aco: move src1 to vgpr instead of using VOP3 for VOP2 instructions during isel
[mesa.git] / src / amd / compiler / aco_instruction_selection.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 * Copyright © 2018 Google
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <algorithm>
27 #include <array>
28 #include <stack>
29 #include <map>
30
31 #include "ac_shader_util.h"
32 #include "aco_ir.h"
33 #include "aco_builder.h"
34 #include "aco_interface.h"
35 #include "aco_instruction_selection_setup.cpp"
36 #include "util/fast_idiv_by_const.h"
37
38 namespace aco {
39 namespace {
40
41 class loop_info_RAII {
42 isel_context* ctx;
43 unsigned header_idx_old;
44 Block* exit_old;
45 bool divergent_cont_old;
46 bool divergent_branch_old;
47 bool divergent_if_old;
48
49 public:
50 loop_info_RAII(isel_context* ctx, unsigned loop_header_idx, Block* loop_exit)
51 : ctx(ctx),
52 header_idx_old(ctx->cf_info.parent_loop.header_idx), exit_old(ctx->cf_info.parent_loop.exit),
53 divergent_cont_old(ctx->cf_info.parent_loop.has_divergent_continue),
54 divergent_branch_old(ctx->cf_info.parent_loop.has_divergent_branch),
55 divergent_if_old(ctx->cf_info.parent_if.is_divergent)
56 {
57 ctx->cf_info.parent_loop.header_idx = loop_header_idx;
58 ctx->cf_info.parent_loop.exit = loop_exit;
59 ctx->cf_info.parent_loop.has_divergent_continue = false;
60 ctx->cf_info.parent_loop.has_divergent_branch = false;
61 ctx->cf_info.parent_if.is_divergent = false;
62 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
63 }
64
65 ~loop_info_RAII()
66 {
67 ctx->cf_info.parent_loop.header_idx = header_idx_old;
68 ctx->cf_info.parent_loop.exit = exit_old;
69 ctx->cf_info.parent_loop.has_divergent_continue = divergent_cont_old;
70 ctx->cf_info.parent_loop.has_divergent_branch = divergent_branch_old;
71 ctx->cf_info.parent_if.is_divergent = divergent_if_old;
72 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth - 1;
73 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent)
74 ctx->cf_info.exec_potentially_empty_discard = false;
75 }
76 };
77
78 struct if_context {
79 Temp cond;
80
81 bool divergent_old;
82 bool exec_potentially_empty_discard_old;
83 bool exec_potentially_empty_break_old;
84 uint16_t exec_potentially_empty_break_depth_old;
85
86 unsigned BB_if_idx;
87 unsigned invert_idx;
88 bool uniform_has_then_branch;
89 bool then_branch_divergent;
90 Block BB_invert;
91 Block BB_endif;
92 };
93
94 static bool visit_cf_list(struct isel_context *ctx,
95 struct exec_list *list);
96
97 static void add_logical_edge(unsigned pred_idx, Block *succ)
98 {
99 succ->logical_preds.emplace_back(pred_idx);
100 }
101
102
103 static void add_linear_edge(unsigned pred_idx, Block *succ)
104 {
105 succ->linear_preds.emplace_back(pred_idx);
106 }
107
108 static void add_edge(unsigned pred_idx, Block *succ)
109 {
110 add_logical_edge(pred_idx, succ);
111 add_linear_edge(pred_idx, succ);
112 }
113
114 static void append_logical_start(Block *b)
115 {
116 Builder(NULL, b).pseudo(aco_opcode::p_logical_start);
117 }
118
119 static void append_logical_end(Block *b)
120 {
121 Builder(NULL, b).pseudo(aco_opcode::p_logical_end);
122 }
123
124 Temp get_ssa_temp(struct isel_context *ctx, nir_ssa_def *def)
125 {
126 assert(ctx->allocated[def->index].id());
127 return ctx->allocated[def->index];
128 }
129
130 Temp emit_mbcnt(isel_context *ctx, Definition dst,
131 Operand mask_lo = Operand((uint32_t) -1), Operand mask_hi = Operand((uint32_t) -1))
132 {
133 Builder bld(ctx->program, ctx->block);
134 Definition lo_def = ctx->program->wave_size == 32 ? dst : bld.def(v1);
135 Temp thread_id_lo = bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, lo_def, mask_lo, Operand(0u));
136
137 if (ctx->program->wave_size == 32) {
138 return thread_id_lo;
139 } else {
140 Temp thread_id_hi = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32, dst, mask_hi, thread_id_lo);
141 return thread_id_hi;
142 }
143 }
144
145 Temp emit_wqm(isel_context *ctx, Temp src, Temp dst=Temp(0, s1), bool program_needs_wqm = false)
146 {
147 Builder bld(ctx->program, ctx->block);
148
149 if (!dst.id())
150 dst = bld.tmp(src.regClass());
151
152 assert(src.size() == dst.size());
153
154 if (ctx->stage != fragment_fs) {
155 if (!dst.id())
156 return src;
157
158 bld.copy(Definition(dst), src);
159 return dst;
160 }
161
162 bld.pseudo(aco_opcode::p_wqm, Definition(dst), src);
163 ctx->program->needs_wqm |= program_needs_wqm;
164 return dst;
165 }
166
167 static Temp emit_bpermute(isel_context *ctx, Builder &bld, Temp index, Temp data)
168 {
169 if (index.regClass() == s1)
170 return bld.readlane(bld.def(s1), data, index);
171
172 Temp index_x4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), index);
173
174 /* Currently not implemented on GFX6-7 */
175 assert(ctx->options->chip_class >= GFX8);
176
177 if (ctx->options->chip_class <= GFX9 || ctx->program->wave_size == 32) {
178 return bld.ds(aco_opcode::ds_bpermute_b32, bld.def(v1), index_x4, data);
179 }
180
181 /* GFX10, wave64 mode:
182 * The bpermute instruction is limited to half-wave operation, which means that it can't
183 * properly support subgroup shuffle like older generations (or wave32 mode), so we
184 * emulate it here.
185 */
186 if (!ctx->has_gfx10_wave64_bpermute) {
187 ctx->has_gfx10_wave64_bpermute = true;
188 ctx->program->config->num_shared_vgprs = 8; /* Shared VGPRs are allocated in groups of 8 */
189 ctx->program->vgpr_limit -= 4; /* We allocate 8 shared VGPRs, so we'll have 4 fewer normal VGPRs */
190 }
191
192 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
193 Temp lane_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), lane_id);
194 Temp index_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), index);
195 Temp cmp = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm, vcc), lane_is_hi, index_is_hi);
196
197 return bld.reduction(aco_opcode::p_wave64_bpermute, bld.def(v1), bld.def(s2), bld.def(s1, scc),
198 bld.vcc(cmp), Operand(v2.as_linear()), index_x4, data, gfx10_wave64_bpermute);
199 }
200
201 Temp as_vgpr(isel_context *ctx, Temp val)
202 {
203 if (val.type() == RegType::sgpr) {
204 Builder bld(ctx->program, ctx->block);
205 return bld.copy(bld.def(RegType::vgpr, val.size()), val);
206 }
207 assert(val.type() == RegType::vgpr);
208 return val;
209 }
210
211 //assumes a != 0xffffffff
212 void emit_v_div_u32(isel_context *ctx, Temp dst, Temp a, uint32_t b)
213 {
214 assert(b != 0);
215 Builder bld(ctx->program, ctx->block);
216
217 if (util_is_power_of_two_or_zero(b)) {
218 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)util_logbase2(b)), a);
219 return;
220 }
221
222 util_fast_udiv_info info = util_compute_fast_udiv_info(b, 32, 32);
223
224 assert(info.multiplier <= 0xffffffff);
225
226 bool pre_shift = info.pre_shift != 0;
227 bool increment = info.increment != 0;
228 bool multiply = true;
229 bool post_shift = info.post_shift != 0;
230
231 if (!pre_shift && !increment && !multiply && !post_shift) {
232 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), a);
233 return;
234 }
235
236 Temp pre_shift_dst = a;
237 if (pre_shift) {
238 pre_shift_dst = (increment || multiply || post_shift) ? bld.tmp(v1) : dst;
239 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(pre_shift_dst), Operand((uint32_t)info.pre_shift), a);
240 }
241
242 Temp increment_dst = pre_shift_dst;
243 if (increment) {
244 increment_dst = (post_shift || multiply) ? bld.tmp(v1) : dst;
245 bld.vadd32(Definition(increment_dst), Operand((uint32_t) info.increment), pre_shift_dst);
246 }
247
248 Temp multiply_dst = increment_dst;
249 if (multiply) {
250 multiply_dst = post_shift ? bld.tmp(v1) : dst;
251 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(multiply_dst), increment_dst,
252 bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand((uint32_t)info.multiplier)));
253 }
254
255 if (post_shift) {
256 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)info.post_shift), multiply_dst);
257 }
258 }
259
260 void emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, Temp dst)
261 {
262 Builder bld(ctx->program, ctx->block);
263 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(idx));
264 }
265
266
267 Temp emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, RegClass dst_rc)
268 {
269 /* no need to extract the whole vector */
270 if (src.regClass() == dst_rc) {
271 assert(idx == 0);
272 return src;
273 }
274
275 assert(src.bytes() > (idx * dst_rc.bytes()));
276 Builder bld(ctx->program, ctx->block);
277 auto it = ctx->allocated_vec.find(src.id());
278 if (it != ctx->allocated_vec.end() && dst_rc.bytes() == it->second[idx].regClass().bytes()) {
279 if (it->second[idx].regClass() == dst_rc) {
280 return it->second[idx];
281 } else {
282 assert(!dst_rc.is_subdword());
283 assert(dst_rc.type() == RegType::vgpr && it->second[idx].type() == RegType::sgpr);
284 return bld.copy(bld.def(dst_rc), it->second[idx]);
285 }
286 }
287
288 if (dst_rc.is_subdword())
289 src = as_vgpr(ctx, src);
290
291 if (src.bytes() == dst_rc.bytes()) {
292 assert(idx == 0);
293 return bld.copy(bld.def(dst_rc), src);
294 } else {
295 Temp dst = bld.tmp(dst_rc);
296 emit_extract_vector(ctx, src, idx, dst);
297 return dst;
298 }
299 }
300
301 void emit_split_vector(isel_context* ctx, Temp vec_src, unsigned num_components)
302 {
303 if (num_components == 1)
304 return;
305 if (ctx->allocated_vec.find(vec_src.id()) != ctx->allocated_vec.end())
306 return;
307 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_components)};
308 split->operands[0] = Operand(vec_src);
309 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
310 RegClass rc;
311 if (num_components > vec_src.size()) {
312 if (vec_src.type() == RegType::sgpr)
313 return;
314
315 /* sub-dword split */
316 assert(vec_src.type() == RegType::vgpr);
317 rc = RegClass(RegType::vgpr, vec_src.bytes() / num_components).as_subdword();
318 } else {
319 rc = RegClass(vec_src.type(), vec_src.size() / num_components);
320 }
321 for (unsigned i = 0; i < num_components; i++) {
322 elems[i] = {ctx->program->allocateId(), rc};
323 split->definitions[i] = Definition(elems[i]);
324 }
325 ctx->block->instructions.emplace_back(std::move(split));
326 ctx->allocated_vec.emplace(vec_src.id(), elems);
327 }
328
329 /* This vector expansion uses a mask to determine which elements in the new vector
330 * come from the original vector. The other elements are undefined. */
331 void expand_vector(isel_context* ctx, Temp vec_src, Temp dst, unsigned num_components, unsigned mask)
332 {
333 emit_split_vector(ctx, vec_src, util_bitcount(mask));
334
335 if (vec_src == dst)
336 return;
337
338 Builder bld(ctx->program, ctx->block);
339 if (num_components == 1) {
340 if (dst.type() == RegType::sgpr)
341 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec_src);
342 else
343 bld.copy(Definition(dst), vec_src);
344 return;
345 }
346
347 unsigned component_size = dst.size() / num_components;
348 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
349
350 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
351 vec->definitions[0] = Definition(dst);
352 unsigned k = 0;
353 for (unsigned i = 0; i < num_components; i++) {
354 if (mask & (1 << i)) {
355 Temp src = emit_extract_vector(ctx, vec_src, k++, RegClass(vec_src.type(), component_size));
356 if (dst.type() == RegType::sgpr)
357 src = bld.as_uniform(src);
358 vec->operands[i] = Operand(src);
359 } else {
360 vec->operands[i] = Operand(0u);
361 }
362 elems[i] = vec->operands[i].getTemp();
363 }
364 ctx->block->instructions.emplace_back(std::move(vec));
365 ctx->allocated_vec.emplace(dst.id(), elems);
366 }
367
368 /* adjust misaligned small bit size loads */
369 void byte_align_scalar(isel_context *ctx, Temp vec, Operand offset, Temp dst)
370 {
371 Builder bld(ctx->program, ctx->block);
372 Operand shift;
373 Temp select = Temp();
374 if (offset.isConstant()) {
375 assert(offset.constantValue() && offset.constantValue() < 4);
376 shift = Operand(offset.constantValue() * 8);
377 } else {
378 /* bit_offset = 8 * (offset & 0x3) */
379 Temp tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), offset, Operand(3u));
380 select = bld.tmp(s1);
381 shift = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.scc(Definition(select)), tmp, Operand(3u));
382 }
383
384 if (vec.size() == 1) {
385 bld.sop2(aco_opcode::s_lshr_b32, Definition(dst), bld.def(s1, scc), vec, shift);
386 } else if (vec.size() == 2) {
387 Temp tmp = dst.size() == 2 ? dst : bld.tmp(s2);
388 bld.sop2(aco_opcode::s_lshr_b64, Definition(tmp), bld.def(s1, scc), vec, shift);
389 if (tmp == dst)
390 emit_split_vector(ctx, dst, 2);
391 else
392 emit_extract_vector(ctx, tmp, 0, dst);
393 } else if (vec.size() == 4) {
394 Temp lo = bld.tmp(s2), hi = bld.tmp(s2);
395 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), vec);
396 hi = bld.pseudo(aco_opcode::p_extract_vector, bld.def(s1), hi, Operand(0u));
397 if (select != Temp())
398 hi = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), hi, Operand(0u), select);
399 lo = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), lo, shift);
400 Temp mid = bld.tmp(s1);
401 lo = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), Definition(mid), lo);
402 hi = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), hi, shift);
403 mid = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), hi, mid);
404 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, mid);
405 emit_split_vector(ctx, dst, 2);
406 }
407 }
408
409 /* this function trims subdword vectors:
410 * if dst is vgpr - split the src and create a shrunk version according to the mask.
411 * if dst is sgpr - split the src, but move the original to sgpr. */
412 void trim_subdword_vector(isel_context *ctx, Temp vec_src, Temp dst, unsigned num_components, unsigned mask)
413 {
414 assert(vec_src.type() == RegType::vgpr);
415 emit_split_vector(ctx, vec_src, num_components);
416
417 Builder bld(ctx->program, ctx->block);
418 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
419 unsigned component_size = vec_src.bytes() / num_components;
420 RegClass rc = RegClass(RegType::vgpr, component_size).as_subdword();
421
422 unsigned k = 0;
423 for (unsigned i = 0; i < num_components; i++) {
424 if (mask & (1 << i))
425 elems[k++] = emit_extract_vector(ctx, vec_src, i, rc);
426 }
427
428 if (dst.type() == RegType::vgpr) {
429 assert(dst.bytes() == k * component_size);
430 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, k, 1)};
431 for (unsigned i = 0; i < k; i++)
432 vec->operands[i] = Operand(elems[i]);
433 vec->definitions[0] = Definition(dst);
434 bld.insert(std::move(vec));
435 } else {
436 // TODO: alignbyte if mask doesn't start with 1?
437 assert(mask & 1);
438 assert(dst.size() == vec_src.size());
439 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec_src);
440 }
441 ctx->allocated_vec.emplace(dst.id(), elems);
442 }
443
444 Temp bool_to_vector_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s2))
445 {
446 Builder bld(ctx->program, ctx->block);
447 if (!dst.id())
448 dst = bld.tmp(bld.lm);
449
450 assert(val.regClass() == s1);
451 assert(dst.regClass() == bld.lm);
452
453 return bld.sop2(Builder::s_cselect, Definition(dst), Operand((uint32_t) -1), Operand(0u), bld.scc(val));
454 }
455
456 Temp bool_to_scalar_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s1))
457 {
458 Builder bld(ctx->program, ctx->block);
459 if (!dst.id())
460 dst = bld.tmp(s1);
461
462 assert(val.regClass() == bld.lm);
463 assert(dst.regClass() == s1);
464
465 /* if we're currently in WQM mode, ensure that the source is also computed in WQM */
466 Temp tmp = bld.tmp(s1);
467 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.scc(Definition(tmp)), val, Operand(exec, bld.lm));
468 return emit_wqm(ctx, tmp, dst);
469 }
470
471 Temp get_alu_src(struct isel_context *ctx, nir_alu_src src, unsigned size=1)
472 {
473 if (src.src.ssa->num_components == 1 && src.swizzle[0] == 0 && size == 1)
474 return get_ssa_temp(ctx, src.src.ssa);
475
476 if (src.src.ssa->num_components == size) {
477 bool identity_swizzle = true;
478 for (unsigned i = 0; identity_swizzle && i < size; i++) {
479 if (src.swizzle[i] != i)
480 identity_swizzle = false;
481 }
482 if (identity_swizzle)
483 return get_ssa_temp(ctx, src.src.ssa);
484 }
485
486 Temp vec = get_ssa_temp(ctx, src.src.ssa);
487 unsigned elem_size = vec.bytes() / src.src.ssa->num_components;
488 assert(elem_size > 0);
489 assert(vec.bytes() % elem_size == 0);
490
491 if (elem_size < 4 && vec.type() == RegType::sgpr) {
492 assert(src.src.ssa->bit_size == 8 || src.src.ssa->bit_size == 16);
493 assert(size == 1);
494 unsigned swizzle = src.swizzle[0];
495 if (vec.size() > 1) {
496 assert(src.src.ssa->bit_size == 16);
497 vec = emit_extract_vector(ctx, vec, swizzle / 2, s1);
498 swizzle = swizzle & 1;
499 }
500 if (swizzle == 0)
501 return vec;
502
503 Temp dst{ctx->program->allocateId(), s1};
504 aco_ptr<SOP2_instruction> bfe{create_instruction<SOP2_instruction>(aco_opcode::s_bfe_u32, Format::SOP2, 2, 1)};
505 bfe->operands[0] = Operand(vec);
506 bfe->operands[1] = Operand(uint32_t((src.src.ssa->bit_size << 16) | (src.src.ssa->bit_size * swizzle)));
507 bfe->definitions[0] = Definition(dst);
508 ctx->block->instructions.emplace_back(std::move(bfe));
509 return dst;
510 }
511
512 RegClass elem_rc = elem_size < 4 ? RegClass(vec.type(), elem_size).as_subdword() : RegClass(vec.type(), elem_size / 4);
513 if (size == 1) {
514 return emit_extract_vector(ctx, vec, src.swizzle[0], elem_rc);
515 } else {
516 assert(size <= 4);
517 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
518 aco_ptr<Pseudo_instruction> vec_instr{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
519 for (unsigned i = 0; i < size; ++i) {
520 elems[i] = emit_extract_vector(ctx, vec, src.swizzle[i], elem_rc);
521 vec_instr->operands[i] = Operand{elems[i]};
522 }
523 Temp dst{ctx->program->allocateId(), RegClass(vec.type(), elem_size * size / 4)};
524 vec_instr->definitions[0] = Definition(dst);
525 ctx->block->instructions.emplace_back(std::move(vec_instr));
526 ctx->allocated_vec.emplace(dst.id(), elems);
527 return dst;
528 }
529 }
530
531 Temp convert_pointer_to_64_bit(isel_context *ctx, Temp ptr)
532 {
533 if (ptr.size() == 2)
534 return ptr;
535 Builder bld(ctx->program, ctx->block);
536 if (ptr.type() == RegType::vgpr)
537 ptr = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), ptr);
538 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s2),
539 ptr, Operand((unsigned)ctx->options->address32_hi));
540 }
541
542 void emit_sop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst, bool writes_scc)
543 {
544 aco_ptr<SOP2_instruction> sop2{create_instruction<SOP2_instruction>(op, Format::SOP2, 2, writes_scc ? 2 : 1)};
545 sop2->operands[0] = Operand(get_alu_src(ctx, instr->src[0]));
546 sop2->operands[1] = Operand(get_alu_src(ctx, instr->src[1]));
547 sop2->definitions[0] = Definition(dst);
548 if (writes_scc)
549 sop2->definitions[1] = Definition(ctx->program->allocateId(), scc, s1);
550 ctx->block->instructions.emplace_back(std::move(sop2));
551 }
552
553 void emit_vop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
554 bool commutative, bool swap_srcs=false, bool flush_denorms = false)
555 {
556 Builder bld(ctx->program, ctx->block);
557 Temp src0 = get_alu_src(ctx, instr->src[swap_srcs ? 1 : 0]);
558 Temp src1 = get_alu_src(ctx, instr->src[swap_srcs ? 0 : 1]);
559 if (src1.type() == RegType::sgpr) {
560 if (commutative && src0.type() == RegType::vgpr) {
561 Temp t = src0;
562 src0 = src1;
563 src1 = t;
564 } else {
565 src1 = as_vgpr(ctx, src1);
566 }
567 }
568
569 if (flush_denorms && ctx->program->chip_class < GFX9) {
570 assert(dst.size() == 1);
571 Temp tmp = bld.vop2(op, bld.def(v1), src0, src1);
572 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
573 } else {
574 bld.vop2(op, Definition(dst), src0, src1);
575 }
576 }
577
578 void emit_vop3a_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
579 bool flush_denorms = false)
580 {
581 Temp src0 = get_alu_src(ctx, instr->src[0]);
582 Temp src1 = get_alu_src(ctx, instr->src[1]);
583 Temp src2 = get_alu_src(ctx, instr->src[2]);
584
585 /* ensure that the instruction has at most 1 sgpr operand
586 * The optimizer will inline constants for us */
587 if (src0.type() == RegType::sgpr && src1.type() == RegType::sgpr)
588 src0 = as_vgpr(ctx, src0);
589 if (src1.type() == RegType::sgpr && src2.type() == RegType::sgpr)
590 src1 = as_vgpr(ctx, src1);
591 if (src2.type() == RegType::sgpr && src0.type() == RegType::sgpr)
592 src2 = as_vgpr(ctx, src2);
593
594 Builder bld(ctx->program, ctx->block);
595 if (flush_denorms && ctx->program->chip_class < GFX9) {
596 assert(dst.size() == 1);
597 Temp tmp = bld.vop3(op, Definition(dst), src0, src1, src2);
598 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
599 } else {
600 bld.vop3(op, Definition(dst), src0, src1, src2);
601 }
602 }
603
604 void emit_vop1_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
605 {
606 Builder bld(ctx->program, ctx->block);
607 bld.vop1(op, Definition(dst), get_alu_src(ctx, instr->src[0]));
608 }
609
610 void emit_vopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
611 {
612 Temp src0 = get_alu_src(ctx, instr->src[0]);
613 Temp src1 = get_alu_src(ctx, instr->src[1]);
614 assert(src0.size() == src1.size());
615
616 aco_ptr<Instruction> vopc;
617 if (src1.type() == RegType::sgpr) {
618 if (src0.type() == RegType::vgpr) {
619 /* to swap the operands, we might also have to change the opcode */
620 switch (op) {
621 case aco_opcode::v_cmp_lt_f16:
622 op = aco_opcode::v_cmp_gt_f16;
623 break;
624 case aco_opcode::v_cmp_ge_f16:
625 op = aco_opcode::v_cmp_le_f16;
626 break;
627 case aco_opcode::v_cmp_lt_i16:
628 op = aco_opcode::v_cmp_gt_i16;
629 break;
630 case aco_opcode::v_cmp_ge_i16:
631 op = aco_opcode::v_cmp_le_i16;
632 break;
633 case aco_opcode::v_cmp_lt_u16:
634 op = aco_opcode::v_cmp_gt_u16;
635 break;
636 case aco_opcode::v_cmp_ge_u16:
637 op = aco_opcode::v_cmp_le_u16;
638 break;
639 case aco_opcode::v_cmp_lt_f32:
640 op = aco_opcode::v_cmp_gt_f32;
641 break;
642 case aco_opcode::v_cmp_ge_f32:
643 op = aco_opcode::v_cmp_le_f32;
644 break;
645 case aco_opcode::v_cmp_lt_i32:
646 op = aco_opcode::v_cmp_gt_i32;
647 break;
648 case aco_opcode::v_cmp_ge_i32:
649 op = aco_opcode::v_cmp_le_i32;
650 break;
651 case aco_opcode::v_cmp_lt_u32:
652 op = aco_opcode::v_cmp_gt_u32;
653 break;
654 case aco_opcode::v_cmp_ge_u32:
655 op = aco_opcode::v_cmp_le_u32;
656 break;
657 case aco_opcode::v_cmp_lt_f64:
658 op = aco_opcode::v_cmp_gt_f64;
659 break;
660 case aco_opcode::v_cmp_ge_f64:
661 op = aco_opcode::v_cmp_le_f64;
662 break;
663 case aco_opcode::v_cmp_lt_i64:
664 op = aco_opcode::v_cmp_gt_i64;
665 break;
666 case aco_opcode::v_cmp_ge_i64:
667 op = aco_opcode::v_cmp_le_i64;
668 break;
669 case aco_opcode::v_cmp_lt_u64:
670 op = aco_opcode::v_cmp_gt_u64;
671 break;
672 case aco_opcode::v_cmp_ge_u64:
673 op = aco_opcode::v_cmp_le_u64;
674 break;
675 default: /* eq and ne are commutative */
676 break;
677 }
678 Temp t = src0;
679 src0 = src1;
680 src1 = t;
681 } else {
682 src1 = as_vgpr(ctx, src1);
683 }
684 }
685
686 Builder bld(ctx->program, ctx->block);
687 bld.vopc(op, bld.hint_vcc(Definition(dst)), src0, src1);
688 }
689
690 void emit_sopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
691 {
692 Temp src0 = get_alu_src(ctx, instr->src[0]);
693 Temp src1 = get_alu_src(ctx, instr->src[1]);
694 Builder bld(ctx->program, ctx->block);
695
696 assert(dst.regClass() == bld.lm);
697 assert(src0.type() == RegType::sgpr);
698 assert(src1.type() == RegType::sgpr);
699 assert(src0.regClass() == src1.regClass());
700
701 /* Emit the SALU comparison instruction */
702 Temp cmp = bld.sopc(op, bld.scc(bld.def(s1)), src0, src1);
703 /* Turn the result into a per-lane bool */
704 bool_to_vector_condition(ctx, cmp, dst);
705 }
706
707 void emit_comparison(isel_context *ctx, nir_alu_instr *instr, Temp dst,
708 aco_opcode v16_op, aco_opcode v32_op, aco_opcode v64_op, aco_opcode s32_op = aco_opcode::num_opcodes, aco_opcode s64_op = aco_opcode::num_opcodes)
709 {
710 aco_opcode s_op = instr->src[0].src.ssa->bit_size == 64 ? s64_op : instr->src[0].src.ssa->bit_size == 32 ? s32_op : aco_opcode::num_opcodes;
711 aco_opcode v_op = instr->src[0].src.ssa->bit_size == 64 ? v64_op : instr->src[0].src.ssa->bit_size == 32 ? v32_op : v16_op;
712 bool divergent_vals = ctx->divergent_vals[instr->dest.dest.ssa.index];
713 bool use_valu = s_op == aco_opcode::num_opcodes ||
714 divergent_vals ||
715 ctx->allocated[instr->src[0].src.ssa->index].type() == RegType::vgpr ||
716 ctx->allocated[instr->src[1].src.ssa->index].type() == RegType::vgpr;
717 aco_opcode op = use_valu ? v_op : s_op;
718 assert(op != aco_opcode::num_opcodes);
719 assert(dst.regClass() == ctx->program->lane_mask);
720
721 if (use_valu)
722 emit_vopc_instruction(ctx, instr, op, dst);
723 else
724 emit_sopc_instruction(ctx, instr, op, dst);
725 }
726
727 void emit_boolean_logic(isel_context *ctx, nir_alu_instr *instr, Builder::WaveSpecificOpcode op, Temp dst)
