aco: implement 16-bit nir_op_fcos/nir_op_fsin
[mesa.git] / src / amd / compiler / aco_instruction_selection.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 * Copyright © 2018 Google
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <algorithm>
27 #include <array>
28 #include <stack>
29 #include <map>
30
31 #include "ac_shader_util.h"
32 #include "aco_ir.h"
33 #include "aco_builder.h"
34 #include "aco_interface.h"
35 #include "aco_instruction_selection_setup.cpp"
36 #include "util/fast_idiv_by_const.h"
37
38 namespace aco {
39 namespace {
40
41 class loop_info_RAII {
42 isel_context* ctx;
43 unsigned header_idx_old;
44 Block* exit_old;
45 bool divergent_cont_old;
46 bool divergent_branch_old;
47 bool divergent_if_old;
48
49 public:
50 loop_info_RAII(isel_context* ctx, unsigned loop_header_idx, Block* loop_exit)
51 : ctx(ctx),
52 header_idx_old(ctx->cf_info.parent_loop.header_idx), exit_old(ctx->cf_info.parent_loop.exit),
53 divergent_cont_old(ctx->cf_info.parent_loop.has_divergent_continue),
54 divergent_branch_old(ctx->cf_info.parent_loop.has_divergent_branch),
55 divergent_if_old(ctx->cf_info.parent_if.is_divergent)
56 {
57 ctx->cf_info.parent_loop.header_idx = loop_header_idx;
58 ctx->cf_info.parent_loop.exit = loop_exit;
59 ctx->cf_info.parent_loop.has_divergent_continue = false;
60 ctx->cf_info.parent_loop.has_divergent_branch = false;
61 ctx->cf_info.parent_if.is_divergent = false;
62 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
63 }
64
65 ~loop_info_RAII()
66 {
67 ctx->cf_info.parent_loop.header_idx = header_idx_old;
68 ctx->cf_info.parent_loop.exit = exit_old;
69 ctx->cf_info.parent_loop.has_divergent_continue = divergent_cont_old;
70 ctx->cf_info.parent_loop.has_divergent_branch = divergent_branch_old;
71 ctx->cf_info.parent_if.is_divergent = divergent_if_old;
72 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth - 1;
73 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent)
74 ctx->cf_info.exec_potentially_empty_discard = false;
75 }
76 };
77
78 struct if_context {
79 Temp cond;
80
81 bool divergent_old;
82 bool exec_potentially_empty_discard_old;
83 bool exec_potentially_empty_break_old;
84 uint16_t exec_potentially_empty_break_depth_old;
85
86 unsigned BB_if_idx;
87 unsigned invert_idx;
88 bool uniform_has_then_branch;
89 bool then_branch_divergent;
90 Block BB_invert;
91 Block BB_endif;
92 };
93
94 static bool visit_cf_list(struct isel_context *ctx,
95 struct exec_list *list);
96
97 static void add_logical_edge(unsigned pred_idx, Block *succ)
98 {
99 succ->logical_preds.emplace_back(pred_idx);
100 }
101
102
103 static void add_linear_edge(unsigned pred_idx, Block *succ)
104 {
105 succ->linear_preds.emplace_back(pred_idx);
106 }
107
108 static void add_edge(unsigned pred_idx, Block *succ)
109 {
110 add_logical_edge(pred_idx, succ);
111 add_linear_edge(pred_idx, succ);
112 }
113
114 static void append_logical_start(Block *b)
115 {
116 Builder(NULL, b).pseudo(aco_opcode::p_logical_start);
117 }
118
119 static void append_logical_end(Block *b)
120 {
121 Builder(NULL, b).pseudo(aco_opcode::p_logical_end);
122 }
123
124 Temp get_ssa_temp(struct isel_context *ctx, nir_ssa_def *def)
125 {
126 assert(ctx->allocated[def->index].id());
127 return ctx->allocated[def->index];
128 }
129
130 Temp emit_mbcnt(isel_context *ctx, Definition dst,
131 Operand mask_lo = Operand((uint32_t) -1), Operand mask_hi = Operand((uint32_t) -1))
132 {
133 Builder bld(ctx->program, ctx->block);
134 Definition lo_def = ctx->program->wave_size == 32 ? dst : bld.def(v1);
135 Temp thread_id_lo = bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, lo_def, mask_lo, Operand(0u));
136
137 if (ctx->program->wave_size == 32) {
138 return thread_id_lo;
139 } else {
140 Temp thread_id_hi = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32, dst, mask_hi, thread_id_lo);
141 return thread_id_hi;
142 }
143 }
144
145 Temp emit_wqm(isel_context *ctx, Temp src, Temp dst=Temp(0, s1), bool program_needs_wqm = false)
146 {
147 Builder bld(ctx->program, ctx->block);
148
149 if (!dst.id())
150 dst = bld.tmp(src.regClass());
151
152 assert(src.size() == dst.size());
153
154 if (ctx->stage != fragment_fs) {
155 if (!dst.id())
156 return src;
157
158 bld.copy(Definition(dst), src);
159 return dst;
160 }
161
162 bld.pseudo(aco_opcode::p_wqm, Definition(dst), src);
163 ctx->program->needs_wqm |= program_needs_wqm;
164 return dst;
165 }
166
167 static Temp emit_bpermute(isel_context *ctx, Builder &bld, Temp index, Temp data)
168 {
169 if (index.regClass() == s1)
170 return bld.readlane(bld.def(s1), data, index);
171
172 Temp index_x4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), index);
173
174 /* Currently not implemented on GFX6-7 */
175 assert(ctx->options->chip_class >= GFX8);
176
177 if (ctx->options->chip_class <= GFX9 || ctx->program->wave_size == 32) {
178 return bld.ds(aco_opcode::ds_bpermute_b32, bld.def(v1), index_x4, data);
179 }
180
181 /* GFX10, wave64 mode:
182 * The bpermute instruction is limited to half-wave operation, which means that it can't
183 * properly support subgroup shuffle like older generations (or wave32 mode), so we
184 * emulate it here.
185 */
186 if (!ctx->has_gfx10_wave64_bpermute) {
187 ctx->has_gfx10_wave64_bpermute = true;
188 ctx->program->config->num_shared_vgprs = 8; /* Shared VGPRs are allocated in groups of 8 */
189 ctx->program->vgpr_limit -= 4; /* We allocate 8 shared VGPRs, so we'll have 4 fewer normal VGPRs */
190 }
191
192 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
193 Temp lane_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), lane_id);
194 Temp index_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), index);
195 Temp cmp = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm, vcc), lane_is_hi, index_is_hi);
196
197 return bld.reduction(aco_opcode::p_wave64_bpermute, bld.def(v1), bld.def(s2), bld.def(s1, scc),
198 bld.vcc(cmp), Operand(v2.as_linear()), index_x4, data, gfx10_wave64_bpermute);
199 }
200
201 Temp as_vgpr(isel_context *ctx, Temp val)
202 {
203 if (val.type() == RegType::sgpr) {
204 Builder bld(ctx->program, ctx->block);
205 return bld.copy(bld.def(RegType::vgpr, val.size()), val);
206 }
207 assert(val.type() == RegType::vgpr);
208 return val;
209 }
210
211 //assumes a != 0xffffffff
212 void emit_v_div_u32(isel_context *ctx, Temp dst, Temp a, uint32_t b)
213 {
214 assert(b != 0);
215 Builder bld(ctx->program, ctx->block);
216
217 if (util_is_power_of_two_or_zero(b)) {
218 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)util_logbase2(b)), a);
219 return;
220 }
221
222 util_fast_udiv_info info = util_compute_fast_udiv_info(b, 32, 32);
223
224 assert(info.multiplier <= 0xffffffff);
225
226 bool pre_shift = info.pre_shift != 0;
227 bool increment = info.increment != 0;
228 bool multiply = true;
229 bool post_shift = info.post_shift != 0;
230
231 if (!pre_shift && !increment && !multiply && !post_shift) {
232 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), a);
233 return;
234 }
235
236 Temp pre_shift_dst = a;
237 if (pre_shift) {
238 pre_shift_dst = (increment || multiply || post_shift) ? bld.tmp(v1) : dst;
239 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(pre_shift_dst), Operand((uint32_t)info.pre_shift), a);
240 }
241
242 Temp increment_dst = pre_shift_dst;
243 if (increment) {
244 increment_dst = (post_shift || multiply) ? bld.tmp(v1) : dst;
245 bld.vadd32(Definition(increment_dst), Operand((uint32_t) info.increment), pre_shift_dst);
246 }
247
248 Temp multiply_dst = increment_dst;
249 if (multiply) {
250 multiply_dst = post_shift ? bld.tmp(v1) : dst;
251 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(multiply_dst), increment_dst,
252 bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand((uint32_t)info.multiplier)));
253 }
254
255 if (post_shift) {
256 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)info.post_shift), multiply_dst);
257 }
258 }
259
260 void emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, Temp dst)
261 {
262 Builder bld(ctx->program, ctx->block);
263 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(idx));
264 }
265
266
267 Temp emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, RegClass dst_rc)
268 {
269 /* no need to extract the whole vector */
270 if (src.regClass() == dst_rc) {
271 assert(idx == 0);
272 return src;
273 }
274
275 assert(src.bytes() > (idx * dst_rc.bytes()));
276 Builder bld(ctx->program, ctx->block);
277 auto it = ctx->allocated_vec.find(src.id());
278 if (it != ctx->allocated_vec.end() && dst_rc.bytes() == it->second[idx].regClass().bytes()) {
279 if (it->second[idx].regClass() == dst_rc) {
280 return it->second[idx];
281 } else {
282 assert(!dst_rc.is_subdword());
283 assert(dst_rc.type() == RegType::vgpr && it->second[idx].type() == RegType::sgpr);
284 return bld.copy(bld.def(dst_rc), it->second[idx]);
285 }
286 }
287
288 if (dst_rc.is_subdword())
289 src = as_vgpr(ctx, src);
290
291 if (src.bytes() == dst_rc.bytes()) {
292 assert(idx == 0);
293 return bld.copy(bld.def(dst_rc), src);
294 } else {
295 Temp dst = bld.tmp(dst_rc);
296 emit_extract_vector(ctx, src, idx, dst);
297 return dst;
298 }
299 }
300
301 void emit_split_vector(isel_context* ctx, Temp vec_src, unsigned num_components)
302 {
303 if (num_components == 1)
304 return;
305 if (ctx->allocated_vec.find(vec_src.id()) != ctx->allocated_vec.end())
306 return;
307 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_components)};
308 split->operands[0] = Operand(vec_src);
309 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
310 RegClass rc;
311 if (num_components > vec_src.size()) {
312 if (vec_src.type() == RegType::sgpr)
313 return;
314
315 /* sub-dword split */
316 assert(vec_src.type() == RegType::vgpr);
317 rc = RegClass(RegType::vgpr, vec_src.bytes() / num_components).as_subdword();
318 } else {
319 rc = RegClass(vec_src.type(), vec_src.size() / num_components);
320 }
321 for (unsigned i = 0; i < num_components; i++) {
322 elems[i] = {ctx->program->allocateId(), rc};
323 split->definitions[i] = Definition(elems[i]);
324 }
325 ctx->block->instructions.emplace_back(std::move(split));
326 ctx->allocated_vec.emplace(vec_src.id(), elems);
327 }
328
329 /* This vector expansion uses a mask to determine which elements in the new vector
330 * come from the original vector. The other elements are undefined. */
331 void expand_vector(isel_context* ctx, Temp vec_src, Temp dst, unsigned num_components, unsigned mask)
332 {
333 emit_split_vector(ctx, vec_src, util_bitcount(mask));
334
335 if (vec_src == dst)
336 return;
337
338 Builder bld(ctx->program, ctx->block);
339 if (num_components == 1) {
340 if (dst.type() == RegType::sgpr)
341 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec_src);
342 else
343 bld.copy(Definition(dst), vec_src);
344 return;
345 }
346
347 unsigned component_size = dst.size() / num_components;
348 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
349
350 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
351 vec->definitions[0] = Definition(dst);
352 unsigned k = 0;
353 for (unsigned i = 0; i < num_components; i++) {
354 if (mask & (1 << i)) {
355 Temp src = emit_extract_vector(ctx, vec_src, k++, RegClass(vec_src.type(), component_size));
356 if (dst.type() == RegType::sgpr)
357 src = bld.as_uniform(src);
358 vec->operands[i] = Operand(src);
359 } else {
360 vec->operands[i] = Operand(0u);
361 }
362 elems[i] = vec->operands[i].getTemp();
363 }
364 ctx->block->instructions.emplace_back(std::move(vec));
365 ctx->allocated_vec.emplace(dst.id(), elems);
366 }
367
368 /* adjust misaligned small bit size loads */
369 void byte_align_scalar(isel_context *ctx, Temp vec, Operand offset, Temp dst)
370 {
371 Builder bld(ctx->program, ctx->block);
372 Operand shift;
373 Temp select = Temp();
374 if (offset.isConstant()) {
375 assert(offset.constantValue() && offset.constantValue() < 4);
376 shift = Operand(offset.constantValue() * 8);
377 } else {
378 /* bit_offset = 8 * (offset & 0x3) */
379 Temp tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), offset, Operand(3u));
380 select = bld.tmp(s1);
381 shift = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.scc(Definition(select)), tmp, Operand(3u));
382 }
383
384 if (vec.size() == 1) {
385 bld.sop2(aco_opcode::s_lshr_b32, Definition(dst), bld.def(s1, scc), vec, shift);
386 } else if (vec.size() == 2) {
387 Temp tmp = dst.size() == 2 ? dst : bld.tmp(s2);
388 bld.sop2(aco_opcode::s_lshr_b64, Definition(tmp), bld.def(s1, scc), vec, shift);
389 if (tmp == dst)
390 emit_split_vector(ctx, dst, 2);
391 else
392 emit_extract_vector(ctx, tmp, 0, dst);
393 } else if (vec.size() == 4) {
394 Temp lo = bld.tmp(s2), hi = bld.tmp(s2);
395 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), vec);
396 hi = bld.pseudo(aco_opcode::p_extract_vector, bld.def(s1), hi, Operand(0u));
397 if (select != Temp())
398 hi = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), hi, Operand(0u), select);
399 lo = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), lo, shift);
400 Temp mid = bld.tmp(s1);
401 lo = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), Definition(mid), lo);
402 hi = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), hi, shift);
403 mid = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), hi, mid);
404 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, mid);
405 emit_split_vector(ctx, dst, 2);
406 }
407 }
408
409 /* this function trims subdword vectors:
410 * if dst is vgpr - split the src and create a shrunk version according to the mask.
411 * if dst is sgpr - split the src, but move the original to sgpr. */
412 void trim_subdword_vector(isel_context *ctx, Temp vec_src, Temp dst, unsigned num_components, unsigned mask)
413 {
414 assert(vec_src.type() == RegType::vgpr);
415 emit_split_vector(ctx, vec_src, num_components);
416
417 Builder bld(ctx->program, ctx->block);
418 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
419 unsigned component_size = vec_src.bytes() / num_components;
420 RegClass rc = RegClass(RegType::vgpr, component_size).as_subdword();
421
422 unsigned k = 0;
423 for (unsigned i = 0; i < num_components; i++) {
424 if (mask & (1 << i))
425 elems[k++] = emit_extract_vector(ctx, vec_src, i, rc);
426 }
427
428 if (dst.type() == RegType::vgpr) {
429 assert(dst.bytes() == k * component_size);
430 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, k, 1)};
431 for (unsigned i = 0; i < k; i++)
432 vec->operands[i] = Operand(elems[i]);
433 vec->definitions[0] = Definition(dst);
434 bld.insert(std::move(vec));
435 } else {
436 // TODO: alignbyte if mask doesn't start with 1?
437 assert(mask & 1);
438 assert(dst.size() == vec_src.size());
439 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec_src);
440 }
441 ctx->allocated_vec.emplace(dst.id(), elems);
442 }
443
444 Temp bool_to_vector_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s2))
445 {
446 Builder bld(ctx->program, ctx->block);
447 if (!dst.id())
448 dst = bld.tmp(bld.lm);
449
450 assert(val.regClass() == s1);
451 assert(dst.regClass() == bld.lm);
452
453 return bld.sop2(Builder::s_cselect, Definition(dst), Operand((uint32_t) -1), Operand(0u), bld.scc(val));
454 }
455
456 Temp bool_to_scalar_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s1))
457 {
458 Builder bld(ctx->program, ctx->block);
459 if (!dst.id())
460 dst = bld.tmp(s1);
461
462 assert(val.regClass() == bld.lm);
463 assert(dst.regClass() == s1);
464
465 /* if we're currently in WQM mode, ensure that the source is also computed in WQM */
466 Temp tmp = bld.tmp(s1);
467 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.scc(Definition(tmp)), val, Operand(exec, bld.lm));
468 return emit_wqm(ctx, tmp, dst);
469 }
470
471 Temp get_alu_src(struct isel_context *ctx, nir_alu_src src, unsigned size=1)
472 {
473 if (src.src.ssa->num_components == 1 && src.swizzle[0] == 0 && size == 1)
474 return get_ssa_temp(ctx, src.src.ssa);
475
476 if (src.src.ssa->num_components == size) {
477 bool identity_swizzle = true;
478 for (unsigned i = 0; identity_swizzle && i < size; i++) {
479 if (src.swizzle[i] != i)
480 identity_swizzle = false;
481 }
482 if (identity_swizzle)
483 return get_ssa_temp(ctx, src.src.ssa);
484 }
485
486 Temp vec = get_ssa_temp(ctx, src.src.ssa);
487 unsigned elem_size = vec.bytes() / src.src.ssa->num_components;
488 assert(elem_size > 0);
489 assert(vec.bytes() % elem_size == 0);
490
491 if (elem_size < 4 && vec.type() == RegType::sgpr) {
492 assert(src.src.ssa->bit_size == 8 || src.src.ssa->bit_size == 16);
493 assert(size == 1);
494 unsigned swizzle = src.swizzle[0];
495 if (vec.size() > 1) {
496 assert(src.src.ssa->bit_size == 16);
497 vec = emit_extract_vector(ctx, vec, swizzle / 2, s1);
498 swizzle = swizzle & 1;
499 }
500 if (swizzle == 0)
501 return vec;
502
503 Temp dst{ctx->program->allocateId(), s1};
504 aco_ptr<SOP2_instruction> bfe{create_instruction<SOP2_instruction>(aco_opcode::s_bfe_u32, Format::SOP2, 2, 1)};
505 bfe->operands[0] = Operand(vec);
506 bfe->operands[1] = Operand(uint32_t((src.src.ssa->bit_size << 16) | (src.src.ssa->bit_size * swizzle)));
507 bfe->definitions[0] = Definition(dst);
508 ctx->block->instructions.emplace_back(std::move(bfe));
509 return dst;
510 }
511
512 RegClass elem_rc = elem_size < 4 ? RegClass(vec.type(), elem_size).as_subdword() : RegClass(vec.type(), elem_size / 4);
513 if (size == 1) {
514 return emit_extract_vector(ctx, vec, src.swizzle[0], elem_rc);
515 } else {
516 assert(size <= 4);
517 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
518 aco_ptr<Pseudo_instruction> vec_instr{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
519 for (unsigned i = 0; i < size; ++i) {
520 elems[i] = emit_extract_vector(ctx, vec, src.swizzle[i], elem_rc);
521 vec_instr->operands[i] = Operand{elems[i]};
522 }
523 Temp dst{ctx->program->allocateId(), RegClass(vec.type(), elem_size * size / 4)};
524 vec_instr->definitions[0] = Definition(dst);
525 ctx->block->instructions.emplace_back(std::move(vec_instr));
526 ctx->allocated_vec.emplace(dst.id(), elems);
527 return dst;
528 }
529 }
530
531 Temp convert_pointer_to_64_bit(isel_context *ctx, Temp ptr)
532 {
533 if (ptr.size() == 2)
534 return ptr;
535 Builder bld(ctx->program, ctx->block);
536 if (ptr.type() == RegType::vgpr)
537 ptr = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), ptr);
538 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s2),
539 ptr, Operand((unsigned)ctx->options->address32_hi));
540 }
541
542 void emit_sop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst, bool writes_scc)
543 {
544 aco_ptr<SOP2_instruction> sop2{create_instruction<SOP2_instruction>(op, Format::SOP2, 2, writes_scc ? 2 : 1)};
545 sop2->operands[0] = Operand(get_alu_src(ctx, instr->src[0]));
546 sop2->operands[1] = Operand(get_alu_src(ctx, instr->src[1]));
547 sop2->definitions[0] = Definition(dst);
548 if (writes_scc)
549 sop2->definitions[1] = Definition(ctx->program->allocateId(), scc, s1);
550 ctx->block->instructions.emplace_back(std::move(sop2));
551 }
552
553 void emit_vop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
554 bool commutative, bool swap_srcs=false, bool flush_denorms = false)
555 {
556 Builder bld(ctx->program, ctx->block);
557 Temp src0 = get_alu_src(ctx, instr->src[swap_srcs ? 1 : 0]);
558 Temp src1 = get_alu_src(ctx, instr->src[swap_srcs ? 0 : 1]);
559 if (src1.type() == RegType::sgpr) {
560 if (commutative && src0.type() == RegType::vgpr) {
561 Temp t = src0;
562 src0 = src1;
563 src1 = t;
564 } else if (src0.type() == RegType::vgpr &&
565 op != aco_opcode::v_madmk_f32 &&
566 op != aco_opcode::v_madak_f32 &&
567 op != aco_opcode::v_madmk_f16 &&
568 op != aco_opcode::v_madak_f16) {
569 /* If the instruction is not commutative, we emit a VOP3A instruction */
570 bld.vop2_e64(op, Definition(dst), src0, src1);
571 return;
572 } else {
573 src1 = bld.copy(bld.def(RegType::vgpr, src1.size()), src1); //TODO: as_vgpr
574 }
575 }
576
577 if (flush_denorms && ctx->program->chip_class < GFX9) {
578 assert(dst.size() == 1);
579 Temp tmp = bld.vop2(op, bld.def(v1), src0, src1);
580 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
581 } else {
582 bld.vop2(op, Definition(dst), src0, src1);
583 }
584 }
585
586 void emit_vop3a_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
587 bool flush_denorms = false)
588 {
589 Temp src0 = get_alu_src(ctx, instr->src[0]);
590 Temp src1 = get_alu_src(ctx, instr->src[1]);
591 Temp src2 = get_alu_src(ctx, instr->src[2]);
592
593 /* ensure that the instruction has at most 1 sgpr operand
594 * The optimizer will inline constants for us */
595 if (src0.type() == RegType::sgpr && src1.type() == RegType::sgpr)
596 src0 = as_vgpr(ctx, src0);
597 if (src1.type() == RegType::sgpr && src2.type() == RegType::sgpr)
598 src1 = as_vgpr(ctx, src1);
599 if (src2.type() == RegType::sgpr && src0.type() == RegType::sgpr)
600 src2 = as_vgpr(ctx, src2);
601
602 Builder bld(ctx->program, ctx->block);
603 if (flush_denorms && ctx->program->chip_class < GFX9) {
604 assert(dst.size() == 1);
605 Temp tmp = bld.vop3(op, Definition(dst), src0, src1, src2);
606 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
607 } else {
608 bld.vop3(op, Definition(dst), src0, src1, src2);
609 }
610 }
611
612 void emit_vop1_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
613 {
614 Builder bld(ctx->program, ctx->block);
615 bld.vop1(op, Definition(dst), get_alu_src(ctx, instr->src[0]));
616 }
617
618 void emit_vopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
619 {
620 Temp src0 = get_alu_src(ctx, instr->src[0]);
621 Temp src1 = get_alu_src(ctx, instr->src[1]);
622 assert(src0.size() == src1.size());
623
624 aco_ptr<Instruction> vopc;
625 if (src1.type() == RegType::sgpr) {
626 if (src0.type() == RegType::vgpr) {
627 /* to swap the operands, we might also have to change the opcode */
628 switch (op) {
629 case aco_opcode::v_cmp_lt_f32:
630 op = aco_opcode::v_cmp_gt_f32;
631 break;
632 case aco_opcode::v_cmp_ge_f32:
633 op = aco_opcode::v_cmp_le_f32;
634 break;
635 case aco_opcode::v_cmp_lt_i32:
636 op = aco_opcode::v_cmp_gt_i32;
637 break;
638 case aco_opcode::v_cmp_ge_i32:
639 op = aco_opcode::v_cmp_le_i32;
640 break;
641 case aco_opcode::v_cmp_lt_u32:
642 op = aco_opcode::v_cmp_gt_u32;
643 break;
644 case aco_opcode::v_cmp_ge_u32:
645 op = aco_opcode::v_cmp_le_u32;
646 break;
647 case aco_opcode::v_cmp_lt_f64:
648 op = aco_opcode::v_cmp_gt_f64;
649 break;
650 case aco_opcode::v_cmp_ge_f64:
651 op = aco_opcode::v_cmp_le_f64;
652 break;
653 case aco_opcode::v_cmp_lt_i64:
654 op = aco_opcode::v_cmp_gt_i64;
655 break;
656 case aco_opcode::v_cmp_ge_i64:
657 op = aco_opcode::v_cmp_le_i64;
658 break;
659 case aco_opcode::v_cmp_lt_u64:
660 op = aco_opcode::v_cmp_gt_u64;
661 break;
662 case aco_opcode::v_cmp_ge_u64:
663 op = aco_opcode::v_cmp_le_u64;
664 break;
665 default: /* eq and ne are commutative */
666 break;
667 }
668 Temp t = src0;
669 src0 = src1;
670 src1 = t;
671 } else {
672 src1 = as_vgpr(ctx, src1);
673 }
674 }
675
676 Builder bld(ctx->program, ctx->block);
677 bld.vopc(op, bld.hint_vcc(Definition(dst)), src0, src1);
678 }
679
680 void emit_sopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
681 {
682 Temp src0 = get_alu_src(ctx, instr->src[0]);
683 Temp src1 = get_alu_src(ctx, instr->src[1]);
684 Builder bld(ctx->program, ctx->block);
685
686 assert(dst.regClass() == bld.lm);
687 assert(src0.type() == RegType::sgpr);
688 assert(src1.type() == RegType::sgpr);
689 assert(src0.regClass() == src1.regClass());
690
691 /* Emit the SALU comparison instruction */
692 Temp cmp = bld.sopc(op, bld.scc(bld.def(s1)), src0, src1);
693 /* Turn the result into a per-lane bool */
694 bool_to_vector_condition(ctx, cmp, dst);
695 }
696
697 void emit_comparison(isel_context *ctx, nir_alu_instr *instr, Temp dst,
698 aco_opcode v32_op, aco_opcode v64_op, aco_opcode s32_op = aco_opcode::num_opcodes, aco_opcode s64_op = aco_opcode::num_opcodes)
699 {
700 aco_opcode s_op = instr->src[0].src.ssa->bit_size == 64 ? s64_op : s32_op;
701 aco_opcode v_op = instr->src[0].src.ssa->bit_size == 64 ? v64_op : v32_op;
702 bool divergent_vals = ctx->divergent_vals[instr->dest.dest.ssa.index];
703 bool use_valu = s_op == aco_opcode::num_opcodes ||
704 divergent_vals ||
705 ctx->allocated[instr->src[0].src.ssa->index].type() == RegType::vgpr ||
706 ctx->allocated[instr->src[1].src.ssa->index].type() == RegType::vgpr;
707 aco_opcode op = use_valu ? v_op : s_op;
708 assert(op != aco_opcode::num_opcodes);
709 assert(dst.regClass() == ctx->program->lane_mask);
710
711 if (use_valu)
712 emit_vopc_instruction(ctx, instr, op, dst);
713 else
714 emit_sopc_instruction(ctx, instr, op, dst);
715 }
716
717 void emit_boolean_logic(isel_context *ctx, nir_alu_instr *instr, Builder::WaveSpecificOpcode op, Temp dst)
718 {
719 Builder bld(ctx->program, ctx->block);
720 Temp src0 = get_alu_src(ctx, instr->src[0]);
721 Temp src1 = get_alu_src(ctx, instr->src[1]);
722
723 assert(dst.regClass() == bld.lm);
724 assert(src0.regClass() == bld.lm);
725 assert(src1.regClass() == bld.lm);
726
727 bld.sop2(op, Definition(dst), bld.def(s1, scc), src0, src1);
728 }
729
730 void emit_bcsel(isel_context *ctx, nir_alu_instr *instr, Temp dst)
731 {
732 Builder bld(ctx->program, ctx->block);
733 Temp cond = get_alu_src(ctx, instr->src[0]);
734 Temp then = get_alu_src(ctx, instr->src[1]);
735 Temp els = get_alu_src(ctx, instr->src[2]);
736
737 assert(cond.regClass() == bld.lm);
738
739 if (dst.type() == RegType::vgpr) {
740 aco_ptr<Instruction> bcsel;
741 if (dst.size() == 1) {
742 then = as_vgpr(ctx, then);
743 els = as_vgpr(ctx, els);
744
745 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), els, then, cond);
746 } else if (dst.size() == 2) {
747 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
748 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), then);
749 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
750 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), els);
751
752 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, cond);
753 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, cond);
754
755 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
756 } else {
757 fprintf(stderr, "Unimplemented NIR instr bit size: ");
758 nir_print_instr(&instr->instr, stderr);
759 fprintf(stderr, "\n");
760 }
761 return;
762 }
763
764 if (instr->dest.dest.ssa.bit_size == 1) {
765 assert(dst.regClass() == bld.lm);
766 assert(then.regClass() == bld.lm);
767 assert(els.regClass() == bld.lm);
768 }
769
770 if (!ctx->divergent_vals[instr->src[0].src.ssa->index]) { /* uniform condition and values in sgpr */
771 if (dst.regClass() == s1 || dst.regClass() == s2) {
772 assert((then.regClass() == s1 || then.regClass() == s2) && els.regClass() == then.regClass());
773 assert(dst.size() == then.size());
774 aco_opcode op = dst.regClass() == s1 ? aco_opcode::s_cselect_b32 : aco_opcode::s_cselect_b64;
775 bld.sop2(op, Definition(dst), then, els, bld.scc(bool_to_scalar_condition(ctx, cond)));
776 } else {
777 fprintf(stderr, "Unimplemented uniform bcsel bit size: ");
778 nir_print_instr(&instr->instr, stderr);
779 fprintf(stderr, "\n");
780 }
781 return;
782 }
783
784 /* divergent boolean bcsel
785 * this implements bcsel on bools: dst = s0 ? s1 : s2
786 * are going to be: dst = (s0 & s1) | (~s0 & s2) */
787 assert(instr->dest.dest.ssa.bit_size == 1);
788
789 if (cond.id() != then.id())
790 then = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), cond, then);
791
792 if (cond.id() == els.id())
793 bld.sop1(Builder::s_mov, Definition(dst), then);
794 else
795 bld.sop2(Builder::s_or, Definition(dst), bld.def(s1, scc), then,
796 bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), els, cond));
797 }
798
799 void emit_scaled_op(isel_context *ctx, Builder& bld, Definition dst, Temp val,
800 aco_opcode op, uint32_t undo)
801 {
802 /* multiply by 16777216 to handle denormals */
803 Temp is_denormal = bld.vopc(aco_opcode::v_cmp_class_f32, bld.hint_vcc(bld.def(bld.lm)),
804 as_vgpr(ctx, val), bld.copy(bld.def(v1), Operand((1u << 7) | (1u << 4))));
805 Temp scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x4b800000u), val);
806 scaled = bld.vop1(op, bld.def(v1), scaled);
807 scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(undo), scaled);
808
809 Temp not_scaled = bld.vop1(op, bld.def(v1), val);
810
811 bld.vop2(aco_opcode::v_cndmask_b32, dst, not_scaled, scaled, is_denormal);
812 }
813
814 void emit_rcp(isel_context *ctx, Builder& bld, Definition dst, Temp val)
815 {
816 if (ctx->block->fp_mode.denorm32 == 0) {
817 bld.vop1(aco_opcode::v_rcp_f32, dst, val);
818 return;
819 }
820
821 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rcp_f32, 0x4b800000u);
822 }
823
824 void emit_rsq(isel_context *ctx, Builder& bld, Definition dst, Temp val)
825 {
826 if (ctx->block->fp_mode.denorm32 == 0) {
827 bld.vop1(aco_opcode::v_rsq_f32, dst, val);
828 return;
829 }
830
831 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rsq_f32, 0x45800000u);
832 }
833
834 void emit_sqrt(isel_context *ctx, Builder& bld, Definition dst, Temp val)
835 {
836 if (ctx->block->fp_mode.denorm32 == 0) {
837 bld.vop1(aco_opcode::v_sqrt_f32, dst, val);
838 return;
839 }
840
841 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_sqrt_f32, 0x39800000u);
842 }
843
844 void emit_log2(isel_context *ctx, Builder& bld, Definition dst, Temp val)
845 {
846 if (ctx->block->fp_mode.denorm32 == 0) {
847 bld.vop1(aco_opcode::v_log_f32, dst, val);
848 return;
849 }
850
851 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_log_f32, 0xc1c00000u);
852 }
853
854 Temp emit_trunc_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
855 {
856 if (ctx->options->chip_class >= GFX7)
857 return bld.vop1(aco_opcode::v_trunc_f64, Definition(dst), val);
858
859 /* GFX6 doesn't support V_TRUNC_F64, lower it. */
860 /* TODO: create more efficient code! */
861 if (val.type() == RegType::sgpr)
862 val = as_vgpr(ctx, val);
863
864 /* Split the input value. */
865 Temp val_lo = bld.tmp(v1), val_hi = bld.tmp(v1);
866 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
867
868 /* Extract the exponent and compute the unbiased value. */
869 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f64, bld.def(v1), val);
870
871 /* Extract the fractional part. */
872 Temp fract_mask = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x000fffffu));
873 fract_mask = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), fract_mask, exponent);
874
875 Temp fract_mask_lo = bld.tmp(v1), fract_mask_hi = bld.tmp(v1);
876 bld.pseudo(aco_opcode::p_split_vector, Definition(fract_mask_lo), Definition(fract_mask_hi), fract_mask);
877
878 Temp fract_lo = bld.tmp(v1), fract_hi = bld.tmp(v1);
879 Temp tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_lo);
880 fract_lo = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_lo, tmp);
881 tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_hi);
882 fract_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_hi, tmp);
883
884 /* Get the sign bit. */
885 Temp sign = bld.vop2(aco_opcode::v_ashr_i32, bld.def(v1), Operand(31u), val_hi);
886
887 /* Decide the operation to apply depending on the unbiased exponent. */
888 Temp exp_lt0 = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)), exponent, Operand(0u));
889 Temp dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_lo, bld.copy(bld.def(v1), Operand(0u)), exp_lt0);
890 Temp dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_hi, sign, exp_lt0);
891 Temp exp_gt51 = bld.vopc_e64(aco_opcode::v_cmp_gt_i32, bld.def(s2), exponent, Operand(51u));
892 dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_lo, val_lo, exp_gt51);
893 dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_hi, val_hi, exp_gt51);
894
895 return bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst_lo, dst_hi);
896 }
897
898 Temp emit_floor_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
899 {
900 if (ctx->options->chip_class >= GFX7)
901 return bld.vop1(aco_opcode::v_floor_f64, Definition(dst), val);
902
903 /* GFX6 doesn't support V_FLOOR_F64, lower it. */
904 Temp src0 = as_vgpr(ctx, val);
905
906 Temp mask = bld.copy(bld.def(s1), Operand(3u)); /* isnan */
907 Temp min_val = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(-1u), Operand(0x3fefffffu));
908
909 Temp isnan = bld.vopc_e64(aco_opcode::v_cmp_class_f64, bld.hint_vcc(bld.def(bld.lm)), src0, mask);
910 Temp fract = bld.vop1(aco_opcode::v_fract_f64, bld.def(v2), src0);
911 Temp min = bld.vop3(aco_opcode::v_min_f64, bld.def(v2), fract, min_val);
912
913 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
914 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), src0);
915 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
916 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), min);
917
918 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, isnan);
919 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, isnan);
920
921 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), dst0, dst1);
922
923 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src0, v);
924 static_cast<VOP3A_instruction*>(add)->neg[1] = true;
925
926 return add->definitions[0].getTemp();
927 }
928
929 void visit_alu_instr(isel_context *ctx, nir_alu_instr *instr)
930 {
931 if (!instr->dest.dest.is_ssa) {
932 fprintf(stderr, "nir alu dst not in ssa: ");
933 nir_print_instr(&instr->instr, stderr);
934 fprintf(stderr, "\n");
935 abort();
936 }
937 Builder bld(ctx->program, ctx->block);
938 Temp dst = get_ssa_temp(ctx, &instr->dest.dest.ssa);
939 switch(instr->op) {
940 case nir_op_vec2:
941 case nir_op_vec3:
942 case nir_op_vec4: {
943 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
944 unsigned num = instr->dest.dest.ssa.num_components;
945 for (unsigned i = 0; i < num; ++i)
946 elems[i] = get_alu_src(ctx, instr->src[i]);
947
948 if (instr->dest.dest.ssa.bit_size >= 32 || dst.type() == RegType::vgpr) {
949 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.dest.ssa.num_components, 1)};
950 for (unsigned i = 0; i < num; ++i)
951 vec->operands[i] = Operand{elems[i]};
952 vec->definitions[0] = Definition(dst);
953 ctx->block->instructions.emplace_back(std::move(vec));
954 ctx->allocated_vec.emplace(dst.id(), elems);
955 } else {
956 // TODO: that is a bit suboptimal..
957 Temp mask = bld.copy(bld.def(s1), Operand((1u << instr->dest.dest.ssa.bit_size) - 1));
958 for (unsigned i = 0; i < num - 1; ++i)
959 if (((i+1) * instr->dest.dest.ssa.bit_size) % 32)
960 elems[i] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), elems[i], mask);
961 for (unsigned i = 0; i < num; ++i) {
962 unsigned bit = i * instr->dest.dest.ssa.bit_size;
963 if (bit % 32 == 0) {
964 elems[bit / 32] = elems[i];
965 } else {
966 elems[i] = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc),
967 elems[i], Operand((i * instr->dest.dest.ssa.bit_size) % 32));
968 elems[bit / 32] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), elems[bit / 32], elems[i]);
969 }
970 }
971 if (dst.size() == 1)
972 bld.copy(Definition(dst), elems[0]);
973 else
974 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), elems[0], elems[1]);
975 }
976 break;
977 }
978 case nir_op_mov: {
979 Temp src = get_alu_src(ctx, instr->src[0]);
980 aco_ptr<Instruction> mov;
981 if (dst.type() == RegType::sgpr) {
982 if (src.type() == RegType::vgpr)
983 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
984 else if (src.regClass() == s1)
985 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
986 else if (src.regClass() == s2)
987 bld.sop1(aco_opcode::s_mov_b64, Definition(dst), src);
988 else
989 unreachable("wrong src register class for nir_op_imov");
990 } else if (dst.regClass() == v1) {
991 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), src);
992 } else if (dst.regClass() == v2) {
993 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
994 } else {
995 nir_print_instr(&instr->instr, stderr);
996 unreachable("Should have been lowered to scalar.");
997 }
998 break;
999 }
1000 case nir_op_inot: {
1001 Temp src = get_alu_src(ctx, instr->src[0]);
1002 if (instr->dest.dest.ssa.bit_size == 1) {
1003 assert(src.regClass() == bld.lm);
1004 assert(dst.regClass() == bld.lm);
1005 /* Don't use s_andn2 here, this allows the optimizer to make a better decision */
1006 Temp tmp = bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), src);
1007 bld.sop2(Builder::s_and, Definition(dst), bld.def(s1, scc), tmp, Operand(exec, bld.lm));
1008 } else if (dst.regClass() == v1) {
1009 emit_vop1_instruction(ctx, instr, aco_opcode::v_not_b32, dst);
1010 } else if (dst.type() == RegType::sgpr) {
1011 aco_opcode opcode = dst.size() == 1 ? aco_opcode::s_not_b32 : aco_opcode::s_not_b64;
1012 bld.sop1(opcode, Definition(dst), bld.def(s1, scc), src);
1013 } else {
1014 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1015 nir_print_instr(&instr->instr, stderr);
1016 fprintf(stderr, "\n");
1017 }
1018 break;
1019 }
1020 case nir_op_ineg: {
1021 Temp src = get_alu_src(ctx, instr->src[0]);
1022 if (dst.regClass() == v1) {
1023 bld.vsub32(Definition(dst), Operand(0u), Operand(src));
1024 } else if (dst.regClass() == s1) {
1025 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand((uint32_t) -1), src);
1026 } else if (dst.size() == 2) {
1027 Temp src0 = bld.tmp(dst.type(), 1);
1028 Temp src1 = bld.tmp(dst.type(), 1);
1029 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
1030
1031 if (dst.regClass() == s2) {
1032 Temp carry = bld.tmp(s1);
1033 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), Operand(0u), src0);
1034 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), src1, carry);
1035 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1036 } else {
1037 Temp lower = bld.tmp(v1);
1038 Temp borrow = bld.vsub32(Definition(lower), Operand(0u), src0, true).def(1).getTemp();
1039 Temp upper = bld.vsub32(bld.def(v1), Operand(0u), src1, false, borrow);
1040 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1041 }
1042 } else {
1043 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1044 nir_print_instr(&instr->instr, stderr);
1045 fprintf(stderr, "\n");
1046 }
1047 break;
1048 }
1049 case nir_op_iabs: {
1050 if (dst.regClass() == s1) {
1051 bld.sop1(aco_opcode::s_abs_i32, Definition(dst), bld.def(s1, scc), get_alu_src(ctx, instr->src[0]));
1052 } else if (dst.regClass() == v1) {
1053 Temp src = get_alu_src(ctx, instr->src[0]);
1054 bld.vop2(aco_opcode::v_max_i32, Definition(dst), src, bld.vsub32(bld.def(v1), Operand(0u), src));
1055 } else {
1056 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1057 nir_print_instr(&instr->instr, stderr);
1058 fprintf(stderr, "\n");
1059 }
1060 break;
1061 }
1062 case nir_op_isign: {
1063 Temp src = get_alu_src(ctx, instr->src[0]);
1064 if (dst.regClass() == s1) {
1065 Temp tmp = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
1066 Temp gtz = bld.sopc(aco_opcode::s_cmp_gt_i32, bld.def(s1, scc), src, Operand(0u));
1067 bld.sop2(aco_opcode::s_add_i32, Definition(dst), bld.def(s1, scc), gtz, tmp);
1068 } else if (dst.regClass() == s2) {
1069 Temp neg = bld.sop2(aco_opcode::s_ashr_i64, bld.def(s2), bld.def(s1, scc), src, Operand(63u));
1070 Temp neqz;
1071 if (ctx->program->chip_class >= GFX8)
1072 neqz = bld.sopc(aco_opcode::s_cmp_lg_u64, bld.def(s1, scc), src, Operand(0u));
1073 else
1074 neqz = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), src, Operand(0u)).def(1).getTemp();
1075 /* SCC gets zero-extended to 64 bit */
1076 bld.sop2(aco_opcode::s_or_b64, Definition(dst), bld.def(s1, scc), neg, bld.scc(neqz));
1077 } else if (dst.regClass() == v1) {
1078 Temp tmp = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
1079 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1080 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(1u), tmp, gtz);
1081 } else if (dst.regClass() == v2) {
1082 Temp upper = emit_extract_vector(ctx, src, 1, v1);
1083 Temp neg = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), upper);
1084 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1085 Temp lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(1u), neg, gtz);
1086 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), neg, gtz);
1087 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1088 } else {
1089 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1090 nir_print_instr(&instr->instr, stderr);
1091 fprintf(stderr, "\n");
1092 }
1093 break;
1094 }
1095 case nir_op_imax: {
1096 if (dst.regClass() == v1) {
1097 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_i32, dst, true);
1098 } else if (dst.regClass() == s1) {
1099 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_i32, dst, true);
1100 } else {
1101 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1102 nir_print_instr(&instr->instr, stderr);
1103 fprintf(stderr, "\n");
1104 }
1105 break;
1106 }
1107 case nir_op_umax: {
1108 if (dst.regClass() == v1) {
1109 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_u32, dst, true);
1110 } else if (dst.regClass() == s1) {
1111 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_u32, dst, true);
1112 } else {
1113 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1114 nir_print_instr(&instr->instr, stderr);
1115 fprintf(stderr, "\n");
1116 }
1117 break;
1118 }
1119 case nir_op_imin: {
1120 if (dst.regClass() == v1) {
1121 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_i32, dst, true);
1122 } else if (dst.regClass() == s1) {
1123 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_i32, dst, true);
1124 } else {
1125 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1126 nir_print_instr(&instr->instr, stderr);
1127 fprintf(stderr, "\n");
1128 }
1129 break;
1130 }
1131 case nir_op_umin: {
1132 if (dst.regClass() == v1) {
1133 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_u32, dst, true);
1134 } else if (dst.regClass() == s1) {
1135 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_u32, dst, true);
1136 } else {
1137 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1138 nir_print_instr(&instr->instr, stderr);
1139 fprintf(stderr, "\n");
1140 }
1141 break;
1142 }
1143 case nir_op_ior: {
1144 if (instr->dest.dest.ssa.bit_size == 1) {
1145 emit_boolean_logic(ctx, instr, Builder::s_or, dst);
1146 } else if (dst.regClass() == v1) {
1147 emit_vop2_instruction(ctx, instr, aco_opcode::v_or_b32, dst, true);
1148 } else if (dst.regClass() == s1) {
1149 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b32, dst, true);
1150 } else if (dst.regClass() == s2) {
1151 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b64, dst, true);
1152 } else {
1153 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1154 nir_print_instr(&instr->instr, stderr);
1155 fprintf(stderr, "\n");
1156 }
1157 break;
1158 }
1159 case nir_op_iand: {
1160 if (instr->dest.dest.ssa.bit_size == 1) {
1161 emit_boolean_logic(ctx, instr, Builder::s_and, dst);
1162 } else if (dst.regClass() == v1) {
1163 emit_vop2_instruction(ctx, instr, aco_opcode::v_and_b32, dst, true);
1164 } else if (dst.regClass() == s1) {
1165 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b32, dst, true);
1166 } else if (dst.regClass() == s2) {
1167 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b64, dst, true);
1168 } else {
1169 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1170 nir_print_instr(&instr->instr, stderr);
1171 fprintf(stderr, "\n");
1172 }
1173 break;
1174 }
1175 case nir_op_ixor: {
1176 if (instr->dest.dest.ssa.bit_size == 1) {
1177 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
1178 } else if (dst.regClass() == v1) {
1179 emit_vop2_instruction(ctx, instr, aco_opcode::v_xor_b32, dst, true);
1180 } else if (dst.regClass() == s1) {
1181 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b32, dst, true);
1182 } else if (dst.regClass() == s2) {
1183 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b64, dst, true);
1184 } else {
1185 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1186 nir_print_instr(&instr->instr, stderr);
1187 fprintf(stderr, "\n");
1188 }
1189 break;
1190 }
1191 case nir_op_ushr: {
1192 if (dst.regClass() == v1) {
1193 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshrrev_b32, dst, false, true);
1194 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1195 bld.vop3(aco_opcode::v_lshrrev_b64, Definition(dst),
1196 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1197 } else if (dst.regClass() == v2) {
1198 bld.vop3(aco_opcode::v_lshr_b64, Definition(dst),
1199 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1200 } else if (dst.regClass() == s2) {
1201 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b64, dst, true);
1202 } else if (dst.regClass() == s1) {
1203 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b32, dst, true);
1204 } else {
1205 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1206 nir_print_instr(&instr->instr, stderr);
1207 fprintf(stderr, "\n");
1208 }
1209 break;
1210 }
1211 case nir_op_ishl: {
1212 if (dst.regClass() == v1) {
1213 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshlrev_b32, dst, false, true);
1214 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1215 bld.vop3(aco_opcode::v_lshlrev_b64, Definition(dst),
1216 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1217 } else if (dst.regClass() == v2) {
1218 bld.vop3(aco_opcode::v_lshl_b64, Definition(dst),
1219 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1220 } else if (dst.regClass() == s1) {
1221 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b32, dst, true);
1222 } else if (dst.regClass() == s2) {
1223 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b64, dst, true);
1224 } else {
1225 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1226 nir_print_instr(&instr->instr, stderr);
1227 fprintf(stderr, "\n");
1228 }
1229 break;
1230 }
1231 case nir_op_ishr: {
1232 if (dst.regClass() == v1) {
1233 emit_vop2_instruction(ctx, instr, aco_opcode::v_ashrrev_i32, dst, false, true);
1234 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1235 bld.vop3(aco_opcode::v_ashrrev_i64, Definition(dst),
1236 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1237 } else if (dst.regClass() == v2) {
1238 bld.vop3(aco_opcode::v_ashr_i64, Definition(dst),
1239 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1240 } else if (dst.regClass() == s1) {
1241 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i32, dst, true);
1242 } else if (dst.regClass() == s2) {
1243 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i64, dst, true);
1244 } else {
1245 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1246 nir_print_instr(&instr->instr, stderr);
1247 fprintf(stderr, "\n");
1248 }
1249 break;
1250 }
1251 case nir_op_find_lsb: {
1252 Temp src = get_alu_src(ctx, instr->src[0]);
1253 if (src.regClass() == s1) {
1254 bld.sop1(aco_opcode::s_ff1_i32_b32, Definition(dst), src);
1255 } else if (src.regClass() == v1) {
1256 emit_vop1_instruction(ctx, instr, aco_opcode::v_ffbl_b32, dst);
1257 } else if (src.regClass() == s2) {
1258 bld.sop1(aco_opcode::s_ff1_i32_b64, Definition(dst), src);
1259 } else {
1260 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1261 nir_print_instr(&instr->instr, stderr);
1262 fprintf(stderr, "\n");
1263 }
1264 break;
1265 }
1266 case nir_op_ufind_msb:
1267 case nir_op_ifind_msb: {
1268 Temp src = get_alu_src(ctx, instr->src[0]);
1269 if (src.regClass() == s1 || src.regClass() == s2) {
1270 aco_opcode op = src.regClass() == s2 ?
