aco: implement 16-bit nir_op_fabs/nir_op_fneg
[mesa.git] / src / amd / compiler / aco_instruction_selection.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 * Copyright © 2018 Google
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <algorithm>
27 #include <array>
28 #include <stack>
29 #include <map>
30
31 #include "ac_shader_util.h"
32 #include "aco_ir.h"
33 #include "aco_builder.h"
34 #include "aco_interface.h"
35 #include "aco_instruction_selection_setup.cpp"
36 #include "util/fast_idiv_by_const.h"
37
38 namespace aco {
39 namespace {
40
41 class loop_info_RAII {
42 isel_context* ctx;
43 unsigned header_idx_old;
44 Block* exit_old;
45 bool divergent_cont_old;
46 bool divergent_branch_old;
47 bool divergent_if_old;
48
49 public:
50 loop_info_RAII(isel_context* ctx, unsigned loop_header_idx, Block* loop_exit)
51 : ctx(ctx),
52 header_idx_old(ctx->cf_info.parent_loop.header_idx), exit_old(ctx->cf_info.parent_loop.exit),
53 divergent_cont_old(ctx->cf_info.parent_loop.has_divergent_continue),
54 divergent_branch_old(ctx->cf_info.parent_loop.has_divergent_branch),
55 divergent_if_old(ctx->cf_info.parent_if.is_divergent)
56 {
57 ctx->cf_info.parent_loop.header_idx = loop_header_idx;
58 ctx->cf_info.parent_loop.exit = loop_exit;
59 ctx->cf_info.parent_loop.has_divergent_continue = false;
60 ctx->cf_info.parent_loop.has_divergent_branch = false;
61 ctx->cf_info.parent_if.is_divergent = false;
62 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
63 }
64
65 ~loop_info_RAII()
66 {
67 ctx->cf_info.parent_loop.header_idx = header_idx_old;
68 ctx->cf_info.parent_loop.exit = exit_old;
69 ctx->cf_info.parent_loop.has_divergent_continue = divergent_cont_old;
70 ctx->cf_info.parent_loop.has_divergent_branch = divergent_branch_old;
71 ctx->cf_info.parent_if.is_divergent = divergent_if_old;
72 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth - 1;
73 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent)
74 ctx->cf_info.exec_potentially_empty_discard = false;
75 }
76 };
77
78 struct if_context {
79 Temp cond;
80
81 bool divergent_old;
82 bool exec_potentially_empty_discard_old;
83 bool exec_potentially_empty_break_old;
84 uint16_t exec_potentially_empty_break_depth_old;
85
86 unsigned BB_if_idx;
87 unsigned invert_idx;
88 bool uniform_has_then_branch;
89 bool then_branch_divergent;
90 Block BB_invert;
91 Block BB_endif;
92 };
93
94 static bool visit_cf_list(struct isel_context *ctx,
95 struct exec_list *list);
96
97 static void add_logical_edge(unsigned pred_idx, Block *succ)
98 {
99 succ->logical_preds.emplace_back(pred_idx);
100 }
101
102
103 static void add_linear_edge(unsigned pred_idx, Block *succ)
104 {
105 succ->linear_preds.emplace_back(pred_idx);
106 }
107
108 static void add_edge(unsigned pred_idx, Block *succ)
109 {
110 add_logical_edge(pred_idx, succ);
111 add_linear_edge(pred_idx, succ);
112 }
113
114 static void append_logical_start(Block *b)
115 {
116 Builder(NULL, b).pseudo(aco_opcode::p_logical_start);
117 }
118
119 static void append_logical_end(Block *b)
120 {
121 Builder(NULL, b).pseudo(aco_opcode::p_logical_end);
122 }
123
124 Temp get_ssa_temp(struct isel_context *ctx, nir_ssa_def *def)
125 {
126 assert(ctx->allocated[def->index].id());
127 return ctx->allocated[def->index];
128 }
129
130 Temp emit_mbcnt(isel_context *ctx, Definition dst,
131 Operand mask_lo = Operand((uint32_t) -1), Operand mask_hi = Operand((uint32_t) -1))
132 {
133 Builder bld(ctx->program, ctx->block);
134 Definition lo_def = ctx->program->wave_size == 32 ? dst : bld.def(v1);
135 Temp thread_id_lo = bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, lo_def, mask_lo, Operand(0u));
136
137 if (ctx->program->wave_size == 32) {
138 return thread_id_lo;
139 } else {
140 Temp thread_id_hi = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32, dst, mask_hi, thread_id_lo);
141 return thread_id_hi;
142 }
143 }
144
145 Temp emit_wqm(isel_context *ctx, Temp src, Temp dst=Temp(0, s1), bool program_needs_wqm = false)
146 {
147 Builder bld(ctx->program, ctx->block);
148
149 if (!dst.id())
150 dst = bld.tmp(src.regClass());
151
152 assert(src.size() == dst.size());
153
154 if (ctx->stage != fragment_fs) {
155 if (!dst.id())
156 return src;
157
158 bld.copy(Definition(dst), src);
159 return dst;
160 }
161
162 bld.pseudo(aco_opcode::p_wqm, Definition(dst), src);
163 ctx->program->needs_wqm |= program_needs_wqm;
164 return dst;
165 }
166
167 static Temp emit_bpermute(isel_context *ctx, Builder &bld, Temp index, Temp data)
168 {
169 if (index.regClass() == s1)
170 return bld.readlane(bld.def(s1), data, index);
171
172 Temp index_x4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), index);
173
174 /* Currently not implemented on GFX6-7 */
175 assert(ctx->options->chip_class >= GFX8);
176
177 if (ctx->options->chip_class <= GFX9 || ctx->program->wave_size == 32) {
178 return bld.ds(aco_opcode::ds_bpermute_b32, bld.def(v1), index_x4, data);
179 }
180
181 /* GFX10, wave64 mode:
182 * The bpermute instruction is limited to half-wave operation, which means that it can't
183 * properly support subgroup shuffle like older generations (or wave32 mode), so we
184 * emulate it here.
185 */
186 if (!ctx->has_gfx10_wave64_bpermute) {
187 ctx->has_gfx10_wave64_bpermute = true;
188 ctx->program->config->num_shared_vgprs = 8; /* Shared VGPRs are allocated in groups of 8 */
189 ctx->program->vgpr_limit -= 4; /* We allocate 8 shared VGPRs, so we'll have 4 fewer normal VGPRs */
190 }
191
192 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
193 Temp lane_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), lane_id);
194 Temp index_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), index);
195 Temp cmp = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm, vcc), lane_is_hi, index_is_hi);
196
197 return bld.reduction(aco_opcode::p_wave64_bpermute, bld.def(v1), bld.def(s2), bld.def(s1, scc),
198 bld.vcc(cmp), Operand(v2.as_linear()), index_x4, data, gfx10_wave64_bpermute);
199 }
200
201 Temp as_vgpr(isel_context *ctx, Temp val)
202 {
203 if (val.type() == RegType::sgpr) {
204 Builder bld(ctx->program, ctx->block);
205 return bld.copy(bld.def(RegType::vgpr, val.size()), val);
206 }
207 assert(val.type() == RegType::vgpr);
208 return val;
209 }
210
211 //assumes a != 0xffffffff
212 void emit_v_div_u32(isel_context *ctx, Temp dst, Temp a, uint32_t b)
213 {
214 assert(b != 0);
215 Builder bld(ctx->program, ctx->block);
216
217 if (util_is_power_of_two_or_zero(b)) {
218 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)util_logbase2(b)), a);
219 return;
220 }
221
222 util_fast_udiv_info info = util_compute_fast_udiv_info(b, 32, 32);
223
224 assert(info.multiplier <= 0xffffffff);
225
226 bool pre_shift = info.pre_shift != 0;
227 bool increment = info.increment != 0;
228 bool multiply = true;
229 bool post_shift = info.post_shift != 0;
230
231 if (!pre_shift && !increment && !multiply && !post_shift) {
232 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), a);
233 return;
234 }
235
236 Temp pre_shift_dst = a;
237 if (pre_shift) {
238 pre_shift_dst = (increment || multiply || post_shift) ? bld.tmp(v1) : dst;
239 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(pre_shift_dst), Operand((uint32_t)info.pre_shift), a);
240 }
241
242 Temp increment_dst = pre_shift_dst;
243 if (increment) {
244 increment_dst = (post_shift || multiply) ? bld.tmp(v1) : dst;
245 bld.vadd32(Definition(increment_dst), Operand((uint32_t) info.increment), pre_shift_dst);
246 }
247
248 Temp multiply_dst = increment_dst;
249 if (multiply) {
250 multiply_dst = post_shift ? bld.tmp(v1) : dst;
251 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(multiply_dst), increment_dst,
252 bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand((uint32_t)info.multiplier)));
253 }
254
255 if (post_shift) {
256 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)info.post_shift), multiply_dst);
257 }
258 }
259
260 void emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, Temp dst)
261 {
262 Builder bld(ctx->program, ctx->block);
263 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(idx));
264 }
265
266
267 Temp emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, RegClass dst_rc)
268 {
269 /* no need to extract the whole vector */
270 if (src.regClass() == dst_rc) {
271 assert(idx == 0);
272 return src;
273 }
274
275 assert(src.bytes() > (idx * dst_rc.bytes()));
276 Builder bld(ctx->program, ctx->block);
277 auto it = ctx->allocated_vec.find(src.id());
278 if (it != ctx->allocated_vec.end() && dst_rc.bytes() == it->second[idx].regClass().bytes()) {
279 if (it->second[idx].regClass() == dst_rc) {
280 return it->second[idx];
281 } else {
282 assert(!dst_rc.is_subdword());
283 assert(dst_rc.type() == RegType::vgpr && it->second[idx].type() == RegType::sgpr);
284 return bld.copy(bld.def(dst_rc), it->second[idx]);
285 }
286 }
287
288 if (dst_rc.is_subdword())
289 src = as_vgpr(ctx, src);
290
291 if (src.bytes() == dst_rc.bytes()) {
292 assert(idx == 0);
293 return bld.copy(bld.def(dst_rc), src);
294 } else {
295 Temp dst = bld.tmp(dst_rc);
296 emit_extract_vector(ctx, src, idx, dst);
297 return dst;
298 }
299 }
300
301 void emit_split_vector(isel_context* ctx, Temp vec_src, unsigned num_components)
302 {
303 if (num_components == 1)
304 return;
305 if (ctx->allocated_vec.find(vec_src.id()) != ctx->allocated_vec.end())
306 return;
307 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_components)};
308 split->operands[0] = Operand(vec_src);
309 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
310 RegClass rc;
311 if (num_components > vec_src.size()) {
312 if (vec_src.type() == RegType::sgpr)
313 return;
314
315 /* sub-dword split */
316 assert(vec_src.type() == RegType::vgpr);
317 rc = RegClass(RegType::vgpr, vec_src.bytes() / num_components).as_subdword();
318 } else {
319 rc = RegClass(vec_src.type(), vec_src.size() / num_components);
320 }
321 for (unsigned i = 0; i < num_components; i++) {
322 elems[i] = {ctx->program->allocateId(), rc};
323 split->definitions[i] = Definition(elems[i]);
324 }
325 ctx->block->instructions.emplace_back(std::move(split));
326 ctx->allocated_vec.emplace(vec_src.id(), elems);
327 }
328
329 /* This vector expansion uses a mask to determine which elements in the new vector
330 * come from the original vector. The other elements are undefined. */
331 void expand_vector(isel_context* ctx, Temp vec_src, Temp dst, unsigned num_components, unsigned mask)
332 {
333 emit_split_vector(ctx, vec_src, util_bitcount(mask));
334
335 if (vec_src == dst)
336 return;
337
338 Builder bld(ctx->program, ctx->block);
339 if (num_components == 1) {
340 if (dst.type() == RegType::sgpr)
341 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec_src);
342 else
343 bld.copy(Definition(dst), vec_src);
344 return;
345 }
346
347 unsigned component_size = dst.size() / num_components;
348 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
349
350 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
351 vec->definitions[0] = Definition(dst);
352 unsigned k = 0;
353 for (unsigned i = 0; i < num_components; i++) {
354 if (mask & (1 << i)) {
355 Temp src = emit_extract_vector(ctx, vec_src, k++, RegClass(vec_src.type(), component_size));
356 if (dst.type() == RegType::sgpr)
357 src = bld.as_uniform(src);
358 vec->operands[i] = Operand(src);
359 } else {
360 vec->operands[i] = Operand(0u);
361 }
362 elems[i] = vec->operands[i].getTemp();
363 }
364 ctx->block->instructions.emplace_back(std::move(vec));
365 ctx->allocated_vec.emplace(dst.id(), elems);
366 }
367
368 /* adjust misaligned small bit size loads */
369 void byte_align_scalar(isel_context *ctx, Temp vec, Operand offset, Temp dst)
370 {
371 Builder bld(ctx->program, ctx->block);
372 Operand shift;
373 Temp select = Temp();
374 if (offset.isConstant()) {
375 assert(offset.constantValue() && offset.constantValue() < 4);
376 shift = Operand(offset.constantValue() * 8);
377 } else {
378 /* bit_offset = 8 * (offset & 0x3) */
379 Temp tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), offset, Operand(3u));
380 select = bld.tmp(s1);
381 shift = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.scc(Definition(select)), tmp, Operand(3u));
382 }
383
384 if (vec.size() == 1) {
385 bld.sop2(aco_opcode::s_lshr_b32, Definition(dst), bld.def(s1, scc), vec, shift);
386 } else if (vec.size() == 2) {
387 Temp tmp = dst.size() == 2 ? dst : bld.tmp(s2);
388 bld.sop2(aco_opcode::s_lshr_b64, Definition(tmp), bld.def(s1, scc), vec, shift);
389 if (tmp == dst)
390 emit_split_vector(ctx, dst, 2);
391 else
392 emit_extract_vector(ctx, tmp, 0, dst);
393 } else if (vec.size() == 4) {
394 Temp lo = bld.tmp(s2), hi = bld.tmp(s2);
395 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), vec);
396 hi = bld.pseudo(aco_opcode::p_extract_vector, bld.def(s1), hi, Operand(0u));
397 if (select != Temp())
398 hi = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), hi, Operand(0u), select);
399 lo = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), lo, shift);
400 Temp mid = bld.tmp(s1);
401 lo = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), Definition(mid), lo);
402 hi = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), hi, shift);
403 mid = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), hi, mid);
404 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, mid);
405 emit_split_vector(ctx, dst, 2);
406 }
407 }
408
409 /* this function trims subdword vectors:
410 * if dst is vgpr - split the src and create a shrunk version according to the mask.
411 * if dst is sgpr - split the src, but move the original to sgpr. */
412 void trim_subdword_vector(isel_context *ctx, Temp vec_src, Temp dst, unsigned num_components, unsigned mask)
413 {
414 assert(vec_src.type() == RegType::vgpr);
415 emit_split_vector(ctx, vec_src, num_components);
416
417 Builder bld(ctx->program, ctx->block);
418 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
419 unsigned component_size = vec_src.bytes() / num_components;
420 RegClass rc = RegClass(RegType::vgpr, component_size).as_subdword();
421
422 unsigned k = 0;
423 for (unsigned i = 0; i < num_components; i++) {
424 if (mask & (1 << i))
425 elems[k++] = emit_extract_vector(ctx, vec_src, i, rc);
426 }
427
428 if (dst.type() == RegType::vgpr) {
429 assert(dst.bytes() == k * component_size);
430 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, k, 1)};
431 for (unsigned i = 0; i < k; i++)
432 vec->operands[i] = Operand(elems[i]);
433 vec->definitions[0] = Definition(dst);
434 bld.insert(std::move(vec));
435 } else {
436 // TODO: alignbyte if mask doesn't start with 1?
437 assert(mask & 1);
438 assert(dst.size() == vec_src.size());
439 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec_src);
440 }
441 ctx->allocated_vec.emplace(dst.id(), elems);
442 }
443
444 Temp bool_to_vector_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s2))
445 {
446 Builder bld(ctx->program, ctx->block);
447 if (!dst.id())
448 dst = bld.tmp(bld.lm);
449
450 assert(val.regClass() == s1);
451 assert(dst.regClass() == bld.lm);
452
453 return bld.sop2(Builder::s_cselect, Definition(dst), Operand((uint32_t) -1), Operand(0u), bld.scc(val));
454 }
455
456 Temp bool_to_scalar_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s1))
457 {
458 Builder bld(ctx->program, ctx->block);
459 if (!dst.id())
460 dst = bld.tmp(s1);
461
462 assert(val.regClass() == bld.lm);
463 assert(dst.regClass() == s1);
464
465 /* if we're currently in WQM mode, ensure that the source is also computed in WQM */
466 Temp tmp = bld.tmp(s1);
467 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.scc(Definition(tmp)), val, Operand(exec, bld.lm));
468 return emit_wqm(ctx, tmp, dst);
469 }
470
471 Temp get_alu_src(struct isel_context *ctx, nir_alu_src src, unsigned size=1)
472 {
473 if (src.src.ssa->num_components == 1 && src.swizzle[0] == 0 && size == 1)
474 return get_ssa_temp(ctx, src.src.ssa);
475
476 if (src.src.ssa->num_components == size) {
477 bool identity_swizzle = true;
478 for (unsigned i = 0; identity_swizzle && i < size; i++) {
479 if (src.swizzle[i] != i)
480 identity_swizzle = false;
481 }
482 if (identity_swizzle)
483 return get_ssa_temp(ctx, src.src.ssa);
484 }
485
486 Temp vec = get_ssa_temp(ctx, src.src.ssa);
487 unsigned elem_size = vec.bytes() / src.src.ssa->num_components;
488 assert(elem_size > 0);
489 assert(vec.bytes() % elem_size == 0);
490
491 if (elem_size < 4 && vec.type() == RegType::sgpr) {
492 assert(src.src.ssa->bit_size == 8 || src.src.ssa->bit_size == 16);
493 assert(size == 1);
494 unsigned swizzle = src.swizzle[0];
495 if (vec.size() > 1) {
496 assert(src.src.ssa->bit_size == 16);
497 vec = emit_extract_vector(ctx, vec, swizzle / 2, s1);
498 swizzle = swizzle & 1;
499 }
500 if (swizzle == 0)
501 return vec;
502
503 Temp dst{ctx->program->allocateId(), s1};
504 aco_ptr<SOP2_instruction> bfe{create_instruction<SOP2_instruction>(aco_opcode::s_bfe_u32, Format::SOP2, 2, 1)};
505 bfe->operands[0] = Operand(vec);
506 bfe->operands[1] = Operand(uint32_t((src.src.ssa->bit_size << 16) | (src.src.ssa->bit_size * swizzle)));
507 bfe->definitions[0] = Definition(dst);
508 ctx->block->instructions.emplace_back(std::move(bfe));
509 return dst;
510 }
511
512 RegClass elem_rc = elem_size < 4 ? RegClass(vec.type(), elem_size).as_subdword() : RegClass(vec.type(), elem_size / 4);
513 if (size == 1) {
514 return emit_extract_vector(ctx, vec, src.swizzle[0], elem_rc);
515 } else {
516 assert(size <= 4);
517 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
518 aco_ptr<Pseudo_instruction> vec_instr{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
519 for (unsigned i = 0; i < size; ++i) {
520 elems[i] = emit_extract_vector(ctx, vec, src.swizzle[i], elem_rc);
521 vec_instr->operands[i] = Operand{elems[i]};
522 }
523 Temp dst{ctx->program->allocateId(), RegClass(vec.type(), elem_size * size / 4)};
524 vec_instr->definitions[0] = Definition(dst);
525 ctx->block->instructions.emplace_back(std::move(vec_instr));
526 ctx->allocated_vec.emplace(dst.id(), elems);
527 return dst;
528 }
529 }
530
531 Temp convert_pointer_to_64_bit(isel_context *ctx, Temp ptr)
532 {
533 if (ptr.size() == 2)
534 return ptr;
535 Builder bld(ctx->program, ctx->block);
536 if (ptr.type() == RegType::vgpr)
537 ptr = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), ptr);
538 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s2),
539 ptr, Operand((unsigned)ctx->options->address32_hi));
540 }
541
542 void emit_sop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst, bool writes_scc)
543 {
544 aco_ptr<SOP2_instruction> sop2{create_instruction<SOP2_instruction>(op, Format::SOP2, 2, writes_scc ? 2 : 1)};
545 sop2->operands[0] = Operand(get_alu_src(ctx, instr->src[0]));
546 sop2->operands[1] = Operand(get_alu_src(ctx, instr->src[1]));
547 sop2->definitions[0] = Definition(dst);
548 if (writes_scc)
549 sop2->definitions[1] = Definition(ctx->program->allocateId(), scc, s1);
550 ctx->block->instructions.emplace_back(std::move(sop2));
551 }
552
553 void emit_vop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
554 bool commutative, bool swap_srcs=false, bool flush_denorms = false)
555 {
556 Builder bld(ctx->program, ctx->block);
557 Temp src0 = get_alu_src(ctx, instr->src[swap_srcs ? 1 : 0]);
558 Temp src1 = get_alu_src(ctx, instr->src[swap_srcs ? 0 : 1]);
559 if (src1.type() == RegType::sgpr) {
560 if (commutative && src0.type() == RegType::vgpr) {
561 Temp t = src0;
562 src0 = src1;
563 src1 = t;
564 } else if (src0.type() == RegType::vgpr &&
565 op != aco_opcode::v_madmk_f32 &&
566 op != aco_opcode::v_madak_f32 &&
567 op != aco_opcode::v_madmk_f16 &&
568 op != aco_opcode::v_madak_f16) {
569 /* If the instruction is not commutative, we emit a VOP3A instruction */
570 bld.vop2_e64(op, Definition(dst), src0, src1);
571 return;
572 } else {
573 src1 = bld.copy(bld.def(RegType::vgpr, src1.size()), src1); //TODO: as_vgpr
574 }
575 }
576
577 if (flush_denorms && ctx->program->chip_class < GFX9) {
578 assert(dst.size() == 1);
579 Temp tmp = bld.vop2(op, bld.def(v1), src0, src1);
580 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
581 } else {
582 bld.vop2(op, Definition(dst), src0, src1);
583 }
584 }
585
586 void emit_vop3a_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
587 bool flush_denorms = false)
588 {
589 Temp src0 = get_alu_src(ctx, instr->src[0]);
590 Temp src1 = get_alu_src(ctx, instr->src[1]);
591 Temp src2 = get_alu_src(ctx, instr->src[2]);
592
593 /* ensure that the instruction has at most 1 sgpr operand
594 * The optimizer will inline constants for us */
595 if (src0.type() == RegType::sgpr && src1.type() == RegType::sgpr)
596 src0 = as_vgpr(ctx, src0);
597 if (src1.type() == RegType::sgpr && src2.type() == RegType::sgpr)
598 src1 = as_vgpr(ctx, src1);
599 if (src2.type() == RegType::sgpr && src0.type() == RegType::sgpr)
600 src2 = as_vgpr(ctx, src2);
601
602 Builder bld(ctx->program, ctx->block);
603 if (flush_denorms && ctx->program->chip_class < GFX9) {
604 assert(dst.size() == 1);
605 Temp tmp = bld.vop3(op, Definition(dst), src0, src1, src2);
606 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
607 } else {
608 bld.vop3(op, Definition(dst), src0, src1, src2);
609 }
610 }
611
612 void emit_vop1_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
613 {
614 Builder bld(ctx->program, ctx->block);
615 bld.vop1(op, Definition(dst), get_alu_src(ctx, instr->src[0]));
616 }
617
618 void emit_vopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
619 {
620 Temp src0 = get_alu_src(ctx, instr->src[0]);
621 Temp src1 = get_alu_src(ctx, instr->src[1]);
622 assert(src0.size() == src1.size());
623
624 aco_ptr<Instruction> vopc;
625 if (src1.type() == RegType::sgpr) {
626 if (src0.type() == RegType::vgpr) {
627 /* to swap the operands, we might also have to change the opcode */
628 switch (op) {
629 case aco_opcode::v_cmp_lt_f32:
630 op = aco_opcode::v_cmp_gt_f32;
631 break;
632 case aco_opcode::v_cmp_ge_f32:
633 op = aco_opcode::v_cmp_le_f32;
634 break;
635 case aco_opcode::v_cmp_lt_i32:
636 op = aco_opcode::v_cmp_gt_i32;
637 break;
638 case aco_opcode::v_cmp_ge_i32:
639 op = aco_opcode::v_cmp_le_i32;
640 break;
641 case aco_opcode::v_cmp_lt_u32:
642 op = aco_opcode::v_cmp_gt_u32;
643 break;
644 case aco_opcode::v_cmp_ge_u32:
645 op = aco_opcode::v_cmp_le_u32;
646 break;
647 case aco_opcode::v_cmp_lt_f64:
648 op = aco_opcode::v_cmp_gt_f64;
649 break;
650 case aco_opcode::v_cmp_ge_f64:
651 op = aco_opcode::v_cmp_le_f64;
652 break;
653 case aco_opcode::v_cmp_lt_i64:
654 op = aco_opcode::v_cmp_gt_i64;
655 break;
656 case aco_opcode::v_cmp_ge_i64:
657 op = aco_opcode::v_cmp_le_i64;
658 break;
659 case aco_opcode::v_cmp_lt_u64:
660 op = aco_opcode::v_cmp_gt_u64;
661 break;
662 case aco_opcode::v_cmp_ge_u64:
663 op = aco_opcode::v_cmp_le_u64;
664 break;
665 default: /* eq and ne are commutative */
666 break;
667 }
668 Temp t = src0;
669 src0 = src1;
670 src1 = t;
671 } else {
672 src1 = as_vgpr(ctx, src1);
673 }
674 }
675
676 Builder bld(ctx->program, ctx->block);
677 bld.vopc(op, bld.hint_vcc(Definition(dst)), src0, src1);
678 }
679
680 void emit_sopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
681 {
682 Temp src0 = get_alu_src(ctx, instr->src[0]);
683 Temp src1 = get_alu_src(ctx, instr->src[1]);
684 Builder bld(ctx->program, ctx->block);
685
686 assert(dst.regClass() == bld.lm);
687 assert(src0.type() == RegType::sgpr);
688 assert(src1.type() == RegType::sgpr);
689 assert(src0.regClass() == src1.regClass());
690
691 /* Emit the SALU comparison instruction */
692 Temp cmp = bld.sopc(op, bld.scc(bld.def(s1)), src0, src1);
693 /* Turn the result into a per-lane bool */
694 bool_to_vector_condition(ctx, cmp, dst);
695 }
696
697 void emit_comparison(isel_context *ctx, nir_alu_instr *instr, Temp dst,
698 aco_opcode v32_op, aco_opcode v64_op, aco_opcode s32_op = aco_opcode::num_opcodes, aco_opcode s64_op = aco_opcode::num_opcodes)
699 {
700 aco_opcode s_op = instr->src[0].src.ssa->bit_size == 64 ? s64_op : s32_op;
701 aco_opcode v_op = instr->src[0].src.ssa->bit_size == 64 ? v64_op : v32_op;
702 bool divergent_vals = ctx->divergent_vals[instr->dest.dest.ssa.index];
703 bool use_valu = s_op == aco_opcode::num_opcodes ||
704 divergent_vals ||
705 ctx->allocated[instr->src[0].src.ssa->index].type() == RegType::vgpr ||
706 ctx->allocated[instr->src[1].src.ssa->index].type() == RegType::vgpr;
707 aco_opcode op = use_valu ? v_op : s_op;
708 assert(op != aco_opcode::num_opcodes);
709 assert(dst.regClass() == ctx->program->lane_mask);
710
711 if (use_valu)
712 emit_vopc_instruction(ctx, instr, op, dst);
713 else
714 emit_sopc_instruction(ctx, instr, op, dst);
715 }
716
717 void emit_boolean_logic(isel_context *ctx, nir_alu_instr *instr, Builder::WaveSpecificOpcode op, Temp dst)
718 {
719 Builder bld(ctx->program, ctx->block);
720 Temp src0 = get_alu_src(ctx, instr->src[0]);
721 Temp src1 = get_alu_src(ctx, instr->src[1]);
722
723 assert(dst.regClass() == bld.lm);
724 assert(src0.regClass() == bld.lm);
725 assert(src1.regClass() == bld.lm);
726
727 bld.sop2(op, Definition(dst), bld.def(s1, scc), src0, src1);
728 }
729
730 void emit_bcsel(isel_context *ctx, nir_alu_instr *instr, Temp dst)
731 {
732 Builder bld(ctx->program, ctx->block);
733 Temp cond = get_alu_src(ctx, instr->src[0]);
734 Temp then = get_alu_src(ctx, instr->src[1]);
735 Temp els = get_alu_src(ctx, instr->src[2]);
736
737 assert(cond.regClass() == bld.lm);
738
739 if (dst.type() == RegType::vgpr) {
740 aco_ptr<Instruction> bcsel;
741 if (dst.size() == 1) {
742 then = as_vgpr(ctx, then);
743 els = as_vgpr(ctx, els);
744
745 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), els, then, cond);
746 } else if (dst.size() == 2) {
747 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
748 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), then);
749 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
750 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), els);
751
752 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, cond);
753 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, cond);
754
755 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
756 } else {
757 fprintf(stderr, "Unimplemented NIR instr bit size: ");
758 nir_print_instr(&instr->instr, stderr);
759 fprintf(stderr, "\n");
760 }
761 return;
762 }
763
764 if (instr->dest.dest.ssa.bit_size == 1) {
765 assert(dst.regClass() == bld.lm);
766 assert(then.regClass() == bld.lm);
767 assert(els.regClass() == bld.lm);
768 }
769
770 if (!ctx->divergent_vals[instr->src[0].src.ssa->index]) { /* uniform condition and values in sgpr */
771 if (dst.regClass() == s1 || dst.regClass() == s2) {
772 assert((then.regClass() == s1 || then.regClass() == s2) && els.regClass() == then.regClass());
773 assert(dst.size() == then.size());
774 aco_opcode op = dst.regClass() == s1 ? aco_opcode::s_cselect_b32 : aco_opcode::s_cselect_b64;
775 bld.sop2(op, Definition(dst), then, els, bld.scc(bool_to_scalar_condition(ctx, cond)));
776 } else {
777 fprintf(stderr, "Unimplemented uniform bcsel bit size: ");
778 nir_print_instr(&instr->instr, stderr);
779 fprintf(stderr, "\n");
780 }
781 return;
782 }
783
784 /* divergent boolean bcsel
785 * this implements bcsel on bools: dst = s0 ? s1 : s2
786 * are going to be: dst = (s0 & s1) | (~s0 & s2) */
787 assert(instr->dest.dest.ssa.bit_size == 1);
788
789 if (cond.id() != then.id())
790 then = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), cond, then);
791
792 if (cond.id() == els.id())
793 bld.sop1(Builder::s_mov, Definition(dst), then);
794 else
795 bld.sop2(Builder::s_or, Definition(dst), bld.def(s1, scc), then,
796 bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), els, cond));
797 }
798
799 void emit_scaled_op(isel_context *ctx, Builder& bld, Definition dst, Temp val,
800 aco_opcode op, uint32_t undo)
801 {
802 /* multiply by 16777216 to handle denormals */
803 Temp is_denormal = bld.vopc(aco_opcode::v_cmp_class_f32, bld.hint_vcc(bld.def(bld.lm)),
804 as_vgpr(ctx, val), bld.copy(bld.def(v1), Operand((1u << 7) | (1u << 4))));
805 Temp scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x4b800000u), val);
806 scaled = bld.vop1(op, bld.def(v1), scaled);
807 scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(undo), scaled);
808
809 Temp not_scaled = bld.vop1(op, bld.def(v1), val);
810
811 bld.vop2(aco_opcode::v_cndmask_b32, dst, not_scaled, scaled, is_denormal);
812 }
813
814 void emit_rcp(isel_context *ctx, Builder& bld, Definition dst, Temp val)
815 {
816 if (ctx->block->fp_mode.denorm32 == 0) {
817 bld.vop1(aco_opcode::v_rcp_f32, dst, val);
818 return;
819 }
820
821 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rcp_f32, 0x4b800000u);
822 }
823
824 void emit_rsq(isel_context *ctx, Builder& bld, Definition dst, Temp val)
825 {
826 if (ctx->block->fp_mode.denorm32 == 0) {
827 bld.vop1(aco_opcode::v_rsq_f32, dst, val);
828 return;
829 }
830
831 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rsq_f32, 0x45800000u);
832 }
833
834 void emit_sqrt(isel_context *ctx, Builder& bld, Definition dst, Temp val)
835 {
836 if (ctx->block->fp_mode.denorm32 == 0) {
837 bld.vop1(aco_opcode::v_sqrt_f32, dst, val);
838 return;
839 }
840
841 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_sqrt_f32, 0x39800000u);
842 }
843
844 void emit_log2(isel_context *ctx, Builder& bld, Definition dst, Temp val)
845 {
846 if (ctx->block->fp_mode.denorm32 == 0) {
847 bld.vop1(aco_opcode::v_log_f32, dst, val);
848 return;
849 }
850
851 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_log_f32, 0xc1c00000u);
852 }
853
854 Temp emit_trunc_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
855 {
856 if (ctx->options->chip_class >= GFX7)
857 return bld.vop1(aco_opcode::v_trunc_f64, Definition(dst), val);
858
859 /* GFX6 doesn't support V_TRUNC_F64, lower it. */
860 /* TODO: create more efficient code! */
861 if (val.type() == RegType::sgpr)
862 val = as_vgpr(ctx, val);
863
864 /* Split the input value. */
865 Temp val_lo = bld.tmp(v1), val_hi = bld.tmp(v1);
866 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
867
868 /* Extract the exponent and compute the unbiased value. */
869 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f64, bld.def(v1), val);
870
871 /* Extract the fractional part. */
872 Temp fract_mask = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x000fffffu));
873 fract_mask = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), fract_mask, exponent);
874
875 Temp fract_mask_lo = bld.tmp(v1), fract_mask_hi = bld.tmp(v1);
876 bld.pseudo(aco_opcode::p_split_vector, Definition(fract_mask_lo), Definition(fract_mask_hi), fract_mask);
877
878 Temp fract_lo = bld.tmp(v1), fract_hi = bld.tmp(v1);
879 Temp tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_lo);
880 fract_lo = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_lo, tmp);
881 tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_hi);
882 fract_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_hi, tmp);
883
884 /* Get the sign bit. */
885 Temp sign = bld.vop2(aco_opcode::v_ashr_i32, bld.def(v1), Operand(31u), val_hi);
886
887 /* Decide the operation to apply depending on the unbiased exponent. */
888 Temp exp_lt0 = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)), exponent, Operand(0u));
889 Temp dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_lo, bld.copy(bld.def(v1), Operand(0u)), exp_lt0);
890 Temp dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_hi, sign, exp_lt0);
891 Temp exp_gt51 = bld.vopc_e64(aco_opcode::v_cmp_gt_i32, bld.def(s2), exponent, Operand(51u));
892 dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_lo, val_lo, exp_gt51);
893 dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_hi, val_hi, exp_gt51);
894
895 return bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst_lo, dst_hi);
896 }
897
898 Temp emit_floor_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
899 {
900 if (ctx->options->chip_class >= GFX7)
901 return bld.vop1(aco_opcode::v_floor_f64, Definition(dst), val);
902
903 /* GFX6 doesn't support V_FLOOR_F64, lower it. */
904 Temp src0 = as_vgpr(ctx, val);
905
906 Temp mask = bld.copy(bld.def(s1), Operand(3u)); /* isnan */
907 Temp min_val = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(-1u), Operand(0x3fefffffu));
908
909 Temp isnan = bld.vopc_e64(aco_opcode::v_cmp_class_f64, bld.hint_vcc(bld.def(bld.lm)), src0, mask);
910 Temp fract = bld.vop1(aco_opcode::v_fract_f64, bld.def(v2), src0);
911 Temp min = bld.vop3(aco_opcode::v_min_f64, bld.def(v2), fract, min_val);
912
913 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
914 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), src0);
915 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
916 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), min);
917
918 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, isnan);
919 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, isnan);
920
921 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), dst0, dst1);
922
923 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src0, v);
924 static_cast<VOP3A_instruction*>(add)->neg[1] = true;
925
926 return add->definitions[0].getTemp();
927 }
928
929 void visit_alu_instr(isel_context *ctx, nir_alu_instr *instr)
930 {
931 if (!instr->dest.dest.is_ssa) {
932 fprintf(stderr, "nir alu dst not in ssa: ");
933 nir_print_instr(&instr->instr, stderr);
934 fprintf(stderr, "\n");
935 abort();
936 }
937 Builder bld(ctx->program, ctx->block);
938 Temp dst = get_ssa_temp(ctx, &instr->dest.dest.ssa);
939 switch(instr->op) {
940 case nir_op_vec2:
941 case nir_op_vec3:
942 case nir_op_vec4: {
943 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
944 unsigned num = instr->dest.dest.ssa.num_components;
945 for (unsigned i = 0; i < num; ++i)
946 elems[i] = get_alu_src(ctx, instr->src[i]);
947
948 if (instr->dest.dest.ssa.bit_size >= 32 || dst.type() == RegType::vgpr) {
949 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.dest.ssa.num_components, 1)};
950 for (unsigned i = 0; i < num; ++i)
951 vec->operands[i] = Operand{elems[i]};
952 vec->definitions[0] = Definition(dst);
953 ctx->block->instructions.emplace_back(std::move(vec));
954 ctx->allocated_vec.emplace(dst.id(), elems);
955 } else {
956 // TODO: that is a bit suboptimal..
957 Temp mask = bld.copy(bld.def(s1), Operand((1u << instr->dest.dest.ssa.bit_size) - 1));
958 for (unsigned i = 0; i < num - 1; ++i)
959 if (((i+1) * instr->dest.dest.ssa.bit_size) % 32)
960 elems[i] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), elems[i], mask);
961 for (unsigned i = 0; i < num; ++i) {
962 unsigned bit = i * instr->dest.dest.ssa.bit_size;
963 if (bit % 32 == 0) {
964 elems[bit / 32] = elems[i];
965 } else {
966 elems[i] = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc),
967 elems[i], Operand((i * instr->dest.dest.ssa.bit_size) % 32));
968 elems[bit / 32] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), elems[bit / 32], elems[i]);
969 }
970 }
971 if (dst.size() == 1)
972 bld.copy(Definition(dst), elems[0]);
973 else
974 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), elems[0], elems[1]);
975 }
976 break;
977 }
978 case nir_op_mov: {
979 Temp src = get_alu_src(ctx, instr->src[0]);
980 aco_ptr<Instruction> mov;
981 if (dst.type() == RegType::sgpr) {
982 if (src.type() == RegType::vgpr)
983 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
984 else if (src.regClass() == s1)
985 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
986 else if (src.regClass() == s2)
987 bld.sop1(aco_opcode::s_mov_b64, Definition(dst), src);
988 else
989 unreachable("wrong src register class for nir_op_imov");
990 } else if (dst.regClass() == v1) {
991 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), src);
992 } else if (dst.regClass() == v2) {
993 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
994 } else {
995 nir_print_instr(&instr->instr, stderr);
996 unreachable("Should have been lowered to scalar.");
997 }
998 break;
999 }
1000 case nir_op_inot: {
1001 Temp src = get_alu_src(ctx, instr->src[0]);
1002 if (instr->dest.dest.ssa.bit_size == 1) {
1003 assert(src.regClass() == bld.lm);
1004 assert(dst.regClass() == bld.lm);
1005 /* Don't use s_andn2 here, this allows the optimizer to make a better decision */
1006 Temp tmp = bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), src);
1007 bld.sop2(Builder::s_and, Definition(dst), bld.def(s1, scc), tmp, Operand(exec, bld.lm));
1008 } else if (dst.regClass() == v1) {
1009 emit_vop1_instruction(ctx, instr, aco_opcode::v_not_b32, dst);
1010 } else if (dst.type() == RegType::sgpr) {
1011 aco_opcode opcode = dst.size() == 1 ? aco_opcode::s_not_b32 : aco_opcode::s_not_b64;
1012 bld.sop1(opcode, Definition(dst), bld.def(s1, scc), src);
1013 } else {
1014 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1015 nir_print_instr(&instr->instr, stderr);
1016 fprintf(stderr, "\n");
1017 }
1018 break;
1019 }
1020 case nir_op_ineg: {
1021 Temp src = get_alu_src(ctx, instr->src[0]);
1022 if (dst.regClass() == v1) {
1023 bld.vsub32(Definition(dst), Operand(0u), Operand(src));
1024 } else if (dst.regClass() == s1) {
1025 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand((uint32_t) -1), src);
1026 } else if (dst.size() == 2) {
1027 Temp src0 = bld.tmp(dst.type(), 1);
1028 Temp src1 = bld.tmp(dst.type(), 1);
1029 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
1030
1031 if (dst.regClass() == s2) {
1032 Temp carry = bld.tmp(s1);
1033 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), Operand(0u), src0);
1034 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), src1, carry);
1035 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1036 } else {
1037 Temp lower = bld.tmp(v1);
1038 Temp borrow = bld.vsub32(Definition(lower), Operand(0u), src0, true).def(1).getTemp();
1039 Temp upper = bld.vsub32(bld.def(v1), Operand(0u), src1, false, borrow);
1040 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1041 }
1042 } else {
1043 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1044 nir_print_instr(&instr->instr, stderr);
1045 fprintf(stderr, "\n");
1046 }
1047 break;
1048 }
1049 case nir_op_iabs: {
1050 if (dst.regClass() == s1) {
1051 bld.sop1(aco_opcode::s_abs_i32, Definition(dst), bld.def(s1, scc), get_alu_src(ctx, instr->src[0]));
1052 } else if (dst.regClass() == v1) {
1053 Temp src = get_alu_src(ctx, instr->src[0]);
1054 bld.vop2(aco_opcode::v_max_i32, Definition(dst), src, bld.vsub32(bld.def(v1), Operand(0u), src));
1055 } else {
1056 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1057 nir_print_instr(&instr->instr, stderr);
1058 fprintf(stderr, "\n");
1059 }
1060 break;
1061 }
1062 case nir_op_isign: {
1063 Temp src = get_alu_src(ctx, instr->src[0]);
1064 if (dst.regClass() == s1) {
1065 Temp tmp = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
1066 Temp gtz = bld.sopc(aco_opcode::s_cmp_gt_i32, bld.def(s1, scc), src, Operand(0u));
1067 bld.sop2(aco_opcode::s_add_i32, Definition(dst), bld.def(s1, scc), gtz, tmp);
1068 } else if (dst.regClass() == s2) {
1069 Temp neg = bld.sop2(aco_opcode::s_ashr_i64, bld.def(s2), bld.def(s1, scc), src, Operand(63u));
1070 Temp neqz;
1071 if (ctx->program->chip_class >= GFX8)
1072 neqz = bld.sopc(aco_opcode::s_cmp_lg_u64, bld.def(s1, scc), src, Operand(0u));
1073 else
1074 neqz = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), src, Operand(0u)).def(1).getTemp();
1075 /* SCC gets zero-extended to 64 bit */
1076 bld.sop2(aco_opcode::s_or_b64, Definition(dst), bld.def(s1, scc), neg, bld.scc(neqz));
1077 } else if (dst.regClass() == v1) {
1078 Temp tmp = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
1079 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1080 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(1u), tmp, gtz);
1081 } else if (dst.regClass() == v2) {
1082 Temp upper = emit_extract_vector(ctx, src, 1, v1);
1083 Temp neg = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), upper);
1084 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1085 Temp lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(1u), neg, gtz);
1086 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), neg, gtz);
1087 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1088 } else {
1089 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1090 nir_print_instr(&instr->instr, stderr);
1091 fprintf(stderr, "\n");
1092 }
1093 break;
1094 }
1095 case nir_op_imax: {
1096 if (dst.regClass() == v1) {
1097 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_i32, dst, true);
1098 } else if (dst.regClass() == s1) {
1099 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_i32, dst, true);
1100 } else {
1101 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1102 nir_print_instr(&instr->instr, stderr);
1103 fprintf(stderr, "\n");
1104 }
1105 break;
1106 }
1107 case nir_op_umax: {
1108 if (dst.regClass() == v1) {
1109 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_u32, dst, true);
1110 } else if (dst.regClass() == s1) {
1111 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_u32, dst, true);
1112 } else {
1113 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1114 nir_print_instr(&instr->instr, stderr);
1115 fprintf(stderr, "\n");
1116 }
1117 break;
1118 }
1119 case nir_op_imin: {
1120 if (dst.regClass() == v1) {
1121 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_i32, dst, true);
1122 } else if (dst.regClass() == s1) {
1123 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_i32, dst, true);
1124 } else {
1125 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1126 nir_print_instr(&instr->instr, stderr);
1127 fprintf(stderr, "\n");
1128 }
1129 break;
1130 }
1131 case nir_op_umin: {
1132 if (dst.regClass() == v1) {
1133 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_u32, dst, true);
1134 } else if (dst.regClass() == s1) {
1135 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_u32, dst, true);
1136 } else {
1137 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1138 nir_print_instr(&instr->instr, stderr);
1139 fprintf(stderr, "\n");
1140 }
1141 break;
1142 }
1143 case nir_op_ior: {
1144 if (instr->dest.dest.ssa.bit_size == 1) {
1145 emit_boolean_logic(ctx, instr, Builder::s_or, dst);
1146 } else if (dst.regClass() == v1) {
1147 emit_vop2_instruction(ctx, instr, aco_opcode::v_or_b32, dst, true);
1148 } else if (dst.regClass() == s1) {
1149 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b32, dst, true);
1150 } else if (dst.regClass() == s2) {
1151 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b64, dst, true);
1152 } else {
1153 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1154 nir_print_instr(&instr->instr, stderr);
1155 fprintf(stderr, "\n");
1156 }
1157 break;
1158 }
1159 case nir_op_iand: {
1160 if (instr->dest.dest.ssa.bit_size == 1) {
1161 emit_boolean_logic(ctx, instr, Builder::s_and, dst);
1162 } else if (dst.regClass() == v1) {
1163 emit_vop2_instruction(ctx, instr, aco_opcode::v_and_b32, dst, true);
1164 } else if (dst.regClass() == s1) {
1165 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b32, dst, true);
1166 } else if (dst.regClass() == s2) {
1167 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b64, dst, true);
1168 } else {
1169 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1170 nir_print_instr(&instr->instr, stderr);
1171 fprintf(stderr, "\n");
1172 }
1173 break;
1174 }
1175 case nir_op_ixor: {
1176 if (instr->dest.dest.ssa.bit_size == 1) {
1177 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
1178 } else if (dst.regClass() == v1) {
1179 emit_vop2_instruction(ctx, instr, aco_opcode::v_xor_b32, dst, true);
1180 } else if (dst.regClass() == s1) {
1181 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b32, dst, true);
1182 } else if (dst.regClass() == s2) {
1183 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b64, dst, true);
1184 } else {
1185 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1186 nir_print_instr(&instr->instr, stderr);
1187 fprintf(stderr, "\n");
1188 }
1189 break;
1190 }
1191 case nir_op_ushr: {
1192 if (dst.regClass() == v1) {
1193 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshrrev_b32, dst, false, true);
1194 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1195 bld.vop3(aco_opcode::v_lshrrev_b64, Definition(dst),
1196 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1197 } else if (dst.regClass() == v2) {
1198 bld.vop3(aco_opcode::v_lshr_b64, Definition(dst),
1199 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1200 } else if (dst.regClass() == s2) {
1201 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b64, dst, true);
1202 } else if (dst.regClass() == s1) {
1203 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b32, dst, true);
1204 } else {
1205 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1206 nir_print_instr(&instr->instr, stderr);
1207 fprintf(stderr, "\n");
1208 }
1209 break;
1210 }
1211 case nir_op_ishl: {
1212 if (dst.regClass() == v1) {
1213 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshlrev_b32, dst, false, true);
1214 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1215 bld.vop3(aco_opcode::v_lshlrev_b64, Definition(dst),
1216 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1217 } else if (dst.regClass() == v2) {
1218 bld.vop3(aco_opcode::v_lshl_b64, Definition(dst),
1219 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1220 } else if (dst.regClass() == s1) {
1221 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b32, dst, true);
1222 } else if (dst.regClass() == s2) {
1223 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b64, dst, true);
1224 } else {
1225 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1226 nir_print_instr(&instr->instr, stderr);
1227 fprintf(stderr, "\n");
1228 }
1229 break;
1230 }
1231 case nir_op_ishr: {
1232 if (dst.regClass() == v1) {
1233 emit_vop2_instruction(ctx, instr, aco_opcode::v_ashrrev_i32, dst, false, true);
1234 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1235 bld.vop3(aco_opcode::v_ashrrev_i64, Definition(dst),
1236 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1237 } else if (dst.regClass() == v2) {
1238 bld.vop3(aco_opcode::v_ashr_i64, Definition(dst),
1239 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1240 } else if (dst.regClass() == s1) {
1241 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i32, dst, true);
1242 } else if (dst.regClass() == s2) {
1243 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i64, dst, true);
1244 } else {
1245 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1246 nir_print_instr(&instr->instr, stderr);
1247 fprintf(stderr, "\n");
1248 }
1249 break;
1250 }
1251 case nir_op_find_lsb: {
1252 Temp src = get_alu_src(ctx, instr->src[0]);
1253 if (src.regClass() == s1) {
1254 bld.sop1(aco_opcode::s_ff1_i32_b32, Definition(dst), src);
1255 } else if (src.regClass() == v1) {
1256 emit_vop1_instruction(ctx, instr, aco_opcode::v_ffbl_b32, dst);
1257 } else if (src.regClass() == s2) {
1258 bld.sop1(aco_opcode::s_ff1_i32_b64, Definition(dst), src);
1259 } else {
1260 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1261 nir_print_instr(&instr->instr, stderr);
1262 fprintf(stderr, "\n");
1263 }
1264 break;
1265 }
1266 case nir_op_ufind_msb:
1267 case nir_op_ifind_msb: {
1268 Temp src = get_alu_src(ctx, instr->src[0]);
1269 if (src.regClass() == s1 || src.regClass() == s2) {
1270 aco_opcode op = src.regClass() == s2 ?