728 {
729 Builder bld(ctx->program, ctx->block);
730 Temp src0 = get_alu_src(ctx, instr->src[0]);
731 Temp src1 = get_alu_src(ctx, instr->src[1]);
732
733 assert(dst.regClass() == bld.lm);
734 assert(src0.regClass() == bld.lm);
735 assert(src1.regClass() == bld.lm);
736
737 bld.sop2(op, Definition(dst), bld.def(s1, scc), src0, src1);
738 }
739
740 void emit_bcsel(isel_context *ctx, nir_alu_instr *instr, Temp dst)
741 {
742 Builder bld(ctx->program, ctx->block);
743 Temp cond = get_alu_src(ctx, instr->src[0]);
744 Temp then = get_alu_src(ctx, instr->src[1]);
745 Temp els = get_alu_src(ctx, instr->src[2]);
746
747 assert(cond.regClass() == bld.lm);
748
749 if (dst.type() == RegType::vgpr) {
750 aco_ptr<Instruction> bcsel;
751 if (dst.regClass() == v2b) {
752 then = as_vgpr(ctx, then);
753 els = as_vgpr(ctx, els);
754
755 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), els, then, cond);
756 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
757 } else if (dst.regClass() == v1) {
758 then = as_vgpr(ctx, then);
759 els = as_vgpr(ctx, els);
760
761 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), els, then, cond);
762 } else if (dst.regClass() == v2) {
763 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
764 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), then);
765 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
766 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), els);
767
768 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, cond);
769 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, cond);
770
771 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
772 } else {
773 fprintf(stderr, "Unimplemented NIR instr bit size: ");
774 nir_print_instr(&instr->instr, stderr);
775 fprintf(stderr, "\n");
776 }
777 return;
778 }
779
780 if (instr->dest.dest.ssa.bit_size == 1) {
781 assert(dst.regClass() == bld.lm);
782 assert(then.regClass() == bld.lm);
783 assert(els.regClass() == bld.lm);
784 }
785
786 if (!ctx->divergent_vals[instr->src[0].src.ssa->index]) { /* uniform condition and values in sgpr */
787 if (dst.regClass() == s1 || dst.regClass() == s2) {
788 assert((then.regClass() == s1 || then.regClass() == s2) && els.regClass() == then.regClass());
789 assert(dst.size() == then.size());
790 aco_opcode op = dst.regClass() == s1 ? aco_opcode::s_cselect_b32 : aco_opcode::s_cselect_b64;
791 bld.sop2(op, Definition(dst), then, els, bld.scc(bool_to_scalar_condition(ctx, cond)));
792 } else {
793 fprintf(stderr, "Unimplemented uniform bcsel bit size: ");
794 nir_print_instr(&instr->instr, stderr);
795 fprintf(stderr, "\n");
796 }
797 return;
798 }
799
800 /* divergent boolean bcsel
801 * this implements bcsel on bools: dst = s0 ? s1 : s2
802 * are going to be: dst = (s0 & s1) | (~s0 & s2) */
803 assert(instr->dest.dest.ssa.bit_size == 1);
804
805 if (cond.id() != then.id())
806 then = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), cond, then);
807
808 if (cond.id() == els.id())
809 bld.sop1(Builder::s_mov, Definition(dst), then);
810 else
811 bld.sop2(Builder::s_or, Definition(dst), bld.def(s1, scc), then,
812 bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), els, cond));
813 }
814
815 void emit_scaled_op(isel_context *ctx, Builder& bld, Definition dst, Temp val,
816 aco_opcode op, uint32_t undo)
817 {
818 /* multiply by 16777216 to handle denormals */
819 Temp is_denormal = bld.vopc(aco_opcode::v_cmp_class_f32, bld.hint_vcc(bld.def(bld.lm)),
820 as_vgpr(ctx, val), bld.copy(bld.def(v1), Operand((1u << 7) | (1u << 4))));
821 Temp scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x4b800000u), val);
822 scaled = bld.vop1(op, bld.def(v1), scaled);
823 scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(undo), scaled);
824
825 Temp not_scaled = bld.vop1(op, bld.def(v1), val);
826
827 bld.vop2(aco_opcode::v_cndmask_b32, dst, not_scaled, scaled, is_denormal);
828 }
829
830 void emit_rcp(isel_context *ctx, Builder& bld, Definition dst, Temp val)
831 {
832 if (ctx->block->fp_mode.denorm32 == 0) {
833 bld.vop1(aco_opcode::v_rcp_f32, dst, val);
834 return;
835 }
836
837 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rcp_f32, 0x4b800000u);
838 }
839
840 void emit_rsq(isel_context *ctx, Builder& bld, Definition dst, Temp val)
841 {
842 if (ctx->block->fp_mode.denorm32 == 0) {
843 bld.vop1(aco_opcode::v_rsq_f32, dst, val);
844 return;
845 }
846
847 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rsq_f32, 0x45800000u);
848 }
849
850 void emit_sqrt(isel_context *ctx, Builder& bld, Definition dst, Temp val)
851 {
852 if (ctx->block->fp_mode.denorm32 == 0) {
853 bld.vop1(aco_opcode::v_sqrt_f32, dst, val);
854 return;
855 }
856
857 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_sqrt_f32, 0x39800000u);
858 }
859
860 void emit_log2(isel_context *ctx, Builder& bld, Definition dst, Temp val)
861 {
862 if (ctx->block->fp_mode.denorm32 == 0) {
863 bld.vop1(aco_opcode::v_log_f32, dst, val);
864 return;
865 }
866
867 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_log_f32, 0xc1c00000u);
868 }
869
870 Temp emit_trunc_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
871 {
872 if (ctx->options->chip_class >= GFX7)
873 return bld.vop1(aco_opcode::v_trunc_f64, Definition(dst), val);
874
875 /* GFX6 doesn't support V_TRUNC_F64, lower it. */
876 /* TODO: create more efficient code! */
877 if (val.type() == RegType::sgpr)
878 val = as_vgpr(ctx, val);
879
880 /* Split the input value. */
881 Temp val_lo = bld.tmp(v1), val_hi = bld.tmp(v1);
882 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
883
884 /* Extract the exponent and compute the unbiased value. */
885 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f64, bld.def(v1), val);
886
887 /* Extract the fractional part. */
888 Temp fract_mask = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x000fffffu));
889 fract_mask = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), fract_mask, exponent);
890
891 Temp fract_mask_lo = bld.tmp(v1), fract_mask_hi = bld.tmp(v1);
892 bld.pseudo(aco_opcode::p_split_vector, Definition(fract_mask_lo), Definition(fract_mask_hi), fract_mask);
893
894 Temp fract_lo = bld.tmp(v1), fract_hi = bld.tmp(v1);
895 Temp tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_lo);
896 fract_lo = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_lo, tmp);
897 tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_hi);
898 fract_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_hi, tmp);
899
900 /* Get the sign bit. */
901 Temp sign = bld.vop2(aco_opcode::v_ashr_i32, bld.def(v1), Operand(31u), val_hi);
902
903 /* Decide the operation to apply depending on the unbiased exponent. */
904 Temp exp_lt0 = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)), exponent, Operand(0u));
905 Temp dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_lo, bld.copy(bld.def(v1), Operand(0u)), exp_lt0);
906 Temp dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_hi, sign, exp_lt0);
907 Temp exp_gt51 = bld.vopc_e64(aco_opcode::v_cmp_gt_i32, bld.def(s2), exponent, Operand(51u));
908 dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_lo, val_lo, exp_gt51);
909 dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_hi, val_hi, exp_gt51);
910
911 return bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst_lo, dst_hi);
912 }
913
914 Temp emit_floor_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
915 {
916 if (ctx->options->chip_class >= GFX7)
917 return bld.vop1(aco_opcode::v_floor_f64, Definition(dst), val);
918
919 /* GFX6 doesn't support V_FLOOR_F64, lower it. */
920 Temp src0 = as_vgpr(ctx, val);
921
922 Temp mask = bld.copy(bld.def(s1), Operand(3u)); /* isnan */
923 Temp min_val = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(-1u), Operand(0x3fefffffu));
924
925 Temp isnan = bld.vopc_e64(aco_opcode::v_cmp_class_f64, bld.hint_vcc(bld.def(bld.lm)), src0, mask);
926 Temp fract = bld.vop1(aco_opcode::v_fract_f64, bld.def(v2), src0);
927 Temp min = bld.vop3(aco_opcode::v_min_f64, bld.def(v2), fract, min_val);
928
929 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
930 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), src0);
931 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
932 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), min);
933
934 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, isnan);
935 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, isnan);
936
937 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), dst0, dst1);
938
939 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src0, v);
940 static_cast<VOP3A_instruction*>(add)->neg[1] = true;
941
942 return add->definitions[0].getTemp();
943 }
944
945 Temp convert_int(Builder& bld, Temp src, unsigned src_bits, unsigned dst_bits, bool is_signed, Temp dst=Temp()) {
946 if (!dst.id()) {
947 if (dst_bits % 32 == 0 || src.type() == RegType::sgpr)
948 dst = bld.tmp(src.type(), DIV_ROUND_UP(dst_bits, 32u));
949 else
950 dst = bld.tmp(RegClass(RegType::vgpr, dst_bits / 8u).as_subdword());
951 }
952
953 if (dst.bytes() == src.bytes() && dst_bits < src_bits)
954 return bld.copy(Definition(dst), src);
955 else if (dst.bytes() < src.bytes())
956 return bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(0u));
957
958 Temp tmp = dst;
959 if (dst_bits == 64)
960 tmp = src_bits == 32 ? src : bld.tmp(src.type(), 1);
961
962 if (tmp == src) {
963 } else if (src.regClass() == s1) {
964 if (is_signed)
965 bld.sop1(src_bits == 8 ? aco_opcode::s_sext_i32_i8 : aco_opcode::s_sext_i32_i16, Definition(tmp), src);
966 else
967 bld.sop2(aco_opcode::s_and_b32, Definition(tmp), bld.def(s1, scc), Operand(src_bits == 8 ? 0xFFu : 0xFFFFu), src);
968 } else {
969 assert(src_bits != 8 || src.regClass() == v1b);
970 assert(src_bits != 16 || src.regClass() == v2b);
971 aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
972 sdwa->operands[0] = Operand(src);
973 sdwa->definitions[0] = Definition(tmp);
974 if (is_signed)
975 sdwa->sel[0] = src_bits == 8 ? sdwa_sbyte : sdwa_sword;
976 else
977 sdwa->sel[0] = src_bits == 8 ? sdwa_ubyte : sdwa_uword;
978 sdwa->dst_sel = tmp.bytes() == 2 ? sdwa_uword : sdwa_udword;
979 bld.insert(std::move(sdwa));
980 }
981
982 if (dst_bits == 64) {
983 if (is_signed && dst.regClass() == s2) {
984 Temp high = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), tmp, Operand(31u));
985 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, high);
986 } else if (is_signed && dst.regClass() == v2) {
987 Temp high = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), tmp);
988 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, high);
989 } else {
990 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, Operand(0u));
991 }
992 }
993
994 return dst;
995 }
996
997 void visit_alu_instr(isel_context *ctx, nir_alu_instr *instr)
998 {
999 if (!instr->dest.dest.is_ssa) {
1000 fprintf(stderr, "nir alu dst not in ssa: ");
1001 nir_print_instr(&instr->instr, stderr);
1002 fprintf(stderr, "\n");
1003 abort();
1004 }
1005 Builder bld(ctx->program, ctx->block);
1006 Temp dst = get_ssa_temp(ctx, &instr->dest.dest.ssa);
1007 switch(instr->op) {
1008 case nir_op_vec2:
1009 case nir_op_vec3:
1010 case nir_op_vec4: {
1011 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
1012 unsigned num = instr->dest.dest.ssa.num_components;
1013 for (unsigned i = 0; i < num; ++i)
1014 elems[i] = get_alu_src(ctx, instr->src[i]);
1015
1016 if (instr->dest.dest.ssa.bit_size >= 32 || dst.type() == RegType::vgpr) {
1017 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.dest.ssa.num_components, 1)};
1018 for (unsigned i = 0; i < num; ++i)
1019 vec->operands[i] = Operand{elems[i]};
1020 vec->definitions[0] = Definition(dst);
1021 ctx->block->instructions.emplace_back(std::move(vec));
1022 ctx->allocated_vec.emplace(dst.id(), elems);
1023 } else {
1024 // TODO: that is a bit suboptimal..
1025 Temp mask = bld.copy(bld.def(s1), Operand((1u << instr->dest.dest.ssa.bit_size) - 1));
1026 for (unsigned i = 0; i < num - 1; ++i)
1027 if (((i+1) * instr->dest.dest.ssa.bit_size) % 32)
1028 elems[i] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), elems[i], mask);
1029 for (unsigned i = 0; i < num; ++i) {
1030 unsigned bit = i * instr->dest.dest.ssa.bit_size;
1031 if (bit % 32 == 0) {
1032 elems[bit / 32] = elems[i];
1033 } else {
1034 elems[i] = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc),
1035 elems[i], Operand((i * instr->dest.dest.ssa.bit_size) % 32));
1036 elems[bit / 32] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), elems[bit / 32], elems[i]);
1037 }
1038 }
1039 if (dst.size() == 1)
1040 bld.copy(Definition(dst), elems[0]);
1041 else
1042 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), elems[0], elems[1]);
1043 }
1044 break;
1045 }
1046 case nir_op_mov: {
1047 Temp src = get_alu_src(ctx, instr->src[0]);
1048 aco_ptr<Instruction> mov;
1049 if (dst.type() == RegType::sgpr) {
1050 if (src.type() == RegType::vgpr)
1051 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
1052 else if (src.regClass() == s1)
1053 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
1054 else if (src.regClass() == s2)
1055 bld.sop1(aco_opcode::s_mov_b64, Definition(dst), src);
1056 else
1057 unreachable("wrong src register class for nir_op_imov");
1058 } else if (dst.regClass() == v1) {
1059 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), src);
1060 } else if (dst.regClass() == v2) {
1061 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
1062 } else {
1063 nir_print_instr(&instr->instr, stderr);
1064 unreachable("Should have been lowered to scalar.");
1065 }
1066 break;
1067 }
1068 case nir_op_inot: {
1069 Temp src = get_alu_src(ctx, instr->src[0]);
1070 if (instr->dest.dest.ssa.bit_size == 1) {
1071 assert(src.regClass() == bld.lm);
1072 assert(dst.regClass() == bld.lm);
1073 /* Don't use s_andn2 here, this allows the optimizer to make a better decision */
1074 Temp tmp = bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), src);
1075 bld.sop2(Builder::s_and, Definition(dst), bld.def(s1, scc), tmp, Operand(exec, bld.lm));
1076 } else if (dst.regClass() == v1) {
1077 emit_vop1_instruction(ctx, instr, aco_opcode::v_not_b32, dst);
1078 } else if (dst.type() == RegType::sgpr) {
1079 aco_opcode opcode = dst.size() == 1 ? aco_opcode::s_not_b32 : aco_opcode::s_not_b64;
1080 bld.sop1(opcode, Definition(dst), bld.def(s1, scc), src);
1081 } else {
1082 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1083 nir_print_instr(&instr->instr, stderr);
1084 fprintf(stderr, "\n");
1085 }
1086 break;
1087 }
1088 case nir_op_ineg: {
1089 Temp src = get_alu_src(ctx, instr->src[0]);
1090 if (dst.regClass() == v1) {
1091 bld.vsub32(Definition(dst), Operand(0u), Operand(src));
1092 } else if (dst.regClass() == s1) {
1093 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand((uint32_t) -1), src);
1094 } else if (dst.size() == 2) {
1095 Temp src0 = bld.tmp(dst.type(), 1);
1096 Temp src1 = bld.tmp(dst.type(), 1);
1097 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
1098
1099 if (dst.regClass() == s2) {
1100 Temp carry = bld.tmp(s1);
1101 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), Operand(0u), src0);
1102 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), src1, carry);
1103 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1104 } else {
1105 Temp lower = bld.tmp(v1);
1106 Temp borrow = bld.vsub32(Definition(lower), Operand(0u), src0, true).def(1).getTemp();
1107 Temp upper = bld.vsub32(bld.def(v1), Operand(0u), src1, false, borrow);
1108 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1109 }
1110 } else {
1111 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1112 nir_print_instr(&instr->instr, stderr);
1113 fprintf(stderr, "\n");
1114 }
1115 break;
1116 }
1117 case nir_op_iabs: {
1118 if (dst.regClass() == s1) {
1119 bld.sop1(aco_opcode::s_abs_i32, Definition(dst), bld.def(s1, scc), get_alu_src(ctx, instr->src[0]));
1120 } else if (dst.regClass() == v1) {
1121 Temp src = get_alu_src(ctx, instr->src[0]);
1122 bld.vop2(aco_opcode::v_max_i32, Definition(dst), src, bld.vsub32(bld.def(v1), Operand(0u), src));
1123 } else {
1124 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1125 nir_print_instr(&instr->instr, stderr);
1126 fprintf(stderr, "\n");
1127 }
1128 break;
1129 }
1130 case nir_op_isign: {
1131 Temp src = get_alu_src(ctx, instr->src[0]);
1132 if (dst.regClass() == s1) {
1133 Temp tmp = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
1134 Temp gtz = bld.sopc(aco_opcode::s_cmp_gt_i32, bld.def(s1, scc), src, Operand(0u));
1135 bld.sop2(aco_opcode::s_add_i32, Definition(dst), bld.def(s1, scc), gtz, tmp);
1136 } else if (dst.regClass() == s2) {
1137 Temp neg = bld.sop2(aco_opcode::s_ashr_i64, bld.def(s2), bld.def(s1, scc), src, Operand(63u));
1138 Temp neqz;
1139 if (ctx->program->chip_class >= GFX8)
1140 neqz = bld.sopc(aco_opcode::s_cmp_lg_u64, bld.def(s1, scc), src, Operand(0u));
1141 else
1142 neqz = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), src, Operand(0u)).def(1).getTemp();
1143 /* SCC gets zero-extended to 64 bit */
1144 bld.sop2(aco_opcode::s_or_b64, Definition(dst), bld.def(s1, scc), neg, bld.scc(neqz));
1145 } else if (dst.regClass() == v1) {
1146 Temp tmp = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
1147 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1148 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(1u), tmp, gtz);
1149 } else if (dst.regClass() == v2) {
1150 Temp upper = emit_extract_vector(ctx, src, 1, v1);
1151 Temp neg = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), upper);
1152 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1153 Temp lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(1u), neg, gtz);
1154 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), neg, gtz);
1155 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1156 } else {
1157 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1158 nir_print_instr(&instr->instr, stderr);
1159 fprintf(stderr, "\n");
1160 }
1161 break;
1162 }
1163 case nir_op_imax: {
1164 if (dst.regClass() == v1) {
1165 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_i32, dst, true);
1166 } else if (dst.regClass() == s1) {
1167 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_i32, dst, true);
1168 } else {
1169 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1170 nir_print_instr(&instr->instr, stderr);
1171 fprintf(stderr, "\n");
1172 }
1173 break;
1174 }
1175 case nir_op_umax: {
1176 if (dst.regClass() == v1) {
1177 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_u32, dst, true);
1178 } else if (dst.regClass() == s1) {
1179 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_u32, dst, true);
1180 } else {
1181 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1182 nir_print_instr(&instr->instr, stderr);
1183 fprintf(stderr, "\n");
1184 }
1185 break;
1186 }
1187 case nir_op_imin: {
1188 if (dst.regClass() == v1) {
1189 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_i32, dst, true);
1190 } else if (dst.regClass() == s1) {
1191 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_i32, dst, true);
1192 } else {
1193 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1194 nir_print_instr(&instr->instr, stderr);
1195 fprintf(stderr, "\n");
1196 }
1197 break;
1198 }
1199 case nir_op_umin: {
1200 if (dst.regClass() == v1) {
1201 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_u32, dst, true);
1202 } else if (dst.regClass() == s1) {
1203 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_u32, dst, true);
1204 } else {
1205 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1206 nir_print_instr(&instr->instr, stderr);
1207 fprintf(stderr, "\n");
1208 }
1209 break;
1210 }
1211 case nir_op_ior: {
1212 if (instr->dest.dest.ssa.bit_size == 1) {
1213 emit_boolean_logic(ctx, instr, Builder::s_or, dst);
1214 } else if (dst.regClass() == v1) {
1215 emit_vop2_instruction(ctx, instr, aco_opcode::v_or_b32, dst, true);
1216 } else if (dst.regClass() == s1) {
1217 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b32, dst, true);
1218 } else if (dst.regClass() == s2) {
1219 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b64, dst, true);
1220 } else {
1221 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1222 nir_print_instr(&instr->instr, stderr);
1223 fprintf(stderr, "\n");
1224 }
1225 break;
1226 }
1227 case nir_op_iand: {
1228 if (instr->dest.dest.ssa.bit_size == 1) {
1229 emit_boolean_logic(ctx, instr, Builder::s_and, dst);
1230 } else if (dst.regClass() == v1) {
1231 emit_vop2_instruction(ctx, instr, aco_opcode::v_and_b32, dst, true);
1232 } else if (dst.regClass() == s1) {
1233 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b32, dst, true);
1234 } else if (dst.regClass() == s2) {
1235 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b64, dst, true);
1236 } else {
1237 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1238 nir_print_instr(&instr->instr, stderr);
1239 fprintf(stderr, "\n");
1240 }
1241 break;
1242 }
1243 case nir_op_ixor: {
1244 if (instr->dest.dest.ssa.bit_size == 1) {
1245 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
1246 } else if (dst.regClass() == v1) {
1247 emit_vop2_instruction(ctx, instr, aco_opcode::v_xor_b32, dst, true);
1248 } else if (dst.regClass() == s1) {
1249 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b32, dst, true);
1250 } else if (dst.regClass() == s2) {
1251 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b64, dst, true);
1252 } else {
1253 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1254 nir_print_instr(&instr->instr, stderr);
1255 fprintf(stderr, "\n");
1256 }
1257 break;
1258 }
1259 case nir_op_ushr: {
1260 if (dst.regClass() == v1) {
1261 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshrrev_b32, dst, false, true);
1262 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1263 bld.vop3(aco_opcode::v_lshrrev_b64, Definition(dst),
1264 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1265 } else if (dst.regClass() == v2) {
1266 bld.vop3(aco_opcode::v_lshr_b64, Definition(dst),
1267 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1268 } else if (dst.regClass() == s2) {
1269 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b64, dst, true);
1270 } else if (dst.regClass() == s1) {
1271 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b32, dst, true);
1272 } else {
1273 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1274 nir_print_instr(&instr->instr, stderr);
1275 fprintf(stderr, "\n");
1276 }
1277 break;
1278 }
1279 case nir_op_ishl: {
1280 if (dst.regClass() == v1) {
1281 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshlrev_b32, dst, false, true);
1282 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1283 bld.vop3(aco_opcode::v_lshlrev_b64, Definition(dst),
1284 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1285 } else if (dst.regClass() == v2) {
1286 bld.vop3(aco_opcode::v_lshl_b64, Definition(dst),
1287 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1288 } else if (dst.regClass() == s1) {
1289 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b32, dst, true);
1290 } else if (dst.regClass() == s2) {
1291 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b64, dst, true);
1292 } else {
1293 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1294 nir_print_instr(&instr->instr, stderr);
1295 fprintf(stderr, "\n");
1296 }
1297 break;
1298 }
1299 case nir_op_ishr: {
1300 if (dst.regClass() == v1) {
1301 emit_vop2_instruction(ctx, instr, aco_opcode::v_ashrrev_i32, dst, false, true);
1302 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1303 bld.vop3(aco_opcode::v_ashrrev_i64, Definition(dst),
1304 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1305 } else if (dst.regClass() == v2) {
1306 bld.vop3(aco_opcode::v_ashr_i64, Definition(dst),
1307 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1308 } else if (dst.regClass() == s1) {
1309 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i32, dst, true);
1310 } else if (dst.regClass() == s2) {
1311 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i64, dst, true);
1312 } else {
1313 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1314 nir_print_instr(&instr->instr, stderr);
1315 fprintf(stderr, "\n");
1316 }
1317 break;
1318 }
1319 case nir_op_find_lsb: {
1320 Temp src = get_alu_src(ctx, instr->src[0]);
1321 if (src.regClass() == s1) {
1322 bld.sop1(aco_opcode::s_ff1_i32_b32, Definition(dst), src);
1323 } else if (src.regClass() == v1) {
1324 emit_vop1_instruction(ctx, instr, aco_opcode::v_ffbl_b32, dst);
1325 } else if (src.regClass() == s2) {
1326 bld.sop1(aco_opcode::s_ff1_i32_b64, Definition(dst), src);
1327 } else {
1328 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1329 nir_print_instr(&instr->instr, stderr);
1330 fprintf(stderr, "\n");
1331 }
1332 break;
1333 }
1334 case nir_op_ufind_msb:
1335 case nir_op_ifind_msb: {
1336 Temp src = get_alu_src(ctx, instr->src[0]);
1337 if (src.regClass() == s1 || src.regClass() == s2) {
1338 aco_opcode op = src.regClass() == s2 ?
