aco: improve GFX9 1D ddx/ddy assertion
[mesa.git] / src / amd / compiler / aco_instruction_selection.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 * Copyright © 2018 Google
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <algorithm>
27 #include <array>
28 #include <stack>
29 #include <map>
30
31 #include "ac_shader_util.h"
32 #include "aco_ir.h"
33 #include "aco_builder.h"
34 #include "aco_interface.h"
35 #include "aco_instruction_selection_setup.cpp"
36 #include "util/fast_idiv_by_const.h"
37
38 namespace aco {
39 namespace {
40
41 class loop_info_RAII {
42 isel_context* ctx;
43 unsigned header_idx_old;
44 Block* exit_old;
45 bool divergent_cont_old;
46 bool divergent_branch_old;
47 bool divergent_if_old;
48
49 public:
50 loop_info_RAII(isel_context* ctx, unsigned loop_header_idx, Block* loop_exit)
51 : ctx(ctx),
52 header_idx_old(ctx->cf_info.parent_loop.header_idx), exit_old(ctx->cf_info.parent_loop.exit),
53 divergent_cont_old(ctx->cf_info.parent_loop.has_divergent_continue),
54 divergent_branch_old(ctx->cf_info.parent_loop.has_divergent_branch),
55 divergent_if_old(ctx->cf_info.parent_if.is_divergent)
56 {
57 ctx->cf_info.parent_loop.header_idx = loop_header_idx;
58 ctx->cf_info.parent_loop.exit = loop_exit;
59 ctx->cf_info.parent_loop.has_divergent_continue = false;
60 ctx->cf_info.parent_loop.has_divergent_branch = false;
61 ctx->cf_info.parent_if.is_divergent = false;
62 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
63 }
64
65 ~loop_info_RAII()
66 {
67 ctx->cf_info.parent_loop.header_idx = header_idx_old;
68 ctx->cf_info.parent_loop.exit = exit_old;
69 ctx->cf_info.parent_loop.has_divergent_continue = divergent_cont_old;
70 ctx->cf_info.parent_loop.has_divergent_branch = divergent_branch_old;
71 ctx->cf_info.parent_if.is_divergent = divergent_if_old;
72 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth - 1;
73 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent)
74 ctx->cf_info.exec_potentially_empty_discard = false;
75 }
76 };
77
78 struct if_context {
79 Temp cond;
80
81 bool divergent_old;
82 bool exec_potentially_empty_discard_old;
83 bool exec_potentially_empty_break_old;
84 uint16_t exec_potentially_empty_break_depth_old;
85
86 unsigned BB_if_idx;
87 unsigned invert_idx;
88 bool then_branch_divergent;
89 Block BB_invert;
90 Block BB_endif;
91 };
92
93 static void visit_cf_list(struct isel_context *ctx,
94 struct exec_list *list);
95
96 static void add_logical_edge(unsigned pred_idx, Block *succ)
97 {
98 succ->logical_preds.emplace_back(pred_idx);
99 }
100
101
102 static void add_linear_edge(unsigned pred_idx, Block *succ)
103 {
104 succ->linear_preds.emplace_back(pred_idx);
105 }
106
107 static void add_edge(unsigned pred_idx, Block *succ)
108 {
109 add_logical_edge(pred_idx, succ);
110 add_linear_edge(pred_idx, succ);
111 }
112
113 static void append_logical_start(Block *b)
114 {
115 Builder(NULL, b).pseudo(aco_opcode::p_logical_start);
116 }
117
118 static void append_logical_end(Block *b)
119 {
120 Builder(NULL, b).pseudo(aco_opcode::p_logical_end);
121 }
122
123 Temp get_ssa_temp(struct isel_context *ctx, nir_ssa_def *def)
124 {
125 assert(ctx->allocated[def->index].id());
126 return ctx->allocated[def->index];
127 }
128
129 Temp emit_mbcnt(isel_context *ctx, Definition dst,
130 Operand mask_lo = Operand((uint32_t) -1), Operand mask_hi = Operand((uint32_t) -1))
131 {
132 Builder bld(ctx->program, ctx->block);
133 Definition lo_def = ctx->program->wave_size == 32 ? dst : bld.def(v1);
134 Temp thread_id_lo = bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, lo_def, mask_lo, Operand(0u));
135
136 if (ctx->program->wave_size == 32) {
137 return thread_id_lo;
138 } else {
139 Temp thread_id_hi = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32, dst, mask_hi, thread_id_lo);
140 return thread_id_hi;
141 }
142 }
143
144 Temp emit_wqm(isel_context *ctx, Temp src, Temp dst=Temp(0, s1), bool program_needs_wqm = false)
145 {
146 Builder bld(ctx->program, ctx->block);
147
148 if (!dst.id())
149 dst = bld.tmp(src.regClass());
150
151 assert(src.size() == dst.size());
152
153 if (ctx->stage != fragment_fs) {
154 if (!dst.id())
155 return src;
156
157 bld.copy(Definition(dst), src);
158 return dst;
159 }
160
161 bld.pseudo(aco_opcode::p_wqm, Definition(dst), src);
162 ctx->program->needs_wqm |= program_needs_wqm;
163 return dst;
164 }
165
166 static Temp emit_bpermute(isel_context *ctx, Builder &bld, Temp index, Temp data)
167 {
168 if (index.regClass() == s1)
169 return bld.readlane(bld.def(s1), data, index);
170
171 Temp index_x4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), index);
172
173 /* Currently not implemented on GFX6-7 */
174 assert(ctx->options->chip_class >= GFX8);
175
176 if (ctx->options->chip_class <= GFX9 || ctx->program->wave_size == 32) {
177 return bld.ds(aco_opcode::ds_bpermute_b32, bld.def(v1), index_x4, data);
178 }
179
180 /* GFX10, wave64 mode:
181 * The bpermute instruction is limited to half-wave operation, which means that it can't
182 * properly support subgroup shuffle like older generations (or wave32 mode), so we
183 * emulate it here.
184 */
185 if (!ctx->has_gfx10_wave64_bpermute) {
186 ctx->has_gfx10_wave64_bpermute = true;
187 ctx->program->config->num_shared_vgprs = 8; /* Shared VGPRs are allocated in groups of 8 */
188 ctx->program->vgpr_limit -= 4; /* We allocate 8 shared VGPRs, so we'll have 4 fewer normal VGPRs */
189 }
190
191 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
192 Temp lane_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), lane_id);
193 Temp index_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), index);
194 Temp cmp = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm, vcc), lane_is_hi, index_is_hi);
195
196 return bld.reduction(aco_opcode::p_wave64_bpermute, bld.def(v1), bld.def(s2), bld.def(s1, scc),
197 bld.vcc(cmp), Operand(v2.as_linear()), index_x4, data, gfx10_wave64_bpermute);
198 }
199
200 Temp as_vgpr(isel_context *ctx, Temp val)
201 {
202 if (val.type() == RegType::sgpr) {
203 Builder bld(ctx->program, ctx->block);
204 return bld.copy(bld.def(RegType::vgpr, val.size()), val);
205 }
206 assert(val.type() == RegType::vgpr);
207 return val;
208 }
209
210 //assumes a != 0xffffffff
211 void emit_v_div_u32(isel_context *ctx, Temp dst, Temp a, uint32_t b)
212 {
213 assert(b != 0);
214 Builder bld(ctx->program, ctx->block);
215
216 if (util_is_power_of_two_or_zero(b)) {
217 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)util_logbase2(b)), a);
218 return;
219 }
220
221 util_fast_udiv_info info = util_compute_fast_udiv_info(b, 32, 32);
222
223 assert(info.multiplier <= 0xffffffff);
224
225 bool pre_shift = info.pre_shift != 0;
226 bool increment = info.increment != 0;
227 bool multiply = true;
228 bool post_shift = info.post_shift != 0;
229
230 if (!pre_shift && !increment && !multiply && !post_shift) {
231 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), a);
232 return;
233 }
234
235 Temp pre_shift_dst = a;
236 if (pre_shift) {
237 pre_shift_dst = (increment || multiply || post_shift) ? bld.tmp(v1) : dst;
238 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(pre_shift_dst), Operand((uint32_t)info.pre_shift), a);
239 }
240
241 Temp increment_dst = pre_shift_dst;
242 if (increment) {
243 increment_dst = (post_shift || multiply) ? bld.tmp(v1) : dst;
244 bld.vadd32(Definition(increment_dst), Operand((uint32_t) info.increment), pre_shift_dst);
245 }
246
247 Temp multiply_dst = increment_dst;
248 if (multiply) {
249 multiply_dst = post_shift ? bld.tmp(v1) : dst;
250 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(multiply_dst), increment_dst,
251 bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand((uint32_t)info.multiplier)));
252 }
253
254 if (post_shift) {
255 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)info.post_shift), multiply_dst);
256 }
257 }
258
259 void emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, Temp dst)
260 {
261 Builder bld(ctx->program, ctx->block);
262 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(idx));
263 }
264
265
266 Temp emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, RegClass dst_rc)
267 {
268 /* no need to extract the whole vector */
269 if (src.regClass() == dst_rc) {
270 assert(idx == 0);
271 return src;
272 }
273 assert(src.size() > idx);
274 Builder bld(ctx->program, ctx->block);
275 auto it = ctx->allocated_vec.find(src.id());
276 /* the size check needs to be early because elements other than 0 may be garbage */
277 if (it != ctx->allocated_vec.end() && it->second[0].size() == dst_rc.size()) {
278 if (it->second[idx].regClass() == dst_rc) {
279 return it->second[idx];
280 } else {
281 assert(dst_rc.size() == it->second[idx].regClass().size());
282 assert(dst_rc.type() == RegType::vgpr && it->second[idx].type() == RegType::sgpr);
283 return bld.copy(bld.def(dst_rc), it->second[idx]);
284 }
285 }
286
287 if (src.size() == dst_rc.size()) {
288 assert(idx == 0);
289 return bld.copy(bld.def(dst_rc), src);
290 } else {
291 Temp dst = bld.tmp(dst_rc);
292 emit_extract_vector(ctx, src, idx, dst);
293 return dst;
294 }
295 }
296
297 void emit_split_vector(isel_context* ctx, Temp vec_src, unsigned num_components)
298 {
299 if (num_components == 1)
300 return;
301 if (ctx->allocated_vec.find(vec_src.id()) != ctx->allocated_vec.end())
302 return;
303 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_components)};
304 split->operands[0] = Operand(vec_src);
305 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
306 for (unsigned i = 0; i < num_components; i++) {
307 elems[i] = {ctx->program->allocateId(), RegClass(vec_src.type(), vec_src.size() / num_components)};
308 split->definitions[i] = Definition(elems[i]);
309 }
310 ctx->block->instructions.emplace_back(std::move(split));
311 ctx->allocated_vec.emplace(vec_src.id(), elems);
312 }
313
314 /* This vector expansion uses a mask to determine which elements in the new vector
315 * come from the original vector. The other elements are undefined. */
316 void expand_vector(isel_context* ctx, Temp vec_src, Temp dst, unsigned num_components, unsigned mask)
317 {
318 emit_split_vector(ctx, vec_src, util_bitcount(mask));
319
320 if (vec_src == dst)
321 return;
322
323 Builder bld(ctx->program, ctx->block);
324 if (num_components == 1) {
325 if (dst.type() == RegType::sgpr)
326 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec_src);
327 else
328 bld.copy(Definition(dst), vec_src);
329 return;
330 }
331
332 unsigned component_size = dst.size() / num_components;
333 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
334
335 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
336 vec->definitions[0] = Definition(dst);
337 unsigned k = 0;
338 for (unsigned i = 0; i < num_components; i++) {
339 if (mask & (1 << i)) {
340 Temp src = emit_extract_vector(ctx, vec_src, k++, RegClass(vec_src.type(), component_size));
341 if (dst.type() == RegType::sgpr)
342 src = bld.as_uniform(src);
343 vec->operands[i] = Operand(src);
344 } else {
345 vec->operands[i] = Operand(0u);
346 }
347 elems[i] = vec->operands[i].getTemp();
348 }
349 ctx->block->instructions.emplace_back(std::move(vec));
350 ctx->allocated_vec.emplace(dst.id(), elems);
351 }
352
353 Temp bool_to_vector_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s2))
354 {
355 Builder bld(ctx->program, ctx->block);
356 if (!dst.id())
357 dst = bld.tmp(bld.lm);
358
359 assert(val.regClass() == s1);
360 assert(dst.regClass() == bld.lm);
361
362 return bld.sop2(Builder::s_cselect, Definition(dst), Operand((uint32_t) -1), Operand(0u), bld.scc(val));
363 }
364
365 Temp bool_to_scalar_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s1))
366 {
367 Builder bld(ctx->program, ctx->block);
368 if (!dst.id())
369 dst = bld.tmp(s1);
370
371 assert(val.regClass() == bld.lm);
372 assert(dst.regClass() == s1);
373
374 /* if we're currently in WQM mode, ensure that the source is also computed in WQM */
375 Temp tmp = bld.tmp(s1);
376 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.scc(Definition(tmp)), val, Operand(exec, bld.lm));
377 return emit_wqm(ctx, tmp, dst);
378 }
379
380 Temp get_alu_src(struct isel_context *ctx, nir_alu_src src, unsigned size=1)
381 {
382 if (src.src.ssa->num_components == 1 && src.swizzle[0] == 0 && size == 1)
383 return get_ssa_temp(ctx, src.src.ssa);
384
385 if (src.src.ssa->num_components == size) {
386 bool identity_swizzle = true;
387 for (unsigned i = 0; identity_swizzle && i < size; i++) {
388 if (src.swizzle[i] != i)
389 identity_swizzle = false;
390 }
391 if (identity_swizzle)
392 return get_ssa_temp(ctx, src.src.ssa);
393 }
394
395 Temp vec = get_ssa_temp(ctx, src.src.ssa);
396 unsigned elem_size = vec.size() / src.src.ssa->num_components;
397 assert(elem_size > 0); /* TODO: 8 and 16-bit vectors not supported */
398 assert(vec.size() % elem_size == 0);
399
400 RegClass elem_rc = RegClass(vec.type(), elem_size);
401 if (size == 1) {
402 return emit_extract_vector(ctx, vec, src.swizzle[0], elem_rc);
403 } else {
404 assert(size <= 4);
405 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
406 aco_ptr<Pseudo_instruction> vec_instr{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
407 for (unsigned i = 0; i < size; ++i) {
408 elems[i] = emit_extract_vector(ctx, vec, src.swizzle[i], elem_rc);
409 vec_instr->operands[i] = Operand{elems[i]};
410 }
411 Temp dst{ctx->program->allocateId(), RegClass(vec.type(), elem_size * size)};
412 vec_instr->definitions[0] = Definition(dst);
413 ctx->block->instructions.emplace_back(std::move(vec_instr));
414 ctx->allocated_vec.emplace(dst.id(), elems);
415 return dst;
416 }
417 }
418
419 Temp convert_pointer_to_64_bit(isel_context *ctx, Temp ptr)
420 {
421 if (ptr.size() == 2)
422 return ptr;
423 Builder bld(ctx->program, ctx->block);
424 if (ptr.type() == RegType::vgpr)
425 ptr = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), ptr);
426 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s2),
427 ptr, Operand((unsigned)ctx->options->address32_hi));
428 }
429
430 void emit_sop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst, bool writes_scc)
431 {
432 aco_ptr<SOP2_instruction> sop2{create_instruction<SOP2_instruction>(op, Format::SOP2, 2, writes_scc ? 2 : 1)};
433 sop2->operands[0] = Operand(get_alu_src(ctx, instr->src[0]));
434 sop2->operands[1] = Operand(get_alu_src(ctx, instr->src[1]));
435 sop2->definitions[0] = Definition(dst);
436 if (writes_scc)
437 sop2->definitions[1] = Definition(ctx->program->allocateId(), scc, s1);
438 ctx->block->instructions.emplace_back(std::move(sop2));
439 }
440
441 void emit_vop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
442 bool commutative, bool swap_srcs=false, bool flush_denorms = false)
443 {
444 Builder bld(ctx->program, ctx->block);
445 Temp src0 = get_alu_src(ctx, instr->src[swap_srcs ? 1 : 0]);
446 Temp src1 = get_alu_src(ctx, instr->src[swap_srcs ? 0 : 1]);
447 if (src1.type() == RegType::sgpr) {
448 if (commutative && src0.type() == RegType::vgpr) {
449 Temp t = src0;
450 src0 = src1;
451 src1 = t;
452 } else if (src0.type() == RegType::vgpr &&
453 op != aco_opcode::v_madmk_f32 &&
454 op != aco_opcode::v_madak_f32 &&
455 op != aco_opcode::v_madmk_f16 &&
456 op != aco_opcode::v_madak_f16) {
457 /* If the instruction is not commutative, we emit a VOP3A instruction */
458 bld.vop2_e64(op, Definition(dst), src0, src1);
459 return;
460 } else {
461 src1 = bld.copy(bld.def(RegType::vgpr, src1.size()), src1); //TODO: as_vgpr
462 }
463 }
464
465 if (flush_denorms && ctx->program->chip_class < GFX9) {
466 assert(dst.size() == 1);
467 Temp tmp = bld.vop2(op, bld.def(v1), src0, src1);
468 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
469 } else {
470 bld.vop2(op, Definition(dst), src0, src1);
471 }
472 }
473
474 void emit_vop3a_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
475 bool flush_denorms = false)
476 {
477 Temp src0 = get_alu_src(ctx, instr->src[0]);
478 Temp src1 = get_alu_src(ctx, instr->src[1]);
479 Temp src2 = get_alu_src(ctx, instr->src[2]);
480
481 /* ensure that the instruction has at most 1 sgpr operand
482 * The optimizer will inline constants for us */
483 if (src0.type() == RegType::sgpr && src1.type() == RegType::sgpr)
484 src0 = as_vgpr(ctx, src0);
485 if (src1.type() == RegType::sgpr && src2.type() == RegType::sgpr)
486 src1 = as_vgpr(ctx, src1);
487 if (src2.type() == RegType::sgpr && src0.type() == RegType::sgpr)
488 src2 = as_vgpr(ctx, src2);
489
490 Builder bld(ctx->program, ctx->block);
491 if (flush_denorms && ctx->program->chip_class < GFX9) {
492 assert(dst.size() == 1);
493 Temp tmp = bld.vop3(op, Definition(dst), src0, src1, src2);
494 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
495 } else {
496 bld.vop3(op, Definition(dst), src0, src1, src2);
497 }
498 }
499
500 void emit_vop1_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
501 {
502 Builder bld(ctx->program, ctx->block);
503 bld.vop1(op, Definition(dst), get_alu_src(ctx, instr->src[0]));
504 }
505
506 void emit_vopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
507 {
508 Temp src0 = get_alu_src(ctx, instr->src[0]);
509 Temp src1 = get_alu_src(ctx, instr->src[1]);
510 assert(src0.size() == src1.size());
511
512 aco_ptr<Instruction> vopc;
513 if (src1.type() == RegType::sgpr) {
514 if (src0.type() == RegType::vgpr) {
515 /* to swap the operands, we might also have to change the opcode */
516 switch (op) {
517 case aco_opcode::v_cmp_lt_f32:
518 op = aco_opcode::v_cmp_gt_f32;
519 break;
520 case aco_opcode::v_cmp_ge_f32:
521 op = aco_opcode::v_cmp_le_f32;
522 break;
523 case aco_opcode::v_cmp_lt_i32:
524 op = aco_opcode::v_cmp_gt_i32;
525 break;
526 case aco_opcode::v_cmp_ge_i32:
527 op = aco_opcode::v_cmp_le_i32;
528 break;
529 case aco_opcode::v_cmp_lt_u32:
530 op = aco_opcode::v_cmp_gt_u32;
531 break;
532 case aco_opcode::v_cmp_ge_u32:
533 op = aco_opcode::v_cmp_le_u32;
534 break;
535 case aco_opcode::v_cmp_lt_f64:
536 op = aco_opcode::v_cmp_gt_f64;
537 break;
538 case aco_opcode::v_cmp_ge_f64:
539 op = aco_opcode::v_cmp_le_f64;
540 break;
541 case aco_opcode::v_cmp_lt_i64:
542 op = aco_opcode::v_cmp_gt_i64;
543 break;
544 case aco_opcode::v_cmp_ge_i64:
545 op = aco_opcode::v_cmp_le_i64;
546 break;
547 case aco_opcode::v_cmp_lt_u64:
548 op = aco_opcode::v_cmp_gt_u64;
549 break;
550 case aco_opcode::v_cmp_ge_u64:
551 op = aco_opcode::v_cmp_le_u64;
552 break;
553 default: /* eq and ne are commutative */
554 break;
555 }
556 Temp t = src0;
557 src0 = src1;
558 src1 = t;
559 } else {
560 src1 = as_vgpr(ctx, src1);
561 }
562 }
563
564 Builder bld(ctx->program, ctx->block);
565 bld.vopc(op, bld.hint_vcc(Definition(dst)), src0, src1);
566 }
567
568 void emit_sopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
569 {
570 Temp src0 = get_alu_src(ctx, instr->src[0]);
571 Temp src1 = get_alu_src(ctx, instr->src[1]);
572 Builder bld(ctx->program, ctx->block);
573
574 assert(dst.regClass() == bld.lm);
575 assert(src0.type() == RegType::sgpr);
576 assert(src1.type() == RegType::sgpr);
577 assert(src0.regClass() == src1.regClass());
578
579 /* Emit the SALU comparison instruction */
580 Temp cmp = bld.sopc(op, bld.scc(bld.def(s1)), src0, src1);
581 /* Turn the result into a per-lane bool */
582 bool_to_vector_condition(ctx, cmp, dst);
583 }
584
585 void emit_comparison(isel_context *ctx, nir_alu_instr *instr, Temp dst,
586 aco_opcode v32_op, aco_opcode v64_op, aco_opcode s32_op = aco_opcode::num_opcodes, aco_opcode s64_op = aco_opcode::num_opcodes)
587 {
588 aco_opcode s_op = instr->src[0].src.ssa->bit_size == 64 ? s64_op : s32_op;
589 aco_opcode v_op = instr->src[0].src.ssa->bit_size == 64 ? v64_op : v32_op;
590 bool divergent_vals = ctx->divergent_vals[instr->dest.dest.ssa.index];
591 bool use_valu = s_op == aco_opcode::num_opcodes ||
592 divergent_vals ||
593 ctx->allocated[instr->src[0].src.ssa->index].type() == RegType::vgpr ||
594 ctx->allocated[instr->src[1].src.ssa->index].type() == RegType::vgpr;
595 aco_opcode op = use_valu ? v_op : s_op;
596 assert(op != aco_opcode::num_opcodes);
597 assert(dst.regClass() == ctx->program->lane_mask);
598
599 if (use_valu)
600 emit_vopc_instruction(ctx, instr, op, dst);
601 else
602 emit_sopc_instruction(ctx, instr, op, dst);
603 }
604
605 void emit_boolean_logic(isel_context *ctx, nir_alu_instr *instr, Builder::WaveSpecificOpcode op, Temp dst)
606 {
607 Builder bld(ctx->program, ctx->block);
608 Temp src0 = get_alu_src(ctx, instr->src[0]);
609 Temp src1 = get_alu_src(ctx, instr->src[1]);
610
611 assert(dst.regClass() == bld.lm);
612 assert(src0.regClass() == bld.lm);
613 assert(src1.regClass() == bld.lm);
614
615 bld.sop2(op, Definition(dst), bld.def(s1, scc), src0, src1);
616 }
617
618 void emit_bcsel(isel_context *ctx, nir_alu_instr *instr, Temp dst)
619 {
620 Builder bld(ctx->program, ctx->block);
621 Temp cond = get_alu_src(ctx, instr->src[0]);
622 Temp then = get_alu_src(ctx, instr->src[1]);
623 Temp els = get_alu_src(ctx, instr->src[2]);
624
625 assert(cond.regClass() == bld.lm);
626
627 if (dst.type() == RegType::vgpr) {
628 aco_ptr<Instruction> bcsel;
629 if (dst.size() == 1) {
630 then = as_vgpr(ctx, then);
631 els = as_vgpr(ctx, els);
632
633 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), els, then, cond);
634 } else if (dst.size() == 2) {
635 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
636 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), then);
637 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
638 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), els);
639
640 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, cond);
641 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, cond);
642
643 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
644 } else {
645 fprintf(stderr, "Unimplemented NIR instr bit size: ");
646 nir_print_instr(&instr->instr, stderr);
647 fprintf(stderr, "\n");
648 }
649 return;
650 }
651
652 if (instr->dest.dest.ssa.bit_size == 1) {
653 assert(dst.regClass() == bld.lm);
654 assert(then.regClass() == bld.lm);
655 assert(els.regClass() == bld.lm);
656 }
657
658 if (!ctx->divergent_vals[instr->src[0].src.ssa->index]) { /* uniform condition and values in sgpr */
659 if (dst.regClass() == s1 || dst.regClass() == s2) {
660 assert((then.regClass() == s1 || then.regClass() == s2) && els.regClass() == then.regClass());
661 assert(dst.size() == then.size());
662 aco_opcode op = dst.regClass() == s1 ? aco_opcode::s_cselect_b32 : aco_opcode::s_cselect_b64;
663 bld.sop2(op, Definition(dst), then, els, bld.scc(bool_to_scalar_condition(ctx, cond)));
664 } else {
665 fprintf(stderr, "Unimplemented uniform bcsel bit size: ");
666 nir_print_instr(&instr->instr, stderr);
667 fprintf(stderr, "\n");
668 }
669 return;
670 }
671
672 /* divergent boolean bcsel
673 * this implements bcsel on bools: dst = s0 ? s1 : s2
674 * are going to be: dst = (s0 & s1) | (~s0 & s2) */
675 assert(instr->dest.dest.ssa.bit_size == 1);
676
677 if (cond.id() != then.id())
678 then = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), cond, then);
679
680 if (cond.id() == els.id())
681 bld.sop1(Builder::s_mov, Definition(dst), then);
682 else
683 bld.sop2(Builder::s_or, Definition(dst), bld.def(s1, scc), then,
684 bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), els, cond));
685 }
686
687 void emit_scaled_op(isel_context *ctx, Builder& bld, Definition dst, Temp val,
688 aco_opcode op, uint32_t undo)
689 {
690 /* multiply by 16777216 to handle denormals */
691 Temp is_denormal = bld.vopc(aco_opcode::v_cmp_class_f32, bld.hint_vcc(bld.def(bld.lm)),
692 as_vgpr(ctx, val), bld.copy(bld.def(v1), Operand((1u << 7) | (1u << 4))));
693 Temp scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x4b800000u), val);
694 scaled = bld.vop1(op, bld.def(v1), scaled);
695 scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(undo), scaled);
696
697 Temp not_scaled = bld.vop1(op, bld.def(v1), val);
698
699 bld.vop2(aco_opcode::v_cndmask_b32, dst, not_scaled, scaled, is_denormal);
700 }
701
702 void emit_rcp(isel_context *ctx, Builder& bld, Definition dst, Temp val)
703 {
704 if (ctx->block->fp_mode.denorm32 == 0) {
705 bld.vop1(aco_opcode::v_rcp_f32, dst, val);
706 return;
707 }
708
709 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rcp_f32, 0x4b800000u);
710 }
711
712 void emit_rsq(isel_context *ctx, Builder& bld, Definition dst, Temp val)
713 {
714 if (ctx->block->fp_mode.denorm32 == 0) {
715 bld.vop1(aco_opcode::v_rsq_f32, dst, val);
716 return;
717 }
718
719 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rsq_f32, 0x45800000u);
720 }
721
722 void emit_sqrt(isel_context *ctx, Builder& bld, Definition dst, Temp val)
723 {
724 if (ctx->block->fp_mode.denorm32 == 0) {
725 bld.vop1(aco_opcode::v_sqrt_f32, dst, val);
726 return;
727 }
728
729 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_sqrt_f32, 0x39800000u);
730 }
731
732 void emit_log2(isel_context *ctx, Builder& bld, Definition dst, Temp val)
733 {
734 if (ctx->block->fp_mode.denorm32 == 0) {
735 bld.vop1(aco_opcode::v_log_f32, dst, val);
736 return;
737 }
738
739 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_log_f32, 0xc1c00000u);
740 }
741
742 Temp emit_trunc_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
743 {
744 if (ctx->options->chip_class >= GFX7)
745 return bld.vop1(aco_opcode::v_trunc_f64, Definition(dst), val);
746
747 /* GFX6 doesn't support V_TRUNC_F64, lower it. */
748 /* TODO: create more efficient code! */
749 if (val.type() == RegType::sgpr)
750 val = as_vgpr(ctx, val);
751
752 /* Split the input value. */
753 Temp val_lo = bld.tmp(v1), val_hi = bld.tmp(v1);
754 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
755
756 /* Extract the exponent and compute the unbiased value. */
757 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f64, bld.def(v1), val);
758
759 /* Extract the fractional part. */
760 Temp fract_mask = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x000fffffu));
761 fract_mask = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), fract_mask, exponent);
762
763 Temp fract_mask_lo = bld.tmp(v1), fract_mask_hi = bld.tmp(v1);
764 bld.pseudo(aco_opcode::p_split_vector, Definition(fract_mask_lo), Definition(fract_mask_hi), fract_mask);
765
766 Temp fract_lo = bld.tmp(v1), fract_hi = bld.tmp(v1);
767 Temp tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_lo);
768 fract_lo = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_lo, tmp);
769 tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_hi);
770 fract_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_hi, tmp);
771
772 /* Get the sign bit. */
773 Temp sign = bld.vop2(aco_opcode::v_ashr_i32, bld.def(v1), Operand(31u), val_hi);
774
775 /* Decide the operation to apply depending on the unbiased exponent. */
776 Temp exp_lt0 = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)), exponent, Operand(0u));
777 Temp dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_lo, bld.copy(bld.def(v1), Operand(0u)), exp_lt0);
778 Temp dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_hi, sign, exp_lt0);
779 Temp exp_gt51 = bld.vopc_e64(aco_opcode::v_cmp_gt_i32, bld.def(s2), exponent, Operand(51u));
780 dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_lo, val_lo, exp_gt51);
781 dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_hi, val_hi, exp_gt51);
782
783 return bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst_lo, dst_hi);
784 }
785
786 Temp emit_floor_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
787 {
788 if (ctx->options->chip_class >= GFX7)
789 return bld.vop1(aco_opcode::v_floor_f64, Definition(dst), val);
790
791 /* GFX6 doesn't support V_FLOOR_F64, lower it. */
792 Temp src0 = as_vgpr(ctx, val);
793
794 Temp mask = bld.copy(bld.def(s1), Operand(3u)); /* isnan */
795 Temp min_val = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(-1u), Operand(0x3fefffffu));
796
797 Temp isnan = bld.vopc_e64(aco_opcode::v_cmp_class_f64, bld.hint_vcc(bld.def(bld.lm)), src0, mask);
798 Temp fract = bld.vop1(aco_opcode::v_fract_f64, bld.def(v2), src0);
799 Temp min = bld.vop3(aco_opcode::v_min_f64, bld.def(v2), fract, min_val);
800
801 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
802 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), src0);
803 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
804 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), min);
805
806 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, isnan);
807 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, isnan);
808
809 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), dst0, dst1);
810
811 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src0, v);
812 static_cast<VOP3A_instruction*>(add)->neg[1] = true;
813
814 return add->definitions[0].getTemp();
815 }
816
817 void visit_alu_instr(isel_context *ctx, nir_alu_instr *instr)
818 {
819 if (!instr->dest.dest.is_ssa) {
820 fprintf(stderr, "nir alu dst not in ssa: ");
821 nir_print_instr(&instr->instr, stderr);
822 fprintf(stderr, "\n");
823 abort();
824 }
825 Builder bld(ctx->program, ctx->block);
826 Temp dst = get_ssa_temp(ctx, &instr->dest.dest.ssa);
827 switch(instr->op) {
828 case nir_op_vec2:
829 case nir_op_vec3:
830 case nir_op_vec4: {
831 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
832 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.dest.ssa.num_components, 1)};
833 for (unsigned i = 0; i < instr->dest.dest.ssa.num_components; ++i) {
834 elems[i] = get_alu_src(ctx, instr->src[i]);
835 vec->operands[i] = Operand{elems[i]};
836 }
837 vec->definitions[0] = Definition(dst);
838 ctx->block->instructions.emplace_back(std::move(vec));
839 ctx->allocated_vec.emplace(dst.id(), elems);
840 break;
841 }
842 case nir_op_mov: {
843 Temp src = get_alu_src(ctx, instr->src[0]);
844 aco_ptr<Instruction> mov;
845 if (dst.type() == RegType::sgpr) {
846 if (src.type() == RegType::vgpr)
847 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
848 else if (src.regClass() == s1)
849 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
850 else if (src.regClass() == s2)
851 bld.sop1(aco_opcode::s_mov_b64, Definition(dst), src);
852 else
853 unreachable("wrong src register class for nir_op_imov");
854 } else if (dst.regClass() == v1) {
855 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), src);
856 } else if (dst.regClass() == v2) {
857 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
858 } else {
859 nir_print_instr(&instr->instr, stderr);
860 unreachable("Should have been lowered to scalar.");
861 }
862 break;
863 }
864 case nir_op_inot: {
865 Temp src = get_alu_src(ctx, instr->src[0]);
866 if (instr->dest.dest.ssa.bit_size == 1) {
867 assert(src.regClass() == bld.lm);
868 assert(dst.regClass() == bld.lm);
869 /* Don't use s_andn2 here, this allows the optimizer to make a better decision */
870 Temp tmp = bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), src);
871 bld.sop2(Builder::s_and, Definition(dst), bld.def(s1, scc), tmp, Operand(exec, bld.lm));
872 } else if (dst.regClass() == v1) {
873 emit_vop1_instruction(ctx, instr, aco_opcode::v_not_b32, dst);
874 } else if (dst.type() == RegType::sgpr) {
875 aco_opcode opcode = dst.size() == 1 ? aco_opcode::s_not_b32 : aco_opcode::s_not_b64;
876 bld.sop1(opcode, Definition(dst), bld.def(s1, scc), src);
877 } else {
878 fprintf(stderr, "Unimplemented NIR instr bit size: ");
879 nir_print_instr(&instr->instr, stderr);
880 fprintf(stderr, "\n");
881 }
882 break;
883 }
884 case nir_op_ineg: {
885 Temp src = get_alu_src(ctx, instr->src[0]);
886 if (dst.regClass() == v1) {
887 bld.vsub32(Definition(dst), Operand(0u), Operand(src));
888 } else if (dst.regClass() == s1) {
889 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand((uint32_t) -1), src);
890 } else if (dst.size() == 2) {
891 Temp src0 = bld.tmp(dst.type(), 1);
892 Temp src1 = bld.tmp(dst.type(), 1);
893 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
894
895 if (dst.regClass() == s2) {
896 Temp carry = bld.tmp(s1);
897 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), Operand(0u), src0);
898 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), src1, carry);
899 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
900 } else {
901 Temp lower = bld.tmp(v1);
902 Temp borrow = bld.vsub32(Definition(lower), Operand(0u), src0, true).def(1).getTemp();
903 Temp upper = bld.vsub32(bld.def(v1), Operand(0u), src1, false, borrow);
904 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
905 }
906 } else {
907 fprintf(stderr, "Unimplemented NIR instr bit size: ");
908 nir_print_instr(&instr->instr, stderr);
909 fprintf(stderr, "\n");
910 }
911 break;
912 }
913 case nir_op_iabs: {
914 if (dst.regClass() == s1) {
915 bld.sop1(aco_opcode::s_abs_i32, Definition(dst), bld.def(s1, scc), get_alu_src(ctx, instr->src[0]));
916 } else if (dst.regClass() == v1) {
917 Temp src = get_alu_src(ctx, instr->src[0]);
918 bld.vop2(aco_opcode::v_max_i32, Definition(dst), src, bld.vsub32(bld.def(v1), Operand(0u), src));
919 } else {
920 fprintf(stderr, "Unimplemented NIR instr bit size: ");
921 nir_print_instr(&instr->instr, stderr);
922 fprintf(stderr, "\n");
923 }
924 break;
925 }
926 case nir_op_isign: {
927 Temp src = get_alu_src(ctx, instr->src[0]);
928 if (dst.regClass() == s1) {
929 Temp tmp = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
930 Temp gtz = bld.sopc(aco_opcode::s_cmp_gt_i32, bld.def(s1, scc), src, Operand(0u));
931 bld.sop2(aco_opcode::s_add_i32, Definition(dst), bld.def(s1, scc), gtz, tmp);
932 } else if (dst.regClass() == s2) {
933 Temp neg = bld.sop2(aco_opcode::s_ashr_i64, bld.def(s2), bld.def(s1, scc), src, Operand(63u));
934 Temp neqz;
935 if (ctx->program->chip_class >= GFX8)
936 neqz = bld.sopc(aco_opcode::s_cmp_lg_u64, bld.def(s1, scc), src, Operand(0u));
937 else
938 neqz = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), src, Operand(0u)).def(1).getTemp();
939 /* SCC gets zero-extended to 64 bit */
940 bld.sop2(aco_opcode::s_or_b64, Definition(dst), bld.def(s1, scc), neg, bld.scc(neqz));
941 } else if (dst.regClass() == v1) {
942 Temp tmp = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
943 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
944 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(1u), tmp, gtz);
945 } else if (dst.regClass() == v2) {
946 Temp upper = emit_extract_vector(ctx, src, 1, v1);
947 Temp neg = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), upper);
948 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
949 Temp lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(1u), neg, gtz);
950 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), neg, gtz);
951 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
952 } else {
953 fprintf(stderr, "Unimplemented NIR instr bit size: ");
954 nir_print_instr(&instr->instr, stderr);
955 fprintf(stderr, "\n");
956 }
957 break;
958 }
959 case nir_op_imax: {
960 if (dst.regClass() == v1) {
961 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_i32, dst, true);
962 } else if (dst.regClass() == s1) {
963 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_i32, dst, true);
964 } else {
965 fprintf(stderr, "Unimplemented NIR instr bit size: ");
966 nir_print_instr(&instr->instr, stderr);
967 fprintf(stderr, "\n");
968 }
969 break;
970 }
971 case nir_op_umax: {
972 if (dst.regClass() == v1) {
973 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_u32, dst, true);
974 } else if (dst.regClass() == s1) {
975 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_u32, dst, true);
976 } else {
977 fprintf(stderr, "Unimplemented NIR instr bit size: ");
978 nir_print_instr(&instr->instr, stderr);
979 fprintf(stderr, "\n");
980 }
981 break;
982 }
983 case nir_op_imin: {
984 if (dst.regClass() == v1) {
985 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_i32, dst, true);
986 } else if (dst.regClass() == s1) {
987 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_i32, dst, true);
988 } else {
989 fprintf(stderr, "Unimplemented NIR instr bit size: ");
990 nir_print_instr(&instr->instr, stderr);
991 fprintf(stderr, "\n");
992 }
993 break;
994 }
995 case nir_op_umin: {
996 if (dst.regClass() == v1) {
997 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_u32, dst, true);
998 } else if (dst.regClass() == s1) {
999 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_u32, dst, true);
1000 } else {
1001 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1002 nir_print_instr(&instr->instr, stderr);
1003 fprintf(stderr, "\n");
1004 }
1005 break;
1006 }
1007 case nir_op_ior: {
1008 if (instr->dest.dest.ssa.bit_size == 1) {
1009 emit_boolean_logic(ctx, instr, Builder::s_or, dst);
1010 } else if (dst.regClass() == v1) {
1011 emit_vop2_instruction(ctx, instr, aco_opcode::v_or_b32, dst, true);
1012 } else if (dst.regClass() == s1) {
1013 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b32, dst, true);
1014 } else if (dst.regClass() == s2) {
1015 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b64, dst, true);
1016 } else {
1017 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1018 nir_print_instr(&instr->instr, stderr);
1019 fprintf(stderr, "\n");
1020 }
1021 break;
1022 }
1023 case nir_op_iand: {
1024 if (instr->dest.dest.ssa.bit_size == 1) {
1025 emit_boolean_logic(ctx, instr, Builder::s_and, dst);
1026 } else if (dst.regClass() == v1) {
1027 emit_vop2_instruction(ctx, instr, aco_opcode::v_and_b32, dst, true);
1028 } else if (dst.regClass() == s1) {
1029 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b32, dst, true);
1030 } else if (dst.regClass() == s2) {
1031 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b64, dst, true);
1032 } else {
1033 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1034 nir_print_instr(&instr->instr, stderr);
1035 fprintf(stderr, "\n");
1036 }
1037 break;
1038 }
1039 case nir_op_ixor: {
1040 if (instr->dest.dest.ssa.bit_size == 1) {
1041 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
1042 } else if (dst.regClass() == v1) {
1043 emit_vop2_instruction(ctx, instr, aco_opcode::v_xor_b32, dst, true);
1044 } else if (dst.regClass() == s1) {
1045 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b32, dst, true);
1046 } else if (dst.regClass() == s2) {
1047 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b64, dst, true);
1048 } else {
1049 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1050 nir_print_instr(&instr->instr, stderr);
1051 fprintf(stderr, "\n");
1052 }
1053 break;
1054 }
1055 case nir_op_ushr: {
1056 if (dst.regClass() == v1) {
1057 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshrrev_b32, dst, false, true);
1058 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1059 bld.vop3(aco_opcode::v_lshrrev_b64, Definition(dst),
1060 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1061 } else if (dst.regClass() == v2) {
1062 bld.vop3(aco_opcode::v_lshr_b64, Definition(dst),
1063 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1064 } else if (dst.regClass() == s2) {
1065 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b64, dst, true);
1066 } else if (dst.regClass() == s1) {
1067 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b32, dst, true);
1068 } else {
1069 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1070 nir_print_instr(&instr->instr, stderr);
1071 fprintf(stderr, "\n");
1072 }
1073 break;
1074 }
1075 case nir_op_ishl: {
1076 if (dst.regClass() == v1) {
1077 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshlrev_b32, dst, false, true);
1078 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1079 bld.vop3(aco_opcode::v_lshlrev_b64, Definition(dst),
1080 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1081 } else if (dst.regClass() == v2) {
1082 bld.vop3(aco_opcode::v_lshl_b64, Definition(dst),
1083 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1084 } else if (dst.regClass() == s1) {
1085 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b32, dst, true);
1086 } else if (dst.regClass() == s2) {
1087 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b64, dst, true);
1088 } else {
1089 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1090 nir_print_instr(&instr->instr, stderr);
1091 fprintf(stderr, "\n");
1092 }
1093 break;
1094 }
1095 case nir_op_ishr: {
1096 if (dst.regClass() == v1) {
1097 emit_vop2_instruction(ctx, instr, aco_opcode::v_ashrrev_i32, dst, false, true);
1098 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1099 bld.vop3(aco_opcode::v_ashrrev_i64, Definition(dst),
1100 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1101 } else if (dst.regClass() == v2) {
1102 bld.vop3(aco_opcode::v_ashr_i64, Definition(dst),
1103 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1104 } else if (dst.regClass() == s1) {
1105 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i32, dst, true);
1106 } else if (dst.regClass() == s2) {
1107 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i64, dst, true);
1108 } else {
1109 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1110 nir_print_instr(&instr->instr, stderr);
1111 fprintf(stderr, "\n");
1112 }
1113 break;
1114 }
1115 case nir_op_find_lsb: {
1116 Temp src = get_alu_src(ctx, instr->src[0]);
1117 if (src.regClass() == s1) {
1118 bld.sop1(aco_opcode::s_ff1_i32_b32, Definition(dst), src);
1119 } else if (src.regClass() == v1) {
1120 emit_vop1_instruction(ctx, instr, aco_opcode::v_ffbl_b32, dst);
1121 } else if (src.regClass() == s2) {
1122 bld.sop1(aco_opcode::s_ff1_i32_b64, Definition(dst), src);
1123 } else {
1124 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1125 nir_print_instr(&instr->instr, stderr);
1126 fprintf(stderr, "\n");
1127 }
1128 break;
1129 }
1130 case nir_op_ufind_msb:
1131 case nir_op_ifind_msb: {
1132 Temp src = get_alu_src(ctx, instr->src[0]);
1133 if (src.regClass() == s1 || src.regClass() == s2) {
1134 aco_opcode op = src.regClass() == s2 ?