1271 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b64 : aco_opcode::s_flbit_i32_i64) :
1272 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b32 : aco_opcode::s_flbit_i32);
1273 Temp msb_rev = bld.sop1(op, bld.def(s1), src);
1274
1275 Builder::Result sub = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc),
1276 Operand(src.size() * 32u - 1u), msb_rev);
1277 Temp msb = sub.def(0).getTemp();
1278 Temp carry = sub.def(1).getTemp();
1279
1280 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t)-1), msb, bld.scc(carry));
1281 } else if (src.regClass() == v1) {
1282 aco_opcode op = instr->op == nir_op_ufind_msb ? aco_opcode::v_ffbh_u32 : aco_opcode::v_ffbh_i32;
1283 Temp msb_rev = bld.tmp(v1);
1284 emit_vop1_instruction(ctx, instr, op, msb_rev);
1285 Temp msb = bld.tmp(v1);
1286 Temp carry = bld.vsub32(Definition(msb), Operand(31u), Operand(msb_rev), true).def(1).getTemp();
1287 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), msb, Operand((uint32_t)-1), carry);
1288 } else {
1289 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1290 nir_print_instr(&instr->instr, stderr);
1291 fprintf(stderr, "\n");
1292 }
1293 break;
1294 }
1295 case nir_op_bitfield_reverse: {
1296 if (dst.regClass() == s1) {
1297 bld.sop1(aco_opcode::s_brev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1298 } else if (dst.regClass() == v1) {
1299 bld.vop1(aco_opcode::v_bfrev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1300 } else {
1301 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1302 nir_print_instr(&instr->instr, stderr);
1303 fprintf(stderr, "\n");
1304 }
1305 break;
1306 }
1307 case nir_op_iadd: {
1308 if (dst.regClass() == s1) {
1309 emit_sop2_instruction(ctx, instr, aco_opcode::s_add_u32, dst, true);
1310 break;
1311 }
1312
1313 Temp src0 = get_alu_src(ctx, instr->src[0]);
1314 Temp src1 = get_alu_src(ctx, instr->src[1]);
1315 if (dst.regClass() == v1) {
1316 bld.vadd32(Definition(dst), Operand(src0), Operand(src1));
1317 break;
1318 }
1319
1320 assert(src0.size() == 2 && src1.size() == 2);
1321 Temp src00 = bld.tmp(src0.type(), 1);
1322 Temp src01 = bld.tmp(dst.type(), 1);
1323 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1324 Temp src10 = bld.tmp(src1.type(), 1);
1325 Temp src11 = bld.tmp(dst.type(), 1);
1326 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1327
1328 if (dst.regClass() == s2) {
1329 Temp carry = bld.tmp(s1);
1330 Temp dst0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1331 Temp dst1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), src01, src11, bld.scc(carry));
1332 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1333 } else if (dst.regClass() == v2) {
1334 Temp dst0 = bld.tmp(v1);
1335 Temp carry = bld.vadd32(Definition(dst0), src00, src10, true).def(1).getTemp();
1336 Temp dst1 = bld.vadd32(bld.def(v1), src01, src11, false, carry);
1337 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1338 } else {
1339 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1340 nir_print_instr(&instr->instr, stderr);
1341 fprintf(stderr, "\n");
1342 }
1343 break;
1344 }
1345 case nir_op_uadd_sat: {
1346 Temp src0 = get_alu_src(ctx, instr->src[0]);
1347 Temp src1 = get_alu_src(ctx, instr->src[1]);
1348 if (dst.regClass() == s1) {
1349 Temp tmp = bld.tmp(s1), carry = bld.tmp(s1);
1350 bld.sop2(aco_opcode::s_add_u32, Definition(tmp), bld.scc(Definition(carry)),
1351 src0, src1);
1352 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t) -1), tmp, bld.scc(carry));
1353 } else if (dst.regClass() == v1) {
1354 if (ctx->options->chip_class >= GFX9) {
1355 aco_ptr<VOP3A_instruction> add{create_instruction<VOP3A_instruction>(aco_opcode::v_add_u32, asVOP3(Format::VOP2), 2, 1)};
1356 add->operands[0] = Operand(src0);
1357 add->operands[1] = Operand(src1);
1358 add->definitions[0] = Definition(dst);
1359 add->clamp = 1;
1360 ctx->block->instructions.emplace_back(std::move(add));
1361 } else {
1362 if (src1.regClass() != v1)
1363 std::swap(src0, src1);
1364 assert(src1.regClass() == v1);
1365 Temp tmp = bld.tmp(v1);
1366 Temp carry = bld.vadd32(Definition(tmp), src0, src1, true).def(1).getTemp();
1367 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), tmp, Operand((uint32_t) -1), carry);
1368 }
1369 } else {
1370 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1371 nir_print_instr(&instr->instr, stderr);
1372 fprintf(stderr, "\n");
1373 }
1374 break;
1375 }
1376 case nir_op_uadd_carry: {
1377 Temp src0 = get_alu_src(ctx, instr->src[0]);
1378 Temp src1 = get_alu_src(ctx, instr->src[1]);
1379 if (dst.regClass() == s1) {
1380 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1381 break;
1382 }
1383 if (dst.regClass() == v1) {
1384 Temp carry = bld.vadd32(bld.def(v1), src0, src1, true).def(1).getTemp();
1385 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), carry);
1386 break;
1387 }
1388
1389 Temp src00 = bld.tmp(src0.type(), 1);
1390 Temp src01 = bld.tmp(dst.type(), 1);
1391 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1392 Temp src10 = bld.tmp(src1.type(), 1);
1393 Temp src11 = bld.tmp(dst.type(), 1);
1394 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1395 if (dst.regClass() == s2) {
1396 Temp carry = bld.tmp(s1);
1397 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1398 carry = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(carry)).def(1).getTemp();
1399 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1400 } else if (dst.regClass() == v2) {
1401 Temp carry = bld.vadd32(bld.def(v1), src00, src10, true).def(1).getTemp();
1402 carry = bld.vadd32(bld.def(v1), src01, src11, true, carry).def(1).getTemp();
1403 carry = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), carry);
1404 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1405 } else {
1406 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1407 nir_print_instr(&instr->instr, stderr);
1408 fprintf(stderr, "\n");
1409 }
1410 break;
1411 }
1412 case nir_op_isub: {
1413 if (dst.regClass() == s1) {
1414 emit_sop2_instruction(ctx, instr, aco_opcode::s_sub_i32, dst, true);
1415 break;
1416 }
1417
1418 Temp src0 = get_alu_src(ctx, instr->src[0]);
1419 Temp src1 = get_alu_src(ctx, instr->src[1]);
1420 if (dst.regClass() == v1) {
1421 bld.vsub32(Definition(dst), src0, src1);
1422 break;
1423 }
1424
1425 Temp src00 = bld.tmp(src0.type(), 1);
1426 Temp src01 = bld.tmp(dst.type(), 1);
1427 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1428 Temp src10 = bld.tmp(src1.type(), 1);
1429 Temp src11 = bld.tmp(dst.type(), 1);
1430 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1431 if (dst.regClass() == s2) {
1432 Temp carry = bld.tmp(s1);
1433 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1434 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), src01, src11, carry);
1435 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1436 } else if (dst.regClass() == v2) {
1437 Temp lower = bld.tmp(v1);
1438 Temp borrow = bld.vsub32(Definition(lower), src00, src10, true).def(1).getTemp();
1439 Temp upper = bld.vsub32(bld.def(v1), src01, src11, false, borrow);
1440 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1441 } else {
1442 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1443 nir_print_instr(&instr->instr, stderr);
1444 fprintf(stderr, "\n");
1445 }
1446 break;
1447 }
1448 case nir_op_usub_borrow: {
1449 Temp src0 = get_alu_src(ctx, instr->src[0]);
1450 Temp src1 = get_alu_src(ctx, instr->src[1]);
1451 if (dst.regClass() == s1) {
1452 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1453 break;
1454 } else if (dst.regClass() == v1) {
1455 Temp borrow = bld.vsub32(bld.def(v1), src0, src1, true).def(1).getTemp();
1456 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), borrow);
1457 break;
1458 }
1459
1460 Temp src00 = bld.tmp(src0.type(), 1);
1461 Temp src01 = bld.tmp(dst.type(), 1);
1462 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1463 Temp src10 = bld.tmp(src1.type(), 1);
1464 Temp src11 = bld.tmp(dst.type(), 1);
1465 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1466 if (dst.regClass() == s2) {
1467 Temp borrow = bld.tmp(s1);
1468 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), src00, src10);
1469 borrow = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(borrow)).def(1).getTemp();
1470 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1471 } else if (dst.regClass() == v2) {
1472 Temp borrow = bld.vsub32(bld.def(v1), src00, src10, true).def(1).getTemp();
1473 borrow = bld.vsub32(bld.def(v1), src01, src11, true, Operand(borrow)).def(1).getTemp();
1474 borrow = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), borrow);
1475 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1476 } else {
1477 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1478 nir_print_instr(&instr->instr, stderr);
1479 fprintf(stderr, "\n");
1480 }
1481 break;
1482 }
1483 case nir_op_imul: {
1484 if (dst.regClass() == v1) {
1485 bld.vop3(aco_opcode::v_mul_lo_u32, Definition(dst),
1486 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1487 } else if (dst.regClass() == s1) {
1488 emit_sop2_instruction(ctx, instr, aco_opcode::s_mul_i32, dst, false);
1489 } else {
1490 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1491 nir_print_instr(&instr->instr, stderr);
1492 fprintf(stderr, "\n");
1493 }
1494 break;
1495 }
1496 case nir_op_umul_high: {
1497 if (dst.regClass() == v1) {
1498 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1499 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1500 bld.sop2(aco_opcode::s_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1501 } else if (dst.regClass() == s1) {
1502 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1503 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1504 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1505 } else {
1506 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1507 nir_print_instr(&instr->instr, stderr);
1508 fprintf(stderr, "\n");
1509 }
1510 break;
1511 }
1512 case nir_op_imul_high: {
1513 if (dst.regClass() == v1) {
1514 bld.vop3(aco_opcode::v_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1515 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1516 bld.sop2(aco_opcode::s_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1517 } else if (dst.regClass() == s1) {
1518 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1519 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1520 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1521 } else {
1522 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1523 nir_print_instr(&instr->instr, stderr);
1524 fprintf(stderr, "\n");
1525 }
1526 break;
1527 }
1528 case nir_op_fmul: {
1529 if (dst.size() == 1) {
1530 emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f32, dst, true);
1531 } else if (dst.size() == 2) {
1532 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), get_alu_src(ctx, instr->src[0]),
1533 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1534 } else {
1535 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1536 nir_print_instr(&instr->instr, stderr);
1537 fprintf(stderr, "\n");
1538 }
1539 break;
1540 }
1541 case nir_op_fadd: {
1542 if (dst.size() == 1) {
1543 emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f32, dst, true);
1544 } else if (dst.size() == 2) {
1545 bld.vop3(aco_opcode::v_add_f64, Definition(dst), get_alu_src(ctx, instr->src[0]),
1546 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1547 } else {
1548 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1549 nir_print_instr(&instr->instr, stderr);
1550 fprintf(stderr, "\n");
1551 }
1552 break;
1553 }
1554 case nir_op_fsub: {
1555 Temp src0 = get_alu_src(ctx, instr->src[0]);
1556 Temp src1 = get_alu_src(ctx, instr->src[1]);
1557 if (dst.size() == 1) {
1558 if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
1559 emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f32, dst, false);
1560 else
1561 emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f32, dst, true);
1562 } else if (dst.size() == 2) {
1563 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst),
1564 get_alu_src(ctx, instr->src[0]),
1565 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1566 VOP3A_instruction* sub = static_cast<VOP3A_instruction*>(add);
1567 sub->neg[1] = true;
1568 } else {
1569 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1570 nir_print_instr(&instr->instr, stderr);
1571 fprintf(stderr, "\n");
1572 }
1573 break;
1574 }
1575 case nir_op_fmax: {
1576 Temp src0 = get_alu_src(ctx, instr->src[0]);
1577 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1578 if (dst.regClass() == v2b) {
1579 // TODO: check fp_mode.must_flush_denorms16_64
1580 Temp tmp = bld.tmp(v1);
1581 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f16, tmp, true);
1582 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1583 } else if (dst.regClass() == v1) {
1584 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1585 } else if (dst.regClass() == v2) {
1586 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1587 Temp tmp = bld.vop3(aco_opcode::v_max_f64, bld.def(v2), src0, src1);
1588 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1589 } else {
1590 bld.vop3(aco_opcode::v_max_f64, Definition(dst), src0, src1);
1591 }
1592 } else {
1593 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1594 nir_print_instr(&instr->instr, stderr);
1595 fprintf(stderr, "\n");
1596 }
1597 break;
1598 }
1599 case nir_op_fmin: {
1600 Temp src0 = get_alu_src(ctx, instr->src[0]);
1601 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1602 if (dst.regClass() == v2b) {
1603 // TODO: check fp_mode.must_flush_denorms16_64
1604 Temp tmp = bld.tmp(v1);
1605 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f16, tmp, true);
1606 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1607 } else if (dst.regClass() == v1) {
1608 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1609 } else if (dst.regClass() == v2) {
1610 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1611 Temp tmp = bld.vop3(aco_opcode::v_min_f64, bld.def(v2), src0, src1);
1612 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1613 } else {
1614 bld.vop3(aco_opcode::v_min_f64, Definition(dst), src0, src1);
1615 }
1616 } else {
1617 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1618 nir_print_instr(&instr->instr, stderr);
1619 fprintf(stderr, "\n");
1620 }
1621 break;
1622 }
1623 case nir_op_fmax3: {
1624 if (dst.size() == 1) {
1625 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1626 } else {
1627 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1628 nir_print_instr(&instr->instr, stderr);
1629 fprintf(stderr, "\n");
1630 }
1631 break;
1632 }
1633 case nir_op_fmin3: {
1634 if (dst.size() == 1) {
1635 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1636 } else {
1637 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1638 nir_print_instr(&instr->instr, stderr);
1639 fprintf(stderr, "\n");
1640 }
1641 break;
1642 }
1643 case nir_op_fmed3: {
1644 if (dst.size() == 1) {
1645 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1646 } else {
1647 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1648 nir_print_instr(&instr->instr, stderr);
1649 fprintf(stderr, "\n");
1650 }
1651 break;
1652 }
1653 case nir_op_umax3: {
1654 if (dst.size() == 1) {
1655 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_u32, dst);
1656 } else {
1657 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1658 nir_print_instr(&instr->instr, stderr);
1659 fprintf(stderr, "\n");
1660 }
1661 break;
1662 }
1663 case nir_op_umin3: {
1664 if (dst.size() == 1) {
1665 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_u32, dst);
1666 } else {
1667 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1668 nir_print_instr(&instr->instr, stderr);
1669 fprintf(stderr, "\n");
1670 }
1671 break;
1672 }
1673 case nir_op_umed3: {
1674 if (dst.size() == 1) {
1675 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_u32, dst);
1676 } else {
1677 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1678 nir_print_instr(&instr->instr, stderr);
1679 fprintf(stderr, "\n");
1680 }
1681 break;
1682 }
1683 case nir_op_imax3: {
1684 if (dst.size() == 1) {
1685 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_i32, dst);
1686 } else {
1687 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1688 nir_print_instr(&instr->instr, stderr);
1689 fprintf(stderr, "\n");
1690 }
1691 break;
1692 }
1693 case nir_op_imin3: {
1694 if (dst.size() == 1) {
1695 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_i32, dst);
1696 } else {
1697 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1698 nir_print_instr(&instr->instr, stderr);
1699 fprintf(stderr, "\n");
1700 }
1701 break;
1702 }
1703 case nir_op_imed3: {
1704 if (dst.size() == 1) {
1705 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_i32, dst);
1706 } else {
1707 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1708 nir_print_instr(&instr->instr, stderr);
1709 fprintf(stderr, "\n");
1710 }
1711 break;
1712 }
1713 case nir_op_cube_face_coord: {
1714 Temp in = get_alu_src(ctx, instr->src[0], 3);
1715 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1716 emit_extract_vector(ctx, in, 1, v1),
1717 emit_extract_vector(ctx, in, 2, v1) };
1718 Temp ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), src[0], src[1], src[2]);
1719 ma = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), ma);
1720 Temp sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), src[0], src[1], src[2]);
1721 Temp tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), src[0], src[1], src[2]);
1722 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, ma, Operand(0x3f000000u/*0.5*/));
1723 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, ma, Operand(0x3f000000u/*0.5*/));
1724 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), sc, tc);
1725 break;
1726 }
1727 case nir_op_cube_face_index: {
1728 Temp in = get_alu_src(ctx, instr->src[0], 3);
1729 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1730 emit_extract_vector(ctx, in, 1, v1),
1731 emit_extract_vector(ctx, in, 2, v1) };
1732 bld.vop3(aco_opcode::v_cubeid_f32, Definition(dst), src[0], src[1], src[2]);
1733 break;
1734 }
1735 case nir_op_bcsel: {
1736 emit_bcsel(ctx, instr, dst);
1737 break;
1738 }
1739 case nir_op_frsq: {
1740 Temp src = get_alu_src(ctx, instr->src[0]);
1741 if (dst.regClass() == v2b) {
1742 Temp tmp = bld.vop1(aco_opcode::v_rsq_f16, bld.def(v1), src);
1743 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1744 } else if (dst.regClass() == v1) {
1745 emit_rsq(ctx, bld, Definition(dst), src);
1746 } else if (dst.regClass() == v2) {
1747 emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f64, dst);
1748 } else {
1749 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1750 nir_print_instr(&instr->instr, stderr);
1751 fprintf(stderr, "\n");
1752 }
1753 break;
1754 }
1755 case nir_op_fneg: {
1756 Temp src = get_alu_src(ctx, instr->src[0]);
1757 if (dst.regClass() == v2b) {
1758 Temp tmp = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), Operand(0x8000u), as_vgpr(ctx, src));
1759 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1760 } else if (dst.regClass() == v1) {
1761 if (ctx->block->fp_mode.must_flush_denorms32)
1762 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1763 bld.vop2(aco_opcode::v_xor_b32, Definition(dst), Operand(0x80000000u), as_vgpr(ctx, src));
1764 } else if (dst.regClass() == v2) {
1765 if (ctx->block->fp_mode.must_flush_denorms16_64)
1766 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1767 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1768 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1769 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), Operand(0x80000000u), upper);
1770 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1771 } else {
1772 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1773 nir_print_instr(&instr->instr, stderr);
1774 fprintf(stderr, "\n");
1775 }
1776 break;
1777 }
1778 case nir_op_fabs: {
1779 Temp src = get_alu_src(ctx, instr->src[0]);
1780 if (dst.regClass() == v2b) {
1781 Temp tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7FFFu), as_vgpr(ctx, src));
1782 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1783 } else if (dst.regClass() == v1) {
1784 if (ctx->block->fp_mode.must_flush_denorms32)
1785 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1786 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0x7FFFFFFFu), as_vgpr(ctx, src));
1787 } else if (dst.regClass() == v2) {
1788 if (ctx->block->fp_mode.must_flush_denorms16_64)
1789 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1790 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1791 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1792 upper = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7FFFFFFFu), upper);
1793 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1794 } else {
1795 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1796 nir_print_instr(&instr->instr, stderr);
1797 fprintf(stderr, "\n");
1798 }
1799 break;
1800 }
1801 case nir_op_fsat: {
1802 Temp src = get_alu_src(ctx, instr->src[0]);
1803 if (dst.size() == 1) {
1804 bld.vop3(aco_opcode::v_med3_f32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
1805 /* apparently, it is not necessary to flush denorms if this instruction is used with these operands */
1806 // TODO: confirm that this holds under any circumstances
1807 } else if (dst.size() == 2) {
1808 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src, Operand(0u));
1809 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(add);
1810 vop3->clamp = true;
1811 } else {
1812 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1813 nir_print_instr(&instr->instr, stderr);
1814 fprintf(stderr, "\n");
1815 }
1816 break;
1817 }
1818 case nir_op_flog2: {
1819 Temp src = get_alu_src(ctx, instr->src[0]);
1820 if (dst.regClass() == v2b) {
1821 Temp tmp = bld.vop1(aco_opcode::v_log_f16, bld.def(v1), src);
1822 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1823 } else if (dst.regClass() == v1) {
1824 emit_log2(ctx, bld, Definition(dst), src);
1825 } else {
1826 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1827 nir_print_instr(&instr->instr, stderr);
1828 fprintf(stderr, "\n");
1829 }
1830 break;
1831 }
1832 case nir_op_frcp: {
1833 Temp src = get_alu_src(ctx, instr->src[0]);
1834 if (dst.regClass() == v2b) {
1835 Temp tmp = bld.vop1(aco_opcode::v_rcp_f16, bld.def(v1), src);
1836 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1837 } else if (dst.regClass() == v1) {
1838 emit_rcp(ctx, bld, Definition(dst), src);
1839 } else if (dst.regClass() == v2) {
1840 emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f64, dst);
1841 } else {
1842 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1843 nir_print_instr(&instr->instr, stderr);
1844 fprintf(stderr, "\n");
1845 }
1846 break;
1847 }
1848 case nir_op_fexp2: {
1849 if (dst.regClass() == v2b) {
1850 Temp src = get_alu_src(ctx, instr->src[0]);
1851 Temp tmp = bld.vop1(aco_opcode::v_exp_f16, bld.def(v1), src);
1852 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1853 } else if (dst.regClass() == v1) {
1854 emit_vop1_instruction(ctx, instr, aco_opcode::v_exp_f32, dst);
1855 } else {
1856 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1857 nir_print_instr(&instr->instr, stderr);
1858 fprintf(stderr, "\n");
1859 }
1860 break;
1861 }
1862 case nir_op_fsqrt: {
1863 Temp src = get_alu_src(ctx, instr->src[0]);
1864 if (dst.regClass() == v2b) {
1865 Temp tmp = bld.vop1(aco_opcode::v_sqrt_f16, bld.def(v1), src);
1866 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1867 } else if (dst.regClass() == v1) {
1868 emit_sqrt(ctx, bld, Definition(dst), src);
1869 } else if (dst.regClass() == v2) {
1870 emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f64, dst);
1871 } else {
1872 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1873 nir_print_instr(&instr->instr, stderr);
1874 fprintf(stderr, "\n");
1875 }
1876 break;
1877 }
1878 case nir_op_ffract: {
1879 if (dst.regClass() == v2b) {
1880 Temp src = get_alu_src(ctx, instr->src[0]);
1881 Temp tmp = bld.vop1(aco_opcode::v_fract_f16, bld.def(v1), src);
1882 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1883 } else if (dst.regClass() == v1) {
1884 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f32, dst);
1885 } else if (dst.regClass() == v2) {
1886 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f64, dst);
1887 } else {
1888 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1889 nir_print_instr(&instr->instr, stderr);
1890 fprintf(stderr, "\n");
1891 }
1892 break;
1893 }
1894 case nir_op_ffloor: {
1895 Temp src = get_alu_src(ctx, instr->src[0]);
1896 if (dst.regClass() == v2b) {
1897 Temp tmp = bld.vop1(aco_opcode::v_floor_f16, bld.def(v1), src);
1898 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1899 } else if (dst.regClass() == v1) {
1900 emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f32, dst);
1901 } else if (dst.regClass() == v2) {
1902 emit_floor_f64(ctx, bld, Definition(dst), src);
1903 } else {
1904 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1905 nir_print_instr(&instr->instr, stderr);
1906 fprintf(stderr, "\n");
1907 }
1908 break;
1909 }
1910 case nir_op_fceil: {
1911 Temp src0 = get_alu_src(ctx, instr->src[0]);
1912 if (dst.regClass() == v2b) {
1913 Temp tmp = bld.vop1(aco_opcode::v_ceil_f16, bld.def(v1), src0);
1914 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1915 } else if (dst.regClass() == v1) {
1916 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f32, dst);
1917 } else if (dst.regClass() == v2) {
1918 if (ctx->options->chip_class >= GFX7) {
1919 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f64, dst);
1920 } else {
1921 /* GFX6 doesn't support V_CEIL_F64, lower it. */
1922 /* trunc = trunc(src0)
1923 * if (src0 > 0.0 && src0 != trunc)
1924 * trunc += 1.0
1925 */
1926 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src0);
1927 Temp tmp0 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.def(bld.lm), src0, Operand(0u));
1928 Temp tmp1 = bld.vopc(aco_opcode::v_cmp_lg_f64, bld.hint_vcc(bld.def(bld.lm)), src0, trunc);
1929 Temp cond = bld.sop2(aco_opcode::s_and_b64, bld.hint_vcc(bld.def(s2)), bld.def(s1, scc), tmp0, tmp1);
1930 Temp add = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), bld.copy(bld.def(v1), Operand(0u)), bld.copy(bld.def(v1), Operand(0x3ff00000u)), cond);
1931 add = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), bld.copy(bld.def(v1), Operand(0u)), add);
1932 bld.vop3(aco_opcode::v_add_f64, Definition(dst), trunc, add);
1933 }
1934 } else {
1935 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1936 nir_print_instr(&instr->instr, stderr);
1937 fprintf(stderr, "\n");
1938 }
1939 break;
1940 }
1941 case nir_op_ftrunc: {
1942 Temp src = get_alu_src(ctx, instr->src[0]);
1943 if (dst.regClass() == v2b) {
1944 Temp tmp = bld.vop1(aco_opcode::v_trunc_f16, bld.def(v1), src);
1945 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1946 } else if (dst.regClass() == v1) {
1947 emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f32, dst);
1948 } else if (dst.regClass() == v2) {
1949 emit_trunc_f64(ctx, bld, Definition(dst), src);
1950 } else {
1951 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1952 nir_print_instr(&instr->instr, stderr);
1953 fprintf(stderr, "\n");
1954 }
1955 break;
1956 }
1957 case nir_op_fround_even: {
1958 Temp src0 = get_alu_src(ctx, instr->src[0]);
1959 if (dst.regClass() == v2b) {
1960 Temp tmp = bld.vop1(aco_opcode::v_rndne_f16, bld.def(v1), src0);
1961 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1962 } else if (dst.regClass() == v1) {
1963 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f32, dst);
1964 } else if (dst.regClass() == v2) {
1965 if (ctx->options->chip_class >= GFX7) {
1966 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f64, dst);
1967 } else {
1968 /* GFX6 doesn't support V_RNDNE_F64, lower it. */
1969 Temp src0_lo = bld.tmp(v1), src0_hi = bld.tmp(v1);
1970 bld.pseudo(aco_opcode::p_split_vector, Definition(src0_lo), Definition(src0_hi), src0);
1971
1972 Temp bitmask = bld.sop1(aco_opcode::s_brev_b32, bld.def(s1), bld.copy(bld.def(s1), Operand(-2u)));
1973 Temp bfi = bld.vop3(aco_opcode::v_bfi_b32, bld.def(v1), bitmask, bld.copy(bld.def(v1), Operand(0x43300000u)), as_vgpr(ctx, src0_hi));
1974 Temp tmp = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), src0, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
1975 Instruction *sub = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), tmp, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
1976 static_cast<VOP3A_instruction*>(sub)->neg[1] = true;
1977 tmp = sub->definitions[0].getTemp();
1978
1979 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x432fffffu));
1980 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.hint_vcc(bld.def(bld.lm)), src0, v);
1981 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
1982 Temp cond = vop3->definitions[0].getTemp();
1983
1984 Temp tmp_lo = bld.tmp(v1), tmp_hi = bld.tmp(v1);
1985 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp_lo), Definition(tmp_hi), tmp);
1986 Temp dst0 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_lo, as_vgpr(ctx, src0_lo), cond);
1987 Temp dst1 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_hi, as_vgpr(ctx, src0_hi), cond);
1988
1989 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1990 }
1991 } else {
1992 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1993 nir_print_instr(&instr->instr, stderr);
1994 fprintf(stderr, "\n");
1995 }
1996 break;
1997 }
1998 case nir_op_fsin:
1999 case nir_op_fcos: {
2000 Temp src = get_alu_src(ctx, instr->src[0]);
2001 aco_ptr<Instruction> norm;
2002 if (dst.size() == 1) {
2003 Temp half_pi = bld.copy(bld.def(s1), Operand(0x3e22f983u));
2004 Temp tmp = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), half_pi, as_vgpr(ctx, src));
2005
2006 /* before GFX9, v_sin_f32 and v_cos_f32 had a valid input domain of [-256, +256] */
2007 if (ctx->options->chip_class < GFX9)
2008 tmp = bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), tmp);
2009
2010 aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f32 : aco_opcode::v_cos_f32;
2011 bld.vop1(opcode, Definition(dst), tmp);
2012 } else {
2013 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2014 nir_print_instr(&instr->instr, stderr);
2015 fprintf(stderr, "\n");
2016 }
2017 break;
2018 }
2019 case nir_op_ldexp: {
2020 if (dst.size() == 1) {
2021 bld.vop3(aco_opcode::v_ldexp_f32, Definition(dst),
2022 as_vgpr(ctx, get_alu_src(ctx, instr->src[0])),
2023 get_alu_src(ctx, instr->src[1]));
2024 } else if (dst.size() == 2) {
2025 bld.vop3(aco_opcode::v_ldexp_f64, Definition(dst),
2026 as_vgpr(ctx, get_alu_src(ctx, instr->src[0])),
2027 get_alu_src(ctx, instr->src[1]));
2028 } else {
2029 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2030 nir_print_instr(&instr->instr, stderr);
2031 fprintf(stderr, "\n");
2032 }
2033 break;
2034 }
2035 case nir_op_frexp_sig: {
2036 Temp src = get_alu_src(ctx, instr->src[0]);
2037 if (dst.regClass() == v2b) {
2038 Temp tmp = bld.vop1(aco_opcode::v_frexp_mant_f16, bld.def(v1), src);
2039 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2040 } else if (dst.regClass() == v1) {
2041 bld.vop1(aco_opcode::v_frexp_mant_f32, Definition(dst), src);
2042 } else if (dst.regClass() == v2) {
2043 bld.vop1(aco_opcode::v_frexp_mant_f64, Definition(dst), src);
2044 } else {
2045 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2046 nir_print_instr(&instr->instr, stderr);
2047 fprintf(stderr, "\n");
2048 }
2049 break;
2050 }
2051 case nir_op_frexp_exp: {
2052 Temp src = get_alu_src(ctx, instr->src[0]);
2053 if (instr->src[0].src.ssa->bit_size == 16) {
2054 Temp tmp = bld.vop1(aco_opcode::v_frexp_exp_i16_f16, bld.def(v1), src);
2055 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), tmp, Operand(0u));
2056 } else if (instr->src[0].src.ssa->bit_size == 32) {
2057 bld.vop1(aco_opcode::v_frexp_exp_i32_f32, Definition(dst), src);
2058 } else if (instr->src[0].src.ssa->bit_size == 64) {
2059 bld.vop1(aco_opcode::v_frexp_exp_i32_f64, Definition(dst), src);
2060 } else {
2061 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2062 nir_print_instr(&instr->instr, stderr);
2063 fprintf(stderr, "\n");
2064 }
2065 break;
2066 }
2067 case nir_op_fsign: {
2068 Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
2069 if (dst.size() == 1) {
2070 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2071 src = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0x3f800000u), src, cond);
2072 cond = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2073 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0xbf800000u), src, cond);
2074 } else if (dst.size() == 2) {
2075 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2076 Temp tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0x3FF00000u));
2077 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, emit_extract_vector(ctx, src, 1, v1), cond);
2078
2079 cond = bld.vopc(aco_opcode::v_cmp_le_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2080 tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0xBFF00000u));
2081 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, upper, cond);
2082
2083 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
2084 } else {
2085 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2086 nir_print_instr(&instr->instr, stderr);
2087 fprintf(stderr, "\n");
2088 }
2089 break;
2090 }
2091 case nir_op_f2f16:
2092 case nir_op_f2f16_rtne: {
2093 Temp src = get_alu_src(ctx, instr->src[0]);
2094 if (instr->src[0].src.ssa->bit_size == 64)
2095 src = bld.vop1(aco_opcode::v_cvt_f32_f64, bld.def(v1), src);
2096 src = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), src);
2097 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), src);
2098 break;
2099 }
2100 case nir_op_f2f16_rtz: {
2101 Temp src = get_alu_src(ctx, instr->src[0]);
2102 if (instr->src[0].src.ssa->bit_size == 64)
2103 src = bld.vop1(aco_opcode::v_cvt_f32_f64, bld.def(v1), src);
2104 src = bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, bld.def(v1), src, Operand(0u));
2105 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), src);
2106 break;
2107 }
2108 case nir_op_f2f32: {
2109 if (instr->src[0].src.ssa->bit_size == 16) {
2110 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f16, dst);
2111 } else if (instr->src[0].src.ssa->bit_size == 64) {
2112 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f64, dst);
2113 } else {
2114 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2115 nir_print_instr(&instr->instr, stderr);
2116 fprintf(stderr, "\n");
2117 }
2118 break;
2119 }
2120 case nir_op_f2f64: {
2121 Temp src = get_alu_src(ctx, instr->src[0]);
2122 if (instr->src[0].src.ssa->bit_size == 16)
2123 src = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2124 bld.vop1(aco_opcode::v_cvt_f64_f32, Definition(dst), src);
2125 break;
2126 }
2127 case nir_op_i2f32: {
2128 assert(dst.size() == 1);
2129 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_i32, dst);
2130 break;
2131 }
2132 case nir_op_i2f64: {
2133 if (instr->src[0].src.ssa->bit_size == 32) {
2134 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_i32, dst);
2135 } else if (instr->src[0].src.ssa->bit_size == 64) {
2136 Temp src = get_alu_src(ctx, instr->src[0]);
2137 RegClass rc = RegClass(src.type(), 1);
2138 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
2139 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
2140 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
2141 upper = bld.vop1(aco_opcode::v_cvt_f64_i32, bld.def(v2), upper);
2142 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
2143 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
2144
2145 } else {
2146 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2147 nir_print_instr(&instr->instr, stderr);
2148 fprintf(stderr, "\n");
2149 }
2150 break;
2151 }
2152 case nir_op_u2f32: {
2153 assert(dst.size() == 1);
2154 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_u32, dst);
2155 break;
2156 }
2157 case nir_op_u2f64: {
2158 if (instr->src[0].src.ssa->bit_size == 32) {
2159 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_u32, dst);
2160 } else if (instr->src[0].src.ssa->bit_size == 64) {
2161 Temp src = get_alu_src(ctx, instr->src[0]);
2162 RegClass rc = RegClass(src.type(), 1);
2163 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
2164 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
2165 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
2166 upper = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), upper);
2167 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
2168 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
2169 } else {
2170 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2171 nir_print_instr(&instr->instr, stderr);
2172 fprintf(stderr, "\n");
2173 }
2174 break;
2175 }
2176 case nir_op_f2i16: {
2177 Temp src = get_alu_src(ctx, instr->src[0]);
2178 if (instr->src[0].src.ssa->bit_size == 16)
2179 src = bld.vop1(aco_opcode::v_cvt_i16_f16, bld.def(v1), src);
2180 else if (instr->src[0].src.ssa->bit_size == 32)
2181 src = bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), src);
2182 else
2183 src = bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), src);
2184
2185 if (dst.type() == RegType::vgpr)
2186 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), src);
2187 else
2188 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
2189 break;
2190 }
2191 case nir_op_f2u16: {
2192 Temp src = get_alu_src(ctx, instr->src[0]);
2193 if (instr->src[0].src.ssa->bit_size == 16)
2194 src = bld.vop1(aco_opcode::v_cvt_u16_f16, bld.def(v1), src);
2195 else if (instr->src[0].src.ssa->bit_size == 32)
2196 src = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), src);
2197 else
2198 src = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), src);
2199
2200 if (dst.type() == RegType::vgpr)
2201 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), src);
2202 else
2203 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
2204 break;
2205 }
2206 case nir_op_f2i32: {
2207 Temp src = get_alu_src(ctx, instr->src[0]);
2208 if (instr->src[0].src.ssa->bit_size == 32) {
2209 if (dst.type() == RegType::vgpr)
2210 bld.vop1(aco_opcode::v_cvt_i32_f32, Definition(dst), src);
2211 else
2212 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2213 bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), src));
2214
2215 } else if (instr->src[0].src.ssa->bit_size == 64) {
2216 if (dst.type() == RegType::vgpr)
2217 bld.vop1(aco_opcode::v_cvt_i32_f64, Definition(dst), src);
2218 else
2219 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2220 bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), src));
2221
2222 } else {
2223 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2224 nir_print_instr(&instr->instr, stderr);
2225 fprintf(stderr, "\n");
2226 }
2227 break;
2228 }
2229 case nir_op_f2u32: {
2230 Temp src = get_alu_src(ctx, instr->src[0]);
2231 if (instr->src[0].src.ssa->bit_size == 32) {
2232 if (dst.type() == RegType::vgpr)
2233 bld.vop1(aco_opcode::v_cvt_u32_f32, Definition(dst), src);
2234 else
2235 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2236 bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), src));
2237
2238 } else if (instr->src[0].src.ssa->bit_size == 64) {
2239 if (dst.type() == RegType::vgpr)
2240 bld.vop1(aco_opcode::v_cvt_u32_f64, Definition(dst), src);
2241 else
2242 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2243 bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), src));
2244
2245 } else {
2246 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2247 nir_print_instr(&instr->instr, stderr);
2248 fprintf(stderr, "\n");
2249 }
2250 break;
2251 }
2252 case nir_op_f2i64: {
2253 Temp src = get_alu_src(ctx, instr->src[0]);
2254 if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::vgpr) {
2255 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2256 exponent = bld.vop3(aco_opcode::v_med3_i32, bld.def(v1), Operand(0x0u), exponent, Operand(64u));
2257 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2258 Temp sign = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
2259 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2260 mantissa = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(7u), mantissa);
2261 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2262 Temp new_exponent = bld.tmp(v1);
2263 Temp borrow = bld.vsub32(Definition(new_exponent), Operand(63u), exponent, true).def(1).getTemp();
2264 if (ctx->program->chip_class >= GFX8)
2265 mantissa = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), new_exponent, mantissa);
2266 else
2267 mantissa = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), mantissa, new_exponent);
2268 Temp saturate = bld.vop1(aco_opcode::v_bfrev_b32, bld.def(v1), Operand(0xfffffffeu));
2269 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2270 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2271 lower = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), lower, Operand(0xffffffffu), borrow);
2272 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), upper, saturate, borrow);
2273 lower = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, lower);
2274 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, upper);
2275 Temp new_lower = bld.tmp(v1);
2276 borrow = bld.vsub32(Definition(new_lower), lower, sign, true).def(1).getTemp();
2277 Temp new_upper = bld.vsub32(bld.def(v1), upper, sign, false, borrow);
2278 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), new_lower, new_upper);
2279
2280 } else if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::sgpr) {
2281 if (src.type() == RegType::vgpr)
2282 src = bld.as_uniform(src);
2283 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2284 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2285 exponent = bld.sop2(aco_opcode::s_max_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2286 exponent = bld.sop2(aco_opcode::s_min_u32, bld.def(s1), bld.def(s1, scc), Operand(64u), exponent);
2287 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2288 Temp sign = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
2289 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2290 mantissa = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), mantissa, Operand(7u));
2291 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2292 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(63u), exponent);
2293 mantissa = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent);
2294 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), exponent, Operand(0xffffffffu)); // exp >= 64
2295 Temp saturate = bld.sop1(aco_opcode::s_brev_b64, bld.def(s2), Operand(0xfffffffeu));
2296 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), saturate, mantissa, cond);
2297 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2298 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2299 lower = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, lower);
2300 upper = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, upper);
2301 Temp borrow = bld.tmp(s1);
2302 lower = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), lower, sign);
2303 upper = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), upper, sign, borrow);
2304 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2305
2306 } else if (instr->src[0].src.ssa->bit_size == 64) {
2307 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2308 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2309 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2310 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2311 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2312 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2313 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2314 Temp upper = bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), floor);
2315 if (dst.type() == RegType::sgpr) {
2316 lower = bld.as_uniform(lower);
2317 upper = bld.as_uniform(upper);
2318 }
2319 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2320
2321 } else {
2322 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2323 nir_print_instr(&instr->instr, stderr);
2324 fprintf(stderr, "\n");
2325 }
2326 break;
2327 }
2328 case nir_op_f2u64: {
2329 Temp src = get_alu_src(ctx, instr->src[0]);
2330 if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::vgpr) {
2331 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2332 Temp exponent_in_range = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(64u), exponent);
2333 exponent = bld.vop2(aco_opcode::v_max_i32, bld.def(v1), Operand(0x0u), exponent);
2334 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2335 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2336 Temp exponent_small = bld.vsub32(bld.def(v1), Operand(24u), exponent);
2337 Temp small = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), exponent_small, mantissa);
2338 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2339 Temp new_exponent = bld.tmp(v1);
2340 Temp cond_small = bld.vsub32(Definition(new_exponent), exponent, Operand(24u), true).def(1).getTemp();
2341 if (ctx->program->chip_class >= GFX8)
2342 mantissa = bld.vop3(aco_opcode::v_lshlrev_b64, bld.def(v2), new_exponent, mantissa);
2343 else
2344 mantissa = bld.vop3(aco_opcode::v_lshl_b64, bld.def(v2), mantissa, new_exponent);
2345 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2346 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2347 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), lower, small, cond_small);
2348 upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), upper, Operand(0u), cond_small);
2349 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), lower, exponent_in_range);
2350 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), upper, exponent_in_range);
2351 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2352
2353 } else if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::sgpr) {
2354 if (src.type() == RegType::vgpr)
2355 src = bld.as_uniform(src);
2356 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2357 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2358 exponent = bld.sop2(aco_opcode::s_max_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2359 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2360 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2361 Temp exponent_small = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(24u), exponent);
2362 Temp small = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), mantissa, exponent_small);
2363 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2364 Temp exponent_large = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(24u));
2365 mantissa = bld.sop2(aco_opcode::s_lshl_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent_large);
2366 Temp cond = bld.sopc(aco_opcode::s_cmp_ge_i32, bld.def(s1, scc), Operand(64u), exponent);
2367 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), mantissa, Operand(0xffffffffu), cond);
2368 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2369 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2370 Temp cond_small = bld.sopc(aco_opcode::s_cmp_le_i32, bld.def(s1, scc), exponent, Operand(24u));
2371 lower = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), small, lower, cond_small);
2372 upper = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), Operand(0u), upper, cond_small);
2373 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2374
2375 } else if (instr->src[0].src.ssa->bit_size == 64) {
2376 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2377 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2378 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2379 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2380 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2381 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2382 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2383 Temp upper = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), floor);
2384 if (dst.type() == RegType::sgpr) {
2385 lower = bld.as_uniform(lower);
2386 upper = bld.as_uniform(upper);
2387 }
2388 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2389
2390 } else {
2391 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2392 nir_print_instr(&instr->instr, stderr);
2393 fprintf(stderr, "\n");
2394 }
2395 break;
2396 }
2397 case nir_op_b2f32: {
2398 Temp src = get_alu_src(ctx, instr->src[0]);
2399 assert(src.regClass() == bld.lm);
2400
2401 if (dst.regClass() == s1) {
2402 src = bool_to_scalar_condition(ctx, src);
2403 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3f800000u), src);
2404 } else if (dst.regClass() == v1) {
2405 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
2406 } else {
2407 unreachable("Wrong destination register class for nir_op_b2f32.");
2408 }
2409 break;
2410 }
2411 case nir_op_b2f64: {
2412 Temp src = get_alu_src(ctx, instr->src[0]);
2413 assert(src.regClass() == bld.lm);
2414
2415 if (dst.regClass() == s2) {
2416 src = bool_to_scalar_condition(ctx, src);
2417 bld.sop2(aco_opcode::s_cselect_b64, Definition(dst), Operand(0x3f800000u), Operand(0u), bld.scc(src));
2418 } else if (dst.regClass() == v2) {
2419 Temp one = bld.vop1(aco_opcode::v_mov_b32, bld.def(v2), Operand(0x3FF00000u));
2420 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), one, src);
2421 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
2422 } else {
2423 unreachable("Wrong destination register class for nir_op_b2f64.");
2424 }
2425 break;
2426 }
2427 case nir_op_i2i8:
2428 case nir_op_u2u8: {
2429 Temp src = get_alu_src(ctx, instr->src[0]);
2430 /* we can actually just say dst = src */
2431 if (src.regClass() == s1)
2432 bld.copy(Definition(dst), src);
2433 else
2434 emit_extract_vector(ctx, src, 0, dst);
2435 break;
2436 }
2437 case nir_op_i2i16: {
2438 Temp src = get_alu_src(ctx, instr->src[0]);
2439 if (instr->src[0].src.ssa->bit_size == 8) {
2440 if (dst.regClass() == s1) {
2441 bld.sop1(aco_opcode::s_sext_i32_i8, Definition(dst), Operand(src));
2442 } else {
2443 assert(src.regClass() == v1b);
2444 aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
2445 sdwa->operands[0] = Operand(src);
2446 sdwa->definitions[0] = Definition(dst);
2447 sdwa->sel[0] = sdwa_sbyte;
2448 sdwa->dst_sel = sdwa_sword;
2449 ctx->block->instructions.emplace_back(std::move(sdwa));
2450 }
2451 } else {
2452 Temp src = get_alu_src(ctx, instr->src[0]);
2453 /* we can actually just say dst = src */
2454 if (src.regClass() == s1)
2455 bld.copy(Definition(dst), src);
2456 else
2457 emit_extract_vector(ctx, src, 0, dst);
2458 }
2459 break;
2460 }
2461 case nir_op_u2u16: {
2462 Temp src = get_alu_src(ctx, instr->src[0]);
2463 if (instr->src[0].src.ssa->bit_size == 8) {
2464 if (dst.regClass() == s1)
2465 bld.sop2(aco_opcode::s_and_b32, Definition(dst), bld.def(s1, scc), Operand(0xFFu), src);
2466 else {
2467 assert(src.regClass() == v1b);
2468 aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
2469 sdwa->operands[0] = Operand(src);
2470 sdwa->definitions[0] = Definition(dst);
2471 sdwa->sel[0] = sdwa_ubyte;
2472 sdwa->dst_sel = sdwa_uword;
2473 ctx->block->instructions.emplace_back(std::move(sdwa));
2474 }
2475 } else {
2476 Temp src = get_alu_src(ctx, instr->src[0]);
2477 /* we can actually just say dst = src */
2478 if (src.regClass() == s1)
2479 bld.copy(Definition(dst), src);
2480 else
2481 emit_extract_vector(ctx, src, 0, dst);
2482 }
2483 break;
2484 }
2485 case nir_op_i2i32: {
2486 Temp src = get_alu_src(ctx, instr->src[0]);
2487 if (instr->src[0].src.ssa->bit_size == 8) {
2488 if (dst.regClass() == s1) {
2489 bld.sop1(aco_opcode::s_sext_i32_i8, Definition(dst), Operand(src));
2490 } else {
2491 assert(src.regClass() == v1b);
2492 aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
2493 sdwa->operands[0] = Operand(src);
2494 sdwa->definitions[0] = Definition(dst);
2495 sdwa->sel[0] = sdwa_sbyte;
2496 sdwa->dst_sel = sdwa_sdword;
2497 ctx->block->instructions.emplace_back(std::move(sdwa));
2498 }
2499 } else if (instr->src[0].src.ssa->bit_size == 16) {
2500 if (dst.regClass() == s1) {
2501 bld.sop1(aco_opcode::s_sext_i32_i16, Definition(dst), Operand(src));
2502 } else {
2503 assert(src.regClass() == v2b);
2504 aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
2505 sdwa->operands[0] = Operand(src);
2506 sdwa->definitions[0] = Definition(dst);
2507 sdwa->sel[0] = sdwa_sword;
2508 sdwa->dst_sel = sdwa_udword;
2509 ctx->block->instructions.emplace_back(std::move(sdwa));
2510 }
2511 } else if (instr->src[0].src.ssa->bit_size == 64) {
2512 /* we can actually just say dst = src, as it would map the lower register */
2513 emit_extract_vector(ctx, src, 0, dst);
2514 } else {
2515 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2516 nir_print_instr(&instr->instr, stderr);
2517 fprintf(stderr, "\n");
2518 }
2519 break;
2520 }
2521 case nir_op_u2u32: {
2522 Temp src = get_alu_src(ctx, instr->src[0]);
2523 if (instr->src[0].src.ssa->bit_size == 8) {
2524 if (dst.regClass() == s1)
2525 bld.sop2(aco_opcode::s_and_b32, Definition(dst), bld.def(s1, scc), Operand(0xFFu), src);
2526 else {
2527 assert(src.regClass() == v1b);
2528 aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
2529 sdwa->operands[0] = Operand(src);
2530 sdwa->definitions[0] = Definition(dst);
2531 sdwa->sel[0] = sdwa_ubyte;
2532 sdwa->dst_sel = sdwa_udword;
2533 ctx->block->instructions.emplace_back(std::move(sdwa));
2534 }
2535 } else if (instr->src[0].src.ssa->bit_size == 16) {
2536 if (dst.regClass() == s1) {
2537 bld.sop2(aco_opcode::s_and_b32, Definition(dst), bld.def(s1, scc), Operand(0xFFFFu), src);
2538 } else {
2539 assert(src.regClass() == v2b);
2540 aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
2541 sdwa->operands[0] = Operand(src);
2542 sdwa->definitions[0] = Definition(dst);
2543 sdwa->sel[0] = sdwa_uword;
2544 sdwa->dst_sel = sdwa_udword;
2545 ctx->block->instructions.emplace_back(std::move(sdwa));
2546 }
2547 } else if (instr->src[0].src.ssa->bit_size == 64) {
2548 /* we can actually just say dst = src, as it would map the lower register */
2549 emit_extract_vector(ctx, src, 0, dst);
2550 } else {
2551 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2552 nir_print_instr(&instr->instr, stderr);
2553 fprintf(stderr, "\n");
2554 }
2555 break;
2556 }
2557 case nir_op_i2i64: {
2558 Temp src = get_alu_src(ctx, instr->src[0]);
2559 if (src.regClass() == s1) {
2560 Temp high = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
2561 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, high);
2562 } else if (src.regClass() == v1) {
2563 Temp high = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
2564 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, high);
2565 } else {
2566 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2567 nir_print_instr(&instr->instr, stderr);
2568 fprintf(stderr, "\n");
2569 }
2570 break;
2571 }
2572 case nir_op_u2u64: {
2573 Temp src = get_alu_src(ctx, instr->src[0]);
2574 if (instr->src[0].src.ssa->bit_size == 32) {
2575 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, Operand(0u));
2576 } else {
2577 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2578 nir_print_instr(&instr->instr, stderr);
2579 fprintf(stderr, "\n");
2580 }
2581 break;
2582 }
2583 case nir_op_b2b32:
2584 case nir_op_b2i32: {
2585 Temp src = get_alu_src(ctx, instr->src[0]);
2586 assert(src.regClass() == bld.lm);
2587
2588 if (dst.regClass() == s1) {
2589 // TODO: in a post-RA optimization, we can check if src is in VCC, and directly use VCCNZ
2590 bool_to_scalar_condition(ctx, src, dst);
2591 } else if (dst.regClass() == v1) {
2592 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), src);
2593 } else {
2594 unreachable("Invalid register class for b2i32");
2595 }
2596 break;
2597 }
2598 case nir_op_b2b1:
2599 case nir_op_i2b1: {
2600 Temp src = get_alu_src(ctx, instr->src[0]);
2601 assert(dst.regClass() == bld.lm);
2602
2603 if (src.type() == RegType::vgpr) {
2604 assert(src.regClass() == v1 || src.regClass() == v2);
2605 assert(dst.regClass() == bld.lm);
2606 bld.vopc(src.size() == 2 ? aco_opcode::v_cmp_lg_u64 : aco_opcode::v_cmp_lg_u32,
2607 Definition(dst), Operand(0u), src).def(0).setHint(vcc);
2608 } else {
2609 assert(src.regClass() == s1 || src.regClass() == s2);
2610 Temp tmp;
2611 if (src.regClass() == s2 && ctx->program->chip_class <= GFX7) {
2612 tmp = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), Operand(0u), src).def(1).getTemp();
2613 } else {
2614 tmp = bld.sopc(src.size() == 2 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::s_cmp_lg_u32,
2615 bld.scc(bld.def(s1)), Operand(0u), src);
2616 }
2617 bool_to_vector_condition(ctx, tmp, dst);
2618 }
2619 break;
2620 }
2621 case nir_op_pack_64_2x32_split: {
2622 Temp src0 = get_alu_src(ctx, instr->src[0]);
2623 Temp src1 = get_alu_src(ctx, instr->src[1]);
2624
2625 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
2626 break;
2627 }
2628 case nir_op_unpack_64_2x32_split_x:
2629 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
2630 break;
2631 case nir_op_unpack_64_2x32_split_y:
2632 bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
2633 break;
2634 case nir_op_unpack_32_2x16_split_x:
2635 if (dst.type() == RegType::vgpr) {
2636 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
2637 } else {
2638 bld.copy(Definition(dst), get_alu_src(ctx, instr->src[0]));
2639 }
2640 break;
2641 case nir_op_unpack_32_2x16_split_y:
2642 if (dst.type() == RegType::vgpr) {
2643 bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
2644 } else {
2645 bld.sop2(aco_opcode::s_bfe_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), Operand(uint32_t(16 << 16 | 16)));
2646 }
2647 break;
2648 case nir_op_pack_32_2x16_split: {
2649 Temp src0 = get_alu_src(ctx, instr->src[0]);
2650 Temp src1 = get_alu_src(ctx, instr->src[1]);
2651 if (dst.regClass() == v1) {
2652 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
2653 } else {
2654 src0 = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), src0, Operand(0xFFFFu));
2655 src1 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), src1, Operand(16u));
2656 bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), src0, src1);
2657 }
2658 break;
2659 }
2660 case nir_op_pack_half_2x16: {
2661 Temp src = get_alu_src(ctx, instr->src[0], 2);
2662
2663 if (dst.regClass() == v1) {
2664 Temp src0 = bld.tmp(v1);
2665 Temp src1 = bld.tmp(v1);
2666 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
2667 if (!ctx->block->fp_mode.care_about_round32 || ctx->block->fp_mode.round32 == fp_round_tz)
2668 bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, Definition(dst), src0, src1);
2669 else
2670 bld.vop3(aco_opcode::v_cvt_pk_u16_u32, Definition(dst),
2671 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src0),
2672 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src1));
2673 } else {
2674 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2675 nir_print_instr(&instr->instr, stderr);
2676 fprintf(stderr, "\n");
2677 }
2678 break;
2679 }
2680 case nir_op_unpack_half_2x16_split_x: {
2681 if (dst.regClass() == v1) {
2682 Builder bld(ctx->program, ctx->block);
2683 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst), get_alu_src(ctx, instr->src[0]));
2684 } else {
2685 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2686 nir_print_instr(&instr->instr, stderr);
2687 fprintf(stderr, "\n");
2688 }
2689 break;
2690 }
2691 case nir_op_unpack_half_2x16_split_y: {
2692 if (dst.regClass() == v1) {
2693 Builder bld(ctx->program, ctx->block);
2694 /* TODO: use SDWA here */
2695 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst),
2696 bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), as_vgpr(ctx, get_alu_src(ctx, instr->src[0]))));
2697 } else {
2698 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2699 nir_print_instr(&instr->instr, stderr);
2700 fprintf(stderr, "\n");
2701 }
2702 break;
2703 }
2704 case nir_op_fquantize2f16: {
2705 Temp src = get_alu_src(ctx, instr->src[0]);
2706 Temp f16 = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), src);
2707 Temp f32, cmp_res;
2708
2709 if (ctx->program->chip_class >= GFX8) {
2710 Temp mask = bld.copy(bld.def(s1), Operand(0x36Fu)); /* value is NOT negative/positive denormal value */
2711 cmp_res = bld.vopc_e64(aco_opcode::v_cmp_class_f16, bld.hint_vcc(bld.def(bld.lm)), f16, mask);
2712 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2713 } else {
2714 /* 0x38800000 is smallest half float value (2^-14) in 32-bit float,
2715 * so compare the result and flush to 0 if it's smaller.