1339 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b64 : aco_opcode::s_flbit_i32_i64) :
1340 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b32 : aco_opcode::s_flbit_i32);
1341 Temp msb_rev = bld.sop1(op, bld.def(s1), src);
1342
1343 Builder::Result sub = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc),
1344 Operand(src.size() * 32u - 1u), msb_rev);
1345 Temp msb = sub.def(0).getTemp();
1346 Temp carry = sub.def(1).getTemp();
1347
1348 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t)-1), msb, bld.scc(carry));
1349 } else if (src.regClass() == v1) {
1350 aco_opcode op = instr->op == nir_op_ufind_msb ? aco_opcode::v_ffbh_u32 : aco_opcode::v_ffbh_i32;
1351 Temp msb_rev = bld.tmp(v1);
1352 emit_vop1_instruction(ctx, instr, op, msb_rev);
1353 Temp msb = bld.tmp(v1);
1354 Temp carry = bld.vsub32(Definition(msb), Operand(31u), Operand(msb_rev), true).def(1).getTemp();
1355 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), msb, Operand((uint32_t)-1), carry);
1356 } else {
1357 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1358 nir_print_instr(&instr->instr, stderr);
1359 fprintf(stderr, "\n");
1360 }
1361 break;
1362 }
1363 case nir_op_bitfield_reverse: {
1364 if (dst.regClass() == s1) {
1365 bld.sop1(aco_opcode::s_brev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1366 } else if (dst.regClass() == v1) {
1367 bld.vop1(aco_opcode::v_bfrev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1368 } else {
1369 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1370 nir_print_instr(&instr->instr, stderr);
1371 fprintf(stderr, "\n");
1372 }
1373 break;
1374 }
1375 case nir_op_iadd: {
1376 if (dst.regClass() == s1) {
1377 emit_sop2_instruction(ctx, instr, aco_opcode::s_add_u32, dst, true);
1378 break;
1379 }
1380
1381 Temp src0 = get_alu_src(ctx, instr->src[0]);
1382 Temp src1 = get_alu_src(ctx, instr->src[1]);
1383 if (dst.regClass() == v1) {
1384 bld.vadd32(Definition(dst), Operand(src0), Operand(src1));
1385 break;
1386 }
1387
1388 assert(src0.size() == 2 && src1.size() == 2);
1389 Temp src00 = bld.tmp(src0.type(), 1);
1390 Temp src01 = bld.tmp(dst.type(), 1);
1391 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1392 Temp src10 = bld.tmp(src1.type(), 1);
1393 Temp src11 = bld.tmp(dst.type(), 1);
1394 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1395
1396 if (dst.regClass() == s2) {
1397 Temp carry = bld.tmp(s1);
1398 Temp dst0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1399 Temp dst1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), src01, src11, bld.scc(carry));
1400 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1401 } else if (dst.regClass() == v2) {
1402 Temp dst0 = bld.tmp(v1);
1403 Temp carry = bld.vadd32(Definition(dst0), src00, src10, true).def(1).getTemp();
1404 Temp dst1 = bld.vadd32(bld.def(v1), src01, src11, false, carry);
1405 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1406 } else {
1407 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1408 nir_print_instr(&instr->instr, stderr);
1409 fprintf(stderr, "\n");
1410 }
1411 break;
1412 }
1413 case nir_op_uadd_sat: {
1414 Temp src0 = get_alu_src(ctx, instr->src[0]);
1415 Temp src1 = get_alu_src(ctx, instr->src[1]);
1416 if (dst.regClass() == s1) {
1417 Temp tmp = bld.tmp(s1), carry = bld.tmp(s1);
1418 bld.sop2(aco_opcode::s_add_u32, Definition(tmp), bld.scc(Definition(carry)),
1419 src0, src1);
1420 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t) -1), tmp, bld.scc(carry));
1421 } else if (dst.regClass() == v1) {
1422 if (ctx->options->chip_class >= GFX9) {
1423 aco_ptr<VOP3A_instruction> add{create_instruction<VOP3A_instruction>(aco_opcode::v_add_u32, asVOP3(Format::VOP2), 2, 1)};
1424 add->operands[0] = Operand(src0);
1425 add->operands[1] = Operand(src1);
1426 add->definitions[0] = Definition(dst);
1427 add->clamp = 1;
1428 ctx->block->instructions.emplace_back(std::move(add));
1429 } else {
1430 if (src1.regClass() != v1)
1431 std::swap(src0, src1);
1432 assert(src1.regClass() == v1);
1433 Temp tmp = bld.tmp(v1);
1434 Temp carry = bld.vadd32(Definition(tmp), src0, src1, true).def(1).getTemp();
1435 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), tmp, Operand((uint32_t) -1), carry);
1436 }
1437 } else {
1438 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1439 nir_print_instr(&instr->instr, stderr);
1440 fprintf(stderr, "\n");
1441 }
1442 break;
1443 }
1444 case nir_op_uadd_carry: {
1445 Temp src0 = get_alu_src(ctx, instr->src[0]);
1446 Temp src1 = get_alu_src(ctx, instr->src[1]);
1447 if (dst.regClass() == s1) {
1448 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1449 break;
1450 }
1451 if (dst.regClass() == v1) {
1452 Temp carry = bld.vadd32(bld.def(v1), src0, src1, true).def(1).getTemp();
1453 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), carry);
1454 break;
1455 }
1456
1457 Temp src00 = bld.tmp(src0.type(), 1);
1458 Temp src01 = bld.tmp(dst.type(), 1);
1459 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1460 Temp src10 = bld.tmp(src1.type(), 1);
1461 Temp src11 = bld.tmp(dst.type(), 1);
1462 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1463 if (dst.regClass() == s2) {
1464 Temp carry = bld.tmp(s1);
1465 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1466 carry = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(carry)).def(1).getTemp();
1467 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1468 } else if (dst.regClass() == v2) {
1469 Temp carry = bld.vadd32(bld.def(v1), src00, src10, true).def(1).getTemp();
1470 carry = bld.vadd32(bld.def(v1), src01, src11, true, carry).def(1).getTemp();
1471 carry = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), carry);
1472 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1473 } else {
1474 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1475 nir_print_instr(&instr->instr, stderr);
1476 fprintf(stderr, "\n");
1477 }
1478 break;
1479 }
1480 case nir_op_isub: {
1481 if (dst.regClass() == s1) {
1482 emit_sop2_instruction(ctx, instr, aco_opcode::s_sub_i32, dst, true);
1483 break;
1484 }
1485
1486 Temp src0 = get_alu_src(ctx, instr->src[0]);
1487 Temp src1 = get_alu_src(ctx, instr->src[1]);
1488 if (dst.regClass() == v1) {
1489 bld.vsub32(Definition(dst), src0, src1);
1490 break;
1491 }
1492
1493 Temp src00 = bld.tmp(src0.type(), 1);
1494 Temp src01 = bld.tmp(dst.type(), 1);
1495 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1496 Temp src10 = bld.tmp(src1.type(), 1);
1497 Temp src11 = bld.tmp(dst.type(), 1);
1498 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1499 if (dst.regClass() == s2) {
1500 Temp carry = bld.tmp(s1);
1501 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1502 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), src01, src11, carry);
1503 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1504 } else if (dst.regClass() == v2) {
1505 Temp lower = bld.tmp(v1);
1506 Temp borrow = bld.vsub32(Definition(lower), src00, src10, true).def(1).getTemp();
1507 Temp upper = bld.vsub32(bld.def(v1), src01, src11, false, borrow);
1508 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1509 } else {
1510 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1511 nir_print_instr(&instr->instr, stderr);
1512 fprintf(stderr, "\n");
1513 }
1514 break;
1515 }
1516 case nir_op_usub_borrow: {
1517 Temp src0 = get_alu_src(ctx, instr->src[0]);
1518 Temp src1 = get_alu_src(ctx, instr->src[1]);
1519 if (dst.regClass() == s1) {
1520 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1521 break;
1522 } else if (dst.regClass() == v1) {
1523 Temp borrow = bld.vsub32(bld.def(v1), src0, src1, true).def(1).getTemp();
1524 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), borrow);
1525 break;
1526 }
1527
1528 Temp src00 = bld.tmp(src0.type(), 1);
1529 Temp src01 = bld.tmp(dst.type(), 1);
1530 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1531 Temp src10 = bld.tmp(src1.type(), 1);
1532 Temp src11 = bld.tmp(dst.type(), 1);
1533 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1534 if (dst.regClass() == s2) {
1535 Temp borrow = bld.tmp(s1);
1536 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), src00, src10);
1537 borrow = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(borrow)).def(1).getTemp();
1538 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1539 } else if (dst.regClass() == v2) {
1540 Temp borrow = bld.vsub32(bld.def(v1), src00, src10, true).def(1).getTemp();
1541 borrow = bld.vsub32(bld.def(v1), src01, src11, true, Operand(borrow)).def(1).getTemp();
1542 borrow = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), borrow);
1543 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1544 } else {
1545 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1546 nir_print_instr(&instr->instr, stderr);
1547 fprintf(stderr, "\n");
1548 }
1549 break;
1550 }
1551 case nir_op_imul: {
1552 if (dst.regClass() == v1) {
1553 bld.vop3(aco_opcode::v_mul_lo_u32, Definition(dst),
1554 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1555 } else if (dst.regClass() == s1) {
1556 emit_sop2_instruction(ctx, instr, aco_opcode::s_mul_i32, dst, false);
1557 } else {
1558 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1559 nir_print_instr(&instr->instr, stderr);
1560 fprintf(stderr, "\n");
1561 }
1562 break;
1563 }
1564 case nir_op_umul_high: {
1565 if (dst.regClass() == v1) {
1566 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1567 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1568 bld.sop2(aco_opcode::s_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1569 } else if (dst.regClass() == s1) {
1570 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1571 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1572 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1573 } else {
1574 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1575 nir_print_instr(&instr->instr, stderr);
1576 fprintf(stderr, "\n");
1577 }
1578 break;
1579 }
1580 case nir_op_imul_high: {
1581 if (dst.regClass() == v1) {
1582 bld.vop3(aco_opcode::v_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1583 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1584 bld.sop2(aco_opcode::s_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1585 } else if (dst.regClass() == s1) {
1586 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1587 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1588 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1589 } else {
1590 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1591 nir_print_instr(&instr->instr, stderr);
1592 fprintf(stderr, "\n");
1593 }
1594 break;
1595 }
1596 case nir_op_fmul: {
1597 Temp src0 = get_alu_src(ctx, instr->src[0]);
1598 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1599 if (dst.regClass() == v2b) {
1600 Temp tmp = bld.tmp(v1);
1601 emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f16, tmp, true);
1602 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1603 } else if (dst.regClass() == v1) {
1604 emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f32, dst, true);
1605 } else if (dst.regClass() == v2) {
1606 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), src0, src1);
1607 } else {
1608 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1609 nir_print_instr(&instr->instr, stderr);
1610 fprintf(stderr, "\n");
1611 }
1612 break;
1613 }
1614 case nir_op_fadd: {
1615 Temp src0 = get_alu_src(ctx, instr->src[0]);
1616 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1617 if (dst.regClass() == v2b) {
1618 Temp tmp = bld.tmp(v1);
1619 emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f16, tmp, true);
1620 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1621 } else if (dst.regClass() == v1) {
1622 emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f32, dst, true);
1623 } else if (dst.regClass() == v2) {
1624 bld.vop3(aco_opcode::v_add_f64, Definition(dst), src0, src1);
1625 } else {
1626 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1627 nir_print_instr(&instr->instr, stderr);
1628 fprintf(stderr, "\n");
1629 }
1630 break;
1631 }
1632 case nir_op_fsub: {
1633 Temp src0 = get_alu_src(ctx, instr->src[0]);
1634 Temp src1 = get_alu_src(ctx, instr->src[1]);
1635 if (dst.regClass() == v2b) {
1636 Temp tmp = bld.tmp(v1);
1637 if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
1638 emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f16, tmp, false);
1639 else
1640 emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f16, tmp, true);
1641 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1642 } else if (dst.regClass() == v1) {
1643 if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
1644 emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f32, dst, false);
1645 else
1646 emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f32, dst, true);
1647 } else if (dst.regClass() == v2) {
1648 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst),
1649 as_vgpr(ctx, src0), as_vgpr(ctx, src1));
1650 VOP3A_instruction* sub = static_cast<VOP3A_instruction*>(add);
1651 sub->neg[1] = true;
1652 } else {
1653 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1654 nir_print_instr(&instr->instr, stderr);
1655 fprintf(stderr, "\n");
1656 }
1657 break;
1658 }
1659 case nir_op_fmax: {
1660 Temp src0 = get_alu_src(ctx, instr->src[0]);
1661 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1662 if (dst.regClass() == v2b) {
1663 // TODO: check fp_mode.must_flush_denorms16_64
1664 Temp tmp = bld.tmp(v1);
1665 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f16, tmp, true);
1666 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1667 } else if (dst.regClass() == v1) {
1668 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1669 } else if (dst.regClass() == v2) {
1670 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1671 Temp tmp = bld.vop3(aco_opcode::v_max_f64, bld.def(v2), src0, src1);
1672 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1673 } else {
1674 bld.vop3(aco_opcode::v_max_f64, Definition(dst), src0, src1);
1675 }
1676 } else {
1677 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1678 nir_print_instr(&instr->instr, stderr);
1679 fprintf(stderr, "\n");
1680 }
1681 break;
1682 }
1683 case nir_op_fmin: {
1684 Temp src0 = get_alu_src(ctx, instr->src[0]);
1685 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1686 if (dst.regClass() == v2b) {
1687 // TODO: check fp_mode.must_flush_denorms16_64
1688 Temp tmp = bld.tmp(v1);
1689 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f16, tmp, true);
1690 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1691 } else if (dst.regClass() == v1) {
1692 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1693 } else if (dst.regClass() == v2) {
1694 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1695 Temp tmp = bld.vop3(aco_opcode::v_min_f64, bld.def(v2), src0, src1);
1696 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1697 } else {
1698 bld.vop3(aco_opcode::v_min_f64, Definition(dst), src0, src1);
1699 }
1700 } else {
1701 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1702 nir_print_instr(&instr->instr, stderr);
1703 fprintf(stderr, "\n");
1704 }
1705 break;
1706 }
1707 case nir_op_fmax3: {
1708 if (dst.regClass() == v2b) {
1709 Temp tmp = bld.tmp(v1);
1710 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_f16, tmp, false);
1711 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1712 } else if (dst.regClass() == v1) {
1713 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1714 } else {
1715 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1716 nir_print_instr(&instr->instr, stderr);
1717 fprintf(stderr, "\n");
1718 }
1719 break;
1720 }
1721 case nir_op_fmin3: {
1722 if (dst.regClass() == v2b) {
1723 Temp tmp = bld.tmp(v1);
1724 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_f16, tmp, false);
1725 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1726 } else if (dst.regClass() == v1) {
1727 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1728 } else {
1729 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1730 nir_print_instr(&instr->instr, stderr);
1731 fprintf(stderr, "\n");
1732 }
1733 break;
1734 }
1735 case nir_op_fmed3: {
1736 if (dst.regClass() == v2b) {
1737 Temp tmp = bld.tmp(v1);
1738 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_f16, tmp, false);
1739 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1740 } else if (dst.regClass() == v1) {
1741 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1742 } else {
1743 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1744 nir_print_instr(&instr->instr, stderr);
1745 fprintf(stderr, "\n");
1746 }
1747 break;
1748 }
1749 case nir_op_umax3: {
1750 if (dst.size() == 1) {
1751 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_u32, dst);
1752 } else {
1753 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1754 nir_print_instr(&instr->instr, stderr);
1755 fprintf(stderr, "\n");
1756 }
1757 break;
1758 }
1759 case nir_op_umin3: {
1760 if (dst.size() == 1) {
1761 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_u32, dst);
1762 } else {
1763 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1764 nir_print_instr(&instr->instr, stderr);
1765 fprintf(stderr, "\n");
1766 }
1767 break;
1768 }
1769 case nir_op_umed3: {
1770 if (dst.size() == 1) {
1771 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_u32, dst);
1772 } else {
1773 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1774 nir_print_instr(&instr->instr, stderr);
1775 fprintf(stderr, "\n");
1776 }
1777 break;
1778 }
1779 case nir_op_imax3: {
1780 if (dst.size() == 1) {
1781 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_i32, dst);
1782 } else {
1783 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1784 nir_print_instr(&instr->instr, stderr);
1785 fprintf(stderr, "\n");
1786 }
1787 break;
1788 }
1789 case nir_op_imin3: {
1790 if (dst.size() == 1) {
1791 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_i32, dst);
1792 } else {
1793 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1794 nir_print_instr(&instr->instr, stderr);
1795 fprintf(stderr, "\n");
1796 }
1797 break;
1798 }
1799 case nir_op_imed3: {
1800 if (dst.size() == 1) {
1801 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_i32, dst);
1802 } else {
1803 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1804 nir_print_instr(&instr->instr, stderr);
1805 fprintf(stderr, "\n");
1806 }
1807 break;
1808 }
1809 case nir_op_cube_face_coord: {
1810 Temp in = get_alu_src(ctx, instr->src[0], 3);
1811 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1812 emit_extract_vector(ctx, in, 1, v1),
1813 emit_extract_vector(ctx, in, 2, v1) };
1814 Temp ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), src[0], src[1], src[2]);
1815 ma = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), ma);
1816 Temp sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), src[0], src[1], src[2]);
1817 Temp tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), src[0], src[1], src[2]);
1818 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, ma, Operand(0x3f000000u/*0.5*/));
1819 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, ma, Operand(0x3f000000u/*0.5*/));
1820 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), sc, tc);
1821 break;
1822 }
1823 case nir_op_cube_face_index: {
1824 Temp in = get_alu_src(ctx, instr->src[0], 3);
1825 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1826 emit_extract_vector(ctx, in, 1, v1),
1827 emit_extract_vector(ctx, in, 2, v1) };
1828 bld.vop3(aco_opcode::v_cubeid_f32, Definition(dst), src[0], src[1], src[2]);
1829 break;
1830 }
1831 case nir_op_bcsel: {
1832 emit_bcsel(ctx, instr, dst);
1833 break;
1834 }
1835 case nir_op_frsq: {
1836 Temp src = get_alu_src(ctx, instr->src[0]);
1837 if (dst.regClass() == v2b) {
1838 Temp tmp = bld.vop1(aco_opcode::v_rsq_f16, bld.def(v1), src);
1839 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1840 } else if (dst.regClass() == v1) {
1841 emit_rsq(ctx, bld, Definition(dst), src);
1842 } else if (dst.regClass() == v2) {
1843 emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f64, dst);
1844 } else {
1845 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1846 nir_print_instr(&instr->instr, stderr);
1847 fprintf(stderr, "\n");
1848 }
1849 break;
1850 }
1851 case nir_op_fneg: {
1852 Temp src = get_alu_src(ctx, instr->src[0]);
1853 if (dst.regClass() == v2b) {
1854 Temp tmp = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), Operand(0x8000u), as_vgpr(ctx, src));
1855 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1856 } else if (dst.regClass() == v1) {
1857 if (ctx->block->fp_mode.must_flush_denorms32)
1858 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1859 bld.vop2(aco_opcode::v_xor_b32, Definition(dst), Operand(0x80000000u), as_vgpr(ctx, src));
1860 } else if (dst.regClass() == v2) {
1861 if (ctx->block->fp_mode.must_flush_denorms16_64)
1862 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1863 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1864 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1865 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), Operand(0x80000000u), upper);
1866 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1867 } else {
1868 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1869 nir_print_instr(&instr->instr, stderr);
1870 fprintf(stderr, "\n");
1871 }
1872 break;
1873 }
1874 case nir_op_fabs: {
1875 Temp src = get_alu_src(ctx, instr->src[0]);
1876 if (dst.regClass() == v2b) {
1877 Temp tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7FFFu), as_vgpr(ctx, src));
1878 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1879 } else if (dst.regClass() == v1) {
1880 if (ctx->block->fp_mode.must_flush_denorms32)
1881 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1882 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0x7FFFFFFFu), as_vgpr(ctx, src));
1883 } else if (dst.regClass() == v2) {
1884 if (ctx->block->fp_mode.must_flush_denorms16_64)
1885 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1886 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1887 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1888 upper = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7FFFFFFFu), upper);
1889 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1890 } else {
1891 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1892 nir_print_instr(&instr->instr, stderr);
1893 fprintf(stderr, "\n");
1894 }
1895 break;
1896 }
1897 case nir_op_fsat: {
1898 Temp src = get_alu_src(ctx, instr->src[0]);
1899 if (dst.regClass() == v2b) {
1900 Temp tmp = bld.vop3(aco_opcode::v_med3_f16, bld.def(v1), Operand(0u), Operand(0x3f800000u), src);
1901 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1902 } else if (dst.regClass() == v1) {
1903 bld.vop3(aco_opcode::v_med3_f32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