1271 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b64 : aco_opcode::s_flbit_i32_i64) :
1272 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b32 : aco_opcode::s_flbit_i32);
1273 Temp msb_rev = bld.sop1(op, bld.def(s1), src);
1274
1275 Builder::Result sub = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc),
1276 Operand(src.size() * 32u - 1u), msb_rev);
1277 Temp msb = sub.def(0).getTemp();
1278 Temp carry = sub.def(1).getTemp();
1279
1280 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t)-1), msb, bld.scc(carry));
1281 } else if (src.regClass() == v1) {
1282 aco_opcode op = instr->op == nir_op_ufind_msb ? aco_opcode::v_ffbh_u32 : aco_opcode::v_ffbh_i32;
1283 Temp msb_rev = bld.tmp(v1);
1284 emit_vop1_instruction(ctx, instr, op, msb_rev);
1285 Temp msb = bld.tmp(v1);
1286 Temp carry = bld.vsub32(Definition(msb), Operand(31u), Operand(msb_rev), true).def(1).getTemp();
1287 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), msb, Operand((uint32_t)-1), carry);
1288 } else {
1289 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1290 nir_print_instr(&instr->instr, stderr);
1291 fprintf(stderr, "\n");
1292 }
1293 break;
1294 }
1295 case nir_op_bitfield_reverse: {
1296 if (dst.regClass() == s1) {
1297 bld.sop1(aco_opcode::s_brev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1298 } else if (dst.regClass() == v1) {
1299 bld.vop1(aco_opcode::v_bfrev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1300 } else {
1301 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1302 nir_print_instr(&instr->instr, stderr);
1303 fprintf(stderr, "\n");
1304 }
1305 break;
1306 }
1307 case nir_op_iadd: {
1308 if (dst.regClass() == s1) {
1309 emit_sop2_instruction(ctx, instr, aco_opcode::s_add_u32, dst, true);
1310 break;
1311 }
1312
1313 Temp src0 = get_alu_src(ctx, instr->src[0]);
1314 Temp src1 = get_alu_src(ctx, instr->src[1]);
1315 if (dst.regClass() == v1) {
1316 bld.vadd32(Definition(dst), Operand(src0), Operand(src1));
1317 break;
1318 }
1319
1320 assert(src0.size() == 2 && src1.size() == 2);
1321 Temp src00 = bld.tmp(src0.type(), 1);
1322 Temp src01 = bld.tmp(dst.type(), 1);
1323 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1324 Temp src10 = bld.tmp(src1.type(), 1);
1325 Temp src11 = bld.tmp(dst.type(), 1);
1326 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1327
1328 if (dst.regClass() == s2) {
1329 Temp carry = bld.tmp(s1);
1330 Temp dst0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1331 Temp dst1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), src01, src11, bld.scc(carry));
1332 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1333 } else if (dst.regClass() == v2) {
1334 Temp dst0 = bld.tmp(v1);
1335 Temp carry = bld.vadd32(Definition(dst0), src00, src10, true).def(1).getTemp();
1336 Temp dst1 = bld.vadd32(bld.def(v1), src01, src11, false, carry);
1337 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1338 } else {
1339 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1340 nir_print_instr(&instr->instr, stderr);
1341 fprintf(stderr, "\n");
1342 }
1343 break;
1344 }
1345 case nir_op_uadd_sat: {
1346 Temp src0 = get_alu_src(ctx, instr->src[0]);
1347 Temp src1 = get_alu_src(ctx, instr->src[1]);
1348 if (dst.regClass() == s1) {
1349 Temp tmp = bld.tmp(s1), carry = bld.tmp(s1);
1350 bld.sop2(aco_opcode::s_add_u32, Definition(tmp), bld.scc(Definition(carry)),
1351 src0, src1);
1352 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t) -1), tmp, bld.scc(carry));
1353 } else if (dst.regClass() == v1) {
1354 if (ctx->options->chip_class >= GFX9) {
1355 aco_ptr<VOP3A_instruction> add{create_instruction<VOP3A_instruction>(aco_opcode::v_add_u32, asVOP3(Format::VOP2), 2, 1)};
1356 add->operands[0] = Operand(src0);
1357 add->operands[1] = Operand(src1);
1358 add->definitions[0] = Definition(dst);
1359 add->clamp = 1;
1360 ctx->block->instructions.emplace_back(std::move(add));
1361 } else {
1362 if (src1.regClass() != v1)
1363 std::swap(src0, src1);
1364 assert(src1.regClass() == v1);
1365 Temp tmp = bld.tmp(v1);
1366 Temp carry = bld.vadd32(Definition(tmp), src0, src1, true).def(1).getTemp();
1367 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), tmp, Operand((uint32_t) -1), carry);
1368 }
1369 } else {
1370 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1371 nir_print_instr(&instr->instr, stderr);
1372 fprintf(stderr, "\n");
1373 }
1374 break;
1375 }
1376 case nir_op_uadd_carry: {
1377 Temp src0 = get_alu_src(ctx, instr->src[0]);
1378 Temp src1 = get_alu_src(ctx, instr->src[1]);
1379 if (dst.regClass() == s1) {
1380 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1381 break;
1382 }
1383 if (dst.regClass() == v1) {
1384 Temp carry = bld.vadd32(bld.def(v1), src0, src1, true).def(1).getTemp();
1385 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), carry);
1386 break;
1387 }
1388
1389 Temp src00 = bld.tmp(src0.type(), 1);
1390 Temp src01 = bld.tmp(dst.type(), 1);
1391 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1392 Temp src10 = bld.tmp(src1.type(), 1);
1393 Temp src11 = bld.tmp(dst.type(), 1);
1394 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1395 if (dst.regClass() == s2) {
1396 Temp carry = bld.tmp(s1);
1397 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1398 carry = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(carry)).def(1).getTemp();
1399 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1400 } else if (dst.regClass() == v2) {
1401 Temp carry = bld.vadd32(bld.def(v1), src00, src10, true).def(1).getTemp();
1402 carry = bld.vadd32(bld.def(v1), src01, src11, true, carry).def(1).getTemp();
1403 carry = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), carry);
1404 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1405 } else {
1406 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1407 nir_print_instr(&instr->instr, stderr);
1408 fprintf(stderr, "\n");
1409 }
1410 break;
1411 }
1412 case nir_op_isub: {
1413 if (dst.regClass() == s1) {
1414 emit_sop2_instruction(ctx, instr, aco_opcode::s_sub_i32, dst, true);
1415 break;
1416 }
1417
1418 Temp src0 = get_alu_src(ctx, instr->src[0]);
1419 Temp src1 = get_alu_src(ctx, instr->src[1]);
1420 if (dst.regClass() == v1) {
1421 bld.vsub32(Definition(dst), src0, src1);
1422 break;
1423 }
1424
1425 Temp src00 = bld.tmp(src0.type(), 1);
1426 Temp src01 = bld.tmp(dst.type(), 1);
1427 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1428 Temp src10 = bld.tmp(src1.type(), 1);
1429 Temp src11 = bld.tmp(dst.type(), 1);
1430 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1431 if (dst.regClass() == s2) {
1432 Temp carry = bld.tmp(s1);
1433 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1434 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), src01, src11, carry);
1435 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1436 } else if (dst.regClass() == v2) {
1437 Temp lower = bld.tmp(v1);
1438 Temp borrow = bld.vsub32(Definition(lower), src00, src10, true).def(1).getTemp();
1439 Temp upper = bld.vsub32(bld.def(v1), src01, src11, false, borrow);
1440 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1441 } else {
1442 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1443 nir_print_instr(&instr->instr, stderr);
1444 fprintf(stderr, "\n");
1445 }
1446 break;
1447 }
1448 case nir_op_usub_borrow: {
1449 Temp src0 = get_alu_src(ctx, instr->src[0]);
1450 Temp src1 = get_alu_src(ctx, instr->src[1]);
1451 if (dst.regClass() == s1) {
1452 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1453 break;
1454 } else if (dst.regClass() == v1) {
1455 Temp borrow = bld.vsub32(bld.def(v1), src0, src1, true).def(1).getTemp();
1456 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), borrow);
1457 break;
1458 }
1459
1460 Temp src00 = bld.tmp(src0.type(), 1);
1461 Temp src01 = bld.tmp(dst.type(), 1);
1462 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1463 Temp src10 = bld.tmp(src1.type(), 1);
1464 Temp src11 = bld.tmp(dst.type(), 1);
1465 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1466 if (dst.regClass() == s2) {
1467 Temp borrow = bld.tmp(s1);
1468 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), src00, src10);
1469 borrow = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(borrow)).def(1).getTemp();
1470 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1471 } else if (dst.regClass() == v2) {
1472 Temp borrow = bld.vsub32(bld.def(v1), src00, src10, true).def(1).getTemp();
1473 borrow = bld.vsub32(bld.def(v1), src01, src11, true, Operand(borrow)).def(1).getTemp();
1474 borrow = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), borrow);
1475 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1476 } else {
1477 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1478 nir_print_instr(&instr->instr, stderr);
1479 fprintf(stderr, "\n");
1480 }
1481 break;
1482 }
1483 case nir_op_imul: {
1484 if (dst.regClass() == v1) {
1485 bld.vop3(aco_opcode::v_mul_lo_u32, Definition(dst),
1486 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1487 } else if (dst.regClass() == s1) {
1488 emit_sop2_instruction(ctx, instr, aco_opcode::s_mul_i32, dst, false);
1489 } else {
1490 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1491 nir_print_instr(&instr->instr, stderr);
1492 fprintf(stderr, "\n");
1493 }
1494 break;
1495 }
1496 case nir_op_umul_high: {
1497 if (dst.regClass() == v1) {
1498 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1499 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1500 bld.sop2(aco_opcode::s_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1501 } else if (dst.regClass() == s1) {
1502 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1503 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1504 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1505 } else {
1506 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1507 nir_print_instr(&instr->instr, stderr);
1508 fprintf(stderr, "\n");
1509 }
1510 break;
1511 }
1512 case nir_op_imul_high: {
1513 if (dst.regClass() == v1) {
1514 bld.vop3(aco_opcode::v_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1515 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1516 bld.sop2(aco_opcode::s_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1517 } else if (dst.regClass() == s1) {
1518 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1519 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1520 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1521 } else {
1522 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1523 nir_print_instr(&instr->instr, stderr);
1524 fprintf(stderr, "\n");
1525 }
1526 break;
1527 }
1528 case nir_op_fmul: {
1529 if (dst.size() == 1) {
1530 emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f32, dst, true);
1531 } else if (dst.size() == 2) {
1532 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), get_alu_src(ctx, instr->src[0]),
1533 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1534 } else {
1535 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1536 nir_print_instr(&instr->instr, stderr);
1537 fprintf(stderr, "\n");
1538 }
1539 break;
1540 }
1541 case nir_op_fadd: {
1542 Temp src0 = get_alu_src(ctx, instr->src[0]);
1543 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1544 if (dst.regClass() == v2b) {
1545 Temp tmp = bld.tmp(v1);
1546 emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f16, tmp, true);
1547 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1548 } else if (dst.regClass() == v1) {
1549 emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f32, dst, true);
1550 } else if (dst.regClass() == v2) {
1551 bld.vop3(aco_opcode::v_add_f64, Definition(dst), src0, src1);
1552 } else {
1553 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1554 nir_print_instr(&instr->instr, stderr);
1555 fprintf(stderr, "\n");
1556 }
1557 break;
1558 }
1559 case nir_op_fsub: {
1560 Temp src0 = get_alu_src(ctx, instr->src[0]);
1561 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1562 if (dst.regClass() == v2b) {
1563 Temp tmp = bld.tmp(v1);
1564 if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
1565 emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f16, tmp, false);
1566 else
1567 emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f16, tmp, true);
1568 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1569 } else if (dst.regClass() == v1) {
1570 if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
1571 emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f32, dst, false);
1572 else
1573 emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f32, dst, true);
1574 } else if (dst.regClass() == v2) {
1575 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst),
1576 src0, src1);
1577 VOP3A_instruction* sub = static_cast<VOP3A_instruction*>(add);
1578 sub->neg[1] = true;
1579 } else {
1580 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1581 nir_print_instr(&instr->instr, stderr);
1582 fprintf(stderr, "\n");
1583 }
1584 break;
1585 }
1586 case nir_op_fmax: {
1587 Temp src0 = get_alu_src(ctx, instr->src[0]);
1588 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1589 if (dst.regClass() == v2b) {
1590 // TODO: check fp_mode.must_flush_denorms16_64
1591 Temp tmp = bld.tmp(v1);
1592 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f16, tmp, true);
1593 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1594 } else if (dst.regClass() == v1) {
1595 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1596 } else if (dst.regClass() == v2) {
1597 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1598 Temp tmp = bld.vop3(aco_opcode::v_max_f64, bld.def(v2), src0, src1);
1599 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1600 } else {
1601 bld.vop3(aco_opcode::v_max_f64, Definition(dst), src0, src1);
1602 }
1603 } else {
1604 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1605 nir_print_instr(&instr->instr, stderr);
1606 fprintf(stderr, "\n");
1607 }
1608 break;
1609 }
1610 case nir_op_fmin: {
1611 Temp src0 = get_alu_src(ctx, instr->src[0]);
1612 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1613 if (dst.regClass() == v2b) {
1614 // TODO: check fp_mode.must_flush_denorms16_64
1615 Temp tmp = bld.tmp(v1);
1616 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f16, tmp, true);
1617 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1618 } else if (dst.regClass() == v1) {
1619 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1620 } else if (dst.regClass() == v2) {
1621 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1622 Temp tmp = bld.vop3(aco_opcode::v_min_f64, bld.def(v2), src0, src1);
1623 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1624 } else {
1625 bld.vop3(aco_opcode::v_min_f64, Definition(dst), src0, src1);
1626 }
1627 } else {
1628 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1629 nir_print_instr(&instr->instr, stderr);
1630 fprintf(stderr, "\n");
1631 }
1632 break;
1633 }
1634 case nir_op_fmax3: {
1635 if (dst.size() == 1) {
1636 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1637 } else {
1638 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1639 nir_print_instr(&instr->instr, stderr);
1640 fprintf(stderr, "\n");
1641 }
1642 break;
1643 }
1644 case nir_op_fmin3: {
1645 if (dst.size() == 1) {
1646 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1647 } else {
1648 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1649 nir_print_instr(&instr->instr, stderr);
1650 fprintf(stderr, "\n");
1651 }
1652 break;
1653 }
1654 case nir_op_fmed3: {
1655 if (dst.size() == 1) {
1656 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1657 } else {
1658 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1659 nir_print_instr(&instr->instr, stderr);
1660 fprintf(stderr, "\n");
1661 }
1662 break;
1663 }
1664 case nir_op_umax3: {
1665 if (dst.size() == 1) {
1666 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_u32, dst);
1667 } else {
1668 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1669 nir_print_instr(&instr->instr, stderr);
1670 fprintf(stderr, "\n");
1671 }
1672 break;
1673 }
1674 case nir_op_umin3: {
1675 if (dst.size() == 1) {
1676 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_u32, dst);
1677 } else {
1678 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1679 nir_print_instr(&instr->instr, stderr);
1680 fprintf(stderr, "\n");
1681 }
1682 break;
1683 }
1684 case nir_op_umed3: {
1685 if (dst.size() == 1) {
1686 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_u32, dst);
1687 } else {
1688 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1689 nir_print_instr(&instr->instr, stderr);
1690 fprintf(stderr, "\n");
1691 }
1692 break;
1693 }
1694 case nir_op_imax3: {
1695 if (dst.size() == 1) {
1696 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_i32, dst);
1697 } else {
1698 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1699 nir_print_instr(&instr->instr, stderr);
1700 fprintf(stderr, "\n");
1701 }
1702 break;
1703 }
1704 case nir_op_imin3: {
1705 if (dst.size() == 1) {
1706 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_i32, dst);
1707 } else {
1708 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1709 nir_print_instr(&instr->instr, stderr);
1710 fprintf(stderr, "\n");
1711 }
1712 break;
1713 }
1714 case nir_op_imed3: {
1715 if (dst.size() == 1) {
1716 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_i32, dst);
1717 } else {
1718 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1719 nir_print_instr(&instr->instr, stderr);
1720 fprintf(stderr, "\n");
1721 }
1722 break;
1723 }
1724 case nir_op_cube_face_coord: {
1725 Temp in = get_alu_src(ctx, instr->src[0], 3);
1726 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1727 emit_extract_vector(ctx, in, 1, v1),
1728 emit_extract_vector(ctx, in, 2, v1) };
1729 Temp ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), src[0], src[1], src[2]);
1730 ma = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), ma);
1731 Temp sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), src[0], src[1], src[2]);
1732 Temp tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), src[0], src[1], src[2]);
1733 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, ma, Operand(0x3f000000u/*0.5*/));
1734 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, ma, Operand(0x3f000000u/*0.5*/));
1735 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), sc, tc);
1736 break;
1737 }
1738 case nir_op_cube_face_index: {
1739 Temp in = get_alu_src(ctx, instr->src[0], 3);
1740 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1741 emit_extract_vector(ctx, in, 1, v1),
1742 emit_extract_vector(ctx, in, 2, v1) };
1743 bld.vop3(aco_opcode::v_cubeid_f32, Definition(dst), src[0], src[1], src[2]);
1744 break;
1745 }
1746 case nir_op_bcsel: {
1747 emit_bcsel(ctx, instr, dst);
1748 break;
1749 }
1750 case nir_op_frsq: {
1751 Temp src = get_alu_src(ctx, instr->src[0]);
1752 if (dst.regClass() == v2b) {
1753 Temp tmp = bld.vop1(aco_opcode::v_rsq_f16, bld.def(v1), src);
1754 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1755 } else if (dst.regClass() == v1) {
1756 emit_rsq(ctx, bld, Definition(dst), src);
1757 } else if (dst.regClass() == v2) {
1758 emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f64, dst);
1759 } else {
1760 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1761 nir_print_instr(&instr->instr, stderr);
1762 fprintf(stderr, "\n");
1763 }
1764 break;
1765 }
1766 case nir_op_fneg: {
1767 Temp src = get_alu_src(ctx, instr->src[0]);
1768 if (dst.regClass() == v2b) {
1769 Temp tmp = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), Operand(0x8000u), as_vgpr(ctx, src));
1770 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1771 } else if (dst.regClass() == v1) {
1772 if (ctx->block->fp_mode.must_flush_denorms32)
1773 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1774 bld.vop2(aco_opcode::v_xor_b32, Definition(dst), Operand(0x80000000u), as_vgpr(ctx, src));
1775 } else if (dst.regClass() == v2) {
1776 if (ctx->block->fp_mode.must_flush_denorms16_64)
1777 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1778 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1779 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1780 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), Operand(0x80000000u), upper);
1781 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1782 } else {
1783 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1784 nir_print_instr(&instr->instr, stderr);
1785 fprintf(stderr, "\n");
1786 }
1787 break;
1788 }
1789 case nir_op_fabs: {
1790 Temp src = get_alu_src(ctx, instr->src[0]);
1791 if (dst.regClass() == v2b) {
1792 Temp tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7FFFu), as_vgpr(ctx, src));
1793 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1794 } else if (dst.regClass() == v1) {
1795 if (ctx->block->fp_mode.must_flush_denorms32)
1796 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1797 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0x7FFFFFFFu), as_vgpr(ctx, src));
1798 } else if (dst.regClass() == v2) {
1799 if (ctx->block->fp_mode.must_flush_denorms16_64)
1800 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1801 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1802 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1803 upper = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7FFFFFFFu), upper);
1804 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1805 } else {
1806 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1807 nir_print_instr(&instr->instr, stderr);
1808 fprintf(stderr, "\n");
1809 }
1810 break;
1811 }
1812 case nir_op_fsat: {
1813 Temp src = get_alu_src(ctx, instr->src[0]);
1814 if (dst.size() == 1) {
1815 bld.vop3(aco_opcode::v_med3_f32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
1816 /* apparently, it is not necessary to flush denorms if this instruction is used with these operands */
1817 // TODO: confirm that this holds under any circumstances
1818 } else if (dst.size() == 2) {
1819 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src, Operand(0u));
1820 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(add);
1821 vop3->clamp = true;
1822 } else {
1823 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1824 nir_print_instr(&instr->instr, stderr);
1825 fprintf(stderr, "\n");
1826 }
1827 break;
1828 }
1829 case nir_op_flog2: {
1830 Temp src = get_alu_src(ctx, instr->src[0]);
1831 if (dst.regClass() == v2b) {
1832 Temp tmp = bld.vop1(aco_opcode::v_log_f16, bld.def(v1), src);
1833 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1834 } else if (dst.regClass() == v1) {
1835 emit_log2(ctx, bld, Definition(dst), src);
1836 } else {
1837 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1838 nir_print_instr(&instr->instr, stderr);
1839 fprintf(stderr, "\n");
1840 }
1841 break;
1842 }
1843 case nir_op_frcp: {
1844 Temp src = get_alu_src(ctx, instr->src[0]);
1845 if (dst.regClass() == v2b) {
1846 Temp tmp = bld.vop1(aco_opcode::v_rcp_f16, bld.def(v1), src);
1847 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1848 } else if (dst.regClass() == v1) {
1849 emit_rcp(ctx, bld, Definition(dst), src);
1850 } else if (dst.regClass() == v2) {
1851 emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f64, dst);
1852 } else {
1853 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1854 nir_print_instr(&instr->instr, stderr);
1855 fprintf(stderr, "\n");
1856 }
1857 break;
1858 }
1859 case nir_op_fexp2: {
1860 if (dst.regClass() == v2b) {
1861 Temp src = get_alu_src(ctx, instr->src[0]);
1862 Temp tmp = bld.vop1(aco_opcode::v_exp_f16, bld.def(v1), src);
1863 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1864 } else if (dst.regClass() == v1) {
1865 emit_vop1_instruction(ctx, instr, aco_opcode::v_exp_f32, dst);
1866 } else {
1867 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1868 nir_print_instr(&instr->instr, stderr);
1869 fprintf(stderr, "\n");
1870 }
1871 break;
1872 }
1873 case nir_op_fsqrt: {
1874 Temp src = get_alu_src(ctx, instr->src[0]);
1875 if (dst.regClass() == v2b) {
1876 Temp tmp = bld.vop1(aco_opcode::v_sqrt_f16, bld.def(v1), src);
1877 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1878 } else if (dst.regClass() == v1) {
1879 emit_sqrt(ctx, bld, Definition(dst), src);
1880 } else if (dst.regClass() == v2) {
1881 emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f64, dst);
1882 } else {
1883 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1884 nir_print_instr(&instr->instr, stderr);
1885 fprintf(stderr, "\n");
1886 }
1887 break;
1888 }
1889 case nir_op_ffract: {
1890 if (dst.regClass() == v2b) {
1891 Temp src = get_alu_src(ctx, instr->src[0]);
1892 Temp tmp = bld.vop1(aco_opcode::v_fract_f16, bld.def(v1), src);
1893 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1894 } else if (dst.regClass() == v1) {
1895 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f32, dst);
1896 } else if (dst.regClass() == v2) {
1897 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f64, dst);
1898 } else {
1899 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1900 nir_print_instr(&instr->instr, stderr);
1901 fprintf(stderr, "\n");
1902 }
1903 break;
1904 }
1905 case nir_op_ffloor: {
1906 Temp src = get_alu_src(ctx, instr->src[0]);
1907 if (dst.regClass() == v2b) {
1908 Temp tmp = bld.vop1(aco_opcode::v_floor_f16, bld.def(v1), src);
1909 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1910 } else if (dst.regClass() == v1) {
1911 emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f32, dst);
1912 } else if (dst.regClass() == v2) {
1913 emit_floor_f64(ctx, bld, Definition(dst), src);
1914 } else {
1915 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1916 nir_print_instr(&instr->instr, stderr);
1917 fprintf(stderr, "\n");
1918 }
1919 break;
1920 }
1921 case nir_op_fceil: {
1922 Temp src0 = get_alu_src(ctx, instr->src[0]);
1923 if (dst.regClass() == v2b) {
1924 Temp tmp = bld.vop1(aco_opcode::v_ceil_f16, bld.def(v1), src0);
1925 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1926 } else if (dst.regClass() == v1) {
1927 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f32, dst);
1928 } else if (dst.regClass() == v2) {
1929 if (ctx->options->chip_class >= GFX7) {
1930 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f64, dst);
1931 } else {
1932 /* GFX6 doesn't support V_CEIL_F64, lower it. */
1933 /* trunc = trunc(src0)
1934 * if (src0 > 0.0 && src0 != trunc)
1935 * trunc += 1.0
1936 */
1937 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src0);
1938 Temp tmp0 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.def(bld.lm), src0, Operand(0u));
1939 Temp tmp1 = bld.vopc(aco_opcode::v_cmp_lg_f64, bld.hint_vcc(bld.def(bld.lm)), src0, trunc);
1940 Temp cond = bld.sop2(aco_opcode::s_and_b64, bld.hint_vcc(bld.def(s2)), bld.def(s1, scc), tmp0, tmp1);
1941 Temp add = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), bld.copy(bld.def(v1), Operand(0u)), bld.copy(bld.def(v1), Operand(0x3ff00000u)), cond);
1942 add = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), bld.copy(bld.def(v1), Operand(0u)), add);
1943 bld.vop3(aco_opcode::v_add_f64, Definition(dst), trunc, add);
1944 }
1945 } else {
1946 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1947 nir_print_instr(&instr->instr, stderr);
1948 fprintf(stderr, "\n");
1949 }
1950 break;
1951 }
1952 case nir_op_ftrunc: {
1953 Temp src = get_alu_src(ctx, instr->src[0]);
1954 if (dst.regClass() == v2b) {
1955 Temp tmp = bld.vop1(aco_opcode::v_trunc_f16, bld.def(v1), src);
1956 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1957 } else if (dst.regClass() == v1) {
1958 emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f32, dst);
1959 } else if (dst.regClass() == v2) {
1960 emit_trunc_f64(ctx, bld, Definition(dst), src);
1961 } else {
1962 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1963 nir_print_instr(&instr->instr, stderr);
1964 fprintf(stderr, "\n");
1965 }
1966 break;
1967 }
1968 case nir_op_fround_even: {
1969 Temp src0 = get_alu_src(ctx, instr->src[0]);
1970 if (dst.regClass() == v2b) {
1971 Temp tmp = bld.vop1(aco_opcode::v_rndne_f16, bld.def(v1), src0);
1972 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1973 } else if (dst.regClass() == v1) {
1974 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f32, dst);
1975 } else if (dst.regClass() == v2) {
1976 if (ctx->options->chip_class >= GFX7) {
1977 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f64, dst);
1978 } else {
1979 /* GFX6 doesn't support V_RNDNE_F64, lower it. */
1980 Temp src0_lo = bld.tmp(v1), src0_hi = bld.tmp(v1);
1981 bld.pseudo(aco_opcode::p_split_vector, Definition(src0_lo), Definition(src0_hi), src0);
1982
1983 Temp bitmask = bld.sop1(aco_opcode::s_brev_b32, bld.def(s1), bld.copy(bld.def(s1), Operand(-2u)));
1984 Temp bfi = bld.vop3(aco_opcode::v_bfi_b32, bld.def(v1), bitmask, bld.copy(bld.def(v1), Operand(0x43300000u)), as_vgpr(ctx, src0_hi));
1985 Temp tmp = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), src0, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
1986 Instruction *sub = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), tmp, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
1987 static_cast<VOP3A_instruction*>(sub)->neg[1] = true;
1988 tmp = sub->definitions[0].getTemp();
1989
1990 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x432fffffu));
1991 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.hint_vcc(bld.def(bld.lm)), src0, v);
1992 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
1993 Temp cond = vop3->definitions[0].getTemp();
1994
1995 Temp tmp_lo = bld.tmp(v1), tmp_hi = bld.tmp(v1);
1996 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp_lo), Definition(tmp_hi), tmp);
1997 Temp dst0 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_lo, as_vgpr(ctx, src0_lo), cond);
1998 Temp dst1 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_hi, as_vgpr(ctx, src0_hi), cond);
1999
2000 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
2001 }
2002 } else {
2003 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2004 nir_print_instr(&instr->instr, stderr);
2005 fprintf(stderr, "\n");
2006 }
2007 break;
2008 }
2009 case nir_op_fsin:
2010 case nir_op_fcos: {
2011 Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
2012 aco_ptr<Instruction> norm;
2013 Temp half_pi = bld.copy(bld.def(s1), Operand(0x3e22f983u));
2014 if (dst.regClass() == v2b) {
2015 Temp tmp = bld.vop2(aco_opcode::v_mul_f16, bld.def(v1), half_pi, src);
2016 aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f16 : aco_opcode::v_cos_f16;
2017 tmp = bld.vop1(opcode, bld.def(v1), tmp);
2018 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2019 } else if (dst.regClass() == v1) {
2020 Temp tmp = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), half_pi, src);
2021
2022 /* before GFX9, v_sin_f32 and v_cos_f32 had a valid input domain of [-256, +256] */
2023 if (ctx->options->chip_class < GFX9)
2024 tmp = bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), tmp);
2025
2026 aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f32 : aco_opcode::v_cos_f32;
2027 bld.vop1(opcode, Definition(dst), tmp);
2028 } else {
2029 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2030 nir_print_instr(&instr->instr, stderr);
2031 fprintf(stderr, "\n");
2032 }
2033 break;
2034 }
2035 case nir_op_ldexp: {
2036 if (dst.size() == 1) {
2037 bld.vop3(aco_opcode::v_ldexp_f32, Definition(dst),
2038 as_vgpr(ctx, get_alu_src(ctx, instr->src[0])),
2039 get_alu_src(ctx, instr->src[1]));
2040 } else if (dst.size() == 2) {
2041 bld.vop3(aco_opcode::v_ldexp_f64, Definition(dst),
2042 as_vgpr(ctx, get_alu_src(ctx, instr->src[0])),
2043 get_alu_src(ctx, instr->src[1]));
2044 } else {
2045 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2046 nir_print_instr(&instr->instr, stderr);
2047 fprintf(stderr, "\n");
2048 }
2049 break;
2050 }
2051 case nir_op_frexp_sig: {
2052 Temp src = get_alu_src(ctx, instr->src[0]);
2053 if (dst.regClass() == v2b) {
2054 Temp tmp = bld.vop1(aco_opcode::v_frexp_mant_f16, bld.def(v1), src);
2055 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2056 } else if (dst.regClass() == v1) {
2057 bld.vop1(aco_opcode::v_frexp_mant_f32, Definition(dst), src);
2058 } else if (dst.regClass() == v2) {
2059 bld.vop1(aco_opcode::v_frexp_mant_f64, Definition(dst), src);
2060 } else {
2061 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2062 nir_print_instr(&instr->instr, stderr);
2063 fprintf(stderr, "\n");
2064 }
2065 break;
2066 }
2067 case nir_op_frexp_exp: {
2068 Temp src = get_alu_src(ctx, instr->src[0]);
2069 if (instr->src[0].src.ssa->bit_size == 16) {
2070 Temp tmp = bld.vop1(aco_opcode::v_frexp_exp_i16_f16, bld.def(v1), src);
2071 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), tmp, Operand(0u));
2072 } else if (instr->src[0].src.ssa->bit_size == 32) {
2073 bld.vop1(aco_opcode::v_frexp_exp_i32_f32, Definition(dst), src);
2074 } else if (instr->src[0].src.ssa->bit_size == 64) {
2075 bld.vop1(aco_opcode::v_frexp_exp_i32_f64, Definition(dst), src);
2076 } else {
2077 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2078 nir_print_instr(&instr->instr, stderr);
2079 fprintf(stderr, "\n");
2080 }
2081 break;
2082 }
2083 case nir_op_fsign: {
2084 Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
2085 if (dst.size() == 1) {
2086 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2087 src = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0x3f800000u), src, cond);
2088 cond = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2089 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0xbf800000u), src, cond);
2090 } else if (dst.size() == 2) {
2091 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2092 Temp tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0x3FF00000u));
2093 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, emit_extract_vector(ctx, src, 1, v1), cond);
2094
2095 cond = bld.vopc(aco_opcode::v_cmp_le_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2096 tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0xBFF00000u));
2097 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, upper, cond);
2098
2099 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
2100 } else {
2101 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2102 nir_print_instr(&instr->instr, stderr);
2103 fprintf(stderr, "\n");
2104 }
2105 break;
2106 }
2107 case nir_op_f2f16:
2108 case nir_op_f2f16_rtne: {
2109 Temp src = get_alu_src(ctx, instr->src[0]);
2110 if (instr->src[0].src.ssa->bit_size == 64)
2111 src = bld.vop1(aco_opcode::v_cvt_f32_f64, bld.def(v1), src);
2112 src = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), src);
2113 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), src);
2114 break;
2115 }
2116 case nir_op_f2f16_rtz: {
2117 Temp src = get_alu_src(ctx, instr->src[0]);
2118 if (instr->src[0].src.ssa->bit_size == 64)
2119 src = bld.vop1(aco_opcode::v_cvt_f32_f64, bld.def(v1), src);
2120 src = bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, bld.def(v1), src, Operand(0u));
2121 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), src);
2122 break;
2123 }
2124 case nir_op_f2f32: {
2125 if (instr->src[0].src.ssa->bit_size == 16) {
2126 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f16, dst);
2127 } else if (instr->src[0].src.ssa->bit_size == 64) {
2128 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f64, dst);
2129 } else {
2130 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2131 nir_print_instr(&instr->instr, stderr);
2132 fprintf(stderr, "\n");
2133 }
2134 break;
2135 }
2136 case nir_op_f2f64: {
2137 Temp src = get_alu_src(ctx, instr->src[0]);
2138 if (instr->src[0].src.ssa->bit_size == 16)
2139 src = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2140 bld.vop1(aco_opcode::v_cvt_f64_f32, Definition(dst), src);
2141 break;
2142 }
2143 case nir_op_i2f32: {
2144 assert(dst.size() == 1);
2145 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_i32, dst);
2146 break;
2147 }
2148 case nir_op_i2f64: {
2149 if (instr->src[0].src.ssa->bit_size == 32) {
2150 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_i32, dst);
2151 } else if (instr->src[0].src.ssa->bit_size == 64) {
2152 Temp src = get_alu_src(ctx, instr->src[0]);
2153 RegClass rc = RegClass(src.type(), 1);
2154 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
2155 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
2156 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
2157 upper = bld.vop1(aco_opcode::v_cvt_f64_i32, bld.def(v2), upper);
2158 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
2159 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
2160
2161 } else {
2162 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2163 nir_print_instr(&instr->instr, stderr);
2164 fprintf(stderr, "\n");
2165 }
2166 break;
2167 }
2168 case nir_op_u2f32: {
2169 assert(dst.size() == 1);
2170 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_u32, dst);
2171 break;
2172 }
2173 case nir_op_u2f64: {
2174 if (instr->src[0].src.ssa->bit_size == 32) {
2175 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_u32, dst);
2176 } else if (instr->src[0].src.ssa->bit_size == 64) {
2177 Temp src = get_alu_src(ctx, instr->src[0]);
2178 RegClass rc = RegClass(src.type(), 1);
2179 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
2180 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
2181 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
2182 upper = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), upper);
2183 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
2184 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
2185 } else {
2186 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2187 nir_print_instr(&instr->instr, stderr);
2188 fprintf(stderr, "\n");
2189 }
2190 break;
2191 }
2192 case nir_op_f2i16: {
2193 Temp src = get_alu_src(ctx, instr->src[0]);
2194 if (instr->src[0].src.ssa->bit_size == 16)
2195 src = bld.vop1(aco_opcode::v_cvt_i16_f16, bld.def(v1), src);
2196 else if (instr->src[0].src.ssa->bit_size == 32)
2197 src = bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), src);
2198 else
2199 src = bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), src);
2200
2201 if (dst.type() == RegType::vgpr)
2202 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), src);
2203 else
2204 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
2205 break;
2206 }
2207 case nir_op_f2u16: {
2208 Temp src = get_alu_src(ctx, instr->src[0]);
2209 if (instr->src[0].src.ssa->bit_size == 16)
2210 src = bld.vop1(aco_opcode::v_cvt_u16_f16, bld.def(v1), src);
2211 else if (instr->src[0].src.ssa->bit_size == 32)
2212 src = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), src);
2213 else
2214 src = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), src);
2215
2216 if (dst.type() == RegType::vgpr)
2217 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), src);
2218 else
2219 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
2220 break;
2221 }
2222 case nir_op_f2i32: {
2223 Temp src = get_alu_src(ctx, instr->src[0]);
2224 if (instr->src[0].src.ssa->bit_size == 32) {
2225 if (dst.type() == RegType::vgpr)
2226 bld.vop1(aco_opcode::v_cvt_i32_f32, Definition(dst), src);
2227 else
2228 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2229 bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), src));
2230
2231 } else if (instr->src[0].src.ssa->bit_size == 64) {
2232 if (dst.type() == RegType::vgpr)
2233 bld.vop1(aco_opcode::v_cvt_i32_f64, Definition(dst), src);
2234 else
2235 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2236 bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), src));
2237
2238 } else {
2239 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2240 nir_print_instr(&instr->instr, stderr);
2241 fprintf(stderr, "\n");
2242 }
2243 break;
2244 }
2245 case nir_op_f2u32: {
2246 Temp src = get_alu_src(ctx, instr->src[0]);
2247 if (instr->src[0].src.ssa->bit_size == 32) {
2248 if (dst.type() == RegType::vgpr)
2249 bld.vop1(aco_opcode::v_cvt_u32_f32, Definition(dst), src);
2250 else
2251 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2252 bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), src));
2253
2254 } else if (instr->src[0].src.ssa->bit_size == 64) {
2255 if (dst.type() == RegType::vgpr)
2256 bld.vop1(aco_opcode::v_cvt_u32_f64, Definition(dst), src);
2257 else
2258 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2259 bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), src));
2260
2261 } else {
2262 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2263 nir_print_instr(&instr->instr, stderr);
2264 fprintf(stderr, "\n");
2265 }
2266 break;
2267 }
2268 case nir_op_f2i64: {
2269 Temp src = get_alu_src(ctx, instr->src[0]);
2270 if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::vgpr) {
2271 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2272 exponent = bld.vop3(aco_opcode::v_med3_i32, bld.def(v1), Operand(0x0u), exponent, Operand(64u));
2273 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2274 Temp sign = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
2275 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2276 mantissa = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(7u), mantissa);
2277 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2278 Temp new_exponent = bld.tmp(v1);
2279 Temp borrow = bld.vsub32(Definition(new_exponent), Operand(63u), exponent, true).def(1).getTemp();
2280 if (ctx->program->chip_class >= GFX8)
2281 mantissa = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), new_exponent, mantissa);
2282 else
2283 mantissa = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), mantissa, new_exponent);
2284 Temp saturate = bld.vop1(aco_opcode::v_bfrev_b32, bld.def(v1), Operand(0xfffffffeu));
2285 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2286 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2287 lower = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), lower, Operand(0xffffffffu), borrow);
2288 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), upper, saturate, borrow);
2289 lower = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, lower);
2290 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, upper);
2291 Temp new_lower = bld.tmp(v1);
2292 borrow = bld.vsub32(Definition(new_lower), lower, sign, true).def(1).getTemp();
2293 Temp new_upper = bld.vsub32(bld.def(v1), upper, sign, false, borrow);
2294 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), new_lower, new_upper);
2295
2296 } else if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::sgpr) {
2297 if (src.type() == RegType::vgpr)
2298 src = bld.as_uniform(src);
2299 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2300 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2301 exponent = bld.sop2(aco_opcode::s_max_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2302 exponent = bld.sop2(aco_opcode::s_min_u32, bld.def(s1), bld.def(s1, scc), Operand(64u), exponent);
2303 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2304 Temp sign = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
2305 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2306 mantissa = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), mantissa, Operand(7u));
2307 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2308 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(63u), exponent);
2309 mantissa = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent);
2310 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), exponent, Operand(0xffffffffu)); // exp >= 64
2311 Temp saturate = bld.sop1(aco_opcode::s_brev_b64, bld.def(s2), Operand(0xfffffffeu));
2312 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), saturate, mantissa, cond);
2313 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2314 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2315 lower = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, lower);
2316 upper = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, upper);
2317 Temp borrow = bld.tmp(s1);
2318 lower = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), lower, sign);
2319 upper = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), upper, sign, borrow);
2320 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2321
2322 } else if (instr->src[0].src.ssa->bit_size == 64) {
2323 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2324 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2325 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2326 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2327 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2328 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2329 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2330 Temp upper = bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), floor);
2331 if (dst.type() == RegType::sgpr) {
2332 lower = bld.as_uniform(lower);
2333 upper = bld.as_uniform(upper);
2334 }
2335 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2336
2337 } else {
2338 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2339 nir_print_instr(&instr->instr, stderr);
2340 fprintf(stderr, "\n");
2341 }
2342 break;
2343 }
2344 case nir_op_f2u64: {
2345 Temp src = get_alu_src(ctx, instr->src[0]);
2346 if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::vgpr) {
2347 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2348 Temp exponent_in_range = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(64u), exponent);
2349 exponent = bld.vop2(aco_opcode::v_max_i32, bld.def(v1), Operand(0x0u), exponent);
2350 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2351 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2352 Temp exponent_small = bld.vsub32(bld.def(v1), Operand(24u), exponent);
2353 Temp small = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), exponent_small, mantissa);
2354 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2355 Temp new_exponent = bld.tmp(v1);
2356 Temp cond_small = bld.vsub32(Definition(new_exponent), exponent, Operand(24u), true).def(1).getTemp();
2357 if (ctx->program->chip_class >= GFX8)
2358 mantissa = bld.vop3(aco_opcode::v_lshlrev_b64, bld.def(v2), new_exponent, mantissa);
2359 else
2360 mantissa = bld.vop3(aco_opcode::v_lshl_b64, bld.def(v2), mantissa, new_exponent);
2361 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2362 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2363 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), lower, small, cond_small);
2364 upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), upper, Operand(0u), cond_small);
2365 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), lower, exponent_in_range);
2366 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), upper, exponent_in_range);
2367 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2368
2369 } else if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::sgpr) {
2370 if (src.type() == RegType::vgpr)
2371 src = bld.as_uniform(src);
2372 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2373 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2374 exponent = bld.sop2(aco_opcode::s_max_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2375 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2376 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2377 Temp exponent_small = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(24u), exponent);
2378 Temp small = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), mantissa, exponent_small);
2379 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2380 Temp exponent_large = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(24u));
2381 mantissa = bld.sop2(aco_opcode::s_lshl_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent_large);
2382 Temp cond = bld.sopc(aco_opcode::s_cmp_ge_i32, bld.def(s1, scc), Operand(64u), exponent);
2383 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), mantissa, Operand(0xffffffffu), cond);
2384 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2385 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2386 Temp cond_small = bld.sopc(aco_opcode::s_cmp_le_i32, bld.def(s1, scc), exponent, Operand(24u));
2387 lower = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), small, lower, cond_small);
2388 upper = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), Operand(0u), upper, cond_small);
2389 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2390
2391 } else if (instr->src[0].src.ssa->bit_size == 64) {
2392 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2393 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2394 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2395 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2396 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2397 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2398 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2399 Temp upper = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), floor);
2400 if (dst.type() == RegType::sgpr) {
2401 lower = bld.as_uniform(lower);
2402 upper = bld.as_uniform(upper);
2403 }
2404 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2405
2406 } else {
2407 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2408 nir_print_instr(&instr->instr, stderr);
2409 fprintf(stderr, "\n");
2410 }
2411 break;
2412 }
2413 case nir_op_b2f32: {
2414 Temp src = get_alu_src(ctx, instr->src[0]);
2415 assert(src.regClass() == bld.lm);
2416
2417 if (dst.regClass() == s1) {
2418 src = bool_to_scalar_condition(ctx, src);
2419 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3f800000u), src);
2420 } else if (dst.regClass() == v1) {
2421 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
2422 } else {
2423 unreachable("Wrong destination register class for nir_op_b2f32.");
2424 }
2425 break;
2426 }
2427 case nir_op_b2f64: {
2428 Temp src = get_alu_src(ctx, instr->src[0]);
2429 assert(src.regClass() == bld.lm);
2430
2431 if (dst.regClass() == s2) {
2432 src = bool_to_scalar_condition(ctx, src);
2433 bld.sop2(aco_opcode::s_cselect_b64, Definition(dst), Operand(0x3f800000u), Operand(0u), bld.scc(src));
2434 } else if (dst.regClass() == v2) {
2435 Temp one = bld.vop1(aco_opcode::v_mov_b32, bld.def(v2), Operand(0x3FF00000u));
2436 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), one, src);
2437 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
2438 } else {
2439 unreachable("Wrong destination register class for nir_op_b2f64.");
2440 }
2441 break;
2442 }
2443 case nir_op_i2i8:
2444 case nir_op_u2u8: {
2445 Temp src = get_alu_src(ctx, instr->src[0]);
2446 /* we can actually just say dst = src */
2447 if (src.regClass() == s1)
2448 bld.copy(Definition(dst), src);
2449 else
2450 emit_extract_vector(ctx, src, 0, dst);
2451 break;
2452 }
2453 case nir_op_i2i16: {
2454 Temp src = get_alu_src(ctx, instr->src[0]);
2455 if (instr->src[0].src.ssa->bit_size == 8) {
2456 if (dst.regClass() == s1) {
2457 bld.sop1(aco_opcode::s_sext_i32_i8, Definition(dst), Operand(src));
2458 } else {
2459 assert(src.regClass() == v1b);
2460 aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
2461 sdwa->operands[0] = Operand(src);
2462 sdwa->definitions[0] = Definition(dst);
2463 sdwa->sel[0] = sdwa_sbyte;
2464 sdwa->dst_sel = sdwa_sword;
2465 ctx->block->instructions.emplace_back(std::move(sdwa));
2466 }
2467 } else {
2468 Temp src = get_alu_src(ctx, instr->src[0]);
2469 /* we can actually just say dst = src */
2470 if (src.regClass() == s1)
2471 bld.copy(Definition(dst), src);
2472 else
2473 emit_extract_vector(ctx, src, 0, dst);
2474 }
2475 break;
2476 }
2477 case nir_op_u2u16: {
2478 Temp src = get_alu_src(ctx, instr->src[0]);
2479 if (instr->src[0].src.ssa->bit_size == 8) {
2480 if (dst.regClass() == s1)
2481 bld.sop2(aco_opcode::s_and_b32, Definition(dst), bld.def(s1, scc), Operand(0xFFu), src);
2482 else {
2483 assert(src.regClass() == v1b);
2484 aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
2485 sdwa->operands[0] = Operand(src);
2486 sdwa->definitions[0] = Definition(dst);
2487 sdwa->sel[0] = sdwa_ubyte;
2488 sdwa->dst_sel = sdwa_uword;
2489 ctx->block->instructions.emplace_back(std::move(sdwa));
2490 }
2491 } else {
2492 Temp src = get_alu_src(ctx, instr->src[0]);
2493 /* we can actually just say dst = src */
2494 if (src.regClass() == s1)
2495 bld.copy(Definition(dst), src);
2496 else
2497 emit_extract_vector(ctx, src, 0, dst);
2498 }
2499 break;
2500 }
2501 case nir_op_i2i32: {
2502 Temp src = get_alu_src(ctx, instr->src[0]);
2503 if (instr->src[0].src.ssa->bit_size == 8) {
2504 if (dst.regClass() == s1) {
2505 bld.sop1(aco_opcode::s_sext_i32_i8, Definition(dst), Operand(src));
2506 } else {
2507 assert(src.regClass() == v1b);
2508 aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
2509 sdwa->operands[0] = Operand(src);
2510 sdwa->definitions[0] = Definition(dst);
2511 sdwa->sel[0] = sdwa_sbyte;
2512 sdwa->dst_sel = sdwa_sdword;
2513 ctx->block->instructions.emplace_back(std::move(sdwa));
2514 }
2515 } else if (instr->src[0].src.ssa->bit_size == 16) {
2516 if (dst.regClass() == s1) {
2517 bld.sop1(aco_opcode::s_sext_i32_i16, Definition(dst), Operand(src));
2518 } else {
2519 assert(src.regClass() == v2b);
2520 aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
2521 sdwa->operands[0] = Operand(src);
2522 sdwa->definitions[0] = Definition(dst);
2523 sdwa->sel[0] = sdwa_sword;
2524 sdwa->dst_sel = sdwa_udword;
2525 ctx->block->instructions.emplace_back(std::move(sdwa));
2526 }
2527 } else if (instr->src[0].src.ssa->bit_size == 64) {
2528 /* we can actually just say dst = src, as it would map the lower register */
2529 emit_extract_vector(ctx, src, 0, dst);
2530 } else {
2531 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2532 nir_print_instr(&instr->instr, stderr);
2533 fprintf(stderr, "\n");
2534 }
2535 break;
2536 }
2537 case nir_op_u2u32: {
2538 Temp src = get_alu_src(ctx, instr->src[0]);
2539 if (instr->src[0].src.ssa->bit_size == 8) {
2540 if (dst.regClass() == s1)
2541 bld.sop2(aco_opcode::s_and_b32, Definition(dst), bld.def(s1, scc), Operand(0xFFu), src);
2542 else {
2543 assert(src.regClass() == v1b);
2544 aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
2545 sdwa->operands[0] = Operand(src);
2546 sdwa->definitions[0] = Definition(dst);
2547 sdwa->sel[0] = sdwa_ubyte;
2548 sdwa->dst_sel = sdwa_udword;
2549 ctx->block->instructions.emplace_back(std::move(sdwa));
2550 }
2551 } else if (instr->src[0].src.ssa->bit_size == 16) {
2552 if (dst.regClass() == s1) {
2553 bld.sop2(aco_opcode::s_and_b32, Definition(dst), bld.def(s1, scc), Operand(0xFFFFu), src);
2554 } else {
2555 assert(src.regClass() == v2b);
2556 aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
2557 sdwa->operands[0] = Operand(src);
2558 sdwa->definitions[0] = Definition(dst);
2559 sdwa->sel[0] = sdwa_uword;
2560 sdwa->dst_sel = sdwa_udword;
2561 ctx->block->instructions.emplace_back(std::move(sdwa));
2562 }
2563 } else if (instr->src[0].src.ssa->bit_size == 64) {
2564 /* we can actually just say dst = src, as it would map the lower register */
2565 emit_extract_vector(ctx, src, 0, dst);
2566 } else {
2567 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2568 nir_print_instr(&instr->instr, stderr);
2569 fprintf(stderr, "\n");
2570 }
2571 break;
2572 }
2573 case nir_op_i2i64: {
2574 Temp src = get_alu_src(ctx, instr->src[0]);
2575 if (src.regClass() == s1) {
2576 Temp high = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
2577 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, high);
2578 } else if (src.regClass() == v1) {
2579 Temp high = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
2580 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, high);
2581 } else {
2582 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2583 nir_print_instr(&instr->instr, stderr);
2584 fprintf(stderr, "\n");
2585 }
2586 break;
2587 }
2588 case nir_op_u2u64: {
2589 Temp src = get_alu_src(ctx, instr->src[0]);
2590 if (instr->src[0].src.ssa->bit_size == 32) {
2591 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, Operand(0u));
2592 } else {
2593 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2594 nir_print_instr(&instr->instr, stderr);
2595 fprintf(stderr, "\n");
2596 }
2597 break;
2598 }
2599 case nir_op_b2b32:
2600 case nir_op_b2i32: {
2601 Temp src = get_alu_src(ctx, instr->src[0]);
2602 assert(src.regClass() == bld.lm);
2603
2604 if (dst.regClass() == s1) {
2605 // TODO: in a post-RA optimization, we can check if src is in VCC, and directly use VCCNZ
2606 bool_to_scalar_condition(ctx, src, dst);
2607 } else if (dst.regClass() == v1) {
2608 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), src);
2609 } else {
2610 unreachable("Invalid register class for b2i32");
2611 }
2612 break;
2613 }
2614 case nir_op_b2b1:
2615 case nir_op_i2b1: {
2616 Temp src = get_alu_src(ctx, instr->src[0]);
2617 assert(dst.regClass() == bld.lm);
2618
2619 if (src.type() == RegType::vgpr) {
2620 assert(src.regClass() == v1 || src.regClass() == v2);
2621 assert(dst.regClass() == bld.lm);
2622 bld.vopc(src.size() == 2 ? aco_opcode::v_cmp_lg_u64 : aco_opcode::v_cmp_lg_u32,
2623 Definition(dst), Operand(0u), src).def(0).setHint(vcc);
2624 } else {
2625 assert(src.regClass() == s1 || src.regClass() == s2);
2626 Temp tmp;
2627 if (src.regClass() == s2 && ctx->program->chip_class <= GFX7) {
2628 tmp = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), Operand(0u), src).def(1).getTemp();
2629 } else {
2630 tmp = bld.sopc(src.size() == 2 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::s_cmp_lg_u32,
2631 bld.scc(bld.def(s1)), Operand(0u), src);
2632 }
2633 bool_to_vector_condition(ctx, tmp, dst);
2634 }
2635 break;
2636 }
2637 case nir_op_pack_64_2x32_split: {
2638 Temp src0 = get_alu_src(ctx, instr->src[0]);
2639 Temp src1 = get_alu_src(ctx, instr->src[1]);
2640
2641 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
2642 break;
2643 }
2644 case nir_op_unpack_64_2x32_split_x:
2645 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
2646 break;
2647 case nir_op_unpack_64_2x32_split_y:
2648 bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
2649 break;
2650 case nir_op_unpack_32_2x16_split_x:
2651 if (dst.type() == RegType::vgpr) {
2652 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
2653 } else {
2654 bld.copy(Definition(dst), get_alu_src(ctx, instr->src[0]));
2655 }
2656 break;
2657 case nir_op_unpack_32_2x16_split_y:
2658 if (dst.type() == RegType::vgpr) {
2659 bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
2660 } else {
2661 bld.sop2(aco_opcode::s_bfe_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), Operand(uint32_t(16 << 16 | 16)));
2662 }
2663 break;
2664 case nir_op_pack_32_2x16_split: {
2665 Temp src0 = get_alu_src(ctx, instr->src[0]);
2666 Temp src1 = get_alu_src(ctx, instr->src[1]);
2667 if (dst.regClass() == v1) {
2668 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
2669 } else {
2670 src0 = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), src0, Operand(0xFFFFu));
2671 src1 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), src1, Operand(16u));
2672 bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), src0, src1);
2673 }
2674 break;
2675 }
2676 case nir_op_pack_half_2x16: {
2677 Temp src = get_alu_src(ctx, instr->src[0], 2);
2678
2679 if (dst.regClass() == v1) {
2680 Temp src0 = bld.tmp(v1);
2681 Temp src1 = bld.tmp(v1);
2682 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
2683 if (!ctx->block->fp_mode.care_about_round32 || ctx->block->fp_mode.round32 == fp_round_tz)
2684 bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, Definition(dst), src0, src1);
2685 else
2686 bld.vop3(aco_opcode::v_cvt_pk_u16_u32, Definition(dst),
2687 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src0),
2688 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src1));
2689 } else {
2690 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2691 nir_print_instr(&instr->instr, stderr);
2692 fprintf(stderr, "\n");
2693 }
2694 break;
2695 }
2696 case nir_op_unpack_half_2x16_split_x: {
2697 if (dst.regClass() == v1) {
2698 Builder bld(ctx->program, ctx->block);
2699 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst), get_alu_src(ctx, instr->src[0]));
2700 } else {
2701 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2702 nir_print_instr(&instr->instr, stderr);
2703 fprintf(stderr, "\n");
2704 }
2705 break;
2706 }
2707 case nir_op_unpack_half_2x16_split_y: {
2708 if (dst.regClass() == v1) {
2709 Builder bld(ctx->program, ctx->block);
2710 /* TODO: use SDWA here */
2711 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst),
2712 bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), as_vgpr(ctx, get_alu_src(ctx, instr->src[0]))));
2713 } else {
2714 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2715 nir_print_instr(&instr->instr, stderr);
2716 fprintf(stderr, "\n");
2717 }
2718 break;
2719 }
2720 case nir_op_fquantize2f16: {
2721 Temp src = get_alu_src(ctx, instr->src[0]);
2722 Temp f16 = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), src);
2723 Temp f32, cmp_res;
2724
2725 if (ctx->program->chip_class >= GFX8) {
2726 Temp mask = bld.copy(bld.def(s1), Operand(0x36Fu)); /* value is NOT negative/positive denormal value */
2727 cmp_res = bld.vopc_e64(aco_opcode::v_cmp_class_f16, bld.hint_vcc(bld.def(bld.lm)), f16, mask);
2728 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2729 } else {
2730 /* 0x38800000 is smallest half float value (2^-14) in 32-bit float,
2731 * so compare the result and flush to 0 if it's smaller.
