3699 : std::make_pair(Temp(), 0u);
3700
3701 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3702 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, output_patch_stride);
3703
3704 if (per_vertex) {
3705 assert(instr);
3706
3707 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
3708 offs = offset_add_from_nir(ctx, offs, vertex_index_src, output_vertex_size);
3709
3710 uint32_t output_patch0_offset = (input_patch_size * ctx->tcs_num_patches);
3711 offs = offset_add(ctx, offs, std::make_pair(patch_off, output_patch0_offset));
3712 } else {
3713 uint32_t output_patch0_patch_data_offset = (input_patch_size * ctx->tcs_num_patches + pervertex_output_patch_size);
3714 offs = offset_add(ctx, offs, std::make_pair(patch_off, output_patch0_patch_data_offset));
3715 }
3716
3717 return offs;
3718 }
3719
3720 std::pair<Temp, unsigned> get_tcs_per_vertex_output_vmem_offset(isel_context *ctx, nir_intrinsic_instr *instr)
3721 {
3722 Builder bld(ctx->program, ctx->block);
3723
3724 unsigned vertices_per_patch = ctx->shader->info.tess.tcs_vertices_out;
3725 unsigned attr_stride = vertices_per_patch * ctx->tcs_num_patches;
3726
3727 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, attr_stride * 4u, 4u);
3728
3729 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3730 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, vertices_per_patch * 16u);
3731 offs = offset_add(ctx, offs, std::make_pair(patch_off, 0u));
3732
3733 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
3734 offs = offset_add_from_nir(ctx, offs, vertex_index_src, 16u);
3735
3736 return offs;
3737 }
3738
3739 std::pair<Temp, unsigned> get_tcs_per_patch_output_vmem_offset(isel_context *ctx, nir_intrinsic_instr *instr = nullptr, unsigned const_base_offset = 0u)
3740 {
3741 Builder bld(ctx->program, ctx->block);
3742
3743 unsigned num_tcs_outputs = ctx->shader->info.stage == MESA_SHADER_TESS_CTRL
3744 ? util_last_bit64(ctx->args->shader_info->tcs.outputs_written)
3745 : ctx->args->options->key.tes.tcs_num_outputs;
3746
3747 unsigned output_vertex_size = num_tcs_outputs * 16;
3748 unsigned per_vertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
3749 unsigned per_patch_data_offset = per_vertex_output_patch_size * ctx->tcs_num_patches;
3750 unsigned attr_stride = ctx->tcs_num_patches;
3751
3752 std::pair<Temp, unsigned> offs = instr
3753 ? get_intrinsic_io_basic_offset(ctx, instr, attr_stride * 4u, 4u)
3754 : std::make_pair(Temp(), 0u);
3755
3756 if (const_base_offset)
3757 offs.second += const_base_offset * attr_stride;
3758
3759 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3760 Temp patch_off = bld.v_mul_imm(bld.def(v1), rel_patch_id, 16u);
3761 offs = offset_add(ctx, offs, std::make_pair(patch_off, per_patch_data_offset));
3762
3763 return offs;
3764 }
3765
3766 bool tcs_driver_location_matches_api_mask(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex, uint64_t mask, bool *indirect)
3767 {
3768 unsigned off = nir_intrinsic_base(instr) * 4u;
3769 nir_src *off_src = nir_get_io_offset_src(instr);
3770
3771 if (!nir_src_is_const(*off_src)) {
3772 *indirect = true;
3773 return false;
3774 }
3775
3776 *indirect = false;
3777 off += nir_src_as_uint(*off_src) * 16u;
3778
3779 while (mask) {
3780 unsigned slot = u_bit_scan64(&mask) + (per_vertex ? 0 : VARYING_SLOT_PATCH0);
3781 if (off == shader_io_get_unique_index((gl_varying_slot) slot) * 16u)
3782 return true;
3783 }
3784
3785 return false;
3786 }
3787
3788 bool store_output_to_temps(isel_context *ctx, nir_intrinsic_instr *instr)
3789 {
3790 unsigned write_mask = nir_intrinsic_write_mask(instr);
3791 unsigned component = nir_intrinsic_component(instr);
3792 unsigned idx = nir_intrinsic_base(instr) + component;
3793
3794 nir_instr *off_instr = instr->src[1].ssa->parent_instr;
3795 if (off_instr->type != nir_instr_type_load_const)
3796 return false;
3797
3798 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
3799 idx += nir_src_as_uint(instr->src[1]) * 4u;
3800
3801 if (instr->src[0].ssa->bit_size == 64)
3802 write_mask = widen_mask(write_mask, 2);
3803
3804 for (unsigned i = 0; i < 8; ++i) {
3805 if (write_mask & (1 << i)) {
3806 ctx->outputs.mask[idx / 4u] |= 1 << (idx % 4u);
3807 ctx->outputs.temps[idx] = emit_extract_vector(ctx, src, i, v1);
3808 }
3809 idx++;
3810 }
3811
3812 return true;
3813 }
3814
3815 bool load_input_from_temps(isel_context *ctx, nir_intrinsic_instr *instr, Temp dst)
3816 {
3817 /* Only TCS per-vertex inputs are supported by this function.
3818 * Per-vertex inputs only match between the VS/TCS invocation id when the number of invocations is the same.
3819 */
3820 if (ctx->shader->info.stage != MESA_SHADER_TESS_CTRL || !ctx->tcs_in_out_eq)
3821 return false;
3822
3823 nir_src *off_src = nir_get_io_offset_src(instr);
3824 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
3825 nir_instr *vertex_index_instr = vertex_index_src->ssa->parent_instr;
3826 bool can_use_temps = nir_src_is_const(*off_src) &&
3827 vertex_index_instr->type == nir_instr_type_intrinsic &&
3828 nir_instr_as_intrinsic(vertex_index_instr)->intrinsic == nir_intrinsic_load_invocation_id;
3829
3830 if (!can_use_temps)
3831 return false;
3832
3833 unsigned idx = nir_intrinsic_base(instr) + nir_intrinsic_component(instr) + 4 * nir_src_as_uint(*off_src);
3834 Temp *src = &ctx->inputs.temps[idx];
3835 Temp vec = create_vec_from_array(ctx, src, dst.size(), dst.regClass().type(), 4u);
3836 assert(vec.size() == dst.size());
3837
3838 Builder bld(ctx->program, ctx->block);
3839 bld.copy(Definition(dst), vec);
3840 return true;
3841 }
3842
3843 void visit_store_ls_or_es_output(isel_context *ctx, nir_intrinsic_instr *instr)
3844 {
3845 Builder bld(ctx->program, ctx->block);
3846
3847 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, 4u);
3848 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
3849 unsigned write_mask = nir_intrinsic_write_mask(instr);
3850 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8u;
3851
3852 if (ctx->tcs_in_out_eq && store_output_to_temps(ctx, instr)) {
3853 /* When the TCS only reads this output directly and for the same vertices as its invocation id, it is unnecessary to store the VS output to LDS. */
3854 bool indirect_write;
3855 bool temp_only_input = tcs_driver_location_matches_api_mask(ctx, instr, true, ctx->tcs_temp_only_inputs, &indirect_write);
3856 if (temp_only_input && !indirect_write)
3857 return;
3858 }
3859
3860 if (ctx->stage == vertex_es || ctx->stage == tess_eval_es) {
3861 /* GFX6-8: ES stage is not merged into GS, data is passed from ES to GS in VMEM. */
3862 Temp esgs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_VS * 16u));
3863 Temp es2gs_offset = get_arg(ctx, ctx->args->es2gs_offset);
3864 store_vmem_mubuf(ctx, src, esgs_ring, offs.first, es2gs_offset, offs.second, elem_size_bytes, write_mask, false, true, true);
3865 } else {
3866 Temp lds_base;
3867
3868 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
3869 /* GFX9+: ES stage is merged into GS, data is passed between them using LDS. */
3870 unsigned itemsize = ctx->stage == vertex_geometry_gs
3871 ? ctx->program->info->vs.es_info.esgs_itemsize
3872 : ctx->program->info->tes.es_info.esgs_itemsize;
3873 Temp thread_id = emit_mbcnt(ctx, bld.def(v1));
3874 Temp wave_idx = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(ctx, ctx->args->merged_wave_info), Operand(4u << 16 | 24));
3875 Temp vertex_idx = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), thread_id,
3876 bld.v_mul24_imm(bld.def(v1), as_vgpr(ctx, wave_idx), ctx->program->wave_size));
3877 lds_base = bld.v_mul24_imm(bld.def(v1), vertex_idx, itemsize);
3878 } else if (ctx->stage == vertex_ls || ctx->stage == vertex_tess_control_hs) {
3879 /* GFX6-8: VS runs on LS stage when tessellation is used, but LS shares LDS space with HS.
3880 * GFX9+: LS is merged into HS, but still uses the same LDS layout.
3881 */
3882 unsigned num_tcs_inputs = util_last_bit64(ctx->args->shader_info->vs.ls_outputs_written);
3883 Temp vertex_idx = get_arg(ctx, ctx->args->rel_auto_id);
3884 lds_base = bld.v_mul_imm(bld.def(v1), vertex_idx, num_tcs_inputs * 16u);
3885 } else {
3886 unreachable("Invalid LS or ES stage");
3887 }
3888
3889 offs = offset_add(ctx, offs, std::make_pair(lds_base, 0u));
3890 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
3891 store_lds(ctx, elem_size_bytes, src, write_mask, offs.first, offs.second, lds_align);
3892 }
3893 }
3894
3895 bool should_write_tcs_patch_output_to_vmem(isel_context *ctx, nir_intrinsic_instr *instr)
3896 {
3897 unsigned off = nir_intrinsic_base(instr) * 4u;
3898 return off != ctx->tcs_tess_lvl_out_loc &&
3899 off != ctx->tcs_tess_lvl_in_loc;
3900 }
3901
3902 bool should_write_tcs_output_to_lds(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
3903 {
3904 /* When none of the appropriate outputs are read, we are OK to never write to LDS */
3905 if (per_vertex ? ctx->shader->info.outputs_read == 0U : ctx->shader->info.patch_outputs_read == 0u)
3906 return false;
3907
3908 uint64_t mask = per_vertex
3909 ? ctx->shader->info.outputs_read
3910 : ctx->shader->info.patch_outputs_read;
3911 bool indirect_write;
3912 bool output_read = tcs_driver_location_matches_api_mask(ctx, instr, per_vertex, mask, &indirect_write);
3913 return indirect_write || output_read;
3914 }
3915
3916 void visit_store_tcs_output(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
3917 {
3918 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
3919 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3920
3921 Builder bld(ctx->program, ctx->block);
3922
3923 Temp store_val = get_ssa_temp(ctx, instr->src[0].ssa);
3924 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
3925 unsigned write_mask = nir_intrinsic_write_mask(instr);
3926
3927 /* Only write to VMEM if the output is per-vertex or it's per-patch non tess factor */
3928 bool write_to_vmem = per_vertex || should_write_tcs_patch_output_to_vmem(ctx, instr);
3929 /* Only write to LDS if the output is read by the shader, or it's per-patch tess factor */
3930 bool write_to_lds = !write_to_vmem || should_write_tcs_output_to_lds(ctx, instr, per_vertex);
3931
3932 if (write_to_vmem) {
3933 std::pair<Temp, unsigned> vmem_offs = per_vertex
3934 ? get_tcs_per_vertex_output_vmem_offset(ctx, instr)
3935 : get_tcs_per_patch_output_vmem_offset(ctx, instr);
3936
3937 Temp hs_ring_tess_offchip = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
3938 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
3939 store_vmem_mubuf(ctx, store_val, hs_ring_tess_offchip, vmem_offs.first, oc_lds, vmem_offs.second, elem_size_bytes, write_mask, true, false);
3940 }
3941
3942 if (write_to_lds) {
3943 std::pair<Temp, unsigned> lds_offs = get_tcs_output_lds_offset(ctx, instr, per_vertex);
3944 unsigned lds_align = calculate_lds_alignment(ctx, lds_offs.second);
3945 store_lds(ctx, elem_size_bytes, store_val, write_mask, lds_offs.first, lds_offs.second, lds_align);
3946 }
3947 }
3948
3949 void visit_load_tcs_output(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
3950 {
3951 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
3952 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3953
3954 Builder bld(ctx->program, ctx->block);
3955
3956 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3957 std::pair<Temp, unsigned> lds_offs = get_tcs_output_lds_offset(ctx, instr, per_vertex);
3958 unsigned lds_align = calculate_lds_alignment(ctx, lds_offs.second);
3959 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
3960
3961 load_lds(ctx, elem_size_bytes, dst, lds_offs.first, lds_offs.second, lds_align);
3962 }
3963
3964 void visit_store_output(isel_context *ctx, nir_intrinsic_instr *instr)
3965 {
3966 if (ctx->stage == vertex_vs ||
3967 ctx->stage == tess_eval_vs ||
3968 ctx->stage == fragment_fs ||
3969 ctx->stage == ngg_vertex_gs ||
3970 ctx->stage == ngg_tess_eval_gs ||
3971 ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
3972 bool stored_to_temps = store_output_to_temps(ctx, instr);
3973 if (!stored_to_temps) {
3974 fprintf(stderr, "Unimplemented output offset instruction:\n");
3975 nir_print_instr(instr->src[1].ssa->parent_instr, stderr);
3976 fprintf(stderr, "\n");
3977 abort();
3978 }
3979 } else if (ctx->stage == vertex_es ||
3980 ctx->stage == vertex_ls ||
3981 ctx->stage == tess_eval_es ||
3982 (ctx->stage == vertex_tess_control_hs && ctx->shader->info.stage == MESA_SHADER_VERTEX) ||
3983 (ctx->stage == vertex_geometry_gs && ctx->shader->info.stage == MESA_SHADER_VERTEX) ||
3984 (ctx->stage == tess_eval_geometry_gs && ctx->shader->info.stage == MESA_SHADER_TESS_EVAL)) {
3985 visit_store_ls_or_es_output(ctx, instr);
3986 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
3987 visit_store_tcs_output(ctx, instr, false);
3988 } else {
3989 unreachable("Shader stage not implemented");
3990 }
3991 }
3992
3993 void visit_load_output(isel_context *ctx, nir_intrinsic_instr *instr)
3994 {
3995 visit_load_tcs_output(ctx, instr, false);
3996 }
3997
3998 void emit_interp_instr(isel_context *ctx, unsigned idx, unsigned component, Temp src, Temp dst, Temp prim_mask)
3999 {
4000 Temp coord1 = emit_extract_vector(ctx, src, 0, v1);
4001 Temp coord2 = emit_extract_vector(ctx, src, 1, v1);
4002
4003 Builder bld(ctx->program, ctx->block);
4004 Builder::Result interp_p1 = bld.vintrp(aco_opcode::v_interp_p1_f32, bld.def(v1), coord1, bld.m0(prim_mask), idx, component);
4005 if (ctx->program->has_16bank_lds)
4006 interp_p1.instr->operands[0].setLateKill(true);
4007 bld.vintrp(aco_opcode::v_interp_p2_f32, Definition(dst), coord2, bld.m0(prim_mask), interp_p1, idx, component);
4008 }
4009
4010 void emit_load_frag_coord(isel_context *ctx, Temp dst, unsigned num_components)
4011 {
4012 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1));
4013 for (unsigned i = 0; i < num_components; i++)
4014 vec->operands[i] = Operand(get_arg(ctx, ctx->args->ac.frag_pos[i]));
4015 if (G_0286CC_POS_W_FLOAT_ENA(ctx->program->config->spi_ps_input_ena)) {
4016 assert(num_components == 4);
4017 Builder bld(ctx->program, ctx->block);
4018 vec->operands[3] = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), get_arg(ctx, ctx->args->ac.frag_pos[3]));
4019 }
4020
4021 for (Operand& op : vec->operands)
4022 op = op.isUndefined() ? Operand(0u) : op;
4023
4024 vec->definitions[0] = Definition(dst);
4025 ctx->block->instructions.emplace_back(std::move(vec));
4026 emit_split_vector(ctx, dst, num_components);
4027 return;
4028 }
4029
4030 void visit_load_interpolated_input(isel_context *ctx, nir_intrinsic_instr *instr)
4031 {
4032 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4033 Temp coords = get_ssa_temp(ctx, instr->src[0].ssa);
4034 unsigned idx = nir_intrinsic_base(instr);
4035 unsigned component = nir_intrinsic_component(instr);
4036 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
4037
4038 nir_const_value* offset = nir_src_as_const_value(instr->src[1]);
4039 if (offset) {
4040 assert(offset->u32 == 0);
4041 } else {
4042 /* the lower 15bit of the prim_mask contain the offset into LDS
4043 * while the upper bits contain the number of prims */
4044 Temp offset_src = get_ssa_temp(ctx, instr->src[1].ssa);
4045 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
4046 Builder bld(ctx->program, ctx->block);
4047 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
4048 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
4049 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
4050 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
4051 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
4052 }
4053
4054 if (instr->dest.ssa.num_components == 1) {
4055 emit_interp_instr(ctx, idx, component, coords, dst, prim_mask);
4056 } else {
4057 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.ssa.num_components, 1));
4058 for (unsigned i = 0; i < instr->dest.ssa.num_components; i++)
4059 {
4060 Temp tmp = {ctx->program->allocateId(), v1};
4061 emit_interp_instr(ctx, idx, component+i, coords, tmp, prim_mask);
4062 vec->operands[i] = Operand(tmp);
4063 }
4064 vec->definitions[0] = Definition(dst);
4065 ctx->block->instructions.emplace_back(std::move(vec));
4066 }
4067 }
4068
4069 bool check_vertex_fetch_size(isel_context *ctx, const ac_data_format_info *vtx_info,
4070 unsigned offset, unsigned stride, unsigned channels)
4071 {
4072 unsigned vertex_byte_size = vtx_info->chan_byte_size * channels;
4073 if (vtx_info->chan_byte_size != 4 && channels == 3)
4074 return false;
4075 return (ctx->options->chip_class != GFX6 && ctx->options->chip_class != GFX10) ||
4076 (offset % vertex_byte_size == 0 && stride % vertex_byte_size == 0);
4077 }
4078
4079 uint8_t get_fetch_data_format(isel_context *ctx, const ac_data_format_info *vtx_info,
4080 unsigned offset, unsigned stride, unsigned *channels)
4081 {
4082 if (!vtx_info->chan_byte_size) {
4083 *channels = vtx_info->num_channels;
4084 return vtx_info->chan_format;
4085 }
4086
4087 unsigned num_channels = *channels;
4088 if (!check_vertex_fetch_size(ctx, vtx_info, offset, stride, *channels)) {
4089 unsigned new_channels = num_channels + 1;
4090 /* first, assume more loads is worse and try using a larger data format */
4091 while (new_channels <= 4 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels)) {
4092 new_channels++;
4093 /* don't make the attribute potentially out-of-bounds */
4094 if (offset + new_channels * vtx_info->chan_byte_size > stride)
4095 new_channels = 5;
4096 }
4097
4098 if (new_channels == 5) {
4099 /* then try decreasing load size (at the cost of more loads) */
4100 new_channels = *channels;
4101 while (new_channels > 1 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels))
4102 new_channels--;
4103 }
4104
4105 if (new_channels < *channels)
4106 *channels = new_channels;
4107 num_channels = new_channels;
4108 }
4109
4110 switch (vtx_info->chan_format) {
4111 case V_008F0C_BUF_DATA_FORMAT_8:
4112 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_8, V_008F0C_BUF_DATA_FORMAT_8_8,
4113 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_8_8_8_8}[num_channels - 1];
4114 case V_008F0C_BUF_DATA_FORMAT_16:
4115 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_16, V_008F0C_BUF_DATA_FORMAT_16_16,
4116 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_16_16_16_16}[num_channels - 1];
4117 case V_008F0C_BUF_DATA_FORMAT_32:
4118 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_32, V_008F0C_BUF_DATA_FORMAT_32_32,
4119 V_008F0C_BUF_DATA_FORMAT_32_32_32, V_008F0C_BUF_DATA_FORMAT_32_32_32_32}[num_channels - 1];
4120 }
4121 unreachable("shouldn't reach here");
4122 return V_008F0C_BUF_DATA_FORMAT_INVALID;
4123 }
4124
4125 /* For 2_10_10_10 formats the alpha is handled as unsigned by pre-vega HW.
4126 * so we may need to fix it up. */
4127 Temp adjust_vertex_fetch_alpha(isel_context *ctx, unsigned adjustment, Temp alpha)
4128 {
4129 Builder bld(ctx->program, ctx->block);
4130
4131 if (adjustment == RADV_ALPHA_ADJUST_SSCALED)
4132 alpha = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), alpha);
4133
4134 /* For the integer-like cases, do a natural sign extension.
4135 *
4136 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
4137 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
4138 * exponent.
4139 */
4140 alpha = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(adjustment == RADV_ALPHA_ADJUST_SNORM ? 7u : 30u), alpha);
4141 alpha = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(30u), alpha);
4142
4143 /* Convert back to the right type. */
4144 if (adjustment == RADV_ALPHA_ADJUST_SNORM) {
4145 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
4146 Temp clamp = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0xbf800000u), alpha);
4147 alpha = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xbf800000u), alpha, clamp);
4148 } else if (adjustment == RADV_ALPHA_ADJUST_SSCALED) {
4149 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
4150 }
4151
4152 return alpha;
4153 }
4154
4155 void visit_load_input(isel_context *ctx, nir_intrinsic_instr *instr)
4156 {
4157 Builder bld(ctx->program, ctx->block);
4158 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4159 if (ctx->shader->info.stage == MESA_SHADER_VERTEX) {
4160
4161 nir_instr *off_instr = instr->src[0].ssa->parent_instr;
4162 if (off_instr->type != nir_instr_type_load_const) {
4163 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
4164 nir_print_instr(off_instr, stderr);
4165 fprintf(stderr, "\n");
4166 }
4167 uint32_t offset = nir_instr_as_load_const(off_instr)->value[0].u32;
4168
4169 Temp vertex_buffers = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->vertex_buffers));
4170
4171 unsigned location = nir_intrinsic_base(instr) / 4 - VERT_ATTRIB_GENERIC0 + offset;
4172 unsigned component = nir_intrinsic_component(instr);
4173 unsigned attrib_binding = ctx->options->key.vs.vertex_attribute_bindings[location];
4174 uint32_t attrib_offset = ctx->options->key.vs.vertex_attribute_offsets[location];
4175 uint32_t attrib_stride = ctx->options->key.vs.vertex_attribute_strides[location];
4176 unsigned attrib_format = ctx->options->key.vs.vertex_attribute_formats[location];
4177
4178 unsigned dfmt = attrib_format & 0xf;
4179 unsigned nfmt = (attrib_format >> 4) & 0x7;
4180 const struct ac_data_format_info *vtx_info = ac_get_data_format_info(dfmt);
4181
4182 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa) << component;
4183 unsigned num_channels = MIN2(util_last_bit(mask), vtx_info->num_channels);
4184 unsigned alpha_adjust = (ctx->options->key.vs.alpha_adjust >> (location * 2)) & 3;
4185 bool post_shuffle = ctx->options->key.vs.post_shuffle & (1 << location);
4186 if (post_shuffle)
4187 num_channels = MAX2(num_channels, 3);
4188
4189 Operand off = bld.copy(bld.def(s1), Operand(attrib_binding * 16u));
4190 Temp list = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), vertex_buffers, off);
4191
4192 Temp index;
4193 if (ctx->options->key.vs.instance_rate_inputs & (1u << location)) {
4194 uint32_t divisor = ctx->options->key.vs.instance_rate_divisors[location];
4195 Temp start_instance = get_arg(ctx, ctx->args->ac.start_instance);
4196 if (divisor) {
4197 Temp instance_id = get_arg(ctx, ctx->args->ac.instance_id);
4198 if (divisor != 1) {
4199 Temp divided = bld.tmp(v1);
4200 emit_v_div_u32(ctx, divided, as_vgpr(ctx, instance_id), divisor);
4201 index = bld.vadd32(bld.def(v1), start_instance, divided);
4202 } else {
4203 index = bld.vadd32(bld.def(v1), start_instance, instance_id);
4204 }
4205 } else {
4206 index = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), start_instance);
4207 }
4208 } else {
4209 index = bld.vadd32(bld.def(v1),
4210 get_arg(ctx, ctx->args->ac.base_vertex),
4211 get_arg(ctx, ctx->args->ac.vertex_id));
4212 }
4213
4214 Temp channels[num_channels];
4215 unsigned channel_start = 0;
4216 bool direct_fetch = false;
4217
4218 /* skip unused channels at the start */
4219 if (vtx_info->chan_byte_size && !post_shuffle) {
4220 channel_start = ffs(mask) - 1;
4221 for (unsigned i = 0; i < channel_start; i++)
4222 channels[i] = Temp(0, s1);
4223 } else if (vtx_info->chan_byte_size && post_shuffle && !(mask & 0x8)) {
4224 num_channels = 3 - (ffs(mask) - 1);
4225 }
4226
4227 /* load channels */
4228 while (channel_start < num_channels) {
4229 unsigned fetch_size = num_channels - channel_start;
4230 unsigned fetch_offset = attrib_offset + channel_start * vtx_info->chan_byte_size;
4231 bool expanded = false;
4232
4233 /* use MUBUF when possible to avoid possible alignment issues */
4234 /* TODO: we could use SDWA to unpack 8/16-bit attributes without extra instructions */
4235 bool use_mubuf = (nfmt == V_008F0C_BUF_NUM_FORMAT_FLOAT ||
4236 nfmt == V_008F0C_BUF_NUM_FORMAT_UINT ||
4237 nfmt == V_008F0C_BUF_NUM_FORMAT_SINT) &&
4238 vtx_info->chan_byte_size == 4;
4239 unsigned fetch_dfmt = V_008F0C_BUF_DATA_FORMAT_INVALID;
4240 if (!use_mubuf) {
4241 fetch_dfmt = get_fetch_data_format(ctx, vtx_info, fetch_offset, attrib_stride, &fetch_size);
4242 } else {
4243 if (fetch_size == 3 && ctx->options->chip_class == GFX6) {
4244 /* GFX6 only supports loading vec3 with MTBUF, expand to vec4. */
4245 fetch_size = 4;
4246 expanded = true;
4247 }
4248 }
4249
4250 Temp fetch_index = index;
4251 if (attrib_stride != 0 && fetch_offset > attrib_stride) {
4252 fetch_index = bld.vadd32(bld.def(v1), Operand(fetch_offset / attrib_stride), fetch_index);
4253 fetch_offset = fetch_offset % attrib_stride;
4254 }
4255
4256 Operand soffset(0u);
4257 if (fetch_offset >= 4096) {
4258 soffset = bld.copy(bld.def(s1), Operand(fetch_offset / 4096 * 4096));
4259 fetch_offset %= 4096;
4260 }
4261
4262 aco_opcode opcode;
4263 switch (fetch_size) {
4264 case 1:
4265 opcode = use_mubuf ? aco_opcode::buffer_load_dword : aco_opcode::tbuffer_load_format_x;
4266 break;
4267 case 2:
4268 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx2 : aco_opcode::tbuffer_load_format_xy;
4269 break;
4270 case 3:
4271 assert(ctx->options->chip_class >= GFX7 ||
4272 (!use_mubuf && ctx->options->chip_class == GFX6));
4273 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx3 : aco_opcode::tbuffer_load_format_xyz;
4274 break;
4275 case 4:
4276 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx4 : aco_opcode::tbuffer_load_format_xyzw;
4277 break;
4278 default:
4279 unreachable("Unimplemented load_input vector size");
4280 }
4281
4282 Temp fetch_dst;
4283 if (channel_start == 0 && fetch_size == dst.size() && !post_shuffle &&
4284 !expanded && (alpha_adjust == RADV_ALPHA_ADJUST_NONE ||
4285 num_channels <= 3)) {
4286 direct_fetch = true;
4287 fetch_dst = dst;
4288 } else {
4289 fetch_dst = bld.tmp(RegType::vgpr, fetch_size);
4290 }
4291
4292 if (use_mubuf) {
4293 Instruction *mubuf = bld.mubuf(opcode,
4294 Definition(fetch_dst), list, fetch_index, soffset,
4295 fetch_offset, false, true).instr;
4296 static_cast<MUBUF_instruction*>(mubuf)->can_reorder = true;
4297 } else {
4298 Instruction *mtbuf = bld.mtbuf(opcode,
4299 Definition(fetch_dst), list, fetch_index, soffset,
4300 fetch_dfmt, nfmt, fetch_offset, false, true).instr;
4301 static_cast<MTBUF_instruction*>(mtbuf)->can_reorder = true;
4302 }
4303
4304 emit_split_vector(ctx, fetch_dst, fetch_dst.size());
4305
4306 if (fetch_size == 1) {
4307 channels[channel_start] = fetch_dst;
4308 } else {
4309 for (unsigned i = 0; i < MIN2(fetch_size, num_channels - channel_start); i++)
4310 channels[channel_start + i] = emit_extract_vector(ctx, fetch_dst, i, v1);
4311 }
4312
4313 channel_start += fetch_size;
4314 }
4315
4316 if (!direct_fetch) {
4317 bool is_float = nfmt != V_008F0C_BUF_NUM_FORMAT_UINT &&
4318 nfmt != V_008F0C_BUF_NUM_FORMAT_SINT;
4319
4320 static const unsigned swizzle_normal[4] = {0, 1, 2, 3};
4321 static const unsigned swizzle_post_shuffle[4] = {2, 1, 0, 3};
4322 const unsigned *swizzle = post_shuffle ? swizzle_post_shuffle : swizzle_normal;
4323
4324 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
4325 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
4326 unsigned num_temp = 0;
4327 for (unsigned i = 0; i < dst.size(); i++) {
4328 unsigned idx = i + component;
4329 if (swizzle[idx] < num_channels && channels[swizzle[idx]].id()) {
4330 Temp channel = channels[swizzle[idx]];
4331 if (idx == 3 && alpha_adjust != RADV_ALPHA_ADJUST_NONE)
4332 channel = adjust_vertex_fetch_alpha(ctx, alpha_adjust, channel);
4333 vec->operands[i] = Operand(channel);
4334
4335 num_temp++;
4336 elems[i] = channel;
4337 } else if (is_float && idx == 3) {
4338 vec->operands[i] = Operand(0x3f800000u);
4339 } else if (!is_float && idx == 3) {
4340 vec->operands[i] = Operand(1u);
4341 } else {
4342 vec->operands[i] = Operand(0u);
4343 }
4344 }
4345 vec->definitions[0] = Definition(dst);
4346 ctx->block->instructions.emplace_back(std::move(vec));
4347 emit_split_vector(ctx, dst, dst.size());
4348
4349 if (num_temp == dst.size())
4350 ctx->allocated_vec.emplace(dst.id(), elems);
4351 }
4352 } else if (ctx->shader->info.stage == MESA_SHADER_FRAGMENT) {
4353 unsigned offset_idx = instr->intrinsic == nir_intrinsic_load_input ? 0 : 1;
4354 nir_instr *off_instr = instr->src[offset_idx].ssa->parent_instr;
4355 if (off_instr->type != nir_instr_type_load_const ||
4356 nir_instr_as_load_const(off_instr)->value[0].u32 != 0) {
4357 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
4358 nir_print_instr(off_instr, stderr);
4359 fprintf(stderr, "\n");
4360 }
4361
4362 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
4363 nir_const_value* offset = nir_src_as_const_value(instr->src[offset_idx]);
4364 if (offset) {
4365 assert(offset->u32 == 0);
4366 } else {
4367 /* the lower 15bit of the prim_mask contain the offset into LDS
4368 * while the upper bits contain the number of prims */
4369 Temp offset_src = get_ssa_temp(ctx, instr->src[offset_idx].ssa);
4370 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
4371 Builder bld(ctx->program, ctx->block);
4372 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
4373 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
4374 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
4375 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
4376 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
4377 }
4378
4379 unsigned idx = nir_intrinsic_base(instr);
4380 unsigned component = nir_intrinsic_component(instr);
4381 unsigned vertex_id = 2; /* P0 */
4382
4383 if (instr->intrinsic == nir_intrinsic_load_input_vertex) {
4384 nir_const_value* src0 = nir_src_as_const_value(instr->src[0]);
4385 switch (src0->u32) {
4386 case 0:
4387 vertex_id = 2; /* P0 */
4388 break;
4389 case 1:
4390 vertex_id = 0; /* P10 */
4391 break;
4392 case 2:
4393 vertex_id = 1; /* P20 */
4394 break;
4395 default:
4396 unreachable("invalid vertex index");
4397 }
4398 }
4399
4400 if (dst.size() == 1) {
4401 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(dst), Operand(vertex_id), bld.m0(prim_mask), idx, component);
4402 } else {
4403 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
4404 for (unsigned i = 0; i < dst.size(); i++)
4405 vec->operands[i] = bld.vintrp(aco_opcode::v_interp_mov_f32, bld.def(v1), Operand(vertex_id), bld.m0(prim_mask), idx, component + i);
4406 vec->definitions[0] = Definition(dst);
4407 bld.insert(std::move(vec));
4408 }
4409
4410 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_EVAL) {
4411 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
4412 Temp soffset = get_arg(ctx, ctx->args->oc_lds);
4413 std::pair<Temp, unsigned> offs = get_tcs_per_patch_output_vmem_offset(ctx, instr);
4414 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8u;
4415
4416 load_vmem_mubuf(ctx, dst, ring, offs.first, soffset, offs.second, elem_size_bytes, instr->dest.ssa.num_components);
4417 } else {
4418 unreachable("Shader stage not implemented");
4419 }
4420 }
4421
4422 std::pair<Temp, unsigned> get_gs_per_vertex_input_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned base_stride = 1u)
4423 {
4424 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
4425
4426 Builder bld(ctx->program, ctx->block);
4427 nir_src *vertex_src = nir_get_io_vertex_index_src(instr);
4428 Temp vertex_offset;
4429
4430 if (!nir_src_is_const(*vertex_src)) {
4431 /* better code could be created, but this case probably doesn't happen
4432 * much in practice */
4433 Temp indirect_vertex = as_vgpr(ctx, get_ssa_temp(ctx, vertex_src->ssa));
4434 for (unsigned i = 0; i < ctx->shader->info.gs.vertices_in; i++) {
4435 Temp elem;
4436
4437 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
4438 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i / 2u * 2u]);
4439 if (i % 2u)
4440 elem = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), elem);
4441 } else {
4442 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i]);
4443 }
4444
4445 if (vertex_offset.id()) {
4446 Temp cond = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)),
4447 Operand(i), indirect_vertex);
4448 vertex_offset = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), vertex_offset, elem, cond);
4449 } else {
4450 vertex_offset = elem;
4451 }
4452 }
4453
4454 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs)
4455 vertex_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu), vertex_offset);
4456 } else {
4457 unsigned vertex = nir_src_as_uint(*vertex_src);
4458 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs)
4459 vertex_offset = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
4460 get_arg(ctx, ctx->args->gs_vtx_offset[vertex / 2u * 2u]),
4461 Operand((vertex % 2u) * 16u), Operand(16u));
4462 else
4463 vertex_offset = get_arg(ctx, ctx->args->gs_vtx_offset[vertex]);
4464 }
4465
4466 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, base_stride);
4467 offs = offset_add(ctx, offs, std::make_pair(vertex_offset, 0u));
4468 return offset_mul(ctx, offs, 4u);
4469 }
4470
4471 void visit_load_gs_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4472 {
4473 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
4474
4475 Builder bld(ctx->program, ctx->block);
4476 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4477 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
4478
4479 if (ctx->stage == geometry_gs) {