1904 /* apparently, it is not necessary to flush denorms if this instruction is used with these operands */
1905 // TODO: confirm that this holds under any circumstances
1906 } else if (dst.regClass() == v2) {
1907 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src, Operand(0u));
1908 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(add);
1909 vop3->clamp = true;
1910 } else {
1911 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1912 nir_print_instr(&instr->instr, stderr);
1913 fprintf(stderr, "\n");
1914 }
1915 break;
1916 }
1917 case nir_op_flog2: {
1918 Temp src = get_alu_src(ctx, instr->src[0]);
1919 if (dst.regClass() == v2b) {
1920 Temp tmp = bld.vop1(aco_opcode::v_log_f16, bld.def(v1), src);
1921 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1922 } else if (dst.regClass() == v1) {
1923 emit_log2(ctx, bld, Definition(dst), src);
1924 } else {
1925 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1926 nir_print_instr(&instr->instr, stderr);
1927 fprintf(stderr, "\n");
1928 }
1929 break;
1930 }
1931 case nir_op_frcp: {
1932 Temp src = get_alu_src(ctx, instr->src[0]);
1933 if (dst.regClass() == v2b) {
1934 Temp tmp = bld.vop1(aco_opcode::v_rcp_f16, bld.def(v1), src);
1935 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1936 } else if (dst.regClass() == v1) {
1937 emit_rcp(ctx, bld, Definition(dst), src);
1938 } else if (dst.regClass() == v2) {
1939 emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f64, dst);
1940 } else {
1941 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1942 nir_print_instr(&instr->instr, stderr);
1943 fprintf(stderr, "\n");
1944 }
1945 break;
1946 }
1947 case nir_op_fexp2: {
1948 if (dst.regClass() == v2b) {
1949 Temp src = get_alu_src(ctx, instr->src[0]);
1950 Temp tmp = bld.vop1(aco_opcode::v_exp_f16, bld.def(v1), src);
1951 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1952 } else if (dst.regClass() == v1) {
1953 emit_vop1_instruction(ctx, instr, aco_opcode::v_exp_f32, dst);
1954 } else {
1955 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1956 nir_print_instr(&instr->instr, stderr);
1957 fprintf(stderr, "\n");
1958 }
1959 break;
1960 }
1961 case nir_op_fsqrt: {
1962 Temp src = get_alu_src(ctx, instr->src[0]);
1963 if (dst.regClass() == v2b) {
1964 Temp tmp = bld.vop1(aco_opcode::v_sqrt_f16, bld.def(v1), src);
1965 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1966 } else if (dst.regClass() == v1) {
1967 emit_sqrt(ctx, bld, Definition(dst), src);
1968 } else if (dst.regClass() == v2) {
1969 emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f64, dst);
1970 } else {
1971 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1972 nir_print_instr(&instr->instr, stderr);
1973 fprintf(stderr, "\n");
1974 }
1975 break;
1976 }
1977 case nir_op_ffract: {
1978 if (dst.regClass() == v2b) {
1979 Temp src = get_alu_src(ctx, instr->src[0]);
1980 Temp tmp = bld.vop1(aco_opcode::v_fract_f16, bld.def(v1), src);
1981 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1982 } else if (dst.regClass() == v1) {
1983 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f32, dst);
1984 } else if (dst.regClass() == v2) {
1985 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f64, dst);
1986 } else {
1987 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1988 nir_print_instr(&instr->instr, stderr);
1989 fprintf(stderr, "\n");
1990 }
1991 break;
1992 }
1993 case nir_op_ffloor: {
1994 Temp src = get_alu_src(ctx, instr->src[0]);
1995 if (dst.regClass() == v2b) {
1996 Temp tmp = bld.vop1(aco_opcode::v_floor_f16, bld.def(v1), src);
1997 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1998 } else if (dst.regClass() == v1) {
1999 emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f32, dst);
2000 } else if (dst.regClass() == v2) {
2001 emit_floor_f64(ctx, bld, Definition(dst), src);
2002 } else {
2003 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2004 nir_print_instr(&instr->instr, stderr);
2005 fprintf(stderr, "\n");
2006 }
2007 break;
2008 }
2009 case nir_op_fceil: {
2010 Temp src0 = get_alu_src(ctx, instr->src[0]);
2011 if (dst.regClass() == v2b) {
2012 Temp tmp = bld.vop1(aco_opcode::v_ceil_f16, bld.def(v1), src0);
2013 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2014 } else if (dst.regClass() == v1) {
2015 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f32, dst);
2016 } else if (dst.regClass() == v2) {
2017 if (ctx->options->chip_class >= GFX7) {
2018 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f64, dst);
2019 } else {
2020 /* GFX6 doesn't support V_CEIL_F64, lower it. */
2021 /* trunc = trunc(src0)
2022 * if (src0 > 0.0 && src0 != trunc)
2023 * trunc += 1.0
2024 */
2025 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src0);
2026 Temp tmp0 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.def(bld.lm), src0, Operand(0u));
2027 Temp tmp1 = bld.vopc(aco_opcode::v_cmp_lg_f64, bld.hint_vcc(bld.def(bld.lm)), src0, trunc);
2028 Temp cond = bld.sop2(aco_opcode::s_and_b64, bld.hint_vcc(bld.def(s2)), bld.def(s1, scc), tmp0, tmp1);
2029 Temp add = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), bld.copy(bld.def(v1), Operand(0u)), bld.copy(bld.def(v1), Operand(0x3ff00000u)), cond);
2030 add = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), bld.copy(bld.def(v1), Operand(0u)), add);
2031 bld.vop3(aco_opcode::v_add_f64, Definition(dst), trunc, add);
2032 }
2033 } else {
2034 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2035 nir_print_instr(&instr->instr, stderr);
2036 fprintf(stderr, "\n");
2037 }
2038 break;
2039 }
2040 case nir_op_ftrunc: {
2041 Temp src = get_alu_src(ctx, instr->src[0]);
2042 if (dst.regClass() == v2b) {
2043 Temp tmp = bld.vop1(aco_opcode::v_trunc_f16, bld.def(v1), src);
2044 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2045 } else if (dst.regClass() == v1) {
2046 emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f32, dst);
2047 } else if (dst.regClass() == v2) {
2048 emit_trunc_f64(ctx, bld, Definition(dst), src);
2049 } else {
2050 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2051 nir_print_instr(&instr->instr, stderr);
2052 fprintf(stderr, "\n");
2053 }
2054 break;
2055 }
2056 case nir_op_fround_even: {
2057 Temp src0 = get_alu_src(ctx, instr->src[0]);
2058 if (dst.regClass() == v2b) {
2059 Temp tmp = bld.vop1(aco_opcode::v_rndne_f16, bld.def(v1), src0);
2060 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2061 } else if (dst.regClass() == v1) {
2062 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f32, dst);
2063 } else if (dst.regClass() == v2) {
2064 if (ctx->options->chip_class >= GFX7) {
2065 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f64, dst);
2066 } else {
2067 /* GFX6 doesn't support V_RNDNE_F64, lower it. */
2068 Temp src0_lo = bld.tmp(v1), src0_hi = bld.tmp(v1);
2069 bld.pseudo(aco_opcode::p_split_vector, Definition(src0_lo), Definition(src0_hi), src0);
2070
2071 Temp bitmask = bld.sop1(aco_opcode::s_brev_b32, bld.def(s1), bld.copy(bld.def(s1), Operand(-2u)));
2072 Temp bfi = bld.vop3(aco_opcode::v_bfi_b32, bld.def(v1), bitmask, bld.copy(bld.def(v1), Operand(0x43300000u)), as_vgpr(ctx, src0_hi));
2073 Temp tmp = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), src0, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
2074 Instruction *sub = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), tmp, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
2075 static_cast<VOP3A_instruction*>(sub)->neg[1] = true;
2076 tmp = sub->definitions[0].getTemp();
2077
2078 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x432fffffu));
2079 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.hint_vcc(bld.def(bld.lm)), src0, v);
2080 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
2081 Temp cond = vop3->definitions[0].getTemp();
2082
2083 Temp tmp_lo = bld.tmp(v1), tmp_hi = bld.tmp(v1);
2084 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp_lo), Definition(tmp_hi), tmp);
2085 Temp dst0 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_lo, as_vgpr(ctx, src0_lo), cond);
2086 Temp dst1 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_hi, as_vgpr(ctx, src0_hi), cond);
2087
2088 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
2089 }
2090 } else {
2091 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2092 nir_print_instr(&instr->instr, stderr);
2093 fprintf(stderr, "\n");
2094 }
2095 break;
2096 }
2097 case nir_op_fsin:
2098 case nir_op_fcos: {
2099 Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
2100 aco_ptr<Instruction> norm;
2101 Temp half_pi = bld.copy(bld.def(s1), Operand(0x3e22f983u));
2102 if (dst.regClass() == v2b) {
2103 Temp tmp = bld.vop2(aco_opcode::v_mul_f16, bld.def(v1), half_pi, src);
2104 aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f16 : aco_opcode::v_cos_f16;
2105 tmp = bld.vop1(opcode, bld.def(v1), tmp);
2106 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2107 } else if (dst.regClass() == v1) {
2108 Temp tmp = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), half_pi, src);
2109
2110 /* before GFX9, v_sin_f32 and v_cos_f32 had a valid input domain of [-256, +256] */
2111 if (ctx->options->chip_class < GFX9)
2112 tmp = bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), tmp);
2113
2114 aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f32 : aco_opcode::v_cos_f32;
2115 bld.vop1(opcode, Definition(dst), tmp);
2116 } else {
2117 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2118 nir_print_instr(&instr->instr, stderr);
2119 fprintf(stderr, "\n");
2120 }
2121 break;
2122 }
2123 case nir_op_ldexp: {
2124 Temp src0 = get_alu_src(ctx, instr->src[0]);
2125 Temp src1 = get_alu_src(ctx, instr->src[1]);
2126 if (dst.regClass() == v2b) {
2127 Temp tmp = bld.tmp(v1);
2128 emit_vop2_instruction(ctx, instr, aco_opcode::v_ldexp_f16, tmp, false);
2129 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2130 } else if (dst.regClass() == v1) {
2131 bld.vop3(aco_opcode::v_ldexp_f32, Definition(dst), as_vgpr(ctx, src0), src1);
2132 } else if (dst.regClass() == v2) {
2133 bld.vop3(aco_opcode::v_ldexp_f64, Definition(dst), as_vgpr(ctx, src0), src1);
2134 } else {
2135 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2136 nir_print_instr(&instr->instr, stderr);
2137 fprintf(stderr, "\n");
2138 }
2139 break;
2140 }
2141 case nir_op_frexp_sig: {
2142 Temp src = get_alu_src(ctx, instr->src[0]);
2143 if (dst.regClass() == v2b) {
2144 Temp tmp = bld.vop1(aco_opcode::v_frexp_mant_f16, bld.def(v1), src);
2145 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2146 } else if (dst.regClass() == v1) {
2147 bld.vop1(aco_opcode::v_frexp_mant_f32, Definition(dst), src);
2148 } else if (dst.regClass() == v2) {
2149 bld.vop1(aco_opcode::v_frexp_mant_f64, Definition(dst), src);
2150 } else {
2151 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2152 nir_print_instr(&instr->instr, stderr);
2153 fprintf(stderr, "\n");
2154 }
2155 break;
2156 }
2157 case nir_op_frexp_exp: {
2158 Temp src = get_alu_src(ctx, instr->src[0]);
2159 if (instr->src[0].src.ssa->bit_size == 16) {
2160 Temp tmp = bld.vop1(aco_opcode::v_frexp_exp_i16_f16, bld.def(v1), src);
2161 tmp = bld.pseudo(aco_opcode::p_extract_vector, bld.def(v1b), tmp, Operand(0u));
2162 convert_int(bld, tmp, 8, 32, true, dst);
2163 } else if (instr->src[0].src.ssa->bit_size == 32) {
2164 bld.vop1(aco_opcode::v_frexp_exp_i32_f32, Definition(dst), src);
2165 } else if (instr->src[0].src.ssa->bit_size == 64) {
2166 bld.vop1(aco_opcode::v_frexp_exp_i32_f64, Definition(dst), src);
2167 } else {
2168 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2169 nir_print_instr(&instr->instr, stderr);
2170 fprintf(stderr, "\n");
2171 }
2172 break;
2173 }
2174 case nir_op_fsign: {
2175 Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
2176 if (dst.regClass() == v2b) {
2177 Temp one = bld.copy(bld.def(v1), Operand(0x3c00u));
2178 Temp minus_one = bld.copy(bld.def(v1), Operand(0xbc00u));
2179 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f16, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2180 src = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), one, src, cond);
2181 cond = bld.vopc(aco_opcode::v_cmp_le_f16, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2182 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), minus_one, src, cond);
2183 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2184 } else if (dst.regClass() == v1) {
2185 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2186 src = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0x3f800000u), src, cond);
2187 cond = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2188 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0xbf800000u), src, cond);
2189 } else if (dst.regClass() == v2) {
2190 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2191 Temp tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0x3FF00000u));
2192 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, emit_extract_vector(ctx, src, 1, v1), cond);
2193
2194 cond = bld.vopc(aco_opcode::v_cmp_le_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2195 tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0xBFF00000u));
2196 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, upper, cond);
2197
2198 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
2199 } else {
2200 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2201 nir_print_instr(&instr->instr, stderr);
2202 fprintf(stderr, "\n");
2203 }
2204 break;
2205 }
2206 case nir_op_f2f16:
2207 case nir_op_f2f16_rtne: {
2208 Temp src = get_alu_src(ctx, instr->src[0]);
2209 if (instr->src[0].src.ssa->bit_size == 64)
2210 src = bld.vop1(aco_opcode::v_cvt_f32_f64, bld.def(v1), src);
2211 src = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), src);
2212 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), src);
2213 break;
2214 }
2215 case nir_op_f2f16_rtz: {
2216 Temp src = get_alu_src(ctx, instr->src[0]);
2217 if (instr->src[0].src.ssa->bit_size == 64)
2218 src = bld.vop1(aco_opcode::v_cvt_f32_f64, bld.def(v1), src);
2219 src = bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, bld.def(v1), src, Operand(0u));
2220 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), src);
2221 break;
2222 }
2223 case nir_op_f2f32: {
2224 if (instr->src[0].src.ssa->bit_size == 16) {
2225 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f16, dst);
2226 } else if (instr->src[0].src.ssa->bit_size == 64) {
2227 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f64, dst);
2228 } else {
2229 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2230 nir_print_instr(&instr->instr, stderr);
2231 fprintf(stderr, "\n");
2232 }
2233 break;
2234 }
2235 case nir_op_f2f64: {
2236 Temp src = get_alu_src(ctx, instr->src[0]);
2237 if (instr->src[0].src.ssa->bit_size == 16)
2238 src = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2239 bld.vop1(aco_opcode::v_cvt_f64_f32, Definition(dst), src);
2240 break;
2241 }
2242 case nir_op_i2f16: {
2243 assert(dst.regClass() == v2b);
2244 Temp src = get_alu_src(ctx, instr->src[0]);
2245 if (instr->src[0].src.ssa->bit_size == 8)
2246 src = convert_int(bld, src, 8, 16, true);
2247 Temp tmp = bld.vop1(aco_opcode::v_cvt_f16_i16, bld.def(v1), src);
2248 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2249 break;
2250 }
2251 case nir_op_i2f32: {
2252 assert(dst.size() == 1);
2253 Temp src = get_alu_src(ctx, instr->src[0]);
2254 if (instr->src[0].src.ssa->bit_size <= 16)
2255 src = convert_int(bld, src, instr->src[0].src.ssa->bit_size, 32, true);
2256 bld.vop1(aco_opcode::v_cvt_f32_i32, Definition(dst), src);
2257 break;
2258 }
2259 case nir_op_i2f64: {
2260 if (instr->src[0].src.ssa->bit_size <= 32) {
2261 Temp src = get_alu_src(ctx, instr->src[0]);
2262 if (instr->src[0].src.ssa->bit_size <= 16)
2263 src = convert_int(bld, src, instr->src[0].src.ssa->bit_size, 32, true);
2264 bld.vop1(aco_opcode::v_cvt_f64_i32, Definition(dst), src);
2265 } else if (instr->src[0].src.ssa->bit_size == 64) {
2266 Temp src = get_alu_src(ctx, instr->src[0]);
2267 RegClass rc = RegClass(src.type(), 1);
2268 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
2269 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
2270 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
2271 upper = bld.vop1(aco_opcode::v_cvt_f64_i32, bld.def(v2), upper);
2272 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
2273 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
2274
2275 } else {
2276 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2277 nir_print_instr(&instr->instr, stderr);
2278 fprintf(stderr, "\n");
2279 }
2280 break;
2281 }
2282 case nir_op_u2f16: {
2283 assert(dst.regClass() == v2b);
2284 Temp src = get_alu_src(ctx, instr->src[0]);
2285 if (instr->src[0].src.ssa->bit_size == 8)
2286 src = convert_int(bld, src, 8, 16, false);
2287 Temp tmp = bld.vop1(aco_opcode::v_cvt_f16_u16, bld.def(v1), src);
2288 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2289 break;
2290 }
2291 case nir_op_u2f32: {
2292 assert(dst.size() == 1);
2293 Temp src = get_alu_src(ctx, instr->src[0]);
2294 if (instr->src[0].src.ssa->bit_size == 8) {
2295 //TODO: we should use v_cvt_f32_ubyte1/v_cvt_f32_ubyte2/etc depending on the register assignment
2296 bld.vop1(aco_opcode::v_cvt_f32_ubyte0, Definition(dst), src);
2297 } else {
2298 if (instr->src[0].src.ssa->bit_size == 16)
2299 src = convert_int(bld, src, instr->src[0].src.ssa->bit_size, 32, true);
2300 bld.vop1(aco_opcode::v_cvt_f32_u32, Definition(dst), src);
2301 }
2302 break;
2303 }
2304 case nir_op_u2f64: {
2305 if (instr->src[0].src.ssa->bit_size <= 32) {
2306 Temp src = get_alu_src(ctx, instr->src[0]);
2307 if (instr->src[0].src.ssa->bit_size <= 16)
2308 src = convert_int(bld, src, instr->src[0].src.ssa->bit_size, 32, false);
2309 bld.vop1(aco_opcode::v_cvt_f64_u32, Definition(dst), src);
2310 } else if (instr->src[0].src.ssa->bit_size == 64) {
2311 Temp src = get_alu_src(ctx, instr->src[0]);
2312 RegClass rc = RegClass(src.type(), 1);
2313 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
2314 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
2315 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
2316 upper = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), upper);
2317 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
2318 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
2319 } else {
2320 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2321 nir_print_instr(&instr->instr, stderr);
2322 fprintf(stderr, "\n");
2323 }
2324 break;
2325 }
2326 case nir_op_f2i8:
2327 case nir_op_f2i16: {
2328 Temp src = get_alu_src(ctx, instr->src[0]);
2329 if (instr->src[0].src.ssa->bit_size == 16)
2330 src = bld.vop1(aco_opcode::v_cvt_i16_f16, bld.def(v1), src);
2331 else if (instr->src[0].src.ssa->bit_size == 32)
2332 src = bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), src);
2333 else
2334 src = bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), src);
2335
2336 if (dst.type() == RegType::vgpr)
2337 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(0u));
2338 else
2339 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
2340 break;
2341 }
2342 case nir_op_f2u8:
2343 case nir_op_f2u16: {
2344 Temp src = get_alu_src(ctx, instr->src[0]);
2345 if (instr->src[0].src.ssa->bit_size == 16)
2346 src = bld.vop1(aco_opcode::v_cvt_u16_f16, bld.def(v1), src);
2347 else if (instr->src[0].src.ssa->bit_size == 32)
2348 src = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), src);
2349 else
2350 src = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), src);
2351
2352 if (dst.type() == RegType::vgpr)
2353 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(0u));
2354 else
2355 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
2356 break;
2357 }
2358 case nir_op_f2i32: {
2359 Temp src = get_alu_src(ctx, instr->src[0]);
2360 if (instr->src[0].src.ssa->bit_size == 16) {
2361 Temp tmp = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2362 if (dst.type() == RegType::vgpr) {
2363 bld.vop1(aco_opcode::v_cvt_i32_f32, Definition(dst), tmp);
2364 } else {
2365 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2366 bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), tmp));
2367 }
2368 } else if (instr->src[0].src.ssa->bit_size == 32) {
2369 if (dst.type() == RegType::vgpr)
2370 bld.vop1(aco_opcode::v_cvt_i32_f32, Definition(dst), src);
2371 else
2372 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2373 bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), src));
2374
2375 } else if (instr->src[0].src.ssa->bit_size == 64) {
2376 if (dst.type() == RegType::vgpr)
2377 bld.vop1(aco_opcode::v_cvt_i32_f64, Definition(dst), src);
2378 else
2379 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2380 bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), src));
2381
2382 } else {
2383 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2384 nir_print_instr(&instr->instr, stderr);
2385 fprintf(stderr, "\n");
2386 }
2387 break;
2388 }
2389 case nir_op_f2u32: {
2390 Temp src = get_alu_src(ctx, instr->src[0]);
2391 if (instr->src[0].src.ssa->bit_size == 16) {
2392 Temp tmp = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2393 if (dst.type() == RegType::vgpr) {
2394 bld.vop1(aco_opcode::v_cvt_u32_f32, Definition(dst), tmp);
2395 } else {
2396 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2397 bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), tmp));
2398 }
2399 } else if (instr->src[0].src.ssa->bit_size == 32) {
2400 if (dst.type() == RegType::vgpr)
2401 bld.vop1(aco_opcode::v_cvt_u32_f32, Definition(dst), src);
2402 else
2403 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2404 bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), src));
2405
2406 } else if (instr->src[0].src.ssa->bit_size == 64) {
2407 if (dst.type() == RegType::vgpr)
2408 bld.vop1(aco_opcode::v_cvt_u32_f64, Definition(dst), src);
2409 else
2410 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2411 bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), src));
2412
2413 } else {
2414 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2415 nir_print_instr(&instr->instr, stderr);
2416 fprintf(stderr, "\n");
2417 }
2418 break;
2419 }
2420 case nir_op_f2i64: {
2421 Temp src = get_alu_src(ctx, instr->src[0]);
2422 if (instr->src[0].src.ssa->bit_size == 16)
2423 src = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2424
2425 if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::vgpr) {
2426 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2427 exponent = bld.vop3(aco_opcode::v_med3_i32, bld.def(v1), Operand(0x0u), exponent, Operand(64u));
2428 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2429 Temp sign = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
2430 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2431 mantissa = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(7u), mantissa);
2432 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2433 Temp new_exponent = bld.tmp(v1);