1135 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b64 : aco_opcode::s_flbit_i32_i64) :
1136 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b32 : aco_opcode::s_flbit_i32);
1137 Temp msb_rev = bld.sop1(op, bld.def(s1), src);
1138
1139 Builder::Result sub = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc),
1140 Operand(src.size() * 32u - 1u), msb_rev);
1141 Temp msb = sub.def(0).getTemp();
1142 Temp carry = sub.def(1).getTemp();
1143
1144 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t)-1), msb, bld.scc(carry));
1145 } else if (src.regClass() == v1) {
1146 aco_opcode op = instr->op == nir_op_ufind_msb ? aco_opcode::v_ffbh_u32 : aco_opcode::v_ffbh_i32;
1147 Temp msb_rev = bld.tmp(v1);
1148 emit_vop1_instruction(ctx, instr, op, msb_rev);
1149 Temp msb = bld.tmp(v1);
1150 Temp carry = bld.vsub32(Definition(msb), Operand(31u), Operand(msb_rev), true).def(1).getTemp();
1151 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), msb, Operand((uint32_t)-1), carry);
1152 } else {
1153 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1154 nir_print_instr(&instr->instr, stderr);
1155 fprintf(stderr, "\n");
1156 }
1157 break;
1158 }
1159 case nir_op_bitfield_reverse: {
1160 if (dst.regClass() == s1) {
1161 bld.sop1(aco_opcode::s_brev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1162 } else if (dst.regClass() == v1) {
1163 bld.vop1(aco_opcode::v_bfrev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1164 } else {
1165 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1166 nir_print_instr(&instr->instr, stderr);
1167 fprintf(stderr, "\n");
1168 }
1169 break;
1170 }
1171 case nir_op_iadd: {
1172 if (dst.regClass() == s1) {
1173 emit_sop2_instruction(ctx, instr, aco_opcode::s_add_u32, dst, true);
1174 break;
1175 }
1176
1177 Temp src0 = get_alu_src(ctx, instr->src[0]);
1178 Temp src1 = get_alu_src(ctx, instr->src[1]);
1179 if (dst.regClass() == v1) {
1180 bld.vadd32(Definition(dst), Operand(src0), Operand(src1));
1181 break;
1182 }
1183
1184 assert(src0.size() == 2 && src1.size() == 2);
1185 Temp src00 = bld.tmp(src0.type(), 1);
1186 Temp src01 = bld.tmp(dst.type(), 1);
1187 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1188 Temp src10 = bld.tmp(src1.type(), 1);
1189 Temp src11 = bld.tmp(dst.type(), 1);
1190 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1191
1192 if (dst.regClass() == s2) {
1193 Temp carry = bld.tmp(s1);
1194 Temp dst0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1195 Temp dst1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), src01, src11, bld.scc(carry));
1196 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1197 } else if (dst.regClass() == v2) {
1198 Temp dst0 = bld.tmp(v1);
1199 Temp carry = bld.vadd32(Definition(dst0), src00, src10, true).def(1).getTemp();
1200 Temp dst1 = bld.vadd32(bld.def(v1), src01, src11, false, carry);
1201 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1202 } else {
1203 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1204 nir_print_instr(&instr->instr, stderr);
1205 fprintf(stderr, "\n");
1206 }
1207 break;
1208 }
1209 case nir_op_uadd_sat: {
1210 Temp src0 = get_alu_src(ctx, instr->src[0]);
1211 Temp src1 = get_alu_src(ctx, instr->src[1]);
1212 if (dst.regClass() == s1) {
1213 Temp tmp = bld.tmp(s1), carry = bld.tmp(s1);
1214 bld.sop2(aco_opcode::s_add_u32, Definition(tmp), bld.scc(Definition(carry)),
1215 src0, src1);
1216 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t) -1), tmp, bld.scc(carry));
1217 } else if (dst.regClass() == v1) {
1218 if (ctx->options->chip_class >= GFX9) {
1219 aco_ptr<VOP3A_instruction> add{create_instruction<VOP3A_instruction>(aco_opcode::v_add_u32, asVOP3(Format::VOP2), 2, 1)};
1220 add->operands[0] = Operand(src0);
1221 add->operands[1] = Operand(src1);
1222 add->definitions[0] = Definition(dst);
1223 add->clamp = 1;
1224 ctx->block->instructions.emplace_back(std::move(add));
1225 } else {
1226 if (src1.regClass() != v1)
1227 std::swap(src0, src1);
1228 assert(src1.regClass() == v1);
1229 Temp tmp = bld.tmp(v1);
1230 Temp carry = bld.vadd32(Definition(tmp), src0, src1, true).def(1).getTemp();
1231 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), tmp, Operand((uint32_t) -1), carry);
1232 }
1233 } else {
1234 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1235 nir_print_instr(&instr->instr, stderr);
1236 fprintf(stderr, "\n");
1237 }
1238 break;
1239 }
1240 case nir_op_uadd_carry: {
1241 Temp src0 = get_alu_src(ctx, instr->src[0]);
1242 Temp src1 = get_alu_src(ctx, instr->src[1]);
1243 if (dst.regClass() == s1) {
1244 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1245 break;
1246 }
1247 if (dst.regClass() == v1) {
1248 Temp carry = bld.vadd32(bld.def(v1), src0, src1, true).def(1).getTemp();
1249 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), carry);
1250 break;
1251 }
1252
1253 Temp src00 = bld.tmp(src0.type(), 1);
1254 Temp src01 = bld.tmp(dst.type(), 1);
1255 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1256 Temp src10 = bld.tmp(src1.type(), 1);
1257 Temp src11 = bld.tmp(dst.type(), 1);
1258 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1259 if (dst.regClass() == s2) {
1260 Temp carry = bld.tmp(s1);
1261 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1262 carry = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(carry)).def(1).getTemp();
1263 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1264 } else if (dst.regClass() == v2) {
1265 Temp carry = bld.vadd32(bld.def(v1), src00, src10, true).def(1).getTemp();
1266 carry = bld.vadd32(bld.def(v1), src01, src11, true, carry).def(1).getTemp();
1267 carry = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), carry);
1268 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1269 } else {
1270 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1271 nir_print_instr(&instr->instr, stderr);
1272 fprintf(stderr, "\n");
1273 }
1274 break;
1275 }
1276 case nir_op_isub: {
1277 if (dst.regClass() == s1) {
1278 emit_sop2_instruction(ctx, instr, aco_opcode::s_sub_i32, dst, true);
1279 break;
1280 }
1281
1282 Temp src0 = get_alu_src(ctx, instr->src[0]);
1283 Temp src1 = get_alu_src(ctx, instr->src[1]);
1284 if (dst.regClass() == v1) {
1285 bld.vsub32(Definition(dst), src0, src1);
1286 break;
1287 }
1288
1289 Temp src00 = bld.tmp(src0.type(), 1);
1290 Temp src01 = bld.tmp(dst.type(), 1);
1291 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1292 Temp src10 = bld.tmp(src1.type(), 1);
1293 Temp src11 = bld.tmp(dst.type(), 1);
1294 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1295 if (dst.regClass() == s2) {
1296 Temp carry = bld.tmp(s1);
1297 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1298 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), src01, src11, carry);
1299 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1300 } else if (dst.regClass() == v2) {
1301 Temp lower = bld.tmp(v1);
1302 Temp borrow = bld.vsub32(Definition(lower), src00, src10, true).def(1).getTemp();
1303 Temp upper = bld.vsub32(bld.def(v1), src01, src11, false, borrow);
1304 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1305 } else {
1306 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1307 nir_print_instr(&instr->instr, stderr);
1308 fprintf(stderr, "\n");
1309 }
1310 break;
1311 }
1312 case nir_op_usub_borrow: {
1313 Temp src0 = get_alu_src(ctx, instr->src[0]);
1314 Temp src1 = get_alu_src(ctx, instr->src[1]);
1315 if (dst.regClass() == s1) {
1316 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1317 break;
1318 } else if (dst.regClass() == v1) {
1319 Temp borrow = bld.vsub32(bld.def(v1), src0, src1, true).def(1).getTemp();
1320 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), borrow);
1321 break;
1322 }
1323
1324 Temp src00 = bld.tmp(src0.type(), 1);
1325 Temp src01 = bld.tmp(dst.type(), 1);
1326 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1327 Temp src10 = bld.tmp(src1.type(), 1);
1328 Temp src11 = bld.tmp(dst.type(), 1);
1329 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1330 if (dst.regClass() == s2) {
1331 Temp borrow = bld.tmp(s1);
1332 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), src00, src10);
1333 borrow = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(borrow)).def(1).getTemp();
1334 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1335 } else if (dst.regClass() == v2) {
1336 Temp borrow = bld.vsub32(bld.def(v1), src00, src10, true).def(1).getTemp();
1337 borrow = bld.vsub32(bld.def(v1), src01, src11, true, Operand(borrow)).def(1).getTemp();
1338 borrow = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), borrow);
1339 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1340 } else {
1341 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1342 nir_print_instr(&instr->instr, stderr);
1343 fprintf(stderr, "\n");
1344 }
1345 break;
1346 }
1347 case nir_op_imul: {
1348 if (dst.regClass() == v1) {
1349 bld.vop3(aco_opcode::v_mul_lo_u32, Definition(dst),
1350 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1351 } else if (dst.regClass() == s1) {
1352 emit_sop2_instruction(ctx, instr, aco_opcode::s_mul_i32, dst, false);
1353 } else {
1354 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1355 nir_print_instr(&instr->instr, stderr);
1356 fprintf(stderr, "\n");
1357 }
1358 break;
1359 }
1360 case nir_op_umul_high: {
1361 if (dst.regClass() == v1) {
1362 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1363 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1364 bld.sop2(aco_opcode::s_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1365 } else if (dst.regClass() == s1) {
1366 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1367 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1368 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1369 } else {
1370 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1371 nir_print_instr(&instr->instr, stderr);
1372 fprintf(stderr, "\n");
1373 }
1374 break;
1375 }
1376 case nir_op_imul_high: {
1377 if (dst.regClass() == v1) {
1378 bld.vop3(aco_opcode::v_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1379 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1380 bld.sop2(aco_opcode::s_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1381 } else if (dst.regClass() == s1) {
1382 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1383 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1384 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1385 } else {
1386 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1387 nir_print_instr(&instr->instr, stderr);
1388 fprintf(stderr, "\n");
1389 }
1390 break;
1391 }
1392 case nir_op_fmul: {
1393 if (dst.size() == 1) {
1394 emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f32, dst, true);
1395 } else if (dst.size() == 2) {
1396 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), get_alu_src(ctx, instr->src[0]),
1397 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1398 } else {
1399 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1400 nir_print_instr(&instr->instr, stderr);
1401 fprintf(stderr, "\n");
1402 }
1403 break;
1404 }
1405 case nir_op_fadd: {
1406 if (dst.size() == 1) {
1407 emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f32, dst, true);
1408 } else if (dst.size() == 2) {
1409 bld.vop3(aco_opcode::v_add_f64, Definition(dst), get_alu_src(ctx, instr->src[0]),
1410 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1411 } else {
1412 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1413 nir_print_instr(&instr->instr, stderr);
1414 fprintf(stderr, "\n");
1415 }
1416 break;
1417 }
1418 case nir_op_fsub: {
1419 Temp src0 = get_alu_src(ctx, instr->src[0]);
1420 Temp src1 = get_alu_src(ctx, instr->src[1]);
1421 if (dst.size() == 1) {
1422 if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
1423 emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f32, dst, false);
1424 else
1425 emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f32, dst, true);
1426 } else if (dst.size() == 2) {
1427 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst),
1428 get_alu_src(ctx, instr->src[0]),
1429 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1430 VOP3A_instruction* sub = static_cast<VOP3A_instruction*>(add);
1431 sub->neg[1] = true;
1432 } else {
1433 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1434 nir_print_instr(&instr->instr, stderr);
1435 fprintf(stderr, "\n");
1436 }
1437 break;
1438 }
1439 case nir_op_fmax: {
1440 if (dst.size() == 1) {
1441 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1442 } else if (dst.size() == 2) {
1443 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1444 Temp tmp = bld.vop3(aco_opcode::v_max_f64, bld.def(v2),
1445 get_alu_src(ctx, instr->src[0]),
1446 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1447 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1448 } else {
1449 bld.vop3(aco_opcode::v_max_f64, Definition(dst),
1450 get_alu_src(ctx, instr->src[0]),
1451 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1452 }
1453 } else {
1454 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1455 nir_print_instr(&instr->instr, stderr);
1456 fprintf(stderr, "\n");
1457 }
1458 break;
1459 }
1460 case nir_op_fmin: {
1461 if (dst.size() == 1) {
1462 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1463 } else if (dst.size() == 2) {
1464 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1465 Temp tmp = bld.vop3(aco_opcode::v_min_f64, bld.def(v2),
1466 get_alu_src(ctx, instr->src[0]),
1467 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1468 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1469 } else {
1470 bld.vop3(aco_opcode::v_min_f64, Definition(dst),
1471 get_alu_src(ctx, instr->src[0]),
1472 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1473 }
1474 } else {
1475 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1476 nir_print_instr(&instr->instr, stderr);
1477 fprintf(stderr, "\n");
1478 }
1479 break;
1480 }
1481 case nir_op_fmax3: {
1482 if (dst.size() == 1) {
1483 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1484 } else {
1485 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1486 nir_print_instr(&instr->instr, stderr);
1487 fprintf(stderr, "\n");
1488 }
1489 break;
1490 }
1491 case nir_op_fmin3: {
1492 if (dst.size() == 1) {
1493 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1494 } else {
1495 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1496 nir_print_instr(&instr->instr, stderr);
1497 fprintf(stderr, "\n");
1498 }
1499 break;
1500 }
1501 case nir_op_fmed3: {
1502 if (dst.size() == 1) {
1503 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1504 } else {
1505 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1506 nir_print_instr(&instr->instr, stderr);
1507 fprintf(stderr, "\n");
1508 }
1509 break;
1510 }
1511 case nir_op_umax3: {
1512 if (dst.size() == 1) {
1513 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_u32, dst);
1514 } else {
1515 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1516 nir_print_instr(&instr->instr, stderr);
1517 fprintf(stderr, "\n");
1518 }
1519 break;
1520 }
1521 case nir_op_umin3: {
1522 if (dst.size() == 1) {
1523 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_u32, dst);
1524 } else {
1525 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1526 nir_print_instr(&instr->instr, stderr);
1527 fprintf(stderr, "\n");
1528 }
1529 break;
1530 }
1531 case nir_op_umed3: {
1532 if (dst.size() == 1) {
1533 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_u32, dst);
1534 } else {
1535 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1536 nir_print_instr(&instr->instr, stderr);
1537 fprintf(stderr, "\n");
1538 }
1539 break;
1540 }
1541 case nir_op_imax3: {
1542 if (dst.size() == 1) {
1543 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_i32, dst);
1544 } else {
1545 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1546 nir_print_instr(&instr->instr, stderr);
1547 fprintf(stderr, "\n");
1548 }
1549 break;
1550 }
1551 case nir_op_imin3: {
1552 if (dst.size() == 1) {
1553 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_i32, dst);
1554 } else {
1555 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1556 nir_print_instr(&instr->instr, stderr);
1557 fprintf(stderr, "\n");
1558 }
1559 break;
1560 }
1561 case nir_op_imed3: {
1562 if (dst.size() == 1) {
1563 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_i32, dst);
1564 } else {
1565 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1566 nir_print_instr(&instr->instr, stderr);
1567 fprintf(stderr, "\n");
1568 }
1569 break;
1570 }
1571 case nir_op_cube_face_coord: {
1572 Temp in = get_alu_src(ctx, instr->src[0], 3);
1573 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1574 emit_extract_vector(ctx, in, 1, v1),
1575 emit_extract_vector(ctx, in, 2, v1) };
1576 Temp ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), src[0], src[1], src[2]);
1577 ma = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), ma);
1578 Temp sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), src[0], src[1], src[2]);
1579 Temp tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), src[0], src[1], src[2]);
1580 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, ma, Operand(0x3f000000u/*0.5*/));
1581 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, ma, Operand(0x3f000000u/*0.5*/));
1582 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), sc, tc);
1583 break;
1584 }
1585 case nir_op_cube_face_index: {
1586 Temp in = get_alu_src(ctx, instr->src[0], 3);
1587 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1588 emit_extract_vector(ctx, in, 1, v1),
1589 emit_extract_vector(ctx, in, 2, v1) };
1590 bld.vop3(aco_opcode::v_cubeid_f32, Definition(dst), src[0], src[1], src[2]);
1591 break;
1592 }
1593 case nir_op_bcsel: {
1594 emit_bcsel(ctx, instr, dst);
1595 break;
1596 }
1597 case nir_op_frsq: {
1598 if (dst.size() == 1) {
1599 emit_rsq(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1600 } else if (dst.size() == 2) {
1601 emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f64, dst);
1602 } else {
1603 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1604 nir_print_instr(&instr->instr, stderr);
1605 fprintf(stderr, "\n");
1606 }
1607 break;
1608 }
1609 case nir_op_fneg: {
1610 Temp src = get_alu_src(ctx, instr->src[0]);
1611 if (dst.size() == 1) {
1612 if (ctx->block->fp_mode.must_flush_denorms32)
1613 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1614 bld.vop2(aco_opcode::v_xor_b32, Definition(dst), Operand(0x80000000u), as_vgpr(ctx, src));
1615 } else if (dst.size() == 2) {
1616 if (ctx->block->fp_mode.must_flush_denorms16_64)
1617 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1618 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1619 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1620 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), Operand(0x80000000u), upper);
1621 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1622 } else {
1623 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1624 nir_print_instr(&instr->instr, stderr);
1625 fprintf(stderr, "\n");
1626 }
1627 break;
1628 }
1629 case nir_op_fabs: {
1630 Temp src = get_alu_src(ctx, instr->src[0]);
1631 if (dst.size() == 1) {
1632 if (ctx->block->fp_mode.must_flush_denorms32)
1633 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1634 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0x7FFFFFFFu), as_vgpr(ctx, src));
1635 } else if (dst.size() == 2) {
1636 if (ctx->block->fp_mode.must_flush_denorms16_64)
1637 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1638 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1639 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1640 upper = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7FFFFFFFu), upper);
1641 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1642 } else {
1643 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1644 nir_print_instr(&instr->instr, stderr);
1645 fprintf(stderr, "\n");
1646 }
1647 break;
1648 }
1649 case nir_op_fsat: {
1650 Temp src = get_alu_src(ctx, instr->src[0]);
1651 if (dst.size() == 1) {
1652 bld.vop3(aco_opcode::v_med3_f32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
1653 /* apparently, it is not necessary to flush denorms if this instruction is used with these operands */
1654 // TODO: confirm that this holds under any circumstances
1655 } else if (dst.size() == 2) {
1656 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src, Operand(0u));
1657 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(add);
1658 vop3->clamp = true;
1659 } else {
1660 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1661 nir_print_instr(&instr->instr, stderr);
1662 fprintf(stderr, "\n");
1663 }
1664 break;
1665 }
1666 case nir_op_flog2: {
1667 if (dst.size() == 1) {
1668 emit_log2(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1669 } else {
1670 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1671 nir_print_instr(&instr->instr, stderr);
1672 fprintf(stderr, "\n");
1673 }
1674 break;
1675 }
1676 case nir_op_frcp: {
1677 if (dst.size() == 1) {
1678 emit_rcp(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1679 } else if (dst.size() == 2) {
1680 emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f64, dst);
1681 } else {
1682 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1683 nir_print_instr(&instr->instr, stderr);
1684 fprintf(stderr, "\n");
1685 }
1686 break;
1687 }
1688 case nir_op_fexp2: {
1689 if (dst.size() == 1) {
1690 emit_vop1_instruction(ctx, instr, aco_opcode::v_exp_f32, dst);
1691 } else {
1692 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1693 nir_print_instr(&instr->instr, stderr);
1694 fprintf(stderr, "\n");
1695 }
1696 break;
1697 }
1698 case nir_op_fsqrt: {
1699 if (dst.size() == 1) {
1700 emit_sqrt(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1701 } else if (dst.size() == 2) {
1702 emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f64, dst);
1703 } else {
1704 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1705 nir_print_instr(&instr->instr, stderr);
1706 fprintf(stderr, "\n");
1707 }
1708 break;
1709 }
1710 case nir_op_ffract: {
1711 if (dst.size() == 1) {
1712 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f32, dst);
1713 } else if (dst.size() == 2) {
1714 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f64, dst);
1715 } else {
1716 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1717 nir_print_instr(&instr->instr, stderr);
1718 fprintf(stderr, "\n");
1719 }
1720 break;
1721 }
1722 case nir_op_ffloor: {
1723 if (dst.size() == 1) {
1724 emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f32, dst);
1725 } else if (dst.size() == 2) {
1726 emit_floor_f64(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1727 } else {
1728 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1729 nir_print_instr(&instr->instr, stderr);
1730 fprintf(stderr, "\n");
1731 }
1732 break;
1733 }
1734 case nir_op_fceil: {
1735 if (dst.size() == 1) {
1736 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f32, dst);
1737 } else if (dst.size() == 2) {
1738 if (ctx->options->chip_class >= GFX7) {
1739 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f64, dst);
1740 } else {
1741 /* GFX6 doesn't support V_CEIL_F64, lower it. */
1742 Temp src0 = get_alu_src(ctx, instr->src[0]);
1743
1744 /* trunc = trunc(src0)
1745 * if (src0 > 0.0 && src0 != trunc)
1746 * trunc += 1.0
1747 */
1748 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src0);
1749 Temp tmp0 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.def(bld.lm), src0, Operand(0u));
1750 Temp tmp1 = bld.vopc(aco_opcode::v_cmp_lg_f64, bld.hint_vcc(bld.def(bld.lm)), src0, trunc);
1751 Temp cond = bld.sop2(aco_opcode::s_and_b64, bld.hint_vcc(bld.def(s2)), bld.def(s1, scc), tmp0, tmp1);
1752 Temp add = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), bld.copy(bld.def(v1), Operand(0u)), bld.copy(bld.def(v1), Operand(0x3ff00000u)), cond);
1753 add = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), bld.copy(bld.def(v1), Operand(0u)), add);
1754 bld.vop3(aco_opcode::v_add_f64, Definition(dst), trunc, add);
1755 }
1756 } else {
1757 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1758 nir_print_instr(&instr->instr, stderr);
1759 fprintf(stderr, "\n");
1760 }
1761 break;
1762 }
1763 case nir_op_ftrunc: {
1764 if (dst.size() == 1) {
1765 emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f32, dst);
1766 } else if (dst.size() == 2) {
1767 emit_trunc_f64(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1768 } else {
1769 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1770 nir_print_instr(&instr->instr, stderr);
1771 fprintf(stderr, "\n");
1772 }
1773 break;
1774 }
1775 case nir_op_fround_even: {
1776 if (dst.size() == 1) {
1777 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f32, dst);
1778 } else if (dst.size() == 2) {
1779 if (ctx->options->chip_class >= GFX7) {
1780 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f64, dst);
1781 } else {
1782 /* GFX6 doesn't support V_RNDNE_F64, lower it. */
1783 Temp src0 = get_alu_src(ctx, instr->src[0]);
1784
1785 Temp src0_lo = bld.tmp(v1), src0_hi = bld.tmp(v1);
1786 bld.pseudo(aco_opcode::p_split_vector, Definition(src0_lo), Definition(src0_hi), src0);
1787
1788 Temp bitmask = bld.sop1(aco_opcode::s_brev_b32, bld.def(s1), bld.copy(bld.def(s1), Operand(-2u)));
1789 Temp bfi = bld.vop3(aco_opcode::v_bfi_b32, bld.def(v1), bitmask, bld.copy(bld.def(v1), Operand(0x43300000u)), as_vgpr(ctx, src0_hi));
1790 Temp tmp = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), src0, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
1791 Instruction *sub = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), tmp, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
1792 static_cast<VOP3A_instruction*>(sub)->neg[1] = true;
1793 tmp = sub->definitions[0].getTemp();
1794
1795 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x432fffffu));
1796 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.hint_vcc(bld.def(bld.lm)), src0, v);
1797 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
1798 Temp cond = vop3->definitions[0].getTemp();
1799
1800 Temp tmp_lo = bld.tmp(v1), tmp_hi = bld.tmp(v1);
1801 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp_lo), Definition(tmp_hi), tmp);
1802 Temp dst0 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_lo, as_vgpr(ctx, src0_lo), cond);
1803 Temp dst1 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_hi, as_vgpr(ctx, src0_hi), cond);
1804
1805 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1806 }
1807 } else {
1808 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1809 nir_print_instr(&instr->instr, stderr);
1810 fprintf(stderr, "\n");
1811 }
1812 break;
1813 }
1814 case nir_op_fsin:
1815 case nir_op_fcos: {
1816 Temp src = get_alu_src(ctx, instr->src[0]);
1817 aco_ptr<Instruction> norm;
1818 if (dst.size() == 1) {
1819 Temp half_pi = bld.copy(bld.def(s1), Operand(0x3e22f983u));
1820 Temp tmp = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), half_pi, as_vgpr(ctx, src));
1821
1822 /* before GFX9, v_sin_f32 and v_cos_f32 had a valid input domain of [-256, +256] */
1823 if (ctx->options->chip_class < GFX9)
1824 tmp = bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), tmp);
1825
1826 aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f32 : aco_opcode::v_cos_f32;
1827 bld.vop1(opcode, Definition(dst), tmp);
1828 } else {
1829 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1830 nir_print_instr(&instr->instr, stderr);
1831 fprintf(stderr, "\n");
1832 }
1833 break;
1834 }
1835 case nir_op_ldexp: {
1836 if (dst.size() == 1) {
1837 bld.vop3(aco_opcode::v_ldexp_f32, Definition(dst),
1838 as_vgpr(ctx, get_alu_src(ctx, instr->src[0])),
1839 get_alu_src(ctx, instr->src[1]));
1840 } else if (dst.size() == 2) {
1841 bld.vop3(aco_opcode::v_ldexp_f64, Definition(dst),
1842 as_vgpr(ctx, get_alu_src(ctx, instr->src[0])),
1843 get_alu_src(ctx, instr->src[1]));
1844 } else {
1845 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1846 nir_print_instr(&instr->instr, stderr);
1847 fprintf(stderr, "\n");
1848 }
1849 break;
1850 }
1851 case nir_op_frexp_sig: {
1852 if (dst.size() == 1) {
1853 bld.vop1(aco_opcode::v_frexp_mant_f32, Definition(dst),
1854 get_alu_src(ctx, instr->src[0]));
1855 } else if (dst.size() == 2) {
1856 bld.vop1(aco_opcode::v_frexp_mant_f64, Definition(dst),
1857 get_alu_src(ctx, instr->src[0]));
1858 } else {
1859 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1860 nir_print_instr(&instr->instr, stderr);
1861 fprintf(stderr, "\n");
1862 }
1863 break;
1864 }
1865 case nir_op_frexp_exp: {
1866 if (instr->src[0].src.ssa->bit_size == 32) {
1867 bld.vop1(aco_opcode::v_frexp_exp_i32_f32, Definition(dst),
1868 get_alu_src(ctx, instr->src[0]));
1869 } else if (instr->src[0].src.ssa->bit_size == 64) {
1870 bld.vop1(aco_opcode::v_frexp_exp_i32_f64, Definition(dst),
1871 get_alu_src(ctx, instr->src[0]));
1872 } else {
1873 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1874 nir_print_instr(&instr->instr, stderr);
1875 fprintf(stderr, "\n");
1876 }
1877 break;
1878 }
1879 case nir_op_fsign: {
1880 Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
1881 if (dst.size() == 1) {
1882 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1883 src = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0x3f800000u), src, cond);
1884 cond = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1885 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0xbf800000u), src, cond);
1886 } else if (dst.size() == 2) {
1887 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1888 Temp tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0x3FF00000u));
1889 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, emit_extract_vector(ctx, src, 1, v1), cond);
1890
1891 cond = bld.vopc(aco_opcode::v_cmp_le_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1892 tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0xBFF00000u));
1893 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, upper, cond);
1894
1895 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
1896 } else {
1897 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1898 nir_print_instr(&instr->instr, stderr);
1899 fprintf(stderr, "\n");
1900 }
1901 break;
1902 }
1903 case nir_op_f2f32: {
1904 if (instr->src[0].src.ssa->bit_size == 64) {
1905 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f64, dst);
1906 } else {
1907 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1908 nir_print_instr(&instr->instr, stderr);
1909 fprintf(stderr, "\n");
1910 }
1911 break;
1912 }
1913 case nir_op_f2f64: {
1914 if (instr->src[0].src.ssa->bit_size == 32) {
1915 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_f32, dst);
1916 } else {
1917 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1918 nir_print_instr(&instr->instr, stderr);
1919 fprintf(stderr, "\n");
1920 }
1921 break;
1922 }
1923 case nir_op_i2f32: {
1924 assert(dst.size() == 1);
1925 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_i32, dst);
1926 break;
1927 }
1928 case nir_op_i2f64: {
1929 if (instr->src[0].src.ssa->bit_size == 32) {
1930 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_i32, dst);
1931 } else if (instr->src[0].src.ssa->bit_size == 64) {
1932 Temp src = get_alu_src(ctx, instr->src[0]);
1933 RegClass rc = RegClass(src.type(), 1);
1934 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
1935 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1936 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
1937 upper = bld.vop1(aco_opcode::v_cvt_f64_i32, bld.def(v2), upper);
1938 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
1939 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
1940
1941 } else {
1942 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1943 nir_print_instr(&instr->instr, stderr);
1944 fprintf(stderr, "\n");
1945 }
1946 break;
1947 }
1948 case nir_op_u2f32: {
1949 assert(dst.size() == 1);
1950 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_u32, dst);
1951 break;
1952 }
1953 case nir_op_u2f64: {
1954 if (instr->src[0].src.ssa->bit_size == 32) {
1955 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_u32, dst);
1956 } else if (instr->src[0].src.ssa->bit_size == 64) {
1957 Temp src = get_alu_src(ctx, instr->src[0]);
1958 RegClass rc = RegClass(src.type(), 1);
1959 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
1960 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1961 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
1962 upper = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), upper);
1963 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
1964 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
1965 } else {
1966 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1967 nir_print_instr(&instr->instr, stderr);
1968 fprintf(stderr, "\n");
1969 }
1970 break;
1971 }
1972 case nir_op_f2i32: {
1973 Temp src = get_alu_src(ctx, instr->src[0]);
1974 if (instr->src[0].src.ssa->bit_size == 32) {
1975 if (dst.type() == RegType::vgpr)
1976 bld.vop1(aco_opcode::v_cvt_i32_f32, Definition(dst), src);
1977 else
1978 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
1979 bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), src));
1980
1981 } else if (instr->src[0].src.ssa->bit_size == 64) {
1982 if (dst.type() == RegType::vgpr)
1983 bld.vop1(aco_opcode::v_cvt_i32_f64, Definition(dst), src);
1984 else
1985 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
1986 bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), src));
1987
1988 } else {
1989 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1990 nir_print_instr(&instr->instr, stderr);
1991 fprintf(stderr, "\n");
1992 }
1993 break;
1994 }
1995 case nir_op_f2u32: {
1996 Temp src = get_alu_src(ctx, instr->src[0]);
1997 if (instr->src[0].src.ssa->bit_size == 32) {
1998 if (dst.type() == RegType::vgpr)
1999 bld.vop1(aco_opcode::v_cvt_u32_f32, Definition(dst), src);
2000 else
2001 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2002 bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), src));
2003
2004 } else if (instr->src[0].src.ssa->bit_size == 64) {
2005 if (dst.type() == RegType::vgpr)
2006 bld.vop1(aco_opcode::v_cvt_u32_f64, Definition(dst), src);
2007 else
2008 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2009 bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), src));
2010
2011 } else {
2012 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2013 nir_print_instr(&instr->instr, stderr);
2014 fprintf(stderr, "\n");
2015 }
2016 break;
2017 }
2018 case nir_op_f2i64: {
2019 Temp src = get_alu_src(ctx, instr->src[0]);
2020 if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::vgpr) {
2021 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2022 exponent = bld.vop3(aco_opcode::v_med3_i32, bld.def(v1), Operand(0x0u), exponent, Operand(64u));
2023 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2024 Temp sign = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
2025 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2026 mantissa = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(7u), mantissa);
2027 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2028 Temp new_exponent = bld.tmp(v1);
2029 Temp borrow = bld.vsub32(Definition(new_exponent), Operand(63u), exponent, true).def(1).getTemp();
2030 if (ctx->program->chip_class >= GFX8)
2031 mantissa = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), new_exponent, mantissa);
2032 else
2033 mantissa = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), mantissa, new_exponent);
2034 Temp saturate = bld.vop1(aco_opcode::v_bfrev_b32, bld.def(v1), Operand(0xfffffffeu));
2035 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2036 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2037 lower = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), lower, Operand(0xffffffffu), borrow);
2038 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), upper, saturate, borrow);
2039 lower = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, lower);
2040 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, upper);
2041 Temp new_lower = bld.tmp(v1);
2042 borrow = bld.vsub32(Definition(new_lower), lower, sign, true).def(1).getTemp();
2043 Temp new_upper = bld.vsub32(bld.def(v1), upper, sign, false, borrow);
2044 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), new_lower, new_upper);
2045
2046 } else if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::sgpr) {
2047 if (src.type() == RegType::vgpr)
2048 src = bld.as_uniform(src);
2049 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2050 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2051 exponent = bld.sop2(aco_opcode::s_max_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2052 exponent = bld.sop2(aco_opcode::s_min_u32, bld.def(s1), bld.def(s1, scc), Operand(64u), exponent);
2053 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2054 Temp sign = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
2055 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2056 mantissa = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), mantissa, Operand(7u));
2057 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2058 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(63u), exponent);
2059 mantissa = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent);
2060 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), exponent, Operand(0xffffffffu)); // exp >= 64
2061 Temp saturate = bld.sop1(aco_opcode::s_brev_b64, bld.def(s2), Operand(0xfffffffeu));
2062 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), saturate, mantissa, cond);
2063 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2064 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2065 lower = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, lower);
2066 upper = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, upper);
2067 Temp borrow = bld.tmp(s1);
2068 lower = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), lower, sign);
2069 upper = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), upper, sign, borrow);
2070 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2071
2072 } else if (instr->src[0].src.ssa->bit_size == 64) {
2073 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2074 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2075 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2076 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2077 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2078 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2079 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2080 Temp upper = bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), floor);
2081 if (dst.type() == RegType::sgpr) {
2082 lower = bld.as_uniform(lower);
2083 upper = bld.as_uniform(upper);
2084 }
2085 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2086
2087 } else {
2088 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2089 nir_print_instr(&instr->instr, stderr);
2090 fprintf(stderr, "\n");
2091 }
2092 break;
2093 }
2094 case nir_op_f2u64: {
2095 Temp src = get_alu_src(ctx, instr->src[0]);
2096 if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::vgpr) {
2097 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2098 Temp exponent_in_range = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(64u), exponent);
2099 exponent = bld.vop2(aco_opcode::v_max_i32, bld.def(v1), Operand(0x0u), exponent);
2100 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2101 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2102 Temp exponent_small = bld.vsub32(bld.def(v1), Operand(24u), exponent);
2103 Temp small = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), exponent_small, mantissa);
2104 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2105 Temp new_exponent = bld.tmp(v1);
2106 Temp cond_small = bld.vsub32(Definition(new_exponent), exponent, Operand(24u), true).def(1).getTemp();
2107 if (ctx->program->chip_class >= GFX8)
2108 mantissa = bld.vop3(aco_opcode::v_lshlrev_b64, bld.def(v2), new_exponent, mantissa);
2109 else
2110 mantissa = bld.vop3(aco_opcode::v_lshl_b64, bld.def(v2), mantissa, new_exponent);
2111 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2112 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2113 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), lower, small, cond_small);
2114 upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), upper, Operand(0u), cond_small);
2115 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), lower, exponent_in_range);
2116 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), upper, exponent_in_range);
2117 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2118
2119 } else if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::sgpr) {
2120 if (src.type() == RegType::vgpr)
2121 src = bld.as_uniform(src);
2122 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2123 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2124 exponent = bld.sop2(aco_opcode::s_max_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2125 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2126 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2127 Temp exponent_small = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(24u), exponent);
2128 Temp small = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), mantissa, exponent_small);
2129 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2130 Temp exponent_large = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(24u));
2131 mantissa = bld.sop2(aco_opcode::s_lshl_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent_large);
2132 Temp cond = bld.sopc(aco_opcode::s_cmp_ge_i32, bld.def(s1, scc), Operand(64u), exponent);
2133 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), mantissa, Operand(0xffffffffu), cond);
2134 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2135 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2136 Temp cond_small = bld.sopc(aco_opcode::s_cmp_le_i32, bld.def(s1, scc), exponent, Operand(24u));
2137 lower = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), small, lower, cond_small);
2138 upper = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), Operand(0u), upper, cond_small);
2139 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2140
2141 } else if (instr->src[0].src.ssa->bit_size == 64) {
2142 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2143 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2144 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2145 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2146 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2147 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2148 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2149 Temp upper = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), floor);
2150 if (dst.type() == RegType::sgpr) {
2151 lower = bld.as_uniform(lower);
2152 upper = bld.as_uniform(upper);
2153 }
2154 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2155
2156 } else {
2157 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2158 nir_print_instr(&instr->instr, stderr);
2159 fprintf(stderr, "\n");
2160 }
2161 break;
2162 }
2163 case nir_op_b2f32: {
2164 Temp src = get_alu_src(ctx, instr->src[0]);
2165 assert(src.regClass() == bld.lm);
2166
2167 if (dst.regClass() == s1) {
2168 src = bool_to_scalar_condition(ctx, src);
2169 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3f800000u), src);
2170 } else if (dst.regClass() == v1) {
2171 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
2172 } else {
2173 unreachable("Wrong destination register class for nir_op_b2f32.");
2174 }
2175 break;
2176 }
2177 case nir_op_b2f64: {
2178 Temp src = get_alu_src(ctx, instr->src[0]);
2179 assert(src.regClass() == bld.lm);
2180
2181 if (dst.regClass() == s2) {
2182 src = bool_to_scalar_condition(ctx, src);
2183 bld.sop2(aco_opcode::s_cselect_b64, Definition(dst), Operand(0x3f800000u), Operand(0u), bld.scc(src));
2184 } else if (dst.regClass() == v2) {
2185 Temp one = bld.vop1(aco_opcode::v_mov_b32, bld.def(v2), Operand(0x3FF00000u));
2186 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), one, src);
2187 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
2188 } else {
2189 unreachable("Wrong destination register class for nir_op_b2f64.");
2190 }
2191 break;
2192 }
2193 case nir_op_i2i32: {
2194 Temp src = get_alu_src(ctx, instr->src[0]);
2195 if (instr->src[0].src.ssa->bit_size == 64) {
2196 /* we can actually just say dst = src, as it would map the lower register */
2197 emit_extract_vector(ctx, src, 0, dst);
2198 } else {
2199 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2200 nir_print_instr(&instr->instr, stderr);
2201 fprintf(stderr, "\n");
2202 }
2203 break;
2204 }
2205 case nir_op_u2u32: {
2206 Temp src = get_alu_src(ctx, instr->src[0]);
2207 if (instr->src[0].src.ssa->bit_size == 16) {
2208 if (dst.regClass() == s1) {
2209 bld.sop2(aco_opcode::s_and_b32, Definition(dst), bld.def(s1, scc), Operand(0xFFFFu), src);
2210 } else {
2211 // TODO: do better with SDWA
2212 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0xFFFFu), src);
2213 }
2214 } else if (instr->src[0].src.ssa->bit_size == 64) {
2215 /* we can actually just say dst = src, as it would map the lower register */
2216 emit_extract_vector(ctx, src, 0, dst);
2217 } else {
2218 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2219 nir_print_instr(&instr->instr, stderr);
2220 fprintf(stderr, "\n");
2221 }
2222 break;
2223 }
2224 case nir_op_i2i64: {
2225 Temp src = get_alu_src(ctx, instr->src[0]);
2226 if (src.regClass() == s1) {
2227 Temp high = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
2228 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, high);
2229 } else if (src.regClass() == v1) {
2230 Temp high = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
2231 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, high);
2232 } else {
2233 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2234 nir_print_instr(&instr->instr, stderr);
2235 fprintf(stderr, "\n");
2236 }
2237 break;
2238 }
2239 case nir_op_u2u64: {
2240 Temp src = get_alu_src(ctx, instr->src[0]);
2241 if (instr->src[0].src.ssa->bit_size == 32) {
2242 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, Operand(0u));
2243 } else {
2244 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2245 nir_print_instr(&instr->instr, stderr);
2246 fprintf(stderr, "\n");
2247 }
2248 break;
2249 }
2250 case nir_op_b2i32: {
2251 Temp src = get_alu_src(ctx, instr->src[0]);
2252 assert(src.regClass() == bld.lm);
2253
2254 if (dst.regClass() == s1) {
2255 // TODO: in a post-RA optimization, we can check if src is in VCC, and directly use VCCNZ
2256 bool_to_scalar_condition(ctx, src, dst);
2257 } else if (dst.regClass() == v1) {
2258 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), src);
2259 } else {
2260 unreachable("Invalid register class for b2i32");
2261 }
2262 break;
2263 }
2264 case nir_op_i2b1: {
2265 Temp src = get_alu_src(ctx, instr->src[0]);
2266 assert(dst.regClass() == bld.lm);
2267
2268 if (src.type() == RegType::vgpr) {
2269 assert(src.regClass() == v1 || src.regClass() == v2);
2270 assert(dst.regClass() == bld.lm);
2271 bld.vopc(src.size() == 2 ? aco_opcode::v_cmp_lg_u64 : aco_opcode::v_cmp_lg_u32,
2272 Definition(dst), Operand(0u), src).def(0).setHint(vcc);
2273 } else {
2274 assert(src.regClass() == s1 || src.regClass() == s2);
2275 Temp tmp;
2276 if (src.regClass() == s2 && ctx->program->chip_class <= GFX7) {
2277 tmp = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), Operand(0u), src).def(1).getTemp();
2278 } else {
2279 tmp = bld.sopc(src.size() == 2 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::s_cmp_lg_u32,
2280 bld.scc(bld.def(s1)), Operand(0u), src);
2281 }
2282 bool_to_vector_condition(ctx, tmp, dst);
2283 }
2284 break;
2285 }
2286 case nir_op_pack_64_2x32_split: {
2287 Temp src0 = get_alu_src(ctx, instr->src[0]);
2288 Temp src1 = get_alu_src(ctx, instr->src[1]);
2289
2290 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
2291 break;
2292 }
2293 case nir_op_unpack_64_2x32_split_x:
2294 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
2295 break;
2296 case nir_op_unpack_64_2x32_split_y:
2297 bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
2298 break;
2299 case nir_op_pack_half_2x16: {
2300 Temp src = get_alu_src(ctx, instr->src[0], 2);
2301
2302 if (dst.regClass() == v1) {
2303 Temp src0 = bld.tmp(v1);
2304 Temp src1 = bld.tmp(v1);
2305 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
2306 if (!ctx->block->fp_mode.care_about_round32 || ctx->block->fp_mode.round32 == fp_round_tz)
2307 bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, Definition(dst), src0, src1);
2308 else
2309 bld.vop3(aco_opcode::v_cvt_pk_u16_u32, Definition(dst),
2310 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src0),
2311 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src1));
2312 } else {
2313 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2314 nir_print_instr(&instr->instr, stderr);
2315 fprintf(stderr, "\n");
2316 }
2317 break;
2318 }
2319 case nir_op_unpack_half_2x16_split_x: {
2320 if (dst.regClass() == v1) {
2321 Builder bld(ctx->program, ctx->block);
2322 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst), get_alu_src(ctx, instr->src[0]));
2323 } else {
2324 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2325 nir_print_instr(&instr->instr, stderr);
2326 fprintf(stderr, "\n");
2327 }
2328 break;
2329 }
2330 case nir_op_unpack_half_2x16_split_y: {
2331 if (dst.regClass() == v1) {
2332 Builder bld(ctx->program, ctx->block);
2333 /* TODO: use SDWA here */
2334 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst),
2335 bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), as_vgpr(ctx, get_alu_src(ctx, instr->src[0]))));
2336 } else {
2337 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2338 nir_print_instr(&instr->instr, stderr);
2339 fprintf(stderr, "\n");
2340 }
2341 break;
2342 }
2343 case nir_op_fquantize2f16: {
2344 Temp src = get_alu_src(ctx, instr->src[0]);
2345 Temp f16 = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), src);
2346 Temp f32, cmp_res;
2347
2348 if (ctx->program->chip_class >= GFX8) {
2349 Temp mask = bld.copy(bld.def(s1), Operand(0x36Fu)); /* value is NOT negative/positive denormal value */
2350 cmp_res = bld.vopc_e64(aco_opcode::v_cmp_class_f16, bld.hint_vcc(bld.def(bld.lm)), f16, mask);
2351 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2352 } else {
2353 /* 0x38800000 is smallest half float value (2^-14) in 32-bit float,
2354 * so compare the result and flush to 0 if it's smaller.