2716 */
2717 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2718 Temp smallest = bld.copy(bld.def(s1), Operand(0x38800000u));
2719 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), f32, smallest);
2720 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
2721 cmp_res = vop3->definitions[0].getTemp();
2722 }
2723
2724 if (ctx->block->fp_mode.preserve_signed_zero_inf_nan32 || ctx->program->chip_class < GFX8) {
2725 Temp copysign_0 = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0u), as_vgpr(ctx, src));
2726 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), copysign_0, f32, cmp_res);
2727 } else {
2728 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), f32, cmp_res);
2729 }
2730 break;
2731 }
2732 case nir_op_bfm: {
2733 Temp bits = get_alu_src(ctx, instr->src[0]);
2734 Temp offset = get_alu_src(ctx, instr->src[1]);
2735
2736 if (dst.regClass() == s1) {
2737 bld.sop2(aco_opcode::s_bfm_b32, Definition(dst), bits, offset);
2738 } else if (dst.regClass() == v1) {
2739 bld.vop3(aco_opcode::v_bfm_b32, Definition(dst), bits, offset);
2740 } else {
2741 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2742 nir_print_instr(&instr->instr, stderr);
2743 fprintf(stderr, "\n");
2744 }
2745 break;
2746 }
2747 case nir_op_bitfield_select: {
2748 /* (mask & insert) | (~mask & base) */
2749 Temp bitmask = get_alu_src(ctx, instr->src[0]);
2750 Temp insert = get_alu_src(ctx, instr->src[1]);
2751 Temp base = get_alu_src(ctx, instr->src[2]);
2752
2753 /* dst = (insert & bitmask) | (base & ~bitmask) */
2754 if (dst.regClass() == s1) {
2755 aco_ptr<Instruction> sop2;
2756 nir_const_value* const_bitmask = nir_src_as_const_value(instr->src[0].src);
2757 nir_const_value* const_insert = nir_src_as_const_value(instr->src[1].src);
2758 Operand lhs;
2759 if (const_insert && const_bitmask) {
2760 lhs = Operand(const_insert->u32 & const_bitmask->u32);
2761 } else {
2762 insert = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), insert, bitmask);
2763 lhs = Operand(insert);
2764 }
2765
2766 Operand rhs;
2767 nir_const_value* const_base = nir_src_as_const_value(instr->src[2].src);
2768 if (const_base && const_bitmask) {
2769 rhs = Operand(const_base->u32 & ~const_bitmask->u32);
2770 } else {
2771 base = bld.sop2(aco_opcode::s_andn2_b32, bld.def(s1), bld.def(s1, scc), base, bitmask);
2772 rhs = Operand(base);
2773 }
2774
2775 bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), rhs, lhs);
2776
2777 } else if (dst.regClass() == v1) {
2778 if (base.type() == RegType::sgpr && (bitmask.type() == RegType::sgpr || (insert.type() == RegType::sgpr)))
2779 base = as_vgpr(ctx, base);
2780 if (insert.type() == RegType::sgpr && bitmask.type() == RegType::sgpr)
2781 insert = as_vgpr(ctx, insert);
2782
2783 bld.vop3(aco_opcode::v_bfi_b32, Definition(dst), bitmask, insert, base);
2784
2785 } else {
2786 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2787 nir_print_instr(&instr->instr, stderr);
2788 fprintf(stderr, "\n");
2789 }
2790 break;
2791 }
2792 case nir_op_ubfe:
2793 case nir_op_ibfe: {
2794 Temp base = get_alu_src(ctx, instr->src[0]);
2795 Temp offset = get_alu_src(ctx, instr->src[1]);
2796 Temp bits = get_alu_src(ctx, instr->src[2]);
2797
2798 if (dst.type() == RegType::sgpr) {
2799 Operand extract;
2800 nir_const_value* const_offset = nir_src_as_const_value(instr->src[1].src);
2801 nir_const_value* const_bits = nir_src_as_const_value(instr->src[2].src);
2802 if (const_offset && const_bits) {
2803 uint32_t const_extract = (const_bits->u32 << 16) | const_offset->u32;
2804 extract = Operand(const_extract);
2805 } else {
2806 Operand width;
2807 if (const_bits) {
2808 width = Operand(const_bits->u32 << 16);
2809 } else {
2810 width = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), bits, Operand(16u));
2811 }
2812 extract = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), offset, width);
2813 }
2814
2815 aco_opcode opcode;
2816 if (dst.regClass() == s1) {
2817 if (instr->op == nir_op_ubfe)
2818 opcode = aco_opcode::s_bfe_u32;
2819 else
2820 opcode = aco_opcode::s_bfe_i32;
2821 } else if (dst.regClass() == s2) {
2822 if (instr->op == nir_op_ubfe)
2823 opcode = aco_opcode::s_bfe_u64;
2824 else
2825 opcode = aco_opcode::s_bfe_i64;
2826 } else {
2827 unreachable("Unsupported BFE bit size");
2828 }
2829
2830 bld.sop2(opcode, Definition(dst), bld.def(s1, scc), base, extract);
2831
2832 } else {
2833 aco_opcode opcode;
2834 if (dst.regClass() == v1) {
2835 if (instr->op == nir_op_ubfe)
2836 opcode = aco_opcode::v_bfe_u32;
2837 else
2838 opcode = aco_opcode::v_bfe_i32;
2839 } else {
2840 unreachable("Unsupported BFE bit size");
2841 }
2842
2843 emit_vop3a_instruction(ctx, instr, opcode, dst);
2844 }
2845 break;
2846 }
2847 case nir_op_bit_count: {
2848 Temp src = get_alu_src(ctx, instr->src[0]);
2849 if (src.regClass() == s1) {
2850 bld.sop1(aco_opcode::s_bcnt1_i32_b32, Definition(dst), bld.def(s1, scc), src);
2851 } else if (src.regClass() == v1) {
2852 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst), src, Operand(0u));
2853 } else if (src.regClass() == v2) {
2854 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst),
2855 emit_extract_vector(ctx, src, 1, v1),
2856 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1),
2857 emit_extract_vector(ctx, src, 0, v1), Operand(0u)));
2858 } else if (src.regClass() == s2) {
2859 bld.sop1(aco_opcode::s_bcnt1_i32_b64, Definition(dst), bld.def(s1, scc), src);
2860 } else {
2861 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2862 nir_print_instr(&instr->instr, stderr);
2863 fprintf(stderr, "\n");
2864 }
2865 break;
2866 }
2867 case nir_op_flt: {
2868 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_f32, aco_opcode::v_cmp_lt_f64);
2869 break;
2870 }
2871 case nir_op_fge: {
2872 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_f32, aco_opcode::v_cmp_ge_f64);
2873 break;
2874 }
2875 case nir_op_feq: {
2876 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_f32, aco_opcode::v_cmp_eq_f64);
2877 break;
2878 }
2879 case nir_op_fne: {
2880 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_neq_f32, aco_opcode::v_cmp_neq_f64);
2881 break;
2882 }
2883 case nir_op_ilt: {
2884 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_i32, aco_opcode::v_cmp_lt_i64, aco_opcode::s_cmp_lt_i32);
2885 break;
2886 }
2887 case nir_op_ige: {
2888 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_i32, aco_opcode::v_cmp_ge_i64, aco_opcode::s_cmp_ge_i32);
2889 break;
2890 }
2891 case nir_op_ieq: {
2892 if (instr->src[0].src.ssa->bit_size == 1)
2893 emit_boolean_logic(ctx, instr, Builder::s_xnor, dst);
2894 else
2895 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_i32, aco_opcode::v_cmp_eq_i64, aco_opcode::s_cmp_eq_i32,
2896 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_eq_u64 : aco_opcode::num_opcodes);
2897 break;
2898 }
2899 case nir_op_ine: {
2900 if (instr->src[0].src.ssa->bit_size == 1)
2901 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
2902 else
2903 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lg_i32, aco_opcode::v_cmp_lg_i64, aco_opcode::s_cmp_lg_i32,
2904 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::num_opcodes);
2905 break;
2906 }
2907 case nir_op_ult: {
2908 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_u32, aco_opcode::v_cmp_lt_u64, aco_opcode::s_cmp_lt_u32);
2909 break;
2910 }
2911 case nir_op_uge: {
2912 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_u32, aco_opcode::v_cmp_ge_u64, aco_opcode::s_cmp_ge_u32);
2913 break;
2914 }
2915 case nir_op_fddx:
2916 case nir_op_fddy:
2917 case nir_op_fddx_fine:
2918 case nir_op_fddy_fine:
2919 case nir_op_fddx_coarse:
2920 case nir_op_fddy_coarse: {
2921 Temp src = get_alu_src(ctx, instr->src[0]);
2922 uint16_t dpp_ctrl1, dpp_ctrl2;
2923 if (instr->op == nir_op_fddx_fine) {
2924 dpp_ctrl1 = dpp_quad_perm(0, 0, 2, 2);
2925 dpp_ctrl2 = dpp_quad_perm(1, 1, 3, 3);
2926 } else if (instr->op == nir_op_fddy_fine) {
2927 dpp_ctrl1 = dpp_quad_perm(0, 1, 0, 1);
2928 dpp_ctrl2 = dpp_quad_perm(2, 3, 2, 3);
2929 } else {
2930 dpp_ctrl1 = dpp_quad_perm(0, 0, 0, 0);
2931 if (instr->op == nir_op_fddx || instr->op == nir_op_fddx_coarse)
2932 dpp_ctrl2 = dpp_quad_perm(1, 1, 1, 1);
2933 else
2934 dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
2935 }
2936
2937 Temp tmp;
2938 if (ctx->program->chip_class >= GFX8) {
2939 Temp tl = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl1);
2940 tmp = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), src, tl, dpp_ctrl2);
2941 } else {
2942 Temp tl = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl1);
2943 Temp tr = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl2);
2944 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), tr, tl);
2945 }
2946 emit_wqm(ctx, tmp, dst, true);
2947 break;
2948 }
2949 default:
2950 fprintf(stderr, "Unknown NIR ALU instr: ");
2951 nir_print_instr(&instr->instr, stderr);
2952 fprintf(stderr, "\n");
2953 }
2954 }
2955
2956 void visit_load_const(isel_context *ctx, nir_load_const_instr *instr)
2957 {
2958 Temp dst = get_ssa_temp(ctx, &instr->def);
2959
2960 // TODO: we really want to have the resulting type as this would allow for 64bit literals
2961 // which get truncated the lsb if double and msb if int
2962 // for now, we only use s_mov_b64 with 64bit inline constants
2963 assert(instr->def.num_components == 1 && "Vector load_const should be lowered to scalar.");
2964 assert(dst.type() == RegType::sgpr);
2965
2966 Builder bld(ctx->program, ctx->block);
2967
2968 if (instr->def.bit_size == 1) {
2969 assert(dst.regClass() == bld.lm);
2970 int val = instr->value[0].b ? -1 : 0;
2971 Operand op = bld.lm.size() == 1 ? Operand((uint32_t) val) : Operand((uint64_t) val);
2972 bld.sop1(Builder::s_mov, Definition(dst), op);
2973 } else if (dst.size() == 1) {
2974 bld.copy(Definition(dst), Operand(instr->value[0].u32));
2975 } else {
2976 assert(dst.size() != 1);
2977 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
2978 if (instr->def.bit_size == 64)
2979 for (unsigned i = 0; i < dst.size(); i++)
2980 vec->operands[i] = Operand{(uint32_t)(instr->value[0].u64 >> i * 32)};
2981 else {
2982 for (unsigned i = 0; i < dst.size(); i++)
2983 vec->operands[i] = Operand{instr->value[i].u32};
2984 }
2985 vec->definitions[0] = Definition(dst);
2986 ctx->block->instructions.emplace_back(std::move(vec));
2987 }
2988 }
2989
2990 uint32_t widen_mask(uint32_t mask, unsigned multiplier)
2991 {
2992 uint32_t new_mask = 0;
2993 for(unsigned i = 0; i < 32 && (1u << i) <= mask; ++i)
2994 if (mask & (1u << i))
2995 new_mask |= ((1u << multiplier) - 1u) << (i * multiplier);
2996 return new_mask;
2997 }
2998
2999 Operand load_lds_size_m0(isel_context *ctx)
3000 {
3001 /* TODO: m0 does not need to be initialized on GFX9+ */
3002 Builder bld(ctx->program, ctx->block);
3003 return bld.m0((Temp)bld.sopk(aco_opcode::s_movk_i32, bld.def(s1, m0), 0xffff));
3004 }
3005
3006 Temp load_lds(isel_context *ctx, unsigned elem_size_bytes, Temp dst,
3007 Temp address, unsigned base_offset, unsigned align)
3008 {
3009 assert(util_is_power_of_two_nonzero(align) && align >= 4);
3010
3011 Builder bld(ctx->program, ctx->block);
3012
3013 Operand m = load_lds_size_m0(ctx);
3014
3015 unsigned num_components = dst.size() * 4u / elem_size_bytes;
3016 unsigned bytes_read = 0;
3017 unsigned result_size = 0;
3018 unsigned total_bytes = num_components * elem_size_bytes;
3019 std::array<Temp, NIR_MAX_VEC_COMPONENTS> result;
3020 bool large_ds_read = ctx->options->chip_class >= GFX7;
3021 bool usable_read2 = ctx->options->chip_class >= GFX7;
3022
3023 while (bytes_read < total_bytes) {
3024 unsigned todo = total_bytes - bytes_read;
3025 bool aligned8 = bytes_read % 8 == 0 && align % 8 == 0;
3026 bool aligned16 = bytes_read % 16 == 0 && align % 16 == 0;
3027
3028 aco_opcode op = aco_opcode::last_opcode;
3029 bool read2 = false;
3030 if (todo >= 16 && aligned16 && large_ds_read) {
3031 op = aco_opcode::ds_read_b128;
3032 todo = 16;
3033 } else if (todo >= 16 && aligned8 && usable_read2) {
3034 op = aco_opcode::ds_read2_b64;
3035 read2 = true;
3036 todo = 16;
3037 } else if (todo >= 12 && aligned16 && large_ds_read) {
3038 op = aco_opcode::ds_read_b96;
3039 todo = 12;
3040 } else if (todo >= 8 && aligned8) {
3041 op = aco_opcode::ds_read_b64;
3042 todo = 8;
3043 } else if (todo >= 8 && usable_read2) {
3044 op = aco_opcode::ds_read2_b32;
3045 read2 = true;
3046 todo = 8;
3047 } else if (todo >= 4) {
3048 op = aco_opcode::ds_read_b32;
3049 todo = 4;
3050 } else {
3051 assert(false);
3052 }
3053 assert(todo % elem_size_bytes == 0);
3054 unsigned num_elements = todo / elem_size_bytes;
3055 unsigned offset = base_offset + bytes_read;
3056 unsigned max_offset = read2 ? 1019 : 65535;
3057
3058 Temp address_offset = address;
3059 if (offset > max_offset) {
3060 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
3061 offset = bytes_read;
3062 }
3063 assert(offset <= max_offset); /* bytes_read shouldn't be large enough for this to happen */
3064
3065 Temp res;
3066 if (num_components == 1 && dst.type() == RegType::vgpr)
3067 res = dst;
3068 else
3069 res = bld.tmp(RegClass(RegType::vgpr, todo / 4));
3070
3071 if (read2)
3072 res = bld.ds(op, Definition(res), address_offset, m, offset / (todo / 2), (offset / (todo / 2)) + 1);
3073 else
3074 res = bld.ds(op, Definition(res), address_offset, m, offset);
3075
3076 if (num_components == 1) {
3077 assert(todo == total_bytes);
3078 if (dst.type() == RegType::sgpr)
3079 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), res);
3080 return dst;
3081 }
3082
3083 if (dst.type() == RegType::sgpr) {
3084 Temp new_res = bld.tmp(RegType::sgpr, res.size());
3085 expand_vector(ctx, res, new_res, res.size(), (1 << res.size()) - 1);
3086 res = new_res;
3087 }
3088
3089 if (num_elements == 1) {
3090 result[result_size++] = res;
3091 } else {
3092 assert(res != dst && res.size() % num_elements == 0);
3093 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_elements)};
3094 split->operands[0] = Operand(res);
3095 for (unsigned i = 0; i < num_elements; i++)
3096 split->definitions[i] = Definition(result[result_size++] = bld.tmp(res.type(), elem_size_bytes / 4));
3097 ctx->block->instructions.emplace_back(std::move(split));
3098 }
3099
3100 bytes_read += todo;
3101 }
3102
3103 assert(result_size == num_components && result_size > 1);
3104 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, result_size, 1)};
3105 for (unsigned i = 0; i < result_size; i++)
3106 vec->operands[i] = Operand(result[i]);
3107 vec->definitions[0] = Definition(dst);
3108 ctx->block->instructions.emplace_back(std::move(vec));
3109 ctx->allocated_vec.emplace(dst.id(), result);
3110
3111 return dst;
3112 }
3113
3114 Temp extract_subvector(isel_context *ctx, Temp data, unsigned start, unsigned size, RegType type)
3115 {
3116 if (start == 0 && size == data.size())
3117 return type == RegType::vgpr ? as_vgpr(ctx, data) : data;
3118
3119 unsigned size_hint = 1;
3120 auto it = ctx->allocated_vec.find(data.id());
3121 if (it != ctx->allocated_vec.end())
3122 size_hint = it->second[0].size();
3123 if (size % size_hint || start % size_hint)
3124 size_hint = 1;
3125
3126 start /= size_hint;
3127 size /= size_hint;
3128
3129 Temp elems[size];
3130 for (unsigned i = 0; i < size; i++)
3131 elems[i] = emit_extract_vector(ctx, data, start + i, RegClass(type, size_hint));
3132
3133 if (size == 1)
3134 return type == RegType::vgpr ? as_vgpr(ctx, elems[0]) : elems[0];
3135
3136 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
3137 for (unsigned i = 0; i < size; i++)
3138 vec->operands[i] = Operand(elems[i]);
3139 Temp res = {ctx->program->allocateId(), RegClass(type, size * size_hint)};
3140 vec->definitions[0] = Definition(res);
3141 ctx->block->instructions.emplace_back(std::move(vec));
3142 return res;
3143 }
3144
3145 void ds_write_helper(isel_context *ctx, Operand m, Temp address, Temp data, unsigned data_start, unsigned total_size, unsigned offset0, unsigned offset1, unsigned align)
3146 {
3147 Builder bld(ctx->program, ctx->block);
3148 unsigned bytes_written = 0;
3149 bool large_ds_write = ctx->options->chip_class >= GFX7;
3150 bool usable_write2 = ctx->options->chip_class >= GFX7;
3151
3152 while (bytes_written < total_size * 4) {
3153 unsigned todo = total_size * 4 - bytes_written;
3154 bool aligned8 = bytes_written % 8 == 0 && align % 8 == 0;
3155 bool aligned16 = bytes_written % 16 == 0 && align % 16 == 0;
3156
3157 aco_opcode op = aco_opcode::last_opcode;
3158 bool write2 = false;
3159 unsigned size = 0;
3160 if (todo >= 16 && aligned16 && large_ds_write) {
3161 op = aco_opcode::ds_write_b128;
3162 size = 4;
3163 } else if (todo >= 16 && aligned8 && usable_write2) {
3164 op = aco_opcode::ds_write2_b64;
3165 write2 = true;
3166 size = 4;
3167 } else if (todo >= 12 && aligned16 && large_ds_write) {
3168 op = aco_opcode::ds_write_b96;
3169 size = 3;
3170 } else if (todo >= 8 && aligned8) {
3171 op = aco_opcode::ds_write_b64;
3172 size = 2;
3173 } else if (todo >= 8 && usable_write2) {
3174 op = aco_opcode::ds_write2_b32;
3175 write2 = true;
3176 size = 2;
3177 } else if (todo >= 4) {
3178 op = aco_opcode::ds_write_b32;
3179 size = 1;
3180 } else {
3181 assert(false);
3182 }
3183
3184 unsigned offset = offset0 + offset1 + bytes_written;
3185 unsigned max_offset = write2 ? 1020 : 65535;
3186 Temp address_offset = address;
3187 if (offset > max_offset) {
3188 address_offset = bld.vadd32(bld.def(v1), Operand(offset0), address_offset);
3189 offset = offset1 + bytes_written;
3190 }
3191 assert(offset <= max_offset); /* offset1 shouldn't be large enough for this to happen */
3192
3193 if (write2) {
3194 Temp val0 = extract_subvector(ctx, data, data_start + (bytes_written >> 2), size / 2, RegType::vgpr);
3195 Temp val1 = extract_subvector(ctx, data, data_start + (bytes_written >> 2) + 1, size / 2, RegType::vgpr);
3196 bld.ds(op, address_offset, val0, val1, m, offset / size / 2, (offset / size / 2) + 1);
3197 } else {
3198 Temp val = extract_subvector(ctx, data, data_start + (bytes_written >> 2), size, RegType::vgpr);
3199 bld.ds(op, address_offset, val, m, offset);
3200 }
3201
3202 bytes_written += size * 4;
3203 }
3204 }
3205
3206 void store_lds(isel_context *ctx, unsigned elem_size_bytes, Temp data, uint32_t wrmask,
3207 Temp address, unsigned base_offset, unsigned align)
3208 {
3209 assert(util_is_power_of_two_nonzero(align) && align >= 4);
3210 assert(elem_size_bytes == 4 || elem_size_bytes == 8);
3211
3212 Operand m = load_lds_size_m0(ctx);
3213
3214 /* we need at most two stores, assuming that the writemask is at most 4 bits wide */
3215 assert(wrmask <= 0x0f);
3216 int start[2], count[2];
3217 u_bit_scan_consecutive_range(&wrmask, &start[0], &count[0]);
3218 u_bit_scan_consecutive_range(&wrmask, &start[1], &count[1]);
3219 assert(wrmask == 0);
3220
3221 /* one combined store is sufficient */
3222 if (count[0] == count[1] && (align % elem_size_bytes) == 0 && (base_offset % elem_size_bytes) == 0) {
3223 Builder bld(ctx->program, ctx->block);
3224
3225 Temp address_offset = address;
3226 if ((base_offset / elem_size_bytes) + start[1] > 255) {
3227 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
3228 base_offset = 0;
3229 }
3230
3231 assert(count[0] == 1);
3232 RegClass xtract_rc(RegType::vgpr, elem_size_bytes / 4);
3233
3234 Temp val0 = emit_extract_vector(ctx, data, start[0], xtract_rc);
3235 Temp val1 = emit_extract_vector(ctx, data, start[1], xtract_rc);
3236 aco_opcode op = elem_size_bytes == 4 ? aco_opcode::ds_write2_b32 : aco_opcode::ds_write2_b64;
3237 base_offset = base_offset / elem_size_bytes;
3238 bld.ds(op, address_offset, val0, val1, m,
3239 base_offset + start[0], base_offset + start[1]);
3240 return;
3241 }
3242
3243 for (unsigned i = 0; i < 2; i++) {
3244 if (count[i] == 0)
3245 continue;
3246
3247 unsigned elem_size_words = elem_size_bytes / 4;
3248 ds_write_helper(ctx, m, address, data, start[i] * elem_size_words, count[i] * elem_size_words,
3249 base_offset, start[i] * elem_size_bytes, align);
3250 }
3251 return;
3252 }
3253
3254 unsigned calculate_lds_alignment(isel_context *ctx, unsigned const_offset)
3255 {
3256 unsigned align = 16;
3257 if (const_offset)
3258 align = std::min(align, 1u << (ffs(const_offset) - 1));
3259
3260 return align;
3261 }
3262
3263
3264 Temp create_vec_from_array(isel_context *ctx, Temp arr[], unsigned cnt, RegType reg_type, unsigned elem_size_bytes,
3265 unsigned split_cnt = 0u, Temp dst = Temp())
3266 {
3267 Builder bld(ctx->program, ctx->block);
3268 unsigned dword_size = elem_size_bytes / 4;
3269
3270 if (!dst.id())
3271 dst = bld.tmp(RegClass(reg_type, cnt * dword_size));
3272
3273 std::array<Temp, NIR_MAX_VEC_COMPONENTS> allocated_vec;
3274 aco_ptr<Pseudo_instruction> instr {create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, cnt, 1)};
3275 instr->definitions[0] = Definition(dst);
3276
3277 for (unsigned i = 0; i < cnt; ++i) {
3278 if (arr[i].id()) {
3279 assert(arr[i].size() == dword_size);
3280 allocated_vec[i] = arr[i];
3281 instr->operands[i] = Operand(arr[i]);
3282 } else {
3283 Temp zero = bld.copy(bld.def(RegClass(reg_type, dword_size)), Operand(0u, dword_size == 2));
3284 allocated_vec[i] = zero;
3285 instr->operands[i] = Operand(zero);
3286 }
3287 }
3288
3289 bld.insert(std::move(instr));
3290
3291 if (split_cnt)
3292 emit_split_vector(ctx, dst, split_cnt);
3293 else
3294 ctx->allocated_vec.emplace(dst.id(), allocated_vec); /* emit_split_vector already does this */
3295
3296 return dst;
3297 }
3298
3299 inline unsigned resolve_excess_vmem_const_offset(Builder &bld, Temp &voffset, unsigned const_offset)
3300 {
3301 if (const_offset >= 4096) {
3302 unsigned excess_const_offset = const_offset / 4096u * 4096u;
3303 const_offset %= 4096u;
3304
3305 if (!voffset.id())
3306 voffset = bld.copy(bld.def(v1), Operand(excess_const_offset));
3307 else if (unlikely(voffset.regClass() == s1))
3308 voffset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), Operand(excess_const_offset), Operand(voffset));
3309 else if (likely(voffset.regClass() == v1))
3310 voffset = bld.vadd32(bld.def(v1), Operand(voffset), Operand(excess_const_offset));
3311 else
3312 unreachable("Unsupported register class of voffset");
3313 }
3314
3315 return const_offset;
3316 }
3317
3318 void emit_single_mubuf_store(isel_context *ctx, Temp descriptor, Temp voffset, Temp soffset, Temp vdata,
3319 unsigned const_offset = 0u, bool allow_reorder = true, bool slc = false)
3320 {
3321 assert(vdata.id());
3322 assert(vdata.size() != 3 || ctx->program->chip_class != GFX6);
3323 assert(vdata.size() >= 1 && vdata.size() <= 4);
3324
3325 Builder bld(ctx->program, ctx->block);
3326 aco_opcode op = (aco_opcode) ((unsigned) aco_opcode::buffer_store_dword + vdata.size() - 1);
3327 const_offset = resolve_excess_vmem_const_offset(bld, voffset, const_offset);
3328
3329 Operand voffset_op = voffset.id() ? Operand(as_vgpr(ctx, voffset)) : Operand(v1);
3330 Operand soffset_op = soffset.id() ? Operand(soffset) : Operand(0u);
3331 Builder::Result r = bld.mubuf(op, Operand(descriptor), voffset_op, soffset_op, Operand(vdata), const_offset,
3332 /* offen */ !voffset_op.isUndefined(), /* idxen*/ false, /* addr64 */ false,
3333 /* disable_wqm */ false, /* glc */ true, /* dlc*/ false, /* slc */ slc);
3334
3335 static_cast<MUBUF_instruction *>(r.instr)->can_reorder = allow_reorder;
3336 }
3337
3338 void store_vmem_mubuf(isel_context *ctx, Temp src, Temp descriptor, Temp voffset, Temp soffset,
3339 unsigned base_const_offset, unsigned elem_size_bytes, unsigned write_mask,
3340 bool allow_combining = true, bool reorder = true, bool slc = false)
3341 {
3342 Builder bld(ctx->program, ctx->block);
3343 assert(elem_size_bytes == 4 || elem_size_bytes == 8);
3344 assert(write_mask);
3345
3346 if (elem_size_bytes == 8) {
3347 elem_size_bytes = 4;
3348 write_mask = widen_mask(write_mask, 2);
3349 }
3350
3351 while (write_mask) {
3352 int start = 0;
3353 int count = 0;
3354 u_bit_scan_consecutive_range(&write_mask, &start, &count);
3355 assert(count > 0);
3356 assert(start >= 0);
3357
3358 while (count > 0) {
3359 unsigned sub_count = allow_combining ? MIN2(count, 4) : 1;
3360 unsigned const_offset = (unsigned) start * elem_size_bytes + base_const_offset;
3361
3362 /* GFX6 doesn't have buffer_store_dwordx3, so make sure not to emit that here either. */
3363 if (unlikely(ctx->program->chip_class == GFX6 && sub_count == 3))
3364 sub_count = 2;
3365
3366 Temp elem = extract_subvector(ctx, src, start, sub_count, RegType::vgpr);
3367 emit_single_mubuf_store(ctx, descriptor, voffset, soffset, elem, const_offset, reorder, slc);
3368
3369 count -= sub_count;
3370 start += sub_count;
3371 }
3372
3373 assert(count == 0);
3374 }
3375 }
3376
3377 Temp emit_single_mubuf_load(isel_context *ctx, Temp descriptor, Temp voffset, Temp soffset,
3378 unsigned const_offset, unsigned size_dwords, bool allow_reorder = true)
3379 {
3380 assert(size_dwords != 3 || ctx->program->chip_class != GFX6);
3381 assert(size_dwords >= 1 && size_dwords <= 4);
3382
3383 Builder bld(ctx->program, ctx->block);
3384 Temp vdata = bld.tmp(RegClass(RegType::vgpr, size_dwords));
3385 aco_opcode op = (aco_opcode) ((unsigned) aco_opcode::buffer_load_dword + size_dwords - 1);
3386 const_offset = resolve_excess_vmem_const_offset(bld, voffset, const_offset);
3387
3388 Operand voffset_op = voffset.id() ? Operand(as_vgpr(ctx, voffset)) : Operand(v1);
3389 Operand soffset_op = soffset.id() ? Operand(soffset) : Operand(0u);
3390 Builder::Result r = bld.mubuf(op, Definition(vdata), Operand(descriptor), voffset_op, soffset_op, const_offset,
3391 /* offen */ !voffset_op.isUndefined(), /* idxen*/ false, /* addr64 */ false,
3392 /* disable_wqm */ false, /* glc */ true,
3393 /* dlc*/ ctx->program->chip_class >= GFX10, /* slc */ false);
3394
3395 static_cast<MUBUF_instruction *>(r.instr)->can_reorder = allow_reorder;
3396
3397 return vdata;
3398 }
3399
3400 void load_vmem_mubuf(isel_context *ctx, Temp dst, Temp descriptor, Temp voffset, Temp soffset,
3401 unsigned base_const_offset, unsigned elem_size_bytes, unsigned num_components,
3402 unsigned stride = 0u, bool allow_combining = true, bool allow_reorder = true)
3403 {
3404 assert(elem_size_bytes == 4 || elem_size_bytes == 8);
3405 assert((num_components * elem_size_bytes / 4) == dst.size());
3406 assert(!!stride != allow_combining);
3407
3408 Builder bld(ctx->program, ctx->block);
3409 unsigned split_cnt = num_components;
3410
3411 if (elem_size_bytes == 8) {
3412 elem_size_bytes = 4;
3413 num_components *= 2;
3414 }
3415
3416 if (!stride)
3417 stride = elem_size_bytes;
3418
3419 unsigned load_size = 1;
3420 if (allow_combining) {
3421 if ((num_components % 4) == 0)
3422 load_size = 4;
3423 else if ((num_components % 3) == 0 && ctx->program->chip_class != GFX6)
3424 load_size = 3;
3425 else if ((num_components % 2) == 0)
3426 load_size = 2;
3427 }
3428
3429 unsigned num_loads = num_components / load_size;
3430 std::array<Temp, NIR_MAX_VEC_COMPONENTS> elems;
3431
3432 for (unsigned i = 0; i < num_loads; ++i) {
3433 unsigned const_offset = i * stride * load_size + base_const_offset;
3434 elems[i] = emit_single_mubuf_load(ctx, descriptor, voffset, soffset, const_offset, load_size, allow_reorder);
3435 }
3436
3437 create_vec_from_array(ctx, elems.data(), num_loads, RegType::vgpr, load_size * 4u, split_cnt, dst);
3438 }
3439
3440 std::pair<Temp, unsigned> offset_add_from_nir(isel_context *ctx, const std::pair<Temp, unsigned> &base_offset, nir_src *off_src, unsigned stride = 1u)
3441 {
3442 Builder bld(ctx->program, ctx->block);
3443 Temp offset = base_offset.first;
3444 unsigned const_offset = base_offset.second;
3445
3446 if (!nir_src_is_const(*off_src)) {
3447 Temp indirect_offset_arg = get_ssa_temp(ctx, off_src->ssa);
3448 Temp with_stride;
3449
3450 /* Calculate indirect offset with stride */
3451 if (likely(indirect_offset_arg.regClass() == v1))
3452 with_stride = bld.v_mul_imm(bld.def(v1), indirect_offset_arg, stride);
3453 else if (indirect_offset_arg.regClass() == s1)
3454 with_stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), indirect_offset_arg);
3455 else
3456 unreachable("Unsupported register class of indirect offset");
3457
3458 /* Add to the supplied base offset */
3459 if (offset.id() == 0)
3460 offset = with_stride;
3461 else if (unlikely(offset.regClass() == s1 && with_stride.regClass() == s1))
3462 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), with_stride, offset);
3463 else if (offset.size() == 1 && with_stride.size() == 1)
3464 offset = bld.vadd32(bld.def(v1), with_stride, offset);
3465 else
3466 unreachable("Unsupported register class of indirect offset");
3467 } else {
3468 unsigned const_offset_arg = nir_src_as_uint(*off_src);
3469 const_offset += const_offset_arg * stride;
3470 }
3471
3472 return std::make_pair(offset, const_offset);
3473 }
3474
3475 std::pair<Temp, unsigned> offset_add(isel_context *ctx, const std::pair<Temp, unsigned> &off1, const std::pair<Temp, unsigned> &off2)
3476 {
3477 Builder bld(ctx->program, ctx->block);
3478 Temp offset;
3479
3480 if (off1.first.id() && off2.first.id()) {
3481 if (unlikely(off1.first.regClass() == s1 && off2.first.regClass() == s1))
3482 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), off1.first, off2.first);
3483 else if (off1.first.size() == 1 && off2.first.size() == 1)
3484 offset = bld.vadd32(bld.def(v1), off1.first, off2.first);
3485 else
3486 unreachable("Unsupported register class of indirect offset");
3487 } else {
3488 offset = off1.first.id() ? off1.first : off2.first;
3489 }
3490
3491 return std::make_pair(offset, off1.second + off2.second);
3492 }
3493
3494 std::pair<Temp, unsigned> offset_mul(isel_context *ctx, const std::pair<Temp, unsigned> &offs, unsigned multiplier)
3495 {
3496 Builder bld(ctx->program, ctx->block);
3497 unsigned const_offset = offs.second * multiplier;
3498
3499 if (!offs.first.id())
3500 return std::make_pair(offs.first, const_offset);
3501
3502 Temp offset = unlikely(offs.first.regClass() == s1)
3503 ? bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(multiplier), offs.first)
3504 : bld.v_mul_imm(bld.def(v1), offs.first, multiplier);
3505
3506 return std::make_pair(offset, const_offset);
3507 }
3508
3509 std::pair<Temp, unsigned> get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned base_stride, unsigned component_stride)
3510 {
3511 Builder bld(ctx->program, ctx->block);
3512
3513 /* base is the driver_location, which is already multiplied by 4, so is in dwords */
3514 unsigned const_offset = nir_intrinsic_base(instr) * base_stride;
3515 /* component is in bytes */
3516 const_offset += nir_intrinsic_component(instr) * component_stride;
3517
3518 /* offset should be interpreted in relation to the base, so the instruction effectively reads/writes another input/output when it has an offset */
3519 nir_src *off_src = nir_get_io_offset_src(instr);
3520 return offset_add_from_nir(ctx, std::make_pair(Temp(), const_offset), off_src, 4u * base_stride);
3521 }
3522
3523 std::pair<Temp, unsigned> get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned stride = 1u)
3524 {
3525 return get_intrinsic_io_basic_offset(ctx, instr, stride, stride);
3526 }
3527
3528 Temp get_tess_rel_patch_id(isel_context *ctx)
3529 {
3530 Builder bld(ctx->program, ctx->block);
3531
3532 switch (ctx->shader->info.stage) {
3533 case MESA_SHADER_TESS_CTRL:
3534 return bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffu),
3535 get_arg(ctx, ctx->args->ac.tcs_rel_ids));
3536 case MESA_SHADER_TESS_EVAL:
3537 return get_arg(ctx, ctx->args->tes_rel_patch_id);
3538 default:
3539 unreachable("Unsupported stage in get_tess_rel_patch_id");
3540 }
3541 }
3542
3543 std::pair<Temp, unsigned> get_tcs_per_vertex_input_lds_offset(isel_context *ctx, nir_intrinsic_instr *instr)
3544 {
3545 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3546 Builder bld(ctx->program, ctx->block);
3547
3548 uint32_t tcs_in_patch_stride = ctx->args->options->key.tcs.input_vertices * ctx->tcs_num_inputs * 4;
3549 uint32_t tcs_in_vertex_stride = ctx->tcs_num_inputs * 4;
3550
3551 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr);
3552
3553 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
3554 offs = offset_add_from_nir(ctx, offs, vertex_index_src, tcs_in_vertex_stride);
3555
3556 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3557 Temp tcs_in_current_patch_offset = bld.v_mul24_imm(bld.def(v1), rel_patch_id, tcs_in_patch_stride);
3558 offs = offset_add(ctx, offs, std::make_pair(tcs_in_current_patch_offset, 0));
3559
3560 return offset_mul(ctx, offs, 4u);
3561 }
3562
3563 std::pair<Temp, unsigned> get_tcs_output_lds_offset(isel_context *ctx, nir_intrinsic_instr *instr = nullptr, bool per_vertex = false)
3564 {
3565 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3566 Builder bld(ctx->program, ctx->block);
3567
3568 uint32_t input_patch_size = ctx->args->options->key.tcs.input_vertices * ctx->tcs_num_inputs * 16;
3569 uint32_t num_tcs_outputs = util_last_bit64(ctx->args->shader_info->tcs.outputs_written);
3570 uint32_t num_tcs_patch_outputs = util_last_bit64(ctx->args->shader_info->tcs.patch_outputs_written);
3571 uint32_t output_vertex_size = num_tcs_outputs * 16;
3572 uint32_t pervertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
3573 uint32_t output_patch_stride = pervertex_output_patch_size + num_tcs_patch_outputs * 16;
3574
3575 std::pair<Temp, unsigned> offs = instr
3576 ? get_intrinsic_io_basic_offset(ctx, instr, 4u)
3577 : std::make_pair(Temp(), 0u);
3578
3579 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3580 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, output_patch_stride);
3581
3582 if (per_vertex) {
3583 assert(instr);
3584
3585 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
3586 offs = offset_add_from_nir(ctx, offs, vertex_index_src, output_vertex_size);
3587
3588 uint32_t output_patch0_offset = (input_patch_size * ctx->tcs_num_patches);
3589 offs = offset_add(ctx, offs, std::make_pair(patch_off, output_patch0_offset));
3590 } else {
3591 uint32_t output_patch0_patch_data_offset = (input_patch_size * ctx->tcs_num_patches + pervertex_output_patch_size);
3592 offs = offset_add(ctx, offs, std::make_pair(patch_off, output_patch0_patch_data_offset));
3593 }
3594
3595 return offs;
3596 }
3597
3598 std::pair<Temp, unsigned> get_tcs_per_vertex_output_vmem_offset(isel_context *ctx, nir_intrinsic_instr *instr)
3599 {
3600 Builder bld(ctx->program, ctx->block);
3601
3602 unsigned vertices_per_patch = ctx->shader->info.tess.tcs_vertices_out;
3603 unsigned attr_stride = vertices_per_patch * ctx->tcs_num_patches;
3604
3605 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, attr_stride * 4u, 4u);
3606
3607 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3608 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, vertices_per_patch * 16u);
3609 offs = offset_add(ctx, offs, std::make_pair(patch_off, 0u));
3610
3611 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
3612 offs = offset_add_from_nir(ctx, offs, vertex_index_src, 16u);
3613
3614 return offs;
3615 }
3616
3617 std::pair<Temp, unsigned> get_tcs_per_patch_output_vmem_offset(isel_context *ctx, nir_intrinsic_instr *instr = nullptr, unsigned const_base_offset = 0u)
3618 {
3619 Builder bld(ctx->program, ctx->block);
3620
3621 unsigned num_tcs_outputs = ctx->shader->info.stage == MESA_SHADER_TESS_CTRL
3622 ? util_last_bit64(ctx->args->shader_info->tcs.outputs_written)
3623 : ctx->args->options->key.tes.tcs_num_outputs;
3624
3625 unsigned output_vertex_size = num_tcs_outputs * 16;
3626 unsigned per_vertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
3627 unsigned per_patch_data_offset = per_vertex_output_patch_size * ctx->tcs_num_patches;
3628 unsigned attr_stride = ctx->tcs_num_patches;
3629
3630 std::pair<Temp, unsigned> offs = instr
3631 ? get_intrinsic_io_basic_offset(ctx, instr, attr_stride * 4u, 4u)
3632 : std::make_pair(Temp(), 0u);
3633
3634 if (const_base_offset)
3635 offs.second += const_base_offset * attr_stride;
3636
3637 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3638 Temp patch_off = bld.v_mul_imm(bld.def(v1), rel_patch_id, 16u);
3639 offs = offset_add(ctx, offs, std::make_pair(patch_off, per_patch_data_offset));
3640
3641 return offs;
3642 }
3643
3644 bool tcs_driver_location_matches_api_mask(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex, uint64_t mask, bool *indirect)
3645 {
3646 unsigned off = nir_intrinsic_base(instr) * 4u;
3647 nir_src *off_src = nir_get_io_offset_src(instr);
3648
3649 if (!nir_src_is_const(*off_src)) {
3650 *indirect = true;
3651 return false;
3652 }
3653
3654 *indirect = false;
3655 off += nir_src_as_uint(*off_src) * 16u;
3656
3657 while (mask) {
3658 unsigned slot = u_bit_scan64(&mask) + (per_vertex ? 0 : VARYING_SLOT_PATCH0);
3659 if (off == shader_io_get_unique_index((gl_varying_slot) slot) * 16u)
3660 return true;
3661 }
3662
3663 return false;
3664 }
3665
3666 bool store_output_to_temps(isel_context *ctx, nir_intrinsic_instr *instr)
3667 {
3668 unsigned write_mask = nir_intrinsic_write_mask(instr);
3669 unsigned component = nir_intrinsic_component(instr);
3670 unsigned idx = nir_intrinsic_base(instr) + component;
3671
3672 nir_instr *off_instr = instr->src[1].ssa->parent_instr;
3673 if (off_instr->type != nir_instr_type_load_const)
3674 return false;
3675
3676 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
3677 idx += nir_src_as_uint(instr->src[1]) * 4u;
3678
3679 if (instr->src[0].ssa->bit_size == 64)
3680 write_mask = widen_mask(write_mask, 2);
3681
3682 for (unsigned i = 0; i < 8; ++i) {
3683 if (write_mask & (1 << i)) {
3684 ctx->outputs.mask[idx / 4u] |= 1 << (idx % 4u);
3685 ctx->outputs.temps[idx] = emit_extract_vector(ctx, src, i, v1);
3686 }
3687 idx++;
3688 }
3689
3690 return true;
3691 }
3692
3693 bool load_input_from_temps(isel_context *ctx, nir_intrinsic_instr *instr, Temp dst)
3694 {
3695 /* Only TCS per-vertex inputs are supported by this function.
3696 * Per-vertex inputs only match between the VS/TCS invocation id when the number of invocations is the same.
3697 */
3698 if (ctx->shader->info.stage != MESA_SHADER_TESS_CTRL || !ctx->tcs_in_out_eq)
3699 return false;
3700
3701 nir_src *off_src = nir_get_io_offset_src(instr);
3702 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
3703 nir_instr *vertex_index_instr = vertex_index_src->ssa->parent_instr;
3704 bool can_use_temps = nir_src_is_const(*off_src) &&
3705 vertex_index_instr->type == nir_instr_type_intrinsic &&
3706 nir_instr_as_intrinsic(vertex_index_instr)->intrinsic == nir_intrinsic_load_invocation_id;
3707
3708 if (!can_use_temps)
3709 return false;
3710
3711 unsigned idx = nir_intrinsic_base(instr) + nir_intrinsic_component(instr) + 4 * nir_src_as_uint(*off_src);
3712 Temp *src = &ctx->inputs.temps[idx];
3713 Temp vec = create_vec_from_array(ctx, src, dst.size(), dst.regClass().type(), 4u);
3714 assert(vec.size() == dst.size());
3715
3716 Builder bld(ctx->program, ctx->block);
3717 bld.copy(Definition(dst), vec);
3718 return true;
3719 }
3720
3721 void visit_store_ls_or_es_output(isel_context *ctx, nir_intrinsic_instr *instr)
3722 {
3723 Builder bld(ctx->program, ctx->block);
3724
3725 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, 4u);
3726 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
3727 unsigned write_mask = nir_intrinsic_write_mask(instr);
3728 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8u;
3729
3730 if (ctx->tcs_in_out_eq && store_output_to_temps(ctx, instr)) {
3731 /* When the TCS only reads this output directly and for the same vertices as its invocation id, it is unnecessary to store the VS output to LDS. */
3732 bool indirect_write;
3733 bool temp_only_input = tcs_driver_location_matches_api_mask(ctx, instr, true, ctx->tcs_temp_only_inputs, &indirect_write);
3734 if (temp_only_input && !indirect_write)
3735 return;
3736 }
3737
3738 if (ctx->stage == vertex_es || ctx->stage == tess_eval_es) {
3739 /* GFX6-8: ES stage is not merged into GS, data is passed from ES to GS in VMEM. */
3740 Temp esgs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_VS * 16u));
3741 Temp es2gs_offset = get_arg(ctx, ctx->args->es2gs_offset);
3742 store_vmem_mubuf(ctx, src, esgs_ring, offs.first, es2gs_offset, offs.second, elem_size_bytes, write_mask, false, true, true);
3743 } else {
3744 Temp lds_base;
3745
3746 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
3747 /* GFX9+: ES stage is merged into GS, data is passed between them using LDS. */
3748 unsigned itemsize = ctx->stage == vertex_geometry_gs
3749 ? ctx->program->info->vs.es_info.esgs_itemsize
3750 : ctx->program->info->tes.es_info.esgs_itemsize;
3751 Temp thread_id = emit_mbcnt(ctx, bld.def(v1));
3752 Temp wave_idx = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(ctx, ctx->args->merged_wave_info), Operand(4u << 16 | 24));
3753 Temp vertex_idx = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), thread_id,
3754 bld.v_mul24_imm(bld.def(v1), as_vgpr(ctx, wave_idx), ctx->program->wave_size));
3755 lds_base = bld.v_mul24_imm(bld.def(v1), vertex_idx, itemsize);
3756 } else if (ctx->stage == vertex_ls || ctx->stage == vertex_tess_control_hs) {
3757 /* GFX6-8: VS runs on LS stage when tessellation is used, but LS shares LDS space with HS.
3758 * GFX9+: LS is merged into HS, but still uses the same LDS layout.
3759 */
3760 unsigned num_tcs_inputs = util_last_bit64(ctx->args->shader_info->vs.ls_outputs_written);
3761 Temp vertex_idx = get_arg(ctx, ctx->args->rel_auto_id);
3762 lds_base = bld.v_mul_imm(bld.def(v1), vertex_idx, num_tcs_inputs * 16u);
3763 } else {
3764 unreachable("Invalid LS or ES stage");
3765 }
3766
3767 offs = offset_add(ctx, offs, std::make_pair(lds_base, 0u));
3768 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
3769 store_lds(ctx, elem_size_bytes, src, write_mask, offs.first, offs.second, lds_align);
3770 }
3771 }
3772
3773 bool should_write_tcs_patch_output_to_vmem(isel_context *ctx, nir_intrinsic_instr *instr)
3774 {
3775 unsigned off = nir_intrinsic_base(instr) * 4u;
3776 return off != ctx->tcs_tess_lvl_out_loc &&
3777 off != ctx->tcs_tess_lvl_in_loc;
3778 }
3779
3780 bool should_write_tcs_output_to_lds(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
3781 {
3782 /* When none of the appropriate outputs are read, we are OK to never write to LDS */
3783 if (per_vertex ? ctx->shader->info.outputs_read == 0U : ctx->shader->info.patch_outputs_read == 0u)
3784 return false;
3785
3786 uint64_t mask = per_vertex
3787 ? ctx->shader->info.outputs_read
3788 : ctx->shader->info.patch_outputs_read;
3789 bool indirect_write;
3790 bool output_read = tcs_driver_location_matches_api_mask(ctx, instr, per_vertex, mask, &indirect_write);
3791 return indirect_write || output_read;
3792 }
3793
3794 void visit_store_tcs_output(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
3795 {
3796 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
3797 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3798
3799 Builder bld(ctx->program, ctx->block);
3800
3801 Temp store_val = get_ssa_temp(ctx, instr->src[0].ssa);
3802 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
3803 unsigned write_mask = nir_intrinsic_write_mask(instr);
3804
3805 /* Only write to VMEM if the output is per-vertex or it's per-patch non tess factor */
3806 bool write_to_vmem = per_vertex || should_write_tcs_patch_output_to_vmem(ctx, instr);
3807 /* Only write to LDS if the output is read by the shader, or it's per-patch tess factor */
3808 bool write_to_lds = !write_to_vmem || should_write_tcs_output_to_lds(ctx, instr, per_vertex);
3809
3810 if (write_to_vmem) {
3811 std::pair<Temp, unsigned> vmem_offs = per_vertex
3812 ? get_tcs_per_vertex_output_vmem_offset(ctx, instr)
3813 : get_tcs_per_patch_output_vmem_offset(ctx, instr);
3814
3815 Temp hs_ring_tess_offchip = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
3816 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
3817 store_vmem_mubuf(ctx, store_val, hs_ring_tess_offchip, vmem_offs.first, oc_lds, vmem_offs.second, elem_size_bytes, write_mask, true, false);
3818 }
3819
3820 if (write_to_lds) {
3821 std::pair<Temp, unsigned> lds_offs = get_tcs_output_lds_offset(ctx, instr, per_vertex);
3822 unsigned lds_align = calculate_lds_alignment(ctx, lds_offs.second);
3823 store_lds(ctx, elem_size_bytes, store_val, write_mask, lds_offs.first, lds_offs.second, lds_align);
3824 }
3825 }
3826
3827 void visit_load_tcs_output(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
3828 {
3829 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
3830 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3831
3832 Builder bld(ctx->program, ctx->block);
3833
3834 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3835 std::pair<Temp, unsigned> lds_offs = get_tcs_output_lds_offset(ctx, instr, per_vertex);
3836 unsigned lds_align = calculate_lds_alignment(ctx, lds_offs.second);
3837 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
3838
3839 load_lds(ctx, elem_size_bytes, dst, lds_offs.first, lds_offs.second, lds_align);
3840 }
3841
3842 void visit_store_output(isel_context *ctx, nir_intrinsic_instr *instr)
3843 {
3844 if (ctx->stage == vertex_vs ||
3845 ctx->stage == tess_eval_vs ||
3846 ctx->stage == fragment_fs ||
3847 ctx->stage == ngg_vertex_gs ||
3848 ctx->stage == ngg_tess_eval_gs ||
3849 ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
3850 bool stored_to_temps = store_output_to_temps(ctx, instr);
3851 if (!stored_to_temps) {
3852 fprintf(stderr, "Unimplemented output offset instruction:\n");
3853 nir_print_instr(instr->src[1].ssa->parent_instr, stderr);
3854 fprintf(stderr, "\n");
3855 abort();
3856 }
3857 } else if (ctx->stage == vertex_es ||
3858 ctx->stage == vertex_ls ||
3859 ctx->stage == tess_eval_es ||
3860 (ctx->stage == vertex_tess_control_hs && ctx->shader->info.stage == MESA_SHADER_VERTEX) ||
3861 (ctx->stage == vertex_geometry_gs && ctx->shader->info.stage == MESA_SHADER_VERTEX) ||
3862 (ctx->stage == tess_eval_geometry_gs && ctx->shader->info.stage == MESA_SHADER_TESS_EVAL)) {
3863 visit_store_ls_or_es_output(ctx, instr);
3864 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
3865 visit_store_tcs_output(ctx, instr, false);
3866 } else {
3867 unreachable("Shader stage not implemented");
3868 }
3869 }
3870
3871 void visit_load_output(isel_context *ctx, nir_intrinsic_instr *instr)
3872 {
3873 visit_load_tcs_output(ctx, instr, false);
3874 }
3875
3876 void emit_interp_instr(isel_context *ctx, unsigned idx, unsigned component, Temp src, Temp dst, Temp prim_mask)
3877 {
3878 Temp coord1 = emit_extract_vector(ctx, src, 0, v1);
3879 Temp coord2 = emit_extract_vector(ctx, src, 1, v1);
3880
3881 Builder bld(ctx->program, ctx->block);
3882 Builder::Result interp_p1 = bld.vintrp(aco_opcode::v_interp_p1_f32, bld.def(v1), coord1, bld.m0(prim_mask), idx, component);
3883 if (ctx->program->has_16bank_lds)
3884 interp_p1.instr->operands[0].setLateKill(true);
3885 bld.vintrp(aco_opcode::v_interp_p2_f32, Definition(dst), coord2, bld.m0(prim_mask), interp_p1, idx, component);
3886 }
3887
3888 void emit_load_frag_coord(isel_context *ctx, Temp dst, unsigned num_components)
3889 {
3890 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1));
3891 for (unsigned i = 0; i < num_components; i++)
3892 vec->operands[i] = Operand(get_arg(ctx, ctx->args->ac.frag_pos[i]));
3893 if (G_0286CC_POS_W_FLOAT_ENA(ctx->program->config->spi_ps_input_ena)) {
3894 assert(num_components == 4);
3895 Builder bld(ctx->program, ctx->block);
3896 vec->operands[3] = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), get_arg(ctx, ctx->args->ac.frag_pos[3]));
3897 }
3898
3899 for (Operand& op : vec->operands)
3900 op = op.isUndefined() ? Operand(0u) : op;
3901
3902 vec->definitions[0] = Definition(dst);
3903 ctx->block->instructions.emplace_back(std::move(vec));
3904 emit_split_vector(ctx, dst, num_components);
3905 return;
3906 }
3907
3908 void visit_load_interpolated_input(isel_context *ctx, nir_intrinsic_instr *instr)
3909 {
3910 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3911 Temp coords = get_ssa_temp(ctx, instr->src[0].ssa);
3912 unsigned idx = nir_intrinsic_base(instr);
3913 unsigned component = nir_intrinsic_component(instr);
3914 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
3915
3916 nir_const_value* offset = nir_src_as_const_value(instr->src[1]);
3917 if (offset) {
3918 assert(offset->u32 == 0);
3919 } else {
3920 /* the lower 15bit of the prim_mask contain the offset into LDS
3921 * while the upper bits contain the number of prims */
3922 Temp offset_src = get_ssa_temp(ctx, instr->src[1].ssa);
3923 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
3924 Builder bld(ctx->program, ctx->block);
3925 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
3926 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
3927 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
3928 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
3929 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
3930 }
3931
3932 if (instr->dest.ssa.num_components == 1) {
3933 emit_interp_instr(ctx, idx, component, coords, dst, prim_mask);
3934 } else {
3935 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.ssa.num_components, 1));
3936 for (unsigned i = 0; i < instr->dest.ssa.num_components; i++)
3937 {
3938 Temp tmp = {ctx->program->allocateId(), v1};
3939 emit_interp_instr(ctx, idx, component+i, coords, tmp, prim_mask);
3940 vec->operands[i] = Operand(tmp);
3941 }
3942 vec->definitions[0] = Definition(dst);
3943 ctx->block->instructions.emplace_back(std::move(vec));
3944 }
3945 }
3946
3947 bool check_vertex_fetch_size(isel_context *ctx, const ac_data_format_info *vtx_info,
3948 unsigned offset, unsigned stride, unsigned channels)
3949 {
3950 unsigned vertex_byte_size = vtx_info->chan_byte_size * channels;
3951 if (vtx_info->chan_byte_size != 4 && channels == 3)
3952 return false;
3953 return (ctx->options->chip_class != GFX6 && ctx->options->chip_class != GFX10) ||
3954 (offset % vertex_byte_size == 0 && stride % vertex_byte_size == 0);
3955 }
3956
3957 uint8_t get_fetch_data_format(isel_context *ctx, const ac_data_format_info *vtx_info,
3958 unsigned offset, unsigned stride, unsigned *channels)
3959 {
3960 if (!vtx_info->chan_byte_size) {
3961 *channels = vtx_info->num_channels;
3962 return vtx_info->chan_format;
3963 }
3964
3965 unsigned num_channels = *channels;
3966 if (!check_vertex_fetch_size(ctx, vtx_info, offset, stride, *channels)) {
3967 unsigned new_channels = num_channels + 1;
3968 /* first, assume more loads is worse and try using a larger data format */
3969 while (new_channels <= 4 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels)) {
3970 new_channels++;
3971 /* don't make the attribute potentially out-of-bounds */
3972 if (offset + new_channels * vtx_info->chan_byte_size > stride)
3973 new_channels = 5;
3974 }
3975
3976 if (new_channels == 5) {
3977 /* then try decreasing load size (at the cost of more loads) */
3978 new_channels = *channels;
3979 while (new_channels > 1 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels))
3980 new_channels--;
3981 }
3982
3983 if (new_channels < *channels)
3984 *channels = new_channels;
3985 num_channels = new_channels;
3986 }
3987
3988 switch (vtx_info->chan_format) {
3989 case V_008F0C_BUF_DATA_FORMAT_8:
3990 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_8, V_008F0C_BUF_DATA_FORMAT_8_8,
3991 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_8_8_8_8}[num_channels - 1];
3992 case V_008F0C_BUF_DATA_FORMAT_16:
3993 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_16, V_008F0C_BUF_DATA_FORMAT_16_16,
3994 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_16_16_16_16}[num_channels - 1];
3995 case V_008F0C_BUF_DATA_FORMAT_32:
3996 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_32, V_008F0C_BUF_DATA_FORMAT_32_32,
3997 V_008F0C_BUF_DATA_FORMAT_32_32_32, V_008F0C_BUF_DATA_FORMAT_32_32_32_32}[num_channels - 1];
3998 }
3999 unreachable("shouldn't reach here");
4000 return V_008F0C_BUF_DATA_FORMAT_INVALID;
4001 }
4002
4003 /* For 2_10_10_10 formats the alpha is handled as unsigned by pre-vega HW.
4004 * so we may need to fix it up. */
4005 Temp adjust_vertex_fetch_alpha(isel_context *ctx, unsigned adjustment, Temp alpha)
4006 {
4007 Builder bld(ctx->program, ctx->block);
4008
4009 if (adjustment == RADV_ALPHA_ADJUST_SSCALED)
4010 alpha = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), alpha);
4011
4012 /* For the integer-like cases, do a natural sign extension.
4013 *
4014 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
4015 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
4016 * exponent.