4480 std::pair<Temp, unsigned> offs = get_gs_per_vertex_input_offset(ctx, instr, ctx->program->wave_size);
4481 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_GS * 16u));
4482 load_vmem_mubuf(ctx, dst, ring, offs.first, Temp(), offs.second, elem_size_bytes, instr->dest.ssa.num_components, 4u * ctx->program->wave_size, false, true);
4483 } else if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
4484 std::pair<Temp, unsigned> offs = get_gs_per_vertex_input_offset(ctx, instr);
4485 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
4486 load_lds(ctx, elem_size_bytes, dst, offs.first, offs.second, lds_align);
4487 } else {
4488 unreachable("Unsupported GS stage.");
4489 }
4490 }
4491
4492 void visit_load_tcs_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4493 {
4494 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4495
4496 Builder bld(ctx->program, ctx->block);
4497 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4498
4499 if (load_input_from_temps(ctx, instr, dst))
4500 return;
4501
4502 std::pair<Temp, unsigned> offs = get_tcs_per_vertex_input_lds_offset(ctx, instr);
4503 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
4504 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
4505
4506 load_lds(ctx, elem_size_bytes, dst, offs.first, offs.second, lds_align);
4507 }
4508
4509 void visit_load_tes_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4510 {
4511 assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
4512
4513 Builder bld(ctx->program, ctx->block);
4514
4515 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
4516 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
4517 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4518
4519 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
4520 std::pair<Temp, unsigned> offs = get_tcs_per_vertex_output_vmem_offset(ctx, instr);
4521
4522 load_vmem_mubuf(ctx, dst, ring, offs.first, oc_lds, offs.second, elem_size_bytes, instr->dest.ssa.num_components, 0u, true, true);
4523 }
4524
4525 void visit_load_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4526 {
4527 switch (ctx->shader->info.stage) {
4528 case MESA_SHADER_GEOMETRY:
4529 visit_load_gs_per_vertex_input(ctx, instr);
4530 break;
4531 case MESA_SHADER_TESS_CTRL:
4532 visit_load_tcs_per_vertex_input(ctx, instr);
4533 break;
4534 case MESA_SHADER_TESS_EVAL:
4535 visit_load_tes_per_vertex_input(ctx, instr);
4536 break;
4537 default:
4538 unreachable("Unimplemented shader stage");
4539 }
4540 }
4541
4542 void visit_load_per_vertex_output(isel_context *ctx, nir_intrinsic_instr *instr)
4543 {
4544 visit_load_tcs_output(ctx, instr, true);
4545 }
4546
4547 void visit_store_per_vertex_output(isel_context *ctx, nir_intrinsic_instr *instr)
4548 {
4549 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
4550 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4551
4552 visit_store_tcs_output(ctx, instr, true);
4553 }
4554
4555 void visit_load_tess_coord(isel_context *ctx, nir_intrinsic_instr *instr)
4556 {
4557 assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
4558
4559 Builder bld(ctx->program, ctx->block);
4560 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4561
4562 Operand tes_u(get_arg(ctx, ctx->args->tes_u));
4563 Operand tes_v(get_arg(ctx, ctx->args->tes_v));
4564 Operand tes_w(0u);
4565
4566 if (ctx->shader->info.tess.primitive_mode == GL_TRIANGLES) {
4567 Temp tmp = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), tes_u, tes_v);
4568 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0x3f800000u /* 1.0f */), tmp);
4569 tes_w = Operand(tmp);
4570 }
4571
4572 Temp tess_coord = bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tes_u, tes_v, tes_w);
4573 emit_split_vector(ctx, tess_coord, 3);
4574 }
4575
4576 Temp load_desc_ptr(isel_context *ctx, unsigned desc_set)
4577 {
4578 if (ctx->program->info->need_indirect_descriptor_sets) {
4579 Builder bld(ctx->program, ctx->block);
4580 Temp ptr64 = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->descriptor_sets[0]));
4581 Operand off = bld.copy(bld.def(s1), Operand(desc_set << 2));
4582 return bld.smem(aco_opcode::s_load_dword, bld.def(s1), ptr64, off);//, false, false, false);
4583 }
4584
4585 return get_arg(ctx, ctx->args->descriptor_sets[desc_set]);
4586 }
4587
4588
4589 void visit_load_resource(isel_context *ctx, nir_intrinsic_instr *instr)
4590 {
4591 Builder bld(ctx->program, ctx->block);
4592 Temp index = get_ssa_temp(ctx, instr->src[0].ssa);
4593 if (!ctx->divergent_vals[instr->dest.ssa.index])
4594 index = bld.as_uniform(index);
4595 unsigned desc_set = nir_intrinsic_desc_set(instr);
4596 unsigned binding = nir_intrinsic_binding(instr);
4597
4598 Temp desc_ptr;
4599 radv_pipeline_layout *pipeline_layout = ctx->options->layout;
4600 radv_descriptor_set_layout *layout = pipeline_layout->set[desc_set].layout;
4601 unsigned offset = layout->binding[binding].offset;
4602 unsigned stride;
4603 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
4604 layout->binding[binding].type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
4605 unsigned idx = pipeline_layout->set[desc_set].dynamic_offset_start + layout->binding[binding].dynamic_offset_offset;
4606 desc_ptr = get_arg(ctx, ctx->args->ac.push_constants);
4607 offset = pipeline_layout->push_constant_size + 16 * idx;
4608 stride = 16;
4609 } else {
4610 desc_ptr = load_desc_ptr(ctx, desc_set);
4611 stride = layout->binding[binding].size;
4612 }
4613
4614 nir_const_value* nir_const_index = nir_src_as_const_value(instr->src[0]);
4615 unsigned const_index = nir_const_index ? nir_const_index->u32 : 0;
4616 if (stride != 1) {
4617 if (nir_const_index) {
4618 const_index = const_index * stride;
4619 } else if (index.type() == RegType::vgpr) {
4620 bool index24bit = layout->binding[binding].array_size <= 0x1000000;
4621 index = bld.v_mul_imm(bld.def(v1), index, stride, index24bit);
4622 } else {
4623 index = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), Operand(index));
4624 }
4625 }
4626 if (offset) {
4627 if (nir_const_index) {
4628 const_index = const_index + offset;
4629 } else if (index.type() == RegType::vgpr) {
4630 index = bld.vadd32(bld.def(v1), Operand(offset), index);
4631 } else {
4632 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), Operand(index));
4633 }
4634 }
4635
4636 if (nir_const_index && const_index == 0) {
4637 index = desc_ptr;
4638 } else if (index.type() == RegType::vgpr) {
4639 index = bld.vadd32(bld.def(v1),
4640 nir_const_index ? Operand(const_index) : Operand(index),
4641 Operand(desc_ptr));
4642 } else {
4643 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
4644 nir_const_index ? Operand(const_index) : Operand(index),
4645 Operand(desc_ptr));
4646 }
4647
4648 bld.copy(Definition(get_ssa_temp(ctx, &instr->dest.ssa)), index);
4649 }
4650
4651 void load_buffer(isel_context *ctx, unsigned num_components, unsigned component_size,
4652 Temp dst, Temp rsrc, Temp offset, int byte_align,
4653 bool glc=false, bool readonly=true)
4654 {
4655 Builder bld(ctx->program, ctx->block);
4656 bool dlc = glc && ctx->options->chip_class >= GFX10;
4657 unsigned num_bytes = num_components * component_size;
4658
4659 aco_opcode op;
4660 if (dst.type() == RegType::vgpr || ((ctx->options->chip_class < GFX8 || component_size < 4) && !readonly)) {
4661 Operand vaddr = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
4662 Operand soffset = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
4663 unsigned const_offset = 0;
4664
4665 /* for small bit sizes add buffer for unaligned loads */
4666 if (byte_align) {
4667 if (num_bytes > 2)
4668 num_bytes += byte_align == -1 ? 4 - component_size : byte_align;
4669 else
4670 byte_align = 0;
4671 }
4672
4673 Temp lower = Temp();
4674 if (num_bytes > 16) {
4675 assert(num_components == 3 || num_components == 4);
4676 op = aco_opcode::buffer_load_dwordx4;
4677 lower = bld.tmp(v4);
4678 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
4679 mubuf->definitions[0] = Definition(lower);
4680 mubuf->operands[0] = Operand(rsrc);
4681 mubuf->operands[1] = vaddr;
4682 mubuf->operands[2] = soffset;
4683 mubuf->offen = (offset.type() == RegType::vgpr);
4684 mubuf->glc = glc;
4685 mubuf->dlc = dlc;
4686 mubuf->barrier = readonly ? barrier_none : barrier_buffer;
4687 mubuf->can_reorder = readonly;
4688 bld.insert(std::move(mubuf));
4689 emit_split_vector(ctx, lower, 2);
4690 num_bytes -= 16;
4691 const_offset = 16;
4692 } else if (num_bytes == 12 && ctx->options->chip_class == GFX6) {
4693 /* GFX6 doesn't support loading vec3, expand to vec4. */
4694 num_bytes = 16;
4695 }
4696
4697 switch (num_bytes) {
4698 case 1:
4699 op = aco_opcode::buffer_load_ubyte;
4700 break;
4701 case 2:
4702 op = aco_opcode::buffer_load_ushort;
4703 break;
4704 case 3:
4705 case 4:
4706 op = aco_opcode::buffer_load_dword;
4707 break;
4708 case 5:
4709 case 6:
4710 case 7:
4711 case 8:
4712 op = aco_opcode::buffer_load_dwordx2;
4713 break;
4714 case 10:
4715 case 12:
4716 assert(ctx->options->chip_class > GFX6);
4717 op = aco_opcode::buffer_load_dwordx3;
4718 break;
4719 case 16:
4720 op = aco_opcode::buffer_load_dwordx4;
4721 break;
4722 default:
4723 unreachable("Load SSBO not implemented for this size.");
4724 }
4725 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
4726 mubuf->operands[0] = Operand(rsrc);
4727 mubuf->operands[1] = vaddr;
4728 mubuf->operands[2] = soffset;
4729 mubuf->offen = (offset.type() == RegType::vgpr);
4730 mubuf->glc = glc;
4731 mubuf->dlc = dlc;
4732 mubuf->barrier = readonly ? barrier_none : barrier_buffer;
4733 mubuf->can_reorder = readonly;
4734 mubuf->offset = const_offset;
4735 aco_ptr<Instruction> instr = std::move(mubuf);
4736
4737 if (component_size < 4) {
4738 Temp vec = num_bytes <= 4 ? bld.tmp(v1) : num_bytes <= 8 ? bld.tmp(v2) : bld.tmp(v3);
4739 instr->definitions[0] = Definition(vec);
4740 bld.insert(std::move(instr));
4741
4742 if (byte_align == -1 || (byte_align && dst.type() == RegType::sgpr)) {
4743 Operand align = byte_align == -1 ? Operand(offset) : Operand((uint32_t)byte_align);
4744 Temp tmp[3] = {vec, vec, vec};
4745
4746 if (vec.size() == 3) {
4747 tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = bld.tmp(v1);
4748 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), Definition(tmp[2]), vec);
4749 } else if (vec.size() == 2) {
4750 tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = tmp[1];
4751 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), vec);
4752 }
4753 for (unsigned i = 0; i < dst.size(); i++)
4754 tmp[i] = bld.vop3(aco_opcode::v_alignbyte_b32, bld.def(v1), tmp[i + 1], tmp[i], align);
4755
4756 vec = tmp[0];
4757 if (dst.size() == 2)
4758 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), tmp[0], tmp[1]);
4759
4760 byte_align = 0;
4761 }
4762
4763 if (dst.type() == RegType::vgpr && num_components == 1) {
4764 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), vec, Operand(byte_align / component_size));
4765 } else {
4766 trim_subdword_vector(ctx, vec, dst, 4 * vec.size() / component_size, ((1 << num_components) - 1) << byte_align / component_size);
4767 }
4768
4769 return;
4770
4771 } else if (dst.size() > 4) {
4772 assert(lower != Temp());
4773 Temp upper = bld.tmp(RegType::vgpr, dst.size() - lower.size());
4774 instr->definitions[0] = Definition(upper);
4775 bld.insert(std::move(instr));
4776 if (dst.size() == 8)
4777 emit_split_vector(ctx, upper, 2);
4778 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size() / 2, 1));
4779 instr->operands[0] = Operand(emit_extract_vector(ctx, lower, 0, v2));
4780 instr->operands[1] = Operand(emit_extract_vector(ctx, lower, 1, v2));
4781 instr->operands[2] = Operand(emit_extract_vector(ctx, upper, 0, v2));
4782 if (dst.size() == 8)
4783 instr->operands[3] = Operand(emit_extract_vector(ctx, upper, 1, v2));
4784 } else if (dst.size() == 3 && ctx->options->chip_class == GFX6) {
4785 Temp vec = bld.tmp(v4);
4786 instr->definitions[0] = Definition(vec);
4787 bld.insert(std::move(instr));
4788 emit_split_vector(ctx, vec, 4);
4789
4790 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 3, 1));
4791 instr->operands[0] = Operand(emit_extract_vector(ctx, vec, 0, v1));
4792 instr->operands[1] = Operand(emit_extract_vector(ctx, vec, 1, v1));
4793 instr->operands[2] = Operand(emit_extract_vector(ctx, vec, 2, v1));
4794 }
4795
4796 if (dst.type() == RegType::sgpr) {
4797 Temp vec = bld.tmp(RegType::vgpr, dst.size());
4798 instr->definitions[0] = Definition(vec);
4799 bld.insert(std::move(instr));
4800 expand_vector(ctx, vec, dst, num_components, (1 << num_components) - 1);
4801 } else {
4802 instr->definitions[0] = Definition(dst);
4803 bld.insert(std::move(instr));
4804 emit_split_vector(ctx, dst, num_components);
4805 }
4806 } else {
4807 /* for small bit sizes add buffer for unaligned loads */
4808 if (byte_align)
4809 num_bytes += byte_align == -1 ? 4 - component_size : byte_align;
4810
4811 switch (num_bytes) {
4812 case 1:
4813 case 2:
4814 case 3:
4815 case 4:
4816 op = aco_opcode::s_buffer_load_dword;
4817 break;
4818 case 5:
4819 case 6:
4820 case 7:
4821 case 8:
4822 op = aco_opcode::s_buffer_load_dwordx2;
4823 break;
4824 case 10:
4825 case 12:
4826 case 16:
4827 op = aco_opcode::s_buffer_load_dwordx4;
4828 break;
4829 case 24:
4830 case 32:
4831 op = aco_opcode::s_buffer_load_dwordx8;
4832 break;
4833 default:
4834 unreachable("Load SSBO not implemented for this size.");
4835 }
4836 offset = bld.as_uniform(offset);
4837 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
4838 load->operands[0] = Operand(rsrc);
4839 load->operands[1] = Operand(offset);
4840 assert(load->operands[1].getTemp().type() == RegType::sgpr);
4841 load->definitions[0] = Definition(dst);
4842 load->glc = glc;
4843 load->dlc = dlc;
4844 load->barrier = readonly ? barrier_none : barrier_buffer;
4845 load->can_reorder = false; // FIXME: currently, it doesn't seem beneficial due to how our scheduler works
4846 assert(ctx->options->chip_class >= GFX8 || !glc);
4847
4848 /* adjust misaligned small bit size loads */
4849 if (byte_align) {
4850 Temp vec = num_bytes <= 4 ? bld.tmp(s1) : num_bytes <= 8 ? bld.tmp(s2) : bld.tmp(s4);
4851 load->definitions[0] = Definition(vec);
4852 bld.insert(std::move(load));
4853 Operand byte_offset = byte_align > 0 ? Operand(uint32_t(byte_align)) : Operand(offset);
4854 byte_align_scalar(ctx, vec, byte_offset, dst);
4855
4856 /* trim vector */
4857 } else if (dst.size() == 3) {
4858 Temp vec = bld.tmp(s4);
4859 load->definitions[0] = Definition(vec);
4860 bld.insert(std::move(load));
4861 emit_split_vector(ctx, vec, 4);
4862
4863 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4864 emit_extract_vector(ctx, vec, 0, s1),
4865 emit_extract_vector(ctx, vec, 1, s1),
4866 emit_extract_vector(ctx, vec, 2, s1));
4867 } else if (dst.size() == 6) {
4868 Temp vec = bld.tmp(s8);
4869 load->definitions[0] = Definition(vec);
4870 bld.insert(std::move(load));
4871 emit_split_vector(ctx, vec, 4);
4872
4873 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4874 emit_extract_vector(ctx, vec, 0, s2),
4875 emit_extract_vector(ctx, vec, 1, s2),
4876 emit_extract_vector(ctx, vec, 2, s2));
4877 } else {
4878 bld.insert(std::move(load));
4879 }
4880 emit_split_vector(ctx, dst, num_components);
4881 }
4882 }
4883
4884 void visit_load_ubo(isel_context *ctx, nir_intrinsic_instr *instr)
4885 {
4886 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4887 Temp rsrc = get_ssa_temp(ctx, instr->src[0].ssa);
4888
4889 Builder bld(ctx->program, ctx->block);
4890
4891 nir_intrinsic_instr* idx_instr = nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
4892 unsigned desc_set = nir_intrinsic_desc_set(idx_instr);
4893 unsigned binding = nir_intrinsic_binding(idx_instr);
4894 radv_descriptor_set_layout *layout = ctx->options->layout->set[desc_set].layout;
4895
4896 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
4897 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
4898 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
4899 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
4900 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
4901 if (ctx->options->chip_class >= GFX10) {
4902 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
4903 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
4904 S_008F0C_RESOURCE_LEVEL(1);
4905 } else {
4906 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
4907 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
4908 }
4909 Temp upper_dwords = bld.pseudo(aco_opcode::p_create_vector, bld.def(s3),
4910 Operand(S_008F04_BASE_ADDRESS_HI(ctx->options->address32_hi)),
4911 Operand(0xFFFFFFFFu),
4912 Operand(desc_type));
4913 rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
4914 rsrc, upper_dwords);
4915 } else {
4916 rsrc = convert_pointer_to_64_bit(ctx, rsrc);
4917 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
4918 }
4919 unsigned size = instr->dest.ssa.bit_size / 8;
4920 int byte_align = 0;
4921 if (size < 4) {
4922 unsigned align_mul = nir_intrinsic_align_mul(instr);
4923 unsigned align_offset = nir_intrinsic_align_offset(instr);
4924 byte_align = align_mul % 4 == 0 ? align_offset : -1;
4925 }
4926 load_buffer(ctx, instr->num_components, size, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa), byte_align);
4927 }
4928
4929 void visit_load_push_constant(isel_context *ctx, nir_intrinsic_instr *instr)
4930 {
4931 Builder bld(ctx->program, ctx->block);
4932 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4933 unsigned offset = nir_intrinsic_base(instr);
4934 unsigned count = instr->dest.ssa.num_components;
4935 nir_const_value *index_cv = nir_src_as_const_value(instr->src[0]);
4936
4937 if (index_cv && instr->dest.ssa.bit_size == 32) {
4938 unsigned start = (offset + index_cv->u32) / 4u;
4939 start -= ctx->args->ac.base_inline_push_consts;
4940 if (start + count <= ctx->args->ac.num_inline_push_consts) {
4941 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
4942 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
4943 for (unsigned i = 0; i < count; ++i) {
4944 elems[i] = get_arg(ctx, ctx->args->ac.inline_push_consts[start + i]);
4945 vec->operands[i] = Operand{elems[i]};
4946 }
4947 vec->definitions[0] = Definition(dst);
4948 ctx->block->instructions.emplace_back(std::move(vec));
4949 ctx->allocated_vec.emplace(dst.id(), elems);
4950 return;
4951 }
4952 }
4953
4954 Temp index = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa));
4955 if (offset != 0) // TODO check if index != 0 as well
4956 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), index);
4957 Temp ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->ac.push_constants));
4958 Temp vec = dst;
4959 bool trim = false;
4960 bool aligned = true;
4961
4962 if (instr->dest.ssa.bit_size == 8) {
4963 aligned = index_cv && (offset + index_cv->u32) % 4 == 0;
4964 bool fits_in_dword = count == 1 || (index_cv && ((offset + index_cv->u32) % 4 + count) <= 4);
4965 if (!aligned)
4966 vec = fits_in_dword ? bld.tmp(s1) : bld.tmp(s2);
4967 } else if (instr->dest.ssa.bit_size == 16) {
4968 aligned = index_cv && (offset + index_cv->u32) % 4 == 0;
4969 if (!aligned)
4970 vec = count == 4 ? bld.tmp(s4) : count > 1 ? bld.tmp(s2) : bld.tmp(s1);
4971 }
4972
4973 aco_opcode op;
4974
4975 switch (vec.size()) {
4976 case 1:
4977 op = aco_opcode::s_load_dword;
4978 break;
4979 case 2:
4980 op = aco_opcode::s_load_dwordx2;
4981 break;
4982 case 3:
4983 vec = bld.tmp(s4);
4984 trim = true;
4985 case 4:
4986 op = aco_opcode::s_load_dwordx4;
4987 break;
4988 case 6:
4989 vec = bld.tmp(s8);
4990 trim = true;
4991 case 8:
4992 op = aco_opcode::s_load_dwordx8;
4993 break;
4994 default:
4995 unreachable("unimplemented or forbidden load_push_constant.");
4996 }
4997
4998 bld.smem(op, Definition(vec), ptr, index);
4999
5000 if (!aligned) {
5001 Operand byte_offset = index_cv ? Operand((offset + index_cv->u32) % 4) : Operand(index);
5002 byte_align_scalar(ctx, vec, byte_offset, dst);
5003 return;
5004 }
5005
5006 if (trim) {
5007 emit_split_vector(ctx, vec, 4);
5008 RegClass rc = dst.size() == 3 ? s1 : s2;
5009 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5010 emit_extract_vector(ctx, vec, 0, rc),
5011 emit_extract_vector(ctx, vec, 1, rc),
5012 emit_extract_vector(ctx, vec, 2, rc));
5013
5014 }
5015 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
5016 }
5017
5018 void visit_load_constant(isel_context *ctx, nir_intrinsic_instr *instr)
5019 {
5020 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5021
5022 Builder bld(ctx->program, ctx->block);
5023
5024 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
5025 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
5026 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
5027 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
5028 if (ctx->options->chip_class >= GFX10) {
5029 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
5030 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
5031 S_008F0C_RESOURCE_LEVEL(1);
5032 } else {
5033 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5034 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
5035 }
5036
5037 unsigned base = nir_intrinsic_base(instr);
5038 unsigned range = nir_intrinsic_range(instr);
5039
5040 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
5041 if (base && offset.type() == RegType::sgpr)
5042 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), offset, Operand(base));
5043 else if (base && offset.type() == RegType::vgpr)
5044 offset = bld.vadd32(bld.def(v1), Operand(base), offset);
5045
5046 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
5047 bld.sop1(aco_opcode::p_constaddr, bld.def(s2), bld.def(s1, scc), Operand(ctx->constant_data_offset)),
5048 Operand(MIN2(base + range, ctx->shader->constant_data_size)),
5049 Operand(desc_type));
5050 unsigned size = instr->dest.ssa.bit_size / 8;
5051 // TODO: get alignment information for subdword constants
5052 unsigned byte_align = size < 4 ? -1 : 0;
5053 load_buffer(ctx, instr->num_components, size, dst, rsrc, offset, byte_align);
5054 }
5055
5056 void visit_discard_if(isel_context *ctx, nir_intrinsic_instr *instr)
5057 {
5058 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
5059 ctx->cf_info.exec_potentially_empty_discard = true;
5060
5061 ctx->program->needs_exact = true;
5062
5063 // TODO: optimize uniform conditions
5064 Builder bld(ctx->program, ctx->block);
5065 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
5066 assert(src.regClass() == bld.lm);
5067 src = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
5068 bld.pseudo(aco_opcode::p_discard_if, src);
5069 ctx->block->kind |= block_kind_uses_discard_if;
5070 return;
5071 }
5072
5073 void visit_discard(isel_context* ctx, nir_intrinsic_instr *instr)
5074 {
5075 Builder bld(ctx->program, ctx->block);
5076
5077 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
5078 ctx->cf_info.exec_potentially_empty_discard = true;
5079
5080 bool divergent = ctx->cf_info.parent_if.is_divergent ||
5081 ctx->cf_info.parent_loop.has_divergent_continue;
5082
5083 if (ctx->block->loop_nest_depth &&
5084 ((nir_instr_is_last(&instr->instr) && !divergent) || divergent)) {
5085 /* we handle discards the same way as jump instructions */
5086 append_logical_end(ctx->block);
5087
5088 /* in loops, discard behaves like break */
5089 Block *linear_target = ctx->cf_info.parent_loop.exit;
5090 ctx->block->kind |= block_kind_discard;
5091
5092 if (!divergent) {
5093 /* uniform discard - loop ends here */
5094 assert(nir_instr_is_last(&instr->instr));
5095 ctx->block->kind |= block_kind_uniform;
5096 ctx->cf_info.has_branch = true;
5097 bld.branch(aco_opcode::p_branch);
5098 add_linear_edge(ctx->block->index, linear_target);
5099 return;
5100 }
5101
5102 /* we add a break right behind the discard() instructions */
5103 ctx->block->kind |= block_kind_break;
5104 unsigned idx = ctx->block->index;
5105
5106 ctx->cf_info.parent_loop.has_divergent_branch = true;
5107 ctx->cf_info.nir_to_aco[instr->instr.block->index] = idx;
5108
5109 /* remove critical edges from linear CFG */
5110 bld.branch(aco_opcode::p_branch);
5111 Block* break_block = ctx->program->create_and_insert_block();
5112 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
5113 break_block->kind |= block_kind_uniform;
5114 add_linear_edge(idx, break_block);
5115 add_linear_edge(break_block->index, linear_target);
5116 bld.reset(break_block);
5117 bld.branch(aco_opcode::p_branch);
5118
5119 Block* continue_block = ctx->program->create_and_insert_block();
5120 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
5121 add_linear_edge(idx, continue_block);
5122 append_logical_start(continue_block);
5123 ctx->block = continue_block;
5124
5125 return;
5126 }
5127
5128 /* it can currently happen that NIR doesn't remove the unreachable code */
5129 if (!nir_instr_is_last(&instr->instr)) {
5130 ctx->program->needs_exact = true;
5131 /* save exec somewhere temporarily so that it doesn't get
5132 * overwritten before the discard from outer exec masks */
5133 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), Operand(0xFFFFFFFF), Operand(exec, bld.lm));
5134 bld.pseudo(aco_opcode::p_discard_if, cond);
5135 ctx->block->kind |= block_kind_uses_discard_if;
5136 return;
5137 }
5138
5139 /* This condition is incorrect for uniformly branched discards in a loop
5140 * predicated by a divergent condition, but the above code catches that case
5141 * and the discard would end up turning into a discard_if.
5142 * For example:
5143 * if (divergent) {
5144 * while (...) {
5145 * if (uniform) {
5146 * discard;
5147 * }
5148 * }
5149 * }
5150 */
5151 if (!ctx->cf_info.parent_if.is_divergent) {
5152 /* program just ends here */
5153 ctx->block->kind |= block_kind_uniform;
5154 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
5155 0 /* enabled mask */, 9 /* dest */,
5156 false /* compressed */, true/* done */, true /* valid mask */);
5157 bld.sopp(aco_opcode::s_endpgm);
5158 // TODO: it will potentially be followed by a branch which is dead code to sanitize NIR phis
5159 } else {
5160 ctx->block->kind |= block_kind_discard;
5161 /* branch and linear edge is added by visit_if() */
5162 }
5163 }
5164
5165 enum aco_descriptor_type {
5166 ACO_DESC_IMAGE,
5167 ACO_DESC_FMASK,
5168 ACO_DESC_SAMPLER,
5169 ACO_DESC_BUFFER,
5170 ACO_DESC_PLANE_0,
5171 ACO_DESC_PLANE_1,
5172 ACO_DESC_PLANE_2,
5173 };
5174
5175 static bool
5176 should_declare_array(isel_context *ctx, enum glsl_sampler_dim sampler_dim, bool is_array) {
5177 if (sampler_dim == GLSL_SAMPLER_DIM_BUF)
5178 return false;
5179 ac_image_dim dim = ac_get_sampler_dim(ctx->options->chip_class, sampler_dim, is_array);
5180 return dim == ac_image_cube ||
5181 dim == ac_image_1darray ||
5182 dim == ac_image_2darray ||
5183 dim == ac_image_2darraymsaa;
5184 }
5185
5186 Temp get_sampler_desc(isel_context *ctx, nir_deref_instr *deref_instr,
5187 enum aco_descriptor_type desc_type,
5188 const nir_tex_instr *tex_instr, bool image, bool write)
5189 {
5190 /* FIXME: we should lower the deref with some new nir_intrinsic_load_desc
5191 std::unordered_map<uint64_t, Temp>::iterator it = ctx->tex_desc.find((uint64_t) desc_type << 32 | deref_instr->dest.ssa.index);
5192 if (it != ctx->tex_desc.end())
5193 return it->second;
5194 */
5195 Temp index = Temp();
5196 bool index_set = false;
5197 unsigned constant_index = 0;
5198 unsigned descriptor_set;
5199 unsigned base_index;
5200 Builder bld(ctx->program, ctx->block);
5201
5202 if (!deref_instr) {
5203 assert(tex_instr && !image);
5204 descriptor_set = 0;
5205 base_index = tex_instr->sampler_index;
5206 } else {
5207 while(deref_instr->deref_type != nir_deref_type_var) {
5208 unsigned array_size = glsl_get_aoa_size(deref_instr->type);
5209 if (!array_size)
5210 array_size = 1;
5211
5212 assert(deref_instr->deref_type == nir_deref_type_array);
5213 nir_const_value *const_value = nir_src_as_const_value(deref_instr->arr.index);
5214 if (const_value) {
5215 constant_index += array_size * const_value->u32;
5216 } else {
5217 Temp indirect = get_ssa_temp(ctx, deref_instr->arr.index.ssa);
5218 if (indirect.type() == RegType::vgpr)
5219 indirect = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), indirect);
5220
5221 if (array_size != 1)
5222 indirect = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(array_size), indirect);
5223
5224 if (!index_set) {
5225 index = indirect;
5226 index_set = true;
5227 } else {
5228 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), index, indirect);
5229 }
5230 }
5231
5232 deref_instr = nir_src_as_deref(deref_instr->parent);
5233 }
5234 descriptor_set = deref_instr->var->data.descriptor_set;
5235 base_index = deref_instr->var->data.binding;
5236 }
5237
5238 Temp list = load_desc_ptr(ctx, descriptor_set);
5239 list = convert_pointer_to_64_bit(ctx, list);
5240
5241 struct radv_descriptor_set_layout *layout = ctx->options->layout->set[descriptor_set].layout;
5242 struct radv_descriptor_set_binding_layout *binding = layout->binding + base_index;
5243 unsigned offset = binding->offset;
5244 unsigned stride = binding->size;
5245 aco_opcode opcode;
5246 RegClass type;
5247
5248 assert(base_index < layout->binding_count);
5249
5250 switch (desc_type) {
5251 case ACO_DESC_IMAGE:
5252 type = s8;
5253 opcode = aco_opcode::s_load_dwordx8;
5254 break;
5255 case ACO_DESC_FMASK:
5256 type = s8;
5257 opcode = aco_opcode::s_load_dwordx8;
5258 offset += 32;
5259 break;
5260 case ACO_DESC_SAMPLER:
5261 type = s4;
5262 opcode = aco_opcode::s_load_dwordx4;
5263 if (binding->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
5264 offset += radv_combined_image_descriptor_sampler_offset(binding);
5265 break;
5266 case ACO_DESC_BUFFER:
5267 type = s4;
5268 opcode = aco_opcode::s_load_dwordx4;
5269 break;
5270 case ACO_DESC_PLANE_0:
5271 case ACO_DESC_PLANE_1:
5272 type = s8;
5273 opcode = aco_opcode::s_load_dwordx8;
5274 offset += 32 * (desc_type - ACO_DESC_PLANE_0);
5275 break;
5276 case ACO_DESC_PLANE_2:
5277 type = s4;
5278 opcode = aco_opcode::s_load_dwordx4;
5279 offset += 64;
5280 break;
5281 default:
5282 unreachable("invalid desc_type\n");
5283 }
5284
5285 offset += constant_index * stride;
5286
5287 if (desc_type == ACO_DESC_SAMPLER && binding->immutable_samplers_offset &&
5288 (!index_set || binding->immutable_samplers_equal)) {
5289 if (binding->immutable_samplers_equal)
5290 constant_index = 0;
5291
5292 const uint32_t *samplers = radv_immutable_samplers(layout, binding);
5293 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
5294 Operand(samplers[constant_index * 4 + 0]),
5295 Operand(samplers[constant_index * 4 + 1]),
5296 Operand(samplers[constant_index * 4 + 2]),
5297 Operand(samplers[constant_index * 4 + 3]));
5298 }
5299
5300 Operand off;
5301 if (!index_set) {
5302 off = bld.copy(bld.def(s1), Operand(offset));
5303 } else {
5304 off = Operand((Temp)bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset),
5305 bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), index)));
5306 }
5307
5308 Temp res = bld.smem(opcode, bld.def(type), list, off);
5309
5310 if (desc_type == ACO_DESC_PLANE_2) {
5311 Temp components[8];
5312 for (unsigned i = 0; i < 8; i++)
5313 components[i] = bld.tmp(s1);
5314 bld.pseudo(aco_opcode::p_split_vector,
5315 Definition(components[0]),
5316 Definition(components[1]),
5317 Definition(components[2]),
5318 Definition(components[3]),
5319 res);
5320
5321 Temp desc2 = get_sampler_desc(ctx, deref_instr, ACO_DESC_PLANE_1, tex_instr, image, write);
5322 bld.pseudo(aco_opcode::p_split_vector,
5323 bld.def(s1), bld.def(s1), bld.def(s1), bld.def(s1),
5324 Definition(components[4]),
5325 Definition(components[5]),
5326 Definition(components[6]),
5327 Definition(components[7]),
5328 desc2);
5329
5330 res = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
5331 components[0], components[1], components[2], components[3],
5332 components[4], components[5], components[6], components[7]);
5333 }
5334
5335 return res;
5336 }
5337
5338 static int image_type_to_components_count(enum glsl_sampler_dim dim, bool array)
5339 {
5340 switch (dim) {
5341 case GLSL_SAMPLER_DIM_BUF:
5342 return 1;
5343 case GLSL_SAMPLER_DIM_1D:
5344 return array ? 2 : 1;
5345 case GLSL_SAMPLER_DIM_2D:
5346 return array ? 3 : 2;
5347 case GLSL_SAMPLER_DIM_MS:
5348 return array ? 4 : 3;
5349 case GLSL_SAMPLER_DIM_3D:
5350 case GLSL_SAMPLER_DIM_CUBE:
5351 return 3;
5352 case GLSL_SAMPLER_DIM_RECT:
5353 case GLSL_SAMPLER_DIM_SUBPASS:
5354 return 2;
5355 case GLSL_SAMPLER_DIM_SUBPASS_MS:
5356 return 3;
5357 default:
5358 break;
5359 }
5360 return 0;
5361 }
5362
5363
5364 /* Adjust the sample index according to FMASK.
5365 *
5366 * For uncompressed MSAA surfaces, FMASK should return 0x76543210,
5367 * which is the identity mapping. Each nibble says which physical sample
5368 * should be fetched to get that sample.
5369 *
5370 * For example, 0x11111100 means there are only 2 samples stored and
5371 * the second sample covers 3/4 of the pixel. When reading samples 0
5372 * and 1, return physical sample 0 (determined by the first two 0s
5373 * in FMASK), otherwise return physical sample 1.