2434 Temp borrow = bld.vsub32(Definition(new_exponent), Operand(63u), exponent, true).def(1).getTemp();
2435 if (ctx->program->chip_class >= GFX8)
2436 mantissa = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), new_exponent, mantissa);
2437 else
2438 mantissa = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), mantissa, new_exponent);
2439 Temp saturate = bld.vop1(aco_opcode::v_bfrev_b32, bld.def(v1), Operand(0xfffffffeu));
2440 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2441 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2442 lower = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), lower, Operand(0xffffffffu), borrow);
2443 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), upper, saturate, borrow);
2444 lower = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, lower);
2445 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, upper);
2446 Temp new_lower = bld.tmp(v1);
2447 borrow = bld.vsub32(Definition(new_lower), lower, sign, true).def(1).getTemp();
2448 Temp new_upper = bld.vsub32(bld.def(v1), upper, sign, false, borrow);
2449 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), new_lower, new_upper);
2450
2451 } else if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::sgpr) {
2452 if (src.type() == RegType::vgpr)
2453 src = bld.as_uniform(src);
2454 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2455 exponent = bld.sop2(aco_opcode::s_sub_i32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2456 exponent = bld.sop2(aco_opcode::s_max_i32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2457 exponent = bld.sop2(aco_opcode::s_min_i32, bld.def(s1), bld.def(s1, scc), Operand(64u), exponent);
2458 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2459 Temp sign = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
2460 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2461 mantissa = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), mantissa, Operand(7u));
2462 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2463 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(63u), exponent);
2464 mantissa = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent);
2465 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), exponent, Operand(0xffffffffu)); // exp >= 64
2466 Temp saturate = bld.sop1(aco_opcode::s_brev_b64, bld.def(s2), Operand(0xfffffffeu));
2467 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), saturate, mantissa, cond);
2468 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2469 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2470 lower = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, lower);
2471 upper = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, upper);
2472 Temp borrow = bld.tmp(s1);
2473 lower = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), lower, sign);
2474 upper = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), upper, sign, borrow);
2475 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2476
2477 } else if (instr->src[0].src.ssa->bit_size == 64) {
2478 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2479 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2480 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2481 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2482 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2483 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2484 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2485 Temp upper = bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), floor);
2486 if (dst.type() == RegType::sgpr) {
2487 lower = bld.as_uniform(lower);
2488 upper = bld.as_uniform(upper);
2489 }
2490 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2491
2492 } else {
2493 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2494 nir_print_instr(&instr->instr, stderr);
2495 fprintf(stderr, "\n");
2496 }
2497 break;
2498 }
2499 case nir_op_f2u64: {
2500 Temp src = get_alu_src(ctx, instr->src[0]);
2501 if (instr->src[0].src.ssa->bit_size == 16)
2502 src = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2503
2504 if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::vgpr) {
2505 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2506 Temp exponent_in_range = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(64u), exponent);
2507 exponent = bld.vop2(aco_opcode::v_max_i32, bld.def(v1), Operand(0x0u), exponent);
2508 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2509 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2510 Temp exponent_small = bld.vsub32(bld.def(v1), Operand(24u), exponent);
2511 Temp small = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), exponent_small, mantissa);
2512 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2513 Temp new_exponent = bld.tmp(v1);
2514 Temp cond_small = bld.vsub32(Definition(new_exponent), exponent, Operand(24u), true).def(1).getTemp();
2515 if (ctx->program->chip_class >= GFX8)
2516 mantissa = bld.vop3(aco_opcode::v_lshlrev_b64, bld.def(v2), new_exponent, mantissa);
2517 else
2518 mantissa = bld.vop3(aco_opcode::v_lshl_b64, bld.def(v2), mantissa, new_exponent);
2519 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2520 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2521 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), lower, small, cond_small);
2522 upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), upper, Operand(0u), cond_small);
2523 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), lower, exponent_in_range);
2524 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), upper, exponent_in_range);
2525 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2526
2527 } else if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::sgpr) {
2528 if (src.type() == RegType::vgpr)
2529 src = bld.as_uniform(src);
2530 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2531 exponent = bld.sop2(aco_opcode::s_sub_i32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2532 exponent = bld.sop2(aco_opcode::s_max_i32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2533 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2534 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2535 Temp exponent_small = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(24u), exponent);
2536 Temp small = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), mantissa, exponent_small);
2537 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2538 Temp exponent_large = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(24u));
2539 mantissa = bld.sop2(aco_opcode::s_lshl_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent_large);
2540 Temp cond = bld.sopc(aco_opcode::s_cmp_ge_i32, bld.def(s1, scc), Operand(64u), exponent);
2541 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), mantissa, Operand(0xffffffffu), cond);
2542 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2543 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2544 Temp cond_small = bld.sopc(aco_opcode::s_cmp_le_i32, bld.def(s1, scc), exponent, Operand(24u));
2545 lower = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), small, lower, cond_small);
2546 upper = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), Operand(0u), upper, cond_small);
2547 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2548
2549 } else if (instr->src[0].src.ssa->bit_size == 64) {
2550 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2551 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2552 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2553 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2554 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2555 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2556 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2557 Temp upper = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), floor);
2558 if (dst.type() == RegType::sgpr) {
2559 lower = bld.as_uniform(lower);
2560 upper = bld.as_uniform(upper);
2561 }
2562 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2563
2564 } else {
2565 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2566 nir_print_instr(&instr->instr, stderr);
2567 fprintf(stderr, "\n");
2568 }
2569 break;
2570 }
2571 case nir_op_b2f16: {
2572 Temp src = get_alu_src(ctx, instr->src[0]);
2573 assert(src.regClass() == bld.lm);
2574
2575 if (dst.regClass() == s1) {
2576 src = bool_to_scalar_condition(ctx, src);
2577 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3c00u), src);
2578 } else if (dst.regClass() == v2b) {
2579 Temp one = bld.copy(bld.def(v1), Operand(0x3c00u));
2580 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), one, src);
2581 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2582 } else {
2583 unreachable("Wrong destination register class for nir_op_b2f16.");
2584 }
2585 break;
2586 }
2587 case nir_op_b2f32: {
2588 Temp src = get_alu_src(ctx, instr->src[0]);
2589 assert(src.regClass() == bld.lm);
2590
2591 if (dst.regClass() == s1) {
2592 src = bool_to_scalar_condition(ctx, src);
2593 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3f800000u), src);
2594 } else if (dst.regClass() == v1) {
2595 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
2596 } else {
2597 unreachable("Wrong destination register class for nir_op_b2f32.");
2598 }
2599 break;
2600 }
2601 case nir_op_b2f64: {
2602 Temp src = get_alu_src(ctx, instr->src[0]);
2603 assert(src.regClass() == bld.lm);
2604
2605 if (dst.regClass() == s2) {
2606 src = bool_to_scalar_condition(ctx, src);
2607 bld.sop2(aco_opcode::s_cselect_b64, Definition(dst), Operand(0x3f800000u), Operand(0u), bld.scc(src));
2608 } else if (dst.regClass() == v2) {
2609 Temp one = bld.vop1(aco_opcode::v_mov_b32, bld.def(v2), Operand(0x3FF00000u));
2610 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), one, src);
2611 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
2612 } else {
2613 unreachable("Wrong destination register class for nir_op_b2f64.");
2614 }
2615 break;
2616 }
2617 case nir_op_i2i8:
2618 case nir_op_i2i16:
2619 case nir_op_i2i32:
2620 case nir_op_i2i64: {
2621 convert_int(bld, get_alu_src(ctx, instr->src[0]),
2622 instr->src[0].src.ssa->bit_size, instr->dest.dest.ssa.bit_size, true, dst);
2623 break;
2624 }
2625 case nir_op_u2u8:
2626 case nir_op_u2u16:
2627 case nir_op_u2u32:
2628 case nir_op_u2u64: {
2629 convert_int(bld, get_alu_src(ctx, instr->src[0]),
2630 instr->src[0].src.ssa->bit_size, instr->dest.dest.ssa.bit_size, false, dst);
2631 break;
2632 }
2633 case nir_op_b2b32:
2634 case nir_op_b2i32: {
2635 Temp src = get_alu_src(ctx, instr->src[0]);
2636 assert(src.regClass() == bld.lm);
2637
2638 if (dst.regClass() == s1) {
2639 // TODO: in a post-RA optimization, we can check if src is in VCC, and directly use VCCNZ
2640 bool_to_scalar_condition(ctx, src, dst);
2641 } else if (dst.regClass() == v1) {
2642 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), src);
2643 } else {
2644 unreachable("Invalid register class for b2i32");
2645 }
2646 break;
2647 }
2648 case nir_op_b2b1:
2649 case nir_op_i2b1: {
2650 Temp src = get_alu_src(ctx, instr->src[0]);
2651 assert(dst.regClass() == bld.lm);
2652
2653 if (src.type() == RegType::vgpr) {
2654 assert(src.regClass() == v1 || src.regClass() == v2);
2655 assert(dst.regClass() == bld.lm);
2656 bld.vopc(src.size() == 2 ? aco_opcode::v_cmp_lg_u64 : aco_opcode::v_cmp_lg_u32,
2657 Definition(dst), Operand(0u), src).def(0).setHint(vcc);
2658 } else {
2659 assert(src.regClass() == s1 || src.regClass() == s2);
2660 Temp tmp;
2661 if (src.regClass() == s2 && ctx->program->chip_class <= GFX7) {
2662 tmp = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), Operand(0u), src).def(1).getTemp();
2663 } else {
2664 tmp = bld.sopc(src.size() == 2 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::s_cmp_lg_u32,
2665 bld.scc(bld.def(s1)), Operand(0u), src);
2666 }
2667 bool_to_vector_condition(ctx, tmp, dst);
2668 }
2669 break;
2670 }
2671 case nir_op_pack_64_2x32_split: {
2672 Temp src0 = get_alu_src(ctx, instr->src[0]);
2673 Temp src1 = get_alu_src(ctx, instr->src[1]);
2674
2675 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
2676 break;
2677 }
2678 case nir_op_unpack_64_2x32_split_x:
2679 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
2680 break;
2681 case nir_op_unpack_64_2x32_split_y:
2682 bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
2683 break;
2684 case nir_op_unpack_32_2x16_split_x:
2685 if (dst.type() == RegType::vgpr) {
2686 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
2687 } else {
2688 bld.copy(Definition(dst), get_alu_src(ctx, instr->src[0]));
2689 }
2690 break;
2691 case nir_op_unpack_32_2x16_split_y:
2692 if (dst.type() == RegType::vgpr) {
2693 bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
2694 } else {
2695 bld.sop2(aco_opcode::s_bfe_u32, Definition(dst), bld.def(s1, scc), get_alu_src(ctx, instr->src[0]), Operand(uint32_t(16 << 16 | 16)));
2696 }
2697 break;
2698 case nir_op_pack_32_2x16_split: {
2699 Temp src0 = get_alu_src(ctx, instr->src[0]);
2700 Temp src1 = get_alu_src(ctx, instr->src[1]);
2701 if (dst.regClass() == v1) {
2702 src0 = emit_extract_vector(ctx, src0, 0, v2b);
2703 src1 = emit_extract_vector(ctx, src1, 0, v2b);
2704 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
2705 } else {
2706 src0 = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), src0, Operand(0xFFFFu));
2707 src1 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), src1, Operand(16u));
2708 bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), src0, src1);
2709 }
2710 break;
2711 }
2712 case nir_op_pack_half_2x16: {
2713 Temp src = get_alu_src(ctx, instr->src[0], 2);
2714
2715 if (dst.regClass() == v1) {
2716 Temp src0 = bld.tmp(v1);
2717 Temp src1 = bld.tmp(v1);
2718 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
2719 if (!ctx->block->fp_mode.care_about_round32 || ctx->block->fp_mode.round32 == fp_round_tz)
2720 bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, Definition(dst), src0, src1);
2721 else
2722 bld.vop3(aco_opcode::v_cvt_pk_u16_u32, Definition(dst),
2723 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src0),
2724 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src1));
2725 } else {
2726 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2727 nir_print_instr(&instr->instr, stderr);
2728 fprintf(stderr, "\n");
2729 }
2730 break;
2731 }
2732 case nir_op_unpack_half_2x16_split_x: {
2733 if (dst.regClass() == v1) {
2734 Builder bld(ctx->program, ctx->block);
2735 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst), get_alu_src(ctx, instr->src[0]));
2736 } else {
2737 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2738 nir_print_instr(&instr->instr, stderr);
2739 fprintf(stderr, "\n");
2740 }
2741 break;
2742 }
2743 case nir_op_unpack_half_2x16_split_y: {
2744 if (dst.regClass() == v1) {
2745 Builder bld(ctx->program, ctx->block);
2746 /* TODO: use SDWA here */
2747 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst),
2748 bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), as_vgpr(ctx, get_alu_src(ctx, instr->src[0]))));
2749 } else {
2750 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2751 nir_print_instr(&instr->instr, stderr);
2752 fprintf(stderr, "\n");
2753 }
2754 break;
2755 }
2756 case nir_op_fquantize2f16: {
2757 Temp src = get_alu_src(ctx, instr->src[0]);
2758 Temp f16 = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), src);
2759 Temp f32, cmp_res;
2760
2761 if (ctx->program->chip_class >= GFX8) {
2762 Temp mask = bld.copy(bld.def(s1), Operand(0x36Fu)); /* value is NOT negative/positive denormal value */
2763 cmp_res = bld.vopc_e64(aco_opcode::v_cmp_class_f16, bld.hint_vcc(bld.def(bld.lm)), f16, mask);
2764 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2765 } else {
2766 /* 0x38800000 is smallest half float value (2^-14) in 32-bit float,
2767 * so compare the result and flush to 0 if it's smaller.
2768 */
2769 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2770 Temp smallest = bld.copy(bld.def(s1), Operand(0x38800000u));
2771 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), f32, smallest);
2772 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
2773 cmp_res = vop3->definitions[0].getTemp();
2774 }
2775
2776 if (ctx->block->fp_mode.preserve_signed_zero_inf_nan32 || ctx->program->chip_class < GFX8) {
2777 Temp copysign_0 = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0u), as_vgpr(ctx, src));
2778 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), copysign_0, f32, cmp_res);
2779 } else {
2780 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), f32, cmp_res);
2781 }
2782 break;
2783 }
2784 case nir_op_bfm: {
2785 Temp bits = get_alu_src(ctx, instr->src[0]);
2786 Temp offset = get_alu_src(ctx, instr->src[1]);
2787
2788 if (dst.regClass() == s1) {
2789 bld.sop2(aco_opcode::s_bfm_b32, Definition(dst), bits, offset);
2790 } else if (dst.regClass() == v1) {
2791 bld.vop3(aco_opcode::v_bfm_b32, Definition(dst), bits, offset);
2792 } else {
2793 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2794 nir_print_instr(&instr->instr, stderr);
2795 fprintf(stderr, "\n");
2796 }
2797 break;
2798 }
2799 case nir_op_bitfield_select: {
2800 /* (mask & insert) | (~mask & base) */
2801 Temp bitmask = get_alu_src(ctx, instr->src[0]);
2802 Temp insert = get_alu_src(ctx, instr->src[1]);
2803 Temp base = get_alu_src(ctx, instr->src[2]);
2804
2805 /* dst = (insert & bitmask) | (base & ~bitmask) */
2806 if (dst.regClass() == s1) {
2807 aco_ptr<Instruction> sop2;
2808 nir_const_value* const_bitmask = nir_src_as_const_value(instr->src[0].src);
2809 nir_const_value* const_insert = nir_src_as_const_value(instr->src[1].src);
2810 Operand lhs;
2811 if (const_insert && const_bitmask) {
2812 lhs = Operand(const_insert->u32 & const_bitmask->u32);
2813 } else {
2814 insert = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), insert, bitmask);
2815 lhs = Operand(insert);
2816 }
2817
2818 Operand rhs;
2819 nir_const_value* const_base = nir_src_as_const_value(instr->src[2].src);
2820 if (const_base && const_bitmask) {
2821 rhs = Operand(const_base->u32 & ~const_bitmask->u32);
2822 } else {
2823 base = bld.sop2(aco_opcode::s_andn2_b32, bld.def(s1), bld.def(s1, scc), base, bitmask);
2824 rhs = Operand(base);
2825 }
2826
2827 bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), rhs, lhs);
2828
2829 } else if (dst.regClass() == v1) {
2830 if (base.type() == RegType::sgpr && (bitmask.type() == RegType::sgpr || (insert.type() == RegType::sgpr)))
2831 base = as_vgpr(ctx, base);
2832 if (insert.type() == RegType::sgpr && bitmask.type() == RegType::sgpr)
2833 insert = as_vgpr(ctx, insert);
2834
2835 bld.vop3(aco_opcode::v_bfi_b32, Definition(dst), bitmask, insert, base);
2836
2837 } else {
2838 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2839 nir_print_instr(&instr->instr, stderr);
2840 fprintf(stderr, "\n");
2841 }
2842 break;
2843 }
2844 case nir_op_ubfe:
2845 case nir_op_ibfe: {
2846 Temp base = get_alu_src(ctx, instr->src[0]);
2847 Temp offset = get_alu_src(ctx, instr->src[1]);
2848 Temp bits = get_alu_src(ctx, instr->src[2]);
2849
2850 if (dst.type() == RegType::sgpr) {
2851 Operand extract;
2852 nir_const_value* const_offset = nir_src_as_const_value(instr->src[1].src);
2853 nir_const_value* const_bits = nir_src_as_const_value(instr->src[2].src);
2854 if (const_offset && const_bits) {
2855 uint32_t const_extract = (const_bits->u32 << 16) | const_offset->u32;
2856 extract = Operand(const_extract);
2857 } else {
2858 Operand width;
2859 if (const_bits) {
2860 width = Operand(const_bits->u32 << 16);
2861 } else {
2862 width = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), bits, Operand(16u));
2863 }
2864 extract = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), offset, width);
2865 }
2866
2867 aco_opcode opcode;
2868 if (dst.regClass() == s1) {
2869 if (instr->op == nir_op_ubfe)
2870 opcode = aco_opcode::s_bfe_u32;
2871 else
2872 opcode = aco_opcode::s_bfe_i32;
2873 } else if (dst.regClass() == s2) {
2874 if (instr->op == nir_op_ubfe)
2875 opcode = aco_opcode::s_bfe_u64;
2876 else
2877 opcode = aco_opcode::s_bfe_i64;
2878 } else {
2879 unreachable("Unsupported BFE bit size");
2880 }
2881
2882 bld.sop2(opcode, Definition(dst), bld.def(s1, scc), base, extract);
2883
2884 } else {
2885 aco_opcode opcode;
2886 if (dst.regClass() == v1) {
2887 if (instr->op == nir_op_ubfe)
2888 opcode = aco_opcode::v_bfe_u32;
2889 else
2890 opcode = aco_opcode::v_bfe_i32;
2891 } else {
2892 unreachable("Unsupported BFE bit size");
2893 }
2894
2895 emit_vop3a_instruction(ctx, instr, opcode, dst);
2896 }
2897 break;
2898 }
2899 case nir_op_bit_count: {
2900 Temp src = get_alu_src(ctx, instr->src[0]);
2901 if (src.regClass() == s1) {
2902 bld.sop1(aco_opcode::s_bcnt1_i32_b32, Definition(dst), bld.def(s1, scc), src);
2903 } else if (src.regClass() == v1) {
2904 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst), src, Operand(0u));
2905 } else if (src.regClass() == v2) {
2906 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst),
2907 emit_extract_vector(ctx, src, 1, v1),
2908 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1),
2909 emit_extract_vector(ctx, src, 0, v1), Operand(0u)));
2910 } else if (src.regClass() == s2) {
2911 bld.sop1(aco_opcode::s_bcnt1_i32_b64, Definition(dst), bld.def(s1, scc), src);
2912 } else {
2913 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2914 nir_print_instr(&instr->instr, stderr);
2915 fprintf(stderr, "\n");
2916 }
2917 break;
2918 }
2919 case nir_op_flt: {
2920 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_f16, aco_opcode::v_cmp_lt_f32, aco_opcode::v_cmp_lt_f64);
2921 break;
2922 }
2923 case nir_op_fge: {
2924 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_f16, aco_opcode::v_cmp_ge_f32, aco_opcode::v_cmp_ge_f64);
2925 break;
2926 }
2927 case nir_op_feq: {
2928 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_f16, aco_opcode::v_cmp_eq_f32, aco_opcode::v_cmp_eq_f64);
2929 break;
2930 }
2931 case nir_op_fne: {
2932 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_neq_f16, aco_opcode::v_cmp_neq_f32, aco_opcode::v_cmp_neq_f64);
2933 break;
2934 }
2935 case nir_op_ilt: {
2936 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_i16, aco_opcode::v_cmp_lt_i32, aco_opcode::v_cmp_lt_i64, aco_opcode::s_cmp_lt_i32);
2937 break;
2938 }
2939 case nir_op_ige: {
2940 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_i16, aco_opcode::v_cmp_ge_i32, aco_opcode::v_cmp_ge_i64, aco_opcode::s_cmp_ge_i32);
2941 break;
2942 }
2943 case nir_op_ieq: {
2944 if (instr->src[0].src.ssa->bit_size == 1)
2945 emit_boolean_logic(ctx, instr, Builder::s_xnor, dst);
2946 else
2947 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_i16, aco_opcode::v_cmp_eq_i32, aco_opcode::v_cmp_eq_i64, aco_opcode::s_cmp_eq_i32,
2948 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_eq_u64 : aco_opcode::num_opcodes);