2732 */
2733 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2734 Temp smallest = bld.copy(bld.def(s1), Operand(0x38800000u));
2735 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), f32, smallest);
2736 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
2737 cmp_res = vop3->definitions[0].getTemp();
2738 }
2739
2740 if (ctx->block->fp_mode.preserve_signed_zero_inf_nan32 || ctx->program->chip_class < GFX8) {
2741 Temp copysign_0 = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0u), as_vgpr(ctx, src));
2742 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), copysign_0, f32, cmp_res);
2743 } else {
2744 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), f32, cmp_res);
2745 }
2746 break;
2747 }
2748 case nir_op_bfm: {
2749 Temp bits = get_alu_src(ctx, instr->src[0]);
2750 Temp offset = get_alu_src(ctx, instr->src[1]);
2751
2752 if (dst.regClass() == s1) {
2753 bld.sop2(aco_opcode::s_bfm_b32, Definition(dst), bits, offset);
2754 } else if (dst.regClass() == v1) {
2755 bld.vop3(aco_opcode::v_bfm_b32, Definition(dst), bits, offset);
2756 } else {
2757 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2758 nir_print_instr(&instr->instr, stderr);
2759 fprintf(stderr, "\n");
2760 }
2761 break;
2762 }
2763 case nir_op_bitfield_select: {
2764 /* (mask & insert) | (~mask & base) */
2765 Temp bitmask = get_alu_src(ctx, instr->src[0]);
2766 Temp insert = get_alu_src(ctx, instr->src[1]);
2767 Temp base = get_alu_src(ctx, instr->src[2]);
2768
2769 /* dst = (insert & bitmask) | (base & ~bitmask) */
2770 if (dst.regClass() == s1) {
2771 aco_ptr<Instruction> sop2;
2772 nir_const_value* const_bitmask = nir_src_as_const_value(instr->src[0].src);
2773 nir_const_value* const_insert = nir_src_as_const_value(instr->src[1].src);
2774 Operand lhs;
2775 if (const_insert && const_bitmask) {
2776 lhs = Operand(const_insert->u32 & const_bitmask->u32);
2777 } else {
2778 insert = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), insert, bitmask);
2779 lhs = Operand(insert);
2780 }
2781
2782 Operand rhs;
2783 nir_const_value* const_base = nir_src_as_const_value(instr->src[2].src);
2784 if (const_base && const_bitmask) {
2785 rhs = Operand(const_base->u32 & ~const_bitmask->u32);
2786 } else {
2787 base = bld.sop2(aco_opcode::s_andn2_b32, bld.def(s1), bld.def(s1, scc), base, bitmask);
2788 rhs = Operand(base);
2789 }
2790
2791 bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), rhs, lhs);
2792
2793 } else if (dst.regClass() == v1) {
2794 if (base.type() == RegType::sgpr && (bitmask.type() == RegType::sgpr || (insert.type() == RegType::sgpr)))
2795 base = as_vgpr(ctx, base);
2796 if (insert.type() == RegType::sgpr && bitmask.type() == RegType::sgpr)
2797 insert = as_vgpr(ctx, insert);
2798
2799 bld.vop3(aco_opcode::v_bfi_b32, Definition(dst), bitmask, insert, base);
2800
2801 } else {
2802 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2803 nir_print_instr(&instr->instr, stderr);
2804 fprintf(stderr, "\n");
2805 }
2806 break;
2807 }
2808 case nir_op_ubfe:
2809 case nir_op_ibfe: {
2810 Temp base = get_alu_src(ctx, instr->src[0]);
2811 Temp offset = get_alu_src(ctx, instr->src[1]);
2812 Temp bits = get_alu_src(ctx, instr->src[2]);
2813
2814 if (dst.type() == RegType::sgpr) {
2815 Operand extract;
2816 nir_const_value* const_offset = nir_src_as_const_value(instr->src[1].src);
2817 nir_const_value* const_bits = nir_src_as_const_value(instr->src[2].src);
2818 if (const_offset && const_bits) {
2819 uint32_t const_extract = (const_bits->u32 << 16) | const_offset->u32;
2820 extract = Operand(const_extract);
2821 } else {
2822 Operand width;
2823 if (const_bits) {
2824 width = Operand(const_bits->u32 << 16);
2825 } else {
2826 width = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), bits, Operand(16u));
2827 }
2828 extract = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), offset, width);
2829 }
2830
2831 aco_opcode opcode;
2832 if (dst.regClass() == s1) {
2833 if (instr->op == nir_op_ubfe)
2834 opcode = aco_opcode::s_bfe_u32;
2835 else
2836 opcode = aco_opcode::s_bfe_i32;
2837 } else if (dst.regClass() == s2) {
2838 if (instr->op == nir_op_ubfe)
2839 opcode = aco_opcode::s_bfe_u64;
2840 else
2841 opcode = aco_opcode::s_bfe_i64;
2842 } else {
2843 unreachable("Unsupported BFE bit size");
2844 }
2845
2846 bld.sop2(opcode, Definition(dst), bld.def(s1, scc), base, extract);
2847
2848 } else {
2849 aco_opcode opcode;
2850 if (dst.regClass() == v1) {
2851 if (instr->op == nir_op_ubfe)
2852 opcode = aco_opcode::v_bfe_u32;
2853 else
2854 opcode = aco_opcode::v_bfe_i32;
2855 } else {
2856 unreachable("Unsupported BFE bit size");
2857 }
2858
2859 emit_vop3a_instruction(ctx, instr, opcode, dst);
2860 }
2861 break;
2862 }
2863 case nir_op_bit_count: {
2864 Temp src = get_alu_src(ctx, instr->src[0]);
2865 if (src.regClass() == s1) {
2866 bld.sop1(aco_opcode::s_bcnt1_i32_b32, Definition(dst), bld.def(s1, scc), src);
2867 } else if (src.regClass() == v1) {
2868 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst), src, Operand(0u));
2869 } else if (src.regClass() == v2) {
2870 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst),
2871 emit_extract_vector(ctx, src, 1, v1),
2872 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1),
2873 emit_extract_vector(ctx, src, 0, v1), Operand(0u)));
2874 } else if (src.regClass() == s2) {
2875 bld.sop1(aco_opcode::s_bcnt1_i32_b64, Definition(dst), bld.def(s1, scc), src);
2876 } else {
2877 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2878 nir_print_instr(&instr->instr, stderr);
2879 fprintf(stderr, "\n");
2880 }
2881 break;
2882 }
2883 case nir_op_flt: {
2884 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_f32, aco_opcode::v_cmp_lt_f64);
2885 break;
2886 }
2887 case nir_op_fge: {
2888 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_f32, aco_opcode::v_cmp_ge_f64);
2889 break;
2890 }
2891 case nir_op_feq: {
2892 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_f32, aco_opcode::v_cmp_eq_f64);
2893 break;
2894 }
2895 case nir_op_fne: {
2896 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_neq_f32, aco_opcode::v_cmp_neq_f64);
2897 break;
2898 }
2899 case nir_op_ilt: {
2900 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_i32, aco_opcode::v_cmp_lt_i64, aco_opcode::s_cmp_lt_i32);
2901 break;
2902 }
2903 case nir_op_ige: {
2904 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_i32, aco_opcode::v_cmp_ge_i64, aco_opcode::s_cmp_ge_i32);
2905 break;
2906 }
2907 case nir_op_ieq: {
2908 if (instr->src[0].src.ssa->bit_size == 1)
2909 emit_boolean_logic(ctx, instr, Builder::s_xnor, dst);
2910 else
2911 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_i32, aco_opcode::v_cmp_eq_i64, aco_opcode::s_cmp_eq_i32,
2912 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_eq_u64 : aco_opcode::num_opcodes);
2913 break;
2914 }
2915 case nir_op_ine: {
2916 if (instr->src[0].src.ssa->bit_size == 1)
2917 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
2918 else
2919 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lg_i32, aco_opcode::v_cmp_lg_i64, aco_opcode::s_cmp_lg_i32,
2920 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::num_opcodes);
2921 break;
2922 }
2923 case nir_op_ult: {
2924 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_u32, aco_opcode::v_cmp_lt_u64, aco_opcode::s_cmp_lt_u32);
2925 break;
2926 }
2927 case nir_op_uge: {
2928 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_u32, aco_opcode::v_cmp_ge_u64, aco_opcode::s_cmp_ge_u32);
2929 break;
2930 }
2931 case nir_op_fddx:
2932 case nir_op_fddy:
2933 case nir_op_fddx_fine:
2934 case nir_op_fddy_fine:
2935 case nir_op_fddx_coarse:
2936 case nir_op_fddy_coarse: {
2937 Temp src = get_alu_src(ctx, instr->src[0]);
2938 uint16_t dpp_ctrl1, dpp_ctrl2;
2939 if (instr->op == nir_op_fddx_fine) {
2940 dpp_ctrl1 = dpp_quad_perm(0, 0, 2, 2);
2941 dpp_ctrl2 = dpp_quad_perm(1, 1, 3, 3);
2942 } else if (instr->op == nir_op_fddy_fine) {
2943 dpp_ctrl1 = dpp_quad_perm(0, 1, 0, 1);
2944 dpp_ctrl2 = dpp_quad_perm(2, 3, 2, 3);
2945 } else {
2946 dpp_ctrl1 = dpp_quad_perm(0, 0, 0, 0);
2947 if (instr->op == nir_op_fddx || instr->op == nir_op_fddx_coarse)
2948 dpp_ctrl2 = dpp_quad_perm(1, 1, 1, 1);
2949 else
2950 dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
2951 }
2952
2953 Temp tmp;
2954 if (ctx->program->chip_class >= GFX8) {
2955 Temp tl = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl1);
2956 tmp = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), src, tl, dpp_ctrl2);
2957 } else {
2958 Temp tl = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl1);
2959 Temp tr = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl2);
2960 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), tr, tl);
2961 }
2962 emit_wqm(ctx, tmp, dst, true);
2963 break;
2964 }
2965 default:
2966 fprintf(stderr, "Unknown NIR ALU instr: ");
2967 nir_print_instr(&instr->instr, stderr);
2968 fprintf(stderr, "\n");
2969 }
2970 }
2971
2972 void visit_load_const(isel_context *ctx, nir_load_const_instr *instr)
2973 {
2974 Temp dst = get_ssa_temp(ctx, &instr->def);
2975
2976 // TODO: we really want to have the resulting type as this would allow for 64bit literals
2977 // which get truncated the lsb if double and msb if int
2978 // for now, we only use s_mov_b64 with 64bit inline constants
2979 assert(instr->def.num_components == 1 && "Vector load_const should be lowered to scalar.");
2980 assert(dst.type() == RegType::sgpr);
2981
2982 Builder bld(ctx->program, ctx->block);
2983
2984 if (instr->def.bit_size == 1) {
2985 assert(dst.regClass() == bld.lm);
2986 int val = instr->value[0].b ? -1 : 0;
2987 Operand op = bld.lm.size() == 1 ? Operand((uint32_t) val) : Operand((uint64_t) val);
2988 bld.sop1(Builder::s_mov, Definition(dst), op);
2989 } else if (dst.size() == 1) {
2990 bld.copy(Definition(dst), Operand(instr->value[0].u32));
2991 } else {
2992 assert(dst.size() != 1);
2993 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
2994 if (instr->def.bit_size == 64)
2995 for (unsigned i = 0; i < dst.size(); i++)
2996 vec->operands[i] = Operand{(uint32_t)(instr->value[0].u64 >> i * 32)};
2997 else {
2998 for (unsigned i = 0; i < dst.size(); i++)
2999 vec->operands[i] = Operand{instr->value[i].u32};
3000 }
3001 vec->definitions[0] = Definition(dst);
3002 ctx->block->instructions.emplace_back(std::move(vec));
3003 }
3004 }
3005
3006 uint32_t widen_mask(uint32_t mask, unsigned multiplier)
3007 {
3008 uint32_t new_mask = 0;
3009 for(unsigned i = 0; i < 32 && (1u << i) <= mask; ++i)
3010 if (mask & (1u << i))
3011 new_mask |= ((1u << multiplier) - 1u) << (i * multiplier);
3012 return new_mask;
3013 }
3014
3015 Operand load_lds_size_m0(isel_context *ctx)
3016 {
3017 /* TODO: m0 does not need to be initialized on GFX9+ */
3018 Builder bld(ctx->program, ctx->block);
3019 return bld.m0((Temp)bld.sopk(aco_opcode::s_movk_i32, bld.def(s1, m0), 0xffff));
3020 }
3021
3022 Temp load_lds(isel_context *ctx, unsigned elem_size_bytes, Temp dst,
3023 Temp address, unsigned base_offset, unsigned align)
3024 {
3025 assert(util_is_power_of_two_nonzero(align) && align >= 4);
3026
3027 Builder bld(ctx->program, ctx->block);
3028
3029 Operand m = load_lds_size_m0(ctx);
3030
3031 unsigned num_components = dst.size() * 4u / elem_size_bytes;
3032 unsigned bytes_read = 0;
3033 unsigned result_size = 0;
3034 unsigned total_bytes = num_components * elem_size_bytes;
3035 std::array<Temp, NIR_MAX_VEC_COMPONENTS> result;
3036 bool large_ds_read = ctx->options->chip_class >= GFX7;
3037 bool usable_read2 = ctx->options->chip_class >= GFX7;
3038
3039 while (bytes_read < total_bytes) {
3040 unsigned todo = total_bytes - bytes_read;
3041 bool aligned8 = bytes_read % 8 == 0 && align % 8 == 0;
3042 bool aligned16 = bytes_read % 16 == 0 && align % 16 == 0;
3043
3044 aco_opcode op = aco_opcode::last_opcode;
3045 bool read2 = false;
3046 if (todo >= 16 && aligned16 && large_ds_read) {
3047 op = aco_opcode::ds_read_b128;
3048 todo = 16;
3049 } else if (todo >= 16 && aligned8 && usable_read2) {
3050 op = aco_opcode::ds_read2_b64;
3051 read2 = true;
3052 todo = 16;
3053 } else if (todo >= 12 && aligned16 && large_ds_read) {
3054 op = aco_opcode::ds_read_b96;
3055 todo = 12;
3056 } else if (todo >= 8 && aligned8) {
3057 op = aco_opcode::ds_read_b64;
3058 todo = 8;
3059 } else if (todo >= 8 && usable_read2) {
3060 op = aco_opcode::ds_read2_b32;
3061 read2 = true;
3062 todo = 8;
3063 } else if (todo >= 4) {
3064 op = aco_opcode::ds_read_b32;
3065 todo = 4;
3066 } else {
3067 assert(false);
3068 }
3069 assert(todo % elem_size_bytes == 0);
3070 unsigned num_elements = todo / elem_size_bytes;
3071 unsigned offset = base_offset + bytes_read;
3072 unsigned max_offset = read2 ? 1019 : 65535;
3073
3074 Temp address_offset = address;
3075 if (offset > max_offset) {
3076 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
3077 offset = bytes_read;
3078 }
3079 assert(offset <= max_offset); /* bytes_read shouldn't be large enough for this to happen */
3080
3081 Temp res;
3082 if (num_components == 1 && dst.type() == RegType::vgpr)
3083 res = dst;
3084 else
3085 res = bld.tmp(RegClass(RegType::vgpr, todo / 4));
3086
3087 if (read2)
3088 res = bld.ds(op, Definition(res), address_offset, m, offset / (todo / 2), (offset / (todo / 2)) + 1);
3089 else
3090 res = bld.ds(op, Definition(res), address_offset, m, offset);
3091
3092 if (num_components == 1) {
3093 assert(todo == total_bytes);
3094 if (dst.type() == RegType::sgpr)
3095 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), res);
3096 return dst;
3097 }
3098
3099 if (dst.type() == RegType::sgpr) {
3100 Temp new_res = bld.tmp(RegType::sgpr, res.size());
3101 expand_vector(ctx, res, new_res, res.size(), (1 << res.size()) - 1);
3102 res = new_res;
3103 }
3104
3105 if (num_elements == 1) {
3106 result[result_size++] = res;
3107 } else {
3108 assert(res != dst && res.size() % num_elements == 0);
3109 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_elements)};
3110 split->operands[0] = Operand(res);
3111 for (unsigned i = 0; i < num_elements; i++)
3112 split->definitions[i] = Definition(result[result_size++] = bld.tmp(res.type(), elem_size_bytes / 4));
3113 ctx->block->instructions.emplace_back(std::move(split));
3114 }
3115
3116 bytes_read += todo;
3117 }
3118
3119 assert(result_size == num_components && result_size > 1);
3120 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, result_size, 1)};
3121 for (unsigned i = 0; i < result_size; i++)
3122 vec->operands[i] = Operand(result[i]);
3123 vec->definitions[0] = Definition(dst);
3124 ctx->block->instructions.emplace_back(std::move(vec));
3125 ctx->allocated_vec.emplace(dst.id(), result);
3126
3127 return dst;
3128 }
3129
3130 Temp extract_subvector(isel_context *ctx, Temp data, unsigned start, unsigned size, RegType type)
3131 {
3132 if (start == 0 && size == data.size())
3133 return type == RegType::vgpr ? as_vgpr(ctx, data) : data;
3134
3135 unsigned size_hint = 1;
3136 auto it = ctx->allocated_vec.find(data.id());
3137 if (it != ctx->allocated_vec.end())
3138 size_hint = it->second[0].size();
3139 if (size % size_hint || start % size_hint)
3140 size_hint = 1;
3141
3142 start /= size_hint;
3143 size /= size_hint;
3144
3145 Temp elems[size];
3146 for (unsigned i = 0; i < size; i++)
3147 elems[i] = emit_extract_vector(ctx, data, start + i, RegClass(type, size_hint));
3148
3149 if (size == 1)
3150 return type == RegType::vgpr ? as_vgpr(ctx, elems[0]) : elems[0];
3151
3152 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
3153 for (unsigned i = 0; i < size; i++)
3154 vec->operands[i] = Operand(elems[i]);
3155 Temp res = {ctx->program->allocateId(), RegClass(type, size * size_hint)};
3156 vec->definitions[0] = Definition(res);
3157 ctx->block->instructions.emplace_back(std::move(vec));
3158 return res;
3159 }
3160
3161 void ds_write_helper(isel_context *ctx, Operand m, Temp address, Temp data, unsigned data_start, unsigned total_size, unsigned offset0, unsigned offset1, unsigned align)
3162 {
3163 Builder bld(ctx->program, ctx->block);
3164 unsigned bytes_written = 0;
3165 bool large_ds_write = ctx->options->chip_class >= GFX7;
3166 bool usable_write2 = ctx->options->chip_class >= GFX7;
3167
3168 while (bytes_written < total_size * 4) {
3169 unsigned todo = total_size * 4 - bytes_written;
3170 bool aligned8 = bytes_written % 8 == 0 && align % 8 == 0;
3171 bool aligned16 = bytes_written % 16 == 0 && align % 16 == 0;
3172
3173 aco_opcode op = aco_opcode::last_opcode;
3174 bool write2 = false;
3175 unsigned size = 0;
3176 if (todo >= 16 && aligned16 && large_ds_write) {
3177 op = aco_opcode::ds_write_b128;
3178 size = 4;
3179 } else if (todo >= 16 && aligned8 && usable_write2) {
3180 op = aco_opcode::ds_write2_b64;
3181 write2 = true;
3182 size = 4;
3183 } else if (todo >= 12 && aligned16 && large_ds_write) {
3184 op = aco_opcode::ds_write_b96;
3185 size = 3;
3186 } else if (todo >= 8 && aligned8) {
3187 op = aco_opcode::ds_write_b64;
3188 size = 2;
3189 } else if (todo >= 8 && usable_write2) {
3190 op = aco_opcode::ds_write2_b32;
3191 write2 = true;
3192 size = 2;
3193 } else if (todo >= 4) {
3194 op = aco_opcode::ds_write_b32;
3195 size = 1;
3196 } else {
3197 assert(false);
3198 }
3199
3200 unsigned offset = offset0 + offset1 + bytes_written;
3201 unsigned max_offset = write2 ? 1020 : 65535;
3202 Temp address_offset = address;
3203 if (offset > max_offset) {
3204 address_offset = bld.vadd32(bld.def(v1), Operand(offset0), address_offset);
3205 offset = offset1 + bytes_written;
3206 }
3207 assert(offset <= max_offset); /* offset1 shouldn't be large enough for this to happen */
3208
3209 if (write2) {
3210 Temp val0 = extract_subvector(ctx, data, data_start + (bytes_written >> 2), size / 2, RegType::vgpr);
3211 Temp val1 = extract_subvector(ctx, data, data_start + (bytes_written >> 2) + 1, size / 2, RegType::vgpr);
3212 bld.ds(op, address_offset, val0, val1, m, offset / size / 2, (offset / size / 2) + 1);
3213 } else {
3214 Temp val = extract_subvector(ctx, data, data_start + (bytes_written >> 2), size, RegType::vgpr);
3215 bld.ds(op, address_offset, val, m, offset);
3216 }
3217
3218 bytes_written += size * 4;
3219 }
3220 }
3221
3222 void store_lds(isel_context *ctx, unsigned elem_size_bytes, Temp data, uint32_t wrmask,
3223 Temp address, unsigned base_offset, unsigned align)
3224 {
3225 assert(util_is_power_of_two_nonzero(align) && align >= 4);
3226 assert(elem_size_bytes == 4 || elem_size_bytes == 8);
3227
3228 Operand m = load_lds_size_m0(ctx);
3229
3230 /* we need at most two stores, assuming that the writemask is at most 4 bits wide */
3231 assert(wrmask <= 0x0f);
3232 int start[2], count[2];
3233 u_bit_scan_consecutive_range(&wrmask, &start[0], &count[0]);
3234 u_bit_scan_consecutive_range(&wrmask, &start[1], &count[1]);
3235 assert(wrmask == 0);
3236
3237 /* one combined store is sufficient */
3238 if (count[0] == count[1] && (align % elem_size_bytes) == 0 && (base_offset % elem_size_bytes) == 0) {
3239 Builder bld(ctx->program, ctx->block);
3240
3241 Temp address_offset = address;
3242 if ((base_offset / elem_size_bytes) + start[1] > 255) {
3243 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
3244 base_offset = 0;
3245 }
3246
3247 assert(count[0] == 1);
3248 RegClass xtract_rc(RegType::vgpr, elem_size_bytes / 4);
3249
3250 Temp val0 = emit_extract_vector(ctx, data, start[0], xtract_rc);
3251 Temp val1 = emit_extract_vector(ctx, data, start[1], xtract_rc);
3252 aco_opcode op = elem_size_bytes == 4 ? aco_opcode::ds_write2_b32 : aco_opcode::ds_write2_b64;
3253 base_offset = base_offset / elem_size_bytes;
3254 bld.ds(op, address_offset, val0, val1, m,
3255 base_offset + start[0], base_offset + start[1]);
3256 return;
3257 }
3258
3259 for (unsigned i = 0; i < 2; i++) {
3260 if (count[i] == 0)
3261 continue;
3262
3263 unsigned elem_size_words = elem_size_bytes / 4;
3264 ds_write_helper(ctx, m, address, data, start[i] * elem_size_words, count[i] * elem_size_words,
3265 base_offset, start[i] * elem_size_bytes, align);
3266 }
3267 return;
3268 }
3269
3270 unsigned calculate_lds_alignment(isel_context *ctx, unsigned const_offset)
3271 {
3272 unsigned align = 16;
3273 if (const_offset)
3274 align = std::min(align, 1u << (ffs(const_offset) - 1));
3275
3276 return align;
3277 }
3278
3279
3280 Temp create_vec_from_array(isel_context *ctx, Temp arr[], unsigned cnt, RegType reg_type, unsigned elem_size_bytes,
3281 unsigned split_cnt = 0u, Temp dst = Temp())
3282 {
3283 Builder bld(ctx->program, ctx->block);
3284 unsigned dword_size = elem_size_bytes / 4;
3285
3286 if (!dst.id())
3287 dst = bld.tmp(RegClass(reg_type, cnt * dword_size));
3288
3289 std::array<Temp, NIR_MAX_VEC_COMPONENTS> allocated_vec;
3290 aco_ptr<Pseudo_instruction> instr {create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, cnt, 1)};
3291 instr->definitions[0] = Definition(dst);
3292
3293 for (unsigned i = 0; i < cnt; ++i) {
3294 if (arr[i].id()) {
3295 assert(arr[i].size() == dword_size);
3296 allocated_vec[i] = arr[i];
3297 instr->operands[i] = Operand(arr[i]);
3298 } else {
3299 Temp zero = bld.copy(bld.def(RegClass(reg_type, dword_size)), Operand(0u, dword_size == 2));
3300 allocated_vec[i] = zero;
3301 instr->operands[i] = Operand(zero);
3302 }
3303 }
3304
3305 bld.insert(std::move(instr));
3306
3307 if (split_cnt)
3308 emit_split_vector(ctx, dst, split_cnt);
3309 else
3310 ctx->allocated_vec.emplace(dst.id(), allocated_vec); /* emit_split_vector already does this */
3311
3312 return dst;
3313 }
3314
3315 inline unsigned resolve_excess_vmem_const_offset(Builder &bld, Temp &voffset, unsigned const_offset)
3316 {
3317 if (const_offset >= 4096) {
3318 unsigned excess_const_offset = const_offset / 4096u * 4096u;
3319 const_offset %= 4096u;
3320
3321 if (!voffset.id())
3322 voffset = bld.copy(bld.def(v1), Operand(excess_const_offset));
3323 else if (unlikely(voffset.regClass() == s1))
3324 voffset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), Operand(excess_const_offset), Operand(voffset));
3325 else if (likely(voffset.regClass() == v1))
3326 voffset = bld.vadd32(bld.def(v1), Operand(voffset), Operand(excess_const_offset));
3327 else
3328 unreachable("Unsupported register class of voffset");
3329 }
3330
3331 return const_offset;
3332 }
3333
3334 void emit_single_mubuf_store(isel_context *ctx, Temp descriptor, Temp voffset, Temp soffset, Temp vdata,
3335 unsigned const_offset = 0u, bool allow_reorder = true, bool slc = false)
3336 {
3337 assert(vdata.id());
3338 assert(vdata.size() != 3 || ctx->program->chip_class != GFX6);
3339 assert(vdata.size() >= 1 && vdata.size() <= 4);
3340
3341 Builder bld(ctx->program, ctx->block);
3342 aco_opcode op = (aco_opcode) ((unsigned) aco_opcode::buffer_store_dword + vdata.size() - 1);
3343 const_offset = resolve_excess_vmem_const_offset(bld, voffset, const_offset);
3344
3345 Operand voffset_op = voffset.id() ? Operand(as_vgpr(ctx, voffset)) : Operand(v1);
3346 Operand soffset_op = soffset.id() ? Operand(soffset) : Operand(0u);
3347 Builder::Result r = bld.mubuf(op, Operand(descriptor), voffset_op, soffset_op, Operand(vdata), const_offset,
3348 /* offen */ !voffset_op.isUndefined(), /* idxen*/ false, /* addr64 */ false,
3349 /* disable_wqm */ false, /* glc */ true, /* dlc*/ false, /* slc */ slc);
3350
3351 static_cast<MUBUF_instruction *>(r.instr)->can_reorder = allow_reorder;
3352 }
3353
3354 void store_vmem_mubuf(isel_context *ctx, Temp src, Temp descriptor, Temp voffset, Temp soffset,
3355 unsigned base_const_offset, unsigned elem_size_bytes, unsigned write_mask,
3356 bool allow_combining = true, bool reorder = true, bool slc = false)
3357 {
3358 Builder bld(ctx->program, ctx->block);
3359 assert(elem_size_bytes == 4 || elem_size_bytes == 8);
3360 assert(write_mask);
3361
3362 if (elem_size_bytes == 8) {
3363 elem_size_bytes = 4;
3364 write_mask = widen_mask(write_mask, 2);
3365 }
3366
3367 while (write_mask) {
3368 int start = 0;
3369 int count = 0;
3370 u_bit_scan_consecutive_range(&write_mask, &start, &count);
3371 assert(count > 0);
3372 assert(start >= 0);
3373
3374 while (count > 0) {
3375 unsigned sub_count = allow_combining ? MIN2(count, 4) : 1;
3376 unsigned const_offset = (unsigned) start * elem_size_bytes + base_const_offset;
3377
3378 /* GFX6 doesn't have buffer_store_dwordx3, so make sure not to emit that here either. */
3379 if (unlikely(ctx->program->chip_class == GFX6 && sub_count == 3))
3380 sub_count = 2;
3381
3382 Temp elem = extract_subvector(ctx, src, start, sub_count, RegType::vgpr);
3383 emit_single_mubuf_store(ctx, descriptor, voffset, soffset, elem, const_offset, reorder, slc);
3384
3385 count -= sub_count;
3386 start += sub_count;
3387 }
3388
3389 assert(count == 0);
3390 }
3391 }
3392
3393 Temp emit_single_mubuf_load(isel_context *ctx, Temp descriptor, Temp voffset, Temp soffset,
3394 unsigned const_offset, unsigned size_dwords, bool allow_reorder = true)
3395 {
3396 assert(size_dwords != 3 || ctx->program->chip_class != GFX6);
3397 assert(size_dwords >= 1 && size_dwords <= 4);
3398
3399 Builder bld(ctx->program, ctx->block);
3400 Temp vdata = bld.tmp(RegClass(RegType::vgpr, size_dwords));
3401 aco_opcode op = (aco_opcode) ((unsigned) aco_opcode::buffer_load_dword + size_dwords - 1);
3402 const_offset = resolve_excess_vmem_const_offset(bld, voffset, const_offset);
3403
3404 Operand voffset_op = voffset.id() ? Operand(as_vgpr(ctx, voffset)) : Operand(v1);
3405 Operand soffset_op = soffset.id() ? Operand(soffset) : Operand(0u);
3406 Builder::Result r = bld.mubuf(op, Definition(vdata), Operand(descriptor), voffset_op, soffset_op, const_offset,
3407 /* offen */ !voffset_op.isUndefined(), /* idxen*/ false, /* addr64 */ false,
3408 /* disable_wqm */ false, /* glc */ true,
3409 /* dlc*/ ctx->program->chip_class >= GFX10, /* slc */ false);
3410
3411 static_cast<MUBUF_instruction *>(r.instr)->can_reorder = allow_reorder;
3412
3413 return vdata;
3414 }
3415
3416 void load_vmem_mubuf(isel_context *ctx, Temp dst, Temp descriptor, Temp voffset, Temp soffset,
3417 unsigned base_const_offset, unsigned elem_size_bytes, unsigned num_components,
3418 unsigned stride = 0u, bool allow_combining = true, bool allow_reorder = true)
3419 {
3420 assert(elem_size_bytes == 4 || elem_size_bytes == 8);
3421 assert((num_components * elem_size_bytes / 4) == dst.size());
3422 assert(!!stride != allow_combining);
3423
3424 Builder bld(ctx->program, ctx->block);
3425 unsigned split_cnt = num_components;
3426
3427 if (elem_size_bytes == 8) {
3428 elem_size_bytes = 4;
3429 num_components *= 2;
3430 }
3431
3432 if (!stride)
3433 stride = elem_size_bytes;
3434
3435 unsigned load_size = 1;
3436 if (allow_combining) {
3437 if ((num_components % 4) == 0)
3438 load_size = 4;
3439 else if ((num_components % 3) == 0 && ctx->program->chip_class != GFX6)
3440 load_size = 3;
3441 else if ((num_components % 2) == 0)
3442 load_size = 2;
3443 }
3444
3445 unsigned num_loads = num_components / load_size;
3446 std::array<Temp, NIR_MAX_VEC_COMPONENTS> elems;
3447
3448 for (unsigned i = 0; i < num_loads; ++i) {
3449 unsigned const_offset = i * stride * load_size + base_const_offset;
3450 elems[i] = emit_single_mubuf_load(ctx, descriptor, voffset, soffset, const_offset, load_size, allow_reorder);
3451 }
3452
3453 create_vec_from_array(ctx, elems.data(), num_loads, RegType::vgpr, load_size * 4u, split_cnt, dst);
3454 }
3455
3456 std::pair<Temp, unsigned> offset_add_from_nir(isel_context *ctx, const std::pair<Temp, unsigned> &base_offset, nir_src *off_src, unsigned stride = 1u)
3457 {
3458 Builder bld(ctx->program, ctx->block);
3459 Temp offset = base_offset.first;
3460 unsigned const_offset = base_offset.second;
3461
3462 if (!nir_src_is_const(*off_src)) {
3463 Temp indirect_offset_arg = get_ssa_temp(ctx, off_src->ssa);
3464 Temp with_stride;
3465
3466 /* Calculate indirect offset with stride */
3467 if (likely(indirect_offset_arg.regClass() == v1))
3468 with_stride = bld.v_mul_imm(bld.def(v1), indirect_offset_arg, stride);
3469 else if (indirect_offset_arg.regClass() == s1)
3470 with_stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), indirect_offset_arg);
3471 else
3472 unreachable("Unsupported register class of indirect offset");
3473
3474 /* Add to the supplied base offset */
3475 if (offset.id() == 0)
3476 offset = with_stride;
3477 else if (unlikely(offset.regClass() == s1 && with_stride.regClass() == s1))
3478 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), with_stride, offset);
3479 else if (offset.size() == 1 && with_stride.size() == 1)
3480 offset = bld.vadd32(bld.def(v1), with_stride, offset);
3481 else
3482 unreachable("Unsupported register class of indirect offset");
3483 } else {
3484 unsigned const_offset_arg = nir_src_as_uint(*off_src);
3485 const_offset += const_offset_arg * stride;
3486 }
3487
3488 return std::make_pair(offset, const_offset);
3489 }
3490
3491 std::pair<Temp, unsigned> offset_add(isel_context *ctx, const std::pair<Temp, unsigned> &off1, const std::pair<Temp, unsigned> &off2)
3492 {
3493 Builder bld(ctx->program, ctx->block);
3494 Temp offset;
3495
3496 if (off1.first.id() && off2.first.id()) {
3497 if (unlikely(off1.first.regClass() == s1 && off2.first.regClass() == s1))
3498 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), off1.first, off2.first);
3499 else if (off1.first.size() == 1 && off2.first.size() == 1)
3500 offset = bld.vadd32(bld.def(v1), off1.first, off2.first);
3501 else
3502 unreachable("Unsupported register class of indirect offset");
3503 } else {
3504 offset = off1.first.id() ? off1.first : off2.first;
3505 }
3506
3507 return std::make_pair(offset, off1.second + off2.second);
3508 }
3509
3510 std::pair<Temp, unsigned> offset_mul(isel_context *ctx, const std::pair<Temp, unsigned> &offs, unsigned multiplier)
3511 {
3512 Builder bld(ctx->program, ctx->block);
3513 unsigned const_offset = offs.second * multiplier;
3514
3515 if (!offs.first.id())
3516 return std::make_pair(offs.first, const_offset);
3517
3518 Temp offset = unlikely(offs.first.regClass() == s1)
3519 ? bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(multiplier), offs.first)
3520 : bld.v_mul_imm(bld.def(v1), offs.first, multiplier);
3521
3522 return std::make_pair(offset, const_offset);
3523 }
3524
3525 std::pair<Temp, unsigned> get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned base_stride, unsigned component_stride)
3526 {
3527 Builder bld(ctx->program, ctx->block);
3528
3529 /* base is the driver_location, which is already multiplied by 4, so is in dwords */
3530 unsigned const_offset = nir_intrinsic_base(instr) * base_stride;
3531 /* component is in bytes */
3532 const_offset += nir_intrinsic_component(instr) * component_stride;
3533
3534 /* offset should be interpreted in relation to the base, so the instruction effectively reads/writes another input/output when it has an offset */
3535 nir_src *off_src = nir_get_io_offset_src(instr);
3536 return offset_add_from_nir(ctx, std::make_pair(Temp(), const_offset), off_src, 4u * base_stride);
3537 }
3538
3539 std::pair<Temp, unsigned> get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned stride = 1u)
3540 {
3541 return get_intrinsic_io_basic_offset(ctx, instr, stride, stride);
3542 }
3543
3544 Temp get_tess_rel_patch_id(isel_context *ctx)
3545 {
3546 Builder bld(ctx->program, ctx->block);
3547
3548 switch (ctx->shader->info.stage) {
3549 case MESA_SHADER_TESS_CTRL:
3550 return bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffu),
3551 get_arg(ctx, ctx->args->ac.tcs_rel_ids));
3552 case MESA_SHADER_TESS_EVAL:
3553 return get_arg(ctx, ctx->args->tes_rel_patch_id);
3554 default:
3555 unreachable("Unsupported stage in get_tess_rel_patch_id");
3556 }
3557 }
3558
3559 std::pair<Temp, unsigned> get_tcs_per_vertex_input_lds_offset(isel_context *ctx, nir_intrinsic_instr *instr)
3560 {
3561 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3562 Builder bld(ctx->program, ctx->block);
3563
3564 uint32_t tcs_in_patch_stride = ctx->args->options->key.tcs.input_vertices * ctx->tcs_num_inputs * 4;
3565 uint32_t tcs_in_vertex_stride = ctx->tcs_num_inputs * 4;
3566
3567 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr);
3568
3569 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
3570 offs = offset_add_from_nir(ctx, offs, vertex_index_src, tcs_in_vertex_stride);
3571
3572 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3573 Temp tcs_in_current_patch_offset = bld.v_mul24_imm(bld.def(v1), rel_patch_id, tcs_in_patch_stride);
3574 offs = offset_add(ctx, offs, std::make_pair(tcs_in_current_patch_offset, 0));
3575
3576 return offset_mul(ctx, offs, 4u);
3577 }
3578
3579 std::pair<Temp, unsigned> get_tcs_output_lds_offset(isel_context *ctx, nir_intrinsic_instr *instr = nullptr, bool per_vertex = false)
3580 {
3581 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3582 Builder bld(ctx->program, ctx->block);
3583
3584 uint32_t input_patch_size = ctx->args->options->key.tcs.input_vertices * ctx->tcs_num_inputs * 16;
3585 uint32_t num_tcs_outputs = util_last_bit64(ctx->args->shader_info->tcs.outputs_written);
3586 uint32_t num_tcs_patch_outputs = util_last_bit64(ctx->args->shader_info->tcs.patch_outputs_written);
3587 uint32_t output_vertex_size = num_tcs_outputs * 16;
3588 uint32_t pervertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
3589 uint32_t output_patch_stride = pervertex_output_patch_size + num_tcs_patch_outputs * 16;
3590
3591 std::pair<Temp, unsigned> offs = instr
3592 ? get_intrinsic_io_basic_offset(ctx, instr, 4u)
3593 : std::make_pair(Temp(), 0u);
3594
3595 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3596 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, output_patch_stride);
3597
3598 if (per_vertex) {
3599 assert(instr);
3600
3601 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
3602 offs = offset_add_from_nir(ctx, offs, vertex_index_src, output_vertex_size);
3603
3604 uint32_t output_patch0_offset = (input_patch_size * ctx->tcs_num_patches);
3605 offs = offset_add(ctx, offs, std::make_pair(patch_off, output_patch0_offset));
3606 } else {
3607 uint32_t output_patch0_patch_data_offset = (input_patch_size * ctx->tcs_num_patches + pervertex_output_patch_size);
3608 offs = offset_add(ctx, offs, std::make_pair(patch_off, output_patch0_patch_data_offset));
3609 }
3610
3611 return offs;
3612 }
3613
3614 std::pair<Temp, unsigned> get_tcs_per_vertex_output_vmem_offset(isel_context *ctx, nir_intrinsic_instr *instr)
3615 {
3616 Builder bld(ctx->program, ctx->block);
3617
3618 unsigned vertices_per_patch = ctx->shader->info.tess.tcs_vertices_out;
3619 unsigned attr_stride = vertices_per_patch * ctx->tcs_num_patches;
3620
3621 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, attr_stride * 4u, 4u);
3622
3623 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3624 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, vertices_per_patch * 16u);
3625 offs = offset_add(ctx, offs, std::make_pair(patch_off, 0u));
3626
3627 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
3628 offs = offset_add_from_nir(ctx, offs, vertex_index_src, 16u);
3629
3630 return offs;
3631 }
3632
3633 std::pair<Temp, unsigned> get_tcs_per_patch_output_vmem_offset(isel_context *ctx, nir_intrinsic_instr *instr = nullptr, unsigned const_base_offset = 0u)
3634 {
3635 Builder bld(ctx->program, ctx->block);
3636
3637 unsigned num_tcs_outputs = ctx->shader->info.stage == MESA_SHADER_TESS_CTRL
3638 ? util_last_bit64(ctx->args->shader_info->tcs.outputs_written)
3639 : ctx->args->options->key.tes.tcs_num_outputs;
3640
3641 unsigned output_vertex_size = num_tcs_outputs * 16;
3642 unsigned per_vertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
3643 unsigned per_patch_data_offset = per_vertex_output_patch_size * ctx->tcs_num_patches;
3644 unsigned attr_stride = ctx->tcs_num_patches;
3645
3646 std::pair<Temp, unsigned> offs = instr
3647 ? get_intrinsic_io_basic_offset(ctx, instr, attr_stride * 4u, 4u)
3648 : std::make_pair(Temp(), 0u);
3649
3650 if (const_base_offset)
3651 offs.second += const_base_offset * attr_stride;
3652
3653 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3654 Temp patch_off = bld.v_mul_imm(bld.def(v1), rel_patch_id, 16u);
3655 offs = offset_add(ctx, offs, std::make_pair(patch_off, per_patch_data_offset));
3656
3657 return offs;
3658 }
3659
3660 bool tcs_driver_location_matches_api_mask(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex, uint64_t mask, bool *indirect)
3661 {
3662 unsigned off = nir_intrinsic_base(instr) * 4u;
3663 nir_src *off_src = nir_get_io_offset_src(instr);
3664
3665 if (!nir_src_is_const(*off_src)) {
3666 *indirect = true;
3667 return false;
3668 }
3669
3670 *indirect = false;
3671 off += nir_src_as_uint(*off_src) * 16u;
3672
3673 while (mask) {
3674 unsigned slot = u_bit_scan64(&mask) + (per_vertex ? 0 : VARYING_SLOT_PATCH0);
3675 if (off == shader_io_get_unique_index((gl_varying_slot) slot) * 16u)
3676 return true;
3677 }
3678
3679 return false;
3680 }
3681
3682 bool store_output_to_temps(isel_context *ctx, nir_intrinsic_instr *instr)
3683 {
3684 unsigned write_mask = nir_intrinsic_write_mask(instr);
3685 unsigned component = nir_intrinsic_component(instr);
3686 unsigned idx = nir_intrinsic_base(instr) + component;
3687
3688 nir_instr *off_instr = instr->src[1].ssa->parent_instr;
3689 if (off_instr->type != nir_instr_type_load_const)
3690 return false;
3691
3692 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
3693 idx += nir_src_as_uint(instr->src[1]) * 4u;
3694
3695 if (instr->src[0].ssa->bit_size == 64)
3696 write_mask = widen_mask(write_mask, 2);
3697
3698 for (unsigned i = 0; i < 8; ++i) {
3699 if (write_mask & (1 << i)) {
3700 ctx->outputs.mask[idx / 4u] |= 1 << (idx % 4u);
3701 ctx->outputs.temps[idx] = emit_extract_vector(ctx, src, i, v1);
3702 }
3703 idx++;
3704 }
3705
3706 return true;
3707 }
3708
3709 bool load_input_from_temps(isel_context *ctx, nir_intrinsic_instr *instr, Temp dst)
3710 {
3711 /* Only TCS per-vertex inputs are supported by this function.
3712 * Per-vertex inputs only match between the VS/TCS invocation id when the number of invocations is the same.
3713 */
3714 if (ctx->shader->info.stage != MESA_SHADER_TESS_CTRL || !ctx->tcs_in_out_eq)
3715 return false;
3716
3717 nir_src *off_src = nir_get_io_offset_src(instr);
3718 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
3719 nir_instr *vertex_index_instr = vertex_index_src->ssa->parent_instr;
3720 bool can_use_temps = nir_src_is_const(*off_src) &&
3721 vertex_index_instr->type == nir_instr_type_intrinsic &&
3722 nir_instr_as_intrinsic(vertex_index_instr)->intrinsic == nir_intrinsic_load_invocation_id;
3723
3724 if (!can_use_temps)
3725 return false;
3726
3727 unsigned idx = nir_intrinsic_base(instr) + nir_intrinsic_component(instr) + 4 * nir_src_as_uint(*off_src);
3728 Temp *src = &ctx->inputs.temps[idx];
3729 Temp vec = create_vec_from_array(ctx, src, dst.size(), dst.regClass().type(), 4u);
3730 assert(vec.size() == dst.size());
3731
3732 Builder bld(ctx->program, ctx->block);
3733 bld.copy(Definition(dst), vec);
3734 return true;
3735 }
3736
3737 void visit_store_ls_or_es_output(isel_context *ctx, nir_intrinsic_instr *instr)
3738 {
3739 Builder bld(ctx->program, ctx->block);
3740
3741 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, 4u);
3742 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
3743 unsigned write_mask = nir_intrinsic_write_mask(instr);
3744 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8u;
3745
3746 if (ctx->tcs_in_out_eq && store_output_to_temps(ctx, instr)) {
3747 /* When the TCS only reads this output directly and for the same vertices as its invocation id, it is unnecessary to store the VS output to LDS. */
3748 bool indirect_write;
3749 bool temp_only_input = tcs_driver_location_matches_api_mask(ctx, instr, true, ctx->tcs_temp_only_inputs, &indirect_write);
3750 if (temp_only_input && !indirect_write)
3751 return;
3752 }
3753
3754 if (ctx->stage == vertex_es || ctx->stage == tess_eval_es) {
3755 /* GFX6-8: ES stage is not merged into GS, data is passed from ES to GS in VMEM. */
3756 Temp esgs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_VS * 16u));
3757 Temp es2gs_offset = get_arg(ctx, ctx->args->es2gs_offset);
3758 store_vmem_mubuf(ctx, src, esgs_ring, offs.first, es2gs_offset, offs.second, elem_size_bytes, write_mask, false, true, true);
3759 } else {
3760 Temp lds_base;
3761
3762 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
3763 /* GFX9+: ES stage is merged into GS, data is passed between them using LDS. */
3764 unsigned itemsize = ctx->stage == vertex_geometry_gs
3765 ? ctx->program->info->vs.es_info.esgs_itemsize
3766 : ctx->program->info->tes.es_info.esgs_itemsize;
3767 Temp thread_id = emit_mbcnt(ctx, bld.def(v1));
3768 Temp wave_idx = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(ctx, ctx->args->merged_wave_info), Operand(4u << 16 | 24));
3769 Temp vertex_idx = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), thread_id,
3770 bld.v_mul24_imm(bld.def(v1), as_vgpr(ctx, wave_idx), ctx->program->wave_size));
3771 lds_base = bld.v_mul24_imm(bld.def(v1), vertex_idx, itemsize);
3772 } else if (ctx->stage == vertex_ls || ctx->stage == vertex_tess_control_hs) {
3773 /* GFX6-8: VS runs on LS stage when tessellation is used, but LS shares LDS space with HS.
3774 * GFX9+: LS is merged into HS, but still uses the same LDS layout.
3775 */
3776 unsigned num_tcs_inputs = util_last_bit64(ctx->args->shader_info->vs.ls_outputs_written);
3777 Temp vertex_idx = get_arg(ctx, ctx->args->rel_auto_id);
3778 lds_base = bld.v_mul_imm(bld.def(v1), vertex_idx, num_tcs_inputs * 16u);
3779 } else {
3780 unreachable("Invalid LS or ES stage");
3781 }
3782
3783 offs = offset_add(ctx, offs, std::make_pair(lds_base, 0u));
3784 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
3785 store_lds(ctx, elem_size_bytes, src, write_mask, offs.first, offs.second, lds_align);
3786 }
3787 }
3788
3789 bool should_write_tcs_patch_output_to_vmem(isel_context *ctx, nir_intrinsic_instr *instr)
3790 {
3791 unsigned off = nir_intrinsic_base(instr) * 4u;
3792 return off != ctx->tcs_tess_lvl_out_loc &&
3793 off != ctx->tcs_tess_lvl_in_loc;
3794 }
3795
3796 bool should_write_tcs_output_to_lds(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
3797 {
3798 /* When none of the appropriate outputs are read, we are OK to never write to LDS */
3799 if (per_vertex ? ctx->shader->info.outputs_read == 0U : ctx->shader->info.patch_outputs_read == 0u)
3800 return false;
3801
3802 uint64_t mask = per_vertex
3803 ? ctx->shader->info.outputs_read
3804 : ctx->shader->info.patch_outputs_read;
3805 bool indirect_write;
3806 bool output_read = tcs_driver_location_matches_api_mask(ctx, instr, per_vertex, mask, &indirect_write);
3807 return indirect_write || output_read;
3808 }
3809
3810 void visit_store_tcs_output(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
3811 {
3812 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
3813 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3814
3815 Builder bld(ctx->program, ctx->block);
3816
3817 Temp store_val = get_ssa_temp(ctx, instr->src[0].ssa);
3818 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
3819 unsigned write_mask = nir_intrinsic_write_mask(instr);
3820
3821 /* Only write to VMEM if the output is per-vertex or it's per-patch non tess factor */
3822 bool write_to_vmem = per_vertex || should_write_tcs_patch_output_to_vmem(ctx, instr);
3823 /* Only write to LDS if the output is read by the shader, or it's per-patch tess factor */
3824 bool write_to_lds = !write_to_vmem || should_write_tcs_output_to_lds(ctx, instr, per_vertex);
3825
3826 if (write_to_vmem) {
3827 std::pair<Temp, unsigned> vmem_offs = per_vertex
3828 ? get_tcs_per_vertex_output_vmem_offset(ctx, instr)
3829 : get_tcs_per_patch_output_vmem_offset(ctx, instr);
3830
3831 Temp hs_ring_tess_offchip = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
3832 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
3833 store_vmem_mubuf(ctx, store_val, hs_ring_tess_offchip, vmem_offs.first, oc_lds, vmem_offs.second, elem_size_bytes, write_mask, true, false);
3834 }
3835
3836 if (write_to_lds) {
3837 std::pair<Temp, unsigned> lds_offs = get_tcs_output_lds_offset(ctx, instr, per_vertex);
3838 unsigned lds_align = calculate_lds_alignment(ctx, lds_offs.second);
3839 store_lds(ctx, elem_size_bytes, store_val, write_mask, lds_offs.first, lds_offs.second, lds_align);
3840 }
3841 }
3842
3843 void visit_load_tcs_output(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
3844 {
3845 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
3846 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3847
3848 Builder bld(ctx->program, ctx->block);
3849
3850 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3851 std::pair<Temp, unsigned> lds_offs = get_tcs_output_lds_offset(ctx, instr, per_vertex);
3852 unsigned lds_align = calculate_lds_alignment(ctx, lds_offs.second);
3853 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
3854
3855 load_lds(ctx, elem_size_bytes, dst, lds_offs.first, lds_offs.second, lds_align);
3856 }
3857
3858 void visit_store_output(isel_context *ctx, nir_intrinsic_instr *instr)
3859 {
3860 if (ctx->stage == vertex_vs ||
3861 ctx->stage == tess_eval_vs ||
3862 ctx->stage == fragment_fs ||
3863 ctx->stage == ngg_vertex_gs ||
3864 ctx->stage == ngg_tess_eval_gs ||
3865 ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
3866 bool stored_to_temps = store_output_to_temps(ctx, instr);
3867 if (!stored_to_temps) {
3868 fprintf(stderr, "Unimplemented output offset instruction:\n");
3869 nir_print_instr(instr->src[1].ssa->parent_instr, stderr);
3870 fprintf(stderr, "\n");
3871 abort();
3872 }
3873 } else if (ctx->stage == vertex_es ||
3874 ctx->stage == vertex_ls ||
3875 ctx->stage == tess_eval_es ||
3876 (ctx->stage == vertex_tess_control_hs && ctx->shader->info.stage == MESA_SHADER_VERTEX) ||
3877 (ctx->stage == vertex_geometry_gs && ctx->shader->info.stage == MESA_SHADER_VERTEX) ||
3878 (ctx->stage == tess_eval_geometry_gs && ctx->shader->info.stage == MESA_SHADER_TESS_EVAL)) {
3879 visit_store_ls_or_es_output(ctx, instr);
3880 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
3881 visit_store_tcs_output(ctx, instr, false);
3882 } else {
3883 unreachable("Shader stage not implemented");
3884 }
3885 }
3886
3887 void visit_load_output(isel_context *ctx, nir_intrinsic_instr *instr)
3888 {
3889 visit_load_tcs_output(ctx, instr, false);
3890 }
3891
3892 void emit_interp_instr(isel_context *ctx, unsigned idx, unsigned component, Temp src, Temp dst, Temp prim_mask)
3893 {
3894 Temp coord1 = emit_extract_vector(ctx, src, 0, v1);
3895 Temp coord2 = emit_extract_vector(ctx, src, 1, v1);
3896
3897 Builder bld(ctx->program, ctx->block);
3898 Builder::Result interp_p1 = bld.vintrp(aco_opcode::v_interp_p1_f32, bld.def(v1), coord1, bld.m0(prim_mask), idx, component);
3899 if (ctx->program->has_16bank_lds)
3900 interp_p1.instr->operands[0].setLateKill(true);
3901 bld.vintrp(aco_opcode::v_interp_p2_f32, Definition(dst), coord2, bld.m0(prim_mask), interp_p1, idx, component);
3902 }
3903
3904 void emit_load_frag_coord(isel_context *ctx, Temp dst, unsigned num_components)
3905 {
3906 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1));
3907 for (unsigned i = 0; i < num_components; i++)
3908 vec->operands[i] = Operand(get_arg(ctx, ctx->args->ac.frag_pos[i]));
3909 if (G_0286CC_POS_W_FLOAT_ENA(ctx->program->config->spi_ps_input_ena)) {
3910 assert(num_components == 4);
3911 Builder bld(ctx->program, ctx->block);
3912 vec->operands[3] = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), get_arg(ctx, ctx->args->ac.frag_pos[3]));
3913 }
3914
3915 for (Operand& op : vec->operands)
3916 op = op.isUndefined() ? Operand(0u) : op;
3917
3918 vec->definitions[0] = Definition(dst);
3919 ctx->block->instructions.emplace_back(std::move(vec));
3920 emit_split_vector(ctx, dst, num_components);
3921 return;
3922 }
3923
3924 void visit_load_interpolated_input(isel_context *ctx, nir_intrinsic_instr *instr)
3925 {
3926 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3927 Temp coords = get_ssa_temp(ctx, instr->src[0].ssa);
3928 unsigned idx = nir_intrinsic_base(instr);
3929 unsigned component = nir_intrinsic_component(instr);
3930 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
3931
3932 nir_const_value* offset = nir_src_as_const_value(instr->src[1]);
3933 if (offset) {
3934 assert(offset->u32 == 0);
3935 } else {
3936 /* the lower 15bit of the prim_mask contain the offset into LDS
3937 * while the upper bits contain the number of prims */
3938 Temp offset_src = get_ssa_temp(ctx, instr->src[1].ssa);
3939 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
3940 Builder bld(ctx->program, ctx->block);
3941 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
3942 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
3943 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
3944 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
3945 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
3946 }
3947
3948 if (instr->dest.ssa.num_components == 1) {
3949 emit_interp_instr(ctx, idx, component, coords, dst, prim_mask);
3950 } else {
3951 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.ssa.num_components, 1));
3952 for (unsigned i = 0; i < instr->dest.ssa.num_components; i++)
3953 {
3954 Temp tmp = {ctx->program->allocateId(), v1};
3955 emit_interp_instr(ctx, idx, component+i, coords, tmp, prim_mask);
3956 vec->operands[i] = Operand(tmp);
3957 }
3958 vec->definitions[0] = Definition(dst);
3959 ctx->block->instructions.emplace_back(std::move(vec));
3960 }
3961 }
3962
3963 bool check_vertex_fetch_size(isel_context *ctx, const ac_data_format_info *vtx_info,
3964 unsigned offset, unsigned stride, unsigned channels)
3965 {
3966 unsigned vertex_byte_size = vtx_info->chan_byte_size * channels;
3967 if (vtx_info->chan_byte_size != 4 && channels == 3)
3968 return false;
3969 return (ctx->options->chip_class != GFX6 && ctx->options->chip_class != GFX10) ||
3970 (offset % vertex_byte_size == 0 && stride % vertex_byte_size == 0);
3971 }
3972
3973 uint8_t get_fetch_data_format(isel_context *ctx, const ac_data_format_info *vtx_info,
3974 unsigned offset, unsigned stride, unsigned *channels)
3975 {
3976 if (!vtx_info->chan_byte_size) {
3977 *channels = vtx_info->num_channels;
3978 return vtx_info->chan_format;
3979 }
3980
3981 unsigned num_channels = *channels;
3982 if (!check_vertex_fetch_size(ctx, vtx_info, offset, stride, *channels)) {
3983 unsigned new_channels = num_channels + 1;
3984 /* first, assume more loads is worse and try using a larger data format */
3985 while (new_channels <= 4 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels)) {
3986 new_channels++;
3987 /* don't make the attribute potentially out-of-bounds */
3988 if (offset + new_channels * vtx_info->chan_byte_size > stride)
3989 new_channels = 5;
3990 }
3991
3992 if (new_channels == 5) {
3993 /* then try decreasing load size (at the cost of more loads) */
3994 new_channels = *channels;
3995 while (new_channels > 1 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels))
3996 new_channels--;
3997 }
3998
3999 if (new_channels < *channels)
4000 *channels = new_channels;
4001 num_channels = new_channels;
4002 }
4003
4004 switch (vtx_info->chan_format) {
4005 case V_008F0C_BUF_DATA_FORMAT_8:
4006 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_8, V_008F0C_BUF_DATA_FORMAT_8_8,
4007 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_8_8_8_8}[num_channels - 1];
4008 case V_008F0C_BUF_DATA_FORMAT_16:
4009 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_16, V_008F0C_BUF_DATA_FORMAT_16_16,
4010 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_16_16_16_16}[num_channels - 1];
4011 case V_008F0C_BUF_DATA_FORMAT_32:
4012 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_32, V_008F0C_BUF_DATA_FORMAT_32_32,
4013 V_008F0C_BUF_DATA_FORMAT_32_32_32, V_008F0C_BUF_DATA_FORMAT_32_32_32_32}[num_channels - 1];
4014 }
4015 unreachable("shouldn't reach here");
4016 return V_008F0C_BUF_DATA_FORMAT_INVALID;
4017 }
4018
4019 /* For 2_10_10_10 formats the alpha is handled as unsigned by pre-vega HW.
4020 * so we may need to fix it up. */
4021 Temp adjust_vertex_fetch_alpha(isel_context *ctx, unsigned adjustment, Temp alpha)
4022 {
4023 Builder bld(ctx->program, ctx->block);
4024
4025 if (adjustment == RADV_ALPHA_ADJUST_SSCALED)
4026 alpha = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), alpha);
4027
4028 /* For the integer-like cases, do a natural sign extension.
4029 *
4030 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
4031 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
4032 * exponent.