5374 *
5375 * The sample index should be adjusted as follows:
5376 * sample_index = (fmask >> (sample_index * 4)) & 0xF;
5377 */
5378 static Temp adjust_sample_index_using_fmask(isel_context *ctx, bool da, std::vector<Temp>& coords, Operand sample_index, Temp fmask_desc_ptr)
5379 {
5380 Builder bld(ctx->program, ctx->block);
5381 Temp fmask = bld.tmp(v1);
5382 unsigned dim = ctx->options->chip_class >= GFX10
5383 ? ac_get_sampler_dim(ctx->options->chip_class, GLSL_SAMPLER_DIM_2D, da)
5384 : 0;
5385
5386 Temp coord = da ? bld.pseudo(aco_opcode::p_create_vector, bld.def(v3), coords[0], coords[1], coords[2]) :
5387 bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), coords[0], coords[1]);
5388 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(aco_opcode::image_load, Format::MIMG, 3, 1)};
5389 load->operands[0] = Operand(fmask_desc_ptr);
5390 load->operands[1] = Operand(s4); /* no sampler */
5391 load->operands[2] = Operand(coord);
5392 load->definitions[0] = Definition(fmask);
5393 load->glc = false;
5394 load->dlc = false;
5395 load->dmask = 0x1;
5396 load->unrm = true;
5397 load->da = da;
5398 load->dim = dim;
5399 load->can_reorder = true; /* fmask images shouldn't be modified */
5400 ctx->block->instructions.emplace_back(std::move(load));
5401
5402 Operand sample_index4;
5403 if (sample_index.isConstant() && sample_index.constantValue() < 16) {
5404 sample_index4 = Operand(sample_index.constantValue() << 2);
5405 } else if (sample_index.regClass() == s1) {
5406 sample_index4 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), sample_index, Operand(2u));
5407 } else {
5408 assert(sample_index.regClass() == v1);
5409 sample_index4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), sample_index);
5410 }
5411
5412 Temp final_sample;
5413 if (sample_index4.isConstant() && sample_index4.constantValue() == 0)
5414 final_sample = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(15u), fmask);
5415 else if (sample_index4.isConstant() && sample_index4.constantValue() == 28)
5416 final_sample = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(28u), fmask);
5417 else
5418 final_sample = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), fmask, sample_index4, Operand(4u));
5419
5420 /* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK
5421 * resource descriptor is 0 (invalid),
5422 */
5423 Temp compare = bld.tmp(bld.lm);
5424 bld.vopc_e64(aco_opcode::v_cmp_lg_u32, Definition(compare),
5425 Operand(0u), emit_extract_vector(ctx, fmask_desc_ptr, 1, s1)).def(0).setHint(vcc);
5426
5427 Temp sample_index_v = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), sample_index);
5428
5429 /* Replace the MSAA sample index. */
5430 return bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), sample_index_v, final_sample, compare);
5431 }
5432
5433 static Temp get_image_coords(isel_context *ctx, const nir_intrinsic_instr *instr, const struct glsl_type *type)
5434 {
5435
5436 Temp src0 = get_ssa_temp(ctx, instr->src[1].ssa);
5437 enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5438 bool is_array = glsl_sampler_type_is_array(type);
5439 ASSERTED bool add_frag_pos = (dim == GLSL_SAMPLER_DIM_SUBPASS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
5440 assert(!add_frag_pos && "Input attachments should be lowered.");
5441 bool is_ms = (dim == GLSL_SAMPLER_DIM_MS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
5442 bool gfx9_1d = ctx->options->chip_class == GFX9 && dim == GLSL_SAMPLER_DIM_1D;
5443 int count = image_type_to_components_count(dim, is_array);
5444 std::vector<Temp> coords(count);
5445 Builder bld(ctx->program, ctx->block);
5446
5447 if (is_ms) {
5448 count--;
5449 Temp src2 = get_ssa_temp(ctx, instr->src[2].ssa);
5450 /* get sample index */
5451 if (instr->intrinsic == nir_intrinsic_image_deref_load) {
5452 nir_const_value *sample_cv = nir_src_as_const_value(instr->src[2]);
5453 Operand sample_index = sample_cv ? Operand(sample_cv->u32) : Operand(emit_extract_vector(ctx, src2, 0, v1));
5454 std::vector<Temp> fmask_load_address;
5455 for (unsigned i = 0; i < (is_array ? 3 : 2); i++)
5456 fmask_load_address.emplace_back(emit_extract_vector(ctx, src0, i, v1));
5457
5458 Temp fmask_desc_ptr = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_FMASK, nullptr, false, false);
5459 coords[count] = adjust_sample_index_using_fmask(ctx, is_array, fmask_load_address, sample_index, fmask_desc_ptr);
5460 } else {
5461 coords[count] = emit_extract_vector(ctx, src2, 0, v1);
5462 }
5463 }
5464
5465 if (gfx9_1d) {
5466 coords[0] = emit_extract_vector(ctx, src0, 0, v1);
5467 coords.resize(coords.size() + 1);
5468 coords[1] = bld.copy(bld.def(v1), Operand(0u));
5469 if (is_array)
5470 coords[2] = emit_extract_vector(ctx, src0, 1, v1);
5471 } else {
5472 for (int i = 0; i < count; i++)
5473 coords[i] = emit_extract_vector(ctx, src0, i, v1);
5474 }
5475
5476 if (instr->intrinsic == nir_intrinsic_image_deref_load ||
5477 instr->intrinsic == nir_intrinsic_image_deref_store) {
5478 int lod_index = instr->intrinsic == nir_intrinsic_image_deref_load ? 3 : 4;
5479 bool level_zero = nir_src_is_const(instr->src[lod_index]) && nir_src_as_uint(instr->src[lod_index]) == 0;
5480
5481 if (!level_zero)
5482 coords.emplace_back(get_ssa_temp(ctx, instr->src[lod_index].ssa));
5483 }
5484
5485 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
5486 for (unsigned i = 0; i < coords.size(); i++)
5487 vec->operands[i] = Operand(coords[i]);
5488 Temp res = {ctx->program->allocateId(), RegClass(RegType::vgpr, coords.size())};
5489 vec->definitions[0] = Definition(res);
5490 ctx->block->instructions.emplace_back(std::move(vec));
5491 return res;
5492 }
5493
5494
5495 void visit_image_load(isel_context *ctx, nir_intrinsic_instr *instr)
5496 {
5497 Builder bld(ctx->program, ctx->block);
5498 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5499 const struct glsl_type *type = glsl_without_array(var->type);
5500 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5501 bool is_array = glsl_sampler_type_is_array(type);
5502 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5503
5504 if (dim == GLSL_SAMPLER_DIM_BUF) {
5505 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa);
5506 unsigned num_channels = util_last_bit(mask);
5507 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5508 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5509
5510 aco_opcode opcode;
5511 switch (num_channels) {
5512 case 1:
5513 opcode = aco_opcode::buffer_load_format_x;
5514 break;
5515 case 2:
5516 opcode = aco_opcode::buffer_load_format_xy;
5517 break;
5518 case 3:
5519 opcode = aco_opcode::buffer_load_format_xyz;
5520 break;
5521 case 4:
5522 opcode = aco_opcode::buffer_load_format_xyzw;
5523 break;
5524 default:
5525 unreachable(">4 channel buffer image load");
5526 }
5527 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 3, 1)};
5528 load->operands[0] = Operand(rsrc);
5529 load->operands[1] = Operand(vindex);
5530 load->operands[2] = Operand((uint32_t) 0);
5531 Temp tmp;
5532 if (num_channels == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
5533 tmp = dst;
5534 else
5535 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_channels)};
5536 load->definitions[0] = Definition(tmp);
5537 load->idxen = true;
5538 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT);
5539 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
5540 load->barrier = barrier_image;
5541 ctx->block->instructions.emplace_back(std::move(load));
5542
5543 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, (1 << num_channels) - 1);
5544 return;
5545 }
5546
5547 Temp coords = get_image_coords(ctx, instr, type);
5548 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5549
5550 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
5551 unsigned num_components = util_bitcount(dmask);
5552 Temp tmp;
5553 if (num_components == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
5554 tmp = dst;
5555 else
5556 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_components)};
5557
5558 bool level_zero = nir_src_is_const(instr->src[3]) && nir_src_as_uint(instr->src[3]) == 0;
5559 aco_opcode opcode = level_zero ? aco_opcode::image_load : aco_opcode::image_load_mip;
5560
5561 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1)};
5562 load->operands[0] = Operand(resource);
5563 load->operands[1] = Operand(s4); /* no sampler */
5564 load->operands[2] = Operand(coords);
5565 load->definitions[0] = Definition(tmp);
5566 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT) ? 1 : 0;
5567 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
5568 load->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5569 load->dmask = dmask;
5570 load->unrm = true;
5571 load->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5572 load->barrier = barrier_image;
5573 ctx->block->instructions.emplace_back(std::move(load));
5574
5575 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, dmask);
5576 return;
5577 }
5578
5579 void visit_image_store(isel_context *ctx, nir_intrinsic_instr *instr)
5580 {
5581 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5582 const struct glsl_type *type = glsl_without_array(var->type);
5583 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5584 bool is_array = glsl_sampler_type_is_array(type);
5585 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
5586
5587 bool glc = ctx->options->chip_class == GFX6 || var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE) ? 1 : 0;
5588
5589 if (dim == GLSL_SAMPLER_DIM_BUF) {
5590 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5591 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5592 aco_opcode opcode;
5593 switch (data.size()) {
5594 case 1:
5595 opcode = aco_opcode::buffer_store_format_x;
5596 break;
5597 case 2:
5598 opcode = aco_opcode::buffer_store_format_xy;
5599 break;
5600 case 3:
5601 opcode = aco_opcode::buffer_store_format_xyz;
5602 break;
5603 case 4:
5604 opcode = aco_opcode::buffer_store_format_xyzw;
5605 break;
5606 default:
5607 unreachable(">4 channel buffer image store");
5608 }
5609 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
5610 store->operands[0] = Operand(rsrc);
5611 store->operands[1] = Operand(vindex);
5612 store->operands[2] = Operand((uint32_t) 0);
5613 store->operands[3] = Operand(data);
5614 store->idxen = true;
5615 store->glc = glc;
5616 store->dlc = false;
5617 store->disable_wqm = true;
5618 store->barrier = barrier_image;
5619 ctx->program->needs_exact = true;
5620 ctx->block->instructions.emplace_back(std::move(store));
5621 return;
5622 }
5623
5624 assert(data.type() == RegType::vgpr);
5625 Temp coords = get_image_coords(ctx, instr, type);
5626 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5627
5628 bool level_zero = nir_src_is_const(instr->src[4]) && nir_src_as_uint(instr->src[4]) == 0;
5629 aco_opcode opcode = level_zero ? aco_opcode::image_store : aco_opcode::image_store_mip;
5630
5631 aco_ptr<MIMG_instruction> store{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 0)};
5632 store->operands[0] = Operand(resource);
5633 store->operands[1] = Operand(data);
5634 store->operands[2] = Operand(coords);
5635 store->glc = glc;
5636 store->dlc = false;
5637 store->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5638 store->dmask = (1 << data.size()) - 1;
5639 store->unrm = true;
5640 store->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5641 store->disable_wqm = true;
5642 store->barrier = barrier_image;
5643 ctx->program->needs_exact = true;
5644 ctx->block->instructions.emplace_back(std::move(store));
5645 return;
5646 }
5647
5648 void visit_image_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
5649 {
5650 /* return the previous value if dest is ever used */
5651 bool return_previous = false;
5652 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5653 return_previous = true;
5654 break;
5655 }
5656 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5657 return_previous = true;
5658 break;
5659 }
5660
5661 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5662 const struct glsl_type *type = glsl_without_array(var->type);
5663 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5664 bool is_array = glsl_sampler_type_is_array(type);
5665 Builder bld(ctx->program, ctx->block);
5666
5667 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
5668 assert(data.size() == 1 && "64bit ssbo atomics not yet implemented.");
5669
5670 if (instr->intrinsic == nir_intrinsic_image_deref_atomic_comp_swap)
5671 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), get_ssa_temp(ctx, instr->src[4].ssa), data);
5672
5673 aco_opcode buf_op, image_op;
5674 switch (instr->intrinsic) {
5675 case nir_intrinsic_image_deref_atomic_add:
5676 buf_op = aco_opcode::buffer_atomic_add;
5677 image_op = aco_opcode::image_atomic_add;
5678 break;
5679 case nir_intrinsic_image_deref_atomic_umin:
5680 buf_op = aco_opcode::buffer_atomic_umin;
5681 image_op = aco_opcode::image_atomic_umin;
5682 break;
5683 case nir_intrinsic_image_deref_atomic_imin:
5684 buf_op = aco_opcode::buffer_atomic_smin;
5685 image_op = aco_opcode::image_atomic_smin;
5686 break;
5687 case nir_intrinsic_image_deref_atomic_umax:
5688 buf_op = aco_opcode::buffer_atomic_umax;
5689 image_op = aco_opcode::image_atomic_umax;
5690 break;
5691 case nir_intrinsic_image_deref_atomic_imax:
5692 buf_op = aco_opcode::buffer_atomic_smax;
5693 image_op = aco_opcode::image_atomic_smax;
5694 break;
5695 case nir_intrinsic_image_deref_atomic_and:
5696 buf_op = aco_opcode::buffer_atomic_and;
5697 image_op = aco_opcode::image_atomic_and;
5698 break;
5699 case nir_intrinsic_image_deref_atomic_or:
5700 buf_op = aco_opcode::buffer_atomic_or;
5701 image_op = aco_opcode::image_atomic_or;
5702 break;
5703 case nir_intrinsic_image_deref_atomic_xor:
5704 buf_op = aco_opcode::buffer_atomic_xor;
5705 image_op = aco_opcode::image_atomic_xor;
5706 break;
5707 case nir_intrinsic_image_deref_atomic_exchange:
5708 buf_op = aco_opcode::buffer_atomic_swap;
5709 image_op = aco_opcode::image_atomic_swap;
5710 break;
5711 case nir_intrinsic_image_deref_atomic_comp_swap:
5712 buf_op = aco_opcode::buffer_atomic_cmpswap;
5713 image_op = aco_opcode::image_atomic_cmpswap;
5714 break;
5715 default:
5716 unreachable("visit_image_atomic should only be called with nir_intrinsic_image_deref_atomic_* instructions.");
5717 }
5718
5719 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5720
5721 if (dim == GLSL_SAMPLER_DIM_BUF) {
5722 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5723 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5724 //assert(ctx->options->chip_class < GFX9 && "GFX9 stride size workaround not yet implemented.");
5725 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(buf_op, Format::MUBUF, 4, return_previous ? 1 : 0)};
5726 mubuf->operands[0] = Operand(resource);
5727 mubuf->operands[1] = Operand(vindex);
5728 mubuf->operands[2] = Operand((uint32_t)0);
5729 mubuf->operands[3] = Operand(data);
5730 if (return_previous)
5731 mubuf->definitions[0] = Definition(dst);
5732 mubuf->offset = 0;
5733 mubuf->idxen = true;
5734 mubuf->glc = return_previous;
5735 mubuf->dlc = false; /* Not needed for atomics */
5736 mubuf->disable_wqm = true;
5737 mubuf->barrier = barrier_image;
5738 ctx->program->needs_exact = true;
5739 ctx->block->instructions.emplace_back(std::move(mubuf));
5740 return;
5741 }
5742
5743 Temp coords = get_image_coords(ctx, instr, type);
5744 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5745 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(image_op, Format::MIMG, 3, return_previous ? 1 : 0)};
5746 mimg->operands[0] = Operand(resource);
5747 mimg->operands[1] = Operand(data);
5748 mimg->operands[2] = Operand(coords);
5749 if (return_previous)
5750 mimg->definitions[0] = Definition(dst);
5751 mimg->glc = return_previous;
5752 mimg->dlc = false; /* Not needed for atomics */
5753 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5754 mimg->dmask = (1 << data.size()) - 1;
5755 mimg->unrm = true;
5756 mimg->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5757 mimg->disable_wqm = true;
5758 mimg->barrier = barrier_image;
5759 ctx->program->needs_exact = true;
5760 ctx->block->instructions.emplace_back(std::move(mimg));
5761 return;
5762 }
5763
5764 void get_buffer_size(isel_context *ctx, Temp desc, Temp dst, bool in_elements)
5765 {
5766 if (in_elements && ctx->options->chip_class == GFX8) {
5767 /* we only have to divide by 1, 2, 4, 8, 12 or 16 */
5768 Builder bld(ctx->program, ctx->block);
5769
5770 Temp size = emit_extract_vector(ctx, desc, 2, s1);
5771
5772 Temp size_div3 = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), bld.copy(bld.def(v1), Operand(0xaaaaaaabu)), size);
5773 size_div3 = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.as_uniform(size_div3), Operand(1u));
5774
5775 Temp stride = emit_extract_vector(ctx, desc, 1, s1);
5776 stride = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), stride, Operand((5u << 16) | 16u));
5777
5778 Temp is12 = bld.sopc(aco_opcode::s_cmp_eq_i32, bld.def(s1, scc), stride, Operand(12u));
5779 size = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), size_div3, size, bld.scc(is12));
5780
5781 Temp shr_dst = dst.type() == RegType::vgpr ? bld.tmp(s1) : dst;
5782 bld.sop2(aco_opcode::s_lshr_b32, Definition(shr_dst), bld.def(s1, scc),
5783 size, bld.sop1(aco_opcode::s_ff1_i32_b32, bld.def(s1), stride));
5784 if (dst.type() == RegType::vgpr)
5785 bld.copy(Definition(dst), shr_dst);
5786
5787 /* TODO: we can probably calculate this faster with v_skip when stride != 12 */
5788 } else {
5789 emit_extract_vector(ctx, desc, 2, dst);
5790 }
5791 }
5792
5793 void visit_image_size(isel_context *ctx, nir_intrinsic_instr *instr)
5794 {
5795 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5796 const struct glsl_type *type = glsl_without_array(var->type);
5797 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5798 bool is_array = glsl_sampler_type_is_array(type);
5799 Builder bld(ctx->program, ctx->block);
5800
5801 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF) {
5802 Temp desc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, NULL, true, false);
5803 return get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), true);
5804 }
5805
5806 /* LOD */
5807 Temp lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
5808
5809 /* Resource */
5810 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, NULL, true, false);
5811
5812 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5813
5814 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1)};
5815 mimg->operands[0] = Operand(resource);
5816 mimg->operands[1] = Operand(s4); /* no sampler */
5817 mimg->operands[2] = Operand(lod);
5818 uint8_t& dmask = mimg->dmask;
5819 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5820 mimg->dmask = (1 << instr->dest.ssa.num_components) - 1;
5821 mimg->da = glsl_sampler_type_is_array(type);
5822 mimg->can_reorder = true;
5823 Definition& def = mimg->definitions[0];
5824 ctx->block->instructions.emplace_back(std::move(mimg));
5825
5826 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE &&
5827 glsl_sampler_type_is_array(type)) {
5828
5829 assert(instr->dest.ssa.num_components == 3);
5830 Temp tmp = {ctx->program->allocateId(), v3};
5831 def = Definition(tmp);
5832 emit_split_vector(ctx, tmp, 3);
5833
5834 /* divide 3rd value by 6 by multiplying with magic number */
5835 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
5836 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp, 2, v1), c);
5837
5838 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5839 emit_extract_vector(ctx, tmp, 0, v1),
5840 emit_extract_vector(ctx, tmp, 1, v1),
5841 by_6);
5842
5843 } else if (ctx->options->chip_class == GFX9 &&
5844 glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_1D &&
5845 glsl_sampler_type_is_array(type)) {
5846 assert(instr->dest.ssa.num_components == 2);
5847 def = Definition(dst);
5848 dmask = 0x5;
5849 } else {
5850 def = Definition(dst);
5851 }
5852
5853 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
5854 }
5855
5856 void visit_load_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
5857 {
5858 Builder bld(ctx->program, ctx->block);
5859 unsigned num_components = instr->num_components;
5860
5861 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5862 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5863 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
5864
5865 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
5866 unsigned size = instr->dest.ssa.bit_size / 8;
5867 int byte_align = 0;
5868 if (size < 4) {
5869 unsigned align_mul = nir_intrinsic_align_mul(instr);
5870 unsigned align_offset = nir_intrinsic_align_offset(instr);
5871 byte_align = align_mul % 4 == 0 ? align_offset : -1;
5872 }
5873 load_buffer(ctx, num_components, size, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa), byte_align, glc, false);
5874 }
5875
5876 void visit_store_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
5877 {
5878 Builder bld(ctx->program, ctx->block);
5879 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
5880 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
5881 unsigned writemask = nir_intrinsic_write_mask(instr);
5882 Temp offset = get_ssa_temp(ctx, instr->src[2].ssa);
5883
5884 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5885 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
5886
5887 bool smem = !ctx->divergent_vals[instr->src[2].ssa->index] &&
5888 ctx->options->chip_class >= GFX8 &&
5889 elem_size_bytes >= 4;
5890 if (smem)
5891 offset = bld.as_uniform(offset);
5892 bool smem_nonfs = smem && ctx->stage != fragment_fs;
5893
5894 while (writemask) {
5895 int start, count;
5896 u_bit_scan_consecutive_range(&writemask, &start, &count);
5897 if (count == 3 && (smem || ctx->options->chip_class == GFX6)) {
5898 /* GFX6 doesn't support storing vec3, split it. */
5899 writemask |= 1u << (start + 2);
5900 count = 2;
5901 }
5902 int num_bytes = count * elem_size_bytes;
5903
5904 /* dword or larger stores have to be dword-aligned */
5905 if (elem_size_bytes < 4 && num_bytes > 2) {
5906 // TODO: improve alignment check of sub-dword stores
5907 unsigned count_new = 2 / elem_size_bytes;
5908 writemask |= ((1 << (count - count_new)) - 1) << (start + count_new);
5909 count = count_new;
5910 num_bytes = 2;
5911 }
5912
5913 if (num_bytes > 16) {
5914 assert(elem_size_bytes == 8);
5915 writemask |= (((count - 2) << 1) - 1) << (start + 2);
5916 count = 2;
5917 num_bytes = 16;
5918 }
5919
5920 Temp write_data;
5921 if (elem_size_bytes < 4) {
5922 if (data.type() == RegType::sgpr) {
5923 data = as_vgpr(ctx, data);
5924 emit_split_vector(ctx, data, 4 * data.size() / elem_size_bytes);
5925 }
5926 RegClass rc = RegClass(RegType::vgpr, elem_size_bytes).as_subdword();
5927 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
5928 for (int i = 0; i < count; i++)
5929 vec->operands[i] = Operand(emit_extract_vector(ctx, data, start + i, rc));
5930 write_data = bld.tmp(RegClass(RegType::vgpr, num_bytes).as_subdword());
5931 vec->definitions[0] = Definition(write_data);
5932 bld.insert(std::move(vec));
5933 } else if (count != instr->num_components) {
5934 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
5935 for (int i = 0; i < count; i++) {
5936 Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(data.type(), elem_size_bytes / 4));
5937 vec->operands[i] = Operand(smem_nonfs ? bld.as_uniform(elem) : elem);
5938 }
5939 write_data = bld.tmp(!smem ? RegType::vgpr : smem_nonfs ? RegType::sgpr : data.type(), count * elem_size_bytes / 4);
5940 vec->definitions[0] = Definition(write_data);
5941 ctx->block->instructions.emplace_back(std::move(vec));
5942 } else if (!smem && data.type() != RegType::vgpr) {
5943 assert(num_bytes % 4 == 0);
5944 write_data = bld.copy(bld.def(RegType::vgpr, num_bytes / 4), data);
5945 } else if (smem_nonfs && data.type() == RegType::vgpr) {
5946 assert(num_bytes % 4 == 0);
5947 write_data = bld.as_uniform(data);
5948 } else {
5949 write_data = data;
5950 }
5951
5952 aco_opcode vmem_op, smem_op = aco_opcode::last_opcode;
5953 switch (num_bytes) {
5954 case 1:
5955 vmem_op = aco_opcode::buffer_store_byte;
5956 break;
5957 case 2:
5958 vmem_op = aco_opcode::buffer_store_short;
5959 break;
5960 case 4:
5961 vmem_op = aco_opcode::buffer_store_dword;
5962 smem_op = aco_opcode::s_buffer_store_dword;
5963 break;
5964 case 8:
5965 vmem_op = aco_opcode::buffer_store_dwordx2;
5966 smem_op = aco_opcode::s_buffer_store_dwordx2;
5967 break;
5968 case 12:
5969 vmem_op = aco_opcode::buffer_store_dwordx3;
5970 assert(!smem && ctx->options->chip_class > GFX6);
5971 break;
5972 case 16:
5973 vmem_op = aco_opcode::buffer_store_dwordx4;
5974 smem_op = aco_opcode::s_buffer_store_dwordx4;
5975 break;
5976 default:
5977 unreachable("Store SSBO not implemented for this size.");
5978 }
5979 if (ctx->stage == fragment_fs)
5980 smem_op = aco_opcode::p_fs_buffer_store_smem;
5981
5982 if (smem) {
5983 aco_ptr<SMEM_instruction> store{create_instruction<SMEM_instruction>(smem_op, Format::SMEM, 3, 0)};
5984 store->operands[0] = Operand(rsrc);
5985 if (start) {
5986 Temp off = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
5987 offset, Operand(start * elem_size_bytes));
5988 store->operands[1] = Operand(off);
5989 } else {
5990 store->operands[1] = Operand(offset);
5991 }
5992 if (smem_op != aco_opcode::p_fs_buffer_store_smem)
5993 store->operands[1].setFixed(m0);
5994 store->operands[2] = Operand(write_data);
5995 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
5996 store->dlc = false;
5997 store->disable_wqm = true;
5998 store->barrier = barrier_buffer;
5999 ctx->block->instructions.emplace_back(std::move(store));
6000 ctx->program->wb_smem_l1_on_end = true;
6001 if (smem_op == aco_opcode::p_fs_buffer_store_smem) {
6002 ctx->block->kind |= block_kind_needs_lowering;
6003 ctx->program->needs_exact = true;
6004 }
6005 } else {
6006 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(vmem_op, Format::MUBUF, 4, 0)};
6007 store->operands[0] = Operand(rsrc);
6008 store->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
6009 store->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
6010 store->operands[3] = Operand(write_data);
6011 store->offset = start * elem_size_bytes;
6012 store->offen = (offset.type() == RegType::vgpr);
6013 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
6014 store->dlc = false;
6015 store->disable_wqm = true;
6016 store->barrier = barrier_buffer;
6017 ctx->program->needs_exact = true;
6018 ctx->block->instructions.emplace_back(std::move(store));
6019 }
6020 }
6021 }
6022
6023 void visit_atomic_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
6024 {
6025 /* return the previous value if dest is ever used */
6026 bool return_previous = false;
6027 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6028 return_previous = true;
6029 break;
6030 }
6031 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6032 return_previous = true;
6033 break;
6034 }
6035
6036 Builder bld(ctx->program, ctx->block);
6037 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[2].ssa));
6038
6039 if (instr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap)
6040 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
6041 get_ssa_temp(ctx, instr->src[3].ssa), data);
6042
6043 Temp offset = get_ssa_temp(ctx, instr->src[1].ssa);
6044 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6045 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
6046
6047 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6048
6049 aco_opcode op32, op64;
6050 switch (instr->intrinsic) {
6051 case nir_intrinsic_ssbo_atomic_add:
6052 op32 = aco_opcode::buffer_atomic_add;
6053 op64 = aco_opcode::buffer_atomic_add_x2;
6054 break;
6055 case nir_intrinsic_ssbo_atomic_imin:
6056 op32 = aco_opcode::buffer_atomic_smin;
6057 op64 = aco_opcode::buffer_atomic_smin_x2;
6058 break;
6059 case nir_intrinsic_ssbo_atomic_umin:
6060 op32 = aco_opcode::buffer_atomic_umin;
6061 op64 = aco_opcode::buffer_atomic_umin_x2;
6062 break;
6063 case nir_intrinsic_ssbo_atomic_imax:
6064 op32 = aco_opcode::buffer_atomic_smax;
6065 op64 = aco_opcode::buffer_atomic_smax_x2;
6066 break;
6067 case nir_intrinsic_ssbo_atomic_umax:
6068 op32 = aco_opcode::buffer_atomic_umax;
6069 op64 = aco_opcode::buffer_atomic_umax_x2;
6070 break;
6071 case nir_intrinsic_ssbo_atomic_and:
6072 op32 = aco_opcode::buffer_atomic_and;
6073 op64 = aco_opcode::buffer_atomic_and_x2;
6074 break;
6075 case nir_intrinsic_ssbo_atomic_or:
6076 op32 = aco_opcode::buffer_atomic_or;
6077 op64 = aco_opcode::buffer_atomic_or_x2;
6078 break;
6079 case nir_intrinsic_ssbo_atomic_xor:
6080 op32 = aco_opcode::buffer_atomic_xor;
6081 op64 = aco_opcode::buffer_atomic_xor_x2;
6082 break;
6083 case nir_intrinsic_ssbo_atomic_exchange:
6084 op32 = aco_opcode::buffer_atomic_swap;
6085 op64 = aco_opcode::buffer_atomic_swap_x2;
6086 break;
6087 case nir_intrinsic_ssbo_atomic_comp_swap:
6088 op32 = aco_opcode::buffer_atomic_cmpswap;
6089 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
6090 break;
6091 default:
6092 unreachable("visit_atomic_ssbo should only be called with nir_intrinsic_ssbo_atomic_* instructions.");
6093 }
6094 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
6095 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
6096 mubuf->operands[0] = Operand(rsrc);
6097 mubuf->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
6098 mubuf->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
6099 mubuf->operands[3] = Operand(data);
6100 if (return_previous)
6101 mubuf->definitions[0] = Definition(dst);
6102 mubuf->offset = 0;
6103 mubuf->offen = (offset.type() == RegType::vgpr);
6104 mubuf->glc = return_previous;
6105 mubuf->dlc = false; /* Not needed for atomics */
6106 mubuf->disable_wqm = true;
6107 mubuf->barrier = barrier_buffer;
6108 ctx->program->needs_exact = true;
6109 ctx->block->instructions.emplace_back(std::move(mubuf));
6110 }
6111
6112 void visit_get_buffer_size(isel_context *ctx, nir_intrinsic_instr *instr) {
6113
6114 Temp index = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6115 Builder bld(ctx->program, ctx->block);
6116 Temp desc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), index, Operand(0u));
6117 get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), false);
6118 }
6119
6120 Temp get_gfx6_global_rsrc(Builder& bld, Temp addr)
6121 {
6122 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
6123 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
6124
6125 if (addr.type() == RegType::vgpr)
6126 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), Operand(0u), Operand(0u), Operand(-1u), Operand(rsrc_conf));
6127 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), addr, Operand(-1u), Operand(rsrc_conf));
6128 }
6129
6130 void visit_load_global(isel_context *ctx, nir_intrinsic_instr *instr)
6131 {
6132 Builder bld(ctx->program, ctx->block);
6133 unsigned num_components = instr->num_components;
6134 unsigned num_bytes = num_components * instr->dest.ssa.bit_size / 8;
6135
6136 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6137 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
6138
6139 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
6140 bool dlc = glc && ctx->options->chip_class >= GFX10;
6141 aco_opcode op;
6142 if (dst.type() == RegType::vgpr || (glc && ctx->options->chip_class < GFX8)) {
6143 bool global = ctx->options->chip_class >= GFX9;
6144
6145 if (ctx->options->chip_class >= GFX7) {
6146 aco_opcode op;
6147 switch (num_bytes) {
6148 case 4:
6149 op = global ? aco_opcode::global_load_dword : aco_opcode::flat_load_dword;
6150 break;
6151 case 8:
6152 op = global ? aco_opcode::global_load_dwordx2 : aco_opcode::flat_load_dwordx2;
6153 break;
6154 case 12:
6155 op = global ? aco_opcode::global_load_dwordx3 : aco_opcode::flat_load_dwordx3;
6156 break;
6157 case 16:
6158 op = global ? aco_opcode::global_load_dwordx4 : aco_opcode::flat_load_dwordx4;
6159 break;
6160 default:
6161 unreachable("load_global not implemented for this size.");
6162 }
6163
6164 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 2, 1)};
6165 flat->operands[0] = Operand(addr);
6166 flat->operands[1] = Operand(s1);
6167 flat->glc = glc;
6168 flat->dlc = dlc;
6169 flat->barrier = barrier_buffer;
6170
6171 if (dst.type() == RegType::sgpr) {
6172 Temp vec = bld.tmp(RegType::vgpr, dst.size());
6173 flat->definitions[0] = Definition(vec);
6174 ctx->block->instructions.emplace_back(std::move(flat));
6175 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
6176 } else {
6177 flat->definitions[0] = Definition(dst);
6178 ctx->block->instructions.emplace_back(std::move(flat));
6179 }
6180 emit_split_vector(ctx, dst, num_components);
6181 } else {
6182 assert(ctx->options->chip_class == GFX6);
6183
6184 /* GFX6 doesn't support loading vec3, expand to vec4. */
6185 num_bytes = num_bytes == 12 ? 16 : num_bytes;
6186
6187 aco_opcode op;
6188 switch (num_bytes) {
6189 case 4:
6190 op = aco_opcode::buffer_load_dword;
6191 break;
6192 case 8:
6193 op = aco_opcode::buffer_load_dwordx2;
6194 break;
6195 case 16:
6196 op = aco_opcode::buffer_load_dwordx4;
6197 break;
6198 default:
6199 unreachable("load_global not implemented for this size.");
6200 }
6201
6202 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
6203
6204 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
6205 mubuf->operands[0] = Operand(rsrc);
6206 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
6207 mubuf->operands[2] = Operand(0u);
6208 mubuf->glc = glc;
6209 mubuf->dlc = false;
6210 mubuf->offset = 0;
6211 mubuf->addr64 = addr.type() == RegType::vgpr;
6212 mubuf->disable_wqm = false;
6213 mubuf->barrier = barrier_buffer;
6214 aco_ptr<Instruction> instr = std::move(mubuf);
6215
6216 /* expand vector */
6217 if (dst.size() == 3) {
6218 Temp vec = bld.tmp(v4);
6219 instr->definitions[0] = Definition(vec);
6220 bld.insert(std::move(instr));
6221 emit_split_vector(ctx, vec, 4);
6222
6223 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 3, 1));
6224 instr->operands[0] = Operand(emit_extract_vector(ctx, vec, 0, v1));
6225 instr->operands[1] = Operand(emit_extract_vector(ctx, vec, 1, v1));
6226 instr->operands[2] = Operand(emit_extract_vector(ctx, vec, 2, v1));
6227 }
6228
6229 if (dst.type() == RegType::sgpr) {
6230 Temp vec = bld.tmp(RegType::vgpr, dst.size());
6231 instr->definitions[0] = Definition(vec);
6232 bld.insert(std::move(instr));
6233 expand_vector(ctx, vec, dst, num_components, (1 << num_components) - 1);
6234 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
6235 } else {
6236 instr->definitions[0] = Definition(dst);
6237 bld.insert(std::move(instr));
6238 emit_split_vector(ctx, dst, num_components);
6239 }
6240 }
6241 } else {
6242 switch (num_bytes) {
6243 case 4:
6244 op = aco_opcode::s_load_dword;
6245 break;
6246 case 8:
6247 op = aco_opcode::s_load_dwordx2;
6248 break;
6249 case 12:
6250 case 16:
6251 op = aco_opcode::s_load_dwordx4;
6252 break;
6253 default:
6254 unreachable("load_global not implemented for this size.");
6255 }
6256 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
6257 load->operands[0] = Operand(addr);
6258 load->operands[1] = Operand(0u);
6259 load->definitions[0] = Definition(dst);
6260 load->glc = glc;
6261 load->dlc = dlc;
6262 load->barrier = barrier_buffer;
6263 assert(ctx->options->chip_class >= GFX8 || !glc);
6264
6265 if (dst.size() == 3) {
6266 /* trim vector */
6267 Temp vec = bld.tmp(s4);
6268 load->definitions[0] = Definition(vec);
6269 ctx->block->instructions.emplace_back(std::move(load));
6270 emit_split_vector(ctx, vec, 4);
6271
6272 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6273 emit_extract_vector(ctx, vec, 0, s1),
6274 emit_extract_vector(ctx, vec, 1, s1),
6275 emit_extract_vector(ctx, vec, 2, s1));
6276 } else {
6277 ctx->block->instructions.emplace_back(std::move(load));
6278 }
6279 }
6280 }
6281
6282 void visit_store_global(isel_context *ctx, nir_intrinsic_instr *instr)
6283 {
6284 Builder bld(ctx->program, ctx->block);
6285 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6286
6287 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6288 Temp addr = get_ssa_temp(ctx, instr->src[1].ssa);
6289
6290 if (ctx->options->chip_class >= GFX7)
6291 addr = as_vgpr(ctx, addr);
6292
6293 unsigned writemask = nir_intrinsic_write_mask(instr);
6294 while (writemask) {
6295 int start, count;
6296 u_bit_scan_consecutive_range(&writemask, &start, &count);
6297 if (count == 3 && ctx->options->chip_class == GFX6) {
6298 /* GFX6 doesn't support storing vec3, split it. */
6299 writemask |= 1u << (start + 2);
6300 count = 2;
6301 }
6302 unsigned num_bytes = count * elem_size_bytes;
6303
6304 Temp write_data = data;
6305 if (count != instr->num_components) {
6306 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
6307 for (int i = 0; i < count; i++)
6308 vec->operands[i] = Operand(emit_extract_vector(ctx, data, start + i, v1));
6309 write_data = bld.tmp(RegType::vgpr, count);
6310 vec->definitions[0] = Definition(write_data);
6311 ctx->block->instructions.emplace_back(std::move(vec));
6312 }
6313
6314 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
6315 unsigned offset = start * elem_size_bytes;
6316
6317 if (ctx->options->chip_class >= GFX7) {
6318 if (offset > 0 && ctx->options->chip_class < GFX9) {
6319 Temp addr0 = bld.tmp(v1), addr1 = bld.tmp(v1);
6320 Temp new_addr0 = bld.tmp(v1), new_addr1 = bld.tmp(v1);
6321 Temp carry = bld.tmp(bld.lm);
6322 bld.pseudo(aco_opcode::p_split_vector, Definition(addr0), Definition(addr1), addr);
6323
6324 bld.vop2(aco_opcode::v_add_co_u32, Definition(new_addr0), bld.hint_vcc(Definition(carry)),
6325 Operand(offset), addr0);
6326 bld.vop2(aco_opcode::v_addc_co_u32, Definition(new_addr1), bld.def(bld.lm),
6327 Operand(0u), addr1,
6328 carry).def(1).setHint(vcc);
6329
6330 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_addr0, new_addr1);
6331
6332 offset = 0;
6333 }
6334
6335 bool global = ctx->options->chip_class >= GFX9;
6336 aco_opcode op;
6337 switch (num_bytes) {
6338 case 4:
6339 op = global ? aco_opcode::global_store_dword : aco_opcode::flat_store_dword;
6340 break;
6341 case 8:
6342 op = global ? aco_opcode::global_store_dwordx2 : aco_opcode::flat_store_dwordx2;
6343 break;
6344 case 12:
6345 op = global ? aco_opcode::global_store_dwordx3 : aco_opcode::flat_store_dwordx3;
6346 break;
6347 case 16:
6348 op = global ? aco_opcode::global_store_dwordx4 : aco_opcode::flat_store_dwordx4;
6349 break;
6350 default:
6351 unreachable("store_global not implemented for this size.");
6352 }
6353
6354 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, 0)};
6355 flat->operands[0] = Operand(addr);
6356 flat->operands[1] = Operand(s1);
6357 flat->operands[2] = Operand(data);
6358 flat->glc = glc;
6359 flat->dlc = false;
6360 flat->offset = offset;
6361 flat->disable_wqm = true;
6362 flat->barrier = barrier_buffer;
6363 ctx->program->needs_exact = true;
6364 ctx->block->instructions.emplace_back(std::move(flat));
6365 } else {
6366 assert(ctx->options->chip_class == GFX6);
6367
6368 aco_opcode op;
6369 switch (num_bytes) {
6370 case 4:
6371 op = aco_opcode::buffer_store_dword;
6372 break;
6373 case 8:
6374 op = aco_opcode::buffer_store_dwordx2;
6375 break;
6376 case 16:
6377 op = aco_opcode::buffer_store_dwordx4;
6378 break;
6379 default:
6380 unreachable("store_global not implemented for this size.");
6381 }
6382
6383 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
6384
6385 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, 0)};
6386 mubuf->operands[0] = Operand(rsrc);
6387 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
6388 mubuf->operands[2] = Operand(0u);
6389 mubuf->operands[3] = Operand(write_data);
6390 mubuf->glc = glc;
6391 mubuf->dlc = false;
6392 mubuf->offset = offset;
6393 mubuf->addr64 = addr.type() == RegType::vgpr;
6394 mubuf->disable_wqm = true;
6395 mubuf->barrier = barrier_buffer;
6396 ctx->program->needs_exact = true;
6397 ctx->block->instructions.emplace_back(std::move(mubuf));
6398 }
6399 }
6400 }
6401
6402 void visit_global_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
6403 {
6404 /* return the previous value if dest is ever used */
6405 bool return_previous = false;
6406 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6407 return_previous = true;
6408 break;
6409 }
6410 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6411 return_previous = true;
6412 break;
6413 }
6414
6415 Builder bld(ctx->program, ctx->block);
6416 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
6417 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6418
6419 if (ctx->options->chip_class >= GFX7)
6420 addr = as_vgpr(ctx, addr);
6421
6422 if (instr->intrinsic == nir_intrinsic_global_atomic_comp_swap)
6423 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
6424 get_ssa_temp(ctx, instr->src[2].ssa), data);
6425
6426 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6427
6428 aco_opcode op32, op64;
6429
6430 if (ctx->options->chip_class >= GFX7) {
6431 bool global = ctx->options->chip_class >= GFX9;
6432 switch (instr->intrinsic) {
6433 case nir_intrinsic_global_atomic_add:
6434 op32 = global ? aco_opcode::global_atomic_add : aco_opcode::flat_atomic_add;
6435 op64 = global ? aco_opcode::global_atomic_add_x2 : aco_opcode::flat_atomic_add_x2;
6436 break;
6437 case nir_intrinsic_global_atomic_imin:
6438 op32 = global ? aco_opcode::global_atomic_smin : aco_opcode::flat_atomic_smin;
6439 op64 = global ? aco_opcode::global_atomic_smin_x2 : aco_opcode::flat_atomic_smin_x2;
6440 break;
6441 case nir_intrinsic_global_atomic_umin:
6442 op32 = global ? aco_opcode::global_atomic_umin : aco_opcode::flat_atomic_umin;
6443 op64 = global ? aco_opcode::global_atomic_umin_x2 : aco_opcode::flat_atomic_umin_x2;
6444 break;
6445 case nir_intrinsic_global_atomic_imax:
6446 op32 = global ? aco_opcode::global_atomic_smax : aco_opcode::flat_atomic_smax;
6447 op64 = global ? aco_opcode::global_atomic_smax_x2 : aco_opcode::flat_atomic_smax_x2;
6448 break;
6449 case nir_intrinsic_global_atomic_umax:
6450 op32 = global ? aco_opcode::global_atomic_umax : aco_opcode::flat_atomic_umax;
6451 op64 = global ? aco_opcode::global_atomic_umax_x2 : aco_opcode::flat_atomic_umax_x2;
6452 break;