2949 break;
2950 }
2951 case nir_op_ine: {
2952 if (instr->src[0].src.ssa->bit_size == 1)
2953 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
2954 else
2955 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lg_i16, aco_opcode::v_cmp_lg_i32, aco_opcode::v_cmp_lg_i64, aco_opcode::s_cmp_lg_i32,
2956 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::num_opcodes);
2957 break;
2958 }
2959 case nir_op_ult: {
2960 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_u16, aco_opcode::v_cmp_lt_u32, aco_opcode::v_cmp_lt_u64, aco_opcode::s_cmp_lt_u32);
2961 break;
2962 }
2963 case nir_op_uge: {
2964 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_u16, aco_opcode::v_cmp_ge_u32, aco_opcode::v_cmp_ge_u64, aco_opcode::s_cmp_ge_u32);
2965 break;
2966 }
2967 case nir_op_fddx:
2968 case nir_op_fddy:
2969 case nir_op_fddx_fine:
2970 case nir_op_fddy_fine:
2971 case nir_op_fddx_coarse:
2972 case nir_op_fddy_coarse: {
2973 Temp src = get_alu_src(ctx, instr->src[0]);
2974 uint16_t dpp_ctrl1, dpp_ctrl2;
2975 if (instr->op == nir_op_fddx_fine) {
2976 dpp_ctrl1 = dpp_quad_perm(0, 0, 2, 2);
2977 dpp_ctrl2 = dpp_quad_perm(1, 1, 3, 3);
2978 } else if (instr->op == nir_op_fddy_fine) {
2979 dpp_ctrl1 = dpp_quad_perm(0, 1, 0, 1);
2980 dpp_ctrl2 = dpp_quad_perm(2, 3, 2, 3);
2981 } else {
2982 dpp_ctrl1 = dpp_quad_perm(0, 0, 0, 0);
2983 if (instr->op == nir_op_fddx || instr->op == nir_op_fddx_coarse)
2984 dpp_ctrl2 = dpp_quad_perm(1, 1, 1, 1);
2985 else
2986 dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
2987 }
2988
2989 Temp tmp;
2990 if (ctx->program->chip_class >= GFX8) {
2991 Temp tl = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl1);
2992 tmp = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), src, tl, dpp_ctrl2);
2993 } else {
2994 Temp tl = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl1);
2995 Temp tr = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl2);
2996 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), tr, tl);
2997 }
2998 emit_wqm(ctx, tmp, dst, true);
2999 break;
3000 }
3001 default:
3002 fprintf(stderr, "Unknown NIR ALU instr: ");
3003 nir_print_instr(&instr->instr, stderr);
3004 fprintf(stderr, "\n");
3005 }
3006 }
3007
3008 void visit_load_const(isel_context *ctx, nir_load_const_instr *instr)
3009 {
3010 Temp dst = get_ssa_temp(ctx, &instr->def);
3011
3012 // TODO: we really want to have the resulting type as this would allow for 64bit literals
3013 // which get truncated the lsb if double and msb if int
3014 // for now, we only use s_mov_b64 with 64bit inline constants
3015 assert(instr->def.num_components == 1 && "Vector load_const should be lowered to scalar.");
3016 assert(dst.type() == RegType::sgpr);
3017
3018 Builder bld(ctx->program, ctx->block);
3019
3020 if (instr->def.bit_size == 1) {
3021 assert(dst.regClass() == bld.lm);
3022 int val = instr->value[0].b ? -1 : 0;
3023 Operand op = bld.lm.size() == 1 ? Operand((uint32_t) val) : Operand((uint64_t) val);
3024 bld.sop1(Builder::s_mov, Definition(dst), op);
3025 } else if (instr->def.bit_size == 8) {
3026 /* ensure that the value is correctly represented in the low byte of the register */
3027 bld.sopk(aco_opcode::s_movk_i32, Definition(dst), instr->value[0].u8);
3028 } else if (instr->def.bit_size == 16) {
3029 /* ensure that the value is correctly represented in the low half of the register */
3030 bld.sopk(aco_opcode::s_movk_i32, Definition(dst), instr->value[0].u16);
3031 } else if (dst.size() == 1) {
3032 bld.copy(Definition(dst), Operand(instr->value[0].u32));
3033 } else {
3034 assert(dst.size() != 1);
3035 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
3036 if (instr->def.bit_size == 64)
3037 for (unsigned i = 0; i < dst.size(); i++)
3038 vec->operands[i] = Operand{(uint32_t)(instr->value[0].u64 >> i * 32)};
3039 else {
3040 for (unsigned i = 0; i < dst.size(); i++)
3041 vec->operands[i] = Operand{instr->value[i].u32};
3042 }
3043 vec->definitions[0] = Definition(dst);
3044 ctx->block->instructions.emplace_back(std::move(vec));
3045 }
3046 }
3047
3048 uint32_t widen_mask(uint32_t mask, unsigned multiplier)
3049 {
3050 uint32_t new_mask = 0;
3051 for(unsigned i = 0; i < 32 && (1u << i) <= mask; ++i)
3052 if (mask & (1u << i))
3053 new_mask |= ((1u << multiplier) - 1u) << (i * multiplier);
3054 return new_mask;
3055 }
3056
3057 Operand load_lds_size_m0(isel_context *ctx)
3058 {
3059 /* TODO: m0 does not need to be initialized on GFX9+ */
3060 Builder bld(ctx->program, ctx->block);
3061 return bld.m0((Temp)bld.sopk(aco_opcode::s_movk_i32, bld.def(s1, m0), 0xffff));
3062 }
3063
3064 Temp load_lds(isel_context *ctx, unsigned elem_size_bytes, Temp dst,
3065 Temp address, unsigned base_offset, unsigned align)
3066 {
3067 assert(util_is_power_of_two_nonzero(align) && align >= 4);
3068
3069 Builder bld(ctx->program, ctx->block);
3070
3071 Operand m = load_lds_size_m0(ctx);
3072
3073 unsigned num_components = dst.size() * 4u / elem_size_bytes;
3074 unsigned bytes_read = 0;
3075 unsigned result_size = 0;
3076 unsigned total_bytes = num_components * elem_size_bytes;
3077 std::array<Temp, NIR_MAX_VEC_COMPONENTS> result;
3078 bool large_ds_read = ctx->options->chip_class >= GFX7;
3079 bool usable_read2 = ctx->options->chip_class >= GFX7;
3080
3081 while (bytes_read < total_bytes) {
3082 unsigned todo = total_bytes - bytes_read;
3083 bool aligned8 = bytes_read % 8 == 0 && align % 8 == 0;
3084 bool aligned16 = bytes_read % 16 == 0 && align % 16 == 0;
3085
3086 aco_opcode op = aco_opcode::last_opcode;
3087 bool read2 = false;
3088 if (todo >= 16 && aligned16 && large_ds_read) {
3089 op = aco_opcode::ds_read_b128;
3090 todo = 16;
3091 } else if (todo >= 16 && aligned8 && usable_read2) {
3092 op = aco_opcode::ds_read2_b64;
3093 read2 = true;
3094 todo = 16;
3095 } else if (todo >= 12 && aligned16 && large_ds_read) {
3096 op = aco_opcode::ds_read_b96;
3097 todo = 12;
3098 } else if (todo >= 8 && aligned8) {
3099 op = aco_opcode::ds_read_b64;
3100 todo = 8;
3101 } else if (todo >= 8 && usable_read2) {
3102 op = aco_opcode::ds_read2_b32;
3103 read2 = true;
3104 todo = 8;
3105 } else if (todo >= 4) {
3106 op = aco_opcode::ds_read_b32;
3107 todo = 4;
3108 } else {
3109 assert(false);
3110 }
3111 assert(todo % elem_size_bytes == 0);
3112 unsigned num_elements = todo / elem_size_bytes;
3113 unsigned offset = base_offset + bytes_read;
3114 unsigned max_offset = read2 ? 1019 : 65535;
3115
3116 Temp address_offset = address;
3117 if (offset > max_offset) {
3118 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
3119 offset = bytes_read;
3120 }
3121 assert(offset <= max_offset); /* bytes_read shouldn't be large enough for this to happen */
3122
3123 Temp res;
3124 if (num_components == 1 && dst.type() == RegType::vgpr)
3125 res = dst;
3126 else
3127 res = bld.tmp(RegClass(RegType::vgpr, todo / 4));
3128
3129 if (read2)
3130 res = bld.ds(op, Definition(res), address_offset, m, offset / (todo / 2), (offset / (todo / 2)) + 1);
3131 else
3132 res = bld.ds(op, Definition(res), address_offset, m, offset);
3133
3134 if (num_components == 1) {
3135 assert(todo == total_bytes);
3136 if (dst.type() == RegType::sgpr)
3137 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), res);
3138 return dst;
3139 }
3140
3141 if (dst.type() == RegType::sgpr) {
3142 Temp new_res = bld.tmp(RegType::sgpr, res.size());
3143 expand_vector(ctx, res, new_res, res.size(), (1 << res.size()) - 1);
3144 res = new_res;
3145 }
3146
3147 if (num_elements == 1) {
3148 result[result_size++] = res;
3149 } else {
3150 assert(res != dst && res.size() % num_elements == 0);
3151 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_elements)};
3152 split->operands[0] = Operand(res);
3153 for (unsigned i = 0; i < num_elements; i++)
3154 split->definitions[i] = Definition(result[result_size++] = bld.tmp(res.type(), elem_size_bytes / 4));
3155 ctx->block->instructions.emplace_back(std::move(split));
3156 }
3157
3158 bytes_read += todo;
3159 }
3160
3161 assert(result_size == num_components && result_size > 1);
3162 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, result_size, 1)};
3163 for (unsigned i = 0; i < result_size; i++)
3164 vec->operands[i] = Operand(result[i]);
3165 vec->definitions[0] = Definition(dst);
3166 ctx->block->instructions.emplace_back(std::move(vec));
3167 ctx->allocated_vec.emplace(dst.id(), result);
3168
3169 return dst;
3170 }
3171
3172 Temp extract_subvector(isel_context *ctx, Temp data, unsigned start, unsigned size, RegType type)
3173 {
3174 if (start == 0 && size == data.size())
3175 return type == RegType::vgpr ? as_vgpr(ctx, data) : data;
3176
3177 unsigned size_hint = 1;
3178 auto it = ctx->allocated_vec.find(data.id());
3179 if (it != ctx->allocated_vec.end())
3180 size_hint = it->second[0].size();
3181 if (size % size_hint || start % size_hint)
3182 size_hint = 1;
3183
3184 start /= size_hint;
3185 size /= size_hint;
3186
3187 Temp elems[size];
3188 for (unsigned i = 0; i < size; i++)
3189 elems[i] = emit_extract_vector(ctx, data, start + i, RegClass(type, size_hint));
3190
3191 if (size == 1)
3192 return type == RegType::vgpr ? as_vgpr(ctx, elems[0]) : elems[0];
3193
3194 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
3195 for (unsigned i = 0; i < size; i++)
3196 vec->operands[i] = Operand(elems[i]);
3197 Temp res = {ctx->program->allocateId(), RegClass(type, size * size_hint)};
3198 vec->definitions[0] = Definition(res);
3199 ctx->block->instructions.emplace_back(std::move(vec));
3200 return res;
3201 }
3202
3203 void ds_write_helper(isel_context *ctx, Operand m, Temp address, Temp data, unsigned data_start, unsigned total_size, unsigned offset0, unsigned offset1, unsigned align)
3204 {
3205 Builder bld(ctx->program, ctx->block);
3206 unsigned bytes_written = 0;
3207 bool large_ds_write = ctx->options->chip_class >= GFX7;
3208 bool usable_write2 = ctx->options->chip_class >= GFX7;
3209
3210 while (bytes_written < total_size * 4) {
3211 unsigned todo = total_size * 4 - bytes_written;
3212 bool aligned8 = bytes_written % 8 == 0 && align % 8 == 0;
3213 bool aligned16 = bytes_written % 16 == 0 && align % 16 == 0;
3214
3215 aco_opcode op = aco_opcode::last_opcode;
3216 bool write2 = false;
3217 unsigned size = 0;
3218 if (todo >= 16 && aligned16 && large_ds_write) {
3219 op = aco_opcode::ds_write_b128;
3220 size = 4;
3221 } else if (todo >= 16 && aligned8 && usable_write2) {
3222 op = aco_opcode::ds_write2_b64;
3223 write2 = true;
3224 size = 4;
3225 } else if (todo >= 12 && aligned16 && large_ds_write) {
3226 op = aco_opcode::ds_write_b96;
3227 size = 3;
3228 } else if (todo >= 8 && aligned8) {
3229 op = aco_opcode::ds_write_b64;
3230 size = 2;
3231 } else if (todo >= 8 && usable_write2) {
3232 op = aco_opcode::ds_write2_b32;
3233 write2 = true;
3234 size = 2;
3235 } else if (todo >= 4) {
3236 op = aco_opcode::ds_write_b32;
3237 size = 1;
3238 } else {
3239 assert(false);
3240 }
3241
3242 unsigned offset = offset0 + offset1 + bytes_written;
3243 unsigned max_offset = write2 ? 1020 : 65535;
3244 Temp address_offset = address;
3245 if (offset > max_offset) {
3246 address_offset = bld.vadd32(bld.def(v1), Operand(offset0), address_offset);
3247 offset = offset1 + bytes_written;
3248 }
3249 assert(offset <= max_offset); /* offset1 shouldn't be large enough for this to happen */
3250
3251 if (write2) {
3252 Temp val0 = extract_subvector(ctx, data, data_start + (bytes_written >> 2), size / 2, RegType::vgpr);
3253 Temp val1 = extract_subvector(ctx, data, data_start + (bytes_written >> 2) + 1, size / 2, RegType::vgpr);
3254 bld.ds(op, address_offset, val0, val1, m, offset / size / 2, (offset / size / 2) + 1);
3255 } else {
3256 Temp val = extract_subvector(ctx, data, data_start + (bytes_written >> 2), size, RegType::vgpr);
3257 bld.ds(op, address_offset, val, m, offset);
3258 }
3259
3260 bytes_written += size * 4;
3261 }
3262 }
3263
3264 void store_lds(isel_context *ctx, unsigned elem_size_bytes, Temp data, uint32_t wrmask,
3265 Temp address, unsigned base_offset, unsigned align)
3266 {
3267 assert(util_is_power_of_two_nonzero(align) && align >= 4);
3268 assert(elem_size_bytes == 4 || elem_size_bytes == 8);
3269
3270 Operand m = load_lds_size_m0(ctx);
3271
3272 /* we need at most two stores, assuming that the writemask is at most 4 bits wide */
3273 assert(wrmask <= 0x0f);
3274 int start[2], count[2];
3275 u_bit_scan_consecutive_range(&wrmask, &start[0], &count[0]);
3276 u_bit_scan_consecutive_range(&wrmask, &start[1], &count[1]);
3277 assert(wrmask == 0);
3278
3279 /* one combined store is sufficient */
3280 if (count[0] == count[1] && (align % elem_size_bytes) == 0 && (base_offset % elem_size_bytes) == 0) {
3281 Builder bld(ctx->program, ctx->block);
3282
3283 Temp address_offset = address;
3284 if ((base_offset / elem_size_bytes) + start[1] > 255) {
3285 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
3286 base_offset = 0;
3287 }
3288
3289 assert(count[0] == 1);
3290 RegClass xtract_rc(RegType::vgpr, elem_size_bytes / 4);
3291
3292 Temp val0 = emit_extract_vector(ctx, data, start[0], xtract_rc);
3293 Temp val1 = emit_extract_vector(ctx, data, start[1], xtract_rc);
3294 aco_opcode op = elem_size_bytes == 4 ? aco_opcode::ds_write2_b32 : aco_opcode::ds_write2_b64;
3295 base_offset = base_offset / elem_size_bytes;
3296 bld.ds(op, address_offset, val0, val1, m,
3297 base_offset + start[0], base_offset + start[1]);
3298 return;
3299 }
3300
3301 for (unsigned i = 0; i < 2; i++) {
3302 if (count[i] == 0)
3303 continue;
3304
3305 unsigned elem_size_words = elem_size_bytes / 4;
3306 ds_write_helper(ctx, m, address, data, start[i] * elem_size_words, count[i] * elem_size_words,
3307 base_offset, start[i] * elem_size_bytes, align);
3308 }
3309 return;
3310 }
3311
3312 unsigned calculate_lds_alignment(isel_context *ctx, unsigned const_offset)
3313 {
3314 unsigned align = 16;
3315 if (const_offset)
3316 align = std::min(align, 1u << (ffs(const_offset) - 1));
3317
3318 return align;
3319 }
3320
3321
3322 Temp create_vec_from_array(isel_context *ctx, Temp arr[], unsigned cnt, RegType reg_type, unsigned elem_size_bytes,
3323 unsigned split_cnt = 0u, Temp dst = Temp())
3324 {
3325 Builder bld(ctx->program, ctx->block);
3326 unsigned dword_size = elem_size_bytes / 4;
3327
3328 if (!dst.id())
3329 dst = bld.tmp(RegClass(reg_type, cnt * dword_size));
3330
3331 std::array<Temp, NIR_MAX_VEC_COMPONENTS> allocated_vec;
3332 aco_ptr<Pseudo_instruction> instr {create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, cnt, 1)};
3333 instr->definitions[0] = Definition(dst);
3334
3335 for (unsigned i = 0; i < cnt; ++i) {
3336 if (arr[i].id()) {
3337 assert(arr[i].size() == dword_size);
3338 allocated_vec[i] = arr[i];
3339 instr->operands[i] = Operand(arr[i]);
3340 } else {
3341 Temp zero = bld.copy(bld.def(RegClass(reg_type, dword_size)), Operand(0u, dword_size == 2));
3342 allocated_vec[i] = zero;
3343 instr->operands[i] = Operand(zero);
3344 }
3345 }
3346
3347 bld.insert(std::move(instr));
3348
3349 if (split_cnt)
3350 emit_split_vector(ctx, dst, split_cnt);
3351 else
3352 ctx->allocated_vec.emplace(dst.id(), allocated_vec); /* emit_split_vector already does this */
3353
3354 return dst;
3355 }
3356
3357 inline unsigned resolve_excess_vmem_const_offset(Builder &bld, Temp &voffset, unsigned const_offset)
3358 {
3359 if (const_offset >= 4096) {
3360 unsigned excess_const_offset = const_offset / 4096u * 4096u;
3361 const_offset %= 4096u;
3362
3363 if (!voffset.id())
3364 voffset = bld.copy(bld.def(v1), Operand(excess_const_offset));
3365 else if (unlikely(voffset.regClass() == s1))
3366 voffset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), Operand(excess_const_offset), Operand(voffset));
3367 else if (likely(voffset.regClass() == v1))
3368 voffset = bld.vadd32(bld.def(v1), Operand(voffset), Operand(excess_const_offset));
3369 else
3370 unreachable("Unsupported register class of voffset");
3371 }
3372
3373 return const_offset;
3374 }
3375
3376 void emit_single_mubuf_store(isel_context *ctx, Temp descriptor, Temp voffset, Temp soffset, Temp vdata,
3377 unsigned const_offset = 0u, bool allow_reorder = true, bool slc = false)
3378 {
3379 assert(vdata.id());
3380 assert(vdata.size() != 3 || ctx->program->chip_class != GFX6);
3381 assert(vdata.size() >= 1 && vdata.size() <= 4);
3382
3383 Builder bld(ctx->program, ctx->block);
3384 aco_opcode op = (aco_opcode) ((unsigned) aco_opcode::buffer_store_dword + vdata.size() - 1);
3385 const_offset = resolve_excess_vmem_const_offset(bld, voffset, const_offset);
3386
3387 Operand voffset_op = voffset.id() ? Operand(as_vgpr(ctx, voffset)) : Operand(v1);
3388 Operand soffset_op = soffset.id() ? Operand(soffset) : Operand(0u);
3389 Builder::Result r = bld.mubuf(op, Operand(descriptor), voffset_op, soffset_op, Operand(vdata), const_offset,
3390 /* offen */ !voffset_op.isUndefined(), /* idxen*/ false, /* addr64 */ false,
3391 /* disable_wqm */ false, /* glc */ true, /* dlc*/ false, /* slc */ slc);
3392
3393 static_cast<MUBUF_instruction *>(r.instr)->can_reorder = allow_reorder;
3394 }
3395
3396 void store_vmem_mubuf(isel_context *ctx, Temp src, Temp descriptor, Temp voffset, Temp soffset,
3397 unsigned base_const_offset, unsigned elem_size_bytes, unsigned write_mask,
3398 bool allow_combining = true, bool reorder = true, bool slc = false)
3399 {
3400 Builder bld(ctx->program, ctx->block);
3401 assert(elem_size_bytes == 4 || elem_size_bytes == 8);
3402 assert(write_mask);
3403
3404 if (elem_size_bytes == 8) {
3405 elem_size_bytes = 4;
3406 write_mask = widen_mask(write_mask, 2);
3407 }
3408
3409 while (write_mask) {
3410 int start = 0;
3411 int count = 0;
3412 u_bit_scan_consecutive_range(&write_mask, &start, &count);
3413 assert(count > 0);
3414 assert(start >= 0);
3415
3416 while (count > 0) {
3417 unsigned sub_count = allow_combining ? MIN2(count, 4) : 1;
3418 unsigned const_offset = (unsigned) start * elem_size_bytes + base_const_offset;
3419
3420 /* GFX6 doesn't have buffer_store_dwordx3, so make sure not to emit that here either. */
3421 if (unlikely(ctx->program->chip_class == GFX6 && sub_count == 3))
3422 sub_count = 2;
3423
3424 Temp elem = extract_subvector(ctx, src, start, sub_count, RegType::vgpr);
3425 emit_single_mubuf_store(ctx, descriptor, voffset, soffset, elem, const_offset, reorder, slc);
3426
3427 count -= sub_count;
3428 start += sub_count;
3429 }
3430
3431 assert(count == 0);
3432 }
3433 }
3434
3435 Temp emit_single_mubuf_load(isel_context *ctx, Temp descriptor, Temp voffset, Temp soffset,
3436 unsigned const_offset, unsigned size_dwords, bool allow_reorder = true)
3437 {
3438 assert(size_dwords != 3 || ctx->program->chip_class != GFX6);
3439 assert(size_dwords >= 1 && size_dwords <= 4);
3440
3441 Builder bld(ctx->program, ctx->block);
3442 Temp vdata = bld.tmp(RegClass(RegType::vgpr, size_dwords));
3443 aco_opcode op = (aco_opcode) ((unsigned) aco_opcode::buffer_load_dword + size_dwords - 1);
3444 const_offset = resolve_excess_vmem_const_offset(bld, voffset, const_offset);
3445
3446 Operand voffset_op = voffset.id() ? Operand(as_vgpr(ctx, voffset)) : Operand(v1);
3447 Operand soffset_op = soffset.id() ? Operand(soffset) : Operand(0u);
3448 Builder::Result r = bld.mubuf(op, Definition(vdata), Operand(descriptor), voffset_op, soffset_op, const_offset,
3449 /* offen */ !voffset_op.isUndefined(), /* idxen*/ false, /* addr64 */ false,
3450 /* disable_wqm */ false, /* glc */ true,
3451 /* dlc*/ ctx->program->chip_class >= GFX10, /* slc */ false);
3452
3453 static_cast<MUBUF_instruction *>(r.instr)->can_reorder = allow_reorder;
3454
3455 return vdata;
3456 }
3457
3458 void load_vmem_mubuf(isel_context *ctx, Temp dst, Temp descriptor, Temp voffset, Temp soffset,
3459 unsigned base_const_offset, unsigned elem_size_bytes, unsigned num_components,
3460 unsigned stride = 0u, bool allow_combining = true, bool allow_reorder = true)
3461 {
3462 assert(elem_size_bytes == 4 || elem_size_bytes == 8);
3463 assert((num_components * elem_size_bytes / 4) == dst.size());
3464 assert(!!stride != allow_combining);
3465
3466 Builder bld(ctx->program, ctx->block);
3467 unsigned split_cnt = num_components;
3468
3469 if (elem_size_bytes == 8) {
3470 elem_size_bytes = 4;
3471 num_components *= 2;
3472 }
3473
3474 if (!stride)
3475 stride = elem_size_bytes;
3476
3477 unsigned load_size = 1;
3478 if (allow_combining) {
3479 if ((num_components % 4) == 0)
3480 load_size = 4;
3481 else if ((num_components % 3) == 0 && ctx->program->chip_class != GFX6)
3482 load_size = 3;
3483 else if ((num_components % 2) == 0)
3484 load_size = 2;
3485 }
3486
3487 unsigned num_loads = num_components / load_size;
3488 std::array<Temp, NIR_MAX_VEC_COMPONENTS> elems;
3489
3490 for (unsigned i = 0; i < num_loads; ++i) {
3491 unsigned const_offset = i * stride * load_size + base_const_offset;
3492 elems[i] = emit_single_mubuf_load(ctx, descriptor, voffset, soffset, const_offset, load_size, allow_reorder);
3493 }
3494
3495 create_vec_from_array(ctx, elems.data(), num_loads, RegType::vgpr, load_size * 4u, split_cnt, dst);
3496 }
3497
3498 std::pair<Temp, unsigned> offset_add_from_nir(isel_context *ctx, const std::pair<Temp, unsigned> &base_offset, nir_src *off_src, unsigned stride = 1u)
3499 {
3500 Builder bld(ctx->program, ctx->block);
3501 Temp offset = base_offset.first;
3502 unsigned const_offset = base_offset.second;
3503
3504 if (!nir_src_is_const(*off_src)) {
3505 Temp indirect_offset_arg = get_ssa_temp(ctx, off_src->ssa);
3506 Temp with_stride;
3507
3508 /* Calculate indirect offset with stride */
3509 if (likely(indirect_offset_arg.regClass() == v1))
3510 with_stride = bld.v_mul_imm(bld.def(v1), indirect_offset_arg, stride);
3511 else if (indirect_offset_arg.regClass() == s1)
3512 with_stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), indirect_offset_arg);
3513 else
3514 unreachable("Unsupported register class of indirect offset");
3515
3516 /* Add to the supplied base offset */
3517 if (offset.id() == 0)
3518 offset = with_stride;
3519 else if (unlikely(offset.regClass() == s1 && with_stride.regClass() == s1))
3520 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), with_stride, offset);
3521 else if (offset.size() == 1 && with_stride.size() == 1)
3522 offset = bld.vadd32(bld.def(v1), with_stride, offset);
3523 else
3524 unreachable("Unsupported register class of indirect offset");
3525 } else {
3526 unsigned const_offset_arg = nir_src_as_uint(*off_src);
3527 const_offset += const_offset_arg * stride;
3528 }
3529
3530 return std::make_pair(offset, const_offset);
3531 }
3532
3533 std::pair<Temp, unsigned> offset_add(isel_context *ctx, const std::pair<Temp, unsigned> &off1, const std::pair<Temp, unsigned> &off2)
3534 {
3535 Builder bld(ctx->program, ctx->block);
3536 Temp offset;
3537
3538 if (off1.first.id() && off2.first.id()) {
3539 if (unlikely(off1.first.regClass() == s1 && off2.first.regClass() == s1))
3540 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), off1.first, off2.first);