4033 */
4034 alpha = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(adjustment == RADV_ALPHA_ADJUST_SNORM ? 7u : 30u), alpha);
4035 alpha = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(30u), alpha);
4036
4037 /* Convert back to the right type. */
4038 if (adjustment == RADV_ALPHA_ADJUST_SNORM) {
4039 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
4040 Temp clamp = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0xbf800000u), alpha);
4041 alpha = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xbf800000u), alpha, clamp);
4042 } else if (adjustment == RADV_ALPHA_ADJUST_SSCALED) {
4043 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
4044 }
4045
4046 return alpha;
4047 }
4048
4049 void visit_load_input(isel_context *ctx, nir_intrinsic_instr *instr)
4050 {
4051 Builder bld(ctx->program, ctx->block);
4052 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4053 if (ctx->shader->info.stage == MESA_SHADER_VERTEX) {
4054
4055 nir_instr *off_instr = instr->src[0].ssa->parent_instr;
4056 if (off_instr->type != nir_instr_type_load_const) {
4057 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
4058 nir_print_instr(off_instr, stderr);
4059 fprintf(stderr, "\n");
4060 }
4061 uint32_t offset = nir_instr_as_load_const(off_instr)->value[0].u32;
4062
4063 Temp vertex_buffers = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->vertex_buffers));
4064
4065 unsigned location = nir_intrinsic_base(instr) / 4 - VERT_ATTRIB_GENERIC0 + offset;
4066 unsigned component = nir_intrinsic_component(instr);
4067 unsigned attrib_binding = ctx->options->key.vs.vertex_attribute_bindings[location];
4068 uint32_t attrib_offset = ctx->options->key.vs.vertex_attribute_offsets[location];
4069 uint32_t attrib_stride = ctx->options->key.vs.vertex_attribute_strides[location];
4070 unsigned attrib_format = ctx->options->key.vs.vertex_attribute_formats[location];
4071
4072 unsigned dfmt = attrib_format & 0xf;
4073 unsigned nfmt = (attrib_format >> 4) & 0x7;
4074 const struct ac_data_format_info *vtx_info = ac_get_data_format_info(dfmt);
4075
4076 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa) << component;
4077 unsigned num_channels = MIN2(util_last_bit(mask), vtx_info->num_channels);
4078 unsigned alpha_adjust = (ctx->options->key.vs.alpha_adjust >> (location * 2)) & 3;
4079 bool post_shuffle = ctx->options->key.vs.post_shuffle & (1 << location);
4080 if (post_shuffle)
4081 num_channels = MAX2(num_channels, 3);
4082
4083 Operand off = bld.copy(bld.def(s1), Operand(attrib_binding * 16u));
4084 Temp list = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), vertex_buffers, off);
4085
4086 Temp index;
4087 if (ctx->options->key.vs.instance_rate_inputs & (1u << location)) {
4088 uint32_t divisor = ctx->options->key.vs.instance_rate_divisors[location];
4089 Temp start_instance = get_arg(ctx, ctx->args->ac.start_instance);
4090 if (divisor) {
4091 Temp instance_id = get_arg(ctx, ctx->args->ac.instance_id);
4092 if (divisor != 1) {
4093 Temp divided = bld.tmp(v1);
4094 emit_v_div_u32(ctx, divided, as_vgpr(ctx, instance_id), divisor);
4095 index = bld.vadd32(bld.def(v1), start_instance, divided);
4096 } else {
4097 index = bld.vadd32(bld.def(v1), start_instance, instance_id);
4098 }
4099 } else {
4100 index = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), start_instance);
4101 }
4102 } else {
4103 index = bld.vadd32(bld.def(v1),
4104 get_arg(ctx, ctx->args->ac.base_vertex),
4105 get_arg(ctx, ctx->args->ac.vertex_id));
4106 }
4107
4108 Temp channels[num_channels];
4109 unsigned channel_start = 0;
4110 bool direct_fetch = false;
4111
4112 /* skip unused channels at the start */
4113 if (vtx_info->chan_byte_size && !post_shuffle) {
4114 channel_start = ffs(mask) - 1;
4115 for (unsigned i = 0; i < channel_start; i++)
4116 channels[i] = Temp(0, s1);
4117 } else if (vtx_info->chan_byte_size && post_shuffle && !(mask & 0x8)) {
4118 num_channels = 3 - (ffs(mask) - 1);
4119 }
4120
4121 /* load channels */
4122 while (channel_start < num_channels) {
4123 unsigned fetch_size = num_channels - channel_start;
4124 unsigned fetch_offset = attrib_offset + channel_start * vtx_info->chan_byte_size;
4125 bool expanded = false;
4126
4127 /* use MUBUF when possible to avoid possible alignment issues */
4128 /* TODO: we could use SDWA to unpack 8/16-bit attributes without extra instructions */
4129 bool use_mubuf = (nfmt == V_008F0C_BUF_NUM_FORMAT_FLOAT ||
4130 nfmt == V_008F0C_BUF_NUM_FORMAT_UINT ||
4131 nfmt == V_008F0C_BUF_NUM_FORMAT_SINT) &&
4132 vtx_info->chan_byte_size == 4;
4133 unsigned fetch_dfmt = V_008F0C_BUF_DATA_FORMAT_INVALID;
4134 if (!use_mubuf) {
4135 fetch_dfmt = get_fetch_data_format(ctx, vtx_info, fetch_offset, attrib_stride, &fetch_size);
4136 } else {
4137 if (fetch_size == 3 && ctx->options->chip_class == GFX6) {
4138 /* GFX6 only supports loading vec3 with MTBUF, expand to vec4. */
4139 fetch_size = 4;
4140 expanded = true;
4141 }
4142 }
4143
4144 Temp fetch_index = index;
4145 if (attrib_stride != 0 && fetch_offset > attrib_stride) {
4146 fetch_index = bld.vadd32(bld.def(v1), Operand(fetch_offset / attrib_stride), fetch_index);
4147 fetch_offset = fetch_offset % attrib_stride;
4148 }
4149
4150 Operand soffset(0u);
4151 if (fetch_offset >= 4096) {
4152 soffset = bld.copy(bld.def(s1), Operand(fetch_offset / 4096 * 4096));
4153 fetch_offset %= 4096;
4154 }
4155
4156 aco_opcode opcode;
4157 switch (fetch_size) {
4158 case 1:
4159 opcode = use_mubuf ? aco_opcode::buffer_load_dword : aco_opcode::tbuffer_load_format_x;
4160 break;
4161 case 2:
4162 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx2 : aco_opcode::tbuffer_load_format_xy;
4163 break;
4164 case 3:
4165 assert(ctx->options->chip_class >= GFX7 ||
4166 (!use_mubuf && ctx->options->chip_class == GFX6));
4167 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx3 : aco_opcode::tbuffer_load_format_xyz;
4168 break;
4169 case 4:
4170 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx4 : aco_opcode::tbuffer_load_format_xyzw;
4171 break;
4172 default:
4173 unreachable("Unimplemented load_input vector size");
4174 }
4175
4176 Temp fetch_dst;
4177 if (channel_start == 0 && fetch_size == dst.size() && !post_shuffle &&
4178 !expanded && (alpha_adjust == RADV_ALPHA_ADJUST_NONE ||
4179 num_channels <= 3)) {
4180 direct_fetch = true;
4181 fetch_dst = dst;
4182 } else {
4183 fetch_dst = bld.tmp(RegType::vgpr, fetch_size);
4184 }
4185
4186 if (use_mubuf) {
4187 Instruction *mubuf = bld.mubuf(opcode,
4188 Definition(fetch_dst), list, fetch_index, soffset,
4189 fetch_offset, false, true).instr;
4190 static_cast<MUBUF_instruction*>(mubuf)->can_reorder = true;
4191 } else {
4192 Instruction *mtbuf = bld.mtbuf(opcode,
4193 Definition(fetch_dst), list, fetch_index, soffset,
4194 fetch_dfmt, nfmt, fetch_offset, false, true).instr;
4195 static_cast<MTBUF_instruction*>(mtbuf)->can_reorder = true;
4196 }
4197
4198 emit_split_vector(ctx, fetch_dst, fetch_dst.size());
4199
4200 if (fetch_size == 1) {
4201 channels[channel_start] = fetch_dst;
4202 } else {
4203 for (unsigned i = 0; i < MIN2(fetch_size, num_channels - channel_start); i++)
4204 channels[channel_start + i] = emit_extract_vector(ctx, fetch_dst, i, v1);
4205 }
4206
4207 channel_start += fetch_size;
4208 }
4209
4210 if (!direct_fetch) {
4211 bool is_float = nfmt != V_008F0C_BUF_NUM_FORMAT_UINT &&
4212 nfmt != V_008F0C_BUF_NUM_FORMAT_SINT;
4213
4214 static const unsigned swizzle_normal[4] = {0, 1, 2, 3};
4215 static const unsigned swizzle_post_shuffle[4] = {2, 1, 0, 3};
4216 const unsigned *swizzle = post_shuffle ? swizzle_post_shuffle : swizzle_normal;
4217
4218 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
4219 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
4220 unsigned num_temp = 0;
4221 for (unsigned i = 0; i < dst.size(); i++) {
4222 unsigned idx = i + component;
4223 if (swizzle[idx] < num_channels && channels[swizzle[idx]].id()) {
4224 Temp channel = channels[swizzle[idx]];
4225 if (idx == 3 && alpha_adjust != RADV_ALPHA_ADJUST_NONE)
4226 channel = adjust_vertex_fetch_alpha(ctx, alpha_adjust, channel);
4227 vec->operands[i] = Operand(channel);
4228
4229 num_temp++;
4230 elems[i] = channel;
4231 } else if (is_float && idx == 3) {
4232 vec->operands[i] = Operand(0x3f800000u);
4233 } else if (!is_float && idx == 3) {
4234 vec->operands[i] = Operand(1u);
4235 } else {
4236 vec->operands[i] = Operand(0u);
4237 }
4238 }
4239 vec->definitions[0] = Definition(dst);
4240 ctx->block->instructions.emplace_back(std::move(vec));
4241 emit_split_vector(ctx, dst, dst.size());
4242
4243 if (num_temp == dst.size())
4244 ctx->allocated_vec.emplace(dst.id(), elems);
4245 }
4246 } else if (ctx->shader->info.stage == MESA_SHADER_FRAGMENT) {
4247 unsigned offset_idx = instr->intrinsic == nir_intrinsic_load_input ? 0 : 1;
4248 nir_instr *off_instr = instr->src[offset_idx].ssa->parent_instr;
4249 if (off_instr->type != nir_instr_type_load_const ||
4250 nir_instr_as_load_const(off_instr)->value[0].u32 != 0) {
4251 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
4252 nir_print_instr(off_instr, stderr);
4253 fprintf(stderr, "\n");
4254 }
4255
4256 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
4257 nir_const_value* offset = nir_src_as_const_value(instr->src[offset_idx]);
4258 if (offset) {
4259 assert(offset->u32 == 0);
4260 } else {
4261 /* the lower 15bit of the prim_mask contain the offset into LDS
4262 * while the upper bits contain the number of prims */
4263 Temp offset_src = get_ssa_temp(ctx, instr->src[offset_idx].ssa);
4264 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
4265 Builder bld(ctx->program, ctx->block);
4266 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
4267 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
4268 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
4269 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
4270 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
4271 }
4272
4273 unsigned idx = nir_intrinsic_base(instr);
4274 unsigned component = nir_intrinsic_component(instr);
4275 unsigned vertex_id = 2; /* P0 */
4276
4277 if (instr->intrinsic == nir_intrinsic_load_input_vertex) {
4278 nir_const_value* src0 = nir_src_as_const_value(instr->src[0]);
4279 switch (src0->u32) {
4280 case 0:
4281 vertex_id = 2; /* P0 */
4282 break;
4283 case 1:
4284 vertex_id = 0; /* P10 */
4285 break;
4286 case 2:
4287 vertex_id = 1; /* P20 */
4288 break;
4289 default:
4290 unreachable("invalid vertex index");
4291 }
4292 }
4293
4294 if (dst.size() == 1) {
4295 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(dst), Operand(vertex_id), bld.m0(prim_mask), idx, component);
4296 } else {
4297 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
4298 for (unsigned i = 0; i < dst.size(); i++)
4299 vec->operands[i] = bld.vintrp(aco_opcode::v_interp_mov_f32, bld.def(v1), Operand(vertex_id), bld.m0(prim_mask), idx, component + i);
4300 vec->definitions[0] = Definition(dst);
4301 bld.insert(std::move(vec));
4302 }
4303
4304 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_EVAL) {
4305 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
4306 Temp soffset = get_arg(ctx, ctx->args->oc_lds);
4307 std::pair<Temp, unsigned> offs = get_tcs_per_patch_output_vmem_offset(ctx, instr);
4308 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8u;
4309
4310 load_vmem_mubuf(ctx, dst, ring, offs.first, soffset, offs.second, elem_size_bytes, instr->dest.ssa.num_components);
4311 } else {
4312 unreachable("Shader stage not implemented");
4313 }
4314 }
4315
4316 std::pair<Temp, unsigned> get_gs_per_vertex_input_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned base_stride = 1u)
4317 {
4318 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
4319
4320 Builder bld(ctx->program, ctx->block);
4321 nir_src *vertex_src = nir_get_io_vertex_index_src(instr);
4322 Temp vertex_offset;
4323
4324 if (!nir_src_is_const(*vertex_src)) {
4325 /* better code could be created, but this case probably doesn't happen
4326 * much in practice */
4327 Temp indirect_vertex = as_vgpr(ctx, get_ssa_temp(ctx, vertex_src->ssa));
4328 for (unsigned i = 0; i < ctx->shader->info.gs.vertices_in; i++) {
4329 Temp elem;
4330
4331 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
4332 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i / 2u * 2u]);
4333 if (i % 2u)
4334 elem = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), elem);
4335 } else {
4336 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i]);
4337 }
4338
4339 if (vertex_offset.id()) {
4340 Temp cond = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)),
4341 Operand(i), indirect_vertex);
4342 vertex_offset = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), vertex_offset, elem, cond);
4343 } else {
4344 vertex_offset = elem;
4345 }
4346 }
4347
4348 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs)
4349 vertex_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu), vertex_offset);
4350 } else {
4351 unsigned vertex = nir_src_as_uint(*vertex_src);
4352 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs)
4353 vertex_offset = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
4354 get_arg(ctx, ctx->args->gs_vtx_offset[vertex / 2u * 2u]),
4355 Operand((vertex % 2u) * 16u), Operand(16u));
4356 else
4357 vertex_offset = get_arg(ctx, ctx->args->gs_vtx_offset[vertex]);
4358 }
4359
4360 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, base_stride);
4361 offs = offset_add(ctx, offs, std::make_pair(vertex_offset, 0u));
4362 return offset_mul(ctx, offs, 4u);
4363 }
4364
4365 void visit_load_gs_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4366 {
4367 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
4368
4369 Builder bld(ctx->program, ctx->block);
4370 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4371 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
4372
4373 if (ctx->stage == geometry_gs) {
4374 std::pair<Temp, unsigned> offs = get_gs_per_vertex_input_offset(ctx, instr, ctx->program->wave_size);
4375 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_GS * 16u));
4376 load_vmem_mubuf(ctx, dst, ring, offs.first, Temp(), offs.second, elem_size_bytes, instr->dest.ssa.num_components, 4u * ctx->program->wave_size, false, true);
4377 } else if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
4378 std::pair<Temp, unsigned> offs = get_gs_per_vertex_input_offset(ctx, instr);
4379 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
4380 load_lds(ctx, elem_size_bytes, dst, offs.first, offs.second, lds_align);
4381 } else {
4382 unreachable("Unsupported GS stage.");
4383 }
4384 }
4385
4386 void visit_load_tcs_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4387 {
4388 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4389
4390 Builder bld(ctx->program, ctx->block);
4391 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4392
4393 if (load_input_from_temps(ctx, instr, dst))
4394 return;
4395
4396 std::pair<Temp, unsigned> offs = get_tcs_per_vertex_input_lds_offset(ctx, instr);
4397 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
4398 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
4399
4400 load_lds(ctx, elem_size_bytes, dst, offs.first, offs.second, lds_align);
4401 }
4402
4403 void visit_load_tes_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4404 {
4405 assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
4406
4407 Builder bld(ctx->program, ctx->block);
4408
4409 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
4410 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
4411 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4412
4413 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
4414 std::pair<Temp, unsigned> offs = get_tcs_per_vertex_output_vmem_offset(ctx, instr);
4415
4416 load_vmem_mubuf(ctx, dst, ring, offs.first, oc_lds, offs.second, elem_size_bytes, instr->dest.ssa.num_components, 0u, true, true);
4417 }
4418
4419 void visit_load_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4420 {
4421 switch (ctx->shader->info.stage) {
4422 case MESA_SHADER_GEOMETRY:
4423 visit_load_gs_per_vertex_input(ctx, instr);
4424 break;
4425 case MESA_SHADER_TESS_CTRL:
4426 visit_load_tcs_per_vertex_input(ctx, instr);
4427 break;
4428 case MESA_SHADER_TESS_EVAL:
4429 visit_load_tes_per_vertex_input(ctx, instr);
4430 break;
4431 default:
4432 unreachable("Unimplemented shader stage");
4433 }
4434 }
4435
4436 void visit_load_per_vertex_output(isel_context *ctx, nir_intrinsic_instr *instr)
4437 {
4438 visit_load_tcs_output(ctx, instr, true);
4439 }
4440
4441 void visit_store_per_vertex_output(isel_context *ctx, nir_intrinsic_instr *instr)
4442 {
4443 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
4444 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4445
4446 visit_store_tcs_output(ctx, instr, true);
4447 }
4448
4449 void visit_load_tess_coord(isel_context *ctx, nir_intrinsic_instr *instr)
4450 {
4451 assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
4452
4453 Builder bld(ctx->program, ctx->block);
4454 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4455
4456 Operand tes_u(get_arg(ctx, ctx->args->tes_u));
4457 Operand tes_v(get_arg(ctx, ctx->args->tes_v));
4458 Operand tes_w(0u);
4459
4460 if (ctx->shader->info.tess.primitive_mode == GL_TRIANGLES) {
4461 Temp tmp = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), tes_u, tes_v);
4462 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0x3f800000u /* 1.0f */), tmp);
4463 tes_w = Operand(tmp);
4464 }
4465
4466 Temp tess_coord = bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tes_u, tes_v, tes_w);
4467 emit_split_vector(ctx, tess_coord, 3);
4468 }
4469
4470 Temp load_desc_ptr(isel_context *ctx, unsigned desc_set)
4471 {
4472 if (ctx->program->info->need_indirect_descriptor_sets) {
4473 Builder bld(ctx->program, ctx->block);
4474 Temp ptr64 = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->descriptor_sets[0]));
4475 Operand off = bld.copy(bld.def(s1), Operand(desc_set << 2));
4476 return bld.smem(aco_opcode::s_load_dword, bld.def(s1), ptr64, off);//, false, false, false);
4477 }
4478
4479 return get_arg(ctx, ctx->args->descriptor_sets[desc_set]);
4480 }
4481
4482
4483 void visit_load_resource(isel_context *ctx, nir_intrinsic_instr *instr)
4484 {
4485 Builder bld(ctx->program, ctx->block);
4486 Temp index = get_ssa_temp(ctx, instr->src[0].ssa);
4487 if (!ctx->divergent_vals[instr->dest.ssa.index])
4488 index = bld.as_uniform(index);
4489 unsigned desc_set = nir_intrinsic_desc_set(instr);
4490 unsigned binding = nir_intrinsic_binding(instr);
4491
4492 Temp desc_ptr;
4493 radv_pipeline_layout *pipeline_layout = ctx->options->layout;
4494 radv_descriptor_set_layout *layout = pipeline_layout->set[desc_set].layout;
4495 unsigned offset = layout->binding[binding].offset;
4496 unsigned stride;
4497 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
4498 layout->binding[binding].type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
4499 unsigned idx = pipeline_layout->set[desc_set].dynamic_offset_start + layout->binding[binding].dynamic_offset_offset;
4500 desc_ptr = get_arg(ctx, ctx->args->ac.push_constants);
4501 offset = pipeline_layout->push_constant_size + 16 * idx;
4502 stride = 16;
4503 } else {
4504 desc_ptr = load_desc_ptr(ctx, desc_set);
4505 stride = layout->binding[binding].size;
4506 }
4507
4508 nir_const_value* nir_const_index = nir_src_as_const_value(instr->src[0]);
4509 unsigned const_index = nir_const_index ? nir_const_index->u32 : 0;
4510 if (stride != 1) {
4511 if (nir_const_index) {
4512 const_index = const_index * stride;
4513 } else if (index.type() == RegType::vgpr) {
4514 bool index24bit = layout->binding[binding].array_size <= 0x1000000;
4515 index = bld.v_mul_imm(bld.def(v1), index, stride, index24bit);
4516 } else {
4517 index = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), Operand(index));
4518 }
4519 }
4520 if (offset) {
4521 if (nir_const_index) {
4522 const_index = const_index + offset;
4523 } else if (index.type() == RegType::vgpr) {
4524 index = bld.vadd32(bld.def(v1), Operand(offset), index);
4525 } else {
4526 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), Operand(index));
4527 }
4528 }
4529
4530 if (nir_const_index && const_index == 0) {
4531 index = desc_ptr;
4532 } else if (index.type() == RegType::vgpr) {
4533 index = bld.vadd32(bld.def(v1),
4534 nir_const_index ? Operand(const_index) : Operand(index),
4535 Operand(desc_ptr));
4536 } else {
4537 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
4538 nir_const_index ? Operand(const_index) : Operand(index),
4539 Operand(desc_ptr));
4540 }
4541
4542 bld.copy(Definition(get_ssa_temp(ctx, &instr->dest.ssa)), index);
4543 }
4544
4545 void load_buffer(isel_context *ctx, unsigned num_components, unsigned component_size,
4546 Temp dst, Temp rsrc, Temp offset, int byte_align,
4547 bool glc=false, bool readonly=true)
4548 {
4549 Builder bld(ctx->program, ctx->block);
4550 bool dlc = glc && ctx->options->chip_class >= GFX10;
4551 unsigned num_bytes = num_components * component_size;
4552
4553 aco_opcode op;
4554 if (dst.type() == RegType::vgpr || ((ctx->options->chip_class < GFX8 || component_size < 4) && !readonly)) {
4555 Operand vaddr = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
4556 Operand soffset = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
4557 unsigned const_offset = 0;
4558
4559 /* for small bit sizes add buffer for unaligned loads */
4560 if (byte_align) {
4561 if (num_bytes > 2)
4562 num_bytes += byte_align == -1 ? 4 - component_size : byte_align;
4563 else
4564 byte_align = 0;
4565 }
4566
4567 Temp lower = Temp();
4568 if (num_bytes > 16) {
4569 assert(num_components == 3 || num_components == 4);
4570 op = aco_opcode::buffer_load_dwordx4;
4571 lower = bld.tmp(v4);
4572 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
4573 mubuf->definitions[0] = Definition(lower);
4574 mubuf->operands[0] = Operand(rsrc);
4575 mubuf->operands[1] = vaddr;
4576 mubuf->operands[2] = soffset;
4577 mubuf->offen = (offset.type() == RegType::vgpr);
4578 mubuf->glc = glc;
4579 mubuf->dlc = dlc;
4580 mubuf->barrier = readonly ? barrier_none : barrier_buffer;
4581 mubuf->can_reorder = readonly;
4582 bld.insert(std::move(mubuf));
4583 emit_split_vector(ctx, lower, 2);
4584 num_bytes -= 16;
4585 const_offset = 16;
4586 } else if (num_bytes == 12 && ctx->options->chip_class == GFX6) {
4587 /* GFX6 doesn't support loading vec3, expand to vec4. */
4588 num_bytes = 16;
4589 }
4590
4591 switch (num_bytes) {
4592 case 1:
4593 op = aco_opcode::buffer_load_ubyte;
4594 break;
4595 case 2:
4596 op = aco_opcode::buffer_load_ushort;
4597 break;
4598 case 3:
4599 case 4:
4600 op = aco_opcode::buffer_load_dword;
4601 break;
4602 case 5:
4603 case 6:
4604 case 7:
4605 case 8:
4606 op = aco_opcode::buffer_load_dwordx2;
4607 break;
4608 case 10:
4609 case 12:
4610 assert(ctx->options->chip_class > GFX6);
4611 op = aco_opcode::buffer_load_dwordx3;
4612 break;
4613 case 16:
4614 op = aco_opcode::buffer_load_dwordx4;
4615 break;
4616 default:
4617 unreachable("Load SSBO not implemented for this size.");
4618 }
4619 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
4620 mubuf->operands[0] = Operand(rsrc);
4621 mubuf->operands[1] = vaddr;
4622 mubuf->operands[2] = soffset;
4623 mubuf->offen = (offset.type() == RegType::vgpr);
4624 mubuf->glc = glc;
4625 mubuf->dlc = dlc;
4626 mubuf->barrier = readonly ? barrier_none : barrier_buffer;
4627 mubuf->can_reorder = readonly;
4628 mubuf->offset = const_offset;
4629 aco_ptr<Instruction> instr = std::move(mubuf);
4630
4631 if (component_size < 4) {
4632 Temp vec = num_bytes <= 4 ? bld.tmp(v1) : num_bytes <= 8 ? bld.tmp(v2) : bld.tmp(v3);
4633 instr->definitions[0] = Definition(vec);
4634 bld.insert(std::move(instr));
4635
4636 if (byte_align == -1 || (byte_align && dst.type() == RegType::sgpr)) {
4637 Operand align = byte_align == -1 ? Operand(offset) : Operand((uint32_t)byte_align);
4638 Temp tmp[3] = {vec, vec, vec};
4639
4640 if (vec.size() == 3) {
4641 tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = bld.tmp(v1);
4642 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), Definition(tmp[2]), vec);
4643 } else if (vec.size() == 2) {
4644 tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = tmp[1];
4645 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), vec);
4646 }
4647 for (unsigned i = 0; i < dst.size(); i++)
4648 tmp[i] = bld.vop3(aco_opcode::v_alignbyte_b32, bld.def(v1), tmp[i + 1], tmp[i], align);
4649
4650 vec = tmp[0];
4651 if (dst.size() == 2)
4652 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), tmp[0], tmp[1]);
4653
4654 byte_align = 0;
4655 }
4656
4657 if (dst.type() == RegType::vgpr && num_components == 1) {
4658 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), vec, Operand(byte_align / component_size));
4659 } else {
4660 trim_subdword_vector(ctx, vec, dst, 4 * vec.size() / component_size, ((1 << num_components) - 1) << byte_align / component_size);
4661 }
4662
4663 return;
4664
4665 } else if (dst.size() > 4) {
4666 assert(lower != Temp());
4667 Temp upper = bld.tmp(RegType::vgpr, dst.size() - lower.size());
4668 instr->definitions[0] = Definition(upper);
4669 bld.insert(std::move(instr));
4670 if (dst.size() == 8)
4671 emit_split_vector(ctx, upper, 2);
4672 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size() / 2, 1));
4673 instr->operands[0] = Operand(emit_extract_vector(ctx, lower, 0, v2));
4674 instr->operands[1] = Operand(emit_extract_vector(ctx, lower, 1, v2));
4675 instr->operands[2] = Operand(emit_extract_vector(ctx, upper, 0, v2));
4676 if (dst.size() == 8)
4677 instr->operands[3] = Operand(emit_extract_vector(ctx, upper, 1, v2));
4678 } else if (dst.size() == 3 && ctx->options->chip_class == GFX6) {
4679 Temp vec = bld.tmp(v4);
4680 instr->definitions[0] = Definition(vec);
4681 bld.insert(std::move(instr));
4682 emit_split_vector(ctx, vec, 4);
4683
4684 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 3, 1));
4685 instr->operands[0] = Operand(emit_extract_vector(ctx, vec, 0, v1));
4686 instr->operands[1] = Operand(emit_extract_vector(ctx, vec, 1, v1));
4687 instr->operands[2] = Operand(emit_extract_vector(ctx, vec, 2, v1));
4688 }
4689
4690 if (dst.type() == RegType::sgpr) {
4691 Temp vec = bld.tmp(RegType::vgpr, dst.size());
4692 instr->definitions[0] = Definition(vec);
4693 bld.insert(std::move(instr));
4694 expand_vector(ctx, vec, dst, num_components, (1 << num_components) - 1);
4695 } else {
4696 instr->definitions[0] = Definition(dst);
4697 bld.insert(std::move(instr));
4698 emit_split_vector(ctx, dst, num_components);
4699 }
4700 } else {
4701 /* for small bit sizes add buffer for unaligned loads */
4702 if (byte_align)
4703 num_bytes += byte_align == -1 ? 4 - component_size : byte_align;
4704
4705 switch (num_bytes) {
4706 case 1:
4707 case 2:
4708 case 3:
4709 case 4:
4710 op = aco_opcode::s_buffer_load_dword;
4711 break;
4712 case 5:
4713 case 6:
4714 case 7:
4715 case 8:
4716 op = aco_opcode::s_buffer_load_dwordx2;
4717 break;
4718 case 10:
4719 case 12:
4720 case 16:
4721 op = aco_opcode::s_buffer_load_dwordx4;
4722 break;
4723 case 24:
4724 case 32:
4725 op = aco_opcode::s_buffer_load_dwordx8;
4726 break;
4727 default:
4728 unreachable("Load SSBO not implemented for this size.");
4729 }
4730 offset = bld.as_uniform(offset);
4731 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
4732 load->operands[0] = Operand(rsrc);
4733 load->operands[1] = Operand(offset);
4734 assert(load->operands[1].getTemp().type() == RegType::sgpr);
4735 load->definitions[0] = Definition(dst);
4736 load->glc = glc;
4737 load->dlc = dlc;
4738 load->barrier = readonly ? barrier_none : barrier_buffer;
4739 load->can_reorder = false; // FIXME: currently, it doesn't seem beneficial due to how our scheduler works
4740 assert(ctx->options->chip_class >= GFX8 || !glc);
4741
4742 /* adjust misaligned small bit size loads */
4743 if (byte_align) {
4744 Temp vec = num_bytes <= 4 ? bld.tmp(s1) : num_bytes <= 8 ? bld.tmp(s2) : bld.tmp(s4);
4745 load->definitions[0] = Definition(vec);
4746 bld.insert(std::move(load));
4747 Operand byte_offset = byte_align > 0 ? Operand(uint32_t(byte_align)) : Operand(offset);
4748 byte_align_scalar(ctx, vec, byte_offset, dst);
4749
4750 /* trim vector */
4751 } else if (dst.size() == 3) {
4752 Temp vec = bld.tmp(s4);
4753 load->definitions[0] = Definition(vec);
4754 bld.insert(std::move(load));
4755 emit_split_vector(ctx, vec, 4);
4756
4757 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4758 emit_extract_vector(ctx, vec, 0, s1),
4759 emit_extract_vector(ctx, vec, 1, s1),
4760 emit_extract_vector(ctx, vec, 2, s1));
4761 } else if (dst.size() == 6) {
4762 Temp vec = bld.tmp(s8);
4763 load->definitions[0] = Definition(vec);
4764 bld.insert(std::move(load));
4765 emit_split_vector(ctx, vec, 4);
4766
4767 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4768 emit_extract_vector(ctx, vec, 0, s2),
4769 emit_extract_vector(ctx, vec, 1, s2),
4770 emit_extract_vector(ctx, vec, 2, s2));
4771 } else {
4772 bld.insert(std::move(load));
4773 }
4774 emit_split_vector(ctx, dst, num_components);
4775 }
4776 }
4777
4778 void visit_load_ubo(isel_context *ctx, nir_intrinsic_instr *instr)
4779 {
4780 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4781 Temp rsrc = get_ssa_temp(ctx, instr->src[0].ssa);
4782
4783 Builder bld(ctx->program, ctx->block);
4784
4785 nir_intrinsic_instr* idx_instr = nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
4786 unsigned desc_set = nir_intrinsic_desc_set(idx_instr);
4787 unsigned binding = nir_intrinsic_binding(idx_instr);
4788 radv_descriptor_set_layout *layout = ctx->options->layout->set[desc_set].layout;
4789
4790 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
4791 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
4792 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
4793 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
4794 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
4795 if (ctx->options->chip_class >= GFX10) {
4796 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
4797 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
4798 S_008F0C_RESOURCE_LEVEL(1);
4799 } else {
4800 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
4801 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
4802 }
4803 Temp upper_dwords = bld.pseudo(aco_opcode::p_create_vector, bld.def(s3),
4804 Operand(S_008F04_BASE_ADDRESS_HI(ctx->options->address32_hi)),
4805 Operand(0xFFFFFFFFu),
4806 Operand(desc_type));
4807 rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
4808 rsrc, upper_dwords);
4809 } else {
4810 rsrc = convert_pointer_to_64_bit(ctx, rsrc);
4811 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
4812 }
4813 unsigned size = instr->dest.ssa.bit_size / 8;
4814 int byte_align = 0;
4815 if (size < 4) {
4816 unsigned align_mul = nir_intrinsic_align_mul(instr);
4817 unsigned align_offset = nir_intrinsic_align_offset(instr);
4818 byte_align = align_mul % 4 == 0 ? align_offset : -1;
4819 }
4820 load_buffer(ctx, instr->num_components, size, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa), byte_align);
4821 }
4822
4823 void visit_load_push_constant(isel_context *ctx, nir_intrinsic_instr *instr)
4824 {
4825 Builder bld(ctx->program, ctx->block);
4826 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4827 unsigned offset = nir_intrinsic_base(instr);
4828 unsigned count = instr->dest.ssa.num_components;
4829 nir_const_value *index_cv = nir_src_as_const_value(instr->src[0]);
4830
4831 if (index_cv && instr->dest.ssa.bit_size == 32) {
4832 unsigned start = (offset + index_cv->u32) / 4u;
4833 start -= ctx->args->ac.base_inline_push_consts;
4834 if (start + count <= ctx->args->ac.num_inline_push_consts) {
4835 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
4836 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
4837 for (unsigned i = 0; i < count; ++i) {
4838 elems[i] = get_arg(ctx, ctx->args->ac.inline_push_consts[start + i]);
4839 vec->operands[i] = Operand{elems[i]};
4840 }
4841 vec->definitions[0] = Definition(dst);
4842 ctx->block->instructions.emplace_back(std::move(vec));
4843 ctx->allocated_vec.emplace(dst.id(), elems);
4844 return;
4845 }
4846 }
4847
4848 Temp index = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa));
4849 if (offset != 0) // TODO check if index != 0 as well
4850 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), index);
4851 Temp ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->ac.push_constants));
4852 Temp vec = dst;
4853 bool trim = false;
4854 bool aligned = true;
4855
4856 if (instr->dest.ssa.bit_size == 8) {
4857 aligned = index_cv && (offset + index_cv->u32) % 4 == 0;
4858 bool fits_in_dword = count == 1 || (index_cv && ((offset + index_cv->u32) % 4 + count) <= 4);
4859 if (!aligned)
4860 vec = fits_in_dword ? bld.tmp(s1) : bld.tmp(s2);
4861 } else if (instr->dest.ssa.bit_size == 16) {
4862 aligned = index_cv && (offset + index_cv->u32) % 4 == 0;
4863 if (!aligned)
4864 vec = count == 4 ? bld.tmp(s4) : count > 1 ? bld.tmp(s2) : bld.tmp(s1);
4865 }
4866
4867 aco_opcode op;
4868
4869 switch (vec.size()) {
4870 case 1:
4871 op = aco_opcode::s_load_dword;
4872 break;
4873 case 2:
4874 op = aco_opcode::s_load_dwordx2;
4875 break;
4876 case 3:
4877 vec = bld.tmp(s4);
4878 trim = true;
4879 case 4:
4880 op = aco_opcode::s_load_dwordx4;
4881 break;
4882 case 6:
4883 vec = bld.tmp(s8);
4884 trim = true;
4885 case 8:
4886 op = aco_opcode::s_load_dwordx8;
4887 break;
4888 default:
4889 unreachable("unimplemented or forbidden load_push_constant.");
4890 }
4891
4892 bld.smem(op, Definition(vec), ptr, index);
4893
4894 if (!aligned) {
4895 Operand byte_offset = index_cv ? Operand((offset + index_cv->u32) % 4) : Operand(index);
4896 byte_align_scalar(ctx, vec, byte_offset, dst);
4897 return;
4898 }
4899
4900 if (trim) {
4901 emit_split_vector(ctx, vec, 4);
4902 RegClass rc = dst.size() == 3 ? s1 : s2;
4903 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4904 emit_extract_vector(ctx, vec, 0, rc),
4905 emit_extract_vector(ctx, vec, 1, rc),
4906 emit_extract_vector(ctx, vec, 2, rc));
4907
4908 }
4909 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
4910 }
4911
4912 void visit_load_constant(isel_context *ctx, nir_intrinsic_instr *instr)
4913 {
4914 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4915
4916 Builder bld(ctx->program, ctx->block);
4917
4918 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
4919 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
4920 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
4921 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
4922 if (ctx->options->chip_class >= GFX10) {
4923 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
4924 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
4925 S_008F0C_RESOURCE_LEVEL(1);
4926 } else {
4927 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
4928 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
4929 }
4930
4931 unsigned base = nir_intrinsic_base(instr);
4932 unsigned range = nir_intrinsic_range(instr);
4933
4934 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
4935 if (base && offset.type() == RegType::sgpr)
4936 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), offset, Operand(base));
4937 else if (base && offset.type() == RegType::vgpr)
4938 offset = bld.vadd32(bld.def(v1), Operand(base), offset);
4939
4940 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
4941 bld.sop1(aco_opcode::p_constaddr, bld.def(s2), bld.def(s1, scc), Operand(ctx->constant_data_offset)),
4942 Operand(MIN2(base + range, ctx->shader->constant_data_size)),
4943 Operand(desc_type));
4944 unsigned size = instr->dest.ssa.bit_size / 8;
4945 // TODO: get alignment information for subdword constants
4946 unsigned byte_align = size < 4 ? -1 : 0;
4947 load_buffer(ctx, instr->num_components, size, dst, rsrc, offset, byte_align);
4948 }
4949
4950 void visit_discard_if(isel_context *ctx, nir_intrinsic_instr *instr)
4951 {
4952 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
4953 ctx->cf_info.exec_potentially_empty_discard = true;
4954
4955 ctx->program->needs_exact = true;
4956
4957 // TODO: optimize uniform conditions
4958 Builder bld(ctx->program, ctx->block);
4959 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
4960 assert(src.regClass() == bld.lm);
4961 src = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
4962 bld.pseudo(aco_opcode::p_discard_if, src);
4963 ctx->block->kind |= block_kind_uses_discard_if;
4964 return;
4965 }
4966
4967 void visit_discard(isel_context* ctx, nir_intrinsic_instr *instr)
4968 {
4969 Builder bld(ctx->program, ctx->block);
4970
4971 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
4972 ctx->cf_info.exec_potentially_empty_discard = true;
4973
4974 bool divergent = ctx->cf_info.parent_if.is_divergent ||
4975 ctx->cf_info.parent_loop.has_divergent_continue;
4976
4977 if (ctx->block->loop_nest_depth &&
4978 ((nir_instr_is_last(&instr->instr) && !divergent) || divergent)) {
4979 /* we handle discards the same way as jump instructions */
4980 append_logical_end(ctx->block);
4981
4982 /* in loops, discard behaves like break */
4983 Block *linear_target = ctx->cf_info.parent_loop.exit;
4984 ctx->block->kind |= block_kind_discard;
4985
4986 if (!divergent) {
4987 /* uniform discard - loop ends here */
4988 assert(nir_instr_is_last(&instr->instr));
4989 ctx->block->kind |= block_kind_uniform;
4990 ctx->cf_info.has_branch = true;
4991 bld.branch(aco_opcode::p_branch);
4992 add_linear_edge(ctx->block->index, linear_target);
4993 return;
4994 }
4995
4996 /* we add a break right behind the discard() instructions */
4997 ctx->block->kind |= block_kind_break;
4998 unsigned idx = ctx->block->index;
4999
5000 ctx->cf_info.parent_loop.has_divergent_branch = true;
5001 ctx->cf_info.nir_to_aco[instr->instr.block->index] = idx;
5002
5003 /* remove critical edges from linear CFG */
5004 bld.branch(aco_opcode::p_branch);
5005 Block* break_block = ctx->program->create_and_insert_block();
5006 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
5007 break_block->kind |= block_kind_uniform;
5008 add_linear_edge(idx, break_block);
5009 add_linear_edge(break_block->index, linear_target);
5010 bld.reset(break_block);
5011 bld.branch(aco_opcode::p_branch);
5012
5013 Block* continue_block = ctx->program->create_and_insert_block();
5014 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
5015 add_linear_edge(idx, continue_block);
5016 append_logical_start(continue_block);
5017 ctx->block = continue_block;
5018
5019 return;
5020 }
5021
5022 /* it can currently happen that NIR doesn't remove the unreachable code */
5023 if (!nir_instr_is_last(&instr->instr)) {
5024 ctx->program->needs_exact = true;
5025 /* save exec somewhere temporarily so that it doesn't get
5026 * overwritten before the discard from outer exec masks */
5027 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), Operand(0xFFFFFFFF), Operand(exec, bld.lm));
5028 bld.pseudo(aco_opcode::p_discard_if, cond);
5029 ctx->block->kind |= block_kind_uses_discard_if;
5030 return;
5031 }
5032
5033 /* This condition is incorrect for uniformly branched discards in a loop
5034 * predicated by a divergent condition, but the above code catches that case
5035 * and the discard would end up turning into a discard_if.
5036 * For example:
5037 * if (divergent) {
5038 * while (...) {
5039 * if (uniform) {
5040 * discard;
5041 * }
5042 * }
5043 * }
5044 */
5045 if (!ctx->cf_info.parent_if.is_divergent) {
5046 /* program just ends here */
5047 ctx->block->kind |= block_kind_uniform;
5048 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
5049 0 /* enabled mask */, 9 /* dest */,
5050 false /* compressed */, true/* done */, true /* valid mask */);
5051 bld.sopp(aco_opcode::s_endpgm);
5052 // TODO: it will potentially be followed by a branch which is dead code to sanitize NIR phis
5053 } else {
5054 ctx->block->kind |= block_kind_discard;
5055 /* branch and linear edge is added by visit_if() */
5056 }
5057 }
5058
5059 enum aco_descriptor_type {
5060 ACO_DESC_IMAGE,
5061 ACO_DESC_FMASK,
5062 ACO_DESC_SAMPLER,
5063 ACO_DESC_BUFFER,
5064 ACO_DESC_PLANE_0,
5065 ACO_DESC_PLANE_1,
5066 ACO_DESC_PLANE_2,
5067 };
5068
5069 static bool
5070 should_declare_array(isel_context *ctx, enum glsl_sampler_dim sampler_dim, bool is_array) {
5071 if (sampler_dim == GLSL_SAMPLER_DIM_BUF)
5072 return false;
5073 ac_image_dim dim = ac_get_sampler_dim(ctx->options->chip_class, sampler_dim, is_array);
5074 return dim == ac_image_cube ||
5075 dim == ac_image_1darray ||
5076 dim == ac_image_2darray ||
5077 dim == ac_image_2darraymsaa;
5078 }
5079
5080 Temp get_sampler_desc(isel_context *ctx, nir_deref_instr *deref_instr,
5081 enum aco_descriptor_type desc_type,
5082 const nir_tex_instr *tex_instr, bool image, bool write)
5083 {
5084 /* FIXME: we should lower the deref with some new nir_intrinsic_load_desc
5085 std::unordered_map<uint64_t, Temp>::iterator it = ctx->tex_desc.find((uint64_t) desc_type << 32 | deref_instr->dest.ssa.index);
5086 if (it != ctx->tex_desc.end())
5087 return it->second;
5088 */
5089 Temp index = Temp();
5090 bool index_set = false;
5091 unsigned constant_index = 0;
5092 unsigned descriptor_set;
5093 unsigned base_index;
5094 Builder bld(ctx->program, ctx->block);
5095
5096 if (!deref_instr) {
5097 assert(tex_instr && !image);
5098 descriptor_set = 0;
5099 base_index = tex_instr->sampler_index;
5100 } else {
5101 while(deref_instr->deref_type != nir_deref_type_var) {
5102 unsigned array_size = glsl_get_aoa_size(deref_instr->type);
5103 if (!array_size)
5104 array_size = 1;
5105
5106 assert(deref_instr->deref_type == nir_deref_type_array);
5107 nir_const_value *const_value = nir_src_as_const_value(deref_instr->arr.index);
5108 if (const_value) {
5109 constant_index += array_size * const_value->u32;
5110 } else {
5111 Temp indirect = get_ssa_temp(ctx, deref_instr->arr.index.ssa);
5112 if (indirect.type() == RegType::vgpr)
5113 indirect = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), indirect);
5114
5115 if (array_size != 1)
5116 indirect = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(array_size), indirect);
5117
5118 if (!index_set) {
5119 index = indirect;
5120 index_set = true;
5121 } else {
5122 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), index, indirect);
5123 }
5124 }
5125
5126 deref_instr = nir_src_as_deref(deref_instr->parent);
5127 }
5128 descriptor_set = deref_instr->var->data.descriptor_set;
5129 base_index = deref_instr->var->data.binding;
5130 }
5131
5132 Temp list = load_desc_ptr(ctx, descriptor_set);
5133 list = convert_pointer_to_64_bit(ctx, list);
5134
5135 struct radv_descriptor_set_layout *layout = ctx->options->layout->set[descriptor_set].layout;
5136 struct radv_descriptor_set_binding_layout *binding = layout->binding + base_index;
5137 unsigned offset = binding->offset;
5138 unsigned stride = binding->size;
5139 aco_opcode opcode;
5140 RegClass type;
5141
5142 assert(base_index < layout->binding_count);
5143
5144 switch (desc_type) {
5145 case ACO_DESC_IMAGE:
5146 type = s8;
5147 opcode = aco_opcode::s_load_dwordx8;
5148 break;
5149 case ACO_DESC_FMASK:
5150 type = s8;
5151 opcode = aco_opcode::s_load_dwordx8;
5152 offset += 32;
5153 break;
5154 case ACO_DESC_SAMPLER:
5155 type = s4;
5156 opcode = aco_opcode::s_load_dwordx4;
5157 if (binding->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
5158 offset += radv_combined_image_descriptor_sampler_offset(binding);
5159 break;
5160 case ACO_DESC_BUFFER:
5161 type = s4;
5162 opcode = aco_opcode::s_load_dwordx4;
5163 break;
5164 case ACO_DESC_PLANE_0:
5165 case ACO_DESC_PLANE_1:
5166 type = s8;
5167 opcode = aco_opcode::s_load_dwordx8;
5168 offset += 32 * (desc_type - ACO_DESC_PLANE_0);
5169 break;
5170 case ACO_DESC_PLANE_2:
5171 type = s4;
5172 opcode = aco_opcode::s_load_dwordx4;
5173 offset += 64;
5174 break;
5175 default:
5176 unreachable("invalid desc_type\n");
5177 }
5178
5179 offset += constant_index * stride;
5180
5181 if (desc_type == ACO_DESC_SAMPLER && binding->immutable_samplers_offset &&
5182 (!index_set || binding->immutable_samplers_equal)) {
5183 if (binding->immutable_samplers_equal)
5184 constant_index = 0;
5185
5186 const uint32_t *samplers = radv_immutable_samplers(layout, binding);
5187 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
5188 Operand(samplers[constant_index * 4 + 0]),
5189 Operand(samplers[constant_index * 4 + 1]),
5190 Operand(samplers[constant_index * 4 + 2]),
5191 Operand(samplers[constant_index * 4 + 3]));
5192 }
5193
5194 Operand off;
5195 if (!index_set) {
5196 off = bld.copy(bld.def(s1), Operand(offset));
5197 } else {
5198 off = Operand((Temp)bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset),
5199 bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), index)));
5200 }
5201
5202 Temp res = bld.smem(opcode, bld.def(type), list, off);
5203
5204 if (desc_type == ACO_DESC_PLANE_2) {
5205 Temp components[8];
5206 for (unsigned i = 0; i < 8; i++)
5207 components[i] = bld.tmp(s1);
5208 bld.pseudo(aco_opcode::p_split_vector,
5209 Definition(components[0]),
5210 Definition(components[1]),
5211 Definition(components[2]),
5212 Definition(components[3]),
5213 res);
5214
5215 Temp desc2 = get_sampler_desc(ctx, deref_instr, ACO_DESC_PLANE_1, tex_instr, image, write);
5216 bld.pseudo(aco_opcode::p_split_vector,
5217 bld.def(s1), bld.def(s1), bld.def(s1), bld.def(s1),
5218 Definition(components[4]),
5219 Definition(components[5]),
5220 Definition(components[6]),
5221 Definition(components[7]),
5222 desc2);
5223
5224 res = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
5225 components[0], components[1], components[2], components[3],
5226 components[4], components[5], components[6], components[7]);
5227 }
5228
5229 return res;
5230 }
5231
5232 static int image_type_to_components_count(enum glsl_sampler_dim dim, bool array)
5233 {
5234 switch (dim) {
5235 case GLSL_SAMPLER_DIM_BUF:
5236 return 1;
5237 case GLSL_SAMPLER_DIM_1D:
5238 return array ? 2 : 1;
5239 case GLSL_SAMPLER_DIM_2D:
5240 return array ? 3 : 2;
5241 case GLSL_SAMPLER_DIM_MS:
5242 return array ? 4 : 3;
5243 case GLSL_SAMPLER_DIM_3D:
5244 case GLSL_SAMPLER_DIM_CUBE:
5245 return 3;
5246 case GLSL_SAMPLER_DIM_RECT:
5247 case GLSL_SAMPLER_DIM_SUBPASS:
5248 return 2;
5249 case GLSL_SAMPLER_DIM_SUBPASS_MS:
5250 return 3;
5251 default:
5252 break;
5253 }
5254 return 0;
5255 }
5256
5257
5258 /* Adjust the sample index according to FMASK.
5259 *
5260 * For uncompressed MSAA surfaces, FMASK should return 0x76543210,
5261 * which is the identity mapping. Each nibble says which physical sample
5262 * should be fetched to get that sample.
5263 *
5264 * For example, 0x11111100 means there are only 2 samples stored and
5265 * the second sample covers 3/4 of the pixel. When reading samples 0
5266 * and 1, return physical sample 0 (determined by the first two 0s
5267 * in FMASK), otherwise return physical sample 1.