4017 */
4018 alpha = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(adjustment == RADV_ALPHA_ADJUST_SNORM ? 7u : 30u), alpha);
4019 alpha = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(30u), alpha);
4020
4021 /* Convert back to the right type. */
4022 if (adjustment == RADV_ALPHA_ADJUST_SNORM) {
4023 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
4024 Temp clamp = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0xbf800000u), alpha);
4025 alpha = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xbf800000u), alpha, clamp);
4026 } else if (adjustment == RADV_ALPHA_ADJUST_SSCALED) {
4027 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
4028 }
4029
4030 return alpha;
4031 }
4032
4033 void visit_load_input(isel_context *ctx, nir_intrinsic_instr *instr)
4034 {
4035 Builder bld(ctx->program, ctx->block);
4036 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4037 if (ctx->shader->info.stage == MESA_SHADER_VERTEX) {
4038
4039 nir_instr *off_instr = instr->src[0].ssa->parent_instr;
4040 if (off_instr->type != nir_instr_type_load_const) {
4041 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
4042 nir_print_instr(off_instr, stderr);
4043 fprintf(stderr, "\n");
4044 }
4045 uint32_t offset = nir_instr_as_load_const(off_instr)->value[0].u32;
4046
4047 Temp vertex_buffers = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->vertex_buffers));
4048
4049 unsigned location = nir_intrinsic_base(instr) / 4 - VERT_ATTRIB_GENERIC0 + offset;
4050 unsigned component = nir_intrinsic_component(instr);
4051 unsigned attrib_binding = ctx->options->key.vs.vertex_attribute_bindings[location];
4052 uint32_t attrib_offset = ctx->options->key.vs.vertex_attribute_offsets[location];
4053 uint32_t attrib_stride = ctx->options->key.vs.vertex_attribute_strides[location];
4054 unsigned attrib_format = ctx->options->key.vs.vertex_attribute_formats[location];
4055
4056 unsigned dfmt = attrib_format & 0xf;
4057 unsigned nfmt = (attrib_format >> 4) & 0x7;
4058 const struct ac_data_format_info *vtx_info = ac_get_data_format_info(dfmt);
4059
4060 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa) << component;
4061 unsigned num_channels = MIN2(util_last_bit(mask), vtx_info->num_channels);
4062 unsigned alpha_adjust = (ctx->options->key.vs.alpha_adjust >> (location * 2)) & 3;
4063 bool post_shuffle = ctx->options->key.vs.post_shuffle & (1 << location);
4064 if (post_shuffle)
4065 num_channels = MAX2(num_channels, 3);
4066
4067 Operand off = bld.copy(bld.def(s1), Operand(attrib_binding * 16u));
4068 Temp list = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), vertex_buffers, off);
4069
4070 Temp index;
4071 if (ctx->options->key.vs.instance_rate_inputs & (1u << location)) {
4072 uint32_t divisor = ctx->options->key.vs.instance_rate_divisors[location];
4073 Temp start_instance = get_arg(ctx, ctx->args->ac.start_instance);
4074 if (divisor) {
4075 Temp instance_id = get_arg(ctx, ctx->args->ac.instance_id);
4076 if (divisor != 1) {
4077 Temp divided = bld.tmp(v1);
4078 emit_v_div_u32(ctx, divided, as_vgpr(ctx, instance_id), divisor);
4079 index = bld.vadd32(bld.def(v1), start_instance, divided);
4080 } else {
4081 index = bld.vadd32(bld.def(v1), start_instance, instance_id);
4082 }
4083 } else {
4084 index = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), start_instance);
4085 }
4086 } else {
4087 index = bld.vadd32(bld.def(v1),
4088 get_arg(ctx, ctx->args->ac.base_vertex),
4089 get_arg(ctx, ctx->args->ac.vertex_id));
4090 }
4091
4092 Temp channels[num_channels];
4093 unsigned channel_start = 0;
4094 bool direct_fetch = false;
4095
4096 /* skip unused channels at the start */
4097 if (vtx_info->chan_byte_size && !post_shuffle) {
4098 channel_start = ffs(mask) - 1;
4099 for (unsigned i = 0; i < channel_start; i++)
4100 channels[i] = Temp(0, s1);
4101 } else if (vtx_info->chan_byte_size && post_shuffle && !(mask & 0x8)) {
4102 num_channels = 3 - (ffs(mask) - 1);
4103 }
4104
4105 /* load channels */
4106 while (channel_start < num_channels) {
4107 unsigned fetch_size = num_channels - channel_start;
4108 unsigned fetch_offset = attrib_offset + channel_start * vtx_info->chan_byte_size;
4109 bool expanded = false;
4110
4111 /* use MUBUF when possible to avoid possible alignment issues */
4112 /* TODO: we could use SDWA to unpack 8/16-bit attributes without extra instructions */
4113 bool use_mubuf = (nfmt == V_008F0C_BUF_NUM_FORMAT_FLOAT ||
4114 nfmt == V_008F0C_BUF_NUM_FORMAT_UINT ||
4115 nfmt == V_008F0C_BUF_NUM_FORMAT_SINT) &&
4116 vtx_info->chan_byte_size == 4;
4117 unsigned fetch_dfmt = V_008F0C_BUF_DATA_FORMAT_INVALID;
4118 if (!use_mubuf) {
4119 fetch_dfmt = get_fetch_data_format(ctx, vtx_info, fetch_offset, attrib_stride, &fetch_size);
4120 } else {
4121 if (fetch_size == 3 && ctx->options->chip_class == GFX6) {
4122 /* GFX6 only supports loading vec3 with MTBUF, expand to vec4. */
4123 fetch_size = 4;
4124 expanded = true;
4125 }
4126 }
4127
4128 Temp fetch_index = index;
4129 if (attrib_stride != 0 && fetch_offset > attrib_stride) {
4130 fetch_index = bld.vadd32(bld.def(v1), Operand(fetch_offset / attrib_stride), fetch_index);
4131 fetch_offset = fetch_offset % attrib_stride;
4132 }
4133
4134 Operand soffset(0u);
4135 if (fetch_offset >= 4096) {
4136 soffset = bld.copy(bld.def(s1), Operand(fetch_offset / 4096 * 4096));
4137 fetch_offset %= 4096;
4138 }
4139
4140 aco_opcode opcode;
4141 switch (fetch_size) {
4142 case 1:
4143 opcode = use_mubuf ? aco_opcode::buffer_load_dword : aco_opcode::tbuffer_load_format_x;
4144 break;
4145 case 2:
4146 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx2 : aco_opcode::tbuffer_load_format_xy;
4147 break;
4148 case 3:
4149 assert(ctx->options->chip_class >= GFX7 ||
4150 (!use_mubuf && ctx->options->chip_class == GFX6));
4151 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx3 : aco_opcode::tbuffer_load_format_xyz;
4152 break;
4153 case 4:
4154 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx4 : aco_opcode::tbuffer_load_format_xyzw;
4155 break;
4156 default:
4157 unreachable("Unimplemented load_input vector size");
4158 }
4159
4160 Temp fetch_dst;
4161 if (channel_start == 0 && fetch_size == dst.size() && !post_shuffle &&
4162 !expanded && (alpha_adjust == RADV_ALPHA_ADJUST_NONE ||
4163 num_channels <= 3)) {
4164 direct_fetch = true;
4165 fetch_dst = dst;
4166 } else {
4167 fetch_dst = bld.tmp(RegType::vgpr, fetch_size);
4168 }
4169
4170 if (use_mubuf) {
4171 Instruction *mubuf = bld.mubuf(opcode,
4172 Definition(fetch_dst), list, fetch_index, soffset,
4173 fetch_offset, false, true).instr;
4174 static_cast<MUBUF_instruction*>(mubuf)->can_reorder = true;
4175 } else {
4176 Instruction *mtbuf = bld.mtbuf(opcode,
4177 Definition(fetch_dst), list, fetch_index, soffset,
4178 fetch_dfmt, nfmt, fetch_offset, false, true).instr;
4179 static_cast<MTBUF_instruction*>(mtbuf)->can_reorder = true;
4180 }
4181
4182 emit_split_vector(ctx, fetch_dst, fetch_dst.size());
4183
4184 if (fetch_size == 1) {
4185 channels[channel_start] = fetch_dst;
4186 } else {
4187 for (unsigned i = 0; i < MIN2(fetch_size, num_channels - channel_start); i++)
4188 channels[channel_start + i] = emit_extract_vector(ctx, fetch_dst, i, v1);
4189 }
4190
4191 channel_start += fetch_size;
4192 }
4193
4194 if (!direct_fetch) {
4195 bool is_float = nfmt != V_008F0C_BUF_NUM_FORMAT_UINT &&
4196 nfmt != V_008F0C_BUF_NUM_FORMAT_SINT;
4197
4198 static const unsigned swizzle_normal[4] = {0, 1, 2, 3};
4199 static const unsigned swizzle_post_shuffle[4] = {2, 1, 0, 3};
4200 const unsigned *swizzle = post_shuffle ? swizzle_post_shuffle : swizzle_normal;
4201
4202 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
4203 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
4204 unsigned num_temp = 0;
4205 for (unsigned i = 0; i < dst.size(); i++) {
4206 unsigned idx = i + component;
4207 if (swizzle[idx] < num_channels && channels[swizzle[idx]].id()) {
4208 Temp channel = channels[swizzle[idx]];
4209 if (idx == 3 && alpha_adjust != RADV_ALPHA_ADJUST_NONE)
4210 channel = adjust_vertex_fetch_alpha(ctx, alpha_adjust, channel);
4211 vec->operands[i] = Operand(channel);
4212
4213 num_temp++;
4214 elems[i] = channel;
4215 } else if (is_float && idx == 3) {
4216 vec->operands[i] = Operand(0x3f800000u);
4217 } else if (!is_float && idx == 3) {
4218 vec->operands[i] = Operand(1u);
4219 } else {
4220 vec->operands[i] = Operand(0u);
4221 }
4222 }
4223 vec->definitions[0] = Definition(dst);
4224 ctx->block->instructions.emplace_back(std::move(vec));
4225 emit_split_vector(ctx, dst, dst.size());
4226
4227 if (num_temp == dst.size())
4228 ctx->allocated_vec.emplace(dst.id(), elems);
4229 }
4230 } else if (ctx->shader->info.stage == MESA_SHADER_FRAGMENT) {
4231 unsigned offset_idx = instr->intrinsic == nir_intrinsic_load_input ? 0 : 1;
4232 nir_instr *off_instr = instr->src[offset_idx].ssa->parent_instr;
4233 if (off_instr->type != nir_instr_type_load_const ||
4234 nir_instr_as_load_const(off_instr)->value[0].u32 != 0) {
4235 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
4236 nir_print_instr(off_instr, stderr);
4237 fprintf(stderr, "\n");
4238 }
4239
4240 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
4241 nir_const_value* offset = nir_src_as_const_value(instr->src[offset_idx]);
4242 if (offset) {
4243 assert(offset->u32 == 0);
4244 } else {
4245 /* the lower 15bit of the prim_mask contain the offset into LDS
4246 * while the upper bits contain the number of prims */
4247 Temp offset_src = get_ssa_temp(ctx, instr->src[offset_idx].ssa);
4248 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
4249 Builder bld(ctx->program, ctx->block);
4250 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
4251 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
4252 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
4253 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
4254 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
4255 }
4256
4257 unsigned idx = nir_intrinsic_base(instr);
4258 unsigned component = nir_intrinsic_component(instr);
4259 unsigned vertex_id = 2; /* P0 */
4260
4261 if (instr->intrinsic == nir_intrinsic_load_input_vertex) {
4262 nir_const_value* src0 = nir_src_as_const_value(instr->src[0]);
4263 switch (src0->u32) {
4264 case 0:
4265 vertex_id = 2; /* P0 */
4266 break;
4267 case 1:
4268 vertex_id = 0; /* P10 */
4269 break;
4270 case 2:
4271 vertex_id = 1; /* P20 */
4272 break;
4273 default:
4274 unreachable("invalid vertex index");
4275 }
4276 }
4277
4278 if (dst.size() == 1) {
4279 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(dst), Operand(vertex_id), bld.m0(prim_mask), idx, component);
4280 } else {
4281 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
4282 for (unsigned i = 0; i < dst.size(); i++)
4283 vec->operands[i] = bld.vintrp(aco_opcode::v_interp_mov_f32, bld.def(v1), Operand(vertex_id), bld.m0(prim_mask), idx, component + i);
4284 vec->definitions[0] = Definition(dst);
4285 bld.insert(std::move(vec));
4286 }
4287
4288 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_EVAL) {
4289 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
4290 Temp soffset = get_arg(ctx, ctx->args->oc_lds);
4291 std::pair<Temp, unsigned> offs = get_tcs_per_patch_output_vmem_offset(ctx, instr);
4292 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8u;
4293
4294 load_vmem_mubuf(ctx, dst, ring, offs.first, soffset, offs.second, elem_size_bytes, instr->dest.ssa.num_components);
4295 } else {
4296 unreachable("Shader stage not implemented");
4297 }
4298 }
4299
4300 std::pair<Temp, unsigned> get_gs_per_vertex_input_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned base_stride = 1u)
4301 {
4302 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
4303
4304 Builder bld(ctx->program, ctx->block);
4305 nir_src *vertex_src = nir_get_io_vertex_index_src(instr);
4306 Temp vertex_offset;
4307
4308 if (!nir_src_is_const(*vertex_src)) {
4309 /* better code could be created, but this case probably doesn't happen
4310 * much in practice */
4311 Temp indirect_vertex = as_vgpr(ctx, get_ssa_temp(ctx, vertex_src->ssa));
4312 for (unsigned i = 0; i < ctx->shader->info.gs.vertices_in; i++) {
4313 Temp elem;
4314
4315 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
4316 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i / 2u * 2u]);
4317 if (i % 2u)
4318 elem = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), elem);
4319 } else {
4320 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i]);
4321 }
4322
4323 if (vertex_offset.id()) {
4324 Temp cond = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)),
4325 Operand(i), indirect_vertex);
4326 vertex_offset = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), vertex_offset, elem, cond);
4327 } else {
4328 vertex_offset = elem;
4329 }
4330 }
4331
4332 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs)
4333 vertex_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu), vertex_offset);
4334 } else {
4335 unsigned vertex = nir_src_as_uint(*vertex_src);
4336 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs)
4337 vertex_offset = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
4338 get_arg(ctx, ctx->args->gs_vtx_offset[vertex / 2u * 2u]),
4339 Operand((vertex % 2u) * 16u), Operand(16u));
4340 else
4341 vertex_offset = get_arg(ctx, ctx->args->gs_vtx_offset[vertex]);
4342 }
4343
4344 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, base_stride);
4345 offs = offset_add(ctx, offs, std::make_pair(vertex_offset, 0u));
4346 return offset_mul(ctx, offs, 4u);
4347 }
4348
4349 void visit_load_gs_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4350 {
4351 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
4352
4353 Builder bld(ctx->program, ctx->block);
4354 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4355 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
4356
4357 if (ctx->stage == geometry_gs) {
4358 std::pair<Temp, unsigned> offs = get_gs_per_vertex_input_offset(ctx, instr, ctx->program->wave_size);
4359 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_GS * 16u));
4360 load_vmem_mubuf(ctx, dst, ring, offs.first, Temp(), offs.second, elem_size_bytes, instr->dest.ssa.num_components, 4u * ctx->program->wave_size, false, true);
4361 } else if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
4362 std::pair<Temp, unsigned> offs = get_gs_per_vertex_input_offset(ctx, instr);
4363 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
4364 load_lds(ctx, elem_size_bytes, dst, offs.first, offs.second, lds_align);
4365 } else {
4366 unreachable("Unsupported GS stage.");
4367 }
4368 }
4369
4370 void visit_load_tcs_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4371 {
4372 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4373
4374 Builder bld(ctx->program, ctx->block);
4375 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4376
4377 if (load_input_from_temps(ctx, instr, dst))
4378 return;
4379
4380 std::pair<Temp, unsigned> offs = get_tcs_per_vertex_input_lds_offset(ctx, instr);
4381 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
4382 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
4383
4384 load_lds(ctx, elem_size_bytes, dst, offs.first, offs.second, lds_align);
4385 }
4386
4387 void visit_load_tes_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4388 {
4389 assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
4390
4391 Builder bld(ctx->program, ctx->block);
4392
4393 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
4394 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
4395 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4396
4397 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
4398 std::pair<Temp, unsigned> offs = get_tcs_per_vertex_output_vmem_offset(ctx, instr);
4399
4400 load_vmem_mubuf(ctx, dst, ring, offs.first, oc_lds, offs.second, elem_size_bytes, instr->dest.ssa.num_components, 0u, true, true);
4401 }
4402
4403 void visit_load_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4404 {
4405 switch (ctx->shader->info.stage) {
4406 case MESA_SHADER_GEOMETRY:
4407 visit_load_gs_per_vertex_input(ctx, instr);
4408 break;
4409 case MESA_SHADER_TESS_CTRL:
4410 visit_load_tcs_per_vertex_input(ctx, instr);
4411 break;
4412 case MESA_SHADER_TESS_EVAL:
4413 visit_load_tes_per_vertex_input(ctx, instr);
4414 break;
4415 default:
4416 unreachable("Unimplemented shader stage");
4417 }
4418 }
4419
4420 void visit_load_per_vertex_output(isel_context *ctx, nir_intrinsic_instr *instr)
4421 {
4422 visit_load_tcs_output(ctx, instr, true);
4423 }
4424
4425 void visit_store_per_vertex_output(isel_context *ctx, nir_intrinsic_instr *instr)
4426 {
4427 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
4428 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4429
4430 visit_store_tcs_output(ctx, instr, true);
4431 }
4432
4433 void visit_load_tess_coord(isel_context *ctx, nir_intrinsic_instr *instr)
4434 {
4435 assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
4436
4437 Builder bld(ctx->program, ctx->block);
4438 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4439
4440 Operand tes_u(get_arg(ctx, ctx->args->tes_u));
4441 Operand tes_v(get_arg(ctx, ctx->args->tes_v));
4442 Operand tes_w(0u);
4443
4444 if (ctx->shader->info.tess.primitive_mode == GL_TRIANGLES) {
4445 Temp tmp = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), tes_u, tes_v);
4446 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0x3f800000u /* 1.0f */), tmp);
4447 tes_w = Operand(tmp);
4448 }
4449
4450 Temp tess_coord = bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tes_u, tes_v, tes_w);
4451 emit_split_vector(ctx, tess_coord, 3);
4452 }
4453
4454 Temp load_desc_ptr(isel_context *ctx, unsigned desc_set)
4455 {
4456 if (ctx->program->info->need_indirect_descriptor_sets) {
4457 Builder bld(ctx->program, ctx->block);
4458 Temp ptr64 = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->descriptor_sets[0]));
4459 Operand off = bld.copy(bld.def(s1), Operand(desc_set << 2));
4460 return bld.smem(aco_opcode::s_load_dword, bld.def(s1), ptr64, off);//, false, false, false);
4461 }
4462
4463 return get_arg(ctx, ctx->args->descriptor_sets[desc_set]);
4464 }
4465
4466
4467 void visit_load_resource(isel_context *ctx, nir_intrinsic_instr *instr)
4468 {
4469 Builder bld(ctx->program, ctx->block);
4470 Temp index = get_ssa_temp(ctx, instr->src[0].ssa);
4471 if (!ctx->divergent_vals[instr->dest.ssa.index])
4472 index = bld.as_uniform(index);
4473 unsigned desc_set = nir_intrinsic_desc_set(instr);
4474 unsigned binding = nir_intrinsic_binding(instr);
4475
4476 Temp desc_ptr;
4477 radv_pipeline_layout *pipeline_layout = ctx->options->layout;
4478 radv_descriptor_set_layout *layout = pipeline_layout->set[desc_set].layout;
4479 unsigned offset = layout->binding[binding].offset;
4480 unsigned stride;
4481 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
4482 layout->binding[binding].type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
4483 unsigned idx = pipeline_layout->set[desc_set].dynamic_offset_start + layout->binding[binding].dynamic_offset_offset;
4484 desc_ptr = get_arg(ctx, ctx->args->ac.push_constants);
4485 offset = pipeline_layout->push_constant_size + 16 * idx;
4486 stride = 16;
4487 } else {
4488 desc_ptr = load_desc_ptr(ctx, desc_set);
4489 stride = layout->binding[binding].size;
4490 }
4491
4492 nir_const_value* nir_const_index = nir_src_as_const_value(instr->src[0]);
4493 unsigned const_index = nir_const_index ? nir_const_index->u32 : 0;
4494 if (stride != 1) {
4495 if (nir_const_index) {
4496 const_index = const_index * stride;
4497 } else if (index.type() == RegType::vgpr) {
4498 bool index24bit = layout->binding[binding].array_size <= 0x1000000;
4499 index = bld.v_mul_imm(bld.def(v1), index, stride, index24bit);
4500 } else {
4501 index = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), Operand(index));
4502 }
4503 }
4504 if (offset) {
4505 if (nir_const_index) {
4506 const_index = const_index + offset;
4507 } else if (index.type() == RegType::vgpr) {
4508 index = bld.vadd32(bld.def(v1), Operand(offset), index);
4509 } else {
4510 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), Operand(index));
4511 }
4512 }
4513
4514 if (nir_const_index && const_index == 0) {
4515 index = desc_ptr;
4516 } else if (index.type() == RegType::vgpr) {
4517 index = bld.vadd32(bld.def(v1),
4518 nir_const_index ? Operand(const_index) : Operand(index),
4519 Operand(desc_ptr));
4520 } else {
4521 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
4522 nir_const_index ? Operand(const_index) : Operand(index),
4523 Operand(desc_ptr));
4524 }
4525
4526 bld.copy(Definition(get_ssa_temp(ctx, &instr->dest.ssa)), index);
4527 }
4528
4529 void load_buffer(isel_context *ctx, unsigned num_components, unsigned component_size,
4530 Temp dst, Temp rsrc, Temp offset, int byte_align,
4531 bool glc=false, bool readonly=true)
4532 {
4533 Builder bld(ctx->program, ctx->block);
4534 bool dlc = glc && ctx->options->chip_class >= GFX10;
4535 unsigned num_bytes = num_components * component_size;
4536
4537 aco_opcode op;
4538 if (dst.type() == RegType::vgpr || ((ctx->options->chip_class < GFX8 || component_size < 4) && !readonly)) {
4539 Operand vaddr = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
4540 Operand soffset = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
4541 unsigned const_offset = 0;
4542
4543 /* for small bit sizes add buffer for unaligned loads */
4544 if (byte_align) {
4545 if (num_bytes > 2)
4546 num_bytes += byte_align == -1 ? 4 - component_size : byte_align;
4547 else
4548 byte_align = 0;
4549 }
4550
4551 Temp lower = Temp();
4552 if (num_bytes > 16) {
4553 assert(num_components == 3 || num_components == 4);
4554 op = aco_opcode::buffer_load_dwordx4;
4555 lower = bld.tmp(v4);
4556 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
4557 mubuf->definitions[0] = Definition(lower);
4558 mubuf->operands[0] = Operand(rsrc);
4559 mubuf->operands[1] = vaddr;
4560 mubuf->operands[2] = soffset;
4561 mubuf->offen = (offset.type() == RegType::vgpr);
4562 mubuf->glc = glc;
4563 mubuf->dlc = dlc;
4564 mubuf->barrier = readonly ? barrier_none : barrier_buffer;
4565 mubuf->can_reorder = readonly;
4566 bld.insert(std::move(mubuf));
4567 emit_split_vector(ctx, lower, 2);
4568 num_bytes -= 16;
4569 const_offset = 16;
4570 } else if (num_bytes == 12 && ctx->options->chip_class == GFX6) {
4571 /* GFX6 doesn't support loading vec3, expand to vec4. */
4572 num_bytes = 16;
4573 }
4574
4575 switch (num_bytes) {
4576 case 1:
4577 op = aco_opcode::buffer_load_ubyte;
4578 break;
4579 case 2:
4580 op = aco_opcode::buffer_load_ushort;
4581 break;
4582 case 3:
4583 case 4:
4584 op = aco_opcode::buffer_load_dword;
4585 break;
4586 case 5:
4587 case 6:
4588 case 7:
4589 case 8:
4590 op = aco_opcode::buffer_load_dwordx2;
4591 break;
4592 case 10:
4593 case 12:
4594 assert(ctx->options->chip_class > GFX6);
4595 op = aco_opcode::buffer_load_dwordx3;
4596 break;
4597 case 16:
4598 op = aco_opcode::buffer_load_dwordx4;
4599 break;
4600 default:
4601 unreachable("Load SSBO not implemented for this size.");
4602 }
4603 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
4604 mubuf->operands[0] = Operand(rsrc);
4605 mubuf->operands[1] = vaddr;
4606 mubuf->operands[2] = soffset;
4607 mubuf->offen = (offset.type() == RegType::vgpr);
4608 mubuf->glc = glc;
4609 mubuf->dlc = dlc;
4610 mubuf->barrier = readonly ? barrier_none : barrier_buffer;
4611 mubuf->can_reorder = readonly;
4612 mubuf->offset = const_offset;
4613 aco_ptr<Instruction> instr = std::move(mubuf);
4614
4615 if (component_size < 4) {
4616 Temp vec = num_bytes <= 4 ? bld.tmp(v1) : num_bytes <= 8 ? bld.tmp(v2) : bld.tmp(v3);
4617 instr->definitions[0] = Definition(vec);
4618 bld.insert(std::move(instr));
4619
4620 if (byte_align == -1 || (byte_align && dst.type() == RegType::sgpr)) {
4621 Operand align = byte_align == -1 ? Operand(offset) : Operand((uint32_t)byte_align);
4622 Temp tmp[3] = {vec, vec, vec};
4623
4624 if (vec.size() == 3) {
4625 tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = bld.tmp(v1);
4626 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), Definition(tmp[2]), vec);
4627 } else if (vec.size() == 2) {
4628 tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = tmp[1];
4629 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), vec);
4630 }
4631 for (unsigned i = 0; i < dst.size(); i++)
4632 tmp[i] = bld.vop3(aco_opcode::v_alignbyte_b32, bld.def(v1), tmp[i + 1], tmp[i], align);
4633
4634 vec = tmp[0];
4635 if (dst.size() == 2)
4636 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), tmp[0], tmp[1]);
4637
4638 byte_align = 0;
4639 }
4640
4641 if (dst.type() == RegType::vgpr && num_components == 1) {
4642 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), vec, Operand(byte_align / component_size));
4643 } else {
4644 trim_subdword_vector(ctx, vec, dst, 4 * vec.size() / component_size, ((1 << num_components) - 1) << byte_align / component_size);
4645 }
4646
4647 return;
4648
4649 } else if (dst.size() > 4) {
4650 assert(lower != Temp());
4651 Temp upper = bld.tmp(RegType::vgpr, dst.size() - lower.size());
4652 instr->definitions[0] = Definition(upper);
4653 bld.insert(std::move(instr));
4654 if (dst.size() == 8)
4655 emit_split_vector(ctx, upper, 2);
4656 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size() / 2, 1));
4657 instr->operands[0] = Operand(emit_extract_vector(ctx, lower, 0, v2));
4658 instr->operands[1] = Operand(emit_extract_vector(ctx, lower, 1, v2));
4659 instr->operands[2] = Operand(emit_extract_vector(ctx, upper, 0, v2));
4660 if (dst.size() == 8)
4661 instr->operands[3] = Operand(emit_extract_vector(ctx, upper, 1, v2));
4662 } else if (dst.size() == 3 && ctx->options->chip_class == GFX6) {
4663 Temp vec = bld.tmp(v4);
4664 instr->definitions[0] = Definition(vec);
4665 bld.insert(std::move(instr));
4666 emit_split_vector(ctx, vec, 4);
4667
4668 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 3, 1));
4669 instr->operands[0] = Operand(emit_extract_vector(ctx, vec, 0, v1));
4670 instr->operands[1] = Operand(emit_extract_vector(ctx, vec, 1, v1));
4671 instr->operands[2] = Operand(emit_extract_vector(ctx, vec, 2, v1));
4672 }
4673
4674 if (dst.type() == RegType::sgpr) {
4675 Temp vec = bld.tmp(RegType::vgpr, dst.size());
4676 instr->definitions[0] = Definition(vec);
4677 bld.insert(std::move(instr));
4678 expand_vector(ctx, vec, dst, num_components, (1 << num_components) - 1);
4679 } else {
4680 instr->definitions[0] = Definition(dst);
4681 bld.insert(std::move(instr));
4682 emit_split_vector(ctx, dst, num_components);
4683 }
4684 } else {
4685 /* for small bit sizes add buffer for unaligned loads */
4686 if (byte_align)
4687 num_bytes += byte_align == -1 ? 4 - component_size : byte_align;
4688
4689 switch (num_bytes) {
4690 case 1:
4691 case 2:
4692 case 3:
4693 case 4:
4694 op = aco_opcode::s_buffer_load_dword;
4695 break;
4696 case 5:
4697 case 6:
4698 case 7:
4699 case 8:
4700 op = aco_opcode::s_buffer_load_dwordx2;
4701 break;
4702 case 10:
4703 case 12:
4704 case 16:
4705 op = aco_opcode::s_buffer_load_dwordx4;
4706 break;
4707 case 24:
4708 case 32:
4709 op = aco_opcode::s_buffer_load_dwordx8;
4710 break;
4711 default:
4712 unreachable("Load SSBO not implemented for this size.");
4713 }
4714 offset = bld.as_uniform(offset);
4715 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
4716 load->operands[0] = Operand(rsrc);
4717 load->operands[1] = Operand(offset);
4718 assert(load->operands[1].getTemp().type() == RegType::sgpr);
4719 load->definitions[0] = Definition(dst);
4720 load->glc = glc;
4721 load->dlc = dlc;
4722 load->barrier = readonly ? barrier_none : barrier_buffer;
4723 load->can_reorder = false; // FIXME: currently, it doesn't seem beneficial due to how our scheduler works
4724 assert(ctx->options->chip_class >= GFX8 || !glc);
4725
4726 /* adjust misaligned small bit size loads */
4727 if (byte_align) {
4728 Temp vec = num_bytes <= 4 ? bld.tmp(s1) : num_bytes <= 8 ? bld.tmp(s2) : bld.tmp(s4);
4729 load->definitions[0] = Definition(vec);
4730 bld.insert(std::move(load));
4731 Operand byte_offset = byte_align > 0 ? Operand(uint32_t(byte_align)) : Operand(offset);
4732 byte_align_scalar(ctx, vec, byte_offset, dst);
4733
4734 /* trim vector */
4735 } else if (dst.size() == 3) {
4736 Temp vec = bld.tmp(s4);
4737 load->definitions[0] = Definition(vec);
4738 bld.insert(std::move(load));
4739 emit_split_vector(ctx, vec, 4);
4740
4741 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4742 emit_extract_vector(ctx, vec, 0, s1),
4743 emit_extract_vector(ctx, vec, 1, s1),
4744 emit_extract_vector(ctx, vec, 2, s1));
4745 } else if (dst.size() == 6) {
4746 Temp vec = bld.tmp(s8);
4747 load->definitions[0] = Definition(vec);
4748 bld.insert(std::move(load));
4749 emit_split_vector(ctx, vec, 4);
4750
4751 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4752 emit_extract_vector(ctx, vec, 0, s2),
4753 emit_extract_vector(ctx, vec, 1, s2),
4754 emit_extract_vector(ctx, vec, 2, s2));
4755 } else {
4756 bld.insert(std::move(load));
4757 }
4758 emit_split_vector(ctx, dst, num_components);
4759 }
4760 }
4761
4762 void visit_load_ubo(isel_context *ctx, nir_intrinsic_instr *instr)
4763 {
4764 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4765 Temp rsrc = get_ssa_temp(ctx, instr->src[0].ssa);
4766
4767 Builder bld(ctx->program, ctx->block);
4768
4769 nir_intrinsic_instr* idx_instr = nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
4770 unsigned desc_set = nir_intrinsic_desc_set(idx_instr);
4771 unsigned binding = nir_intrinsic_binding(idx_instr);
4772 radv_descriptor_set_layout *layout = ctx->options->layout->set[desc_set].layout;
4773
4774 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
4775 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
4776 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
4777 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
4778 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
4779 if (ctx->options->chip_class >= GFX10) {
4780 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
4781 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
4782 S_008F0C_RESOURCE_LEVEL(1);
4783 } else {
4784 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
4785 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
4786 }
4787 Temp upper_dwords = bld.pseudo(aco_opcode::p_create_vector, bld.def(s3),
4788 Operand(S_008F04_BASE_ADDRESS_HI(ctx->options->address32_hi)),
4789 Operand(0xFFFFFFFFu),
4790 Operand(desc_type));
4791 rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
4792 rsrc, upper_dwords);
4793 } else {
4794 rsrc = convert_pointer_to_64_bit(ctx, rsrc);
4795 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
4796 }
4797 unsigned size = instr->dest.ssa.bit_size / 8;
4798 int byte_align = 0;
4799 if (size < 4) {
4800 unsigned align_mul = nir_intrinsic_align_mul(instr);
4801 unsigned align_offset = nir_intrinsic_align_offset(instr);
4802 byte_align = align_mul % 4 == 0 ? align_offset : -1;
4803 }
4804 load_buffer(ctx, instr->num_components, size, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa), byte_align);
4805 }
4806
4807 void visit_load_push_constant(isel_context *ctx, nir_intrinsic_instr *instr)
4808 {
4809 Builder bld(ctx->program, ctx->block);
4810 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4811 unsigned offset = nir_intrinsic_base(instr);
4812 unsigned count = instr->dest.ssa.num_components;
4813 nir_const_value *index_cv = nir_src_as_const_value(instr->src[0]);
4814
4815 if (index_cv && instr->dest.ssa.bit_size == 32) {
4816 unsigned start = (offset + index_cv->u32) / 4u;
4817 start -= ctx->args->ac.base_inline_push_consts;
4818 if (start + count <= ctx->args->ac.num_inline_push_consts) {
4819 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
4820 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
4821 for (unsigned i = 0; i < count; ++i) {
4822 elems[i] = get_arg(ctx, ctx->args->ac.inline_push_consts[start + i]);
4823 vec->operands[i] = Operand{elems[i]};
4824 }
4825 vec->definitions[0] = Definition(dst);
4826 ctx->block->instructions.emplace_back(std::move(vec));
4827 ctx->allocated_vec.emplace(dst.id(), elems);
4828 return;
4829 }
4830 }
4831
4832 Temp index = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa));
4833 if (offset != 0) // TODO check if index != 0 as well
4834 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), index);
4835 Temp ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->ac.push_constants));
4836 Temp vec = dst;
4837 bool trim = false;
4838 bool aligned = true;
4839
4840 if (instr->dest.ssa.bit_size == 8) {
4841 aligned = index_cv && (offset + index_cv->u32) % 4 == 0;
4842 bool fits_in_dword = count == 1 || (index_cv && ((offset + index_cv->u32) % 4 + count) <= 4);
4843 if (!aligned)
4844 vec = fits_in_dword ? bld.tmp(s1) : bld.tmp(s2);
4845 } else if (instr->dest.ssa.bit_size == 16) {
4846 aligned = index_cv && (offset + index_cv->u32) % 4 == 0;
4847 if (!aligned)
4848 vec = count == 4 ? bld.tmp(s4) : count > 1 ? bld.tmp(s2) : bld.tmp(s1);
4849 }
4850
4851 aco_opcode op;
4852
4853 switch (vec.size()) {
4854 case 1:
4855 op = aco_opcode::s_load_dword;
4856 break;
4857 case 2:
4858 op = aco_opcode::s_load_dwordx2;
4859 break;
4860 case 3:
4861 vec = bld.tmp(s4);
4862 trim = true;
4863 case 4:
4864 op = aco_opcode::s_load_dwordx4;
4865 break;
4866 case 6:
4867 vec = bld.tmp(s8);
4868 trim = true;
4869 case 8:
4870 op = aco_opcode::s_load_dwordx8;
4871 break;
4872 default:
4873 unreachable("unimplemented or forbidden load_push_constant.");
4874 }
4875
4876 bld.smem(op, Definition(vec), ptr, index);
4877
4878 if (!aligned) {
4879 Operand byte_offset = index_cv ? Operand((offset + index_cv->u32) % 4) : Operand(index);
4880 byte_align_scalar(ctx, vec, byte_offset, dst);
4881 return;
4882 }
4883
4884 if (trim) {
4885 emit_split_vector(ctx, vec, 4);
4886 RegClass rc = dst.size() == 3 ? s1 : s2;
4887 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4888 emit_extract_vector(ctx, vec, 0, rc),
4889 emit_extract_vector(ctx, vec, 1, rc),
4890 emit_extract_vector(ctx, vec, 2, rc));
4891
4892 }
4893 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
4894 }
4895
4896 void visit_load_constant(isel_context *ctx, nir_intrinsic_instr *instr)
4897 {
4898 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4899
4900 Builder bld(ctx->program, ctx->block);
4901
4902 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
4903 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
4904 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
4905 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
4906 if (ctx->options->chip_class >= GFX10) {
4907 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
4908 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
4909 S_008F0C_RESOURCE_LEVEL(1);
4910 } else {
4911 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
4912 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
4913 }
4914
4915 unsigned base = nir_intrinsic_base(instr);
4916 unsigned range = nir_intrinsic_range(instr);
4917
4918 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
4919 if (base && offset.type() == RegType::sgpr)
4920 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), offset, Operand(base));
4921 else if (base && offset.type() == RegType::vgpr)
4922 offset = bld.vadd32(bld.def(v1), Operand(base), offset);
4923
4924 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
4925 bld.sop1(aco_opcode::p_constaddr, bld.def(s2), bld.def(s1, scc), Operand(ctx->constant_data_offset)),
4926 Operand(MIN2(base + range, ctx->shader->constant_data_size)),
4927 Operand(desc_type));
4928 unsigned size = instr->dest.ssa.bit_size / 8;
4929 // TODO: get alignment information for subdword constants
4930 unsigned byte_align = size < 4 ? -1 : 0;
4931 load_buffer(ctx, instr->num_components, size, dst, rsrc, offset, byte_align);
4932 }
4933
4934 void visit_discard_if(isel_context *ctx, nir_intrinsic_instr *instr)
4935 {
4936 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
4937 ctx->cf_info.exec_potentially_empty_discard = true;
4938
4939 ctx->program->needs_exact = true;
4940
4941 // TODO: optimize uniform conditions
4942 Builder bld(ctx->program, ctx->block);
4943 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
4944 assert(src.regClass() == bld.lm);
4945 src = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
4946 bld.pseudo(aco_opcode::p_discard_if, src);
4947 ctx->block->kind |= block_kind_uses_discard_if;
4948 return;
4949 }
4950
4951 void visit_discard(isel_context* ctx, nir_intrinsic_instr *instr)
4952 {
4953 Builder bld(ctx->program, ctx->block);
4954
4955 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
4956 ctx->cf_info.exec_potentially_empty_discard = true;
4957
4958 bool divergent = ctx->cf_info.parent_if.is_divergent ||
4959 ctx->cf_info.parent_loop.has_divergent_continue;
4960
4961 if (ctx->block->loop_nest_depth &&
4962 ((nir_instr_is_last(&instr->instr) && !divergent) || divergent)) {
4963 /* we handle discards the same way as jump instructions */
4964 append_logical_end(ctx->block);
4965
4966 /* in loops, discard behaves like break */
4967 Block *linear_target = ctx->cf_info.parent_loop.exit;
4968 ctx->block->kind |= block_kind_discard;
4969
4970 if (!divergent) {
4971 /* uniform discard - loop ends here */
4972 assert(nir_instr_is_last(&instr->instr));
4973 ctx->block->kind |= block_kind_uniform;
4974 ctx->cf_info.has_branch = true;
4975 bld.branch(aco_opcode::p_branch);
4976 add_linear_edge(ctx->block->index, linear_target);
4977 return;
4978 }
4979
4980 /* we add a break right behind the discard() instructions */
4981 ctx->block->kind |= block_kind_break;
4982 unsigned idx = ctx->block->index;
4983
4984 ctx->cf_info.parent_loop.has_divergent_branch = true;
4985 ctx->cf_info.nir_to_aco[instr->instr.block->index] = idx;
4986
4987 /* remove critical edges from linear CFG */
4988 bld.branch(aco_opcode::p_branch);
4989 Block* break_block = ctx->program->create_and_insert_block();
4990 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
4991 break_block->kind |= block_kind_uniform;
4992 add_linear_edge(idx, break_block);
4993 add_linear_edge(break_block->index, linear_target);
4994 bld.reset(break_block);
4995 bld.branch(aco_opcode::p_branch);
4996
4997 Block* continue_block = ctx->program->create_and_insert_block();
4998 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
4999 add_linear_edge(idx, continue_block);
5000 append_logical_start(continue_block);
5001 ctx->block = continue_block;
5002
5003 return;
5004 }
5005
5006 /* it can currently happen that NIR doesn't remove the unreachable code */
5007 if (!nir_instr_is_last(&instr->instr)) {
5008 ctx->program->needs_exact = true;
5009 /* save exec somewhere temporarily so that it doesn't get
5010 * overwritten before the discard from outer exec masks */
5011 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), Operand(0xFFFFFFFF), Operand(exec, bld.lm));
5012 bld.pseudo(aco_opcode::p_discard_if, cond);
5013 ctx->block->kind |= block_kind_uses_discard_if;
5014 return;
5015 }
5016
5017 /* This condition is incorrect for uniformly branched discards in a loop
5018 * predicated by a divergent condition, but the above code catches that case
5019 * and the discard would end up turning into a discard_if.
5020 * For example:
5021 * if (divergent) {
5022 * while (...) {
5023 * if (uniform) {
5024 * discard;
5025 * }
5026 * }
5027 * }
5028 */
5029 if (!ctx->cf_info.parent_if.is_divergent) {
5030 /* program just ends here */
5031 ctx->block->kind |= block_kind_uniform;
5032 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
5033 0 /* enabled mask */, 9 /* dest */,
5034 false /* compressed */, true/* done */, true /* valid mask */);
5035 bld.sopp(aco_opcode::s_endpgm);
5036 // TODO: it will potentially be followed by a branch which is dead code to sanitize NIR phis
5037 } else {
5038 ctx->block->kind |= block_kind_discard;
5039 /* branch and linear edge is added by visit_if() */
5040 }
5041 }
5042
5043 enum aco_descriptor_type {
5044 ACO_DESC_IMAGE,
5045 ACO_DESC_FMASK,
5046 ACO_DESC_SAMPLER,
5047 ACO_DESC_BUFFER,
5048 ACO_DESC_PLANE_0,
5049 ACO_DESC_PLANE_1,
5050 ACO_DESC_PLANE_2,
5051 };
5052
5053 static bool
5054 should_declare_array(isel_context *ctx, enum glsl_sampler_dim sampler_dim, bool is_array) {
5055 if (sampler_dim == GLSL_SAMPLER_DIM_BUF)
5056 return false;
5057 ac_image_dim dim = ac_get_sampler_dim(ctx->options->chip_class, sampler_dim, is_array);
5058 return dim == ac_image_cube ||
5059 dim == ac_image_1darray ||
5060 dim == ac_image_2darray ||
5061 dim == ac_image_2darraymsaa;
5062 }
5063
5064 Temp get_sampler_desc(isel_context *ctx, nir_deref_instr *deref_instr,
5065 enum aco_descriptor_type desc_type,
5066 const nir_tex_instr *tex_instr, bool image, bool write)
5067 {
5068 /* FIXME: we should lower the deref with some new nir_intrinsic_load_desc
5069 std::unordered_map<uint64_t, Temp>::iterator it = ctx->tex_desc.find((uint64_t) desc_type << 32 | deref_instr->dest.ssa.index);
5070 if (it != ctx->tex_desc.end())
5071 return it->second;
5072 */
5073 Temp index = Temp();
5074 bool index_set = false;
5075 unsigned constant_index = 0;
5076 unsigned descriptor_set;
5077 unsigned base_index;
5078 Builder bld(ctx->program, ctx->block);
5079
5080 if (!deref_instr) {
5081 assert(tex_instr && !image);
5082 descriptor_set = 0;
5083 base_index = tex_instr->sampler_index;
5084 } else {
5085 while(deref_instr->deref_type != nir_deref_type_var) {
5086 unsigned array_size = glsl_get_aoa_size(deref_instr->type);
5087 if (!array_size)
5088 array_size = 1;
5089
5090 assert(deref_instr->deref_type == nir_deref_type_array);
5091 nir_const_value *const_value = nir_src_as_const_value(deref_instr->arr.index);
5092 if (const_value) {
5093 constant_index += array_size * const_value->u32;
5094 } else {
5095 Temp indirect = get_ssa_temp(ctx, deref_instr->arr.index.ssa);
5096 if (indirect.type() == RegType::vgpr)
5097 indirect = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), indirect);
5098
5099 if (array_size != 1)
5100 indirect = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(array_size), indirect);
5101
5102 if (!index_set) {
5103 index = indirect;
5104 index_set = true;
5105 } else {
5106 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), index, indirect);
5107 }
5108 }
5109
5110 deref_instr = nir_src_as_deref(deref_instr->parent);
5111 }
5112 descriptor_set = deref_instr->var->data.descriptor_set;
5113 base_index = deref_instr->var->data.binding;
5114 }
5115
5116 Temp list = load_desc_ptr(ctx, descriptor_set);
5117 list = convert_pointer_to_64_bit(ctx, list);
5118
5119 struct radv_descriptor_set_layout *layout = ctx->options->layout->set[descriptor_set].layout;
5120 struct radv_descriptor_set_binding_layout *binding = layout->binding + base_index;
5121 unsigned offset = binding->offset;
5122 unsigned stride = binding->size;
5123 aco_opcode opcode;
5124 RegClass type;
5125
5126 assert(base_index < layout->binding_count);
5127
5128 switch (desc_type) {
5129 case ACO_DESC_IMAGE:
5130 type = s8;
5131 opcode = aco_opcode::s_load_dwordx8;
5132 break;
5133 case ACO_DESC_FMASK:
5134 type = s8;
5135 opcode = aco_opcode::s_load_dwordx8;
5136 offset += 32;
5137 break;
5138 case ACO_DESC_SAMPLER:
5139 type = s4;
5140 opcode = aco_opcode::s_load_dwordx4;
5141 if (binding->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
5142 offset += radv_combined_image_descriptor_sampler_offset(binding);
5143 break;
5144 case ACO_DESC_BUFFER:
5145 type = s4;
5146 opcode = aco_opcode::s_load_dwordx4;
5147 break;
5148 case ACO_DESC_PLANE_0:
5149 case ACO_DESC_PLANE_1:
5150 type = s8;
5151 opcode = aco_opcode::s_load_dwordx8;
5152 offset += 32 * (desc_type - ACO_DESC_PLANE_0);
5153 break;
5154 case ACO_DESC_PLANE_2:
5155 type = s4;
5156 opcode = aco_opcode::s_load_dwordx4;
5157 offset += 64;
5158 break;
5159 default:
5160 unreachable("invalid desc_type\n");
5161 }
5162
5163 offset += constant_index * stride;
5164
5165 if (desc_type == ACO_DESC_SAMPLER && binding->immutable_samplers_offset &&
5166 (!index_set || binding->immutable_samplers_equal)) {
5167 if (binding->immutable_samplers_equal)
5168 constant_index = 0;
5169
5170 const uint32_t *samplers = radv_immutable_samplers(layout, binding);
5171 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
5172 Operand(samplers[constant_index * 4 + 0]),
5173 Operand(samplers[constant_index * 4 + 1]),
5174 Operand(samplers[constant_index * 4 + 2]),
5175 Operand(samplers[constant_index * 4 + 3]));
5176 }
5177
5178 Operand off;
5179 if (!index_set) {
5180 off = bld.copy(bld.def(s1), Operand(offset));
5181 } else {
5182 off = Operand((Temp)bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset),
5183 bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), index)));
5184 }
5185
5186 Temp res = bld.smem(opcode, bld.def(type), list, off);
5187
5188 if (desc_type == ACO_DESC_PLANE_2) {
5189 Temp components[8];
5190 for (unsigned i = 0; i < 8; i++)
5191 components[i] = bld.tmp(s1);
5192 bld.pseudo(aco_opcode::p_split_vector,
5193 Definition(components[0]),
5194 Definition(components[1]),
5195 Definition(components[2]),
5196 Definition(components[3]),
5197 res);
5198
5199 Temp desc2 = get_sampler_desc(ctx, deref_instr, ACO_DESC_PLANE_1, tex_instr, image, write);
5200 bld.pseudo(aco_opcode::p_split_vector,
5201 bld.def(s1), bld.def(s1), bld.def(s1), bld.def(s1),
5202 Definition(components[4]),
5203 Definition(components[5]),
5204 Definition(components[6]),
5205 Definition(components[7]),
5206 desc2);
5207
5208 res = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
5209 components[0], components[1], components[2], components[3],
5210 components[4], components[5], components[6], components[7]);
5211 }
5212
5213 return res;
5214 }
5215
5216 static int image_type_to_components_count(enum glsl_sampler_dim dim, bool array)
5217 {
5218 switch (dim) {
5219 case GLSL_SAMPLER_DIM_BUF:
5220 return 1;
5221 case GLSL_SAMPLER_DIM_1D:
5222 return array ? 2 : 1;
5223 case GLSL_SAMPLER_DIM_2D:
5224 return array ? 3 : 2;
5225 case GLSL_SAMPLER_DIM_MS:
5226 return array ? 4 : 3;
5227 case GLSL_SAMPLER_DIM_3D:
5228 case GLSL_SAMPLER_DIM_CUBE:
5229 return 3;
5230 case GLSL_SAMPLER_DIM_RECT:
5231 case GLSL_SAMPLER_DIM_SUBPASS:
5232 return 2;
5233 case GLSL_SAMPLER_DIM_SUBPASS_MS:
5234 return 3;
5235 default:
5236 break;
5237 }
5238 return 0;
5239 }
5240
5241
5242 /* Adjust the sample index according to FMASK.
5243 *
5244 * For uncompressed MSAA surfaces, FMASK should return 0x76543210,
5245 * which is the identity mapping. Each nibble says which physical sample
5246 * should be fetched to get that sample.
5247 *
5248 * For example, 0x11111100 means there are only 2 samples stored and
5249 * the second sample covers 3/4 of the pixel. When reading samples 0
5250 * and 1, return physical sample 0 (determined by the first two 0s
5251 * in FMASK), otherwise return physical sample 1.