2355 */
2356 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2357 Temp smallest = bld.copy(bld.def(s1), Operand(0x38800000u));
2358 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), f32, smallest);
2359 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
2360 cmp_res = vop3->definitions[0].getTemp();
2361 }
2362
2363 if (ctx->block->fp_mode.preserve_signed_zero_inf_nan32 || ctx->program->chip_class < GFX8) {
2364 Temp copysign_0 = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0u), as_vgpr(ctx, src));
2365 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), copysign_0, f32, cmp_res);
2366 } else {
2367 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), f32, cmp_res);
2368 }
2369 break;
2370 }
2371 case nir_op_bfm: {
2372 Temp bits = get_alu_src(ctx, instr->src[0]);
2373 Temp offset = get_alu_src(ctx, instr->src[1]);
2374
2375 if (dst.regClass() == s1) {
2376 bld.sop2(aco_opcode::s_bfm_b32, Definition(dst), bits, offset);
2377 } else if (dst.regClass() == v1) {
2378 bld.vop3(aco_opcode::v_bfm_b32, Definition(dst), bits, offset);
2379 } else {
2380 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2381 nir_print_instr(&instr->instr, stderr);
2382 fprintf(stderr, "\n");
2383 }
2384 break;
2385 }
2386 case nir_op_bitfield_select: {
2387 /* (mask & insert) | (~mask & base) */
2388 Temp bitmask = get_alu_src(ctx, instr->src[0]);
2389 Temp insert = get_alu_src(ctx, instr->src[1]);
2390 Temp base = get_alu_src(ctx, instr->src[2]);
2391
2392 /* dst = (insert & bitmask) | (base & ~bitmask) */
2393 if (dst.regClass() == s1) {
2394 aco_ptr<Instruction> sop2;
2395 nir_const_value* const_bitmask = nir_src_as_const_value(instr->src[0].src);
2396 nir_const_value* const_insert = nir_src_as_const_value(instr->src[1].src);
2397 Operand lhs;
2398 if (const_insert && const_bitmask) {
2399 lhs = Operand(const_insert->u32 & const_bitmask->u32);
2400 } else {
2401 insert = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), insert, bitmask);
2402 lhs = Operand(insert);
2403 }
2404
2405 Operand rhs;
2406 nir_const_value* const_base = nir_src_as_const_value(instr->src[2].src);
2407 if (const_base && const_bitmask) {
2408 rhs = Operand(const_base->u32 & ~const_bitmask->u32);
2409 } else {
2410 base = bld.sop2(aco_opcode::s_andn2_b32, bld.def(s1), bld.def(s1, scc), base, bitmask);
2411 rhs = Operand(base);
2412 }
2413
2414 bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), rhs, lhs);
2415
2416 } else if (dst.regClass() == v1) {
2417 if (base.type() == RegType::sgpr && (bitmask.type() == RegType::sgpr || (insert.type() == RegType::sgpr)))
2418 base = as_vgpr(ctx, base);
2419 if (insert.type() == RegType::sgpr && bitmask.type() == RegType::sgpr)
2420 insert = as_vgpr(ctx, insert);
2421
2422 bld.vop3(aco_opcode::v_bfi_b32, Definition(dst), bitmask, insert, base);
2423
2424 } else {
2425 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2426 nir_print_instr(&instr->instr, stderr);
2427 fprintf(stderr, "\n");
2428 }
2429 break;
2430 }
2431 case nir_op_ubfe:
2432 case nir_op_ibfe: {
2433 Temp base = get_alu_src(ctx, instr->src[0]);
2434 Temp offset = get_alu_src(ctx, instr->src[1]);
2435 Temp bits = get_alu_src(ctx, instr->src[2]);
2436
2437 if (dst.type() == RegType::sgpr) {
2438 Operand extract;
2439 nir_const_value* const_offset = nir_src_as_const_value(instr->src[1].src);
2440 nir_const_value* const_bits = nir_src_as_const_value(instr->src[2].src);
2441 if (const_offset && const_bits) {
2442 uint32_t const_extract = (const_bits->u32 << 16) | const_offset->u32;
2443 extract = Operand(const_extract);
2444 } else {
2445 Operand width;
2446 if (const_bits) {
2447 width = Operand(const_bits->u32 << 16);
2448 } else {
2449 width = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), bits, Operand(16u));
2450 }
2451 extract = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), offset, width);
2452 }
2453
2454 aco_opcode opcode;
2455 if (dst.regClass() == s1) {
2456 if (instr->op == nir_op_ubfe)
2457 opcode = aco_opcode::s_bfe_u32;
2458 else
2459 opcode = aco_opcode::s_bfe_i32;
2460 } else if (dst.regClass() == s2) {
2461 if (instr->op == nir_op_ubfe)
2462 opcode = aco_opcode::s_bfe_u64;
2463 else
2464 opcode = aco_opcode::s_bfe_i64;
2465 } else {
2466 unreachable("Unsupported BFE bit size");
2467 }
2468
2469 bld.sop2(opcode, Definition(dst), bld.def(s1, scc), base, extract);
2470
2471 } else {
2472 aco_opcode opcode;
2473 if (dst.regClass() == v1) {
2474 if (instr->op == nir_op_ubfe)
2475 opcode = aco_opcode::v_bfe_u32;
2476 else
2477 opcode = aco_opcode::v_bfe_i32;
2478 } else {
2479 unreachable("Unsupported BFE bit size");
2480 }
2481
2482 emit_vop3a_instruction(ctx, instr, opcode, dst);
2483 }
2484 break;
2485 }
2486 case nir_op_bit_count: {
2487 Temp src = get_alu_src(ctx, instr->src[0]);
2488 if (src.regClass() == s1) {
2489 bld.sop1(aco_opcode::s_bcnt1_i32_b32, Definition(dst), bld.def(s1, scc), src);
2490 } else if (src.regClass() == v1) {
2491 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst), src, Operand(0u));
2492 } else if (src.regClass() == v2) {
2493 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst),
2494 emit_extract_vector(ctx, src, 1, v1),
2495 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1),
2496 emit_extract_vector(ctx, src, 0, v1), Operand(0u)));
2497 } else if (src.regClass() == s2) {
2498 bld.sop1(aco_opcode::s_bcnt1_i32_b64, Definition(dst), bld.def(s1, scc), src);
2499 } else {
2500 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2501 nir_print_instr(&instr->instr, stderr);
2502 fprintf(stderr, "\n");
2503 }
2504 break;
2505 }
2506 case nir_op_flt: {
2507 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_f32, aco_opcode::v_cmp_lt_f64);
2508 break;
2509 }
2510 case nir_op_fge: {
2511 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_f32, aco_opcode::v_cmp_ge_f64);
2512 break;
2513 }
2514 case nir_op_feq: {
2515 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_f32, aco_opcode::v_cmp_eq_f64);
2516 break;
2517 }
2518 case nir_op_fne: {
2519 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_neq_f32, aco_opcode::v_cmp_neq_f64);
2520 break;
2521 }
2522 case nir_op_ilt: {
2523 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_i32, aco_opcode::v_cmp_lt_i64, aco_opcode::s_cmp_lt_i32);
2524 break;
2525 }
2526 case nir_op_ige: {
2527 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_i32, aco_opcode::v_cmp_ge_i64, aco_opcode::s_cmp_ge_i32);
2528 break;
2529 }
2530 case nir_op_ieq: {
2531 if (instr->src[0].src.ssa->bit_size == 1)
2532 emit_boolean_logic(ctx, instr, Builder::s_xnor, dst);
2533 else
2534 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_i32, aco_opcode::v_cmp_eq_i64, aco_opcode::s_cmp_eq_i32,
2535 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_eq_u64 : aco_opcode::num_opcodes);
2536 break;
2537 }
2538 case nir_op_ine: {
2539 if (instr->src[0].src.ssa->bit_size == 1)
2540 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
2541 else
2542 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lg_i32, aco_opcode::v_cmp_lg_i64, aco_opcode::s_cmp_lg_i32,
2543 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::num_opcodes);
2544 break;
2545 }
2546 case nir_op_ult: {
2547 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_u32, aco_opcode::v_cmp_lt_u64, aco_opcode::s_cmp_lt_u32);
2548 break;
2549 }
2550 case nir_op_uge: {
2551 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_u32, aco_opcode::v_cmp_ge_u64, aco_opcode::s_cmp_ge_u32);
2552 break;
2553 }
2554 case nir_op_fddx:
2555 case nir_op_fddy:
2556 case nir_op_fddx_fine:
2557 case nir_op_fddy_fine:
2558 case nir_op_fddx_coarse:
2559 case nir_op_fddy_coarse: {
2560 Temp src = get_alu_src(ctx, instr->src[0]);
2561 uint16_t dpp_ctrl1, dpp_ctrl2;
2562 if (instr->op == nir_op_fddx_fine) {
2563 dpp_ctrl1 = dpp_quad_perm(0, 0, 2, 2);
2564 dpp_ctrl2 = dpp_quad_perm(1, 1, 3, 3);
2565 } else if (instr->op == nir_op_fddy_fine) {
2566 dpp_ctrl1 = dpp_quad_perm(0, 1, 0, 1);
2567 dpp_ctrl2 = dpp_quad_perm(2, 3, 2, 3);
2568 } else {
2569 dpp_ctrl1 = dpp_quad_perm(0, 0, 0, 0);
2570 if (instr->op == nir_op_fddx || instr->op == nir_op_fddx_coarse)
2571 dpp_ctrl2 = dpp_quad_perm(1, 1, 1, 1);
2572 else
2573 dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
2574 }
2575
2576 Temp tmp;
2577 if (ctx->program->chip_class >= GFX8) {
2578 Temp tl = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl1);
2579 tmp = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), src, tl, dpp_ctrl2);
2580 } else {
2581 Temp tl = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl1);
2582 Temp tr = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl2);
2583 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), tr, tl);
2584 }
2585 emit_wqm(ctx, tmp, dst, true);
2586 break;
2587 }
2588 default:
2589 fprintf(stderr, "Unknown NIR ALU instr: ");
2590 nir_print_instr(&instr->instr, stderr);
2591 fprintf(stderr, "\n");
2592 }
2593 }
2594
2595 void visit_load_const(isel_context *ctx, nir_load_const_instr *instr)
2596 {
2597 Temp dst = get_ssa_temp(ctx, &instr->def);
2598
2599 // TODO: we really want to have the resulting type as this would allow for 64bit literals
2600 // which get truncated the lsb if double and msb if int
2601 // for now, we only use s_mov_b64 with 64bit inline constants
2602 assert(instr->def.num_components == 1 && "Vector load_const should be lowered to scalar.");
2603 assert(dst.type() == RegType::sgpr);
2604
2605 Builder bld(ctx->program, ctx->block);
2606
2607 if (instr->def.bit_size == 1) {
2608 assert(dst.regClass() == bld.lm);
2609 int val = instr->value[0].b ? -1 : 0;
2610 Operand op = bld.lm.size() == 1 ? Operand((uint32_t) val) : Operand((uint64_t) val);
2611 bld.sop1(Builder::s_mov, Definition(dst), op);
2612 } else if (dst.size() == 1) {
2613 bld.copy(Definition(dst), Operand(instr->value[0].u32));
2614 } else {
2615 assert(dst.size() != 1);
2616 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
2617 if (instr->def.bit_size == 64)
2618 for (unsigned i = 0; i < dst.size(); i++)
2619 vec->operands[i] = Operand{(uint32_t)(instr->value[0].u64 >> i * 32)};
2620 else {
2621 for (unsigned i = 0; i < dst.size(); i++)
2622 vec->operands[i] = Operand{instr->value[i].u32};
2623 }
2624 vec->definitions[0] = Definition(dst);
2625 ctx->block->instructions.emplace_back(std::move(vec));
2626 }
2627 }
2628
2629 uint32_t widen_mask(uint32_t mask, unsigned multiplier)
2630 {
2631 uint32_t new_mask = 0;
2632 for(unsigned i = 0; i < 32 && (1u << i) <= mask; ++i)
2633 if (mask & (1u << i))
2634 new_mask |= ((1u << multiplier) - 1u) << (i * multiplier);
2635 return new_mask;
2636 }
2637
2638 Operand load_lds_size_m0(isel_context *ctx)
2639 {
2640 /* TODO: m0 does not need to be initialized on GFX9+ */
2641 Builder bld(ctx->program, ctx->block);
2642 return bld.m0((Temp)bld.sopk(aco_opcode::s_movk_i32, bld.def(s1, m0), 0xffff));
2643 }
2644
2645 void load_lds(isel_context *ctx, unsigned elem_size_bytes, Temp dst,
2646 Temp address, unsigned base_offset, unsigned align)
2647 {
2648 assert(util_is_power_of_two_nonzero(align) && align >= 4);
2649
2650 Builder bld(ctx->program, ctx->block);
2651
2652 Operand m = load_lds_size_m0(ctx);
2653
2654 unsigned num_components = dst.size() * 4u / elem_size_bytes;
2655 unsigned bytes_read = 0;
2656 unsigned result_size = 0;
2657 unsigned total_bytes = num_components * elem_size_bytes;
2658 std::array<Temp, NIR_MAX_VEC_COMPONENTS> result;
2659 bool large_ds_read = ctx->options->chip_class >= GFX7;
2660 bool usable_read2 = ctx->options->chip_class >= GFX7;
2661
2662 while (bytes_read < total_bytes) {
2663 unsigned todo = total_bytes - bytes_read;
2664 bool aligned8 = bytes_read % 8 == 0 && align % 8 == 0;
2665 bool aligned16 = bytes_read % 16 == 0 && align % 16 == 0;
2666
2667 aco_opcode op = aco_opcode::last_opcode;
2668 bool read2 = false;
2669 if (todo >= 16 && aligned16 && large_ds_read) {
2670 op = aco_opcode::ds_read_b128;
2671 todo = 16;
2672 } else if (todo >= 16 && aligned8 && usable_read2) {
2673 op = aco_opcode::ds_read2_b64;
2674 read2 = true;
2675 todo = 16;
2676 } else if (todo >= 12 && aligned16 && large_ds_read) {
2677 op = aco_opcode::ds_read_b96;
2678 todo = 12;
2679 } else if (todo >= 8 && aligned8) {
2680 op = aco_opcode::ds_read_b64;
2681 todo = 8;
2682 } else if (todo >= 8 && usable_read2) {
2683 op = aco_opcode::ds_read2_b32;
2684 read2 = true;
2685 todo = 8;
2686 } else if (todo >= 4) {
2687 op = aco_opcode::ds_read_b32;
2688 todo = 4;
2689 } else {
2690 assert(false);
2691 }
2692 assert(todo % elem_size_bytes == 0);
2693 unsigned num_elements = todo / elem_size_bytes;
2694 unsigned offset = base_offset + bytes_read;
2695 unsigned max_offset = read2 ? 1019 : 65535;
2696
2697 Temp address_offset = address;
2698 if (offset > max_offset) {
2699 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
2700 offset = bytes_read;
2701 }
2702 assert(offset <= max_offset); /* bytes_read shouldn't be large enough for this to happen */
2703
2704 Temp res;
2705 if (num_components == 1 && dst.type() == RegType::vgpr)
2706 res = dst;
2707 else
2708 res = bld.tmp(RegClass(RegType::vgpr, todo / 4));
2709
2710 if (read2)
2711 res = bld.ds(op, Definition(res), address_offset, m, offset >> 2, (offset >> 2) + 1);
2712 else
2713 res = bld.ds(op, Definition(res), address_offset, m, offset);
2714
2715 if (num_components == 1) {
2716 assert(todo == total_bytes);
2717 if (dst.type() == RegType::sgpr)
2718 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), res);
2719 return;
2720 }
2721
2722 if (dst.type() == RegType::sgpr) {
2723 Temp new_res = bld.tmp(RegType::sgpr, res.size());
2724 expand_vector(ctx, res, new_res, res.size(), (1 << res.size()) - 1);
2725 res = new_res;
2726 }
2727
2728 if (num_elements == 1) {
2729 result[result_size++] = res;
2730 } else {
2731 assert(res != dst && res.size() % num_elements == 0);
2732 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_elements)};
2733 split->operands[0] = Operand(res);
2734 for (unsigned i = 0; i < num_elements; i++)
2735 split->definitions[i] = Definition(result[result_size++] = bld.tmp(res.type(), elem_size_bytes / 4));
2736 ctx->block->instructions.emplace_back(std::move(split));
2737 }
2738
2739 bytes_read += todo;
2740 }
2741
2742 assert(result_size == num_components && result_size > 1);
2743 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, result_size, 1)};
2744 for (unsigned i = 0; i < result_size; i++)
2745 vec->operands[i] = Operand(result[i]);
2746 vec->definitions[0] = Definition(dst);
2747 ctx->block->instructions.emplace_back(std::move(vec));
2748 ctx->allocated_vec.emplace(dst.id(), result);
2749 }
2750
2751 Temp extract_subvector(isel_context *ctx, Temp data, unsigned start, unsigned size, RegType type)
2752 {
2753 if (start == 0 && size == data.size())
2754 return type == RegType::vgpr ? as_vgpr(ctx, data) : data;
2755
2756 unsigned size_hint = 1;
2757 auto it = ctx->allocated_vec.find(data.id());
2758 if (it != ctx->allocated_vec.end())
2759 size_hint = it->second[0].size();
2760 if (size % size_hint || start % size_hint)
2761 size_hint = 1;
2762
2763 start /= size_hint;
2764 size /= size_hint;
2765
2766 Temp elems[size];
2767 for (unsigned i = 0; i < size; i++)
2768 elems[i] = emit_extract_vector(ctx, data, start + i, RegClass(type, size_hint));
2769
2770 if (size == 1)
2771 return type == RegType::vgpr ? as_vgpr(ctx, elems[0]) : elems[0];
2772
2773 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
2774 for (unsigned i = 0; i < size; i++)
2775 vec->operands[i] = Operand(elems[i]);
2776 Temp res = {ctx->program->allocateId(), RegClass(type, size * size_hint)};
2777 vec->definitions[0] = Definition(res);
2778 ctx->block->instructions.emplace_back(std::move(vec));
2779 return res;
2780 }
2781
2782 void ds_write_helper(isel_context *ctx, Operand m, Temp address, Temp data, unsigned data_start, unsigned total_size, unsigned offset0, unsigned offset1, unsigned align)
2783 {
2784 Builder bld(ctx->program, ctx->block);
2785 unsigned bytes_written = 0;
2786 bool large_ds_write = ctx->options->chip_class >= GFX7;
2787 bool usable_write2 = ctx->options->chip_class >= GFX7;
2788
2789 while (bytes_written < total_size * 4) {
2790 unsigned todo = total_size * 4 - bytes_written;
2791 bool aligned8 = bytes_written % 8 == 0 && align % 8 == 0;
2792 bool aligned16 = bytes_written % 16 == 0 && align % 16 == 0;
2793
2794 aco_opcode op = aco_opcode::last_opcode;
2795 bool write2 = false;
2796 unsigned size = 0;
2797 if (todo >= 16 && aligned16 && large_ds_write) {
2798 op = aco_opcode::ds_write_b128;
2799 size = 4;
2800 } else if (todo >= 16 && aligned8 && usable_write2) {
2801 op = aco_opcode::ds_write2_b64;
2802 write2 = true;
2803 size = 4;
2804 } else if (todo >= 12 && aligned16 && large_ds_write) {
2805 op = aco_opcode::ds_write_b96;
2806 size = 3;
2807 } else if (todo >= 8 && aligned8) {
2808 op = aco_opcode::ds_write_b64;
2809 size = 2;
2810 } else if (todo >= 8 && usable_write2) {
2811 op = aco_opcode::ds_write2_b32;
2812 write2 = true;
2813 size = 2;
2814 } else if (todo >= 4) {
2815 op = aco_opcode::ds_write_b32;
2816 size = 1;
2817 } else {
2818 assert(false);
2819 }
2820
2821 unsigned offset = offset0 + offset1 + bytes_written;
2822 unsigned max_offset = write2 ? 1020 : 65535;
2823 Temp address_offset = address;
2824 if (offset > max_offset) {
2825 address_offset = bld.vadd32(bld.def(v1), Operand(offset0), address_offset);
2826 offset = offset1 + bytes_written;
2827 }
2828 assert(offset <= max_offset); /* offset1 shouldn't be large enough for this to happen */
2829
2830 if (write2) {
2831 Temp val0 = extract_subvector(ctx, data, data_start + (bytes_written >> 2), size / 2, RegType::vgpr);
2832 Temp val1 = extract_subvector(ctx, data, data_start + (bytes_written >> 2) + 1, size / 2, RegType::vgpr);
2833 bld.ds(op, address_offset, val0, val1, m, offset >> 2, (offset >> 2) + 1);
2834 } else {
2835 Temp val = extract_subvector(ctx, data, data_start + (bytes_written >> 2), size, RegType::vgpr);
2836 bld.ds(op, address_offset, val, m, offset);
2837 }
2838
2839 bytes_written += size * 4;
2840 }
2841 }
2842
2843 void store_lds(isel_context *ctx, unsigned elem_size_bytes, Temp data, uint32_t wrmask,
2844 Temp address, unsigned base_offset, unsigned align)
2845 {
2846 assert(util_is_power_of_two_nonzero(align) && align >= 4);
2847
2848 Operand m = load_lds_size_m0(ctx);
2849
2850 /* we need at most two stores for 32bit variables */
2851 int start[2], count[2];
2852 u_bit_scan_consecutive_range(&wrmask, &start[0], &count[0]);
2853 u_bit_scan_consecutive_range(&wrmask, &start[1], &count[1]);
2854 assert(wrmask == 0);
2855
2856 /* one combined store is sufficient */
2857 if (count[0] == count[1]) {
2858 Builder bld(ctx->program, ctx->block);
2859
2860 Temp address_offset = address;
2861 if ((base_offset >> 2) + start[1] > 255) {
2862 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
2863 base_offset = 0;
2864 }
2865
2866 assert(count[0] == 1);
2867 Temp val0 = emit_extract_vector(ctx, data, start[0], v1);
2868 Temp val1 = emit_extract_vector(ctx, data, start[1], v1);
2869 aco_opcode op = elem_size_bytes == 4 ? aco_opcode::ds_write2_b32 : aco_opcode::ds_write2_b64;
2870 base_offset = base_offset / elem_size_bytes;
2871 bld.ds(op, address_offset, val0, val1, m,
2872 base_offset + start[0], base_offset + start[1]);
2873 return;
2874 }
2875
2876 for (unsigned i = 0; i < 2; i++) {
2877 if (count[i] == 0)
2878 continue;
2879
2880 unsigned elem_size_words = elem_size_bytes / 4;
2881 ds_write_helper(ctx, m, address, data, start[i] * elem_size_words, count[i] * elem_size_words,
2882 base_offset, start[i] * elem_size_bytes, align);
2883 }
2884 return;
2885 }
2886
2887 void visit_store_vsgs_output(isel_context *ctx, nir_intrinsic_instr *instr)
2888 {
2889 unsigned write_mask = nir_intrinsic_write_mask(instr);
2890 unsigned component = nir_intrinsic_component(instr);
2891 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
2892 unsigned idx = (nir_intrinsic_base(instr) + component) * 4u;
2893 Operand offset(s1);
2894 Builder bld(ctx->program, ctx->block);
2895
2896 nir_instr *off_instr = instr->src[1].ssa->parent_instr;
2897 if (off_instr->type != nir_instr_type_load_const)
2898 offset = bld.v_mul24_imm(bld.def(v1), get_ssa_temp(ctx, instr->src[1].ssa), 16u);
2899 else
2900 idx += nir_instr_as_load_const(off_instr)->value[0].u32 * 16u;
2901
2902 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8u;
2903 if (ctx->stage == vertex_es) {
2904 Temp esgs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_VS * 16u));
2905
2906 Temp elems[NIR_MAX_VEC_COMPONENTS * 2];
2907 if (elem_size_bytes == 8) {
2908 for (unsigned i = 0; i < src.size() / 2; i++) {
2909 Temp elem = emit_extract_vector(ctx, src, i, v2);
2910 elems[i*2] = bld.tmp(v1);
2911 elems[i*2+1] = bld.tmp(v1);
2912 bld.pseudo(aco_opcode::p_split_vector, Definition(elems[i*2]), Definition(elems[i*2+1]), elem);
2913 }
2914 write_mask = widen_mask(write_mask, 2);
2915 elem_size_bytes /= 2u;
2916 } else {
2917 for (unsigned i = 0; i < src.size(); i++)
2918 elems[i] = emit_extract_vector(ctx, src, i, v1);
2919 }
2920
2921 while (write_mask) {
2922 unsigned index = u_bit_scan(&write_mask);
2923 unsigned offset = index * elem_size_bytes;
2924 Temp elem = emit_extract_vector(ctx, src, index, RegClass(RegType::vgpr, elem_size_bytes / 4));
2925
2926 Operand vaddr_offset(v1);
2927 unsigned const_offset = idx + offset;
2928 if (const_offset >= 4096u) {
2929 vaddr_offset = bld.copy(bld.def(v1), Operand(const_offset / 4096u * 4096u));
2930 const_offset %= 4096u;
2931 }
2932
2933 aco_ptr<MTBUF_instruction> mtbuf{create_instruction<MTBUF_instruction>(aco_opcode::tbuffer_store_format_x, Format::MTBUF, 4, 0)};
2934 mtbuf->operands[0] = Operand(esgs_ring);
2935 mtbuf->operands[1] = vaddr_offset;
2936 mtbuf->operands[2] = Operand(get_arg(ctx, ctx->args->es2gs_offset));
2937 mtbuf->operands[3] = Operand(elem);
2938 mtbuf->offen = !vaddr_offset.isUndefined();
2939 mtbuf->dfmt = V_008F0C_BUF_DATA_FORMAT_32;
2940 mtbuf->nfmt = V_008F0C_BUF_NUM_FORMAT_UINT;
2941 mtbuf->offset = const_offset;
2942 mtbuf->glc = true;
2943 mtbuf->slc = true;
2944 mtbuf->barrier = barrier_none;
2945 mtbuf->can_reorder = true;
2946 bld.insert(std::move(mtbuf));
2947 }
2948 } else {
2949 unsigned itemsize = ctx->program->info->vs.es_info.esgs_itemsize;
2950
2951 Temp vertex_idx = emit_mbcnt(ctx, bld.def(v1));
2952 Temp wave_idx = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(ctx, ctx->args->merged_wave_info), Operand(4u << 16 | 24));
2953 vertex_idx = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), vertex_idx,
2954 bld.v_mul24_imm(bld.def(v1), as_vgpr(ctx, wave_idx), ctx->program->wave_size));
2955
2956 Temp lds_base = bld.v_mul24_imm(bld.def(v1), vertex_idx, itemsize);
2957 if (!offset.isUndefined())
2958 lds_base = bld.vadd32(bld.def(v1), offset, lds_base);
2959
2960 unsigned align = 1 << (ffs(itemsize) - 1);
2961 if (idx)
2962 align = std::min(align, 1u << (ffs(idx) - 1));
2963
2964 store_lds(ctx, elem_size_bytes, src, write_mask, lds_base, idx, align);
2965 }
2966 }
2967
2968 void visit_store_output(isel_context *ctx, nir_intrinsic_instr *instr)
2969 {
2970 if (ctx->stage == vertex_vs ||
2971 ctx->stage == fragment_fs ||
2972 ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
2973 unsigned write_mask = nir_intrinsic_write_mask(instr);
2974 unsigned component = nir_intrinsic_component(instr);
2975 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
2976 unsigned idx = nir_intrinsic_base(instr) + component;
2977
2978 nir_instr *off_instr = instr->src[1].ssa->parent_instr;
2979 if (off_instr->type != nir_instr_type_load_const) {
2980 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
2981 nir_print_instr(off_instr, stderr);
2982 fprintf(stderr, "\n");
2983 }
2984 idx += nir_instr_as_load_const(off_instr)->value[0].u32 * 4u;
2985
2986 if (instr->src[0].ssa->bit_size == 64)
2987 write_mask = widen_mask(write_mask, 2);
2988
2989 for (unsigned i = 0; i < 8; ++i) {
2990 if (write_mask & (1 << i)) {
2991 ctx->outputs.mask[idx / 4u] |= 1 << (idx % 4u);
2992 ctx->outputs.outputs[idx / 4u][idx % 4u] = emit_extract_vector(ctx, src, i, v1);
2993 }
2994 idx++;
2995 }
2996 } else if (ctx->stage == vertex_es ||
2997 (ctx->stage == vertex_geometry_gs && ctx->shader->info.stage == MESA_SHADER_VERTEX)) {
2998 visit_store_vsgs_output(ctx, instr);
2999 } else {
3000 unreachable("Shader stage not implemented");
3001 }
3002 }
3003
3004 void emit_interp_instr(isel_context *ctx, unsigned idx, unsigned component, Temp src, Temp dst, Temp prim_mask)
3005 {
3006 Temp coord1 = emit_extract_vector(ctx, src, 0, v1);
3007 Temp coord2 = emit_extract_vector(ctx, src, 1, v1);
3008
3009 Builder bld(ctx->program, ctx->block);
3010 Temp tmp = bld.vintrp(aco_opcode::v_interp_p1_f32, bld.def(v1), coord1, bld.m0(prim_mask), idx, component);
3011 bld.vintrp(aco_opcode::v_interp_p2_f32, Definition(dst), coord2, bld.m0(prim_mask), tmp, idx, component);
3012 }
3013
3014 void emit_load_frag_coord(isel_context *ctx, Temp dst, unsigned num_components)
3015 {
3016 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1));
3017 for (unsigned i = 0; i < num_components; i++)
3018 vec->operands[i] = Operand(get_arg(ctx, ctx->args->ac.frag_pos[i]));
3019 if (G_0286CC_POS_W_FLOAT_ENA(ctx->program->config->spi_ps_input_ena)) {
3020 assert(num_components == 4);
3021 Builder bld(ctx->program, ctx->block);
3022 vec->operands[3] = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), get_arg(ctx, ctx->args->ac.frag_pos[3]));
3023 }
3024
3025 for (Operand& op : vec->operands)
3026 op = op.isUndefined() ? Operand(0u) : op;
3027
3028 vec->definitions[0] = Definition(dst);
3029 ctx->block->instructions.emplace_back(std::move(vec));
3030 emit_split_vector(ctx, dst, num_components);
3031 return;
3032 }
3033
3034 void visit_load_interpolated_input(isel_context *ctx, nir_intrinsic_instr *instr)
3035 {
3036 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3037 Temp coords = get_ssa_temp(ctx, instr->src[0].ssa);
3038 unsigned idx = nir_intrinsic_base(instr);
3039 unsigned component = nir_intrinsic_component(instr);
3040 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
3041
3042 nir_const_value* offset = nir_src_as_const_value(instr->src[1]);
3043 if (offset) {
3044 assert(offset->u32 == 0);
3045 } else {
3046 /* the lower 15bit of the prim_mask contain the offset into LDS
3047 * while the upper bits contain the number of prims */
3048 Temp offset_src = get_ssa_temp(ctx, instr->src[1].ssa);
3049 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
3050 Builder bld(ctx->program, ctx->block);
3051 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
3052 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
3053 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
3054 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
3055 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
3056 }
3057
3058 if (instr->dest.ssa.num_components == 1) {
3059 emit_interp_instr(ctx, idx, component, coords, dst, prim_mask);
3060 } else {
3061 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.ssa.num_components, 1));
3062 for (unsigned i = 0; i < instr->dest.ssa.num_components; i++)
3063 {
3064 Temp tmp = {ctx->program->allocateId(), v1};
3065 emit_interp_instr(ctx, idx, component+i, coords, tmp, prim_mask);
3066 vec->operands[i] = Operand(tmp);
3067 }
3068 vec->definitions[0] = Definition(dst);
3069 ctx->block->instructions.emplace_back(std::move(vec));
3070 }
3071 }
3072
3073 bool check_vertex_fetch_size(isel_context *ctx, const ac_data_format_info *vtx_info,
3074 unsigned offset, unsigned stride, unsigned channels)
3075 {
3076 unsigned vertex_byte_size = vtx_info->chan_byte_size * channels;
3077 if (vtx_info->chan_byte_size != 4 && channels == 3)
3078 return false;
3079 return (ctx->options->chip_class != GFX6 && ctx->options->chip_class != GFX10) ||
3080 (offset % vertex_byte_size == 0 && stride % vertex_byte_size == 0);
3081 }
3082
3083 uint8_t get_fetch_data_format(isel_context *ctx, const ac_data_format_info *vtx_info,
3084 unsigned offset, unsigned stride, unsigned *channels)
3085 {
3086 if (!vtx_info->chan_byte_size) {
3087 *channels = vtx_info->num_channels;
3088 return vtx_info->chan_format;
3089 }
3090
3091 unsigned num_channels = *channels;
3092 if (!check_vertex_fetch_size(ctx, vtx_info, offset, stride, *channels)) {
3093 unsigned new_channels = num_channels + 1;
3094 /* first, assume more loads is worse and try using a larger data format */
3095 while (new_channels <= 4 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels)) {
3096 new_channels++;
3097 /* don't make the attribute potentially out-of-bounds */
3098 if (offset + new_channels * vtx_info->chan_byte_size > stride)
3099 new_channels = 5;
3100 }
3101
3102 if (new_channels == 5) {
3103 /* then try decreasing load size (at the cost of more loads) */
3104 new_channels = *channels;
3105 while (new_channels > 1 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels))
3106 new_channels--;
3107 }
3108
3109 if (new_channels < *channels)
3110 *channels = new_channels;
3111 num_channels = new_channels;
3112 }
3113
3114 switch (vtx_info->chan_format) {
3115 case V_008F0C_BUF_DATA_FORMAT_8:
3116 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_8, V_008F0C_BUF_DATA_FORMAT_8_8,
3117 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_8_8_8_8}[num_channels - 1];
3118 case V_008F0C_BUF_DATA_FORMAT_16:
3119 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_16, V_008F0C_BUF_DATA_FORMAT_16_16,
3120 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_16_16_16_16}[num_channels - 1];
3121 case V_008F0C_BUF_DATA_FORMAT_32:
3122 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_32, V_008F0C_BUF_DATA_FORMAT_32_32,
3123 V_008F0C_BUF_DATA_FORMAT_32_32_32, V_008F0C_BUF_DATA_FORMAT_32_32_32_32}[num_channels - 1];
3124 }
3125 unreachable("shouldn't reach here");
3126 return V_008F0C_BUF_DATA_FORMAT_INVALID;
3127 }
3128
3129 /* For 2_10_10_10 formats the alpha is handled as unsigned by pre-vega HW.
3130 * so we may need to fix it up. */
3131 Temp adjust_vertex_fetch_alpha(isel_context *ctx, unsigned adjustment, Temp alpha)
3132 {
3133 Builder bld(ctx->program, ctx->block);
3134
3135 if (adjustment == RADV_ALPHA_ADJUST_SSCALED)
3136 alpha = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), alpha);
3137
3138 /* For the integer-like cases, do a natural sign extension.
3139 *
3140 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
3141 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
3142 * exponent.
3143 */
3144 alpha = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(adjustment == RADV_ALPHA_ADJUST_SNORM ? 7u : 30u), alpha);
3145 alpha = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(30u), alpha);
3146
3147 /* Convert back to the right type. */
3148 if (adjustment == RADV_ALPHA_ADJUST_SNORM) {
3149 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
3150 Temp clamp = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0xbf800000u), alpha);
3151 alpha = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xbf800000u), alpha, clamp);
3152 } else if (adjustment == RADV_ALPHA_ADJUST_SSCALED) {
3153 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
3154 }
3155
3156 return alpha;
3157 }
3158
3159 void visit_load_input(isel_context *ctx, nir_intrinsic_instr *instr)
3160 {
3161 Builder bld(ctx->program, ctx->block);
3162 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3163 if (ctx->stage & sw_vs) {
3164
3165 nir_instr *off_instr = instr->src[0].ssa->parent_instr;
3166 if (off_instr->type != nir_instr_type_load_const) {
3167 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
3168 nir_print_instr(off_instr, stderr);
3169 fprintf(stderr, "\n");
3170 }
3171 uint32_t offset = nir_instr_as_load_const(off_instr)->value[0].u32;
3172
3173 Temp vertex_buffers = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->vertex_buffers));
3174
3175 unsigned location = nir_intrinsic_base(instr) / 4 - VERT_ATTRIB_GENERIC0 + offset;
3176 unsigned component = nir_intrinsic_component(instr);
3177 unsigned attrib_binding = ctx->options->key.vs.vertex_attribute_bindings[location];
3178 uint32_t attrib_offset = ctx->options->key.vs.vertex_attribute_offsets[location];
3179 uint32_t attrib_stride = ctx->options->key.vs.vertex_attribute_strides[location];
3180 unsigned attrib_format = ctx->options->key.vs.vertex_attribute_formats[location];
3181
3182 unsigned dfmt = attrib_format & 0xf;
3183 unsigned nfmt = (attrib_format >> 4) & 0x7;
3184 const struct ac_data_format_info *vtx_info = ac_get_data_format_info(dfmt);
3185
3186 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa) << component;
3187 unsigned num_channels = MIN2(util_last_bit(mask), vtx_info->num_channels);
3188 unsigned alpha_adjust = (ctx->options->key.vs.alpha_adjust >> (location * 2)) & 3;
3189 bool post_shuffle = ctx->options->key.vs.post_shuffle & (1 << location);
3190 if (post_shuffle)
3191 num_channels = MAX2(num_channels, 3);
3192
3193 Operand off = bld.copy(bld.def(s1), Operand(attrib_binding * 16u));
3194 Temp list = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), vertex_buffers, off);
3195
3196 Temp index;
3197 if (ctx->options->key.vs.instance_rate_inputs & (1u << location)) {
3198 uint32_t divisor = ctx->options->key.vs.instance_rate_divisors[location];
3199 Temp start_instance = get_arg(ctx, ctx->args->ac.start_instance);
3200 if (divisor) {
3201 Temp instance_id = get_arg(ctx, ctx->args->ac.instance_id);
3202 if (divisor != 1) {
3203 Temp divided = bld.tmp(v1);
3204 emit_v_div_u32(ctx, divided, as_vgpr(ctx, instance_id), divisor);
3205 index = bld.vadd32(bld.def(v1), start_instance, divided);
3206 } else {
3207 index = bld.vadd32(bld.def(v1), start_instance, instance_id);
3208 }
3209 } else {
3210 index = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), start_instance);
3211 }
3212 } else {
3213 index = bld.vadd32(bld.def(v1),
3214 get_arg(ctx, ctx->args->ac.base_vertex),
3215 get_arg(ctx, ctx->args->ac.vertex_id));
3216 }
3217
3218 Temp channels[num_channels];
3219 unsigned channel_start = 0;
3220 bool direct_fetch = false;
3221
3222 /* skip unused channels at the start */
3223 if (vtx_info->chan_byte_size && !post_shuffle) {
3224 channel_start = ffs(mask) - 1;
3225 for (unsigned i = 0; i < channel_start; i++)
3226 channels[i] = Temp(0, s1);
3227 } else if (vtx_info->chan_byte_size && post_shuffle && !(mask & 0x8)) {
3228 num_channels = 3 - (ffs(mask) - 1);
3229 }
3230
3231 /* load channels */
3232 while (channel_start < num_channels) {
3233 unsigned fetch_size = num_channels - channel_start;
3234 unsigned fetch_offset = attrib_offset + channel_start * vtx_info->chan_byte_size;
3235 bool expanded = false;
3236
3237 /* use MUBUF when possible to avoid possible alignment issues */
3238 /* TODO: we could use SDWA to unpack 8/16-bit attributes without extra instructions */
3239 bool use_mubuf = (nfmt == V_008F0C_BUF_NUM_FORMAT_FLOAT ||
3240 nfmt == V_008F0C_BUF_NUM_FORMAT_UINT ||
3241 nfmt == V_008F0C_BUF_NUM_FORMAT_SINT) &&
3242 vtx_info->chan_byte_size == 4;
3243 unsigned fetch_dfmt = V_008F0C_BUF_DATA_FORMAT_INVALID;
3244 if (!use_mubuf) {
3245 fetch_dfmt = get_fetch_data_format(ctx, vtx_info, fetch_offset, attrib_stride, &fetch_size);
3246 } else {
3247 if (fetch_size == 3 && ctx->options->chip_class == GFX6) {
3248 /* GFX6 only supports loading vec3 with MTBUF, expand to vec4. */
3249 fetch_size = 4;
3250 expanded = true;
3251 }
3252 }
3253
3254 Temp fetch_index = index;
3255 if (attrib_stride != 0 && fetch_offset > attrib_stride) {
3256 fetch_index = bld.vadd32(bld.def(v1), Operand(fetch_offset / attrib_stride), fetch_index);
3257 fetch_offset = fetch_offset % attrib_stride;
3258 }
3259
3260 Operand soffset(0u);
3261 if (fetch_offset >= 4096) {
3262 soffset = bld.copy(bld.def(s1), Operand(fetch_offset / 4096 * 4096));
3263 fetch_offset %= 4096;
3264 }
3265
3266 aco_opcode opcode;
3267 switch (fetch_size) {
3268 case 1:
3269 opcode = use_mubuf ? aco_opcode::buffer_load_dword : aco_opcode::tbuffer_load_format_x;
3270 break;
3271 case 2:
3272 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx2 : aco_opcode::tbuffer_load_format_xy;
3273 break;
3274 case 3:
3275 assert(ctx->options->chip_class >= GFX7 ||
3276 (!use_mubuf && ctx->options->chip_class == GFX6));
3277 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx3 : aco_opcode::tbuffer_load_format_xyz;
3278 break;
3279 case 4:
3280 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx4 : aco_opcode::tbuffer_load_format_xyzw;
3281 break;
3282 default:
3283 unreachable("Unimplemented load_input vector size");
3284 }
3285
3286 Temp fetch_dst;
3287 if (channel_start == 0 && fetch_size == dst.size() && !post_shuffle &&
3288 !expanded && (alpha_adjust == RADV_ALPHA_ADJUST_NONE ||
3289 num_channels <= 3)) {
3290 direct_fetch = true;
3291 fetch_dst = dst;
3292 } else {
3293 fetch_dst = bld.tmp(RegType::vgpr, fetch_size);
3294 }
3295
3296 if (use_mubuf) {
3297 Instruction *mubuf = bld.mubuf(opcode,
3298 Definition(fetch_dst), list, fetch_index, soffset,
3299 fetch_offset, false, true).instr;
3300 static_cast<MUBUF_instruction*>(mubuf)->can_reorder = true;
3301 } else {
3302 Instruction *mtbuf = bld.mtbuf(opcode,
3303 Definition(fetch_dst), list, fetch_index, soffset,
3304 fetch_dfmt, nfmt, fetch_offset, false, true).instr;
3305 static_cast<MTBUF_instruction*>(mtbuf)->can_reorder = true;
3306 }
3307
3308 emit_split_vector(ctx, fetch_dst, fetch_dst.size());
3309
3310 if (fetch_size == 1) {
3311 channels[channel_start] = fetch_dst;
3312 } else {
3313 for (unsigned i = 0; i < MIN2(fetch_size, num_channels - channel_start); i++)
3314 channels[channel_start + i] = emit_extract_vector(ctx, fetch_dst, i, v1);
3315 }
3316
3317 channel_start += fetch_size;
3318 }
3319
3320 if (!direct_fetch) {
3321 bool is_float = nfmt != V_008F0C_BUF_NUM_FORMAT_UINT &&
3322 nfmt != V_008F0C_BUF_NUM_FORMAT_SINT;
3323
3324 static const unsigned swizzle_normal[4] = {0, 1, 2, 3};
3325 static const unsigned swizzle_post_shuffle[4] = {2, 1, 0, 3};
3326 const unsigned *swizzle = post_shuffle ? swizzle_post_shuffle : swizzle_normal;
3327
3328 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
3329 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
3330 unsigned num_temp = 0;
3331 for (unsigned i = 0; i < dst.size(); i++) {
3332 unsigned idx = i + component;
3333 if (swizzle[idx] < num_channels && channels[swizzle[idx]].id()) {
3334 Temp channel = channels[swizzle[idx]];
3335 if (idx == 3 && alpha_adjust != RADV_ALPHA_ADJUST_NONE)
3336 channel = adjust_vertex_fetch_alpha(ctx, alpha_adjust, channel);
3337 vec->operands[i] = Operand(channel);
3338
3339 num_temp++;
3340 elems[i] = channel;
3341 } else if (is_float && idx == 3) {
3342 vec->operands[i] = Operand(0x3f800000u);
3343 } else if (!is_float && idx == 3) {
3344 vec->operands[i] = Operand(1u);
3345 } else {
3346 vec->operands[i] = Operand(0u);
3347 }
3348 }
3349 vec->definitions[0] = Definition(dst);
3350 ctx->block->instructions.emplace_back(std::move(vec));
3351 emit_split_vector(ctx, dst, dst.size());
3352
3353 if (num_temp == dst.size())
3354 ctx->allocated_vec.emplace(dst.id(), elems);
3355 }
3356 } else if (ctx->stage == fragment_fs) {
3357 unsigned offset_idx = instr->intrinsic == nir_intrinsic_load_input ? 0 : 1;
3358 nir_instr *off_instr = instr->src[offset_idx].ssa->parent_instr;
3359 if (off_instr->type != nir_instr_type_load_const ||
3360 nir_instr_as_load_const(off_instr)->value[0].u32 != 0) {
3361 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
3362 nir_print_instr(off_instr, stderr);
3363 fprintf(stderr, "\n");
3364 }
3365
3366 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
3367 nir_const_value* offset = nir_src_as_const_value(instr->src[offset_idx]);
3368 if (offset) {
3369 assert(offset->u32 == 0);
3370 } else {
3371 /* the lower 15bit of the prim_mask contain the offset into LDS
3372 * while the upper bits contain the number of prims */
3373 Temp offset_src = get_ssa_temp(ctx, instr->src[offset_idx].ssa);
3374 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
3375 Builder bld(ctx->program, ctx->block);
3376 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
3377 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
3378 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
3379 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
3380 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
3381 }
3382
3383 unsigned idx = nir_intrinsic_base(instr);
3384 unsigned component = nir_intrinsic_component(instr);
3385 unsigned vertex_id = 2; /* P0 */
3386
3387 if (instr->intrinsic == nir_intrinsic_load_input_vertex) {
3388 nir_const_value* src0 = nir_src_as_const_value(instr->src[0]);
3389 switch (src0->u32) {
3390 case 0:
3391 vertex_id = 2; /* P0 */
3392 break;
3393 case 1:
3394 vertex_id = 0; /* P10 */
3395 break;
3396 case 2:
3397 vertex_id = 1; /* P20 */
3398 break;
3399 default:
3400 unreachable("invalid vertex index");
3401 }
3402 }
3403
3404 if (dst.size() == 1) {
3405 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(dst), Operand(vertex_id), bld.m0(prim_mask), idx, component);
3406 } else {
3407 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
3408 for (unsigned i = 0; i < dst.size(); i++)
3409 vec->operands[i] = bld.vintrp(aco_opcode::v_interp_mov_f32, bld.def(v1), Operand(vertex_id), bld.m0(prim_mask), idx, component + i);
3410 vec->definitions[0] = Definition(dst);
3411 bld.insert(std::move(vec));
3412 }
3413
3414 } else {
3415 unreachable("Shader stage not implemented");
3416 }
3417 }
3418
3419 void visit_load_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
3420 {
3421 assert(ctx->stage == vertex_geometry_gs || ctx->stage == geometry_gs);
3422 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
3423
3424 Builder bld(ctx->program, ctx->block);
3425 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3426
3427 Temp offset = Temp();
3428 if (instr->src[0].ssa->parent_instr->type != nir_instr_type_load_const) {
3429 /* better code could be created, but this case probably doesn't happen
3430 * much in practice */
3431 Temp indirect_vertex = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
3432 for (unsigned i = 0; i < ctx->shader->info.gs.vertices_in; i++) {
3433 Temp elem;
3434 if (ctx->stage == vertex_geometry_gs) {
3435 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i / 2u * 2u]);
3436 if (i % 2u)
3437 elem = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), elem);
3438 } else {
3439 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i]);
3440 }
3441 if (offset.id()) {
3442 Temp cond = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(s2)),
3443 Operand(i), indirect_vertex);
3444 offset = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), offset, elem, cond);
3445 } else {
3446 offset = elem;
3447 }
3448 }
3449 if (ctx->stage == vertex_geometry_gs)
3450 offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu), offset);
3451 } else {
3452 unsigned vertex = nir_src_as_uint(instr->src[0]);
3453 if (ctx->stage == vertex_geometry_gs)
3454 offset = bld.vop3(
3455 aco_opcode::v_bfe_u32, bld.def(v1), get_arg(ctx, ctx->args->gs_vtx_offset[vertex / 2u * 2u]),
3456 Operand((vertex % 2u) * 16u), Operand(16u));
3457 else
3458 offset = get_arg(ctx, ctx->args->gs_vtx_offset[vertex]);
3459 }
3460
3461 unsigned const_offset = nir_intrinsic_base(instr);
3462 const_offset += nir_intrinsic_component(instr);
3463
3464 nir_instr *off_instr = instr->src[1].ssa->parent_instr;
3465 if (off_instr->type != nir_instr_type_load_const) {
3466 Temp indirect_offset = get_ssa_temp(ctx, instr->src[1].ssa);
3467 offset = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u),
3468 bld.vadd32(bld.def(v1), indirect_offset, offset));
3469 } else {
3470 const_offset += nir_instr_as_load_const(off_instr)->value[0].u32 * 4u;
3471 }
3472 const_offset *= 4u;
3473
3474 offset = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), offset);
3475
3476 unsigned itemsize = ctx->program->info->vs.es_info.esgs_itemsize;
3477
3478 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
3479 if (ctx->stage == geometry_gs) {
3480 Temp esgs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_GS * 16u));
3481
3482 const_offset *= ctx->program->wave_size;
3483
3484 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
3485 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(
3486 aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.ssa.num_components, 1)};
3487 for (unsigned i = 0; i < instr->dest.ssa.num_components; i++) {
3488 Temp subelems[2];
3489 for (unsigned j = 0; j < elem_size_bytes / 4; j++) {
3490 Operand soffset(0u);
3491 if (const_offset >= 4096u)
3492 soffset = bld.copy(bld.def(s1), Operand(const_offset / 4096u * 4096u));
3493
3494 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dword, Format::MUBUF, 3, 1)};
3495 mubuf->definitions[0] = bld.def(v1);
3496 subelems[j] = mubuf->definitions[0].getTemp();
3497 mubuf->operands[0] = Operand(esgs_ring);
3498 mubuf->operands[1] = Operand(offset);
3499 mubuf->operands[2] = Operand(soffset);
3500 mubuf->offen = true;
3501 mubuf->offset = const_offset % 4096u;
3502 mubuf->glc = true;
3503 mubuf->dlc = ctx->options->chip_class >= GFX10;
3504 mubuf->barrier = barrier_none;
3505 mubuf->can_reorder = true;
3506 bld.insert(std::move(mubuf));
3507
3508 const_offset += ctx->program->wave_size * 4u;
3509 }
3510
3511 if (elem_size_bytes == 4)
3512 elems[i] = subelems[0];
3513 else
3514 elems[i] = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), subelems[0], subelems[1]);
3515 vec->operands[i] = Operand(elems[i]);
3516 }
3517 vec->definitions[0] = Definition(dst);
3518 ctx->block->instructions.emplace_back(std::move(vec));
3519 ctx->allocated_vec.emplace(dst.id(), elems);
3520 } else {
3521 unsigned align = 16; /* alignment of indirect offset */
3522 align = std::min(align, 1u << (ffs(itemsize) - 1));
3523 if (const_offset)
3524 align = std::min(align, 1u << (ffs(const_offset) - 1));
3525
3526 load_lds(ctx, elem_size_bytes, dst, offset, const_offset, align);
3527 }
3528 }
3529
3530 Temp load_desc_ptr(isel_context *ctx, unsigned desc_set)
3531 {
3532 if (ctx->program->info->need_indirect_descriptor_sets) {
3533 Builder bld(ctx->program, ctx->block);
3534 Temp ptr64 = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->descriptor_sets[0]));
3535 Operand off = bld.copy(bld.def(s1), Operand(desc_set << 2));
3536 return bld.smem(aco_opcode::s_load_dword, bld.def(s1), ptr64, off);//, false, false, false);
3537 }
3538