5268 *
5269 * The sample index should be adjusted as follows:
5270 * sample_index = (fmask >> (sample_index * 4)) & 0xF;
5271 */
5272 static Temp adjust_sample_index_using_fmask(isel_context *ctx, bool da, std::vector<Temp>& coords, Operand sample_index, Temp fmask_desc_ptr)
5273 {
5274 Builder bld(ctx->program, ctx->block);
5275 Temp fmask = bld.tmp(v1);
5276 unsigned dim = ctx->options->chip_class >= GFX10
5277 ? ac_get_sampler_dim(ctx->options->chip_class, GLSL_SAMPLER_DIM_2D, da)
5278 : 0;
5279
5280 Temp coord = da ? bld.pseudo(aco_opcode::p_create_vector, bld.def(v3), coords[0], coords[1], coords[2]) :
5281 bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), coords[0], coords[1]);
5282 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(aco_opcode::image_load, Format::MIMG, 3, 1)};
5283 load->operands[0] = Operand(fmask_desc_ptr);
5284 load->operands[1] = Operand(s4); /* no sampler */
5285 load->operands[2] = Operand(coord);
5286 load->definitions[0] = Definition(fmask);
5287 load->glc = false;
5288 load->dlc = false;
5289 load->dmask = 0x1;
5290 load->unrm = true;
5291 load->da = da;
5292 load->dim = dim;
5293 load->can_reorder = true; /* fmask images shouldn't be modified */
5294 ctx->block->instructions.emplace_back(std::move(load));
5295
5296 Operand sample_index4;
5297 if (sample_index.isConstant() && sample_index.constantValue() < 16) {
5298 sample_index4 = Operand(sample_index.constantValue() << 2);
5299 } else if (sample_index.regClass() == s1) {
5300 sample_index4 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), sample_index, Operand(2u));
5301 } else {
5302 assert(sample_index.regClass() == v1);
5303 sample_index4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), sample_index);
5304 }
5305
5306 Temp final_sample;
5307 if (sample_index4.isConstant() && sample_index4.constantValue() == 0)
5308 final_sample = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(15u), fmask);
5309 else if (sample_index4.isConstant() && sample_index4.constantValue() == 28)
5310 final_sample = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(28u), fmask);
5311 else
5312 final_sample = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), fmask, sample_index4, Operand(4u));
5313
5314 /* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK
5315 * resource descriptor is 0 (invalid),
5316 */
5317 Temp compare = bld.tmp(bld.lm);
5318 bld.vopc_e64(aco_opcode::v_cmp_lg_u32, Definition(compare),
5319 Operand(0u), emit_extract_vector(ctx, fmask_desc_ptr, 1, s1)).def(0).setHint(vcc);
5320
5321 Temp sample_index_v = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), sample_index);
5322
5323 /* Replace the MSAA sample index. */
5324 return bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), sample_index_v, final_sample, compare);
5325 }
5326
5327 static Temp get_image_coords(isel_context *ctx, const nir_intrinsic_instr *instr, const struct glsl_type *type)
5328 {
5329
5330 Temp src0 = get_ssa_temp(ctx, instr->src[1].ssa);
5331 enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5332 bool is_array = glsl_sampler_type_is_array(type);
5333 ASSERTED bool add_frag_pos = (dim == GLSL_SAMPLER_DIM_SUBPASS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
5334 assert(!add_frag_pos && "Input attachments should be lowered.");
5335 bool is_ms = (dim == GLSL_SAMPLER_DIM_MS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
5336 bool gfx9_1d = ctx->options->chip_class == GFX9 && dim == GLSL_SAMPLER_DIM_1D;
5337 int count = image_type_to_components_count(dim, is_array);
5338 std::vector<Temp> coords(count);
5339 Builder bld(ctx->program, ctx->block);
5340
5341 if (is_ms) {
5342 count--;
5343 Temp src2 = get_ssa_temp(ctx, instr->src[2].ssa);
5344 /* get sample index */
5345 if (instr->intrinsic == nir_intrinsic_image_deref_load) {
5346 nir_const_value *sample_cv = nir_src_as_const_value(instr->src[2]);
5347 Operand sample_index = sample_cv ? Operand(sample_cv->u32) : Operand(emit_extract_vector(ctx, src2, 0, v1));
5348 std::vector<Temp> fmask_load_address;
5349 for (unsigned i = 0; i < (is_array ? 3 : 2); i++)
5350 fmask_load_address.emplace_back(emit_extract_vector(ctx, src0, i, v1));
5351
5352 Temp fmask_desc_ptr = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_FMASK, nullptr, false, false);
5353 coords[count] = adjust_sample_index_using_fmask(ctx, is_array, fmask_load_address, sample_index, fmask_desc_ptr);
5354 } else {
5355 coords[count] = emit_extract_vector(ctx, src2, 0, v1);
5356 }
5357 }
5358
5359 if (gfx9_1d) {
5360 coords[0] = emit_extract_vector(ctx, src0, 0, v1);
5361 coords.resize(coords.size() + 1);
5362 coords[1] = bld.copy(bld.def(v1), Operand(0u));
5363 if (is_array)
5364 coords[2] = emit_extract_vector(ctx, src0, 1, v1);
5365 } else {
5366 for (int i = 0; i < count; i++)
5367 coords[i] = emit_extract_vector(ctx, src0, i, v1);
5368 }
5369
5370 if (instr->intrinsic == nir_intrinsic_image_deref_load ||
5371 instr->intrinsic == nir_intrinsic_image_deref_store) {
5372 int lod_index = instr->intrinsic == nir_intrinsic_image_deref_load ? 3 : 4;
5373 bool level_zero = nir_src_is_const(instr->src[lod_index]) && nir_src_as_uint(instr->src[lod_index]) == 0;
5374
5375 if (!level_zero)
5376 coords.emplace_back(get_ssa_temp(ctx, instr->src[lod_index].ssa));
5377 }
5378
5379 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
5380 for (unsigned i = 0; i < coords.size(); i++)
5381 vec->operands[i] = Operand(coords[i]);
5382 Temp res = {ctx->program->allocateId(), RegClass(RegType::vgpr, coords.size())};
5383 vec->definitions[0] = Definition(res);
5384 ctx->block->instructions.emplace_back(std::move(vec));
5385 return res;
5386 }
5387
5388
5389 void visit_image_load(isel_context *ctx, nir_intrinsic_instr *instr)
5390 {
5391 Builder bld(ctx->program, ctx->block);
5392 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5393 const struct glsl_type *type = glsl_without_array(var->type);
5394 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5395 bool is_array = glsl_sampler_type_is_array(type);
5396 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5397
5398 if (dim == GLSL_SAMPLER_DIM_BUF) {
5399 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa);
5400 unsigned num_channels = util_last_bit(mask);
5401 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5402 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5403
5404 aco_opcode opcode;
5405 switch (num_channels) {
5406 case 1:
5407 opcode = aco_opcode::buffer_load_format_x;
5408 break;
5409 case 2:
5410 opcode = aco_opcode::buffer_load_format_xy;
5411 break;
5412 case 3:
5413 opcode = aco_opcode::buffer_load_format_xyz;
5414 break;
5415 case 4:
5416 opcode = aco_opcode::buffer_load_format_xyzw;
5417 break;
5418 default:
5419 unreachable(">4 channel buffer image load");
5420 }
5421 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 3, 1)};
5422 load->operands[0] = Operand(rsrc);
5423 load->operands[1] = Operand(vindex);
5424 load->operands[2] = Operand((uint32_t) 0);
5425 Temp tmp;
5426 if (num_channels == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
5427 tmp = dst;
5428 else
5429 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_channels)};
5430 load->definitions[0] = Definition(tmp);
5431 load->idxen = true;
5432 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT);
5433 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
5434 load->barrier = barrier_image;
5435 ctx->block->instructions.emplace_back(std::move(load));
5436
5437 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, (1 << num_channels) - 1);
5438 return;
5439 }
5440
5441 Temp coords = get_image_coords(ctx, instr, type);
5442 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5443
5444 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
5445 unsigned num_components = util_bitcount(dmask);
5446 Temp tmp;
5447 if (num_components == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
5448 tmp = dst;
5449 else
5450 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_components)};
5451
5452 bool level_zero = nir_src_is_const(instr->src[3]) && nir_src_as_uint(instr->src[3]) == 0;
5453 aco_opcode opcode = level_zero ? aco_opcode::image_load : aco_opcode::image_load_mip;
5454
5455 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1)};
5456 load->operands[0] = Operand(resource);
5457 load->operands[1] = Operand(s4); /* no sampler */
5458 load->operands[2] = Operand(coords);
5459 load->definitions[0] = Definition(tmp);
5460 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT) ? 1 : 0;
5461 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
5462 load->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5463 load->dmask = dmask;
5464 load->unrm = true;
5465 load->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5466 load->barrier = barrier_image;
5467 ctx->block->instructions.emplace_back(std::move(load));
5468
5469 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, dmask);
5470 return;
5471 }
5472
5473 void visit_image_store(isel_context *ctx, nir_intrinsic_instr *instr)
5474 {
5475 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5476 const struct glsl_type *type = glsl_without_array(var->type);
5477 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5478 bool is_array = glsl_sampler_type_is_array(type);
5479 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
5480
5481 bool glc = ctx->options->chip_class == GFX6 || var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE) ? 1 : 0;
5482
5483 if (dim == GLSL_SAMPLER_DIM_BUF) {
5484 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5485 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5486 aco_opcode opcode;
5487 switch (data.size()) {
5488 case 1:
5489 opcode = aco_opcode::buffer_store_format_x;
5490 break;
5491 case 2:
5492 opcode = aco_opcode::buffer_store_format_xy;
5493 break;
5494 case 3:
5495 opcode = aco_opcode::buffer_store_format_xyz;
5496 break;
5497 case 4:
5498 opcode = aco_opcode::buffer_store_format_xyzw;
5499 break;
5500 default:
5501 unreachable(">4 channel buffer image store");
5502 }
5503 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
5504 store->operands[0] = Operand(rsrc);
5505 store->operands[1] = Operand(vindex);
5506 store->operands[2] = Operand((uint32_t) 0);
5507 store->operands[3] = Operand(data);
5508 store->idxen = true;
5509 store->glc = glc;
5510 store->dlc = false;
5511 store->disable_wqm = true;
5512 store->barrier = barrier_image;
5513 ctx->program->needs_exact = true;
5514 ctx->block->instructions.emplace_back(std::move(store));
5515 return;
5516 }
5517
5518 assert(data.type() == RegType::vgpr);
5519 Temp coords = get_image_coords(ctx, instr, type);
5520 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5521
5522 bool level_zero = nir_src_is_const(instr->src[4]) && nir_src_as_uint(instr->src[4]) == 0;
5523 aco_opcode opcode = level_zero ? aco_opcode::image_store : aco_opcode::image_store_mip;
5524
5525 aco_ptr<MIMG_instruction> store{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 0)};
5526 store->operands[0] = Operand(resource);
5527 store->operands[1] = Operand(data);
5528 store->operands[2] = Operand(coords);
5529 store->glc = glc;
5530 store->dlc = false;
5531 store->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5532 store->dmask = (1 << data.size()) - 1;
5533 store->unrm = true;
5534 store->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5535 store->disable_wqm = true;
5536 store->barrier = barrier_image;
5537 ctx->program->needs_exact = true;
5538 ctx->block->instructions.emplace_back(std::move(store));
5539 return;
5540 }
5541
5542 void visit_image_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
5543 {
5544 /* return the previous value if dest is ever used */
5545 bool return_previous = false;
5546 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5547 return_previous = true;
5548 break;
5549 }
5550 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5551 return_previous = true;
5552 break;
5553 }
5554
5555 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5556 const struct glsl_type *type = glsl_without_array(var->type);
5557 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5558 bool is_array = glsl_sampler_type_is_array(type);
5559 Builder bld(ctx->program, ctx->block);
5560
5561 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
5562 assert(data.size() == 1 && "64bit ssbo atomics not yet implemented.");
5563
5564 if (instr->intrinsic == nir_intrinsic_image_deref_atomic_comp_swap)
5565 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), get_ssa_temp(ctx, instr->src[4].ssa), data);
5566
5567 aco_opcode buf_op, image_op;
5568 switch (instr->intrinsic) {
5569 case nir_intrinsic_image_deref_atomic_add:
5570 buf_op = aco_opcode::buffer_atomic_add;
5571 image_op = aco_opcode::image_atomic_add;
5572 break;
5573 case nir_intrinsic_image_deref_atomic_umin:
5574 buf_op = aco_opcode::buffer_atomic_umin;
5575 image_op = aco_opcode::image_atomic_umin;
5576 break;
5577 case nir_intrinsic_image_deref_atomic_imin:
5578 buf_op = aco_opcode::buffer_atomic_smin;
5579 image_op = aco_opcode::image_atomic_smin;
5580 break;
5581 case nir_intrinsic_image_deref_atomic_umax:
5582 buf_op = aco_opcode::buffer_atomic_umax;
5583 image_op = aco_opcode::image_atomic_umax;
5584 break;
5585 case nir_intrinsic_image_deref_atomic_imax:
5586 buf_op = aco_opcode::buffer_atomic_smax;
5587 image_op = aco_opcode::image_atomic_smax;
5588 break;
5589 case nir_intrinsic_image_deref_atomic_and:
5590 buf_op = aco_opcode::buffer_atomic_and;
5591 image_op = aco_opcode::image_atomic_and;
5592 break;
5593 case nir_intrinsic_image_deref_atomic_or:
5594 buf_op = aco_opcode::buffer_atomic_or;
5595 image_op = aco_opcode::image_atomic_or;
5596 break;
5597 case nir_intrinsic_image_deref_atomic_xor:
5598 buf_op = aco_opcode::buffer_atomic_xor;
5599 image_op = aco_opcode::image_atomic_xor;
5600 break;
5601 case nir_intrinsic_image_deref_atomic_exchange:
5602 buf_op = aco_opcode::buffer_atomic_swap;
5603 image_op = aco_opcode::image_atomic_swap;
5604 break;
5605 case nir_intrinsic_image_deref_atomic_comp_swap:
5606 buf_op = aco_opcode::buffer_atomic_cmpswap;
5607 image_op = aco_opcode::image_atomic_cmpswap;
5608 break;
5609 default:
5610 unreachable("visit_image_atomic should only be called with nir_intrinsic_image_deref_atomic_* instructions.");
5611 }
5612
5613 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5614
5615 if (dim == GLSL_SAMPLER_DIM_BUF) {
5616 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5617 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5618 //assert(ctx->options->chip_class < GFX9 && "GFX9 stride size workaround not yet implemented.");
5619 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(buf_op, Format::MUBUF, 4, return_previous ? 1 : 0)};
5620 mubuf->operands[0] = Operand(resource);
5621 mubuf->operands[1] = Operand(vindex);
5622 mubuf->operands[2] = Operand((uint32_t)0);
5623 mubuf->operands[3] = Operand(data);
5624 if (return_previous)
5625 mubuf->definitions[0] = Definition(dst);
5626 mubuf->offset = 0;
5627 mubuf->idxen = true;
5628 mubuf->glc = return_previous;
5629 mubuf->dlc = false; /* Not needed for atomics */
5630 mubuf->disable_wqm = true;
5631 mubuf->barrier = barrier_image;
5632 ctx->program->needs_exact = true;
5633 ctx->block->instructions.emplace_back(std::move(mubuf));
5634 return;
5635 }
5636
5637 Temp coords = get_image_coords(ctx, instr, type);
5638 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5639 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(image_op, Format::MIMG, 3, return_previous ? 1 : 0)};
5640 mimg->operands[0] = Operand(resource);
5641 mimg->operands[1] = Operand(data);
5642 mimg->operands[2] = Operand(coords);
5643 if (return_previous)
5644 mimg->definitions[0] = Definition(dst);
5645 mimg->glc = return_previous;
5646 mimg->dlc = false; /* Not needed for atomics */
5647 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5648 mimg->dmask = (1 << data.size()) - 1;
5649 mimg->unrm = true;
5650 mimg->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5651 mimg->disable_wqm = true;
5652 mimg->barrier = barrier_image;
5653 ctx->program->needs_exact = true;
5654 ctx->block->instructions.emplace_back(std::move(mimg));
5655 return;
5656 }
5657
5658 void get_buffer_size(isel_context *ctx, Temp desc, Temp dst, bool in_elements)
5659 {
5660 if (in_elements && ctx->options->chip_class == GFX8) {
5661 /* we only have to divide by 1, 2, 4, 8, 12 or 16 */
5662 Builder bld(ctx->program, ctx->block);
5663
5664 Temp size = emit_extract_vector(ctx, desc, 2, s1);
5665
5666 Temp size_div3 = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), bld.copy(bld.def(v1), Operand(0xaaaaaaabu)), size);
5667 size_div3 = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.as_uniform(size_div3), Operand(1u));
5668
5669 Temp stride = emit_extract_vector(ctx, desc, 1, s1);
5670 stride = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), stride, Operand((5u << 16) | 16u));
5671
5672 Temp is12 = bld.sopc(aco_opcode::s_cmp_eq_i32, bld.def(s1, scc), stride, Operand(12u));
5673 size = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), size_div3, size, bld.scc(is12));
5674
5675 Temp shr_dst = dst.type() == RegType::vgpr ? bld.tmp(s1) : dst;
5676 bld.sop2(aco_opcode::s_lshr_b32, Definition(shr_dst), bld.def(s1, scc),
5677 size, bld.sop1(aco_opcode::s_ff1_i32_b32, bld.def(s1), stride));
5678 if (dst.type() == RegType::vgpr)
5679 bld.copy(Definition(dst), shr_dst);
5680
5681 /* TODO: we can probably calculate this faster with v_skip when stride != 12 */
5682 } else {
5683 emit_extract_vector(ctx, desc, 2, dst);
5684 }
5685 }
5686
5687 void visit_image_size(isel_context *ctx, nir_intrinsic_instr *instr)
5688 {
5689 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5690 const struct glsl_type *type = glsl_without_array(var->type);
5691 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5692 bool is_array = glsl_sampler_type_is_array(type);
5693 Builder bld(ctx->program, ctx->block);
5694
5695 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF) {
5696 Temp desc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, NULL, true, false);
5697 return get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), true);
5698 }
5699
5700 /* LOD */
5701 Temp lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
5702
5703 /* Resource */
5704 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, NULL, true, false);
5705
5706 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5707
5708 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1)};
5709 mimg->operands[0] = Operand(resource);
5710 mimg->operands[1] = Operand(s4); /* no sampler */
5711 mimg->operands[2] = Operand(lod);
5712 uint8_t& dmask = mimg->dmask;
5713 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5714 mimg->dmask = (1 << instr->dest.ssa.num_components) - 1;
5715 mimg->da = glsl_sampler_type_is_array(type);
5716 mimg->can_reorder = true;
5717 Definition& def = mimg->definitions[0];
5718 ctx->block->instructions.emplace_back(std::move(mimg));
5719
5720 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE &&
5721 glsl_sampler_type_is_array(type)) {
5722
5723 assert(instr->dest.ssa.num_components == 3);
5724 Temp tmp = {ctx->program->allocateId(), v3};
5725 def = Definition(tmp);
5726 emit_split_vector(ctx, tmp, 3);
5727
5728 /* divide 3rd value by 6 by multiplying with magic number */
5729 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
5730 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp, 2, v1), c);
5731
5732 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5733 emit_extract_vector(ctx, tmp, 0, v1),
5734 emit_extract_vector(ctx, tmp, 1, v1),
5735 by_6);
5736
5737 } else if (ctx->options->chip_class == GFX9 &&
5738 glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_1D &&
5739 glsl_sampler_type_is_array(type)) {
5740 assert(instr->dest.ssa.num_components == 2);
5741 def = Definition(dst);
5742 dmask = 0x5;
5743 } else {
5744 def = Definition(dst);
5745 }
5746
5747 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
5748 }
5749
5750 void visit_load_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
5751 {
5752 Builder bld(ctx->program, ctx->block);
5753 unsigned num_components = instr->num_components;
5754
5755 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5756 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5757 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
5758
5759 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
5760 unsigned size = instr->dest.ssa.bit_size / 8;
5761 int byte_align = 0;
5762 if (size < 4) {
5763 unsigned align_mul = nir_intrinsic_align_mul(instr);
5764 unsigned align_offset = nir_intrinsic_align_offset(instr);
5765 byte_align = align_mul % 4 == 0 ? align_offset : -1;
5766 }
5767 load_buffer(ctx, num_components, size, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa), byte_align, glc, false);
5768 }
5769
5770 void visit_store_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
5771 {
5772 Builder bld(ctx->program, ctx->block);
5773 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
5774 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
5775 unsigned writemask = nir_intrinsic_write_mask(instr);
5776 Temp offset = get_ssa_temp(ctx, instr->src[2].ssa);
5777
5778 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5779 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
5780
5781 bool smem = !ctx->divergent_vals[instr->src[2].ssa->index] &&
5782 ctx->options->chip_class >= GFX8 &&
5783 elem_size_bytes >= 4;
5784 if (smem)
5785 offset = bld.as_uniform(offset);
5786 bool smem_nonfs = smem && ctx->stage != fragment_fs;
5787
5788 while (writemask) {
5789 int start, count;
5790 u_bit_scan_consecutive_range(&writemask, &start, &count);
5791 if (count == 3 && (smem || ctx->options->chip_class == GFX6)) {
5792 /* GFX6 doesn't support storing vec3, split it. */
5793 writemask |= 1u << (start + 2);
5794 count = 2;
5795 }
5796 int num_bytes = count * elem_size_bytes;
5797
5798 /* dword or larger stores have to be dword-aligned */
5799 if (elem_size_bytes < 4 && num_bytes > 2) {
5800 // TODO: improve alignment check of sub-dword stores
5801 unsigned count_new = 2 / elem_size_bytes;
5802 writemask |= ((1 << (count - count_new)) - 1) << (start + count_new);
5803 count = count_new;
5804 num_bytes = 2;
5805 }
5806
5807 if (num_bytes > 16) {
5808 assert(elem_size_bytes == 8);
5809 writemask |= (((count - 2) << 1) - 1) << (start + 2);
5810 count = 2;
5811 num_bytes = 16;
5812 }
5813
5814 Temp write_data;
5815 if (elem_size_bytes < 4) {
5816 if (data.type() == RegType::sgpr) {
5817 data = as_vgpr(ctx, data);
5818 emit_split_vector(ctx, data, 4 * data.size() / elem_size_bytes);
5819 }
5820 RegClass rc = RegClass(RegType::vgpr, elem_size_bytes).as_subdword();
5821 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
5822 for (int i = 0; i < count; i++)
5823 vec->operands[i] = Operand(emit_extract_vector(ctx, data, start + i, rc));
5824 write_data = bld.tmp(RegClass(RegType::vgpr, num_bytes).as_subdword());
5825 vec->definitions[0] = Definition(write_data);
5826 bld.insert(std::move(vec));
5827 } else if (count != instr->num_components) {
5828 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
5829 for (int i = 0; i < count; i++) {
5830 Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(data.type(), elem_size_bytes / 4));
5831 vec->operands[i] = Operand(smem_nonfs ? bld.as_uniform(elem) : elem);
5832 }
5833 write_data = bld.tmp(!smem ? RegType::vgpr : smem_nonfs ? RegType::sgpr : data.type(), count * elem_size_bytes / 4);
5834 vec->definitions[0] = Definition(write_data);
5835 ctx->block->instructions.emplace_back(std::move(vec));
5836 } else if (!smem && data.type() != RegType::vgpr) {
5837 assert(num_bytes % 4 == 0);
5838 write_data = bld.copy(bld.def(RegType::vgpr, num_bytes / 4), data);
5839 } else if (smem_nonfs && data.type() == RegType::vgpr) {
5840 assert(num_bytes % 4 == 0);
5841 write_data = bld.as_uniform(data);
5842 } else {
5843 write_data = data;
5844 }
5845
5846 aco_opcode vmem_op, smem_op = aco_opcode::last_opcode;
5847 switch (num_bytes) {
5848 case 1:
5849 vmem_op = aco_opcode::buffer_store_byte;
5850 break;
5851 case 2:
5852 vmem_op = aco_opcode::buffer_store_short;
5853 break;
5854 case 4:
5855 vmem_op = aco_opcode::buffer_store_dword;
5856 smem_op = aco_opcode::s_buffer_store_dword;
5857 break;
5858 case 8:
5859 vmem_op = aco_opcode::buffer_store_dwordx2;
5860 smem_op = aco_opcode::s_buffer_store_dwordx2;
5861 break;
5862 case 12:
5863 vmem_op = aco_opcode::buffer_store_dwordx3;
5864 assert(!smem && ctx->options->chip_class > GFX6);
5865 break;
5866 case 16:
5867 vmem_op = aco_opcode::buffer_store_dwordx4;
5868 smem_op = aco_opcode::s_buffer_store_dwordx4;
5869 break;
5870 default:
5871 unreachable("Store SSBO not implemented for this size.");
5872 }
5873 if (ctx->stage == fragment_fs)
5874 smem_op = aco_opcode::p_fs_buffer_store_smem;
5875
5876 if (smem) {
5877 aco_ptr<SMEM_instruction> store{create_instruction<SMEM_instruction>(smem_op, Format::SMEM, 3, 0)};
5878 store->operands[0] = Operand(rsrc);
5879 if (start) {
5880 Temp off = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
5881 offset, Operand(start * elem_size_bytes));
5882 store->operands[1] = Operand(off);
5883 } else {
5884 store->operands[1] = Operand(offset);
5885 }
5886 if (smem_op != aco_opcode::p_fs_buffer_store_smem)
5887 store->operands[1].setFixed(m0);
5888 store->operands[2] = Operand(write_data);
5889 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
5890 store->dlc = false;
5891 store->disable_wqm = true;
5892 store->barrier = barrier_buffer;
5893 ctx->block->instructions.emplace_back(std::move(store));
5894 ctx->program->wb_smem_l1_on_end = true;
5895 if (smem_op == aco_opcode::p_fs_buffer_store_smem) {
5896 ctx->block->kind |= block_kind_needs_lowering;
5897 ctx->program->needs_exact = true;
5898 }
5899 } else {
5900 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(vmem_op, Format::MUBUF, 4, 0)};
5901 store->operands[0] = Operand(rsrc);
5902 store->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
5903 store->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
5904 store->operands[3] = Operand(write_data);
5905 store->offset = start * elem_size_bytes;
5906 store->offen = (offset.type() == RegType::vgpr);
5907 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
5908 store->dlc = false;
5909 store->disable_wqm = true;
5910 store->barrier = barrier_buffer;
5911 ctx->program->needs_exact = true;
5912 ctx->block->instructions.emplace_back(std::move(store));
5913 }
5914 }
5915 }
5916
5917 void visit_atomic_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
5918 {
5919 /* return the previous value if dest is ever used */
5920 bool return_previous = false;
5921 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5922 return_previous = true;
5923 break;
5924 }
5925 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5926 return_previous = true;
5927 break;
5928 }
5929
5930 Builder bld(ctx->program, ctx->block);
5931 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[2].ssa));
5932
5933 if (instr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap)
5934 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
5935 get_ssa_temp(ctx, instr->src[3].ssa), data);
5936
5937 Temp offset = get_ssa_temp(ctx, instr->src[1].ssa);
5938 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5939 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
5940
5941 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5942
5943 aco_opcode op32, op64;
5944 switch (instr->intrinsic) {
5945 case nir_intrinsic_ssbo_atomic_add:
5946 op32 = aco_opcode::buffer_atomic_add;
5947 op64 = aco_opcode::buffer_atomic_add_x2;
5948 break;
5949 case nir_intrinsic_ssbo_atomic_imin:
5950 op32 = aco_opcode::buffer_atomic_smin;
5951 op64 = aco_opcode::buffer_atomic_smin_x2;
5952 break;
5953 case nir_intrinsic_ssbo_atomic_umin:
5954 op32 = aco_opcode::buffer_atomic_umin;
5955 op64 = aco_opcode::buffer_atomic_umin_x2;
5956 break;
5957 case nir_intrinsic_ssbo_atomic_imax:
5958 op32 = aco_opcode::buffer_atomic_smax;
5959 op64 = aco_opcode::buffer_atomic_smax_x2;
5960 break;
5961 case nir_intrinsic_ssbo_atomic_umax:
5962 op32 = aco_opcode::buffer_atomic_umax;
5963 op64 = aco_opcode::buffer_atomic_umax_x2;
5964 break;
5965 case nir_intrinsic_ssbo_atomic_and:
5966 op32 = aco_opcode::buffer_atomic_and;
5967 op64 = aco_opcode::buffer_atomic_and_x2;
5968 break;
5969 case nir_intrinsic_ssbo_atomic_or:
5970 op32 = aco_opcode::buffer_atomic_or;
5971 op64 = aco_opcode::buffer_atomic_or_x2;
5972 break;
5973 case nir_intrinsic_ssbo_atomic_xor:
5974 op32 = aco_opcode::buffer_atomic_xor;
5975 op64 = aco_opcode::buffer_atomic_xor_x2;
5976 break;
5977 case nir_intrinsic_ssbo_atomic_exchange:
5978 op32 = aco_opcode::buffer_atomic_swap;
5979 op64 = aco_opcode::buffer_atomic_swap_x2;
5980 break;
5981 case nir_intrinsic_ssbo_atomic_comp_swap:
5982 op32 = aco_opcode::buffer_atomic_cmpswap;
5983 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
5984 break;
5985 default:
5986 unreachable("visit_atomic_ssbo should only be called with nir_intrinsic_ssbo_atomic_* instructions.");
5987 }
5988 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
5989 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
5990 mubuf->operands[0] = Operand(rsrc);
5991 mubuf->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
5992 mubuf->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
5993 mubuf->operands[3] = Operand(data);
5994 if (return_previous)
5995 mubuf->definitions[0] = Definition(dst);
5996 mubuf->offset = 0;
5997 mubuf->offen = (offset.type() == RegType::vgpr);
5998 mubuf->glc = return_previous;
5999 mubuf->dlc = false; /* Not needed for atomics */
6000 mubuf->disable_wqm = true;
6001 mubuf->barrier = barrier_buffer;
6002 ctx->program->needs_exact = true;
6003 ctx->block->instructions.emplace_back(std::move(mubuf));
6004 }
6005
6006 void visit_get_buffer_size(isel_context *ctx, nir_intrinsic_instr *instr) {
6007
6008 Temp index = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6009 Builder bld(ctx->program, ctx->block);
6010 Temp desc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), index, Operand(0u));
6011 get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), false);
6012 }
6013
6014 Temp get_gfx6_global_rsrc(Builder& bld, Temp addr)
6015 {
6016 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
6017 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
6018
6019 if (addr.type() == RegType::vgpr)
6020 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), Operand(0u), Operand(0u), Operand(-1u), Operand(rsrc_conf));
6021 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), addr, Operand(-1u), Operand(rsrc_conf));
6022 }
6023
6024 void visit_load_global(isel_context *ctx, nir_intrinsic_instr *instr)
6025 {
6026 Builder bld(ctx->program, ctx->block);
6027 unsigned num_components = instr->num_components;
6028 unsigned num_bytes = num_components * instr->dest.ssa.bit_size / 8;
6029
6030 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6031 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
6032
6033 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
6034 bool dlc = glc && ctx->options->chip_class >= GFX10;
6035 aco_opcode op;
6036 if (dst.type() == RegType::vgpr || (glc && ctx->options->chip_class < GFX8)) {
6037 bool global = ctx->options->chip_class >= GFX9;
6038
6039 if (ctx->options->chip_class >= GFX7) {
6040 aco_opcode op;
6041 switch (num_bytes) {
6042 case 4:
6043 op = global ? aco_opcode::global_load_dword : aco_opcode::flat_load_dword;
6044 break;
6045 case 8:
6046 op = global ? aco_opcode::global_load_dwordx2 : aco_opcode::flat_load_dwordx2;
6047 break;
6048 case 12:
6049 op = global ? aco_opcode::global_load_dwordx3 : aco_opcode::flat_load_dwordx3;
6050 break;
6051 case 16:
6052 op = global ? aco_opcode::global_load_dwordx4 : aco_opcode::flat_load_dwordx4;
6053 break;
6054 default:
6055 unreachable("load_global not implemented for this size.");
6056 }
6057
6058 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 2, 1)};
6059 flat->operands[0] = Operand(addr);
6060 flat->operands[1] = Operand(s1);
6061 flat->glc = glc;
6062 flat->dlc = dlc;
6063 flat->barrier = barrier_buffer;
6064
6065 if (dst.type() == RegType::sgpr) {
6066 Temp vec = bld.tmp(RegType::vgpr, dst.size());
6067 flat->definitions[0] = Definition(vec);
6068 ctx->block->instructions.emplace_back(std::move(flat));
6069 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
6070 } else {
6071 flat->definitions[0] = Definition(dst);
6072 ctx->block->instructions.emplace_back(std::move(flat));
6073 }
6074 emit_split_vector(ctx, dst, num_components);
6075 } else {
6076 assert(ctx->options->chip_class == GFX6);
6077
6078 /* GFX6 doesn't support loading vec3, expand to vec4. */
6079 num_bytes = num_bytes == 12 ? 16 : num_bytes;
6080
6081 aco_opcode op;
6082 switch (num_bytes) {
6083 case 4:
6084 op = aco_opcode::buffer_load_dword;
6085 break;
6086 case 8:
6087 op = aco_opcode::buffer_load_dwordx2;
6088 break;
6089 case 16:
6090 op = aco_opcode::buffer_load_dwordx4;
6091 break;
6092 default:
6093 unreachable("load_global not implemented for this size.");
6094 }
6095
6096 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
6097
6098 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
6099 mubuf->operands[0] = Operand(rsrc);
6100 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
6101 mubuf->operands[2] = Operand(0u);
6102 mubuf->glc = glc;
6103 mubuf->dlc = false;
6104 mubuf->offset = 0;
6105 mubuf->addr64 = addr.type() == RegType::vgpr;
6106 mubuf->disable_wqm = false;
6107 mubuf->barrier = barrier_buffer;
6108 aco_ptr<Instruction> instr = std::move(mubuf);
6109
6110 /* expand vector */
6111 if (dst.size() == 3) {
6112 Temp vec = bld.tmp(v4);
6113 instr->definitions[0] = Definition(vec);
6114 bld.insert(std::move(instr));
6115 emit_split_vector(ctx, vec, 4);
6116
6117 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 3, 1));
6118 instr->operands[0] = Operand(emit_extract_vector(ctx, vec, 0, v1));
6119 instr->operands[1] = Operand(emit_extract_vector(ctx, vec, 1, v1));
6120 instr->operands[2] = Operand(emit_extract_vector(ctx, vec, 2, v1));
6121 }
6122
6123 if (dst.type() == RegType::sgpr) {
6124 Temp vec = bld.tmp(RegType::vgpr, dst.size());
6125 instr->definitions[0] = Definition(vec);
6126 bld.insert(std::move(instr));
6127 expand_vector(ctx, vec, dst, num_components, (1 << num_components) - 1);
6128 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
6129 } else {
6130 instr->definitions[0] = Definition(dst);
6131 bld.insert(std::move(instr));
6132 emit_split_vector(ctx, dst, num_components);
6133 }
6134 }
6135 } else {
6136 switch (num_bytes) {
6137 case 4:
6138 op = aco_opcode::s_load_dword;
6139 break;
6140 case 8:
6141 op = aco_opcode::s_load_dwordx2;
6142 break;
6143 case 12:
6144 case 16:
6145 op = aco_opcode::s_load_dwordx4;
6146 break;
6147 default:
6148 unreachable("load_global not implemented for this size.");
6149 }
6150 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
6151 load->operands[0] = Operand(addr);
6152 load->operands[1] = Operand(0u);
6153 load->definitions[0] = Definition(dst);
6154 load->glc = glc;
6155 load->dlc = dlc;
6156 load->barrier = barrier_buffer;
6157 assert(ctx->options->chip_class >= GFX8 || !glc);
6158
6159 if (dst.size() == 3) {
6160 /* trim vector */
6161 Temp vec = bld.tmp(s4);
6162 load->definitions[0] = Definition(vec);
6163 ctx->block->instructions.emplace_back(std::move(load));
6164 emit_split_vector(ctx, vec, 4);
6165
6166 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6167 emit_extract_vector(ctx, vec, 0, s1),
6168 emit_extract_vector(ctx, vec, 1, s1),
6169 emit_extract_vector(ctx, vec, 2, s1));
6170 } else {
6171 ctx->block->instructions.emplace_back(std::move(load));
6172 }
6173 }
6174 }
6175
6176 void visit_store_global(isel_context *ctx, nir_intrinsic_instr *instr)
6177 {
6178 Builder bld(ctx->program, ctx->block);
6179 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6180
6181 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6182 Temp addr = get_ssa_temp(ctx, instr->src[1].ssa);
6183
6184 if (ctx->options->chip_class >= GFX7)
6185 addr = as_vgpr(ctx, addr);
6186
6187 unsigned writemask = nir_intrinsic_write_mask(instr);
6188 while (writemask) {
6189 int start, count;
6190 u_bit_scan_consecutive_range(&writemask, &start, &count);
6191 if (count == 3 && ctx->options->chip_class == GFX6) {
6192 /* GFX6 doesn't support storing vec3, split it. */
6193 writemask |= 1u << (start + 2);
6194 count = 2;
6195 }
6196 unsigned num_bytes = count * elem_size_bytes;
6197
6198 Temp write_data = data;
6199 if (count != instr->num_components) {
6200 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
6201 for (int i = 0; i < count; i++)
6202 vec->operands[i] = Operand(emit_extract_vector(ctx, data, start + i, v1));
6203 write_data = bld.tmp(RegType::vgpr, count);
6204 vec->definitions[0] = Definition(write_data);
6205 ctx->block->instructions.emplace_back(std::move(vec));
6206 }
6207
6208 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
6209 unsigned offset = start * elem_size_bytes;
6210
6211 if (ctx->options->chip_class >= GFX7) {
6212 if (offset > 0 && ctx->options->chip_class < GFX9) {
6213 Temp addr0 = bld.tmp(v1), addr1 = bld.tmp(v1);
6214 Temp new_addr0 = bld.tmp(v1), new_addr1 = bld.tmp(v1);
6215 Temp carry = bld.tmp(bld.lm);
6216 bld.pseudo(aco_opcode::p_split_vector, Definition(addr0), Definition(addr1), addr);
6217
6218 bld.vop2(aco_opcode::v_add_co_u32, Definition(new_addr0), bld.hint_vcc(Definition(carry)),
6219 Operand(offset), addr0);
6220 bld.vop2(aco_opcode::v_addc_co_u32, Definition(new_addr1), bld.def(bld.lm),
6221 Operand(0u), addr1,
6222 carry).def(1).setHint(vcc);
6223
6224 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_addr0, new_addr1);
6225
6226 offset = 0;
6227 }
6228
6229 bool global = ctx->options->chip_class >= GFX9;
6230 aco_opcode op;
6231 switch (num_bytes) {
6232 case 4:
6233 op = global ? aco_opcode::global_store_dword : aco_opcode::flat_store_dword;
6234 break;
6235 case 8:
6236 op = global ? aco_opcode::global_store_dwordx2 : aco_opcode::flat_store_dwordx2;
6237 break;
6238 case 12:
6239 op = global ? aco_opcode::global_store_dwordx3 : aco_opcode::flat_store_dwordx3;
6240 break;
6241 case 16:
6242 op = global ? aco_opcode::global_store_dwordx4 : aco_opcode::flat_store_dwordx4;
6243 break;
6244 default:
6245 unreachable("store_global not implemented for this size.");
6246 }
6247
6248 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, 0)};
6249 flat->operands[0] = Operand(addr);
6250 flat->operands[1] = Operand(s1);
6251 flat->operands[2] = Operand(data);
6252 flat->glc = glc;
6253 flat->dlc = false;
6254 flat->offset = offset;
6255 flat->disable_wqm = true;
6256 flat->barrier = barrier_buffer;
6257 ctx->program->needs_exact = true;
6258 ctx->block->instructions.emplace_back(std::move(flat));
6259 } else {
6260 assert(ctx->options->chip_class == GFX6);
6261
6262 aco_opcode op;
6263 switch (num_bytes) {
6264 case 4:
6265 op = aco_opcode::buffer_store_dword;
6266 break;
6267 case 8:
6268 op = aco_opcode::buffer_store_dwordx2;
6269 break;
6270 case 16:
6271 op = aco_opcode::buffer_store_dwordx4;
6272 break;
6273 default:
6274 unreachable("store_global not implemented for this size.");
6275 }
6276
6277 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
6278
6279 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, 0)};
6280 mubuf->operands[0] = Operand(rsrc);
6281 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
6282 mubuf->operands[2] = Operand(0u);
6283 mubuf->operands[3] = Operand(write_data);
6284 mubuf->glc = glc;
6285 mubuf->dlc = false;
6286 mubuf->offset = offset;
6287 mubuf->addr64 = addr.type() == RegType::vgpr;
6288 mubuf->disable_wqm = true;
6289 mubuf->barrier = barrier_buffer;
6290 ctx->program->needs_exact = true;
6291 ctx->block->instructions.emplace_back(std::move(mubuf));
6292 }
6293 }
6294 }
6295
6296 void visit_global_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
6297 {
6298 /* return the previous value if dest is ever used */
6299 bool return_previous = false;
6300 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6301 return_previous = true;
6302 break;
6303 }
6304 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6305 return_previous = true;
6306 break;
6307 }
6308
6309 Builder bld(ctx->program, ctx->block);
6310 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
6311 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6312
6313 if (ctx->options->chip_class >= GFX7)
6314 addr = as_vgpr(ctx, addr);
6315
6316 if (instr->intrinsic == nir_intrinsic_global_atomic_comp_swap)
6317 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
6318 get_ssa_temp(ctx, instr->src[2].ssa), data);
6319
6320 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6321
6322 aco_opcode op32, op64;
6323
6324 if (ctx->options->chip_class >= GFX7) {
6325 bool global = ctx->options->chip_class >= GFX9;
6326 switch (instr->intrinsic) {
6327 case nir_intrinsic_global_atomic_add:
6328 op32 = global ? aco_opcode::global_atomic_add : aco_opcode::flat_atomic_add;
6329 op64 = global ? aco_opcode::global_atomic_add_x2 : aco_opcode::flat_atomic_add_x2;
6330 break;
6331 case nir_intrinsic_global_atomic_imin:
6332 op32 = global ? aco_opcode::global_atomic_smin : aco_opcode::flat_atomic_smin;
6333 op64 = global ? aco_opcode::global_atomic_smin_x2 : aco_opcode::flat_atomic_smin_x2;
6334 break;
6335 case nir_intrinsic_global_atomic_umin:
6336 op32 = global ? aco_opcode::global_atomic_umin : aco_opcode::flat_atomic_umin;
6337 op64 = global ? aco_opcode::global_atomic_umin_x2 : aco_opcode::flat_atomic_umin_x2;
6338 break;
6339 case nir_intrinsic_global_atomic_imax:
6340 op32 = global ? aco_opcode::global_atomic_smax : aco_opcode::flat_atomic_smax;
6341 op64 = global ? aco_opcode::global_atomic_smax_x2 : aco_opcode::flat_atomic_smax_x2;
6342 break;
6343 case nir_intrinsic_global_atomic_umax:
6344 op32 = global ? aco_opcode::global_atomic_umax : aco_opcode::flat_atomic_umax;
6345 op64 = global ? aco_opcode::global_atomic_umax_x2 : aco_opcode::flat_atomic_umax_x2;
6346 break;
6347 case nir_intrinsic_global_atomic_and:
6348 op32 = global ? aco_opcode::global_atomic_and : aco_opcode::flat_atomic_and;
6349 op64 = global ? aco_opcode::global_atomic_and_x2 : aco_opcode::flat_atomic_and_x2;
6350 break;
6351 case nir_intrinsic_global_atomic_or:
6352 op32 = global ? aco_opcode::global_atomic_or : aco_opcode::flat_atomic_or;
6353 op64 = global ? aco_opcode::global_atomic_or_x2 : aco_opcode::flat_atomic_or_x2;
6354 break;
6355 case nir_intrinsic_global_atomic_xor:
6356 op32 = global ? aco_opcode::global_atomic_xor : aco_opcode::flat_atomic_xor;
6357 op64 = global ? aco_opcode::global_atomic_xor_x2 : aco_opcode::flat_atomic_xor_x2;
6358 break;
6359 case nir_intrinsic_global_atomic_exchange:
6360 op32 = global ? aco_opcode::global_atomic_swap : aco_opcode::flat_atomic_swap;
6361 op64 = global ? aco_opcode::global_atomic_swap_x2 : aco_opcode::flat_atomic_swap_x2;
6362 break;
6363 case nir_intrinsic_global_atomic_comp_swap:
6364 op32 = global ? aco_opcode::global_atomic_cmpswap : aco_opcode::flat_atomic_cmpswap;
6365 op64 = global ? aco_opcode::global_atomic_cmpswap_x2 : aco_opcode::flat_atomic_cmpswap_x2;
6366 break;
6367 default:
6368 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
6369 }
6370
6371 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
6372 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, return_previous ? 1 : 0)};
6373 flat->operands[0] = Operand(addr);
6374 flat->operands[1] = Operand(s1);
6375 flat->operands[2] = Operand(data);
6376 if (return_previous)
6377 flat->definitions[0] = Definition(dst);
6378 flat->glc = return_previous;
6379 flat->dlc = false; /* Not needed for atomics */
6380 flat->offset = 0;
6381 flat->disable_wqm = true;
6382 flat->barrier = barrier_buffer;
6383 ctx->program->needs_exact = true;
6384 ctx->block->instructions.emplace_back(std::move(flat));
6385 } else {
6386 assert(ctx->options->chip_class == GFX6);
6387
6388 switch (instr->intrinsic) {
6389 case nir_intrinsic_global_atomic_add:
6390 op32 = aco_opcode::buffer_atomic_add;
6391 op64 = aco_opcode::buffer_atomic_add_x2;
6392 break;
6393 case nir_intrinsic_global_atomic_imin:
6394 op32 = aco_opcode::buffer_atomic_smin;
6395 op64 = aco_opcode::buffer_atomic_smin_x2;
6396 break;
6397 case nir_intrinsic_global_atomic_umin:
6398 op32 = aco_opcode::buffer_atomic_umin;
6399 op64 = aco_opcode::buffer_atomic_umin_x2;
6400 break;
6401 case nir_intrinsic_global_atomic_imax:
6402 op32 = aco_opcode::buffer_atomic_smax;
6403 op64 = aco_opcode::buffer_atomic_smax_x2;
6404 break;
6405 case nir_intrinsic_global_atomic_umax:
6406 op32 = aco_opcode::buffer_atomic_umax;
6407 op64 = aco_opcode::buffer_atomic_umax_x2;
6408 break;
6409 case nir_intrinsic_global_atomic_and:
6410 op32 = aco_opcode::buffer_atomic_and;
6411 op64 = aco_opcode::buffer_atomic_and_x2;
6412 break;
6413 case nir_intrinsic_global_atomic_or:
6414 op32 = aco_opcode::buffer_atomic_or;
6415 op64 = aco_opcode::buffer_atomic_or_x2;
6416 break;
6417 case nir_intrinsic_global_atomic_xor:
6418 op32 = aco_opcode::buffer_atomic_xor;
6419 op64 = aco_opcode::buffer_atomic_xor_x2;
6420 break;
6421 case nir_intrinsic_global_atomic_exchange:
6422 op32 = aco_opcode::buffer_atomic_swap;
6423 op64 = aco_opcode::buffer_atomic_swap_x2;
6424 break;
6425 case nir_intrinsic_global_atomic_comp_swap:
6426 op32 = aco_opcode::buffer_atomic_cmpswap;
6427 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
6428 break;
6429 default:
6430 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
6431 }
6432
6433 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
6434
6435 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
6436
6437 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
6438 mubuf->operands[0] = Operand(rsrc);
6439 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
6440 mubuf->operands[2] = Operand(0u);
6441 mubuf->operands[3] = Operand(data);
6442 if (return_previous)
6443 mubuf->definitions[0] = Definition(dst);
6444 mubuf->glc = return_previous;
6445 mubuf->dlc = false;
6446 mubuf->offset = 0;
6447 mubuf->addr64 = addr.type() == RegType::vgpr;
6448 mubuf->disable_wqm = true;
6449 mubuf->barrier = barrier_buffer;
6450 ctx->program->needs_exact = true;
6451 ctx->block->instructions.emplace_back(std::move(mubuf));
6452 }
6453 }
6454
6455 void emit_memory_barrier(isel_context *ctx, nir_intrinsic_instr *instr) {
6456 Builder bld(ctx->program, ctx->block);
6457 switch(instr->intrinsic) {
6458 case nir_intrinsic_group_memory_barrier:
6459 case nir_intrinsic_memory_barrier:
6460 bld.barrier(aco_opcode::p_memory_barrier_common);
6461 break;
6462 case nir_intrinsic_memory_barrier_buffer:
6463 bld.barrier(aco_opcode::p_memory_barrier_buffer);
6464 break;
6465 case nir_intrinsic_memory_barrier_image:
6466 bld.barrier(aco_opcode::p_memory_barrier_image);
6467 break;
6468 case nir_intrinsic_memory_barrier_tcs_patch:
6469 case nir_intrinsic_memory_barrier_shared:
6470 bld.barrier(aco_opcode::p_memory_barrier_shared);
6471 break;
6472 default:
6473 unreachable("Unimplemented memory barrier intrinsic");
6474 break;
6475 }
6476 }
6477
6478 void visit_load_shared(isel_context *ctx, nir_intrinsic_instr *instr)
6479 {
6480 // TODO: implement sparse reads using ds_read2_b32 and nir_ssa_def_components_read()
6481 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6482 assert(instr->dest.ssa.bit_size >= 32 && "Bitsize not supported in load_shared.");
6483 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6484 Builder bld(ctx->program, ctx->block);
6485
6486 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
6487 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
6488 load_lds(ctx, elem_size_bytes, dst, address, nir_intrinsic_base(instr), align);
6489 }
6490
6491 void visit_store_shared(isel_context *ctx, nir_intrinsic_instr *instr)
6492 {
6493 unsigned writemask = nir_intrinsic_write_mask(instr);
6494 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
6495 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6496 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6497 assert(elem_size_bytes >= 4 && "Only 32bit & 64bit store_shared currently supported.");
6498
6499 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
6500 store_lds(ctx, elem_size_bytes, data, writemask, address, nir_intrinsic_base(instr), align);
6501 }
6502
6503 void visit_shared_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
6504 {
6505 unsigned offset = nir_intrinsic_base(instr);
6506 Operand m = load_lds_size_m0(ctx);
6507 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6508 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6509
6510 unsigned num_operands = 3;
6511 aco_opcode op32, op64, op32_rtn, op64_rtn;
6512 switch(instr->intrinsic) {
6513 case nir_intrinsic_shared_atomic_add:
6514 op32 = aco_opcode::ds_add_u32;
6515 op64 = aco_opcode::ds_add_u64;
6516 op32_rtn = aco_opcode::ds_add_rtn_u32;
6517 op64_rtn = aco_opcode::ds_add_rtn_u64;
6518 break;
6519 case nir_intrinsic_shared_atomic_imin:
6520 op32 = aco_opcode::ds_min_i32;
6521 op64 = aco_opcode::ds_min_i64;
6522 op32_rtn = aco_opcode::ds_min_rtn_i32;
6523 op64_rtn = aco_opcode::ds_min_rtn_i64;
6524 break;
6525 case nir_intrinsic_shared_atomic_umin:
6526 op32 = aco_opcode::ds_min_u32;
6527 op64 = aco_opcode::ds_min_u64;
6528 op32_rtn = aco_opcode::ds_min_rtn_u32;
6529 op64_rtn = aco_opcode::ds_min_rtn_u64;
6530 break;
6531 case nir_intrinsic_shared_atomic_imax:
6532 op32 = aco_opcode::ds_max_i32;
6533 op64 = aco_opcode::ds_max_i64;
6534 op32_rtn = aco_opcode::ds_max_rtn_i32;
6535 op64_rtn = aco_opcode::ds_max_rtn_i64;
6536 break;
6537 case nir_intrinsic_shared_atomic_umax:
6538 op32 = aco_opcode::ds_max_u32;
6539 op64 = aco_opcode::ds_max_u64;
6540 op32_rtn = aco_opcode::ds_max_rtn_u32;
6541 op64_rtn = aco_opcode::ds_max_rtn_u64;
6542 break;
6543 case nir_intrinsic_shared_atomic_and:
6544 op32 = aco_opcode::ds_and_b32;
6545 op64 = aco_opcode::ds_and_b64;
6546 op32_rtn = aco_opcode::ds_and_rtn_b32;
6547 op64_rtn = aco_opcode::ds_and_rtn_b64;
6548 break;
6549 case nir_intrinsic_shared_atomic_or:
6550 op32 = aco_opcode::ds_or_b32;
6551 op64 = aco_opcode::ds_or_b64;
6552 op32_rtn = aco_opcode::ds_or_rtn_b32;
6553 op64_rtn = aco_opcode::ds_or_rtn_b64;
6554 break;
6555 case nir_intrinsic_shared_atomic_xor:
6556 op32 = aco_opcode::ds_xor_b32;
6557 op64 = aco_opcode::ds_xor_b64;
6558 op32_rtn = aco_opcode::ds_xor_rtn_b32;
6559 op64_rtn = aco_opcode::ds_xor_rtn_b64;
6560 break;
6561 case nir_intrinsic_shared_atomic_exchange:
6562 op32 = aco_opcode::ds_write_b32;
6563 op64 = aco_opcode::ds_write_b64;
6564 op32_rtn = aco_opcode::ds_wrxchg_rtn_b32;
6565 op64_rtn = aco_opcode::ds_wrxchg2_rtn_b64;
6566 break;
6567 case nir_intrinsic_shared_atomic_comp_swap:
6568 op32 = aco_opcode::ds_cmpst_b32;
6569 op64 = aco_opcode::ds_cmpst_b64;
6570 op32_rtn = aco_opcode::ds_cmpst_rtn_b32;
6571 op64_rtn = aco_opcode::ds_cmpst_rtn_b64;
6572 num_operands = 4;
6573 break;
6574 default:
6575 unreachable("Unhandled shared atomic intrinsic");
6576 }
6577
6578 /* return the previous value if dest is ever used */
6579 bool return_previous = false;
6580 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6581 return_previous = true;
6582 break;
6583 }
6584 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6585 return_previous = true;
6586 break;
6587 }
6588
6589 aco_opcode op;
6590 if (data.size() == 1) {
6591 assert(instr->dest.ssa.bit_size == 32);
6592 op = return_previous ? op32_rtn : op32;
6593 } else {
6594 assert(instr->dest.ssa.bit_size == 64);
6595 op = return_previous ? op64_rtn : op64;
6596 }
6597
6598 if (offset > 65535) {
6599 Builder bld(ctx->program, ctx->block);
6600 address = bld.vadd32(bld.def(v1), Operand(offset), address);
6601 offset = 0;
6602 }
6603
6604 aco_ptr<DS_instruction> ds;
6605 ds.reset(create_instruction<DS_instruction>(op, Format::DS, num_operands, return_previous ? 1 : 0));
6606 ds->operands[0] = Operand(address);
6607 ds->operands[1] = Operand(data);
6608 if (num_operands == 4)
6609 ds->operands[2] = Operand(get_ssa_temp(ctx, instr->src[2].ssa));
6610 ds->operands[num_operands - 1] = m;
6611 ds->offset0 = offset;
6612 if (return_previous)
6613 ds->definitions[0] = Definition(get_ssa_temp(ctx, &instr->dest.ssa));
6614 ctx->block->instructions.emplace_back(std::move(ds));
6615 }
6616
6617 Temp get_scratch_resource(isel_context *ctx)
6618 {
6619 Builder bld(ctx->program, ctx->block);
6620 Temp scratch_addr = ctx->program->private_segment_buffer;
6621 if (ctx->stage != compute_cs)
6622 scratch_addr = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), scratch_addr, Operand(0u));
6623
6624 uint32_t rsrc_conf = S_008F0C_ADD_TID_ENABLE(1) |
6625 S_008F0C_INDEX_STRIDE(ctx->program->wave_size == 64 ? 3 : 2);;
6626
6627 if (ctx->program->chip_class >= GFX10) {
6628 rsrc_conf |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
6629 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
6630 S_008F0C_RESOURCE_LEVEL(1);
6631 } else if (ctx->program->chip_class <= GFX7) { /* dfmt modifies stride on GFX8/GFX9 when ADD_TID_EN=1 */
6632 rsrc_conf |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
6633 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
6634 }
6635
6636 /* older generations need element size = 16 bytes. element size removed in GFX9 */
6637 if (ctx->program->chip_class <= GFX8)
6638 rsrc_conf |= S_008F0C_ELEMENT_SIZE(3);
6639
6640 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), scratch_addr, Operand(-1u), Operand(rsrc_conf));
6641 }
6642
6643 void visit_load_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
6644 assert(instr->dest.ssa.bit_size == 32 || instr->dest.ssa.bit_size == 64);
6645 Builder bld(ctx->program, ctx->block);
6646 Temp rsrc = get_scratch_resource(ctx);
6647 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6648 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6649
6650 aco_opcode op;
6651 switch (dst.size()) {
6652 case 1:
6653 op = aco_opcode::buffer_load_dword;
6654 break;
6655 case 2:
6656 op = aco_opcode::buffer_load_dwordx2;
6657 break;
6658 case 3:
6659 op = aco_opcode::buffer_load_dwordx3;
6660 break;
6661 case 4:
6662 op = aco_opcode::buffer_load_dwordx4;
6663 break;
6664 case 6:
6665 case 8: {
6666 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
6667 Temp lower = bld.mubuf(aco_opcode::buffer_load_dwordx4,
6668 bld.def(v4), rsrc, offset,
6669 ctx->program->scratch_offset, 0, true);
6670 Temp upper = bld.mubuf(dst.size() == 6 ? aco_opcode::buffer_load_dwordx2 :
6671 aco_opcode::buffer_load_dwordx4,
6672 dst.size() == 6 ? bld.def(v2) : bld.def(v4),
6673 rsrc, offset, ctx->program->scratch_offset, 16, true);
6674 emit_split_vector(ctx, lower, 2);
6675 elems[0] = emit_extract_vector(ctx, lower, 0, v2);
6676 elems[1] = emit_extract_vector(ctx, lower, 1, v2);
6677 if (dst.size() == 8) {
6678 emit_split_vector(ctx, upper, 2);
6679 elems[2] = emit_extract_vector(ctx, upper, 0, v2);
6680 elems[3] = emit_extract_vector(ctx, upper, 1, v2);
6681 } else {
6682 elems[2] = upper;
6683 }
6684
6685 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
6686 Format::PSEUDO, dst.size() / 2, 1)};
6687 for (unsigned i = 0; i < dst.size() / 2; i++)
6688 vec->operands[i] = Operand(elems[i]);
6689 vec->definitions[0] = Definition(dst);
6690 bld.insert(std::move(vec));
6691 ctx->allocated_vec.emplace(dst.id(), elems);
6692 return;
6693 }
6694 default:
6695 unreachable("Wrong dst size for nir_intrinsic_load_scratch");
6696 }
6697
6698 bld.mubuf(op, Definition(dst), rsrc, offset, ctx->program->scratch_offset, 0, true);
6699 emit_split_vector(ctx, dst, instr->num_components);
6700 }
6701
6702 void visit_store_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
6703 assert(instr->src[0].ssa->bit_size == 32 || instr->src[0].ssa->bit_size == 64);
6704 Builder bld(ctx->program, ctx->block);
6705 Temp rsrc = get_scratch_resource(ctx);
6706 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6707 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6708
6709 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6710 unsigned writemask = nir_intrinsic_write_mask(instr);
6711
6712 while (writemask) {
6713 int start, count;
6714 u_bit_scan_consecutive_range(&writemask, &start, &count);
6715 int num_bytes = count * elem_size_bytes;
6716
6717 if (num_bytes > 16) {
6718 assert(elem_size_bytes == 8);
6719 writemask |= (((count - 2) << 1) - 1) << (start + 2);
6720 count = 2;
6721 num_bytes = 16;
6722 }
6723
6724 // TODO: check alignment of sub-dword stores
6725 // TODO: split 3 bytes. there is no store instruction for that
6726
6727 Temp write_data;
6728 if (count != instr->num_components) {
6729 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
6730 for (int i = 0; i < count; i++) {
6731 Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(RegType::vgpr, elem_size_bytes / 4));
6732 vec->operands[i] = Operand(elem);
6733 }
6734 write_data = bld.tmp(RegClass(RegType::vgpr, count * elem_size_bytes / 4));
6735 vec->definitions[0] = Definition(write_data);
6736 ctx->block->instructions.emplace_back(std::move(vec));
6737 } else {
6738 write_data = data;
6739 }
6740
6741 aco_opcode op;
6742 switch (num_bytes) {
6743 case 4:
6744 op = aco_opcode::buffer_store_dword;
6745 break;
6746 case 8:
6747 op = aco_opcode::buffer_store_dwordx2;
6748 break;
6749 case 12:
6750 op = aco_opcode::buffer_store_dwordx3;
6751 break;
6752 case 16:
6753 op = aco_opcode::buffer_store_dwordx4;
6754 break;
6755 default:
6756 unreachable("Invalid data size for nir_intrinsic_store_scratch.");
6757 }
6758
6759 bld.mubuf(op, rsrc, offset, ctx->program->scratch_offset, write_data, start * elem_size_bytes, true);
6760 }
6761 }
6762
6763 void visit_load_sample_mask_in(isel_context *ctx, nir_intrinsic_instr *instr) {
6764 uint8_t log2_ps_iter_samples;
6765 if (ctx->program->info->ps.force_persample) {
6766 log2_ps_iter_samples =
6767 util_logbase2(ctx->options->key.fs.num_samples);
6768 } else {
6769 log2_ps_iter_samples = ctx->options->key.fs.log2_ps_iter_samples;
6770 }
6771
6772 /* The bit pattern matches that used by fixed function fragment
6773 * processing. */
6774 static const unsigned ps_iter_masks[] = {
6775 0xffff, /* not used */
6776 0x5555,
6777 0x1111,
6778 0x0101,
6779 0x0001,
6780 };
6781 assert(log2_ps_iter_samples < ARRAY_SIZE(ps_iter_masks));
6782
6783 Builder bld(ctx->program, ctx->block);
6784
6785 Temp sample_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
6786 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