3541 else if (off1.first.size() == 1 && off2.first.size() == 1)
3542 offset = bld.vadd32(bld.def(v1), off1.first, off2.first);
3543 else
3544 unreachable("Unsupported register class of indirect offset");
3545 } else {
3546 offset = off1.first.id() ? off1.first : off2.first;
3547 }
3548
3549 return std::make_pair(offset, off1.second + off2.second);
3550 }
3551
3552 std::pair<Temp, unsigned> offset_mul(isel_context *ctx, const std::pair<Temp, unsigned> &offs, unsigned multiplier)
3553 {
3554 Builder bld(ctx->program, ctx->block);
3555 unsigned const_offset = offs.second * multiplier;
3556
3557 if (!offs.first.id())
3558 return std::make_pair(offs.first, const_offset);
3559
3560 Temp offset = unlikely(offs.first.regClass() == s1)
3561 ? bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(multiplier), offs.first)
3562 : bld.v_mul_imm(bld.def(v1), offs.first, multiplier);
3563
3564 return std::make_pair(offset, const_offset);
3565 }
3566
3567 std::pair<Temp, unsigned> get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned base_stride, unsigned component_stride)
3568 {
3569 Builder bld(ctx->program, ctx->block);
3570
3571 /* base is the driver_location, which is already multiplied by 4, so is in dwords */
3572 unsigned const_offset = nir_intrinsic_base(instr) * base_stride;
3573 /* component is in bytes */
3574 const_offset += nir_intrinsic_component(instr) * component_stride;
3575
3576 /* offset should be interpreted in relation to the base, so the instruction effectively reads/writes another input/output when it has an offset */
3577 nir_src *off_src = nir_get_io_offset_src(instr);
3578 return offset_add_from_nir(ctx, std::make_pair(Temp(), const_offset), off_src, 4u * base_stride);
3579 }
3580
3581 std::pair<Temp, unsigned> get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned stride = 1u)
3582 {
3583 return get_intrinsic_io_basic_offset(ctx, instr, stride, stride);
3584 }
3585
3586 Temp get_tess_rel_patch_id(isel_context *ctx)
3587 {
3588 Builder bld(ctx->program, ctx->block);
3589
3590 switch (ctx->shader->info.stage) {
3591 case MESA_SHADER_TESS_CTRL:
3592 return bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffu),
3593 get_arg(ctx, ctx->args->ac.tcs_rel_ids));
3594 case MESA_SHADER_TESS_EVAL:
3595 return get_arg(ctx, ctx->args->tes_rel_patch_id);
3596 default:
3597 unreachable("Unsupported stage in get_tess_rel_patch_id");
3598 }
3599 }
3600
3601 std::pair<Temp, unsigned> get_tcs_per_vertex_input_lds_offset(isel_context *ctx, nir_intrinsic_instr *instr)
3602 {
3603 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3604 Builder bld(ctx->program, ctx->block);
3605
3606 uint32_t tcs_in_patch_stride = ctx->args->options->key.tcs.input_vertices * ctx->tcs_num_inputs * 4;
3607 uint32_t tcs_in_vertex_stride = ctx->tcs_num_inputs * 4;
3608
3609 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr);
3610
3611 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
3612 offs = offset_add_from_nir(ctx, offs, vertex_index_src, tcs_in_vertex_stride);
3613
3614 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3615 Temp tcs_in_current_patch_offset = bld.v_mul24_imm(bld.def(v1), rel_patch_id, tcs_in_patch_stride);
3616 offs = offset_add(ctx, offs, std::make_pair(tcs_in_current_patch_offset, 0));
3617
3618 return offset_mul(ctx, offs, 4u);
3619 }
3620
3621 std::pair<Temp, unsigned> get_tcs_output_lds_offset(isel_context *ctx, nir_intrinsic_instr *instr = nullptr, bool per_vertex = false)
3622 {
3623 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3624 Builder bld(ctx->program, ctx->block);
3625
3626 uint32_t input_patch_size = ctx->args->options->key.tcs.input_vertices * ctx->tcs_num_inputs * 16;
3627 uint32_t num_tcs_outputs = util_last_bit64(ctx->args->shader_info->tcs.outputs_written);
3628 uint32_t num_tcs_patch_outputs = util_last_bit64(ctx->args->shader_info->tcs.patch_outputs_written);
3629 uint32_t output_vertex_size = num_tcs_outputs * 16;
3630 uint32_t pervertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
3631 uint32_t output_patch_stride = pervertex_output_patch_size + num_tcs_patch_outputs * 16;
3632
3633 std::pair<Temp, unsigned> offs = instr
3634 ? get_intrinsic_io_basic_offset(ctx, instr, 4u)
3635 : std::make_pair(Temp(), 0u);
3636
3637 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3638 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, output_patch_stride);
3639
3640 if (per_vertex) {
3641 assert(instr);
3642
3643 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
3644 offs = offset_add_from_nir(ctx, offs, vertex_index_src, output_vertex_size);
3645
3646 uint32_t output_patch0_offset = (input_patch_size * ctx->tcs_num_patches);
3647 offs = offset_add(ctx, offs, std::make_pair(patch_off, output_patch0_offset));
3648 } else {
3649 uint32_t output_patch0_patch_data_offset = (input_patch_size * ctx->tcs_num_patches + pervertex_output_patch_size);
3650 offs = offset_add(ctx, offs, std::make_pair(patch_off, output_patch0_patch_data_offset));
3651 }
3652
3653 return offs;
3654 }
3655
3656 std::pair<Temp, unsigned> get_tcs_per_vertex_output_vmem_offset(isel_context *ctx, nir_intrinsic_instr *instr)
3657 {
3658 Builder bld(ctx->program, ctx->block);
3659
3660 unsigned vertices_per_patch = ctx->shader->info.tess.tcs_vertices_out;
3661 unsigned attr_stride = vertices_per_patch * ctx->tcs_num_patches;
3662
3663 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, attr_stride * 4u, 4u);
3664
3665 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3666 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, vertices_per_patch * 16u);
3667 offs = offset_add(ctx, offs, std::make_pair(patch_off, 0u));
3668
3669 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
3670 offs = offset_add_from_nir(ctx, offs, vertex_index_src, 16u);
3671
3672 return offs;
3673 }
3674
3675 std::pair<Temp, unsigned> get_tcs_per_patch_output_vmem_offset(isel_context *ctx, nir_intrinsic_instr *instr = nullptr, unsigned const_base_offset = 0u)
3676 {
3677 Builder bld(ctx->program, ctx->block);
3678
3679 unsigned num_tcs_outputs = ctx->shader->info.stage == MESA_SHADER_TESS_CTRL
3680 ? util_last_bit64(ctx->args->shader_info->tcs.outputs_written)
3681 : ctx->args->options->key.tes.tcs_num_outputs;
3682
3683 unsigned output_vertex_size = num_tcs_outputs * 16;
3684 unsigned per_vertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
3685 unsigned per_patch_data_offset = per_vertex_output_patch_size * ctx->tcs_num_patches;
3686 unsigned attr_stride = ctx->tcs_num_patches;
3687
3688 std::pair<Temp, unsigned> offs = instr
3689 ? get_intrinsic_io_basic_offset(ctx, instr, attr_stride * 4u, 4u)
3690 : std::make_pair(Temp(), 0u);
3691
3692 if (const_base_offset)
3693 offs.second += const_base_offset * attr_stride;
3694
3695 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3696 Temp patch_off = bld.v_mul_imm(bld.def(v1), rel_patch_id, 16u);
3697 offs = offset_add(ctx, offs, std::make_pair(patch_off, per_patch_data_offset));
3698
3699 return offs;
3700 }
3701
3702 bool tcs_driver_location_matches_api_mask(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex, uint64_t mask, bool *indirect)
3703 {
3704 unsigned off = nir_intrinsic_base(instr) * 4u;
3705 nir_src *off_src = nir_get_io_offset_src(instr);
3706
3707 if (!nir_src_is_const(*off_src)) {
3708 *indirect = true;
3709 return false;
3710 }
3711
3712 *indirect = false;
3713 off += nir_src_as_uint(*off_src) * 16u;
3714
3715 while (mask) {
3716 unsigned slot = u_bit_scan64(&mask) + (per_vertex ? 0 : VARYING_SLOT_PATCH0);
3717 if (off == shader_io_get_unique_index((gl_varying_slot) slot) * 16u)
3718 return true;
3719 }
3720
3721 return false;
3722 }
3723
3724 bool store_output_to_temps(isel_context *ctx, nir_intrinsic_instr *instr)
3725 {
3726 unsigned write_mask = nir_intrinsic_write_mask(instr);
3727 unsigned component = nir_intrinsic_component(instr);
3728 unsigned idx = nir_intrinsic_base(instr) + component;
3729
3730 nir_instr *off_instr = instr->src[1].ssa->parent_instr;
3731 if (off_instr->type != nir_instr_type_load_const)
3732 return false;
3733
3734 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
3735 idx += nir_src_as_uint(instr->src[1]) * 4u;
3736
3737 if (instr->src[0].ssa->bit_size == 64)
3738 write_mask = widen_mask(write_mask, 2);
3739
3740 for (unsigned i = 0; i < 8; ++i) {
3741 if (write_mask & (1 << i)) {
3742 ctx->outputs.mask[idx / 4u] |= 1 << (idx % 4u);
3743 ctx->outputs.temps[idx] = emit_extract_vector(ctx, src, i, v1);
3744 }
3745 idx++;
3746 }
3747
3748 return true;
3749 }
3750
3751 bool load_input_from_temps(isel_context *ctx, nir_intrinsic_instr *instr, Temp dst)
3752 {
3753 /* Only TCS per-vertex inputs are supported by this function.
3754 * Per-vertex inputs only match between the VS/TCS invocation id when the number of invocations is the same.
3755 */
3756 if (ctx->shader->info.stage != MESA_SHADER_TESS_CTRL || !ctx->tcs_in_out_eq)
3757 return false;
3758
3759 nir_src *off_src = nir_get_io_offset_src(instr);
3760 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
3761 nir_instr *vertex_index_instr = vertex_index_src->ssa->parent_instr;
3762 bool can_use_temps = nir_src_is_const(*off_src) &&
3763 vertex_index_instr->type == nir_instr_type_intrinsic &&
3764 nir_instr_as_intrinsic(vertex_index_instr)->intrinsic == nir_intrinsic_load_invocation_id;
3765
3766 if (!can_use_temps)
3767 return false;
3768
3769 unsigned idx = nir_intrinsic_base(instr) + nir_intrinsic_component(instr) + 4 * nir_src_as_uint(*off_src);
3770 Temp *src = &ctx->inputs.temps[idx];
3771 Temp vec = create_vec_from_array(ctx, src, dst.size(), dst.regClass().type(), 4u);
3772 assert(vec.size() == dst.size());
3773
3774 Builder bld(ctx->program, ctx->block);
3775 bld.copy(Definition(dst), vec);
3776 return true;
3777 }
3778
3779 void visit_store_ls_or_es_output(isel_context *ctx, nir_intrinsic_instr *instr)
3780 {
3781 Builder bld(ctx->program, ctx->block);
3782
3783 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, 4u);
3784 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
3785 unsigned write_mask = nir_intrinsic_write_mask(instr);
3786 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8u;
3787
3788 if (ctx->tcs_in_out_eq && store_output_to_temps(ctx, instr)) {
3789 /* When the TCS only reads this output directly and for the same vertices as its invocation id, it is unnecessary to store the VS output to LDS. */
3790 bool indirect_write;
3791 bool temp_only_input = tcs_driver_location_matches_api_mask(ctx, instr, true, ctx->tcs_temp_only_inputs, &indirect_write);
3792 if (temp_only_input && !indirect_write)
3793 return;
3794 }
3795
3796 if (ctx->stage == vertex_es || ctx->stage == tess_eval_es) {
3797 /* GFX6-8: ES stage is not merged into GS, data is passed from ES to GS in VMEM. */
3798 Temp esgs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_VS * 16u));
3799 Temp es2gs_offset = get_arg(ctx, ctx->args->es2gs_offset);
3800 store_vmem_mubuf(ctx, src, esgs_ring, offs.first, es2gs_offset, offs.second, elem_size_bytes, write_mask, false, true, true);
3801 } else {
3802 Temp lds_base;
3803
3804 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
3805 /* GFX9+: ES stage is merged into GS, data is passed between them using LDS. */
3806 unsigned itemsize = ctx->stage == vertex_geometry_gs
3807 ? ctx->program->info->vs.es_info.esgs_itemsize
3808 : ctx->program->info->tes.es_info.esgs_itemsize;
3809 Temp thread_id = emit_mbcnt(ctx, bld.def(v1));
3810 Temp wave_idx = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(ctx, ctx->args->merged_wave_info), Operand(4u << 16 | 24));
3811 Temp vertex_idx = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), thread_id,
3812 bld.v_mul24_imm(bld.def(v1), as_vgpr(ctx, wave_idx), ctx->program->wave_size));
3813 lds_base = bld.v_mul24_imm(bld.def(v1), vertex_idx, itemsize);
3814 } else if (ctx->stage == vertex_ls || ctx->stage == vertex_tess_control_hs) {
3815 /* GFX6-8: VS runs on LS stage when tessellation is used, but LS shares LDS space with HS.
3816 * GFX9+: LS is merged into HS, but still uses the same LDS layout.
3817 */
3818 unsigned num_tcs_inputs = util_last_bit64(ctx->args->shader_info->vs.ls_outputs_written);
3819 Temp vertex_idx = get_arg(ctx, ctx->args->rel_auto_id);
3820 lds_base = bld.v_mul_imm(bld.def(v1), vertex_idx, num_tcs_inputs * 16u);
3821 } else {
3822 unreachable("Invalid LS or ES stage");
3823 }
3824
3825 offs = offset_add(ctx, offs, std::make_pair(lds_base, 0u));
3826 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
3827 store_lds(ctx, elem_size_bytes, src, write_mask, offs.first, offs.second, lds_align);
3828 }
3829 }
3830
3831 bool should_write_tcs_patch_output_to_vmem(isel_context *ctx, nir_intrinsic_instr *instr)
3832 {
3833 unsigned off = nir_intrinsic_base(instr) * 4u;
3834 return off != ctx->tcs_tess_lvl_out_loc &&
3835 off != ctx->tcs_tess_lvl_in_loc;
3836 }
3837
3838 bool should_write_tcs_output_to_lds(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
3839 {
3840 /* When none of the appropriate outputs are read, we are OK to never write to LDS */
3841 if (per_vertex ? ctx->shader->info.outputs_read == 0U : ctx->shader->info.patch_outputs_read == 0u)
3842 return false;
3843
3844 uint64_t mask = per_vertex
3845 ? ctx->shader->info.outputs_read
3846 : ctx->shader->info.patch_outputs_read;
3847 bool indirect_write;
3848 bool output_read = tcs_driver_location_matches_api_mask(ctx, instr, per_vertex, mask, &indirect_write);
3849 return indirect_write || output_read;
3850 }
3851
3852 void visit_store_tcs_output(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
3853 {
3854 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
3855 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3856
3857 Builder bld(ctx->program, ctx->block);
3858
3859 Temp store_val = get_ssa_temp(ctx, instr->src[0].ssa);
3860 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
3861 unsigned write_mask = nir_intrinsic_write_mask(instr);
3862
3863 /* Only write to VMEM if the output is per-vertex or it's per-patch non tess factor */
3864 bool write_to_vmem = per_vertex || should_write_tcs_patch_output_to_vmem(ctx, instr);
3865 /* Only write to LDS if the output is read by the shader, or it's per-patch tess factor */
3866 bool write_to_lds = !write_to_vmem || should_write_tcs_output_to_lds(ctx, instr, per_vertex);
3867
3868 if (write_to_vmem) {
3869 std::pair<Temp, unsigned> vmem_offs = per_vertex
3870 ? get_tcs_per_vertex_output_vmem_offset(ctx, instr)
3871 : get_tcs_per_patch_output_vmem_offset(ctx, instr);
3872
3873 Temp hs_ring_tess_offchip = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
3874 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
3875 store_vmem_mubuf(ctx, store_val, hs_ring_tess_offchip, vmem_offs.first, oc_lds, vmem_offs.second, elem_size_bytes, write_mask, true, false);
3876 }
3877
3878 if (write_to_lds) {
3879 std::pair<Temp, unsigned> lds_offs = get_tcs_output_lds_offset(ctx, instr, per_vertex);
3880 unsigned lds_align = calculate_lds_alignment(ctx, lds_offs.second);
3881 store_lds(ctx, elem_size_bytes, store_val, write_mask, lds_offs.first, lds_offs.second, lds_align);
3882 }
3883 }
3884
3885 void visit_load_tcs_output(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
3886 {
3887 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
3888 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3889
3890 Builder bld(ctx->program, ctx->block);
3891
3892 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3893 std::pair<Temp, unsigned> lds_offs = get_tcs_output_lds_offset(ctx, instr, per_vertex);
3894 unsigned lds_align = calculate_lds_alignment(ctx, lds_offs.second);
3895 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
3896
3897 load_lds(ctx, elem_size_bytes, dst, lds_offs.first, lds_offs.second, lds_align);
3898 }
3899
3900 void visit_store_output(isel_context *ctx, nir_intrinsic_instr *instr)
3901 {
3902 if (ctx->stage == vertex_vs ||
3903 ctx->stage == tess_eval_vs ||
3904 ctx->stage == fragment_fs ||
3905 ctx->stage == ngg_vertex_gs ||
3906 ctx->stage == ngg_tess_eval_gs ||
3907 ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
3908 bool stored_to_temps = store_output_to_temps(ctx, instr);
3909 if (!stored_to_temps) {
3910 fprintf(stderr, "Unimplemented output offset instruction:\n");
3911 nir_print_instr(instr->src[1].ssa->parent_instr, stderr);
3912 fprintf(stderr, "\n");
3913 abort();
3914 }
3915 } else if (ctx->stage == vertex_es ||
3916 ctx->stage == vertex_ls ||
3917 ctx->stage == tess_eval_es ||
3918 (ctx->stage == vertex_tess_control_hs && ctx->shader->info.stage == MESA_SHADER_VERTEX) ||
3919 (ctx->stage == vertex_geometry_gs && ctx->shader->info.stage == MESA_SHADER_VERTEX) ||
3920 (ctx->stage == tess_eval_geometry_gs && ctx->shader->info.stage == MESA_SHADER_TESS_EVAL)) {
3921 visit_store_ls_or_es_output(ctx, instr);
3922 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
3923 visit_store_tcs_output(ctx, instr, false);
3924 } else {
3925 unreachable("Shader stage not implemented");
3926 }
3927 }
3928
3929 void visit_load_output(isel_context *ctx, nir_intrinsic_instr *instr)
3930 {
3931 visit_load_tcs_output(ctx, instr, false);
3932 }
3933
3934 void emit_interp_instr(isel_context *ctx, unsigned idx, unsigned component, Temp src, Temp dst, Temp prim_mask)
3935 {
3936 Temp coord1 = emit_extract_vector(ctx, src, 0, v1);
3937 Temp coord2 = emit_extract_vector(ctx, src, 1, v1);
3938
3939 Builder bld(ctx->program, ctx->block);
3940 Builder::Result interp_p1 = bld.vintrp(aco_opcode::v_interp_p1_f32, bld.def(v1), coord1, bld.m0(prim_mask), idx, component);
3941 if (ctx->program->has_16bank_lds)
3942 interp_p1.instr->operands[0].setLateKill(true);
3943 bld.vintrp(aco_opcode::v_interp_p2_f32, Definition(dst), coord2, bld.m0(prim_mask), interp_p1, idx, component);
3944 }
3945
3946 void emit_load_frag_coord(isel_context *ctx, Temp dst, unsigned num_components)
3947 {
3948 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1));
3949 for (unsigned i = 0; i < num_components; i++)
3950 vec->operands[i] = Operand(get_arg(ctx, ctx->args->ac.frag_pos[i]));
3951 if (G_0286CC_POS_W_FLOAT_ENA(ctx->program->config->spi_ps_input_ena)) {
3952 assert(num_components == 4);
3953 Builder bld(ctx->program, ctx->block);
3954 vec->operands[3] = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), get_arg(ctx, ctx->args->ac.frag_pos[3]));
3955 }
3956
3957 for (Operand& op : vec->operands)
3958 op = op.isUndefined() ? Operand(0u) : op;
3959
3960 vec->definitions[0] = Definition(dst);
3961 ctx->block->instructions.emplace_back(std::move(vec));
3962 emit_split_vector(ctx, dst, num_components);
3963 return;
3964 }
3965
3966 void visit_load_interpolated_input(isel_context *ctx, nir_intrinsic_instr *instr)
3967 {
3968 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3969 Temp coords = get_ssa_temp(ctx, instr->src[0].ssa);
3970 unsigned idx = nir_intrinsic_base(instr);
3971 unsigned component = nir_intrinsic_component(instr);
3972 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
3973
3974 nir_const_value* offset = nir_src_as_const_value(instr->src[1]);
3975 if (offset) {
3976 assert(offset->u32 == 0);
3977 } else {
3978 /* the lower 15bit of the prim_mask contain the offset into LDS
3979 * while the upper bits contain the number of prims */
3980 Temp offset_src = get_ssa_temp(ctx, instr->src[1].ssa);
3981 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
3982 Builder bld(ctx->program, ctx->block);
3983 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
3984 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
3985 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
3986 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
3987 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
3988 }
3989
3990 if (instr->dest.ssa.num_components == 1) {
3991 emit_interp_instr(ctx, idx, component, coords, dst, prim_mask);
3992 } else {
3993 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.ssa.num_components, 1));
3994 for (unsigned i = 0; i < instr->dest.ssa.num_components; i++)
3995 {
3996 Temp tmp = {ctx->program->allocateId(), v1};
3997 emit_interp_instr(ctx, idx, component+i, coords, tmp, prim_mask);
3998 vec->operands[i] = Operand(tmp);
3999 }
4000 vec->definitions[0] = Definition(dst);
4001 ctx->block->instructions.emplace_back(std::move(vec));
4002 }
4003 }
4004
4005 bool check_vertex_fetch_size(isel_context *ctx, const ac_data_format_info *vtx_info,
4006 unsigned offset, unsigned stride, unsigned channels)
4007 {
4008 unsigned vertex_byte_size = vtx_info->chan_byte_size * channels;
4009 if (vtx_info->chan_byte_size != 4 && channels == 3)
4010 return false;
4011 return (ctx->options->chip_class != GFX6 && ctx->options->chip_class != GFX10) ||
4012 (offset % vertex_byte_size == 0 && stride % vertex_byte_size == 0);
4013 }
4014
4015 uint8_t get_fetch_data_format(isel_context *ctx, const ac_data_format_info *vtx_info,
4016 unsigned offset, unsigned stride, unsigned *channels)
4017 {
4018 if (!vtx_info->chan_byte_size) {
4019 *channels = vtx_info->num_channels;
4020 return vtx_info->chan_format;
4021 }
4022
4023 unsigned num_channels = *channels;
4024 if (!check_vertex_fetch_size(ctx, vtx_info, offset, stride, *channels)) {
4025 unsigned new_channels = num_channels + 1;
4026 /* first, assume more loads is worse and try using a larger data format */
4027 while (new_channels <= 4 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels)) {
4028 new_channels++;
4029 /* don't make the attribute potentially out-of-bounds */
4030 if (offset + new_channels * vtx_info->chan_byte_size > stride)
4031 new_channels = 5;
4032 }
4033
4034 if (new_channels == 5) {
4035 /* then try decreasing load size (at the cost of more loads) */
4036 new_channels = *channels;
4037 while (new_channels > 1 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels))
4038 new_channels--;
4039 }
4040
4041 if (new_channels < *channels)
4042 *channels = new_channels;
4043 num_channels = new_channels;
4044 }
4045
4046 switch (vtx_info->chan_format) {
4047 case V_008F0C_BUF_DATA_FORMAT_8:
4048 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_8, V_008F0C_BUF_DATA_FORMAT_8_8,
4049 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_8_8_8_8}[num_channels - 1];
4050 case V_008F0C_BUF_DATA_FORMAT_16:
4051 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_16, V_008F0C_BUF_DATA_FORMAT_16_16,
4052 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_16_16_16_16}[num_channels - 1];
4053 case V_008F0C_BUF_DATA_FORMAT_32:
4054 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_32, V_008F0C_BUF_DATA_FORMAT_32_32,
4055 V_008F0C_BUF_DATA_FORMAT_32_32_32, V_008F0C_BUF_DATA_FORMAT_32_32_32_32}[num_channels - 1];
4056 }
4057 unreachable("shouldn't reach here");
4058 return V_008F0C_BUF_DATA_FORMAT_INVALID;
4059 }
4060
4061 /* For 2_10_10_10 formats the alpha is handled as unsigned by pre-vega HW.