3539 return get_arg(ctx, ctx->args->descriptor_sets[desc_set]);
3540 }
3541
3542
3543 void visit_load_resource(isel_context *ctx, nir_intrinsic_instr *instr)
3544 {
3545 Builder bld(ctx->program, ctx->block);
3546 Temp index = get_ssa_temp(ctx, instr->src[0].ssa);
3547 if (!ctx->divergent_vals[instr->dest.ssa.index])
3548 index = bld.as_uniform(index);
3549 unsigned desc_set = nir_intrinsic_desc_set(instr);
3550 unsigned binding = nir_intrinsic_binding(instr);
3551
3552 Temp desc_ptr;
3553 radv_pipeline_layout *pipeline_layout = ctx->options->layout;
3554 radv_descriptor_set_layout *layout = pipeline_layout->set[desc_set].layout;
3555 unsigned offset = layout->binding[binding].offset;
3556 unsigned stride;
3557 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
3558 layout->binding[binding].type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
3559 unsigned idx = pipeline_layout->set[desc_set].dynamic_offset_start + layout->binding[binding].dynamic_offset_offset;
3560 desc_ptr = get_arg(ctx, ctx->args->ac.push_constants);
3561 offset = pipeline_layout->push_constant_size + 16 * idx;
3562 stride = 16;
3563 } else {
3564 desc_ptr = load_desc_ptr(ctx, desc_set);
3565 stride = layout->binding[binding].size;
3566 }
3567
3568 nir_const_value* nir_const_index = nir_src_as_const_value(instr->src[0]);
3569 unsigned const_index = nir_const_index ? nir_const_index->u32 : 0;
3570 if (stride != 1) {
3571 if (nir_const_index) {
3572 const_index = const_index * stride;
3573 } else if (index.type() == RegType::vgpr) {
3574 bool index24bit = layout->binding[binding].array_size <= 0x1000000;
3575 index = bld.v_mul_imm(bld.def(v1), index, stride, index24bit);
3576 } else {
3577 index = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), Operand(index));
3578 }
3579 }
3580 if (offset) {
3581 if (nir_const_index) {
3582 const_index = const_index + offset;
3583 } else if (index.type() == RegType::vgpr) {
3584 index = bld.vadd32(bld.def(v1), Operand(offset), index);
3585 } else {
3586 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), Operand(index));
3587 }
3588 }
3589
3590 if (nir_const_index && const_index == 0) {
3591 index = desc_ptr;
3592 } else if (index.type() == RegType::vgpr) {
3593 index = bld.vadd32(bld.def(v1),
3594 nir_const_index ? Operand(const_index) : Operand(index),
3595 Operand(desc_ptr));
3596 } else {
3597 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
3598 nir_const_index ? Operand(const_index) : Operand(index),
3599 Operand(desc_ptr));
3600 }
3601
3602 bld.copy(Definition(get_ssa_temp(ctx, &instr->dest.ssa)), index);
3603 }
3604
3605 void load_buffer(isel_context *ctx, unsigned num_components, Temp dst,
3606 Temp rsrc, Temp offset, bool glc=false, bool readonly=true)
3607 {
3608 Builder bld(ctx->program, ctx->block);
3609
3610 unsigned num_bytes = dst.size() * 4;
3611 bool dlc = glc && ctx->options->chip_class >= GFX10;
3612
3613 aco_opcode op;
3614 if (dst.type() == RegType::vgpr || (ctx->options->chip_class < GFX8 && !readonly)) {
3615 Operand vaddr = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
3616 Operand soffset = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
3617 unsigned const_offset = 0;
3618
3619 Temp lower = Temp();
3620 if (num_bytes > 16) {
3621 assert(num_components == 3 || num_components == 4);
3622 op = aco_opcode::buffer_load_dwordx4;
3623 lower = bld.tmp(v4);
3624 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
3625 mubuf->definitions[0] = Definition(lower);
3626 mubuf->operands[0] = Operand(rsrc);
3627 mubuf->operands[1] = vaddr;
3628 mubuf->operands[2] = soffset;
3629 mubuf->offen = (offset.type() == RegType::vgpr);
3630 mubuf->glc = glc;
3631 mubuf->dlc = dlc;
3632 mubuf->barrier = readonly ? barrier_none : barrier_buffer;
3633 mubuf->can_reorder = readonly;
3634 bld.insert(std::move(mubuf));
3635 emit_split_vector(ctx, lower, 2);
3636 num_bytes -= 16;
3637 const_offset = 16;
3638 } else if (num_bytes == 12 && ctx->options->chip_class == GFX6) {
3639 /* GFX6 doesn't support loading vec3, expand to vec4. */
3640 num_bytes = 16;
3641 }
3642
3643 switch (num_bytes) {
3644 case 4:
3645 op = aco_opcode::buffer_load_dword;
3646 break;
3647 case 8:
3648 op = aco_opcode::buffer_load_dwordx2;
3649 break;
3650 case 12:
3651 assert(ctx->options->chip_class > GFX6);
3652 op = aco_opcode::buffer_load_dwordx3;
3653 break;
3654 case 16:
3655 op = aco_opcode::buffer_load_dwordx4;
3656 break;
3657 default:
3658 unreachable("Load SSBO not implemented for this size.");
3659 }
3660 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
3661 mubuf->operands[0] = Operand(rsrc);
3662 mubuf->operands[1] = vaddr;
3663 mubuf->operands[2] = soffset;
3664 mubuf->offen = (offset.type() == RegType::vgpr);
3665 mubuf->glc = glc;
3666 mubuf->dlc = dlc;
3667 mubuf->barrier = readonly ? barrier_none : barrier_buffer;
3668 mubuf->can_reorder = readonly;
3669 mubuf->offset = const_offset;
3670 aco_ptr<Instruction> instr = std::move(mubuf);
3671
3672 if (dst.size() > 4) {
3673 assert(lower != Temp());
3674 Temp upper = bld.tmp(RegType::vgpr, dst.size() - lower.size());
3675 instr->definitions[0] = Definition(upper);
3676 bld.insert(std::move(instr));
3677 if (dst.size() == 8)
3678 emit_split_vector(ctx, upper, 2);
3679 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size() / 2, 1));
3680 instr->operands[0] = Operand(emit_extract_vector(ctx, lower, 0, v2));
3681 instr->operands[1] = Operand(emit_extract_vector(ctx, lower, 1, v2));
3682 instr->operands[2] = Operand(emit_extract_vector(ctx, upper, 0, v2));
3683 if (dst.size() == 8)
3684 instr->operands[3] = Operand(emit_extract_vector(ctx, upper, 1, v2));
3685 } else if (dst.size() == 3 && ctx->options->chip_class == GFX6) {
3686 Temp vec = bld.tmp(v4);
3687 instr->definitions[0] = Definition(vec);
3688 bld.insert(std::move(instr));
3689 emit_split_vector(ctx, vec, 4);
3690
3691 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 3, 1));
3692 instr->operands[0] = Operand(emit_extract_vector(ctx, vec, 0, v1));
3693 instr->operands[1] = Operand(emit_extract_vector(ctx, vec, 1, v1));
3694 instr->operands[2] = Operand(emit_extract_vector(ctx, vec, 2, v1));
3695 }
3696
3697 if (dst.type() == RegType::sgpr) {
3698 Temp vec = bld.tmp(RegType::vgpr, dst.size());
3699 instr->definitions[0] = Definition(vec);
3700 bld.insert(std::move(instr));
3701 expand_vector(ctx, vec, dst, num_components, (1 << num_components) - 1);
3702 } else {
3703 instr->definitions[0] = Definition(dst);
3704 bld.insert(std::move(instr));
3705 emit_split_vector(ctx, dst, num_components);
3706 }
3707 } else {
3708 switch (num_bytes) {
3709 case 4:
3710 op = aco_opcode::s_buffer_load_dword;
3711 break;
3712 case 8:
3713 op = aco_opcode::s_buffer_load_dwordx2;
3714 break;
3715 case 12:
3716 case 16:
3717 op = aco_opcode::s_buffer_load_dwordx4;
3718 break;
3719 case 24:
3720 case 32:
3721 op = aco_opcode::s_buffer_load_dwordx8;
3722 break;
3723 default:
3724 unreachable("Load SSBO not implemented for this size.");
3725 }
3726 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
3727 load->operands[0] = Operand(rsrc);
3728 load->operands[1] = Operand(bld.as_uniform(offset));
3729 assert(load->operands[1].getTemp().type() == RegType::sgpr);
3730 load->definitions[0] = Definition(dst);
3731 load->glc = glc;
3732 load->dlc = dlc;
3733 load->barrier = readonly ? barrier_none : barrier_buffer;
3734 load->can_reorder = false; // FIXME: currently, it doesn't seem beneficial due to how our scheduler works
3735 assert(ctx->options->chip_class >= GFX8 || !glc);
3736
3737 /* trim vector */
3738 if (dst.size() == 3) {
3739 Temp vec = bld.tmp(s4);
3740 load->definitions[0] = Definition(vec);
3741 bld.insert(std::move(load));
3742 emit_split_vector(ctx, vec, 4);
3743
3744 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
3745 emit_extract_vector(ctx, vec, 0, s1),
3746 emit_extract_vector(ctx, vec, 1, s1),
3747 emit_extract_vector(ctx, vec, 2, s1));
3748 } else if (dst.size() == 6) {
3749 Temp vec = bld.tmp(s8);
3750 load->definitions[0] = Definition(vec);
3751 bld.insert(std::move(load));
3752 emit_split_vector(ctx, vec, 4);
3753
3754 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
3755 emit_extract_vector(ctx, vec, 0, s2),
3756 emit_extract_vector(ctx, vec, 1, s2),
3757 emit_extract_vector(ctx, vec, 2, s2));
3758 } else {
3759 bld.insert(std::move(load));
3760 }
3761 emit_split_vector(ctx, dst, num_components);
3762 }
3763 }
3764
3765 void visit_load_ubo(isel_context *ctx, nir_intrinsic_instr *instr)
3766 {
3767 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3768 Temp rsrc = get_ssa_temp(ctx, instr->src[0].ssa);
3769
3770 Builder bld(ctx->program, ctx->block);
3771
3772 nir_intrinsic_instr* idx_instr = nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
3773 unsigned desc_set = nir_intrinsic_desc_set(idx_instr);
3774 unsigned binding = nir_intrinsic_binding(idx_instr);
3775 radv_descriptor_set_layout *layout = ctx->options->layout->set[desc_set].layout;
3776
3777 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
3778 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
3779 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
3780 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
3781 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
3782 if (ctx->options->chip_class >= GFX10) {
3783 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
3784 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
3785 S_008F0C_RESOURCE_LEVEL(1);
3786 } else {
3787 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
3788 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
3789 }
3790 Temp upper_dwords = bld.pseudo(aco_opcode::p_create_vector, bld.def(s3),
3791 Operand(S_008F04_BASE_ADDRESS_HI(ctx->options->address32_hi)),
3792 Operand(0xFFFFFFFFu),
3793 Operand(desc_type));
3794 rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
3795 rsrc, upper_dwords);
3796 } else {
3797 rsrc = convert_pointer_to_64_bit(ctx, rsrc);
3798 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
3799 }
3800
3801 load_buffer(ctx, instr->num_components, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa));
3802 }
3803
3804 void visit_load_push_constant(isel_context *ctx, nir_intrinsic_instr *instr)
3805 {
3806 Builder bld(ctx->program, ctx->block);
3807 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3808
3809 unsigned offset = nir_intrinsic_base(instr);
3810 nir_const_value *index_cv = nir_src_as_const_value(instr->src[0]);
3811 if (index_cv && instr->dest.ssa.bit_size == 32) {
3812
3813 unsigned count = instr->dest.ssa.num_components;
3814 unsigned start = (offset + index_cv->u32) / 4u;
3815 start -= ctx->args->ac.base_inline_push_consts;
3816 if (start + count <= ctx->args->ac.num_inline_push_consts) {
3817 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
3818 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
3819 for (unsigned i = 0; i < count; ++i) {
3820 elems[i] = get_arg(ctx, ctx->args->ac.inline_push_consts[start + i]);
3821 vec->operands[i] = Operand{elems[i]};
3822 }
3823 vec->definitions[0] = Definition(dst);
3824 ctx->block->instructions.emplace_back(std::move(vec));
3825 ctx->allocated_vec.emplace(dst.id(), elems);
3826 return;
3827 }
3828 }
3829
3830 Temp index = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa));
3831 if (offset != 0) // TODO check if index != 0 as well
3832 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), index);
3833 Temp ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->ac.push_constants));
3834 Temp vec = dst;
3835 bool trim = false;
3836 aco_opcode op;
3837
3838 switch (dst.size()) {
3839 case 1:
3840 op = aco_opcode::s_load_dword;
3841 break;
3842 case 2:
3843 op = aco_opcode::s_load_dwordx2;
3844 break;
3845 case 3:
3846 vec = bld.tmp(s4);
3847 trim = true;
3848 case 4:
3849 op = aco_opcode::s_load_dwordx4;
3850 break;
3851 case 6:
3852 vec = bld.tmp(s8);
3853 trim = true;
3854 case 8:
3855 op = aco_opcode::s_load_dwordx8;
3856 break;
3857 default:
3858 unreachable("unimplemented or forbidden load_push_constant.");
3859 }
3860
3861 bld.smem(op, Definition(vec), ptr, index);
3862
3863 if (trim) {
3864 emit_split_vector(ctx, vec, 4);
3865 RegClass rc = dst.size() == 3 ? s1 : s2;
3866 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
3867 emit_extract_vector(ctx, vec, 0, rc),
3868 emit_extract_vector(ctx, vec, 1, rc),
3869 emit_extract_vector(ctx, vec, 2, rc));
3870
3871 }
3872 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
3873 }
3874
3875 void visit_load_constant(isel_context *ctx, nir_intrinsic_instr *instr)
3876 {
3877 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3878
3879 Builder bld(ctx->program, ctx->block);
3880
3881 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
3882 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
3883 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
3884 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
3885 if (ctx->options->chip_class >= GFX10) {
3886 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
3887 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
3888 S_008F0C_RESOURCE_LEVEL(1);
3889 } else {
3890 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
3891 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
3892 }
3893
3894 unsigned base = nir_intrinsic_base(instr);
3895 unsigned range = nir_intrinsic_range(instr);
3896
3897 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
3898 if (base && offset.type() == RegType::sgpr)
3899 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), offset, Operand(base));
3900 else if (base && offset.type() == RegType::vgpr)
3901 offset = bld.vadd32(bld.def(v1), Operand(base), offset);
3902
3903 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
3904 bld.sop1(aco_opcode::p_constaddr, bld.def(s2), bld.def(s1, scc), Operand(ctx->constant_data_offset)),
3905 Operand(MIN2(base + range, ctx->shader->constant_data_size)),
3906 Operand(desc_type));
3907
3908 load_buffer(ctx, instr->num_components, dst, rsrc, offset);
3909 }
3910
3911 void visit_discard_if(isel_context *ctx, nir_intrinsic_instr *instr)
3912 {
3913 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
3914 ctx->cf_info.exec_potentially_empty_discard = true;
3915
3916 ctx->program->needs_exact = true;
3917
3918 // TODO: optimize uniform conditions
3919 Builder bld(ctx->program, ctx->block);
3920 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
3921 assert(src.regClass() == bld.lm);
3922 src = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
3923 bld.pseudo(aco_opcode::p_discard_if, src);
3924 ctx->block->kind |= block_kind_uses_discard_if;
3925 return;
3926 }
3927
3928 void visit_discard(isel_context* ctx, nir_intrinsic_instr *instr)
3929 {
3930 Builder bld(ctx->program, ctx->block);
3931
3932 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
3933 ctx->cf_info.exec_potentially_empty_discard = true;
3934
3935 bool divergent = ctx->cf_info.parent_if.is_divergent ||
3936 ctx->cf_info.parent_loop.has_divergent_continue;
3937
3938 if (ctx->block->loop_nest_depth &&
3939 ((nir_instr_is_last(&instr->instr) && !divergent) || divergent)) {
3940 /* we handle discards the same way as jump instructions */
3941 append_logical_end(ctx->block);
3942
3943 /* in loops, discard behaves like break */
3944 Block *linear_target = ctx->cf_info.parent_loop.exit;
3945 ctx->block->kind |= block_kind_discard;
3946
3947 if (!divergent) {
3948 /* uniform discard - loop ends here */
3949 assert(nir_instr_is_last(&instr->instr));
3950 ctx->block->kind |= block_kind_uniform;
3951 ctx->cf_info.has_branch = true;
3952 bld.branch(aco_opcode::p_branch);
3953 add_linear_edge(ctx->block->index, linear_target);
3954 return;
3955 }
3956
3957 /* we add a break right behind the discard() instructions */
3958 ctx->block->kind |= block_kind_break;
3959 unsigned idx = ctx->block->index;
3960
3961 /* remove critical edges from linear CFG */
3962 bld.branch(aco_opcode::p_branch);
3963 Block* break_block = ctx->program->create_and_insert_block();
3964 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
3965 break_block->kind |= block_kind_uniform;
3966 add_linear_edge(idx, break_block);
3967 add_linear_edge(break_block->index, linear_target);
3968 bld.reset(break_block);
3969 bld.branch(aco_opcode::p_branch);
3970
3971 Block* continue_block = ctx->program->create_and_insert_block();
3972 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
3973 add_linear_edge(idx, continue_block);
3974 append_logical_start(continue_block);
3975 ctx->block = continue_block;
3976
3977 return;
3978 }
3979
3980 /* it can currently happen that NIR doesn't remove the unreachable code */
3981 if (!nir_instr_is_last(&instr->instr)) {
3982 ctx->program->needs_exact = true;
3983 /* save exec somewhere temporarily so that it doesn't get
3984 * overwritten before the discard from outer exec masks */
3985 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), Operand(0xFFFFFFFF), Operand(exec, bld.lm));
3986 bld.pseudo(aco_opcode::p_discard_if, cond);
3987 ctx->block->kind |= block_kind_uses_discard_if;
3988 return;
3989 }
3990
3991 /* This condition is incorrect for uniformly branched discards in a loop
3992 * predicated by a divergent condition, but the above code catches that case
3993 * and the discard would end up turning into a discard_if.
3994 * For example:
3995 * if (divergent) {
3996 * while (...) {
3997 * if (uniform) {
3998 * discard;
3999 * }
4000 * }
4001 * }
4002 */
4003 if (!ctx->cf_info.parent_if.is_divergent) {
4004 /* program just ends here */
4005 ctx->block->kind |= block_kind_uniform;
4006 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
4007 0 /* enabled mask */, 9 /* dest */,
4008 false /* compressed */, true/* done */, true /* valid mask */);
4009 bld.sopp(aco_opcode::s_endpgm);
4010 // TODO: it will potentially be followed by a branch which is dead code to sanitize NIR phis
4011 } else {
4012 ctx->block->kind |= block_kind_discard;
4013 /* branch and linear edge is added by visit_if() */
4014 }
4015 }
4016
4017 enum aco_descriptor_type {
4018 ACO_DESC_IMAGE,
4019 ACO_DESC_FMASK,
4020 ACO_DESC_SAMPLER,
4021 ACO_DESC_BUFFER,
4022 ACO_DESC_PLANE_0,
4023 ACO_DESC_PLANE_1,
4024 ACO_DESC_PLANE_2,
4025 };
4026
4027 static bool
4028 should_declare_array(isel_context *ctx, enum glsl_sampler_dim sampler_dim, bool is_array) {
4029 if (sampler_dim == GLSL_SAMPLER_DIM_BUF)
4030 return false;
4031 ac_image_dim dim = ac_get_sampler_dim(ctx->options->chip_class, sampler_dim, is_array);
4032 return dim == ac_image_cube ||
4033 dim == ac_image_1darray ||
4034 dim == ac_image_2darray ||
4035 dim == ac_image_2darraymsaa;
4036 }
4037
4038 Temp get_sampler_desc(isel_context *ctx, nir_deref_instr *deref_instr,
4039 enum aco_descriptor_type desc_type,
4040 const nir_tex_instr *tex_instr, bool image, bool write)
4041 {
4042 /* FIXME: we should lower the deref with some new nir_intrinsic_load_desc
4043 std::unordered_map<uint64_t, Temp>::iterator it = ctx->tex_desc.find((uint64_t) desc_type << 32 | deref_instr->dest.ssa.index);
4044 if (it != ctx->tex_desc.end())
4045 return it->second;
4046 */
4047 Temp index = Temp();
4048 bool index_set = false;
4049 unsigned constant_index = 0;
4050 unsigned descriptor_set;
4051 unsigned base_index;
4052 Builder bld(ctx->program, ctx->block);
4053
4054 if (!deref_instr) {
4055 assert(tex_instr && !image);
4056 descriptor_set = 0;
4057 base_index = tex_instr->sampler_index;
4058 } else {
4059 while(deref_instr->deref_type != nir_deref_type_var) {
4060 unsigned array_size = glsl_get_aoa_size(deref_instr->type);
4061 if (!array_size)
4062 array_size = 1;
4063
4064 assert(deref_instr->deref_type == nir_deref_type_array);
4065 nir_const_value *const_value = nir_src_as_const_value(deref_instr->arr.index);
4066 if (const_value) {
4067 constant_index += array_size * const_value->u32;
4068 } else {
4069 Temp indirect = get_ssa_temp(ctx, deref_instr->arr.index.ssa);
4070 if (indirect.type() == RegType::vgpr)
4071 indirect = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), indirect);
4072
4073 if (array_size != 1)
4074 indirect = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(array_size), indirect);
4075
4076 if (!index_set) {
4077 index = indirect;
4078 index_set = true;
4079 } else {
4080 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), index, indirect);
4081 }
4082 }
4083
4084 deref_instr = nir_src_as_deref(deref_instr->parent);
4085 }
4086 descriptor_set = deref_instr->var->data.descriptor_set;
4087 base_index = deref_instr->var->data.binding;
4088 }
4089
4090 Temp list = load_desc_ptr(ctx, descriptor_set);
4091 list = convert_pointer_to_64_bit(ctx, list);
4092
4093 struct radv_descriptor_set_layout *layout = ctx->options->layout->set[descriptor_set].layout;
4094 struct radv_descriptor_set_binding_layout *binding = layout->binding + base_index;
4095 unsigned offset = binding->offset;
4096 unsigned stride = binding->size;
4097 aco_opcode opcode;
4098 RegClass type;
4099
4100 assert(base_index < layout->binding_count);
4101
4102 switch (desc_type) {
4103 case ACO_DESC_IMAGE:
4104 type = s8;
4105 opcode = aco_opcode::s_load_dwordx8;
4106 break;
4107 case ACO_DESC_FMASK:
4108 type = s8;
4109 opcode = aco_opcode::s_load_dwordx8;
4110 offset += 32;
4111 break;
4112 case ACO_DESC_SAMPLER:
4113 type = s4;
4114 opcode = aco_opcode::s_load_dwordx4;
4115 if (binding->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
4116 offset += radv_combined_image_descriptor_sampler_offset(binding);
4117 break;
4118 case ACO_DESC_BUFFER:
4119 type = s4;
4120 opcode = aco_opcode::s_load_dwordx4;
4121 break;
4122 case ACO_DESC_PLANE_0:
4123 case ACO_DESC_PLANE_1:
4124 type = s8;
4125 opcode = aco_opcode::s_load_dwordx8;
4126 offset += 32 * (desc_type - ACO_DESC_PLANE_0);
4127 break;
4128 case ACO_DESC_PLANE_2:
4129 type = s4;
4130 opcode = aco_opcode::s_load_dwordx4;
4131 offset += 64;
4132 break;
4133 default:
4134 unreachable("invalid desc_type\n");
4135 }
4136
4137 offset += constant_index * stride;
4138
4139 if (desc_type == ACO_DESC_SAMPLER && binding->immutable_samplers_offset &&
4140 (!index_set || binding->immutable_samplers_equal)) {
4141 if (binding->immutable_samplers_equal)
4142 constant_index = 0;
4143
4144 const uint32_t *samplers = radv_immutable_samplers(layout, binding);
4145 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
4146 Operand(samplers[constant_index * 4 + 0]),
4147 Operand(samplers[constant_index * 4 + 1]),
4148 Operand(samplers[constant_index * 4 + 2]),
4149 Operand(samplers[constant_index * 4 + 3]));
4150 }
4151
4152 Operand off;
4153 if (!index_set) {
4154 off = bld.copy(bld.def(s1), Operand(offset));
4155 } else {
4156 off = Operand((Temp)bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset),
4157 bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), index)));
4158 }
4159
4160 Temp res = bld.smem(opcode, bld.def(type), list, off);
4161
4162 if (desc_type == ACO_DESC_PLANE_2) {
4163 Temp components[8];
4164 for (unsigned i = 0; i < 8; i++)
4165 components[i] = bld.tmp(s1);
4166 bld.pseudo(aco_opcode::p_split_vector,
4167 Definition(components[0]),
4168 Definition(components[1]),
4169 Definition(components[2]),
4170 Definition(components[3]),
4171 res);
4172
4173 Temp desc2 = get_sampler_desc(ctx, deref_instr, ACO_DESC_PLANE_1, tex_instr, image, write);
4174 bld.pseudo(aco_opcode::p_split_vector,
4175 bld.def(s1), bld.def(s1), bld.def(s1), bld.def(s1),
4176 Definition(components[4]),
4177 Definition(components[5]),
4178 Definition(components[6]),
4179 Definition(components[7]),
4180 desc2);
4181
4182 res = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
4183 components[0], components[1], components[2], components[3],
4184 components[4], components[5], components[6], components[7]);
4185 }
4186
4187 return res;
4188 }
4189
4190 static int image_type_to_components_count(enum glsl_sampler_dim dim, bool array)
4191 {
4192 switch (dim) {
4193 case GLSL_SAMPLER_DIM_BUF:
4194 return 1;
4195 case GLSL_SAMPLER_DIM_1D:
4196 return array ? 2 : 1;
4197 case GLSL_SAMPLER_DIM_2D:
4198 return array ? 3 : 2;
4199 case GLSL_SAMPLER_DIM_MS:
4200 return array ? 4 : 3;
4201 case GLSL_SAMPLER_DIM_3D:
4202 case GLSL_SAMPLER_DIM_CUBE:
4203 return 3;
4204 case GLSL_SAMPLER_DIM_RECT:
4205 case GLSL_SAMPLER_DIM_SUBPASS:
4206 return 2;
4207 case GLSL_SAMPLER_DIM_SUBPASS_MS:
4208 return 3;
4209 default:
4210 break;
4211 }
4212 return 0;
4213 }
4214
4215
4216 /* Adjust the sample index according to FMASK.
4217 *
4218 * For uncompressed MSAA surfaces, FMASK should return 0x76543210,
4219 * which is the identity mapping. Each nibble says which physical sample
4220 * should be fetched to get that sample.
4221 *
4222 * For example, 0x11111100 means there are only 2 samples stored and
4223 * the second sample covers 3/4 of the pixel. When reading samples 0
4224 * and 1, return physical sample 0 (determined by the first two 0s
4225 * in FMASK), otherwise return physical sample 1.
4226 *
4227 * The sample index should be adjusted as follows:
4228 * sample_index = (fmask >> (sample_index * 4)) & 0xF;
4229 */
4230 static Temp adjust_sample_index_using_fmask(isel_context *ctx, bool da, std::vector<Temp>& coords, Operand sample_index, Temp fmask_desc_ptr)
4231 {
4232 Builder bld(ctx->program, ctx->block);
4233 Temp fmask = bld.tmp(v1);
4234 unsigned dim = ctx->options->chip_class >= GFX10
4235 ? ac_get_sampler_dim(ctx->options->chip_class, GLSL_SAMPLER_DIM_2D, da)
4236 : 0;
4237
4238 Temp coord = da ? bld.pseudo(aco_opcode::p_create_vector, bld.def(v3), coords[0], coords[1], coords[2]) :
4239 bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), coords[0], coords[1]);
4240 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(aco_opcode::image_load, Format::MIMG, 3, 1)};
4241 load->operands[0] = Operand(fmask_desc_ptr);
4242 load->operands[1] = Operand(s4); /* no sampler */
4243 load->operands[2] = Operand(coord);
4244 load->definitions[0] = Definition(fmask);
4245 load->glc = false;
4246 load->dlc = false;
4247 load->dmask = 0x1;
4248 load->unrm = true;
4249 load->da = da;
4250 load->dim = dim;
4251 load->can_reorder = true; /* fmask images shouldn't be modified */
4252 ctx->block->instructions.emplace_back(std::move(load));
4253
4254 Operand sample_index4;
4255 if (sample_index.isConstant() && sample_index.constantValue() < 16) {
4256 sample_index4 = Operand(sample_index.constantValue() << 2);
4257 } else if (sample_index.regClass() == s1) {
4258 sample_index4 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), sample_index, Operand(2u));
4259 } else {
4260 assert(sample_index.regClass() == v1);
4261 sample_index4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), sample_index);
4262 }
4263
4264 Temp final_sample;
4265 if (sample_index4.isConstant() && sample_index4.constantValue() == 0)
4266 final_sample = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(15u), fmask);
4267 else if (sample_index4.isConstant() && sample_index4.constantValue() == 28)
4268 final_sample = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(28u), fmask);
4269 else
4270 final_sample = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), fmask, sample_index4, Operand(4u));
4271
4272 /* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK
4273 * resource descriptor is 0 (invalid),
4274 */
4275 Temp compare = bld.tmp(bld.lm);
4276 bld.vopc_e64(aco_opcode::v_cmp_lg_u32, Definition(compare),
4277 Operand(0u), emit_extract_vector(ctx, fmask_desc_ptr, 1, s1)).def(0).setHint(vcc);
4278
4279 Temp sample_index_v = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), sample_index);
4280
4281 /* Replace the MSAA sample index. */
4282 return bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), sample_index_v, final_sample, compare);
4283 }
4284
4285 static Temp get_image_coords(isel_context *ctx, const nir_intrinsic_instr *instr, const struct glsl_type *type)
4286 {
4287
4288 Temp src0 = get_ssa_temp(ctx, instr->src[1].ssa);
4289 enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4290 bool is_array = glsl_sampler_type_is_array(type);
4291 ASSERTED bool add_frag_pos = (dim == GLSL_SAMPLER_DIM_SUBPASS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
4292 assert(!add_frag_pos && "Input attachments should be lowered.");
4293 bool is_ms = (dim == GLSL_SAMPLER_DIM_MS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
4294 bool gfx9_1d = ctx->options->chip_class == GFX9 && dim == GLSL_SAMPLER_DIM_1D;
4295 int count = image_type_to_components_count(dim, is_array);
4296 std::vector<Temp> coords(count);
4297 Builder bld(ctx->program, ctx->block);
4298
4299 if (is_ms) {
4300 count--;
4301 Temp src2 = get_ssa_temp(ctx, instr->src[2].ssa);
4302 /* get sample index */
4303 if (instr->intrinsic == nir_intrinsic_image_deref_load) {
4304 nir_const_value *sample_cv = nir_src_as_const_value(instr->src[2]);
4305 Operand sample_index = sample_cv ? Operand(sample_cv->u32) : Operand(emit_extract_vector(ctx, src2, 0, v1));
4306 std::vector<Temp> fmask_load_address;
4307 for (unsigned i = 0; i < (is_array ? 3 : 2); i++)
4308 fmask_load_address.emplace_back(emit_extract_vector(ctx, src0, i, v1));
4309
4310 Temp fmask_desc_ptr = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_FMASK, nullptr, false, false);
4311 coords[count] = adjust_sample_index_using_fmask(ctx, is_array, fmask_load_address, sample_index, fmask_desc_ptr);
4312 } else {
4313 coords[count] = emit_extract_vector(ctx, src2, 0, v1);
4314 }
4315 }
4316
4317 if (count == 1 && !gfx9_1d)
4318 return emit_extract_vector(ctx, src0, 0, v1);
4319
4320 if (gfx9_1d) {
4321 coords[0] = emit_extract_vector(ctx, src0, 0, v1);
4322 coords.resize(coords.size() + 1);
4323 coords[1] = bld.copy(bld.def(v1), Operand(0u));
4324 if (is_array)
4325 coords[2] = emit_extract_vector(ctx, src0, 1, v1);
4326 } else {
4327 for (int i = 0; i < count; i++)
4328 coords[i] = emit_extract_vector(ctx, src0, i, v1);
4329 }
4330
4331 if (instr->intrinsic == nir_intrinsic_image_deref_load ||
4332 instr->intrinsic == nir_intrinsic_image_deref_store) {
4333 int lod_index = instr->intrinsic == nir_intrinsic_image_deref_load ? 3 : 4;
4334 bool level_zero = nir_src_is_const(instr->src[lod_index]) && nir_src_as_uint(instr->src[lod_index]) == 0;
4335
4336 if (!level_zero)
4337 coords.emplace_back(get_ssa_temp(ctx, instr->src[lod_index].ssa));
4338 }
4339
4340 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
4341 for (unsigned i = 0; i < coords.size(); i++)
4342 vec->operands[i] = Operand(coords[i]);
4343 Temp res = {ctx->program->allocateId(), RegClass(RegType::vgpr, coords.size())};
4344 vec->definitions[0] = Definition(res);
4345 ctx->block->instructions.emplace_back(std::move(vec));
4346 return res;
4347 }
4348
4349
4350 void visit_image_load(isel_context *ctx, nir_intrinsic_instr *instr)
4351 {
4352 Builder bld(ctx->program, ctx->block);
4353 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
4354 const struct glsl_type *type = glsl_without_array(var->type);
4355 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4356 bool is_array = glsl_sampler_type_is_array(type);
4357 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4358
4359 if (dim == GLSL_SAMPLER_DIM_BUF) {
4360 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa);
4361 unsigned num_channels = util_last_bit(mask);
4362 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
4363 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
4364
4365 aco_opcode opcode;
4366 switch (num_channels) {
4367 case 1:
4368 opcode = aco_opcode::buffer_load_format_x;
4369 break;
4370 case 2:
4371 opcode = aco_opcode::buffer_load_format_xy;
4372 break;
4373 case 3:
4374 opcode = aco_opcode::buffer_load_format_xyz;
4375 break;
4376 case 4:
4377 opcode = aco_opcode::buffer_load_format_xyzw;
4378 break;
4379 default:
4380 unreachable(">4 channel buffer image load");
4381 }
4382 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 3, 1)};
4383 load->operands[0] = Operand(rsrc);
4384 load->operands[1] = Operand(vindex);
4385 load->operands[2] = Operand((uint32_t) 0);
4386 Temp tmp;
4387 if (num_channels == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
4388 tmp = dst;
4389 else
4390 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_channels)};
4391 load->definitions[0] = Definition(tmp);
4392 load->idxen = true;
4393 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT);
4394 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
4395 load->barrier = barrier_image;
4396 ctx->block->instructions.emplace_back(std::move(load));
4397
4398 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, (1 << num_channels) - 1);
4399 return;
4400 }
4401
4402 Temp coords = get_image_coords(ctx, instr, type);
4403 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
4404
4405 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
4406 unsigned num_components = util_bitcount(dmask);
4407 Temp tmp;
4408 if (num_components == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
4409 tmp = dst;
4410 else
4411 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_components)};
4412
4413 bool level_zero = nir_src_is_const(instr->src[3]) && nir_src_as_uint(instr->src[3]) == 0;
4414 aco_opcode opcode = level_zero ? aco_opcode::image_load : aco_opcode::image_load_mip;
4415
4416 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1)};
4417 load->operands[0] = Operand(resource);
4418 load->operands[1] = Operand(s4); /* no sampler */
4419 load->operands[2] = Operand(coords);
4420 load->definitions[0] = Definition(tmp);
4421 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT) ? 1 : 0;
4422 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
4423 load->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
4424 load->dmask = dmask;
4425 load->unrm = true;
4426 load->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
4427 load->barrier = barrier_image;
4428 ctx->block->instructions.emplace_back(std::move(load));
4429
4430 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, dmask);
4431 return;
4432 }
4433
4434 void visit_image_store(isel_context *ctx, nir_intrinsic_instr *instr)
4435 {
4436 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
4437 const struct glsl_type *type = glsl_without_array(var->type);
4438 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4439 bool is_array = glsl_sampler_type_is_array(type);
4440 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
4441
4442 bool glc = ctx->options->chip_class == GFX6 || var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE) ? 1 : 0;
4443
4444 if (dim == GLSL_SAMPLER_DIM_BUF) {
4445 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
4446 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
4447 aco_opcode opcode;
4448 switch (data.size()) {
4449 case 1:
4450 opcode = aco_opcode::buffer_store_format_x;
4451 break;
4452 case 2:
4453 opcode = aco_opcode::buffer_store_format_xy;
4454 break;
4455 case 3:
4456 opcode = aco_opcode::buffer_store_format_xyz;
4457 break;
4458 case 4:
4459 opcode = aco_opcode::buffer_store_format_xyzw;
4460 break;
4461 default:
4462 unreachable(">4 channel buffer image store");
4463 }
4464 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
4465 store->operands[0] = Operand(rsrc);
4466 store->operands[1] = Operand(vindex);
4467 store->operands[2] = Operand((uint32_t) 0);
4468 store->operands[3] = Operand(data);
4469 store->idxen = true;
4470 store->glc = glc;
4471 store->dlc = false;
4472 store->disable_wqm = true;
4473 store->barrier = barrier_image;
4474 ctx->program->needs_exact = true;
4475 ctx->block->instructions.emplace_back(std::move(store));
4476 return;
4477 }
4478
4479 assert(data.type() == RegType::vgpr);
4480 Temp coords = get_image_coords(ctx, instr, type);
4481 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
4482
4483 bool level_zero = nir_src_is_const(instr->src[4]) && nir_src_as_uint(instr->src[4]) == 0;
4484 aco_opcode opcode = level_zero ? aco_opcode::image_store : aco_opcode::image_store_mip;
4485
4486 aco_ptr<MIMG_instruction> store{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 0)};
4487 store->operands[0] = Operand(resource);
4488 store->operands[1] = Operand(data);
4489 store->operands[2] = Operand(coords);
4490 store->glc = glc;
4491 store->dlc = false;
4492 store->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
4493 store->dmask = (1 << data.size()) - 1;
4494 store->unrm = true;
4495 store->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
4496 store->disable_wqm = true;
4497 store->barrier = barrier_image;
4498 ctx->program->needs_exact = true;
4499 ctx->block->instructions.emplace_back(std::move(store));
4500 return;
4501 }
4502
4503 void visit_image_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
4504 {
4505 /* return the previous value if dest is ever used */
4506 bool return_previous = false;
4507 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
4508 return_previous = true;
4509 break;
4510 }
4511 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
4512 return_previous = true;
4513 break;
4514 }
4515
4516 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
4517 const struct glsl_type *type = glsl_without_array(var->type);
4518 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4519 bool is_array = glsl_sampler_type_is_array(type);
4520 Builder bld(ctx->program, ctx->block);
4521
4522 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
4523 assert(data.size() == 1 && "64bit ssbo atomics not yet implemented.");
4524
4525 if (instr->intrinsic == nir_intrinsic_image_deref_atomic_comp_swap)
4526 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), get_ssa_temp(ctx, instr->src[4].ssa), data);
4527
4528 aco_opcode buf_op, image_op;
4529 switch (instr->intrinsic) {
4530 case nir_intrinsic_image_deref_atomic_add:
4531 buf_op = aco_opcode::buffer_atomic_add;
4532 image_op = aco_opcode::image_atomic_add;
4533 break;
4534 case nir_intrinsic_image_deref_atomic_umin:
4535 buf_op = aco_opcode::buffer_atomic_umin;
4536 image_op = aco_opcode::image_atomic_umin;
4537 break;
4538 case nir_intrinsic_image_deref_atomic_imin:
4539 buf_op = aco_opcode::buffer_atomic_smin;
4540 image_op = aco_opcode::image_atomic_smin;
4541 break;
4542 case nir_intrinsic_image_deref_atomic_umax:
4543 buf_op = aco_opcode::buffer_atomic_umax;
4544 image_op = aco_opcode::image_atomic_umax;
4545 break;
4546 case nir_intrinsic_image_deref_atomic_imax:
4547 buf_op = aco_opcode::buffer_atomic_smax;
4548 image_op = aco_opcode::image_atomic_smax;
4549 break;
4550 case nir_intrinsic_image_deref_atomic_and:
4551 buf_op = aco_opcode::buffer_atomic_and;
4552 image_op = aco_opcode::image_atomic_and;
4553 break;
4554 case nir_intrinsic_image_deref_atomic_or:
4555 buf_op = aco_opcode::buffer_atomic_or;
4556 image_op = aco_opcode::image_atomic_or;
4557 break;
4558 case nir_intrinsic_image_deref_atomic_xor:
4559 buf_op = aco_opcode::buffer_atomic_xor;
4560 image_op = aco_opcode::image_atomic_xor;
4561 break;
4562 case nir_intrinsic_image_deref_atomic_exchange:
4563 buf_op = aco_opcode::buffer_atomic_swap;
4564 image_op = aco_opcode::image_atomic_swap;
4565 break;
4566 case nir_intrinsic_image_deref_atomic_comp_swap:
4567 buf_op = aco_opcode::buffer_atomic_cmpswap;
4568 image_op = aco_opcode::image_atomic_cmpswap;
4569 break;
4570 default:
4571 unreachable("visit_image_atomic should only be called with nir_intrinsic_image_deref_atomic_* instructions.");
4572 }
4573
4574 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4575
4576 if (dim == GLSL_SAMPLER_DIM_BUF) {
4577 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
4578 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
4579 //assert(ctx->options->chip_class < GFX9 && "GFX9 stride size workaround not yet implemented.");
4580 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(buf_op, Format::MUBUF, 4, return_previous ? 1 : 0)};
4581 mubuf->operands[0] = Operand(resource);
4582 mubuf->operands[1] = Operand(vindex);
4583 mubuf->operands[2] = Operand((uint32_t)0);
4584 mubuf->operands[3] = Operand(data);
4585 if (return_previous)
4586 mubuf->definitions[0] = Definition(dst);
4587 mubuf->offset = 0;
4588 mubuf->idxen = true;
4589 mubuf->glc = return_previous;
4590 mubuf->dlc = false; /* Not needed for atomics */
4591 mubuf->disable_wqm = true;
4592 mubuf->barrier = barrier_image;
4593 ctx->program->needs_exact = true;
4594 ctx->block->instructions.emplace_back(std::move(mubuf));
4595 return;
4596 }
4597
4598 Temp coords = get_image_coords(ctx, instr, type);
4599 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
4600 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(image_op, Format::MIMG, 3, return_previous ? 1 : 0)};
4601 mimg->operands[0] = Operand(resource);
4602 mimg->operands[1] = Operand(data);
4603 mimg->operands[2] = Operand(coords);
4604 if (return_previous)
4605 mimg->definitions[0] = Definition(dst);
4606 mimg->glc = return_previous;
4607 mimg->dlc = false; /* Not needed for atomics */
4608 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
4609 mimg->dmask = (1 << data.size()) - 1;
4610 mimg->unrm = true;
4611 mimg->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
4612 mimg->disable_wqm = true;
4613 mimg->barrier = barrier_image;
4614 ctx->program->needs_exact = true;
4615 ctx->block->instructions.emplace_back(std::move(mimg));
4616 return;
4617 }
4618
4619 void get_buffer_size(isel_context *ctx, Temp desc, Temp dst, bool in_elements)
4620 {
4621 if (in_elements && ctx->options->chip_class == GFX8) {
4622 /* we only have to divide by 1, 2, 4, 8, 12 or 16 */
4623 Builder bld(ctx->program, ctx->block);
4624
4625 Temp size = emit_extract_vector(ctx, desc, 2, s1);
4626
4627 Temp size_div3 = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), bld.copy(bld.def(v1), Operand(0xaaaaaaabu)), size);
4628 size_div3 = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.as_uniform(size_div3), Operand(1u));
4629
4630 Temp stride = emit_extract_vector(ctx, desc, 1, s1);
4631 stride = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), stride, Operand((5u << 16) | 16u));
4632
4633 Temp is12 = bld.sopc(aco_opcode::s_cmp_eq_i32, bld.def(s1, scc), stride, Operand(12u));
4634 size = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), size_div3, size, bld.scc(is12));
4635
4636 Temp shr_dst = dst.type() == RegType::vgpr ? bld.tmp(s1) : dst;
4637 bld.sop2(aco_opcode::s_lshr_b32, Definition(shr_dst), bld.def(s1, scc),
4638 size, bld.sop1(aco_opcode::s_ff1_i32_b32, bld.def(s1), stride));
4639 if (dst.type() == RegType::vgpr)
4640 bld.copy(Definition(dst), shr_dst);
4641
4642 /* TODO: we can probably calculate this faster with v_skip when stride != 12 */
4643 } else {
4644 emit_extract_vector(ctx, desc, 2, dst);
4645 }
4646 }
4647
4648 void visit_image_size(isel_context *ctx, nir_intrinsic_instr *instr)
4649 {
4650 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
4651 const struct glsl_type *type = glsl_without_array(var->type);
4652 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4653 bool is_array = glsl_sampler_type_is_array(type);
4654 Builder bld(ctx->program, ctx->block);
4655
4656 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF) {
4657 Temp desc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, NULL, true, false);
4658 return get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), true);
4659 }
4660
4661 /* LOD */
4662 Temp lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
4663
4664 /* Resource */
4665 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, NULL, true, false);
4666
4667 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4668
4669 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1)};
4670 mimg->operands[0] = Operand(resource);
4671 mimg->operands[1] = Operand(s4); /* no sampler */
4672 mimg->operands[2] = Operand(lod);
4673 uint8_t& dmask = mimg->dmask;
4674 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
4675 mimg->dmask = (1 << instr->dest.ssa.num_components) - 1;
4676 mimg->da = glsl_sampler_type_is_array(type);
4677 mimg->can_reorder = true;
4678 Definition& def = mimg->definitions[0];
4679 ctx->block->instructions.emplace_back(std::move(mimg));
4680
4681 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE &&
4682 glsl_sampler_type_is_array(type)) {
4683
4684 assert(instr->dest.ssa.num_components == 3);
4685 Temp tmp = {ctx->program->allocateId(), v3};
4686 def = Definition(tmp);
4687 emit_split_vector(ctx, tmp, 3);
4688
4689 /* divide 3rd value by 6 by multiplying with magic number */
4690 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
4691 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp, 2, v1), c);
4692
4693 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4694 emit_extract_vector(ctx, tmp, 0, v1),
4695 emit_extract_vector(ctx, tmp, 1, v1),
4696 by_6);
4697
4698 } else if (ctx->options->chip_class == GFX9 &&
4699 glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_1D &&
4700 glsl_sampler_type_is_array(type)) {
4701 assert(instr->dest.ssa.num_components == 2);
4702 def = Definition(dst);
4703 dmask = 0x5;
4704 } else {
4705 def = Definition(dst);
4706 }
4707
4708 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
4709 }
4710
4711 void visit_load_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
4712 {
4713 Builder bld(ctx->program, ctx->block);
4714 unsigned num_components = instr->num_components;
4715
4716 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4717 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
4718 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
4719
4720 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
4721 load_buffer(ctx, num_components, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa), glc, false);
4722 }
4723
4724 void visit_store_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
4725 {
4726 Builder bld(ctx->program, ctx->block);
4727 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
4728 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
4729 unsigned writemask = nir_intrinsic_write_mask(instr);
4730 Temp offset = get_ssa_temp(ctx, instr->src[2].ssa);
4731
4732 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
4733 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
4734
4735 bool smem = !ctx->divergent_vals[instr->src[2].ssa->index] &&
4736 ctx->options->chip_class >= GFX8;
4737 if (smem)
4738 offset = bld.as_uniform(offset);
4739 bool smem_nonfs = smem && ctx->stage != fragment_fs;
4740
4741 while (writemask) {
4742 int start, count;
4743 u_bit_scan_consecutive_range(&writemask, &start, &count);
4744 if (count == 3 && (smem || ctx->options->chip_class == GFX6)) {
4745 /* GFX6 doesn't support storing vec3, split it. */