6787 Temp ps_iter_mask = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(ps_iter_masks[log2_ps_iter_samples]));
6788 Temp mask = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), sample_id, ps_iter_mask);
6789 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6790 bld.vop2(aco_opcode::v_and_b32, Definition(dst), mask, get_arg(ctx, ctx->args->ac.sample_coverage));
6791 }
6792
6793 void visit_emit_vertex_with_counter(isel_context *ctx, nir_intrinsic_instr *instr) {
6794 Builder bld(ctx->program, ctx->block);
6795
6796 unsigned stream = nir_intrinsic_stream_id(instr);
6797 Temp next_vertex = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6798 next_vertex = bld.v_mul_imm(bld.def(v1), next_vertex, 4u);
6799 nir_const_value *next_vertex_cv = nir_src_as_const_value(instr->src[0]);
6800
6801 /* get GSVS ring */
6802 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_GSVS_GS * 16u));
6803
6804 unsigned num_components =
6805 ctx->program->info->gs.num_stream_output_components[stream];
6806 assert(num_components);
6807
6808 unsigned stride = 4u * num_components * ctx->shader->info.gs.vertices_out;
6809 unsigned stream_offset = 0;
6810 for (unsigned i = 0; i < stream; i++) {
6811 unsigned prev_stride = 4u * ctx->program->info->gs.num_stream_output_components[i] * ctx->shader->info.gs.vertices_out;
6812 stream_offset += prev_stride * ctx->program->wave_size;
6813 }
6814
6815 /* Limit on the stride field for <= GFX7. */
6816 assert(stride < (1 << 14));
6817
6818 Temp gsvs_dwords[4];
6819 for (unsigned i = 0; i < 4; i++)
6820 gsvs_dwords[i] = bld.tmp(s1);
6821 bld.pseudo(aco_opcode::p_split_vector,
6822 Definition(gsvs_dwords[0]),
6823 Definition(gsvs_dwords[1]),
6824 Definition(gsvs_dwords[2]),
6825 Definition(gsvs_dwords[3]),
6826 gsvs_ring);
6827
6828 if (stream_offset) {
6829 Temp stream_offset_tmp = bld.copy(bld.def(s1), Operand(stream_offset));
6830
6831 Temp carry = bld.tmp(s1);
6832 gsvs_dwords[0] = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), gsvs_dwords[0], stream_offset_tmp);
6833 gsvs_dwords[1] = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(0u), bld.scc(carry));
6834 }
6835
6836 gsvs_dwords[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(S_008F04_STRIDE(stride)));
6837 gsvs_dwords[2] = bld.copy(bld.def(s1), Operand((uint32_t)ctx->program->wave_size));
6838
6839 gsvs_ring = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
6840 gsvs_dwords[0], gsvs_dwords[1], gsvs_dwords[2], gsvs_dwords[3]);
6841
6842 unsigned offset = 0;
6843 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; i++) {
6844 if (ctx->program->info->gs.output_streams[i] != stream)
6845 continue;
6846
6847 for (unsigned j = 0; j < 4; j++) {
6848 if (!(ctx->program->info->gs.output_usage_mask[i] & (1 << j)))
6849 continue;
6850
6851 if (ctx->outputs.mask[i] & (1 << j)) {
6852 Operand vaddr_offset = next_vertex_cv ? Operand(v1) : Operand(next_vertex);
6853 unsigned const_offset = (offset + (next_vertex_cv ? next_vertex_cv->u32 : 0u)) * 4u;
6854 if (const_offset >= 4096u) {
6855 if (vaddr_offset.isUndefined())
6856 vaddr_offset = bld.copy(bld.def(v1), Operand(const_offset / 4096u * 4096u));
6857 else
6858 vaddr_offset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), vaddr_offset);
6859 const_offset %= 4096u;
6860 }
6861
6862 aco_ptr<MTBUF_instruction> mtbuf{create_instruction<MTBUF_instruction>(aco_opcode::tbuffer_store_format_x, Format::MTBUF, 4, 0)};
6863 mtbuf->operands[0] = Operand(gsvs_ring);
6864 mtbuf->operands[1] = vaddr_offset;
6865 mtbuf->operands[2] = Operand(get_arg(ctx, ctx->args->gs2vs_offset));
6866 mtbuf->operands[3] = Operand(ctx->outputs.temps[i * 4u + j]);
6867 mtbuf->offen = !vaddr_offset.isUndefined();
6868 mtbuf->dfmt = V_008F0C_BUF_DATA_FORMAT_32;
6869 mtbuf->nfmt = V_008F0C_BUF_NUM_FORMAT_UINT;
6870 mtbuf->offset = const_offset;
6871 mtbuf->glc = true;
6872 mtbuf->slc = true;
6873 mtbuf->barrier = barrier_gs_data;
6874 mtbuf->can_reorder = true;
6875 bld.insert(std::move(mtbuf));
6876 }
6877
6878 offset += ctx->shader->info.gs.vertices_out;
6879 }
6880
6881 /* outputs for the next vertex are undefined and keeping them around can
6882 * create invalid IR with control flow */
6883 ctx->outputs.mask[i] = 0;
6884 }
6885
6886 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(false, true, stream));
6887 }
6888
6889 Temp emit_boolean_reduce(isel_context *ctx, nir_op op, unsigned cluster_size, Temp src)
6890 {
6891 Builder bld(ctx->program, ctx->block);
6892
6893 if (cluster_size == 1) {
6894 return src;
6895 } if (op == nir_op_iand && cluster_size == 4) {
6896 //subgroupClusteredAnd(val, 4) -> ~wqm(exec & ~val)
6897 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
6898 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc),
6899 bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc), tmp));
6900 } else if (op == nir_op_ior && cluster_size == 4) {
6901 //subgroupClusteredOr(val, 4) -> wqm(val & exec)
6902 return bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc),
6903 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)));
6904 } else if (op == nir_op_iand && cluster_size == ctx->program->wave_size) {
6905 //subgroupAnd(val) -> (exec & ~val) == 0
6906 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
6907 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
6908 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), cond);
6909 } else if (op == nir_op_ior && cluster_size == ctx->program->wave_size) {
6910 //subgroupOr(val) -> (val & exec) != 0
6911 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)).def(1).getTemp();
6912 return bool_to_vector_condition(ctx, tmp);
6913 } else if (op == nir_op_ixor && cluster_size == ctx->program->wave_size) {
6914 //subgroupXor(val) -> s_bcnt1_i32_b64(val & exec) & 1
6915 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
6916 tmp = bld.sop1(Builder::s_bcnt1_i32, bld.def(s1), bld.def(s1, scc), tmp);
6917 tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), tmp, Operand(1u)).def(1).getTemp();
6918 return bool_to_vector_condition(ctx, tmp);
6919 } else {
6920 //subgroupClustered{And,Or,Xor}(val, n) ->
6921 //lane_id = v_mbcnt_hi_u32_b32(-1, v_mbcnt_lo_u32_b32(-1, 0)) ; just v_mbcnt_lo_u32_b32 on wave32
6922 //cluster_offset = ~(n - 1) & lane_id
6923 //cluster_mask = ((1 << n) - 1)
6924 //subgroupClusteredAnd():
6925 // return ((val | ~exec) >> cluster_offset) & cluster_mask == cluster_mask
6926 //subgroupClusteredOr():
6927 // return ((val & exec) >> cluster_offset) & cluster_mask != 0
6928 //subgroupClusteredXor():
6929 // return v_bnt_u32_b32(((val & exec) >> cluster_offset) & cluster_mask, 0) & 1 != 0
6930 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
6931 Temp cluster_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(~uint32_t(cluster_size - 1)), lane_id);
6932
6933 Temp tmp;
6934 if (op == nir_op_iand)
6935 tmp = bld.sop2(Builder::s_orn2, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
6936 else
6937 tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
6938
6939 uint32_t cluster_mask = cluster_size == 32 ? -1 : (1u << cluster_size) - 1u;
6940
6941 if (ctx->program->chip_class <= GFX7)
6942 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), tmp, cluster_offset);
6943 else if (ctx->program->wave_size == 64)
6944 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), cluster_offset, tmp);
6945 else
6946 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), cluster_offset, tmp);
6947 tmp = emit_extract_vector(ctx, tmp, 0, v1);
6948 if (cluster_mask != 0xffffffff)
6949 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(cluster_mask), tmp);
6950
6951 Definition cmp_def = Definition();
6952 if (op == nir_op_iand) {
6953 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(cluster_mask), tmp).def(0);
6954 } else if (op == nir_op_ior) {
6955 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
6956 } else if (op == nir_op_ixor) {
6957 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u),
6958 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1), tmp, Operand(0u)));
6959 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
6960 }
6961 cmp_def.setHint(vcc);
6962 return cmp_def.getTemp();
6963 }
6964 }
6965
6966 Temp emit_boolean_exclusive_scan(isel_context *ctx, nir_op op, Temp src)
6967 {
6968 Builder bld(ctx->program, ctx->block);
6969
6970 //subgroupExclusiveAnd(val) -> mbcnt(exec & ~val) == 0
6971 //subgroupExclusiveOr(val) -> mbcnt(val & exec) != 0
6972 //subgroupExclusiveXor(val) -> mbcnt(val & exec) & 1 != 0
6973 Temp tmp;
6974 if (op == nir_op_iand)
6975 tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
6976 else
6977 tmp = bld.sop2(Builder::s_and, bld.def(s2), bld.def(s1, scc), src, Operand(exec, bld.lm));
6978
6979 Builder::Result lohi = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), bld.def(s1), tmp);
6980 Temp lo = lohi.def(0).getTemp();
6981 Temp hi = lohi.def(1).getTemp();
6982 Temp mbcnt = emit_mbcnt(ctx, bld.def(v1), Operand(lo), Operand(hi));
6983
6984 Definition cmp_def = Definition();
6985 if (op == nir_op_iand)
6986 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
6987 else if (op == nir_op_ior)
6988 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
6989 else if (op == nir_op_ixor)
6990 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u),
6991 bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), mbcnt)).def(0);
6992 cmp_def.setHint(vcc);
6993 return cmp_def.getTemp();
6994 }
6995
6996 Temp emit_boolean_inclusive_scan(isel_context *ctx, nir_op op, Temp src)
6997 {
6998 Builder bld(ctx->program, ctx->block);
6999
7000 //subgroupInclusiveAnd(val) -> subgroupExclusiveAnd(val) && val
7001 //subgroupInclusiveOr(val) -> subgroupExclusiveOr(val) || val
7002 //subgroupInclusiveXor(val) -> subgroupExclusiveXor(val) ^^ val
7003 Temp tmp = emit_boolean_exclusive_scan(ctx, op, src);
7004 if (op == nir_op_iand)
7005 return bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
7006 else if (op == nir_op_ior)
7007 return bld.sop2(Builder::s_or, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
7008 else if (op == nir_op_ixor)
7009 return bld.sop2(Builder::s_xor, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
7010
7011 assert(false);
7012 return Temp();
7013 }
7014
7015 void emit_uniform_subgroup(isel_context *ctx, nir_intrinsic_instr *instr, Temp src)
7016 {
7017 Builder bld(ctx->program, ctx->block);
7018 Definition dst(get_ssa_temp(ctx, &instr->dest.ssa));
7019 if (src.regClass().type() == RegType::vgpr) {
7020 bld.pseudo(aco_opcode::p_as_uniform, dst, src);
7021 } else if (src.regClass() == s1) {
7022 bld.sop1(aco_opcode::s_mov_b32, dst, src);
7023 } else if (src.regClass() == s2) {
7024 bld.sop1(aco_opcode::s_mov_b64, dst, src);
7025 } else {
7026 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7027 nir_print_instr(&instr->instr, stderr);
7028 fprintf(stderr, "\n");
7029 }
7030 }
7031
7032 void emit_interp_center(isel_context *ctx, Temp dst, Temp pos1, Temp pos2)
7033 {
7034 Builder bld(ctx->program, ctx->block);
7035 Temp persp_center = get_arg(ctx, ctx->args->ac.persp_center);
7036 Temp p1 = emit_extract_vector(ctx, persp_center, 0, v1);
7037 Temp p2 = emit_extract_vector(ctx, persp_center, 1, v1);
7038
7039 Temp ddx_1, ddx_2, ddy_1, ddy_2;
7040 uint32_t dpp_ctrl0 = dpp_quad_perm(0, 0, 0, 0);
7041 uint32_t dpp_ctrl1 = dpp_quad_perm(1, 1, 1, 1);
7042 uint32_t dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
7043
7044 /* Build DD X/Y */
7045 if (ctx->program->chip_class >= GFX8) {
7046 Temp tl_1 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p1, dpp_ctrl0);
7047 ddx_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl1);
7048 ddy_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl2);
7049 Temp tl_2 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p2, dpp_ctrl0);
7050 ddx_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl1);
7051 ddy_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl2);
7052 } else {
7053 Temp tl_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl0);
7054 ddx_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl1);
7055 ddx_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_1, tl_1);
7056 ddx_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl2);
7057 ddx_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_2, tl_1);
7058 Temp tl_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl0);
7059 ddy_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl1);
7060 ddy_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_1, tl_2);
7061 ddy_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl2);
7062 ddy_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_2, tl_2);
7063 }
7064
7065 /* res_k = p_k + ddx_k * pos1 + ddy_k * pos2 */
7066 Temp tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_1, pos1, p1);
7067 Temp tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_2, pos1, p2);
7068 tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_1, pos2, tmp1);
7069 tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_2, pos2, tmp2);
7070 Temp wqm1 = bld.tmp(v1);
7071 emit_wqm(ctx, tmp1, wqm1, true);
7072 Temp wqm2 = bld.tmp(v1);
7073 emit_wqm(ctx, tmp2, wqm2, true);
7074 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), wqm1, wqm2);
7075 return;
7076 }
7077
7078 void visit_intrinsic(isel_context *ctx, nir_intrinsic_instr *instr)
7079 {
7080 Builder bld(ctx->program, ctx->block);
7081 switch(instr->intrinsic) {
7082 case nir_intrinsic_load_barycentric_sample:
7083 case nir_intrinsic_load_barycentric_pixel:
7084 case nir_intrinsic_load_barycentric_centroid: {
7085 glsl_interp_mode mode = (glsl_interp_mode)nir_intrinsic_interp_mode(instr);
7086 Temp bary = Temp(0, s2);
7087 switch (mode) {
7088 case INTERP_MODE_SMOOTH:
7089 case INTERP_MODE_NONE:
7090 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
7091 bary = get_arg(ctx, ctx->args->ac.persp_center);
7092 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
7093 bary = ctx->persp_centroid;
7094 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
7095 bary = get_arg(ctx, ctx->args->ac.persp_sample);
7096 break;
7097 case INTERP_MODE_NOPERSPECTIVE:
7098 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
7099 bary = get_arg(ctx, ctx->args->ac.linear_center);
7100 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
7101 bary = ctx->linear_centroid;
7102 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
7103 bary = get_arg(ctx, ctx->args->ac.linear_sample);
7104 break;
7105 default:
7106 break;
7107 }
7108 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7109 Temp p1 = emit_extract_vector(ctx, bary, 0, v1);
7110 Temp p2 = emit_extract_vector(ctx, bary, 1, v1);
7111 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
7112 Operand(p1), Operand(p2));
7113 emit_split_vector(ctx, dst, 2);
7114 break;
7115 }
7116 case nir_intrinsic_load_barycentric_model: {
7117 Temp model = get_arg(ctx, ctx->args->ac.pull_model);
7118
7119 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7120 Temp p1 = emit_extract_vector(ctx, model, 0, v1);
7121 Temp p2 = emit_extract_vector(ctx, model, 1, v1);
7122 Temp p3 = emit_extract_vector(ctx, model, 2, v1);
7123 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
7124 Operand(p1), Operand(p2), Operand(p3));
7125 emit_split_vector(ctx, dst, 3);
7126 break;
7127 }
7128 case nir_intrinsic_load_barycentric_at_sample: {
7129 uint32_t sample_pos_offset = RING_PS_SAMPLE_POSITIONS * 16;
7130 switch (ctx->options->key.fs.num_samples) {
7131 case 2: sample_pos_offset += 1 << 3; break;
7132 case 4: sample_pos_offset += 3 << 3; break;
7133 case 8: sample_pos_offset += 7 << 3; break;
7134 default: break;
7135 }
7136 Temp sample_pos;
7137 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
7138 nir_const_value* const_addr = nir_src_as_const_value(instr->src[0]);
7139 Temp private_segment_buffer = ctx->program->private_segment_buffer;
7140 if (addr.type() == RegType::sgpr) {
7141 Operand offset;
7142 if (const_addr) {
7143 sample_pos_offset += const_addr->u32 << 3;
7144 offset = Operand(sample_pos_offset);
7145 } else if (ctx->options->chip_class >= GFX9) {
7146 offset = bld.sop2(aco_opcode::s_lshl3_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
7147 } else {
7148 offset = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), addr, Operand(3u));
7149 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
7150 }
7151
7152 Operand off = bld.copy(bld.def(s1), Operand(offset));
7153 sample_pos = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), private_segment_buffer, off);
7154
7155 } else if (ctx->options->chip_class >= GFX9) {
7156 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
7157 sample_pos = bld.global(aco_opcode::global_load_dwordx2, bld.def(v2), addr, private_segment_buffer, sample_pos_offset);
7158 } else if (ctx->options->chip_class >= GFX7) {
7159 /* addr += private_segment_buffer + sample_pos_offset */
7160 Temp tmp0 = bld.tmp(s1);
7161 Temp tmp1 = bld.tmp(s1);
7162 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp0), Definition(tmp1), private_segment_buffer);
7163 Definition scc_tmp = bld.def(s1, scc);
7164 tmp0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), scc_tmp, tmp0, Operand(sample_pos_offset));
7165 tmp1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), tmp1, Operand(0u), bld.scc(scc_tmp.getTemp()));
7166 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
7167 Temp pck0 = bld.tmp(v1);
7168 Temp carry = bld.vadd32(Definition(pck0), tmp0, addr, true).def(1).getTemp();
7169 tmp1 = as_vgpr(ctx, tmp1);
7170 Temp pck1 = bld.vop2_e64(aco_opcode::v_addc_co_u32, bld.def(v1), bld.hint_vcc(bld.def(bld.lm)), tmp1, Operand(0u), carry);
7171 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), pck0, pck1);
7172
7173 /* sample_pos = flat_load_dwordx2 addr */
7174 sample_pos = bld.flat(aco_opcode::flat_load_dwordx2, bld.def(v2), addr, Operand(s1));
7175 } else {
7176 assert(ctx->options->chip_class == GFX6);
7177
7178 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
7179 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
7180 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), private_segment_buffer, Operand(0u), Operand(rsrc_conf));
7181
7182 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
7183 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), addr, Operand(0u));
7184
7185 sample_pos = bld.tmp(v2);
7186
7187 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dwordx2, Format::MUBUF, 3, 1)};
7188 load->definitions[0] = Definition(sample_pos);
7189 load->operands[0] = Operand(rsrc);
7190 load->operands[1] = Operand(addr);
7191 load->operands[2] = Operand(0u);
7192 load->offset = sample_pos_offset;
7193 load->offen = 0;
7194 load->addr64 = true;
7195 load->glc = false;
7196 load->dlc = false;
7197 load->disable_wqm = false;
7198 load->barrier = barrier_none;
7199 load->can_reorder = true;
7200 ctx->block->instructions.emplace_back(std::move(load));
7201 }
7202
7203 /* sample_pos -= 0.5 */
7204 Temp pos1 = bld.tmp(RegClass(sample_pos.type(), 1));
7205 Temp pos2 = bld.tmp(RegClass(sample_pos.type(), 1));
7206 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), sample_pos);
7207 pos1 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos1, Operand(0x3f000000u));
7208 pos2 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos2, Operand(0x3f000000u));
7209
7210 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
7211 break;
7212 }
7213 case nir_intrinsic_load_barycentric_at_offset: {
7214 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
7215 RegClass rc = RegClass(offset.type(), 1);
7216 Temp pos1 = bld.tmp(rc), pos2 = bld.tmp(rc);
7217 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), offset);
7218 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
7219 break;
7220 }
7221 case nir_intrinsic_load_front_face: {
7222 bld.vopc(aco_opcode::v_cmp_lg_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7223 Operand(0u), get_arg(ctx, ctx->args->ac.front_face)).def(0).setHint(vcc);
7224 break;
7225 }
7226 case nir_intrinsic_load_view_index: {
7227 if (ctx->stage & (sw_vs | sw_gs | sw_tcs | sw_tes)) {
7228 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7229 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.view_index)));
7230 break;
7231 }
7232
7233 /* fallthrough */
7234 }
7235 case nir_intrinsic_load_layer_id: {
7236 unsigned idx = nir_intrinsic_base(instr);
7237 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7238 Operand(2u), bld.m0(get_arg(ctx, ctx->args->ac.prim_mask)), idx, 0);
7239 break;
7240 }
7241 case nir_intrinsic_load_frag_coord: {
7242 emit_load_frag_coord(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 4);
7243 break;
7244 }
7245 case nir_intrinsic_load_sample_pos: {
7246 Temp posx = get_arg(ctx, ctx->args->ac.frag_pos[0]);
7247 Temp posy = get_arg(ctx, ctx->args->ac.frag_pos[1]);
7248 bld.pseudo(aco_opcode::p_create_vector, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7249 posx.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posx) : Operand(0u),
7250 posy.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posy) : Operand(0u));
7251 break;
7252 }
7253 case nir_intrinsic_load_tess_coord:
7254 visit_load_tess_coord(ctx, instr);
7255 break;
7256 case nir_intrinsic_load_interpolated_input:
7257 visit_load_interpolated_input(ctx, instr);
7258 break;
7259 case nir_intrinsic_store_output:
7260 visit_store_output(ctx, instr);
7261 break;
7262 case nir_intrinsic_load_input:
7263 case nir_intrinsic_load_input_vertex:
7264 visit_load_input(ctx, instr);
7265 break;
7266 case nir_intrinsic_load_output:
7267 visit_load_output(ctx, instr);
7268 break;
7269 case nir_intrinsic_load_per_vertex_input:
7270 visit_load_per_vertex_input(ctx, instr);
7271 break;
7272 case nir_intrinsic_load_per_vertex_output:
7273 visit_load_per_vertex_output(ctx, instr);
7274 break;
7275 case nir_intrinsic_store_per_vertex_output:
7276 visit_store_per_vertex_output(ctx, instr);
7277 break;
7278 case nir_intrinsic_load_ubo:
7279 visit_load_ubo(ctx, instr);
7280 break;
7281 case nir_intrinsic_load_push_constant:
7282 visit_load_push_constant(ctx, instr);
7283 break;
7284 case nir_intrinsic_load_constant:
7285 visit_load_constant(ctx, instr);
7286 break;
7287 case nir_intrinsic_vulkan_resource_index:
7288 visit_load_resource(ctx, instr);
7289 break;
7290 case nir_intrinsic_discard:
7291 visit_discard(ctx, instr);
7292 break;
7293 case nir_intrinsic_discard_if:
7294 visit_discard_if(ctx, instr);
7295 break;
7296 case nir_intrinsic_load_shared:
7297 visit_load_shared(ctx, instr);
7298 break;
7299 case nir_intrinsic_store_shared:
7300 visit_store_shared(ctx, instr);
7301 break;
7302 case nir_intrinsic_shared_atomic_add:
7303 case nir_intrinsic_shared_atomic_imin:
7304 case nir_intrinsic_shared_atomic_umin:
7305 case nir_intrinsic_shared_atomic_imax:
7306 case nir_intrinsic_shared_atomic_umax:
7307 case nir_intrinsic_shared_atomic_and:
7308 case nir_intrinsic_shared_atomic_or:
7309 case nir_intrinsic_shared_atomic_xor:
7310 case nir_intrinsic_shared_atomic_exchange:
7311 case nir_intrinsic_shared_atomic_comp_swap:
7312 visit_shared_atomic(ctx, instr);
7313 break;
7314 case nir_intrinsic_image_deref_load:
7315 visit_image_load(ctx, instr);
7316 break;
7317 case nir_intrinsic_image_deref_store:
7318 visit_image_store(ctx, instr);
7319 break;
7320 case nir_intrinsic_image_deref_atomic_add:
7321 case nir_intrinsic_image_deref_atomic_umin:
7322 case nir_intrinsic_image_deref_atomic_imin:
7323 case nir_intrinsic_image_deref_atomic_umax:
7324 case nir_intrinsic_image_deref_atomic_imax:
7325 case nir_intrinsic_image_deref_atomic_and:
7326 case nir_intrinsic_image_deref_atomic_or:
7327 case nir_intrinsic_image_deref_atomic_xor:
7328 case nir_intrinsic_image_deref_atomic_exchange:
7329 case nir_intrinsic_image_deref_atomic_comp_swap:
7330 visit_image_atomic(ctx, instr);
7331 break;
7332 case nir_intrinsic_image_deref_size:
7333 visit_image_size(ctx, instr);
7334 break;
7335 case nir_intrinsic_load_ssbo:
7336 visit_load_ssbo(ctx, instr);
7337 break;
7338 case nir_intrinsic_store_ssbo:
7339 visit_store_ssbo(ctx, instr);
7340 break;
7341 case nir_intrinsic_load_global:
7342 visit_load_global(ctx, instr);
7343 break;
7344 case nir_intrinsic_store_global:
7345 visit_store_global(ctx, instr);
7346 break;
7347 case nir_intrinsic_global_atomic_add:
7348 case nir_intrinsic_global_atomic_imin:
7349 case nir_intrinsic_global_atomic_umin:
7350 case nir_intrinsic_global_atomic_imax:
7351 case nir_intrinsic_global_atomic_umax:
7352 case nir_intrinsic_global_atomic_and:
7353 case nir_intrinsic_global_atomic_or:
7354 case nir_intrinsic_global_atomic_xor:
7355 case nir_intrinsic_global_atomic_exchange:
7356 case nir_intrinsic_global_atomic_comp_swap:
7357 visit_global_atomic(ctx, instr);
7358 break;
7359 case nir_intrinsic_ssbo_atomic_add:
7360 case nir_intrinsic_ssbo_atomic_imin:
7361 case nir_intrinsic_ssbo_atomic_umin:
7362 case nir_intrinsic_ssbo_atomic_imax:
7363 case nir_intrinsic_ssbo_atomic_umax:
7364 case nir_intrinsic_ssbo_atomic_and:
7365 case nir_intrinsic_ssbo_atomic_or:
7366 case nir_intrinsic_ssbo_atomic_xor:
7367 case nir_intrinsic_ssbo_atomic_exchange:
7368 case nir_intrinsic_ssbo_atomic_comp_swap:
7369 visit_atomic_ssbo(ctx, instr);
7370 break;
7371 case nir_intrinsic_load_scratch:
7372 visit_load_scratch(ctx, instr);
7373 break;
7374 case nir_intrinsic_store_scratch:
7375 visit_store_scratch(ctx, instr);
7376 break;
7377 case nir_intrinsic_get_buffer_size:
7378 visit_get_buffer_size(ctx, instr);
7379 break;
7380 case nir_intrinsic_control_barrier: {
7381 if (ctx->program->chip_class == GFX6 && ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
7382 /* GFX6 only (thanks to a hw bug workaround):
7383 * The real barrier instruction isn’t needed, because an entire patch
7384 * always fits into a single wave.
7385 */
7386 break;
7387 }
7388
7389 if (ctx->program->workgroup_size > ctx->program->wave_size)
7390 bld.sopp(aco_opcode::s_barrier);
7391
7392 break;
7393 }
7394 case nir_intrinsic_memory_barrier_tcs_patch:
7395 case nir_intrinsic_group_memory_barrier:
7396 case nir_intrinsic_memory_barrier:
7397 case nir_intrinsic_memory_barrier_buffer:
7398 case nir_intrinsic_memory_barrier_image:
7399 case nir_intrinsic_memory_barrier_shared:
7400 emit_memory_barrier(ctx, instr);
7401 break;
7402 case nir_intrinsic_load_num_work_groups: {
7403 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7404 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.num_work_groups)));
7405 emit_split_vector(ctx, dst, 3);
7406 break;
7407 }
7408 case nir_intrinsic_load_local_invocation_id: {
7409 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7410 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.local_invocation_ids)));
7411 emit_split_vector(ctx, dst, 3);
7412 break;
7413 }
7414 case nir_intrinsic_load_work_group_id: {
7415 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7416 struct ac_arg *args = ctx->args->ac.workgroup_ids;
7417 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
7418 args[0].used ? Operand(get_arg(ctx, args[0])) : Operand(0u),
7419 args[1].used ? Operand(get_arg(ctx, args[1])) : Operand(0u),
7420 args[2].used ? Operand(get_arg(ctx, args[2])) : Operand(0u));
7421 emit_split_vector(ctx, dst, 3);
7422 break;
7423 }
7424 case nir_intrinsic_load_local_invocation_index: {
7425 Temp id = emit_mbcnt(ctx, bld.def(v1));
7426
7427 /* The tg_size bits [6:11] contain the subgroup id,
7428 * we need this multiplied by the wave size, and then OR the thread id to it.
7429 */
7430 if (ctx->program->wave_size == 64) {
7431 /* After the s_and the bits are already multiplied by 64 (left shifted by 6) so we can just feed that to v_or */
7432 Temp tg_num = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfc0u),
7433 get_arg(ctx, ctx->args->ac.tg_size));
7434 bld.vop2(aco_opcode::v_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, id);
7435 } else {
7436 /* Extract the bit field and multiply the result by 32 (left shift by 5), then do the OR */
7437 Temp tg_num = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
7438 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
7439 bld.vop3(aco_opcode::v_lshl_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, Operand(0x5u), id);
7440 }
7441 break;
7442 }
7443 case nir_intrinsic_load_subgroup_id: {
7444 if (ctx->stage == compute_cs) {
7445 bld.sop2(aco_opcode::s_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc),
7446 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
7447 } else {
7448 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x0u));
7449 }
7450 break;
7451 }
7452 case nir_intrinsic_load_subgroup_invocation: {
7453 emit_mbcnt(ctx, Definition(get_ssa_temp(ctx, &instr->dest.ssa)));
7454 break;
7455 }
7456 case nir_intrinsic_load_num_subgroups: {
7457 if (ctx->stage == compute_cs)
7458 bld.sop2(aco_opcode::s_and_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc), Operand(0x3fu),
7459 get_arg(ctx, ctx->args->ac.tg_size));
7460 else
7461 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x1u));
7462 break;
7463 }
7464 case nir_intrinsic_ballot: {
7465 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7466 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7467 Definition tmp = bld.def(dst.regClass());
7468 Definition lanemask_tmp = dst.size() == bld.lm.size() ? tmp : bld.def(src.regClass());
7469 if (instr->src[0].ssa->bit_size == 1) {
7470 assert(src.regClass() == bld.lm);
7471 bld.sop2(Builder::s_and, lanemask_tmp, bld.def(s1, scc), Operand(exec, bld.lm), src);
7472 } else if (instr->src[0].ssa->bit_size == 32 && src.regClass() == v1) {
7473 bld.vopc(aco_opcode::v_cmp_lg_u32, lanemask_tmp, Operand(0u), src);
7474 } else if (instr->src[0].ssa->bit_size == 64 && src.regClass() == v2) {
7475 bld.vopc(aco_opcode::v_cmp_lg_u64, lanemask_tmp, Operand(0u), src);
7476 } else {
7477 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7478 nir_print_instr(&instr->instr, stderr);
7479 fprintf(stderr, "\n");
7480 }
7481 if (dst.size() != bld.lm.size()) {
7482 /* Wave32 with ballot size set to 64 */
7483 bld.pseudo(aco_opcode::p_create_vector, Definition(tmp), lanemask_tmp.getTemp(), Operand(0u));
7484 }
7485 emit_wqm(ctx, tmp.getTemp(), dst);
7486 break;
7487 }
7488 case nir_intrinsic_shuffle:
7489 case nir_intrinsic_read_invocation: {
7490 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7491 if (!ctx->divergent_vals[instr->src[0].ssa->index]) {
7492 emit_uniform_subgroup(ctx, instr, src);
7493 } else {
7494 Temp tid = get_ssa_temp(ctx, instr->src[1].ssa);
7495 if (instr->intrinsic == nir_intrinsic_read_invocation || !ctx->divergent_vals[instr->src[1].ssa->index])
7496 tid = bld.as_uniform(tid);
7497 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7498 if (src.regClass() == v1) {
7499 emit_wqm(ctx, emit_bpermute(ctx, bld, tid, src), dst);
7500 } else if (src.regClass() == v2) {
7501 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7502 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7503 lo = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, lo));
7504 hi = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, hi));
7505 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7506 emit_split_vector(ctx, dst, 2);
7507 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == s1) {
7508 assert(src.regClass() == bld.lm);
7509 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src, tid);
7510 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7511 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == v1) {
7512 assert(src.regClass() == bld.lm);
7513 Temp tmp;
7514 if (ctx->program->chip_class <= GFX7)
7515 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), src, tid);
7516 else if (ctx->program->wave_size == 64)
7517 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), tid, src);
7518 else
7519 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), tid, src);
7520 tmp = emit_extract_vector(ctx, tmp, 0, v1);
7521 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), tmp);
7522 emit_wqm(ctx, bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp), dst);
7523 } else {
7524 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7525 nir_print_instr(&instr->instr, stderr);
7526 fprintf(stderr, "\n");
7527 }
7528 }
7529 break;
7530 }
7531 case nir_intrinsic_load_sample_id: {
7532 bld.vop3(aco_opcode::v_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7533 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
7534 break;
7535 }
7536 case nir_intrinsic_load_sample_mask_in: {
7537 visit_load_sample_mask_in(ctx, instr);
7538 break;
7539 }
7540 case nir_intrinsic_read_first_invocation: {
7541 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7542 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7543 if (src.regClass() == v1) {
7544 emit_wqm(ctx,
7545 bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), src),
7546 dst);
7547 } else if (src.regClass() == v2) {
7548 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7549 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7550 lo = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), lo));
7551 hi = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), hi));
7552 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7553 emit_split_vector(ctx, dst, 2);
7554 } else if (instr->dest.ssa.bit_size == 1) {
7555 assert(src.regClass() == bld.lm);
7556 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src,
7557 bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)));
7558 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7559 } else if (src.regClass() == s1) {
7560 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
7561 } else if (src.regClass() == s2) {
7562 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
7563 } else {
7564 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7565 nir_print_instr(&instr->instr, stderr);
7566 fprintf(stderr, "\n");
7567 }
7568 break;
7569 }
7570 case nir_intrinsic_vote_all: {
7571 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7572 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7573 assert(src.regClass() == bld.lm);
7574 assert(dst.regClass() == bld.lm);
7575
7576 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
7577 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
7578 bld.sop1(Builder::s_not, Definition(dst), bld.def(s1, scc), cond);
7579 break;
7580 }
7581 case nir_intrinsic_vote_any: {
7582 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7583 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7584 assert(src.regClass() == bld.lm);
7585 assert(dst.regClass() == bld.lm);
7586
7587 Temp tmp = bool_to_scalar_condition(ctx, src);
7588 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7589 break;
7590 }
7591 case nir_intrinsic_reduce:
7592 case nir_intrinsic_inclusive_scan:
7593 case nir_intrinsic_exclusive_scan: {
7594 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7595 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7596 nir_op op = (nir_op) nir_intrinsic_reduction_op(instr);
7597 unsigned cluster_size = instr->intrinsic == nir_intrinsic_reduce ?
7598 nir_intrinsic_cluster_size(instr) : 0;
7599 cluster_size = util_next_power_of_two(MIN2(cluster_size ? cluster_size : ctx->program->wave_size, ctx->program->wave_size));
7600
7601 if (!ctx->divergent_vals[instr->src[0].ssa->index] && (op == nir_op_ior || op == nir_op_iand)) {
7602 emit_uniform_subgroup(ctx, instr, src);
7603 } else if (instr->dest.ssa.bit_size == 1) {
7604 if (op == nir_op_imul || op == nir_op_umin || op == nir_op_imin)
7605 op = nir_op_iand;
7606 else if (op == nir_op_iadd)
7607 op = nir_op_ixor;
7608 else if (op == nir_op_umax || op == nir_op_imax)
7609 op = nir_op_ior;
7610 assert(op == nir_op_iand || op == nir_op_ior || op == nir_op_ixor);
7611
7612 switch (instr->intrinsic) {
7613 case nir_intrinsic_reduce:
7614 emit_wqm(ctx, emit_boolean_reduce(ctx, op, cluster_size, src), dst);
7615 break;
7616 case nir_intrinsic_exclusive_scan:
7617 emit_wqm(ctx, emit_boolean_exclusive_scan(ctx, op, src), dst);
7618 break;
7619 case nir_intrinsic_inclusive_scan:
7620 emit_wqm(ctx, emit_boolean_inclusive_scan(ctx, op, src), dst);
7621 break;
7622 default:
7623 assert(false);
7624 }
7625 } else if (cluster_size == 1) {
7626 bld.copy(Definition(dst), src);
7627 } else {
7628 src = as_vgpr(ctx, src);
7629
7630 ReduceOp reduce_op;
7631 switch (op) {
7632 #define CASE(name) case nir_op_##name: reduce_op = (src.regClass() == v1) ? name##32 : name##64; break;
7633 CASE(iadd)
7634 CASE(imul)
7635 CASE(fadd)
7636 CASE(fmul)
7637 CASE(imin)
7638 CASE(umin)
7639 CASE(fmin)
7640 CASE(imax)
7641 CASE(umax)
7642 CASE(fmax)
7643 CASE(iand)
7644 CASE(ior)
7645 CASE(ixor)
7646 default:
7647 unreachable("unknown reduction op");
7648 #undef CASE
7649 }
7650
7651 aco_opcode aco_op;
7652 switch (instr->intrinsic) {
7653 case nir_intrinsic_reduce: aco_op = aco_opcode::p_reduce; break;
7654 case nir_intrinsic_inclusive_scan: aco_op = aco_opcode::p_inclusive_scan; break;
7655 case nir_intrinsic_exclusive_scan: aco_op = aco_opcode::p_exclusive_scan; break;
7656 default:
7657 unreachable("unknown reduce intrinsic");
7658 }
7659
7660 aco_ptr<Pseudo_reduction_instruction> reduce{create_instruction<Pseudo_reduction_instruction>(aco_op, Format::PSEUDO_REDUCTION, 3, 5)};
7661 reduce->operands[0] = Operand(src);
7662 // filled in by aco_reduce_assign.cpp, used internally as part of the
7663 // reduce sequence
7664 assert(dst.size() == 1 || dst.size() == 2);
7665 reduce->operands[1] = Operand(RegClass(RegType::vgpr, dst.size()).as_linear());
7666 reduce->operands[2] = Operand(v1.as_linear());
7667
7668 Temp tmp_dst = bld.tmp(dst.regClass());
7669 reduce->definitions[0] = Definition(tmp_dst);
7670 reduce->definitions[1] = bld.def(ctx->program->lane_mask); // used internally
7671 reduce->definitions[2] = Definition();
7672 reduce->definitions[3] = Definition(scc, s1);
7673 reduce->definitions[4] = Definition();
7674 reduce->reduce_op = reduce_op;
7675 reduce->cluster_size = cluster_size;
7676 ctx->block->instructions.emplace_back(std::move(reduce));
7677
7678 emit_wqm(ctx, tmp_dst, dst);
7679 }
7680 break;
7681 }
7682 case nir_intrinsic_quad_broadcast: {
7683 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7684 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
7685 emit_uniform_subgroup(ctx, instr, src);
7686 } else {
7687 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7688 unsigned lane = nir_src_as_const_value(instr->src[1])->u32;
7689 uint32_t dpp_ctrl = dpp_quad_perm(lane, lane, lane, lane);
7690
7691 if (instr->dest.ssa.bit_size == 1) {
7692 assert(src.regClass() == bld.lm);
7693 assert(dst.regClass() == bld.lm);
7694 uint32_t half_mask = 0x11111111u << lane;
7695 Temp mask_tmp = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(half_mask), Operand(half_mask));
7696 Temp tmp = bld.tmp(bld.lm);
7697 bld.sop1(Builder::s_wqm, Definition(tmp),
7698 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), mask_tmp,
7699 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm))));
7700 emit_wqm(ctx, tmp, dst);
7701 } else if (instr->dest.ssa.bit_size == 32) {
7702 if (ctx->program->chip_class >= GFX8)
7703 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), dst);
7704 else
7705 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), dst);
7706 } else if (instr->dest.ssa.bit_size == 64) {
7707 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7708 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7709 if (ctx->program->chip_class >= GFX8) {
7710 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
7711 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
7712 } else {
7713 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, (1 << 15) | dpp_ctrl));
7714 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, (1 << 15) | dpp_ctrl));
7715 }
7716 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7717 emit_split_vector(ctx, dst, 2);
7718 } else {
7719 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7720 nir_print_instr(&instr->instr, stderr);
7721 fprintf(stderr, "\n");
7722 }
7723 }
7724 break;
7725 }
7726 case nir_intrinsic_quad_swap_horizontal:
7727 case nir_intrinsic_quad_swap_vertical:
7728 case nir_intrinsic_quad_swap_diagonal:
7729 case nir_intrinsic_quad_swizzle_amd: {
7730 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7731 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
7732 emit_uniform_subgroup(ctx, instr, src);
7733 break;
7734 }
7735 uint16_t dpp_ctrl = 0;
7736 switch (instr->intrinsic) {
7737 case nir_intrinsic_quad_swap_horizontal:
7738 dpp_ctrl = dpp_quad_perm(1, 0, 3, 2);
7739 break;
7740 case nir_intrinsic_quad_swap_vertical:
7741 dpp_ctrl = dpp_quad_perm(2, 3, 0, 1);
7742 break;
7743 case nir_intrinsic_quad_swap_diagonal:
7744 dpp_ctrl = dpp_quad_perm(3, 2, 1, 0);
7745 break;
7746 case nir_intrinsic_quad_swizzle_amd:
7747 dpp_ctrl = nir_intrinsic_swizzle_mask(instr);
7748 break;
7749 default:
7750 break;
7751 }
7752 if (ctx->program->chip_class < GFX8)
7753 dpp_ctrl |= (1 << 15);
7754
7755 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7756 if (instr->dest.ssa.bit_size == 1) {
7757 assert(src.regClass() == bld.lm);
7758 src = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand((uint32_t)-1), src);
7759 if (ctx->program->chip_class >= GFX8)
7760 src = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
7761 else
7762 src = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
7763 Temp tmp = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), src);
7764 emit_wqm(ctx, tmp, dst);
7765 } else if (instr->dest.ssa.bit_size == 32) {
7766 Temp tmp;
7767 if (ctx->program->chip_class >= GFX8)
7768 tmp = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
7769 else
7770 tmp = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
7771 emit_wqm(ctx, tmp, dst);
7772 } else if (instr->dest.ssa.bit_size == 64) {
7773 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7774 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7775 if (ctx->program->chip_class >= GFX8) {
7776 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
7777 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
7778 } else {
7779 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, dpp_ctrl));
7780 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, dpp_ctrl));
7781 }
7782 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7783 emit_split_vector(ctx, dst, 2);
7784 } else {
7785 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7786 nir_print_instr(&instr->instr, stderr);
7787 fprintf(stderr, "\n");
7788 }
7789 break;
7790 }
7791 case nir_intrinsic_masked_swizzle_amd: {
7792 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7793 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
7794 emit_uniform_subgroup(ctx, instr, src);
7795 break;
7796 }
7797 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7798 uint32_t mask = nir_intrinsic_swizzle_mask(instr);
7799 if (dst.regClass() == v1) {
7800 emit_wqm(ctx,
7801 bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, mask, 0, false),
7802 dst);
7803 } else if (dst.regClass() == v2) {
7804 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7805 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7806 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, mask, 0, false));
7807 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, mask, 0, false));
7808 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7809 emit_split_vector(ctx, dst, 2);
7810 } else {
7811 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7812 nir_print_instr(&instr->instr, stderr);
7813 fprintf(stderr, "\n");
7814 }
7815 break;
7816 }
7817 case nir_intrinsic_write_invocation_amd: {
7818 Temp src = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
7819 Temp val = bld.as_uniform(get_ssa_temp(ctx, instr->src[1].ssa));
7820 Temp lane = bld.as_uniform(get_ssa_temp(ctx, instr->src[2].ssa));
7821 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7822 if (dst.regClass() == v1) {
7823 /* src2 is ignored for writelane. RA assigns the same reg for dst */
7824 emit_wqm(ctx, bld.writelane(bld.def(v1), val, lane, src), dst);
7825 } else if (dst.regClass() == v2) {
7826 Temp src_lo = bld.tmp(v1), src_hi = bld.tmp(v1);
7827 Temp val_lo = bld.tmp(s1), val_hi = bld.tmp(s1);
7828 bld.pseudo(aco_opcode::p_split_vector, Definition(src_lo), Definition(src_hi), src);
7829 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
7830 Temp lo = emit_wqm(ctx, bld.writelane(bld.def(v1), val_lo, lane, src_hi));
7831 Temp hi = emit_wqm(ctx, bld.writelane(bld.def(v1), val_hi, lane, src_hi));
7832 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7833 emit_split_vector(ctx, dst, 2);
7834 } else {
7835 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7836 nir_print_instr(&instr->instr, stderr);
7837 fprintf(stderr, "\n");
7838 }
7839 break;
7840 }
7841 case nir_intrinsic_mbcnt_amd: {
7842 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7843 RegClass rc = RegClass(src.type(), 1);
7844 Temp mask_lo = bld.tmp(rc), mask_hi = bld.tmp(rc);
7845 bld.pseudo(aco_opcode::p_split_vector, Definition(mask_lo), Definition(mask_hi), src);
7846 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7847 Temp wqm_tmp = emit_mbcnt(ctx, bld.def(v1), Operand(mask_lo), Operand(mask_hi));
7848 emit_wqm(ctx, wqm_tmp, dst);
7849 break;
7850 }
7851 case nir_intrinsic_load_helper_invocation: {
7852 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7853 bld.pseudo(aco_opcode::p_load_helper, Definition(dst));
7854 ctx->block->kind |= block_kind_needs_lowering;
7855 ctx->program->needs_exact = true;
7856 break;
7857 }
7858 case nir_intrinsic_is_helper_invocation: {
7859 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7860 bld.pseudo(aco_opcode::p_is_helper, Definition(dst));
7861 ctx->block->kind |= block_kind_needs_lowering;
7862 ctx->program->needs_exact = true;
7863 break;
7864 }
7865 case nir_intrinsic_demote:
7866 bld.pseudo(aco_opcode::p_demote_to_helper, Operand(-1u));
7867
7868 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
7869 ctx->cf_info.exec_potentially_empty_discard = true;
7870 ctx->block->kind |= block_kind_uses_demote;
7871 ctx->program->needs_exact = true;
7872 break;
7873 case nir_intrinsic_demote_if: {
7874 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7875 assert(src.regClass() == bld.lm);
7876 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
7877 bld.pseudo(aco_opcode::p_demote_to_helper, cond);
7878
7879 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
7880 ctx->cf_info.exec_potentially_empty_discard = true;
7881 ctx->block->kind |= block_kind_uses_demote;
7882 ctx->program->needs_exact = true;
7883 break;
7884 }
7885 case nir_intrinsic_first_invocation: {
7886 emit_wqm(ctx, bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)),
7887 get_ssa_temp(ctx, &instr->dest.ssa));
7888 break;
7889 }
7890 case nir_intrinsic_shader_clock:
7891 bld.smem(aco_opcode::s_memtime, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), false);
7892 emit_split_vector(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 2);
7893 break;
7894 case nir_intrinsic_load_vertex_id_zero_base: {
7895 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7896 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.vertex_id));
7897 break;
7898 }
7899 case nir_intrinsic_load_first_vertex: {
7900 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7901 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.base_vertex));
7902 break;
7903 }
7904 case nir_intrinsic_load_base_instance: {
7905 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7906 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.start_instance));
7907 break;
7908 }
7909 case nir_intrinsic_load_instance_id: {
7910 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7911 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.instance_id));
7912 break;
7913 }
7914 case nir_intrinsic_load_draw_id: {
7915 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7916 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.draw_id));
7917 break;
7918 }
7919 case nir_intrinsic_load_invocation_id: {
7920 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7921
7922 if (ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
7923 if (ctx->options->chip_class >= GFX10)
7924 bld.vop2_e64(aco_opcode::v_and_b32, Definition(dst), Operand(127u), get_arg(ctx, ctx->args->ac.gs_invocation_id));
7925 else
7926 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_invocation_id));
7927 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
7928 bld.vop3(aco_opcode::v_bfe_u32, Definition(dst),
7929 get_arg(ctx, ctx->args->ac.tcs_rel_ids), Operand(8u), Operand(5u));
7930 } else {
7931 unreachable("Unsupported stage for load_invocation_id");
7932 }
7933
7934 break;
7935 }
7936 case nir_intrinsic_load_primitive_id: {
7937 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7938
7939 switch (ctx->shader->info.stage) {
7940 case MESA_SHADER_GEOMETRY:
7941 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_prim_id));
7942 break;
7943 case MESA_SHADER_TESS_CTRL:
7944 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tcs_patch_id));
7945 break;
7946 case MESA_SHADER_TESS_EVAL:
7947 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tes_patch_id));
7948 break;
7949 default:
7950 unreachable("Unimplemented shader stage for nir_intrinsic_load_primitive_id");
7951 }
7952
7953 break;
7954 }
7955 case nir_intrinsic_load_patch_vertices_in: {
7956 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL ||
7957 ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
7958
7959 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7960 bld.copy(Definition(dst), Operand(ctx->args->options->key.tcs.input_vertices));
7961 break;
7962 }
7963 case nir_intrinsic_emit_vertex_with_counter: {
7964 visit_emit_vertex_with_counter(ctx, instr);
7965 break;
7966 }
7967 case nir_intrinsic_end_primitive_with_counter: {
7968 unsigned stream = nir_intrinsic_stream_id(instr);
7969 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(true, false, stream));
7970 break;
7971 }
7972 case nir_intrinsic_set_vertex_count: {
7973 /* unused, the HW keeps track of this for us */
7974 break;
7975 }
7976 default:
7977 fprintf(stderr, "Unimplemented intrinsic instr: ");
7978 nir_print_instr(&instr->instr, stderr);
7979 fprintf(stderr, "\n");
7980 abort();
7981
7982 break;
7983 }
7984 }
7985
7986
7987 void tex_fetch_ptrs(isel_context *ctx, nir_tex_instr *instr,
7988 Temp *res_ptr, Temp *samp_ptr, Temp *fmask_ptr,
7989 enum glsl_base_type *stype)
7990 {
7991 nir_deref_instr *texture_deref_instr = NULL;
7992 nir_deref_instr *sampler_deref_instr = NULL;
7993 int plane = -1;
7994
7995 for (unsigned i = 0; i < instr->num_srcs; i++) {
7996 switch (instr->src[i].src_type) {
7997 case nir_tex_src_texture_deref:
7998 texture_deref_instr = nir_src_as_deref(instr->src[i].src);
7999 break;
8000 case nir_tex_src_sampler_deref:
8001 sampler_deref_instr = nir_src_as_deref(instr->src[i].src);
8002 break;
8003 case nir_tex_src_plane:
8004 plane = nir_src_as_int(instr->src[i].src);
8005 break;
8006 default:
8007 break;
8008 }
8009 }
8010
8011 *stype = glsl_get_sampler_result_type(texture_deref_instr->type);
8012
8013 if (!sampler_deref_instr)
8014 sampler_deref_instr = texture_deref_instr;
8015
8016 if (plane >= 0) {
8017 assert(instr->op != nir_texop_txf_ms &&
8018 instr->op != nir_texop_samples_identical);
8019 assert(instr->sampler_dim != GLSL_SAMPLER_DIM_BUF);
8020 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, (aco_descriptor_type)(ACO_DESC_PLANE_0 + plane), instr, false, false);
8021 } else if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
8022 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_BUFFER, instr, false, false);
8023 } else if (instr->op == nir_texop_fragment_mask_fetch) {
8024 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
8025 } else {
8026 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_IMAGE, instr, false, false);
8027 }
8028 if (samp_ptr) {
8029 *samp_ptr = get_sampler_desc(ctx, sampler_deref_instr, ACO_DESC_SAMPLER, instr, false, false);
8030
8031 if (instr->sampler_dim < GLSL_SAMPLER_DIM_RECT && ctx->options->chip_class < GFX8) {
8032 /* fix sampler aniso on SI/CI: samp[0] = samp[0] & img[7] */
8033 Builder bld(ctx->program, ctx->block);
8034
8035 /* to avoid unnecessary moves, we split and recombine sampler and image */
8036 Temp img[8] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1),
8037 bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
8038 Temp samp[4] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
8039 bld.pseudo(aco_opcode::p_split_vector, Definition(img[0]), Definition(img[1]),
8040 Definition(img[2]), Definition(img[3]), Definition(img[4]),
8041 Definition(img[5]), Definition(img[6]), Definition(img[7]), *res_ptr);
8042 bld.pseudo(aco_opcode::p_split_vector, Definition(samp[0]), Definition(samp[1]),
8043 Definition(samp[2]), Definition(samp[3]), *samp_ptr);
8044
8045 samp[0] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), samp[0], img[7]);
8046 *res_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
8047 img[0], img[1], img[2], img[3],
8048 img[4], img[5], img[6], img[7]);
8049 *samp_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
8050 samp[0], samp[1], samp[2], samp[3]);
8051 }
8052 }
8053 if (fmask_ptr && (instr->op == nir_texop_txf_ms ||
8054 instr->op == nir_texop_samples_identical))
8055 *fmask_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
8056 }
8057
8058 void build_cube_select(isel_context *ctx, Temp ma, Temp id, Temp deriv,
8059 Temp *out_ma, Temp *out_sc, Temp *out_tc)
8060 {
8061 Builder bld(ctx->program, ctx->block);
8062
8063 Temp deriv_x = emit_extract_vector(ctx, deriv, 0, v1);
8064 Temp deriv_y = emit_extract_vector(ctx, deriv, 1, v1);
8065 Temp deriv_z = emit_extract_vector(ctx, deriv, 2, v1);
8066
8067 Operand neg_one(0xbf800000u);
8068 Operand one(0x3f800000u);
8069 Operand two(0x40000000u);
8070 Operand four(0x40800000u);
8071
8072 Temp is_ma_positive = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), ma);
8073 Temp sgn_ma = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, one, is_ma_positive);
8074 Temp neg_sgn_ma = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0u), sgn_ma);
8075
8076 Temp is_ma_z = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), four, id);
8077 Temp is_ma_y = bld.vopc(aco_opcode::v_cmp_le_f32, bld.def(bld.lm), two, id);
8078 is_ma_y = bld.sop2(Builder::s_andn2, bld.hint_vcc(bld.def(bld.lm)), is_ma_y, is_ma_z);
8079 Temp is_not_ma_x = bld.sop2(aco_opcode::s_or_b64, bld.hint_vcc(bld.def(bld.lm)), bld.def(s1, scc), is_ma_z, is_ma_y);
8080
8081 // select sc
8082 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_z, deriv_x, is_not_ma_x);
8083 Temp sgn = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1),
8084 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_sgn_ma, sgn_ma, is_ma_z),
8085 one, is_ma_y);
8086 *out_sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
8087
8088 // select tc
8089 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_y, deriv_z, is_ma_y);
8090 sgn = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, sgn_ma, is_ma_y);
8091 *out_tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
8092
8093 // select ma
8094 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8095 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_x, deriv_y, is_ma_y),
8096 deriv_z, is_ma_z);
8097 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffffu), tmp);
8098 *out_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), two, tmp);
8099 }
8100
8101 void prepare_cube_coords(isel_context *ctx, std::vector<Temp>& coords, Temp* ddx, Temp* ddy, bool is_deriv, bool is_array)
8102 {
8103 Builder bld(ctx->program, ctx->block);
8104 Temp ma, tc, sc, id;
8105
8106 if (is_array) {
8107 coords[3] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[3]);
8108
8109 // see comment in ac_prepare_cube_coords()
8110 if (ctx->options->chip_class <= GFX8)
8111 coords[3] = bld.vop2(aco_opcode::v_max_f32, bld.def(v1), Operand(0u), coords[3]);
8112 }
8113
8114 ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8115
8116 aco_ptr<VOP3A_instruction> vop3a{create_instruction<VOP3A_instruction>(aco_opcode::v_rcp_f32, asVOP3(Format::VOP1), 1, 1)};
8117 vop3a->operands[0] = Operand(ma);
8118 vop3a->abs[0] = true;
8119 Temp invma = bld.tmp(v1);
8120 vop3a->definitions[0] = Definition(invma);
8121 ctx->block->instructions.emplace_back(std::move(vop3a));
8122
8123 sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8124 if (!is_deriv)
8125 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, invma, Operand(0x3fc00000u/*1.5*/));
8126
8127 tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8128 if (!is_deriv)
8129 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, invma, Operand(0x3fc00000u/*1.5*/));
8130
8131 id = bld.vop3(aco_opcode::v_cubeid_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8132
8133 if (is_deriv) {
8134 sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), sc, invma);
8135 tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tc, invma);
8136
8137 for (unsigned i = 0; i < 2; i++) {
8138 // see comment in ac_prepare_cube_coords()
8139 Temp deriv_ma;
8140 Temp deriv_sc, deriv_tc;
8141 build_cube_select(ctx, ma, id, i ? *ddy : *ddx,
8142 &deriv_ma, &deriv_sc, &deriv_tc);
8143
8144 deriv_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, invma);
8145
8146 Temp x = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
8147 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_sc, invma),
8148 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, sc));
8149 Temp y = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
8150 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_tc, invma),
8151 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, tc));
8152 *(i ? ddy : ddx) = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), x, y);
8153 }
8154
8155 sc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), sc);
8156 tc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), tc);
8157 }
8158
8159 if (is_array)
8160 id = bld.vop2(aco_opcode::v_madmk_f32, bld.def(v1), coords[3], id, Operand(0x41000000u/*8.0*/));
8161 coords.resize(3);
8162 coords[0] = sc;
8163 coords[1] = tc;
8164 coords[2] = id;
8165 }
8166
8167 void get_const_vec(nir_ssa_def *vec, nir_const_value *cv[4])
8168 {
8169 if (vec->parent_instr->type != nir_instr_type_alu)
8170 return;
8171 nir_alu_instr *vec_instr = nir_instr_as_alu(vec->parent_instr);
8172 if (vec_instr->op != nir_op_vec(vec->num_components))
8173 return;
8174
8175 for (unsigned i = 0; i < vec->num_components; i++) {
8176 cv[i] = vec_instr->src[i].swizzle[0] == 0 ?