6453 case nir_intrinsic_global_atomic_and:
6454 op32 = global ? aco_opcode::global_atomic_and : aco_opcode::flat_atomic_and;
6455 op64 = global ? aco_opcode::global_atomic_and_x2 : aco_opcode::flat_atomic_and_x2;
6456 break;
6457 case nir_intrinsic_global_atomic_or:
6458 op32 = global ? aco_opcode::global_atomic_or : aco_opcode::flat_atomic_or;
6459 op64 = global ? aco_opcode::global_atomic_or_x2 : aco_opcode::flat_atomic_or_x2;
6460 break;
6461 case nir_intrinsic_global_atomic_xor:
6462 op32 = global ? aco_opcode::global_atomic_xor : aco_opcode::flat_atomic_xor;
6463 op64 = global ? aco_opcode::global_atomic_xor_x2 : aco_opcode::flat_atomic_xor_x2;
6464 break;
6465 case nir_intrinsic_global_atomic_exchange:
6466 op32 = global ? aco_opcode::global_atomic_swap : aco_opcode::flat_atomic_swap;
6467 op64 = global ? aco_opcode::global_atomic_swap_x2 : aco_opcode::flat_atomic_swap_x2;
6468 break;
6469 case nir_intrinsic_global_atomic_comp_swap:
6470 op32 = global ? aco_opcode::global_atomic_cmpswap : aco_opcode::flat_atomic_cmpswap;
6471 op64 = global ? aco_opcode::global_atomic_cmpswap_x2 : aco_opcode::flat_atomic_cmpswap_x2;
6472 break;
6473 default:
6474 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
6475 }
6476
6477 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
6478 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, return_previous ? 1 : 0)};
6479 flat->operands[0] = Operand(addr);
6480 flat->operands[1] = Operand(s1);
6481 flat->operands[2] = Operand(data);
6482 if (return_previous)
6483 flat->definitions[0] = Definition(dst);
6484 flat->glc = return_previous;
6485 flat->dlc = false; /* Not needed for atomics */
6486 flat->offset = 0;
6487 flat->disable_wqm = true;
6488 flat->barrier = barrier_buffer;
6489 ctx->program->needs_exact = true;
6490 ctx->block->instructions.emplace_back(std::move(flat));
6491 } else {
6492 assert(ctx->options->chip_class == GFX6);
6493
6494 switch (instr->intrinsic) {
6495 case nir_intrinsic_global_atomic_add:
6496 op32 = aco_opcode::buffer_atomic_add;
6497 op64 = aco_opcode::buffer_atomic_add_x2;
6498 break;
6499 case nir_intrinsic_global_atomic_imin:
6500 op32 = aco_opcode::buffer_atomic_smin;
6501 op64 = aco_opcode::buffer_atomic_smin_x2;
6502 break;
6503 case nir_intrinsic_global_atomic_umin:
6504 op32 = aco_opcode::buffer_atomic_umin;
6505 op64 = aco_opcode::buffer_atomic_umin_x2;
6506 break;
6507 case nir_intrinsic_global_atomic_imax:
6508 op32 = aco_opcode::buffer_atomic_smax;
6509 op64 = aco_opcode::buffer_atomic_smax_x2;
6510 break;
6511 case nir_intrinsic_global_atomic_umax:
6512 op32 = aco_opcode::buffer_atomic_umax;
6513 op64 = aco_opcode::buffer_atomic_umax_x2;
6514 break;
6515 case nir_intrinsic_global_atomic_and:
6516 op32 = aco_opcode::buffer_atomic_and;
6517 op64 = aco_opcode::buffer_atomic_and_x2;
6518 break;
6519 case nir_intrinsic_global_atomic_or:
6520 op32 = aco_opcode::buffer_atomic_or;
6521 op64 = aco_opcode::buffer_atomic_or_x2;
6522 break;
6523 case nir_intrinsic_global_atomic_xor:
6524 op32 = aco_opcode::buffer_atomic_xor;
6525 op64 = aco_opcode::buffer_atomic_xor_x2;
6526 break;
6527 case nir_intrinsic_global_atomic_exchange:
6528 op32 = aco_opcode::buffer_atomic_swap;
6529 op64 = aco_opcode::buffer_atomic_swap_x2;
6530 break;
6531 case nir_intrinsic_global_atomic_comp_swap:
6532 op32 = aco_opcode::buffer_atomic_cmpswap;
6533 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
6534 break;
6535 default:
6536 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
6537 }
6538
6539 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
6540
6541 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
6542
6543 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
6544 mubuf->operands[0] = Operand(rsrc);
6545 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
6546 mubuf->operands[2] = Operand(0u);
6547 mubuf->operands[3] = Operand(data);
6548 if (return_previous)
6549 mubuf->definitions[0] = Definition(dst);
6550 mubuf->glc = return_previous;
6551 mubuf->dlc = false;
6552 mubuf->offset = 0;
6553 mubuf->addr64 = addr.type() == RegType::vgpr;
6554 mubuf->disable_wqm = true;
6555 mubuf->barrier = barrier_buffer;
6556 ctx->program->needs_exact = true;
6557 ctx->block->instructions.emplace_back(std::move(mubuf));
6558 }
6559 }
6560
6561 void emit_memory_barrier(isel_context *ctx, nir_intrinsic_instr *instr) {
6562 Builder bld(ctx->program, ctx->block);
6563 switch(instr->intrinsic) {
6564 case nir_intrinsic_group_memory_barrier:
6565 case nir_intrinsic_memory_barrier:
6566 bld.barrier(aco_opcode::p_memory_barrier_common);
6567 break;
6568 case nir_intrinsic_memory_barrier_buffer:
6569 bld.barrier(aco_opcode::p_memory_barrier_buffer);
6570 break;
6571 case nir_intrinsic_memory_barrier_image:
6572 bld.barrier(aco_opcode::p_memory_barrier_image);
6573 break;
6574 case nir_intrinsic_memory_barrier_tcs_patch:
6575 case nir_intrinsic_memory_barrier_shared:
6576 bld.barrier(aco_opcode::p_memory_barrier_shared);
6577 break;
6578 default:
6579 unreachable("Unimplemented memory barrier intrinsic");
6580 break;
6581 }
6582 }
6583
6584 void visit_load_shared(isel_context *ctx, nir_intrinsic_instr *instr)
6585 {
6586 // TODO: implement sparse reads using ds_read2_b32 and nir_ssa_def_components_read()
6587 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6588 assert(instr->dest.ssa.bit_size >= 32 && "Bitsize not supported in load_shared.");
6589 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6590 Builder bld(ctx->program, ctx->block);
6591
6592 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
6593 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
6594 load_lds(ctx, elem_size_bytes, dst, address, nir_intrinsic_base(instr), align);
6595 }
6596
6597 void visit_store_shared(isel_context *ctx, nir_intrinsic_instr *instr)
6598 {
6599 unsigned writemask = nir_intrinsic_write_mask(instr);
6600 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
6601 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6602 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6603 assert(elem_size_bytes >= 4 && "Only 32bit & 64bit store_shared currently supported.");
6604
6605 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
6606 store_lds(ctx, elem_size_bytes, data, writemask, address, nir_intrinsic_base(instr), align);
6607 }
6608
6609 void visit_shared_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
6610 {
6611 unsigned offset = nir_intrinsic_base(instr);
6612 Operand m = load_lds_size_m0(ctx);
6613 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6614 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6615
6616 unsigned num_operands = 3;
6617 aco_opcode op32, op64, op32_rtn, op64_rtn;
6618 switch(instr->intrinsic) {
6619 case nir_intrinsic_shared_atomic_add:
6620 op32 = aco_opcode::ds_add_u32;
6621 op64 = aco_opcode::ds_add_u64;
6622 op32_rtn = aco_opcode::ds_add_rtn_u32;
6623 op64_rtn = aco_opcode::ds_add_rtn_u64;
6624 break;
6625 case nir_intrinsic_shared_atomic_imin:
6626 op32 = aco_opcode::ds_min_i32;
6627 op64 = aco_opcode::ds_min_i64;
6628 op32_rtn = aco_opcode::ds_min_rtn_i32;
6629 op64_rtn = aco_opcode::ds_min_rtn_i64;
6630 break;
6631 case nir_intrinsic_shared_atomic_umin:
6632 op32 = aco_opcode::ds_min_u32;
6633 op64 = aco_opcode::ds_min_u64;
6634 op32_rtn = aco_opcode::ds_min_rtn_u32;
6635 op64_rtn = aco_opcode::ds_min_rtn_u64;
6636 break;
6637 case nir_intrinsic_shared_atomic_imax:
6638 op32 = aco_opcode::ds_max_i32;
6639 op64 = aco_opcode::ds_max_i64;
6640 op32_rtn = aco_opcode::ds_max_rtn_i32;
6641 op64_rtn = aco_opcode::ds_max_rtn_i64;
6642 break;
6643 case nir_intrinsic_shared_atomic_umax:
6644 op32 = aco_opcode::ds_max_u32;
6645 op64 = aco_opcode::ds_max_u64;
6646 op32_rtn = aco_opcode::ds_max_rtn_u32;
6647 op64_rtn = aco_opcode::ds_max_rtn_u64;
6648 break;
6649 case nir_intrinsic_shared_atomic_and:
6650 op32 = aco_opcode::ds_and_b32;
6651 op64 = aco_opcode::ds_and_b64;
6652 op32_rtn = aco_opcode::ds_and_rtn_b32;
6653 op64_rtn = aco_opcode::ds_and_rtn_b64;
6654 break;
6655 case nir_intrinsic_shared_atomic_or:
6656 op32 = aco_opcode::ds_or_b32;
6657 op64 = aco_opcode::ds_or_b64;
6658 op32_rtn = aco_opcode::ds_or_rtn_b32;
6659 op64_rtn = aco_opcode::ds_or_rtn_b64;
6660 break;
6661 case nir_intrinsic_shared_atomic_xor:
6662 op32 = aco_opcode::ds_xor_b32;
6663 op64 = aco_opcode::ds_xor_b64;
6664 op32_rtn = aco_opcode::ds_xor_rtn_b32;
6665 op64_rtn = aco_opcode::ds_xor_rtn_b64;
6666 break;
6667 case nir_intrinsic_shared_atomic_exchange:
6668 op32 = aco_opcode::ds_write_b32;
6669 op64 = aco_opcode::ds_write_b64;
6670 op32_rtn = aco_opcode::ds_wrxchg_rtn_b32;
6671 op64_rtn = aco_opcode::ds_wrxchg2_rtn_b64;
6672 break;
6673 case nir_intrinsic_shared_atomic_comp_swap:
6674 op32 = aco_opcode::ds_cmpst_b32;
6675 op64 = aco_opcode::ds_cmpst_b64;
6676 op32_rtn = aco_opcode::ds_cmpst_rtn_b32;
6677 op64_rtn = aco_opcode::ds_cmpst_rtn_b64;
6678 num_operands = 4;
6679 break;
6680 default:
6681 unreachable("Unhandled shared atomic intrinsic");
6682 }
6683
6684 /* return the previous value if dest is ever used */
6685 bool return_previous = false;
6686 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6687 return_previous = true;
6688 break;
6689 }
6690 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6691 return_previous = true;
6692 break;
6693 }
6694
6695 aco_opcode op;
6696 if (data.size() == 1) {
6697 assert(instr->dest.ssa.bit_size == 32);
6698 op = return_previous ? op32_rtn : op32;
6699 } else {
6700 assert(instr->dest.ssa.bit_size == 64);
6701 op = return_previous ? op64_rtn : op64;
6702 }
6703
6704 if (offset > 65535) {
6705 Builder bld(ctx->program, ctx->block);
6706 address = bld.vadd32(bld.def(v1), Operand(offset), address);
6707 offset = 0;
6708 }
6709
6710 aco_ptr<DS_instruction> ds;
6711 ds.reset(create_instruction<DS_instruction>(op, Format::DS, num_operands, return_previous ? 1 : 0));
6712 ds->operands[0] = Operand(address);
6713 ds->operands[1] = Operand(data);
6714 if (num_operands == 4)
6715 ds->operands[2] = Operand(get_ssa_temp(ctx, instr->src[2].ssa));
6716 ds->operands[num_operands - 1] = m;
6717 ds->offset0 = offset;
6718 if (return_previous)
6719 ds->definitions[0] = Definition(get_ssa_temp(ctx, &instr->dest.ssa));
6720 ctx->block->instructions.emplace_back(std::move(ds));
6721 }
6722
6723 Temp get_scratch_resource(isel_context *ctx)
6724 {
6725 Builder bld(ctx->program, ctx->block);
6726 Temp scratch_addr = ctx->program->private_segment_buffer;
6727 if (ctx->stage != compute_cs)
6728 scratch_addr = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), scratch_addr, Operand(0u));
6729
6730 uint32_t rsrc_conf = S_008F0C_ADD_TID_ENABLE(1) |
6731 S_008F0C_INDEX_STRIDE(ctx->program->wave_size == 64 ? 3 : 2);;
6732
6733 if (ctx->program->chip_class >= GFX10) {
6734 rsrc_conf |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
6735 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
6736 S_008F0C_RESOURCE_LEVEL(1);
6737 } else if (ctx->program->chip_class <= GFX7) { /* dfmt modifies stride on GFX8/GFX9 when ADD_TID_EN=1 */
6738 rsrc_conf |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
6739 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
6740 }
6741
6742 /* older generations need element size = 16 bytes. element size removed in GFX9 */
6743 if (ctx->program->chip_class <= GFX8)
6744 rsrc_conf |= S_008F0C_ELEMENT_SIZE(3);
6745
6746 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), scratch_addr, Operand(-1u), Operand(rsrc_conf));
6747 }
6748
6749 void visit_load_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
6750 assert(instr->dest.ssa.bit_size == 32 || instr->dest.ssa.bit_size == 64);
6751 Builder bld(ctx->program, ctx->block);
6752 Temp rsrc = get_scratch_resource(ctx);
6753 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6754 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6755
6756 aco_opcode op;
6757 switch (dst.size()) {
6758 case 1:
6759 op = aco_opcode::buffer_load_dword;
6760 break;
6761 case 2:
6762 op = aco_opcode::buffer_load_dwordx2;
6763 break;
6764 case 3:
6765 op = aco_opcode::buffer_load_dwordx3;
6766 break;
6767 case 4:
6768 op = aco_opcode::buffer_load_dwordx4;
6769 break;
6770 case 6:
6771 case 8: {
6772 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
6773 Temp lower = bld.mubuf(aco_opcode::buffer_load_dwordx4,
6774 bld.def(v4), rsrc, offset,
6775 ctx->program->scratch_offset, 0, true);
6776 Temp upper = bld.mubuf(dst.size() == 6 ? aco_opcode::buffer_load_dwordx2 :
6777 aco_opcode::buffer_load_dwordx4,
6778 dst.size() == 6 ? bld.def(v2) : bld.def(v4),
6779 rsrc, offset, ctx->program->scratch_offset, 16, true);
6780 emit_split_vector(ctx, lower, 2);
6781 elems[0] = emit_extract_vector(ctx, lower, 0, v2);
6782 elems[1] = emit_extract_vector(ctx, lower, 1, v2);
6783 if (dst.size() == 8) {
6784 emit_split_vector(ctx, upper, 2);
6785 elems[2] = emit_extract_vector(ctx, upper, 0, v2);
6786 elems[3] = emit_extract_vector(ctx, upper, 1, v2);
6787 } else {
6788 elems[2] = upper;
6789 }
6790
6791 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
6792 Format::PSEUDO, dst.size() / 2, 1)};
6793 for (unsigned i = 0; i < dst.size() / 2; i++)
6794 vec->operands[i] = Operand(elems[i]);
6795 vec->definitions[0] = Definition(dst);
6796 bld.insert(std::move(vec));
6797 ctx->allocated_vec.emplace(dst.id(), elems);
6798 return;
6799 }
6800 default:
6801 unreachable("Wrong dst size for nir_intrinsic_load_scratch");
6802 }
6803
6804 bld.mubuf(op, Definition(dst), rsrc, offset, ctx->program->scratch_offset, 0, true);
6805 emit_split_vector(ctx, dst, instr->num_components);
6806 }
6807
6808 void visit_store_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
6809 assert(instr->src[0].ssa->bit_size == 32 || instr->src[0].ssa->bit_size == 64);
6810 Builder bld(ctx->program, ctx->block);
6811 Temp rsrc = get_scratch_resource(ctx);
6812 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6813 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6814
6815 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6816 unsigned writemask = nir_intrinsic_write_mask(instr);
6817
6818 while (writemask) {
6819 int start, count;
6820 u_bit_scan_consecutive_range(&writemask, &start, &count);
6821 int num_bytes = count * elem_size_bytes;
6822
6823 if (num_bytes > 16) {
6824 assert(elem_size_bytes == 8);
6825 writemask |= (((count - 2) << 1) - 1) << (start + 2);
6826 count = 2;
6827 num_bytes = 16;
6828 }
6829
6830 // TODO: check alignment of sub-dword stores
6831 // TODO: split 3 bytes. there is no store instruction for that
6832
6833 Temp write_data;
6834 if (count != instr->num_components) {
6835 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
6836 for (int i = 0; i < count; i++) {
6837 Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(RegType::vgpr, elem_size_bytes / 4));
6838 vec->operands[i] = Operand(elem);
6839 }
6840 write_data = bld.tmp(RegClass(RegType::vgpr, count * elem_size_bytes / 4));
6841 vec->definitions[0] = Definition(write_data);
6842 ctx->block->instructions.emplace_back(std::move(vec));
6843 } else {
6844 write_data = data;
6845 }
6846
6847 aco_opcode op;
6848 switch (num_bytes) {
6849 case 4:
6850 op = aco_opcode::buffer_store_dword;
6851 break;
6852 case 8:
6853 op = aco_opcode::buffer_store_dwordx2;
6854 break;
6855 case 12:
6856 op = aco_opcode::buffer_store_dwordx3;
6857 break;
6858 case 16:
6859 op = aco_opcode::buffer_store_dwordx4;
6860 break;
6861 default:
6862 unreachable("Invalid data size for nir_intrinsic_store_scratch.");
6863 }
6864
6865 bld.mubuf(op, rsrc, offset, ctx->program->scratch_offset, write_data, start * elem_size_bytes, true);
6866 }
6867 }
6868
6869 void visit_load_sample_mask_in(isel_context *ctx, nir_intrinsic_instr *instr) {
6870 uint8_t log2_ps_iter_samples;
6871 if (ctx->program->info->ps.force_persample) {
6872 log2_ps_iter_samples =
6873 util_logbase2(ctx->options->key.fs.num_samples);
6874 } else {
6875 log2_ps_iter_samples = ctx->options->key.fs.log2_ps_iter_samples;
6876 }
6877
6878 /* The bit pattern matches that used by fixed function fragment
6879 * processing. */
6880 static const unsigned ps_iter_masks[] = {
6881 0xffff, /* not used */
6882 0x5555,
6883 0x1111,
6884 0x0101,
6885 0x0001,
6886 };
6887 assert(log2_ps_iter_samples < ARRAY_SIZE(ps_iter_masks));
6888
6889 Builder bld(ctx->program, ctx->block);
6890
6891 Temp sample_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
6892 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
6893 Temp ps_iter_mask = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(ps_iter_masks[log2_ps_iter_samples]));
6894 Temp mask = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), sample_id, ps_iter_mask);
6895 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6896 bld.vop2(aco_opcode::v_and_b32, Definition(dst), mask, get_arg(ctx, ctx->args->ac.sample_coverage));
6897 }
6898
6899 void visit_emit_vertex_with_counter(isel_context *ctx, nir_intrinsic_instr *instr) {
6900 Builder bld(ctx->program, ctx->block);
6901
6902 unsigned stream = nir_intrinsic_stream_id(instr);
6903 Temp next_vertex = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6904 next_vertex = bld.v_mul_imm(bld.def(v1), next_vertex, 4u);
6905 nir_const_value *next_vertex_cv = nir_src_as_const_value(instr->src[0]);
6906
6907 /* get GSVS ring */
6908 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_GSVS_GS * 16u));
6909
6910 unsigned num_components =
6911 ctx->program->info->gs.num_stream_output_components[stream];
6912 assert(num_components);
6913
6914 unsigned stride = 4u * num_components * ctx->shader->info.gs.vertices_out;
6915 unsigned stream_offset = 0;
6916 for (unsigned i = 0; i < stream; i++) {
6917 unsigned prev_stride = 4u * ctx->program->info->gs.num_stream_output_components[i] * ctx->shader->info.gs.vertices_out;
6918 stream_offset += prev_stride * ctx->program->wave_size;
6919 }
6920
6921 /* Limit on the stride field for <= GFX7. */
6922 assert(stride < (1 << 14));
6923
6924 Temp gsvs_dwords[4];
6925 for (unsigned i = 0; i < 4; i++)
6926 gsvs_dwords[i] = bld.tmp(s1);
6927 bld.pseudo(aco_opcode::p_split_vector,
6928 Definition(gsvs_dwords[0]),
6929 Definition(gsvs_dwords[1]),
6930 Definition(gsvs_dwords[2]),
6931 Definition(gsvs_dwords[3]),
6932 gsvs_ring);
6933
6934 if (stream_offset) {
6935 Temp stream_offset_tmp = bld.copy(bld.def(s1), Operand(stream_offset));
6936
6937 Temp carry = bld.tmp(s1);
6938 gsvs_dwords[0] = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), gsvs_dwords[0], stream_offset_tmp);
6939 gsvs_dwords[1] = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(0u), bld.scc(carry));
6940 }
6941
6942 gsvs_dwords[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(S_008F04_STRIDE(stride)));
6943 gsvs_dwords[2] = bld.copy(bld.def(s1), Operand((uint32_t)ctx->program->wave_size));
6944
6945 gsvs_ring = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
6946 gsvs_dwords[0], gsvs_dwords[1], gsvs_dwords[2], gsvs_dwords[3]);
6947
6948 unsigned offset = 0;
6949 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; i++) {
6950 if (ctx->program->info->gs.output_streams[i] != stream)
6951 continue;
6952
6953 for (unsigned j = 0; j < 4; j++) {
6954 if (!(ctx->program->info->gs.output_usage_mask[i] & (1 << j)))
6955 continue;
6956
6957 if (ctx->outputs.mask[i] & (1 << j)) {
6958 Operand vaddr_offset = next_vertex_cv ? Operand(v1) : Operand(next_vertex);
6959 unsigned const_offset = (offset + (next_vertex_cv ? next_vertex_cv->u32 : 0u)) * 4u;
6960 if (const_offset >= 4096u) {
6961 if (vaddr_offset.isUndefined())
6962 vaddr_offset = bld.copy(bld.def(v1), Operand(const_offset / 4096u * 4096u));
6963 else
6964 vaddr_offset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), vaddr_offset);
6965 const_offset %= 4096u;
6966 }
6967
6968 aco_ptr<MTBUF_instruction> mtbuf{create_instruction<MTBUF_instruction>(aco_opcode::tbuffer_store_format_x, Format::MTBUF, 4, 0)};
6969 mtbuf->operands[0] = Operand(gsvs_ring);
6970 mtbuf->operands[1] = vaddr_offset;
6971 mtbuf->operands[2] = Operand(get_arg(ctx, ctx->args->gs2vs_offset));
6972 mtbuf->operands[3] = Operand(ctx->outputs.temps[i * 4u + j]);
6973 mtbuf->offen = !vaddr_offset.isUndefined();
6974 mtbuf->dfmt = V_008F0C_BUF_DATA_FORMAT_32;
6975 mtbuf->nfmt = V_008F0C_BUF_NUM_FORMAT_UINT;
6976 mtbuf->offset = const_offset;
6977 mtbuf->glc = true;
6978 mtbuf->slc = true;
6979 mtbuf->barrier = barrier_gs_data;
6980 mtbuf->can_reorder = true;
6981 bld.insert(std::move(mtbuf));
6982 }
6983
6984 offset += ctx->shader->info.gs.vertices_out;
6985 }
6986
6987 /* outputs for the next vertex are undefined and keeping them around can
6988 * create invalid IR with control flow */
6989 ctx->outputs.mask[i] = 0;
6990 }
6991
6992 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(false, true, stream));
6993 }
6994
6995 Temp emit_boolean_reduce(isel_context *ctx, nir_op op, unsigned cluster_size, Temp src)
6996 {
6997 Builder bld(ctx->program, ctx->block);
6998
6999 if (cluster_size == 1) {
7000 return src;
7001 } if (op == nir_op_iand && cluster_size == 4) {
7002 //subgroupClusteredAnd(val, 4) -> ~wqm(exec & ~val)
7003 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
7004 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc),
7005 bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc), tmp));
7006 } else if (op == nir_op_ior && cluster_size == 4) {
7007 //subgroupClusteredOr(val, 4) -> wqm(val & exec)
7008 return bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc),
7009 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)));
7010 } else if (op == nir_op_iand && cluster_size == ctx->program->wave_size) {
7011 //subgroupAnd(val) -> (exec & ~val) == 0
7012 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
7013 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
7014 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), cond);
7015 } else if (op == nir_op_ior && cluster_size == ctx->program->wave_size) {
7016 //subgroupOr(val) -> (val & exec) != 0
7017 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)).def(1).getTemp();
7018 return bool_to_vector_condition(ctx, tmp);
7019 } else if (op == nir_op_ixor && cluster_size == ctx->program->wave_size) {
7020 //subgroupXor(val) -> s_bcnt1_i32_b64(val & exec) & 1
7021 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
7022 tmp = bld.sop1(Builder::s_bcnt1_i32, bld.def(s1), bld.def(s1, scc), tmp);
7023 tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), tmp, Operand(1u)).def(1).getTemp();
7024 return bool_to_vector_condition(ctx, tmp);
7025 } else {
7026 //subgroupClustered{And,Or,Xor}(val, n) ->
7027 //lane_id = v_mbcnt_hi_u32_b32(-1, v_mbcnt_lo_u32_b32(-1, 0)) ; just v_mbcnt_lo_u32_b32 on wave32
7028 //cluster_offset = ~(n - 1) & lane_id
7029 //cluster_mask = ((1 << n) - 1)
7030 //subgroupClusteredAnd():
7031 // return ((val | ~exec) >> cluster_offset) & cluster_mask == cluster_mask
7032 //subgroupClusteredOr():
7033 // return ((val & exec) >> cluster_offset) & cluster_mask != 0
7034 //subgroupClusteredXor():
7035 // return v_bnt_u32_b32(((val & exec) >> cluster_offset) & cluster_mask, 0) & 1 != 0
7036 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
7037 Temp cluster_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(~uint32_t(cluster_size - 1)), lane_id);
7038
7039 Temp tmp;
7040 if (op == nir_op_iand)
7041 tmp = bld.sop2(Builder::s_orn2, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
7042 else
7043 tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
7044
7045 uint32_t cluster_mask = cluster_size == 32 ? -1 : (1u << cluster_size) - 1u;
7046
7047 if (ctx->program->chip_class <= GFX7)
7048 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), tmp, cluster_offset);
7049 else if (ctx->program->wave_size == 64)
7050 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), cluster_offset, tmp);
7051 else
7052 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), cluster_offset, tmp);
7053 tmp = emit_extract_vector(ctx, tmp, 0, v1);
7054 if (cluster_mask != 0xffffffff)
7055 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(cluster_mask), tmp);
7056
7057 Definition cmp_def = Definition();
7058 if (op == nir_op_iand) {
7059 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(cluster_mask), tmp).def(0);
7060 } else if (op == nir_op_ior) {
7061 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
7062 } else if (op == nir_op_ixor) {
7063 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u),
7064 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1), tmp, Operand(0u)));
7065 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
7066 }
7067 cmp_def.setHint(vcc);
7068 return cmp_def.getTemp();
7069 }
7070 }
7071
7072 Temp emit_boolean_exclusive_scan(isel_context *ctx, nir_op op, Temp src)
7073 {
7074 Builder bld(ctx->program, ctx->block);
7075
7076 //subgroupExclusiveAnd(val) -> mbcnt(exec & ~val) == 0
7077 //subgroupExclusiveOr(val) -> mbcnt(val & exec) != 0
7078 //subgroupExclusiveXor(val) -> mbcnt(val & exec) & 1 != 0
7079 Temp tmp;
7080 if (op == nir_op_iand)
7081 tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
7082 else
7083 tmp = bld.sop2(Builder::s_and, bld.def(s2), bld.def(s1, scc), src, Operand(exec, bld.lm));
7084
7085 Builder::Result lohi = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), bld.def(s1), tmp);
7086 Temp lo = lohi.def(0).getTemp();
7087 Temp hi = lohi.def(1).getTemp();
7088 Temp mbcnt = emit_mbcnt(ctx, bld.def(v1), Operand(lo), Operand(hi));
7089
7090 Definition cmp_def = Definition();
7091 if (op == nir_op_iand)
7092 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
7093 else if (op == nir_op_ior)
7094 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
7095 else if (op == nir_op_ixor)
7096 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u),
7097 bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), mbcnt)).def(0);
7098 cmp_def.setHint(vcc);
7099 return cmp_def.getTemp();
7100 }
7101
7102 Temp emit_boolean_inclusive_scan(isel_context *ctx, nir_op op, Temp src)
7103 {
7104 Builder bld(ctx->program, ctx->block);
7105
7106 //subgroupInclusiveAnd(val) -> subgroupExclusiveAnd(val) && val
7107 //subgroupInclusiveOr(val) -> subgroupExclusiveOr(val) || val
7108 //subgroupInclusiveXor(val) -> subgroupExclusiveXor(val) ^^ val
7109 Temp tmp = emit_boolean_exclusive_scan(ctx, op, src);
7110 if (op == nir_op_iand)
7111 return bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
7112 else if (op == nir_op_ior)
7113 return bld.sop2(Builder::s_or, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
7114 else if (op == nir_op_ixor)
7115 return bld.sop2(Builder::s_xor, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
7116
7117 assert(false);
7118 return Temp();
7119 }
7120
7121 void emit_uniform_subgroup(isel_context *ctx, nir_intrinsic_instr *instr, Temp src)
7122 {
7123 Builder bld(ctx->program, ctx->block);
7124 Definition dst(get_ssa_temp(ctx, &instr->dest.ssa));
7125 if (src.regClass().type() == RegType::vgpr) {
7126 bld.pseudo(aco_opcode::p_as_uniform, dst, src);
7127 } else if (src.regClass() == s1) {
7128 bld.sop1(aco_opcode::s_mov_b32, dst, src);
7129 } else if (src.regClass() == s2) {
7130 bld.sop1(aco_opcode::s_mov_b64, dst, src);
7131 } else {
7132 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7133 nir_print_instr(&instr->instr, stderr);
7134 fprintf(stderr, "\n");
7135 }
7136 }
7137
7138 void emit_interp_center(isel_context *ctx, Temp dst, Temp pos1, Temp pos2)
7139 {
7140 Builder bld(ctx->program, ctx->block);
7141 Temp persp_center = get_arg(ctx, ctx->args->ac.persp_center);
7142 Temp p1 = emit_extract_vector(ctx, persp_center, 0, v1);
7143 Temp p2 = emit_extract_vector(ctx, persp_center, 1, v1);
7144
7145 Temp ddx_1, ddx_2, ddy_1, ddy_2;
7146 uint32_t dpp_ctrl0 = dpp_quad_perm(0, 0, 0, 0);
7147 uint32_t dpp_ctrl1 = dpp_quad_perm(1, 1, 1, 1);
7148 uint32_t dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
7149
7150 /* Build DD X/Y */
7151 if (ctx->program->chip_class >= GFX8) {
7152 Temp tl_1 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p1, dpp_ctrl0);
7153 ddx_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl1);
7154 ddy_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl2);
7155 Temp tl_2 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p2, dpp_ctrl0);
7156 ddx_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl1);
7157 ddy_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl2);
7158 } else {
7159 Temp tl_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl0);
7160 ddx_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl1);
7161 ddx_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_1, tl_1);
7162 ddx_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl2);
7163 ddx_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_2, tl_1);
7164 Temp tl_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl0);
7165 ddy_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl1);
7166 ddy_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_1, tl_2);
7167 ddy_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl2);
7168 ddy_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_2, tl_2);
7169 }
7170
7171 /* res_k = p_k + ddx_k * pos1 + ddy_k * pos2 */
7172 Temp tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_1, pos1, p1);
7173 Temp tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_2, pos1, p2);
7174 tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_1, pos2, tmp1);
7175 tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_2, pos2, tmp2);
7176 Temp wqm1 = bld.tmp(v1);
7177 emit_wqm(ctx, tmp1, wqm1, true);
7178 Temp wqm2 = bld.tmp(v1);
7179 emit_wqm(ctx, tmp2, wqm2, true);
7180 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), wqm1, wqm2);
7181 return;
7182 }
7183
7184 void visit_intrinsic(isel_context *ctx, nir_intrinsic_instr *instr)
7185 {
7186 Builder bld(ctx->program, ctx->block);
7187 switch(instr->intrinsic) {
7188 case nir_intrinsic_load_barycentric_sample:
7189 case nir_intrinsic_load_barycentric_pixel:
7190 case nir_intrinsic_load_barycentric_centroid: {
7191 glsl_interp_mode mode = (glsl_interp_mode)nir_intrinsic_interp_mode(instr);
7192 Temp bary = Temp(0, s2);
7193 switch (mode) {
7194 case INTERP_MODE_SMOOTH:
7195 case INTERP_MODE_NONE:
7196 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
7197 bary = get_arg(ctx, ctx->args->ac.persp_center);
7198 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
7199 bary = ctx->persp_centroid;
7200 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
7201 bary = get_arg(ctx, ctx->args->ac.persp_sample);
7202 break;
7203 case INTERP_MODE_NOPERSPECTIVE:
7204 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
7205 bary = get_arg(ctx, ctx->args->ac.linear_center);
7206 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
7207 bary = ctx->linear_centroid;
7208 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
7209 bary = get_arg(ctx, ctx->args->ac.linear_sample);
7210 break;
7211 default:
7212 break;
7213 }
7214 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7215 Temp p1 = emit_extract_vector(ctx, bary, 0, v1);
7216 Temp p2 = emit_extract_vector(ctx, bary, 1, v1);
7217 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
7218 Operand(p1), Operand(p2));
7219 emit_split_vector(ctx, dst, 2);
7220 break;
7221 }
7222 case nir_intrinsic_load_barycentric_model: {
7223 Temp model = get_arg(ctx, ctx->args->ac.pull_model);
7224
7225 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7226 Temp p1 = emit_extract_vector(ctx, model, 0, v1);
7227 Temp p2 = emit_extract_vector(ctx, model, 1, v1);
7228 Temp p3 = emit_extract_vector(ctx, model, 2, v1);
7229 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
7230 Operand(p1), Operand(p2), Operand(p3));
7231 emit_split_vector(ctx, dst, 3);
7232 break;
7233 }
7234 case nir_intrinsic_load_barycentric_at_sample: {
7235 uint32_t sample_pos_offset = RING_PS_SAMPLE_POSITIONS * 16;
7236 switch (ctx->options->key.fs.num_samples) {
7237 case 2: sample_pos_offset += 1 << 3; break;
7238 case 4: sample_pos_offset += 3 << 3; break;
7239 case 8: sample_pos_offset += 7 << 3; break;
7240 default: break;
7241 }
7242 Temp sample_pos;
7243 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
7244 nir_const_value* const_addr = nir_src_as_const_value(instr->src[0]);
7245 Temp private_segment_buffer = ctx->program->private_segment_buffer;
7246 if (addr.type() == RegType::sgpr) {
7247 Operand offset;
7248 if (const_addr) {
7249 sample_pos_offset += const_addr->u32 << 3;
7250 offset = Operand(sample_pos_offset);
7251 } else if (ctx->options->chip_class >= GFX9) {
7252 offset = bld.sop2(aco_opcode::s_lshl3_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
7253 } else {
7254 offset = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), addr, Operand(3u));
7255 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
7256 }
7257
7258 Operand off = bld.copy(bld.def(s1), Operand(offset));
7259 sample_pos = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), private_segment_buffer, off);
7260
7261 } else if (ctx->options->chip_class >= GFX9) {
7262 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
7263 sample_pos = bld.global(aco_opcode::global_load_dwordx2, bld.def(v2), addr, private_segment_buffer, sample_pos_offset);
7264 } else if (ctx->options->chip_class >= GFX7) {
7265 /* addr += private_segment_buffer + sample_pos_offset */
7266 Temp tmp0 = bld.tmp(s1);
7267 Temp tmp1 = bld.tmp(s1);
7268 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp0), Definition(tmp1), private_segment_buffer);
7269 Definition scc_tmp = bld.def(s1, scc);
7270 tmp0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), scc_tmp, tmp0, Operand(sample_pos_offset));
7271 tmp1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), tmp1, Operand(0u), bld.scc(scc_tmp.getTemp()));
7272 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
7273 Temp pck0 = bld.tmp(v1);
7274 Temp carry = bld.vadd32(Definition(pck0), tmp0, addr, true).def(1).getTemp();
7275 tmp1 = as_vgpr(ctx, tmp1);
7276 Temp pck1 = bld.vop2_e64(aco_opcode::v_addc_co_u32, bld.def(v1), bld.hint_vcc(bld.def(bld.lm)), tmp1, Operand(0u), carry);
7277 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), pck0, pck1);
7278
7279 /* sample_pos = flat_load_dwordx2 addr */
7280 sample_pos = bld.flat(aco_opcode::flat_load_dwordx2, bld.def(v2), addr, Operand(s1));
7281 } else {
7282 assert(ctx->options->chip_class == GFX6);
7283
7284 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
7285 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
7286 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), private_segment_buffer, Operand(0u), Operand(rsrc_conf));
7287
7288 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
7289 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), addr, Operand(0u));
7290
7291 sample_pos = bld.tmp(v2);
7292
7293 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dwordx2, Format::MUBUF, 3, 1)};
7294 load->definitions[0] = Definition(sample_pos);
7295 load->operands[0] = Operand(rsrc);
7296 load->operands[1] = Operand(addr);
7297 load->operands[2] = Operand(0u);
7298 load->offset = sample_pos_offset;
7299 load->offen = 0;
7300 load->addr64 = true;
7301 load->glc = false;
7302 load->dlc = false;
7303 load->disable_wqm = false;
7304 load->barrier = barrier_none;
7305 load->can_reorder = true;
7306 ctx->block->instructions.emplace_back(std::move(load));
7307 }
7308
7309 /* sample_pos -= 0.5 */
7310 Temp pos1 = bld.tmp(RegClass(sample_pos.type(), 1));
7311 Temp pos2 = bld.tmp(RegClass(sample_pos.type(), 1));
7312 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), sample_pos);
7313 pos1 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos1, Operand(0x3f000000u));
7314 pos2 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos2, Operand(0x3f000000u));
7315
7316 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
7317 break;
7318 }
7319 case nir_intrinsic_load_barycentric_at_offset: {
7320 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
7321 RegClass rc = RegClass(offset.type(), 1);
7322 Temp pos1 = bld.tmp(rc), pos2 = bld.tmp(rc);
7323 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), offset);
7324 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
7325 break;
7326 }
7327 case nir_intrinsic_load_front_face: {
7328 bld.vopc(aco_opcode::v_cmp_lg_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7329 Operand(0u), get_arg(ctx, ctx->args->ac.front_face)).def(0).setHint(vcc);
7330 break;
7331 }
7332 case nir_intrinsic_load_view_index: {
7333 if (ctx->stage & (sw_vs | sw_gs | sw_tcs | sw_tes)) {
7334 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7335 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.view_index)));
7336 break;
7337 }
7338
7339 /* fallthrough */
7340 }
7341 case nir_intrinsic_load_layer_id: {
7342 unsigned idx = nir_intrinsic_base(instr);
7343 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7344 Operand(2u), bld.m0(get_arg(ctx, ctx->args->ac.prim_mask)), idx, 0);
7345 break;
7346 }
7347 case nir_intrinsic_load_frag_coord: {
7348 emit_load_frag_coord(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 4);
7349 break;
7350 }
7351 case nir_intrinsic_load_sample_pos: {
7352 Temp posx = get_arg(ctx, ctx->args->ac.frag_pos[0]);
7353 Temp posy = get_arg(ctx, ctx->args->ac.frag_pos[1]);
7354 bld.pseudo(aco_opcode::p_create_vector, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7355 posx.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posx) : Operand(0u),
7356 posy.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posy) : Operand(0u));
7357 break;
7358 }
7359 case nir_intrinsic_load_tess_coord:
7360 visit_load_tess_coord(ctx, instr);
7361 break;
7362 case nir_intrinsic_load_interpolated_input:
7363 visit_load_interpolated_input(ctx, instr);
7364 break;
7365 case nir_intrinsic_store_output:
7366 visit_store_output(ctx, instr);
7367 break;
7368 case nir_intrinsic_load_input:
7369 case nir_intrinsic_load_input_vertex:
7370 visit_load_input(ctx, instr);
7371 break;
7372 case nir_intrinsic_load_output:
7373 visit_load_output(ctx, instr);
7374 break;
7375 case nir_intrinsic_load_per_vertex_input:
7376 visit_load_per_vertex_input(ctx, instr);
7377 break;
7378 case nir_intrinsic_load_per_vertex_output:
7379 visit_load_per_vertex_output(ctx, instr);
7380 break;
7381 case nir_intrinsic_store_per_vertex_output:
7382 visit_store_per_vertex_output(ctx, instr);
7383 break;
7384 case nir_intrinsic_load_ubo:
7385 visit_load_ubo(ctx, instr);
7386 break;
7387 case nir_intrinsic_load_push_constant:
7388 visit_load_push_constant(ctx, instr);
7389 break;
7390 case nir_intrinsic_load_constant:
7391 visit_load_constant(ctx, instr);
7392 break;
7393 case nir_intrinsic_vulkan_resource_index:
7394 visit_load_resource(ctx, instr);
7395 break;
7396 case nir_intrinsic_discard:
7397 visit_discard(ctx, instr);
7398 break;
7399 case nir_intrinsic_discard_if:
7400 visit_discard_if(ctx, instr);
7401 break;
7402 case nir_intrinsic_load_shared:
7403 visit_load_shared(ctx, instr);
7404 break;
7405 case nir_intrinsic_store_shared:
7406 visit_store_shared(ctx, instr);
7407 break;
7408 case nir_intrinsic_shared_atomic_add:
7409 case nir_intrinsic_shared_atomic_imin:
7410 case nir_intrinsic_shared_atomic_umin:
7411 case nir_intrinsic_shared_atomic_imax:
7412 case nir_intrinsic_shared_atomic_umax:
7413 case nir_intrinsic_shared_atomic_and:
7414 case nir_intrinsic_shared_atomic_or:
7415 case nir_intrinsic_shared_atomic_xor:
7416 case nir_intrinsic_shared_atomic_exchange:
7417 case nir_intrinsic_shared_atomic_comp_swap:
7418 visit_shared_atomic(ctx, instr);
7419 break;
7420 case nir_intrinsic_image_deref_load:
7421 visit_image_load(ctx, instr);
7422 break;
7423 case nir_intrinsic_image_deref_store:
7424 visit_image_store(ctx, instr);
7425 break;
7426 case nir_intrinsic_image_deref_atomic_add:
7427 case nir_intrinsic_image_deref_atomic_umin:
7428 case nir_intrinsic_image_deref_atomic_imin:
7429 case nir_intrinsic_image_deref_atomic_umax:
7430 case nir_intrinsic_image_deref_atomic_imax:
7431 case nir_intrinsic_image_deref_atomic_and:
7432 case nir_intrinsic_image_deref_atomic_or:
7433 case nir_intrinsic_image_deref_atomic_xor:
7434 case nir_intrinsic_image_deref_atomic_exchange:
7435 case nir_intrinsic_image_deref_atomic_comp_swap:
7436 visit_image_atomic(ctx, instr);
7437 break;
7438 case nir_intrinsic_image_deref_size:
7439 visit_image_size(ctx, instr);
7440 break;
7441 case nir_intrinsic_load_ssbo:
7442 visit_load_ssbo(ctx, instr);
7443 break;
7444 case nir_intrinsic_store_ssbo:
7445 visit_store_ssbo(ctx, instr);
7446 break;
7447 case nir_intrinsic_load_global:
7448 visit_load_global(ctx, instr);
7449 break;
7450 case nir_intrinsic_store_global:
7451 visit_store_global(ctx, instr);
7452 break;
7453 case nir_intrinsic_global_atomic_add:
7454 case nir_intrinsic_global_atomic_imin:
7455 case nir_intrinsic_global_atomic_umin:
7456 case nir_intrinsic_global_atomic_imax:
7457 case nir_intrinsic_global_atomic_umax:
7458 case nir_intrinsic_global_atomic_and:
7459 case nir_intrinsic_global_atomic_or:
7460 case nir_intrinsic_global_atomic_xor:
7461 case nir_intrinsic_global_atomic_exchange:
7462 case nir_intrinsic_global_atomic_comp_swap:
7463 visit_global_atomic(ctx, instr);
7464 break;
7465 case nir_intrinsic_ssbo_atomic_add:
7466 case nir_intrinsic_ssbo_atomic_imin:
7467 case nir_intrinsic_ssbo_atomic_umin:
7468 case nir_intrinsic_ssbo_atomic_imax:
7469 case nir_intrinsic_ssbo_atomic_umax:
7470 case nir_intrinsic_ssbo_atomic_and:
7471 case nir_intrinsic_ssbo_atomic_or:
7472 case nir_intrinsic_ssbo_atomic_xor:
7473 case nir_intrinsic_ssbo_atomic_exchange:
7474 case nir_intrinsic_ssbo_atomic_comp_swap:
7475 visit_atomic_ssbo(ctx, instr);
7476 break;
7477 case nir_intrinsic_load_scratch:
7478 visit_load_scratch(ctx, instr);
7479 break;
7480 case nir_intrinsic_store_scratch:
7481 visit_store_scratch(ctx, instr);
7482 break;
7483 case nir_intrinsic_get_buffer_size:
7484 visit_get_buffer_size(ctx, instr);
7485 break;
7486 case nir_intrinsic_control_barrier: {
7487 if (ctx->program->chip_class == GFX6 && ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
7488 /* GFX6 only (thanks to a hw bug workaround):
7489 * The real barrier instruction isn’t needed, because an entire patch
7490 * always fits into a single wave.