4746 writemask |= 1u << (start + 2);
4747 count = 2;
4748 }
4749 int num_bytes = count * elem_size_bytes;
4750
4751 if (num_bytes > 16) {
4752 assert(elem_size_bytes == 8);
4753 writemask |= (((count - 2) << 1) - 1) << (start + 2);
4754 count = 2;
4755 num_bytes = 16;
4756 }
4757
4758 // TODO: check alignment of sub-dword stores
4759 // TODO: split 3 bytes. there is no store instruction for that
4760
4761 Temp write_data;
4762 if (count != instr->num_components) {
4763 emit_split_vector(ctx, data, instr->num_components);
4764 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
4765 for (int i = 0; i < count; i++) {
4766 Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(data.type(), elem_size_bytes / 4));
4767 vec->operands[i] = Operand(smem_nonfs ? bld.as_uniform(elem) : elem);
4768 }
4769 write_data = bld.tmp(!smem ? RegType::vgpr : smem_nonfs ? RegType::sgpr : data.type(), count * elem_size_bytes / 4);
4770 vec->definitions[0] = Definition(write_data);
4771 ctx->block->instructions.emplace_back(std::move(vec));
4772 } else if (!smem && data.type() != RegType::vgpr) {
4773 assert(num_bytes % 4 == 0);
4774 write_data = bld.copy(bld.def(RegType::vgpr, num_bytes / 4), data);
4775 } else if (smem_nonfs && data.type() == RegType::vgpr) {
4776 assert(num_bytes % 4 == 0);
4777 write_data = bld.as_uniform(data);
4778 } else {
4779 write_data = data;
4780 }
4781
4782 aco_opcode vmem_op, smem_op;
4783 switch (num_bytes) {
4784 case 4:
4785 vmem_op = aco_opcode::buffer_store_dword;
4786 smem_op = aco_opcode::s_buffer_store_dword;
4787 break;
4788 case 8:
4789 vmem_op = aco_opcode::buffer_store_dwordx2;
4790 smem_op = aco_opcode::s_buffer_store_dwordx2;
4791 break;
4792 case 12:
4793 vmem_op = aco_opcode::buffer_store_dwordx3;
4794 smem_op = aco_opcode::last_opcode;
4795 assert(!smem && ctx->options->chip_class > GFX6);
4796 break;
4797 case 16:
4798 vmem_op = aco_opcode::buffer_store_dwordx4;
4799 smem_op = aco_opcode::s_buffer_store_dwordx4;
4800 break;
4801 default:
4802 unreachable("Store SSBO not implemented for this size.");
4803 }
4804 if (ctx->stage == fragment_fs)
4805 smem_op = aco_opcode::p_fs_buffer_store_smem;
4806
4807 if (smem) {
4808 aco_ptr<SMEM_instruction> store{create_instruction<SMEM_instruction>(smem_op, Format::SMEM, 3, 0)};
4809 store->operands[0] = Operand(rsrc);
4810 if (start) {
4811 Temp off = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
4812 offset, Operand(start * elem_size_bytes));
4813 store->operands[1] = Operand(off);
4814 } else {
4815 store->operands[1] = Operand(offset);
4816 }
4817 if (smem_op != aco_opcode::p_fs_buffer_store_smem)
4818 store->operands[1].setFixed(m0);
4819 store->operands[2] = Operand(write_data);
4820 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
4821 store->dlc = false;
4822 store->disable_wqm = true;
4823 store->barrier = barrier_buffer;
4824 ctx->block->instructions.emplace_back(std::move(store));
4825 ctx->program->wb_smem_l1_on_end = true;
4826 if (smem_op == aco_opcode::p_fs_buffer_store_smem) {
4827 ctx->block->kind |= block_kind_needs_lowering;
4828 ctx->program->needs_exact = true;
4829 }
4830 } else {
4831 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(vmem_op, Format::MUBUF, 4, 0)};
4832 store->operands[0] = Operand(rsrc);
4833 store->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
4834 store->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
4835 store->operands[3] = Operand(write_data);
4836 store->offset = start * elem_size_bytes;
4837 store->offen = (offset.type() == RegType::vgpr);
4838 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
4839 store->dlc = false;
4840 store->disable_wqm = true;
4841 store->barrier = barrier_buffer;
4842 ctx->program->needs_exact = true;
4843 ctx->block->instructions.emplace_back(std::move(store));
4844 }
4845 }
4846 }
4847
4848 void visit_atomic_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
4849 {
4850 /* return the previous value if dest is ever used */
4851 bool return_previous = false;
4852 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
4853 return_previous = true;
4854 break;
4855 }
4856 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
4857 return_previous = true;
4858 break;
4859 }
4860
4861 Builder bld(ctx->program, ctx->block);
4862 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[2].ssa));
4863
4864 if (instr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap)
4865 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
4866 get_ssa_temp(ctx, instr->src[3].ssa), data);
4867
4868 Temp offset = get_ssa_temp(ctx, instr->src[1].ssa);
4869 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
4870 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
4871
4872 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4873
4874 aco_opcode op32, op64;
4875 switch (instr->intrinsic) {
4876 case nir_intrinsic_ssbo_atomic_add:
4877 op32 = aco_opcode::buffer_atomic_add;
4878 op64 = aco_opcode::buffer_atomic_add_x2;
4879 break;
4880 case nir_intrinsic_ssbo_atomic_imin:
4881 op32 = aco_opcode::buffer_atomic_smin;
4882 op64 = aco_opcode::buffer_atomic_smin_x2;
4883 break;
4884 case nir_intrinsic_ssbo_atomic_umin:
4885 op32 = aco_opcode::buffer_atomic_umin;
4886 op64 = aco_opcode::buffer_atomic_umin_x2;
4887 break;
4888 case nir_intrinsic_ssbo_atomic_imax:
4889 op32 = aco_opcode::buffer_atomic_smax;
4890 op64 = aco_opcode::buffer_atomic_smax_x2;
4891 break;
4892 case nir_intrinsic_ssbo_atomic_umax:
4893 op32 = aco_opcode::buffer_atomic_umax;
4894 op64 = aco_opcode::buffer_atomic_umax_x2;
4895 break;
4896 case nir_intrinsic_ssbo_atomic_and:
4897 op32 = aco_opcode::buffer_atomic_and;
4898 op64 = aco_opcode::buffer_atomic_and_x2;
4899 break;
4900 case nir_intrinsic_ssbo_atomic_or:
4901 op32 = aco_opcode::buffer_atomic_or;
4902 op64 = aco_opcode::buffer_atomic_or_x2;
4903 break;
4904 case nir_intrinsic_ssbo_atomic_xor:
4905 op32 = aco_opcode::buffer_atomic_xor;
4906 op64 = aco_opcode::buffer_atomic_xor_x2;
4907 break;
4908 case nir_intrinsic_ssbo_atomic_exchange:
4909 op32 = aco_opcode::buffer_atomic_swap;
4910 op64 = aco_opcode::buffer_atomic_swap_x2;
4911 break;
4912 case nir_intrinsic_ssbo_atomic_comp_swap:
4913 op32 = aco_opcode::buffer_atomic_cmpswap;
4914 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
4915 break;
4916 default:
4917 unreachable("visit_atomic_ssbo should only be called with nir_intrinsic_ssbo_atomic_* instructions.");
4918 }
4919 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
4920 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
4921 mubuf->operands[0] = Operand(rsrc);
4922 mubuf->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
4923 mubuf->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
4924 mubuf->operands[3] = Operand(data);
4925 if (return_previous)
4926 mubuf->definitions[0] = Definition(dst);
4927 mubuf->offset = 0;
4928 mubuf->offen = (offset.type() == RegType::vgpr);
4929 mubuf->glc = return_previous;
4930 mubuf->dlc = false; /* Not needed for atomics */
4931 mubuf->disable_wqm = true;
4932 mubuf->barrier = barrier_buffer;
4933 ctx->program->needs_exact = true;
4934 ctx->block->instructions.emplace_back(std::move(mubuf));
4935 }
4936
4937 void visit_get_buffer_size(isel_context *ctx, nir_intrinsic_instr *instr) {
4938
4939 Temp index = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
4940 Builder bld(ctx->program, ctx->block);
4941 Temp desc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), index, Operand(0u));
4942 get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), false);
4943 }
4944
4945 Temp get_gfx6_global_rsrc(Builder& bld, Temp addr)
4946 {
4947 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
4948 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
4949
4950 if (addr.type() == RegType::vgpr)
4951 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), Operand(0u), Operand(0u), Operand(-1u), Operand(rsrc_conf));
4952 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), addr, Operand(-1u), Operand(rsrc_conf));
4953 }
4954
4955 void visit_load_global(isel_context *ctx, nir_intrinsic_instr *instr)
4956 {
4957 Builder bld(ctx->program, ctx->block);
4958 unsigned num_components = instr->num_components;
4959 unsigned num_bytes = num_components * instr->dest.ssa.bit_size / 8;
4960
4961 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4962 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
4963
4964 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
4965 bool dlc = glc && ctx->options->chip_class >= GFX10;
4966 aco_opcode op;
4967 if (dst.type() == RegType::vgpr || (glc && ctx->options->chip_class < GFX8)) {
4968 bool global = ctx->options->chip_class >= GFX9;
4969
4970 if (ctx->options->chip_class >= GFX7) {
4971 aco_opcode op;
4972 switch (num_bytes) {
4973 case 4:
4974 op = global ? aco_opcode::global_load_dword : aco_opcode::flat_load_dword;
4975 break;
4976 case 8:
4977 op = global ? aco_opcode::global_load_dwordx2 : aco_opcode::flat_load_dwordx2;
4978 break;
4979 case 12:
4980 op = global ? aco_opcode::global_load_dwordx3 : aco_opcode::flat_load_dwordx3;
4981 break;
4982 case 16:
4983 op = global ? aco_opcode::global_load_dwordx4 : aco_opcode::flat_load_dwordx4;
4984 break;
4985 default:
4986 unreachable("load_global not implemented for this size.");
4987 }
4988
4989 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 2, 1)};
4990 flat->operands[0] = Operand(addr);
4991 flat->operands[1] = Operand(s1);
4992 flat->glc = glc;
4993 flat->dlc = dlc;
4994 flat->barrier = barrier_buffer;
4995
4996 if (dst.type() == RegType::sgpr) {
4997 Temp vec = bld.tmp(RegType::vgpr, dst.size());
4998 flat->definitions[0] = Definition(vec);
4999 ctx->block->instructions.emplace_back(std::move(flat));
5000 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
5001 } else {
5002 flat->definitions[0] = Definition(dst);
5003 ctx->block->instructions.emplace_back(std::move(flat));
5004 }
5005 emit_split_vector(ctx, dst, num_components);
5006 } else {
5007 assert(ctx->options->chip_class == GFX6);
5008
5009 /* GFX6 doesn't support loading vec3, expand to vec4. */
5010 num_bytes = num_bytes == 12 ? 16 : num_bytes;
5011
5012 aco_opcode op;
5013 switch (num_bytes) {
5014 case 4:
5015 op = aco_opcode::buffer_load_dword;
5016 break;
5017 case 8:
5018 op = aco_opcode::buffer_load_dwordx2;
5019 break;
5020 case 16:
5021 op = aco_opcode::buffer_load_dwordx4;
5022 break;
5023 default:
5024 unreachable("load_global not implemented for this size.");
5025 }
5026
5027 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
5028
5029 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
5030 mubuf->operands[0] = Operand(rsrc);
5031 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
5032 mubuf->operands[2] = Operand(0u);
5033 mubuf->glc = glc;
5034 mubuf->dlc = false;
5035 mubuf->offset = 0;
5036 mubuf->addr64 = addr.type() == RegType::vgpr;
5037 mubuf->disable_wqm = false;
5038 mubuf->barrier = barrier_buffer;
5039 aco_ptr<Instruction> instr = std::move(mubuf);
5040
5041 /* expand vector */
5042 if (dst.size() == 3) {
5043 Temp vec = bld.tmp(v4);
5044 instr->definitions[0] = Definition(vec);
5045 bld.insert(std::move(instr));
5046 emit_split_vector(ctx, vec, 4);
5047
5048 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 3, 1));
5049 instr->operands[0] = Operand(emit_extract_vector(ctx, vec, 0, v1));
5050 instr->operands[1] = Operand(emit_extract_vector(ctx, vec, 1, v1));
5051 instr->operands[2] = Operand(emit_extract_vector(ctx, vec, 2, v1));
5052 }
5053
5054 if (dst.type() == RegType::sgpr) {
5055 Temp vec = bld.tmp(RegType::vgpr, dst.size());
5056 instr->definitions[0] = Definition(vec);
5057 bld.insert(std::move(instr));
5058 expand_vector(ctx, vec, dst, num_components, (1 << num_components) - 1);
5059 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
5060 } else {
5061 instr->definitions[0] = Definition(dst);
5062 bld.insert(std::move(instr));
5063 emit_split_vector(ctx, dst, num_components);
5064 }
5065 }
5066 } else {
5067 switch (num_bytes) {
5068 case 4:
5069 op = aco_opcode::s_load_dword;
5070 break;
5071 case 8:
5072 op = aco_opcode::s_load_dwordx2;
5073 break;
5074 case 12:
5075 case 16:
5076 op = aco_opcode::s_load_dwordx4;
5077 break;
5078 default:
5079 unreachable("load_global not implemented for this size.");
5080 }
5081 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
5082 load->operands[0] = Operand(addr);
5083 load->operands[1] = Operand(0u);
5084 load->definitions[0] = Definition(dst);
5085 load->glc = glc;
5086 load->dlc = dlc;
5087 load->barrier = barrier_buffer;
5088 assert(ctx->options->chip_class >= GFX8 || !glc);
5089
5090 if (dst.size() == 3) {
5091 /* trim vector */
5092 Temp vec = bld.tmp(s4);
5093 load->definitions[0] = Definition(vec);
5094 ctx->block->instructions.emplace_back(std::move(load));
5095 emit_split_vector(ctx, vec, 4);
5096
5097 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5098 emit_extract_vector(ctx, vec, 0, s1),
5099 emit_extract_vector(ctx, vec, 1, s1),
5100 emit_extract_vector(ctx, vec, 2, s1));
5101 } else {
5102 ctx->block->instructions.emplace_back(std::move(load));
5103 }
5104 }
5105 }
5106
5107 void visit_store_global(isel_context *ctx, nir_intrinsic_instr *instr)
5108 {
5109 Builder bld(ctx->program, ctx->block);
5110 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
5111
5112 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5113 Temp addr = get_ssa_temp(ctx, instr->src[1].ssa);
5114
5115 if (ctx->options->chip_class >= GFX7)
5116 addr = as_vgpr(ctx, addr);
5117
5118 unsigned writemask = nir_intrinsic_write_mask(instr);
5119 while (writemask) {
5120 int start, count;
5121 u_bit_scan_consecutive_range(&writemask, &start, &count);
5122 if (count == 3 && ctx->options->chip_class == GFX6) {
5123 /* GFX6 doesn't support storing vec3, split it. */
5124 writemask |= 1u << (start + 2);
5125 count = 2;
5126 }
5127 unsigned num_bytes = count * elem_size_bytes;
5128
5129 Temp write_data = data;
5130 if (count != instr->num_components) {
5131 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
5132 for (int i = 0; i < count; i++)
5133 vec->operands[i] = Operand(emit_extract_vector(ctx, data, start + i, v1));
5134 write_data = bld.tmp(RegType::vgpr, count);
5135 vec->definitions[0] = Definition(write_data);
5136 ctx->block->instructions.emplace_back(std::move(vec));
5137 }
5138
5139 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
5140 unsigned offset = start * elem_size_bytes;
5141
5142 if (ctx->options->chip_class >= GFX7) {
5143 if (offset > 0 && ctx->options->chip_class < GFX9) {
5144 Temp addr0 = bld.tmp(v1), addr1 = bld.tmp(v1);
5145 Temp new_addr0 = bld.tmp(v1), new_addr1 = bld.tmp(v1);
5146 Temp carry = bld.tmp(bld.lm);
5147 bld.pseudo(aco_opcode::p_split_vector, Definition(addr0), Definition(addr1), addr);
5148
5149 bld.vop2(aco_opcode::v_add_co_u32, Definition(new_addr0), bld.hint_vcc(Definition(carry)),
5150 Operand(offset), addr0);
5151 bld.vop2(aco_opcode::v_addc_co_u32, Definition(new_addr1), bld.def(bld.lm),
5152 Operand(0u), addr1,
5153 carry).def(1).setHint(vcc);
5154
5155 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_addr0, new_addr1);
5156
5157 offset = 0;
5158 }
5159
5160 bool global = ctx->options->chip_class >= GFX9;
5161 aco_opcode op;
5162 switch (num_bytes) {
5163 case 4:
5164 op = global ? aco_opcode::global_store_dword : aco_opcode::flat_store_dword;
5165 break;
5166 case 8:
5167 op = global ? aco_opcode::global_store_dwordx2 : aco_opcode::flat_store_dwordx2;
5168 break;
5169 case 12:
5170 op = global ? aco_opcode::global_store_dwordx3 : aco_opcode::flat_store_dwordx3;
5171 break;
5172 case 16:
5173 op = global ? aco_opcode::global_store_dwordx4 : aco_opcode::flat_store_dwordx4;
5174 break;
5175 default:
5176 unreachable("store_global not implemented for this size.");
5177 }
5178
5179 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, 0)};
5180 flat->operands[0] = Operand(addr);
5181 flat->operands[1] = Operand(s1);
5182 flat->operands[2] = Operand(data);
5183 flat->glc = glc;
5184 flat->dlc = false;
5185 flat->offset = offset;
5186 flat->disable_wqm = true;
5187 flat->barrier = barrier_buffer;
5188 ctx->program->needs_exact = true;
5189 ctx->block->instructions.emplace_back(std::move(flat));
5190 } else {
5191 assert(ctx->options->chip_class == GFX6);
5192
5193 aco_opcode op;
5194 switch (num_bytes) {
5195 case 4:
5196 op = aco_opcode::buffer_store_dword;
5197 break;
5198 case 8:
5199 op = aco_opcode::buffer_store_dwordx2;
5200 break;
5201 case 16:
5202 op = aco_opcode::buffer_store_dwordx4;
5203 break;
5204 default:
5205 unreachable("store_global not implemented for this size.");
5206 }
5207
5208 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
5209
5210 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, 0)};
5211 mubuf->operands[0] = Operand(rsrc);
5212 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
5213 mubuf->operands[2] = Operand(0u);
5214 mubuf->operands[3] = Operand(write_data);
5215 mubuf->glc = glc;
5216 mubuf->dlc = false;
5217 mubuf->offset = offset;
5218 mubuf->addr64 = addr.type() == RegType::vgpr;
5219 mubuf->disable_wqm = true;
5220 mubuf->barrier = barrier_buffer;
5221 ctx->program->needs_exact = true;
5222 ctx->block->instructions.emplace_back(std::move(mubuf));
5223 }
5224 }
5225 }
5226
5227 void visit_global_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
5228 {
5229 /* return the previous value if dest is ever used */
5230 bool return_previous = false;
5231 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5232 return_previous = true;
5233 break;
5234 }
5235 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5236 return_previous = true;
5237 break;
5238 }
5239
5240 Builder bld(ctx->program, ctx->block);
5241 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
5242 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5243
5244 if (ctx->options->chip_class >= GFX7)
5245 addr = as_vgpr(ctx, addr);
5246
5247 if (instr->intrinsic == nir_intrinsic_global_atomic_comp_swap)
5248 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
5249 get_ssa_temp(ctx, instr->src[2].ssa), data);
5250
5251 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5252
5253 aco_opcode op32, op64;
5254
5255 if (ctx->options->chip_class >= GFX7) {
5256 bool global = ctx->options->chip_class >= GFX9;
5257 switch (instr->intrinsic) {
5258 case nir_intrinsic_global_atomic_add:
5259 op32 = global ? aco_opcode::global_atomic_add : aco_opcode::flat_atomic_add;
5260 op64 = global ? aco_opcode::global_atomic_add_x2 : aco_opcode::flat_atomic_add_x2;
5261 break;
5262 case nir_intrinsic_global_atomic_imin:
5263 op32 = global ? aco_opcode::global_atomic_smin : aco_opcode::flat_atomic_smin;
5264 op64 = global ? aco_opcode::global_atomic_smin_x2 : aco_opcode::flat_atomic_smin_x2;
5265 break;
5266 case nir_intrinsic_global_atomic_umin:
5267 op32 = global ? aco_opcode::global_atomic_umin : aco_opcode::flat_atomic_umin;
5268 op64 = global ? aco_opcode::global_atomic_umin_x2 : aco_opcode::flat_atomic_umin_x2;
5269 break;
5270 case nir_intrinsic_global_atomic_imax:
5271 op32 = global ? aco_opcode::global_atomic_smax : aco_opcode::flat_atomic_smax;
5272 op64 = global ? aco_opcode::global_atomic_smax_x2 : aco_opcode::flat_atomic_smax_x2;
5273 break;
5274 case nir_intrinsic_global_atomic_umax:
5275 op32 = global ? aco_opcode::global_atomic_umax : aco_opcode::flat_atomic_umax;
5276 op64 = global ? aco_opcode::global_atomic_umax_x2 : aco_opcode::flat_atomic_umax_x2;
5277 break;
5278 case nir_intrinsic_global_atomic_and:
5279 op32 = global ? aco_opcode::global_atomic_and : aco_opcode::flat_atomic_and;
5280 op64 = global ? aco_opcode::global_atomic_and_x2 : aco_opcode::flat_atomic_and_x2;
5281 break;
5282 case nir_intrinsic_global_atomic_or:
5283 op32 = global ? aco_opcode::global_atomic_or : aco_opcode::flat_atomic_or;
5284 op64 = global ? aco_opcode::global_atomic_or_x2 : aco_opcode::flat_atomic_or_x2;
5285 break;
5286 case nir_intrinsic_global_atomic_xor:
5287 op32 = global ? aco_opcode::global_atomic_xor : aco_opcode::flat_atomic_xor;
5288 op64 = global ? aco_opcode::global_atomic_xor_x2 : aco_opcode::flat_atomic_xor_x2;
5289 break;
5290 case nir_intrinsic_global_atomic_exchange:
5291 op32 = global ? aco_opcode::global_atomic_swap : aco_opcode::flat_atomic_swap;
5292 op64 = global ? aco_opcode::global_atomic_swap_x2 : aco_opcode::flat_atomic_swap_x2;
5293 break;
5294 case nir_intrinsic_global_atomic_comp_swap:
5295 op32 = global ? aco_opcode::global_atomic_cmpswap : aco_opcode::flat_atomic_cmpswap;
5296 op64 = global ? aco_opcode::global_atomic_cmpswap_x2 : aco_opcode::flat_atomic_cmpswap_x2;
5297 break;
5298 default:
5299 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
5300 }
5301
5302 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
5303 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, return_previous ? 1 : 0)};
5304 flat->operands[0] = Operand(addr);
5305 flat->operands[1] = Operand(s1);
5306 flat->operands[2] = Operand(data);
5307 if (return_previous)
5308 flat->definitions[0] = Definition(dst);
5309 flat->glc = return_previous;
5310 flat->dlc = false; /* Not needed for atomics */
5311 flat->offset = 0;
5312 flat->disable_wqm = true;
5313 flat->barrier = barrier_buffer;
5314 ctx->program->needs_exact = true;
5315 ctx->block->instructions.emplace_back(std::move(flat));
5316 } else {
5317 assert(ctx->options->chip_class == GFX6);
5318
5319 switch (instr->intrinsic) {
5320 case nir_intrinsic_global_atomic_add:
5321 op32 = aco_opcode::buffer_atomic_add;
5322 op64 = aco_opcode::buffer_atomic_add_x2;
5323 break;
5324 case nir_intrinsic_global_atomic_imin:
5325 op32 = aco_opcode::buffer_atomic_smin;
5326 op64 = aco_opcode::buffer_atomic_smin_x2;
5327 break;
5328 case nir_intrinsic_global_atomic_umin:
5329 op32 = aco_opcode::buffer_atomic_umin;
5330 op64 = aco_opcode::buffer_atomic_umin_x2;
5331 break;
5332 case nir_intrinsic_global_atomic_imax:
5333 op32 = aco_opcode::buffer_atomic_smax;
5334 op64 = aco_opcode::buffer_atomic_smax_x2;
5335 break;
5336 case nir_intrinsic_global_atomic_umax:
5337 op32 = aco_opcode::buffer_atomic_umax;
5338 op64 = aco_opcode::buffer_atomic_umax_x2;
5339 break;
5340 case nir_intrinsic_global_atomic_and:
5341 op32 = aco_opcode::buffer_atomic_and;
5342 op64 = aco_opcode::buffer_atomic_and_x2;
5343 break;
5344 case nir_intrinsic_global_atomic_or:
5345 op32 = aco_opcode::buffer_atomic_or;
5346 op64 = aco_opcode::buffer_atomic_or_x2;
5347 break;
5348 case nir_intrinsic_global_atomic_xor:
5349 op32 = aco_opcode::buffer_atomic_xor;
5350 op64 = aco_opcode::buffer_atomic_xor_x2;
5351 break;
5352 case nir_intrinsic_global_atomic_exchange:
5353 op32 = aco_opcode::buffer_atomic_swap;
5354 op64 = aco_opcode::buffer_atomic_swap_x2;
5355 break;
5356 case nir_intrinsic_global_atomic_comp_swap:
5357 op32 = aco_opcode::buffer_atomic_cmpswap;
5358 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
5359 break;
5360 default:
5361 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
5362 }
5363
5364 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
5365
5366 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
5367
5368 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
5369 mubuf->operands[0] = Operand(rsrc);
5370 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
5371 mubuf->operands[2] = Operand(0u);
5372 mubuf->operands[3] = Operand(data);
5373 if (return_previous)
5374 mubuf->definitions[0] = Definition(dst);
5375 mubuf->glc = return_previous;
5376 mubuf->dlc = false;
5377 mubuf->offset = 0;
5378 mubuf->addr64 = addr.type() == RegType::vgpr;
5379 mubuf->disable_wqm = true;
5380 mubuf->barrier = barrier_buffer;
5381 ctx->program->needs_exact = true;
5382 ctx->block->instructions.emplace_back(std::move(mubuf));
5383 }
5384 }
5385
5386 void emit_memory_barrier(isel_context *ctx, nir_intrinsic_instr *instr) {
5387 Builder bld(ctx->program, ctx->block);
5388 switch(instr->intrinsic) {
5389 case nir_intrinsic_group_memory_barrier:
5390 case nir_intrinsic_memory_barrier:
5391 bld.barrier(aco_opcode::p_memory_barrier_common);
5392 break;
5393 case nir_intrinsic_memory_barrier_buffer:
5394 bld.barrier(aco_opcode::p_memory_barrier_buffer);
5395 break;
5396 case nir_intrinsic_memory_barrier_image:
5397 bld.barrier(aco_opcode::p_memory_barrier_image);
5398 break;
5399 case nir_intrinsic_memory_barrier_shared:
5400 bld.barrier(aco_opcode::p_memory_barrier_shared);
5401 break;
5402 default:
5403 unreachable("Unimplemented memory barrier intrinsic");
5404 break;
5405 }
5406 }
5407
5408 void visit_load_shared(isel_context *ctx, nir_intrinsic_instr *instr)
5409 {
5410 // TODO: implement sparse reads using ds_read2_b32 and nir_ssa_def_components_read()
5411 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5412 assert(instr->dest.ssa.bit_size >= 32 && "Bitsize not supported in load_shared.");
5413 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5414 Builder bld(ctx->program, ctx->block);
5415
5416 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
5417 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
5418 load_lds(ctx, elem_size_bytes, dst, address, nir_intrinsic_base(instr), align);
5419 }
5420
5421 void visit_store_shared(isel_context *ctx, nir_intrinsic_instr *instr)
5422 {
5423 unsigned writemask = nir_intrinsic_write_mask(instr);
5424 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
5425 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5426 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
5427 assert(elem_size_bytes >= 4 && "Only 32bit & 64bit store_shared currently supported.");
5428
5429 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
5430 store_lds(ctx, elem_size_bytes, data, writemask, address, nir_intrinsic_base(instr), align);
5431 }
5432
5433 void visit_shared_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
5434 {
5435 unsigned offset = nir_intrinsic_base(instr);
5436 Operand m = load_lds_size_m0(ctx);
5437 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5438 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5439
5440 unsigned num_operands = 3;
5441 aco_opcode op32, op64, op32_rtn, op64_rtn;
5442 switch(instr->intrinsic) {
5443 case nir_intrinsic_shared_atomic_add:
5444 op32 = aco_opcode::ds_add_u32;
5445 op64 = aco_opcode::ds_add_u64;
5446 op32_rtn = aco_opcode::ds_add_rtn_u32;
5447 op64_rtn = aco_opcode::ds_add_rtn_u64;
5448 break;
5449 case nir_intrinsic_shared_atomic_imin:
5450 op32 = aco_opcode::ds_min_i32;
5451 op64 = aco_opcode::ds_min_i64;
5452 op32_rtn = aco_opcode::ds_min_rtn_i32;
5453 op64_rtn = aco_opcode::ds_min_rtn_i64;
5454 break;
5455 case nir_intrinsic_shared_atomic_umin:
5456 op32 = aco_opcode::ds_min_u32;
5457 op64 = aco_opcode::ds_min_u64;
5458 op32_rtn = aco_opcode::ds_min_rtn_u32;
5459 op64_rtn = aco_opcode::ds_min_rtn_u64;
5460 break;
5461 case nir_intrinsic_shared_atomic_imax:
5462 op32 = aco_opcode::ds_max_i32;
5463 op64 = aco_opcode::ds_max_i64;
5464 op32_rtn = aco_opcode::ds_max_rtn_i32;
5465 op64_rtn = aco_opcode::ds_max_rtn_i64;
5466 break;
5467 case nir_intrinsic_shared_atomic_umax:
5468 op32 = aco_opcode::ds_max_u32;
5469 op64 = aco_opcode::ds_max_u64;
5470 op32_rtn = aco_opcode::ds_max_rtn_u32;
5471 op64_rtn = aco_opcode::ds_max_rtn_u64;
5472 break;
5473 case nir_intrinsic_shared_atomic_and:
5474 op32 = aco_opcode::ds_and_b32;
5475 op64 = aco_opcode::ds_and_b64;
5476 op32_rtn = aco_opcode::ds_and_rtn_b32;
5477 op64_rtn = aco_opcode::ds_and_rtn_b64;
5478 break;
5479 case nir_intrinsic_shared_atomic_or:
5480 op32 = aco_opcode::ds_or_b32;
5481 op64 = aco_opcode::ds_or_b64;
5482 op32_rtn = aco_opcode::ds_or_rtn_b32;
5483 op64_rtn = aco_opcode::ds_or_rtn_b64;
5484 break;
5485 case nir_intrinsic_shared_atomic_xor:
5486 op32 = aco_opcode::ds_xor_b32;
5487 op64 = aco_opcode::ds_xor_b64;
5488 op32_rtn = aco_opcode::ds_xor_rtn_b32;
5489 op64_rtn = aco_opcode::ds_xor_rtn_b64;
5490 break;
5491 case nir_intrinsic_shared_atomic_exchange:
5492 op32 = aco_opcode::ds_write_b32;
5493 op64 = aco_opcode::ds_write_b64;
5494 op32_rtn = aco_opcode::ds_wrxchg_rtn_b32;
5495 op64_rtn = aco_opcode::ds_wrxchg2_rtn_b64;
5496 break;
5497 case nir_intrinsic_shared_atomic_comp_swap:
5498 op32 = aco_opcode::ds_cmpst_b32;
5499 op64 = aco_opcode::ds_cmpst_b64;
5500 op32_rtn = aco_opcode::ds_cmpst_rtn_b32;
5501 op64_rtn = aco_opcode::ds_cmpst_rtn_b64;
5502 num_operands = 4;
5503 break;
5504 default:
5505 unreachable("Unhandled shared atomic intrinsic");
5506 }
5507
5508 /* return the previous value if dest is ever used */
5509 bool return_previous = false;
5510 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5511 return_previous = true;
5512 break;
5513 }
5514 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5515 return_previous = true;
5516 break;
5517 }
5518
5519 aco_opcode op;
5520 if (data.size() == 1) {
5521 assert(instr->dest.ssa.bit_size == 32);
5522 op = return_previous ? op32_rtn : op32;
5523 } else {
5524 assert(instr->dest.ssa.bit_size == 64);
5525 op = return_previous ? op64_rtn : op64;
5526 }
5527
5528 if (offset > 65535) {
5529 Builder bld(ctx->program, ctx->block);
5530 address = bld.vadd32(bld.def(v1), Operand(offset), address);
5531 offset = 0;
5532 }
5533
5534 aco_ptr<DS_instruction> ds;
5535 ds.reset(create_instruction<DS_instruction>(op, Format::DS, num_operands, return_previous ? 1 : 0));
5536 ds->operands[0] = Operand(address);
5537 ds->operands[1] = Operand(data);
5538 if (num_operands == 4)
5539 ds->operands[2] = Operand(get_ssa_temp(ctx, instr->src[2].ssa));
5540 ds->operands[num_operands - 1] = m;
5541 ds->offset0 = offset;
5542 if (return_previous)
5543 ds->definitions[0] = Definition(get_ssa_temp(ctx, &instr->dest.ssa));
5544 ctx->block->instructions.emplace_back(std::move(ds));
5545 }
5546
5547 Temp get_scratch_resource(isel_context *ctx)
5548 {
5549 Builder bld(ctx->program, ctx->block);
5550 Temp scratch_addr = ctx->program->private_segment_buffer;
5551 if (ctx->stage != compute_cs)
5552 scratch_addr = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), scratch_addr, Operand(0u));
5553
5554 uint32_t rsrc_conf = S_008F0C_ADD_TID_ENABLE(1) |
5555 S_008F0C_INDEX_STRIDE(ctx->program->wave_size == 64 ? 3 : 2);;
5556
5557 if (ctx->program->chip_class >= GFX10) {
5558 rsrc_conf |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
5559 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
5560 S_008F0C_RESOURCE_LEVEL(1);
5561 } else if (ctx->program->chip_class <= GFX7) { /* dfmt modifies stride on GFX8/GFX9 when ADD_TID_EN=1 */
5562 rsrc_conf |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5563 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
5564 }
5565
5566 /* older generations need element size = 16 bytes. element size removed in GFX9 */
5567 if (ctx->program->chip_class <= GFX8)
5568 rsrc_conf |= S_008F0C_ELEMENT_SIZE(3);
5569
5570 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), scratch_addr, Operand(-1u), Operand(rsrc_conf));
5571 }
5572
5573 void visit_load_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
5574 assert(instr->dest.ssa.bit_size == 32 || instr->dest.ssa.bit_size == 64);
5575 Builder bld(ctx->program, ctx->block);
5576 Temp rsrc = get_scratch_resource(ctx);
5577 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5578 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5579
5580 aco_opcode op;
5581 switch (dst.size()) {
5582 case 1:
5583 op = aco_opcode::buffer_load_dword;
5584 break;
5585 case 2:
5586 op = aco_opcode::buffer_load_dwordx2;
5587 break;
5588 case 3:
5589 op = aco_opcode::buffer_load_dwordx3;
5590 break;
5591 case 4:
5592 op = aco_opcode::buffer_load_dwordx4;
5593 break;
5594 case 6:
5595 case 8: {
5596 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
5597 Temp lower = bld.mubuf(aco_opcode::buffer_load_dwordx4,
5598 bld.def(v4), rsrc, offset,
5599 ctx->program->scratch_offset, 0, true);
5600 Temp upper = bld.mubuf(dst.size() == 6 ? aco_opcode::buffer_load_dwordx2 :
5601 aco_opcode::buffer_load_dwordx4,
5602 dst.size() == 6 ? bld.def(v2) : bld.def(v4),
5603 rsrc, offset, ctx->program->scratch_offset, 16, true);
5604 emit_split_vector(ctx, lower, 2);
5605 elems[0] = emit_extract_vector(ctx, lower, 0, v2);
5606 elems[1] = emit_extract_vector(ctx, lower, 1, v2);
5607 if (dst.size() == 8) {
5608 emit_split_vector(ctx, upper, 2);
5609 elems[2] = emit_extract_vector(ctx, upper, 0, v2);
5610 elems[3] = emit_extract_vector(ctx, upper, 1, v2);
5611 } else {
5612 elems[2] = upper;
5613 }
5614
5615 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
5616 Format::PSEUDO, dst.size() / 2, 1)};
5617 for (unsigned i = 0; i < dst.size() / 2; i++)
5618 vec->operands[i] = Operand(elems[i]);
5619 vec->definitions[0] = Definition(dst);
5620 bld.insert(std::move(vec));
5621 ctx->allocated_vec.emplace(dst.id(), elems);
5622 return;
5623 }
5624 default:
5625 unreachable("Wrong dst size for nir_intrinsic_load_scratch");
5626 }
5627
5628 bld.mubuf(op, Definition(dst), rsrc, offset, ctx->program->scratch_offset, 0, true);
5629 emit_split_vector(ctx, dst, instr->num_components);
5630 }
5631
5632 void visit_store_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
5633 assert(instr->src[0].ssa->bit_size == 32 || instr->src[0].ssa->bit_size == 64);
5634 Builder bld(ctx->program, ctx->block);
5635 Temp rsrc = get_scratch_resource(ctx);
5636 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5637 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5638
5639 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
5640 unsigned writemask = nir_intrinsic_write_mask(instr);
5641
5642 while (writemask) {
5643 int start, count;
5644 u_bit_scan_consecutive_range(&writemask, &start, &count);
5645 int num_bytes = count * elem_size_bytes;
5646
5647 if (num_bytes > 16) {
5648 assert(elem_size_bytes == 8);
5649 writemask |= (((count - 2) << 1) - 1) << (start + 2);
5650 count = 2;
5651 num_bytes = 16;
5652 }
5653
5654 // TODO: check alignment of sub-dword stores
5655 // TODO: split 3 bytes. there is no store instruction for that
5656
5657 Temp write_data;
5658 if (count != instr->num_components) {
5659 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
5660 for (int i = 0; i < count; i++) {
5661 Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(RegType::vgpr, elem_size_bytes / 4));
5662 vec->operands[i] = Operand(elem);
5663 }
5664 write_data = bld.tmp(RegClass(RegType::vgpr, count * elem_size_bytes / 4));
5665 vec->definitions[0] = Definition(write_data);
5666 ctx->block->instructions.emplace_back(std::move(vec));
5667 } else {
5668 write_data = data;
5669 }
5670
5671 aco_opcode op;
5672 switch (num_bytes) {
5673 case 4:
5674 op = aco_opcode::buffer_store_dword;
5675 break;
5676 case 8:
5677 op = aco_opcode::buffer_store_dwordx2;
5678 break;
5679 case 12:
5680 op = aco_opcode::buffer_store_dwordx3;
5681 break;
5682 case 16:
5683 op = aco_opcode::buffer_store_dwordx4;
5684 break;
5685 default:
5686 unreachable("Invalid data size for nir_intrinsic_store_scratch.");
5687 }
5688
5689 bld.mubuf(op, rsrc, offset, ctx->program->scratch_offset, write_data, start * elem_size_bytes, true);
5690 }
5691 }
5692
5693 void visit_load_sample_mask_in(isel_context *ctx, nir_intrinsic_instr *instr) {
5694 uint8_t log2_ps_iter_samples;
5695 if (ctx->program->info->ps.force_persample) {
5696 log2_ps_iter_samples =
5697 util_logbase2(ctx->options->key.fs.num_samples);
5698 } else {
5699 log2_ps_iter_samples = ctx->options->key.fs.log2_ps_iter_samples;
5700 }
5701
5702 /* The bit pattern matches that used by fixed function fragment
5703 * processing. */
5704 static const unsigned ps_iter_masks[] = {
5705 0xffff, /* not used */
5706 0x5555,
5707 0x1111,
5708 0x0101,
5709 0x0001,
5710 };
5711 assert(log2_ps_iter_samples < ARRAY_SIZE(ps_iter_masks));
5712
5713 Builder bld(ctx->program, ctx->block);
5714
5715 Temp sample_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
5716 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
5717 Temp ps_iter_mask = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(ps_iter_masks[log2_ps_iter_samples]));
5718 Temp mask = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), sample_id, ps_iter_mask);
5719 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5720 bld.vop2(aco_opcode::v_and_b32, Definition(dst), mask, get_arg(ctx, ctx->args->ac.sample_coverage));
5721 }
5722
5723 void visit_emit_vertex_with_counter(isel_context *ctx, nir_intrinsic_instr *instr) {
5724 Builder bld(ctx->program, ctx->block);
5725
5726 unsigned stream = nir_intrinsic_stream_id(instr);
5727 Temp next_vertex = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5728 next_vertex = bld.v_mul_imm(bld.def(v1), next_vertex, 4u);
5729 nir_const_value *next_vertex_cv = nir_src_as_const_value(instr->src[0]);
5730
5731 /* get GSVS ring */
5732 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_GSVS_GS * 16u));
5733
5734 unsigned num_components =
5735 ctx->program->info->gs.num_stream_output_components[stream];
5736 assert(num_components);
5737
5738 unsigned stride = 4u * num_components * ctx->shader->info.gs.vertices_out;
5739 unsigned stream_offset = 0;
5740 for (unsigned i = 0; i < stream; i++) {
5741 unsigned prev_stride = 4u * ctx->program->info->gs.num_stream_output_components[i] * ctx->shader->info.gs.vertices_out;
5742 stream_offset += prev_stride * ctx->program->wave_size;
5743 }
5744
5745 /* Limit on the stride field for <= GFX7. */
5746 assert(stride < (1 << 14));
5747
5748 Temp gsvs_dwords[4];
5749 for (unsigned i = 0; i < 4; i++)
5750 gsvs_dwords[i] = bld.tmp(s1);
5751 bld.pseudo(aco_opcode::p_split_vector,
5752 Definition(gsvs_dwords[0]),
5753 Definition(gsvs_dwords[1]),
5754 Definition(gsvs_dwords[2]),
5755 Definition(gsvs_dwords[3]),
5756 gsvs_ring);
5757
5758 if (stream_offset) {
5759 Temp stream_offset_tmp = bld.copy(bld.def(s1), Operand(stream_offset));
5760
5761 Temp carry = bld.tmp(s1);
5762 gsvs_dwords[0] = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), gsvs_dwords[0], stream_offset_tmp);
5763 gsvs_dwords[1] = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(0u), bld.scc(carry));
5764 }
5765
5766 gsvs_dwords[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(S_008F04_STRIDE(stride)));
5767 gsvs_dwords[2] = bld.copy(bld.def(s1), Operand((uint32_t)ctx->program->wave_size));
5768
5769 gsvs_ring = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
5770 gsvs_dwords[0], gsvs_dwords[1], gsvs_dwords[2], gsvs_dwords[3]);
5771
5772 unsigned offset = 0;
5773 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; i++) {
5774 if (ctx->program->info->gs.output_streams[i] != stream)
5775 continue;
5776
5777 for (unsigned j = 0; j < 4; j++) {
5778 if (!(ctx->program->info->gs.output_usage_mask[i] & (1 << j)))
5779 continue;
5780
5781 if (ctx->outputs.mask[i] & (1 << j)) {
5782 Operand vaddr_offset = next_vertex_cv ? Operand(v1) : Operand(next_vertex);
5783 unsigned const_offset = (offset + (next_vertex_cv ? next_vertex_cv->u32 : 0u)) * 4u;
5784 if (const_offset >= 4096u) {
5785 if (vaddr_offset.isUndefined())
5786 vaddr_offset = bld.copy(bld.def(v1), Operand(const_offset / 4096u * 4096u));
5787 else
5788 vaddr_offset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), vaddr_offset);
5789 const_offset %= 4096u;
5790 }
5791
5792 aco_ptr<MTBUF_instruction> mtbuf{create_instruction<MTBUF_instruction>(aco_opcode::tbuffer_store_format_x, Format::MTBUF, 4, 0)};
5793 mtbuf->operands[0] = Operand(gsvs_ring);
5794 mtbuf->operands[1] = vaddr_offset;
5795 mtbuf->operands[2] = Operand(get_arg(ctx, ctx->args->gs2vs_offset));
5796 mtbuf->operands[3] = Operand(ctx->outputs.outputs[i][j]);
5797 mtbuf->offen = !vaddr_offset.isUndefined();
5798 mtbuf->dfmt = V_008F0C_BUF_DATA_FORMAT_32;
5799 mtbuf->nfmt = V_008F0C_BUF_NUM_FORMAT_UINT;
5800 mtbuf->offset = const_offset;
5801 mtbuf->glc = true;
5802 mtbuf->slc = true;
5803 mtbuf->barrier = barrier_gs_data;
5804 mtbuf->can_reorder = true;
5805 bld.insert(std::move(mtbuf));
5806 }
5807
5808 offset += ctx->shader->info.gs.vertices_out;
5809 }
5810
5811 /* outputs for the next vertex are undefined and keeping them around can
5812 * create invalid IR with control flow */
5813 ctx->outputs.mask[i] = 0;
5814 }
5815
5816 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(false, true, stream));
5817 }
5818
5819 Temp emit_boolean_reduce(isel_context *ctx, nir_op op, unsigned cluster_size, Temp src)
5820 {
5821 Builder bld(ctx->program, ctx->block);
5822
5823 if (cluster_size == 1) {
5824 return src;
5825 } if (op == nir_op_iand && cluster_size == 4) {
5826 //subgroupClusteredAnd(val, 4) -> ~wqm(exec & ~val)
5827 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
5828 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc),
5829 bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc), tmp));
5830 } else if (op == nir_op_ior && cluster_size == 4) {
5831 //subgroupClusteredOr(val, 4) -> wqm(val & exec)
5832 return bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc),
5833 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)));
5834 } else if (op == nir_op_iand && cluster_size == ctx->program->wave_size) {
5835 //subgroupAnd(val) -> (exec & ~val) == 0
5836 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
5837 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
5838 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), cond);
5839 } else if (op == nir_op_ior && cluster_size == ctx->program->wave_size) {
5840 //subgroupOr(val) -> (val & exec) != 0
5841 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)).def(1).getTemp();
5842 return bool_to_vector_condition(ctx, tmp);
5843 } else if (op == nir_op_ixor && cluster_size == ctx->program->wave_size) {
5844 //subgroupXor(val) -> s_bcnt1_i32_b64(val & exec) & 1
5845 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
5846 tmp = bld.sop1(Builder::s_bcnt1_i32, bld.def(s1), bld.def(s1, scc), tmp);
5847 tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), tmp, Operand(1u)).def(1).getTemp();
5848 return bool_to_vector_condition(ctx, tmp);
5849 } else {
5850 //subgroupClustered{And,Or,Xor}(val, n) ->
5851 //lane_id = v_mbcnt_hi_u32_b32(-1, v_mbcnt_lo_u32_b32(-1, 0)) ; just v_mbcnt_lo_u32_b32 on wave32
5852 //cluster_offset = ~(n - 1) & lane_id
5853 //cluster_mask = ((1 << n) - 1)
5854 //subgroupClusteredAnd():
5855 // return ((val | ~exec) >> cluster_offset) & cluster_mask == cluster_mask
5856 //subgroupClusteredOr():
5857 // return ((val & exec) >> cluster_offset) & cluster_mask != 0
5858 //subgroupClusteredXor():
5859 // return v_bnt_u32_b32(((val & exec) >> cluster_offset) & cluster_mask, 0) & 1 != 0
5860 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
5861 Temp cluster_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(~uint32_t(cluster_size - 1)), lane_id);
5862
5863 Temp tmp;
5864 if (op == nir_op_iand)
5865 tmp = bld.sop2(Builder::s_orn2, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
5866 else
5867 tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
5868
5869 uint32_t cluster_mask = cluster_size == 32 ? -1 : (1u << cluster_size) - 1u;
5870
5871 if (ctx->program->chip_class <= GFX7)
5872 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), tmp, cluster_offset);
5873 else if (ctx->program->wave_size == 64)
5874 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), cluster_offset, tmp);
5875 else
5876 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), cluster_offset, tmp);
5877 tmp = emit_extract_vector(ctx, tmp, 0, v1);
5878 if (cluster_mask != 0xffffffff)
5879 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(cluster_mask), tmp);
5880
5881 Definition cmp_def = Definition();
5882 if (op == nir_op_iand) {
5883 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(cluster_mask), tmp).def(0);
5884 } else if (op == nir_op_ior) {
5885 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
5886 } else if (op == nir_op_ixor) {
5887 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u),
5888 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1), tmp, Operand(0u)));
5889 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
5890 }
5891 cmp_def.setHint(vcc);
5892 return cmp_def.getTemp();
5893 }
5894 }
5895
5896 Temp emit_boolean_exclusive_scan(isel_context *ctx, nir_op op, Temp src)
5897 {
5898 Builder bld(ctx->program, ctx->block);
5899
5900 //subgroupExclusiveAnd(val) -> mbcnt(exec & ~val) == 0
5901 //subgroupExclusiveOr(val) -> mbcnt(val & exec) != 0
5902 //subgroupExclusiveXor(val) -> mbcnt(val & exec) & 1 != 0
5903 Temp tmp;
5904 if (op == nir_op_iand)
5905 tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
5906 else
5907 tmp = bld.sop2(Builder::s_and, bld.def(s2), bld.def(s1, scc), src, Operand(exec, bld.lm));
5908
5909 Builder::Result lohi = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), bld.def(s1), tmp);
5910 Temp lo = lohi.def(0).getTemp();
5911 Temp hi = lohi.def(1).getTemp();
5912 Temp mbcnt = emit_mbcnt(ctx, bld.def(v1), Operand(lo), Operand(hi));
5913
5914 Definition cmp_def = Definition();
5915 if (op == nir_op_iand)
5916 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
5917 else if (op == nir_op_ior)
5918 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
5919 else if (op == nir_op_ixor)
5920 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u),
5921 bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), mbcnt)).def(0);
5922 cmp_def.setHint(vcc);
5923 return cmp_def.getTemp();
5924 }
5925
5926 Temp emit_boolean_inclusive_scan(isel_context *ctx, nir_op op, Temp src)
5927 {
5928 Builder bld(ctx->program, ctx->block);
5929
5930 //subgroupInclusiveAnd(val) -> subgroupExclusiveAnd(val) && val
5931 //subgroupInclusiveOr(val) -> subgroupExclusiveOr(val) || val
5932 //subgroupInclusiveXor(val) -> subgroupExclusiveXor(val) ^^ val
5933 Temp tmp = emit_boolean_exclusive_scan(ctx, op, src);
5934 if (op == nir_op_iand)
5935 return bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
5936 else if (op == nir_op_ior)
5937 return bld.sop2(Builder::s_or, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
5938 else if (op == nir_op_ixor)
5939 return bld.sop2(Builder::s_xor, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
5940
5941 assert(false);
5942 return Temp();
5943 }
5944
5945 void emit_uniform_subgroup(isel_context *ctx, nir_intrinsic_instr *instr, Temp src)
5946 {
5947 Builder bld(ctx->program, ctx->block);
5948 Definition dst(get_ssa_temp(ctx, &instr->dest.ssa));
5949 if (src.regClass().type() == RegType::vgpr) {
5950 bld.pseudo(aco_opcode::p_as_uniform, dst, src);
5951 } else if (src.regClass() == s1) {
5952 bld.sop1(aco_opcode::s_mov_b32, dst, src);
5953 } else if (src.regClass() == s2) {