5252 *
5253 * The sample index should be adjusted as follows:
5254 * sample_index = (fmask >> (sample_index * 4)) & 0xF;
5255 */
5256 static Temp adjust_sample_index_using_fmask(isel_context *ctx, bool da, std::vector<Temp>& coords, Operand sample_index, Temp fmask_desc_ptr)
5257 {
5258 Builder bld(ctx->program, ctx->block);
5259 Temp fmask = bld.tmp(v1);
5260 unsigned dim = ctx->options->chip_class >= GFX10
5261 ? ac_get_sampler_dim(ctx->options->chip_class, GLSL_SAMPLER_DIM_2D, da)
5262 : 0;
5263
5264 Temp coord = da ? bld.pseudo(aco_opcode::p_create_vector, bld.def(v3), coords[0], coords[1], coords[2]) :
5265 bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), coords[0], coords[1]);
5266 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(aco_opcode::image_load, Format::MIMG, 3, 1)};
5267 load->operands[0] = Operand(fmask_desc_ptr);
5268 load->operands[1] = Operand(s4); /* no sampler */
5269 load->operands[2] = Operand(coord);
5270 load->definitions[0] = Definition(fmask);
5271 load->glc = false;
5272 load->dlc = false;
5273 load->dmask = 0x1;
5274 load->unrm = true;
5275 load->da = da;
5276 load->dim = dim;
5277 load->can_reorder = true; /* fmask images shouldn't be modified */
5278 ctx->block->instructions.emplace_back(std::move(load));
5279
5280 Operand sample_index4;
5281 if (sample_index.isConstant() && sample_index.constantValue() < 16) {
5282 sample_index4 = Operand(sample_index.constantValue() << 2);
5283 } else if (sample_index.regClass() == s1) {
5284 sample_index4 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), sample_index, Operand(2u));
5285 } else {
5286 assert(sample_index.regClass() == v1);
5287 sample_index4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), sample_index);
5288 }
5289
5290 Temp final_sample;
5291 if (sample_index4.isConstant() && sample_index4.constantValue() == 0)
5292 final_sample = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(15u), fmask);
5293 else if (sample_index4.isConstant() && sample_index4.constantValue() == 28)
5294 final_sample = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(28u), fmask);
5295 else
5296 final_sample = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), fmask, sample_index4, Operand(4u));
5297
5298 /* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK
5299 * resource descriptor is 0 (invalid),
5300 */
5301 Temp compare = bld.tmp(bld.lm);
5302 bld.vopc_e64(aco_opcode::v_cmp_lg_u32, Definition(compare),
5303 Operand(0u), emit_extract_vector(ctx, fmask_desc_ptr, 1, s1)).def(0).setHint(vcc);
5304
5305 Temp sample_index_v = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), sample_index);
5306
5307 /* Replace the MSAA sample index. */
5308 return bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), sample_index_v, final_sample, compare);
5309 }
5310
5311 static Temp get_image_coords(isel_context *ctx, const nir_intrinsic_instr *instr, const struct glsl_type *type)
5312 {
5313
5314 Temp src0 = get_ssa_temp(ctx, instr->src[1].ssa);
5315 enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5316 bool is_array = glsl_sampler_type_is_array(type);
5317 ASSERTED bool add_frag_pos = (dim == GLSL_SAMPLER_DIM_SUBPASS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
5318 assert(!add_frag_pos && "Input attachments should be lowered.");
5319 bool is_ms = (dim == GLSL_SAMPLER_DIM_MS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
5320 bool gfx9_1d = ctx->options->chip_class == GFX9 && dim == GLSL_SAMPLER_DIM_1D;
5321 int count = image_type_to_components_count(dim, is_array);
5322 std::vector<Temp> coords(count);
5323 Builder bld(ctx->program, ctx->block);
5324
5325 if (is_ms) {
5326 count--;
5327 Temp src2 = get_ssa_temp(ctx, instr->src[2].ssa);
5328 /* get sample index */
5329 if (instr->intrinsic == nir_intrinsic_image_deref_load) {
5330 nir_const_value *sample_cv = nir_src_as_const_value(instr->src[2]);
5331 Operand sample_index = sample_cv ? Operand(sample_cv->u32) : Operand(emit_extract_vector(ctx, src2, 0, v1));
5332 std::vector<Temp> fmask_load_address;
5333 for (unsigned i = 0; i < (is_array ? 3 : 2); i++)
5334 fmask_load_address.emplace_back(emit_extract_vector(ctx, src0, i, v1));
5335
5336 Temp fmask_desc_ptr = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_FMASK, nullptr, false, false);
5337 coords[count] = adjust_sample_index_using_fmask(ctx, is_array, fmask_load_address, sample_index, fmask_desc_ptr);
5338 } else {
5339 coords[count] = emit_extract_vector(ctx, src2, 0, v1);
5340 }
5341 }
5342
5343 if (gfx9_1d) {
5344 coords[0] = emit_extract_vector(ctx, src0, 0, v1);
5345 coords.resize(coords.size() + 1);
5346 coords[1] = bld.copy(bld.def(v1), Operand(0u));
5347 if (is_array)
5348 coords[2] = emit_extract_vector(ctx, src0, 1, v1);
5349 } else {
5350 for (int i = 0; i < count; i++)
5351 coords[i] = emit_extract_vector(ctx, src0, i, v1);
5352 }
5353
5354 if (instr->intrinsic == nir_intrinsic_image_deref_load ||
5355 instr->intrinsic == nir_intrinsic_image_deref_store) {
5356 int lod_index = instr->intrinsic == nir_intrinsic_image_deref_load ? 3 : 4;
5357 bool level_zero = nir_src_is_const(instr->src[lod_index]) && nir_src_as_uint(instr->src[lod_index]) == 0;
5358
5359 if (!level_zero)
5360 coords.emplace_back(get_ssa_temp(ctx, instr->src[lod_index].ssa));
5361 }
5362
5363 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
5364 for (unsigned i = 0; i < coords.size(); i++)
5365 vec->operands[i] = Operand(coords[i]);
5366 Temp res = {ctx->program->allocateId(), RegClass(RegType::vgpr, coords.size())};
5367 vec->definitions[0] = Definition(res);
5368 ctx->block->instructions.emplace_back(std::move(vec));
5369 return res;
5370 }
5371
5372
5373 void visit_image_load(isel_context *ctx, nir_intrinsic_instr *instr)
5374 {
5375 Builder bld(ctx->program, ctx->block);
5376 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5377 const struct glsl_type *type = glsl_without_array(var->type);
5378 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5379 bool is_array = glsl_sampler_type_is_array(type);
5380 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5381
5382 if (dim == GLSL_SAMPLER_DIM_BUF) {
5383 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa);
5384 unsigned num_channels = util_last_bit(mask);
5385 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5386 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5387
5388 aco_opcode opcode;
5389 switch (num_channels) {
5390 case 1:
5391 opcode = aco_opcode::buffer_load_format_x;
5392 break;
5393 case 2:
5394 opcode = aco_opcode::buffer_load_format_xy;
5395 break;
5396 case 3:
5397 opcode = aco_opcode::buffer_load_format_xyz;
5398 break;
5399 case 4:
5400 opcode = aco_opcode::buffer_load_format_xyzw;
5401 break;
5402 default:
5403 unreachable(">4 channel buffer image load");
5404 }
5405 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 3, 1)};
5406 load->operands[0] = Operand(rsrc);
5407 load->operands[1] = Operand(vindex);
5408 load->operands[2] = Operand((uint32_t) 0);
5409 Temp tmp;
5410 if (num_channels == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
5411 tmp = dst;
5412 else
5413 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_channels)};
5414 load->definitions[0] = Definition(tmp);
5415 load->idxen = true;
5416 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT);
5417 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
5418 load->barrier = barrier_image;
5419 ctx->block->instructions.emplace_back(std::move(load));
5420
5421 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, (1 << num_channels) - 1);
5422 return;
5423 }
5424
5425 Temp coords = get_image_coords(ctx, instr, type);
5426 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5427
5428 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
5429 unsigned num_components = util_bitcount(dmask);
5430 Temp tmp;
5431 if (num_components == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
5432 tmp = dst;
5433 else
5434 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_components)};
5435
5436 bool level_zero = nir_src_is_const(instr->src[3]) && nir_src_as_uint(instr->src[3]) == 0;
5437 aco_opcode opcode = level_zero ? aco_opcode::image_load : aco_opcode::image_load_mip;
5438
5439 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1)};
5440 load->operands[0] = Operand(resource);
5441 load->operands[1] = Operand(s4); /* no sampler */
5442 load->operands[2] = Operand(coords);
5443 load->definitions[0] = Definition(tmp);
5444 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT) ? 1 : 0;
5445 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
5446 load->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5447 load->dmask = dmask;
5448 load->unrm = true;
5449 load->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5450 load->barrier = barrier_image;
5451 ctx->block->instructions.emplace_back(std::move(load));
5452
5453 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, dmask);
5454 return;
5455 }
5456
5457 void visit_image_store(isel_context *ctx, nir_intrinsic_instr *instr)
5458 {
5459 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5460 const struct glsl_type *type = glsl_without_array(var->type);
5461 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5462 bool is_array = glsl_sampler_type_is_array(type);
5463 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
5464
5465 bool glc = ctx->options->chip_class == GFX6 || var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE) ? 1 : 0;
5466
5467 if (dim == GLSL_SAMPLER_DIM_BUF) {
5468 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5469 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5470 aco_opcode opcode;
5471 switch (data.size()) {
5472 case 1:
5473 opcode = aco_opcode::buffer_store_format_x;
5474 break;
5475 case 2:
5476 opcode = aco_opcode::buffer_store_format_xy;
5477 break;
5478 case 3:
5479 opcode = aco_opcode::buffer_store_format_xyz;
5480 break;
5481 case 4:
5482 opcode = aco_opcode::buffer_store_format_xyzw;
5483 break;
5484 default:
5485 unreachable(">4 channel buffer image store");
5486 }
5487 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
5488 store->operands[0] = Operand(rsrc);
5489 store->operands[1] = Operand(vindex);
5490 store->operands[2] = Operand((uint32_t) 0);
5491 store->operands[3] = Operand(data);
5492 store->idxen = true;
5493 store->glc = glc;
5494 store->dlc = false;
5495 store->disable_wqm = true;
5496 store->barrier = barrier_image;
5497 ctx->program->needs_exact = true;
5498 ctx->block->instructions.emplace_back(std::move(store));
5499 return;
5500 }
5501
5502 assert(data.type() == RegType::vgpr);
5503 Temp coords = get_image_coords(ctx, instr, type);
5504 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5505
5506 bool level_zero = nir_src_is_const(instr->src[4]) && nir_src_as_uint(instr->src[4]) == 0;
5507 aco_opcode opcode = level_zero ? aco_opcode::image_store : aco_opcode::image_store_mip;
5508
5509 aco_ptr<MIMG_instruction> store{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 0)};
5510 store->operands[0] = Operand(resource);
5511 store->operands[1] = Operand(data);
5512 store->operands[2] = Operand(coords);
5513 store->glc = glc;
5514 store->dlc = false;
5515 store->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5516 store->dmask = (1 << data.size()) - 1;
5517 store->unrm = true;
5518 store->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5519 store->disable_wqm = true;
5520 store->barrier = barrier_image;
5521 ctx->program->needs_exact = true;
5522 ctx->block->instructions.emplace_back(std::move(store));
5523 return;
5524 }
5525
5526 void visit_image_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
5527 {
5528 /* return the previous value if dest is ever used */
5529 bool return_previous = false;
5530 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5531 return_previous = true;
5532 break;
5533 }
5534 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5535 return_previous = true;
5536 break;
5537 }
5538
5539 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5540 const struct glsl_type *type = glsl_without_array(var->type);
5541 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5542 bool is_array = glsl_sampler_type_is_array(type);
5543 Builder bld(ctx->program, ctx->block);
5544
5545 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
5546 assert(data.size() == 1 && "64bit ssbo atomics not yet implemented.");
5547
5548 if (instr->intrinsic == nir_intrinsic_image_deref_atomic_comp_swap)
5549 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), get_ssa_temp(ctx, instr->src[4].ssa), data);
5550
5551 aco_opcode buf_op, image_op;
5552 switch (instr->intrinsic) {
5553 case nir_intrinsic_image_deref_atomic_add:
5554 buf_op = aco_opcode::buffer_atomic_add;
5555 image_op = aco_opcode::image_atomic_add;
5556 break;
5557 case nir_intrinsic_image_deref_atomic_umin:
5558 buf_op = aco_opcode::buffer_atomic_umin;
5559 image_op = aco_opcode::image_atomic_umin;
5560 break;
5561 case nir_intrinsic_image_deref_atomic_imin:
5562 buf_op = aco_opcode::buffer_atomic_smin;
5563 image_op = aco_opcode::image_atomic_smin;
5564 break;
5565 case nir_intrinsic_image_deref_atomic_umax:
5566 buf_op = aco_opcode::buffer_atomic_umax;
5567 image_op = aco_opcode::image_atomic_umax;
5568 break;
5569 case nir_intrinsic_image_deref_atomic_imax:
5570 buf_op = aco_opcode::buffer_atomic_smax;
5571 image_op = aco_opcode::image_atomic_smax;
5572 break;
5573 case nir_intrinsic_image_deref_atomic_and:
5574 buf_op = aco_opcode::buffer_atomic_and;
5575 image_op = aco_opcode::image_atomic_and;
5576 break;
5577 case nir_intrinsic_image_deref_atomic_or:
5578 buf_op = aco_opcode::buffer_atomic_or;
5579 image_op = aco_opcode::image_atomic_or;
5580 break;
5581 case nir_intrinsic_image_deref_atomic_xor:
5582 buf_op = aco_opcode::buffer_atomic_xor;
5583 image_op = aco_opcode::image_atomic_xor;
5584 break;
5585 case nir_intrinsic_image_deref_atomic_exchange:
5586 buf_op = aco_opcode::buffer_atomic_swap;
5587 image_op = aco_opcode::image_atomic_swap;
5588 break;
5589 case nir_intrinsic_image_deref_atomic_comp_swap:
5590 buf_op = aco_opcode::buffer_atomic_cmpswap;
5591 image_op = aco_opcode::image_atomic_cmpswap;
5592 break;
5593 default:
5594 unreachable("visit_image_atomic should only be called with nir_intrinsic_image_deref_atomic_* instructions.");
5595 }
5596
5597 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5598
5599 if (dim == GLSL_SAMPLER_DIM_BUF) {
5600 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5601 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5602 //assert(ctx->options->chip_class < GFX9 && "GFX9 stride size workaround not yet implemented.");
5603 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(buf_op, Format::MUBUF, 4, return_previous ? 1 : 0)};
5604 mubuf->operands[0] = Operand(resource);
5605 mubuf->operands[1] = Operand(vindex);
5606 mubuf->operands[2] = Operand((uint32_t)0);
5607 mubuf->operands[3] = Operand(data);
5608 if (return_previous)
5609 mubuf->definitions[0] = Definition(dst);
5610 mubuf->offset = 0;
5611 mubuf->idxen = true;
5612 mubuf->glc = return_previous;
5613 mubuf->dlc = false; /* Not needed for atomics */
5614 mubuf->disable_wqm = true;
5615 mubuf->barrier = barrier_image;
5616 ctx->program->needs_exact = true;
5617 ctx->block->instructions.emplace_back(std::move(mubuf));
5618 return;
5619 }
5620
5621 Temp coords = get_image_coords(ctx, instr, type);
5622 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5623 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(image_op, Format::MIMG, 3, return_previous ? 1 : 0)};
5624 mimg->operands[0] = Operand(resource);
5625 mimg->operands[1] = Operand(data);
5626 mimg->operands[2] = Operand(coords);
5627 if (return_previous)
5628 mimg->definitions[0] = Definition(dst);
5629 mimg->glc = return_previous;
5630 mimg->dlc = false; /* Not needed for atomics */
5631 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5632 mimg->dmask = (1 << data.size()) - 1;
5633 mimg->unrm = true;
5634 mimg->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5635 mimg->disable_wqm = true;
5636 mimg->barrier = barrier_image;
5637 ctx->program->needs_exact = true;
5638 ctx->block->instructions.emplace_back(std::move(mimg));
5639 return;
5640 }
5641
5642 void get_buffer_size(isel_context *ctx, Temp desc, Temp dst, bool in_elements)
5643 {
5644 if (in_elements && ctx->options->chip_class == GFX8) {
5645 /* we only have to divide by 1, 2, 4, 8, 12 or 16 */
5646 Builder bld(ctx->program, ctx->block);
5647
5648 Temp size = emit_extract_vector(ctx, desc, 2, s1);
5649
5650 Temp size_div3 = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), bld.copy(bld.def(v1), Operand(0xaaaaaaabu)), size);
5651 size_div3 = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.as_uniform(size_div3), Operand(1u));
5652
5653 Temp stride = emit_extract_vector(ctx, desc, 1, s1);
5654 stride = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), stride, Operand((5u << 16) | 16u));
5655
5656 Temp is12 = bld.sopc(aco_opcode::s_cmp_eq_i32, bld.def(s1, scc), stride, Operand(12u));
5657 size = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), size_div3, size, bld.scc(is12));
5658
5659 Temp shr_dst = dst.type() == RegType::vgpr ? bld.tmp(s1) : dst;
5660 bld.sop2(aco_opcode::s_lshr_b32, Definition(shr_dst), bld.def(s1, scc),
5661 size, bld.sop1(aco_opcode::s_ff1_i32_b32, bld.def(s1), stride));
5662 if (dst.type() == RegType::vgpr)
5663 bld.copy(Definition(dst), shr_dst);
5664
5665 /* TODO: we can probably calculate this faster with v_skip when stride != 12 */
5666 } else {
5667 emit_extract_vector(ctx, desc, 2, dst);
5668 }
5669 }
5670
5671 void visit_image_size(isel_context *ctx, nir_intrinsic_instr *instr)
5672 {
5673 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5674 const struct glsl_type *type = glsl_without_array(var->type);
5675 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5676 bool is_array = glsl_sampler_type_is_array(type);
5677 Builder bld(ctx->program, ctx->block);
5678
5679 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF) {
5680 Temp desc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, NULL, true, false);
5681 return get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), true);
5682 }
5683
5684 /* LOD */
5685 Temp lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
5686
5687 /* Resource */
5688 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, NULL, true, false);
5689
5690 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5691
5692 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1)};
5693 mimg->operands[0] = Operand(resource);
5694 mimg->operands[1] = Operand(s4); /* no sampler */
5695 mimg->operands[2] = Operand(lod);
5696 uint8_t& dmask = mimg->dmask;
5697 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5698 mimg->dmask = (1 << instr->dest.ssa.num_components) - 1;
5699 mimg->da = glsl_sampler_type_is_array(type);
5700 mimg->can_reorder = true;
5701 Definition& def = mimg->definitions[0];
5702 ctx->block->instructions.emplace_back(std::move(mimg));
5703
5704 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE &&
5705 glsl_sampler_type_is_array(type)) {
5706
5707 assert(instr->dest.ssa.num_components == 3);
5708 Temp tmp = {ctx->program->allocateId(), v3};
5709 def = Definition(tmp);
5710 emit_split_vector(ctx, tmp, 3);
5711
5712 /* divide 3rd value by 6 by multiplying with magic number */
5713 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
5714 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp, 2, v1), c);
5715
5716 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5717 emit_extract_vector(ctx, tmp, 0, v1),
5718 emit_extract_vector(ctx, tmp, 1, v1),
5719 by_6);
5720
5721 } else if (ctx->options->chip_class == GFX9 &&
5722 glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_1D &&
5723 glsl_sampler_type_is_array(type)) {
5724 assert(instr->dest.ssa.num_components == 2);
5725 def = Definition(dst);
5726 dmask = 0x5;
5727 } else {
5728 def = Definition(dst);
5729 }
5730
5731 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
5732 }
5733
5734 void visit_load_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
5735 {
5736 Builder bld(ctx->program, ctx->block);
5737 unsigned num_components = instr->num_components;
5738
5739 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5740 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5741 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
5742
5743 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
5744 unsigned size = instr->dest.ssa.bit_size / 8;
5745 int byte_align = 0;
5746 if (size < 4) {
5747 unsigned align_mul = nir_intrinsic_align_mul(instr);
5748 unsigned align_offset = nir_intrinsic_align_offset(instr);
5749 byte_align = align_mul % 4 == 0 ? align_offset : -1;
5750 }
5751 load_buffer(ctx, num_components, size, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa), byte_align, glc, false);
5752 }
5753
5754 void visit_store_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
5755 {
5756 Builder bld(ctx->program, ctx->block);
5757 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
5758 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
5759 unsigned writemask = nir_intrinsic_write_mask(instr);
5760 Temp offset = get_ssa_temp(ctx, instr->src[2].ssa);
5761
5762 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5763 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
5764
5765 bool smem = !ctx->divergent_vals[instr->src[2].ssa->index] &&
5766 ctx->options->chip_class >= GFX8 &&
5767 elem_size_bytes >= 4;
5768 if (smem)
5769 offset = bld.as_uniform(offset);
5770 bool smem_nonfs = smem && ctx->stage != fragment_fs;
5771
5772 while (writemask) {
5773 int start, count;
5774 u_bit_scan_consecutive_range(&writemask, &start, &count);
5775 if (count == 3 && (smem || ctx->options->chip_class == GFX6)) {
5776 /* GFX6 doesn't support storing vec3, split it. */
5777 writemask |= 1u << (start + 2);
5778 count = 2;
5779 }
5780 int num_bytes = count * elem_size_bytes;
5781
5782 /* dword or larger stores have to be dword-aligned */
5783 if (elem_size_bytes < 4 && num_bytes > 2) {
5784 // TODO: improve alignment check of sub-dword stores
5785 unsigned count_new = 2 / elem_size_bytes;
5786 writemask |= ((1 << (count - count_new)) - 1) << (start + count_new);
5787 count = count_new;
5788 num_bytes = 2;
5789 }
5790
5791 if (num_bytes > 16) {
5792 assert(elem_size_bytes == 8);
5793 writemask |= (((count - 2) << 1) - 1) << (start + 2);
5794 count = 2;
5795 num_bytes = 16;
5796 }
5797
5798 Temp write_data;
5799 if (elem_size_bytes < 4) {
5800 if (data.type() == RegType::sgpr) {
5801 data = as_vgpr(ctx, data);
5802 emit_split_vector(ctx, data, 4 * data.size() / elem_size_bytes);
5803 }
5804 RegClass rc = RegClass(RegType::vgpr, elem_size_bytes).as_subdword();
5805 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
5806 for (int i = 0; i < count; i++)
5807 vec->operands[i] = Operand(emit_extract_vector(ctx, data, start + i, rc));
5808 write_data = bld.tmp(RegClass(RegType::vgpr, num_bytes).as_subdword());
5809 vec->definitions[0] = Definition(write_data);
5810 bld.insert(std::move(vec));
5811 } else if (count != instr->num_components) {
5812 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
5813 for (int i = 0; i < count; i++) {
5814 Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(data.type(), elem_size_bytes / 4));
5815 vec->operands[i] = Operand(smem_nonfs ? bld.as_uniform(elem) : elem);
5816 }
5817 write_data = bld.tmp(!smem ? RegType::vgpr : smem_nonfs ? RegType::sgpr : data.type(), count * elem_size_bytes / 4);
5818 vec->definitions[0] = Definition(write_data);
5819 ctx->block->instructions.emplace_back(std::move(vec));
5820 } else if (!smem && data.type() != RegType::vgpr) {
5821 assert(num_bytes % 4 == 0);
5822 write_data = bld.copy(bld.def(RegType::vgpr, num_bytes / 4), data);
5823 } else if (smem_nonfs && data.type() == RegType::vgpr) {
5824 assert(num_bytes % 4 == 0);
5825 write_data = bld.as_uniform(data);
5826 } else {
5827 write_data = data;
5828 }
5829
5830 aco_opcode vmem_op, smem_op = aco_opcode::last_opcode;
5831 switch (num_bytes) {
5832 case 1:
5833 vmem_op = aco_opcode::buffer_store_byte;
5834 break;
5835 case 2:
5836 vmem_op = aco_opcode::buffer_store_short;
5837 break;
5838 case 4:
5839 vmem_op = aco_opcode::buffer_store_dword;
5840 smem_op = aco_opcode::s_buffer_store_dword;
5841 break;
5842 case 8:
5843 vmem_op = aco_opcode::buffer_store_dwordx2;
5844 smem_op = aco_opcode::s_buffer_store_dwordx2;
5845 break;
5846 case 12:
5847 vmem_op = aco_opcode::buffer_store_dwordx3;
5848 assert(!smem && ctx->options->chip_class > GFX6);
5849 break;
5850 case 16:
5851 vmem_op = aco_opcode::buffer_store_dwordx4;
5852 smem_op = aco_opcode::s_buffer_store_dwordx4;
5853 break;
5854 default:
5855 unreachable("Store SSBO not implemented for this size.");
5856 }
5857 if (ctx->stage == fragment_fs)
5858 smem_op = aco_opcode::p_fs_buffer_store_smem;
5859
5860 if (smem) {
5861 aco_ptr<SMEM_instruction> store{create_instruction<SMEM_instruction>(smem_op, Format::SMEM, 3, 0)};
5862 store->operands[0] = Operand(rsrc);
5863 if (start) {
5864 Temp off = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
5865 offset, Operand(start * elem_size_bytes));
5866 store->operands[1] = Operand(off);
5867 } else {
5868 store->operands[1] = Operand(offset);
5869 }
5870 if (smem_op != aco_opcode::p_fs_buffer_store_smem)
5871 store->operands[1].setFixed(m0);
5872 store->operands[2] = Operand(write_data);
5873 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
5874 store->dlc = false;
5875 store->disable_wqm = true;
5876 store->barrier = barrier_buffer;
5877 ctx->block->instructions.emplace_back(std::move(store));
5878 ctx->program->wb_smem_l1_on_end = true;
5879 if (smem_op == aco_opcode::p_fs_buffer_store_smem) {
5880 ctx->block->kind |= block_kind_needs_lowering;
5881 ctx->program->needs_exact = true;
5882 }
5883 } else {
5884 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(vmem_op, Format::MUBUF, 4, 0)};
5885 store->operands[0] = Operand(rsrc);
5886 store->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
5887 store->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
5888 store->operands[3] = Operand(write_data);
5889 store->offset = start * elem_size_bytes;
5890 store->offen = (offset.type() == RegType::vgpr);
5891 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
5892 store->dlc = false;
5893 store->disable_wqm = true;
5894 store->barrier = barrier_buffer;
5895 ctx->program->needs_exact = true;
5896 ctx->block->instructions.emplace_back(std::move(store));
5897 }
5898 }
5899 }
5900
5901 void visit_atomic_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
5902 {
5903 /* return the previous value if dest is ever used */
5904 bool return_previous = false;
5905 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5906 return_previous = true;
5907 break;
5908 }
5909 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5910 return_previous = true;
5911 break;
5912 }
5913
5914 Builder bld(ctx->program, ctx->block);
5915 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[2].ssa));
5916
5917 if (instr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap)
5918 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
5919 get_ssa_temp(ctx, instr->src[3].ssa), data);
5920
5921 Temp offset = get_ssa_temp(ctx, instr->src[1].ssa);
5922 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5923 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
5924
5925 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5926
5927 aco_opcode op32, op64;
5928 switch (instr->intrinsic) {
5929 case nir_intrinsic_ssbo_atomic_add:
5930 op32 = aco_opcode::buffer_atomic_add;
5931 op64 = aco_opcode::buffer_atomic_add_x2;
5932 break;
5933 case nir_intrinsic_ssbo_atomic_imin:
5934 op32 = aco_opcode::buffer_atomic_smin;
5935 op64 = aco_opcode::buffer_atomic_smin_x2;
5936 break;
5937 case nir_intrinsic_ssbo_atomic_umin:
5938 op32 = aco_opcode::buffer_atomic_umin;
5939 op64 = aco_opcode::buffer_atomic_umin_x2;
5940 break;
5941 case nir_intrinsic_ssbo_atomic_imax:
5942 op32 = aco_opcode::buffer_atomic_smax;
5943 op64 = aco_opcode::buffer_atomic_smax_x2;
5944 break;
5945 case nir_intrinsic_ssbo_atomic_umax:
5946 op32 = aco_opcode::buffer_atomic_umax;
5947 op64 = aco_opcode::buffer_atomic_umax_x2;
5948 break;
5949 case nir_intrinsic_ssbo_atomic_and:
5950 op32 = aco_opcode::buffer_atomic_and;
5951 op64 = aco_opcode::buffer_atomic_and_x2;
5952 break;
5953 case nir_intrinsic_ssbo_atomic_or:
5954 op32 = aco_opcode::buffer_atomic_or;
5955 op64 = aco_opcode::buffer_atomic_or_x2;
5956 break;
5957 case nir_intrinsic_ssbo_atomic_xor:
5958 op32 = aco_opcode::buffer_atomic_xor;
5959 op64 = aco_opcode::buffer_atomic_xor_x2;
5960 break;
5961 case nir_intrinsic_ssbo_atomic_exchange:
5962 op32 = aco_opcode::buffer_atomic_swap;
5963 op64 = aco_opcode::buffer_atomic_swap_x2;
5964 break;
5965 case nir_intrinsic_ssbo_atomic_comp_swap:
5966 op32 = aco_opcode::buffer_atomic_cmpswap;
5967 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
5968 break;
5969 default:
5970 unreachable("visit_atomic_ssbo should only be called with nir_intrinsic_ssbo_atomic_* instructions.");
5971 }
5972 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
5973 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
5974 mubuf->operands[0] = Operand(rsrc);
5975 mubuf->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
5976 mubuf->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
5977 mubuf->operands[3] = Operand(data);
5978 if (return_previous)
5979 mubuf->definitions[0] = Definition(dst);
5980 mubuf->offset = 0;
5981 mubuf->offen = (offset.type() == RegType::vgpr);
5982 mubuf->glc = return_previous;
5983 mubuf->dlc = false; /* Not needed for atomics */
5984 mubuf->disable_wqm = true;
5985 mubuf->barrier = barrier_buffer;
5986 ctx->program->needs_exact = true;
5987 ctx->block->instructions.emplace_back(std::move(mubuf));
5988 }
5989
5990 void visit_get_buffer_size(isel_context *ctx, nir_intrinsic_instr *instr) {
5991
5992 Temp index = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5993 Builder bld(ctx->program, ctx->block);
5994 Temp desc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), index, Operand(0u));
5995 get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), false);
5996 }
5997
5998 Temp get_gfx6_global_rsrc(Builder& bld, Temp addr)
5999 {
6000 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
6001 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
6002
6003 if (addr.type() == RegType::vgpr)
6004 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), Operand(0u), Operand(0u), Operand(-1u), Operand(rsrc_conf));
6005 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), addr, Operand(-1u), Operand(rsrc_conf));
6006 }
6007
6008 void visit_load_global(isel_context *ctx, nir_intrinsic_instr *instr)
6009 {
6010 Builder bld(ctx->program, ctx->block);
6011 unsigned num_components = instr->num_components;
6012 unsigned num_bytes = num_components * instr->dest.ssa.bit_size / 8;
6013
6014 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6015 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
6016
6017 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
6018 bool dlc = glc && ctx->options->chip_class >= GFX10;
6019 aco_opcode op;
6020 if (dst.type() == RegType::vgpr || (glc && ctx->options->chip_class < GFX8)) {
6021 bool global = ctx->options->chip_class >= GFX9;
6022
6023 if (ctx->options->chip_class >= GFX7) {
6024 aco_opcode op;
6025 switch (num_bytes) {
6026 case 4:
6027 op = global ? aco_opcode::global_load_dword : aco_opcode::flat_load_dword;
6028 break;
6029 case 8:
6030 op = global ? aco_opcode::global_load_dwordx2 : aco_opcode::flat_load_dwordx2;
6031 break;
6032 case 12:
6033 op = global ? aco_opcode::global_load_dwordx3 : aco_opcode::flat_load_dwordx3;
6034 break;
6035 case 16:
6036 op = global ? aco_opcode::global_load_dwordx4 : aco_opcode::flat_load_dwordx4;
6037 break;
6038 default:
6039 unreachable("load_global not implemented for this size.");
6040 }
6041
6042 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 2, 1)};
6043 flat->operands[0] = Operand(addr);
6044 flat->operands[1] = Operand(s1);
6045 flat->glc = glc;
6046 flat->dlc = dlc;
6047 flat->barrier = barrier_buffer;
6048
6049 if (dst.type() == RegType::sgpr) {
6050 Temp vec = bld.tmp(RegType::vgpr, dst.size());
6051 flat->definitions[0] = Definition(vec);
6052 ctx->block->instructions.emplace_back(std::move(flat));
6053 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
6054 } else {
6055 flat->definitions[0] = Definition(dst);
6056 ctx->block->instructions.emplace_back(std::move(flat));
6057 }
6058 emit_split_vector(ctx, dst, num_components);
6059 } else {
6060 assert(ctx->options->chip_class == GFX6);
6061
6062 /* GFX6 doesn't support loading vec3, expand to vec4. */
6063 num_bytes = num_bytes == 12 ? 16 : num_bytes;
6064
6065 aco_opcode op;
6066 switch (num_bytes) {
6067 case 4:
6068 op = aco_opcode::buffer_load_dword;
6069 break;
6070 case 8:
6071 op = aco_opcode::buffer_load_dwordx2;
6072 break;
6073 case 16:
6074 op = aco_opcode::buffer_load_dwordx4;
6075 break;
6076 default:
6077 unreachable("load_global not implemented for this size.");
6078 }
6079
6080 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
6081
6082 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
6083 mubuf->operands[0] = Operand(rsrc);
6084 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
6085 mubuf->operands[2] = Operand(0u);
6086 mubuf->glc = glc;
6087 mubuf->dlc = false;
6088 mubuf->offset = 0;
6089 mubuf->addr64 = addr.type() == RegType::vgpr;
6090 mubuf->disable_wqm = false;
6091 mubuf->barrier = barrier_buffer;
6092 aco_ptr<Instruction> instr = std::move(mubuf);
6093
6094 /* expand vector */
6095 if (dst.size() == 3) {
6096 Temp vec = bld.tmp(v4);
6097 instr->definitions[0] = Definition(vec);
6098 bld.insert(std::move(instr));
6099 emit_split_vector(ctx, vec, 4);
6100
6101 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 3, 1));
6102 instr->operands[0] = Operand(emit_extract_vector(ctx, vec, 0, v1));
6103 instr->operands[1] = Operand(emit_extract_vector(ctx, vec, 1, v1));
6104 instr->operands[2] = Operand(emit_extract_vector(ctx, vec, 2, v1));
6105 }
6106
6107 if (dst.type() == RegType::sgpr) {
6108 Temp vec = bld.tmp(RegType::vgpr, dst.size());
6109 instr->definitions[0] = Definition(vec);
6110 bld.insert(std::move(instr));
6111 expand_vector(ctx, vec, dst, num_components, (1 << num_components) - 1);
6112 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
6113 } else {
6114 instr->definitions[0] = Definition(dst);
6115 bld.insert(std::move(instr));
6116 emit_split_vector(ctx, dst, num_components);
6117 }
6118 }
6119 } else {
6120 switch (num_bytes) {
6121 case 4:
6122 op = aco_opcode::s_load_dword;
6123 break;
6124 case 8:
6125 op = aco_opcode::s_load_dwordx2;
6126 break;
6127 case 12:
6128 case 16:
6129 op = aco_opcode::s_load_dwordx4;
6130 break;
6131 default:
6132 unreachable("load_global not implemented for this size.");
6133 }
6134 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
6135 load->operands[0] = Operand(addr);
6136 load->operands[1] = Operand(0u);
6137 load->definitions[0] = Definition(dst);
6138 load->glc = glc;
6139 load->dlc = dlc;
6140 load->barrier = barrier_buffer;
6141 assert(ctx->options->chip_class >= GFX8 || !glc);
6142
6143 if (dst.size() == 3) {
6144 /* trim vector */
6145 Temp vec = bld.tmp(s4);
6146 load->definitions[0] = Definition(vec);
6147 ctx->block->instructions.emplace_back(std::move(load));
6148 emit_split_vector(ctx, vec, 4);
6149
6150 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6151 emit_extract_vector(ctx, vec, 0, s1),
6152 emit_extract_vector(ctx, vec, 1, s1),
6153 emit_extract_vector(ctx, vec, 2, s1));
6154 } else {
6155 ctx->block->instructions.emplace_back(std::move(load));
6156 }
6157 }
6158 }
6159
6160 void visit_store_global(isel_context *ctx, nir_intrinsic_instr *instr)
6161 {
6162 Builder bld(ctx->program, ctx->block);
6163 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6164
6165 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6166 Temp addr = get_ssa_temp(ctx, instr->src[1].ssa);
6167
6168 if (ctx->options->chip_class >= GFX7)
6169 addr = as_vgpr(ctx, addr);
6170
6171 unsigned writemask = nir_intrinsic_write_mask(instr);
6172 while (writemask) {
6173 int start, count;
6174 u_bit_scan_consecutive_range(&writemask, &start, &count);
6175 if (count == 3 && ctx->options->chip_class == GFX6) {
6176 /* GFX6 doesn't support storing vec3, split it. */
6177 writemask |= 1u << (start + 2);
6178 count = 2;
6179 }
6180 unsigned num_bytes = count * elem_size_bytes;
6181
6182 Temp write_data = data;
6183 if (count != instr->num_components) {
6184 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
6185 for (int i = 0; i < count; i++)
6186 vec->operands[i] = Operand(emit_extract_vector(ctx, data, start + i, v1));
6187 write_data = bld.tmp(RegType::vgpr, count);
6188 vec->definitions[0] = Definition(write_data);
6189 ctx->block->instructions.emplace_back(std::move(vec));
6190 }
6191
6192 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
6193 unsigned offset = start * elem_size_bytes;
6194
6195 if (ctx->options->chip_class >= GFX7) {
6196 if (offset > 0 && ctx->options->chip_class < GFX9) {
6197 Temp addr0 = bld.tmp(v1), addr1 = bld.tmp(v1);
6198 Temp new_addr0 = bld.tmp(v1), new_addr1 = bld.tmp(v1);
6199 Temp carry = bld.tmp(bld.lm);
6200 bld.pseudo(aco_opcode::p_split_vector, Definition(addr0), Definition(addr1), addr);
6201
6202 bld.vop2(aco_opcode::v_add_co_u32, Definition(new_addr0), bld.hint_vcc(Definition(carry)),
6203 Operand(offset), addr0);
6204 bld.vop2(aco_opcode::v_addc_co_u32, Definition(new_addr1), bld.def(bld.lm),
6205 Operand(0u), addr1,
6206 carry).def(1).setHint(vcc);
6207
6208 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_addr0, new_addr1);
6209
6210 offset = 0;
6211 }
6212
6213 bool global = ctx->options->chip_class >= GFX9;
6214 aco_opcode op;
6215 switch (num_bytes) {
6216 case 4:
6217 op = global ? aco_opcode::global_store_dword : aco_opcode::flat_store_dword;
6218 break;
6219 case 8:
6220 op = global ? aco_opcode::global_store_dwordx2 : aco_opcode::flat_store_dwordx2;
6221 break;
6222 case 12:
6223 op = global ? aco_opcode::global_store_dwordx3 : aco_opcode::flat_store_dwordx3;
6224 break;
6225 case 16:
6226 op = global ? aco_opcode::global_store_dwordx4 : aco_opcode::flat_store_dwordx4;
6227 break;
6228 default:
6229 unreachable("store_global not implemented for this size.");
6230 }
6231
6232 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, 0)};
6233 flat->operands[0] = Operand(addr);
6234 flat->operands[1] = Operand(s1);
6235 flat->operands[2] = Operand(data);
6236 flat->glc = glc;
6237 flat->dlc = false;
6238 flat->offset = offset;
6239 flat->disable_wqm = true;
6240 flat->barrier = barrier_buffer;
6241 ctx->program->needs_exact = true;
6242 ctx->block->instructions.emplace_back(std::move(flat));
6243 } else {
6244 assert(ctx->options->chip_class == GFX6);
6245
6246 aco_opcode op;
6247 switch (num_bytes) {
6248 case 4:
6249 op = aco_opcode::buffer_store_dword;
6250 break;
6251 case 8:
6252 op = aco_opcode::buffer_store_dwordx2;
6253 break;
6254 case 16:
6255 op = aco_opcode::buffer_store_dwordx4;
6256 break;
6257 default:
6258 unreachable("store_global not implemented for this size.");
6259 }
6260
6261 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
6262
6263 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, 0)};
6264 mubuf->operands[0] = Operand(rsrc);
6265 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
6266 mubuf->operands[2] = Operand(0u);
6267 mubuf->operands[3] = Operand(write_data);
6268 mubuf->glc = glc;
6269 mubuf->dlc = false;
6270 mubuf->offset = offset;
6271 mubuf->addr64 = addr.type() == RegType::vgpr;
6272 mubuf->disable_wqm = true;
6273 mubuf->barrier = barrier_buffer;
6274 ctx->program->needs_exact = true;
6275 ctx->block->instructions.emplace_back(std::move(mubuf));
6276 }
6277 }
6278 }
6279
6280 void visit_global_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
6281 {
6282 /* return the previous value if dest is ever used */
6283 bool return_previous = false;
6284 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6285 return_previous = true;
6286 break;
6287 }
6288 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6289 return_previous = true;
6290 break;
6291 }
6292
6293 Builder bld(ctx->program, ctx->block);
6294 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
6295 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6296
6297 if (ctx->options->chip_class >= GFX7)
6298 addr = as_vgpr(ctx, addr);
6299
6300 if (instr->intrinsic == nir_intrinsic_global_atomic_comp_swap)
6301 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
6302 get_ssa_temp(ctx, instr->src[2].ssa), data);
6303
6304 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6305
6306 aco_opcode op32, op64;
6307
6308 if (ctx->options->chip_class >= GFX7) {
6309 bool global = ctx->options->chip_class >= GFX9;
6310 switch (instr->intrinsic) {
6311 case nir_intrinsic_global_atomic_add:
6312 op32 = global ? aco_opcode::global_atomic_add : aco_opcode::flat_atomic_add;
6313 op64 = global ? aco_opcode::global_atomic_add_x2 : aco_opcode::flat_atomic_add_x2;
6314 break;
6315 case nir_intrinsic_global_atomic_imin:
6316 op32 = global ? aco_opcode::global_atomic_smin : aco_opcode::flat_atomic_smin;
6317 op64 = global ? aco_opcode::global_atomic_smin_x2 : aco_opcode::flat_atomic_smin_x2;
6318 break;
6319 case nir_intrinsic_global_atomic_umin:
6320 op32 = global ? aco_opcode::global_atomic_umin : aco_opcode::flat_atomic_umin;
6321 op64 = global ? aco_opcode::global_atomic_umin_x2 : aco_opcode::flat_atomic_umin_x2;
6322 break;
6323 case nir_intrinsic_global_atomic_imax:
6324 op32 = global ? aco_opcode::global_atomic_smax : aco_opcode::flat_atomic_smax;
6325 op64 = global ? aco_opcode::global_atomic_smax_x2 : aco_opcode::flat_atomic_smax_x2;
6326 break;
6327 case nir_intrinsic_global_atomic_umax:
6328 op32 = global ? aco_opcode::global_atomic_umax : aco_opcode::flat_atomic_umax;
6329 op64 = global ? aco_opcode::global_atomic_umax_x2 : aco_opcode::flat_atomic_umax_x2;
6330 break;
6331 case nir_intrinsic_global_atomic_and:
6332 op32 = global ? aco_opcode::global_atomic_and : aco_opcode::flat_atomic_and;
6333 op64 = global ? aco_opcode::global_atomic_and_x2 : aco_opcode::flat_atomic_and_x2;
6334 break;
6335 case nir_intrinsic_global_atomic_or:
6336 op32 = global ? aco_opcode::global_atomic_or : aco_opcode::flat_atomic_or;
6337 op64 = global ? aco_opcode::global_atomic_or_x2 : aco_opcode::flat_atomic_or_x2;
6338 break;
6339 case nir_intrinsic_global_atomic_xor:
6340 op32 = global ? aco_opcode::global_atomic_xor : aco_opcode::flat_atomic_xor;
6341 op64 = global ? aco_opcode::global_atomic_xor_x2 : aco_opcode::flat_atomic_xor_x2;
6342 break;
6343 case nir_intrinsic_global_atomic_exchange:
6344 op32 = global ? aco_opcode::global_atomic_swap : aco_opcode::flat_atomic_swap;
6345 op64 = global ? aco_opcode::global_atomic_swap_x2 : aco_opcode::flat_atomic_swap_x2;
6346 break;
6347 case nir_intrinsic_global_atomic_comp_swap:
6348 op32 = global ? aco_opcode::global_atomic_cmpswap : aco_opcode::flat_atomic_cmpswap;
6349 op64 = global ? aco_opcode::global_atomic_cmpswap_x2 : aco_opcode::flat_atomic_cmpswap_x2;
6350 break;
6351 default:
6352 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
6353 }
6354
6355 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
6356 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, return_previous ? 1 : 0)};
6357 flat->operands[0] = Operand(addr);
6358 flat->operands[1] = Operand(s1);
6359 flat->operands[2] = Operand(data);
6360 if (return_previous)
6361 flat->definitions[0] = Definition(dst);
6362 flat->glc = return_previous;
6363 flat->dlc = false; /* Not needed for atomics */
6364 flat->offset = 0;
6365 flat->disable_wqm = true;
6366 flat->barrier = barrier_buffer;
6367 ctx->program->needs_exact = true;
6368 ctx->block->instructions.emplace_back(std::move(flat));
6369 } else {
6370 assert(ctx->options->chip_class == GFX6);
6371
6372 switch (instr->intrinsic) {
6373 case nir_intrinsic_global_atomic_add:
6374 op32 = aco_opcode::buffer_atomic_add;
6375 op64 = aco_opcode::buffer_atomic_add_x2;
6376 break;
6377 case nir_intrinsic_global_atomic_imin:
6378 op32 = aco_opcode::buffer_atomic_smin;
6379 op64 = aco_opcode::buffer_atomic_smin_x2;
6380 break;
6381 case nir_intrinsic_global_atomic_umin:
6382 op32 = aco_opcode::buffer_atomic_umin;
6383 op64 = aco_opcode::buffer_atomic_umin_x2;
6384 break;
6385 case nir_intrinsic_global_atomic_imax:
6386 op32 = aco_opcode::buffer_atomic_smax;
6387 op64 = aco_opcode::buffer_atomic_smax_x2;
6388 break;
6389 case nir_intrinsic_global_atomic_umax:
6390 op32 = aco_opcode::buffer_atomic_umax;
6391 op64 = aco_opcode::buffer_atomic_umax_x2;
6392 break;
6393 case nir_intrinsic_global_atomic_and:
6394 op32 = aco_opcode::buffer_atomic_and;
6395 op64 = aco_opcode::buffer_atomic_and_x2;
6396 break;
6397 case nir_intrinsic_global_atomic_or:
6398 op32 = aco_opcode::buffer_atomic_or;
6399 op64 = aco_opcode::buffer_atomic_or_x2;
6400 break;
6401 case nir_intrinsic_global_atomic_xor:
6402 op32 = aco_opcode::buffer_atomic_xor;
6403 op64 = aco_opcode::buffer_atomic_xor_x2;
6404 break;
6405 case nir_intrinsic_global_atomic_exchange:
6406 op32 = aco_opcode::buffer_atomic_swap;
6407 op64 = aco_opcode::buffer_atomic_swap_x2;
6408 break;
6409 case nir_intrinsic_global_atomic_comp_swap:
6410 op32 = aco_opcode::buffer_atomic_cmpswap;
6411 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
6412 break;
6413 default:
6414 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
6415 }
6416
6417 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
6418
6419 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
6420
6421 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
6422 mubuf->operands[0] = Operand(rsrc);
6423 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
6424 mubuf->operands[2] = Operand(0u);
6425 mubuf->operands[3] = Operand(data);
6426 if (return_previous)
6427 mubuf->definitions[0] = Definition(dst);
6428 mubuf->glc = return_previous;
6429 mubuf->dlc = false;
6430 mubuf->offset = 0;
6431 mubuf->addr64 = addr.type() == RegType::vgpr;
6432 mubuf->disable_wqm = true;
6433 mubuf->barrier = barrier_buffer;
6434 ctx->program->needs_exact = true;
6435 ctx->block->instructions.emplace_back(std::move(mubuf));
6436 }
6437 }
6438
6439 void emit_memory_barrier(isel_context *ctx, nir_intrinsic_instr *instr) {
6440 Builder bld(ctx->program, ctx->block);
6441 switch(instr->intrinsic) {
6442 case nir_intrinsic_group_memory_barrier:
6443 case nir_intrinsic_memory_barrier:
6444 bld.barrier(aco_opcode::p_memory_barrier_common);
6445 break;
6446 case nir_intrinsic_memory_barrier_buffer:
6447 bld.barrier(aco_opcode::p_memory_barrier_buffer);
6448 break;
6449 case nir_intrinsic_memory_barrier_image:
6450 bld.barrier(aco_opcode::p_memory_barrier_image);
6451 break;
6452 case nir_intrinsic_memory_barrier_tcs_patch:
6453 case nir_intrinsic_memory_barrier_shared:
6454 bld.barrier(aco_opcode::p_memory_barrier_shared);
6455 break;
6456 default:
6457 unreachable("Unimplemented memory barrier intrinsic");
6458 break;
6459 }
6460 }
6461
6462 void visit_load_shared(isel_context *ctx, nir_intrinsic_instr *instr)
6463 {
6464 // TODO: implement sparse reads using ds_read2_b32 and nir_ssa_def_components_read()
6465 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6466 assert(instr->dest.ssa.bit_size >= 32 && "Bitsize not supported in load_shared.");
6467 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6468 Builder bld(ctx->program, ctx->block);
6469
6470 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
6471 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
6472 load_lds(ctx, elem_size_bytes, dst, address, nir_intrinsic_base(instr), align);
6473 }
6474
6475 void visit_store_shared(isel_context *ctx, nir_intrinsic_instr *instr)
6476 {
6477 unsigned writemask = nir_intrinsic_write_mask(instr);
6478 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
6479 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6480 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6481 assert(elem_size_bytes >= 4 && "Only 32bit & 64bit store_shared currently supported.");
6482
6483 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
6484 store_lds(ctx, elem_size_bytes, data, writemask, address, nir_intrinsic_base(instr), align);
6485 }
6486
6487 void visit_shared_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
6488 {
6489 unsigned offset = nir_intrinsic_base(instr);
6490 Operand m = load_lds_size_m0(ctx);
6491 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6492 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6493
6494 unsigned num_operands = 3;
6495 aco_opcode op32, op64, op32_rtn, op64_rtn;
6496 switch(instr->intrinsic) {
6497 case nir_intrinsic_shared_atomic_add:
6498 op32 = aco_opcode::ds_add_u32;
6499 op64 = aco_opcode::ds_add_u64;
6500 op32_rtn = aco_opcode::ds_add_rtn_u32;
6501 op64_rtn = aco_opcode::ds_add_rtn_u64;
6502 break;
6503 case nir_intrinsic_shared_atomic_imin:
6504 op32 = aco_opcode::ds_min_i32;
6505 op64 = aco_opcode::ds_min_i64;
6506 op32_rtn = aco_opcode::ds_min_rtn_i32;
6507 op64_rtn = aco_opcode::ds_min_rtn_i64;
6508 break;
6509 case nir_intrinsic_shared_atomic_umin:
6510 op32 = aco_opcode::ds_min_u32;
6511 op64 = aco_opcode::ds_min_u64;
6512 op32_rtn = aco_opcode::ds_min_rtn_u32;
6513 op64_rtn = aco_opcode::ds_min_rtn_u64;
6514 break;
6515 case nir_intrinsic_shared_atomic_imax:
6516 op32 = aco_opcode::ds_max_i32;
6517 op64 = aco_opcode::ds_max_i64;
6518 op32_rtn = aco_opcode::ds_max_rtn_i32;
6519 op64_rtn = aco_opcode::ds_max_rtn_i64;
6520 break;
6521 case nir_intrinsic_shared_atomic_umax:
6522 op32 = aco_opcode::ds_max_u32;
6523 op64 = aco_opcode::ds_max_u64;
6524 op32_rtn = aco_opcode::ds_max_rtn_u32;
6525 op64_rtn = aco_opcode::ds_max_rtn_u64;
6526 break;
6527 case nir_intrinsic_shared_atomic_and:
6528 op32 = aco_opcode::ds_and_b32;
6529 op64 = aco_opcode::ds_and_b64;
6530 op32_rtn = aco_opcode::ds_and_rtn_b32;
6531 op64_rtn = aco_opcode::ds_and_rtn_b64;
6532 break;
6533 case nir_intrinsic_shared_atomic_or:
6534 op32 = aco_opcode::ds_or_b32;
6535 op64 = aco_opcode::ds_or_b64;
6536 op32_rtn = aco_opcode::ds_or_rtn_b32;
6537 op64_rtn = aco_opcode::ds_or_rtn_b64;
6538 break;
6539 case nir_intrinsic_shared_atomic_xor:
6540 op32 = aco_opcode::ds_xor_b32;
6541 op64 = aco_opcode::ds_xor_b64;
6542 op32_rtn = aco_opcode::ds_xor_rtn_b32;
6543 op64_rtn = aco_opcode::ds_xor_rtn_b64;
6544 break;
6545 case nir_intrinsic_shared_atomic_exchange:
6546 op32 = aco_opcode::ds_write_b32;
6547 op64 = aco_opcode::ds_write_b64;
6548 op32_rtn = aco_opcode::ds_wrxchg_rtn_b32;
6549 op64_rtn = aco_opcode::ds_wrxchg2_rtn_b64;
6550 break;
6551 case nir_intrinsic_shared_atomic_comp_swap:
6552 op32 = aco_opcode::ds_cmpst_b32;
6553 op64 = aco_opcode::ds_cmpst_b64;
6554 op32_rtn = aco_opcode::ds_cmpst_rtn_b32;
6555 op64_rtn = aco_opcode::ds_cmpst_rtn_b64;
6556 num_operands = 4;
6557 break;
6558 default:
6559 unreachable("Unhandled shared atomic intrinsic");
6560 }
6561
6562 /* return the previous value if dest is ever used */
6563 bool return_previous = false;
6564 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6565 return_previous = true;
6566 break;
6567 }
6568 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6569 return_previous = true;
6570 break;
6571 }
6572
6573 aco_opcode op;
6574 if (data.size() == 1) {
6575 assert(instr->dest.ssa.bit_size == 32);
6576 op = return_previous ? op32_rtn : op32;
6577 } else {
6578 assert(instr->dest.ssa.bit_size == 64);
6579 op = return_previous ? op64_rtn : op64;
6580 }
6581
6582 if (offset > 65535) {
6583 Builder bld(ctx->program, ctx->block);
6584 address = bld.vadd32(bld.def(v1), Operand(offset), address);
6585 offset = 0;
6586 }
6587
6588 aco_ptr<DS_instruction> ds;
6589 ds.reset(create_instruction<DS_instruction>(op, Format::DS, num_operands, return_previous ? 1 : 0));
6590 ds->operands[0] = Operand(address);
6591 ds->operands[1] = Operand(data);
6592 if (num_operands == 4)
6593 ds->operands[2] = Operand(get_ssa_temp(ctx, instr->src[2].ssa));
6594 ds->operands[num_operands - 1] = m;
6595 ds->offset0 = offset;
6596 if (return_previous)
6597 ds->definitions[0] = Definition(get_ssa_temp(ctx, &instr->dest.ssa));
6598 ctx->block->instructions.emplace_back(std::move(ds));
6599 }
6600
6601 Temp get_scratch_resource(isel_context *ctx)
6602 {
6603 Builder bld(ctx->program, ctx->block);
6604 Temp scratch_addr = ctx->program->private_segment_buffer;
6605 if (ctx->stage != compute_cs)
6606 scratch_addr = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), scratch_addr, Operand(0u));
6607
6608 uint32_t rsrc_conf = S_008F0C_ADD_TID_ENABLE(1) |
6609 S_008F0C_INDEX_STRIDE(ctx->program->wave_size == 64 ? 3 : 2);;
6610
6611 if (ctx->program->chip_class >= GFX10) {
6612 rsrc_conf |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
6613 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
6614 S_008F0C_RESOURCE_LEVEL(1);
6615 } else if (ctx->program->chip_class <= GFX7) { /* dfmt modifies stride on GFX8/GFX9 when ADD_TID_EN=1 */
6616 rsrc_conf |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
6617 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
6618 }
6619
6620 /* older generations need element size = 16 bytes. element size removed in GFX9 */
6621 if (ctx->program->chip_class <= GFX8)
6622 rsrc_conf |= S_008F0C_ELEMENT_SIZE(3);
6623
6624 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), scratch_addr, Operand(-1u), Operand(rsrc_conf));
6625 }
6626
6627 void visit_load_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
6628 assert(instr->dest.ssa.bit_size == 32 || instr->dest.ssa.bit_size == 64);
6629 Builder bld(ctx->program, ctx->block);
6630 Temp rsrc = get_scratch_resource(ctx);
6631 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6632 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6633
6634 aco_opcode op;
6635 switch (dst.size()) {
6636 case 1:
6637 op = aco_opcode::buffer_load_dword;
6638 break;
6639 case 2:
6640 op = aco_opcode::buffer_load_dwordx2;
6641 break;
6642 case 3:
6643 op = aco_opcode::buffer_load_dwordx3;
6644 break;
6645 case 4:
6646 op = aco_opcode::buffer_load_dwordx4;
6647 break;
6648 case 6:
6649 case 8: {
6650 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
6651 Temp lower = bld.mubuf(aco_opcode::buffer_load_dwordx4,
6652 bld.def(v4), rsrc, offset,
6653 ctx->program->scratch_offset, 0, true);
6654 Temp upper = bld.mubuf(dst.size() == 6 ? aco_opcode::buffer_load_dwordx2 :
6655 aco_opcode::buffer_load_dwordx4,
6656 dst.size() == 6 ? bld.def(v2) : bld.def(v4),
6657 rsrc, offset, ctx->program->scratch_offset, 16, true);
6658 emit_split_vector(ctx, lower, 2);
6659 elems[0] = emit_extract_vector(ctx, lower, 0, v2);
6660 elems[1] = emit_extract_vector(ctx, lower, 1, v2);
6661 if (dst.size() == 8) {
6662 emit_split_vector(ctx, upper, 2);
6663 elems[2] = emit_extract_vector(ctx, upper, 0, v2);
6664 elems[3] = emit_extract_vector(ctx, upper, 1, v2);
6665 } else {
6666 elems[2] = upper;
6667 }
6668
6669 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
6670 Format::PSEUDO, dst.size() / 2, 1)};
6671 for (unsigned i = 0; i < dst.size() / 2; i++)
6672 vec->operands[i] = Operand(elems[i]);
6673 vec->definitions[0] = Definition(dst);
6674 bld.insert(std::move(vec));
6675 ctx->allocated_vec.emplace(dst.id(), elems);
6676 return;
6677 }
6678 default:
6679 unreachable("Wrong dst size for nir_intrinsic_load_scratch");
6680 }
6681
6682 bld.mubuf(op, Definition(dst), rsrc, offset, ctx->program->scratch_offset, 0, true);
6683 emit_split_vector(ctx, dst, instr->num_components);
6684 }
6685
6686 void visit_store_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
6687 assert(instr->src[0].ssa->bit_size == 32 || instr->src[0].ssa->bit_size == 64);
6688 Builder bld(ctx->program, ctx->block);
6689 Temp rsrc = get_scratch_resource(ctx);
6690 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6691 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6692
6693 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6694 unsigned writemask = nir_intrinsic_write_mask(instr);
6695
6696 while (writemask) {
6697 int start, count;
6698 u_bit_scan_consecutive_range(&writemask, &start, &count);
6699 int num_bytes = count * elem_size_bytes;
6700
6701 if (num_bytes > 16) {
6702 assert(elem_size_bytes == 8);
6703 writemask |= (((count - 2) << 1) - 1) << (start + 2);
6704 count = 2;
6705 num_bytes = 16;
6706 }
6707
6708 // TODO: check alignment of sub-dword stores
6709 // TODO: split 3 bytes. there is no store instruction for that
6710
6711 Temp write_data;
6712 if (count != instr->num_components) {
6713 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
6714 for (int i = 0; i < count; i++) {
6715 Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(RegType::vgpr, elem_size_bytes / 4));
6716 vec->operands[i] = Operand(elem);
6717 }
6718 write_data = bld.tmp(RegClass(RegType::vgpr, count * elem_size_bytes / 4));
6719 vec->definitions[0] = Definition(write_data);
6720 ctx->block->instructions.emplace_back(std::move(vec));
6721 } else {
6722 write_data = data;
6723 }
6724
6725 aco_opcode op;
6726 switch (num_bytes) {
6727 case 4:
6728 op = aco_opcode::buffer_store_dword;
6729 break;
6730 case 8:
6731 op = aco_opcode::buffer_store_dwordx2;
6732 break;
6733 case 12:
6734 op = aco_opcode::buffer_store_dwordx3;
6735 break;
6736 case 16:
6737 op = aco_opcode::buffer_store_dwordx4;
6738 break;
6739 default:
6740 unreachable("Invalid data size for nir_intrinsic_store_scratch.");
6741 }
6742
6743 bld.mubuf(op, rsrc, offset, ctx->program->scratch_offset, write_data, start * elem_size_bytes, true);
6744 }
6745 }
6746
6747 void visit_load_sample_mask_in(isel_context *ctx, nir_intrinsic_instr *instr) {
6748 uint8_t log2_ps_iter_samples;
6749 if (ctx->program->info->ps.force_persample) {
6750 log2_ps_iter_samples =
6751 util_logbase2(ctx->options->key.fs.num_samples);
6752 } else {
6753 log2_ps_iter_samples = ctx->options->key.fs.log2_ps_iter_samples;
6754 }
6755
6756 /* The bit pattern matches that used by fixed function fragment
6757 * processing. */
6758 static const unsigned ps_iter_masks[] = {
6759 0xffff, /* not used */
6760 0x5555,
6761 0x1111,
6762 0x0101,
6763 0x0001,
6764 };
6765 assert(log2_ps_iter_samples < ARRAY_SIZE(ps_iter_masks));
6766
6767 Builder bld(ctx->program, ctx->block);
6768
6769 Temp sample_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
6770 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