8177 nir_src_as_const_value(vec_instr->src[i].src) : NULL;
8178 }
8179 }
8180
8181 void visit_tex(isel_context *ctx, nir_tex_instr *instr)
8182 {
8183 Builder bld(ctx->program, ctx->block);
8184 bool has_bias = false, has_lod = false, level_zero = false, has_compare = false,
8185 has_offset = false, has_ddx = false, has_ddy = false, has_derivs = false, has_sample_index = false;
8186 Temp resource, sampler, fmask_ptr, bias = Temp(), compare = Temp(), sample_index = Temp(),
8187 lod = Temp(), offset = Temp(), ddx = Temp(), ddy = Temp();
8188 std::vector<Temp> coords;
8189 std::vector<Temp> derivs;
8190 nir_const_value *sample_index_cv = NULL;
8191 nir_const_value *const_offset[4] = {NULL, NULL, NULL, NULL};
8192 enum glsl_base_type stype;
8193 tex_fetch_ptrs(ctx, instr, &resource, &sampler, &fmask_ptr, &stype);
8194
8195 bool tg4_integer_workarounds = ctx->options->chip_class <= GFX8 && instr->op == nir_texop_tg4 &&
8196 (stype == GLSL_TYPE_UINT || stype == GLSL_TYPE_INT);
8197 bool tg4_integer_cube_workaround = tg4_integer_workarounds &&
8198 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE;
8199
8200 for (unsigned i = 0; i < instr->num_srcs; i++) {
8201 switch (instr->src[i].src_type) {
8202 case nir_tex_src_coord: {
8203 Temp coord = get_ssa_temp(ctx, instr->src[i].src.ssa);
8204 for (unsigned i = 0; i < coord.size(); i++)
8205 coords.emplace_back(emit_extract_vector(ctx, coord, i, v1));
8206 break;
8207 }
8208 case nir_tex_src_bias:
8209 if (instr->op == nir_texop_txb) {
8210 bias = get_ssa_temp(ctx, instr->src[i].src.ssa);
8211 has_bias = true;
8212 }
8213 break;
8214 case nir_tex_src_lod: {
8215 nir_const_value *val = nir_src_as_const_value(instr->src[i].src);
8216
8217 if (val && val->f32 <= 0.0) {
8218 level_zero = true;
8219 } else {
8220 lod = get_ssa_temp(ctx, instr->src[i].src.ssa);
8221 has_lod = true;
8222 }
8223 break;
8224 }
8225 case nir_tex_src_comparator:
8226 if (instr->is_shadow) {
8227 compare = get_ssa_temp(ctx, instr->src[i].src.ssa);
8228 has_compare = true;
8229 }
8230 break;
8231 case nir_tex_src_offset:
8232 offset = get_ssa_temp(ctx, instr->src[i].src.ssa);
8233 get_const_vec(instr->src[i].src.ssa, const_offset);
8234 has_offset = true;
8235 break;
8236 case nir_tex_src_ddx:
8237 ddx = get_ssa_temp(ctx, instr->src[i].src.ssa);
8238 has_ddx = true;
8239 break;
8240 case nir_tex_src_ddy:
8241 ddy = get_ssa_temp(ctx, instr->src[i].src.ssa);
8242 has_ddy = true;
8243 break;
8244 case nir_tex_src_ms_index:
8245 sample_index = get_ssa_temp(ctx, instr->src[i].src.ssa);
8246 sample_index_cv = nir_src_as_const_value(instr->src[i].src);
8247 has_sample_index = true;
8248 break;
8249 case nir_tex_src_texture_offset:
8250 case nir_tex_src_sampler_offset:
8251 default:
8252 break;
8253 }
8254 }
8255
8256 if (instr->op == nir_texop_txs && instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
8257 return get_buffer_size(ctx, resource, get_ssa_temp(ctx, &instr->dest.ssa), true);
8258
8259 if (instr->op == nir_texop_texture_samples) {
8260 Temp dword3 = emit_extract_vector(ctx, resource, 3, s1);
8261
8262 Temp samples_log2 = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(16u | 4u<<16));
8263 Temp samples = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), Operand(1u), samples_log2);
8264 Temp type = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(28u | 4u<<16 /* offset=28, width=4 */));
8265 Temp is_msaa = bld.sopc(aco_opcode::s_cmp_ge_u32, bld.def(s1, scc), type, Operand(14u));
8266
8267 bld.sop2(aco_opcode::s_cselect_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
8268 samples, Operand(1u), bld.scc(is_msaa));
8269 return;
8270 }
8271
8272 if (has_offset && instr->op != nir_texop_txf && instr->op != nir_texop_txf_ms) {
8273 aco_ptr<Instruction> tmp_instr;
8274 Temp acc, pack = Temp();
8275
8276 uint32_t pack_const = 0;
8277 for (unsigned i = 0; i < offset.size(); i++) {
8278 if (!const_offset[i])
8279 continue;
8280 pack_const |= (const_offset[i]->u32 & 0x3Fu) << (8u * i);
8281 }
8282
8283 if (offset.type() == RegType::sgpr) {
8284 for (unsigned i = 0; i < offset.size(); i++) {
8285 if (const_offset[i])
8286 continue;
8287
8288 acc = emit_extract_vector(ctx, offset, i, s1);
8289 acc = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(0x3Fu));
8290
8291 if (i) {
8292 acc = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(8u * i));
8293 }
8294
8295 if (pack == Temp()) {
8296 pack = acc;
8297 } else {
8298 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), pack, acc);
8299 }
8300 }
8301
8302 if (pack_const && pack != Temp())
8303 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(pack_const), pack);
8304 } else {
8305 for (unsigned i = 0; i < offset.size(); i++) {
8306 if (const_offset[i])
8307 continue;
8308
8309 acc = emit_extract_vector(ctx, offset, i, v1);
8310 acc = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x3Fu), acc);
8311
8312 if (i) {
8313 acc = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(8u * i), acc);
8314 }
8315
8316 if (pack == Temp()) {
8317 pack = acc;
8318 } else {
8319 pack = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), pack, acc);
8320 }
8321 }
8322
8323 if (pack_const && pack != Temp())
8324 pack = bld.sop2(aco_opcode::v_or_b32, bld.def(v1), Operand(pack_const), pack);
8325 }
8326 if (pack_const && pack == Temp())
8327 offset = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(pack_const));
8328 else if (pack == Temp())
8329 has_offset = false;
8330 else
8331 offset = pack;
8332 }
8333
8334 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE && instr->coord_components)
8335 prepare_cube_coords(ctx, coords, &ddx, &ddy, instr->op == nir_texop_txd, instr->is_array && instr->op != nir_texop_lod);
8336
8337 /* pack derivatives */
8338 if (has_ddx || has_ddy) {
8339 if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D && ctx->options->chip_class == GFX9) {
8340 assert(has_ddx && has_ddy && ddx.size() == 1 && ddy.size() == 1);
8341 Temp zero = bld.copy(bld.def(v1), Operand(0u));
8342 derivs = {ddy, zero, ddy, zero};
8343 } else {
8344 for (unsigned i = 0; has_ddx && i < ddx.size(); i++)
8345 derivs.emplace_back(emit_extract_vector(ctx, ddx, i, v1));
8346 for (unsigned i = 0; has_ddy && i < ddy.size(); i++)
8347 derivs.emplace_back(emit_extract_vector(ctx, ddy, i, v1));
8348 }
8349 has_derivs = true;
8350 }
8351
8352 if (instr->coord_components > 1 &&
8353 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
8354 instr->is_array &&
8355 instr->op != nir_texop_txf)
8356 coords[1] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[1]);
8357
8358 if (instr->coord_components > 2 &&
8359 (instr->sampler_dim == GLSL_SAMPLER_DIM_2D ||
8360 instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
8361 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS ||
8362 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
8363 instr->is_array &&
8364 instr->op != nir_texop_txf &&
8365 instr->op != nir_texop_txf_ms &&
8366 instr->op != nir_texop_fragment_fetch &&
8367 instr->op != nir_texop_fragment_mask_fetch)
8368 coords[2] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[2]);
8369
8370 if (ctx->options->chip_class == GFX9 &&
8371 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
8372 instr->op != nir_texop_lod && instr->coord_components) {
8373 assert(coords.size() > 0 && coords.size() < 3);
8374
8375 coords.insert(std::next(coords.begin()), bld.copy(bld.def(v1), instr->op == nir_texop_txf ?
8376 Operand((uint32_t) 0) :
8377 Operand((uint32_t) 0x3f000000)));
8378 }
8379
8380 bool da = should_declare_array(ctx, instr->sampler_dim, instr->is_array);
8381
8382 if (instr->op == nir_texop_samples_identical)
8383 resource = fmask_ptr;
8384
8385 else if ((instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
8386 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
8387 instr->op != nir_texop_txs &&
8388 instr->op != nir_texop_fragment_fetch &&
8389 instr->op != nir_texop_fragment_mask_fetch) {
8390 assert(has_sample_index);
8391 Operand op(sample_index);
8392 if (sample_index_cv)
8393 op = Operand(sample_index_cv->u32);
8394 sample_index = adjust_sample_index_using_fmask(ctx, da, coords, op, fmask_ptr);
8395 }
8396
8397 if (has_offset && (instr->op == nir_texop_txf || instr->op == nir_texop_txf_ms)) {
8398 for (unsigned i = 0; i < std::min(offset.size(), instr->coord_components); i++) {
8399 Temp off = emit_extract_vector(ctx, offset, i, v1);
8400 coords[i] = bld.vadd32(bld.def(v1), coords[i], off);
8401 }
8402 has_offset = false;
8403 }
8404
8405 /* Build tex instruction */
8406 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
8407 unsigned dim = ctx->options->chip_class >= GFX10 && instr->sampler_dim != GLSL_SAMPLER_DIM_BUF
8408 ? ac_get_sampler_dim(ctx->options->chip_class, instr->sampler_dim, instr->is_array)
8409 : 0;
8410 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8411 Temp tmp_dst = dst;
8412
8413 /* gather4 selects the component by dmask and always returns vec4 */
8414 if (instr->op == nir_texop_tg4) {
8415 assert(instr->dest.ssa.num_components == 4);
8416 if (instr->is_shadow)
8417 dmask = 1;
8418 else
8419 dmask = 1 << instr->component;
8420 if (tg4_integer_cube_workaround || dst.type() == RegType::sgpr)
8421 tmp_dst = bld.tmp(v4);
8422 } else if (instr->op == nir_texop_samples_identical) {
8423 tmp_dst = bld.tmp(v1);
8424 } else if (util_bitcount(dmask) != instr->dest.ssa.num_components || dst.type() == RegType::sgpr) {
8425 tmp_dst = bld.tmp(RegClass(RegType::vgpr, util_bitcount(dmask)));
8426 }
8427
8428 aco_ptr<MIMG_instruction> tex;
8429 if (instr->op == nir_texop_txs || instr->op == nir_texop_query_levels) {
8430 if (!has_lod)
8431 lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
8432
8433 bool div_by_6 = instr->op == nir_texop_txs &&
8434 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
8435 instr->is_array &&
8436 (dmask & (1 << 2));
8437 if (tmp_dst.id() == dst.id() && div_by_6)
8438 tmp_dst = bld.tmp(tmp_dst.regClass());
8439
8440 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
8441 tex->operands[0] = Operand(resource);
8442 tex->operands[1] = Operand(s4); /* no sampler */
8443 tex->operands[2] = Operand(as_vgpr(ctx,lod));
8444 if (ctx->options->chip_class == GFX9 &&
8445 instr->op == nir_texop_txs &&
8446 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
8447 instr->is_array) {
8448 tex->dmask = (dmask & 0x1) | ((dmask & 0x2) << 1);
8449 } else if (instr->op == nir_texop_query_levels) {
8450 tex->dmask = 1 << 3;
8451 } else {
8452 tex->dmask = dmask;
8453 }
8454 tex->da = da;
8455 tex->definitions[0] = Definition(tmp_dst);
8456 tex->dim = dim;
8457 tex->can_reorder = true;
8458 ctx->block->instructions.emplace_back(std::move(tex));
8459
8460 if (div_by_6) {
8461 /* divide 3rd value by 6 by multiplying with magic number */
8462 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
8463 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
8464 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp_dst, 2, v1), c);
8465 assert(instr->dest.ssa.num_components == 3);
8466 Temp tmp = dst.type() == RegType::vgpr ? dst : bld.tmp(v3);
8467 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
8468 emit_extract_vector(ctx, tmp_dst, 0, v1),
8469 emit_extract_vector(ctx, tmp_dst, 1, v1),
8470 by_6);
8471
8472 }
8473
8474 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
8475 return;
8476 }
8477
8478 Temp tg4_compare_cube_wa64 = Temp();
8479
8480 if (tg4_integer_workarounds) {
8481 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
8482 tex->operands[0] = Operand(resource);
8483 tex->operands[1] = Operand(s4); /* no sampler */
8484 tex->operands[2] = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
8485 tex->dim = dim;
8486 tex->dmask = 0x3;
8487 tex->da = da;
8488 Temp size = bld.tmp(v2);
8489 tex->definitions[0] = Definition(size);
8490 tex->can_reorder = true;
8491 ctx->block->instructions.emplace_back(std::move(tex));
8492 emit_split_vector(ctx, size, size.size());
8493
8494 Temp half_texel[2];
8495 for (unsigned i = 0; i < 2; i++) {
8496 half_texel[i] = emit_extract_vector(ctx, size, i, v1);
8497 half_texel[i] = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), half_texel[i]);
8498 half_texel[i] = bld.vop1(aco_opcode::v_rcp_iflag_f32, bld.def(v1), half_texel[i]);
8499 half_texel[i] = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0xbf000000/*-0.5*/), half_texel[i]);
8500 }
8501
8502 Temp new_coords[2] = {
8503 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[0], half_texel[0]),
8504 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[1], half_texel[1])
8505 };
8506
8507 if (tg4_integer_cube_workaround) {
8508 // see comment in ac_nir_to_llvm.c's lower_gather4_integer()
8509 Temp desc[resource.size()];
8510 aco_ptr<Instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector,
8511 Format::PSEUDO, 1, resource.size())};
8512 split->operands[0] = Operand(resource);
8513 for (unsigned i = 0; i < resource.size(); i++) {
8514 desc[i] = bld.tmp(s1);
8515 split->definitions[i] = Definition(desc[i]);
8516 }
8517 ctx->block->instructions.emplace_back(std::move(split));
8518
8519 Temp dfmt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), desc[1], Operand(20u | (6u << 16)));
8520 Temp compare_cube_wa = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), dfmt,
8521 Operand((uint32_t)V_008F14_IMG_DATA_FORMAT_8_8_8_8));
8522
8523 Temp nfmt;
8524 if (stype == GLSL_TYPE_UINT) {
8525 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
8526 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_USCALED),
8527 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_UINT),
8528 bld.scc(compare_cube_wa));
8529 } else {
8530 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
8531 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SSCALED),
8532 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SINT),
8533 bld.scc(compare_cube_wa));
8534 }
8535 tg4_compare_cube_wa64 = bld.tmp(bld.lm);
8536 bool_to_vector_condition(ctx, compare_cube_wa, tg4_compare_cube_wa64);
8537
8538 nfmt = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), nfmt, Operand(26u));
8539
8540 desc[1] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), desc[1],
8541 Operand((uint32_t)C_008F14_NUM_FORMAT));
8542 desc[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), desc[1], nfmt);
8543
8544 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
8545 Format::PSEUDO, resource.size(), 1)};
8546 for (unsigned i = 0; i < resource.size(); i++)
8547 vec->operands[i] = Operand(desc[i]);
8548 resource = bld.tmp(resource.regClass());
8549 vec->definitions[0] = Definition(resource);
8550 ctx->block->instructions.emplace_back(std::move(vec));
8551
8552 new_coords[0] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8553 new_coords[0], coords[0], tg4_compare_cube_wa64);
8554 new_coords[1] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8555 new_coords[1], coords[1], tg4_compare_cube_wa64);
8556 }
8557 coords[0] = new_coords[0];
8558 coords[1] = new_coords[1];
8559 }
8560
8561 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
8562 //FIXME: if (ctx->abi->gfx9_stride_size_workaround) return ac_build_buffer_load_format_gfx9_safe()
8563
8564 assert(coords.size() == 1);
8565 unsigned last_bit = util_last_bit(nir_ssa_def_components_read(&instr->dest.ssa));
8566 aco_opcode op;
8567 switch (last_bit) {
8568 case 1:
8569 op = aco_opcode::buffer_load_format_x; break;
8570 case 2:
8571 op = aco_opcode::buffer_load_format_xy; break;
8572 case 3:
8573 op = aco_opcode::buffer_load_format_xyz; break;
8574 case 4:
8575 op = aco_opcode::buffer_load_format_xyzw; break;
8576 default:
8577 unreachable("Tex instruction loads more than 4 components.");
8578 }
8579
8580 /* if the instruction return value matches exactly the nir dest ssa, we can use it directly */
8581 if (last_bit == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
8582 tmp_dst = dst;
8583 else
8584 tmp_dst = bld.tmp(RegType::vgpr, last_bit);
8585
8586 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
8587 mubuf->operands[0] = Operand(resource);
8588 mubuf->operands[1] = Operand(coords[0]);
8589 mubuf->operands[2] = Operand((uint32_t) 0);
8590 mubuf->definitions[0] = Definition(tmp_dst);
8591 mubuf->idxen = true;
8592 mubuf->can_reorder = true;
8593 ctx->block->instructions.emplace_back(std::move(mubuf));
8594
8595 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, (1 << last_bit) - 1);
8596 return;
8597 }
8598
8599 /* gather MIMG address components */
8600 std::vector<Temp> args;
8601 if (has_offset)
8602 args.emplace_back(offset);
8603 if (has_bias)
8604 args.emplace_back(bias);
8605 if (has_compare)
8606 args.emplace_back(compare);
8607 if (has_derivs)
8608 args.insert(args.end(), derivs.begin(), derivs.end());
8609
8610 args.insert(args.end(), coords.begin(), coords.end());
8611 if (has_sample_index)
8612 args.emplace_back(sample_index);
8613 if (has_lod)
8614 args.emplace_back(lod);
8615
8616 Temp arg = bld.tmp(RegClass(RegType::vgpr, args.size()));
8617 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, args.size(), 1)};
8618 vec->definitions[0] = Definition(arg);
8619 for (unsigned i = 0; i < args.size(); i++)
8620 vec->operands[i] = Operand(args[i]);
8621 ctx->block->instructions.emplace_back(std::move(vec));
8622
8623
8624 if (instr->op == nir_texop_txf ||
8625 instr->op == nir_texop_txf_ms ||
8626 instr->op == nir_texop_samples_identical ||
8627 instr->op == nir_texop_fragment_fetch ||
8628 instr->op == nir_texop_fragment_mask_fetch) {
8629 aco_opcode op = level_zero || instr->sampler_dim == GLSL_SAMPLER_DIM_MS || instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS ? aco_opcode::image_load : aco_opcode::image_load_mip;
8630 tex.reset(create_instruction<MIMG_instruction>(op, Format::MIMG, 3, 1));
8631 tex->operands[0] = Operand(resource);
8632 tex->operands[1] = Operand(s4); /* no sampler */
8633 tex->operands[2] = Operand(arg);
8634 tex->dim = dim;
8635 tex->dmask = dmask;
8636 tex->unrm = true;
8637 tex->da = da;
8638 tex->definitions[0] = Definition(tmp_dst);
8639 tex->can_reorder = true;
8640 ctx->block->instructions.emplace_back(std::move(tex));
8641
8642 if (instr->op == nir_texop_samples_identical) {
8643 assert(dmask == 1 && dst.regClass() == v1);
8644 assert(dst.id() != tmp_dst.id());
8645
8646 Temp tmp = bld.tmp(bld.lm);
8647 bld.vopc(aco_opcode::v_cmp_eq_u32, Definition(tmp), Operand(0u), tmp_dst).def(0).setHint(vcc);
8648 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand((uint32_t)-1), tmp);
8649
8650 } else {
8651 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
8652 }
8653 return;
8654 }
8655
8656 // TODO: would be better to do this by adding offsets, but needs the opcodes ordered.
8657 aco_opcode opcode = aco_opcode::image_sample;
8658 if (has_offset) { /* image_sample_*_o */
8659 if (has_compare) {
8660 opcode = aco_opcode::image_sample_c_o;
8661 if (has_derivs)
8662 opcode = aco_opcode::image_sample_c_d_o;
8663 if (has_bias)
8664 opcode = aco_opcode::image_sample_c_b_o;
8665 if (level_zero)
8666 opcode = aco_opcode::image_sample_c_lz_o;
8667 if (has_lod)
8668 opcode = aco_opcode::image_sample_c_l_o;
8669 } else {
8670 opcode = aco_opcode::image_sample_o;
8671 if (has_derivs)
8672 opcode = aco_opcode::image_sample_d_o;
8673 if (has_bias)
8674 opcode = aco_opcode::image_sample_b_o;
8675 if (level_zero)
8676 opcode = aco_opcode::image_sample_lz_o;
8677 if (has_lod)
8678 opcode = aco_opcode::image_sample_l_o;
8679 }
8680 } else { /* no offset */
8681 if (has_compare) {
8682 opcode = aco_opcode::image_sample_c;
8683 if (has_derivs)
8684 opcode = aco_opcode::image_sample_c_d;
8685 if (has_bias)
8686 opcode = aco_opcode::image_sample_c_b;
8687 if (level_zero)
8688 opcode = aco_opcode::image_sample_c_lz;
8689 if (has_lod)
8690 opcode = aco_opcode::image_sample_c_l;
8691 } else {
8692 opcode = aco_opcode::image_sample;
8693 if (has_derivs)
8694 opcode = aco_opcode::image_sample_d;
8695 if (has_bias)
8696 opcode = aco_opcode::image_sample_b;
8697 if (level_zero)
8698 opcode = aco_opcode::image_sample_lz;
8699 if (has_lod)
8700 opcode = aco_opcode::image_sample_l;
8701 }
8702 }
8703
8704 if (instr->op == nir_texop_tg4) {
8705 if (has_offset) {
8706 opcode = aco_opcode::image_gather4_lz_o;
8707 if (has_compare)
8708 opcode = aco_opcode::image_gather4_c_lz_o;
8709 } else {
8710 opcode = aco_opcode::image_gather4_lz;
8711 if (has_compare)
8712 opcode = aco_opcode::image_gather4_c_lz;
8713 }
8714 } else if (instr->op == nir_texop_lod) {
8715 opcode = aco_opcode::image_get_lod;
8716 }
8717
8718 /* we don't need the bias, sample index, compare value or offset to be
8719 * computed in WQM but if the p_create_vector copies the coordinates, then it
8720 * needs to be in WQM */
8721 if (ctx->stage == fragment_fs &&
8722 !has_derivs && !has_lod && !level_zero &&
8723 instr->sampler_dim != GLSL_SAMPLER_DIM_MS &&
8724 instr->sampler_dim != GLSL_SAMPLER_DIM_SUBPASS_MS)
8725 arg = emit_wqm(ctx, arg, bld.tmp(arg.regClass()), true);
8726
8727 tex.reset(create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1));
8728 tex->operands[0] = Operand(resource);
8729 tex->operands[1] = Operand(sampler);
8730 tex->operands[2] = Operand(arg);
8731 tex->dim = dim;
8732 tex->dmask = dmask;
8733 tex->da = da;
8734 tex->definitions[0] = Definition(tmp_dst);
8735 tex->can_reorder = true;
8736 ctx->block->instructions.emplace_back(std::move(tex));
8737
8738 if (tg4_integer_cube_workaround) {
8739 assert(tmp_dst.id() != dst.id());
8740 assert(tmp_dst.size() == dst.size() && dst.size() == 4);
8741
8742 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
8743 Temp val[4];
8744 for (unsigned i = 0; i < dst.size(); i++) {
8745 val[i] = emit_extract_vector(ctx, tmp_dst, i, v1);
8746 Temp cvt_val;
8747 if (stype == GLSL_TYPE_UINT)
8748 cvt_val = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), val[i]);
8749 else
8750 cvt_val = bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), val[i]);
8751 val[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), val[i], cvt_val, tg4_compare_cube_wa64);
8752 }
8753 Temp tmp = dst.regClass() == v4 ? dst : bld.tmp(v4);
8754 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
8755 val[0], val[1], val[2], val[3]);
8756 }
8757 unsigned mask = instr->op == nir_texop_tg4 ? 0xF : dmask;
8758 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, mask);
8759
8760 }
8761
8762
8763 Operand get_phi_operand(isel_context *ctx, nir_ssa_def *ssa)
8764 {
8765 Temp tmp = get_ssa_temp(ctx, ssa);
8766 if (ssa->parent_instr->type == nir_instr_type_ssa_undef)
8767 return Operand(tmp.regClass());
8768 else
8769 return Operand(tmp);
8770 }
8771
8772 void visit_phi(isel_context *ctx, nir_phi_instr *instr)
8773 {
8774 aco_ptr<Pseudo_instruction> phi;
8775 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8776 assert(instr->dest.ssa.bit_size != 1 || dst.regClass() == ctx->program->lane_mask);
8777
8778 bool logical = !dst.is_linear() || ctx->divergent_vals[instr->dest.ssa.index];
8779 logical |= ctx->block->kind & block_kind_merge;
8780 aco_opcode opcode = logical ? aco_opcode::p_phi : aco_opcode::p_linear_phi;
8781
8782 /* we want a sorted list of sources, since the predecessor list is also sorted */
8783 std::map<unsigned, nir_ssa_def*> phi_src;
8784 nir_foreach_phi_src(src, instr)
8785 phi_src[src->pred->index] = src->src.ssa;
8786
8787 std::vector<unsigned>& preds = logical ? ctx->block->logical_preds : ctx->block->linear_preds;
8788 unsigned num_operands = 0;
8789 Operand operands[std::max(exec_list_length(&instr->srcs), (unsigned)preds.size()) + 1];
8790 unsigned num_defined = 0;
8791 unsigned cur_pred_idx = 0;
8792 for (std::pair<unsigned, nir_ssa_def *> src : phi_src) {
8793 if (cur_pred_idx < preds.size()) {
8794 /* handle missing preds (IF merges with discard/break) and extra preds (loop exit with discard) */
8795 unsigned block = ctx->cf_info.nir_to_aco[src.first];
8796 unsigned skipped = 0;
8797 while (cur_pred_idx + skipped < preds.size() && preds[cur_pred_idx + skipped] != block)
8798 skipped++;
8799 if (cur_pred_idx + skipped < preds.size()) {
8800 for (unsigned i = 0; i < skipped; i++)
8801 operands[num_operands++] = Operand(dst.regClass());
8802 cur_pred_idx += skipped;
8803 } else {
8804 continue;
8805 }
8806 }
8807 /* Handle missing predecessors at the end. This shouldn't happen with loop
8808 * headers and we can't ignore these sources for loop header phis. */
8809 if (!(ctx->block->kind & block_kind_loop_header) && cur_pred_idx >= preds.size())
8810 continue;
8811 cur_pred_idx++;
8812 Operand op = get_phi_operand(ctx, src.second);
8813 operands[num_operands++] = op;
8814 num_defined += !op.isUndefined();
8815 }
8816 /* handle block_kind_continue_or_break at loop exit blocks */
8817 while (cur_pred_idx++ < preds.size())
8818 operands[num_operands++] = Operand(dst.regClass());
8819
8820 /* If the loop ends with a break, still add a linear continue edge in case
8821 * that break is divergent or continue_or_break is used. We'll either remove
8822 * this operand later in visit_loop() if it's not necessary or replace the
8823 * undef with something correct. */
8824 if (!logical && ctx->block->kind & block_kind_loop_header) {
8825 nir_loop *loop = nir_cf_node_as_loop(instr->instr.block->cf_node.parent);
8826 nir_block *last = nir_loop_last_block(loop);
8827 if (last->successors[0] != instr->instr.block)
8828 operands[num_operands++] = Operand(RegClass());
8829 }
8830
8831 if (num_defined == 0) {
8832 Builder bld(ctx->program, ctx->block);
8833 if (dst.regClass() == s1) {
8834 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), Operand(0u));
8835 } else if (dst.regClass() == v1) {
8836 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), Operand(0u));
8837 } else {
8838 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
8839 for (unsigned i = 0; i < dst.size(); i++)
8840 vec->operands[i] = Operand(0u);
8841 vec->definitions[0] = Definition(dst);
8842 ctx->block->instructions.emplace_back(std::move(vec));
8843 }
8844 return;
8845 }
8846
8847 /* we can use a linear phi in some cases if one src is undef */
8848 if (dst.is_linear() && ctx->block->kind & block_kind_merge && num_defined == 1) {
8849 phi.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, num_operands, 1));
8850
8851 Block *linear_else = &ctx->program->blocks[ctx->block->linear_preds[1]];
8852 Block *invert = &ctx->program->blocks[linear_else->linear_preds[0]];
8853 assert(invert->kind & block_kind_invert);
8854
8855 unsigned then_block = invert->linear_preds[0];
8856
8857 Block* insert_block = NULL;
8858 for (unsigned i = 0; i < num_operands; i++) {
8859 Operand op = operands[i];
8860 if (op.isUndefined())
8861 continue;
8862 insert_block = ctx->block->logical_preds[i] == then_block ? invert : ctx->block;
8863 phi->operands[0] = op;
8864 break;
8865 }
8866 assert(insert_block); /* should be handled by the "num_defined == 0" case above */
8867 phi->operands[1] = Operand(dst.regClass());
8868 phi->definitions[0] = Definition(dst);
8869 insert_block->instructions.emplace(insert_block->instructions.begin(), std::move(phi));
8870 return;
8871 }
8872
8873 /* try to scalarize vector phis */
8874 if (instr->dest.ssa.bit_size != 1 && dst.size() > 1) {
8875 // TODO: scalarize linear phis on divergent ifs
8876 bool can_scalarize = (opcode == aco_opcode::p_phi || !(ctx->block->kind & block_kind_merge));
8877 std::array<Temp, NIR_MAX_VEC_COMPONENTS> new_vec;
8878 for (unsigned i = 0; can_scalarize && (i < num_operands); i++) {
8879 Operand src = operands[i];
8880 if (src.isTemp() && ctx->allocated_vec.find(src.tempId()) == ctx->allocated_vec.end())
8881 can_scalarize = false;
8882 }
8883 if (can_scalarize) {
8884 unsigned num_components = instr->dest.ssa.num_components;
8885 assert(dst.size() % num_components == 0);
8886 RegClass rc = RegClass(dst.type(), dst.size() / num_components);
8887
8888 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
8889 for (unsigned k = 0; k < num_components; k++) {
8890 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
8891 for (unsigned i = 0; i < num_operands; i++) {
8892 Operand src = operands[i];
8893 phi->operands[i] = src.isTemp() ? Operand(ctx->allocated_vec[src.tempId()][k]) : Operand(rc);
8894 }
8895 Temp phi_dst = {ctx->program->allocateId(), rc};
8896 phi->definitions[0] = Definition(phi_dst);
8897 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
8898 new_vec[k] = phi_dst;
8899 vec->operands[k] = Operand(phi_dst);
8900 }
8901 vec->definitions[0] = Definition(dst);
8902 ctx->block->instructions.emplace_back(std::move(vec));
8903 ctx->allocated_vec.emplace(dst.id(), new_vec);
8904 return;
8905 }
8906 }
8907
8908 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
8909 for (unsigned i = 0; i < num_operands; i++)
8910 phi->operands[i] = operands[i];
8911 phi->definitions[0] = Definition(dst);
8912 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
8913 }
8914
8915
8916 void visit_undef(isel_context *ctx, nir_ssa_undef_instr *instr)
8917 {
8918 Temp dst = get_ssa_temp(ctx, &instr->def);
8919
8920 assert(dst.type() == RegType::sgpr);
8921
8922 if (dst.size() == 1) {
8923 Builder(ctx->program, ctx->block).copy(Definition(dst), Operand(0u));
8924 } else {
8925 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
8926 for (unsigned i = 0; i < dst.size(); i++)
8927 vec->operands[i] = Operand(0u);
8928 vec->definitions[0] = Definition(dst);
8929 ctx->block->instructions.emplace_back(std::move(vec));
8930 }
8931 }
8932
8933 void visit_jump(isel_context *ctx, nir_jump_instr *instr)
8934 {
8935 Builder bld(ctx->program, ctx->block);
8936 Block *logical_target;
8937 append_logical_end(ctx->block);
8938 unsigned idx = ctx->block->index;
8939
8940 switch (instr->type) {
8941 case nir_jump_break:
8942 logical_target = ctx->cf_info.parent_loop.exit;
8943 add_logical_edge(idx, logical_target);
8944 ctx->block->kind |= block_kind_break;
8945
8946 if (!ctx->cf_info.parent_if.is_divergent &&
8947 !ctx->cf_info.parent_loop.has_divergent_continue) {
8948 /* uniform break - directly jump out of the loop */
8949 ctx->block->kind |= block_kind_uniform;
8950 ctx->cf_info.has_branch = true;
8951 bld.branch(aco_opcode::p_branch);
8952 add_linear_edge(idx, logical_target);
8953 return;
8954 }
8955 ctx->cf_info.parent_loop.has_divergent_branch = true;
8956 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
8957 break;
8958 case nir_jump_continue:
8959 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
8960 add_logical_edge(idx, logical_target);
8961 ctx->block->kind |= block_kind_continue;
8962
8963 if (ctx->cf_info.parent_if.is_divergent) {
8964 /* for potential uniform breaks after this continue,
8965 we must ensure that they are handled correctly */
8966 ctx->cf_info.parent_loop.has_divergent_continue = true;
8967 ctx->cf_info.parent_loop.has_divergent_branch = true;
8968 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
8969 } else {
8970 /* uniform continue - directly jump to the loop header */
8971 ctx->block->kind |= block_kind_uniform;
8972 ctx->cf_info.has_branch = true;
8973 bld.branch(aco_opcode::p_branch);
8974 add_linear_edge(idx, logical_target);
8975 return;
8976 }
8977 break;
8978 default:
8979 fprintf(stderr, "Unknown NIR jump instr: ");
8980 nir_print_instr(&instr->instr, stderr);
8981 fprintf(stderr, "\n");
8982 abort();
8983 }
8984
8985 if (ctx->cf_info.parent_if.is_divergent && !ctx->cf_info.exec_potentially_empty_break) {
8986 ctx->cf_info.exec_potentially_empty_break = true;
8987 ctx->cf_info.exec_potentially_empty_break_depth = ctx->cf_info.loop_nest_depth;
8988 }
8989
8990 /* remove critical edges from linear CFG */
8991 bld.branch(aco_opcode::p_branch);
8992 Block* break_block = ctx->program->create_and_insert_block();
8993 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8994 break_block->kind |= block_kind_uniform;
8995 add_linear_edge(idx, break_block);
8996 /* the loop_header pointer might be invalidated by this point */
8997 if (instr->type == nir_jump_continue)
8998 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
8999 add_linear_edge(break_block->index, logical_target);
9000 bld.reset(break_block);
9001 bld.branch(aco_opcode::p_branch);
9002
9003 Block* continue_block = ctx->program->create_and_insert_block();
9004 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9005 add_linear_edge(idx, continue_block);
9006 append_logical_start(continue_block);
9007 ctx->block = continue_block;
9008 return;
9009 }
9010
9011 void visit_block(isel_context *ctx, nir_block *block)
9012 {
9013 nir_foreach_instr(instr, block) {
9014 switch (instr->type) {
9015 case nir_instr_type_alu:
9016 visit_alu_instr(ctx, nir_instr_as_alu(instr));
9017 break;
9018 case nir_instr_type_load_const:
9019 visit_load_const(ctx, nir_instr_as_load_const(instr));
9020 break;
9021 case nir_instr_type_intrinsic:
9022 visit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
9023 break;
9024 case nir_instr_type_tex:
9025 visit_tex(ctx, nir_instr_as_tex(instr));
9026 break;
9027 case nir_instr_type_phi:
9028 visit_phi(ctx, nir_instr_as_phi(instr));
9029 break;
9030 case nir_instr_type_ssa_undef:
9031 visit_undef(ctx, nir_instr_as_ssa_undef(instr));
9032 break;
9033 case nir_instr_type_deref:
9034 break;
9035 case nir_instr_type_jump:
9036 visit_jump(ctx, nir_instr_as_jump(instr));
9037 break;
9038 default:
9039 fprintf(stderr, "Unknown NIR instr type: ");
9040 nir_print_instr(instr, stderr);
9041 fprintf(stderr, "\n");
9042 //abort();
9043 }
9044 }
9045
9046 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9047 ctx->cf_info.nir_to_aco[block->index] = ctx->block->index;
9048 }
9049
9050
9051
9052 static Operand create_continue_phis(isel_context *ctx, unsigned first, unsigned last,
9053 aco_ptr<Instruction>& header_phi, Operand *vals)
9054 {
9055 vals[0] = Operand(header_phi->definitions[0].getTemp());
9056 RegClass rc = vals[0].regClass();
9057
9058 unsigned loop_nest_depth = ctx->program->blocks[first].loop_nest_depth;
9059
9060 unsigned next_pred = 1;
9061
9062 for (unsigned idx = first + 1; idx <= last; idx++) {
9063 Block& block = ctx->program->blocks[idx];
9064 if (block.loop_nest_depth != loop_nest_depth) {
9065 vals[idx - first] = vals[idx - 1 - first];
9066 continue;
9067 }
9068
9069 if (block.kind & block_kind_continue) {
9070 vals[idx - first] = header_phi->operands[next_pred];
9071 next_pred++;
9072 continue;
9073 }
9074
9075 bool all_same = true;
9076 for (unsigned i = 1; all_same && (i < block.linear_preds.size()); i++)
9077 all_same = vals[block.linear_preds[i] - first] == vals[block.linear_preds[0] - first];
9078
9079 Operand val;
9080 if (all_same) {
9081 val = vals[block.linear_preds[0] - first];
9082 } else {
9083 aco_ptr<Instruction> phi(create_instruction<Pseudo_instruction>(
9084 aco_opcode::p_linear_phi, Format::PSEUDO, block.linear_preds.size(), 1));
9085 for (unsigned i = 0; i < block.linear_preds.size(); i++)
9086 phi->operands[i] = vals[block.linear_preds[i] - first];
9087 val = Operand(Temp(ctx->program->allocateId(), rc));
9088 phi->definitions[0] = Definition(val.getTemp());
9089 block.instructions.emplace(block.instructions.begin(), std::move(phi));
9090 }
9091 vals[idx - first] = val;
9092 }
9093
9094 return vals[last - first];
9095 }
9096
9097 static void visit_loop(isel_context *ctx, nir_loop *loop)
9098 {
9099 //TODO: we might want to wrap the loop around a branch if exec_potentially_empty=true
9100 append_logical_end(ctx->block);
9101 ctx->block->kind |= block_kind_loop_preheader | block_kind_uniform;
9102 Builder bld(ctx->program, ctx->block);
9103 bld.branch(aco_opcode::p_branch);
9104 unsigned loop_preheader_idx = ctx->block->index;
9105
9106 Block loop_exit = Block();
9107 loop_exit.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9108 loop_exit.kind |= (block_kind_loop_exit | (ctx->block->kind & block_kind_top_level));
9109
9110 Block* loop_header = ctx->program->create_and_insert_block();
9111 loop_header->loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
9112 loop_header->kind |= block_kind_loop_header;
9113 add_edge(loop_preheader_idx, loop_header);
9114 ctx->block = loop_header;
9115
9116 /* emit loop body */
9117 unsigned loop_header_idx = loop_header->index;
9118 loop_info_RAII loop_raii(ctx, loop_header_idx, &loop_exit);
9119 append_logical_start(ctx->block);
9120 bool unreachable = visit_cf_list(ctx, &loop->body);
9121
9122 //TODO: what if a loop ends with a unconditional or uniformly branched continue and this branch is never taken?
9123 if (!ctx->cf_info.has_branch) {
9124 append_logical_end(ctx->block);
9125 if (ctx->cf_info.exec_potentially_empty_discard || ctx->cf_info.exec_potentially_empty_break) {
9126 /* Discards can result in code running with an empty exec mask.
9127 * This would result in divergent breaks not ever being taken. As a
9128 * workaround, break the loop when the loop mask is empty instead of
9129 * always continuing. */
9130 ctx->block->kind |= (block_kind_continue_or_break | block_kind_uniform);
9131 unsigned block_idx = ctx->block->index;
9132
9133 /* create helper blocks to avoid critical edges */
9134 Block *break_block = ctx->program->create_and_insert_block();
9135 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9136 break_block->kind = block_kind_uniform;
9137 bld.reset(break_block);
9138 bld.branch(aco_opcode::p_branch);
9139 add_linear_edge(block_idx, break_block);
9140 add_linear_edge(break_block->index, &loop_exit);
9141
9142 Block *continue_block = ctx->program->create_and_insert_block();
9143 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9144 continue_block->kind = block_kind_uniform;
9145 bld.reset(continue_block);
9146 bld.branch(aco_opcode::p_branch);
9147 add_linear_edge(block_idx, continue_block);
9148 add_linear_edge(continue_block->index, &ctx->program->blocks[loop_header_idx]);
9149
9150 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9151 add_logical_edge(block_idx, &ctx->program->blocks[loop_header_idx]);
9152 ctx->block = &ctx->program->blocks[block_idx];
9153 } else {
9154 ctx->block->kind |= (block_kind_continue | block_kind_uniform);
9155 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9156 add_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
9157 else
9158 add_linear_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
9159 }
9160
9161 bld.reset(ctx->block);
9162 bld.branch(aco_opcode::p_branch);
9163 }
9164
9165 /* Fixup phis in loop header from unreachable blocks.
9166 * has_branch/has_divergent_branch also indicates if the loop ends with a
9167 * break/continue instruction, but we don't emit those if unreachable=true */
9168 if (unreachable) {
9169 assert(ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch);
9170 bool linear = ctx->cf_info.has_branch;
9171 bool logical = ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch;
9172 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
9173 if ((logical && instr->opcode == aco_opcode::p_phi) ||
9174 (linear && instr->opcode == aco_opcode::p_linear_phi)) {
9175 /* the last operand should be the one that needs to be removed */
9176 instr->operands.pop_back();
9177 } else if (!is_phi(instr)) {
9178 break;
9179 }
9180 }
9181 }
9182
9183 /* Fixup linear phis in loop header from expecting a continue. Both this fixup
9184 * and the previous one shouldn't both happen at once because a break in the
9185 * merge block would get CSE'd */
9186 if (nir_loop_last_block(loop)->successors[0] != nir_loop_first_block(loop)) {
9187 unsigned num_vals = ctx->cf_info.has_branch ? 1 : (ctx->block->index - loop_header_idx + 1);
9188 Operand vals[num_vals];
9189 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
9190 if (instr->opcode == aco_opcode::p_linear_phi) {
9191 if (ctx->cf_info.has_branch)
9192 instr->operands.pop_back();
9193 else
9194 instr->operands.back() = create_continue_phis(ctx, loop_header_idx, ctx->block->index, instr, vals);
9195 } else if (!is_phi(instr)) {
9196 break;
9197 }
9198 }
9199 }
9200
9201 ctx->cf_info.has_branch = false;
9202
9203 // TODO: if the loop has not a single exit, we must add one °°
9204 /* emit loop successor block */
9205 ctx->block = ctx->program->insert_block(std::move(loop_exit));
9206 append_logical_start(ctx->block);
9207
9208 #if 0
9209 // TODO: check if it is beneficial to not branch on continues
9210 /* trim linear phis in loop header */
9211 for (auto&& instr : loop_entry->instructions) {
9212 if (instr->opcode == aco_opcode::p_linear_phi) {
9213 aco_ptr<Pseudo_instruction> new_phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, loop_entry->linear_predecessors.size(), 1)};
9214 new_phi->definitions[0] = instr->definitions[0];
9215 for (unsigned i = 0; i < new_phi->operands.size(); i++)
9216 new_phi->operands[i] = instr->operands[i];
9217 /* check that the remaining operands are all the same */
9218 for (unsigned i = new_phi->operands.size(); i < instr->operands.size(); i++)
9219 assert(instr->operands[i].tempId() == instr->operands.back().tempId());
9220 instr.swap(new_phi);
9221 } else if (instr->opcode == aco_opcode::p_phi) {
9222 continue;
9223 } else {
9224 break;
9225 }
9226 }
9227 #endif
9228 }
9229
9230 static void begin_divergent_if_then(isel_context *ctx, if_context *ic, Temp cond)
9231 {
9232 ic->cond = cond;
9233
9234 append_logical_end(ctx->block);
9235 ctx->block->kind |= block_kind_branch;
9236
9237 /* branch to linear then block */
9238 assert(cond.regClass() == ctx->program->lane_mask);
9239 aco_ptr<Pseudo_branch_instruction> branch;
9240 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
9241 branch->operands[0] = Operand(cond);
9242 ctx->block->instructions.push_back(std::move(branch));
9243
9244 ic->BB_if_idx = ctx->block->index;
9245 ic->BB_invert = Block();
9246 ic->BB_invert.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9247 /* Invert blocks are intentionally not marked as top level because they
9248 * are not part of the logical cfg. */
9249 ic->BB_invert.kind |= block_kind_invert;
9250 ic->BB_endif = Block();
9251 ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9252 ic->BB_endif.kind |= (block_kind_merge | (ctx->block->kind & block_kind_top_level));
9253
9254 ic->exec_potentially_empty_discard_old = ctx->cf_info.exec_potentially_empty_discard;
9255 ic->exec_potentially_empty_break_old = ctx->cf_info.exec_potentially_empty_break;
9256 ic->exec_potentially_empty_break_depth_old = ctx->cf_info.exec_potentially_empty_break_depth;
9257 ic->divergent_old = ctx->cf_info.parent_if.is_divergent;
9258 ctx->cf_info.parent_if.is_divergent = true;
9259
9260 /* divergent branches use cbranch_execz */
9261 ctx->cf_info.exec_potentially_empty_discard = false;
9262 ctx->cf_info.exec_potentially_empty_break = false;
9263 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9264
9265 /** emit logical then block */
9266 Block* BB_then_logical = ctx->program->create_and_insert_block();
9267 BB_then_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9268 add_edge(ic->BB_if_idx, BB_then_logical);
9269 ctx->block = BB_then_logical;
9270 append_logical_start(BB_then_logical);
9271 }
9272
9273 static void begin_divergent_if_else(isel_context *ctx, if_context *ic)
9274 {
9275 Block *BB_then_logical = ctx->block;
9276 append_logical_end(BB_then_logical);
9277 /* branch from logical then block to invert block */
9278 aco_ptr<Pseudo_branch_instruction> branch;
9279 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9280 BB_then_logical->instructions.emplace_back(std::move(branch));
9281 add_linear_edge(BB_then_logical->index, &ic->BB_invert);
9282 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9283 add_logical_edge(BB_then_logical->index, &ic->BB_endif);
9284 BB_then_logical->kind |= block_kind_uniform;
9285 assert(!ctx->cf_info.has_branch);
9286 ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
9287 ctx->cf_info.parent_loop.has_divergent_branch = false;
9288
9289 /** emit linear then block */
9290 Block* BB_then_linear = ctx->program->create_and_insert_block();
9291 BB_then_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9292 BB_then_linear->kind |= block_kind_uniform;
9293 add_linear_edge(ic->BB_if_idx, BB_then_linear);
9294 /* branch from linear then block to invert block */
9295 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9296 BB_then_linear->instructions.emplace_back(std::move(branch));
9297 add_linear_edge(BB_then_linear->index, &ic->BB_invert);
9298
9299 /** emit invert merge block */
9300 ctx->block = ctx->program->insert_block(std::move(ic->BB_invert));
9301 ic->invert_idx = ctx->block->index;
9302
9303 /* branch to linear else block (skip else) */
9304 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_nz, Format::PSEUDO_BRANCH, 1, 0));
9305 branch->operands[0] = Operand(ic->cond);
9306 ctx->block->instructions.push_back(std::move(branch));
9307
9308 ic->exec_potentially_empty_discard_old |= ctx->cf_info.exec_potentially_empty_discard;
9309 ic->exec_potentially_empty_break_old |= ctx->cf_info.exec_potentially_empty_break;
9310 ic->exec_potentially_empty_break_depth_old =
9311 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
9312 /* divergent branches use cbranch_execz */
9313 ctx->cf_info.exec_potentially_empty_discard = false;
9314 ctx->cf_info.exec_potentially_empty_break = false;
9315 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9316
9317 /** emit logical else block */
9318 Block* BB_else_logical = ctx->program->create_and_insert_block();
9319 BB_else_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9320 add_logical_edge(ic->BB_if_idx, BB_else_logical);
9321 add_linear_edge(ic->invert_idx, BB_else_logical);
9322 ctx->block = BB_else_logical;
9323 append_logical_start(BB_else_logical);
9324 }
9325
9326 static void end_divergent_if(isel_context *ctx, if_context *ic)
9327 {
9328 Block *BB_else_logical = ctx->block;
9329 append_logical_end(BB_else_logical);
9330
9331 /* branch from logical else block to endif block */
9332 aco_ptr<Pseudo_branch_instruction> branch;
9333 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9334 BB_else_logical->instructions.emplace_back(std::move(branch));
9335 add_linear_edge(BB_else_logical->index, &ic->BB_endif);
9336 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9337 add_logical_edge(BB_else_logical->index, &ic->BB_endif);
9338 BB_else_logical->kind |= block_kind_uniform;
9339
9340 assert(!ctx->cf_info.has_branch);
9341 ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
9342
9343
9344 /** emit linear else block */
9345 Block* BB_else_linear = ctx->program->create_and_insert_block();
9346 BB_else_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9347 BB_else_linear->kind |= block_kind_uniform;
9348 add_linear_edge(ic->invert_idx, BB_else_linear);
9349
9350 /* branch from linear else block to endif block */
9351 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9352 BB_else_linear->instructions.emplace_back(std::move(branch));
9353 add_linear_edge(BB_else_linear->index, &ic->BB_endif);
9354
9355
9356 /** emit endif merge block */
9357 ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
9358 append_logical_start(ctx->block);
9359
9360
9361 ctx->cf_info.parent_if.is_divergent = ic->divergent_old;
9362 ctx->cf_info.exec_potentially_empty_discard |= ic->exec_potentially_empty_discard_old;
9363 ctx->cf_info.exec_potentially_empty_break |= ic->exec_potentially_empty_break_old;
9364 ctx->cf_info.exec_potentially_empty_break_depth =
9365 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
9366 if (ctx->cf_info.loop_nest_depth == ctx->cf_info.exec_potentially_empty_break_depth &&
9367 !ctx->cf_info.parent_if.is_divergent) {
9368 ctx->cf_info.exec_potentially_empty_break = false;
9369 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9370 }
9371 /* uniform control flow never has an empty exec-mask */
9372 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent) {
9373 ctx->cf_info.exec_potentially_empty_discard = false;
9374 ctx->cf_info.exec_potentially_empty_break = false;
9375 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9376 }
9377 }
9378
9379 static void begin_uniform_if_then(isel_context *ctx, if_context *ic, Temp cond)
9380 {
9381 assert(cond.regClass() == s1);
9382
9383 append_logical_end(ctx->block);
9384 ctx->block->kind |= block_kind_uniform;
9385
9386 aco_ptr<Pseudo_branch_instruction> branch;
9387 aco_opcode branch_opcode = aco_opcode::p_cbranch_z;
9388 branch.reset(create_instruction<Pseudo_branch_instruction>(branch_opcode, Format::PSEUDO_BRANCH, 1, 0));
9389 branch->operands[0] = Operand(cond);
9390 branch->operands[0].setFixed(scc);
9391 ctx->block->instructions.emplace_back(std::move(branch));
9392
9393 ic->BB_if_idx = ctx->block->index;
9394 ic->BB_endif = Block();
9395 ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9396 ic->BB_endif.kind |= ctx->block->kind & block_kind_top_level;
9397
9398 ctx->cf_info.has_branch = false;
9399 ctx->cf_info.parent_loop.has_divergent_branch = false;
9400
9401 /** emit then block */
9402 Block* BB_then = ctx->program->create_and_insert_block();
9403 BB_then->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9404 add_edge(ic->BB_if_idx, BB_then);
9405 append_logical_start(BB_then);
9406 ctx->block = BB_then;
9407 }
9408
9409 static void begin_uniform_if_else(isel_context *ctx, if_context *ic)
9410 {
9411 Block *BB_then = ctx->block;
9412
9413 ic->uniform_has_then_branch = ctx->cf_info.has_branch;
9414 ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
9415
9416 if (!ic->uniform_has_then_branch) {
9417 append_logical_end(BB_then);
9418 /* branch from then block to endif block */
9419 aco_ptr<Pseudo_branch_instruction> branch;
9420 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9421 BB_then->instructions.emplace_back(std::move(branch));
9422 add_linear_edge(BB_then->index, &ic->BB_endif);
9423 if (!ic->then_branch_divergent)
9424 add_logical_edge(BB_then->index, &ic->BB_endif);
9425 BB_then->kind |= block_kind_uniform;
9426 }
9427
9428 ctx->cf_info.has_branch = false;
9429 ctx->cf_info.parent_loop.has_divergent_branch = false;
9430
9431 /** emit else block */
9432 Block* BB_else = ctx->program->create_and_insert_block();
9433 BB_else->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9434 add_edge(ic->BB_if_idx, BB_else);
9435 append_logical_start(BB_else);
9436 ctx->block = BB_else;
9437 }
9438
9439 static void end_uniform_if(isel_context *ctx, if_context *ic)
9440 {
9441 Block *BB_else = ctx->block;
9442
9443 if (!ctx->cf_info.has_branch) {
9444 append_logical_end(BB_else);
9445 /* branch from then block to endif block */
9446 aco_ptr<Pseudo_branch_instruction> branch;
9447 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9448 BB_else->instructions.emplace_back(std::move(branch));
9449 add_linear_edge(BB_else->index, &ic->BB_endif);
9450 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9451 add_logical_edge(BB_else->index, &ic->BB_endif);
9452 BB_else->kind |= block_kind_uniform;
9453 }
9454
9455 ctx->cf_info.has_branch &= ic->uniform_has_then_branch;
9456 ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
9457
9458 /** emit endif merge block */
9459 if (!ctx->cf_info.has_branch) {
9460 ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
9461 append_logical_start(ctx->block);
9462 }
9463 }
9464
9465 static bool visit_if(isel_context *ctx, nir_if *if_stmt)
9466 {
9467 Temp cond = get_ssa_temp(ctx, if_stmt->condition.ssa);
9468 Builder bld(ctx->program, ctx->block);
9469 aco_ptr<Pseudo_branch_instruction> branch;
9470 if_context ic;
9471
9472 if (!ctx->divergent_vals[if_stmt->condition.ssa->index]) { /* uniform condition */
9473 /**
9474 * Uniform conditionals are represented in the following way*) :
9475 *
9476 * The linear and logical CFG:
9477 * BB_IF
9478 * / \
9479 * BB_THEN (logical) BB_ELSE (logical)
9480 * \ /
9481 * BB_ENDIF
9482 *
9483 * *) Exceptions may be due to break and continue statements within loops
9484 * If a break/continue happens within uniform control flow, it branches
9485 * to the loop exit/entry block. Otherwise, it branches to the next
9486 * merge block.
9487 **/
9488
9489 // TODO: in a post-RA optimizer, we could check if the condition is in VCC and omit this instruction
9490 assert(cond.regClass() == ctx->program->lane_mask);
9491 cond = bool_to_scalar_condition(ctx, cond);
9492
9493 begin_uniform_if_then(ctx, &ic, cond);
9494 visit_cf_list(ctx, &if_stmt->then_list);
9495
9496 begin_uniform_if_else(ctx, &ic);
9497 visit_cf_list(ctx, &if_stmt->else_list);
9498
9499 end_uniform_if(ctx, &ic);
9500
9501 return !ctx->cf_info.has_branch;
9502 } else { /* non-uniform condition */
9503 /**
9504 * To maintain a logical and linear CFG without critical edges,
9505 * non-uniform conditionals are represented in the following way*) :
9506 *
9507 * The linear CFG:
9508 * BB_IF
9509 * / \
9510 * BB_THEN (logical) BB_THEN (linear)
9511 * \ /
9512 * BB_INVERT (linear)
9513 * / \
9514 * BB_ELSE (logical) BB_ELSE (linear)
9515 * \ /
9516 * BB_ENDIF
9517 *
9518 * The logical CFG:
9519 * BB_IF
9520 * / \
9521 * BB_THEN (logical) BB_ELSE (logical)
9522 * \ /
9523 * BB_ENDIF
9524 *
9525 * *) Exceptions may be due to break and continue statements within loops
9526 **/
9527
9528 begin_divergent_if_then(ctx, &ic, cond);
9529 visit_cf_list(ctx, &if_stmt->then_list);
9530
9531 begin_divergent_if_else(ctx, &ic);
9532 visit_cf_list(ctx, &if_stmt->else_list);
9533
9534 end_divergent_if(ctx, &ic);
9535
9536 return true;
9537 }
9538 }
9539
9540 static bool visit_cf_list(isel_context *ctx,
9541 struct exec_list *list)
9542 {
9543 foreach_list_typed(nir_cf_node, node, node, list) {
9544 switch (node->type) {
9545 case nir_cf_node_block:
9546 visit_block(ctx, nir_cf_node_as_block(node));
9547 break;
9548 case nir_cf_node_if:
9549 if (!visit_if(ctx, nir_cf_node_as_if(node)))
9550 return true;
9551 break;
9552 case nir_cf_node_loop:
9553 visit_loop(ctx, nir_cf_node_as_loop(node));
9554 break;
9555 default:
9556 unreachable("unimplemented cf list type");
9557 }
9558 }
9559 return false;
9560 }
9561
9562 static void create_null_export(isel_context *ctx)
9563 {
9564 /* Some shader stages always need to have exports.
9565 * So when there is none, we need to add a null export.
9566 */
9567
9568 unsigned dest = (ctx->program->stage & hw_fs) ? 9 /* NULL */ : V_008DFC_SQ_EXP_POS;
9569 bool vm = (ctx->program->stage & hw_fs) || ctx->program->chip_class >= GFX10;
9570 Builder bld(ctx->program, ctx->block);
9571 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
9572 /* enabled_mask */ 0, dest, /* compr */ false, /* done */ true, vm);
9573 }
9574
9575 static bool export_vs_varying(isel_context *ctx, int slot, bool is_pos, int *next_pos)
9576 {
9577 assert(ctx->stage == vertex_vs ||
9578 ctx->stage == tess_eval_vs ||
9579 ctx->stage == gs_copy_vs ||
9580 ctx->stage == ngg_vertex_gs ||
9581 ctx->stage == ngg_tess_eval_gs);
9582
9583 int offset = (ctx->stage & sw_tes)
9584 ? ctx->program->info->tes.outinfo.vs_output_param_offset[slot]
9585 : ctx->program->info->vs.outinfo.vs_output_param_offset[slot];
9586 uint64_t mask = ctx->outputs.mask[slot];
9587 if (!is_pos && !mask)
9588 return false;
9589 if (!is_pos && offset == AC_EXP_PARAM_UNDEFINED)
9590 return false;
9591 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
9592 exp->enabled_mask = mask;
9593 for (unsigned i = 0; i < 4; ++i) {
9594 if (mask & (1 << i))
9595 exp->operands[i] = Operand(ctx->outputs.temps[slot * 4u + i]);
9596 else
9597 exp->operands[i] = Operand(v1);
9598 }
9599 /* Navi10-14 skip POS0 exports if EXEC=0 and DONE=0, causing a hang.