5954 bld.sop1(aco_opcode::s_mov_b64, dst, src);
5955 } else {
5956 fprintf(stderr, "Unimplemented NIR instr bit size: ");
5957 nir_print_instr(&instr->instr, stderr);
5958 fprintf(stderr, "\n");
5959 }
5960 }
5961
5962 void emit_interp_center(isel_context *ctx, Temp dst, Temp pos1, Temp pos2)
5963 {
5964 Builder bld(ctx->program, ctx->block);
5965 Temp persp_center = get_arg(ctx, ctx->args->ac.persp_center);
5966 Temp p1 = emit_extract_vector(ctx, persp_center, 0, v1);
5967 Temp p2 = emit_extract_vector(ctx, persp_center, 1, v1);
5968
5969 Temp ddx_1, ddx_2, ddy_1, ddy_2;
5970 uint32_t dpp_ctrl0 = dpp_quad_perm(0, 0, 0, 0);
5971 uint32_t dpp_ctrl1 = dpp_quad_perm(1, 1, 1, 1);
5972 uint32_t dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
5973
5974 /* Build DD X/Y */
5975 if (ctx->program->chip_class >= GFX8) {
5976 Temp tl_1 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p1, dpp_ctrl0);
5977 ddx_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl1);
5978 ddy_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl2);
5979 Temp tl_2 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p2, dpp_ctrl0);
5980 ddx_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl1);
5981 ddy_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl2);
5982 } else {
5983 Temp tl_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl0);
5984 ddx_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl1);
5985 ddx_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_1, tl_1);
5986 ddx_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl2);
5987 ddx_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_2, tl_1);
5988 Temp tl_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl0);
5989 ddy_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl1);
5990 ddy_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_1, tl_2);
5991 ddy_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl2);
5992 ddy_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_2, tl_2);
5993 }
5994
5995 /* res_k = p_k + ddx_k * pos1 + ddy_k * pos2 */
5996 Temp tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_1, pos1, p1);
5997 Temp tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_2, pos1, p2);
5998 tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_1, pos2, tmp1);
5999 tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_2, pos2, tmp2);
6000 Temp wqm1 = bld.tmp(v1);
6001 emit_wqm(ctx, tmp1, wqm1, true);
6002 Temp wqm2 = bld.tmp(v1);
6003 emit_wqm(ctx, tmp2, wqm2, true);
6004 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), wqm1, wqm2);
6005 return;
6006 }
6007
6008 void visit_intrinsic(isel_context *ctx, nir_intrinsic_instr *instr)
6009 {
6010 Builder bld(ctx->program, ctx->block);
6011 switch(instr->intrinsic) {
6012 case nir_intrinsic_load_barycentric_sample:
6013 case nir_intrinsic_load_barycentric_pixel:
6014 case nir_intrinsic_load_barycentric_centroid: {
6015 glsl_interp_mode mode = (glsl_interp_mode)nir_intrinsic_interp_mode(instr);
6016 Temp bary = Temp(0, s2);
6017 switch (mode) {
6018 case INTERP_MODE_SMOOTH:
6019 case INTERP_MODE_NONE:
6020 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
6021 bary = get_arg(ctx, ctx->args->ac.persp_center);
6022 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
6023 bary = ctx->persp_centroid;
6024 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
6025 bary = get_arg(ctx, ctx->args->ac.persp_sample);
6026 break;
6027 case INTERP_MODE_NOPERSPECTIVE:
6028 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
6029 bary = get_arg(ctx, ctx->args->ac.linear_center);
6030 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
6031 bary = ctx->linear_centroid;
6032 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
6033 bary = get_arg(ctx, ctx->args->ac.linear_sample);
6034 break;
6035 default:
6036 break;
6037 }
6038 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6039 Temp p1 = emit_extract_vector(ctx, bary, 0, v1);
6040 Temp p2 = emit_extract_vector(ctx, bary, 1, v1);
6041 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6042 Operand(p1), Operand(p2));
6043 emit_split_vector(ctx, dst, 2);
6044 break;
6045 }
6046 case nir_intrinsic_load_barycentric_model: {
6047 Temp model = get_arg(ctx, ctx->args->ac.pull_model);
6048
6049 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6050 Temp p1 = emit_extract_vector(ctx, model, 0, v1);
6051 Temp p2 = emit_extract_vector(ctx, model, 1, v1);
6052 Temp p3 = emit_extract_vector(ctx, model, 2, v1);
6053 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6054 Operand(p1), Operand(p2), Operand(p3));
6055 emit_split_vector(ctx, dst, 3);
6056 break;
6057 }
6058 case nir_intrinsic_load_barycentric_at_sample: {
6059 uint32_t sample_pos_offset = RING_PS_SAMPLE_POSITIONS * 16;
6060 switch (ctx->options->key.fs.num_samples) {
6061 case 2: sample_pos_offset += 1 << 3; break;
6062 case 4: sample_pos_offset += 3 << 3; break;
6063 case 8: sample_pos_offset += 7 << 3; break;
6064 default: break;
6065 }
6066 Temp sample_pos;
6067 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
6068 nir_const_value* const_addr = nir_src_as_const_value(instr->src[0]);
6069 Temp private_segment_buffer = ctx->program->private_segment_buffer;
6070 if (addr.type() == RegType::sgpr) {
6071 Operand offset;
6072 if (const_addr) {
6073 sample_pos_offset += const_addr->u32 << 3;
6074 offset = Operand(sample_pos_offset);
6075 } else if (ctx->options->chip_class >= GFX9) {
6076 offset = bld.sop2(aco_opcode::s_lshl3_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
6077 } else {
6078 offset = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), addr, Operand(3u));
6079 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
6080 }
6081
6082 Operand off = bld.copy(bld.def(s1), Operand(offset));
6083 sample_pos = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), private_segment_buffer, off);
6084
6085 } else if (ctx->options->chip_class >= GFX9) {
6086 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
6087 sample_pos = bld.global(aco_opcode::global_load_dwordx2, bld.def(v2), addr, private_segment_buffer, sample_pos_offset);
6088 } else if (ctx->options->chip_class >= GFX7) {
6089 /* addr += private_segment_buffer + sample_pos_offset */
6090 Temp tmp0 = bld.tmp(s1);
6091 Temp tmp1 = bld.tmp(s1);
6092 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp0), Definition(tmp1), private_segment_buffer);
6093 Definition scc_tmp = bld.def(s1, scc);
6094 tmp0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), scc_tmp, tmp0, Operand(sample_pos_offset));
6095 tmp1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), tmp1, Operand(0u), bld.scc(scc_tmp.getTemp()));
6096 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
6097 Temp pck0 = bld.tmp(v1);
6098 Temp carry = bld.vadd32(Definition(pck0), tmp0, addr, true).def(1).getTemp();
6099 tmp1 = as_vgpr(ctx, tmp1);
6100 Temp pck1 = bld.vop2_e64(aco_opcode::v_addc_co_u32, bld.def(v1), bld.hint_vcc(bld.def(bld.lm)), tmp1, Operand(0u), carry);
6101 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), pck0, pck1);
6102
6103 /* sample_pos = flat_load_dwordx2 addr */
6104 sample_pos = bld.flat(aco_opcode::flat_load_dwordx2, bld.def(v2), addr, Operand(s1));
6105 } else {
6106 assert(ctx->options->chip_class == GFX6);
6107
6108 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
6109 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
6110 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), private_segment_buffer, Operand(0u), Operand(rsrc_conf));
6111
6112 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
6113 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), addr, Operand(0u));
6114
6115 sample_pos = bld.tmp(v2);
6116
6117 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dwordx2, Format::MUBUF, 3, 1)};
6118 load->definitions[0] = Definition(sample_pos);
6119 load->operands[0] = Operand(rsrc);
6120 load->operands[1] = Operand(addr);
6121 load->operands[2] = Operand(0u);
6122 load->offset = sample_pos_offset;
6123 load->offen = 0;
6124 load->addr64 = true;
6125 load->glc = false;
6126 load->dlc = false;
6127 load->disable_wqm = false;
6128 load->barrier = barrier_none;
6129 load->can_reorder = true;
6130 ctx->block->instructions.emplace_back(std::move(load));
6131 }
6132
6133 /* sample_pos -= 0.5 */
6134 Temp pos1 = bld.tmp(RegClass(sample_pos.type(), 1));
6135 Temp pos2 = bld.tmp(RegClass(sample_pos.type(), 1));
6136 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), sample_pos);
6137 pos1 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos1, Operand(0x3f000000u));
6138 pos2 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos2, Operand(0x3f000000u));
6139
6140 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
6141 break;
6142 }
6143 case nir_intrinsic_load_barycentric_at_offset: {
6144 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
6145 RegClass rc = RegClass(offset.type(), 1);
6146 Temp pos1 = bld.tmp(rc), pos2 = bld.tmp(rc);
6147 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), offset);
6148 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
6149 break;
6150 }
6151 case nir_intrinsic_load_front_face: {
6152 bld.vopc(aco_opcode::v_cmp_lg_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6153 Operand(0u), get_arg(ctx, ctx->args->ac.front_face)).def(0).setHint(vcc);
6154 break;
6155 }
6156 case nir_intrinsic_load_view_index:
6157 case nir_intrinsic_load_layer_id: {
6158 if (instr->intrinsic == nir_intrinsic_load_view_index && (ctx->stage & (sw_vs | sw_gs))) {
6159 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6160 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.view_index)));
6161 break;
6162 }
6163
6164 unsigned idx = nir_intrinsic_base(instr);
6165 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6166 Operand(2u), bld.m0(get_arg(ctx, ctx->args->ac.prim_mask)), idx, 0);
6167 break;
6168 }
6169 case nir_intrinsic_load_frag_coord: {
6170 emit_load_frag_coord(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 4);
6171 break;
6172 }
6173 case nir_intrinsic_load_sample_pos: {
6174 Temp posx = get_arg(ctx, ctx->args->ac.frag_pos[0]);
6175 Temp posy = get_arg(ctx, ctx->args->ac.frag_pos[1]);
6176 bld.pseudo(aco_opcode::p_create_vector, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6177 posx.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posx) : Operand(0u),
6178 posy.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posy) : Operand(0u));
6179 break;
6180 }
6181 case nir_intrinsic_load_interpolated_input:
6182 visit_load_interpolated_input(ctx, instr);
6183 break;
6184 case nir_intrinsic_store_output:
6185 visit_store_output(ctx, instr);
6186 break;
6187 case nir_intrinsic_load_input:
6188 case nir_intrinsic_load_input_vertex:
6189 visit_load_input(ctx, instr);
6190 break;
6191 case nir_intrinsic_load_per_vertex_input:
6192 visit_load_per_vertex_input(ctx, instr);
6193 break;
6194 case nir_intrinsic_load_ubo:
6195 visit_load_ubo(ctx, instr);
6196 break;
6197 case nir_intrinsic_load_push_constant:
6198 visit_load_push_constant(ctx, instr);
6199 break;
6200 case nir_intrinsic_load_constant:
6201 visit_load_constant(ctx, instr);
6202 break;
6203 case nir_intrinsic_vulkan_resource_index:
6204 visit_load_resource(ctx, instr);
6205 break;
6206 case nir_intrinsic_discard:
6207 visit_discard(ctx, instr);
6208 break;
6209 case nir_intrinsic_discard_if:
6210 visit_discard_if(ctx, instr);
6211 break;
6212 case nir_intrinsic_load_shared:
6213 visit_load_shared(ctx, instr);
6214 break;
6215 case nir_intrinsic_store_shared:
6216 visit_store_shared(ctx, instr);
6217 break;
6218 case nir_intrinsic_shared_atomic_add:
6219 case nir_intrinsic_shared_atomic_imin:
6220 case nir_intrinsic_shared_atomic_umin:
6221 case nir_intrinsic_shared_atomic_imax:
6222 case nir_intrinsic_shared_atomic_umax:
6223 case nir_intrinsic_shared_atomic_and:
6224 case nir_intrinsic_shared_atomic_or:
6225 case nir_intrinsic_shared_atomic_xor:
6226 case nir_intrinsic_shared_atomic_exchange:
6227 case nir_intrinsic_shared_atomic_comp_swap:
6228 visit_shared_atomic(ctx, instr);
6229 break;
6230 case nir_intrinsic_image_deref_load:
6231 visit_image_load(ctx, instr);
6232 break;
6233 case nir_intrinsic_image_deref_store:
6234 visit_image_store(ctx, instr);
6235 break;
6236 case nir_intrinsic_image_deref_atomic_add:
6237 case nir_intrinsic_image_deref_atomic_umin:
6238 case nir_intrinsic_image_deref_atomic_imin:
6239 case nir_intrinsic_image_deref_atomic_umax:
6240 case nir_intrinsic_image_deref_atomic_imax:
6241 case nir_intrinsic_image_deref_atomic_and:
6242 case nir_intrinsic_image_deref_atomic_or:
6243 case nir_intrinsic_image_deref_atomic_xor:
6244 case nir_intrinsic_image_deref_atomic_exchange:
6245 case nir_intrinsic_image_deref_atomic_comp_swap:
6246 visit_image_atomic(ctx, instr);
6247 break;
6248 case nir_intrinsic_image_deref_size:
6249 visit_image_size(ctx, instr);
6250 break;
6251 case nir_intrinsic_load_ssbo:
6252 visit_load_ssbo(ctx, instr);
6253 break;
6254 case nir_intrinsic_store_ssbo:
6255 visit_store_ssbo(ctx, instr);
6256 break;
6257 case nir_intrinsic_load_global:
6258 visit_load_global(ctx, instr);
6259 break;
6260 case nir_intrinsic_store_global:
6261 visit_store_global(ctx, instr);
6262 break;
6263 case nir_intrinsic_global_atomic_add:
6264 case nir_intrinsic_global_atomic_imin:
6265 case nir_intrinsic_global_atomic_umin:
6266 case nir_intrinsic_global_atomic_imax:
6267 case nir_intrinsic_global_atomic_umax:
6268 case nir_intrinsic_global_atomic_and:
6269 case nir_intrinsic_global_atomic_or:
6270 case nir_intrinsic_global_atomic_xor:
6271 case nir_intrinsic_global_atomic_exchange:
6272 case nir_intrinsic_global_atomic_comp_swap:
6273 visit_global_atomic(ctx, instr);
6274 break;
6275 case nir_intrinsic_ssbo_atomic_add:
6276 case nir_intrinsic_ssbo_atomic_imin:
6277 case nir_intrinsic_ssbo_atomic_umin:
6278 case nir_intrinsic_ssbo_atomic_imax:
6279 case nir_intrinsic_ssbo_atomic_umax:
6280 case nir_intrinsic_ssbo_atomic_and:
6281 case nir_intrinsic_ssbo_atomic_or:
6282 case nir_intrinsic_ssbo_atomic_xor:
6283 case nir_intrinsic_ssbo_atomic_exchange:
6284 case nir_intrinsic_ssbo_atomic_comp_swap:
6285 visit_atomic_ssbo(ctx, instr);
6286 break;
6287 case nir_intrinsic_load_scratch:
6288 visit_load_scratch(ctx, instr);
6289 break;
6290 case nir_intrinsic_store_scratch:
6291 visit_store_scratch(ctx, instr);
6292 break;
6293 case nir_intrinsic_get_buffer_size:
6294 visit_get_buffer_size(ctx, instr);
6295 break;
6296 case nir_intrinsic_control_barrier: {
6297 unsigned* bsize = ctx->program->info->cs.block_size;
6298 unsigned workgroup_size = bsize[0] * bsize[1] * bsize[2];
6299 if (workgroup_size > ctx->program->wave_size)
6300 bld.sopp(aco_opcode::s_barrier);
6301 break;
6302 }
6303 case nir_intrinsic_group_memory_barrier:
6304 case nir_intrinsic_memory_barrier:
6305 case nir_intrinsic_memory_barrier_buffer:
6306 case nir_intrinsic_memory_barrier_image:
6307 case nir_intrinsic_memory_barrier_shared:
6308 emit_memory_barrier(ctx, instr);
6309 break;
6310 case nir_intrinsic_memory_barrier_tcs_patch:
6311 break;
6312 case nir_intrinsic_load_num_work_groups: {
6313 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6314 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.num_work_groups)));
6315 emit_split_vector(ctx, dst, 3);
6316 break;
6317 }
6318 case nir_intrinsic_load_local_invocation_id: {
6319 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6320 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.local_invocation_ids)));
6321 emit_split_vector(ctx, dst, 3);
6322 break;
6323 }
6324 case nir_intrinsic_load_work_group_id: {
6325 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6326 struct ac_arg *args = ctx->args->ac.workgroup_ids;
6327 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6328 args[0].used ? Operand(get_arg(ctx, args[0])) : Operand(0u),
6329 args[1].used ? Operand(get_arg(ctx, args[1])) : Operand(0u),
6330 args[2].used ? Operand(get_arg(ctx, args[2])) : Operand(0u));
6331 emit_split_vector(ctx, dst, 3);
6332 break;
6333 }
6334 case nir_intrinsic_load_local_invocation_index: {
6335 Temp id = emit_mbcnt(ctx, bld.def(v1));
6336
6337 /* The tg_size bits [6:11] contain the subgroup id,
6338 * we need this multiplied by the wave size, and then OR the thread id to it.
6339 */
6340 if (ctx->program->wave_size == 64) {
6341 /* After the s_and the bits are already multiplied by 64 (left shifted by 6) so we can just feed that to v_or */
6342 Temp tg_num = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfc0u),
6343 get_arg(ctx, ctx->args->ac.tg_size));
6344 bld.vop2(aco_opcode::v_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, id);
6345 } else {
6346 /* Extract the bit field and multiply the result by 32 (left shift by 5), then do the OR */
6347 Temp tg_num = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
6348 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
6349 bld.vop3(aco_opcode::v_lshl_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, Operand(0x5u), id);
6350 }
6351 break;
6352 }
6353 case nir_intrinsic_load_subgroup_id: {
6354 if (ctx->stage == compute_cs) {
6355 bld.sop2(aco_opcode::s_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc),
6356 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
6357 } else {
6358 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x0u));
6359 }
6360 break;
6361 }
6362 case nir_intrinsic_load_subgroup_invocation: {
6363 emit_mbcnt(ctx, Definition(get_ssa_temp(ctx, &instr->dest.ssa)));
6364 break;
6365 }
6366 case nir_intrinsic_load_num_subgroups: {
6367 if (ctx->stage == compute_cs)
6368 bld.sop2(aco_opcode::s_and_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc), Operand(0x3fu),
6369 get_arg(ctx, ctx->args->ac.tg_size));
6370 else
6371 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x1u));
6372 break;
6373 }
6374 case nir_intrinsic_ballot: {
6375 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6376 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6377 Definition tmp = bld.def(dst.regClass());
6378 Definition lanemask_tmp = dst.size() == bld.lm.size() ? tmp : bld.def(src.regClass());
6379 if (instr->src[0].ssa->bit_size == 1) {
6380 assert(src.regClass() == bld.lm);
6381 bld.sop2(Builder::s_and, lanemask_tmp, bld.def(s1, scc), Operand(exec, bld.lm), src);
6382 } else if (instr->src[0].ssa->bit_size == 32 && src.regClass() == v1) {
6383 bld.vopc(aco_opcode::v_cmp_lg_u32, lanemask_tmp, Operand(0u), src);
6384 } else if (instr->src[0].ssa->bit_size == 64 && src.regClass() == v2) {
6385 bld.vopc(aco_opcode::v_cmp_lg_u64, lanemask_tmp, Operand(0u), src);
6386 } else {
6387 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6388 nir_print_instr(&instr->instr, stderr);
6389 fprintf(stderr, "\n");
6390 }
6391 if (dst.size() != bld.lm.size()) {
6392 /* Wave32 with ballot size set to 64 */
6393 bld.pseudo(aco_opcode::p_create_vector, Definition(tmp), lanemask_tmp.getTemp(), Operand(0u));
6394 }
6395 emit_wqm(ctx, tmp.getTemp(), dst);
6396 break;
6397 }
6398 case nir_intrinsic_shuffle:
6399 case nir_intrinsic_read_invocation: {
6400 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6401 if (!ctx->divergent_vals[instr->src[0].ssa->index]) {
6402 emit_uniform_subgroup(ctx, instr, src);
6403 } else {
6404 Temp tid = get_ssa_temp(ctx, instr->src[1].ssa);
6405 if (instr->intrinsic == nir_intrinsic_read_invocation || !ctx->divergent_vals[instr->src[1].ssa->index])
6406 tid = bld.as_uniform(tid);
6407 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6408 if (src.regClass() == v1) {
6409 emit_wqm(ctx, emit_bpermute(ctx, bld, tid, src), dst);
6410 } else if (src.regClass() == v2) {
6411 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
6412 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
6413 lo = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, lo));
6414 hi = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, hi));
6415 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6416 emit_split_vector(ctx, dst, 2);
6417 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == s1) {
6418 assert(src.regClass() == bld.lm);
6419 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src, tid);
6420 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
6421 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == v1) {
6422 assert(src.regClass() == bld.lm);
6423 Temp tmp;
6424 if (ctx->program->chip_class <= GFX7)
6425 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), src, tid);
6426 else if (ctx->program->wave_size == 64)
6427 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), tid, src);
6428 else
6429 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), tid, src);
6430 tmp = emit_extract_vector(ctx, tmp, 0, v1);
6431 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), tmp);
6432 emit_wqm(ctx, bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp), dst);
6433 } else {
6434 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6435 nir_print_instr(&instr->instr, stderr);
6436 fprintf(stderr, "\n");
6437 }
6438 }
6439 break;
6440 }
6441 case nir_intrinsic_load_sample_id: {
6442 bld.vop3(aco_opcode::v_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6443 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
6444 break;
6445 }
6446 case nir_intrinsic_load_sample_mask_in: {
6447 visit_load_sample_mask_in(ctx, instr);
6448 break;
6449 }
6450 case nir_intrinsic_read_first_invocation: {
6451 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6452 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6453 if (src.regClass() == v1) {
6454 emit_wqm(ctx,
6455 bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), src),
6456 dst);
6457 } else if (src.regClass() == v2) {
6458 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
6459 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
6460 lo = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), lo));
6461 hi = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), hi));
6462 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6463 emit_split_vector(ctx, dst, 2);
6464 } else if (instr->dest.ssa.bit_size == 1) {
6465 assert(src.regClass() == bld.lm);
6466 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src,
6467 bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)));
6468 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
6469 } else if (src.regClass() == s1) {
6470 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
6471 } else if (src.regClass() == s2) {
6472 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
6473 } else {
6474 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6475 nir_print_instr(&instr->instr, stderr);
6476 fprintf(stderr, "\n");
6477 }
6478 break;
6479 }
6480 case nir_intrinsic_vote_all: {
6481 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6482 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6483 assert(src.regClass() == bld.lm);
6484 assert(dst.regClass() == bld.lm);
6485
6486 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
6487 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
6488 bld.sop1(Builder::s_not, Definition(dst), bld.def(s1, scc), cond);
6489 break;
6490 }
6491 case nir_intrinsic_vote_any: {
6492 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6493 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6494 assert(src.regClass() == bld.lm);
6495 assert(dst.regClass() == bld.lm);
6496
6497 Temp tmp = bool_to_scalar_condition(ctx, src);
6498 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
6499 break;
6500 }
6501 case nir_intrinsic_reduce:
6502 case nir_intrinsic_inclusive_scan:
6503 case nir_intrinsic_exclusive_scan: {
6504 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6505 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6506 nir_op op = (nir_op) nir_intrinsic_reduction_op(instr);
6507 unsigned cluster_size = instr->intrinsic == nir_intrinsic_reduce ?
6508 nir_intrinsic_cluster_size(instr) : 0;
6509 cluster_size = util_next_power_of_two(MIN2(cluster_size ? cluster_size : ctx->program->wave_size, ctx->program->wave_size));
6510
6511 if (!ctx->divergent_vals[instr->src[0].ssa->index] && (op == nir_op_ior || op == nir_op_iand)) {
6512 emit_uniform_subgroup(ctx, instr, src);
6513 } else if (instr->dest.ssa.bit_size == 1) {
6514 if (op == nir_op_imul || op == nir_op_umin || op == nir_op_imin)
6515 op = nir_op_iand;
6516 else if (op == nir_op_iadd)
6517 op = nir_op_ixor;
6518 else if (op == nir_op_umax || op == nir_op_imax)
6519 op = nir_op_ior;
6520 assert(op == nir_op_iand || op == nir_op_ior || op == nir_op_ixor);
6521
6522 switch (instr->intrinsic) {
6523 case nir_intrinsic_reduce:
6524 emit_wqm(ctx, emit_boolean_reduce(ctx, op, cluster_size, src), dst);
6525 break;
6526 case nir_intrinsic_exclusive_scan:
6527 emit_wqm(ctx, emit_boolean_exclusive_scan(ctx, op, src), dst);
6528 break;
6529 case nir_intrinsic_inclusive_scan:
6530 emit_wqm(ctx, emit_boolean_inclusive_scan(ctx, op, src), dst);
6531 break;
6532 default:
6533 assert(false);
6534 }
6535 } else if (cluster_size == 1) {
6536 bld.copy(Definition(dst), src);
6537 } else {
6538 src = as_vgpr(ctx, src);
6539
6540 ReduceOp reduce_op;
6541 switch (op) {
6542 #define CASE(name) case nir_op_##name: reduce_op = (src.regClass() == v1) ? name##32 : name##64; break;
6543 CASE(iadd)
6544 CASE(imul)
6545 CASE(fadd)
6546 CASE(fmul)
6547 CASE(imin)
6548 CASE(umin)
6549 CASE(fmin)
6550 CASE(imax)
6551 CASE(umax)
6552 CASE(fmax)
6553 CASE(iand)
6554 CASE(ior)
6555 CASE(ixor)
6556 default:
6557 unreachable("unknown reduction op");
6558 #undef CASE
6559 }
6560
6561 aco_opcode aco_op;
6562 switch (instr->intrinsic) {
6563 case nir_intrinsic_reduce: aco_op = aco_opcode::p_reduce; break;
6564 case nir_intrinsic_inclusive_scan: aco_op = aco_opcode::p_inclusive_scan; break;
6565 case nir_intrinsic_exclusive_scan: aco_op = aco_opcode::p_exclusive_scan; break;
6566 default:
6567 unreachable("unknown reduce intrinsic");
6568 }
6569
6570 aco_ptr<Pseudo_reduction_instruction> reduce{create_instruction<Pseudo_reduction_instruction>(aco_op, Format::PSEUDO_REDUCTION, 3, 5)};
6571 reduce->operands[0] = Operand(src);
6572 // filled in by aco_reduce_assign.cpp, used internally as part of the
6573 // reduce sequence
6574 assert(dst.size() == 1 || dst.size() == 2);
6575 reduce->operands[1] = Operand(RegClass(RegType::vgpr, dst.size()).as_linear());
6576 reduce->operands[2] = Operand(v1.as_linear());
6577
6578 Temp tmp_dst = bld.tmp(dst.regClass());
6579 reduce->definitions[0] = Definition(tmp_dst);
6580 reduce->definitions[1] = bld.def(ctx->program->lane_mask); // used internally
6581 reduce->definitions[2] = Definition();
6582 reduce->definitions[3] = Definition(scc, s1);
6583 reduce->definitions[4] = Definition();
6584 reduce->reduce_op = reduce_op;
6585 reduce->cluster_size = cluster_size;
6586 ctx->block->instructions.emplace_back(std::move(reduce));
6587
6588 emit_wqm(ctx, tmp_dst, dst);
6589 }
6590 break;
6591 }
6592 case nir_intrinsic_quad_broadcast: {
6593 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6594 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
6595 emit_uniform_subgroup(ctx, instr, src);
6596 } else {
6597 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6598 unsigned lane = nir_src_as_const_value(instr->src[1])->u32;
6599 uint32_t dpp_ctrl = dpp_quad_perm(lane, lane, lane, lane);
6600
6601 if (instr->dest.ssa.bit_size == 1) {
6602 assert(src.regClass() == bld.lm);
6603 assert(dst.regClass() == bld.lm);
6604 uint32_t half_mask = 0x11111111u << lane;
6605 Temp mask_tmp = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(half_mask), Operand(half_mask));
6606 Temp tmp = bld.tmp(bld.lm);
6607 bld.sop1(Builder::s_wqm, Definition(tmp),
6608 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), mask_tmp,
6609 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm))));
6610 emit_wqm(ctx, tmp, dst);
6611 } else if (instr->dest.ssa.bit_size == 32) {
6612 if (ctx->program->chip_class >= GFX8)
6613 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), dst);
6614 else
6615 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), dst);
6616 } else if (instr->dest.ssa.bit_size == 64) {
6617 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
6618 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
6619 if (ctx->program->chip_class >= GFX8) {
6620 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
6621 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
6622 } else {
6623 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, (1 << 15) | dpp_ctrl));
6624 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, (1 << 15) | dpp_ctrl));
6625 }
6626 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6627 emit_split_vector(ctx, dst, 2);
6628 } else {
6629 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6630 nir_print_instr(&instr->instr, stderr);
6631 fprintf(stderr, "\n");
6632 }
6633 }
6634 break;
6635 }
6636 case nir_intrinsic_quad_swap_horizontal:
6637 case nir_intrinsic_quad_swap_vertical:
6638 case nir_intrinsic_quad_swap_diagonal:
6639 case nir_intrinsic_quad_swizzle_amd: {
6640 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6641 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
6642 emit_uniform_subgroup(ctx, instr, src);
6643 break;
6644 }
6645 uint16_t dpp_ctrl = 0;
6646 switch (instr->intrinsic) {
6647 case nir_intrinsic_quad_swap_horizontal:
6648 dpp_ctrl = dpp_quad_perm(1, 0, 3, 2);
6649 break;
6650 case nir_intrinsic_quad_swap_vertical:
6651 dpp_ctrl = dpp_quad_perm(2, 3, 0, 1);
6652 break;
6653 case nir_intrinsic_quad_swap_diagonal:
6654 dpp_ctrl = dpp_quad_perm(3, 2, 1, 0);
6655 break;
6656 case nir_intrinsic_quad_swizzle_amd:
6657 dpp_ctrl = nir_intrinsic_swizzle_mask(instr);
6658 break;
6659 default:
6660 break;
6661 }
6662 if (ctx->program->chip_class < GFX8)
6663 dpp_ctrl |= (1 << 15);
6664
6665 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6666 if (instr->dest.ssa.bit_size == 1) {
6667 assert(src.regClass() == bld.lm);
6668 src = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand((uint32_t)-1), src);
6669 if (ctx->program->chip_class >= GFX8)
6670 src = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
6671 else
6672 src = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
6673 Temp tmp = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), src);
6674 emit_wqm(ctx, tmp, dst);
6675 } else if (instr->dest.ssa.bit_size == 32) {
6676 Temp tmp;
6677 if (ctx->program->chip_class >= GFX8)
6678 tmp = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
6679 else
6680 tmp = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
6681 emit_wqm(ctx, tmp, dst);
6682 } else if (instr->dest.ssa.bit_size == 64) {
6683 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
6684 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
6685 if (ctx->program->chip_class >= GFX8) {
6686 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
6687 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
6688 } else {
6689 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, dpp_ctrl));
6690 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, dpp_ctrl));
6691 }
6692 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6693 emit_split_vector(ctx, dst, 2);
6694 } else {
6695 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6696 nir_print_instr(&instr->instr, stderr);
6697 fprintf(stderr, "\n");
6698 }
6699 break;
6700 }
6701 case nir_intrinsic_masked_swizzle_amd: {
6702 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6703 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
6704 emit_uniform_subgroup(ctx, instr, src);
6705 break;
6706 }
6707 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6708 uint32_t mask = nir_intrinsic_swizzle_mask(instr);
6709 if (dst.regClass() == v1) {
6710 emit_wqm(ctx,
6711 bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, mask, 0, false),
6712 dst);
6713 } else if (dst.regClass() == v2) {
6714 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
6715 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
6716 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, mask, 0, false));
6717 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, mask, 0, false));
6718 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6719 emit_split_vector(ctx, dst, 2);
6720 } else {
6721 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6722 nir_print_instr(&instr->instr, stderr);
6723 fprintf(stderr, "\n");
6724 }
6725 break;
6726 }
6727 case nir_intrinsic_write_invocation_amd: {
6728 Temp src = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6729 Temp val = bld.as_uniform(get_ssa_temp(ctx, instr->src[1].ssa));
6730 Temp lane = bld.as_uniform(get_ssa_temp(ctx, instr->src[2].ssa));
6731 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6732 if (dst.regClass() == v1) {
6733 /* src2 is ignored for writelane. RA assigns the same reg for dst */
6734 emit_wqm(ctx, bld.writelane(bld.def(v1), val, lane, src), dst);
6735 } else if (dst.regClass() == v2) {
6736 Temp src_lo = bld.tmp(v1), src_hi = bld.tmp(v1);
6737 Temp val_lo = bld.tmp(s1), val_hi = bld.tmp(s1);
6738 bld.pseudo(aco_opcode::p_split_vector, Definition(src_lo), Definition(src_hi), src);
6739 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
6740 Temp lo = emit_wqm(ctx, bld.writelane(bld.def(v1), val_lo, lane, src_hi));
6741 Temp hi = emit_wqm(ctx, bld.writelane(bld.def(v1), val_hi, lane, src_hi));
6742 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6743 emit_split_vector(ctx, dst, 2);
6744 } else {
6745 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6746 nir_print_instr(&instr->instr, stderr);
6747 fprintf(stderr, "\n");
6748 }
6749 break;
6750 }
6751 case nir_intrinsic_mbcnt_amd: {
6752 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6753 RegClass rc = RegClass(src.type(), 1);
6754 Temp mask_lo = bld.tmp(rc), mask_hi = bld.tmp(rc);
6755 bld.pseudo(aco_opcode::p_split_vector, Definition(mask_lo), Definition(mask_hi), src);
6756 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6757 Temp wqm_tmp = emit_mbcnt(ctx, bld.def(v1), Operand(mask_lo), Operand(mask_hi));
6758 emit_wqm(ctx, wqm_tmp, dst);
6759 break;
6760 }
6761 case nir_intrinsic_load_helper_invocation: {
6762 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6763 bld.pseudo(aco_opcode::p_load_helper, Definition(dst));
6764 ctx->block->kind |= block_kind_needs_lowering;
6765 ctx->program->needs_exact = true;
6766 break;
6767 }
6768 case nir_intrinsic_is_helper_invocation: {
6769 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6770 bld.pseudo(aco_opcode::p_is_helper, Definition(dst));
6771 ctx->block->kind |= block_kind_needs_lowering;
6772 ctx->program->needs_exact = true;
6773 break;
6774 }
6775 case nir_intrinsic_demote:
6776 bld.pseudo(aco_opcode::p_demote_to_helper, Operand(-1u));
6777
6778 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
6779 ctx->cf_info.exec_potentially_empty_discard = true;
6780 ctx->block->kind |= block_kind_uses_demote;
6781 ctx->program->needs_exact = true;
6782 break;
6783 case nir_intrinsic_demote_if: {
6784 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6785 assert(src.regClass() == bld.lm);
6786 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
6787 bld.pseudo(aco_opcode::p_demote_to_helper, cond);
6788
6789 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
6790 ctx->cf_info.exec_potentially_empty_discard = true;
6791 ctx->block->kind |= block_kind_uses_demote;
6792 ctx->program->needs_exact = true;
6793 break;
6794 }
6795 case nir_intrinsic_first_invocation: {
6796 emit_wqm(ctx, bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)),
6797 get_ssa_temp(ctx, &instr->dest.ssa));
6798 break;
6799 }
6800 case nir_intrinsic_shader_clock:
6801 bld.smem(aco_opcode::s_memtime, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), false);
6802 emit_split_vector(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 2);
6803 break;
6804 case nir_intrinsic_load_vertex_id_zero_base: {
6805 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6806 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.vertex_id));
6807 break;
6808 }
6809 case nir_intrinsic_load_first_vertex: {
6810 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6811 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.base_vertex));
6812 break;
6813 }
6814 case nir_intrinsic_load_base_instance: {
6815 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6816 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.start_instance));
6817 break;
6818 }
6819 case nir_intrinsic_load_instance_id: {
6820 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6821 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.instance_id));
6822 break;
6823 }
6824 case nir_intrinsic_load_draw_id: {
6825 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6826 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.draw_id));
6827 break;
6828 }
6829 case nir_intrinsic_load_invocation_id: {
6830 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
6831 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6832 if (ctx->options->chip_class >= GFX10)
6833 bld.vop2_e64(aco_opcode::v_and_b32, Definition(dst), Operand(127u), get_arg(ctx, ctx->args->ac.gs_invocation_id));
6834 else
6835 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_invocation_id));
6836 break;
6837 }
6838 case nir_intrinsic_load_primitive_id: {
6839 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
6840 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6841 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_prim_id));
6842 break;
6843 }
6844 case nir_intrinsic_emit_vertex_with_counter: {
6845 visit_emit_vertex_with_counter(ctx, instr);
6846 break;
6847 }
6848 case nir_intrinsic_end_primitive_with_counter: {
6849 unsigned stream = nir_intrinsic_stream_id(instr);
6850 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(true, false, stream));
6851 break;
6852 }
6853 case nir_intrinsic_set_vertex_count: {
6854 /* unused, the HW keeps track of this for us */
6855 break;
6856 }
6857 default:
6858 fprintf(stderr, "Unimplemented intrinsic instr: ");
6859 nir_print_instr(&instr->instr, stderr);
6860 fprintf(stderr, "\n");
6861 abort();
6862
6863 break;
6864 }
6865 }
6866
6867
6868 void tex_fetch_ptrs(isel_context *ctx, nir_tex_instr *instr,
6869 Temp *res_ptr, Temp *samp_ptr, Temp *fmask_ptr,
6870 enum glsl_base_type *stype)
6871 {
6872 nir_deref_instr *texture_deref_instr = NULL;
6873 nir_deref_instr *sampler_deref_instr = NULL;
6874 int plane = -1;
6875
6876 for (unsigned i = 0; i < instr->num_srcs; i++) {
6877 switch (instr->src[i].src_type) {
6878 case nir_tex_src_texture_deref:
6879 texture_deref_instr = nir_src_as_deref(instr->src[i].src);
6880 break;
6881 case nir_tex_src_sampler_deref:
6882 sampler_deref_instr = nir_src_as_deref(instr->src[i].src);
6883 break;
6884 case nir_tex_src_plane:
6885 plane = nir_src_as_int(instr->src[i].src);
6886 break;
6887 default:
6888 break;
6889 }
6890 }
6891
6892 *stype = glsl_get_sampler_result_type(texture_deref_instr->type);
6893
6894 if (!sampler_deref_instr)
6895 sampler_deref_instr = texture_deref_instr;
6896
6897 if (plane >= 0) {
6898 assert(instr->op != nir_texop_txf_ms &&
6899 instr->op != nir_texop_samples_identical);
6900 assert(instr->sampler_dim != GLSL_SAMPLER_DIM_BUF);
6901 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, (aco_descriptor_type)(ACO_DESC_PLANE_0 + plane), instr, false, false);
6902 } else if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
6903 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_BUFFER, instr, false, false);
6904 } else if (instr->op == nir_texop_fragment_mask_fetch) {
6905 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
6906 } else {
6907 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_IMAGE, instr, false, false);
6908 }
6909 if (samp_ptr) {
6910 *samp_ptr = get_sampler_desc(ctx, sampler_deref_instr, ACO_DESC_SAMPLER, instr, false, false);
6911
6912 if (instr->sampler_dim < GLSL_SAMPLER_DIM_RECT && ctx->options->chip_class < GFX8) {
6913 /* fix sampler aniso on SI/CI: samp[0] = samp[0] & img[7] */
6914 Builder bld(ctx->program, ctx->block);
6915
6916 /* to avoid unnecessary moves, we split and recombine sampler and image */
6917 Temp img[8] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1),
6918 bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
6919 Temp samp[4] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
6920 bld.pseudo(aco_opcode::p_split_vector, Definition(img[0]), Definition(img[1]),
6921 Definition(img[2]), Definition(img[3]), Definition(img[4]),
6922 Definition(img[5]), Definition(img[6]), Definition(img[7]), *res_ptr);
6923 bld.pseudo(aco_opcode::p_split_vector, Definition(samp[0]), Definition(samp[1]),
6924 Definition(samp[2]), Definition(samp[3]), *samp_ptr);
6925
6926 samp[0] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), samp[0], img[7]);
6927 *res_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
6928 img[0], img[1], img[2], img[3],
6929 img[4], img[5], img[6], img[7]);
6930 *samp_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
6931 samp[0], samp[1], samp[2], samp[3]);
6932 }
6933 }
6934 if (fmask_ptr && (instr->op == nir_texop_txf_ms ||
6935 instr->op == nir_texop_samples_identical))
6936 *fmask_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
6937 }
6938
6939 void build_cube_select(isel_context *ctx, Temp ma, Temp id, Temp deriv,
6940 Temp *out_ma, Temp *out_sc, Temp *out_tc)
6941 {
6942 Builder bld(ctx->program, ctx->block);
6943
6944 Temp deriv_x = emit_extract_vector(ctx, deriv, 0, v1);
6945 Temp deriv_y = emit_extract_vector(ctx, deriv, 1, v1);
6946 Temp deriv_z = emit_extract_vector(ctx, deriv, 2, v1);
6947
6948 Operand neg_one(0xbf800000u);
6949 Operand one(0x3f800000u);
6950 Operand two(0x40000000u);
6951 Operand four(0x40800000u);
6952
6953 Temp is_ma_positive = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), ma);
6954 Temp sgn_ma = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, one, is_ma_positive);
6955 Temp neg_sgn_ma = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0u), sgn_ma);
6956
6957 Temp is_ma_z = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), four, id);
6958 Temp is_ma_y = bld.vopc(aco_opcode::v_cmp_le_f32, bld.def(bld.lm), two, id);
6959 is_ma_y = bld.sop2(Builder::s_andn2, bld.hint_vcc(bld.def(bld.lm)), is_ma_y, is_ma_z);
6960 Temp is_not_ma_x = bld.sop2(aco_opcode::s_or_b64, bld.hint_vcc(bld.def(bld.lm)), bld.def(s1, scc), is_ma_z, is_ma_y);
6961
6962 // select sc
6963 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_z, deriv_x, is_not_ma_x);
6964 Temp sgn = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1),
6965 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_sgn_ma, sgn_ma, is_ma_z),
6966 one, is_ma_y);
6967 *out_sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
6968
6969 // select tc
6970 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_y, deriv_z, is_ma_y);
6971 sgn = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, sgn_ma, is_ma_y);
6972 *out_tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
6973
6974 // select ma
6975 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
6976 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_x, deriv_y, is_ma_y),
6977 deriv_z, is_ma_z);
6978 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffffu), tmp);
6979 *out_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), two, tmp);
6980 }
6981
6982 void prepare_cube_coords(isel_context *ctx, std::vector<Temp>& coords, Temp* ddx, Temp* ddy, bool is_deriv, bool is_array)
6983 {
6984 Builder bld(ctx->program, ctx->block);
6985 Temp ma, tc, sc, id;
6986
6987 if (is_array) {
6988 coords[3] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[3]);
6989
6990 // see comment in ac_prepare_cube_coords()
6991 if (ctx->options->chip_class <= GFX8)
6992 coords[3] = bld.vop2(aco_opcode::v_max_f32, bld.def(v1), Operand(0u), coords[3]);
6993 }
6994
6995 ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), coords[0], coords[1], coords[2]);
6996
6997 aco_ptr<VOP3A_instruction> vop3a{create_instruction<VOP3A_instruction>(aco_opcode::v_rcp_f32, asVOP3(Format::VOP1), 1, 1)};
6998 vop3a->operands[0] = Operand(ma);
6999 vop3a->abs[0] = true;
7000 Temp invma = bld.tmp(v1);
7001 vop3a->definitions[0] = Definition(invma);
7002 ctx->block->instructions.emplace_back(std::move(vop3a));
7003
7004 sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
7005 if (!is_deriv)
7006 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, invma, Operand(0x3fc00000u/*1.5*/));
7007
7008 tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
7009 if (!is_deriv)
7010 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, invma, Operand(0x3fc00000u/*1.5*/));
7011
7012 id = bld.vop3(aco_opcode::v_cubeid_f32, bld.def(v1), coords[0], coords[1], coords[2]);
7013
7014 if (is_deriv) {
7015 sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), sc, invma);
7016 tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tc, invma);
7017
7018 for (unsigned i = 0; i < 2; i++) {
7019 // see comment in ac_prepare_cube_coords()
7020 Temp deriv_ma;
7021 Temp deriv_sc, deriv_tc;
7022 build_cube_select(ctx, ma, id, i ? *ddy : *ddx,
7023 &deriv_ma, &deriv_sc, &deriv_tc);
7024
7025 deriv_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, invma);
7026
7027 Temp x = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
7028 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_sc, invma),
7029 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, sc));
7030 Temp y = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
7031 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_tc, invma),
7032 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, tc));
7033 *(i ? ddy : ddx) = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), x, y);
7034 }
7035
7036 sc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), sc);
7037 tc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), tc);
7038 }
7039
7040 if (is_array)
7041 id = bld.vop2(aco_opcode::v_madmk_f32, bld.def(v1), coords[3], id, Operand(0x41000000u/*8.0*/));
7042 coords.resize(3);
7043 coords[0] = sc;
7044 coords[1] = tc;
7045 coords[2] = id;
7046 }
7047
7048 void get_const_vec(nir_ssa_def *vec, nir_const_value *cv[4])
7049 {
7050 if (vec->parent_instr->type != nir_instr_type_alu)
7051 return;
7052 nir_alu_instr *vec_instr = nir_instr_as_alu(vec->parent_instr);
7053 if (vec_instr->op != nir_op_vec(vec->num_components))
7054 return;
7055
7056 for (unsigned i = 0; i < vec->num_components; i++) {
7057 cv[i] = vec_instr->src[i].swizzle[0] == 0 ?