7491 */
7492 break;
7493 }
7494
7495 if (ctx->program->workgroup_size > ctx->program->wave_size)
7496 bld.sopp(aco_opcode::s_barrier);
7497
7498 break;
7499 }
7500 case nir_intrinsic_memory_barrier_tcs_patch:
7501 case nir_intrinsic_group_memory_barrier:
7502 case nir_intrinsic_memory_barrier:
7503 case nir_intrinsic_memory_barrier_buffer:
7504 case nir_intrinsic_memory_barrier_image:
7505 case nir_intrinsic_memory_barrier_shared:
7506 emit_memory_barrier(ctx, instr);
7507 break;
7508 case nir_intrinsic_load_num_work_groups: {
7509 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7510 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.num_work_groups)));
7511 emit_split_vector(ctx, dst, 3);
7512 break;
7513 }
7514 case nir_intrinsic_load_local_invocation_id: {
7515 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7516 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.local_invocation_ids)));
7517 emit_split_vector(ctx, dst, 3);
7518 break;
7519 }
7520 case nir_intrinsic_load_work_group_id: {
7521 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7522 struct ac_arg *args = ctx->args->ac.workgroup_ids;
7523 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
7524 args[0].used ? Operand(get_arg(ctx, args[0])) : Operand(0u),
7525 args[1].used ? Operand(get_arg(ctx, args[1])) : Operand(0u),
7526 args[2].used ? Operand(get_arg(ctx, args[2])) : Operand(0u));
7527 emit_split_vector(ctx, dst, 3);
7528 break;
7529 }
7530 case nir_intrinsic_load_local_invocation_index: {
7531 Temp id = emit_mbcnt(ctx, bld.def(v1));
7532
7533 /* The tg_size bits [6:11] contain the subgroup id,
7534 * we need this multiplied by the wave size, and then OR the thread id to it.
7535 */
7536 if (ctx->program->wave_size == 64) {
7537 /* After the s_and the bits are already multiplied by 64 (left shifted by 6) so we can just feed that to v_or */
7538 Temp tg_num = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfc0u),
7539 get_arg(ctx, ctx->args->ac.tg_size));
7540 bld.vop2(aco_opcode::v_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, id);
7541 } else {
7542 /* Extract the bit field and multiply the result by 32 (left shift by 5), then do the OR */
7543 Temp tg_num = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
7544 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
7545 bld.vop3(aco_opcode::v_lshl_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, Operand(0x5u), id);
7546 }
7547 break;
7548 }
7549 case nir_intrinsic_load_subgroup_id: {
7550 if (ctx->stage == compute_cs) {
7551 bld.sop2(aco_opcode::s_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc),
7552 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
7553 } else {
7554 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x0u));
7555 }
7556 break;
7557 }
7558 case nir_intrinsic_load_subgroup_invocation: {
7559 emit_mbcnt(ctx, Definition(get_ssa_temp(ctx, &instr->dest.ssa)));
7560 break;
7561 }
7562 case nir_intrinsic_load_num_subgroups: {
7563 if (ctx->stage == compute_cs)
7564 bld.sop2(aco_opcode::s_and_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc), Operand(0x3fu),
7565 get_arg(ctx, ctx->args->ac.tg_size));
7566 else
7567 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x1u));
7568 break;
7569 }
7570 case nir_intrinsic_ballot: {
7571 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7572 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7573 Definition tmp = bld.def(dst.regClass());
7574 Definition lanemask_tmp = dst.size() == bld.lm.size() ? tmp : bld.def(src.regClass());
7575 if (instr->src[0].ssa->bit_size == 1) {
7576 assert(src.regClass() == bld.lm);
7577 bld.sop2(Builder::s_and, lanemask_tmp, bld.def(s1, scc), Operand(exec, bld.lm), src);
7578 } else if (instr->src[0].ssa->bit_size == 32 && src.regClass() == v1) {
7579 bld.vopc(aco_opcode::v_cmp_lg_u32, lanemask_tmp, Operand(0u), src);
7580 } else if (instr->src[0].ssa->bit_size == 64 && src.regClass() == v2) {
7581 bld.vopc(aco_opcode::v_cmp_lg_u64, lanemask_tmp, Operand(0u), src);
7582 } else {
7583 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7584 nir_print_instr(&instr->instr, stderr);
7585 fprintf(stderr, "\n");
7586 }
7587 if (dst.size() != bld.lm.size()) {
7588 /* Wave32 with ballot size set to 64 */
7589 bld.pseudo(aco_opcode::p_create_vector, Definition(tmp), lanemask_tmp.getTemp(), Operand(0u));
7590 }
7591 emit_wqm(ctx, tmp.getTemp(), dst);
7592 break;
7593 }
7594 case nir_intrinsic_shuffle:
7595 case nir_intrinsic_read_invocation: {
7596 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7597 if (!ctx->divergent_vals[instr->src[0].ssa->index]) {
7598 emit_uniform_subgroup(ctx, instr, src);
7599 } else {
7600 Temp tid = get_ssa_temp(ctx, instr->src[1].ssa);
7601 if (instr->intrinsic == nir_intrinsic_read_invocation || !ctx->divergent_vals[instr->src[1].ssa->index])
7602 tid = bld.as_uniform(tid);
7603 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7604 if (src.regClass() == v1) {
7605 emit_wqm(ctx, emit_bpermute(ctx, bld, tid, src), dst);
7606 } else if (src.regClass() == v2) {
7607 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7608 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7609 lo = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, lo));
7610 hi = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, hi));
7611 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7612 emit_split_vector(ctx, dst, 2);
7613 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == s1) {
7614 assert(src.regClass() == bld.lm);
7615 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src, tid);
7616 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7617 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == v1) {
7618 assert(src.regClass() == bld.lm);
7619 Temp tmp;
7620 if (ctx->program->chip_class <= GFX7)
7621 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), src, tid);
7622 else if (ctx->program->wave_size == 64)
7623 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), tid, src);
7624 else
7625 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), tid, src);
7626 tmp = emit_extract_vector(ctx, tmp, 0, v1);
7627 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), tmp);
7628 emit_wqm(ctx, bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp), dst);
7629 } else {
7630 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7631 nir_print_instr(&instr->instr, stderr);
7632 fprintf(stderr, "\n");
7633 }
7634 }
7635 break;
7636 }
7637 case nir_intrinsic_load_sample_id: {
7638 bld.vop3(aco_opcode::v_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7639 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
7640 break;
7641 }
7642 case nir_intrinsic_load_sample_mask_in: {
7643 visit_load_sample_mask_in(ctx, instr);
7644 break;
7645 }
7646 case nir_intrinsic_read_first_invocation: {
7647 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7648 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7649 if (src.regClass() == v1) {
7650 emit_wqm(ctx,
7651 bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), src),
7652 dst);
7653 } else if (src.regClass() == v2) {
7654 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7655 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7656 lo = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), lo));
7657 hi = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), hi));
7658 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7659 emit_split_vector(ctx, dst, 2);
7660 } else if (instr->dest.ssa.bit_size == 1) {
7661 assert(src.regClass() == bld.lm);
7662 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src,
7663 bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)));
7664 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7665 } else if (src.regClass() == s1) {
7666 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
7667 } else if (src.regClass() == s2) {
7668 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
7669 } else {
7670 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7671 nir_print_instr(&instr->instr, stderr);
7672 fprintf(stderr, "\n");
7673 }
7674 break;
7675 }
7676 case nir_intrinsic_vote_all: {
7677 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7678 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7679 assert(src.regClass() == bld.lm);
7680 assert(dst.regClass() == bld.lm);
7681
7682 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
7683 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
7684 bld.sop1(Builder::s_not, Definition(dst), bld.def(s1, scc), cond);
7685 break;
7686 }
7687 case nir_intrinsic_vote_any: {
7688 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7689 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7690 assert(src.regClass() == bld.lm);
7691 assert(dst.regClass() == bld.lm);
7692
7693 Temp tmp = bool_to_scalar_condition(ctx, src);
7694 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7695 break;
7696 }
7697 case nir_intrinsic_reduce:
7698 case nir_intrinsic_inclusive_scan:
7699 case nir_intrinsic_exclusive_scan: {
7700 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7701 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7702 nir_op op = (nir_op) nir_intrinsic_reduction_op(instr);
7703 unsigned cluster_size = instr->intrinsic == nir_intrinsic_reduce ?
7704 nir_intrinsic_cluster_size(instr) : 0;
7705 cluster_size = util_next_power_of_two(MIN2(cluster_size ? cluster_size : ctx->program->wave_size, ctx->program->wave_size));
7706
7707 if (!ctx->divergent_vals[instr->src[0].ssa->index] && (op == nir_op_ior || op == nir_op_iand)) {
7708 emit_uniform_subgroup(ctx, instr, src);
7709 } else if (instr->dest.ssa.bit_size == 1) {
7710 if (op == nir_op_imul || op == nir_op_umin || op == nir_op_imin)
7711 op = nir_op_iand;
7712 else if (op == nir_op_iadd)
7713 op = nir_op_ixor;
7714 else if (op == nir_op_umax || op == nir_op_imax)
7715 op = nir_op_ior;
7716 assert(op == nir_op_iand || op == nir_op_ior || op == nir_op_ixor);
7717
7718 switch (instr->intrinsic) {
7719 case nir_intrinsic_reduce:
7720 emit_wqm(ctx, emit_boolean_reduce(ctx, op, cluster_size, src), dst);
7721 break;
7722 case nir_intrinsic_exclusive_scan:
7723 emit_wqm(ctx, emit_boolean_exclusive_scan(ctx, op, src), dst);
7724 break;
7725 case nir_intrinsic_inclusive_scan:
7726 emit_wqm(ctx, emit_boolean_inclusive_scan(ctx, op, src), dst);
7727 break;
7728 default:
7729 assert(false);
7730 }
7731 } else if (cluster_size == 1) {
7732 bld.copy(Definition(dst), src);
7733 } else {
7734 src = as_vgpr(ctx, src);
7735
7736 ReduceOp reduce_op;
7737 switch (op) {
7738 #define CASE(name) case nir_op_##name: reduce_op = (src.regClass() == v1) ? name##32 : name##64; break;
7739 CASE(iadd)
7740 CASE(imul)
7741 CASE(fadd)
7742 CASE(fmul)
7743 CASE(imin)
7744 CASE(umin)
7745 CASE(fmin)
7746 CASE(imax)
7747 CASE(umax)
7748 CASE(fmax)
7749 CASE(iand)
7750 CASE(ior)
7751 CASE(ixor)
7752 default:
7753 unreachable("unknown reduction op");
7754 #undef CASE
7755 }
7756
7757 aco_opcode aco_op;
7758 switch (instr->intrinsic) {
7759 case nir_intrinsic_reduce: aco_op = aco_opcode::p_reduce; break;
7760 case nir_intrinsic_inclusive_scan: aco_op = aco_opcode::p_inclusive_scan; break;
7761 case nir_intrinsic_exclusive_scan: aco_op = aco_opcode::p_exclusive_scan; break;
7762 default:
7763 unreachable("unknown reduce intrinsic");
7764 }
7765
7766 aco_ptr<Pseudo_reduction_instruction> reduce{create_instruction<Pseudo_reduction_instruction>(aco_op, Format::PSEUDO_REDUCTION, 3, 5)};
7767 reduce->operands[0] = Operand(src);
7768 // filled in by aco_reduce_assign.cpp, used internally as part of the
7769 // reduce sequence
7770 assert(dst.size() == 1 || dst.size() == 2);
7771 reduce->operands[1] = Operand(RegClass(RegType::vgpr, dst.size()).as_linear());
7772 reduce->operands[2] = Operand(v1.as_linear());
7773
7774 Temp tmp_dst = bld.tmp(dst.regClass());
7775 reduce->definitions[0] = Definition(tmp_dst);
7776 reduce->definitions[1] = bld.def(ctx->program->lane_mask); // used internally
7777 reduce->definitions[2] = Definition();
7778 reduce->definitions[3] = Definition(scc, s1);
7779 reduce->definitions[4] = Definition();
7780 reduce->reduce_op = reduce_op;
7781 reduce->cluster_size = cluster_size;
7782 ctx->block->instructions.emplace_back(std::move(reduce));
7783
7784 emit_wqm(ctx, tmp_dst, dst);
7785 }
7786 break;
7787 }
7788 case nir_intrinsic_quad_broadcast: {
7789 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7790 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
7791 emit_uniform_subgroup(ctx, instr, src);
7792 } else {
7793 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7794 unsigned lane = nir_src_as_const_value(instr->src[1])->u32;
7795 uint32_t dpp_ctrl = dpp_quad_perm(lane, lane, lane, lane);
7796
7797 if (instr->dest.ssa.bit_size == 1) {
7798 assert(src.regClass() == bld.lm);
7799 assert(dst.regClass() == bld.lm);
7800 uint32_t half_mask = 0x11111111u << lane;
7801 Temp mask_tmp = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(half_mask), Operand(half_mask));
7802 Temp tmp = bld.tmp(bld.lm);
7803 bld.sop1(Builder::s_wqm, Definition(tmp),
7804 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), mask_tmp,
7805 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm))));
7806 emit_wqm(ctx, tmp, dst);
7807 } else if (instr->dest.ssa.bit_size == 32) {
7808 if (ctx->program->chip_class >= GFX8)
7809 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), dst);
7810 else
7811 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), dst);
7812 } else if (instr->dest.ssa.bit_size == 64) {
7813 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7814 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7815 if (ctx->program->chip_class >= GFX8) {
7816 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
7817 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
7818 } else {
7819 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, (1 << 15) | dpp_ctrl));
7820 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, (1 << 15) | dpp_ctrl));
7821 }
7822 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7823 emit_split_vector(ctx, dst, 2);
7824 } else {
7825 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7826 nir_print_instr(&instr->instr, stderr);
7827 fprintf(stderr, "\n");
7828 }
7829 }
7830 break;
7831 }
7832 case nir_intrinsic_quad_swap_horizontal:
7833 case nir_intrinsic_quad_swap_vertical:
7834 case nir_intrinsic_quad_swap_diagonal:
7835 case nir_intrinsic_quad_swizzle_amd: {
7836 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7837 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
7838 emit_uniform_subgroup(ctx, instr, src);
7839 break;
7840 }
7841 uint16_t dpp_ctrl = 0;
7842 switch (instr->intrinsic) {
7843 case nir_intrinsic_quad_swap_horizontal:
7844 dpp_ctrl = dpp_quad_perm(1, 0, 3, 2);
7845 break;
7846 case nir_intrinsic_quad_swap_vertical:
7847 dpp_ctrl = dpp_quad_perm(2, 3, 0, 1);
7848 break;
7849 case nir_intrinsic_quad_swap_diagonal:
7850 dpp_ctrl = dpp_quad_perm(3, 2, 1, 0);
7851 break;
7852 case nir_intrinsic_quad_swizzle_amd:
7853 dpp_ctrl = nir_intrinsic_swizzle_mask(instr);
7854 break;
7855 default:
7856 break;
7857 }
7858 if (ctx->program->chip_class < GFX8)
7859 dpp_ctrl |= (1 << 15);
7860
7861 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7862 if (instr->dest.ssa.bit_size == 1) {
7863 assert(src.regClass() == bld.lm);
7864 src = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand((uint32_t)-1), src);
7865 if (ctx->program->chip_class >= GFX8)
7866 src = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
7867 else
7868 src = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
7869 Temp tmp = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), src);
7870 emit_wqm(ctx, tmp, dst);
7871 } else if (instr->dest.ssa.bit_size == 32) {
7872 Temp tmp;
7873 if (ctx->program->chip_class >= GFX8)
7874 tmp = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
7875 else
7876 tmp = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
7877 emit_wqm(ctx, tmp, dst);
7878 } else if (instr->dest.ssa.bit_size == 64) {
7879 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7880 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7881 if (ctx->program->chip_class >= GFX8) {
7882 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
7883 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
7884 } else {
7885 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, dpp_ctrl));
7886 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, dpp_ctrl));
7887 }
7888 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7889 emit_split_vector(ctx, dst, 2);
7890 } else {
7891 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7892 nir_print_instr(&instr->instr, stderr);
7893 fprintf(stderr, "\n");
7894 }
7895 break;
7896 }
7897 case nir_intrinsic_masked_swizzle_amd: {
7898 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7899 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
7900 emit_uniform_subgroup(ctx, instr, src);
7901 break;
7902 }
7903 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7904 uint32_t mask = nir_intrinsic_swizzle_mask(instr);
7905 if (dst.regClass() == v1) {
7906 emit_wqm(ctx,
7907 bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, mask, 0, false),
7908 dst);
7909 } else if (dst.regClass() == v2) {
7910 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7911 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7912 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, mask, 0, false));
7913 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, mask, 0, false));
7914 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7915 emit_split_vector(ctx, dst, 2);
7916 } else {
7917 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7918 nir_print_instr(&instr->instr, stderr);
7919 fprintf(stderr, "\n");
7920 }
7921 break;
7922 }
7923 case nir_intrinsic_write_invocation_amd: {
7924 Temp src = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
7925 Temp val = bld.as_uniform(get_ssa_temp(ctx, instr->src[1].ssa));
7926 Temp lane = bld.as_uniform(get_ssa_temp(ctx, instr->src[2].ssa));
7927 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7928 if (dst.regClass() == v1) {
7929 /* src2 is ignored for writelane. RA assigns the same reg for dst */
7930 emit_wqm(ctx, bld.writelane(bld.def(v1), val, lane, src), dst);
7931 } else if (dst.regClass() == v2) {
7932 Temp src_lo = bld.tmp(v1), src_hi = bld.tmp(v1);
7933 Temp val_lo = bld.tmp(s1), val_hi = bld.tmp(s1);
7934 bld.pseudo(aco_opcode::p_split_vector, Definition(src_lo), Definition(src_hi), src);
7935 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
7936 Temp lo = emit_wqm(ctx, bld.writelane(bld.def(v1), val_lo, lane, src_hi));
7937 Temp hi = emit_wqm(ctx, bld.writelane(bld.def(v1), val_hi, lane, src_hi));
7938 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7939 emit_split_vector(ctx, dst, 2);
7940 } else {
7941 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7942 nir_print_instr(&instr->instr, stderr);
7943 fprintf(stderr, "\n");
7944 }
7945 break;
7946 }
7947 case nir_intrinsic_mbcnt_amd: {
7948 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7949 RegClass rc = RegClass(src.type(), 1);
7950 Temp mask_lo = bld.tmp(rc), mask_hi = bld.tmp(rc);
7951 bld.pseudo(aco_opcode::p_split_vector, Definition(mask_lo), Definition(mask_hi), src);
7952 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7953 Temp wqm_tmp = emit_mbcnt(ctx, bld.def(v1), Operand(mask_lo), Operand(mask_hi));
7954 emit_wqm(ctx, wqm_tmp, dst);
7955 break;
7956 }
7957 case nir_intrinsic_load_helper_invocation: {
7958 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7959 bld.pseudo(aco_opcode::p_load_helper, Definition(dst));
7960 ctx->block->kind |= block_kind_needs_lowering;
7961 ctx->program->needs_exact = true;
7962 break;
7963 }
7964 case nir_intrinsic_is_helper_invocation: {
7965 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7966 bld.pseudo(aco_opcode::p_is_helper, Definition(dst));
7967 ctx->block->kind |= block_kind_needs_lowering;
7968 ctx->program->needs_exact = true;
7969 break;
7970 }
7971 case nir_intrinsic_demote:
7972 bld.pseudo(aco_opcode::p_demote_to_helper, Operand(-1u));
7973
7974 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
7975 ctx->cf_info.exec_potentially_empty_discard = true;
7976 ctx->block->kind |= block_kind_uses_demote;
7977 ctx->program->needs_exact = true;
7978 break;
7979 case nir_intrinsic_demote_if: {
7980 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7981 assert(src.regClass() == bld.lm);
7982 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
7983 bld.pseudo(aco_opcode::p_demote_to_helper, cond);
7984
7985 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
7986 ctx->cf_info.exec_potentially_empty_discard = true;
7987 ctx->block->kind |= block_kind_uses_demote;
7988 ctx->program->needs_exact = true;
7989 break;
7990 }
7991 case nir_intrinsic_first_invocation: {
7992 emit_wqm(ctx, bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)),
7993 get_ssa_temp(ctx, &instr->dest.ssa));
7994 break;
7995 }
7996 case nir_intrinsic_shader_clock:
7997 bld.smem(aco_opcode::s_memtime, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), false);
7998 emit_split_vector(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 2);
7999 break;
8000 case nir_intrinsic_load_vertex_id_zero_base: {
8001 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8002 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.vertex_id));
8003 break;
8004 }
8005 case nir_intrinsic_load_first_vertex: {
8006 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8007 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.base_vertex));
8008 break;
8009 }
8010 case nir_intrinsic_load_base_instance: {
8011 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8012 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.start_instance));
8013 break;
8014 }
8015 case nir_intrinsic_load_instance_id: {
8016 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8017 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.instance_id));
8018 break;
8019 }
8020 case nir_intrinsic_load_draw_id: {
8021 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8022 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.draw_id));
8023 break;
8024 }
8025 case nir_intrinsic_load_invocation_id: {
8026 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8027
8028 if (ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
8029 if (ctx->options->chip_class >= GFX10)
8030 bld.vop2_e64(aco_opcode::v_and_b32, Definition(dst), Operand(127u), get_arg(ctx, ctx->args->ac.gs_invocation_id));
8031 else
8032 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_invocation_id));
8033 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
8034 bld.vop3(aco_opcode::v_bfe_u32, Definition(dst),
8035 get_arg(ctx, ctx->args->ac.tcs_rel_ids), Operand(8u), Operand(5u));
8036 } else {
8037 unreachable("Unsupported stage for load_invocation_id");
8038 }
8039
8040 break;
8041 }
8042 case nir_intrinsic_load_primitive_id: {
8043 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8044
8045 switch (ctx->shader->info.stage) {
8046 case MESA_SHADER_GEOMETRY:
8047 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_prim_id));
8048 break;
8049 case MESA_SHADER_TESS_CTRL:
8050 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tcs_patch_id));
8051 break;
8052 case MESA_SHADER_TESS_EVAL:
8053 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tes_patch_id));
8054 break;
8055 default:
8056 unreachable("Unimplemented shader stage for nir_intrinsic_load_primitive_id");
8057 }
8058
8059 break;
8060 }
8061 case nir_intrinsic_load_patch_vertices_in: {
8062 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL ||
8063 ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
8064
8065 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8066 bld.copy(Definition(dst), Operand(ctx->args->options->key.tcs.input_vertices));
8067 break;
8068 }
8069 case nir_intrinsic_emit_vertex_with_counter: {
8070 visit_emit_vertex_with_counter(ctx, instr);
8071 break;
8072 }
8073 case nir_intrinsic_end_primitive_with_counter: {
8074 unsigned stream = nir_intrinsic_stream_id(instr);
8075 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(true, false, stream));
8076 break;
8077 }
8078 case nir_intrinsic_set_vertex_count: {
8079 /* unused, the HW keeps track of this for us */
8080 break;
8081 }
8082 default:
8083 fprintf(stderr, "Unimplemented intrinsic instr: ");
8084 nir_print_instr(&instr->instr, stderr);
8085 fprintf(stderr, "\n");
8086 abort();
8087
8088 break;
8089 }
8090 }
8091
8092
8093 void tex_fetch_ptrs(isel_context *ctx, nir_tex_instr *instr,
8094 Temp *res_ptr, Temp *samp_ptr, Temp *fmask_ptr,
8095 enum glsl_base_type *stype)
8096 {
8097 nir_deref_instr *texture_deref_instr = NULL;
8098 nir_deref_instr *sampler_deref_instr = NULL;
8099 int plane = -1;
8100
8101 for (unsigned i = 0; i < instr->num_srcs; i++) {
8102 switch (instr->src[i].src_type) {
8103 case nir_tex_src_texture_deref:
8104 texture_deref_instr = nir_src_as_deref(instr->src[i].src);
8105 break;
8106 case nir_tex_src_sampler_deref:
8107 sampler_deref_instr = nir_src_as_deref(instr->src[i].src);
8108 break;
8109 case nir_tex_src_plane:
8110 plane = nir_src_as_int(instr->src[i].src);
8111 break;
8112 default:
8113 break;
8114 }
8115 }
8116
8117 *stype = glsl_get_sampler_result_type(texture_deref_instr->type);
8118
8119 if (!sampler_deref_instr)
8120 sampler_deref_instr = texture_deref_instr;
8121
8122 if (plane >= 0) {
8123 assert(instr->op != nir_texop_txf_ms &&
8124 instr->op != nir_texop_samples_identical);
8125 assert(instr->sampler_dim != GLSL_SAMPLER_DIM_BUF);
8126 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, (aco_descriptor_type)(ACO_DESC_PLANE_0 + plane), instr, false, false);
8127 } else if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
8128 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_BUFFER, instr, false, false);
8129 } else if (instr->op == nir_texop_fragment_mask_fetch) {
8130 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
8131 } else {
8132 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_IMAGE, instr, false, false);
8133 }
8134 if (samp_ptr) {
8135 *samp_ptr = get_sampler_desc(ctx, sampler_deref_instr, ACO_DESC_SAMPLER, instr, false, false);
8136
8137 if (instr->sampler_dim < GLSL_SAMPLER_DIM_RECT && ctx->options->chip_class < GFX8) {
8138 /* fix sampler aniso on SI/CI: samp[0] = samp[0] & img[7] */
8139 Builder bld(ctx->program, ctx->block);
8140
8141 /* to avoid unnecessary moves, we split and recombine sampler and image */
8142 Temp img[8] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1),
8143 bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
8144 Temp samp[4] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
8145 bld.pseudo(aco_opcode::p_split_vector, Definition(img[0]), Definition(img[1]),
8146 Definition(img[2]), Definition(img[3]), Definition(img[4]),
8147 Definition(img[5]), Definition(img[6]), Definition(img[7]), *res_ptr);
8148 bld.pseudo(aco_opcode::p_split_vector, Definition(samp[0]), Definition(samp[1]),
8149 Definition(samp[2]), Definition(samp[3]), *samp_ptr);
8150
8151 samp[0] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), samp[0], img[7]);
8152 *res_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
8153 img[0], img[1], img[2], img[3],
8154 img[4], img[5], img[6], img[7]);
8155 *samp_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
8156 samp[0], samp[1], samp[2], samp[3]);
8157 }
8158 }
8159 if (fmask_ptr && (instr->op == nir_texop_txf_ms ||
8160 instr->op == nir_texop_samples_identical))
8161 *fmask_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
8162 }
8163
8164 void build_cube_select(isel_context *ctx, Temp ma, Temp id, Temp deriv,
8165 Temp *out_ma, Temp *out_sc, Temp *out_tc)
8166 {
8167 Builder bld(ctx->program, ctx->block);
8168
8169 Temp deriv_x = emit_extract_vector(ctx, deriv, 0, v1);
8170 Temp deriv_y = emit_extract_vector(ctx, deriv, 1, v1);
8171 Temp deriv_z = emit_extract_vector(ctx, deriv, 2, v1);
8172
8173 Operand neg_one(0xbf800000u);
8174 Operand one(0x3f800000u);
8175 Operand two(0x40000000u);
8176 Operand four(0x40800000u);
8177
8178 Temp is_ma_positive = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), ma);
8179 Temp sgn_ma = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, one, is_ma_positive);
8180 Temp neg_sgn_ma = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0u), sgn_ma);
8181
8182 Temp is_ma_z = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), four, id);
8183 Temp is_ma_y = bld.vopc(aco_opcode::v_cmp_le_f32, bld.def(bld.lm), two, id);
8184 is_ma_y = bld.sop2(Builder::s_andn2, bld.hint_vcc(bld.def(bld.lm)), is_ma_y, is_ma_z);
8185 Temp is_not_ma_x = bld.sop2(aco_opcode::s_or_b64, bld.hint_vcc(bld.def(bld.lm)), bld.def(s1, scc), is_ma_z, is_ma_y);
8186
8187 // select sc
8188 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_z, deriv_x, is_not_ma_x);
8189 Temp sgn = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1),
8190 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_sgn_ma, sgn_ma, is_ma_z),
8191 one, is_ma_y);
8192 *out_sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
8193
8194 // select tc
8195 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_y, deriv_z, is_ma_y);
8196 sgn = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, sgn_ma, is_ma_y);
8197 *out_tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
8198
8199 // select ma
8200 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8201 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_x, deriv_y, is_ma_y),
8202 deriv_z, is_ma_z);
8203 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffffu), tmp);
8204 *out_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), two, tmp);
8205 }
8206
8207 void prepare_cube_coords(isel_context *ctx, std::vector<Temp>& coords, Temp* ddx, Temp* ddy, bool is_deriv, bool is_array)
8208 {
8209 Builder bld(ctx->program, ctx->block);
8210 Temp ma, tc, sc, id;
8211
8212 if (is_array) {
8213 coords[3] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[3]);
8214
8215 // see comment in ac_prepare_cube_coords()
8216 if (ctx->options->chip_class <= GFX8)
8217 coords[3] = bld.vop2(aco_opcode::v_max_f32, bld.def(v1), Operand(0u), coords[3]);
8218 }
8219
8220 ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8221
8222 aco_ptr<VOP3A_instruction> vop3a{create_instruction<VOP3A_instruction>(aco_opcode::v_rcp_f32, asVOP3(Format::VOP1), 1, 1)};
8223 vop3a->operands[0] = Operand(ma);
8224 vop3a->abs[0] = true;
8225 Temp invma = bld.tmp(v1);
8226 vop3a->definitions[0] = Definition(invma);
8227 ctx->block->instructions.emplace_back(std::move(vop3a));
8228
8229 sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8230 if (!is_deriv)
8231 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, invma, Operand(0x3fc00000u/*1.5*/));
8232
8233 tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8234 if (!is_deriv)
8235 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, invma, Operand(0x3fc00000u/*1.5*/));
8236
8237 id = bld.vop3(aco_opcode::v_cubeid_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8238
8239 if (is_deriv) {
8240 sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), sc, invma);
8241 tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tc, invma);
8242
8243 for (unsigned i = 0; i < 2; i++) {
8244 // see comment in ac_prepare_cube_coords()
8245 Temp deriv_ma;
8246 Temp deriv_sc, deriv_tc;
8247 build_cube_select(ctx, ma, id, i ? *ddy : *ddx,
8248 &deriv_ma, &deriv_sc, &deriv_tc);
8249
8250 deriv_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, invma);
8251
8252 Temp x = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
8253 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_sc, invma),
8254 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, sc));
8255 Temp y = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
8256 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_tc, invma),
8257 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, tc));
8258 *(i ? ddy : ddx) = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), x, y);
8259 }
8260
8261 sc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), sc);
8262 tc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), tc);
8263 }
8264
8265 if (is_array)
8266 id = bld.vop2(aco_opcode::v_madmk_f32, bld.def(v1), coords[3], id, Operand(0x41000000u/*8.0*/));
8267 coords.resize(3);
8268 coords[0] = sc;
8269 coords[1] = tc;
8270 coords[2] = id;
8271 }
8272
8273 void get_const_vec(nir_ssa_def *vec, nir_const_value *cv[4])
8274 {
8275 if (vec->parent_instr->type != nir_instr_type_alu)
8276 return;
8277 nir_alu_instr *vec_instr = nir_instr_as_alu(vec->parent_instr);
8278 if (vec_instr->op != nir_op_vec(vec->num_components))
8279 return;
8280
8281 for (unsigned i = 0; i < vec->num_components; i++) {
8282 cv[i] = vec_instr->src[i].swizzle[0] == 0 ?