9600 * Setting valid_mask=1 prevents it and has no other effect.
9601 */
9602 exp->valid_mask = ctx->options->chip_class >= GFX10 && is_pos && *next_pos == 0;
9603 exp->done = false;
9604 exp->compressed = false;
9605 if (is_pos)
9606 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
9607 else
9608 exp->dest = V_008DFC_SQ_EXP_PARAM + offset;
9609 ctx->block->instructions.emplace_back(std::move(exp));
9610
9611 return true;
9612 }
9613
9614 static void export_vs_psiz_layer_viewport(isel_context *ctx, int *next_pos)
9615 {
9616 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
9617 exp->enabled_mask = 0;
9618 for (unsigned i = 0; i < 4; ++i)
9619 exp->operands[i] = Operand(v1);
9620 if (ctx->outputs.mask[VARYING_SLOT_PSIZ]) {
9621 exp->operands[0] = Operand(ctx->outputs.temps[VARYING_SLOT_PSIZ * 4u]);
9622 exp->enabled_mask |= 0x1;
9623 }
9624 if (ctx->outputs.mask[VARYING_SLOT_LAYER]) {
9625 exp->operands[2] = Operand(ctx->outputs.temps[VARYING_SLOT_LAYER * 4u]);
9626 exp->enabled_mask |= 0x4;
9627 }
9628 if (ctx->outputs.mask[VARYING_SLOT_VIEWPORT]) {
9629 if (ctx->options->chip_class < GFX9) {
9630 exp->operands[3] = Operand(ctx->outputs.temps[VARYING_SLOT_VIEWPORT * 4u]);
9631 exp->enabled_mask |= 0x8;
9632 } else {
9633 Builder bld(ctx->program, ctx->block);
9634
9635 Temp out = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u),
9636 Operand(ctx->outputs.temps[VARYING_SLOT_VIEWPORT * 4u]));
9637 if (exp->operands[2].isTemp())
9638 out = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(out), exp->operands[2]);
9639
9640 exp->operands[2] = Operand(out);
9641 exp->enabled_mask |= 0x4;
9642 }
9643 }
9644 exp->valid_mask = ctx->options->chip_class >= GFX10 && *next_pos == 0;
9645 exp->done = false;
9646 exp->compressed = false;
9647 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
9648 ctx->block->instructions.emplace_back(std::move(exp));
9649 }
9650
9651 static void create_export_phis(isel_context *ctx)
9652 {
9653 /* Used when exports are needed, but the output temps are defined in a preceding block.
9654 * This function will set up phis in order to access the outputs in the next block.
9655 */
9656
9657 assert(ctx->block->instructions.back()->opcode == aco_opcode::p_logical_start);
9658 aco_ptr<Instruction> logical_start = aco_ptr<Instruction>(ctx->block->instructions.back().release());
9659 ctx->block->instructions.pop_back();
9660
9661 Builder bld(ctx->program, ctx->block);
9662
9663 for (unsigned slot = 0; slot <= VARYING_SLOT_VAR31; ++slot) {
9664 uint64_t mask = ctx->outputs.mask[slot];
9665 for (unsigned i = 0; i < 4; ++i) {
9666 if (!(mask & (1 << i)))
9667 continue;
9668
9669 Temp old = ctx->outputs.temps[slot * 4 + i];
9670 Temp phi = bld.pseudo(aco_opcode::p_phi, bld.def(v1), old, Operand(v1));
9671 ctx->outputs.temps[slot * 4 + i] = phi;
9672 }
9673 }
9674
9675 bld.insert(std::move(logical_start));
9676 }
9677
9678 static void create_vs_exports(isel_context *ctx)
9679 {
9680 assert(ctx->stage == vertex_vs ||
9681 ctx->stage == tess_eval_vs ||
9682 ctx->stage == gs_copy_vs ||
9683 ctx->stage == ngg_vertex_gs ||
9684 ctx->stage == ngg_tess_eval_gs);
9685
9686 radv_vs_output_info *outinfo = (ctx->stage & sw_tes)
9687 ? &ctx->program->info->tes.outinfo
9688 : &ctx->program->info->vs.outinfo;
9689
9690 if (outinfo->export_prim_id && !(ctx->stage & hw_ngg_gs)) {
9691 ctx->outputs.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
9692 ctx->outputs.temps[VARYING_SLOT_PRIMITIVE_ID * 4u] = get_arg(ctx, ctx->args->vs_prim_id);
9693 }
9694
9695 if (ctx->options->key.has_multiview_view_index) {
9696 ctx->outputs.mask[VARYING_SLOT_LAYER] |= 0x1;
9697 ctx->outputs.temps[VARYING_SLOT_LAYER * 4u] = as_vgpr(ctx, get_arg(ctx, ctx->args->ac.view_index));
9698 }
9699
9700 /* the order these position exports are created is important */
9701 int next_pos = 0;
9702 bool exported_pos = export_vs_varying(ctx, VARYING_SLOT_POS, true, &next_pos);
9703 if (outinfo->writes_pointsize || outinfo->writes_layer || outinfo->writes_viewport_index) {
9704 export_vs_psiz_layer_viewport(ctx, &next_pos);
9705 exported_pos = true;
9706 }
9707 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
9708 exported_pos |= export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, true, &next_pos);
9709 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
9710 exported_pos |= export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, true, &next_pos);
9711
9712 if (ctx->export_clip_dists) {
9713 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
9714 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, false, &next_pos);
9715 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
9716 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, false, &next_pos);
9717 }
9718
9719 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
9720 if (i < VARYING_SLOT_VAR0 &&
9721 i != VARYING_SLOT_LAYER &&
9722 i != VARYING_SLOT_PRIMITIVE_ID)
9723 continue;
9724
9725 export_vs_varying(ctx, i, false, NULL);
9726 }
9727
9728 if (!exported_pos)
9729 create_null_export(ctx);
9730 }
9731
9732 static bool export_fs_mrt_z(isel_context *ctx)
9733 {
9734 Builder bld(ctx->program, ctx->block);
9735 unsigned enabled_channels = 0;
9736 bool compr = false;
9737 Operand values[4];
9738
9739 for (unsigned i = 0; i < 4; ++i) {
9740 values[i] = Operand(v1);
9741 }
9742
9743 /* Both stencil and sample mask only need 16-bits. */
9744 if (!ctx->program->info->ps.writes_z &&
9745 (ctx->program->info->ps.writes_stencil ||
9746 ctx->program->info->ps.writes_sample_mask)) {
9747 compr = true; /* COMPR flag */
9748
9749 if (ctx->program->info->ps.writes_stencil) {
9750 /* Stencil should be in X[23:16]. */
9751 values[0] = Operand(ctx->outputs.temps[FRAG_RESULT_STENCIL * 4u]);
9752 values[0] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u), values[0]);
9753 enabled_channels |= 0x3;
9754 }
9755
9756 if (ctx->program->info->ps.writes_sample_mask) {
9757 /* SampleMask should be in Y[15:0]. */
9758 values[1] = Operand(ctx->outputs.temps[FRAG_RESULT_SAMPLE_MASK * 4u]);
9759 enabled_channels |= 0xc;
9760 }
9761 } else {
9762 if (ctx->program->info->ps.writes_z) {
9763 values[0] = Operand(ctx->outputs.temps[FRAG_RESULT_DEPTH * 4u]);
9764 enabled_channels |= 0x1;
9765 }
9766
9767 if (ctx->program->info->ps.writes_stencil) {
9768 values[1] = Operand(ctx->outputs.temps[FRAG_RESULT_STENCIL * 4u]);
9769 enabled_channels |= 0x2;
9770 }
9771
9772 if (ctx->program->info->ps.writes_sample_mask) {
9773 values[2] = Operand(ctx->outputs.temps[FRAG_RESULT_SAMPLE_MASK * 4u]);
9774 enabled_channels |= 0x4;
9775 }
9776 }
9777
9778 /* GFX6 (except OLAND and HAINAN) has a bug that it only looks at the X
9779 * writemask component.
9780 */
9781 if (ctx->options->chip_class == GFX6 &&
9782 ctx->options->family != CHIP_OLAND &&
9783 ctx->options->family != CHIP_HAINAN) {
9784 enabled_channels |= 0x1;
9785 }
9786
9787 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
9788 enabled_channels, V_008DFC_SQ_EXP_MRTZ, compr);
9789
9790 return true;
9791 }
9792
9793 static bool export_fs_mrt_color(isel_context *ctx, int slot)
9794 {
9795 Builder bld(ctx->program, ctx->block);
9796 unsigned write_mask = ctx->outputs.mask[slot];
9797 Operand values[4];
9798
9799 for (unsigned i = 0; i < 4; ++i) {
9800 if (write_mask & (1 << i)) {
9801 values[i] = Operand(ctx->outputs.temps[slot * 4u + i]);
9802 } else {
9803 values[i] = Operand(v1);
9804 }
9805 }
9806
9807 unsigned target, col_format;
9808 unsigned enabled_channels = 0;
9809 aco_opcode compr_op = (aco_opcode)0;
9810
9811 slot -= FRAG_RESULT_DATA0;
9812 target = V_008DFC_SQ_EXP_MRT + slot;
9813 col_format = (ctx->options->key.fs.col_format >> (4 * slot)) & 0xf;
9814
9815 bool is_int8 = (ctx->options->key.fs.is_int8 >> slot) & 1;
9816 bool is_int10 = (ctx->options->key.fs.is_int10 >> slot) & 1;
9817
9818 switch (col_format)
9819 {
9820 case V_028714_SPI_SHADER_ZERO:
9821 enabled_channels = 0; /* writemask */
9822 target = V_008DFC_SQ_EXP_NULL;
9823 break;
9824
9825 case V_028714_SPI_SHADER_32_R:
9826 enabled_channels = 1;
9827 break;
9828
9829 case V_028714_SPI_SHADER_32_GR:
9830 enabled_channels = 0x3;
9831 break;
9832
9833 case V_028714_SPI_SHADER_32_AR:
9834 if (ctx->options->chip_class >= GFX10) {
9835 /* Special case: on GFX10, the outputs are different for 32_AR */
9836 enabled_channels = 0x3;
9837 values[1] = values[3];
9838 values[3] = Operand(v1);
9839 } else {
9840 enabled_channels = 0x9;
9841 }
9842 break;
9843
9844 case V_028714_SPI_SHADER_FP16_ABGR:
9845 enabled_channels = 0x5;
9846 compr_op = aco_opcode::v_cvt_pkrtz_f16_f32;
9847 break;
9848
9849 case V_028714_SPI_SHADER_UNORM16_ABGR:
9850 enabled_channels = 0x5;
9851 compr_op = aco_opcode::v_cvt_pknorm_u16_f32;
9852 break;
9853
9854 case V_028714_SPI_SHADER_SNORM16_ABGR:
9855 enabled_channels = 0x5;
9856 compr_op = aco_opcode::v_cvt_pknorm_i16_f32;
9857 break;
9858
9859 case V_028714_SPI_SHADER_UINT16_ABGR: {
9860 enabled_channels = 0x5;
9861 compr_op = aco_opcode::v_cvt_pk_u16_u32;
9862 if (is_int8 || is_int10) {
9863 /* clamp */
9864 uint32_t max_rgb = is_int8 ? 255 : is_int10 ? 1023 : 0;
9865 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
9866
9867 for (unsigned i = 0; i < 4; i++) {
9868 if ((write_mask >> i) & 1) {
9869 values[i] = bld.vop2(aco_opcode::v_min_u32, bld.def(v1),
9870 i == 3 && is_int10 ? Operand(3u) : Operand(max_rgb_val),
9871 values[i]);
9872 }
9873 }
9874 }
9875 break;
9876 }
9877
9878 case V_028714_SPI_SHADER_SINT16_ABGR:
9879 enabled_channels = 0x5;
9880 compr_op = aco_opcode::v_cvt_pk_i16_i32;
9881 if (is_int8 || is_int10) {
9882 /* clamp */
9883 uint32_t max_rgb = is_int8 ? 127 : is_int10 ? 511 : 0;
9884 uint32_t min_rgb = is_int8 ? -128 :is_int10 ? -512 : 0;
9885 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
9886 Temp min_rgb_val = bld.copy(bld.def(s1), Operand(min_rgb));
9887
9888 for (unsigned i = 0; i < 4; i++) {
9889 if ((write_mask >> i) & 1) {
9890 values[i] = bld.vop2(aco_opcode::v_min_i32, bld.def(v1),
9891 i == 3 && is_int10 ? Operand(1u) : Operand(max_rgb_val),
9892 values[i]);
9893 values[i] = bld.vop2(aco_opcode::v_max_i32, bld.def(v1),
9894 i == 3 && is_int10 ? Operand(-2u) : Operand(min_rgb_val),
9895 values[i]);
9896 }
9897 }
9898 }
9899 break;
9900
9901 case V_028714_SPI_SHADER_32_ABGR:
9902 enabled_channels = 0xF;
9903 break;
9904
9905 default:
9906 break;
9907 }
9908
9909 if (target == V_008DFC_SQ_EXP_NULL)
9910 return false;
9911
9912 if ((bool) compr_op) {
9913 for (int i = 0; i < 2; i++) {
9914 /* check if at least one of the values to be compressed is enabled */
9915 unsigned enabled = (write_mask >> (i*2) | write_mask >> (i*2+1)) & 0x1;
9916 if (enabled) {
9917 enabled_channels |= enabled << (i*2);
9918 values[i] = bld.vop3(compr_op, bld.def(v1),
9919 values[i*2].isUndefined() ? Operand(0u) : values[i*2],
9920 values[i*2+1].isUndefined() ? Operand(0u): values[i*2+1]);
9921 } else {
9922 values[i] = Operand(v1);
9923 }
9924 }
9925 values[2] = Operand(v1);
9926 values[3] = Operand(v1);
9927 } else {
9928 for (int i = 0; i < 4; i++)
9929 values[i] = enabled_channels & (1 << i) ? values[i] : Operand(v1);
9930 }
9931
9932 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
9933 enabled_channels, target, (bool) compr_op);
9934 return true;
9935 }
9936
9937 static void create_fs_exports(isel_context *ctx)
9938 {
9939 bool exported = false;
9940
9941 /* Export depth, stencil and sample mask. */
9942 if (ctx->outputs.mask[FRAG_RESULT_DEPTH] ||
9943 ctx->outputs.mask[FRAG_RESULT_STENCIL] ||
9944 ctx->outputs.mask[FRAG_RESULT_SAMPLE_MASK])
9945 exported |= export_fs_mrt_z(ctx);
9946
9947 /* Export all color render targets. */
9948 for (unsigned i = FRAG_RESULT_DATA0; i < FRAG_RESULT_DATA7 + 1; ++i)
9949 if (ctx->outputs.mask[i])
9950 exported |= export_fs_mrt_color(ctx, i);
9951
9952 if (!exported)
9953 create_null_export(ctx);
9954 }
9955
9956 static void write_tcs_tess_factors(isel_context *ctx)
9957 {
9958 unsigned outer_comps;
9959 unsigned inner_comps;
9960
9961 switch (ctx->args->options->key.tcs.primitive_mode) {
9962 case GL_ISOLINES:
9963 outer_comps = 2;
9964 inner_comps = 0;
9965 break;
9966 case GL_TRIANGLES:
9967 outer_comps = 3;
9968 inner_comps = 1;
9969 break;
9970 case GL_QUADS:
9971 outer_comps = 4;
9972 inner_comps = 2;
9973 break;
9974 default:
9975 return;
9976 }
9977
9978 Builder bld(ctx->program, ctx->block);
9979
9980 bld.barrier(aco_opcode::p_memory_barrier_shared);
9981 if (unlikely(ctx->program->chip_class != GFX6 && ctx->program->workgroup_size > ctx->program->wave_size))
9982 bld.sopp(aco_opcode::s_barrier);
9983
9984 Temp tcs_rel_ids = get_arg(ctx, ctx->args->ac.tcs_rel_ids);
9985 Temp invocation_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), tcs_rel_ids, Operand(8u), Operand(5u));
9986
9987 Temp invocation_id_is_zero = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), invocation_id);
9988 if_context ic_invocation_id_is_zero;
9989 begin_divergent_if_then(ctx, &ic_invocation_id_is_zero, invocation_id_is_zero);
9990 bld.reset(ctx->block);
9991
9992 Temp hs_ring_tess_factor = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_FACTOR * 16u));
9993
9994 std::pair<Temp, unsigned> lds_base = get_tcs_output_lds_offset(ctx);
9995 unsigned stride = inner_comps + outer_comps;
9996 unsigned lds_align = calculate_lds_alignment(ctx, lds_base.second);
9997 Temp tf_inner_vec;
9998 Temp tf_outer_vec;
9999 Temp out[6];
10000 assert(stride <= (sizeof(out) / sizeof(Temp)));
10001
10002 if (ctx->args->options->key.tcs.primitive_mode == GL_ISOLINES) {
10003 // LINES reversal
10004 tf_outer_vec = load_lds(ctx, 4, bld.tmp(v2), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_out_loc, lds_align);
10005 out[1] = emit_extract_vector(ctx, tf_outer_vec, 0, v1);
10006 out[0] = emit_extract_vector(ctx, tf_outer_vec, 1, v1);
10007 } else {
10008 tf_outer_vec = load_lds(ctx, 4, bld.tmp(RegClass(RegType::vgpr, outer_comps)), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_out_loc, lds_align);
10009 tf_inner_vec = load_lds(ctx, 4, bld.tmp(RegClass(RegType::vgpr, inner_comps)), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_in_loc, lds_align);
10010
10011 for (unsigned i = 0; i < outer_comps; ++i)
10012 out[i] = emit_extract_vector(ctx, tf_outer_vec, i, v1);
10013 for (unsigned i = 0; i < inner_comps; ++i)
10014 out[outer_comps + i] = emit_extract_vector(ctx, tf_inner_vec, i, v1);
10015 }
10016
10017 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
10018 Temp tf_base = get_arg(ctx, ctx->args->tess_factor_offset);
10019 Temp byte_offset = bld.v_mul_imm(bld.def(v1), rel_patch_id, stride * 4u);
10020 unsigned tf_const_offset = 0;
10021
10022 if (ctx->program->chip_class <= GFX8) {
10023 Temp rel_patch_id_is_zero = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), rel_patch_id);
10024 if_context ic_rel_patch_id_is_zero;
10025 begin_divergent_if_then(ctx, &ic_rel_patch_id_is_zero, rel_patch_id_is_zero);
10026 bld.reset(ctx->block);
10027
10028 /* Store the dynamic HS control word. */
10029 Temp control_word = bld.copy(bld.def(v1), Operand(0x80000000u));
10030 bld.mubuf(aco_opcode::buffer_store_dword,
10031 /* SRSRC */ hs_ring_tess_factor, /* VADDR */ Operand(v1), /* SOFFSET */ tf_base, /* VDATA */ control_word,
10032 /* immediate OFFSET */ 0, /* OFFEN */ false, /* idxen*/ false, /* addr64 */ false,
10033 /* disable_wqm */ false, /* glc */ true);
10034 tf_const_offset += 4;
10035
10036 begin_divergent_if_else(ctx, &ic_rel_patch_id_is_zero);
10037 end_divergent_if(ctx, &ic_rel_patch_id_is_zero);
10038 bld.reset(ctx->block);
10039 }
10040
10041 assert(stride == 2 || stride == 4 || stride == 6);
10042 Temp tf_vec = create_vec_from_array(ctx, out, stride, RegType::vgpr, 4u);
10043 store_vmem_mubuf(ctx, tf_vec, hs_ring_tess_factor, byte_offset, tf_base, tf_const_offset, 4, (1 << stride) - 1, true, false);
10044
10045 /* Store to offchip for TES to read - only if TES reads them */
10046 if (ctx->args->options->key.tcs.tes_reads_tess_factors) {
10047 Temp hs_ring_tess_offchip = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
10048 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
10049
10050 std::pair<Temp, unsigned> vmem_offs_outer = get_tcs_per_patch_output_vmem_offset(ctx, nullptr, ctx->tcs_tess_lvl_out_loc);
10051 store_vmem_mubuf(ctx, tf_outer_vec, hs_ring_tess_offchip, vmem_offs_outer.first, oc_lds, vmem_offs_outer.second, 4, (1 << outer_comps) - 1, true, false);
10052
10053 if (likely(inner_comps)) {
10054 std::pair<Temp, unsigned> vmem_offs_inner = get_tcs_per_patch_output_vmem_offset(ctx, nullptr, ctx->tcs_tess_lvl_in_loc);
10055 store_vmem_mubuf(ctx, tf_inner_vec, hs_ring_tess_offchip, vmem_offs_inner.first, oc_lds, vmem_offs_inner.second, 4, (1 << inner_comps) - 1, true, false);
10056 }
10057 }
10058
10059 begin_divergent_if_else(ctx, &ic_invocation_id_is_zero);
10060 end_divergent_if(ctx, &ic_invocation_id_is_zero);
10061 }
10062
10063 static void emit_stream_output(isel_context *ctx,
10064 Temp const *so_buffers,
10065 Temp const *so_write_offset,
10066 const struct radv_stream_output *output)
10067 {
10068 unsigned num_comps = util_bitcount(output->component_mask);
10069 unsigned writemask = (1 << num_comps) - 1;
10070 unsigned loc = output->location;
10071 unsigned buf = output->buffer;
10072
10073 assert(num_comps && num_comps <= 4);
10074 if (!num_comps || num_comps > 4)
10075 return;
10076
10077 unsigned start = ffs(output->component_mask) - 1;
10078
10079 Temp out[4];
10080 bool all_undef = true;
10081 assert(ctx->stage == vertex_vs || ctx->stage == gs_copy_vs);
10082 for (unsigned i = 0; i < num_comps; i++) {
10083 out[i] = ctx->outputs.temps[loc * 4 + start + i];
10084 all_undef = all_undef && !out[i].id();
10085 }
10086 if (all_undef)
10087 return;
10088
10089 while (writemask) {
10090 int start, count;
10091 u_bit_scan_consecutive_range(&writemask, &start, &count);
10092 if (count == 3 && ctx->options->chip_class == GFX6) {
10093 /* GFX6 doesn't support storing vec3, split it. */
10094 writemask |= 1u << (start + 2);
10095 count = 2;
10096 }
10097
10098 unsigned offset = output->offset + start * 4;
10099
10100 Temp write_data = {ctx->program->allocateId(), RegClass(RegType::vgpr, count)};
10101 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
10102 for (int i = 0; i < count; ++i)
10103 vec->operands[i] = (ctx->outputs.mask[loc] & 1 << (start + i)) ? Operand(out[start + i]) : Operand(0u);
10104 vec->definitions[0] = Definition(write_data);
10105 ctx->block->instructions.emplace_back(std::move(vec));
10106
10107 aco_opcode opcode;
10108 switch (count) {
10109 case 1:
10110 opcode = aco_opcode::buffer_store_dword;
10111 break;
10112 case 2:
10113 opcode = aco_opcode::buffer_store_dwordx2;
10114 break;
10115 case 3:
10116 opcode = aco_opcode::buffer_store_dwordx3;
10117 break;
10118 case 4:
10119 opcode = aco_opcode::buffer_store_dwordx4;
10120 break;
10121 default:
10122 unreachable("Unsupported dword count.");
10123 }
10124
10125 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
10126 store->operands[0] = Operand(so_buffers[buf]);
10127 store->operands[1] = Operand(so_write_offset[buf]);
10128 store->operands[2] = Operand((uint32_t) 0);
10129 store->operands[3] = Operand(write_data);
10130 if (offset > 4095) {
10131 /* Don't think this can happen in RADV, but maybe GL? It's easy to do this anyway. */
10132 Builder bld(ctx->program, ctx->block);
10133 store->operands[0] = bld.vadd32(bld.def(v1), Operand(offset), Operand(so_write_offset[buf]));
10134 } else {
10135 store->offset = offset;
10136 }
10137 store->offen = true;
10138 store->glc = true;
10139 store->dlc = false;
10140 store->slc = true;
10141 store->can_reorder = true;
10142 ctx->block->instructions.emplace_back(std::move(store));
10143 }
10144 }
10145
10146 static void emit_streamout(isel_context *ctx, unsigned stream)
10147 {
10148 Builder bld(ctx->program, ctx->block);
10149
10150 Temp so_buffers[4];
10151 Temp buf_ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->streamout_buffers));
10152 for (unsigned i = 0; i < 4; i++) {
10153 unsigned stride = ctx->program->info->so.strides[i];
10154 if (!stride)
10155 continue;
10156
10157 Operand off = bld.copy(bld.def(s1), Operand(i * 16u));
10158 so_buffers[i] = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), buf_ptr, off);
10159 }
10160
10161 Temp so_vtx_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10162 get_arg(ctx, ctx->args->streamout_config), Operand(0x70010u));
10163
10164 Temp tid = emit_mbcnt(ctx, bld.def(v1));
10165
10166 Temp can_emit = bld.vopc(aco_opcode::v_cmp_gt_i32, bld.def(bld.lm), so_vtx_count, tid);
10167
10168 if_context ic;
10169 begin_divergent_if_then(ctx, &ic, can_emit);
10170
10171 bld.reset(ctx->block);
10172
10173 Temp so_write_index = bld.vadd32(bld.def(v1), get_arg(ctx, ctx->args->streamout_write_idx), tid);
10174
10175 Temp so_write_offset[4];
10176
10177 for (unsigned i = 0; i < 4; i++) {
10178 unsigned stride = ctx->program->info->so.strides[i];
10179 if (!stride)
10180 continue;
10181
10182 if (stride == 1) {
10183 Temp offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
10184 get_arg(ctx, ctx->args->streamout_write_idx),
10185 get_arg(ctx, ctx->args->streamout_offset[i]));
10186 Temp new_offset = bld.vadd32(bld.def(v1), offset, tid);
10187
10188 so_write_offset[i] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), new_offset);
10189 } else {
10190 Temp offset = bld.v_mul_imm(bld.def(v1), so_write_index, stride * 4u);
10191 Temp offset2 = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(4u),
10192 get_arg(ctx, ctx->args->streamout_offset[i]));
10193 so_write_offset[i] = bld.vadd32(bld.def(v1), offset, offset2);
10194 }
10195 }
10196
10197 for (unsigned i = 0; i < ctx->program->info->so.num_outputs; i++) {
10198 struct radv_stream_output *output =
10199 &ctx->program->info->so.outputs[i];
10200 if (stream != output->stream)
10201 continue;
10202
10203 emit_stream_output(ctx, so_buffers, so_write_offset, output);
10204 }
10205
10206 begin_divergent_if_else(ctx, &ic);
10207 end_divergent_if(ctx, &ic);
10208 }
10209
10210 } /* end namespace */
10211
10212 void fix_ls_vgpr_init_bug(isel_context *ctx, Pseudo_instruction *startpgm)
10213 {
10214 assert(ctx->shader->info.stage == MESA_SHADER_VERTEX);
10215 Builder bld(ctx->program, ctx->block);
10216 constexpr unsigned hs_idx = 1u;
10217 Builder::Result hs_thread_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10218 get_arg(ctx, ctx->args->merged_wave_info),
10219 Operand((8u << 16) | (hs_idx * 8u)));
10220 Temp ls_has_nonzero_hs_threads = bool_to_vector_condition(ctx, hs_thread_count.def(1).getTemp());
10221
10222 /* If there are no HS threads, SPI mistakenly loads the LS VGPRs starting at VGPR 0. */
10223
10224 Temp instance_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10225 get_arg(ctx, ctx->args->rel_auto_id),
10226 get_arg(ctx, ctx->args->ac.instance_id),
10227 ls_has_nonzero_hs_threads);
10228 Temp rel_auto_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10229 get_arg(ctx, ctx->args->ac.tcs_rel_ids),
10230 get_arg(ctx, ctx->args->rel_auto_id),
10231 ls_has_nonzero_hs_threads);
10232 Temp vertex_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10233 get_arg(ctx, ctx->args->ac.tcs_patch_id),
10234 get_arg(ctx, ctx->args->ac.vertex_id),
10235 ls_has_nonzero_hs_threads);
10236
10237 ctx->arg_temps[ctx->args->ac.instance_id.arg_index] = instance_id;
10238 ctx->arg_temps[ctx->args->rel_auto_id.arg_index] = rel_auto_id;
10239 ctx->arg_temps[ctx->args->ac.vertex_id.arg_index] = vertex_id;
10240 }
10241
10242 void split_arguments(isel_context *ctx, Pseudo_instruction *startpgm)
10243 {
10244 /* Split all arguments except for the first (ring_offsets) and the last
10245 * (exec) so that the dead channels don't stay live throughout the program.
10246 */
10247 for (int i = 1; i < startpgm->definitions.size() - 1; i++) {
10248 if (startpgm->definitions[i].regClass().size() > 1) {
10249 emit_split_vector(ctx, startpgm->definitions[i].getTemp(),
10250 startpgm->definitions[i].regClass().size());
10251 }
10252 }
10253 }
10254
10255 void handle_bc_optimize(isel_context *ctx)
10256 {
10257 /* needed when SPI_PS_IN_CONTROL.BC_OPTIMIZE_DISABLE is set to 0 */
10258 Builder bld(ctx->program, ctx->block);
10259 uint32_t spi_ps_input_ena = ctx->program->config->spi_ps_input_ena;
10260 bool uses_center = G_0286CC_PERSP_CENTER_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTER_ENA(spi_ps_input_ena);
10261 bool uses_centroid = G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena);
10262 ctx->persp_centroid = get_arg(ctx, ctx->args->ac.persp_centroid);
10263 ctx->linear_centroid = get_arg(ctx, ctx->args->ac.linear_centroid);
10264 if (uses_center && uses_centroid) {
10265 Temp sel = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)),
10266 get_arg(ctx, ctx->args->ac.prim_mask), Operand(0u));
10267
10268 if (G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena)) {
10269 Temp new_coord[2];
10270 for (unsigned i = 0; i < 2; i++) {
10271 Temp persp_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_centroid), i, v1);
10272 Temp persp_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_center), i, v1);
10273 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10274 persp_centroid, persp_center, sel);
10275 }
10276 ctx->persp_centroid = bld.tmp(v2);
10277 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->persp_centroid),
10278 Operand(new_coord[0]), Operand(new_coord[1]));
10279 emit_split_vector(ctx, ctx->persp_centroid, 2);
10280 }
10281
10282 if (G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena)) {
10283 Temp new_coord[2];
10284 for (unsigned i = 0; i < 2; i++) {
10285 Temp linear_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_centroid), i, v1);
10286 Temp linear_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_center), i, v1);
10287 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10288 linear_centroid, linear_center, sel);
10289 }
10290 ctx->linear_centroid = bld.tmp(v2);
10291 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->linear_centroid),
10292 Operand(new_coord[0]), Operand(new_coord[1]));
10293 emit_split_vector(ctx, ctx->linear_centroid, 2);
10294 }
10295 }
10296 }
10297
10298 void setup_fp_mode(isel_context *ctx, nir_shader *shader)
10299 {
10300 Program *program = ctx->program;
10301
10302 unsigned float_controls = shader->info.float_controls_execution_mode;
10303
10304 program->next_fp_mode.preserve_signed_zero_inf_nan32 =
10305 float_controls & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32;
10306 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 =
10307 float_controls & (FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16 |
10308 FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64);
10309
10310 program->next_fp_mode.must_flush_denorms32 =
10311 float_controls & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32;
10312 program->next_fp_mode.must_flush_denorms16_64 =
10313 float_controls & (FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 |
10314 FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64);
10315
10316 program->next_fp_mode.care_about_round32 =
10317 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32);
10318
10319 program->next_fp_mode.care_about_round16_64 =
10320 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64 |
10321 FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
10322
10323 /* default to preserving fp16 and fp64 denorms, since it's free */
10324 if (program->next_fp_mode.must_flush_denorms16_64)
10325 program->next_fp_mode.denorm16_64 = 0;
10326 else
10327 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
10328
10329 /* preserving fp32 denorms is expensive, so only do it if asked */
10330 if (float_controls & FLOAT_CONTROLS_DENORM_PRESERVE_FP32)
10331 program->next_fp_mode.denorm32 = fp_denorm_keep;
10332 else
10333 program->next_fp_mode.denorm32 = 0;
10334
10335 if (float_controls & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32)
10336 program->next_fp_mode.round32 = fp_round_tz;
10337 else
10338 program->next_fp_mode.round32 = fp_round_ne;
10339
10340 if (float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64))
10341 program->next_fp_mode.round16_64 = fp_round_tz;
10342 else
10343 program->next_fp_mode.round16_64 = fp_round_ne;
10344
10345 ctx->block->fp_mode = program->next_fp_mode;
10346 }
10347
10348 void cleanup_cfg(Program *program)
10349 {
10350 /* create linear_succs/logical_succs */
10351 for (Block& BB : program->blocks) {
10352 for (unsigned idx : BB.linear_preds)
10353 program->blocks[idx].linear_succs.emplace_back(BB.index);
10354 for (unsigned idx : BB.logical_preds)
10355 program->blocks[idx].logical_succs.emplace_back(BB.index);
10356 }
10357 }
10358
10359 Temp merged_wave_info_to_mask(isel_context *ctx, unsigned i)
10360 {
10361 Builder bld(ctx->program, ctx->block);
10362
10363 /* The s_bfm only cares about s0.u[5:0] so we don't need either s_bfe nor s_and here */
10364 Temp count = i == 0
10365 ? get_arg(ctx, ctx->args->merged_wave_info)
10366 : bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc),
10367 get_arg(ctx, ctx->args->merged_wave_info), Operand(i * 8u));
10368
10369 Temp mask = bld.sop2(aco_opcode::s_bfm_b64, bld.def(s2), count, Operand(0u));
10370 Temp cond;
10371
10372 if (ctx->program->wave_size == 64) {
10373 /* Special case for 64 active invocations, because 64 doesn't work with s_bfm */
10374 Temp active_64 = bld.sopc(aco_opcode::s_bitcmp1_b32, bld.def(s1, scc), count, Operand(6u /* log2(64) */));
10375 cond = bld.sop2(Builder::s_cselect, bld.def(bld.lm), Operand(-1u), mask, bld.scc(active_64));
10376 } else {
10377 /* We use s_bfm_b64 (not _b32) which works with 32, but we need to extract the lower half of the register */
10378 cond = emit_extract_vector(ctx, mask, 0, bld.lm);
10379 }
10380
10381 return cond;
10382 }
10383
10384 bool ngg_early_prim_export(isel_context *ctx)
10385 {
10386 /* TODO: Check edge flags, and if they are written, return false. (Needed for OpenGL, not for Vulkan.) */
10387 return true;
10388 }
10389
10390 void ngg_emit_sendmsg_gs_alloc_req(isel_context *ctx)
10391 {
10392 Builder bld(ctx->program, ctx->block);
10393
10394 /* It is recommended to do the GS_ALLOC_REQ as soon and as quickly as possible, so we set the maximum priority (3). */
10395 bld.sopp(aco_opcode::s_setprio, -1u, 0x3u);
10396
10397 /* Get the id of the current wave within the threadgroup (workgroup) */
10398 Builder::Result wave_id_in_tg = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10399 get_arg(ctx, ctx->args->merged_wave_info), Operand(24u | (4u << 16)));
10400
10401 /* Execute the following code only on the first wave (wave id 0),
10402 * use the SCC def to tell if the wave id is zero or not.
10403 */
10404 Temp cond = wave_id_in_tg.def(1).getTemp();
10405 if_context ic;
10406 begin_uniform_if_then(ctx, &ic, cond);
10407 begin_uniform_if_else(ctx, &ic);
10408 bld.reset(ctx->block);
10409
10410 /* Number of vertices output by VS/TES */
10411 Temp vtx_cnt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10412 get_arg(ctx, ctx->args->gs_tg_info), Operand(12u | (9u << 16u)));
10413 /* Number of primitives output by VS/TES */
10414 Temp prm_cnt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10415 get_arg(ctx, ctx->args->gs_tg_info), Operand(22u | (9u << 16u)));
10416
10417 /* Put the number of vertices and primitives into m0 for the GS_ALLOC_REQ */
10418 Temp tmp = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), prm_cnt, Operand(12u));
10419 tmp = bld.sop2(aco_opcode::s_or_b32, bld.m0(bld.def(s1)), bld.def(s1, scc), tmp, vtx_cnt);
10420
10421 /* Request the SPI to allocate space for the primitives and vertices that will be exported by the threadgroup. */
10422 bld.sopp(aco_opcode::s_sendmsg, bld.m0(tmp), -1, sendmsg_gs_alloc_req);
10423
10424 /* After the GS_ALLOC_REQ is done, reset priority to default (0). */
10425 bld.sopp(aco_opcode::s_setprio, -1u, 0x0u);
10426
10427 end_uniform_if(ctx, &ic);
10428 }
10429
10430 Temp ngg_get_prim_exp_arg(isel_context *ctx, unsigned num_vertices, const Temp vtxindex[])
10431 {
10432 Builder bld(ctx->program, ctx->block);
10433
10434 if (ctx->args->options->key.vs_common_out.as_ngg_passthrough) {
10435 return get_arg(ctx, ctx->args->gs_vtx_offset[0]);
10436 }
10437
10438 Temp gs_invocation_id = get_arg(ctx, ctx->args->ac.gs_invocation_id);
10439 Temp tmp;
10440
10441 for (unsigned i = 0; i < num_vertices; ++i) {
10442 assert(vtxindex[i].id());
10443
10444 if (i)
10445 tmp = bld.vop3(aco_opcode::v_lshl_add_u32, bld.def(v1), vtxindex[i], Operand(10u * i), tmp);
10446 else
10447 tmp = vtxindex[i];
10448
10449 /* The initial edge flag is always false in tess eval shaders. */
10450 if (ctx->stage == ngg_vertex_gs) {
10451 Temp edgeflag = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), gs_invocation_id, Operand(8 + i), Operand(1u));
10452 tmp = bld.vop3(aco_opcode::v_lshl_add_u32, bld.def(v1), edgeflag, Operand(10u * i + 9u), tmp);
10453 }
10454 }
10455
10456 /* TODO: Set isnull field in case of merged NGG VS+GS. */
10457
10458 return tmp;
10459 }
10460
10461 void ngg_emit_prim_export(isel_context *ctx, unsigned num_vertices_per_primitive, const Temp vtxindex[])
10462 {
10463 Builder bld(ctx->program, ctx->block);
10464 Temp prim_exp_arg = ngg_get_prim_exp_arg(ctx, num_vertices_per_primitive, vtxindex);
10465
10466 bld.exp(aco_opcode::exp, prim_exp_arg, Operand(v1), Operand(v1), Operand(v1),
10467 1 /* enabled mask */, V_008DFC_SQ_EXP_PRIM /* dest */,
10468 false /* compressed */, true/* done */, false /* valid mask */);
10469 }
10470
10471 void ngg_emit_nogs_gsthreads(isel_context *ctx)
10472 {
10473 /* Emit the things that NGG GS threads need to do, for shaders that don't have SW GS.
10474 * These must always come before VS exports.
10475 *
10476 * It is recommended to do these as early as possible. They can be at the beginning when
10477 * there is no SW GS and the shader doesn't write edge flags.
10478 */
10479
10480 if_context ic;
10481 Temp is_gs_thread = merged_wave_info_to_mask(ctx, 1);
10482 begin_divergent_if_then(ctx, &ic, is_gs_thread);
10483
10484 Builder bld(ctx->program, ctx->block);
10485 constexpr unsigned max_vertices_per_primitive = 3;
10486 unsigned num_vertices_per_primitive = max_vertices_per_primitive;
10487
10488 if (ctx->stage == ngg_vertex_gs) {
10489 /* TODO: optimize for points & lines */
10490 } else if (ctx->stage == ngg_tess_eval_gs) {
10491 if (ctx->shader->info.tess.point_mode)
10492 num_vertices_per_primitive = 1;
10493 else if (ctx->shader->info.tess.primitive_mode == GL_ISOLINES)
10494 num_vertices_per_primitive = 2;
10495 } else {
10496 unreachable("Unsupported NGG shader stage");
10497 }
10498
10499 Temp vtxindex[max_vertices_per_primitive];
10500 vtxindex[0] = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu),
10501 get_arg(ctx, ctx->args->gs_vtx_offset[0]));
10502 vtxindex[1] = num_vertices_per_primitive < 2 ? Temp(0, v1) :
10503 bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
10504 get_arg(ctx, ctx->args->gs_vtx_offset[0]), Operand(16u), Operand(16u));
10505 vtxindex[2] = num_vertices_per_primitive < 3 ? Temp(0, v1) :
10506 bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu),
10507 get_arg(ctx, ctx->args->gs_vtx_offset[2]));
10508
10509 /* Export primitive data to the index buffer. */
10510 ngg_emit_prim_export(ctx, num_vertices_per_primitive, vtxindex);
10511
10512 /* Export primitive ID. */
10513 if (ctx->stage == ngg_vertex_gs && ctx->args->options->key.vs_common_out.export_prim_id) {
10514 /* Copy Primitive IDs from GS threads to the LDS address corresponding to the ES thread of the provoking vertex. */
10515 Temp prim_id = get_arg(ctx, ctx->args->ac.gs_prim_id);
10516 Temp provoking_vtx_index = vtxindex[0];
10517 Temp addr = bld.v_mul_imm(bld.def(v1), provoking_vtx_index, 4u);
10518
10519 store_lds(ctx, 4, prim_id, 0x1u, addr, 0u, 4u);
10520 }
10521
10522 begin_divergent_if_else(ctx, &ic);
10523 end_divergent_if(ctx, &ic);
10524 }
10525
10526 void ngg_emit_nogs_output(isel_context *ctx)
10527 {
10528 /* Emits NGG GS output, for stages that don't have SW GS. */
10529
10530 if_context ic;
10531 Builder bld(ctx->program, ctx->block);
10532 bool late_prim_export = !ngg_early_prim_export(ctx);
10533
10534 /* NGG streamout is currently disabled by default. */
10535 assert(!ctx->args->shader_info->so.num_outputs);
10536
10537 if (late_prim_export) {
10538 /* VS exports are output to registers in a predecessor block. Emit phis to get them into this block. */
10539 create_export_phis(ctx);
10540 /* Do what we need to do in the GS threads. */
10541 ngg_emit_nogs_gsthreads(ctx);
10542
10543 /* What comes next should be executed on ES threads. */
10544 Temp is_es_thread = merged_wave_info_to_mask(ctx, 0);
10545 begin_divergent_if_then(ctx, &ic, is_es_thread);
10546 bld.reset(ctx->block);
10547 }
10548
10549 /* Export VS outputs */
10550 ctx->block->kind |= block_kind_export_end;
10551 create_vs_exports(ctx);
10552
10553 /* Export primitive ID */
10554 if (ctx->args->options->key.vs_common_out.export_prim_id) {
10555 Temp prim_id;
10556
10557 if (ctx->stage == ngg_vertex_gs) {
10558 /* Wait for GS threads to store primitive ID in LDS. */
10559 bld.barrier(aco_opcode::p_memory_barrier_shared);
10560 bld.sopp(aco_opcode::s_barrier);
10561
10562 /* Calculate LDS address where the GS threads stored the primitive ID. */
10563 Temp wave_id_in_tg = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10564 get_arg(ctx, ctx->args->merged_wave_info), Operand(24u | (4u << 16)));
10565 Temp thread_id_in_wave = emit_mbcnt(ctx, bld.def(v1));
10566 Temp wave_id_mul = bld.v_mul_imm(bld.def(v1), as_vgpr(ctx, wave_id_in_tg), ctx->program->wave_size);
10567 Temp thread_id_in_tg = bld.vadd32(bld.def(v1), Operand(wave_id_mul), Operand(thread_id_in_wave));
10568 Temp addr = bld.v_mul_imm(bld.def(v1), thread_id_in_tg, 4u);
10569
10570 /* Load primitive ID from LDS. */
10571 prim_id = load_lds(ctx, 4, bld.tmp(v1), addr, 0u, 4u);
10572 } else if (ctx->stage == ngg_tess_eval_gs) {
10573 /* TES: Just use the patch ID as the primitive ID. */
10574 prim_id = get_arg(ctx, ctx->args->ac.tes_patch_id);
10575 } else {
10576 unreachable("unsupported NGG shader stage.");
10577 }
10578
10579 ctx->outputs.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
10580 ctx->outputs.temps[VARYING_SLOT_PRIMITIVE_ID * 4u] = prim_id;
10581
10582 export_vs_varying(ctx, VARYING_SLOT_PRIMITIVE_ID, false, nullptr);
10583 }
10584
10585 if (late_prim_export) {
10586 begin_divergent_if_else(ctx, &ic);
10587 end_divergent_if(ctx, &ic);
10588 bld.reset(ctx->block);
10589 }
10590 }
10591
10592 void select_program(Program *program,
10593 unsigned shader_count,
10594 struct nir_shader *const *shaders,
10595 ac_shader_config* config,
10596 struct radv_shader_args *args)
10597 {
10598 isel_context ctx = setup_isel_context(program, shader_count, shaders, config, args, false);
10599 if_context ic_merged_wave_info;
10600 bool ngg_no_gs = ctx.stage == ngg_vertex_gs || ctx.stage == ngg_tess_eval_gs;
10601
10602 for (unsigned i = 0; i < shader_count; i++) {
10603 nir_shader *nir = shaders[i];
10604 init_context(&ctx, nir);
10605
10606 setup_fp_mode(&ctx, nir);
10607
10608 if (!i) {
10609 /* needs to be after init_context() for FS */
10610 Pseudo_instruction *startpgm = add_startpgm(&ctx);
10611 append_logical_start(ctx.block);
10612
10613 if (unlikely(args->options->has_ls_vgpr_init_bug && ctx.stage == vertex_tess_control_hs))
10614 fix_ls_vgpr_init_bug(&ctx, startpgm);
10615
10616 split_arguments(&ctx, startpgm);
10617 }
10618
10619 if (ngg_no_gs) {
10620 ngg_emit_sendmsg_gs_alloc_req(&ctx);
10621
10622 if (ngg_early_prim_export(&ctx))
10623 ngg_emit_nogs_gsthreads(&ctx);
10624 }
10625
10626 /* In a merged VS+TCS HS, the VS implementation can be completely empty. */
10627 nir_function_impl *func = nir_shader_get_entrypoint(nir);
10628 bool empty_shader = nir_cf_list_is_empty_block(&func->body) &&
10629 ((nir->info.stage == MESA_SHADER_VERTEX &&
10630 (ctx.stage == vertex_tess_control_hs || ctx.stage == vertex_geometry_gs)) ||
10631 (nir->info.stage == MESA_SHADER_TESS_EVAL &&
10632 ctx.stage == tess_eval_geometry_gs));
10633
10634 bool check_merged_wave_info = ctx.tcs_in_out_eq ? i == 0 : ((shader_count >= 2 && !empty_shader) || ngg_no_gs);
10635 bool endif_merged_wave_info = ctx.tcs_in_out_eq ? i == 1 : check_merged_wave_info;
10636 if (check_merged_wave_info) {
10637 Temp cond = merged_wave_info_to_mask(&ctx, i);
10638 begin_divergent_if_then(&ctx, &ic_merged_wave_info, cond);
10639 }
10640
10641 if (i) {
10642 Builder bld(ctx.program, ctx.block);
10643
10644 bld.barrier(aco_opcode::p_memory_barrier_shared);
10645 bld.sopp(aco_opcode::s_barrier);
10646
10647 if (ctx.stage == vertex_geometry_gs || ctx.stage == tess_eval_geometry_gs) {
10648 ctx.gs_wave_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1, m0), bld.def(s1, scc), get_arg(&ctx, args->merged_wave_info), Operand((8u << 16) | 16u));
10649 }
10650 } else if (ctx.stage == geometry_gs)
10651 ctx.gs_wave_id = get_arg(&ctx, args->gs_wave_id);
10652
10653 if (ctx.stage == fragment_fs)
10654 handle_bc_optimize(&ctx);
10655
10656 visit_cf_list(&ctx, &func->body);
10657
10658 if (ctx.program->info->so.num_outputs && (ctx.stage & hw_vs))
10659 emit_streamout(&ctx, 0);
10660
10661 if (ctx.stage & hw_vs) {
10662 create_vs_exports(&ctx);
10663 ctx.block->kind |= block_kind_export_end;
10664 } else if (ngg_no_gs && ngg_early_prim_export(&ctx)) {
10665 ngg_emit_nogs_output(&ctx);
10666 } else if (nir->info.stage == MESA_SHADER_GEOMETRY) {
10667 Builder bld(ctx.program, ctx.block);
10668 bld.barrier(aco_opcode::p_memory_barrier_gs_data);
10669 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx.gs_wave_id), -1, sendmsg_gs_done(false, false, 0));
10670 } else if (nir->info.stage == MESA_SHADER_TESS_CTRL) {
10671 write_tcs_tess_factors(&ctx);
10672 }
10673
10674 if (ctx.stage == fragment_fs) {
10675 create_fs_exports(&ctx);
10676 ctx.block->kind |= block_kind_export_end;
10677 }
10678
10679 if (endif_merged_wave_info) {
10680 begin_divergent_if_else(&ctx, &ic_merged_wave_info);
10681 end_divergent_if(&ctx, &ic_merged_wave_info);
10682 }
10683
10684 if (ngg_no_gs && !ngg_early_prim_export(&ctx))
10685 ngg_emit_nogs_output(&ctx);
10686
10687 ralloc_free(ctx.divergent_vals);
10688
10689 if (i == 0 && ctx.stage == vertex_tess_control_hs && ctx.tcs_in_out_eq) {
10690 /* Outputs of the previous stage are inputs to the next stage */
10691 ctx.inputs = ctx.outputs;
10692 ctx.outputs = shader_io_state();
10693 }
10694 }
10695
10696 program->config->float_mode = program->blocks[0].fp_mode.val;
10697
10698 append_logical_end(ctx.block);
10699 ctx.block->kind |= block_kind_uniform;
10700 Builder bld(ctx.program, ctx.block);
10701 if (ctx.program->wb_smem_l1_on_end)
10702 bld.smem(aco_opcode::s_dcache_wb, false);
10703 bld.sopp(aco_opcode::s_endpgm);
10704
10705 cleanup_cfg(program);
10706 }
10707
10708 void select_gs_copy_shader(Program *program, struct nir_shader *gs_shader,
10709 ac_shader_config* config,
10710 struct radv_shader_args *args)
10711 {
10712 isel_context ctx = setup_isel_context(program, 1, &gs_shader, config, args, true);
10713
10714 program->next_fp_mode.preserve_signed_zero_inf_nan32 = false;
10715 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 = false;
10716 program->next_fp_mode.must_flush_denorms32 = false;
10717 program->next_fp_mode.must_flush_denorms16_64 = false;
10718 program->next_fp_mode.care_about_round32 = false;
10719 program->next_fp_mode.care_about_round16_64 = false;
10720 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
10721 program->next_fp_mode.denorm32 = 0;
10722 program->next_fp_mode.round32 = fp_round_ne;
10723 program->next_fp_mode.round16_64 = fp_round_ne;
10724 ctx.block->fp_mode = program->next_fp_mode;
10725
10726 add_startpgm(&ctx);
10727 append_logical_start(ctx.block);
10728
10729 Builder bld(ctx.program, ctx.block);
10730
10731 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), program->private_segment_buffer, Operand(RING_GSVS_VS * 16u));
10732
10733 Operand stream_id(0u);
10734 if (args->shader_info->so.num_outputs)
10735 stream_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10736 get_arg(&ctx, ctx.args->streamout_config), Operand(0x20018u));
10737
10738 Temp vtx_offset = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), get_arg(&ctx, ctx.args->ac.vertex_id));
10739
10740 std::stack<Block> endif_blocks;
10741
10742 for (unsigned stream = 0; stream < 4; stream++) {
10743 if (stream_id.isConstant() && stream != stream_id.constantValue())
10744 continue;
10745
10746 unsigned num_components = args->shader_info->gs.num_stream_output_components[stream];
10747 if (stream > 0 && (!num_components || !args->shader_info->so.num_outputs))
10748 continue;
10749
10750 memset(ctx.outputs.mask, 0, sizeof(ctx.outputs.mask));
10751
10752 unsigned BB_if_idx = ctx.block->index;
10753 Block BB_endif = Block();
10754 if (!stream_id.isConstant()) {
10755 /* begin IF */
10756 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), stream_id, Operand(stream));
10757 append_logical_end(ctx.block);
10758 ctx.block->kind |= block_kind_uniform;
10759 bld.branch(aco_opcode::p_cbranch_z, cond);
10760
10761 BB_endif.kind |= ctx.block->kind & block_kind_top_level;
10762
10763 ctx.block = ctx.program->create_and_insert_block();
10764 add_edge(BB_if_idx, ctx.block);
10765 bld.reset(ctx.block);
10766 append_logical_start(ctx.block);
10767 }
10768
10769 unsigned offset = 0;
10770 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
10771 if (args->shader_info->gs.output_streams[i] != stream)
10772 continue;
10773
10774 unsigned output_usage_mask = args->shader_info->gs.output_usage_mask[i];
10775 unsigned length = util_last_bit(output_usage_mask);
10776 for (unsigned j = 0; j < length; ++j) {
10777 if (!(output_usage_mask & (1 << j)))
10778 continue;
10779
10780 unsigned const_offset = offset * args->shader_info->gs.vertices_out * 16 * 4;
10781 Temp voffset = vtx_offset;
10782 if (const_offset >= 4096u) {
10783 voffset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), voffset);
10784 const_offset %= 4096u;
10785 }
10786
10787 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dword, Format::MUBUF, 3, 1)};
10788 mubuf->definitions[0] = bld.def(v1);
10789 mubuf->operands[0] = Operand(gsvs_ring);
10790 mubuf->operands[1] = Operand(voffset);
10791 mubuf->operands[2] = Operand(0u);
10792 mubuf->offen = true;
10793 mubuf->offset = const_offset;
10794 mubuf->glc = true;
10795 mubuf->slc = true;
10796 mubuf->dlc = args->options->chip_class >= GFX10;
10797 mubuf->barrier = barrier_none;
10798 mubuf->can_reorder = true;
10799
10800 ctx.outputs.mask[i] |= 1 << j;
10801 ctx.outputs.temps[i * 4u + j] = mubuf->definitions[0].getTemp();
10802
10803 bld.insert(std::move(mubuf));
10804
10805 offset++;
10806 }
10807 }
10808
10809 if (args->shader_info->so.num_outputs) {
10810 emit_streamout(&ctx, stream);
10811 bld.reset(ctx.block);
10812 }
10813
10814 if (stream == 0) {
10815 create_vs_exports(&ctx);
10816 ctx.block->kind |= block_kind_export_end;
10817 }
10818
10819 if (!stream_id.isConstant()) {
10820 append_logical_end(ctx.block);
10821
10822 /* branch from then block to endif block */
10823 bld.branch(aco_opcode::p_branch);
10824 add_edge(ctx.block->index, &BB_endif);
10825 ctx.block->kind |= block_kind_uniform;
10826
10827 /* emit else block */
10828 ctx.block = ctx.program->create_and_insert_block();
10829 add_edge(BB_if_idx, ctx.block);
10830 bld.reset(ctx.block);
10831 append_logical_start(ctx.block);
10832
10833 endif_blocks.push(std::move(BB_endif));
10834 }
10835 }
10836
10837 while (!endif_blocks.empty()) {
10838 Block BB_endif = std::move(endif_blocks.top());
10839 endif_blocks.pop();
10840
10841 Block *BB_else = ctx.block;
10842
10843 append_logical_end(BB_else);
10844 /* branch from else block to endif block */
10845 bld.branch(aco_opcode::p_branch);
10846 add_edge(BB_else->index, &BB_endif);
10847 BB_else->kind |= block_kind_uniform;
10848
10849 /** emit endif merge block */
10850 ctx.block = program->insert_block(std::move(BB_endif));
10851 bld.reset(ctx.block);
10852 append_logical_start(ctx.block);
10853 }
10854
10855 program->config->float_mode = program->blocks[0].fp_mode.val;
10856
10857 append_logical_end(ctx.block);
10858 ctx.block->kind |= block_kind_uniform;
10859 bld.sopp(aco_opcode::s_endpgm);
10860
10861 cleanup_cfg(program);
10862 }
10863 }