7058 nir_src_as_const_value(vec_instr->src[i].src) : NULL;
7059 }
7060 }
7061
7062 void visit_tex(isel_context *ctx, nir_tex_instr *instr)
7063 {
7064 Builder bld(ctx->program, ctx->block);
7065 bool has_bias = false, has_lod = false, level_zero = false, has_compare = false,
7066 has_offset = false, has_ddx = false, has_ddy = false, has_derivs = false, has_sample_index = false;
7067 Temp resource, sampler, fmask_ptr, bias = Temp(), compare = Temp(), sample_index = Temp(),
7068 lod = Temp(), offset = Temp(), ddx = Temp(), ddy = Temp();
7069 std::vector<Temp> coords;
7070 std::vector<Temp> derivs;
7071 nir_const_value *sample_index_cv = NULL;
7072 nir_const_value *const_offset[4] = {NULL, NULL, NULL, NULL};
7073 enum glsl_base_type stype;
7074 tex_fetch_ptrs(ctx, instr, &resource, &sampler, &fmask_ptr, &stype);
7075
7076 bool tg4_integer_workarounds = ctx->options->chip_class <= GFX8 && instr->op == nir_texop_tg4 &&
7077 (stype == GLSL_TYPE_UINT || stype == GLSL_TYPE_INT);
7078 bool tg4_integer_cube_workaround = tg4_integer_workarounds &&
7079 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE;
7080
7081 for (unsigned i = 0; i < instr->num_srcs; i++) {
7082 switch (instr->src[i].src_type) {
7083 case nir_tex_src_coord: {
7084 Temp coord = get_ssa_temp(ctx, instr->src[i].src.ssa);
7085 for (unsigned i = 0; i < coord.size(); i++)
7086 coords.emplace_back(emit_extract_vector(ctx, coord, i, v1));
7087 break;
7088 }
7089 case nir_tex_src_bias:
7090 if (instr->op == nir_texop_txb) {
7091 bias = get_ssa_temp(ctx, instr->src[i].src.ssa);
7092 has_bias = true;
7093 }
7094 break;
7095 case nir_tex_src_lod: {
7096 nir_const_value *val = nir_src_as_const_value(instr->src[i].src);
7097
7098 if (val && val->f32 <= 0.0) {
7099 level_zero = true;
7100 } else {
7101 lod = get_ssa_temp(ctx, instr->src[i].src.ssa);
7102 has_lod = true;
7103 }
7104 break;
7105 }
7106 case nir_tex_src_comparator:
7107 if (instr->is_shadow) {
7108 compare = get_ssa_temp(ctx, instr->src[i].src.ssa);
7109 has_compare = true;
7110 }
7111 break;
7112 case nir_tex_src_offset:
7113 offset = get_ssa_temp(ctx, instr->src[i].src.ssa);
7114 get_const_vec(instr->src[i].src.ssa, const_offset);
7115 has_offset = true;
7116 break;
7117 case nir_tex_src_ddx:
7118 ddx = get_ssa_temp(ctx, instr->src[i].src.ssa);
7119 has_ddx = true;
7120 break;
7121 case nir_tex_src_ddy:
7122 ddy = get_ssa_temp(ctx, instr->src[i].src.ssa);
7123 has_ddy = true;
7124 break;
7125 case nir_tex_src_ms_index:
7126 sample_index = get_ssa_temp(ctx, instr->src[i].src.ssa);
7127 sample_index_cv = nir_src_as_const_value(instr->src[i].src);
7128 has_sample_index = true;
7129 break;
7130 case nir_tex_src_texture_offset:
7131 case nir_tex_src_sampler_offset:
7132 default:
7133 break;
7134 }
7135 }
7136
7137 if (instr->op == nir_texop_txs && instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
7138 return get_buffer_size(ctx, resource, get_ssa_temp(ctx, &instr->dest.ssa), true);
7139
7140 if (instr->op == nir_texop_texture_samples) {
7141 Temp dword3 = emit_extract_vector(ctx, resource, 3, s1);
7142
7143 Temp samples_log2 = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(16u | 4u<<16));
7144 Temp samples = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), Operand(1u), samples_log2);
7145 Temp type = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(28u | 4u<<16 /* offset=28, width=4 */));
7146 Temp is_msaa = bld.sopc(aco_opcode::s_cmp_ge_u32, bld.def(s1, scc), type, Operand(14u));
7147
7148 bld.sop2(aco_opcode::s_cselect_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7149 samples, Operand(1u), bld.scc(is_msaa));
7150 return;
7151 }
7152
7153 if (has_offset && instr->op != nir_texop_txf && instr->op != nir_texop_txf_ms) {
7154 aco_ptr<Instruction> tmp_instr;
7155 Temp acc, pack = Temp();
7156
7157 uint32_t pack_const = 0;
7158 for (unsigned i = 0; i < offset.size(); i++) {
7159 if (!const_offset[i])
7160 continue;
7161 pack_const |= (const_offset[i]->u32 & 0x3Fu) << (8u * i);
7162 }
7163
7164 if (offset.type() == RegType::sgpr) {
7165 for (unsigned i = 0; i < offset.size(); i++) {
7166 if (const_offset[i])
7167 continue;
7168
7169 acc = emit_extract_vector(ctx, offset, i, s1);
7170 acc = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(0x3Fu));
7171
7172 if (i) {
7173 acc = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(8u * i));
7174 }
7175
7176 if (pack == Temp()) {
7177 pack = acc;
7178 } else {
7179 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), pack, acc);
7180 }
7181 }
7182
7183 if (pack_const && pack != Temp())
7184 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(pack_const), pack);
7185 } else {
7186 for (unsigned i = 0; i < offset.size(); i++) {
7187 if (const_offset[i])
7188 continue;
7189
7190 acc = emit_extract_vector(ctx, offset, i, v1);
7191 acc = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x3Fu), acc);
7192
7193 if (i) {
7194 acc = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(8u * i), acc);
7195 }
7196
7197 if (pack == Temp()) {
7198 pack = acc;
7199 } else {
7200 pack = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), pack, acc);
7201 }
7202 }
7203
7204 if (pack_const && pack != Temp())
7205 pack = bld.sop2(aco_opcode::v_or_b32, bld.def(v1), Operand(pack_const), pack);
7206 }
7207 if (pack_const && pack == Temp())
7208 offset = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(pack_const));
7209 else if (pack == Temp())
7210 has_offset = false;
7211 else
7212 offset = pack;
7213 }
7214
7215 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE && instr->coord_components)
7216 prepare_cube_coords(ctx, coords, &ddx, &ddy, instr->op == nir_texop_txd, instr->is_array && instr->op != nir_texop_lod);
7217
7218 /* pack derivatives */
7219 if (has_ddx || has_ddy) {
7220 if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D && ctx->options->chip_class == GFX9) {
7221 assert(has_ddx && has_ddy && ddx.size() == 1 && ddy.size() == 1);
7222 Temp zero = bld.copy(bld.def(v1), Operand(0u));
7223 derivs = {ddy, zero, ddy, zero};
7224 } else {
7225 for (unsigned i = 0; has_ddx && i < ddx.size(); i++)
7226 derivs.emplace_back(emit_extract_vector(ctx, ddx, i, v1));
7227 for (unsigned i = 0; has_ddy && i < ddy.size(); i++)
7228 derivs.emplace_back(emit_extract_vector(ctx, ddy, i, v1));
7229 }
7230 has_derivs = true;
7231 }
7232
7233 if (instr->coord_components > 1 &&
7234 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
7235 instr->is_array &&
7236 instr->op != nir_texop_txf)
7237 coords[1] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[1]);
7238
7239 if (instr->coord_components > 2 &&
7240 (instr->sampler_dim == GLSL_SAMPLER_DIM_2D ||
7241 instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
7242 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS ||
7243 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
7244 instr->is_array &&
7245 instr->op != nir_texop_txf &&
7246 instr->op != nir_texop_txf_ms &&
7247 instr->op != nir_texop_fragment_fetch &&
7248 instr->op != nir_texop_fragment_mask_fetch)
7249 coords[2] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[2]);
7250
7251 if (ctx->options->chip_class == GFX9 &&
7252 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
7253 instr->op != nir_texop_lod && instr->coord_components) {
7254 assert(coords.size() > 0 && coords.size() < 3);
7255
7256 coords.insert(std::next(coords.begin()), bld.copy(bld.def(v1), instr->op == nir_texop_txf ?
7257 Operand((uint32_t) 0) :
7258 Operand((uint32_t) 0x3f000000)));
7259 }
7260
7261 bool da = should_declare_array(ctx, instr->sampler_dim, instr->is_array);
7262
7263 if (instr->op == nir_texop_samples_identical)
7264 resource = fmask_ptr;
7265
7266 else if ((instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
7267 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
7268 instr->op != nir_texop_txs &&
7269 instr->op != nir_texop_fragment_fetch &&
7270 instr->op != nir_texop_fragment_mask_fetch) {
7271 assert(has_sample_index);
7272 Operand op(sample_index);
7273 if (sample_index_cv)
7274 op = Operand(sample_index_cv->u32);
7275 sample_index = adjust_sample_index_using_fmask(ctx, da, coords, op, fmask_ptr);
7276 }
7277
7278 if (has_offset && (instr->op == nir_texop_txf || instr->op == nir_texop_txf_ms)) {
7279 for (unsigned i = 0; i < std::min(offset.size(), instr->coord_components); i++) {
7280 Temp off = emit_extract_vector(ctx, offset, i, v1);
7281 coords[i] = bld.vadd32(bld.def(v1), coords[i], off);
7282 }
7283 has_offset = false;
7284 }
7285
7286 /* Build tex instruction */
7287 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
7288 unsigned dim = ctx->options->chip_class >= GFX10 && instr->sampler_dim != GLSL_SAMPLER_DIM_BUF
7289 ? ac_get_sampler_dim(ctx->options->chip_class, instr->sampler_dim, instr->is_array)
7290 : 0;
7291 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7292 Temp tmp_dst = dst;
7293
7294 /* gather4 selects the component by dmask and always returns vec4 */
7295 if (instr->op == nir_texop_tg4) {
7296 assert(instr->dest.ssa.num_components == 4);
7297 if (instr->is_shadow)
7298 dmask = 1;
7299 else
7300 dmask = 1 << instr->component;
7301 if (tg4_integer_cube_workaround || dst.type() == RegType::sgpr)
7302 tmp_dst = bld.tmp(v4);
7303 } else if (instr->op == nir_texop_samples_identical) {
7304 tmp_dst = bld.tmp(v1);
7305 } else if (util_bitcount(dmask) != instr->dest.ssa.num_components || dst.type() == RegType::sgpr) {
7306 tmp_dst = bld.tmp(RegClass(RegType::vgpr, util_bitcount(dmask)));
7307 }
7308
7309 aco_ptr<MIMG_instruction> tex;
7310 if (instr->op == nir_texop_txs || instr->op == nir_texop_query_levels) {
7311 if (!has_lod)
7312 lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
7313
7314 bool div_by_6 = instr->op == nir_texop_txs &&
7315 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
7316 instr->is_array &&
7317 (dmask & (1 << 2));
7318 if (tmp_dst.id() == dst.id() && div_by_6)
7319 tmp_dst = bld.tmp(tmp_dst.regClass());
7320
7321 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
7322 tex->operands[0] = Operand(resource);
7323 tex->operands[1] = Operand(s4); /* no sampler */
7324 tex->operands[2] = Operand(as_vgpr(ctx,lod));
7325 if (ctx->options->chip_class == GFX9 &&
7326 instr->op == nir_texop_txs &&
7327 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
7328 instr->is_array) {
7329 tex->dmask = (dmask & 0x1) | ((dmask & 0x2) << 1);
7330 } else if (instr->op == nir_texop_query_levels) {
7331 tex->dmask = 1 << 3;
7332 } else {
7333 tex->dmask = dmask;
7334 }
7335 tex->da = da;
7336 tex->definitions[0] = Definition(tmp_dst);
7337 tex->dim = dim;
7338 tex->can_reorder = true;
7339 ctx->block->instructions.emplace_back(std::move(tex));
7340
7341 if (div_by_6) {
7342 /* divide 3rd value by 6 by multiplying with magic number */
7343 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
7344 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
7345 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp_dst, 2, v1), c);
7346 assert(instr->dest.ssa.num_components == 3);
7347 Temp tmp = dst.type() == RegType::vgpr ? dst : bld.tmp(v3);
7348 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
7349 emit_extract_vector(ctx, tmp_dst, 0, v1),
7350 emit_extract_vector(ctx, tmp_dst, 1, v1),
7351 by_6);
7352
7353 }
7354
7355 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
7356 return;
7357 }
7358
7359 Temp tg4_compare_cube_wa64 = Temp();
7360
7361 if (tg4_integer_workarounds) {
7362 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
7363 tex->operands[0] = Operand(resource);
7364 tex->operands[1] = Operand(s4); /* no sampler */
7365 tex->operands[2] = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
7366 tex->dim = dim;
7367 tex->dmask = 0x3;
7368 tex->da = da;
7369 Temp size = bld.tmp(v2);
7370 tex->definitions[0] = Definition(size);
7371 tex->can_reorder = true;
7372 ctx->block->instructions.emplace_back(std::move(tex));
7373 emit_split_vector(ctx, size, size.size());
7374
7375 Temp half_texel[2];
7376 for (unsigned i = 0; i < 2; i++) {
7377 half_texel[i] = emit_extract_vector(ctx, size, i, v1);
7378 half_texel[i] = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), half_texel[i]);
7379 half_texel[i] = bld.vop1(aco_opcode::v_rcp_iflag_f32, bld.def(v1), half_texel[i]);
7380 half_texel[i] = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0xbf000000/*-0.5*/), half_texel[i]);
7381 }
7382
7383 Temp new_coords[2] = {
7384 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[0], half_texel[0]),
7385 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[1], half_texel[1])
7386 };
7387
7388 if (tg4_integer_cube_workaround) {
7389 // see comment in ac_nir_to_llvm.c's lower_gather4_integer()
7390 Temp desc[resource.size()];
7391 aco_ptr<Instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector,
7392 Format::PSEUDO, 1, resource.size())};
7393 split->operands[0] = Operand(resource);
7394 for (unsigned i = 0; i < resource.size(); i++) {
7395 desc[i] = bld.tmp(s1);
7396 split->definitions[i] = Definition(desc[i]);
7397 }
7398 ctx->block->instructions.emplace_back(std::move(split));
7399
7400 Temp dfmt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), desc[1], Operand(20u | (6u << 16)));
7401 Temp compare_cube_wa = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), dfmt,
7402 Operand((uint32_t)V_008F14_IMG_DATA_FORMAT_8_8_8_8));
7403
7404 Temp nfmt;
7405 if (stype == GLSL_TYPE_UINT) {
7406 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
7407 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_USCALED),
7408 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_UINT),
7409 bld.scc(compare_cube_wa));
7410 } else {
7411 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
7412 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SSCALED),
7413 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SINT),
7414 bld.scc(compare_cube_wa));
7415 }
7416 tg4_compare_cube_wa64 = bld.tmp(bld.lm);
7417 bool_to_vector_condition(ctx, compare_cube_wa, tg4_compare_cube_wa64);
7418
7419 nfmt = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), nfmt, Operand(26u));
7420
7421 desc[1] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), desc[1],
7422 Operand((uint32_t)C_008F14_NUM_FORMAT));
7423 desc[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), desc[1], nfmt);
7424
7425 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
7426 Format::PSEUDO, resource.size(), 1)};
7427 for (unsigned i = 0; i < resource.size(); i++)
7428 vec->operands[i] = Operand(desc[i]);
7429 resource = bld.tmp(resource.regClass());
7430 vec->definitions[0] = Definition(resource);
7431 ctx->block->instructions.emplace_back(std::move(vec));
7432
7433 new_coords[0] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
7434 new_coords[0], coords[0], tg4_compare_cube_wa64);
7435 new_coords[1] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
7436 new_coords[1], coords[1], tg4_compare_cube_wa64);
7437 }
7438 coords[0] = new_coords[0];
7439 coords[1] = new_coords[1];
7440 }
7441
7442 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
7443 //FIXME: if (ctx->abi->gfx9_stride_size_workaround) return ac_build_buffer_load_format_gfx9_safe()
7444
7445 assert(coords.size() == 1);
7446 unsigned last_bit = util_last_bit(nir_ssa_def_components_read(&instr->dest.ssa));
7447 aco_opcode op;
7448 switch (last_bit) {
7449 case 1:
7450 op = aco_opcode::buffer_load_format_x; break;
7451 case 2:
7452 op = aco_opcode::buffer_load_format_xy; break;
7453 case 3:
7454 op = aco_opcode::buffer_load_format_xyz; break;
7455 case 4:
7456 op = aco_opcode::buffer_load_format_xyzw; break;
7457 default:
7458 unreachable("Tex instruction loads more than 4 components.");
7459 }
7460
7461 /* if the instruction return value matches exactly the nir dest ssa, we can use it directly */
7462 if (last_bit == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
7463 tmp_dst = dst;
7464 else
7465 tmp_dst = bld.tmp(RegType::vgpr, last_bit);
7466
7467 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
7468 mubuf->operands[0] = Operand(resource);
7469 mubuf->operands[1] = Operand(coords[0]);
7470 mubuf->operands[2] = Operand((uint32_t) 0);
7471 mubuf->definitions[0] = Definition(tmp_dst);
7472 mubuf->idxen = true;
7473 mubuf->can_reorder = true;
7474 ctx->block->instructions.emplace_back(std::move(mubuf));
7475
7476 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, (1 << last_bit) - 1);
7477 return;
7478 }
7479
7480 /* gather MIMG address components */
7481 std::vector<Temp> args;
7482 if (has_offset)
7483 args.emplace_back(offset);
7484 if (has_bias)
7485 args.emplace_back(bias);
7486 if (has_compare)
7487 args.emplace_back(compare);
7488 if (has_derivs)
7489 args.insert(args.end(), derivs.begin(), derivs.end());
7490
7491 args.insert(args.end(), coords.begin(), coords.end());
7492 if (has_sample_index)
7493 args.emplace_back(sample_index);
7494 if (has_lod)
7495 args.emplace_back(lod);
7496
7497 Temp arg = bld.tmp(RegClass(RegType::vgpr, args.size()));
7498 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, args.size(), 1)};
7499 vec->definitions[0] = Definition(arg);
7500 for (unsigned i = 0; i < args.size(); i++)
7501 vec->operands[i] = Operand(args[i]);
7502 ctx->block->instructions.emplace_back(std::move(vec));
7503
7504
7505 if (instr->op == nir_texop_txf ||
7506 instr->op == nir_texop_txf_ms ||
7507 instr->op == nir_texop_samples_identical ||
7508 instr->op == nir_texop_fragment_fetch ||
7509 instr->op == nir_texop_fragment_mask_fetch) {
7510 aco_opcode op = level_zero || instr->sampler_dim == GLSL_SAMPLER_DIM_MS || instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS ? aco_opcode::image_load : aco_opcode::image_load_mip;
7511 tex.reset(create_instruction<MIMG_instruction>(op, Format::MIMG, 3, 1));
7512 tex->operands[0] = Operand(resource);
7513 tex->operands[1] = Operand(s4); /* no sampler */
7514 tex->operands[2] = Operand(arg);
7515 tex->dim = dim;
7516 tex->dmask = dmask;
7517 tex->unrm = true;
7518 tex->da = da;
7519 tex->definitions[0] = Definition(tmp_dst);
7520 tex->can_reorder = true;
7521 ctx->block->instructions.emplace_back(std::move(tex));
7522
7523 if (instr->op == nir_texop_samples_identical) {
7524 assert(dmask == 1 && dst.regClass() == v1);
7525 assert(dst.id() != tmp_dst.id());
7526
7527 Temp tmp = bld.tmp(bld.lm);
7528 bld.vopc(aco_opcode::v_cmp_eq_u32, Definition(tmp), Operand(0u), tmp_dst).def(0).setHint(vcc);
7529 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand((uint32_t)-1), tmp);
7530
7531 } else {
7532 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
7533 }
7534 return;
7535 }
7536
7537 // TODO: would be better to do this by adding offsets, but needs the opcodes ordered.
7538 aco_opcode opcode = aco_opcode::image_sample;
7539 if (has_offset) { /* image_sample_*_o */
7540 if (has_compare) {
7541 opcode = aco_opcode::image_sample_c_o;
7542 if (has_derivs)
7543 opcode = aco_opcode::image_sample_c_d_o;
7544 if (has_bias)
7545 opcode = aco_opcode::image_sample_c_b_o;
7546 if (level_zero)
7547 opcode = aco_opcode::image_sample_c_lz_o;
7548 if (has_lod)
7549 opcode = aco_opcode::image_sample_c_l_o;
7550 } else {
7551 opcode = aco_opcode::image_sample_o;
7552 if (has_derivs)
7553 opcode = aco_opcode::image_sample_d_o;
7554 if (has_bias)
7555 opcode = aco_opcode::image_sample_b_o;
7556 if (level_zero)
7557 opcode = aco_opcode::image_sample_lz_o;
7558 if (has_lod)
7559 opcode = aco_opcode::image_sample_l_o;
7560 }
7561 } else { /* no offset */
7562 if (has_compare) {
7563 opcode = aco_opcode::image_sample_c;
7564 if (has_derivs)
7565 opcode = aco_opcode::image_sample_c_d;
7566 if (has_bias)
7567 opcode = aco_opcode::image_sample_c_b;
7568 if (level_zero)
7569 opcode = aco_opcode::image_sample_c_lz;
7570 if (has_lod)
7571 opcode = aco_opcode::image_sample_c_l;
7572 } else {
7573 opcode = aco_opcode::image_sample;
7574 if (has_derivs)
7575 opcode = aco_opcode::image_sample_d;
7576 if (has_bias)
7577 opcode = aco_opcode::image_sample_b;
7578 if (level_zero)
7579 opcode = aco_opcode::image_sample_lz;
7580 if (has_lod)
7581 opcode = aco_opcode::image_sample_l;
7582 }
7583 }
7584
7585 if (instr->op == nir_texop_tg4) {
7586 if (has_offset) {
7587 opcode = aco_opcode::image_gather4_lz_o;
7588 if (has_compare)
7589 opcode = aco_opcode::image_gather4_c_lz_o;
7590 } else {
7591 opcode = aco_opcode::image_gather4_lz;
7592 if (has_compare)
7593 opcode = aco_opcode::image_gather4_c_lz;
7594 }
7595 } else if (instr->op == nir_texop_lod) {
7596 opcode = aco_opcode::image_get_lod;
7597 }
7598
7599 /* we don't need the bias, sample index, compare value or offset to be
7600 * computed in WQM but if the p_create_vector copies the coordinates, then it
7601 * needs to be in WQM */
7602 if (ctx->stage == fragment_fs &&
7603 !has_derivs && !has_lod && !level_zero &&
7604 instr->sampler_dim != GLSL_SAMPLER_DIM_MS &&
7605 instr->sampler_dim != GLSL_SAMPLER_DIM_SUBPASS_MS)
7606 arg = emit_wqm(ctx, arg, bld.tmp(arg.regClass()), true);
7607
7608 tex.reset(create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1));
7609 tex->operands[0] = Operand(resource);
7610 tex->operands[1] = Operand(sampler);
7611 tex->operands[2] = Operand(arg);
7612 tex->dim = dim;
7613 tex->dmask = dmask;
7614 tex->da = da;
7615 tex->definitions[0] = Definition(tmp_dst);
7616 tex->can_reorder = true;
7617 ctx->block->instructions.emplace_back(std::move(tex));
7618
7619 if (tg4_integer_cube_workaround) {
7620 assert(tmp_dst.id() != dst.id());
7621 assert(tmp_dst.size() == dst.size() && dst.size() == 4);
7622
7623 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
7624 Temp val[4];
7625 for (unsigned i = 0; i < dst.size(); i++) {
7626 val[i] = emit_extract_vector(ctx, tmp_dst, i, v1);
7627 Temp cvt_val;
7628 if (stype == GLSL_TYPE_UINT)
7629 cvt_val = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), val[i]);
7630 else
7631 cvt_val = bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), val[i]);
7632 val[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), val[i], cvt_val, tg4_compare_cube_wa64);
7633 }
7634 Temp tmp = dst.regClass() == v4 ? dst : bld.tmp(v4);
7635 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
7636 val[0], val[1], val[2], val[3]);
7637 }
7638 unsigned mask = instr->op == nir_texop_tg4 ? 0xF : dmask;
7639 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, mask);
7640
7641 }
7642
7643
7644 Operand get_phi_operand(isel_context *ctx, nir_ssa_def *ssa)
7645 {
7646 Temp tmp = get_ssa_temp(ctx, ssa);
7647 if (ssa->parent_instr->type == nir_instr_type_ssa_undef)
7648 return Operand(tmp.regClass());
7649 else
7650 return Operand(tmp);
7651 }
7652
7653 void visit_phi(isel_context *ctx, nir_phi_instr *instr)
7654 {
7655 aco_ptr<Pseudo_instruction> phi;
7656 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7657 assert(instr->dest.ssa.bit_size != 1 || dst.regClass() == ctx->program->lane_mask);
7658
7659 bool logical = !dst.is_linear() || ctx->divergent_vals[instr->dest.ssa.index];
7660 logical |= ctx->block->kind & block_kind_merge;
7661 aco_opcode opcode = logical ? aco_opcode::p_phi : aco_opcode::p_linear_phi;
7662
7663 /* we want a sorted list of sources, since the predecessor list is also sorted */
7664 std::map<unsigned, nir_ssa_def*> phi_src;
7665 nir_foreach_phi_src(src, instr)
7666 phi_src[src->pred->index] = src->src.ssa;
7667
7668 std::vector<unsigned>& preds = logical ? ctx->block->logical_preds : ctx->block->linear_preds;
7669 unsigned num_operands = 0;
7670 Operand operands[std::max(exec_list_length(&instr->srcs), (unsigned)preds.size())];
7671 unsigned num_defined = 0;
7672 unsigned cur_pred_idx = 0;
7673 for (std::pair<unsigned, nir_ssa_def *> src : phi_src) {
7674 if (cur_pred_idx < preds.size()) {
7675 /* handle missing preds (IF merges with discard/break) and extra preds (loop exit with discard) */
7676 unsigned block = ctx->cf_info.nir_to_aco[src.first];
7677 unsigned skipped = 0;
7678 while (cur_pred_idx + skipped < preds.size() && preds[cur_pred_idx + skipped] != block)
7679 skipped++;
7680 if (cur_pred_idx + skipped < preds.size()) {
7681 for (unsigned i = 0; i < skipped; i++)
7682 operands[num_operands++] = Operand(dst.regClass());
7683 cur_pred_idx += skipped;
7684 } else {
7685 continue;
7686 }
7687 }
7688 cur_pred_idx++;
7689 Operand op = get_phi_operand(ctx, src.second);
7690 operands[num_operands++] = op;
7691 num_defined += !op.isUndefined();
7692 }
7693 /* handle block_kind_continue_or_break at loop exit blocks */
7694 while (cur_pred_idx++ < preds.size())
7695 operands[num_operands++] = Operand(dst.regClass());
7696
7697 if (num_defined == 0) {
7698 Builder bld(ctx->program, ctx->block);
7699 if (dst.regClass() == s1) {
7700 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), Operand(0u));
7701 } else if (dst.regClass() == v1) {
7702 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), Operand(0u));
7703 } else {
7704 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
7705 for (unsigned i = 0; i < dst.size(); i++)
7706 vec->operands[i] = Operand(0u);
7707 vec->definitions[0] = Definition(dst);
7708 ctx->block->instructions.emplace_back(std::move(vec));
7709 }
7710 return;
7711 }
7712
7713 /* we can use a linear phi in some cases if one src is undef */
7714 if (dst.is_linear() && ctx->block->kind & block_kind_merge && num_defined == 1) {
7715 phi.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, num_operands, 1));
7716
7717 Block *linear_else = &ctx->program->blocks[ctx->block->linear_preds[1]];
7718 Block *invert = &ctx->program->blocks[linear_else->linear_preds[0]];
7719 assert(invert->kind & block_kind_invert);
7720
7721 unsigned then_block = invert->linear_preds[0];
7722
7723 Block* insert_block = NULL;
7724 for (unsigned i = 0; i < num_operands; i++) {
7725 Operand op = operands[i];
7726 if (op.isUndefined())
7727 continue;
7728 insert_block = ctx->block->logical_preds[i] == then_block ? invert : ctx->block;
7729 phi->operands[0] = op;
7730 break;
7731 }
7732 assert(insert_block); /* should be handled by the "num_defined == 0" case above */
7733 phi->operands[1] = Operand(dst.regClass());
7734 phi->definitions[0] = Definition(dst);
7735 insert_block->instructions.emplace(insert_block->instructions.begin(), std::move(phi));
7736 return;
7737 }
7738
7739 /* try to scalarize vector phis */
7740 if (instr->dest.ssa.bit_size != 1 && dst.size() > 1) {
7741 // TODO: scalarize linear phis on divergent ifs
7742 bool can_scalarize = (opcode == aco_opcode::p_phi || !(ctx->block->kind & block_kind_merge));
7743 std::array<Temp, NIR_MAX_VEC_COMPONENTS> new_vec;
7744 for (unsigned i = 0; can_scalarize && (i < num_operands); i++) {
7745 Operand src = operands[i];
7746 if (src.isTemp() && ctx->allocated_vec.find(src.tempId()) == ctx->allocated_vec.end())
7747 can_scalarize = false;
7748 }
7749 if (can_scalarize) {
7750 unsigned num_components = instr->dest.ssa.num_components;
7751 assert(dst.size() % num_components == 0);
7752 RegClass rc = RegClass(dst.type(), dst.size() / num_components);
7753
7754 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
7755 for (unsigned k = 0; k < num_components; k++) {
7756 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
7757 for (unsigned i = 0; i < num_operands; i++) {
7758 Operand src = operands[i];
7759 phi->operands[i] = src.isTemp() ? Operand(ctx->allocated_vec[src.tempId()][k]) : Operand(rc);
7760 }
7761 Temp phi_dst = {ctx->program->allocateId(), rc};
7762 phi->definitions[0] = Definition(phi_dst);
7763 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
7764 new_vec[k] = phi_dst;
7765 vec->operands[k] = Operand(phi_dst);
7766 }
7767 vec->definitions[0] = Definition(dst);
7768 ctx->block->instructions.emplace_back(std::move(vec));
7769 ctx->allocated_vec.emplace(dst.id(), new_vec);
7770 return;
7771 }
7772 }
7773
7774 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
7775 for (unsigned i = 0; i < num_operands; i++)
7776 phi->operands[i] = operands[i];
7777 phi->definitions[0] = Definition(dst);
7778 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
7779 }
7780
7781
7782 void visit_undef(isel_context *ctx, nir_ssa_undef_instr *instr)
7783 {
7784 Temp dst = get_ssa_temp(ctx, &instr->def);
7785
7786 assert(dst.type() == RegType::sgpr);
7787
7788 if (dst.size() == 1) {
7789 Builder(ctx->program, ctx->block).copy(Definition(dst), Operand(0u));
7790 } else {
7791 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
7792 for (unsigned i = 0; i < dst.size(); i++)
7793 vec->operands[i] = Operand(0u);
7794 vec->definitions[0] = Definition(dst);
7795 ctx->block->instructions.emplace_back(std::move(vec));
7796 }
7797 }
7798
7799 void visit_jump(isel_context *ctx, nir_jump_instr *instr)
7800 {
7801 Builder bld(ctx->program, ctx->block);
7802 Block *logical_target;
7803 append_logical_end(ctx->block);
7804 unsigned idx = ctx->block->index;
7805
7806 switch (instr->type) {
7807 case nir_jump_break:
7808 logical_target = ctx->cf_info.parent_loop.exit;
7809 add_logical_edge(idx, logical_target);
7810 ctx->block->kind |= block_kind_break;
7811
7812 if (!ctx->cf_info.parent_if.is_divergent &&
7813 !ctx->cf_info.parent_loop.has_divergent_continue) {
7814 /* uniform break - directly jump out of the loop */
7815 ctx->block->kind |= block_kind_uniform;
7816 ctx->cf_info.has_branch = true;
7817 bld.branch(aco_opcode::p_branch);
7818 add_linear_edge(idx, logical_target);
7819 return;
7820 }
7821 ctx->cf_info.parent_loop.has_divergent_branch = true;
7822 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
7823 break;
7824 case nir_jump_continue:
7825 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
7826 add_logical_edge(idx, logical_target);
7827 ctx->block->kind |= block_kind_continue;
7828
7829 if (ctx->cf_info.parent_if.is_divergent) {
7830 /* for potential uniform breaks after this continue,
7831 we must ensure that they are handled correctly */
7832 ctx->cf_info.parent_loop.has_divergent_continue = true;
7833 ctx->cf_info.parent_loop.has_divergent_branch = true;
7834 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
7835 } else {
7836 /* uniform continue - directly jump to the loop header */
7837 ctx->block->kind |= block_kind_uniform;
7838 ctx->cf_info.has_branch = true;
7839 bld.branch(aco_opcode::p_branch);
7840 add_linear_edge(idx, logical_target);
7841 return;
7842 }
7843 break;
7844 default:
7845 fprintf(stderr, "Unknown NIR jump instr: ");
7846 nir_print_instr(&instr->instr, stderr);
7847 fprintf(stderr, "\n");
7848 abort();
7849 }
7850
7851 if (ctx->cf_info.parent_if.is_divergent && !ctx->cf_info.exec_potentially_empty_break) {
7852 ctx->cf_info.exec_potentially_empty_break = true;
7853 ctx->cf_info.exec_potentially_empty_break_depth = ctx->cf_info.loop_nest_depth;
7854 }
7855
7856 /* remove critical edges from linear CFG */
7857 bld.branch(aco_opcode::p_branch);
7858 Block* break_block = ctx->program->create_and_insert_block();
7859 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
7860 break_block->kind |= block_kind_uniform;
7861 add_linear_edge(idx, break_block);
7862 /* the loop_header pointer might be invalidated by this point */
7863 if (instr->type == nir_jump_continue)
7864 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
7865 add_linear_edge(break_block->index, logical_target);
7866 bld.reset(break_block);
7867 bld.branch(aco_opcode::p_branch);
7868
7869 Block* continue_block = ctx->program->create_and_insert_block();
7870 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
7871 add_linear_edge(idx, continue_block);
7872 append_logical_start(continue_block);
7873 ctx->block = continue_block;
7874 return;
7875 }
7876
7877 void visit_block(isel_context *ctx, nir_block *block)
7878 {
7879 nir_foreach_instr(instr, block) {
7880 switch (instr->type) {
7881 case nir_instr_type_alu:
7882 visit_alu_instr(ctx, nir_instr_as_alu(instr));
7883 break;
7884 case nir_instr_type_load_const:
7885 visit_load_const(ctx, nir_instr_as_load_const(instr));
7886 break;
7887 case nir_instr_type_intrinsic:
7888 visit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
7889 break;
7890 case nir_instr_type_tex:
7891 visit_tex(ctx, nir_instr_as_tex(instr));
7892 break;
7893 case nir_instr_type_phi:
7894 visit_phi(ctx, nir_instr_as_phi(instr));
7895 break;
7896 case nir_instr_type_ssa_undef:
7897 visit_undef(ctx, nir_instr_as_ssa_undef(instr));
7898 break;
7899 case nir_instr_type_deref:
7900 break;
7901 case nir_instr_type_jump:
7902 visit_jump(ctx, nir_instr_as_jump(instr));
7903 break;
7904 default:
7905 fprintf(stderr, "Unknown NIR instr type: ");
7906 nir_print_instr(instr, stderr);
7907 fprintf(stderr, "\n");
7908 //abort();
7909 }
7910 }
7911
7912 if (!ctx->cf_info.parent_loop.has_divergent_branch)
7913 ctx->cf_info.nir_to_aco[block->index] = ctx->block->index;
7914 }
7915
7916
7917
7918 static void visit_loop(isel_context *ctx, nir_loop *loop)
7919 {
7920 //TODO: we might want to wrap the loop around a branch if exec_potentially_empty=true
7921 append_logical_end(ctx->block);
7922 ctx->block->kind |= block_kind_loop_preheader | block_kind_uniform;
7923 Builder bld(ctx->program, ctx->block);
7924 bld.branch(aco_opcode::p_branch);
7925 unsigned loop_preheader_idx = ctx->block->index;
7926
7927 Block loop_exit = Block();
7928 loop_exit.loop_nest_depth = ctx->cf_info.loop_nest_depth;
7929 loop_exit.kind |= (block_kind_loop_exit | (ctx->block->kind & block_kind_top_level));
7930
7931 Block* loop_header = ctx->program->create_and_insert_block();
7932 loop_header->loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
7933 loop_header->kind |= block_kind_loop_header;
7934 add_edge(loop_preheader_idx, loop_header);
7935 ctx->block = loop_header;
7936
7937 /* emit loop body */
7938 unsigned loop_header_idx = loop_header->index;
7939 loop_info_RAII loop_raii(ctx, loop_header_idx, &loop_exit);
7940 append_logical_start(ctx->block);
7941 visit_cf_list(ctx, &loop->body);
7942
7943 //TODO: what if a loop ends with a unconditional or uniformly branched continue and this branch is never taken?
7944 if (!ctx->cf_info.has_branch) {
7945 append_logical_end(ctx->block);
7946 if (ctx->cf_info.exec_potentially_empty_discard || ctx->cf_info.exec_potentially_empty_break) {
7947 /* Discards can result in code running with an empty exec mask.