8283 nir_src_as_const_value(vec_instr->src[i].src) : NULL;
8284 }
8285 }
8286
8287 void visit_tex(isel_context *ctx, nir_tex_instr *instr)
8288 {
8289 Builder bld(ctx->program, ctx->block);
8290 bool has_bias = false, has_lod = false, level_zero = false, has_compare = false,
8291 has_offset = false, has_ddx = false, has_ddy = false, has_derivs = false, has_sample_index = false;
8292 Temp resource, sampler, fmask_ptr, bias = Temp(), compare = Temp(), sample_index = Temp(),
8293 lod = Temp(), offset = Temp(), ddx = Temp(), ddy = Temp();
8294 std::vector<Temp> coords;
8295 std::vector<Temp> derivs;
8296 nir_const_value *sample_index_cv = NULL;
8297 nir_const_value *const_offset[4] = {NULL, NULL, NULL, NULL};
8298 enum glsl_base_type stype;
8299 tex_fetch_ptrs(ctx, instr, &resource, &sampler, &fmask_ptr, &stype);
8300
8301 bool tg4_integer_workarounds = ctx->options->chip_class <= GFX8 && instr->op == nir_texop_tg4 &&
8302 (stype == GLSL_TYPE_UINT || stype == GLSL_TYPE_INT);
8303 bool tg4_integer_cube_workaround = tg4_integer_workarounds &&
8304 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE;
8305
8306 for (unsigned i = 0; i < instr->num_srcs; i++) {
8307 switch (instr->src[i].src_type) {
8308 case nir_tex_src_coord: {
8309 Temp coord = get_ssa_temp(ctx, instr->src[i].src.ssa);
8310 for (unsigned i = 0; i < coord.size(); i++)
8311 coords.emplace_back(emit_extract_vector(ctx, coord, i, v1));
8312 break;
8313 }
8314 case nir_tex_src_bias:
8315 if (instr->op == nir_texop_txb) {
8316 bias = get_ssa_temp(ctx, instr->src[i].src.ssa);
8317 has_bias = true;
8318 }
8319 break;
8320 case nir_tex_src_lod: {
8321 nir_const_value *val = nir_src_as_const_value(instr->src[i].src);
8322
8323 if (val && val->f32 <= 0.0) {
8324 level_zero = true;
8325 } else {
8326 lod = get_ssa_temp(ctx, instr->src[i].src.ssa);
8327 has_lod = true;
8328 }
8329 break;
8330 }
8331 case nir_tex_src_comparator:
8332 if (instr->is_shadow) {
8333 compare = get_ssa_temp(ctx, instr->src[i].src.ssa);
8334 has_compare = true;
8335 }
8336 break;
8337 case nir_tex_src_offset:
8338 offset = get_ssa_temp(ctx, instr->src[i].src.ssa);
8339 get_const_vec(instr->src[i].src.ssa, const_offset);
8340 has_offset = true;
8341 break;
8342 case nir_tex_src_ddx:
8343 ddx = get_ssa_temp(ctx, instr->src[i].src.ssa);
8344 has_ddx = true;
8345 break;
8346 case nir_tex_src_ddy:
8347 ddy = get_ssa_temp(ctx, instr->src[i].src.ssa);
8348 has_ddy = true;
8349 break;
8350 case nir_tex_src_ms_index:
8351 sample_index = get_ssa_temp(ctx, instr->src[i].src.ssa);
8352 sample_index_cv = nir_src_as_const_value(instr->src[i].src);
8353 has_sample_index = true;
8354 break;
8355 case nir_tex_src_texture_offset:
8356 case nir_tex_src_sampler_offset:
8357 default:
8358 break;
8359 }
8360 }
8361
8362 if (instr->op == nir_texop_txs && instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
8363 return get_buffer_size(ctx, resource, get_ssa_temp(ctx, &instr->dest.ssa), true);
8364
8365 if (instr->op == nir_texop_texture_samples) {
8366 Temp dword3 = emit_extract_vector(ctx, resource, 3, s1);
8367
8368 Temp samples_log2 = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(16u | 4u<<16));
8369 Temp samples = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), Operand(1u), samples_log2);
8370 Temp type = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(28u | 4u<<16 /* offset=28, width=4 */));
8371 Temp is_msaa = bld.sopc(aco_opcode::s_cmp_ge_u32, bld.def(s1, scc), type, Operand(14u));
8372
8373 bld.sop2(aco_opcode::s_cselect_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
8374 samples, Operand(1u), bld.scc(is_msaa));
8375 return;
8376 }
8377
8378 if (has_offset && instr->op != nir_texop_txf && instr->op != nir_texop_txf_ms) {
8379 aco_ptr<Instruction> tmp_instr;
8380 Temp acc, pack = Temp();
8381
8382 uint32_t pack_const = 0;
8383 for (unsigned i = 0; i < offset.size(); i++) {
8384 if (!const_offset[i])
8385 continue;
8386 pack_const |= (const_offset[i]->u32 & 0x3Fu) << (8u * i);
8387 }
8388
8389 if (offset.type() == RegType::sgpr) {
8390 for (unsigned i = 0; i < offset.size(); i++) {
8391 if (const_offset[i])
8392 continue;
8393
8394 acc = emit_extract_vector(ctx, offset, i, s1);
8395 acc = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(0x3Fu));
8396
8397 if (i) {
8398 acc = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(8u * i));
8399 }
8400
8401 if (pack == Temp()) {
8402 pack = acc;
8403 } else {
8404 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), pack, acc);
8405 }
8406 }
8407
8408 if (pack_const && pack != Temp())
8409 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(pack_const), pack);
8410 } else {
8411 for (unsigned i = 0; i < offset.size(); i++) {
8412 if (const_offset[i])
8413 continue;
8414
8415 acc = emit_extract_vector(ctx, offset, i, v1);
8416 acc = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x3Fu), acc);
8417
8418 if (i) {
8419 acc = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(8u * i), acc);
8420 }
8421
8422 if (pack == Temp()) {
8423 pack = acc;
8424 } else {
8425 pack = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), pack, acc);
8426 }
8427 }
8428
8429 if (pack_const && pack != Temp())
8430 pack = bld.sop2(aco_opcode::v_or_b32, bld.def(v1), Operand(pack_const), pack);
8431 }
8432 if (pack_const && pack == Temp())
8433 offset = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(pack_const));
8434 else if (pack == Temp())
8435 has_offset = false;
8436 else
8437 offset = pack;
8438 }
8439
8440 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE && instr->coord_components)
8441 prepare_cube_coords(ctx, coords, &ddx, &ddy, instr->op == nir_texop_txd, instr->is_array && instr->op != nir_texop_lod);
8442
8443 /* pack derivatives */
8444 if (has_ddx || has_ddy) {
8445 if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D && ctx->options->chip_class == GFX9) {
8446 assert(has_ddx && has_ddy && ddx.size() == 1 && ddy.size() == 1);
8447 Temp zero = bld.copy(bld.def(v1), Operand(0u));
8448 derivs = {ddy, zero, ddy, zero};
8449 } else {
8450 for (unsigned i = 0; has_ddx && i < ddx.size(); i++)
8451 derivs.emplace_back(emit_extract_vector(ctx, ddx, i, v1));
8452 for (unsigned i = 0; has_ddy && i < ddy.size(); i++)
8453 derivs.emplace_back(emit_extract_vector(ctx, ddy, i, v1));
8454 }
8455 has_derivs = true;
8456 }
8457
8458 if (instr->coord_components > 1 &&
8459 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
8460 instr->is_array &&
8461 instr->op != nir_texop_txf)
8462 coords[1] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[1]);
8463
8464 if (instr->coord_components > 2 &&
8465 (instr->sampler_dim == GLSL_SAMPLER_DIM_2D ||
8466 instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
8467 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS ||
8468 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
8469 instr->is_array &&
8470 instr->op != nir_texop_txf &&
8471 instr->op != nir_texop_txf_ms &&
8472 instr->op != nir_texop_fragment_fetch &&
8473 instr->op != nir_texop_fragment_mask_fetch)
8474 coords[2] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[2]);
8475
8476 if (ctx->options->chip_class == GFX9 &&
8477 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
8478 instr->op != nir_texop_lod && instr->coord_components) {
8479 assert(coords.size() > 0 && coords.size() < 3);
8480
8481 coords.insert(std::next(coords.begin()), bld.copy(bld.def(v1), instr->op == nir_texop_txf ?
8482 Operand((uint32_t) 0) :
8483 Operand((uint32_t) 0x3f000000)));
8484 }
8485
8486 bool da = should_declare_array(ctx, instr->sampler_dim, instr->is_array);
8487
8488 if (instr->op == nir_texop_samples_identical)
8489 resource = fmask_ptr;
8490
8491 else if ((instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
8492 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
8493 instr->op != nir_texop_txs &&
8494 instr->op != nir_texop_fragment_fetch &&
8495 instr->op != nir_texop_fragment_mask_fetch) {
8496 assert(has_sample_index);
8497 Operand op(sample_index);
8498 if (sample_index_cv)
8499 op = Operand(sample_index_cv->u32);
8500 sample_index = adjust_sample_index_using_fmask(ctx, da, coords, op, fmask_ptr);
8501 }
8502
8503 if (has_offset && (instr->op == nir_texop_txf || instr->op == nir_texop_txf_ms)) {
8504 for (unsigned i = 0; i < std::min(offset.size(), instr->coord_components); i++) {
8505 Temp off = emit_extract_vector(ctx, offset, i, v1);
8506 coords[i] = bld.vadd32(bld.def(v1), coords[i], off);
8507 }
8508 has_offset = false;
8509 }
8510
8511 /* Build tex instruction */
8512 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
8513 unsigned dim = ctx->options->chip_class >= GFX10 && instr->sampler_dim != GLSL_SAMPLER_DIM_BUF
8514 ? ac_get_sampler_dim(ctx->options->chip_class, instr->sampler_dim, instr->is_array)
8515 : 0;
8516 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8517 Temp tmp_dst = dst;
8518
8519 /* gather4 selects the component by dmask and always returns vec4 */
8520 if (instr->op == nir_texop_tg4) {
8521 assert(instr->dest.ssa.num_components == 4);
8522 if (instr->is_shadow)
8523 dmask = 1;
8524 else
8525 dmask = 1 << instr->component;
8526 if (tg4_integer_cube_workaround || dst.type() == RegType::sgpr)
8527 tmp_dst = bld.tmp(v4);
8528 } else if (instr->op == nir_texop_samples_identical) {
8529 tmp_dst = bld.tmp(v1);
8530 } else if (util_bitcount(dmask) != instr->dest.ssa.num_components || dst.type() == RegType::sgpr) {
8531 tmp_dst = bld.tmp(RegClass(RegType::vgpr, util_bitcount(dmask)));
8532 }
8533
8534 aco_ptr<MIMG_instruction> tex;
8535 if (instr->op == nir_texop_txs || instr->op == nir_texop_query_levels) {
8536 if (!has_lod)
8537 lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
8538
8539 bool div_by_6 = instr->op == nir_texop_txs &&
8540 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
8541 instr->is_array &&
8542 (dmask & (1 << 2));
8543 if (tmp_dst.id() == dst.id() && div_by_6)
8544 tmp_dst = bld.tmp(tmp_dst.regClass());
8545
8546 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
8547 tex->operands[0] = Operand(resource);
8548 tex->operands[1] = Operand(s4); /* no sampler */
8549 tex->operands[2] = Operand(as_vgpr(ctx,lod));
8550 if (ctx->options->chip_class == GFX9 &&
8551 instr->op == nir_texop_txs &&
8552 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
8553 instr->is_array) {
8554 tex->dmask = (dmask & 0x1) | ((dmask & 0x2) << 1);
8555 } else if (instr->op == nir_texop_query_levels) {
8556 tex->dmask = 1 << 3;
8557 } else {
8558 tex->dmask = dmask;
8559 }
8560 tex->da = da;
8561 tex->definitions[0] = Definition(tmp_dst);
8562 tex->dim = dim;
8563 tex->can_reorder = true;
8564 ctx->block->instructions.emplace_back(std::move(tex));
8565
8566 if (div_by_6) {
8567 /* divide 3rd value by 6 by multiplying with magic number */
8568 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
8569 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
8570 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp_dst, 2, v1), c);
8571 assert(instr->dest.ssa.num_components == 3);
8572 Temp tmp = dst.type() == RegType::vgpr ? dst : bld.tmp(v3);
8573 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
8574 emit_extract_vector(ctx, tmp_dst, 0, v1),
8575 emit_extract_vector(ctx, tmp_dst, 1, v1),
8576 by_6);
8577
8578 }
8579
8580 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
8581 return;
8582 }
8583
8584 Temp tg4_compare_cube_wa64 = Temp();
8585
8586 if (tg4_integer_workarounds) {
8587 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
8588 tex->operands[0] = Operand(resource);
8589 tex->operands[1] = Operand(s4); /* no sampler */
8590 tex->operands[2] = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
8591 tex->dim = dim;
8592 tex->dmask = 0x3;
8593 tex->da = da;
8594 Temp size = bld.tmp(v2);
8595 tex->definitions[0] = Definition(size);
8596 tex->can_reorder = true;
8597 ctx->block->instructions.emplace_back(std::move(tex));
8598 emit_split_vector(ctx, size, size.size());
8599
8600 Temp half_texel[2];
8601 for (unsigned i = 0; i < 2; i++) {
8602 half_texel[i] = emit_extract_vector(ctx, size, i, v1);
8603 half_texel[i] = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), half_texel[i]);
8604 half_texel[i] = bld.vop1(aco_opcode::v_rcp_iflag_f32, bld.def(v1), half_texel[i]);
8605 half_texel[i] = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0xbf000000/*-0.5*/), half_texel[i]);
8606 }
8607
8608 Temp new_coords[2] = {
8609 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[0], half_texel[0]),
8610 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[1], half_texel[1])
8611 };
8612
8613 if (tg4_integer_cube_workaround) {
8614 // see comment in ac_nir_to_llvm.c's lower_gather4_integer()
8615 Temp desc[resource.size()];
8616 aco_ptr<Instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector,
8617 Format::PSEUDO, 1, resource.size())};
8618 split->operands[0] = Operand(resource);
8619 for (unsigned i = 0; i < resource.size(); i++) {
8620 desc[i] = bld.tmp(s1);
8621 split->definitions[i] = Definition(desc[i]);
8622 }
8623 ctx->block->instructions.emplace_back(std::move(split));
8624
8625 Temp dfmt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), desc[1], Operand(20u | (6u << 16)));
8626 Temp compare_cube_wa = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), dfmt,
8627 Operand((uint32_t)V_008F14_IMG_DATA_FORMAT_8_8_8_8));
8628
8629 Temp nfmt;
8630 if (stype == GLSL_TYPE_UINT) {
8631 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
8632 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_USCALED),
8633 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_UINT),
8634 bld.scc(compare_cube_wa));
8635 } else {
8636 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
8637 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SSCALED),
8638 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SINT),
8639 bld.scc(compare_cube_wa));
8640 }
8641 tg4_compare_cube_wa64 = bld.tmp(bld.lm);
8642 bool_to_vector_condition(ctx, compare_cube_wa, tg4_compare_cube_wa64);
8643
8644 nfmt = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), nfmt, Operand(26u));
8645
8646 desc[1] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), desc[1],
8647 Operand((uint32_t)C_008F14_NUM_FORMAT));
8648 desc[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), desc[1], nfmt);
8649
8650 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
8651 Format::PSEUDO, resource.size(), 1)};
8652 for (unsigned i = 0; i < resource.size(); i++)
8653 vec->operands[i] = Operand(desc[i]);
8654 resource = bld.tmp(resource.regClass());
8655 vec->definitions[0] = Definition(resource);
8656 ctx->block->instructions.emplace_back(std::move(vec));
8657
8658 new_coords[0] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8659 new_coords[0], coords[0], tg4_compare_cube_wa64);
8660 new_coords[1] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8661 new_coords[1], coords[1], tg4_compare_cube_wa64);
8662 }
8663 coords[0] = new_coords[0];
8664 coords[1] = new_coords[1];
8665 }
8666
8667 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
8668 //FIXME: if (ctx->abi->gfx9_stride_size_workaround) return ac_build_buffer_load_format_gfx9_safe()
8669
8670 assert(coords.size() == 1);
8671 unsigned last_bit = util_last_bit(nir_ssa_def_components_read(&instr->dest.ssa));
8672 aco_opcode op;
8673 switch (last_bit) {
8674 case 1:
8675 op = aco_opcode::buffer_load_format_x; break;
8676 case 2:
8677 op = aco_opcode::buffer_load_format_xy; break;
8678 case 3:
8679 op = aco_opcode::buffer_load_format_xyz; break;
8680 case 4:
8681 op = aco_opcode::buffer_load_format_xyzw; break;
8682 default:
8683 unreachable("Tex instruction loads more than 4 components.");
8684 }
8685
8686 /* if the instruction return value matches exactly the nir dest ssa, we can use it directly */
8687 if (last_bit == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
8688 tmp_dst = dst;
8689 else
8690 tmp_dst = bld.tmp(RegType::vgpr, last_bit);
8691
8692 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
8693 mubuf->operands[0] = Operand(resource);
8694 mubuf->operands[1] = Operand(coords[0]);
8695 mubuf->operands[2] = Operand((uint32_t) 0);
8696 mubuf->definitions[0] = Definition(tmp_dst);
8697 mubuf->idxen = true;
8698 mubuf->can_reorder = true;
8699 ctx->block->instructions.emplace_back(std::move(mubuf));
8700
8701 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, (1 << last_bit) - 1);
8702 return;
8703 }
8704
8705 /* gather MIMG address components */
8706 std::vector<Temp> args;
8707 if (has_offset)
8708 args.emplace_back(offset);
8709 if (has_bias)
8710 args.emplace_back(bias);
8711 if (has_compare)
8712 args.emplace_back(compare);
8713 if (has_derivs)
8714 args.insert(args.end(), derivs.begin(), derivs.end());
8715
8716 args.insert(args.end(), coords.begin(), coords.end());
8717 if (has_sample_index)
8718 args.emplace_back(sample_index);
8719 if (has_lod)
8720 args.emplace_back(lod);
8721
8722 Temp arg = bld.tmp(RegClass(RegType::vgpr, args.size()));
8723 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, args.size(), 1)};
8724 vec->definitions[0] = Definition(arg);
8725 for (unsigned i = 0; i < args.size(); i++)
8726 vec->operands[i] = Operand(args[i]);
8727 ctx->block->instructions.emplace_back(std::move(vec));
8728
8729
8730 if (instr->op == nir_texop_txf ||
8731 instr->op == nir_texop_txf_ms ||
8732 instr->op == nir_texop_samples_identical ||
8733 instr->op == nir_texop_fragment_fetch ||
8734 instr->op == nir_texop_fragment_mask_fetch) {
8735 aco_opcode op = level_zero || instr->sampler_dim == GLSL_SAMPLER_DIM_MS || instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS ? aco_opcode::image_load : aco_opcode::image_load_mip;
8736 tex.reset(create_instruction<MIMG_instruction>(op, Format::MIMG, 3, 1));
8737 tex->operands[0] = Operand(resource);
8738 tex->operands[1] = Operand(s4); /* no sampler */
8739 tex->operands[2] = Operand(arg);
8740 tex->dim = dim;
8741 tex->dmask = dmask;
8742 tex->unrm = true;
8743 tex->da = da;
8744 tex->definitions[0] = Definition(tmp_dst);
8745 tex->can_reorder = true;
8746 ctx->block->instructions.emplace_back(std::move(tex));
8747
8748 if (instr->op == nir_texop_samples_identical) {
8749 assert(dmask == 1 && dst.regClass() == v1);
8750 assert(dst.id() != tmp_dst.id());
8751
8752 Temp tmp = bld.tmp(bld.lm);
8753 bld.vopc(aco_opcode::v_cmp_eq_u32, Definition(tmp), Operand(0u), tmp_dst).def(0).setHint(vcc);
8754 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand((uint32_t)-1), tmp);
8755
8756 } else {
8757 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
8758 }
8759 return;
8760 }
8761
8762 // TODO: would be better to do this by adding offsets, but needs the opcodes ordered.
8763 aco_opcode opcode = aco_opcode::image_sample;
8764 if (has_offset) { /* image_sample_*_o */
8765 if (has_compare) {
8766 opcode = aco_opcode::image_sample_c_o;
8767 if (has_derivs)
8768 opcode = aco_opcode::image_sample_c_d_o;
8769 if (has_bias)
8770 opcode = aco_opcode::image_sample_c_b_o;
8771 if (level_zero)
8772 opcode = aco_opcode::image_sample_c_lz_o;
8773 if (has_lod)
8774 opcode = aco_opcode::image_sample_c_l_o;
8775 } else {
8776 opcode = aco_opcode::image_sample_o;
8777 if (has_derivs)
8778 opcode = aco_opcode::image_sample_d_o;
8779 if (has_bias)
8780 opcode = aco_opcode::image_sample_b_o;
8781 if (level_zero)
8782 opcode = aco_opcode::image_sample_lz_o;
8783 if (has_lod)
8784 opcode = aco_opcode::image_sample_l_o;
8785 }
8786 } else { /* no offset */
8787 if (has_compare) {
8788 opcode = aco_opcode::image_sample_c;
8789 if (has_derivs)
8790 opcode = aco_opcode::image_sample_c_d;
8791 if (has_bias)
8792 opcode = aco_opcode::image_sample_c_b;
8793 if (level_zero)
8794 opcode = aco_opcode::image_sample_c_lz;
8795 if (has_lod)
8796 opcode = aco_opcode::image_sample_c_l;
8797 } else {
8798 opcode = aco_opcode::image_sample;
8799 if (has_derivs)
8800 opcode = aco_opcode::image_sample_d;
8801 if (has_bias)
8802 opcode = aco_opcode::image_sample_b;
8803 if (level_zero)
8804 opcode = aco_opcode::image_sample_lz;
8805 if (has_lod)
8806 opcode = aco_opcode::image_sample_l;
8807 }
8808 }
8809
8810 if (instr->op == nir_texop_tg4) {
8811 if (has_offset) {
8812 opcode = aco_opcode::image_gather4_lz_o;
8813 if (has_compare)
8814 opcode = aco_opcode::image_gather4_c_lz_o;
8815 } else {
8816 opcode = aco_opcode::image_gather4_lz;
8817 if (has_compare)
8818 opcode = aco_opcode::image_gather4_c_lz;
8819 }
8820 } else if (instr->op == nir_texop_lod) {
8821 opcode = aco_opcode::image_get_lod;
8822 }
8823
8824 /* we don't need the bias, sample index, compare value or offset to be
8825 * computed in WQM but if the p_create_vector copies the coordinates, then it
8826 * needs to be in WQM */
8827 if (ctx->stage == fragment_fs &&
8828 !has_derivs && !has_lod && !level_zero &&
8829 instr->sampler_dim != GLSL_SAMPLER_DIM_MS &&
8830 instr->sampler_dim != GLSL_SAMPLER_DIM_SUBPASS_MS)
8831 arg = emit_wqm(ctx, arg, bld.tmp(arg.regClass()), true);
8832
8833 tex.reset(create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1));
8834 tex->operands[0] = Operand(resource);
8835 tex->operands[1] = Operand(sampler);
8836 tex->operands[2] = Operand(arg);
8837 tex->dim = dim;
8838 tex->dmask = dmask;
8839 tex->da = da;
8840 tex->definitions[0] = Definition(tmp_dst);
8841 tex->can_reorder = true;
8842 ctx->block->instructions.emplace_back(std::move(tex));
8843
8844 if (tg4_integer_cube_workaround) {
8845 assert(tmp_dst.id() != dst.id());
8846 assert(tmp_dst.size() == dst.size() && dst.size() == 4);
8847
8848 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
8849 Temp val[4];
8850 for (unsigned i = 0; i < dst.size(); i++) {
8851 val[i] = emit_extract_vector(ctx, tmp_dst, i, v1);
8852 Temp cvt_val;
8853 if (stype == GLSL_TYPE_UINT)
8854 cvt_val = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), val[i]);
8855 else
8856 cvt_val = bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), val[i]);
8857 val[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), val[i], cvt_val, tg4_compare_cube_wa64);
8858 }
8859 Temp tmp = dst.regClass() == v4 ? dst : bld.tmp(v4);
8860 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
8861 val[0], val[1], val[2], val[3]);
8862 }
8863 unsigned mask = instr->op == nir_texop_tg4 ? 0xF : dmask;
8864 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, mask);
8865
8866 }
8867
8868
8869 Operand get_phi_operand(isel_context *ctx, nir_ssa_def *ssa)
8870 {
8871 Temp tmp = get_ssa_temp(ctx, ssa);
8872 if (ssa->parent_instr->type == nir_instr_type_ssa_undef)
8873 return Operand(tmp.regClass());
8874 else
8875 return Operand(tmp);
8876 }
8877
8878 void visit_phi(isel_context *ctx, nir_phi_instr *instr)
8879 {
8880 aco_ptr<Pseudo_instruction> phi;
8881 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8882 assert(instr->dest.ssa.bit_size != 1 || dst.regClass() == ctx->program->lane_mask);
8883
8884 bool logical = !dst.is_linear() || ctx->divergent_vals[instr->dest.ssa.index];
8885 logical |= ctx->block->kind & block_kind_merge;
8886 aco_opcode opcode = logical ? aco_opcode::p_phi : aco_opcode::p_linear_phi;
8887
8888 /* we want a sorted list of sources, since the predecessor list is also sorted */
8889 std::map<unsigned, nir_ssa_def*> phi_src;
8890 nir_foreach_phi_src(src, instr)
8891 phi_src[src->pred->index] = src->src.ssa;
8892
8893 std::vector<unsigned>& preds = logical ? ctx->block->logical_preds : ctx->block->linear_preds;
8894 unsigned num_operands = 0;
8895 Operand operands[std::max(exec_list_length(&instr->srcs), (unsigned)preds.size()) + 1];
8896 unsigned num_defined = 0;
8897 unsigned cur_pred_idx = 0;
8898 for (std::pair<unsigned, nir_ssa_def *> src : phi_src) {
8899 if (cur_pred_idx < preds.size()) {
8900 /* handle missing preds (IF merges with discard/break) and extra preds (loop exit with discard) */
8901 unsigned block = ctx->cf_info.nir_to_aco[src.first];
8902 unsigned skipped = 0;
8903 while (cur_pred_idx + skipped < preds.size() && preds[cur_pred_idx + skipped] != block)
8904 skipped++;
8905 if (cur_pred_idx + skipped < preds.size()) {
8906 for (unsigned i = 0; i < skipped; i++)
8907 operands[num_operands++] = Operand(dst.regClass());
8908 cur_pred_idx += skipped;
8909 } else {
8910 continue;
8911 }
8912 }
8913 /* Handle missing predecessors at the end. This shouldn't happen with loop
8914 * headers and we can't ignore these sources for loop header phis. */
8915 if (!(ctx->block->kind & block_kind_loop_header) && cur_pred_idx >= preds.size())
8916 continue;
8917 cur_pred_idx++;
8918 Operand op = get_phi_operand(ctx, src.second);
8919 operands[num_operands++] = op;
8920 num_defined += !op.isUndefined();
8921 }
8922 /* handle block_kind_continue_or_break at loop exit blocks */
8923 while (cur_pred_idx++ < preds.size())
8924 operands[num_operands++] = Operand(dst.regClass());
8925
8926 /* If the loop ends with a break, still add a linear continue edge in case
8927 * that break is divergent or continue_or_break is used. We'll either remove
8928 * this operand later in visit_loop() if it's not necessary or replace the
8929 * undef with something correct. */
8930 if (!logical && ctx->block->kind & block_kind_loop_header) {
8931 nir_loop *loop = nir_cf_node_as_loop(instr->instr.block->cf_node.parent);
8932 nir_block *last = nir_loop_last_block(loop);
8933 if (last->successors[0] != instr->instr.block)
8934 operands[num_operands++] = Operand(RegClass());
8935 }
8936
8937 if (num_defined == 0) {
8938 Builder bld(ctx->program, ctx->block);
8939 if (dst.regClass() == s1) {
8940 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), Operand(0u));
8941 } else if (dst.regClass() == v1) {
8942 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), Operand(0u));
8943 } else {
8944 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
8945 for (unsigned i = 0; i < dst.size(); i++)
8946 vec->operands[i] = Operand(0u);
8947 vec->definitions[0] = Definition(dst);
8948 ctx->block->instructions.emplace_back(std::move(vec));
8949 }
8950 return;
8951 }
8952
8953 /* we can use a linear phi in some cases if one src is undef */
8954 if (dst.is_linear() && ctx->block->kind & block_kind_merge && num_defined == 1) {
8955 phi.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, num_operands, 1));
8956
8957 Block *linear_else = &ctx->program->blocks[ctx->block->linear_preds[1]];
8958 Block *invert = &ctx->program->blocks[linear_else->linear_preds[0]];
8959 assert(invert->kind & block_kind_invert);
8960
8961 unsigned then_block = invert->linear_preds[0];
8962
8963 Block* insert_block = NULL;
8964 for (unsigned i = 0; i < num_operands; i++) {
8965 Operand op = operands[i];
8966 if (op.isUndefined())
8967 continue;
8968 insert_block = ctx->block->logical_preds[i] == then_block ? invert : ctx->block;
8969 phi->operands[0] = op;
8970 break;
8971 }
8972 assert(insert_block); /* should be handled by the "num_defined == 0" case above */
8973 phi->operands[1] = Operand(dst.regClass());
8974 phi->definitions[0] = Definition(dst);
8975 insert_block->instructions.emplace(insert_block->instructions.begin(), std::move(phi));
8976 return;
8977 }
8978
8979 /* try to scalarize vector phis */
8980 if (instr->dest.ssa.bit_size != 1 && dst.size() > 1) {
8981 // TODO: scalarize linear phis on divergent ifs
8982 bool can_scalarize = (opcode == aco_opcode::p_phi || !(ctx->block->kind & block_kind_merge));
8983 std::array<Temp, NIR_MAX_VEC_COMPONENTS> new_vec;
8984 for (unsigned i = 0; can_scalarize && (i < num_operands); i++) {
8985 Operand src = operands[i];
8986 if (src.isTemp() && ctx->allocated_vec.find(src.tempId()) == ctx->allocated_vec.end())
8987 can_scalarize = false;
8988 }
8989 if (can_scalarize) {
8990 unsigned num_components = instr->dest.ssa.num_components;
8991 assert(dst.size() % num_components == 0);
8992 RegClass rc = RegClass(dst.type(), dst.size() / num_components);
8993
8994 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
8995 for (unsigned k = 0; k < num_components; k++) {
8996 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
8997 for (unsigned i = 0; i < num_operands; i++) {
8998 Operand src = operands[i];
8999 phi->operands[i] = src.isTemp() ? Operand(ctx->allocated_vec[src.tempId()][k]) : Operand(rc);
9000 }
9001 Temp phi_dst = {ctx->program->allocateId(), rc};
9002 phi->definitions[0] = Definition(phi_dst);
9003 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
9004 new_vec[k] = phi_dst;
9005 vec->operands[k] = Operand(phi_dst);
9006 }
9007 vec->definitions[0] = Definition(dst);
9008 ctx->block->instructions.emplace_back(std::move(vec));
9009 ctx->allocated_vec.emplace(dst.id(), new_vec);
9010 return;
9011 }
9012 }
9013
9014 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
9015 for (unsigned i = 0; i < num_operands; i++)
9016 phi->operands[i] = operands[i];
9017 phi->definitions[0] = Definition(dst);
9018 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
9019 }
9020
9021
9022 void visit_undef(isel_context *ctx, nir_ssa_undef_instr *instr)
9023 {
9024 Temp dst = get_ssa_temp(ctx, &instr->def);
9025
9026 assert(dst.type() == RegType::sgpr);
9027
9028 if (dst.size() == 1) {
9029 Builder(ctx->program, ctx->block).copy(Definition(dst), Operand(0u));
9030 } else {
9031 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
9032 for (unsigned i = 0; i < dst.size(); i++)
9033 vec->operands[i] = Operand(0u);
9034 vec->definitions[0] = Definition(dst);
9035 ctx->block->instructions.emplace_back(std::move(vec));
9036 }
9037 }
9038
9039 void visit_jump(isel_context *ctx, nir_jump_instr *instr)
9040 {
9041 Builder bld(ctx->program, ctx->block);
9042 Block *logical_target;
9043 append_logical_end(ctx->block);
9044 unsigned idx = ctx->block->index;
9045
9046 switch (instr->type) {
9047 case nir_jump_break:
9048 logical_target = ctx->cf_info.parent_loop.exit;
9049 add_logical_edge(idx, logical_target);
9050 ctx->block->kind |= block_kind_break;
9051
9052 if (!ctx->cf_info.parent_if.is_divergent &&
9053 !ctx->cf_info.parent_loop.has_divergent_continue) {
9054 /* uniform break - directly jump out of the loop */
9055 ctx->block->kind |= block_kind_uniform;
9056 ctx->cf_info.has_branch = true;
9057 bld.branch(aco_opcode::p_branch);
9058 add_linear_edge(idx, logical_target);
9059 return;
9060 }
9061 ctx->cf_info.parent_loop.has_divergent_branch = true;
9062 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
9063 break;
9064 case nir_jump_continue:
9065 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
9066 add_logical_edge(idx, logical_target);
9067 ctx->block->kind |= block_kind_continue;
9068
9069 if (ctx->cf_info.parent_if.is_divergent) {
9070 /* for potential uniform breaks after this continue,
9071 we must ensure that they are handled correctly */
9072 ctx->cf_info.parent_loop.has_divergent_continue = true;
9073 ctx->cf_info.parent_loop.has_divergent_branch = true;
9074 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
9075 } else {
9076 /* uniform continue - directly jump to the loop header */
9077 ctx->block->kind |= block_kind_uniform;
9078 ctx->cf_info.has_branch = true;
9079 bld.branch(aco_opcode::p_branch);
9080 add_linear_edge(idx, logical_target);
9081 return;
9082 }
9083 break;
9084 default:
9085 fprintf(stderr, "Unknown NIR jump instr: ");
9086 nir_print_instr(&instr->instr, stderr);
9087 fprintf(stderr, "\n");
9088 abort();
9089 }
9090
9091 if (ctx->cf_info.parent_if.is_divergent && !ctx->cf_info.exec_potentially_empty_break) {
9092 ctx->cf_info.exec_potentially_empty_break = true;
9093 ctx->cf_info.exec_potentially_empty_break_depth = ctx->cf_info.loop_nest_depth;
9094 }
9095
9096 /* remove critical edges from linear CFG */
9097 bld.branch(aco_opcode::p_branch);
9098 Block* break_block = ctx->program->create_and_insert_block();
9099 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9100 break_block->kind |= block_kind_uniform;
9101 add_linear_edge(idx, break_block);
9102 /* the loop_header pointer might be invalidated by this point */
9103 if (instr->type == nir_jump_continue)
9104 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
9105 add_linear_edge(break_block->index, logical_target);
9106 bld.reset(break_block);
9107 bld.branch(aco_opcode::p_branch);
9108
9109 Block* continue_block = ctx->program->create_and_insert_block();
9110 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9111 add_linear_edge(idx, continue_block);
9112 append_logical_start(continue_block);
9113 ctx->block = continue_block;
9114 return;
9115 }
9116
9117 void visit_block(isel_context *ctx, nir_block *block)
9118 {
9119 nir_foreach_instr(instr, block) {
9120 switch (instr->type) {
9121 case nir_instr_type_alu:
9122 visit_alu_instr(ctx, nir_instr_as_alu(instr));
9123 break;
9124 case nir_instr_type_load_const:
9125 visit_load_const(ctx, nir_instr_as_load_const(instr));
9126 break;
9127 case nir_instr_type_intrinsic:
9128 visit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
9129 break;
9130 case nir_instr_type_tex:
9131 visit_tex(ctx, nir_instr_as_tex(instr));
9132 break;
9133 case nir_instr_type_phi:
9134 visit_phi(ctx, nir_instr_as_phi(instr));
9135 break;
9136 case nir_instr_type_ssa_undef:
9137 visit_undef(ctx, nir_instr_as_ssa_undef(instr));
9138 break;
9139 case nir_instr_type_deref:
9140 break;
9141 case nir_instr_type_jump:
9142 visit_jump(ctx, nir_instr_as_jump(instr));
9143 break;
9144 default:
9145 fprintf(stderr, "Unknown NIR instr type: ");
9146 nir_print_instr(instr, stderr);
9147 fprintf(stderr, "\n");
9148 //abort();
9149 }
9150 }
9151
9152 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9153 ctx->cf_info.nir_to_aco[block->index] = ctx->block->index;
9154 }
9155
9156
9157
9158 static Operand create_continue_phis(isel_context *ctx, unsigned first, unsigned last,
9159 aco_ptr<Instruction>& header_phi, Operand *vals)
9160 {
9161 vals[0] = Operand(header_phi->definitions[0].getTemp());
9162 RegClass rc = vals[0].regClass();
9163
9164 unsigned loop_nest_depth = ctx->program->blocks[first].loop_nest_depth;
9165
9166 unsigned next_pred = 1;
9167
9168 for (unsigned idx = first + 1; idx <= last; idx++) {
9169 Block& block = ctx->program->blocks[idx];
9170 if (block.loop_nest_depth != loop_nest_depth) {
9171 vals[idx - first] = vals[idx - 1 - first];
9172 continue;
9173 }
9174
9175 if (block.kind & block_kind_continue) {
9176 vals[idx - first] = header_phi->operands[next_pred];
9177 next_pred++;
9178 continue;
9179 }
9180
9181 bool all_same = true;
9182 for (unsigned i = 1; all_same && (i < block.linear_preds.size()); i++)
9183 all_same = vals[block.linear_preds[i] - first] == vals[block.linear_preds[0] - first];
9184
9185 Operand val;
9186 if (all_same) {
9187 val = vals[block.linear_preds[0] - first];
9188 } else {
9189 aco_ptr<Instruction> phi(create_instruction<Pseudo_instruction>(
9190 aco_opcode::p_linear_phi, Format::PSEUDO, block.linear_preds.size(), 1));
9191 for (unsigned i = 0; i < block.linear_preds.size(); i++)
9192 phi->operands[i] = vals[block.linear_preds[i] - first];
9193 val = Operand(Temp(ctx->program->allocateId(), rc));
9194 phi->definitions[0] = Definition(val.getTemp());
9195 block.instructions.emplace(block.instructions.begin(), std::move(phi));
9196 }
9197 vals[idx - first] = val;
9198 }
9199
9200 return vals[last - first];
9201 }
9202
9203 static void visit_loop(isel_context *ctx, nir_loop *loop)
9204 {
9205 //TODO: we might want to wrap the loop around a branch if exec_potentially_empty=true
9206 append_logical_end(ctx->block);
9207 ctx->block->kind |= block_kind_loop_preheader | block_kind_uniform;
9208 Builder bld(ctx->program, ctx->block);
9209 bld.branch(aco_opcode::p_branch);
9210 unsigned loop_preheader_idx = ctx->block->index;
9211
9212 Block loop_exit = Block();
9213 loop_exit.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9214 loop_exit.kind |= (block_kind_loop_exit | (ctx->block->kind & block_kind_top_level));
9215
9216 Block* loop_header = ctx->program->create_and_insert_block();
9217 loop_header->loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
9218 loop_header->kind |= block_kind_loop_header;
9219 add_edge(loop_preheader_idx, loop_header);
9220 ctx->block = loop_header;
9221
9222 /* emit loop body */
9223 unsigned loop_header_idx = loop_header->index;
9224 loop_info_RAII loop_raii(ctx, loop_header_idx, &loop_exit);
9225 append_logical_start(ctx->block);
9226 bool unreachable = visit_cf_list(ctx, &loop->body);
9227
9228 //TODO: what if a loop ends with a unconditional or uniformly branched continue and this branch is never taken?