6771 Temp ps_iter_mask = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(ps_iter_masks[log2_ps_iter_samples]));
6772 Temp mask = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), sample_id, ps_iter_mask);
6773 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6774 bld.vop2(aco_opcode::v_and_b32, Definition(dst), mask, get_arg(ctx, ctx->args->ac.sample_coverage));
6775 }
6776
6777 void visit_emit_vertex_with_counter(isel_context *ctx, nir_intrinsic_instr *instr) {
6778 Builder bld(ctx->program, ctx->block);
6779
6780 unsigned stream = nir_intrinsic_stream_id(instr);
6781 Temp next_vertex = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6782 next_vertex = bld.v_mul_imm(bld.def(v1), next_vertex, 4u);
6783 nir_const_value *next_vertex_cv = nir_src_as_const_value(instr->src[0]);
6784
6785 /* get GSVS ring */
6786 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_GSVS_GS * 16u));
6787
6788 unsigned num_components =
6789 ctx->program->info->gs.num_stream_output_components[stream];
6790 assert(num_components);
6791
6792 unsigned stride = 4u * num_components * ctx->shader->info.gs.vertices_out;
6793 unsigned stream_offset = 0;
6794 for (unsigned i = 0; i < stream; i++) {
6795 unsigned prev_stride = 4u * ctx->program->info->gs.num_stream_output_components[i] * ctx->shader->info.gs.vertices_out;
6796 stream_offset += prev_stride * ctx->program->wave_size;
6797 }
6798
6799 /* Limit on the stride field for <= GFX7. */
6800 assert(stride < (1 << 14));
6801
6802 Temp gsvs_dwords[4];
6803 for (unsigned i = 0; i < 4; i++)
6804 gsvs_dwords[i] = bld.tmp(s1);
6805 bld.pseudo(aco_opcode::p_split_vector,
6806 Definition(gsvs_dwords[0]),
6807 Definition(gsvs_dwords[1]),
6808 Definition(gsvs_dwords[2]),
6809 Definition(gsvs_dwords[3]),
6810 gsvs_ring);
6811
6812 if (stream_offset) {
6813 Temp stream_offset_tmp = bld.copy(bld.def(s1), Operand(stream_offset));
6814
6815 Temp carry = bld.tmp(s1);
6816 gsvs_dwords[0] = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), gsvs_dwords[0], stream_offset_tmp);
6817 gsvs_dwords[1] = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(0u), bld.scc(carry));
6818 }
6819
6820 gsvs_dwords[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(S_008F04_STRIDE(stride)));
6821 gsvs_dwords[2] = bld.copy(bld.def(s1), Operand((uint32_t)ctx->program->wave_size));
6822
6823 gsvs_ring = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
6824 gsvs_dwords[0], gsvs_dwords[1], gsvs_dwords[2], gsvs_dwords[3]);
6825
6826 unsigned offset = 0;
6827 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; i++) {
6828 if (ctx->program->info->gs.output_streams[i] != stream)
6829 continue;
6830
6831 for (unsigned j = 0; j < 4; j++) {
6832 if (!(ctx->program->info->gs.output_usage_mask[i] & (1 << j)))
6833 continue;
6834
6835 if (ctx->outputs.mask[i] & (1 << j)) {
6836 Operand vaddr_offset = next_vertex_cv ? Operand(v1) : Operand(next_vertex);
6837 unsigned const_offset = (offset + (next_vertex_cv ? next_vertex_cv->u32 : 0u)) * 4u;
6838 if (const_offset >= 4096u) {
6839 if (vaddr_offset.isUndefined())
6840 vaddr_offset = bld.copy(bld.def(v1), Operand(const_offset / 4096u * 4096u));
6841 else
6842 vaddr_offset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), vaddr_offset);
6843 const_offset %= 4096u;
6844 }
6845
6846 aco_ptr<MTBUF_instruction> mtbuf{create_instruction<MTBUF_instruction>(aco_opcode::tbuffer_store_format_x, Format::MTBUF, 4, 0)};
6847 mtbuf->operands[0] = Operand(gsvs_ring);
6848 mtbuf->operands[1] = vaddr_offset;
6849 mtbuf->operands[2] = Operand(get_arg(ctx, ctx->args->gs2vs_offset));
6850 mtbuf->operands[3] = Operand(ctx->outputs.temps[i * 4u + j]);
6851 mtbuf->offen = !vaddr_offset.isUndefined();
6852 mtbuf->dfmt = V_008F0C_BUF_DATA_FORMAT_32;
6853 mtbuf->nfmt = V_008F0C_BUF_NUM_FORMAT_UINT;
6854 mtbuf->offset = const_offset;
6855 mtbuf->glc = true;
6856 mtbuf->slc = true;
6857 mtbuf->barrier = barrier_gs_data;
6858 mtbuf->can_reorder = true;
6859 bld.insert(std::move(mtbuf));
6860 }
6861
6862 offset += ctx->shader->info.gs.vertices_out;
6863 }
6864
6865 /* outputs for the next vertex are undefined and keeping them around can
6866 * create invalid IR with control flow */
6867 ctx->outputs.mask[i] = 0;
6868 }
6869
6870 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(false, true, stream));
6871 }
6872
6873 Temp emit_boolean_reduce(isel_context *ctx, nir_op op, unsigned cluster_size, Temp src)
6874 {
6875 Builder bld(ctx->program, ctx->block);
6876
6877 if (cluster_size == 1) {
6878 return src;
6879 } if (op == nir_op_iand && cluster_size == 4) {
6880 //subgroupClusteredAnd(val, 4) -> ~wqm(exec & ~val)
6881 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
6882 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc),
6883 bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc), tmp));
6884 } else if (op == nir_op_ior && cluster_size == 4) {
6885 //subgroupClusteredOr(val, 4) -> wqm(val & exec)
6886 return bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc),
6887 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)));
6888 } else if (op == nir_op_iand && cluster_size == ctx->program->wave_size) {
6889 //subgroupAnd(val) -> (exec & ~val) == 0
6890 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
6891 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
6892 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), cond);
6893 } else if (op == nir_op_ior && cluster_size == ctx->program->wave_size) {
6894 //subgroupOr(val) -> (val & exec) != 0
6895 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)).def(1).getTemp();
6896 return bool_to_vector_condition(ctx, tmp);
6897 } else if (op == nir_op_ixor && cluster_size == ctx->program->wave_size) {
6898 //subgroupXor(val) -> s_bcnt1_i32_b64(val & exec) & 1
6899 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
6900 tmp = bld.sop1(Builder::s_bcnt1_i32, bld.def(s1), bld.def(s1, scc), tmp);
6901 tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), tmp, Operand(1u)).def(1).getTemp();
6902 return bool_to_vector_condition(ctx, tmp);
6903 } else {
6904 //subgroupClustered{And,Or,Xor}(val, n) ->
6905 //lane_id = v_mbcnt_hi_u32_b32(-1, v_mbcnt_lo_u32_b32(-1, 0)) ; just v_mbcnt_lo_u32_b32 on wave32
6906 //cluster_offset = ~(n - 1) & lane_id
6907 //cluster_mask = ((1 << n) - 1)
6908 //subgroupClusteredAnd():
6909 // return ((val | ~exec) >> cluster_offset) & cluster_mask == cluster_mask
6910 //subgroupClusteredOr():
6911 // return ((val & exec) >> cluster_offset) & cluster_mask != 0
6912 //subgroupClusteredXor():
6913 // return v_bnt_u32_b32(((val & exec) >> cluster_offset) & cluster_mask, 0) & 1 != 0
6914 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
6915 Temp cluster_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(~uint32_t(cluster_size - 1)), lane_id);
6916
6917 Temp tmp;
6918 if (op == nir_op_iand)
6919 tmp = bld.sop2(Builder::s_orn2, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
6920 else
6921 tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
6922
6923 uint32_t cluster_mask = cluster_size == 32 ? -1 : (1u << cluster_size) - 1u;
6924
6925 if (ctx->program->chip_class <= GFX7)
6926 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), tmp, cluster_offset);
6927 else if (ctx->program->wave_size == 64)
6928 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), cluster_offset, tmp);
6929 else
6930 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), cluster_offset, tmp);
6931 tmp = emit_extract_vector(ctx, tmp, 0, v1);
6932 if (cluster_mask != 0xffffffff)
6933 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(cluster_mask), tmp);
6934
6935 Definition cmp_def = Definition();
6936 if (op == nir_op_iand) {
6937 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(cluster_mask), tmp).def(0);
6938 } else if (op == nir_op_ior) {
6939 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
6940 } else if (op == nir_op_ixor) {
6941 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u),
6942 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1), tmp, Operand(0u)));
6943 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
6944 }
6945 cmp_def.setHint(vcc);
6946 return cmp_def.getTemp();
6947 }
6948 }
6949
6950 Temp emit_boolean_exclusive_scan(isel_context *ctx, nir_op op, Temp src)
6951 {
6952 Builder bld(ctx->program, ctx->block);
6953
6954 //subgroupExclusiveAnd(val) -> mbcnt(exec & ~val) == 0
6955 //subgroupExclusiveOr(val) -> mbcnt(val & exec) != 0
6956 //subgroupExclusiveXor(val) -> mbcnt(val & exec) & 1 != 0
6957 Temp tmp;
6958 if (op == nir_op_iand)
6959 tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
6960 else
6961 tmp = bld.sop2(Builder::s_and, bld.def(s2), bld.def(s1, scc), src, Operand(exec, bld.lm));
6962
6963 Builder::Result lohi = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), bld.def(s1), tmp);
6964 Temp lo = lohi.def(0).getTemp();
6965 Temp hi = lohi.def(1).getTemp();
6966 Temp mbcnt = emit_mbcnt(ctx, bld.def(v1), Operand(lo), Operand(hi));
6967
6968 Definition cmp_def = Definition();
6969 if (op == nir_op_iand)
6970 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
6971 else if (op == nir_op_ior)
6972 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
6973 else if (op == nir_op_ixor)
6974 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u),
6975 bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), mbcnt)).def(0);
6976 cmp_def.setHint(vcc);
6977 return cmp_def.getTemp();
6978 }
6979
6980 Temp emit_boolean_inclusive_scan(isel_context *ctx, nir_op op, Temp src)
6981 {
6982 Builder bld(ctx->program, ctx->block);
6983
6984 //subgroupInclusiveAnd(val) -> subgroupExclusiveAnd(val) && val
6985 //subgroupInclusiveOr(val) -> subgroupExclusiveOr(val) || val
6986 //subgroupInclusiveXor(val) -> subgroupExclusiveXor(val) ^^ val
6987 Temp tmp = emit_boolean_exclusive_scan(ctx, op, src);
6988 if (op == nir_op_iand)
6989 return bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
6990 else if (op == nir_op_ior)
6991 return bld.sop2(Builder::s_or, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
6992 else if (op == nir_op_ixor)
6993 return bld.sop2(Builder::s_xor, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
6994
6995 assert(false);
6996 return Temp();
6997 }
6998
6999 void emit_uniform_subgroup(isel_context *ctx, nir_intrinsic_instr *instr, Temp src)
7000 {
7001 Builder bld(ctx->program, ctx->block);
7002 Definition dst(get_ssa_temp(ctx, &instr->dest.ssa));
7003 if (src.regClass().type() == RegType::vgpr) {
7004 bld.pseudo(aco_opcode::p_as_uniform, dst, src);
7005 } else if (src.regClass() == s1) {
7006 bld.sop1(aco_opcode::s_mov_b32, dst, src);
7007 } else if (src.regClass() == s2) {
7008 bld.sop1(aco_opcode::s_mov_b64, dst, src);
7009 } else {
7010 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7011 nir_print_instr(&instr->instr, stderr);
7012 fprintf(stderr, "\n");
7013 }
7014 }
7015
7016 void emit_interp_center(isel_context *ctx, Temp dst, Temp pos1, Temp pos2)
7017 {
7018 Builder bld(ctx->program, ctx->block);
7019 Temp persp_center = get_arg(ctx, ctx->args->ac.persp_center);
7020 Temp p1 = emit_extract_vector(ctx, persp_center, 0, v1);
7021 Temp p2 = emit_extract_vector(ctx, persp_center, 1, v1);
7022
7023 Temp ddx_1, ddx_2, ddy_1, ddy_2;
7024 uint32_t dpp_ctrl0 = dpp_quad_perm(0, 0, 0, 0);
7025 uint32_t dpp_ctrl1 = dpp_quad_perm(1, 1, 1, 1);
7026 uint32_t dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
7027
7028 /* Build DD X/Y */
7029 if (ctx->program->chip_class >= GFX8) {
7030 Temp tl_1 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p1, dpp_ctrl0);
7031 ddx_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl1);
7032 ddy_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl2);
7033 Temp tl_2 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p2, dpp_ctrl0);
7034 ddx_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl1);
7035 ddy_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl2);
7036 } else {
7037 Temp tl_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl0);
7038 ddx_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl1);
7039 ddx_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_1, tl_1);
7040 ddx_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl2);
7041 ddx_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_2, tl_1);
7042 Temp tl_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl0);
7043 ddy_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl1);
7044 ddy_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_1, tl_2);
7045 ddy_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl2);
7046 ddy_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_2, tl_2);
7047 }
7048
7049 /* res_k = p_k + ddx_k * pos1 + ddy_k * pos2 */
7050 Temp tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_1, pos1, p1);
7051 Temp tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_2, pos1, p2);
7052 tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_1, pos2, tmp1);
7053 tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_2, pos2, tmp2);
7054 Temp wqm1 = bld.tmp(v1);
7055 emit_wqm(ctx, tmp1, wqm1, true);
7056 Temp wqm2 = bld.tmp(v1);
7057 emit_wqm(ctx, tmp2, wqm2, true);
7058 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), wqm1, wqm2);
7059 return;
7060 }
7061
7062 void visit_intrinsic(isel_context *ctx, nir_intrinsic_instr *instr)
7063 {
7064 Builder bld(ctx->program, ctx->block);
7065 switch(instr->intrinsic) {
7066 case nir_intrinsic_load_barycentric_sample:
7067 case nir_intrinsic_load_barycentric_pixel:
7068 case nir_intrinsic_load_barycentric_centroid: {
7069 glsl_interp_mode mode = (glsl_interp_mode)nir_intrinsic_interp_mode(instr);
7070 Temp bary = Temp(0, s2);
7071 switch (mode) {
7072 case INTERP_MODE_SMOOTH:
7073 case INTERP_MODE_NONE:
7074 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
7075 bary = get_arg(ctx, ctx->args->ac.persp_center);
7076 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
7077 bary = ctx->persp_centroid;
7078 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
7079 bary = get_arg(ctx, ctx->args->ac.persp_sample);
7080 break;
7081 case INTERP_MODE_NOPERSPECTIVE:
7082 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
7083 bary = get_arg(ctx, ctx->args->ac.linear_center);
7084 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
7085 bary = ctx->linear_centroid;
7086 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
7087 bary = get_arg(ctx, ctx->args->ac.linear_sample);
7088 break;
7089 default:
7090 break;
7091 }
7092 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7093 Temp p1 = emit_extract_vector(ctx, bary, 0, v1);
7094 Temp p2 = emit_extract_vector(ctx, bary, 1, v1);
7095 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
7096 Operand(p1), Operand(p2));
7097 emit_split_vector(ctx, dst, 2);
7098 break;
7099 }
7100 case nir_intrinsic_load_barycentric_model: {
7101 Temp model = get_arg(ctx, ctx->args->ac.pull_model);
7102
7103 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7104 Temp p1 = emit_extract_vector(ctx, model, 0, v1);
7105 Temp p2 = emit_extract_vector(ctx, model, 1, v1);
7106 Temp p3 = emit_extract_vector(ctx, model, 2, v1);
7107 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
7108 Operand(p1), Operand(p2), Operand(p3));
7109 emit_split_vector(ctx, dst, 3);
7110 break;
7111 }
7112 case nir_intrinsic_load_barycentric_at_sample: {
7113 uint32_t sample_pos_offset = RING_PS_SAMPLE_POSITIONS * 16;
7114 switch (ctx->options->key.fs.num_samples) {
7115 case 2: sample_pos_offset += 1 << 3; break;
7116 case 4: sample_pos_offset += 3 << 3; break;
7117 case 8: sample_pos_offset += 7 << 3; break;
7118 default: break;
7119 }
7120 Temp sample_pos;
7121 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
7122 nir_const_value* const_addr = nir_src_as_const_value(instr->src[0]);
7123 Temp private_segment_buffer = ctx->program->private_segment_buffer;
7124 if (addr.type() == RegType::sgpr) {
7125 Operand offset;
7126 if (const_addr) {
7127 sample_pos_offset += const_addr->u32 << 3;
7128 offset = Operand(sample_pos_offset);
7129 } else if (ctx->options->chip_class >= GFX9) {
7130 offset = bld.sop2(aco_opcode::s_lshl3_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
7131 } else {
7132 offset = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), addr, Operand(3u));
7133 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
7134 }
7135
7136 Operand off = bld.copy(bld.def(s1), Operand(offset));
7137 sample_pos = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), private_segment_buffer, off);
7138
7139 } else if (ctx->options->chip_class >= GFX9) {
7140 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
7141 sample_pos = bld.global(aco_opcode::global_load_dwordx2, bld.def(v2), addr, private_segment_buffer, sample_pos_offset);
7142 } else if (ctx->options->chip_class >= GFX7) {
7143 /* addr += private_segment_buffer + sample_pos_offset */
7144 Temp tmp0 = bld.tmp(s1);
7145 Temp tmp1 = bld.tmp(s1);
7146 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp0), Definition(tmp1), private_segment_buffer);
7147 Definition scc_tmp = bld.def(s1, scc);
7148 tmp0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), scc_tmp, tmp0, Operand(sample_pos_offset));
7149 tmp1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), tmp1, Operand(0u), bld.scc(scc_tmp.getTemp()));
7150 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
7151 Temp pck0 = bld.tmp(v1);
7152 Temp carry = bld.vadd32(Definition(pck0), tmp0, addr, true).def(1).getTemp();
7153 tmp1 = as_vgpr(ctx, tmp1);
7154 Temp pck1 = bld.vop2_e64(aco_opcode::v_addc_co_u32, bld.def(v1), bld.hint_vcc(bld.def(bld.lm)), tmp1, Operand(0u), carry);
7155 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), pck0, pck1);
7156
7157 /* sample_pos = flat_load_dwordx2 addr */
7158 sample_pos = bld.flat(aco_opcode::flat_load_dwordx2, bld.def(v2), addr, Operand(s1));
7159 } else {
7160 assert(ctx->options->chip_class == GFX6);
7161
7162 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
7163 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
7164 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), private_segment_buffer, Operand(0u), Operand(rsrc_conf));
7165
7166 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
7167 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), addr, Operand(0u));
7168
7169 sample_pos = bld.tmp(v2);
7170
7171 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dwordx2, Format::MUBUF, 3, 1)};
7172 load->definitions[0] = Definition(sample_pos);
7173 load->operands[0] = Operand(rsrc);
7174 load->operands[1] = Operand(addr);
7175 load->operands[2] = Operand(0u);
7176 load->offset = sample_pos_offset;
7177 load->offen = 0;
7178 load->addr64 = true;
7179 load->glc = false;
7180 load->dlc = false;
7181 load->disable_wqm = false;
7182 load->barrier = barrier_none;
7183 load->can_reorder = true;
7184 ctx->block->instructions.emplace_back(std::move(load));
7185 }
7186
7187 /* sample_pos -= 0.5 */
7188 Temp pos1 = bld.tmp(RegClass(sample_pos.type(), 1));
7189 Temp pos2 = bld.tmp(RegClass(sample_pos.type(), 1));
7190 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), sample_pos);
7191 pos1 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos1, Operand(0x3f000000u));
7192 pos2 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos2, Operand(0x3f000000u));
7193
7194 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
7195 break;
7196 }
7197 case nir_intrinsic_load_barycentric_at_offset: {
7198 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
7199 RegClass rc = RegClass(offset.type(), 1);
7200 Temp pos1 = bld.tmp(rc), pos2 = bld.tmp(rc);
7201 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), offset);
7202 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
7203 break;
7204 }
7205 case nir_intrinsic_load_front_face: {
7206 bld.vopc(aco_opcode::v_cmp_lg_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7207 Operand(0u), get_arg(ctx, ctx->args->ac.front_face)).def(0).setHint(vcc);
7208 break;
7209 }
7210 case nir_intrinsic_load_view_index: {
7211 if (ctx->stage & (sw_vs | sw_gs | sw_tcs | sw_tes)) {
7212 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7213 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.view_index)));
7214 break;
7215 }
7216
7217 /* fallthrough */
7218 }
7219 case nir_intrinsic_load_layer_id: {
7220 unsigned idx = nir_intrinsic_base(instr);
7221 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7222 Operand(2u), bld.m0(get_arg(ctx, ctx->args->ac.prim_mask)), idx, 0);
7223 break;
7224 }
7225 case nir_intrinsic_load_frag_coord: {
7226 emit_load_frag_coord(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 4);
7227 break;
7228 }
7229 case nir_intrinsic_load_sample_pos: {
7230 Temp posx = get_arg(ctx, ctx->args->ac.frag_pos[0]);
7231 Temp posy = get_arg(ctx, ctx->args->ac.frag_pos[1]);
7232 bld.pseudo(aco_opcode::p_create_vector, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7233 posx.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posx) : Operand(0u),
7234 posy.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posy) : Operand(0u));
7235 break;
7236 }
7237 case nir_intrinsic_load_tess_coord:
7238 visit_load_tess_coord(ctx, instr);
7239 break;
7240 case nir_intrinsic_load_interpolated_input:
7241 visit_load_interpolated_input(ctx, instr);
7242 break;
7243 case nir_intrinsic_store_output:
7244 visit_store_output(ctx, instr);
7245 break;
7246 case nir_intrinsic_load_input:
7247 case nir_intrinsic_load_input_vertex:
7248 visit_load_input(ctx, instr);
7249 break;
7250 case nir_intrinsic_load_output:
7251 visit_load_output(ctx, instr);
7252 break;
7253 case nir_intrinsic_load_per_vertex_input:
7254 visit_load_per_vertex_input(ctx, instr);
7255 break;
7256 case nir_intrinsic_load_per_vertex_output:
7257 visit_load_per_vertex_output(ctx, instr);
7258 break;
7259 case nir_intrinsic_store_per_vertex_output:
7260 visit_store_per_vertex_output(ctx, instr);
7261 break;
7262 case nir_intrinsic_load_ubo:
7263 visit_load_ubo(ctx, instr);
7264 break;
7265 case nir_intrinsic_load_push_constant:
7266 visit_load_push_constant(ctx, instr);
7267 break;
7268 case nir_intrinsic_load_constant:
7269 visit_load_constant(ctx, instr);
7270 break;
7271 case nir_intrinsic_vulkan_resource_index:
7272 visit_load_resource(ctx, instr);
7273 break;
7274 case nir_intrinsic_discard:
7275 visit_discard(ctx, instr);
7276 break;
7277 case nir_intrinsic_discard_if:
7278 visit_discard_if(ctx, instr);
7279 break;
7280 case nir_intrinsic_load_shared:
7281 visit_load_shared(ctx, instr);
7282 break;
7283 case nir_intrinsic_store_shared:
7284 visit_store_shared(ctx, instr);
7285 break;
7286 case nir_intrinsic_shared_atomic_add:
7287 case nir_intrinsic_shared_atomic_imin:
7288 case nir_intrinsic_shared_atomic_umin:
7289 case nir_intrinsic_shared_atomic_imax:
7290 case nir_intrinsic_shared_atomic_umax:
7291 case nir_intrinsic_shared_atomic_and:
7292 case nir_intrinsic_shared_atomic_or:
7293 case nir_intrinsic_shared_atomic_xor:
7294 case nir_intrinsic_shared_atomic_exchange:
7295 case nir_intrinsic_shared_atomic_comp_swap:
7296 visit_shared_atomic(ctx, instr);
7297 break;
7298 case nir_intrinsic_image_deref_load:
7299 visit_image_load(ctx, instr);
7300 break;
7301 case nir_intrinsic_image_deref_store:
7302 visit_image_store(ctx, instr);
7303 break;
7304 case nir_intrinsic_image_deref_atomic_add:
7305 case nir_intrinsic_image_deref_atomic_umin:
7306 case nir_intrinsic_image_deref_atomic_imin:
7307 case nir_intrinsic_image_deref_atomic_umax:
7308 case nir_intrinsic_image_deref_atomic_imax:
7309 case nir_intrinsic_image_deref_atomic_and:
7310 case nir_intrinsic_image_deref_atomic_or:
7311 case nir_intrinsic_image_deref_atomic_xor:
7312 case nir_intrinsic_image_deref_atomic_exchange:
7313 case nir_intrinsic_image_deref_atomic_comp_swap:
7314 visit_image_atomic(ctx, instr);
7315 break;
7316 case nir_intrinsic_image_deref_size:
7317 visit_image_size(ctx, instr);
7318 break;
7319 case nir_intrinsic_load_ssbo:
7320 visit_load_ssbo(ctx, instr);
7321 break;
7322 case nir_intrinsic_store_ssbo:
7323 visit_store_ssbo(ctx, instr);
7324 break;
7325 case nir_intrinsic_load_global:
7326 visit_load_global(ctx, instr);
7327 break;
7328 case nir_intrinsic_store_global:
7329 visit_store_global(ctx, instr);
7330 break;
7331 case nir_intrinsic_global_atomic_add:
7332 case nir_intrinsic_global_atomic_imin:
7333 case nir_intrinsic_global_atomic_umin:
7334 case nir_intrinsic_global_atomic_imax:
7335 case nir_intrinsic_global_atomic_umax:
7336 case nir_intrinsic_global_atomic_and:
7337 case nir_intrinsic_global_atomic_or:
7338 case nir_intrinsic_global_atomic_xor:
7339 case nir_intrinsic_global_atomic_exchange:
7340 case nir_intrinsic_global_atomic_comp_swap:
7341 visit_global_atomic(ctx, instr);
7342 break;
7343 case nir_intrinsic_ssbo_atomic_add:
7344 case nir_intrinsic_ssbo_atomic_imin:
7345 case nir_intrinsic_ssbo_atomic_umin:
7346 case nir_intrinsic_ssbo_atomic_imax:
7347 case nir_intrinsic_ssbo_atomic_umax:
7348 case nir_intrinsic_ssbo_atomic_and:
7349 case nir_intrinsic_ssbo_atomic_or:
7350 case nir_intrinsic_ssbo_atomic_xor:
7351 case nir_intrinsic_ssbo_atomic_exchange:
7352 case nir_intrinsic_ssbo_atomic_comp_swap:
7353 visit_atomic_ssbo(ctx, instr);
7354 break;
7355 case nir_intrinsic_load_scratch:
7356 visit_load_scratch(ctx, instr);
7357 break;
7358 case nir_intrinsic_store_scratch:
7359 visit_store_scratch(ctx, instr);
7360 break;
7361 case nir_intrinsic_get_buffer_size:
7362 visit_get_buffer_size(ctx, instr);
7363 break;
7364 case nir_intrinsic_control_barrier: {
7365 if (ctx->program->chip_class == GFX6 && ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
7366 /* GFX6 only (thanks to a hw bug workaround):
7367 * The real barrier instruction isn’t needed, because an entire patch
7368 * always fits into a single wave.
7369 */
7370 break;
7371 }
7372
7373 if (ctx->program->workgroup_size > ctx->program->wave_size)
7374 bld.sopp(aco_opcode::s_barrier);
7375
7376 break;
7377 }
7378 case nir_intrinsic_memory_barrier_tcs_patch:
7379 case nir_intrinsic_group_memory_barrier:
7380 case nir_intrinsic_memory_barrier:
7381 case nir_intrinsic_memory_barrier_buffer:
7382 case nir_intrinsic_memory_barrier_image:
7383 case nir_intrinsic_memory_barrier_shared:
7384 emit_memory_barrier(ctx, instr);
7385 break;
7386 case nir_intrinsic_load_num_work_groups: {
7387 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7388 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.num_work_groups)));
7389 emit_split_vector(ctx, dst, 3);
7390 break;
7391 }
7392 case nir_intrinsic_load_local_invocation_id: {
7393 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7394 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.local_invocation_ids)));
7395 emit_split_vector(ctx, dst, 3);
7396 break;
7397 }
7398 case nir_intrinsic_load_work_group_id: {
7399 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7400 struct ac_arg *args = ctx->args->ac.workgroup_ids;
7401 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
7402 args[0].used ? Operand(get_arg(ctx, args[0])) : Operand(0u),
7403 args[1].used ? Operand(get_arg(ctx, args[1])) : Operand(0u),
7404 args[2].used ? Operand(get_arg(ctx, args[2])) : Operand(0u));
7405 emit_split_vector(ctx, dst, 3);
7406 break;
7407 }
7408 case nir_intrinsic_load_local_invocation_index: {
7409 Temp id = emit_mbcnt(ctx, bld.def(v1));
7410
7411 /* The tg_size bits [6:11] contain the subgroup id,
7412 * we need this multiplied by the wave size, and then OR the thread id to it.
7413 */
7414 if (ctx->program->wave_size == 64) {
7415 /* After the s_and the bits are already multiplied by 64 (left shifted by 6) so we can just feed that to v_or */
7416 Temp tg_num = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfc0u),
7417 get_arg(ctx, ctx->args->ac.tg_size));
7418 bld.vop2(aco_opcode::v_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, id);
7419 } else {
7420 /* Extract the bit field and multiply the result by 32 (left shift by 5), then do the OR */
7421 Temp tg_num = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
7422 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
7423 bld.vop3(aco_opcode::v_lshl_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, Operand(0x5u), id);
7424 }
7425 break;
7426 }
7427 case nir_intrinsic_load_subgroup_id: {
7428 if (ctx->stage == compute_cs) {
7429 bld.sop2(aco_opcode::s_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc),
7430 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
7431 } else {
7432 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x0u));
7433 }
7434 break;
7435 }
7436 case nir_intrinsic_load_subgroup_invocation: {
7437 emit_mbcnt(ctx, Definition(get_ssa_temp(ctx, &instr->dest.ssa)));
7438 break;
7439 }
7440 case nir_intrinsic_load_num_subgroups: {
7441 if (ctx->stage == compute_cs)
7442 bld.sop2(aco_opcode::s_and_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc), Operand(0x3fu),
7443 get_arg(ctx, ctx->args->ac.tg_size));
7444 else
7445 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x1u));
7446 break;
7447 }
7448 case nir_intrinsic_ballot: {
7449 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7450 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7451 Definition tmp = bld.def(dst.regClass());
7452 Definition lanemask_tmp = dst.size() == bld.lm.size() ? tmp : bld.def(src.regClass());
7453 if (instr->src[0].ssa->bit_size == 1) {
7454 assert(src.regClass() == bld.lm);
7455 bld.sop2(Builder::s_and, lanemask_tmp, bld.def(s1, scc), Operand(exec, bld.lm), src);
7456 } else if (instr->src[0].ssa->bit_size == 32 && src.regClass() == v1) {
7457 bld.vopc(aco_opcode::v_cmp_lg_u32, lanemask_tmp, Operand(0u), src);
7458 } else if (instr->src[0].ssa->bit_size == 64 && src.regClass() == v2) {
7459 bld.vopc(aco_opcode::v_cmp_lg_u64, lanemask_tmp, Operand(0u), src);
7460 } else {
7461 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7462 nir_print_instr(&instr->instr, stderr);
7463 fprintf(stderr, "\n");
7464 }
7465 if (dst.size() != bld.lm.size()) {
7466 /* Wave32 with ballot size set to 64 */
7467 bld.pseudo(aco_opcode::p_create_vector, Definition(tmp), lanemask_tmp.getTemp(), Operand(0u));
7468 }
7469 emit_wqm(ctx, tmp.getTemp(), dst);
7470 break;
7471 }
7472 case nir_intrinsic_shuffle:
7473 case nir_intrinsic_read_invocation: {
7474 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7475 if (!ctx->divergent_vals[instr->src[0].ssa->index]) {
7476 emit_uniform_subgroup(ctx, instr, src);
7477 } else {
7478 Temp tid = get_ssa_temp(ctx, instr->src[1].ssa);
7479 if (instr->intrinsic == nir_intrinsic_read_invocation || !ctx->divergent_vals[instr->src[1].ssa->index])
7480 tid = bld.as_uniform(tid);
7481 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7482 if (src.regClass() == v1) {
7483 emit_wqm(ctx, emit_bpermute(ctx, bld, tid, src), dst);
7484 } else if (src.regClass() == v2) {
7485 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7486 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7487 lo = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, lo));
7488 hi = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, hi));
7489 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7490 emit_split_vector(ctx, dst, 2);
7491 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == s1) {
7492 assert(src.regClass() == bld.lm);
7493 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src, tid);
7494 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7495 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == v1) {
7496 assert(src.regClass() == bld.lm);
7497 Temp tmp;
7498 if (ctx->program->chip_class <= GFX7)
7499 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), src, tid);
7500 else if (ctx->program->wave_size == 64)
7501 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), tid, src);
7502 else
7503 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), tid, src);
7504 tmp = emit_extract_vector(ctx, tmp, 0, v1);
7505 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), tmp);
7506 emit_wqm(ctx, bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp), dst);
7507 } else {
7508 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7509 nir_print_instr(&instr->instr, stderr);
7510 fprintf(stderr, "\n");
7511 }
7512 }
7513 break;
7514 }
7515 case nir_intrinsic_load_sample_id: {
7516 bld.vop3(aco_opcode::v_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7517 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
7518 break;
7519 }
7520 case nir_intrinsic_load_sample_mask_in: {
7521 visit_load_sample_mask_in(ctx, instr);
7522 break;
7523 }
7524 case nir_intrinsic_read_first_invocation: {
7525 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7526 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7527 if (src.regClass() == v1) {
7528 emit_wqm(ctx,
7529 bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), src),
7530 dst);
7531 } else if (src.regClass() == v2) {
7532 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7533 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7534 lo = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), lo));
7535 hi = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), hi));
7536 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7537 emit_split_vector(ctx, dst, 2);
7538 } else if (instr->dest.ssa.bit_size == 1) {
7539 assert(src.regClass() == bld.lm);
7540 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src,
7541 bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)));
7542 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7543 } else if (src.regClass() == s1) {
7544 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
7545 } else if (src.regClass() == s2) {
7546 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
7547 } else {
7548 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7549 nir_print_instr(&instr->instr, stderr);
7550 fprintf(stderr, "\n");
7551 }
7552 break;
7553 }
7554 case nir_intrinsic_vote_all: {
7555 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7556 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7557 assert(src.regClass() == bld.lm);
7558 assert(dst.regClass() == bld.lm);
7559
7560 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
7561 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
7562 bld.sop1(Builder::s_not, Definition(dst), bld.def(s1, scc), cond);
7563 break;
7564 }
7565 case nir_intrinsic_vote_any: {
7566 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7567 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7568 assert(src.regClass() == bld.lm);
7569 assert(dst.regClass() == bld.lm);
7570
7571 Temp tmp = bool_to_scalar_condition(ctx, src);
7572 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7573 break;
7574 }
7575 case nir_intrinsic_reduce:
7576 case nir_intrinsic_inclusive_scan:
7577 case nir_intrinsic_exclusive_scan: {
7578 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7579 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7580 nir_op op = (nir_op) nir_intrinsic_reduction_op(instr);
7581 unsigned cluster_size = instr->intrinsic == nir_intrinsic_reduce ?
7582 nir_intrinsic_cluster_size(instr) : 0;
7583 cluster_size = util_next_power_of_two(MIN2(cluster_size ? cluster_size : ctx->program->wave_size, ctx->program->wave_size));
7584
7585 if (!ctx->divergent_vals[instr->src[0].ssa->index] && (op == nir_op_ior || op == nir_op_iand)) {
7586 emit_uniform_subgroup(ctx, instr, src);
7587 } else if (instr->dest.ssa.bit_size == 1) {
7588 if (op == nir_op_imul || op == nir_op_umin || op == nir_op_imin)
7589 op = nir_op_iand;
7590 else if (op == nir_op_iadd)
7591 op = nir_op_ixor;
7592 else if (op == nir_op_umax || op == nir_op_imax)
7593 op = nir_op_ior;
7594 assert(op == nir_op_iand || op == nir_op_ior || op == nir_op_ixor);
7595
7596 switch (instr->intrinsic) {
7597 case nir_intrinsic_reduce:
7598 emit_wqm(ctx, emit_boolean_reduce(ctx, op, cluster_size, src), dst);
7599 break;
7600 case nir_intrinsic_exclusive_scan:
7601 emit_wqm(ctx, emit_boolean_exclusive_scan(ctx, op, src), dst);
7602 break;
7603 case nir_intrinsic_inclusive_scan:
7604 emit_wqm(ctx, emit_boolean_inclusive_scan(ctx, op, src), dst);
7605 break;
7606 default:
7607 assert(false);
7608 }
7609 } else if (cluster_size == 1) {
7610 bld.copy(Definition(dst), src);
7611 } else {
7612 src = as_vgpr(ctx, src);
7613
7614 ReduceOp reduce_op;
7615 switch (op) {
7616 #define CASE(name) case nir_op_##name: reduce_op = (src.regClass() == v1) ? name##32 : name##64; break;
7617 CASE(iadd)
7618 CASE(imul)
7619 CASE(fadd)
7620 CASE(fmul)
7621 CASE(imin)
7622 CASE(umin)
7623 CASE(fmin)
7624 CASE(imax)
7625 CASE(umax)
7626 CASE(fmax)
7627 CASE(iand)
7628 CASE(ior)
7629 CASE(ixor)
7630 default:
7631 unreachable("unknown reduction op");
7632 #undef CASE
7633 }
7634
7635 aco_opcode aco_op;
7636 switch (instr->intrinsic) {
7637 case nir_intrinsic_reduce: aco_op = aco_opcode::p_reduce; break;
7638 case nir_intrinsic_inclusive_scan: aco_op = aco_opcode::p_inclusive_scan; break;
7639 case nir_intrinsic_exclusive_scan: aco_op = aco_opcode::p_exclusive_scan; break;
7640 default:
7641 unreachable("unknown reduce intrinsic");
7642 }
7643
7644 aco_ptr<Pseudo_reduction_instruction> reduce{create_instruction<Pseudo_reduction_instruction>(aco_op, Format::PSEUDO_REDUCTION, 3, 5)};
7645 reduce->operands[0] = Operand(src);
7646 // filled in by aco_reduce_assign.cpp, used internally as part of the
7647 // reduce sequence
7648 assert(dst.size() == 1 || dst.size() == 2);
7649 reduce->operands[1] = Operand(RegClass(RegType::vgpr, dst.size()).as_linear());
7650 reduce->operands[2] = Operand(v1.as_linear());
7651
7652 Temp tmp_dst = bld.tmp(dst.regClass());
7653 reduce->definitions[0] = Definition(tmp_dst);
7654 reduce->definitions[1] = bld.def(ctx->program->lane_mask); // used internally
7655 reduce->definitions[2] = Definition();
7656 reduce->definitions[3] = Definition(scc, s1);
7657 reduce->definitions[4] = Definition();
7658 reduce->reduce_op = reduce_op;
7659 reduce->cluster_size = cluster_size;
7660 ctx->block->instructions.emplace_back(std::move(reduce));
7661
7662 emit_wqm(ctx, tmp_dst, dst);
7663 }
7664 break;
7665 }
7666 case nir_intrinsic_quad_broadcast: {
7667 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7668 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
7669 emit_uniform_subgroup(ctx, instr, src);
7670 } else {
7671 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7672 unsigned lane = nir_src_as_const_value(instr->src[1])->u32;
7673 uint32_t dpp_ctrl = dpp_quad_perm(lane, lane, lane, lane);
7674
7675 if (instr->dest.ssa.bit_size == 1) {
7676 assert(src.regClass() == bld.lm);
7677 assert(dst.regClass() == bld.lm);
7678 uint32_t half_mask = 0x11111111u << lane;
7679 Temp mask_tmp = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(half_mask), Operand(half_mask));
7680 Temp tmp = bld.tmp(bld.lm);
7681 bld.sop1(Builder::s_wqm, Definition(tmp),
7682 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), mask_tmp,
7683 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm))));
7684 emit_wqm(ctx, tmp, dst);
7685 } else if (instr->dest.ssa.bit_size == 32) {
7686 if (ctx->program->chip_class >= GFX8)
7687 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), dst);
7688 else
7689 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), dst);
7690 } else if (instr->dest.ssa.bit_size == 64) {
7691 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7692 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7693 if (ctx->program->chip_class >= GFX8) {
7694 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
7695 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
7696 } else {
7697 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, (1 << 15) | dpp_ctrl));
7698 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, (1 << 15) | dpp_ctrl));
7699 }
7700 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7701 emit_split_vector(ctx, dst, 2);
7702 } else {
7703 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7704 nir_print_instr(&instr->instr, stderr);
7705 fprintf(stderr, "\n");
7706 }
7707 }
7708 break;
7709 }
7710 case nir_intrinsic_quad_swap_horizontal:
7711 case nir_intrinsic_quad_swap_vertical:
7712 case nir_intrinsic_quad_swap_diagonal:
7713 case nir_intrinsic_quad_swizzle_amd: {
7714 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7715 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
7716 emit_uniform_subgroup(ctx, instr, src);
7717 break;
7718 }
7719 uint16_t dpp_ctrl = 0;
7720 switch (instr->intrinsic) {
7721 case nir_intrinsic_quad_swap_horizontal:
7722 dpp_ctrl = dpp_quad_perm(1, 0, 3, 2);
7723 break;
7724 case nir_intrinsic_quad_swap_vertical:
7725 dpp_ctrl = dpp_quad_perm(2, 3, 0, 1);
7726 break;
7727 case nir_intrinsic_quad_swap_diagonal:
7728 dpp_ctrl = dpp_quad_perm(3, 2, 1, 0);
7729 break;
7730 case nir_intrinsic_quad_swizzle_amd:
7731 dpp_ctrl = nir_intrinsic_swizzle_mask(instr);
7732 break;
7733 default:
7734 break;
7735 }
7736 if (ctx->program->chip_class < GFX8)
7737 dpp_ctrl |= (1 << 15);
7738
7739 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7740 if (instr->dest.ssa.bit_size == 1) {
7741 assert(src.regClass() == bld.lm);
7742 src = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand((uint32_t)-1), src);
7743 if (ctx->program->chip_class >= GFX8)
7744 src = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
7745 else
7746 src = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
7747 Temp tmp = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), src);
7748 emit_wqm(ctx, tmp, dst);
7749 } else if (instr->dest.ssa.bit_size == 32) {
7750 Temp tmp;
7751 if (ctx->program->chip_class >= GFX8)
7752 tmp = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
7753 else
7754 tmp = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
7755 emit_wqm(ctx, tmp, dst);
7756 } else if (instr->dest.ssa.bit_size == 64) {
7757 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7758 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7759 if (ctx->program->chip_class >= GFX8) {
7760 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
7761 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
7762 } else {
7763 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, dpp_ctrl));
7764 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, dpp_ctrl));
7765 }
7766 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7767 emit_split_vector(ctx, dst, 2);
7768 } else {
7769 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7770 nir_print_instr(&instr->instr, stderr);
7771 fprintf(stderr, "\n");
7772 }
7773 break;
7774 }
7775 case nir_intrinsic_masked_swizzle_amd: {
7776 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7777 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
7778 emit_uniform_subgroup(ctx, instr, src);
7779 break;
7780 }
7781 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7782 uint32_t mask = nir_intrinsic_swizzle_mask(instr);
7783 if (dst.regClass() == v1) {
7784 emit_wqm(ctx,
7785 bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, mask, 0, false),
7786 dst);
7787 } else if (dst.regClass() == v2) {
7788 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7789 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7790 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, mask, 0, false));
7791 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, mask, 0, false));
7792 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7793 emit_split_vector(ctx, dst, 2);
7794 } else {
7795 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7796 nir_print_instr(&instr->instr, stderr);
7797 fprintf(stderr, "\n");
7798 }
7799 break;
7800 }
7801 case nir_intrinsic_write_invocation_amd: {
7802 Temp src = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
7803 Temp val = bld.as_uniform(get_ssa_temp(ctx, instr->src[1].ssa));
7804 Temp lane = bld.as_uniform(get_ssa_temp(ctx, instr->src[2].ssa));
7805 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7806 if (dst.regClass() == v1) {
7807 /* src2 is ignored for writelane. RA assigns the same reg for dst */
7808 emit_wqm(ctx, bld.writelane(bld.def(v1), val, lane, src), dst);
7809 } else if (dst.regClass() == v2) {
7810 Temp src_lo = bld.tmp(v1), src_hi = bld.tmp(v1);
7811 Temp val_lo = bld.tmp(s1), val_hi = bld.tmp(s1);
7812 bld.pseudo(aco_opcode::p_split_vector, Definition(src_lo), Definition(src_hi), src);
7813 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
7814 Temp lo = emit_wqm(ctx, bld.writelane(bld.def(v1), val_lo, lane, src_hi));
7815 Temp hi = emit_wqm(ctx, bld.writelane(bld.def(v1), val_hi, lane, src_hi));
7816 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7817 emit_split_vector(ctx, dst, 2);
7818 } else {
7819 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7820 nir_print_instr(&instr->instr, stderr);
7821 fprintf(stderr, "\n");
7822 }
7823 break;
7824 }
7825 case nir_intrinsic_mbcnt_amd: {
7826 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7827 RegClass rc = RegClass(src.type(), 1);
7828 Temp mask_lo = bld.tmp(rc), mask_hi = bld.tmp(rc);
7829 bld.pseudo(aco_opcode::p_split_vector, Definition(mask_lo), Definition(mask_hi), src);
7830 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7831 Temp wqm_tmp = emit_mbcnt(ctx, bld.def(v1), Operand(mask_lo), Operand(mask_hi));
7832 emit_wqm(ctx, wqm_tmp, dst);
7833 break;
7834 }
7835 case nir_intrinsic_load_helper_invocation: {
7836 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7837 bld.pseudo(aco_opcode::p_load_helper, Definition(dst));
7838 ctx->block->kind |= block_kind_needs_lowering;
7839 ctx->program->needs_exact = true;
7840 break;
7841 }
7842 case nir_intrinsic_is_helper_invocation: {
7843 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7844 bld.pseudo(aco_opcode::p_is_helper, Definition(dst));
7845 ctx->block->kind |= block_kind_needs_lowering;
7846 ctx->program->needs_exact = true;
7847 break;
7848 }
7849 case nir_intrinsic_demote:
7850 bld.pseudo(aco_opcode::p_demote_to_helper, Operand(-1u));
7851
7852 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
7853 ctx->cf_info.exec_potentially_empty_discard = true;
7854 ctx->block->kind |= block_kind_uses_demote;
7855 ctx->program->needs_exact = true;
7856 break;
7857 case nir_intrinsic_demote_if: {
7858 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7859 assert(src.regClass() == bld.lm);
7860 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
7861 bld.pseudo(aco_opcode::p_demote_to_helper, cond);
7862
7863 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
7864 ctx->cf_info.exec_potentially_empty_discard = true;
7865 ctx->block->kind |= block_kind_uses_demote;
7866 ctx->program->needs_exact = true;
7867 break;
7868 }
7869 case nir_intrinsic_first_invocation: {
7870 emit_wqm(ctx, bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)),
7871 get_ssa_temp(ctx, &instr->dest.ssa));
7872 break;
7873 }
7874 case nir_intrinsic_shader_clock:
7875 bld.smem(aco_opcode::s_memtime, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), false);
7876 emit_split_vector(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 2);
7877 break;
7878 case nir_intrinsic_load_vertex_id_zero_base: {
7879 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7880 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.vertex_id));
7881 break;
7882 }
7883 case nir_intrinsic_load_first_vertex: {
7884 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7885 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.base_vertex));
7886 break;
7887 }
7888 case nir_intrinsic_load_base_instance: {
7889 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7890 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.start_instance));
7891 break;
7892 }
7893 case nir_intrinsic_load_instance_id: {
7894 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7895 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.instance_id));
7896 break;
7897 }
7898 case nir_intrinsic_load_draw_id: {
7899 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7900 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.draw_id));
7901 break;
7902 }
7903 case nir_intrinsic_load_invocation_id: {
7904 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7905
7906 if (ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
7907 if (ctx->options->chip_class >= GFX10)
7908 bld.vop2_e64(aco_opcode::v_and_b32, Definition(dst), Operand(127u), get_arg(ctx, ctx->args->ac.gs_invocation_id));
7909 else
7910 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_invocation_id));
7911 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
7912 bld.vop3(aco_opcode::v_bfe_u32, Definition(dst),
7913 get_arg(ctx, ctx->args->ac.tcs_rel_ids), Operand(8u), Operand(5u));
7914 } else {
7915 unreachable("Unsupported stage for load_invocation_id");
7916 }
7917
7918 break;
7919 }
7920 case nir_intrinsic_load_primitive_id: {
7921 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7922
7923 switch (ctx->shader->info.stage) {
7924 case MESA_SHADER_GEOMETRY:
7925 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_prim_id));
7926 break;
7927 case MESA_SHADER_TESS_CTRL:
7928 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tcs_patch_id));
7929 break;
7930 case MESA_SHADER_TESS_EVAL:
7931 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tes_patch_id));
7932 break;
7933 default:
7934 unreachable("Unimplemented shader stage for nir_intrinsic_load_primitive_id");
7935 }
7936
7937 break;
7938 }
7939 case nir_intrinsic_load_patch_vertices_in: {
7940 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL ||
7941 ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
7942
7943 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7944 bld.copy(Definition(dst), Operand(ctx->args->options->key.tcs.input_vertices));
7945 break;
7946 }
7947 case nir_intrinsic_emit_vertex_with_counter: {
7948 visit_emit_vertex_with_counter(ctx, instr);
7949 break;
7950 }
7951 case nir_intrinsic_end_primitive_with_counter: {
7952 unsigned stream = nir_intrinsic_stream_id(instr);
7953 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(true, false, stream));
7954 break;
7955 }
7956 case nir_intrinsic_set_vertex_count: {
7957 /* unused, the HW keeps track of this for us */
7958 break;
7959 }
7960 default:
7961 fprintf(stderr, "Unimplemented intrinsic instr: ");
7962 nir_print_instr(&instr->instr, stderr);
7963 fprintf(stderr, "\n");
7964 abort();
7965
7966 break;
7967 }
7968 }
7969
7970
7971 void tex_fetch_ptrs(isel_context *ctx, nir_tex_instr *instr,
7972 Temp *res_ptr, Temp *samp_ptr, Temp *fmask_ptr,
7973 enum glsl_base_type *stype)
7974 {
7975 nir_deref_instr *texture_deref_instr = NULL;
7976 nir_deref_instr *sampler_deref_instr = NULL;
7977 int plane = -1;
7978
7979 for (unsigned i = 0; i < instr->num_srcs; i++) {
7980 switch (instr->src[i].src_type) {
7981 case nir_tex_src_texture_deref:
7982 texture_deref_instr = nir_src_as_deref(instr->src[i].src);
7983 break;
7984 case nir_tex_src_sampler_deref:
7985 sampler_deref_instr = nir_src_as_deref(instr->src[i].src);
7986 break;
7987 case nir_tex_src_plane:
7988 plane = nir_src_as_int(instr->src[i].src);
7989 break;
7990 default:
7991 break;
7992 }
7993 }
7994
7995 *stype = glsl_get_sampler_result_type(texture_deref_instr->type);
7996
7997 if (!sampler_deref_instr)
7998 sampler_deref_instr = texture_deref_instr;
7999
8000 if (plane >= 0) {
8001 assert(instr->op != nir_texop_txf_ms &&
8002 instr->op != nir_texop_samples_identical);
8003 assert(instr->sampler_dim != GLSL_SAMPLER_DIM_BUF);
8004 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, (aco_descriptor_type)(ACO_DESC_PLANE_0 + plane), instr, false, false);
8005 } else if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
8006 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_BUFFER, instr, false, false);
8007 } else if (instr->op == nir_texop_fragment_mask_fetch) {
8008 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
8009 } else {
8010 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_IMAGE, instr, false, false);
8011 }
8012 if (samp_ptr) {
8013 *samp_ptr = get_sampler_desc(ctx, sampler_deref_instr, ACO_DESC_SAMPLER, instr, false, false);
8014
8015 if (instr->sampler_dim < GLSL_SAMPLER_DIM_RECT && ctx->options->chip_class < GFX8) {
8016 /* fix sampler aniso on SI/CI: samp[0] = samp[0] & img[7] */
8017 Builder bld(ctx->program, ctx->block);
8018
8019 /* to avoid unnecessary moves, we split and recombine sampler and image */
8020 Temp img[8] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1),
8021 bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
8022 Temp samp[4] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
8023 bld.pseudo(aco_opcode::p_split_vector, Definition(img[0]), Definition(img[1]),
8024 Definition(img[2]), Definition(img[3]), Definition(img[4]),
8025 Definition(img[5]), Definition(img[6]), Definition(img[7]), *res_ptr);
8026 bld.pseudo(aco_opcode::p_split_vector, Definition(samp[0]), Definition(samp[1]),
8027 Definition(samp[2]), Definition(samp[3]), *samp_ptr);
8028
8029 samp[0] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), samp[0], img[7]);
8030 *res_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
8031 img[0], img[1], img[2], img[3],
8032 img[4], img[5], img[6], img[7]);
8033 *samp_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
8034 samp[0], samp[1], samp[2], samp[3]);
8035 }
8036 }
8037 if (fmask_ptr && (instr->op == nir_texop_txf_ms ||
8038 instr->op == nir_texop_samples_identical))
8039 *fmask_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
8040 }
8041
8042 void build_cube_select(isel_context *ctx, Temp ma, Temp id, Temp deriv,
8043 Temp *out_ma, Temp *out_sc, Temp *out_tc)
8044 {
8045 Builder bld(ctx->program, ctx->block);
8046
8047 Temp deriv_x = emit_extract_vector(ctx, deriv, 0, v1);
8048 Temp deriv_y = emit_extract_vector(ctx, deriv, 1, v1);
8049 Temp deriv_z = emit_extract_vector(ctx, deriv, 2, v1);
8050
8051 Operand neg_one(0xbf800000u);
8052 Operand one(0x3f800000u);
8053 Operand two(0x40000000u);
8054 Operand four(0x40800000u);
8055
8056 Temp is_ma_positive = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), ma);
8057 Temp sgn_ma = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, one, is_ma_positive);
8058 Temp neg_sgn_ma = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0u), sgn_ma);
8059
8060 Temp is_ma_z = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), four, id);
8061 Temp is_ma_y = bld.vopc(aco_opcode::v_cmp_le_f32, bld.def(bld.lm), two, id);
8062 is_ma_y = bld.sop2(Builder::s_andn2, bld.hint_vcc(bld.def(bld.lm)), is_ma_y, is_ma_z);
8063 Temp is_not_ma_x = bld.sop2(aco_opcode::s_or_b64, bld.hint_vcc(bld.def(bld.lm)), bld.def(s1, scc), is_ma_z, is_ma_y);
8064
8065 // select sc
8066 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_z, deriv_x, is_not_ma_x);
8067 Temp sgn = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1),
8068 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_sgn_ma, sgn_ma, is_ma_z),
8069 one, is_ma_y);
8070 *out_sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
8071
8072 // select tc
8073 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_y, deriv_z, is_ma_y);
8074 sgn = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, sgn_ma, is_ma_y);
8075 *out_tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
8076
8077 // select ma
8078 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8079 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_x, deriv_y, is_ma_y),
8080 deriv_z, is_ma_z);
8081 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffffu), tmp);
8082 *out_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), two, tmp);
8083 }
8084
8085 void prepare_cube_coords(isel_context *ctx, std::vector<Temp>& coords, Temp* ddx, Temp* ddy, bool is_deriv, bool is_array)
8086 {
8087 Builder bld(ctx->program, ctx->block);
8088 Temp ma, tc, sc, id;
8089
8090 if (is_array) {
8091 coords[3] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[3]);
8092
8093 // see comment in ac_prepare_cube_coords()
8094 if (ctx->options->chip_class <= GFX8)
8095 coords[3] = bld.vop2(aco_opcode::v_max_f32, bld.def(v1), Operand(0u), coords[3]);
8096 }
8097
8098 ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8099
8100 aco_ptr<VOP3A_instruction> vop3a{create_instruction<VOP3A_instruction>(aco_opcode::v_rcp_f32, asVOP3(Format::VOP1), 1, 1)};
8101 vop3a->operands[0] = Operand(ma);
8102 vop3a->abs[0] = true;
8103 Temp invma = bld.tmp(v1);
8104 vop3a->definitions[0] = Definition(invma);
8105 ctx->block->instructions.emplace_back(std::move(vop3a));
8106
8107 sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8108 if (!is_deriv)
8109 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, invma, Operand(0x3fc00000u/*1.5*/));
8110
8111 tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8112 if (!is_deriv)
8113 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, invma, Operand(0x3fc00000u/*1.5*/));
8114
8115 id = bld.vop3(aco_opcode::v_cubeid_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8116
8117 if (is_deriv) {
8118 sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), sc, invma);
8119 tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tc, invma);
8120
8121 for (unsigned i = 0; i < 2; i++) {
8122 // see comment in ac_prepare_cube_coords()
8123 Temp deriv_ma;
8124 Temp deriv_sc, deriv_tc;
8125 build_cube_select(ctx, ma, id, i ? *ddy : *ddx,
8126 &deriv_ma, &deriv_sc, &deriv_tc);
8127
8128 deriv_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, invma);
8129
8130 Temp x = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
8131 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_sc, invma),
8132 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, sc));
8133 Temp y = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
8134 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_tc, invma),
8135 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, tc));
8136 *(i ? ddy : ddx) = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), x, y);
8137 }
8138
8139 sc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), sc);
8140 tc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), tc);
8141 }
8142
8143 if (is_array)
8144 id = bld.vop2(aco_opcode::v_madmk_f32, bld.def(v1), coords[3], id, Operand(0x41000000u/*8.0*/));
8145 coords.resize(3);
8146 coords[0] = sc;
8147 coords[1] = tc;
8148 coords[2] = id;
8149 }
8150
8151 void get_const_vec(nir_ssa_def *vec, nir_const_value *cv[4])
8152 {
8153 if (vec->parent_instr->type != nir_instr_type_alu)
8154 return;
8155 nir_alu_instr *vec_instr = nir_instr_as_alu(vec->parent_instr);
8156 if (vec_instr->op != nir_op_vec(vec->num_components))
8157 return;
8158
8159 for (unsigned i = 0; i < vec->num_components; i++) {
8160 cv[i] = vec_instr->src[i].swizzle[0] == 0 ?