7948 * This would result in divergent breaks not ever being taken. As a
7949 * workaround, break the loop when the loop mask is empty instead of
7950 * always continuing. */
7951 ctx->block->kind |= (block_kind_continue_or_break | block_kind_uniform);
7952 unsigned block_idx = ctx->block->index;
7953
7954 /* create helper blocks to avoid critical edges */
7955 Block *break_block = ctx->program->create_and_insert_block();
7956 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
7957 break_block->kind = block_kind_uniform;
7958 bld.reset(break_block);
7959 bld.branch(aco_opcode::p_branch);
7960 add_linear_edge(block_idx, break_block);
7961 add_linear_edge(break_block->index, &loop_exit);
7962
7963 Block *continue_block = ctx->program->create_and_insert_block();
7964 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
7965 continue_block->kind = block_kind_uniform;
7966 bld.reset(continue_block);
7967 bld.branch(aco_opcode::p_branch);
7968 add_linear_edge(block_idx, continue_block);
7969 add_linear_edge(continue_block->index, &ctx->program->blocks[loop_header_idx]);
7970
7971 if (!ctx->cf_info.parent_loop.has_divergent_branch)
7972 add_logical_edge(block_idx, &ctx->program->blocks[loop_header_idx]);
7973 ctx->block = &ctx->program->blocks[block_idx];
7974 } else {
7975 ctx->block->kind |= (block_kind_continue | block_kind_uniform);
7976 if (!ctx->cf_info.parent_loop.has_divergent_branch)
7977 add_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
7978 else
7979 add_linear_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
7980 }
7981
7982 bld.reset(ctx->block);
7983 bld.branch(aco_opcode::p_branch);
7984 }
7985
7986 /* fixup phis in loop header from unreachable blocks */
7987 if (ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch) {
7988 bool linear = ctx->cf_info.has_branch;
7989 bool logical = ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch;
7990 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
7991 if ((logical && instr->opcode == aco_opcode::p_phi) ||
7992 (linear && instr->opcode == aco_opcode::p_linear_phi)) {
7993 /* the last operand should be the one that needs to be removed */
7994 instr->operands.pop_back();
7995 } else if (!is_phi(instr)) {
7996 break;
7997 }
7998 }
7999 }
8000
8001 ctx->cf_info.has_branch = false;
8002
8003 // TODO: if the loop has not a single exit, we must add one °°
8004 /* emit loop successor block */
8005 ctx->block = ctx->program->insert_block(std::move(loop_exit));
8006 append_logical_start(ctx->block);
8007
8008 #if 0
8009 // TODO: check if it is beneficial to not branch on continues
8010 /* trim linear phis in loop header */
8011 for (auto&& instr : loop_entry->instructions) {
8012 if (instr->opcode == aco_opcode::p_linear_phi) {
8013 aco_ptr<Pseudo_instruction> new_phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, loop_entry->linear_predecessors.size(), 1)};
8014 new_phi->definitions[0] = instr->definitions[0];
8015 for (unsigned i = 0; i < new_phi->operands.size(); i++)
8016 new_phi->operands[i] = instr->operands[i];
8017 /* check that the remaining operands are all the same */
8018 for (unsigned i = new_phi->operands.size(); i < instr->operands.size(); i++)
8019 assert(instr->operands[i].tempId() == instr->operands.back().tempId());
8020 instr.swap(new_phi);
8021 } else if (instr->opcode == aco_opcode::p_phi) {
8022 continue;
8023 } else {
8024 break;
8025 }
8026 }
8027 #endif
8028 }
8029
8030 static void begin_divergent_if_then(isel_context *ctx, if_context *ic, Temp cond)
8031 {
8032 ic->cond = cond;
8033
8034 append_logical_end(ctx->block);
8035 ctx->block->kind |= block_kind_branch;
8036
8037 /* branch to linear then block */
8038 assert(cond.regClass() == ctx->program->lane_mask);
8039 aco_ptr<Pseudo_branch_instruction> branch;
8040 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
8041 branch->operands[0] = Operand(cond);
8042 ctx->block->instructions.push_back(std::move(branch));
8043
8044 ic->BB_if_idx = ctx->block->index;
8045 ic->BB_invert = Block();
8046 ic->BB_invert.loop_nest_depth = ctx->cf_info.loop_nest_depth;
8047 /* Invert blocks are intentionally not marked as top level because they
8048 * are not part of the logical cfg. */
8049 ic->BB_invert.kind |= block_kind_invert;
8050 ic->BB_endif = Block();
8051 ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
8052 ic->BB_endif.kind |= (block_kind_merge | (ctx->block->kind & block_kind_top_level));
8053
8054 ic->exec_potentially_empty_discard_old = ctx->cf_info.exec_potentially_empty_discard;
8055 ic->exec_potentially_empty_break_old = ctx->cf_info.exec_potentially_empty_break;
8056 ic->exec_potentially_empty_break_depth_old = ctx->cf_info.exec_potentially_empty_break_depth;
8057 ic->divergent_old = ctx->cf_info.parent_if.is_divergent;
8058 ctx->cf_info.parent_if.is_divergent = true;
8059
8060 /* divergent branches use cbranch_execz */
8061 ctx->cf_info.exec_potentially_empty_discard = false;
8062 ctx->cf_info.exec_potentially_empty_break = false;
8063 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
8064
8065 /** emit logical then block */
8066 Block* BB_then_logical = ctx->program->create_and_insert_block();
8067 BB_then_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8068 add_edge(ic->BB_if_idx, BB_then_logical);
8069 ctx->block = BB_then_logical;
8070 append_logical_start(BB_then_logical);
8071 }
8072
8073 static void begin_divergent_if_else(isel_context *ctx, if_context *ic)
8074 {
8075 Block *BB_then_logical = ctx->block;
8076 append_logical_end(BB_then_logical);
8077 /* branch from logical then block to invert block */
8078 aco_ptr<Pseudo_branch_instruction> branch;
8079 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8080 BB_then_logical->instructions.emplace_back(std::move(branch));
8081 add_linear_edge(BB_then_logical->index, &ic->BB_invert);
8082 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8083 add_logical_edge(BB_then_logical->index, &ic->BB_endif);
8084 BB_then_logical->kind |= block_kind_uniform;
8085 assert(!ctx->cf_info.has_branch);
8086 ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
8087 ctx->cf_info.parent_loop.has_divergent_branch = false;
8088
8089 /** emit linear then block */
8090 Block* BB_then_linear = ctx->program->create_and_insert_block();
8091 BB_then_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8092 BB_then_linear->kind |= block_kind_uniform;
8093 add_linear_edge(ic->BB_if_idx, BB_then_linear);
8094 /* branch from linear then block to invert block */
8095 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8096 BB_then_linear->instructions.emplace_back(std::move(branch));
8097 add_linear_edge(BB_then_linear->index, &ic->BB_invert);
8098
8099 /** emit invert merge block */
8100 ctx->block = ctx->program->insert_block(std::move(ic->BB_invert));
8101 ic->invert_idx = ctx->block->index;
8102
8103 /* branch to linear else block (skip else) */
8104 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_nz, Format::PSEUDO_BRANCH, 1, 0));
8105 branch->operands[0] = Operand(ic->cond);
8106 ctx->block->instructions.push_back(std::move(branch));
8107
8108 ic->exec_potentially_empty_discard_old |= ctx->cf_info.exec_potentially_empty_discard;
8109 ic->exec_potentially_empty_break_old |= ctx->cf_info.exec_potentially_empty_break;
8110 ic->exec_potentially_empty_break_depth_old =
8111 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
8112 /* divergent branches use cbranch_execz */
8113 ctx->cf_info.exec_potentially_empty_discard = false;
8114 ctx->cf_info.exec_potentially_empty_break = false;
8115 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
8116
8117 /** emit logical else block */
8118 Block* BB_else_logical = ctx->program->create_and_insert_block();
8119 BB_else_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8120 add_logical_edge(ic->BB_if_idx, BB_else_logical);
8121 add_linear_edge(ic->invert_idx, BB_else_logical);
8122 ctx->block = BB_else_logical;
8123 append_logical_start(BB_else_logical);
8124 }
8125
8126 static void end_divergent_if(isel_context *ctx, if_context *ic)
8127 {
8128 Block *BB_else_logical = ctx->block;
8129 append_logical_end(BB_else_logical);
8130
8131 /* branch from logical else block to endif block */
8132 aco_ptr<Pseudo_branch_instruction> branch;
8133 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8134 BB_else_logical->instructions.emplace_back(std::move(branch));
8135 add_linear_edge(BB_else_logical->index, &ic->BB_endif);
8136 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8137 add_logical_edge(BB_else_logical->index, &ic->BB_endif);
8138 BB_else_logical->kind |= block_kind_uniform;
8139
8140 assert(!ctx->cf_info.has_branch);
8141 ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
8142
8143
8144 /** emit linear else block */
8145 Block* BB_else_linear = ctx->program->create_and_insert_block();
8146 BB_else_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8147 BB_else_linear->kind |= block_kind_uniform;
8148 add_linear_edge(ic->invert_idx, BB_else_linear);
8149
8150 /* branch from linear else block to endif block */
8151 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8152 BB_else_linear->instructions.emplace_back(std::move(branch));
8153 add_linear_edge(BB_else_linear->index, &ic->BB_endif);
8154
8155
8156 /** emit endif merge block */
8157 ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
8158 append_logical_start(ctx->block);
8159
8160
8161 ctx->cf_info.parent_if.is_divergent = ic->divergent_old;
8162 ctx->cf_info.exec_potentially_empty_discard |= ic->exec_potentially_empty_discard_old;
8163 ctx->cf_info.exec_potentially_empty_break |= ic->exec_potentially_empty_break_old;
8164 ctx->cf_info.exec_potentially_empty_break_depth =
8165 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
8166 if (ctx->cf_info.loop_nest_depth == ctx->cf_info.exec_potentially_empty_break_depth &&
8167 !ctx->cf_info.parent_if.is_divergent) {
8168 ctx->cf_info.exec_potentially_empty_break = false;
8169 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
8170 }
8171 /* uniform control flow never has an empty exec-mask */
8172 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent) {
8173 ctx->cf_info.exec_potentially_empty_discard = false;
8174 ctx->cf_info.exec_potentially_empty_break = false;
8175 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
8176 }
8177 }
8178
8179 static void visit_if(isel_context *ctx, nir_if *if_stmt)
8180 {
8181 Temp cond = get_ssa_temp(ctx, if_stmt->condition.ssa);
8182 Builder bld(ctx->program, ctx->block);
8183 aco_ptr<Pseudo_branch_instruction> branch;
8184
8185 if (!ctx->divergent_vals[if_stmt->condition.ssa->index]) { /* uniform condition */
8186 /**
8187 * Uniform conditionals are represented in the following way*) :
8188 *
8189 * The linear and logical CFG:
8190 * BB_IF
8191 * / \
8192 * BB_THEN (logical) BB_ELSE (logical)
8193 * \ /
8194 * BB_ENDIF
8195 *
8196 * *) Exceptions may be due to break and continue statements within loops
8197 * If a break/continue happens within uniform control flow, it branches
8198 * to the loop exit/entry block. Otherwise, it branches to the next
8199 * merge block.
8200 **/
8201 append_logical_end(ctx->block);
8202 ctx->block->kind |= block_kind_uniform;
8203
8204 /* emit branch */
8205 assert(cond.regClass() == bld.lm);
8206 // TODO: in a post-RA optimizer, we could check if the condition is in VCC and omit this instruction
8207 cond = bool_to_scalar_condition(ctx, cond);
8208
8209 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
8210 branch->operands[0] = Operand(cond);
8211 branch->operands[0].setFixed(scc);
8212 ctx->block->instructions.emplace_back(std::move(branch));
8213
8214 unsigned BB_if_idx = ctx->block->index;
8215 Block BB_endif = Block();
8216 BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
8217 BB_endif.kind |= ctx->block->kind & block_kind_top_level;
8218
8219 /** emit then block */
8220 Block* BB_then = ctx->program->create_and_insert_block();
8221 BB_then->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8222 add_edge(BB_if_idx, BB_then);
8223 append_logical_start(BB_then);
8224 ctx->block = BB_then;
8225 visit_cf_list(ctx, &if_stmt->then_list);
8226 BB_then = ctx->block;
8227 bool then_branch = ctx->cf_info.has_branch;
8228 bool then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
8229
8230 if (!then_branch) {
8231 append_logical_end(BB_then);
8232 /* branch from then block to endif block */
8233 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8234 BB_then->instructions.emplace_back(std::move(branch));
8235 add_linear_edge(BB_then->index, &BB_endif);
8236 if (!then_branch_divergent)
8237 add_logical_edge(BB_then->index, &BB_endif);
8238 BB_then->kind |= block_kind_uniform;
8239 }
8240
8241 ctx->cf_info.has_branch = false;
8242 ctx->cf_info.parent_loop.has_divergent_branch = false;
8243
8244 /** emit else block */
8245 Block* BB_else = ctx->program->create_and_insert_block();
8246 BB_else->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8247 add_edge(BB_if_idx, BB_else);
8248 append_logical_start(BB_else);
8249 ctx->block = BB_else;
8250 visit_cf_list(ctx, &if_stmt->else_list);
8251 BB_else = ctx->block;
8252
8253 if (!ctx->cf_info.has_branch) {
8254 append_logical_end(BB_else);
8255 /* branch from then block to endif block */
8256 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8257 BB_else->instructions.emplace_back(std::move(branch));
8258 add_linear_edge(BB_else->index, &BB_endif);
8259 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8260 add_logical_edge(BB_else->index, &BB_endif);
8261 BB_else->kind |= block_kind_uniform;
8262 }
8263
8264 ctx->cf_info.has_branch &= then_branch;
8265 ctx->cf_info.parent_loop.has_divergent_branch &= then_branch_divergent;
8266
8267 /** emit endif merge block */
8268 if (!ctx->cf_info.has_branch) {
8269 ctx->block = ctx->program->insert_block(std::move(BB_endif));
8270 append_logical_start(ctx->block);
8271 }
8272 } else { /* non-uniform condition */
8273 /**
8274 * To maintain a logical and linear CFG without critical edges,
8275 * non-uniform conditionals are represented in the following way*) :
8276 *
8277 * The linear CFG:
8278 * BB_IF
8279 * / \
8280 * BB_THEN (logical) BB_THEN (linear)
8281 * \ /
8282 * BB_INVERT (linear)
8283 * / \
8284 * BB_ELSE (logical) BB_ELSE (linear)
8285 * \ /
8286 * BB_ENDIF
8287 *
8288 * The logical CFG:
8289 * BB_IF
8290 * / \
8291 * BB_THEN (logical) BB_ELSE (logical)
8292 * \ /
8293 * BB_ENDIF
8294 *
8295 * *) Exceptions may be due to break and continue statements within loops
8296 **/
8297
8298 if_context ic;
8299
8300 begin_divergent_if_then(ctx, &ic, cond);
8301 visit_cf_list(ctx, &if_stmt->then_list);
8302
8303 begin_divergent_if_else(ctx, &ic);
8304 visit_cf_list(ctx, &if_stmt->else_list);
8305
8306 end_divergent_if(ctx, &ic);
8307 }
8308 }
8309
8310 static void visit_cf_list(isel_context *ctx,
8311 struct exec_list *list)
8312 {
8313 foreach_list_typed(nir_cf_node, node, node, list) {
8314 switch (node->type) {
8315 case nir_cf_node_block:
8316 visit_block(ctx, nir_cf_node_as_block(node));
8317 break;
8318 case nir_cf_node_if:
8319 visit_if(ctx, nir_cf_node_as_if(node));
8320 break;
8321 case nir_cf_node_loop:
8322 visit_loop(ctx, nir_cf_node_as_loop(node));
8323 break;
8324 default:
8325 unreachable("unimplemented cf list type");
8326 }
8327 }
8328 }
8329
8330 static void export_vs_varying(isel_context *ctx, int slot, bool is_pos, int *next_pos)
8331 {
8332 int offset = ctx->program->info->vs.outinfo.vs_output_param_offset[slot];
8333 uint64_t mask = ctx->outputs.mask[slot];
8334 if (!is_pos && !mask)
8335 return;
8336 if (!is_pos && offset == AC_EXP_PARAM_UNDEFINED)
8337 return;
8338 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
8339 exp->enabled_mask = mask;
8340 for (unsigned i = 0; i < 4; ++i) {
8341 if (mask & (1 << i))
8342 exp->operands[i] = Operand(ctx->outputs.outputs[slot][i]);
8343 else
8344 exp->operands[i] = Operand(v1);
8345 }
8346 /* Navi10-14 skip POS0 exports if EXEC=0 and DONE=0, causing a hang.
8347 * Setting valid_mask=1 prevents it and has no other effect.
8348 */
8349 exp->valid_mask = ctx->options->chip_class >= GFX10 && is_pos && *next_pos == 0;
8350 exp->done = false;
8351 exp->compressed = false;
8352 if (is_pos)
8353 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
8354 else
8355 exp->dest = V_008DFC_SQ_EXP_PARAM + offset;
8356 ctx->block->instructions.emplace_back(std::move(exp));
8357 }
8358
8359 static void export_vs_psiz_layer_viewport(isel_context *ctx, int *next_pos)
8360 {
8361 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
8362 exp->enabled_mask = 0;
8363 for (unsigned i = 0; i < 4; ++i)
8364 exp->operands[i] = Operand(v1);
8365 if (ctx->outputs.mask[VARYING_SLOT_PSIZ]) {
8366 exp->operands[0] = Operand(ctx->outputs.outputs[VARYING_SLOT_PSIZ][0]);
8367 exp->enabled_mask |= 0x1;
8368 }
8369 if (ctx->outputs.mask[VARYING_SLOT_LAYER]) {
8370 exp->operands[2] = Operand(ctx->outputs.outputs[VARYING_SLOT_LAYER][0]);
8371 exp->enabled_mask |= 0x4;
8372 }
8373 if (ctx->outputs.mask[VARYING_SLOT_VIEWPORT]) {
8374 if (ctx->options->chip_class < GFX9) {
8375 exp->operands[3] = Operand(ctx->outputs.outputs[VARYING_SLOT_VIEWPORT][0]);
8376 exp->enabled_mask |= 0x8;
8377 } else {
8378 Builder bld(ctx->program, ctx->block);
8379
8380 Temp out = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u),
8381 Operand(ctx->outputs.outputs[VARYING_SLOT_VIEWPORT][0]));
8382 if (exp->operands[2].isTemp())
8383 out = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(out), exp->operands[2]);
8384
8385 exp->operands[2] = Operand(out);
8386 exp->enabled_mask |= 0x4;
8387 }
8388 }
8389 exp->valid_mask = ctx->options->chip_class >= GFX10 && *next_pos == 0;
8390 exp->done = false;
8391 exp->compressed = false;
8392 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
8393 ctx->block->instructions.emplace_back(std::move(exp));
8394 }
8395
8396 static void create_vs_exports(isel_context *ctx)
8397 {
8398 radv_vs_output_info *outinfo = &ctx->program->info->vs.outinfo;
8399
8400 if (outinfo->export_prim_id) {
8401 ctx->outputs.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
8402 ctx->outputs.outputs[VARYING_SLOT_PRIMITIVE_ID][0] = get_arg(ctx, ctx->args->vs_prim_id);
8403 }
8404
8405 if (ctx->options->key.has_multiview_view_index) {
8406 ctx->outputs.mask[VARYING_SLOT_LAYER] |= 0x1;
8407 ctx->outputs.outputs[VARYING_SLOT_LAYER][0] = as_vgpr(ctx, get_arg(ctx, ctx->args->ac.view_index));
8408 }
8409
8410 /* the order these position exports are created is important */
8411 int next_pos = 0;
8412 export_vs_varying(ctx, VARYING_SLOT_POS, true, &next_pos);
8413 if (outinfo->writes_pointsize || outinfo->writes_layer || outinfo->writes_viewport_index) {
8414 export_vs_psiz_layer_viewport(ctx, &next_pos);
8415 }
8416 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
8417 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, true, &next_pos);
8418 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
8419 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, true, &next_pos);
8420
8421 if (ctx->export_clip_dists) {
8422 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
8423 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, false, &next_pos);
8424 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
8425 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, false, &next_pos);
8426 }
8427
8428 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
8429 if (i < VARYING_SLOT_VAR0 && i != VARYING_SLOT_LAYER &&
8430 i != VARYING_SLOT_PRIMITIVE_ID)
8431 continue;
8432
8433 export_vs_varying(ctx, i, false, NULL);
8434 }
8435 }
8436
8437 static void export_fs_mrt_z(isel_context *ctx)
8438 {
8439 Builder bld(ctx->program, ctx->block);
8440 unsigned enabled_channels = 0;
8441 bool compr = false;
8442 Operand values[4];
8443
8444 for (unsigned i = 0; i < 4; ++i) {
8445 values[i] = Operand(v1);
8446 }
8447
8448 /* Both stencil and sample mask only need 16-bits. */
8449 if (!ctx->program->info->ps.writes_z &&
8450 (ctx->program->info->ps.writes_stencil ||
8451 ctx->program->info->ps.writes_sample_mask)) {
8452 compr = true; /* COMPR flag */
8453
8454 if (ctx->program->info->ps.writes_stencil) {
8455 /* Stencil should be in X[23:16]. */
8456 values[0] = Operand(ctx->outputs.outputs[FRAG_RESULT_STENCIL][0]);
8457 values[0] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u), values[0]);
8458 enabled_channels |= 0x3;
8459 }
8460
8461 if (ctx->program->info->ps.writes_sample_mask) {
8462 /* SampleMask should be in Y[15:0]. */
8463 values[1] = Operand(ctx->outputs.outputs[FRAG_RESULT_SAMPLE_MASK][0]);
8464 enabled_channels |= 0xc;
8465 }
8466 } else {
8467 if (ctx->program->info->ps.writes_z) {
8468 values[0] = Operand(ctx->outputs.outputs[FRAG_RESULT_DEPTH][0]);
8469 enabled_channels |= 0x1;
8470 }
8471
8472 if (ctx->program->info->ps.writes_stencil) {
8473 values[1] = Operand(ctx->outputs.outputs[FRAG_RESULT_STENCIL][0]);
8474 enabled_channels |= 0x2;
8475 }
8476
8477 if (ctx->program->info->ps.writes_sample_mask) {
8478 values[2] = Operand(ctx->outputs.outputs[FRAG_RESULT_SAMPLE_MASK][0]);
8479 enabled_channels |= 0x4;
8480 }
8481 }
8482
8483 /* GFX6 (except OLAND and HAINAN) has a bug that it only looks at the X
8484 * writemask component.
8485 */
8486 if (ctx->options->chip_class == GFX6 &&
8487 ctx->options->family != CHIP_OLAND &&
8488 ctx->options->family != CHIP_HAINAN) {
8489 enabled_channels |= 0x1;
8490 }
8491
8492 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
8493 enabled_channels, V_008DFC_SQ_EXP_MRTZ, compr);
8494 }
8495
8496 static void export_fs_mrt_color(isel_context *ctx, int slot)
8497 {
8498 Builder bld(ctx->program, ctx->block);
8499 unsigned write_mask = ctx->outputs.mask[slot];
8500 Operand values[4];
8501
8502 for (unsigned i = 0; i < 4; ++i) {
8503 if (write_mask & (1 << i)) {
8504 values[i] = Operand(ctx->outputs.outputs[slot][i]);
8505 } else {
8506 values[i] = Operand(v1);
8507 }
8508 }
8509
8510 unsigned target, col_format;
8511 unsigned enabled_channels = 0;
8512 aco_opcode compr_op = (aco_opcode)0;
8513
8514 slot -= FRAG_RESULT_DATA0;
8515 target = V_008DFC_SQ_EXP_MRT + slot;
8516 col_format = (ctx->options->key.fs.col_format >> (4 * slot)) & 0xf;
8517
8518 bool is_int8 = (ctx->options->key.fs.is_int8 >> slot) & 1;
8519 bool is_int10 = (ctx->options->key.fs.is_int10 >> slot) & 1;
8520
8521 switch (col_format)
8522 {
8523 case V_028714_SPI_SHADER_ZERO:
8524 enabled_channels = 0; /* writemask */
8525 target = V_008DFC_SQ_EXP_NULL;
8526 break;
8527
8528 case V_028714_SPI_SHADER_32_R:
8529 enabled_channels = 1;
8530 break;
8531
8532 case V_028714_SPI_SHADER_32_GR:
8533 enabled_channels = 0x3;
8534 break;
8535
8536 case V_028714_SPI_SHADER_32_AR:
8537 if (ctx->options->chip_class >= GFX10) {
8538 /* Special case: on GFX10, the outputs are different for 32_AR */
8539 enabled_channels = 0x3;
8540 values[1] = values[3];
8541 values[3] = Operand(v1);
8542 } else {
8543 enabled_channels = 0x9;
8544 }
8545 break;
8546
8547 case V_028714_SPI_SHADER_FP16_ABGR:
8548 enabled_channels = 0x5;
8549 compr_op = aco_opcode::v_cvt_pkrtz_f16_f32;
8550 break;
8551
8552 case V_028714_SPI_SHADER_UNORM16_ABGR:
8553 enabled_channels = 0x5;
8554 compr_op = aco_opcode::v_cvt_pknorm_u16_f32;
8555 break;
8556
8557 case V_028714_SPI_SHADER_SNORM16_ABGR:
8558 enabled_channels = 0x5;
8559 compr_op = aco_opcode::v_cvt_pknorm_i16_f32;
8560 break;
8561
8562 case V_028714_SPI_SHADER_UINT16_ABGR: {
8563 enabled_channels = 0x5;
8564 compr_op = aco_opcode::v_cvt_pk_u16_u32;
8565 if (is_int8 || is_int10) {
8566 /* clamp */
8567 uint32_t max_rgb = is_int8 ? 255 : is_int10 ? 1023 : 0;
8568 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
8569
8570 for (unsigned i = 0; i < 4; i++) {
8571 if ((write_mask >> i) & 1) {
8572 values[i] = bld.vop2(aco_opcode::v_min_u32, bld.def(v1),
8573 i == 3 && is_int10 ? Operand(3u) : Operand(max_rgb_val),
8574 values[i]);
8575 }
8576 }
8577 }
8578 break;
8579 }
8580
8581 case V_028714_SPI_SHADER_SINT16_ABGR:
8582 enabled_channels = 0x5;
8583 compr_op = aco_opcode::v_cvt_pk_i16_i32;
8584 if (is_int8 || is_int10) {
8585 /* clamp */
8586 uint32_t max_rgb = is_int8 ? 127 : is_int10 ? 511 : 0;
8587 uint32_t min_rgb = is_int8 ? -128 :is_int10 ? -512 : 0;
8588 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
8589 Temp min_rgb_val = bld.copy(bld.def(s1), Operand(min_rgb));
8590
8591 for (unsigned i = 0; i < 4; i++) {
8592 if ((write_mask >> i) & 1) {
8593 values[i] = bld.vop2(aco_opcode::v_min_i32, bld.def(v1),
8594 i == 3 && is_int10 ? Operand(1u) : Operand(max_rgb_val),
8595 values[i]);
8596 values[i] = bld.vop2(aco_opcode::v_max_i32, bld.def(v1),
8597 i == 3 && is_int10 ? Operand(-2u) : Operand(min_rgb_val),
8598 values[i]);
8599 }
8600 }
8601 }
8602 break;
8603
8604 case V_028714_SPI_SHADER_32_ABGR:
8605 enabled_channels = 0xF;
8606 break;
8607
8608 default:
8609 break;
8610 }
8611
8612 if (target == V_008DFC_SQ_EXP_NULL)
8613 return;
8614
8615 if ((bool) compr_op) {
8616 for (int i = 0; i < 2; i++) {
8617 /* check if at least one of the values to be compressed is enabled */
8618 unsigned enabled = (write_mask >> (i*2) | write_mask >> (i*2+1)) & 0x1;
8619 if (enabled) {
8620 enabled_channels |= enabled << (i*2);
8621 values[i] = bld.vop3(compr_op, bld.def(v1),
8622 values[i*2].isUndefined() ? Operand(0u) : values[i*2],
8623 values[i*2+1].isUndefined() ? Operand(0u): values[i*2+1]);
8624 } else {
8625 values[i] = Operand(v1);
8626 }
8627 }
8628 values[2] = Operand(v1);
8629 values[3] = Operand(v1);
8630 } else {
8631 for (int i = 0; i < 4; i++)
8632 values[i] = enabled_channels & (1 << i) ? values[i] : Operand(v1);
8633 }
8634
8635 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
8636 enabled_channels, target, (bool) compr_op);
8637 }
8638
8639 static void create_fs_exports(isel_context *ctx)
8640 {
8641 /* Export depth, stencil and sample mask. */
8642 if (ctx->outputs.mask[FRAG_RESULT_DEPTH] ||
8643 ctx->outputs.mask[FRAG_RESULT_STENCIL] ||
8644 ctx->outputs.mask[FRAG_RESULT_SAMPLE_MASK]) {
8645 export_fs_mrt_z(ctx);
8646 }
8647
8648 /* Export all color render targets. */
8649 for (unsigned i = FRAG_RESULT_DATA0; i < FRAG_RESULT_DATA7 + 1; ++i) {
8650 if (ctx->outputs.mask[i])
8651 export_fs_mrt_color(ctx, i);
8652 }
8653 }
8654
8655 static void emit_stream_output(isel_context *ctx,
8656 Temp const *so_buffers,
8657 Temp const *so_write_offset,
8658 const struct radv_stream_output *output)
8659 {
8660 unsigned num_comps = util_bitcount(output->component_mask);
8661 unsigned writemask = (1 << num_comps) - 1;
8662 unsigned loc = output->location;
8663 unsigned buf = output->buffer;
8664
8665 assert(num_comps && num_comps <= 4);
8666 if (!num_comps || num_comps > 4)
8667 return;
8668
8669 unsigned start = ffs(output->component_mask) - 1;
8670
8671 Temp out[4];
8672 bool all_undef = true;
8673 assert(ctx->stage == vertex_vs || ctx->stage == gs_copy_vs);
8674 for (unsigned i = 0; i < num_comps; i++) {
8675 out[i] = ctx->outputs.outputs[loc][start + i];
8676 all_undef = all_undef && !out[i].id();
8677 }
8678 if (all_undef)
8679 return;
8680
8681 while (writemask) {
8682 int start, count;
8683 u_bit_scan_consecutive_range(&writemask, &start, &count);
8684 if (count == 3 && ctx->options->chip_class == GFX6) {
8685 /* GFX6 doesn't support storing vec3, split it. */
8686 writemask |= 1u << (start + 2);
8687 count = 2;
8688 }
8689
8690 unsigned offset = output->offset + start * 4;
8691
8692 Temp write_data = {ctx->program->allocateId(), RegClass(RegType::vgpr, count)};
8693 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
8694 for (int i = 0; i < count; ++i)
8695 vec->operands[i] = (ctx->outputs.mask[loc] & 1 << (start + i)) ? Operand(out[start + i]) : Operand(0u);
8696 vec->definitions[0] = Definition(write_data);
8697 ctx->block->instructions.emplace_back(std::move(vec));
8698
8699 aco_opcode opcode;
8700 switch (count) {
8701 case 1:
8702 opcode = aco_opcode::buffer_store_dword;
8703 break;
8704 case 2:
8705 opcode = aco_opcode::buffer_store_dwordx2;
8706 break;
8707 case 3:
8708 opcode = aco_opcode::buffer_store_dwordx3;
8709 break;
8710 case 4:
8711 opcode = aco_opcode::buffer_store_dwordx4;
8712 break;
8713 default:
8714 unreachable("Unsupported dword count.");
8715 }
8716
8717 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
8718 store->operands[0] = Operand(so_buffers[buf]);
8719 store->operands[1] = Operand(so_write_offset[buf]);
8720 store->operands[2] = Operand((uint32_t) 0);
8721 store->operands[3] = Operand(write_data);
8722 if (offset > 4095) {
8723 /* Don't think this can happen in RADV, but maybe GL? It's easy to do this anyway. */
8724 Builder bld(ctx->program, ctx->block);
8725 store->operands[0] = bld.vadd32(bld.def(v1), Operand(offset), Operand(so_write_offset[buf]));
8726 } else {
8727 store->offset = offset;
8728 }
8729 store->offen = true;
8730 store->glc = true;
8731 store->dlc = false;
8732 store->slc = true;
8733 store->can_reorder = true;
8734 ctx->block->instructions.emplace_back(std::move(store));
8735 }
8736 }
8737
8738 static void emit_streamout(isel_context *ctx, unsigned stream)
8739 {
8740 Builder bld(ctx->program, ctx->block);
8741
8742 Temp so_buffers[4];
8743 Temp buf_ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->streamout_buffers));
8744 for (unsigned i = 0; i < 4; i++) {
8745 unsigned stride = ctx->program->info->so.strides[i];
8746 if (!stride)
8747 continue;
8748
8749 Operand off = bld.copy(bld.def(s1), Operand(i * 16u));
8750 so_buffers[i] = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), buf_ptr, off);
8751 }
8752
8753 Temp so_vtx_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
8754 get_arg(ctx, ctx->args->streamout_config), Operand(0x70010u));
8755
8756 Temp tid = emit_mbcnt(ctx, bld.def(v1));
8757
8758 Temp can_emit = bld.vopc(aco_opcode::v_cmp_gt_i32, bld.def(bld.lm), so_vtx_count, tid);
8759
8760 if_context ic;
8761 begin_divergent_if_then(ctx, &ic, can_emit);
8762
8763 bld.reset(ctx->block);
8764
8765 Temp so_write_index = bld.vadd32(bld.def(v1), get_arg(ctx, ctx->args->streamout_write_idx), tid);
8766
8767 Temp so_write_offset[4];
8768
8769 for (unsigned i = 0; i < 4; i++) {
8770 unsigned stride = ctx->program->info->so.strides[i];
8771 if (!stride)
8772 continue;
8773
8774 if (stride == 1) {
8775 Temp offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
8776 get_arg(ctx, ctx->args->streamout_write_idx),
8777 get_arg(ctx, ctx->args->streamout_offset[i]));
8778 Temp new_offset = bld.vadd32(bld.def(v1), offset, tid);
8779
8780 so_write_offset[i] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), new_offset);
8781 } else {
8782 Temp offset = bld.v_mul_imm(bld.def(v1), so_write_index, stride * 4u);
8783 Temp offset2 = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(4u),
8784 get_arg(ctx, ctx->args->streamout_offset[i]));
8785 so_write_offset[i] = bld.vadd32(bld.def(v1), offset, offset2);
8786 }
8787 }
8788
8789 for (unsigned i = 0; i < ctx->program->info->so.num_outputs; i++) {
8790 struct radv_stream_output *output =
8791 &ctx->program->info->so.outputs[i];
8792 if (stream != output->stream)
8793 continue;
8794
8795 emit_stream_output(ctx, so_buffers, so_write_offset, output);
8796 }
8797
8798 begin_divergent_if_else(ctx, &ic);
8799 end_divergent_if(ctx, &ic);
8800 }
8801
8802 } /* end namespace */
8803
8804 void split_arguments(isel_context *ctx, Pseudo_instruction *startpgm)
8805 {
8806 /* Split all arguments except for the first (ring_offsets) and the last
8807 * (exec) so that the dead channels don't stay live throughout the program.
8808 */
8809 for (int i = 1; i < startpgm->definitions.size() - 1; i++) {
8810 if (startpgm->definitions[i].regClass().size() > 1) {
8811 emit_split_vector(ctx, startpgm->definitions[i].getTemp(),
8812 startpgm->definitions[i].regClass().size());
8813 }
8814 }
8815 }
8816
8817 void handle_bc_optimize(isel_context *ctx)
8818 {
8819 /* needed when SPI_PS_IN_CONTROL.BC_OPTIMIZE_DISABLE is set to 0 */
8820 Builder bld(ctx->program, ctx->block);
8821 uint32_t spi_ps_input_ena = ctx->program->config->spi_ps_input_ena;
8822 bool uses_center = G_0286CC_PERSP_CENTER_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTER_ENA(spi_ps_input_ena);
8823 bool uses_centroid = G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena);
8824 ctx->persp_centroid = get_arg(ctx, ctx->args->ac.persp_centroid);
8825 ctx->linear_centroid = get_arg(ctx, ctx->args->ac.linear_centroid);
8826 if (uses_center && uses_centroid) {
8827 Temp sel = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)),
8828 get_arg(ctx, ctx->args->ac.prim_mask), Operand(0u));
8829
8830 if (G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena)) {
8831 Temp new_coord[2];
8832 for (unsigned i = 0; i < 2; i++) {
8833 Temp persp_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_centroid), i, v1);
8834 Temp persp_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_center), i, v1);
8835 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8836 persp_centroid, persp_center, sel);
8837 }
8838 ctx->persp_centroid = bld.tmp(v2);
8839 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->persp_centroid),
8840 Operand(new_coord[0]), Operand(new_coord[1]));
8841 emit_split_vector(ctx, ctx->persp_centroid, 2);
8842 }
8843
8844 if (G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena)) {
8845 Temp new_coord[2];
8846 for (unsigned i = 0; i < 2; i++) {
8847 Temp linear_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_centroid), i, v1);
8848 Temp linear_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_center), i, v1);
8849 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8850 linear_centroid, linear_center, sel);
8851 }
8852 ctx->linear_centroid = bld.tmp(v2);
8853 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->linear_centroid),
8854 Operand(new_coord[0]), Operand(new_coord[1]));
8855 emit_split_vector(ctx, ctx->linear_centroid, 2);
8856 }
8857 }
8858 }
8859
8860 void setup_fp_mode(isel_context *ctx, nir_shader *shader)
8861 {
8862 Program *program = ctx->program;
8863
8864 unsigned float_controls = shader->info.float_controls_execution_mode;
8865
8866 program->next_fp_mode.preserve_signed_zero_inf_nan32 =
8867 float_controls & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32;
8868 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 =
8869 float_controls & (FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16 |
8870 FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64);
8871
8872 program->next_fp_mode.must_flush_denorms32 =
8873 float_controls & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32;
8874 program->next_fp_mode.must_flush_denorms16_64 =
8875 float_controls & (FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 |
8876 FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64);
8877
8878 program->next_fp_mode.care_about_round32 =
8879 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32);
8880
8881 program->next_fp_mode.care_about_round16_64 =
8882 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64 |
8883 FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
8884
8885 /* default to preserving fp16 and fp64 denorms, since it's free */
8886 if (program->next_fp_mode.must_flush_denorms16_64)
8887 program->next_fp_mode.denorm16_64 = 0;
8888 else
8889 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
8890
8891 /* preserving fp32 denorms is expensive, so only do it if asked */
8892 if (float_controls & FLOAT_CONTROLS_DENORM_PRESERVE_FP32)
8893 program->next_fp_mode.denorm32 = fp_denorm_keep;
8894 else
8895 program->next_fp_mode.denorm32 = 0;
8896
8897 if (float_controls & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32)
8898 program->next_fp_mode.round32 = fp_round_tz;
8899 else
8900 program->next_fp_mode.round32 = fp_round_ne;
8901
8902 if (float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64))
8903 program->next_fp_mode.round16_64 = fp_round_tz;
8904 else
8905 program->next_fp_mode.round16_64 = fp_round_ne;
8906
8907 ctx->block->fp_mode = program->next_fp_mode;
8908 }
8909
8910 void cleanup_cfg(Program *program)
8911 {
8912 /* create linear_succs/logical_succs */
8913 for (Block& BB : program->blocks) {
8914 for (unsigned idx : BB.linear_preds)
8915 program->blocks[idx].linear_succs.emplace_back(BB.index);
8916 for (unsigned idx : BB.logical_preds)
8917 program->blocks[idx].logical_succs.emplace_back(BB.index);
8918 }
8919 }
8920
8921 void select_program(Program *program,
8922 unsigned shader_count,
8923 struct nir_shader *const *shaders,
8924 ac_shader_config* config,
8925 struct radv_shader_args *args)
8926 {
8927 isel_context ctx = setup_isel_context(program, shader_count, shaders, config, args, false);
8928
8929 for (unsigned i = 0; i < shader_count; i++) {
8930 nir_shader *nir = shaders[i];
8931 init_context(&ctx, nir);
8932
8933 setup_fp_mode(&ctx, nir);
8934
8935 if (!i) {
8936 /* needs to be after init_context() for FS */
8937 Pseudo_instruction *startpgm = add_startpgm(&ctx);
8938 append_logical_start(ctx.block);
8939 split_arguments(&ctx, startpgm);
8940 }
8941
8942 if_context ic;
8943 if (shader_count >= 2) {
8944 Builder bld(ctx.program, ctx.block);
8945 Temp count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(&ctx, args->merged_wave_info), Operand((8u << 16) | (i * 8u)));
8946 Temp thread_id = emit_mbcnt(&ctx, bld.def(v1));
8947 Temp cond = bld.vopc(aco_opcode::v_cmp_gt_u32, bld.hint_vcc(bld.def(bld.lm)), count, thread_id);
8948
8949 begin_divergent_if_then(&ctx, &ic, cond);
8950 }
8951
8952 if (i) {
8953 Builder bld(ctx.program, ctx.block);
8954 assert(ctx.stage == vertex_geometry_gs);
8955 bld.barrier(aco_opcode::p_memory_barrier_shared);
8956 bld.sopp(aco_opcode::s_barrier);
8957
8958 ctx.gs_wave_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1, m0), bld.def(s1, scc), get_arg(&ctx, args->merged_wave_info), Operand((8u << 16) | 16u));
8959 } else if (ctx.stage == geometry_gs)
8960 ctx.gs_wave_id = get_arg(&ctx, args->gs_wave_id);
8961
8962 if (ctx.stage == fragment_fs)
8963 handle_bc_optimize(&ctx);
8964
8965 nir_function_impl *func = nir_shader_get_entrypoint(nir);
8966 visit_cf_list(&ctx, &func->body);
8967
8968 if (ctx.program->info->so.num_outputs && ctx.stage == vertex_vs)
8969 emit_streamout(&ctx, 0);
8970
8971 if (ctx.stage == vertex_vs) {
8972 create_vs_exports(&ctx);
8973 } else if (nir->info.stage == MESA_SHADER_GEOMETRY) {
8974 Builder bld(ctx.program, ctx.block);
8975 bld.barrier(aco_opcode::p_memory_barrier_gs_data);
8976 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx.gs_wave_id), -1, sendmsg_gs_done(false, false, 0));
8977 }
8978
8979 if (ctx.stage == fragment_fs)
8980 create_fs_exports(&ctx);
8981
8982 if (shader_count >= 2) {
8983 begin_divergent_if_else(&ctx, &ic);
8984 end_divergent_if(&ctx, &ic);
8985 }
8986
8987 ralloc_free(ctx.divergent_vals);
8988 }
8989
8990 program->config->float_mode = program->blocks[0].fp_mode.val;
8991
8992 append_logical_end(ctx.block);
8993 ctx.block->kind |= block_kind_uniform | block_kind_export_end;
8994 Builder bld(ctx.program, ctx.block);
8995 if (ctx.program->wb_smem_l1_on_end)
8996 bld.smem(aco_opcode::s_dcache_wb, false);
8997 bld.sopp(aco_opcode::s_endpgm);
8998
8999 cleanup_cfg(program);
9000 }
9001
9002 void select_gs_copy_shader(Program *program, struct nir_shader *gs_shader,
9003 ac_shader_config* config,
9004 struct radv_shader_args *args)
9005 {
9006 isel_context ctx = setup_isel_context(program, 1, &gs_shader, config, args, true);
9007
9008 program->next_fp_mode.preserve_signed_zero_inf_nan32 = false;
9009 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 = false;
9010 program->next_fp_mode.must_flush_denorms32 = false;
9011 program->next_fp_mode.must_flush_denorms16_64 = false;
9012 program->next_fp_mode.care_about_round32 = false;
9013 program->next_fp_mode.care_about_round16_64 = false;
9014 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
9015 program->next_fp_mode.denorm32 = 0;
9016 program->next_fp_mode.round32 = fp_round_ne;
9017 program->next_fp_mode.round16_64 = fp_round_ne;
9018 ctx.block->fp_mode = program->next_fp_mode;
9019
9020 add_startpgm(&ctx);
9021 append_logical_start(ctx.block);
9022
9023 Builder bld(ctx.program, ctx.block);
9024
9025 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), program->private_segment_buffer, Operand(RING_GSVS_VS * 16u));
9026
9027 Operand stream_id(0u);
9028 if (args->shader_info->so.num_outputs)
9029 stream_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
9030 get_arg(&ctx, ctx.args->streamout_config), Operand(0x20018u));
9031
9032 Temp vtx_offset = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), get_arg(&ctx, ctx.args->ac.vertex_id));
9033
9034 std::stack<Block> endif_blocks;
9035
9036 for (unsigned stream = 0; stream < 4; stream++) {
9037 if (stream_id.isConstant() && stream != stream_id.constantValue())
9038 continue;
9039
9040 unsigned num_components = args->shader_info->gs.num_stream_output_components[stream];
9041 if (stream > 0 && (!num_components || !args->shader_info->so.num_outputs))
9042 continue;
9043
9044 memset(ctx.outputs.mask, 0, sizeof(ctx.outputs.mask));
9045
9046 unsigned BB_if_idx = ctx.block->index;
9047 Block BB_endif = Block();
9048 if (!stream_id.isConstant()) {
9049 /* begin IF */
9050 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), stream_id, Operand(stream));
9051 append_logical_end(ctx.block);
9052 ctx.block->kind |= block_kind_uniform;
9053 bld.branch(aco_opcode::p_cbranch_z, cond);
9054
9055 BB_endif.kind |= ctx.block->kind & block_kind_top_level;
9056
9057 ctx.block = ctx.program->create_and_insert_block();
9058 add_edge(BB_if_idx, ctx.block);
9059 bld.reset(ctx.block);
9060 append_logical_start(ctx.block);
9061 }
9062
9063 unsigned offset = 0;
9064 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
9065 if (args->shader_info->gs.output_streams[i] != stream)
9066 continue;
9067
9068 unsigned output_usage_mask = args->shader_info->gs.output_usage_mask[i];
9069 unsigned length = util_last_bit(output_usage_mask);
9070 for (unsigned j = 0; j < length; ++j) {
9071 if (!(output_usage_mask & (1 << j)))
9072 continue;
9073
9074 unsigned const_offset = offset * args->shader_info->gs.vertices_out * 16 * 4;
9075 Temp voffset = vtx_offset;
9076 if (const_offset >= 4096u) {
9077 voffset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), voffset);
9078 const_offset %= 4096u;
9079 }
9080
9081 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dword, Format::MUBUF, 3, 1)};
9082 mubuf->definitions[0] = bld.def(v1);
9083 mubuf->operands[0] = Operand(gsvs_ring);
9084 mubuf->operands[1] = Operand(voffset);
9085 mubuf->operands[2] = Operand(0u);
9086 mubuf->offen = true;
9087 mubuf->offset = const_offset;
9088 mubuf->glc = true;
9089 mubuf->slc = true;
9090 mubuf->dlc = args->options->chip_class >= GFX10;
9091 mubuf->barrier = barrier_none;
9092 mubuf->can_reorder = true;
9093
9094 ctx.outputs.mask[i] |= 1 << j;
9095 ctx.outputs.outputs[i][j] = mubuf->definitions[0].getTemp();
9096
9097 bld.insert(std::move(mubuf));
9098
9099 offset++;
9100 }
9101 }
9102
9103 if (args->shader_info->so.num_outputs) {
9104 emit_streamout(&ctx, stream);
9105 bld.reset(ctx.block);
9106 }
9107
9108 if (stream == 0) {
9109 create_vs_exports(&ctx);
9110 ctx.block->kind |= block_kind_export_end;
9111 }
9112
9113 if (!stream_id.isConstant()) {
9114 append_logical_end(ctx.block);
9115
9116 /* branch from then block to endif block */
9117 bld.branch(aco_opcode::p_branch);
9118 add_edge(ctx.block->index, &BB_endif);
9119 ctx.block->kind |= block_kind_uniform;
9120
9121 /* emit else block */
9122 ctx.block = ctx.program->create_and_insert_block();
9123 add_edge(BB_if_idx, ctx.block);
9124 bld.reset(ctx.block);
9125 append_logical_start(ctx.block);
9126
9127 endif_blocks.push(std::move(BB_endif));
9128 }
9129 }
9130
9131 while (!endif_blocks.empty()) {
9132 Block BB_endif = std::move(endif_blocks.top());
9133 endif_blocks.pop();
9134
9135 Block *BB_else = ctx.block;
9136
9137 append_logical_end(BB_else);
9138 /* branch from else block to endif block */
9139 bld.branch(aco_opcode::p_branch);
9140 add_edge(BB_else->index, &BB_endif);
9141 BB_else->kind |= block_kind_uniform;
9142
9143 /** emit endif merge block */
9144 ctx.block = program->insert_block(std::move(BB_endif));
9145 bld.reset(ctx.block);
9146 append_logical_start(ctx.block);
9147 }
9148
9149 program->config->float_mode = program->blocks[0].fp_mode.val;
9150
9151 append_logical_end(ctx.block);
9152 ctx.block->kind |= block_kind_uniform;
9153 bld.sopp(aco_opcode::s_endpgm);
9154
9155 cleanup_cfg(program);
9156 }
9157 }