9229 if (!ctx->cf_info.has_branch) {
9230 append_logical_end(ctx->block);
9231 if (ctx->cf_info.exec_potentially_empty_discard || ctx->cf_info.exec_potentially_empty_break) {
9232 /* Discards can result in code running with an empty exec mask.
9233 * This would result in divergent breaks not ever being taken. As a
9234 * workaround, break the loop when the loop mask is empty instead of
9235 * always continuing. */
9236 ctx->block->kind |= (block_kind_continue_or_break | block_kind_uniform);
9237 unsigned block_idx = ctx->block->index;
9238
9239 /* create helper blocks to avoid critical edges */
9240 Block *break_block = ctx->program->create_and_insert_block();
9241 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9242 break_block->kind = block_kind_uniform;
9243 bld.reset(break_block);
9244 bld.branch(aco_opcode::p_branch);
9245 add_linear_edge(block_idx, break_block);
9246 add_linear_edge(break_block->index, &loop_exit);
9247
9248 Block *continue_block = ctx->program->create_and_insert_block();
9249 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9250 continue_block->kind = block_kind_uniform;
9251 bld.reset(continue_block);
9252 bld.branch(aco_opcode::p_branch);
9253 add_linear_edge(block_idx, continue_block);
9254 add_linear_edge(continue_block->index, &ctx->program->blocks[loop_header_idx]);
9255
9256 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9257 add_logical_edge(block_idx, &ctx->program->blocks[loop_header_idx]);
9258 ctx->block = &ctx->program->blocks[block_idx];
9259 } else {
9260 ctx->block->kind |= (block_kind_continue | block_kind_uniform);
9261 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9262 add_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
9263 else
9264 add_linear_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
9265 }
9266
9267 bld.reset(ctx->block);
9268 bld.branch(aco_opcode::p_branch);
9269 }
9270
9271 /* Fixup phis in loop header from unreachable blocks.
9272 * has_branch/has_divergent_branch also indicates if the loop ends with a
9273 * break/continue instruction, but we don't emit those if unreachable=true */
9274 if (unreachable) {
9275 assert(ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch);
9276 bool linear = ctx->cf_info.has_branch;
9277 bool logical = ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch;
9278 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
9279 if ((logical && instr->opcode == aco_opcode::p_phi) ||
9280 (linear && instr->opcode == aco_opcode::p_linear_phi)) {
9281 /* the last operand should be the one that needs to be removed */
9282 instr->operands.pop_back();
9283 } else if (!is_phi(instr)) {
9284 break;
9285 }
9286 }
9287 }
9288
9289 /* Fixup linear phis in loop header from expecting a continue. Both this fixup
9290 * and the previous one shouldn't both happen at once because a break in the
9291 * merge block would get CSE'd */
9292 if (nir_loop_last_block(loop)->successors[0] != nir_loop_first_block(loop)) {
9293 unsigned num_vals = ctx->cf_info.has_branch ? 1 : (ctx->block->index - loop_header_idx + 1);
9294 Operand vals[num_vals];
9295 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
9296 if (instr->opcode == aco_opcode::p_linear_phi) {
9297 if (ctx->cf_info.has_branch)
9298 instr->operands.pop_back();
9299 else
9300 instr->operands.back() = create_continue_phis(ctx, loop_header_idx, ctx->block->index, instr, vals);
9301 } else if (!is_phi(instr)) {
9302 break;
9303 }
9304 }
9305 }
9306
9307 ctx->cf_info.has_branch = false;
9308
9309 // TODO: if the loop has not a single exit, we must add one °°
9310 /* emit loop successor block */
9311 ctx->block = ctx->program->insert_block(std::move(loop_exit));
9312 append_logical_start(ctx->block);
9313
9314 #if 0
9315 // TODO: check if it is beneficial to not branch on continues
9316 /* trim linear phis in loop header */
9317 for (auto&& instr : loop_entry->instructions) {
9318 if (instr->opcode == aco_opcode::p_linear_phi) {
9319 aco_ptr<Pseudo_instruction> new_phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, loop_entry->linear_predecessors.size(), 1)};
9320 new_phi->definitions[0] = instr->definitions[0];
9321 for (unsigned i = 0; i < new_phi->operands.size(); i++)
9322 new_phi->operands[i] = instr->operands[i];
9323 /* check that the remaining operands are all the same */
9324 for (unsigned i = new_phi->operands.size(); i < instr->operands.size(); i++)
9325 assert(instr->operands[i].tempId() == instr->operands.back().tempId());
9326 instr.swap(new_phi);
9327 } else if (instr->opcode == aco_opcode::p_phi) {
9328 continue;
9329 } else {
9330 break;
9331 }
9332 }
9333 #endif
9334 }
9335
9336 static void begin_divergent_if_then(isel_context *ctx, if_context *ic, Temp cond)
9337 {
9338 ic->cond = cond;
9339
9340 append_logical_end(ctx->block);
9341 ctx->block->kind |= block_kind_branch;
9342
9343 /* branch to linear then block */
9344 assert(cond.regClass() == ctx->program->lane_mask);
9345 aco_ptr<Pseudo_branch_instruction> branch;
9346 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
9347 branch->operands[0] = Operand(cond);
9348 ctx->block->instructions.push_back(std::move(branch));
9349
9350 ic->BB_if_idx = ctx->block->index;
9351 ic->BB_invert = Block();
9352 ic->BB_invert.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9353 /* Invert blocks are intentionally not marked as top level because they
9354 * are not part of the logical cfg. */
9355 ic->BB_invert.kind |= block_kind_invert;
9356 ic->BB_endif = Block();
9357 ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9358 ic->BB_endif.kind |= (block_kind_merge | (ctx->block->kind & block_kind_top_level));
9359
9360 ic->exec_potentially_empty_discard_old = ctx->cf_info.exec_potentially_empty_discard;
9361 ic->exec_potentially_empty_break_old = ctx->cf_info.exec_potentially_empty_break;
9362 ic->exec_potentially_empty_break_depth_old = ctx->cf_info.exec_potentially_empty_break_depth;
9363 ic->divergent_old = ctx->cf_info.parent_if.is_divergent;
9364 ctx->cf_info.parent_if.is_divergent = true;
9365
9366 /* divergent branches use cbranch_execz */
9367 ctx->cf_info.exec_potentially_empty_discard = false;
9368 ctx->cf_info.exec_potentially_empty_break = false;
9369 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9370
9371 /** emit logical then block */
9372 Block* BB_then_logical = ctx->program->create_and_insert_block();
9373 BB_then_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9374 add_edge(ic->BB_if_idx, BB_then_logical);
9375 ctx->block = BB_then_logical;
9376 append_logical_start(BB_then_logical);
9377 }
9378
9379 static void begin_divergent_if_else(isel_context *ctx, if_context *ic)
9380 {
9381 Block *BB_then_logical = ctx->block;
9382 append_logical_end(BB_then_logical);
9383 /* branch from logical then block to invert block */
9384 aco_ptr<Pseudo_branch_instruction> branch;
9385 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9386 BB_then_logical->instructions.emplace_back(std::move(branch));
9387 add_linear_edge(BB_then_logical->index, &ic->BB_invert);
9388 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9389 add_logical_edge(BB_then_logical->index, &ic->BB_endif);
9390 BB_then_logical->kind |= block_kind_uniform;
9391 assert(!ctx->cf_info.has_branch);
9392 ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
9393 ctx->cf_info.parent_loop.has_divergent_branch = false;
9394
9395 /** emit linear then block */
9396 Block* BB_then_linear = ctx->program->create_and_insert_block();
9397 BB_then_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9398 BB_then_linear->kind |= block_kind_uniform;
9399 add_linear_edge(ic->BB_if_idx, BB_then_linear);
9400 /* branch from linear then block to invert block */
9401 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9402 BB_then_linear->instructions.emplace_back(std::move(branch));
9403 add_linear_edge(BB_then_linear->index, &ic->BB_invert);
9404
9405 /** emit invert merge block */
9406 ctx->block = ctx->program->insert_block(std::move(ic->BB_invert));
9407 ic->invert_idx = ctx->block->index;
9408
9409 /* branch to linear else block (skip else) */
9410 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_nz, Format::PSEUDO_BRANCH, 1, 0));
9411 branch->operands[0] = Operand(ic->cond);
9412 ctx->block->instructions.push_back(std::move(branch));
9413
9414 ic->exec_potentially_empty_discard_old |= ctx->cf_info.exec_potentially_empty_discard;
9415 ic->exec_potentially_empty_break_old |= ctx->cf_info.exec_potentially_empty_break;
9416 ic->exec_potentially_empty_break_depth_old =
9417 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
9418 /* divergent branches use cbranch_execz */
9419 ctx->cf_info.exec_potentially_empty_discard = false;
9420 ctx->cf_info.exec_potentially_empty_break = false;
9421 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9422
9423 /** emit logical else block */
9424 Block* BB_else_logical = ctx->program->create_and_insert_block();
9425 BB_else_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9426 add_logical_edge(ic->BB_if_idx, BB_else_logical);
9427 add_linear_edge(ic->invert_idx, BB_else_logical);
9428 ctx->block = BB_else_logical;
9429 append_logical_start(BB_else_logical);
9430 }
9431
9432 static void end_divergent_if(isel_context *ctx, if_context *ic)
9433 {
9434 Block *BB_else_logical = ctx->block;
9435 append_logical_end(BB_else_logical);
9436
9437 /* branch from logical else block to endif block */
9438 aco_ptr<Pseudo_branch_instruction> branch;
9439 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9440 BB_else_logical->instructions.emplace_back(std::move(branch));
9441 add_linear_edge(BB_else_logical->index, &ic->BB_endif);
9442 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9443 add_logical_edge(BB_else_logical->index, &ic->BB_endif);
9444 BB_else_logical->kind |= block_kind_uniform;
9445
9446 assert(!ctx->cf_info.has_branch);
9447 ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
9448
9449
9450 /** emit linear else block */
9451 Block* BB_else_linear = ctx->program->create_and_insert_block();
9452 BB_else_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9453 BB_else_linear->kind |= block_kind_uniform;
9454 add_linear_edge(ic->invert_idx, BB_else_linear);
9455
9456 /* branch from linear else block to endif block */
9457 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9458 BB_else_linear->instructions.emplace_back(std::move(branch));
9459 add_linear_edge(BB_else_linear->index, &ic->BB_endif);
9460
9461
9462 /** emit endif merge block */
9463 ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
9464 append_logical_start(ctx->block);
9465
9466
9467 ctx->cf_info.parent_if.is_divergent = ic->divergent_old;
9468 ctx->cf_info.exec_potentially_empty_discard |= ic->exec_potentially_empty_discard_old;
9469 ctx->cf_info.exec_potentially_empty_break |= ic->exec_potentially_empty_break_old;
9470 ctx->cf_info.exec_potentially_empty_break_depth =
9471 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
9472 if (ctx->cf_info.loop_nest_depth == ctx->cf_info.exec_potentially_empty_break_depth &&
9473 !ctx->cf_info.parent_if.is_divergent) {
9474 ctx->cf_info.exec_potentially_empty_break = false;
9475 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9476 }
9477 /* uniform control flow never has an empty exec-mask */
9478 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent) {
9479 ctx->cf_info.exec_potentially_empty_discard = false;
9480 ctx->cf_info.exec_potentially_empty_break = false;
9481 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9482 }
9483 }
9484
9485 static void begin_uniform_if_then(isel_context *ctx, if_context *ic, Temp cond)
9486 {
9487 assert(cond.regClass() == s1);
9488
9489 append_logical_end(ctx->block);
9490 ctx->block->kind |= block_kind_uniform;
9491
9492 aco_ptr<Pseudo_branch_instruction> branch;
9493 aco_opcode branch_opcode = aco_opcode::p_cbranch_z;
9494 branch.reset(create_instruction<Pseudo_branch_instruction>(branch_opcode, Format::PSEUDO_BRANCH, 1, 0));
9495 branch->operands[0] = Operand(cond);
9496 branch->operands[0].setFixed(scc);
9497 ctx->block->instructions.emplace_back(std::move(branch));
9498
9499 ic->BB_if_idx = ctx->block->index;
9500 ic->BB_endif = Block();
9501 ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9502 ic->BB_endif.kind |= ctx->block->kind & block_kind_top_level;
9503
9504 ctx->cf_info.has_branch = false;
9505 ctx->cf_info.parent_loop.has_divergent_branch = false;
9506
9507 /** emit then block */
9508 Block* BB_then = ctx->program->create_and_insert_block();
9509 BB_then->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9510 add_edge(ic->BB_if_idx, BB_then);
9511 append_logical_start(BB_then);
9512 ctx->block = BB_then;
9513 }
9514
9515 static void begin_uniform_if_else(isel_context *ctx, if_context *ic)
9516 {
9517 Block *BB_then = ctx->block;
9518
9519 ic->uniform_has_then_branch = ctx->cf_info.has_branch;
9520 ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
9521
9522 if (!ic->uniform_has_then_branch) {
9523 append_logical_end(BB_then);
9524 /* branch from then block to endif block */
9525 aco_ptr<Pseudo_branch_instruction> branch;
9526 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9527 BB_then->instructions.emplace_back(std::move(branch));
9528 add_linear_edge(BB_then->index, &ic->BB_endif);
9529 if (!ic->then_branch_divergent)
9530 add_logical_edge(BB_then->index, &ic->BB_endif);
9531 BB_then->kind |= block_kind_uniform;
9532 }
9533
9534 ctx->cf_info.has_branch = false;
9535 ctx->cf_info.parent_loop.has_divergent_branch = false;
9536
9537 /** emit else block */
9538 Block* BB_else = ctx->program->create_and_insert_block();
9539 BB_else->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9540 add_edge(ic->BB_if_idx, BB_else);
9541 append_logical_start(BB_else);
9542 ctx->block = BB_else;
9543 }
9544
9545 static void end_uniform_if(isel_context *ctx, if_context *ic)
9546 {
9547 Block *BB_else = ctx->block;
9548
9549 if (!ctx->cf_info.has_branch) {
9550 append_logical_end(BB_else);
9551 /* branch from then block to endif block */
9552 aco_ptr<Pseudo_branch_instruction> branch;
9553 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9554 BB_else->instructions.emplace_back(std::move(branch));
9555 add_linear_edge(BB_else->index, &ic->BB_endif);
9556 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9557 add_logical_edge(BB_else->index, &ic->BB_endif);
9558 BB_else->kind |= block_kind_uniform;
9559 }
9560
9561 ctx->cf_info.has_branch &= ic->uniform_has_then_branch;
9562 ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
9563
9564 /** emit endif merge block */
9565 if (!ctx->cf_info.has_branch) {
9566 ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
9567 append_logical_start(ctx->block);
9568 }
9569 }
9570
9571 static bool visit_if(isel_context *ctx, nir_if *if_stmt)
9572 {
9573 Temp cond = get_ssa_temp(ctx, if_stmt->condition.ssa);
9574 Builder bld(ctx->program, ctx->block);
9575 aco_ptr<Pseudo_branch_instruction> branch;
9576 if_context ic;
9577
9578 if (!ctx->divergent_vals[if_stmt->condition.ssa->index]) { /* uniform condition */
9579 /**
9580 * Uniform conditionals are represented in the following way*) :
9581 *
9582 * The linear and logical CFG:
9583 * BB_IF
9584 * / \
9585 * BB_THEN (logical) BB_ELSE (logical)
9586 * \ /
9587 * BB_ENDIF
9588 *
9589 * *) Exceptions may be due to break and continue statements within loops
9590 * If a break/continue happens within uniform control flow, it branches
9591 * to the loop exit/entry block. Otherwise, it branches to the next
9592 * merge block.
9593 **/
9594
9595 // TODO: in a post-RA optimizer, we could check if the condition is in VCC and omit this instruction
9596 assert(cond.regClass() == ctx->program->lane_mask);
9597 cond = bool_to_scalar_condition(ctx, cond);
9598
9599 begin_uniform_if_then(ctx, &ic, cond);
9600 visit_cf_list(ctx, &if_stmt->then_list);
9601
9602 begin_uniform_if_else(ctx, &ic);
9603 visit_cf_list(ctx, &if_stmt->else_list);
9604
9605 end_uniform_if(ctx, &ic);
9606
9607 return !ctx->cf_info.has_branch;
9608 } else { /* non-uniform condition */
9609 /**
9610 * To maintain a logical and linear CFG without critical edges,
9611 * non-uniform conditionals are represented in the following way*) :
9612 *
9613 * The linear CFG:
9614 * BB_IF
9615 * / \
9616 * BB_THEN (logical) BB_THEN (linear)
9617 * \ /
9618 * BB_INVERT (linear)
9619 * / \
9620 * BB_ELSE (logical) BB_ELSE (linear)
9621 * \ /
9622 * BB_ENDIF
9623 *
9624 * The logical CFG:
9625 * BB_IF
9626 * / \
9627 * BB_THEN (logical) BB_ELSE (logical)
9628 * \ /
9629 * BB_ENDIF
9630 *
9631 * *) Exceptions may be due to break and continue statements within loops
9632 **/
9633
9634 begin_divergent_if_then(ctx, &ic, cond);
9635 visit_cf_list(ctx, &if_stmt->then_list);
9636
9637 begin_divergent_if_else(ctx, &ic);
9638 visit_cf_list(ctx, &if_stmt->else_list);
9639
9640 end_divergent_if(ctx, &ic);
9641
9642 return true;
9643 }
9644 }
9645
9646 static bool visit_cf_list(isel_context *ctx,
9647 struct exec_list *list)
9648 {
9649 foreach_list_typed(nir_cf_node, node, node, list) {
9650 switch (node->type) {
9651 case nir_cf_node_block:
9652 visit_block(ctx, nir_cf_node_as_block(node));
9653 break;
9654 case nir_cf_node_if:
9655 if (!visit_if(ctx, nir_cf_node_as_if(node)))
9656 return true;
9657 break;
9658 case nir_cf_node_loop:
9659 visit_loop(ctx, nir_cf_node_as_loop(node));
9660 break;
9661 default:
9662 unreachable("unimplemented cf list type");
9663 }
9664 }
9665 return false;
9666 }
9667
9668 static void create_null_export(isel_context *ctx)
9669 {
9670 /* Some shader stages always need to have exports.
9671 * So when there is none, we need to add a null export.
9672 */
9673
9674 unsigned dest = (ctx->program->stage & hw_fs) ? 9 /* NULL */ : V_008DFC_SQ_EXP_POS;
9675 bool vm = (ctx->program->stage & hw_fs) || ctx->program->chip_class >= GFX10;
9676 Builder bld(ctx->program, ctx->block);
9677 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
9678 /* enabled_mask */ 0, dest, /* compr */ false, /* done */ true, vm);
9679 }
9680
9681 static bool export_vs_varying(isel_context *ctx, int slot, bool is_pos, int *next_pos)
9682 {
9683 assert(ctx->stage == vertex_vs ||
9684 ctx->stage == tess_eval_vs ||
9685 ctx->stage == gs_copy_vs ||
9686 ctx->stage == ngg_vertex_gs ||
9687 ctx->stage == ngg_tess_eval_gs);
9688
9689 int offset = (ctx->stage & sw_tes)
9690 ? ctx->program->info->tes.outinfo.vs_output_param_offset[slot]
9691 : ctx->program->info->vs.outinfo.vs_output_param_offset[slot];
9692 uint64_t mask = ctx->outputs.mask[slot];
9693 if (!is_pos && !mask)
9694 return false;
9695 if (!is_pos && offset == AC_EXP_PARAM_UNDEFINED)
9696 return false;
9697 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
9698 exp->enabled_mask = mask;
9699 for (unsigned i = 0; i < 4; ++i) {
9700 if (mask & (1 << i))
9701 exp->operands[i] = Operand(ctx->outputs.temps[slot * 4u + i]);
9702 else
9703 exp->operands[i] = Operand(v1);
9704 }
9705 /* Navi10-14 skip POS0 exports if EXEC=0 and DONE=0, causing a hang.
9706 * Setting valid_mask=1 prevents it and has no other effect.
9707 */
9708 exp->valid_mask = ctx->options->chip_class >= GFX10 && is_pos && *next_pos == 0;
9709 exp->done = false;
9710 exp->compressed = false;
9711 if (is_pos)
9712 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
9713 else
9714 exp->dest = V_008DFC_SQ_EXP_PARAM + offset;
9715 ctx->block->instructions.emplace_back(std::move(exp));
9716
9717 return true;
9718 }
9719
9720 static void export_vs_psiz_layer_viewport(isel_context *ctx, int *next_pos)
9721 {
9722 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
9723 exp->enabled_mask = 0;
9724 for (unsigned i = 0; i < 4; ++i)
9725 exp->operands[i] = Operand(v1);
9726 if (ctx->outputs.mask[VARYING_SLOT_PSIZ]) {
9727 exp->operands[0] = Operand(ctx->outputs.temps[VARYING_SLOT_PSIZ * 4u]);
9728 exp->enabled_mask |= 0x1;
9729 }
9730 if (ctx->outputs.mask[VARYING_SLOT_LAYER]) {
9731 exp->operands[2] = Operand(ctx->outputs.temps[VARYING_SLOT_LAYER * 4u]);
9732 exp->enabled_mask |= 0x4;
9733 }
9734 if (ctx->outputs.mask[VARYING_SLOT_VIEWPORT]) {
9735 if (ctx->options->chip_class < GFX9) {
9736 exp->operands[3] = Operand(ctx->outputs.temps[VARYING_SLOT_VIEWPORT * 4u]);
9737 exp->enabled_mask |= 0x8;
9738 } else {
9739 Builder bld(ctx->program, ctx->block);
9740
9741 Temp out = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u),
9742 Operand(ctx->outputs.temps[VARYING_SLOT_VIEWPORT * 4u]));
9743 if (exp->operands[2].isTemp())
9744 out = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(out), exp->operands[2]);
9745
9746 exp->operands[2] = Operand(out);
9747 exp->enabled_mask |= 0x4;
9748 }
9749 }
9750 exp->valid_mask = ctx->options->chip_class >= GFX10 && *next_pos == 0;
9751 exp->done = false;
9752 exp->compressed = false;
9753 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
9754 ctx->block->instructions.emplace_back(std::move(exp));
9755 }
9756
9757 static void create_export_phis(isel_context *ctx)
9758 {
9759 /* Used when exports are needed, but the output temps are defined in a preceding block.
9760 * This function will set up phis in order to access the outputs in the next block.
9761 */
9762
9763 assert(ctx->block->instructions.back()->opcode == aco_opcode::p_logical_start);
9764 aco_ptr<Instruction> logical_start = aco_ptr<Instruction>(ctx->block->instructions.back().release());
9765 ctx->block->instructions.pop_back();
9766
9767 Builder bld(ctx->program, ctx->block);
9768
9769 for (unsigned slot = 0; slot <= VARYING_SLOT_VAR31; ++slot) {
9770 uint64_t mask = ctx->outputs.mask[slot];
9771 for (unsigned i = 0; i < 4; ++i) {
9772 if (!(mask & (1 << i)))
9773 continue;
9774
9775 Temp old = ctx->outputs.temps[slot * 4 + i];
9776 Temp phi = bld.pseudo(aco_opcode::p_phi, bld.def(v1), old, Operand(v1));
9777 ctx->outputs.temps[slot * 4 + i] = phi;
9778 }
9779 }
9780
9781 bld.insert(std::move(logical_start));
9782 }
9783
9784 static void create_vs_exports(isel_context *ctx)
9785 {
9786 assert(ctx->stage == vertex_vs ||
9787 ctx->stage == tess_eval_vs ||
9788 ctx->stage == gs_copy_vs ||
9789 ctx->stage == ngg_vertex_gs ||
9790 ctx->stage == ngg_tess_eval_gs);
9791
9792 radv_vs_output_info *outinfo = (ctx->stage & sw_tes)
9793 ? &ctx->program->info->tes.outinfo
9794 : &ctx->program->info->vs.outinfo;
9795
9796 if (outinfo->export_prim_id && !(ctx->stage & hw_ngg_gs)) {
9797 ctx->outputs.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
9798 ctx->outputs.temps[VARYING_SLOT_PRIMITIVE_ID * 4u] = get_arg(ctx, ctx->args->vs_prim_id);
9799 }
9800
9801 if (ctx->options->key.has_multiview_view_index) {
9802 ctx->outputs.mask[VARYING_SLOT_LAYER] |= 0x1;
9803 ctx->outputs.temps[VARYING_SLOT_LAYER * 4u] = as_vgpr(ctx, get_arg(ctx, ctx->args->ac.view_index));
9804 }
9805
9806 /* the order these position exports are created is important */
9807 int next_pos = 0;
9808 bool exported_pos = export_vs_varying(ctx, VARYING_SLOT_POS, true, &next_pos);
9809 if (outinfo->writes_pointsize || outinfo->writes_layer || outinfo->writes_viewport_index) {
9810 export_vs_psiz_layer_viewport(ctx, &next_pos);
9811 exported_pos = true;
9812 }
9813 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
9814 exported_pos |= export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, true, &next_pos);
9815 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
9816 exported_pos |= export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, true, &next_pos);
9817
9818 if (ctx->export_clip_dists) {
9819 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
9820 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, false, &next_pos);
9821 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
9822 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, false, &next_pos);
9823 }
9824
9825 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
9826 if (i < VARYING_SLOT_VAR0 &&
9827 i != VARYING_SLOT_LAYER &&
9828 i != VARYING_SLOT_PRIMITIVE_ID)
9829 continue;
9830
9831 export_vs_varying(ctx, i, false, NULL);
9832 }
9833
9834 if (!exported_pos)
9835 create_null_export(ctx);
9836 }
9837
9838 static bool export_fs_mrt_z(isel_context *ctx)
9839 {
9840 Builder bld(ctx->program, ctx->block);
9841 unsigned enabled_channels = 0;
9842 bool compr = false;
9843 Operand values[4];
9844
9845 for (unsigned i = 0; i < 4; ++i) {
9846 values[i] = Operand(v1);
9847 }
9848
9849 /* Both stencil and sample mask only need 16-bits. */
9850 if (!ctx->program->info->ps.writes_z &&
9851 (ctx->program->info->ps.writes_stencil ||
9852 ctx->program->info->ps.writes_sample_mask)) {
9853 compr = true; /* COMPR flag */
9854
9855 if (ctx->program->info->ps.writes_stencil) {
9856 /* Stencil should be in X[23:16]. */
9857 values[0] = Operand(ctx->outputs.temps[FRAG_RESULT_STENCIL * 4u]);
9858 values[0] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u), values[0]);
9859 enabled_channels |= 0x3;
9860 }
9861
9862 if (ctx->program->info->ps.writes_sample_mask) {
9863 /* SampleMask should be in Y[15:0]. */
9864 values[1] = Operand(ctx->outputs.temps[FRAG_RESULT_SAMPLE_MASK * 4u]);
9865 enabled_channels |= 0xc;
9866 }
9867 } else {
9868 if (ctx->program->info->ps.writes_z) {
9869 values[0] = Operand(ctx->outputs.temps[FRAG_RESULT_DEPTH * 4u]);
9870 enabled_channels |= 0x1;
9871 }
9872
9873 if (ctx->program->info->ps.writes_stencil) {
9874 values[1] = Operand(ctx->outputs.temps[FRAG_RESULT_STENCIL * 4u]);
9875 enabled_channels |= 0x2;
9876 }
9877
9878 if (ctx->program->info->ps.writes_sample_mask) {
9879 values[2] = Operand(ctx->outputs.temps[FRAG_RESULT_SAMPLE_MASK * 4u]);
9880 enabled_channels |= 0x4;
9881 }
9882 }
9883
9884 /* GFX6 (except OLAND and HAINAN) has a bug that it only looks at the X
9885 * writemask component.