8161 nir_src_as_const_value(vec_instr->src[i].src) : NULL;
8162 }
8163 }
8164
8165 void visit_tex(isel_context *ctx, nir_tex_instr *instr)
8166 {
8167 Builder bld(ctx->program, ctx->block);
8168 bool has_bias = false, has_lod = false, level_zero = false, has_compare = false,
8169 has_offset = false, has_ddx = false, has_ddy = false, has_derivs = false, has_sample_index = false;
8170 Temp resource, sampler, fmask_ptr, bias = Temp(), compare = Temp(), sample_index = Temp(),
8171 lod = Temp(), offset = Temp(), ddx = Temp(), ddy = Temp();
8172 std::vector<Temp> coords;
8173 std::vector<Temp> derivs;
8174 nir_const_value *sample_index_cv = NULL;
8175 nir_const_value *const_offset[4] = {NULL, NULL, NULL, NULL};
8176 enum glsl_base_type stype;
8177 tex_fetch_ptrs(ctx, instr, &resource, &sampler, &fmask_ptr, &stype);
8178
8179 bool tg4_integer_workarounds = ctx->options->chip_class <= GFX8 && instr->op == nir_texop_tg4 &&
8180 (stype == GLSL_TYPE_UINT || stype == GLSL_TYPE_INT);
8181 bool tg4_integer_cube_workaround = tg4_integer_workarounds &&
8182 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE;
8183
8184 for (unsigned i = 0; i < instr->num_srcs; i++) {
8185 switch (instr->src[i].src_type) {
8186 case nir_tex_src_coord: {
8187 Temp coord = get_ssa_temp(ctx, instr->src[i].src.ssa);
8188 for (unsigned i = 0; i < coord.size(); i++)
8189 coords.emplace_back(emit_extract_vector(ctx, coord, i, v1));
8190 break;
8191 }
8192 case nir_tex_src_bias:
8193 if (instr->op == nir_texop_txb) {
8194 bias = get_ssa_temp(ctx, instr->src[i].src.ssa);
8195 has_bias = true;
8196 }
8197 break;
8198 case nir_tex_src_lod: {
8199 nir_const_value *val = nir_src_as_const_value(instr->src[i].src);
8200
8201 if (val && val->f32 <= 0.0) {
8202 level_zero = true;
8203 } else {
8204 lod = get_ssa_temp(ctx, instr->src[i].src.ssa);
8205 has_lod = true;
8206 }
8207 break;
8208 }
8209 case nir_tex_src_comparator:
8210 if (instr->is_shadow) {
8211 compare = get_ssa_temp(ctx, instr->src[i].src.ssa);
8212 has_compare = true;
8213 }
8214 break;
8215 case nir_tex_src_offset:
8216 offset = get_ssa_temp(ctx, instr->src[i].src.ssa);
8217 get_const_vec(instr->src[i].src.ssa, const_offset);
8218 has_offset = true;
8219 break;
8220 case nir_tex_src_ddx:
8221 ddx = get_ssa_temp(ctx, instr->src[i].src.ssa);
8222 has_ddx = true;
8223 break;
8224 case nir_tex_src_ddy:
8225 ddy = get_ssa_temp(ctx, instr->src[i].src.ssa);
8226 has_ddy = true;
8227 break;
8228 case nir_tex_src_ms_index:
8229 sample_index = get_ssa_temp(ctx, instr->src[i].src.ssa);
8230 sample_index_cv = nir_src_as_const_value(instr->src[i].src);
8231 has_sample_index = true;
8232 break;
8233 case nir_tex_src_texture_offset:
8234 case nir_tex_src_sampler_offset:
8235 default:
8236 break;
8237 }
8238 }
8239
8240 if (instr->op == nir_texop_txs && instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
8241 return get_buffer_size(ctx, resource, get_ssa_temp(ctx, &instr->dest.ssa), true);
8242
8243 if (instr->op == nir_texop_texture_samples) {
8244 Temp dword3 = emit_extract_vector(ctx, resource, 3, s1);
8245
8246 Temp samples_log2 = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(16u | 4u<<16));
8247 Temp samples = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), Operand(1u), samples_log2);
8248 Temp type = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(28u | 4u<<16 /* offset=28, width=4 */));
8249 Temp is_msaa = bld.sopc(aco_opcode::s_cmp_ge_u32, bld.def(s1, scc), type, Operand(14u));
8250
8251 bld.sop2(aco_opcode::s_cselect_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
8252 samples, Operand(1u), bld.scc(is_msaa));
8253 return;
8254 }
8255
8256 if (has_offset && instr->op != nir_texop_txf && instr->op != nir_texop_txf_ms) {
8257 aco_ptr<Instruction> tmp_instr;
8258 Temp acc, pack = Temp();
8259
8260 uint32_t pack_const = 0;
8261 for (unsigned i = 0; i < offset.size(); i++) {
8262 if (!const_offset[i])
8263 continue;
8264 pack_const |= (const_offset[i]->u32 & 0x3Fu) << (8u * i);
8265 }
8266
8267 if (offset.type() == RegType::sgpr) {
8268 for (unsigned i = 0; i < offset.size(); i++) {
8269 if (const_offset[i])
8270 continue;
8271
8272 acc = emit_extract_vector(ctx, offset, i, s1);
8273 acc = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(0x3Fu));
8274
8275 if (i) {
8276 acc = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(8u * i));
8277 }
8278
8279 if (pack == Temp()) {
8280 pack = acc;
8281 } else {
8282 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), pack, acc);
8283 }
8284 }
8285
8286 if (pack_const && pack != Temp())
8287 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(pack_const), pack);
8288 } else {
8289 for (unsigned i = 0; i < offset.size(); i++) {
8290 if (const_offset[i])
8291 continue;
8292
8293 acc = emit_extract_vector(ctx, offset, i, v1);
8294 acc = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x3Fu), acc);
8295
8296 if (i) {
8297 acc = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(8u * i), acc);
8298 }
8299
8300 if (pack == Temp()) {
8301 pack = acc;
8302 } else {
8303 pack = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), pack, acc);
8304 }
8305 }
8306
8307 if (pack_const && pack != Temp())
8308 pack = bld.sop2(aco_opcode::v_or_b32, bld.def(v1), Operand(pack_const), pack);
8309 }
8310 if (pack_const && pack == Temp())
8311 offset = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(pack_const));
8312 else if (pack == Temp())
8313 has_offset = false;
8314 else
8315 offset = pack;
8316 }
8317
8318 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE && instr->coord_components)
8319 prepare_cube_coords(ctx, coords, &ddx, &ddy, instr->op == nir_texop_txd, instr->is_array && instr->op != nir_texop_lod);
8320
8321 /* pack derivatives */
8322 if (has_ddx || has_ddy) {
8323 if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D && ctx->options->chip_class == GFX9) {
8324 assert(has_ddx && has_ddy && ddx.size() == 1 && ddy.size() == 1);
8325 Temp zero = bld.copy(bld.def(v1), Operand(0u));
8326 derivs = {ddy, zero, ddy, zero};
8327 } else {
8328 for (unsigned i = 0; has_ddx && i < ddx.size(); i++)
8329 derivs.emplace_back(emit_extract_vector(ctx, ddx, i, v1));
8330 for (unsigned i = 0; has_ddy && i < ddy.size(); i++)
8331 derivs.emplace_back(emit_extract_vector(ctx, ddy, i, v1));
8332 }
8333 has_derivs = true;
8334 }
8335
8336 if (instr->coord_components > 1 &&
8337 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
8338 instr->is_array &&
8339 instr->op != nir_texop_txf)
8340 coords[1] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[1]);
8341
8342 if (instr->coord_components > 2 &&
8343 (instr->sampler_dim == GLSL_SAMPLER_DIM_2D ||
8344 instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
8345 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS ||
8346 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
8347 instr->is_array &&
8348 instr->op != nir_texop_txf &&
8349 instr->op != nir_texop_txf_ms &&
8350 instr->op != nir_texop_fragment_fetch &&
8351 instr->op != nir_texop_fragment_mask_fetch)
8352 coords[2] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[2]);
8353
8354 if (ctx->options->chip_class == GFX9 &&
8355 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
8356 instr->op != nir_texop_lod && instr->coord_components) {
8357 assert(coords.size() > 0 && coords.size() < 3);
8358
8359 coords.insert(std::next(coords.begin()), bld.copy(bld.def(v1), instr->op == nir_texop_txf ?
8360 Operand((uint32_t) 0) :
8361 Operand((uint32_t) 0x3f000000)));
8362 }
8363
8364 bool da = should_declare_array(ctx, instr->sampler_dim, instr->is_array);
8365
8366 if (instr->op == nir_texop_samples_identical)
8367 resource = fmask_ptr;
8368
8369 else if ((instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
8370 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
8371 instr->op != nir_texop_txs &&
8372 instr->op != nir_texop_fragment_fetch &&
8373 instr->op != nir_texop_fragment_mask_fetch) {
8374 assert(has_sample_index);
8375 Operand op(sample_index);
8376 if (sample_index_cv)
8377 op = Operand(sample_index_cv->u32);
8378 sample_index = adjust_sample_index_using_fmask(ctx, da, coords, op, fmask_ptr);
8379 }
8380
8381 if (has_offset && (instr->op == nir_texop_txf || instr->op == nir_texop_txf_ms)) {
8382 for (unsigned i = 0; i < std::min(offset.size(), instr->coord_components); i++) {
8383 Temp off = emit_extract_vector(ctx, offset, i, v1);
8384 coords[i] = bld.vadd32(bld.def(v1), coords[i], off);
8385 }
8386 has_offset = false;
8387 }
8388
8389 /* Build tex instruction */
8390 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
8391 unsigned dim = ctx->options->chip_class >= GFX10 && instr->sampler_dim != GLSL_SAMPLER_DIM_BUF
8392 ? ac_get_sampler_dim(ctx->options->chip_class, instr->sampler_dim, instr->is_array)
8393 : 0;
8394 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8395 Temp tmp_dst = dst;
8396
8397 /* gather4 selects the component by dmask and always returns vec4 */
8398 if (instr->op == nir_texop_tg4) {
8399 assert(instr->dest.ssa.num_components == 4);
8400 if (instr->is_shadow)
8401 dmask = 1;
8402 else
8403 dmask = 1 << instr->component;
8404 if (tg4_integer_cube_workaround || dst.type() == RegType::sgpr)
8405 tmp_dst = bld.tmp(v4);
8406 } else if (instr->op == nir_texop_samples_identical) {
8407 tmp_dst = bld.tmp(v1);
8408 } else if (util_bitcount(dmask) != instr->dest.ssa.num_components || dst.type() == RegType::sgpr) {
8409 tmp_dst = bld.tmp(RegClass(RegType::vgpr, util_bitcount(dmask)));
8410 }
8411
8412 aco_ptr<MIMG_instruction> tex;
8413 if (instr->op == nir_texop_txs || instr->op == nir_texop_query_levels) {
8414 if (!has_lod)
8415 lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
8416
8417 bool div_by_6 = instr->op == nir_texop_txs &&
8418 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
8419 instr->is_array &&
8420 (dmask & (1 << 2));
8421 if (tmp_dst.id() == dst.id() && div_by_6)
8422 tmp_dst = bld.tmp(tmp_dst.regClass());
8423
8424 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
8425 tex->operands[0] = Operand(resource);
8426 tex->operands[1] = Operand(s4); /* no sampler */
8427 tex->operands[2] = Operand(as_vgpr(ctx,lod));
8428 if (ctx->options->chip_class == GFX9 &&
8429 instr->op == nir_texop_txs &&
8430 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
8431 instr->is_array) {
8432 tex->dmask = (dmask & 0x1) | ((dmask & 0x2) << 1);
8433 } else if (instr->op == nir_texop_query_levels) {
8434 tex->dmask = 1 << 3;
8435 } else {
8436 tex->dmask = dmask;
8437 }
8438 tex->da = da;
8439 tex->definitions[0] = Definition(tmp_dst);
8440 tex->dim = dim;
8441 tex->can_reorder = true;
8442 ctx->block->instructions.emplace_back(std::move(tex));
8443
8444 if (div_by_6) {
8445 /* divide 3rd value by 6 by multiplying with magic number */
8446 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
8447 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
8448 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp_dst, 2, v1), c);
8449 assert(instr->dest.ssa.num_components == 3);
8450 Temp tmp = dst.type() == RegType::vgpr ? dst : bld.tmp(v3);
8451 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
8452 emit_extract_vector(ctx, tmp_dst, 0, v1),
8453 emit_extract_vector(ctx, tmp_dst, 1, v1),
8454 by_6);
8455
8456 }
8457
8458 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
8459 return;
8460 }
8461
8462 Temp tg4_compare_cube_wa64 = Temp();
8463
8464 if (tg4_integer_workarounds) {
8465 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
8466 tex->operands[0] = Operand(resource);
8467 tex->operands[1] = Operand(s4); /* no sampler */
8468 tex->operands[2] = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
8469 tex->dim = dim;
8470 tex->dmask = 0x3;
8471 tex->da = da;
8472 Temp size = bld.tmp(v2);
8473 tex->definitions[0] = Definition(size);
8474 tex->can_reorder = true;
8475 ctx->block->instructions.emplace_back(std::move(tex));
8476 emit_split_vector(ctx, size, size.size());
8477
8478 Temp half_texel[2];
8479 for (unsigned i = 0; i < 2; i++) {
8480 half_texel[i] = emit_extract_vector(ctx, size, i, v1);
8481 half_texel[i] = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), half_texel[i]);
8482 half_texel[i] = bld.vop1(aco_opcode::v_rcp_iflag_f32, bld.def(v1), half_texel[i]);
8483 half_texel[i] = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0xbf000000/*-0.5*/), half_texel[i]);
8484 }
8485
8486 Temp new_coords[2] = {
8487 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[0], half_texel[0]),
8488 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[1], half_texel[1])
8489 };
8490
8491 if (tg4_integer_cube_workaround) {
8492 // see comment in ac_nir_to_llvm.c's lower_gather4_integer()
8493 Temp desc[resource.size()];
8494 aco_ptr<Instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector,
8495 Format::PSEUDO, 1, resource.size())};
8496 split->operands[0] = Operand(resource);
8497 for (unsigned i = 0; i < resource.size(); i++) {
8498 desc[i] = bld.tmp(s1);
8499 split->definitions[i] = Definition(desc[i]);
8500 }
8501 ctx->block->instructions.emplace_back(std::move(split));
8502
8503 Temp dfmt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), desc[1], Operand(20u | (6u << 16)));
8504 Temp compare_cube_wa = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), dfmt,
8505 Operand((uint32_t)V_008F14_IMG_DATA_FORMAT_8_8_8_8));
8506
8507 Temp nfmt;
8508 if (stype == GLSL_TYPE_UINT) {
8509 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
8510 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_USCALED),
8511 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_UINT),
8512 bld.scc(compare_cube_wa));
8513 } else {
8514 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
8515 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SSCALED),
8516 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SINT),
8517 bld.scc(compare_cube_wa));
8518 }
8519 tg4_compare_cube_wa64 = bld.tmp(bld.lm);
8520 bool_to_vector_condition(ctx, compare_cube_wa, tg4_compare_cube_wa64);
8521
8522 nfmt = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), nfmt, Operand(26u));
8523
8524 desc[1] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), desc[1],
8525 Operand((uint32_t)C_008F14_NUM_FORMAT));
8526 desc[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), desc[1], nfmt);
8527
8528 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
8529 Format::PSEUDO, resource.size(), 1)};
8530 for (unsigned i = 0; i < resource.size(); i++)
8531 vec->operands[i] = Operand(desc[i]);
8532 resource = bld.tmp(resource.regClass());
8533 vec->definitions[0] = Definition(resource);
8534 ctx->block->instructions.emplace_back(std::move(vec));
8535
8536 new_coords[0] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8537 new_coords[0], coords[0], tg4_compare_cube_wa64);
8538 new_coords[1] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8539 new_coords[1], coords[1], tg4_compare_cube_wa64);
8540 }
8541 coords[0] = new_coords[0];
8542 coords[1] = new_coords[1];
8543 }
8544
8545 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
8546 //FIXME: if (ctx->abi->gfx9_stride_size_workaround) return ac_build_buffer_load_format_gfx9_safe()
8547
8548 assert(coords.size() == 1);
8549 unsigned last_bit = util_last_bit(nir_ssa_def_components_read(&instr->dest.ssa));
8550 aco_opcode op;
8551 switch (last_bit) {
8552 case 1:
8553 op = aco_opcode::buffer_load_format_x; break;
8554 case 2:
8555 op = aco_opcode::buffer_load_format_xy; break;
8556 case 3:
8557 op = aco_opcode::buffer_load_format_xyz; break;
8558 case 4:
8559 op = aco_opcode::buffer_load_format_xyzw; break;
8560 default:
8561 unreachable("Tex instruction loads more than 4 components.");
8562 }
8563
8564 /* if the instruction return value matches exactly the nir dest ssa, we can use it directly */
8565 if (last_bit == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
8566 tmp_dst = dst;
8567 else
8568 tmp_dst = bld.tmp(RegType::vgpr, last_bit);
8569
8570 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
8571 mubuf->operands[0] = Operand(resource);
8572 mubuf->operands[1] = Operand(coords[0]);
8573 mubuf->operands[2] = Operand((uint32_t) 0);
8574 mubuf->definitions[0] = Definition(tmp_dst);
8575 mubuf->idxen = true;
8576 mubuf->can_reorder = true;
8577 ctx->block->instructions.emplace_back(std::move(mubuf));
8578
8579 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, (1 << last_bit) - 1);
8580 return;
8581 }
8582
8583 /* gather MIMG address components */
8584 std::vector<Temp> args;
8585 if (has_offset)
8586 args.emplace_back(offset);
8587 if (has_bias)
8588 args.emplace_back(bias);
8589 if (has_compare)
8590 args.emplace_back(compare);
8591 if (has_derivs)
8592 args.insert(args.end(), derivs.begin(), derivs.end());
8593
8594 args.insert(args.end(), coords.begin(), coords.end());
8595 if (has_sample_index)
8596 args.emplace_back(sample_index);
8597 if (has_lod)
8598 args.emplace_back(lod);
8599
8600 Temp arg = bld.tmp(RegClass(RegType::vgpr, args.size()));
8601 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, args.size(), 1)};
8602 vec->definitions[0] = Definition(arg);
8603 for (unsigned i = 0; i < args.size(); i++)
8604 vec->operands[i] = Operand(args[i]);
8605 ctx->block->instructions.emplace_back(std::move(vec));
8606
8607
8608 if (instr->op == nir_texop_txf ||
8609 instr->op == nir_texop_txf_ms ||
8610 instr->op == nir_texop_samples_identical ||
8611 instr->op == nir_texop_fragment_fetch ||
8612 instr->op == nir_texop_fragment_mask_fetch) {
8613 aco_opcode op = level_zero || instr->sampler_dim == GLSL_SAMPLER_DIM_MS || instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS ? aco_opcode::image_load : aco_opcode::image_load_mip;
8614 tex.reset(create_instruction<MIMG_instruction>(op, Format::MIMG, 3, 1));
8615 tex->operands[0] = Operand(resource);
8616 tex->operands[1] = Operand(s4); /* no sampler */
8617 tex->operands[2] = Operand(arg);
8618 tex->dim = dim;
8619 tex->dmask = dmask;
8620 tex->unrm = true;
8621 tex->da = da;
8622 tex->definitions[0] = Definition(tmp_dst);
8623 tex->can_reorder = true;
8624 ctx->block->instructions.emplace_back(std::move(tex));
8625
8626 if (instr->op == nir_texop_samples_identical) {
8627 assert(dmask == 1 && dst.regClass() == v1);
8628 assert(dst.id() != tmp_dst.id());
8629
8630 Temp tmp = bld.tmp(bld.lm);
8631 bld.vopc(aco_opcode::v_cmp_eq_u32, Definition(tmp), Operand(0u), tmp_dst).def(0).setHint(vcc);
8632 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand((uint32_t)-1), tmp);
8633
8634 } else {
8635 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
8636 }
8637 return;
8638 }
8639
8640 // TODO: would be better to do this by adding offsets, but needs the opcodes ordered.
8641 aco_opcode opcode = aco_opcode::image_sample;
8642 if (has_offset) { /* image_sample_*_o */
8643 if (has_compare) {
8644 opcode = aco_opcode::image_sample_c_o;
8645 if (has_derivs)
8646 opcode = aco_opcode::image_sample_c_d_o;
8647 if (has_bias)
8648 opcode = aco_opcode::image_sample_c_b_o;
8649 if (level_zero)
8650 opcode = aco_opcode::image_sample_c_lz_o;
8651 if (has_lod)
8652 opcode = aco_opcode::image_sample_c_l_o;
8653 } else {
8654 opcode = aco_opcode::image_sample_o;
8655 if (has_derivs)
8656 opcode = aco_opcode::image_sample_d_o;
8657 if (has_bias)
8658 opcode = aco_opcode::image_sample_b_o;
8659 if (level_zero)
8660 opcode = aco_opcode::image_sample_lz_o;
8661 if (has_lod)
8662 opcode = aco_opcode::image_sample_l_o;
8663 }
8664 } else { /* no offset */
8665 if (has_compare) {
8666 opcode = aco_opcode::image_sample_c;
8667 if (has_derivs)
8668 opcode = aco_opcode::image_sample_c_d;
8669 if (has_bias)
8670 opcode = aco_opcode::image_sample_c_b;
8671 if (level_zero)
8672 opcode = aco_opcode::image_sample_c_lz;
8673 if (has_lod)
8674 opcode = aco_opcode::image_sample_c_l;
8675 } else {
8676 opcode = aco_opcode::image_sample;
8677 if (has_derivs)
8678 opcode = aco_opcode::image_sample_d;
8679 if (has_bias)
8680 opcode = aco_opcode::image_sample_b;
8681 if (level_zero)
8682 opcode = aco_opcode::image_sample_lz;
8683 if (has_lod)
8684 opcode = aco_opcode::image_sample_l;
8685 }
8686 }
8687
8688 if (instr->op == nir_texop_tg4) {
8689 if (has_offset) {
8690 opcode = aco_opcode::image_gather4_lz_o;
8691 if (has_compare)
8692 opcode = aco_opcode::image_gather4_c_lz_o;
8693 } else {
8694 opcode = aco_opcode::image_gather4_lz;
8695 if (has_compare)
8696 opcode = aco_opcode::image_gather4_c_lz;
8697 }
8698 } else if (instr->op == nir_texop_lod) {
8699 opcode = aco_opcode::image_get_lod;
8700 }
8701
8702 /* we don't need the bias, sample index, compare value or offset to be
8703 * computed in WQM but if the p_create_vector copies the coordinates, then it
8704 * needs to be in WQM */
8705 if (ctx->stage == fragment_fs &&
8706 !has_derivs && !has_lod && !level_zero &&
8707 instr->sampler_dim != GLSL_SAMPLER_DIM_MS &&
8708 instr->sampler_dim != GLSL_SAMPLER_DIM_SUBPASS_MS)
8709 arg = emit_wqm(ctx, arg, bld.tmp(arg.regClass()), true);
8710
8711 tex.reset(create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1));
8712 tex->operands[0] = Operand(resource);
8713 tex->operands[1] = Operand(sampler);
8714 tex->operands[2] = Operand(arg);
8715 tex->dim = dim;
8716 tex->dmask = dmask;
8717 tex->da = da;
8718 tex->definitions[0] = Definition(tmp_dst);
8719 tex->can_reorder = true;
8720 ctx->block->instructions.emplace_back(std::move(tex));
8721
8722 if (tg4_integer_cube_workaround) {
8723 assert(tmp_dst.id() != dst.id());
8724 assert(tmp_dst.size() == dst.size() && dst.size() == 4);
8725
8726 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
8727 Temp val[4];
8728 for (unsigned i = 0; i < dst.size(); i++) {
8729 val[i] = emit_extract_vector(ctx, tmp_dst, i, v1);
8730 Temp cvt_val;
8731 if (stype == GLSL_TYPE_UINT)
8732 cvt_val = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), val[i]);
8733 else
8734 cvt_val = bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), val[i]);
8735 val[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), val[i], cvt_val, tg4_compare_cube_wa64);
8736 }
8737 Temp tmp = dst.regClass() == v4 ? dst : bld.tmp(v4);
8738 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
8739 val[0], val[1], val[2], val[3]);
8740 }
8741 unsigned mask = instr->op == nir_texop_tg4 ? 0xF : dmask;
8742 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, mask);
8743
8744 }
8745
8746
8747 Operand get_phi_operand(isel_context *ctx, nir_ssa_def *ssa)
8748 {
8749 Temp tmp = get_ssa_temp(ctx, ssa);
8750 if (ssa->parent_instr->type == nir_instr_type_ssa_undef)
8751 return Operand(tmp.regClass());
8752 else
8753 return Operand(tmp);
8754 }
8755
8756 void visit_phi(isel_context *ctx, nir_phi_instr *instr)
8757 {
8758 aco_ptr<Pseudo_instruction> phi;
8759 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8760 assert(instr->dest.ssa.bit_size != 1 || dst.regClass() == ctx->program->lane_mask);
8761
8762 bool logical = !dst.is_linear() || ctx->divergent_vals[instr->dest.ssa.index];
8763 logical |= ctx->block->kind & block_kind_merge;
8764 aco_opcode opcode = logical ? aco_opcode::p_phi : aco_opcode::p_linear_phi;
8765
8766 /* we want a sorted list of sources, since the predecessor list is also sorted */
8767 std::map<unsigned, nir_ssa_def*> phi_src;
8768 nir_foreach_phi_src(src, instr)
8769 phi_src[src->pred->index] = src->src.ssa;
8770
8771 std::vector<unsigned>& preds = logical ? ctx->block->logical_preds : ctx->block->linear_preds;
8772 unsigned num_operands = 0;
8773 Operand operands[std::max(exec_list_length(&instr->srcs), (unsigned)preds.size()) + 1];
8774 unsigned num_defined = 0;
8775 unsigned cur_pred_idx = 0;
8776 for (std::pair<unsigned, nir_ssa_def *> src : phi_src) {
8777 if (cur_pred_idx < preds.size()) {
8778 /* handle missing preds (IF merges with discard/break) and extra preds (loop exit with discard) */
8779 unsigned block = ctx->cf_info.nir_to_aco[src.first];
8780 unsigned skipped = 0;
8781 while (cur_pred_idx + skipped < preds.size() && preds[cur_pred_idx + skipped] != block)
8782 skipped++;
8783 if (cur_pred_idx + skipped < preds.size()) {
8784 for (unsigned i = 0; i < skipped; i++)
8785 operands[num_operands++] = Operand(dst.regClass());
8786 cur_pred_idx += skipped;
8787 } else {
8788 continue;
8789 }
8790 }
8791 /* Handle missing predecessors at the end. This shouldn't happen with loop
8792 * headers and we can't ignore these sources for loop header phis. */
8793 if (!(ctx->block->kind & block_kind_loop_header) && cur_pred_idx >= preds.size())
8794 continue;
8795 cur_pred_idx++;
8796 Operand op = get_phi_operand(ctx, src.second);
8797 operands[num_operands++] = op;
8798 num_defined += !op.isUndefined();
8799 }
8800 /* handle block_kind_continue_or_break at loop exit blocks */
8801 while (cur_pred_idx++ < preds.size())
8802 operands[num_operands++] = Operand(dst.regClass());
8803
8804 /* If the loop ends with a break, still add a linear continue edge in case
8805 * that break is divergent or continue_or_break is used. We'll either remove
8806 * this operand later in visit_loop() if it's not necessary or replace the
8807 * undef with something correct. */
8808 if (!logical && ctx->block->kind & block_kind_loop_header) {
8809 nir_loop *loop = nir_cf_node_as_loop(instr->instr.block->cf_node.parent);
8810 nir_block *last = nir_loop_last_block(loop);
8811 if (last->successors[0] != instr->instr.block)
8812 operands[num_operands++] = Operand(RegClass());
8813 }
8814
8815 if (num_defined == 0) {
8816 Builder bld(ctx->program, ctx->block);
8817 if (dst.regClass() == s1) {
8818 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), Operand(0u));
8819 } else if (dst.regClass() == v1) {
8820 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), Operand(0u));
8821 } else {
8822 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
8823 for (unsigned i = 0; i < dst.size(); i++)
8824 vec->operands[i] = Operand(0u);
8825 vec->definitions[0] = Definition(dst);
8826 ctx->block->instructions.emplace_back(std::move(vec));
8827 }
8828 return;
8829 }
8830
8831 /* we can use a linear phi in some cases if one src is undef */
8832 if (dst.is_linear() && ctx->block->kind & block_kind_merge && num_defined == 1) {
8833 phi.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, num_operands, 1));
8834
8835 Block *linear_else = &ctx->program->blocks[ctx->block->linear_preds[1]];
8836 Block *invert = &ctx->program->blocks[linear_else->linear_preds[0]];
8837 assert(invert->kind & block_kind_invert);
8838
8839 unsigned then_block = invert->linear_preds[0];
8840
8841 Block* insert_block = NULL;
8842 for (unsigned i = 0; i < num_operands; i++) {
8843 Operand op = operands[i];
8844 if (op.isUndefined())
8845 continue;
8846 insert_block = ctx->block->logical_preds[i] == then_block ? invert : ctx->block;
8847 phi->operands[0] = op;
8848 break;
8849 }
8850 assert(insert_block); /* should be handled by the "num_defined == 0" case above */
8851 phi->operands[1] = Operand(dst.regClass());
8852 phi->definitions[0] = Definition(dst);
8853 insert_block->instructions.emplace(insert_block->instructions.begin(), std::move(phi));
8854 return;
8855 }
8856
8857 /* try to scalarize vector phis */
8858 if (instr->dest.ssa.bit_size != 1 && dst.size() > 1) {
8859 // TODO: scalarize linear phis on divergent ifs
8860 bool can_scalarize = (opcode == aco_opcode::p_phi || !(ctx->block->kind & block_kind_merge));
8861 std::array<Temp, NIR_MAX_VEC_COMPONENTS> new_vec;
8862 for (unsigned i = 0; can_scalarize && (i < num_operands); i++) {
8863 Operand src = operands[i];
8864 if (src.isTemp() && ctx->allocated_vec.find(src.tempId()) == ctx->allocated_vec.end())
8865 can_scalarize = false;
8866 }
8867 if (can_scalarize) {
8868 unsigned num_components = instr->dest.ssa.num_components;
8869 assert(dst.size() % num_components == 0);
8870 RegClass rc = RegClass(dst.type(), dst.size() / num_components);
8871
8872 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
8873 for (unsigned k = 0; k < num_components; k++) {
8874 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
8875 for (unsigned i = 0; i < num_operands; i++) {
8876 Operand src = operands[i];
8877 phi->operands[i] = src.isTemp() ? Operand(ctx->allocated_vec[src.tempId()][k]) : Operand(rc);
8878 }
8879 Temp phi_dst = {ctx->program->allocateId(), rc};
8880 phi->definitions[0] = Definition(phi_dst);
8881 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
8882 new_vec[k] = phi_dst;
8883 vec->operands[k] = Operand(phi_dst);
8884 }
8885 vec->definitions[0] = Definition(dst);
8886 ctx->block->instructions.emplace_back(std::move(vec));
8887 ctx->allocated_vec.emplace(dst.id(), new_vec);
8888 return;
8889 }
8890 }
8891
8892 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
8893 for (unsigned i = 0; i < num_operands; i++)
8894 phi->operands[i] = operands[i];
8895 phi->definitions[0] = Definition(dst);
8896 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
8897 }
8898
8899
8900 void visit_undef(isel_context *ctx, nir_ssa_undef_instr *instr)
8901 {
8902 Temp dst = get_ssa_temp(ctx, &instr->def);
8903
8904 assert(dst.type() == RegType::sgpr);
8905
8906 if (dst.size() == 1) {
8907 Builder(ctx->program, ctx->block).copy(Definition(dst), Operand(0u));
8908 } else {
8909 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
8910 for (unsigned i = 0; i < dst.size(); i++)
8911 vec->operands[i] = Operand(0u);
8912 vec->definitions[0] = Definition(dst);
8913 ctx->block->instructions.emplace_back(std::move(vec));
8914 }
8915 }
8916
8917 void visit_jump(isel_context *ctx, nir_jump_instr *instr)
8918 {
8919 Builder bld(ctx->program, ctx->block);
8920 Block *logical_target;
8921 append_logical_end(ctx->block);
8922 unsigned idx = ctx->block->index;
8923
8924 switch (instr->type) {
8925 case nir_jump_break:
8926 logical_target = ctx->cf_info.parent_loop.exit;
8927 add_logical_edge(idx, logical_target);
8928 ctx->block->kind |= block_kind_break;
8929
8930 if (!ctx->cf_info.parent_if.is_divergent &&
8931 !ctx->cf_info.parent_loop.has_divergent_continue) {
8932 /* uniform break - directly jump out of the loop */
8933 ctx->block->kind |= block_kind_uniform;
8934 ctx->cf_info.has_branch = true;
8935 bld.branch(aco_opcode::p_branch);
8936 add_linear_edge(idx, logical_target);
8937 return;
8938 }
8939 ctx->cf_info.parent_loop.has_divergent_branch = true;
8940 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
8941 break;
8942 case nir_jump_continue:
8943 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
8944 add_logical_edge(idx, logical_target);
8945 ctx->block->kind |= block_kind_continue;
8946
8947 if (ctx->cf_info.parent_if.is_divergent) {
8948 /* for potential uniform breaks after this continue,
8949 we must ensure that they are handled correctly */
8950 ctx->cf_info.parent_loop.has_divergent_continue = true;
8951 ctx->cf_info.parent_loop.has_divergent_branch = true;
8952 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
8953 } else {
8954 /* uniform continue - directly jump to the loop header */
8955 ctx->block->kind |= block_kind_uniform;
8956 ctx->cf_info.has_branch = true;
8957 bld.branch(aco_opcode::p_branch);
8958 add_linear_edge(idx, logical_target);
8959 return;
8960 }
8961 break;
8962 default:
8963 fprintf(stderr, "Unknown NIR jump instr: ");
8964 nir_print_instr(&instr->instr, stderr);
8965 fprintf(stderr, "\n");
8966 abort();
8967 }
8968
8969 if (ctx->cf_info.parent_if.is_divergent && !ctx->cf_info.exec_potentially_empty_break) {
8970 ctx->cf_info.exec_potentially_empty_break = true;
8971 ctx->cf_info.exec_potentially_empty_break_depth = ctx->cf_info.loop_nest_depth;
8972 }
8973
8974 /* remove critical edges from linear CFG */
8975 bld.branch(aco_opcode::p_branch);
8976 Block* break_block = ctx->program->create_and_insert_block();
8977 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8978 break_block->kind |= block_kind_uniform;
8979 add_linear_edge(idx, break_block);
8980 /* the loop_header pointer might be invalidated by this point */
8981 if (instr->type == nir_jump_continue)
8982 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
8983 add_linear_edge(break_block->index, logical_target);
8984 bld.reset(break_block);
8985 bld.branch(aco_opcode::p_branch);
8986
8987 Block* continue_block = ctx->program->create_and_insert_block();
8988 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8989 add_linear_edge(idx, continue_block);
8990 append_logical_start(continue_block);
8991 ctx->block = continue_block;
8992 return;
8993 }
8994
8995 void visit_block(isel_context *ctx, nir_block *block)
8996 {
8997 nir_foreach_instr(instr, block) {
8998 switch (instr->type) {
8999 case nir_instr_type_alu:
9000 visit_alu_instr(ctx, nir_instr_as_alu(instr));
9001 break;
9002 case nir_instr_type_load_const:
9003 visit_load_const(ctx, nir_instr_as_load_const(instr));
9004 break;
9005 case nir_instr_type_intrinsic:
9006 visit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
9007 break;
9008 case nir_instr_type_tex:
9009 visit_tex(ctx, nir_instr_as_tex(instr));
9010 break;
9011 case nir_instr_type_phi:
9012 visit_phi(ctx, nir_instr_as_phi(instr));
9013 break;
9014 case nir_instr_type_ssa_undef:
9015 visit_undef(ctx, nir_instr_as_ssa_undef(instr));
9016 break;
9017 case nir_instr_type_deref:
9018 break;
9019 case nir_instr_type_jump:
9020 visit_jump(ctx, nir_instr_as_jump(instr));
9021 break;
9022 default:
9023 fprintf(stderr, "Unknown NIR instr type: ");
9024 nir_print_instr(instr, stderr);
9025 fprintf(stderr, "\n");
9026 //abort();
9027 }
9028 }
9029
9030 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9031 ctx->cf_info.nir_to_aco[block->index] = ctx->block->index;
9032 }
9033
9034
9035
9036 static Operand create_continue_phis(isel_context *ctx, unsigned first, unsigned last,
9037 aco_ptr<Instruction>& header_phi, Operand *vals)
9038 {
9039 vals[0] = Operand(header_phi->definitions[0].getTemp());
9040 RegClass rc = vals[0].regClass();
9041
9042 unsigned loop_nest_depth = ctx->program->blocks[first].loop_nest_depth;
9043
9044 unsigned next_pred = 1;
9045
9046 for (unsigned idx = first + 1; idx <= last; idx++) {
9047 Block& block = ctx->program->blocks[idx];
9048 if (block.loop_nest_depth != loop_nest_depth) {
9049 vals[idx - first] = vals[idx - 1 - first];
9050 continue;
9051 }
9052
9053 if (block.kind & block_kind_continue) {
9054 vals[idx - first] = header_phi->operands[next_pred];
9055 next_pred++;
9056 continue;
9057 }
9058
9059 bool all_same = true;
9060 for (unsigned i = 1; all_same && (i < block.linear_preds.size()); i++)
9061 all_same = vals[block.linear_preds[i] - first] == vals[block.linear_preds[0] - first];
9062
9063 Operand val;
9064 if (all_same) {
9065 val = vals[block.linear_preds[0] - first];
9066 } else {
9067 aco_ptr<Instruction> phi(create_instruction<Pseudo_instruction>(
9068 aco_opcode::p_linear_phi, Format::PSEUDO, block.linear_preds.size(), 1));
9069 for (unsigned i = 0; i < block.linear_preds.size(); i++)
9070 phi->operands[i] = vals[block.linear_preds[i] - first];
9071 val = Operand(Temp(ctx->program->allocateId(), rc));
9072 phi->definitions[0] = Definition(val.getTemp());
9073 block.instructions.emplace(block.instructions.begin(), std::move(phi));
9074 }
9075 vals[idx - first] = val;
9076 }
9077
9078 return vals[last - first];
9079 }
9080
9081 static void visit_loop(isel_context *ctx, nir_loop *loop)
9082 {
9083 //TODO: we might want to wrap the loop around a branch if exec_potentially_empty=true
9084 append_logical_end(ctx->block);
9085 ctx->block->kind |= block_kind_loop_preheader | block_kind_uniform;
9086 Builder bld(ctx->program, ctx->block);
9087 bld.branch(aco_opcode::p_branch);
9088 unsigned loop_preheader_idx = ctx->block->index;
9089
9090 Block loop_exit = Block();
9091 loop_exit.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9092 loop_exit.kind |= (block_kind_loop_exit | (ctx->block->kind & block_kind_top_level));
9093
9094 Block* loop_header = ctx->program->create_and_insert_block();
9095 loop_header->loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
9096 loop_header->kind |= block_kind_loop_header;
9097 add_edge(loop_preheader_idx, loop_header);
9098 ctx->block = loop_header;
9099
9100 /* emit loop body */
9101 unsigned loop_header_idx = loop_header->index;
9102 loop_info_RAII loop_raii(ctx, loop_header_idx, &loop_exit);
9103 append_logical_start(ctx->block);
9104 bool unreachable = visit_cf_list(ctx, &loop->body);
9105
9106 //TODO: what if a loop ends with a unconditional or uniformly branched continue and this branch is never taken?
9107 if (!ctx->cf_info.has_branch) {
9108 append_logical_end(ctx->block);
9109 if (ctx->cf_info.exec_potentially_empty_discard || ctx->cf_info.exec_potentially_empty_break) {
9110 /* Discards can result in code running with an empty exec mask.
9111 * This would result in divergent breaks not ever being taken. As a
9112 * workaround, break the loop when the loop mask is empty instead of
9113 * always continuing. */
9114 ctx->block->kind |= (block_kind_continue_or_break | block_kind_uniform);
9115 unsigned block_idx = ctx->block->index;
9116
9117 /* create helper blocks to avoid critical edges */
9118 Block *break_block = ctx->program->create_and_insert_block();
9119 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9120 break_block->kind = block_kind_uniform;
9121 bld.reset(break_block);
9122 bld.branch(aco_opcode::p_branch);
9123 add_linear_edge(block_idx, break_block);
9124 add_linear_edge(break_block->index, &loop_exit);
9125
9126 Block *continue_block = ctx->program->create_and_insert_block();
9127 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9128 continue_block->kind = block_kind_uniform;
9129 bld.reset(continue_block);
9130 bld.branch(aco_opcode::p_branch);
9131 add_linear_edge(block_idx, continue_block);
9132 add_linear_edge(continue_block->index, &ctx->program->blocks[loop_header_idx]);
9133
9134 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9135 add_logical_edge(block_idx, &ctx->program->blocks[loop_header_idx]);
9136 ctx->block = &ctx->program->blocks[block_idx];
9137 } else {
9138 ctx->block->kind |= (block_kind_continue | block_kind_uniform);
9139 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9140 add_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
9141 else
9142 add_linear_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
9143 }
9144
9145 bld.reset(ctx->block);
9146 bld.branch(aco_opcode::p_branch);
9147 }
9148
9149 /* Fixup phis in loop header from unreachable blocks.
9150 * has_branch/has_divergent_branch also indicates if the loop ends with a
9151 * break/continue instruction, but we don't emit those if unreachable=true */
9152 if (unreachable) {
9153 assert(ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch);
9154 bool linear = ctx->cf_info.has_branch;
9155 bool logical = ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch;
9156 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
9157 if ((logical && instr->opcode == aco_opcode::p_phi) ||
9158 (linear && instr->opcode == aco_opcode::p_linear_phi)) {
9159 /* the last operand should be the one that needs to be removed */
9160 instr->operands.pop_back();
9161 } else if (!is_phi(instr)) {
9162 break;
9163 }
9164 }
9165 }
9166
9167 /* Fixup linear phis in loop header from expecting a continue. Both this fixup
9168 * and the previous one shouldn't both happen at once because a break in the
9169 * merge block would get CSE'd */
9170 if (nir_loop_last_block(loop)->successors[0] != nir_loop_first_block(loop)) {
9171 unsigned num_vals = ctx->cf_info.has_branch ? 1 : (ctx->block->index - loop_header_idx + 1);
9172 Operand vals[num_vals];
9173 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
9174 if (instr->opcode == aco_opcode::p_linear_phi) {
9175 if (ctx->cf_info.has_branch)
9176 instr->operands.pop_back();
9177 else
9178 instr->operands.back() = create_continue_phis(ctx, loop_header_idx, ctx->block->index, instr, vals);
9179 } else if (!is_phi(instr)) {
9180 break;
9181 }
9182 }
9183 }
9184
9185 ctx->cf_info.has_branch = false;
9186
9187 // TODO: if the loop has not a single exit, we must add one °°
9188 /* emit loop successor block */
9189 ctx->block = ctx->program->insert_block(std::move(loop_exit));
9190 append_logical_start(ctx->block);
9191
9192 #if 0
9193 // TODO: check if it is beneficial to not branch on continues
9194 /* trim linear phis in loop header */
9195 for (auto&& instr : loop_entry->instructions) {
9196 if (instr->opcode == aco_opcode::p_linear_phi) {
9197 aco_ptr<Pseudo_instruction> new_phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, loop_entry->linear_predecessors.size(), 1)};
9198 new_phi->definitions[0] = instr->definitions[0];
9199 for (unsigned i = 0; i < new_phi->operands.size(); i++)
9200 new_phi->operands[i] = instr->operands[i];
9201 /* check that the remaining operands are all the same */
9202 for (unsigned i = new_phi->operands.size(); i < instr->operands.size(); i++)
9203 assert(instr->operands[i].tempId() == instr->operands.back().tempId());
9204 instr.swap(new_phi);
9205 } else if (instr->opcode == aco_opcode::p_phi) {
9206 continue;
9207 } else {
9208 break;
9209 }
9210 }
9211 #endif
9212 }
9213
9214 static void begin_divergent_if_then(isel_context *ctx, if_context *ic, Temp cond)
9215 {
9216 ic->cond = cond;
9217
9218 append_logical_end(ctx->block);
9219 ctx->block->kind |= block_kind_branch;
9220
9221 /* branch to linear then block */
9222 assert(cond.regClass() == ctx->program->lane_mask);
9223 aco_ptr<Pseudo_branch_instruction> branch;
9224 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
9225 branch->operands[0] = Operand(cond);
9226 ctx->block->instructions.push_back(std::move(branch));
9227
9228 ic->BB_if_idx = ctx->block->index;
9229 ic->BB_invert = Block();
9230 ic->BB_invert.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9231 /* Invert blocks are intentionally not marked as top level because they
9232 * are not part of the logical cfg. */
9233 ic->BB_invert.kind |= block_kind_invert;
9234 ic->BB_endif = Block();
9235 ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9236 ic->BB_endif.kind |= (block_kind_merge | (ctx->block->kind & block_kind_top_level));
9237
9238 ic->exec_potentially_empty_discard_old = ctx->cf_info.exec_potentially_empty_discard;
9239 ic->exec_potentially_empty_break_old = ctx->cf_info.exec_potentially_empty_break;
9240 ic->exec_potentially_empty_break_depth_old = ctx->cf_info.exec_potentially_empty_break_depth;
9241 ic->divergent_old = ctx->cf_info.parent_if.is_divergent;
9242 ctx->cf_info.parent_if.is_divergent = true;
9243
9244 /* divergent branches use cbranch_execz */
9245 ctx->cf_info.exec_potentially_empty_discard = false;
9246 ctx->cf_info.exec_potentially_empty_break = false;
9247 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9248
9249 /** emit logical then block */
9250 Block* BB_then_logical = ctx->program->create_and_insert_block();
9251 BB_then_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9252 add_edge(ic->BB_if_idx, BB_then_logical);
9253 ctx->block = BB_then_logical;
9254 append_logical_start(BB_then_logical);
9255 }
9256
9257 static void begin_divergent_if_else(isel_context *ctx, if_context *ic)
9258 {
9259 Block *BB_then_logical = ctx->block;
9260 append_logical_end(BB_then_logical);
9261 /* branch from logical then block to invert block */
9262 aco_ptr<Pseudo_branch_instruction> branch;
9263 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9264 BB_then_logical->instructions.emplace_back(std::move(branch));
9265 add_linear_edge(BB_then_logical->index, &ic->BB_invert);
9266 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9267 add_logical_edge(BB_then_logical->index, &ic->BB_endif);
9268 BB_then_logical->kind |= block_kind_uniform;
9269 assert(!ctx->cf_info.has_branch);
9270 ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
9271 ctx->cf_info.parent_loop.has_divergent_branch = false;
9272
9273 /** emit linear then block */
9274 Block* BB_then_linear = ctx->program->create_and_insert_block();
9275 BB_then_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9276 BB_then_linear->kind |= block_kind_uniform;
9277 add_linear_edge(ic->BB_if_idx, BB_then_linear);
9278 /* branch from linear then block to invert block */
9279 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9280 BB_then_linear->instructions.emplace_back(std::move(branch));
9281 add_linear_edge(BB_then_linear->index, &ic->BB_invert);
9282
9283 /** emit invert merge block */
9284 ctx->block = ctx->program->insert_block(std::move(ic->BB_invert));
9285 ic->invert_idx = ctx->block->index;
9286
9287 /* branch to linear else block (skip else) */
9288 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_nz, Format::PSEUDO_BRANCH, 1, 0));
9289 branch->operands[0] = Operand(ic->cond);
9290 ctx->block->instructions.push_back(std::move(branch));
9291
9292 ic->exec_potentially_empty_discard_old |= ctx->cf_info.exec_potentially_empty_discard;
9293 ic->exec_potentially_empty_break_old |= ctx->cf_info.exec_potentially_empty_break;
9294 ic->exec_potentially_empty_break_depth_old =
9295 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
9296 /* divergent branches use cbranch_execz */
9297 ctx->cf_info.exec_potentially_empty_discard = false;
9298 ctx->cf_info.exec_potentially_empty_break = false;
9299 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9300
9301 /** emit logical else block */
9302 Block* BB_else_logical = ctx->program->create_and_insert_block();
9303 BB_else_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9304 add_logical_edge(ic->BB_if_idx, BB_else_logical);
9305 add_linear_edge(ic->invert_idx, BB_else_logical);
9306 ctx->block = BB_else_logical;
9307 append_logical_start(BB_else_logical);
9308 }
9309
9310 static void end_divergent_if(isel_context *ctx, if_context *ic)
9311 {
9312 Block *BB_else_logical = ctx->block;
9313 append_logical_end(BB_else_logical);
9314
9315 /* branch from logical else block to endif block */
9316 aco_ptr<Pseudo_branch_instruction> branch;
9317 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9318 BB_else_logical->instructions.emplace_back(std::move(branch));
9319 add_linear_edge(BB_else_logical->index, &ic->BB_endif);
9320 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9321 add_logical_edge(BB_else_logical->index, &ic->BB_endif);
9322 BB_else_logical->kind |= block_kind_uniform;
9323
9324 assert(!ctx->cf_info.has_branch);
9325 ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
9326
9327
9328 /** emit linear else block */
9329 Block* BB_else_linear = ctx->program->create_and_insert_block();
9330 BB_else_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9331 BB_else_linear->kind |= block_kind_uniform;
9332 add_linear_edge(ic->invert_idx, BB_else_linear);
9333
9334 /* branch from linear else block to endif block */
9335 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9336 BB_else_linear->instructions.emplace_back(std::move(branch));
9337 add_linear_edge(BB_else_linear->index, &ic->BB_endif);
9338
9339
9340 /** emit endif merge block */
9341 ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
9342 append_logical_start(ctx->block);
9343
9344
9345 ctx->cf_info.parent_if.is_divergent = ic->divergent_old;
9346 ctx->cf_info.exec_potentially_empty_discard |= ic->exec_potentially_empty_discard_old;
9347 ctx->cf_info.exec_potentially_empty_break |= ic->exec_potentially_empty_break_old;
9348 ctx->cf_info.exec_potentially_empty_break_depth =
9349 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
9350 if (ctx->cf_info.loop_nest_depth == ctx->cf_info.exec_potentially_empty_break_depth &&
9351 !ctx->cf_info.parent_if.is_divergent) {
9352 ctx->cf_info.exec_potentially_empty_break = false;
9353 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9354 }
9355 /* uniform control flow never has an empty exec-mask */
9356 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent) {
9357 ctx->cf_info.exec_potentially_empty_discard = false;
9358 ctx->cf_info.exec_potentially_empty_break = false;
9359 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9360 }
9361 }
9362
9363 static void begin_uniform_if_then(isel_context *ctx, if_context *ic, Temp cond)
9364 {
9365 assert(cond.regClass() == s1);
9366
9367 append_logical_end(ctx->block);
9368 ctx->block->kind |= block_kind_uniform;
9369
9370 aco_ptr<Pseudo_branch_instruction> branch;
9371 aco_opcode branch_opcode = aco_opcode::p_cbranch_z;
9372 branch.reset(create_instruction<Pseudo_branch_instruction>(branch_opcode, Format::PSEUDO_BRANCH, 1, 0));
9373 branch->operands[0] = Operand(cond);
9374 branch->operands[0].setFixed(scc);
9375 ctx->block->instructions.emplace_back(std::move(branch));
9376
9377 ic->BB_if_idx = ctx->block->index;
9378 ic->BB_endif = Block();
9379 ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9380 ic->BB_endif.kind |= ctx->block->kind & block_kind_top_level;
9381
9382 ctx->cf_info.has_branch = false;
9383 ctx->cf_info.parent_loop.has_divergent_branch = false;
9384
9385 /** emit then block */
9386 Block* BB_then = ctx->program->create_and_insert_block();
9387 BB_then->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9388 add_edge(ic->BB_if_idx, BB_then);
9389 append_logical_start(BB_then);
9390 ctx->block = BB_then;
9391 }
9392
9393 static void begin_uniform_if_else(isel_context *ctx, if_context *ic)
9394 {
9395 Block *BB_then = ctx->block;
9396
9397 ic->uniform_has_then_branch = ctx->cf_info.has_branch;
9398 ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
9399
9400 if (!ic->uniform_has_then_branch) {
9401 append_logical_end(BB_then);
9402 /* branch from then block to endif block */
9403 aco_ptr<Pseudo_branch_instruction> branch;
9404 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9405 BB_then->instructions.emplace_back(std::move(branch));
9406 add_linear_edge(BB_then->index, &ic->BB_endif);
9407 if (!ic->then_branch_divergent)
9408 add_logical_edge(BB_then->index, &ic->BB_endif);
9409 BB_then->kind |= block_kind_uniform;
9410 }
9411
9412 ctx->cf_info.has_branch = false;
9413 ctx->cf_info.parent_loop.has_divergent_branch = false;
9414
9415 /** emit else block */
9416 Block* BB_else = ctx->program->create_and_insert_block();
9417 BB_else->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9418 add_edge(ic->BB_if_idx, BB_else);
9419 append_logical_start(BB_else);
9420 ctx->block = BB_else;
9421 }
9422
9423 static void end_uniform_if(isel_context *ctx, if_context *ic)
9424 {
9425 Block *BB_else = ctx->block;
9426
9427 if (!ctx->cf_info.has_branch) {
9428 append_logical_end(BB_else);
9429 /* branch from then block to endif block */
9430 aco_ptr<Pseudo_branch_instruction> branch;
9431 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9432 BB_else->instructions.emplace_back(std::move(branch));
9433 add_linear_edge(BB_else->index, &ic->BB_endif);
9434 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9435 add_logical_edge(BB_else->index, &ic->BB_endif);
9436 BB_else->kind |= block_kind_uniform;
9437 }
9438
9439 ctx->cf_info.has_branch &= ic->uniform_has_then_branch;
9440 ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
9441
9442 /** emit endif merge block */
9443 if (!ctx->cf_info.has_branch) {
9444 ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
9445 append_logical_start(ctx->block);
9446 }
9447 }
9448
9449 static bool visit_if(isel_context *ctx, nir_if *if_stmt)
9450 {
9451 Temp cond = get_ssa_temp(ctx, if_stmt->condition.ssa);
9452 Builder bld(ctx->program, ctx->block);
9453 aco_ptr<Pseudo_branch_instruction> branch;
9454 if_context ic;
9455
9456 if (!ctx->divergent_vals[if_stmt->condition.ssa->index]) { /* uniform condition */
9457 /**
9458 * Uniform conditionals are represented in the following way*) :
9459 *
9460 * The linear and logical CFG:
9461 * BB_IF
9462 * / \
9463 * BB_THEN (logical) BB_ELSE (logical)
9464 * \ /
9465 * BB_ENDIF
9466 *
9467 * *) Exceptions may be due to break and continue statements within loops
9468 * If a break/continue happens within uniform control flow, it branches
9469 * to the loop exit/entry block. Otherwise, it branches to the next
9470 * merge block.
9471 **/
9472
9473 // TODO: in a post-RA optimizer, we could check if the condition is in VCC and omit this instruction
9474 assert(cond.regClass() == ctx->program->lane_mask);
9475 cond = bool_to_scalar_condition(ctx, cond);
9476
9477 begin_uniform_if_then(ctx, &ic, cond);
9478 visit_cf_list(ctx, &if_stmt->then_list);
9479
9480 begin_uniform_if_else(ctx, &ic);
9481 visit_cf_list(ctx, &if_stmt->else_list);
9482
9483 end_uniform_if(ctx, &ic);
9484
9485 return !ctx->cf_info.has_branch;
9486 } else { /* non-uniform condition */
9487 /**
9488 * To maintain a logical and linear CFG without critical edges,
9489 * non-uniform conditionals are represented in the following way*) :
9490 *
9491 * The linear CFG:
9492 * BB_IF
9493 * / \
9494 * BB_THEN (logical) BB_THEN (linear)
9495 * \ /
9496 * BB_INVERT (linear)
9497 * / \
9498 * BB_ELSE (logical) BB_ELSE (linear)
9499 * \ /
9500 * BB_ENDIF
9501 *
9502 * The logical CFG:
9503 * BB_IF
9504 * / \
9505 * BB_THEN (logical) BB_ELSE (logical)
9506 * \ /
9507 * BB_ENDIF
9508 *
9509 * *) Exceptions may be due to break and continue statements within loops
9510 **/
9511
9512 begin_divergent_if_then(ctx, &ic, cond);
9513 visit_cf_list(ctx, &if_stmt->then_list);
9514
9515 begin_divergent_if_else(ctx, &ic);
9516 visit_cf_list(ctx, &if_stmt->else_list);
9517
9518 end_divergent_if(ctx, &ic);
9519
9520 return true;
9521 }
9522 }
9523
9524 static bool visit_cf_list(isel_context *ctx,
9525 struct exec_list *list)
9526 {
9527 foreach_list_typed(nir_cf_node, node, node, list) {
9528 switch (node->type) {
9529 case nir_cf_node_block:
9530 visit_block(ctx, nir_cf_node_as_block(node));
9531 break;
9532 case nir_cf_node_if:
9533 if (!visit_if(ctx, nir_cf_node_as_if(node)))
9534 return true;
9535 break;
9536 case nir_cf_node_loop:
9537 visit_loop(ctx, nir_cf_node_as_loop(node));
9538 break;
9539 default:
9540 unreachable("unimplemented cf list type");
9541 }
9542 }
9543 return false;
9544 }
9545
9546 static void create_null_export(isel_context *ctx)
9547 {
9548 /* Some shader stages always need to have exports.
9549 * So when there is none, we need to add a null export.
9550 */
9551
9552 unsigned dest = (ctx->program->stage & hw_fs) ? 9 /* NULL */ : V_008DFC_SQ_EXP_POS;
9553 bool vm = (ctx->program->stage & hw_fs) || ctx->program->chip_class >= GFX10;
9554 Builder bld(ctx->program, ctx->block);
9555 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
9556 /* enabled_mask */ 0, dest, /* compr */ false, /* done */ true, vm);
9557 }
9558
9559 static bool export_vs_varying(isel_context *ctx, int slot, bool is_pos, int *next_pos)
9560 {
9561 assert(ctx->stage == vertex_vs ||
9562 ctx->stage == tess_eval_vs ||
9563 ctx->stage == gs_copy_vs ||
9564 ctx->stage == ngg_vertex_gs ||
9565 ctx->stage == ngg_tess_eval_gs);
9566
9567 int offset = (ctx->stage & sw_tes)
9568 ? ctx->program->info->tes.outinfo.vs_output_param_offset[slot]
9569 : ctx->program->info->vs.outinfo.vs_output_param_offset[slot];
9570 uint64_t mask = ctx->outputs.mask[slot];
9571 if (!is_pos && !mask)
9572 return false;
9573 if (!is_pos && offset == AC_EXP_PARAM_UNDEFINED)
9574 return false;
9575 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
9576 exp->enabled_mask = mask;
9577 for (unsigned i = 0; i < 4; ++i) {
9578 if (mask & (1 << i))
9579 exp->operands[i] = Operand(ctx->outputs.temps[slot * 4u + i]);
9580 else
9581 exp->operands[i] = Operand(v1);
9582 }
9583 /* Navi10-14 skip POS0 exports if EXEC=0 and DONE=0, causing a hang.
9584 * Setting valid_mask=1 prevents it and has no other effect.
9585 */
9586 exp->valid_mask = ctx->options->chip_class >= GFX10 && is_pos && *next_pos == 0;
9587 exp->done = false;
9588 exp->compressed = false;
9589 if (is_pos)
9590 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
9591 else
9592 exp->dest = V_008DFC_SQ_EXP_PARAM + offset;
9593 ctx->block->instructions.emplace_back(std::move(exp));
9594
9595 return true;
9596 }
9597
9598 static void export_vs_psiz_layer_viewport(isel_context *ctx, int *next_pos)
9599 {
9600 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
9601 exp->enabled_mask = 0;
9602 for (unsigned i = 0; i < 4; ++i)
9603 exp->operands[i] = Operand(v1);
9604 if (ctx->outputs.mask[VARYING_SLOT_PSIZ]) {
9605 exp->operands[0] = Operand(ctx->outputs.temps[VARYING_SLOT_PSIZ * 4u]);
9606 exp->enabled_mask |= 0x1;
9607 }
9608 if (ctx->outputs.mask[VARYING_SLOT_LAYER]) {
9609 exp->operands[2] = Operand(ctx->outputs.temps[VARYING_SLOT_LAYER * 4u]);
9610 exp->enabled_mask |= 0x4;
9611 }
9612 if (ctx->outputs.mask[VARYING_SLOT_VIEWPORT]) {
9613 if (ctx->options->chip_class < GFX9) {
9614 exp->operands[3] = Operand(ctx->outputs.temps[VARYING_SLOT_VIEWPORT * 4u]);
9615 exp->enabled_mask |= 0x8;
9616 } else {
9617 Builder bld(ctx->program, ctx->block);
9618
9619 Temp out = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u),
9620 Operand(ctx->outputs.temps[VARYING_SLOT_VIEWPORT * 4u]));
9621 if (exp->operands[2].isTemp())
9622 out = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(out), exp->operands[2]);
9623
9624 exp->operands[2] = Operand(out);
9625 exp->enabled_mask |= 0x4;
9626 }
9627 }
9628 exp->valid_mask = ctx->options->chip_class >= GFX10 && *next_pos == 0;
9629 exp->done = false;
9630 exp->compressed = false;
9631 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
9632 ctx->block->instructions.emplace_back(std::move(exp));
9633 }
9634
9635 static void create_export_phis(isel_context *ctx)
9636 {
9637 /* Used when exports are needed, but the output temps are defined in a preceding block.
9638 * This function will set up phis in order to access the outputs in the next block.
9639 */
9640
9641 assert(ctx->block->instructions.back()->opcode == aco_opcode::p_logical_start);
9642 aco_ptr<Instruction> logical_start = aco_ptr<Instruction>(ctx->block->instructions.back().release());
9643 ctx->block->instructions.pop_back();
9644
9645 Builder bld(ctx->program, ctx->block);
9646
9647 for (unsigned slot = 0; slot <= VARYING_SLOT_VAR31; ++slot) {
9648 uint64_t mask = ctx->outputs.mask[slot];
9649 for (unsigned i = 0; i < 4; ++i) {
9650 if (!(mask & (1 << i)))
9651 continue;
9652
9653 Temp old = ctx->outputs.temps[slot * 4 + i];
9654 Temp phi = bld.pseudo(aco_opcode::p_phi, bld.def(v1), old, Operand(v1));
9655 ctx->outputs.temps[slot * 4 + i] = phi;
9656 }
9657 }
9658
9659 bld.insert(std::move(logical_start));
9660 }
9661
9662 static void create_vs_exports(isel_context *ctx)
9663 {
9664 assert(ctx->stage == vertex_vs ||
9665 ctx->stage == tess_eval_vs ||
9666 ctx->stage == gs_copy_vs ||
9667 ctx->stage == ngg_vertex_gs ||
9668 ctx->stage == ngg_tess_eval_gs);
9669
9670 radv_vs_output_info *outinfo = (ctx->stage & sw_tes)
9671 ? &ctx->program->info->tes.outinfo
9672 : &ctx->program->info->vs.outinfo;
9673
9674 if (outinfo->export_prim_id && !(ctx->stage & hw_ngg_gs)) {
9675 ctx->outputs.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
9676 ctx->outputs.temps[VARYING_SLOT_PRIMITIVE_ID * 4u] = get_arg(ctx, ctx->args->vs_prim_id);
9677 }
9678
9679 if (ctx->options->key.has_multiview_view_index) {
9680 ctx->outputs.mask[VARYING_SLOT_LAYER] |= 0x1;
9681 ctx->outputs.temps[VARYING_SLOT_LAYER * 4u] = as_vgpr(ctx, get_arg(ctx, ctx->args->ac.view_index));
9682 }
9683
9684 /* the order these position exports are created is important */
9685 int next_pos = 0;
9686 bool exported_pos = export_vs_varying(ctx, VARYING_SLOT_POS, true, &next_pos);
9687 if (outinfo->writes_pointsize || outinfo->writes_layer || outinfo->writes_viewport_index) {
9688 export_vs_psiz_layer_viewport(ctx, &next_pos);
9689 exported_pos = true;
9690 }
9691 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
9692 exported_pos |= export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, true, &next_pos);
9693 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
9694 exported_pos |= export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, true, &next_pos);
9695
9696 if (ctx->export_clip_dists) {
9697 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
9698 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, false, &next_pos);
9699 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
9700 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, false, &next_pos);
9701 }
9702
9703 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
9704 if (i < VARYING_SLOT_VAR0 &&
9705 i != VARYING_SLOT_LAYER &&
9706 i != VARYING_SLOT_PRIMITIVE_ID)
9707 continue;
9708
9709 export_vs_varying(ctx, i, false, NULL);
9710 }
9711
9712 if (!exported_pos)
9713 create_null_export(ctx);
9714 }
9715
9716 static bool export_fs_mrt_z(isel_context *ctx)
9717 {
9718 Builder bld(ctx->program, ctx->block);
9719 unsigned enabled_channels = 0;
9720 bool compr = false;
9721 Operand values[4];
9722
9723 for (unsigned i = 0; i < 4; ++i) {
9724 values[i] = Operand(v1);
9725 }
9726
9727 /* Both stencil and sample mask only need 16-bits. */
9728 if (!ctx->program->info->ps.writes_z &&
9729 (ctx->program->info->ps.writes_stencil ||
9730 ctx->program->info->ps.writes_sample_mask)) {
9731 compr = true; /* COMPR flag */
9732
9733 if (ctx->program->info->ps.writes_stencil) {
9734 /* Stencil should be in X[23:16]. */
9735 values[0] = Operand(ctx->outputs.temps[FRAG_RESULT_STENCIL * 4u]);
9736 values[0] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u), values[0]);
9737 enabled_channels |= 0x3;
9738 }
9739
9740 if (ctx->program->info->ps.writes_sample_mask) {
9741 /* SampleMask should be in Y[15:0]. */
9742 values[1] = Operand(ctx->outputs.temps[FRAG_RESULT_SAMPLE_MASK * 4u]);
9743 enabled_channels |= 0xc;
9744 }
9745 } else {
9746 if (ctx->program->info->ps.writes_z) {
9747 values[0] = Operand(ctx->outputs.temps[FRAG_RESULT_DEPTH * 4u]);
9748 enabled_channels |= 0x1;
9749 }
9750
9751 if (ctx->program->info->ps.writes_stencil) {
9752 values[1] = Operand(ctx->outputs.temps[FRAG_RESULT_STENCIL * 4u]);
9753 enabled_channels |= 0x2;
9754 }
9755
9756 if (ctx->program->info->ps.writes_sample_mask) {
9757 values[2] = Operand(ctx->outputs.temps[FRAG_RESULT_SAMPLE_MASK * 4u]);
9758 enabled_channels |= 0x4;
9759 }
9760 }
9761
9762 /* GFX6 (except OLAND and HAINAN) has a bug that it only looks at the X
9763 * writemask component.
9764 */
9765 if (ctx->options->chip_class == GFX6 &&
9766 ctx->options->family != CHIP_OLAND &&
9767 ctx->options->family != CHIP_HAINAN) {
9768 enabled_channels |= 0x1;
9769 }
9770
9771 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
9772 enabled_channels, V_008DFC_SQ_EXP_MRTZ, compr);
9773
9774 return true;
9775 }
9776
9777 static bool export_fs_mrt_color(isel_context *ctx, int slot)
9778 {
9779 Builder bld(ctx->program, ctx->block);
9780 unsigned write_mask = ctx->outputs.mask[slot];
9781 Operand values[4];
9782
9783 for (unsigned i = 0; i < 4; ++i) {
9784 if (write_mask & (1 << i)) {
9785 values[i] = Operand(ctx->outputs.temps[slot * 4u + i]);
9786 } else {
9787 values[i] = Operand(v1);
9788 }
9789 }
9790
9791 unsigned target, col_format;
9792 unsigned enabled_channels = 0;
9793 aco_opcode compr_op = (aco_opcode)0;
9794
9795 slot -= FRAG_RESULT_DATA0;
9796 target = V_008DFC_SQ_EXP_MRT + slot;
9797 col_format = (ctx->options->key.fs.col_format >> (4 * slot)) & 0xf;
9798
9799 bool is_int8 = (ctx->options->key.fs.is_int8 >> slot) & 1;
9800 bool is_int10 = (ctx->options->key.fs.is_int10 >> slot) & 1;
9801
9802 switch (col_format)
9803 {
9804 case V_028714_SPI_SHADER_ZERO:
9805 enabled_channels = 0; /* writemask */
9806 target = V_008DFC_SQ_EXP_NULL;
9807 break;
9808
9809 case V_028714_SPI_SHADER_32_R:
9810 enabled_channels = 1;
9811 break;
9812
9813 case V_028714_SPI_SHADER_32_GR:
9814 enabled_channels = 0x3;
9815 break;
9816
9817 case V_028714_SPI_SHADER_32_AR:
9818 if (ctx->options->chip_class >= GFX10) {
9819 /* Special case: on GFX10, the outputs are different for 32_AR */
9820 enabled_channels = 0x3;
9821 values[1] = values[3];
9822 values[3] = Operand(v1);
9823 } else {
9824 enabled_channels = 0x9;
9825 }
9826 break;
9827
9828 case V_028714_SPI_SHADER_FP16_ABGR:
9829 enabled_channels = 0x5;
9830 compr_op = aco_opcode::v_cvt_pkrtz_f16_f32;
9831 break;
9832
9833 case V_028714_SPI_SHADER_UNORM16_ABGR:
9834 enabled_channels = 0x5;
9835 compr_op = aco_opcode::v_cvt_pknorm_u16_f32;
9836 break;
9837
9838 case V_028714_SPI_SHADER_SNORM16_ABGR:
9839 enabled_channels = 0x5;
9840 compr_op = aco_opcode::v_cvt_pknorm_i16_f32;
9841 break;
9842
9843 case V_028714_SPI_SHADER_UINT16_ABGR: {
9844 enabled_channels = 0x5;
9845 compr_op = aco_opcode::v_cvt_pk_u16_u32;
9846 if (is_int8 || is_int10) {
9847 /* clamp */
9848 uint32_t max_rgb = is_int8 ? 255 : is_int10 ? 1023 : 0;
9849 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
9850
9851 for (unsigned i = 0; i < 4; i++) {
9852 if ((write_mask >> i) & 1) {
9853 values[i] = bld.vop2(aco_opcode::v_min_u32, bld.def(v1),
9854 i == 3 && is_int10 ? Operand(3u) : Operand(max_rgb_val),
9855 values[i]);
9856 }
9857 }
9858 }
9859 break;
9860 }
9861
9862 case V_028714_SPI_SHADER_SINT16_ABGR:
9863 enabled_channels = 0x5;
9864 compr_op = aco_opcode::v_cvt_pk_i16_i32;
9865 if (is_int8 || is_int10) {
9866 /* clamp */
9867 uint32_t max_rgb = is_int8 ? 127 : is_int10 ? 511 : 0;
9868 uint32_t min_rgb = is_int8 ? -128 :is_int10 ? -512 : 0;
9869 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
9870 Temp min_rgb_val = bld.copy(bld.def(s1), Operand(min_rgb));
9871
9872 for (unsigned i = 0; i < 4; i++) {
9873 if ((write_mask >> i) & 1) {
9874 values[i] = bld.vop2(aco_opcode::v_min_i32, bld.def(v1),
9875 i == 3 && is_int10 ? Operand(1u) : Operand(max_rgb_val),
9876 values[i]);
9877 values[i] = bld.vop2(aco_opcode::v_max_i32, bld.def(v1),
9878 i == 3 && is_int10 ? Operand(-2u) : Operand(min_rgb_val),
9879 values[i]);
9880 }
9881 }
9882 }
9883 break;
9884
9885 case V_028714_SPI_SHADER_32_ABGR:
9886 enabled_channels = 0xF;
9887 break;
9888
9889 default:
9890 break;
9891 }
9892
9893 if (target == V_008DFC_SQ_EXP_NULL)
9894 return false;
9895
9896 if ((bool) compr_op) {
9897 for (int i = 0; i < 2; i++) {
9898 /* check if at least one of the values to be compressed is enabled */
9899 unsigned enabled = (write_mask >> (i*2) | write_mask >> (i*2+1)) & 0x1;
9900 if (enabled) {
9901 enabled_channels |= enabled << (i*2);
9902 values[i] = bld.vop3(compr_op, bld.def(v1),
9903 values[i*2].isUndefined() ? Operand(0u) : values[i*2],
9904 values[i*2+1].isUndefined() ? Operand(0u): values[i*2+1]);
9905 } else {
9906 values[i] = Operand(v1);
9907 }
9908 }
9909 values[2] = Operand(v1);
9910 values[3] = Operand(v1);
9911 } else {
9912 for (int i = 0; i < 4; i++)
9913 values[i] = enabled_channels & (1 << i) ? values[i] : Operand(v1);
9914 }
9915
9916 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
9917 enabled_channels, target, (bool) compr_op);
9918 return true;
9919 }
9920
9921 static void create_fs_exports(isel_context *ctx)
9922 {
9923 bool exported = false;
9924
9925 /* Export depth, stencil and sample mask. */
9926 if (ctx->outputs.mask[FRAG_RESULT_DEPTH] ||
9927 ctx->outputs.mask[FRAG_RESULT_STENCIL] ||
9928 ctx->outputs.mask[FRAG_RESULT_SAMPLE_MASK])
9929 exported |= export_fs_mrt_z(ctx);
9930
9931 /* Export all color render targets. */
9932 for (unsigned i = FRAG_RESULT_DATA0; i < FRAG_RESULT_DATA7 + 1; ++i)
9933 if (ctx->outputs.mask[i])
9934 exported |= export_fs_mrt_color(ctx, i);
9935
9936 if (!exported)
9937 create_null_export(ctx);
9938 }
9939
9940 static void write_tcs_tess_factors(isel_context *ctx)
9941 {
9942 unsigned outer_comps;
9943 unsigned inner_comps;
9944
9945 switch (ctx->args->options->key.tcs.primitive_mode) {
9946 case GL_ISOLINES:
9947 outer_comps = 2;
9948 inner_comps = 0;
9949 break;
9950 case GL_TRIANGLES:
9951 outer_comps = 3;
9952 inner_comps = 1;
9953 break;
9954 case GL_QUADS:
9955 outer_comps = 4;
9956 inner_comps = 2;
9957 break;
9958 default:
9959 return;
9960 }
9961
9962 Builder bld(ctx->program, ctx->block);
9963
9964 bld.barrier(aco_opcode::p_memory_barrier_shared);
9965 if (unlikely(ctx->program->chip_class != GFX6 && ctx->program->workgroup_size > ctx->program->wave_size))
9966 bld.sopp(aco_opcode::s_barrier);
9967
9968 Temp tcs_rel_ids = get_arg(ctx, ctx->args->ac.tcs_rel_ids);
9969 Temp invocation_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), tcs_rel_ids, Operand(8u), Operand(5u));
9970
9971 Temp invocation_id_is_zero = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), invocation_id);
9972 if_context ic_invocation_id_is_zero;
9973 begin_divergent_if_then(ctx, &ic_invocation_id_is_zero, invocation_id_is_zero);
9974 bld.reset(ctx->block);
9975
9976 Temp hs_ring_tess_factor = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_FACTOR * 16u));
9977
9978 std::pair<Temp, unsigned> lds_base = get_tcs_output_lds_offset(ctx);
9979 unsigned stride = inner_comps + outer_comps;
9980 unsigned lds_align = calculate_lds_alignment(ctx, lds_base.second);
9981 Temp tf_inner_vec;
9982 Temp tf_outer_vec;
9983 Temp out[6];
9984 assert(stride <= (sizeof(out) / sizeof(Temp)));
9985
9986 if (ctx->args->options->key.tcs.primitive_mode == GL_ISOLINES) {
9987 // LINES reversal
9988 tf_outer_vec = load_lds(ctx, 4, bld.tmp(v2), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_out_loc, lds_align);
9989 out[1] = emit_extract_vector(ctx, tf_outer_vec, 0, v1);
9990 out[0] = emit_extract_vector(ctx, tf_outer_vec, 1, v1);
9991 } else {
9992 tf_outer_vec = load_lds(ctx, 4, bld.tmp(RegClass(RegType::vgpr, outer_comps)), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_out_loc, lds_align);
9993 tf_inner_vec = load_lds(ctx, 4, bld.tmp(RegClass(RegType::vgpr, inner_comps)), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_in_loc, lds_align);
9994
9995 for (unsigned i = 0; i < outer_comps; ++i)
9996 out[i] = emit_extract_vector(ctx, tf_outer_vec, i, v1);
9997 for (unsigned i = 0; i < inner_comps; ++i)
9998 out[outer_comps + i] = emit_extract_vector(ctx, tf_inner_vec, i, v1);
9999 }
10000
10001 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
10002 Temp tf_base = get_arg(ctx, ctx->args->tess_factor_offset);
10003 Temp byte_offset = bld.v_mul_imm(bld.def(v1), rel_patch_id, stride * 4u);
10004 unsigned tf_const_offset = 0;
10005
10006 if (ctx->program->chip_class <= GFX8) {
10007 Temp rel_patch_id_is_zero = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), rel_patch_id);
10008 if_context ic_rel_patch_id_is_zero;
10009 begin_divergent_if_then(ctx, &ic_rel_patch_id_is_zero, rel_patch_id_is_zero);
10010 bld.reset(ctx->block);
10011
10012 /* Store the dynamic HS control word. */
10013 Temp control_word = bld.copy(bld.def(v1), Operand(0x80000000u));
10014 bld.mubuf(aco_opcode::buffer_store_dword,
10015 /* SRSRC */ hs_ring_tess_factor, /* VADDR */ Operand(v1), /* SOFFSET */ tf_base, /* VDATA */ control_word,
10016 /* immediate OFFSET */ 0, /* OFFEN */ false, /* idxen*/ false, /* addr64 */ false,
10017 /* disable_wqm */ false, /* glc */ true);
10018 tf_const_offset += 4;
10019
10020 begin_divergent_if_else(ctx, &ic_rel_patch_id_is_zero);
10021 end_divergent_if(ctx, &ic_rel_patch_id_is_zero);
10022 bld.reset(ctx->block);
10023 }
10024
10025 assert(stride == 2 || stride == 4 || stride == 6);
10026 Temp tf_vec = create_vec_from_array(ctx, out, stride, RegType::vgpr, 4u);
10027 store_vmem_mubuf(ctx, tf_vec, hs_ring_tess_factor, byte_offset, tf_base, tf_const_offset, 4, (1 << stride) - 1, true, false);
10028
10029 /* Store to offchip for TES to read - only if TES reads them */
10030 if (ctx->args->options->key.tcs.tes_reads_tess_factors) {
10031 Temp hs_ring_tess_offchip = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
10032 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
10033
10034 std::pair<Temp, unsigned> vmem_offs_outer = get_tcs_per_patch_output_vmem_offset(ctx, nullptr, ctx->tcs_tess_lvl_out_loc);
10035 store_vmem_mubuf(ctx, tf_outer_vec, hs_ring_tess_offchip, vmem_offs_outer.first, oc_lds, vmem_offs_outer.second, 4, (1 << outer_comps) - 1, true, false);
10036
10037 if (likely(inner_comps)) {
10038 std::pair<Temp, unsigned> vmem_offs_inner = get_tcs_per_patch_output_vmem_offset(ctx, nullptr, ctx->tcs_tess_lvl_in_loc);
10039 store_vmem_mubuf(ctx, tf_inner_vec, hs_ring_tess_offchip, vmem_offs_inner.first, oc_lds, vmem_offs_inner.second, 4, (1 << inner_comps) - 1, true, false);
10040 }
10041 }
10042
10043 begin_divergent_if_else(ctx, &ic_invocation_id_is_zero);
10044 end_divergent_if(ctx, &ic_invocation_id_is_zero);
10045 }
10046
10047 static void emit_stream_output(isel_context *ctx,
10048 Temp const *so_buffers,
10049 Temp const *so_write_offset,
10050 const struct radv_stream_output *output)
10051 {
10052 unsigned num_comps = util_bitcount(output->component_mask);
10053 unsigned writemask = (1 << num_comps) - 1;
10054 unsigned loc = output->location;
10055 unsigned buf = output->buffer;
10056
10057 assert(num_comps && num_comps <= 4);
10058 if (!num_comps || num_comps > 4)
10059 return;
10060
10061 unsigned start = ffs(output->component_mask) - 1;
10062
10063 Temp out[4];
10064 bool all_undef = true;
10065 assert(ctx->stage == vertex_vs || ctx->stage == gs_copy_vs);
10066 for (unsigned i = 0; i < num_comps; i++) {
10067 out[i] = ctx->outputs.temps[loc * 4 + start + i];
10068 all_undef = all_undef && !out[i].id();
10069 }
10070 if (all_undef)
10071 return;
10072
10073 while (writemask) {
10074 int start, count;
10075 u_bit_scan_consecutive_range(&writemask, &start, &count);
10076 if (count == 3 && ctx->options->chip_class == GFX6) {
10077 /* GFX6 doesn't support storing vec3, split it. */
10078 writemask |= 1u << (start + 2);
10079 count = 2;
10080 }
10081
10082 unsigned offset = output->offset + start * 4;
10083
10084 Temp write_data = {ctx->program->allocateId(), RegClass(RegType::vgpr, count)};
10085 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
10086 for (int i = 0; i < count; ++i)
10087 vec->operands[i] = (ctx->outputs.mask[loc] & 1 << (start + i)) ? Operand(out[start + i]) : Operand(0u);
10088 vec->definitions[0] = Definition(write_data);
10089 ctx->block->instructions.emplace_back(std::move(vec));
10090
10091 aco_opcode opcode;
10092 switch (count) {
10093 case 1:
10094 opcode = aco_opcode::buffer_store_dword;
10095 break;
10096 case 2:
10097 opcode = aco_opcode::buffer_store_dwordx2;
10098 break;
10099 case 3:
10100 opcode = aco_opcode::buffer_store_dwordx3;
10101 break;
10102 case 4:
10103 opcode = aco_opcode::buffer_store_dwordx4;
10104 break;
10105 default:
10106 unreachable("Unsupported dword count.");
10107 }
10108
10109 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
10110 store->operands[0] = Operand(so_buffers[buf]);
10111 store->operands[1] = Operand(so_write_offset[buf]);
10112 store->operands[2] = Operand((uint32_t) 0);
10113 store->operands[3] = Operand(write_data);
10114 if (offset > 4095) {
10115 /* Don't think this can happen in RADV, but maybe GL? It's easy to do this anyway. */
10116 Builder bld(ctx->program, ctx->block);
10117 store->operands[0] = bld.vadd32(bld.def(v1), Operand(offset), Operand(so_write_offset[buf]));
10118 } else {
10119 store->offset = offset;
10120 }
10121 store->offen = true;
10122 store->glc = true;
10123 store->dlc = false;
10124 store->slc = true;
10125 store->can_reorder = true;
10126 ctx->block->instructions.emplace_back(std::move(store));
10127 }
10128 }
10129
10130 static void emit_streamout(isel_context *ctx, unsigned stream)
10131 {
10132 Builder bld(ctx->program, ctx->block);
10133
10134 Temp so_buffers[4];
10135 Temp buf_ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->streamout_buffers));
10136 for (unsigned i = 0; i < 4; i++) {
10137 unsigned stride = ctx->program->info->so.strides[i];
10138 if (!stride)
10139 continue;
10140
10141 Operand off = bld.copy(bld.def(s1), Operand(i * 16u));
10142 so_buffers[i] = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), buf_ptr, off);
10143 }
10144
10145 Temp so_vtx_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10146 get_arg(ctx, ctx->args->streamout_config), Operand(0x70010u));
10147
10148 Temp tid = emit_mbcnt(ctx, bld.def(v1));
10149
10150 Temp can_emit = bld.vopc(aco_opcode::v_cmp_gt_i32, bld.def(bld.lm), so_vtx_count, tid);
10151
10152 if_context ic;
10153 begin_divergent_if_then(ctx, &ic, can_emit);
10154
10155 bld.reset(ctx->block);
10156
10157 Temp so_write_index = bld.vadd32(bld.def(v1), get_arg(ctx, ctx->args->streamout_write_idx), tid);
10158
10159 Temp so_write_offset[4];
10160
10161 for (unsigned i = 0; i < 4; i++) {
10162 unsigned stride = ctx->program->info->so.strides[i];
10163 if (!stride)
10164 continue;
10165
10166 if (stride == 1) {
10167 Temp offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
10168 get_arg(ctx, ctx->args->streamout_write_idx),
10169 get_arg(ctx, ctx->args->streamout_offset[i]));
10170 Temp new_offset = bld.vadd32(bld.def(v1), offset, tid);
10171
10172 so_write_offset[i] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), new_offset);
10173 } else {
10174 Temp offset = bld.v_mul_imm(bld.def(v1), so_write_index, stride * 4u);
10175 Temp offset2 = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(4u),
10176 get_arg(ctx, ctx->args->streamout_offset[i]));
10177 so_write_offset[i] = bld.vadd32(bld.def(v1), offset, offset2);
10178 }
10179 }
10180
10181 for (unsigned i = 0; i < ctx->program->info->so.num_outputs; i++) {
10182 struct radv_stream_output *output =
10183 &ctx->program->info->so.outputs[i];
10184 if (stream != output->stream)
10185 continue;
10186
10187 emit_stream_output(ctx, so_buffers, so_write_offset, output);
10188 }
10189
10190 begin_divergent_if_else(ctx, &ic);
10191 end_divergent_if(ctx, &ic);
10192 }
10193
10194 } /* end namespace */
10195
10196 void fix_ls_vgpr_init_bug(isel_context *ctx, Pseudo_instruction *startpgm)
10197 {
10198 assert(ctx->shader->info.stage == MESA_SHADER_VERTEX);
10199 Builder bld(ctx->program, ctx->block);
10200 constexpr unsigned hs_idx = 1u;
10201 Builder::Result hs_thread_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10202 get_arg(ctx, ctx->args->merged_wave_info),
10203 Operand((8u << 16) | (hs_idx * 8u)));
10204 Temp ls_has_nonzero_hs_threads = bool_to_vector_condition(ctx, hs_thread_count.def(1).getTemp());
10205
10206 /* If there are no HS threads, SPI mistakenly loads the LS VGPRs starting at VGPR 0. */
10207
10208 Temp instance_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10209 get_arg(ctx, ctx->args->rel_auto_id),
10210 get_arg(ctx, ctx->args->ac.instance_id),
10211 ls_has_nonzero_hs_threads);
10212 Temp rel_auto_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10213 get_arg(ctx, ctx->args->ac.tcs_rel_ids),
10214 get_arg(ctx, ctx->args->rel_auto_id),
10215 ls_has_nonzero_hs_threads);
10216 Temp vertex_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10217 get_arg(ctx, ctx->args->ac.tcs_patch_id),
10218 get_arg(ctx, ctx->args->ac.vertex_id),
10219 ls_has_nonzero_hs_threads);
10220
10221 ctx->arg_temps[ctx->args->ac.instance_id.arg_index] = instance_id;
10222 ctx->arg_temps[ctx->args->rel_auto_id.arg_index] = rel_auto_id;
10223 ctx->arg_temps[ctx->args->ac.vertex_id.arg_index] = vertex_id;
10224 }
10225
10226 void split_arguments(isel_context *ctx, Pseudo_instruction *startpgm)
10227 {
10228 /* Split all arguments except for the first (ring_offsets) and the last
10229 * (exec) so that the dead channels don't stay live throughout the program.
10230 */
10231 for (int i = 1; i < startpgm->definitions.size() - 1; i++) {
10232 if (startpgm->definitions[i].regClass().size() > 1) {
10233 emit_split_vector(ctx, startpgm->definitions[i].getTemp(),
10234 startpgm->definitions[i].regClass().size());
10235 }
10236 }
10237 }
10238
10239 void handle_bc_optimize(isel_context *ctx)
10240 {
10241 /* needed when SPI_PS_IN_CONTROL.BC_OPTIMIZE_DISABLE is set to 0 */
10242 Builder bld(ctx->program, ctx->block);
10243 uint32_t spi_ps_input_ena = ctx->program->config->spi_ps_input_ena;
10244 bool uses_center = G_0286CC_PERSP_CENTER_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTER_ENA(spi_ps_input_ena);
10245 bool uses_centroid = G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena);
10246 ctx->persp_centroid = get_arg(ctx, ctx->args->ac.persp_centroid);
10247 ctx->linear_centroid = get_arg(ctx, ctx->args->ac.linear_centroid);
10248 if (uses_center && uses_centroid) {
10249 Temp sel = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)),
10250 get_arg(ctx, ctx->args->ac.prim_mask), Operand(0u));
10251
10252 if (G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena)) {
10253 Temp new_coord[2];
10254 for (unsigned i = 0; i < 2; i++) {
10255 Temp persp_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_centroid), i, v1);
10256 Temp persp_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_center), i, v1);
10257 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10258 persp_centroid, persp_center, sel);
10259 }
10260 ctx->persp_centroid = bld.tmp(v2);
10261 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->persp_centroid),
10262 Operand(new_coord[0]), Operand(new_coord[1]));
10263 emit_split_vector(ctx, ctx->persp_centroid, 2);
10264 }
10265
10266 if (G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena)) {
10267 Temp new_coord[2];
10268 for (unsigned i = 0; i < 2; i++) {
10269 Temp linear_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_centroid), i, v1);
10270 Temp linear_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_center), i, v1);
10271 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10272 linear_centroid, linear_center, sel);
10273 }
10274 ctx->linear_centroid = bld.tmp(v2);
10275 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->linear_centroid),
10276 Operand(new_coord[0]), Operand(new_coord[1]));
10277 emit_split_vector(ctx, ctx->linear_centroid, 2);
10278 }
10279 }
10280 }
10281
10282 void setup_fp_mode(isel_context *ctx, nir_shader *shader)
10283 {
10284 Program *program = ctx->program;
10285
10286 unsigned float_controls = shader->info.float_controls_execution_mode;
10287
10288 program->next_fp_mode.preserve_signed_zero_inf_nan32 =
10289 float_controls & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32;
10290 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 =
10291 float_controls & (FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16 |
10292 FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64);
10293
10294 program->next_fp_mode.must_flush_denorms32 =
10295 float_controls & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32;
10296 program->next_fp_mode.must_flush_denorms16_64 =
10297 float_controls & (FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 |
10298 FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64);
10299
10300 program->next_fp_mode.care_about_round32 =
10301 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32);
10302
10303 program->next_fp_mode.care_about_round16_64 =
10304 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64 |
10305 FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
10306
10307 /* default to preserving fp16 and fp64 denorms, since it's free */
10308 if (program->next_fp_mode.must_flush_denorms16_64)
10309 program->next_fp_mode.denorm16_64 = 0;
10310 else
10311 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
10312
10313 /* preserving fp32 denorms is expensive, so only do it if asked */
10314 if (float_controls & FLOAT_CONTROLS_DENORM_PRESERVE_FP32)
10315 program->next_fp_mode.denorm32 = fp_denorm_keep;
10316 else
10317 program->next_fp_mode.denorm32 = 0;
10318
10319 if (float_controls & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32)
10320 program->next_fp_mode.round32 = fp_round_tz;
10321 else
10322 program->next_fp_mode.round32 = fp_round_ne;
10323
10324 if (float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64))
10325 program->next_fp_mode.round16_64 = fp_round_tz;
10326 else
10327 program->next_fp_mode.round16_64 = fp_round_ne;
10328
10329 ctx->block->fp_mode = program->next_fp_mode;
10330 }
10331
10332 void cleanup_cfg(Program *program)
10333 {
10334 /* create linear_succs/logical_succs */
10335 for (Block& BB : program->blocks) {
10336 for (unsigned idx : BB.linear_preds)
10337 program->blocks[idx].linear_succs.emplace_back(BB.index);
10338 for (unsigned idx : BB.logical_preds)
10339 program->blocks[idx].logical_succs.emplace_back(BB.index);
10340 }
10341 }
10342
10343 Temp merged_wave_info_to_mask(isel_context *ctx, unsigned i)
10344 {
10345 Builder bld(ctx->program, ctx->block);
10346
10347 /* The s_bfm only cares about s0.u[5:0] so we don't need either s_bfe nor s_and here */
10348 Temp count = i == 0
10349 ? get_arg(ctx, ctx->args->merged_wave_info)
10350 : bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc),
10351 get_arg(ctx, ctx->args->merged_wave_info), Operand(i * 8u));
10352
10353 Temp mask = bld.sop2(aco_opcode::s_bfm_b64, bld.def(s2), count, Operand(0u));
10354 Temp cond;
10355
10356 if (ctx->program->wave_size == 64) {
10357 /* Special case for 64 active invocations, because 64 doesn't work with s_bfm */
10358 Temp active_64 = bld.sopc(aco_opcode::s_bitcmp1_b32, bld.def(s1, scc), count, Operand(6u /* log2(64) */));
10359 cond = bld.sop2(Builder::s_cselect, bld.def(bld.lm), Operand(-1u), mask, bld.scc(active_64));
10360 } else {
10361 /* We use s_bfm_b64 (not _b32) which works with 32, but we need to extract the lower half of the register */
10362 cond = emit_extract_vector(ctx, mask, 0, bld.lm);
10363 }
10364
10365 return cond;
10366 }
10367
10368 bool ngg_early_prim_export(isel_context *ctx)
10369 {
10370 /* TODO: Check edge flags, and if they are written, return false. (Needed for OpenGL, not for Vulkan.) */
10371 return true;
10372 }
10373
10374 void ngg_emit_sendmsg_gs_alloc_req(isel_context *ctx)
10375 {
10376 Builder bld(ctx->program, ctx->block);
10377
10378 /* It is recommended to do the GS_ALLOC_REQ as soon and as quickly as possible, so we set the maximum priority (3). */
10379 bld.sopp(aco_opcode::s_setprio, -1u, 0x3u);
10380
10381 /* Get the id of the current wave within the threadgroup (workgroup) */
10382 Builder::Result wave_id_in_tg = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10383 get_arg(ctx, ctx->args->merged_wave_info), Operand(24u | (4u << 16)));
10384
10385 /* Execute the following code only on the first wave (wave id 0),
10386 * use the SCC def to tell if the wave id is zero or not.
10387 */
10388 Temp cond = wave_id_in_tg.def(1).getTemp();
10389 if_context ic;
10390 begin_uniform_if_then(ctx, &ic, cond);
10391 begin_uniform_if_else(ctx, &ic);
10392 bld.reset(ctx->block);
10393
10394 /* Number of vertices output by VS/TES */
10395 Temp vtx_cnt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10396 get_arg(ctx, ctx->args->gs_tg_info), Operand(12u | (9u << 16u)));
10397 /* Number of primitives output by VS/TES */
10398 Temp prm_cnt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10399 get_arg(ctx, ctx->args->gs_tg_info), Operand(22u | (9u << 16u)));
10400
10401 /* Put the number of vertices and primitives into m0 for the GS_ALLOC_REQ */
10402 Temp tmp = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), prm_cnt, Operand(12u));
10403 tmp = bld.sop2(aco_opcode::s_or_b32, bld.m0(bld.def(s1)), bld.def(s1, scc), tmp, vtx_cnt);
10404
10405 /* Request the SPI to allocate space for the primitives and vertices that will be exported by the threadgroup. */
10406 bld.sopp(aco_opcode::s_sendmsg, bld.m0(tmp), -1, sendmsg_gs_alloc_req);
10407
10408 /* After the GS_ALLOC_REQ is done, reset priority to default (0). */
10409 bld.sopp(aco_opcode::s_setprio, -1u, 0x0u);
10410
10411 end_uniform_if(ctx, &ic);
10412 }
10413
10414 Temp ngg_get_prim_exp_arg(isel_context *ctx, unsigned num_vertices, const Temp vtxindex[])
10415 {
10416 Builder bld(ctx->program, ctx->block);
10417
10418 if (ctx->args->options->key.vs_common_out.as_ngg_passthrough) {
10419 return get_arg(ctx, ctx->args->gs_vtx_offset[0]);
10420 }
10421
10422 Temp gs_invocation_id = get_arg(ctx, ctx->args->ac.gs_invocation_id);
10423 Temp tmp;
10424
10425 for (unsigned i = 0; i < num_vertices; ++i) {
10426 assert(vtxindex[i].id());
10427
10428 if (i)
10429 tmp = bld.vop3(aco_opcode::v_lshl_add_u32, bld.def(v1), vtxindex[i], Operand(10u * i), tmp);
10430 else
10431 tmp = vtxindex[i];
10432
10433 /* The initial edge flag is always false in tess eval shaders. */
10434 if (ctx->stage == ngg_vertex_gs) {
10435 Temp edgeflag = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), gs_invocation_id, Operand(8 + i), Operand(1u));
10436 tmp = bld.vop3(aco_opcode::v_lshl_add_u32, bld.def(v1), edgeflag, Operand(10u * i + 9u), tmp);
10437 }
10438 }
10439
10440 /* TODO: Set isnull field in case of merged NGG VS+GS. */
10441
10442 return tmp;
10443 }
10444
10445 void ngg_emit_prim_export(isel_context *ctx, unsigned num_vertices_per_primitive, const Temp vtxindex[])
10446 {
10447 Builder bld(ctx->program, ctx->block);
10448 Temp prim_exp_arg = ngg_get_prim_exp_arg(ctx, num_vertices_per_primitive, vtxindex);
10449
10450 bld.exp(aco_opcode::exp, prim_exp_arg, Operand(v1), Operand(v1), Operand(v1),
10451 1 /* enabled mask */, V_008DFC_SQ_EXP_PRIM /* dest */,
10452 false /* compressed */, true/* done */, false /* valid mask */);
10453 }
10454
10455 void ngg_emit_nogs_gsthreads(isel_context *ctx)
10456 {
10457 /* Emit the things that NGG GS threads need to do, for shaders that don't have SW GS.
10458 * These must always come before VS exports.
10459 *
10460 * It is recommended to do these as early as possible. They can be at the beginning when
10461 * there is no SW GS and the shader doesn't write edge flags.
10462 */
10463
10464 if_context ic;
10465 Temp is_gs_thread = merged_wave_info_to_mask(ctx, 1);
10466 begin_divergent_if_then(ctx, &ic, is_gs_thread);
10467
10468 Builder bld(ctx->program, ctx->block);
10469 constexpr unsigned max_vertices_per_primitive = 3;
10470 unsigned num_vertices_per_primitive = max_vertices_per_primitive;
10471
10472 if (ctx->stage == ngg_vertex_gs) {
10473 /* TODO: optimize for points & lines */
10474 } else if (ctx->stage == ngg_tess_eval_gs) {
10475 if (ctx->shader->info.tess.point_mode)
10476 num_vertices_per_primitive = 1;
10477 else if (ctx->shader->info.tess.primitive_mode == GL_ISOLINES)
10478 num_vertices_per_primitive = 2;
10479 } else {
10480 unreachable("Unsupported NGG shader stage");
10481 }
10482
10483 Temp vtxindex[max_vertices_per_primitive];
10484 vtxindex[0] = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu),
10485 get_arg(ctx, ctx->args->gs_vtx_offset[0]));
10486 vtxindex[1] = num_vertices_per_primitive < 2 ? Temp(0, v1) :
10487 bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
10488 get_arg(ctx, ctx->args->gs_vtx_offset[0]), Operand(16u), Operand(16u));
10489 vtxindex[2] = num_vertices_per_primitive < 3 ? Temp(0, v1) :
10490 bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu),
10491 get_arg(ctx, ctx->args->gs_vtx_offset[2]));
10492
10493 /* Export primitive data to the index buffer. */
10494 ngg_emit_prim_export(ctx, num_vertices_per_primitive, vtxindex);
10495
10496 /* Export primitive ID. */
10497 if (ctx->stage == ngg_vertex_gs && ctx->args->options->key.vs_common_out.export_prim_id) {
10498 /* Copy Primitive IDs from GS threads to the LDS address corresponding to the ES thread of the provoking vertex. */
10499 Temp prim_id = get_arg(ctx, ctx->args->ac.gs_prim_id);
10500 Temp provoking_vtx_index = vtxindex[0];
10501 Temp addr = bld.v_mul_imm(bld.def(v1), provoking_vtx_index, 4u);
10502
10503 store_lds(ctx, 4, prim_id, 0x1u, addr, 0u, 4u);
10504 }
10505
10506 begin_divergent_if_else(ctx, &ic);
10507 end_divergent_if(ctx, &ic);
10508 }
10509
10510 void ngg_emit_nogs_output(isel_context *ctx)
10511 {
10512 /* Emits NGG GS output, for stages that don't have SW GS. */
10513
10514 if_context ic;
10515 Builder bld(ctx->program, ctx->block);
10516 bool late_prim_export = !ngg_early_prim_export(ctx);
10517
10518 /* NGG streamout is currently disabled by default. */
10519 assert(!ctx->args->shader_info->so.num_outputs);
10520
10521 if (late_prim_export) {
10522 /* VS exports are output to registers in a predecessor block. Emit phis to get them into this block. */
10523 create_export_phis(ctx);
10524 /* Do what we need to do in the GS threads. */
10525 ngg_emit_nogs_gsthreads(ctx);
10526
10527 /* What comes next should be executed on ES threads. */
10528 Temp is_es_thread = merged_wave_info_to_mask(ctx, 0);
10529 begin_divergent_if_then(ctx, &ic, is_es_thread);
10530 bld.reset(ctx->block);
10531 }
10532
10533 /* Export VS outputs */
10534 ctx->block->kind |= block_kind_export_end;
10535 create_vs_exports(ctx);
10536
10537 /* Export primitive ID */
10538 if (ctx->args->options->key.vs_common_out.export_prim_id) {
10539 Temp prim_id;
10540
10541 if (ctx->stage == ngg_vertex_gs) {
10542 /* Wait for GS threads to store primitive ID in LDS. */
10543 bld.barrier(aco_opcode::p_memory_barrier_shared);
10544 bld.sopp(aco_opcode::s_barrier);
10545
10546 /* Calculate LDS address where the GS threads stored the primitive ID. */
10547 Temp wave_id_in_tg = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10548 get_arg(ctx, ctx->args->merged_wave_info), Operand(24u | (4u << 16)));
10549 Temp thread_id_in_wave = emit_mbcnt(ctx, bld.def(v1));
10550 Temp wave_id_mul = bld.v_mul_imm(bld.def(v1), as_vgpr(ctx, wave_id_in_tg), ctx->program->wave_size);
10551 Temp thread_id_in_tg = bld.vadd32(bld.def(v1), Operand(wave_id_mul), Operand(thread_id_in_wave));
10552 Temp addr = bld.v_mul_imm(bld.def(v1), thread_id_in_tg, 4u);
10553
10554 /* Load primitive ID from LDS. */
10555 prim_id = load_lds(ctx, 4, bld.tmp(v1), addr, 0u, 4u);
10556 } else if (ctx->stage == ngg_tess_eval_gs) {
10557 /* TES: Just use the patch ID as the primitive ID. */
10558 prim_id = get_arg(ctx, ctx->args->ac.tes_patch_id);
10559 } else {
10560 unreachable("unsupported NGG shader stage.");
10561 }
10562
10563 ctx->outputs.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
10564 ctx->outputs.temps[VARYING_SLOT_PRIMITIVE_ID * 4u] = prim_id;
10565
10566 export_vs_varying(ctx, VARYING_SLOT_PRIMITIVE_ID, false, nullptr);
10567 }
10568
10569 if (late_prim_export) {
10570 begin_divergent_if_else(ctx, &ic);
10571 end_divergent_if(ctx, &ic);
10572 bld.reset(ctx->block);
10573 }
10574 }
10575
10576 void select_program(Program *program,
10577 unsigned shader_count,
10578 struct nir_shader *const *shaders,
10579 ac_shader_config* config,
10580 struct radv_shader_args *args)
10581 {
10582 isel_context ctx = setup_isel_context(program, shader_count, shaders, config, args, false);
10583 if_context ic_merged_wave_info;
10584 bool ngg_no_gs = ctx.stage == ngg_vertex_gs || ctx.stage == ngg_tess_eval_gs;
10585
10586 for (unsigned i = 0; i < shader_count; i++) {
10587 nir_shader *nir = shaders[i];
10588 init_context(&ctx, nir);
10589
10590 setup_fp_mode(&ctx, nir);
10591
10592 if (!i) {
10593 /* needs to be after init_context() for FS */
10594 Pseudo_instruction *startpgm = add_startpgm(&ctx);
10595 append_logical_start(ctx.block);
10596
10597 if (unlikely(args->options->has_ls_vgpr_init_bug && ctx.stage == vertex_tess_control_hs))
10598 fix_ls_vgpr_init_bug(&ctx, startpgm);
10599
10600 split_arguments(&ctx, startpgm);
10601 }
10602
10603 if (ngg_no_gs) {
10604 ngg_emit_sendmsg_gs_alloc_req(&ctx);
10605
10606 if (ngg_early_prim_export(&ctx))
10607 ngg_emit_nogs_gsthreads(&ctx);
10608 }
10609
10610 /* In a merged VS+TCS HS, the VS implementation can be completely empty. */
10611 nir_function_impl *func = nir_shader_get_entrypoint(nir);
10612 bool empty_shader = nir_cf_list_is_empty_block(&func->body) &&
10613 ((nir->info.stage == MESA_SHADER_VERTEX &&
10614 (ctx.stage == vertex_tess_control_hs || ctx.stage == vertex_geometry_gs)) ||
10615 (nir->info.stage == MESA_SHADER_TESS_EVAL &&
10616 ctx.stage == tess_eval_geometry_gs));
10617
10618 bool check_merged_wave_info = ctx.tcs_in_out_eq ? i == 0 : ((shader_count >= 2 && !empty_shader) || ngg_no_gs);
10619 bool endif_merged_wave_info = ctx.tcs_in_out_eq ? i == 1 : check_merged_wave_info;
10620 if (check_merged_wave_info) {
10621 Temp cond = merged_wave_info_to_mask(&ctx, i);
10622 begin_divergent_if_then(&ctx, &ic_merged_wave_info, cond);
10623 }
10624
10625 if (i) {
10626 Builder bld(ctx.program, ctx.block);
10627
10628 bld.barrier(aco_opcode::p_memory_barrier_shared);
10629 bld.sopp(aco_opcode::s_barrier);
10630
10631 if (ctx.stage == vertex_geometry_gs || ctx.stage == tess_eval_geometry_gs) {
10632 ctx.gs_wave_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1, m0), bld.def(s1, scc), get_arg(&ctx, args->merged_wave_info), Operand((8u << 16) | 16u));
10633 }
10634 } else if (ctx.stage == geometry_gs)
10635 ctx.gs_wave_id = get_arg(&ctx, args->gs_wave_id);
10636
10637 if (ctx.stage == fragment_fs)
10638 handle_bc_optimize(&ctx);
10639
10640 visit_cf_list(&ctx, &func->body);
10641
10642 if (ctx.program->info->so.num_outputs && (ctx.stage & hw_vs))
10643 emit_streamout(&ctx, 0);
10644
10645 if (ctx.stage & hw_vs) {
10646 create_vs_exports(&ctx);
10647 ctx.block->kind |= block_kind_export_end;
10648 } else if (ngg_no_gs && ngg_early_prim_export(&ctx)) {
10649 ngg_emit_nogs_output(&ctx);
10650 } else if (nir->info.stage == MESA_SHADER_GEOMETRY) {
10651 Builder bld(ctx.program, ctx.block);
10652 bld.barrier(aco_opcode::p_memory_barrier_gs_data);
10653 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx.gs_wave_id), -1, sendmsg_gs_done(false, false, 0));
10654 } else if (nir->info.stage == MESA_SHADER_TESS_CTRL) {
10655 write_tcs_tess_factors(&ctx);
10656 }
10657
10658 if (ctx.stage == fragment_fs) {
10659 create_fs_exports(&ctx);
10660 ctx.block->kind |= block_kind_export_end;
10661 }
10662
10663 if (endif_merged_wave_info) {
10664 begin_divergent_if_else(&ctx, &ic_merged_wave_info);
10665 end_divergent_if(&ctx, &ic_merged_wave_info);
10666 }
10667
10668 if (ngg_no_gs && !ngg_early_prim_export(&ctx))
10669 ngg_emit_nogs_output(&ctx);
10670
10671 ralloc_free(ctx.divergent_vals);
10672
10673 if (i == 0 && ctx.stage == vertex_tess_control_hs && ctx.tcs_in_out_eq) {
10674 /* Outputs of the previous stage are inputs to the next stage */
10675 ctx.inputs = ctx.outputs;
10676 ctx.outputs = shader_io_state();
10677 }
10678 }
10679
10680 program->config->float_mode = program->blocks[0].fp_mode.val;
10681
10682 append_logical_end(ctx.block);
10683 ctx.block->kind |= block_kind_uniform;
10684 Builder bld(ctx.program, ctx.block);
10685 if (ctx.program->wb_smem_l1_on_end)
10686 bld.smem(aco_opcode::s_dcache_wb, false);
10687 bld.sopp(aco_opcode::s_endpgm);
10688
10689 cleanup_cfg(program);
10690 }
10691
10692 void select_gs_copy_shader(Program *program, struct nir_shader *gs_shader,
10693 ac_shader_config* config,
10694 struct radv_shader_args *args)
10695 {
10696 isel_context ctx = setup_isel_context(program, 1, &gs_shader, config, args, true);
10697
10698 program->next_fp_mode.preserve_signed_zero_inf_nan32 = false;
10699 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 = false;
10700 program->next_fp_mode.must_flush_denorms32 = false;
10701 program->next_fp_mode.must_flush_denorms16_64 = false;
10702 program->next_fp_mode.care_about_round32 = false;
10703 program->next_fp_mode.care_about_round16_64 = false;
10704 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
10705 program->next_fp_mode.denorm32 = 0;
10706 program->next_fp_mode.round32 = fp_round_ne;
10707 program->next_fp_mode.round16_64 = fp_round_ne;
10708 ctx.block->fp_mode = program->next_fp_mode;
10709
10710 add_startpgm(&ctx);
10711 append_logical_start(ctx.block);
10712
10713 Builder bld(ctx.program, ctx.block);
10714
10715 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), program->private_segment_buffer, Operand(RING_GSVS_VS * 16u));
10716
10717 Operand stream_id(0u);
10718 if (args->shader_info->so.num_outputs)
10719 stream_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10720 get_arg(&ctx, ctx.args->streamout_config), Operand(0x20018u));
10721
10722 Temp vtx_offset = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), get_arg(&ctx, ctx.args->ac.vertex_id));
10723
10724 std::stack<Block> endif_blocks;
10725
10726 for (unsigned stream = 0; stream < 4; stream++) {
10727 if (stream_id.isConstant() && stream != stream_id.constantValue())
10728 continue;
10729
10730 unsigned num_components = args->shader_info->gs.num_stream_output_components[stream];
10731 if (stream > 0 && (!num_components || !args->shader_info->so.num_outputs))
10732 continue;
10733
10734 memset(ctx.outputs.mask, 0, sizeof(ctx.outputs.mask));
10735
10736 unsigned BB_if_idx = ctx.block->index;
10737 Block BB_endif = Block();
10738 if (!stream_id.isConstant()) {
10739 /* begin IF */
10740 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), stream_id, Operand(stream));
10741 append_logical_end(ctx.block);
10742 ctx.block->kind |= block_kind_uniform;
10743 bld.branch(aco_opcode::p_cbranch_z, cond);
10744
10745 BB_endif.kind |= ctx.block->kind & block_kind_top_level;
10746
10747 ctx.block = ctx.program->create_and_insert_block();
10748 add_edge(BB_if_idx, ctx.block);
10749 bld.reset(ctx.block);
10750 append_logical_start(ctx.block);
10751 }
10752
10753 unsigned offset = 0;
10754 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
10755 if (args->shader_info->gs.output_streams[i] != stream)
10756 continue;
10757
10758 unsigned output_usage_mask = args->shader_info->gs.output_usage_mask[i];
10759 unsigned length = util_last_bit(output_usage_mask);
10760 for (unsigned j = 0; j < length; ++j) {
10761 if (!(output_usage_mask & (1 << j)))
10762 continue;
10763
10764 unsigned const_offset = offset * args->shader_info->gs.vertices_out * 16 * 4;
10765 Temp voffset = vtx_offset;
10766 if (const_offset >= 4096u) {
10767 voffset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), voffset);
10768 const_offset %= 4096u;
10769 }
10770
10771 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dword, Format::MUBUF, 3, 1)};
10772 mubuf->definitions[0] = bld.def(v1);
10773 mubuf->operands[0] = Operand(gsvs_ring);
10774 mubuf->operands[1] = Operand(voffset);
10775 mubuf->operands[2] = Operand(0u);
10776 mubuf->offen = true;
10777 mubuf->offset = const_offset;
10778 mubuf->glc = true;
10779 mubuf->slc = true;
10780 mubuf->dlc = args->options->chip_class >= GFX10;
10781 mubuf->barrier = barrier_none;
10782 mubuf->can_reorder = true;
10783
10784 ctx.outputs.mask[i] |= 1 << j;
10785 ctx.outputs.temps[i * 4u + j] = mubuf->definitions[0].getTemp();
10786
10787 bld.insert(std::move(mubuf));
10788
10789 offset++;
10790 }
10791 }
10792
10793 if (args->shader_info->so.num_outputs) {
10794 emit_streamout(&ctx, stream);
10795 bld.reset(ctx.block);
10796 }
10797
10798 if (stream == 0) {
10799 create_vs_exports(&ctx);
10800 ctx.block->kind |= block_kind_export_end;
10801 }
10802
10803 if (!stream_id.isConstant()) {
10804 append_logical_end(ctx.block);
10805
10806 /* branch from then block to endif block */
10807 bld.branch(aco_opcode::p_branch);
10808 add_edge(ctx.block->index, &BB_endif);
10809 ctx.block->kind |= block_kind_uniform;
10810
10811 /* emit else block */
10812 ctx.block = ctx.program->create_and_insert_block();
10813 add_edge(BB_if_idx, ctx.block);
10814 bld.reset(ctx.block);
10815 append_logical_start(ctx.block);
10816
10817 endif_blocks.push(std::move(BB_endif));
10818 }
10819 }
10820
10821 while (!endif_blocks.empty()) {
10822 Block BB_endif = std::move(endif_blocks.top());
10823 endif_blocks.pop();
10824
10825 Block *BB_else = ctx.block;
10826
10827 append_logical_end(BB_else);
10828 /* branch from else block to endif block */
10829 bld.branch(aco_opcode::p_branch);
10830 add_edge(BB_else->index, &BB_endif);
10831 BB_else->kind |= block_kind_uniform;
10832
10833 /** emit endif merge block */
10834 ctx.block = program->insert_block(std::move(BB_endif));
10835 bld.reset(ctx.block);
10836 append_logical_start(ctx.block);
10837 }
10838
10839 program->config->float_mode = program->blocks[0].fp_mode.val;
10840
10841 append_logical_end(ctx.block);
10842 ctx.block->kind |= block_kind_uniform;
10843 bld.sopp(aco_opcode::s_endpgm);
10844
10845 cleanup_cfg(program);
10846 }
10847 }