9886 */
9887 if (ctx->options->chip_class == GFX6 &&
9888 ctx->options->family != CHIP_OLAND &&
9889 ctx->options->family != CHIP_HAINAN) {
9890 enabled_channels |= 0x1;
9891 }
9892
9893 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
9894 enabled_channels, V_008DFC_SQ_EXP_MRTZ, compr);
9895
9896 return true;
9897 }
9898
9899 static bool export_fs_mrt_color(isel_context *ctx, int slot)
9900 {
9901 Builder bld(ctx->program, ctx->block);
9902 unsigned write_mask = ctx->outputs.mask[slot];
9903 Operand values[4];
9904
9905 for (unsigned i = 0; i < 4; ++i) {
9906 if (write_mask & (1 << i)) {
9907 values[i] = Operand(ctx->outputs.temps[slot * 4u + i]);
9908 } else {
9909 values[i] = Operand(v1);
9910 }
9911 }
9912
9913 unsigned target, col_format;
9914 unsigned enabled_channels = 0;
9915 aco_opcode compr_op = (aco_opcode)0;
9916
9917 slot -= FRAG_RESULT_DATA0;
9918 target = V_008DFC_SQ_EXP_MRT + slot;
9919 col_format = (ctx->options->key.fs.col_format >> (4 * slot)) & 0xf;
9920
9921 bool is_int8 = (ctx->options->key.fs.is_int8 >> slot) & 1;
9922 bool is_int10 = (ctx->options->key.fs.is_int10 >> slot) & 1;
9923
9924 switch (col_format)
9925 {
9926 case V_028714_SPI_SHADER_ZERO:
9927 enabled_channels = 0; /* writemask */
9928 target = V_008DFC_SQ_EXP_NULL;
9929 break;
9930
9931 case V_028714_SPI_SHADER_32_R:
9932 enabled_channels = 1;
9933 break;
9934
9935 case V_028714_SPI_SHADER_32_GR:
9936 enabled_channels = 0x3;
9937 break;
9938
9939 case V_028714_SPI_SHADER_32_AR:
9940 if (ctx->options->chip_class >= GFX10) {
9941 /* Special case: on GFX10, the outputs are different for 32_AR */
9942 enabled_channels = 0x3;
9943 values[1] = values[3];
9944 values[3] = Operand(v1);
9945 } else {
9946 enabled_channels = 0x9;
9947 }
9948 break;
9949
9950 case V_028714_SPI_SHADER_FP16_ABGR:
9951 enabled_channels = 0x5;
9952 compr_op = aco_opcode::v_cvt_pkrtz_f16_f32;
9953 break;
9954
9955 case V_028714_SPI_SHADER_UNORM16_ABGR:
9956 enabled_channels = 0x5;
9957 compr_op = aco_opcode::v_cvt_pknorm_u16_f32;
9958 break;
9959
9960 case V_028714_SPI_SHADER_SNORM16_ABGR:
9961 enabled_channels = 0x5;
9962 compr_op = aco_opcode::v_cvt_pknorm_i16_f32;
9963 break;
9964
9965 case V_028714_SPI_SHADER_UINT16_ABGR: {
9966 enabled_channels = 0x5;
9967 compr_op = aco_opcode::v_cvt_pk_u16_u32;
9968 if (is_int8 || is_int10) {
9969 /* clamp */
9970 uint32_t max_rgb = is_int8 ? 255 : is_int10 ? 1023 : 0;
9971 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
9972
9973 for (unsigned i = 0; i < 4; i++) {
9974 if ((write_mask >> i) & 1) {
9975 values[i] = bld.vop2(aco_opcode::v_min_u32, bld.def(v1),
9976 i == 3 && is_int10 ? Operand(3u) : Operand(max_rgb_val),
9977 values[i]);
9978 }
9979 }
9980 }
9981 break;
9982 }
9983
9984 case V_028714_SPI_SHADER_SINT16_ABGR:
9985 enabled_channels = 0x5;
9986 compr_op = aco_opcode::v_cvt_pk_i16_i32;
9987 if (is_int8 || is_int10) {
9988 /* clamp */
9989 uint32_t max_rgb = is_int8 ? 127 : is_int10 ? 511 : 0;
9990 uint32_t min_rgb = is_int8 ? -128 :is_int10 ? -512 : 0;
9991 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
9992 Temp min_rgb_val = bld.copy(bld.def(s1), Operand(min_rgb));
9993
9994 for (unsigned i = 0; i < 4; i++) {
9995 if ((write_mask >> i) & 1) {
9996 values[i] = bld.vop2(aco_opcode::v_min_i32, bld.def(v1),
9997 i == 3 && is_int10 ? Operand(1u) : Operand(max_rgb_val),
9998 values[i]);
9999 values[i] = bld.vop2(aco_opcode::v_max_i32, bld.def(v1),
10000 i == 3 && is_int10 ? Operand(-2u) : Operand(min_rgb_val),
10001 values[i]);
10002 }
10003 }
10004 }
10005 break;
10006
10007 case V_028714_SPI_SHADER_32_ABGR:
10008 enabled_channels = 0xF;
10009 break;
10010
10011 default:
10012 break;
10013 }
10014
10015 if (target == V_008DFC_SQ_EXP_NULL)
10016 return false;
10017
10018 if ((bool) compr_op) {
10019 for (int i = 0; i < 2; i++) {
10020 /* check if at least one of the values to be compressed is enabled */
10021 unsigned enabled = (write_mask >> (i*2) | write_mask >> (i*2+1)) & 0x1;
10022 if (enabled) {
10023 enabled_channels |= enabled << (i*2);
10024 values[i] = bld.vop3(compr_op, bld.def(v1),
10025 values[i*2].isUndefined() ? Operand(0u) : values[i*2],
10026 values[i*2+1].isUndefined() ? Operand(0u): values[i*2+1]);
10027 } else {
10028 values[i] = Operand(v1);
10029 }
10030 }
10031 values[2] = Operand(v1);
10032 values[3] = Operand(v1);
10033 } else {
10034 for (int i = 0; i < 4; i++)
10035 values[i] = enabled_channels & (1 << i) ? values[i] : Operand(v1);
10036 }
10037
10038 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
10039 enabled_channels, target, (bool) compr_op);
10040 return true;
10041 }
10042
10043 static void create_fs_exports(isel_context *ctx)
10044 {
10045 bool exported = false;
10046
10047 /* Export depth, stencil and sample mask. */
10048 if (ctx->outputs.mask[FRAG_RESULT_DEPTH] ||
10049 ctx->outputs.mask[FRAG_RESULT_STENCIL] ||
10050 ctx->outputs.mask[FRAG_RESULT_SAMPLE_MASK])
10051 exported |= export_fs_mrt_z(ctx);
10052
10053 /* Export all color render targets. */
10054 for (unsigned i = FRAG_RESULT_DATA0; i < FRAG_RESULT_DATA7 + 1; ++i)
10055 if (ctx->outputs.mask[i])
10056 exported |= export_fs_mrt_color(ctx, i);
10057
10058 if (!exported)
10059 create_null_export(ctx);
10060 }
10061
10062 static void write_tcs_tess_factors(isel_context *ctx)
10063 {
10064 unsigned outer_comps;
10065 unsigned inner_comps;
10066
10067 switch (ctx->args->options->key.tcs.primitive_mode) {
10068 case GL_ISOLINES:
10069 outer_comps = 2;
10070 inner_comps = 0;
10071 break;
10072 case GL_TRIANGLES:
10073 outer_comps = 3;
10074 inner_comps = 1;
10075 break;
10076 case GL_QUADS:
10077 outer_comps = 4;
10078 inner_comps = 2;
10079 break;
10080 default:
10081 return;
10082 }
10083
10084 Builder bld(ctx->program, ctx->block);
10085
10086 bld.barrier(aco_opcode::p_memory_barrier_shared);
10087 if (unlikely(ctx->program->chip_class != GFX6 && ctx->program->workgroup_size > ctx->program->wave_size))
10088 bld.sopp(aco_opcode::s_barrier);
10089
10090 Temp tcs_rel_ids = get_arg(ctx, ctx->args->ac.tcs_rel_ids);
10091 Temp invocation_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), tcs_rel_ids, Operand(8u), Operand(5u));
10092
10093 Temp invocation_id_is_zero = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), invocation_id);
10094 if_context ic_invocation_id_is_zero;
10095 begin_divergent_if_then(ctx, &ic_invocation_id_is_zero, invocation_id_is_zero);
10096 bld.reset(ctx->block);
10097
10098 Temp hs_ring_tess_factor = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_FACTOR * 16u));
10099
10100 std::pair<Temp, unsigned> lds_base = get_tcs_output_lds_offset(ctx);
10101 unsigned stride = inner_comps + outer_comps;
10102 unsigned lds_align = calculate_lds_alignment(ctx, lds_base.second);
10103 Temp tf_inner_vec;
10104 Temp tf_outer_vec;
10105 Temp out[6];
10106 assert(stride <= (sizeof(out) / sizeof(Temp)));
10107
10108 if (ctx->args->options->key.tcs.primitive_mode == GL_ISOLINES) {
10109 // LINES reversal
10110 tf_outer_vec = load_lds(ctx, 4, bld.tmp(v2), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_out_loc, lds_align);
10111 out[1] = emit_extract_vector(ctx, tf_outer_vec, 0, v1);
10112 out[0] = emit_extract_vector(ctx, tf_outer_vec, 1, v1);
10113 } else {
10114 tf_outer_vec = load_lds(ctx, 4, bld.tmp(RegClass(RegType::vgpr, outer_comps)), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_out_loc, lds_align);
10115 tf_inner_vec = load_lds(ctx, 4, bld.tmp(RegClass(RegType::vgpr, inner_comps)), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_in_loc, lds_align);
10116
10117 for (unsigned i = 0; i < outer_comps; ++i)
10118 out[i] = emit_extract_vector(ctx, tf_outer_vec, i, v1);
10119 for (unsigned i = 0; i < inner_comps; ++i)
10120 out[outer_comps + i] = emit_extract_vector(ctx, tf_inner_vec, i, v1);
10121 }
10122
10123 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
10124 Temp tf_base = get_arg(ctx, ctx->args->tess_factor_offset);
10125 Temp byte_offset = bld.v_mul_imm(bld.def(v1), rel_patch_id, stride * 4u);
10126 unsigned tf_const_offset = 0;
10127
10128 if (ctx->program->chip_class <= GFX8) {
10129 Temp rel_patch_id_is_zero = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), rel_patch_id);
10130 if_context ic_rel_patch_id_is_zero;
10131 begin_divergent_if_then(ctx, &ic_rel_patch_id_is_zero, rel_patch_id_is_zero);
10132 bld.reset(ctx->block);
10133
10134 /* Store the dynamic HS control word. */
10135 Temp control_word = bld.copy(bld.def(v1), Operand(0x80000000u));
10136 bld.mubuf(aco_opcode::buffer_store_dword,
10137 /* SRSRC */ hs_ring_tess_factor, /* VADDR */ Operand(v1), /* SOFFSET */ tf_base, /* VDATA */ control_word,
10138 /* immediate OFFSET */ 0, /* OFFEN */ false, /* idxen*/ false, /* addr64 */ false,
10139 /* disable_wqm */ false, /* glc */ true);
10140 tf_const_offset += 4;
10141
10142 begin_divergent_if_else(ctx, &ic_rel_patch_id_is_zero);
10143 end_divergent_if(ctx, &ic_rel_patch_id_is_zero);
10144 bld.reset(ctx->block);
10145 }
10146
10147 assert(stride == 2 || stride == 4 || stride == 6);
10148 Temp tf_vec = create_vec_from_array(ctx, out, stride, RegType::vgpr, 4u);
10149 store_vmem_mubuf(ctx, tf_vec, hs_ring_tess_factor, byte_offset, tf_base, tf_const_offset, 4, (1 << stride) - 1, true, false);
10150
10151 /* Store to offchip for TES to read - only if TES reads them */
10152 if (ctx->args->options->key.tcs.tes_reads_tess_factors) {
10153 Temp hs_ring_tess_offchip = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
10154 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
10155
10156 std::pair<Temp, unsigned> vmem_offs_outer = get_tcs_per_patch_output_vmem_offset(ctx, nullptr, ctx->tcs_tess_lvl_out_loc);
10157 store_vmem_mubuf(ctx, tf_outer_vec, hs_ring_tess_offchip, vmem_offs_outer.first, oc_lds, vmem_offs_outer.second, 4, (1 << outer_comps) - 1, true, false);
10158
10159 if (likely(inner_comps)) {
10160 std::pair<Temp, unsigned> vmem_offs_inner = get_tcs_per_patch_output_vmem_offset(ctx, nullptr, ctx->tcs_tess_lvl_in_loc);
10161 store_vmem_mubuf(ctx, tf_inner_vec, hs_ring_tess_offchip, vmem_offs_inner.first, oc_lds, vmem_offs_inner.second, 4, (1 << inner_comps) - 1, true, false);
10162 }
10163 }
10164
10165 begin_divergent_if_else(ctx, &ic_invocation_id_is_zero);
10166 end_divergent_if(ctx, &ic_invocation_id_is_zero);
10167 }
10168
10169 static void emit_stream_output(isel_context *ctx,
10170 Temp const *so_buffers,
10171 Temp const *so_write_offset,
10172 const struct radv_stream_output *output)
10173 {
10174 unsigned num_comps = util_bitcount(output->component_mask);
10175 unsigned writemask = (1 << num_comps) - 1;
10176 unsigned loc = output->location;
10177 unsigned buf = output->buffer;
10178
10179 assert(num_comps && num_comps <= 4);
10180 if (!num_comps || num_comps > 4)
10181 return;
10182
10183 unsigned start = ffs(output->component_mask) - 1;
10184
10185 Temp out[4];
10186 bool all_undef = true;
10187 assert(ctx->stage == vertex_vs || ctx->stage == gs_copy_vs);
10188 for (unsigned i = 0; i < num_comps; i++) {
10189 out[i] = ctx->outputs.temps[loc * 4 + start + i];
10190 all_undef = all_undef && !out[i].id();
10191 }
10192 if (all_undef)
10193 return;
10194
10195 while (writemask) {
10196 int start, count;
10197 u_bit_scan_consecutive_range(&writemask, &start, &count);
10198 if (count == 3 && ctx->options->chip_class == GFX6) {
10199 /* GFX6 doesn't support storing vec3, split it. */
10200 writemask |= 1u << (start + 2);
10201 count = 2;
10202 }
10203
10204 unsigned offset = output->offset + start * 4;
10205
10206 Temp write_data = {ctx->program->allocateId(), RegClass(RegType::vgpr, count)};
10207 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
10208 for (int i = 0; i < count; ++i)
10209 vec->operands[i] = (ctx->outputs.mask[loc] & 1 << (start + i)) ? Operand(out[start + i]) : Operand(0u);
10210 vec->definitions[0] = Definition(write_data);
10211 ctx->block->instructions.emplace_back(std::move(vec));
10212
10213 aco_opcode opcode;
10214 switch (count) {
10215 case 1:
10216 opcode = aco_opcode::buffer_store_dword;
10217 break;
10218 case 2:
10219 opcode = aco_opcode::buffer_store_dwordx2;
10220 break;
10221 case 3:
10222 opcode = aco_opcode::buffer_store_dwordx3;
10223 break;
10224 case 4:
10225 opcode = aco_opcode::buffer_store_dwordx4;
10226 break;
10227 default:
10228 unreachable("Unsupported dword count.");
10229 }
10230
10231 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
10232 store->operands[0] = Operand(so_buffers[buf]);
10233 store->operands[1] = Operand(so_write_offset[buf]);
10234 store->operands[2] = Operand((uint32_t) 0);
10235 store->operands[3] = Operand(write_data);
10236 if (offset > 4095) {
10237 /* Don't think this can happen in RADV, but maybe GL? It's easy to do this anyway. */
10238 Builder bld(ctx->program, ctx->block);
10239 store->operands[0] = bld.vadd32(bld.def(v1), Operand(offset), Operand(so_write_offset[buf]));
10240 } else {
10241 store->offset = offset;
10242 }
10243 store->offen = true;
10244 store->glc = true;
10245 store->dlc = false;
10246 store->slc = true;
10247 store->can_reorder = true;
10248 ctx->block->instructions.emplace_back(std::move(store));
10249 }
10250 }
10251
10252 static void emit_streamout(isel_context *ctx, unsigned stream)
10253 {
10254 Builder bld(ctx->program, ctx->block);
10255
10256 Temp so_buffers[4];
10257 Temp buf_ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->streamout_buffers));
10258 for (unsigned i = 0; i < 4; i++) {
10259 unsigned stride = ctx->program->info->so.strides[i];
10260 if (!stride)
10261 continue;
10262
10263 Operand off = bld.copy(bld.def(s1), Operand(i * 16u));
10264 so_buffers[i] = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), buf_ptr, off);
10265 }
10266
10267 Temp so_vtx_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10268 get_arg(ctx, ctx->args->streamout_config), Operand(0x70010u));
10269
10270 Temp tid = emit_mbcnt(ctx, bld.def(v1));
10271
10272 Temp can_emit = bld.vopc(aco_opcode::v_cmp_gt_i32, bld.def(bld.lm), so_vtx_count, tid);
10273
10274 if_context ic;
10275 begin_divergent_if_then(ctx, &ic, can_emit);
10276
10277 bld.reset(ctx->block);
10278
10279 Temp so_write_index = bld.vadd32(bld.def(v1), get_arg(ctx, ctx->args->streamout_write_idx), tid);
10280
10281 Temp so_write_offset[4];
10282
10283 for (unsigned i = 0; i < 4; i++) {
10284 unsigned stride = ctx->program->info->so.strides[i];
10285 if (!stride)
10286 continue;
10287
10288 if (stride == 1) {
10289 Temp offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
10290 get_arg(ctx, ctx->args->streamout_write_idx),
10291 get_arg(ctx, ctx->args->streamout_offset[i]));
10292 Temp new_offset = bld.vadd32(bld.def(v1), offset, tid);
10293
10294 so_write_offset[i] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), new_offset);
10295 } else {
10296 Temp offset = bld.v_mul_imm(bld.def(v1), so_write_index, stride * 4u);
10297 Temp offset2 = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(4u),
10298 get_arg(ctx, ctx->args->streamout_offset[i]));
10299 so_write_offset[i] = bld.vadd32(bld.def(v1), offset, offset2);
10300 }
10301 }
10302
10303 for (unsigned i = 0; i < ctx->program->info->so.num_outputs; i++) {
10304 struct radv_stream_output *output =
10305 &ctx->program->info->so.outputs[i];
10306 if (stream != output->stream)
10307 continue;
10308
10309 emit_stream_output(ctx, so_buffers, so_write_offset, output);
10310 }
10311
10312 begin_divergent_if_else(ctx, &ic);
10313 end_divergent_if(ctx, &ic);
10314 }
10315
10316 } /* end namespace */
10317
10318 void fix_ls_vgpr_init_bug(isel_context *ctx, Pseudo_instruction *startpgm)
10319 {
10320 assert(ctx->shader->info.stage == MESA_SHADER_VERTEX);
10321 Builder bld(ctx->program, ctx->block);
10322 constexpr unsigned hs_idx = 1u;
10323 Builder::Result hs_thread_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10324 get_arg(ctx, ctx->args->merged_wave_info),
10325 Operand((8u << 16) | (hs_idx * 8u)));
10326 Temp ls_has_nonzero_hs_threads = bool_to_vector_condition(ctx, hs_thread_count.def(1).getTemp());
10327
10328 /* If there are no HS threads, SPI mistakenly loads the LS VGPRs starting at VGPR 0. */
10329
10330 Temp instance_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10331 get_arg(ctx, ctx->args->rel_auto_id),
10332 get_arg(ctx, ctx->args->ac.instance_id),
10333 ls_has_nonzero_hs_threads);
10334 Temp rel_auto_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10335 get_arg(ctx, ctx->args->ac.tcs_rel_ids),
10336 get_arg(ctx, ctx->args->rel_auto_id),
10337 ls_has_nonzero_hs_threads);
10338 Temp vertex_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10339 get_arg(ctx, ctx->args->ac.tcs_patch_id),
10340 get_arg(ctx, ctx->args->ac.vertex_id),
10341 ls_has_nonzero_hs_threads);
10342
10343 ctx->arg_temps[ctx->args->ac.instance_id.arg_index] = instance_id;
10344 ctx->arg_temps[ctx->args->rel_auto_id.arg_index] = rel_auto_id;
10345 ctx->arg_temps[ctx->args->ac.vertex_id.arg_index] = vertex_id;
10346 }
10347
10348 void split_arguments(isel_context *ctx, Pseudo_instruction *startpgm)
10349 {
10350 /* Split all arguments except for the first (ring_offsets) and the last
10351 * (exec) so that the dead channels don't stay live throughout the program.
10352 */
10353 for (int i = 1; i < startpgm->definitions.size() - 1; i++) {
10354 if (startpgm->definitions[i].regClass().size() > 1) {
10355 emit_split_vector(ctx, startpgm->definitions[i].getTemp(),
10356 startpgm->definitions[i].regClass().size());
10357 }
10358 }
10359 }
10360
10361 void handle_bc_optimize(isel_context *ctx)
10362 {
10363 /* needed when SPI_PS_IN_CONTROL.BC_OPTIMIZE_DISABLE is set to 0 */
10364 Builder bld(ctx->program, ctx->block);
10365 uint32_t spi_ps_input_ena = ctx->program->config->spi_ps_input_ena;
10366 bool uses_center = G_0286CC_PERSP_CENTER_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTER_ENA(spi_ps_input_ena);
10367 bool uses_centroid = G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena);
10368 ctx->persp_centroid = get_arg(ctx, ctx->args->ac.persp_centroid);
10369 ctx->linear_centroid = get_arg(ctx, ctx->args->ac.linear_centroid);
10370 if (uses_center && uses_centroid) {
10371 Temp sel = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)),
10372 get_arg(ctx, ctx->args->ac.prim_mask), Operand(0u));
10373
10374 if (G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena)) {
10375 Temp new_coord[2];
10376 for (unsigned i = 0; i < 2; i++) {
10377 Temp persp_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_centroid), i, v1);
10378 Temp persp_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_center), i, v1);
10379 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10380 persp_centroid, persp_center, sel);
10381 }
10382 ctx->persp_centroid = bld.tmp(v2);
10383 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->persp_centroid),
10384 Operand(new_coord[0]), Operand(new_coord[1]));
10385 emit_split_vector(ctx, ctx->persp_centroid, 2);
10386 }
10387
10388 if (G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena)) {
10389 Temp new_coord[2];
10390 for (unsigned i = 0; i < 2; i++) {
10391 Temp linear_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_centroid), i, v1);
10392 Temp linear_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_center), i, v1);
10393 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10394 linear_centroid, linear_center, sel);
10395 }
10396 ctx->linear_centroid = bld.tmp(v2);
10397 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->linear_centroid),
10398 Operand(new_coord[0]), Operand(new_coord[1]));
10399 emit_split_vector(ctx, ctx->linear_centroid, 2);
10400 }
10401 }
10402 }
10403
10404 void setup_fp_mode(isel_context *ctx, nir_shader *shader)
10405 {
10406 Program *program = ctx->program;
10407
10408 unsigned float_controls = shader->info.float_controls_execution_mode;
10409
10410 program->next_fp_mode.preserve_signed_zero_inf_nan32 =
10411 float_controls & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32;
10412 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 =
10413 float_controls & (FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16 |
10414 FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64);
10415
10416 program->next_fp_mode.must_flush_denorms32 =
10417 float_controls & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32;
10418 program->next_fp_mode.must_flush_denorms16_64 =
10419 float_controls & (FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 |
10420 FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64);
10421
10422 program->next_fp_mode.care_about_round32 =
10423 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32);
10424
10425 program->next_fp_mode.care_about_round16_64 =
10426 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64 |
10427 FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
10428
10429 /* default to preserving fp16 and fp64 denorms, since it's free */
10430 if (program->next_fp_mode.must_flush_denorms16_64)
10431 program->next_fp_mode.denorm16_64 = 0;
10432 else
10433 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
10434
10435 /* preserving fp32 denorms is expensive, so only do it if asked */
10436 if (float_controls & FLOAT_CONTROLS_DENORM_PRESERVE_FP32)
10437 program->next_fp_mode.denorm32 = fp_denorm_keep;
10438 else
10439 program->next_fp_mode.denorm32 = 0;
10440
10441 if (float_controls & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32)
10442 program->next_fp_mode.round32 = fp_round_tz;
10443 else
10444 program->next_fp_mode.round32 = fp_round_ne;
10445
10446 if (float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64))
10447 program->next_fp_mode.round16_64 = fp_round_tz;
10448 else
10449 program->next_fp_mode.round16_64 = fp_round_ne;
10450
10451 ctx->block->fp_mode = program->next_fp_mode;
10452 }
10453
10454 void cleanup_cfg(Program *program)
10455 {
10456 /* create linear_succs/logical_succs */
10457 for (Block& BB : program->blocks) {
10458 for (unsigned idx : BB.linear_preds)
10459 program->blocks[idx].linear_succs.emplace_back(BB.index);
10460 for (unsigned idx : BB.logical_preds)
10461 program->blocks[idx].logical_succs.emplace_back(BB.index);
10462 }
10463 }
10464
10465 Temp merged_wave_info_to_mask(isel_context *ctx, unsigned i)
10466 {
10467 Builder bld(ctx->program, ctx->block);
10468
10469 /* The s_bfm only cares about s0.u[5:0] so we don't need either s_bfe nor s_and here */
10470 Temp count = i == 0
10471 ? get_arg(ctx, ctx->args->merged_wave_info)
10472 : bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc),
10473 get_arg(ctx, ctx->args->merged_wave_info), Operand(i * 8u));
10474
10475 Temp mask = bld.sop2(aco_opcode::s_bfm_b64, bld.def(s2), count, Operand(0u));
10476 Temp cond;
10477
10478 if (ctx->program->wave_size == 64) {
10479 /* Special case for 64 active invocations, because 64 doesn't work with s_bfm */
10480 Temp active_64 = bld.sopc(aco_opcode::s_bitcmp1_b32, bld.def(s1, scc), count, Operand(6u /* log2(64) */));
10481 cond = bld.sop2(Builder::s_cselect, bld.def(bld.lm), Operand(-1u), mask, bld.scc(active_64));
10482 } else {
10483 /* We use s_bfm_b64 (not _b32) which works with 32, but we need to extract the lower half of the register */
10484 cond = emit_extract_vector(ctx, mask, 0, bld.lm);
10485 }
10486
10487 return cond;
10488 }
10489
10490 bool ngg_early_prim_export(isel_context *ctx)
10491 {
10492 /* TODO: Check edge flags, and if they are written, return false. (Needed for OpenGL, not for Vulkan.) */
10493 return true;
10494 }
10495
10496 void ngg_emit_sendmsg_gs_alloc_req(isel_context *ctx)
10497 {
10498 Builder bld(ctx->program, ctx->block);
10499
10500 /* It is recommended to do the GS_ALLOC_REQ as soon and as quickly as possible, so we set the maximum priority (3). */
10501 bld.sopp(aco_opcode::s_setprio, -1u, 0x3u);
10502
10503 /* Get the id of the current wave within the threadgroup (workgroup) */
10504 Builder::Result wave_id_in_tg = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10505 get_arg(ctx, ctx->args->merged_wave_info), Operand(24u | (4u << 16)));
10506
10507 /* Execute the following code only on the first wave (wave id 0),
10508 * use the SCC def to tell if the wave id is zero or not.
10509 */
10510 Temp cond = wave_id_in_tg.def(1).getTemp();
10511 if_context ic;
10512 begin_uniform_if_then(ctx, &ic, cond);
10513 begin_uniform_if_else(ctx, &ic);
10514 bld.reset(ctx->block);
10515
10516 /* Number of vertices output by VS/TES */
10517 Temp vtx_cnt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10518 get_arg(ctx, ctx->args->gs_tg_info), Operand(12u | (9u << 16u)));
10519 /* Number of primitives output by VS/TES */
10520 Temp prm_cnt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10521 get_arg(ctx, ctx->args->gs_tg_info), Operand(22u | (9u << 16u)));
10522
10523 /* Put the number of vertices and primitives into m0 for the GS_ALLOC_REQ */
10524 Temp tmp = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), prm_cnt, Operand(12u));
10525 tmp = bld.sop2(aco_opcode::s_or_b32, bld.m0(bld.def(s1)), bld.def(s1, scc), tmp, vtx_cnt);
10526
10527 /* Request the SPI to allocate space for the primitives and vertices that will be exported by the threadgroup. */
10528 bld.sopp(aco_opcode::s_sendmsg, bld.m0(tmp), -1, sendmsg_gs_alloc_req);
10529
10530 /* After the GS_ALLOC_REQ is done, reset priority to default (0). */
10531 bld.sopp(aco_opcode::s_setprio, -1u, 0x0u);
10532
10533 end_uniform_if(ctx, &ic);
10534 }
10535
10536 Temp ngg_get_prim_exp_arg(isel_context *ctx, unsigned num_vertices, const Temp vtxindex[])
10537 {
10538 Builder bld(ctx->program, ctx->block);
10539
10540 if (ctx->args->options->key.vs_common_out.as_ngg_passthrough) {
10541 return get_arg(ctx, ctx->args->gs_vtx_offset[0]);
10542 }
10543
10544 Temp gs_invocation_id = get_arg(ctx, ctx->args->ac.gs_invocation_id);
10545 Temp tmp;
10546
10547 for (unsigned i = 0; i < num_vertices; ++i) {
10548 assert(vtxindex[i].id());
10549
10550 if (i)
10551 tmp = bld.vop3(aco_opcode::v_lshl_add_u32, bld.def(v1), vtxindex[i], Operand(10u * i), tmp);
10552 else
10553 tmp = vtxindex[i];
10554
10555 /* The initial edge flag is always false in tess eval shaders. */
10556 if (ctx->stage == ngg_vertex_gs) {
10557 Temp edgeflag = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), gs_invocation_id, Operand(8 + i), Operand(1u));
10558 tmp = bld.vop3(aco_opcode::v_lshl_add_u32, bld.def(v1), edgeflag, Operand(10u * i + 9u), tmp);
10559 }
10560 }
10561
10562 /* TODO: Set isnull field in case of merged NGG VS+GS. */
10563
10564 return tmp;
10565 }
10566
10567 void ngg_emit_prim_export(isel_context *ctx, unsigned num_vertices_per_primitive, const Temp vtxindex[])
10568 {
10569 Builder bld(ctx->program, ctx->block);
10570 Temp prim_exp_arg = ngg_get_prim_exp_arg(ctx, num_vertices_per_primitive, vtxindex);
10571
10572 bld.exp(aco_opcode::exp, prim_exp_arg, Operand(v1), Operand(v1), Operand(v1),
10573 1 /* enabled mask */, V_008DFC_SQ_EXP_PRIM /* dest */,
10574 false /* compressed */, true/* done */, false /* valid mask */);
10575 }
10576
10577 void ngg_emit_nogs_gsthreads(isel_context *ctx)
10578 {
10579 /* Emit the things that NGG GS threads need to do, for shaders that don't have SW GS.
10580 * These must always come before VS exports.
10581 *
10582 * It is recommended to do these as early as possible. They can be at the beginning when
10583 * there is no SW GS and the shader doesn't write edge flags.
10584 */
10585
10586 if_context ic;
10587 Temp is_gs_thread = merged_wave_info_to_mask(ctx, 1);
10588 begin_divergent_if_then(ctx, &ic, is_gs_thread);
10589
10590 Builder bld(ctx->program, ctx->block);
10591 constexpr unsigned max_vertices_per_primitive = 3;
10592 unsigned num_vertices_per_primitive = max_vertices_per_primitive;
10593
10594 if (ctx->stage == ngg_vertex_gs) {
10595 /* TODO: optimize for points & lines */
10596 } else if (ctx->stage == ngg_tess_eval_gs) {
10597 if (ctx->shader->info.tess.point_mode)
10598 num_vertices_per_primitive = 1;
10599 else if (ctx->shader->info.tess.primitive_mode == GL_ISOLINES)
10600 num_vertices_per_primitive = 2;
10601 } else {
10602 unreachable("Unsupported NGG shader stage");
10603 }
10604
10605 Temp vtxindex[max_vertices_per_primitive];
10606 vtxindex[0] = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu),
10607 get_arg(ctx, ctx->args->gs_vtx_offset[0]));
10608 vtxindex[1] = num_vertices_per_primitive < 2 ? Temp(0, v1) :
10609 bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
10610 get_arg(ctx, ctx->args->gs_vtx_offset[0]), Operand(16u), Operand(16u));
10611 vtxindex[2] = num_vertices_per_primitive < 3 ? Temp(0, v1) :
10612 bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu),
10613 get_arg(ctx, ctx->args->gs_vtx_offset[2]));
10614
10615 /* Export primitive data to the index buffer. */
10616 ngg_emit_prim_export(ctx, num_vertices_per_primitive, vtxindex);
10617
10618 /* Export primitive ID. */
10619 if (ctx->stage == ngg_vertex_gs && ctx->args->options->key.vs_common_out.export_prim_id) {
10620 /* Copy Primitive IDs from GS threads to the LDS address corresponding to the ES thread of the provoking vertex. */
10621 Temp prim_id = get_arg(ctx, ctx->args->ac.gs_prim_id);
10622 Temp provoking_vtx_index = vtxindex[0];
10623 Temp addr = bld.v_mul_imm(bld.def(v1), provoking_vtx_index, 4u);
10624
10625 store_lds(ctx, 4, prim_id, 0x1u, addr, 0u, 4u);
10626 }
10627
10628 begin_divergent_if_else(ctx, &ic);
10629 end_divergent_if(ctx, &ic);
10630 }
10631
10632 void ngg_emit_nogs_output(isel_context *ctx)
10633 {
10634 /* Emits NGG GS output, for stages that don't have SW GS. */
10635
10636 if_context ic;
10637 Builder bld(ctx->program, ctx->block);
10638 bool late_prim_export = !ngg_early_prim_export(ctx);
10639
10640 /* NGG streamout is currently disabled by default. */
10641 assert(!ctx->args->shader_info->so.num_outputs);
10642
10643 if (late_prim_export) {
10644 /* VS exports are output to registers in a predecessor block. Emit phis to get them into this block. */
10645 create_export_phis(ctx);
10646 /* Do what we need to do in the GS threads. */
10647 ngg_emit_nogs_gsthreads(ctx);
10648
10649 /* What comes next should be executed on ES threads. */
10650 Temp is_es_thread = merged_wave_info_to_mask(ctx, 0);
10651 begin_divergent_if_then(ctx, &ic, is_es_thread);
10652 bld.reset(ctx->block);
10653 }
10654
10655 /* Export VS outputs */
10656 ctx->block->kind |= block_kind_export_end;
10657 create_vs_exports(ctx);
10658
10659 /* Export primitive ID */
10660 if (ctx->args->options->key.vs_common_out.export_prim_id) {
10661 Temp prim_id;
10662
10663 if (ctx->stage == ngg_vertex_gs) {
10664 /* Wait for GS threads to store primitive ID in LDS. */
10665 bld.barrier(aco_opcode::p_memory_barrier_shared);
10666 bld.sopp(aco_opcode::s_barrier);
10667
10668 /* Calculate LDS address where the GS threads stored the primitive ID. */
10669 Temp wave_id_in_tg = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10670 get_arg(ctx, ctx->args->merged_wave_info), Operand(24u | (4u << 16)));
10671 Temp thread_id_in_wave = emit_mbcnt(ctx, bld.def(v1));
10672 Temp wave_id_mul = bld.v_mul_imm(bld.def(v1), as_vgpr(ctx, wave_id_in_tg), ctx->program->wave_size);
10673 Temp thread_id_in_tg = bld.vadd32(bld.def(v1), Operand(wave_id_mul), Operand(thread_id_in_wave));
10674 Temp addr = bld.v_mul_imm(bld.def(v1), thread_id_in_tg, 4u);
10675
10676 /* Load primitive ID from LDS. */
10677 prim_id = load_lds(ctx, 4, bld.tmp(v1), addr, 0u, 4u);
10678 } else if (ctx->stage == ngg_tess_eval_gs) {
10679 /* TES: Just use the patch ID as the primitive ID. */
10680 prim_id = get_arg(ctx, ctx->args->ac.tes_patch_id);
10681 } else {
10682 unreachable("unsupported NGG shader stage.");
10683 }
10684
10685 ctx->outputs.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
10686 ctx->outputs.temps[VARYING_SLOT_PRIMITIVE_ID * 4u] = prim_id;
10687
10688 export_vs_varying(ctx, VARYING_SLOT_PRIMITIVE_ID, false, nullptr);
10689 }
10690
10691 if (late_prim_export) {
10692 begin_divergent_if_else(ctx, &ic);
10693 end_divergent_if(ctx, &ic);
10694 bld.reset(ctx->block);
10695 }
10696 }
10697
10698 void select_program(Program *program,
10699 unsigned shader_count,
10700 struct nir_shader *const *shaders,
10701 ac_shader_config* config,
10702 struct radv_shader_args *args)
10703 {
10704 isel_context ctx = setup_isel_context(program, shader_count, shaders, config, args, false);
10705 if_context ic_merged_wave_info;
10706 bool ngg_no_gs = ctx.stage == ngg_vertex_gs || ctx.stage == ngg_tess_eval_gs;
10707
10708 for (unsigned i = 0; i < shader_count; i++) {
10709 nir_shader *nir = shaders[i];
10710 init_context(&ctx, nir);
10711
10712 setup_fp_mode(&ctx, nir);
10713
10714 if (!i) {
10715 /* needs to be after init_context() for FS */
10716 Pseudo_instruction *startpgm = add_startpgm(&ctx);
10717 append_logical_start(ctx.block);
10718
10719 if (unlikely(args->options->has_ls_vgpr_init_bug && ctx.stage == vertex_tess_control_hs))
10720 fix_ls_vgpr_init_bug(&ctx, startpgm);
10721
10722 split_arguments(&ctx, startpgm);
10723 }
10724
10725 if (ngg_no_gs) {
10726 ngg_emit_sendmsg_gs_alloc_req(&ctx);
10727
10728 if (ngg_early_prim_export(&ctx))
10729 ngg_emit_nogs_gsthreads(&ctx);
10730 }
10731
10732 /* In a merged VS+TCS HS, the VS implementation can be completely empty. */
10733 nir_function_impl *func = nir_shader_get_entrypoint(nir);
10734 bool empty_shader = nir_cf_list_is_empty_block(&func->body) &&
10735 ((nir->info.stage == MESA_SHADER_VERTEX &&
10736 (ctx.stage == vertex_tess_control_hs || ctx.stage == vertex_geometry_gs)) ||
10737 (nir->info.stage == MESA_SHADER_TESS_EVAL &&
10738 ctx.stage == tess_eval_geometry_gs));
10739
10740 bool check_merged_wave_info = ctx.tcs_in_out_eq ? i == 0 : ((shader_count >= 2 && !empty_shader) || ngg_no_gs);
10741 bool endif_merged_wave_info = ctx.tcs_in_out_eq ? i == 1 : check_merged_wave_info;
10742 if (check_merged_wave_info) {
10743 Temp cond = merged_wave_info_to_mask(&ctx, i);
10744 begin_divergent_if_then(&ctx, &ic_merged_wave_info, cond);
10745 }
10746
10747 if (i) {
10748 Builder bld(ctx.program, ctx.block);
10749
10750 bld.barrier(aco_opcode::p_memory_barrier_shared);
10751 bld.sopp(aco_opcode::s_barrier);
10752
10753 if (ctx.stage == vertex_geometry_gs || ctx.stage == tess_eval_geometry_gs) {
10754 ctx.gs_wave_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1, m0), bld.def(s1, scc), get_arg(&ctx, args->merged_wave_info), Operand((8u << 16) | 16u));
10755 }
10756 } else if (ctx.stage == geometry_gs)
10757 ctx.gs_wave_id = get_arg(&ctx, args->gs_wave_id);
10758
10759 if (ctx.stage == fragment_fs)
10760 handle_bc_optimize(&ctx);
10761
10762 visit_cf_list(&ctx, &func->body);
10763
10764 if (ctx.program->info->so.num_outputs && (ctx.stage & hw_vs))
10765 emit_streamout(&ctx, 0);
10766
10767 if (ctx.stage & hw_vs) {
10768 create_vs_exports(&ctx);
10769 ctx.block->kind |= block_kind_export_end;
10770 } else if (ngg_no_gs && ngg_early_prim_export(&ctx)) {
10771 ngg_emit_nogs_output(&ctx);
10772 } else if (nir->info.stage == MESA_SHADER_GEOMETRY) {
10773 Builder bld(ctx.program, ctx.block);
10774 bld.barrier(aco_opcode::p_memory_barrier_gs_data);
10775 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx.gs_wave_id), -1, sendmsg_gs_done(false, false, 0));
10776 } else if (nir->info.stage == MESA_SHADER_TESS_CTRL) {
10777 write_tcs_tess_factors(&ctx);
10778 }
10779
10780 if (ctx.stage == fragment_fs) {
10781 create_fs_exports(&ctx);
10782 ctx.block->kind |= block_kind_export_end;
10783 }
10784
10785 if (endif_merged_wave_info) {
10786 begin_divergent_if_else(&ctx, &ic_merged_wave_info);
10787 end_divergent_if(&ctx, &ic_merged_wave_info);
10788 }
10789
10790 if (ngg_no_gs && !ngg_early_prim_export(&ctx))
10791 ngg_emit_nogs_output(&ctx);
10792
10793 ralloc_free(ctx.divergent_vals);
10794
10795 if (i == 0 && ctx.stage == vertex_tess_control_hs && ctx.tcs_in_out_eq) {
10796 /* Outputs of the previous stage are inputs to the next stage */
10797 ctx.inputs = ctx.outputs;
10798 ctx.outputs = shader_io_state();
10799 }
10800 }
10801
10802 program->config->float_mode = program->blocks[0].fp_mode.val;
10803
10804 append_logical_end(ctx.block);
10805 ctx.block->kind |= block_kind_uniform;
10806 Builder bld(ctx.program, ctx.block);
10807 if (ctx.program->wb_smem_l1_on_end)
10808 bld.smem(aco_opcode::s_dcache_wb, false);
10809 bld.sopp(aco_opcode::s_endpgm);
10810
10811 cleanup_cfg(program);
10812 }
10813
10814 void select_gs_copy_shader(Program *program, struct nir_shader *gs_shader,
10815 ac_shader_config* config,
10816 struct radv_shader_args *args)
10817 {
10818 isel_context ctx = setup_isel_context(program, 1, &gs_shader, config, args, true);
10819
10820 program->next_fp_mode.preserve_signed_zero_inf_nan32 = false;
10821 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 = false;
10822 program->next_fp_mode.must_flush_denorms32 = false;
10823 program->next_fp_mode.must_flush_denorms16_64 = false;
10824 program->next_fp_mode.care_about_round32 = false;
10825 program->next_fp_mode.care_about_round16_64 = false;
10826 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
10827 program->next_fp_mode.denorm32 = 0;
10828 program->next_fp_mode.round32 = fp_round_ne;
10829 program->next_fp_mode.round16_64 = fp_round_ne;
10830 ctx.block->fp_mode = program->next_fp_mode;
10831
10832 add_startpgm(&ctx);
10833 append_logical_start(ctx.block);
10834
10835 Builder bld(ctx.program, ctx.block);
10836
10837 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), program->private_segment_buffer, Operand(RING_GSVS_VS * 16u));
10838
10839 Operand stream_id(0u);
10840 if (args->shader_info->so.num_outputs)
10841 stream_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10842 get_arg(&ctx, ctx.args->streamout_config), Operand(0x20018u));
10843
10844 Temp vtx_offset = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), get_arg(&ctx, ctx.args->ac.vertex_id));
10845
10846 std::stack<Block> endif_blocks;
10847
10848 for (unsigned stream = 0; stream < 4; stream++) {
10849 if (stream_id.isConstant() && stream != stream_id.constantValue())
10850 continue;
10851
10852 unsigned num_components = args->shader_info->gs.num_stream_output_components[stream];
10853 if (stream > 0 && (!num_components || !args->shader_info->so.num_outputs))
10854 continue;
10855
10856 memset(ctx.outputs.mask, 0, sizeof(ctx.outputs.mask));
10857
10858 unsigned BB_if_idx = ctx.block->index;
10859 Block BB_endif = Block();
10860 if (!stream_id.isConstant()) {
10861 /* begin IF */
10862 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), stream_id, Operand(stream));
10863 append_logical_end(ctx.block);
10864 ctx.block->kind |= block_kind_uniform;
10865 bld.branch(aco_opcode::p_cbranch_z, cond);
10866
10867 BB_endif.kind |= ctx.block->kind & block_kind_top_level;
10868
10869 ctx.block = ctx.program->create_and_insert_block();
10870 add_edge(BB_if_idx, ctx.block);
10871 bld.reset(ctx.block);
10872 append_logical_start(ctx.block);
10873 }
10874
10875 unsigned offset = 0;
10876 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
10877 if (args->shader_info->gs.output_streams[i] != stream)
10878 continue;
10879
10880 unsigned output_usage_mask = args->shader_info->gs.output_usage_mask[i];
10881 unsigned length = util_last_bit(output_usage_mask);
10882 for (unsigned j = 0; j < length; ++j) {
10883 if (!(output_usage_mask & (1 << j)))
10884 continue;
10885
10886 unsigned const_offset = offset * args->shader_info->gs.vertices_out * 16 * 4;
10887 Temp voffset = vtx_offset;
10888 if (const_offset >= 4096u) {
10889 voffset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), voffset);
10890 const_offset %= 4096u;
10891 }
10892
10893 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dword, Format::MUBUF, 3, 1)};
10894 mubuf->definitions[0] = bld.def(v1);
10895 mubuf->operands[0] = Operand(gsvs_ring);
10896 mubuf->operands[1] = Operand(voffset);
10897 mubuf->operands[2] = Operand(0u);
10898 mubuf->offen = true;
10899 mubuf->offset = const_offset;
10900 mubuf->glc = true;
10901 mubuf->slc = true;
10902 mubuf->dlc = args->options->chip_class >= GFX10;
10903 mubuf->barrier = barrier_none;
10904 mubuf->can_reorder = true;
10905
10906 ctx.outputs.mask[i] |= 1 << j;
10907 ctx.outputs.temps[i * 4u + j] = mubuf->definitions[0].getTemp();
10908
10909 bld.insert(std::move(mubuf));
10910
10911 offset++;
10912 }
10913 }
10914
10915 if (args->shader_info->so.num_outputs) {
10916 emit_streamout(&ctx, stream);
10917 bld.reset(ctx.block);
10918 }
10919
10920 if (stream == 0) {
10921 create_vs_exports(&ctx);
10922 ctx.block->kind |= block_kind_export_end;
10923 }
10924
10925 if (!stream_id.isConstant()) {
10926 append_logical_end(ctx.block);
10927
10928 /* branch from then block to endif block */
10929 bld.branch(aco_opcode::p_branch);
10930 add_edge(ctx.block->index, &BB_endif);
10931 ctx.block->kind |= block_kind_uniform;
10932
10933 /* emit else block */
10934 ctx.block = ctx.program->create_and_insert_block();
10935 add_edge(BB_if_idx, ctx.block);
10936 bld.reset(ctx.block);
10937 append_logical_start(ctx.block);
10938
10939 endif_blocks.push(std::move(BB_endif));
10940 }
10941 }
10942
10943 while (!endif_blocks.empty()) {
10944 Block BB_endif = std::move(endif_blocks.top());
10945 endif_blocks.pop();
10946
10947 Block *BB_else = ctx.block;
10948
10949 append_logical_end(BB_else);
10950 /* branch from else block to endif block */
10951 bld.branch(aco_opcode::p_branch);
10952 add_edge(BB_else->index, &BB_endif);
10953 BB_else->kind |= block_kind_uniform;
10954
10955 /** emit endif merge block */
10956 ctx.block = program->insert_block(std::move(BB_endif));
10957 bld.reset(ctx.block);
10958 append_logical_start(ctx.block);
10959 }
10960
10961 program->config->float_mode = program->blocks[0].fp_mode.val;
10962
10963 append_logical_end(ctx.block);
10964 ctx.block->kind |= block_kind_uniform;
10965 bld.sopp(aco_opcode::s_endpgm);
10966
10967 cleanup_cfg(program);
10968 }
10969 }