4062 * so we may need to fix it up. */
4063 Temp adjust_vertex_fetch_alpha(isel_context *ctx, unsigned adjustment, Temp alpha)
4064 {
4065 Builder bld(ctx->program, ctx->block);
4066
4067 if (adjustment == RADV_ALPHA_ADJUST_SSCALED)
4068 alpha = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), alpha);
4069
4070 /* For the integer-like cases, do a natural sign extension.
4071 *
4072 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
4073 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
4074 * exponent.
4075 */
4076 alpha = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(adjustment == RADV_ALPHA_ADJUST_SNORM ? 7u : 30u), alpha);
4077 alpha = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(30u), alpha);
4078
4079 /* Convert back to the right type. */
4080 if (adjustment == RADV_ALPHA_ADJUST_SNORM) {
4081 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
4082 Temp clamp = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0xbf800000u), alpha);
4083 alpha = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xbf800000u), alpha, clamp);
4084 } else if (adjustment == RADV_ALPHA_ADJUST_SSCALED) {
4085 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
4086 }
4087
4088 return alpha;
4089 }
4090
4091 void visit_load_input(isel_context *ctx, nir_intrinsic_instr *instr)
4092 {
4093 Builder bld(ctx->program, ctx->block);
4094 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4095 if (ctx->shader->info.stage == MESA_SHADER_VERTEX) {
4096
4097 nir_instr *off_instr = instr->src[0].ssa->parent_instr;
4098 if (off_instr->type != nir_instr_type_load_const) {
4099 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
4100 nir_print_instr(off_instr, stderr);
4101 fprintf(stderr, "\n");
4102 }
4103 uint32_t offset = nir_instr_as_load_const(off_instr)->value[0].u32;
4104
4105 Temp vertex_buffers = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->vertex_buffers));
4106
4107 unsigned location = nir_intrinsic_base(instr) / 4 - VERT_ATTRIB_GENERIC0 + offset;
4108 unsigned component = nir_intrinsic_component(instr);
4109 unsigned attrib_binding = ctx->options->key.vs.vertex_attribute_bindings[location];
4110 uint32_t attrib_offset = ctx->options->key.vs.vertex_attribute_offsets[location];
4111 uint32_t attrib_stride = ctx->options->key.vs.vertex_attribute_strides[location];
4112 unsigned attrib_format = ctx->options->key.vs.vertex_attribute_formats[location];
4113
4114 unsigned dfmt = attrib_format & 0xf;
4115 unsigned nfmt = (attrib_format >> 4) & 0x7;
4116 const struct ac_data_format_info *vtx_info = ac_get_data_format_info(dfmt);
4117
4118 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa) << component;
4119 unsigned num_channels = MIN2(util_last_bit(mask), vtx_info->num_channels);
4120 unsigned alpha_adjust = (ctx->options->key.vs.alpha_adjust >> (location * 2)) & 3;
4121 bool post_shuffle = ctx->options->key.vs.post_shuffle & (1 << location);
4122 if (post_shuffle)
4123 num_channels = MAX2(num_channels, 3);
4124
4125 Operand off = bld.copy(bld.def(s1), Operand(attrib_binding * 16u));
4126 Temp list = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), vertex_buffers, off);
4127
4128 Temp index;
4129 if (ctx->options->key.vs.instance_rate_inputs & (1u << location)) {
4130 uint32_t divisor = ctx->options->key.vs.instance_rate_divisors[location];
4131 Temp start_instance = get_arg(ctx, ctx->args->ac.start_instance);
4132 if (divisor) {
4133 Temp instance_id = get_arg(ctx, ctx->args->ac.instance_id);
4134 if (divisor != 1) {
4135 Temp divided = bld.tmp(v1);
4136 emit_v_div_u32(ctx, divided, as_vgpr(ctx, instance_id), divisor);
4137 index = bld.vadd32(bld.def(v1), start_instance, divided);
4138 } else {
4139 index = bld.vadd32(bld.def(v1), start_instance, instance_id);
4140 }
4141 } else {
4142 index = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), start_instance);
4143 }
4144 } else {
4145 index = bld.vadd32(bld.def(v1),
4146 get_arg(ctx, ctx->args->ac.base_vertex),
4147 get_arg(ctx, ctx->args->ac.vertex_id));
4148 }
4149
4150 Temp channels[num_channels];
4151 unsigned channel_start = 0;
4152 bool direct_fetch = false;
4153
4154 /* skip unused channels at the start */
4155 if (vtx_info->chan_byte_size && !post_shuffle) {
4156 channel_start = ffs(mask) - 1;
4157 for (unsigned i = 0; i < channel_start; i++)
4158 channels[i] = Temp(0, s1);
4159 } else if (vtx_info->chan_byte_size && post_shuffle && !(mask & 0x8)) {
4160 num_channels = 3 - (ffs(mask) - 1);
4161 }
4162
4163 /* load channels */
4164 while (channel_start < num_channels) {
4165 unsigned fetch_size = num_channels - channel_start;
4166 unsigned fetch_offset = attrib_offset + channel_start * vtx_info->chan_byte_size;
4167 bool expanded = false;
4168
4169 /* use MUBUF when possible to avoid possible alignment issues */
4170 /* TODO: we could use SDWA to unpack 8/16-bit attributes without extra instructions */
4171 bool use_mubuf = (nfmt == V_008F0C_BUF_NUM_FORMAT_FLOAT ||
4172 nfmt == V_008F0C_BUF_NUM_FORMAT_UINT ||
4173 nfmt == V_008F0C_BUF_NUM_FORMAT_SINT) &&
4174 vtx_info->chan_byte_size == 4;
4175 unsigned fetch_dfmt = V_008F0C_BUF_DATA_FORMAT_INVALID;
4176 if (!use_mubuf) {
4177 fetch_dfmt = get_fetch_data_format(ctx, vtx_info, fetch_offset, attrib_stride, &fetch_size);
4178 } else {
4179 if (fetch_size == 3 && ctx->options->chip_class == GFX6) {
4180 /* GFX6 only supports loading vec3 with MTBUF, expand to vec4. */
4181 fetch_size = 4;
4182 expanded = true;
4183 }
4184 }
4185
4186 Temp fetch_index = index;
4187 if (attrib_stride != 0 && fetch_offset > attrib_stride) {
4188 fetch_index = bld.vadd32(bld.def(v1), Operand(fetch_offset / attrib_stride), fetch_index);
4189 fetch_offset = fetch_offset % attrib_stride;
4190 }
4191
4192 Operand soffset(0u);
4193 if (fetch_offset >= 4096) {
4194 soffset = bld.copy(bld.def(s1), Operand(fetch_offset / 4096 * 4096));
4195 fetch_offset %= 4096;
4196 }
4197
4198 aco_opcode opcode;
4199 switch (fetch_size) {
4200 case 1:
4201 opcode = use_mubuf ? aco_opcode::buffer_load_dword : aco_opcode::tbuffer_load_format_x;
4202 break;
4203 case 2:
4204 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx2 : aco_opcode::tbuffer_load_format_xy;
4205 break;
4206 case 3:
4207 assert(ctx->options->chip_class >= GFX7 ||
4208 (!use_mubuf && ctx->options->chip_class == GFX6));
4209 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx3 : aco_opcode::tbuffer_load_format_xyz;
4210 break;
4211 case 4:
4212 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx4 : aco_opcode::tbuffer_load_format_xyzw;
4213 break;
4214 default:
4215 unreachable("Unimplemented load_input vector size");
4216 }
4217
4218 Temp fetch_dst;
4219 if (channel_start == 0 && fetch_size == dst.size() && !post_shuffle &&
4220 !expanded && (alpha_adjust == RADV_ALPHA_ADJUST_NONE ||
4221 num_channels <= 3)) {
4222 direct_fetch = true;
4223 fetch_dst = dst;
4224 } else {
4225 fetch_dst = bld.tmp(RegType::vgpr, fetch_size);
4226 }
4227
4228 if (use_mubuf) {
4229 Instruction *mubuf = bld.mubuf(opcode,
4230 Definition(fetch_dst), list, fetch_index, soffset,
4231 fetch_offset, false, true).instr;
4232 static_cast<MUBUF_instruction*>(mubuf)->can_reorder = true;
4233 } else {
4234 Instruction *mtbuf = bld.mtbuf(opcode,
4235 Definition(fetch_dst), list, fetch_index, soffset,
4236 fetch_dfmt, nfmt, fetch_offset, false, true).instr;
4237 static_cast<MTBUF_instruction*>(mtbuf)->can_reorder = true;
4238 }
4239
4240 emit_split_vector(ctx, fetch_dst, fetch_dst.size());
4241
4242 if (fetch_size == 1) {
4243 channels[channel_start] = fetch_dst;
4244 } else {
4245 for (unsigned i = 0; i < MIN2(fetch_size, num_channels - channel_start); i++)
4246 channels[channel_start + i] = emit_extract_vector(ctx, fetch_dst, i, v1);
4247 }
4248
4249 channel_start += fetch_size;
4250 }
4251
4252 if (!direct_fetch) {
4253 bool is_float = nfmt != V_008F0C_BUF_NUM_FORMAT_UINT &&
4254 nfmt != V_008F0C_BUF_NUM_FORMAT_SINT;
4255
4256 static const unsigned swizzle_normal[4] = {0, 1, 2, 3};
4257 static const unsigned swizzle_post_shuffle[4] = {2, 1, 0, 3};
4258 const unsigned *swizzle = post_shuffle ? swizzle_post_shuffle : swizzle_normal;
4259
4260 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
4261 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
4262 unsigned num_temp = 0;
4263 for (unsigned i = 0; i < dst.size(); i++) {
4264 unsigned idx = i + component;
4265 if (swizzle[idx] < num_channels && channels[swizzle[idx]].id()) {
4266 Temp channel = channels[swizzle[idx]];
4267 if (idx == 3 && alpha_adjust != RADV_ALPHA_ADJUST_NONE)
4268 channel = adjust_vertex_fetch_alpha(ctx, alpha_adjust, channel);
4269 vec->operands[i] = Operand(channel);
4270
4271 num_temp++;
4272 elems[i] = channel;
4273 } else if (is_float && idx == 3) {
4274 vec->operands[i] = Operand(0x3f800000u);
4275 } else if (!is_float && idx == 3) {
4276 vec->operands[i] = Operand(1u);
4277 } else {
4278 vec->operands[i] = Operand(0u);
4279 }
4280 }
4281 vec->definitions[0] = Definition(dst);
4282 ctx->block->instructions.emplace_back(std::move(vec));
4283 emit_split_vector(ctx, dst, dst.size());
4284
4285 if (num_temp == dst.size())
4286 ctx->allocated_vec.emplace(dst.id(), elems);
4287 }
4288 } else if (ctx->shader->info.stage == MESA_SHADER_FRAGMENT) {
4289 unsigned offset_idx = instr->intrinsic == nir_intrinsic_load_input ? 0 : 1;
4290 nir_instr *off_instr = instr->src[offset_idx].ssa->parent_instr;
4291 if (off_instr->type != nir_instr_type_load_const ||
4292 nir_instr_as_load_const(off_instr)->value[0].u32 != 0) {
4293 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
4294 nir_print_instr(off_instr, stderr);
4295 fprintf(stderr, "\n");
4296 }
4297
4298 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
4299 nir_const_value* offset = nir_src_as_const_value(instr->src[offset_idx]);
4300 if (offset) {
4301 assert(offset->u32 == 0);
4302 } else {
4303 /* the lower 15bit of the prim_mask contain the offset into LDS
4304 * while the upper bits contain the number of prims */
4305 Temp offset_src = get_ssa_temp(ctx, instr->src[offset_idx].ssa);
4306 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
4307 Builder bld(ctx->program, ctx->block);
4308 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
4309 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
4310 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
4311 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
4312 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
4313 }
4314
4315 unsigned idx = nir_intrinsic_base(instr);
4316 unsigned component = nir_intrinsic_component(instr);
4317 unsigned vertex_id = 2; /* P0 */
4318
4319 if (instr->intrinsic == nir_intrinsic_load_input_vertex) {
4320 nir_const_value* src0 = nir_src_as_const_value(instr->src[0]);
4321 switch (src0->u32) {
4322 case 0:
4323 vertex_id = 2; /* P0 */
4324 break;
4325 case 1:
4326 vertex_id = 0; /* P10 */
4327 break;
4328 case 2:
4329 vertex_id = 1; /* P20 */
4330 break;
4331 default:
4332 unreachable("invalid vertex index");
4333 }
4334 }
4335
4336 if (dst.size() == 1) {
4337 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(dst), Operand(vertex_id), bld.m0(prim_mask), idx, component);
4338 } else {
4339 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
4340 for (unsigned i = 0; i < dst.size(); i++)
4341 vec->operands[i] = bld.vintrp(aco_opcode::v_interp_mov_f32, bld.def(v1), Operand(vertex_id), bld.m0(prim_mask), idx, component + i);
4342 vec->definitions[0] = Definition(dst);
4343 bld.insert(std::move(vec));
4344 }
4345
4346 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_EVAL) {
4347 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
4348 Temp soffset = get_arg(ctx, ctx->args->oc_lds);
4349 std::pair<Temp, unsigned> offs = get_tcs_per_patch_output_vmem_offset(ctx, instr);
4350 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8u;
4351
4352 load_vmem_mubuf(ctx, dst, ring, offs.first, soffset, offs.second, elem_size_bytes, instr->dest.ssa.num_components);
4353 } else {
4354 unreachable("Shader stage not implemented");
4355 }
4356 }
4357
4358 std::pair<Temp, unsigned> get_gs_per_vertex_input_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned base_stride = 1u)
4359 {
4360 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
4361
4362 Builder bld(ctx->program, ctx->block);
4363 nir_src *vertex_src = nir_get_io_vertex_index_src(instr);
4364 Temp vertex_offset;
4365
4366 if (!nir_src_is_const(*vertex_src)) {
4367 /* better code could be created, but this case probably doesn't happen
4368 * much in practice */
4369 Temp indirect_vertex = as_vgpr(ctx, get_ssa_temp(ctx, vertex_src->ssa));
4370 for (unsigned i = 0; i < ctx->shader->info.gs.vertices_in; i++) {
4371 Temp elem;
4372
4373 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
4374 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i / 2u * 2u]);
4375 if (i % 2u)
4376 elem = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), elem);
4377 } else {
4378 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i]);
4379 }
4380
4381 if (vertex_offset.id()) {
4382 Temp cond = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)),
4383 Operand(i), indirect_vertex);
4384 vertex_offset = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), vertex_offset, elem, cond);
4385 } else {
4386 vertex_offset = elem;
4387 }
4388 }
4389
4390 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs)
4391 vertex_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu), vertex_offset);
4392 } else {
4393 unsigned vertex = nir_src_as_uint(*vertex_src);
4394 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs)
4395 vertex_offset = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
4396 get_arg(ctx, ctx->args->gs_vtx_offset[vertex / 2u * 2u]),
4397 Operand((vertex % 2u) * 16u), Operand(16u));
4398 else
4399 vertex_offset = get_arg(ctx, ctx->args->gs_vtx_offset[vertex]);
4400 }
4401
4402 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, base_stride);
4403 offs = offset_add(ctx, offs, std::make_pair(vertex_offset, 0u));
4404 return offset_mul(ctx, offs, 4u);
4405 }
4406
4407 void visit_load_gs_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4408 {
4409 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
4410
4411 Builder bld(ctx->program, ctx->block);
4412 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4413 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
4414
4415 if (ctx->stage == geometry_gs) {
4416 std::pair<Temp, unsigned> offs = get_gs_per_vertex_input_offset(ctx, instr, ctx->program->wave_size);
4417 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_GS * 16u));
4418 load_vmem_mubuf(ctx, dst, ring, offs.first, Temp(), offs.second, elem_size_bytes, instr->dest.ssa.num_components, 4u * ctx->program->wave_size, false, true);
4419 } else if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
4420 std::pair<Temp, unsigned> offs = get_gs_per_vertex_input_offset(ctx, instr);
4421 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
4422 load_lds(ctx, elem_size_bytes, dst, offs.first, offs.second, lds_align);
4423 } else {
4424 unreachable("Unsupported GS stage.");
4425 }
4426 }
4427
4428 void visit_load_tcs_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4429 {
4430 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4431
4432 Builder bld(ctx->program, ctx->block);
4433 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4434
4435 if (load_input_from_temps(ctx, instr, dst))
4436 return;
4437
4438 std::pair<Temp, unsigned> offs = get_tcs_per_vertex_input_lds_offset(ctx, instr);
4439 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
4440 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
4441
4442 load_lds(ctx, elem_size_bytes, dst, offs.first, offs.second, lds_align);
4443 }
4444
4445 void visit_load_tes_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4446 {
4447 assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
4448
4449 Builder bld(ctx->program, ctx->block);
4450
4451 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
4452 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
4453 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4454
4455 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
4456 std::pair<Temp, unsigned> offs = get_tcs_per_vertex_output_vmem_offset(ctx, instr);
4457
4458 load_vmem_mubuf(ctx, dst, ring, offs.first, oc_lds, offs.second, elem_size_bytes, instr->dest.ssa.num_components, 0u, true, true);
4459 }
4460
4461 void visit_load_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4462 {
4463 switch (ctx->shader->info.stage) {
4464 case MESA_SHADER_GEOMETRY:
4465 visit_load_gs_per_vertex_input(ctx, instr);
4466 break;
4467 case MESA_SHADER_TESS_CTRL:
4468 visit_load_tcs_per_vertex_input(ctx, instr);
4469 break;
4470 case MESA_SHADER_TESS_EVAL:
4471 visit_load_tes_per_vertex_input(ctx, instr);
4472 break;
4473 default:
4474 unreachable("Unimplemented shader stage");
4475 }
4476 }
4477
4478 void visit_load_per_vertex_output(isel_context *ctx, nir_intrinsic_instr *instr)
4479 {
4480 visit_load_tcs_output(ctx, instr, true);
4481 }
4482
4483 void visit_store_per_vertex_output(isel_context *ctx, nir_intrinsic_instr *instr)
4484 {
4485 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
4486 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4487
4488 visit_store_tcs_output(ctx, instr, true);
4489 }
4490
4491 void visit_load_tess_coord(isel_context *ctx, nir_intrinsic_instr *instr)
4492 {
4493 assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
4494
4495 Builder bld(ctx->program, ctx->block);
4496 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4497
4498 Operand tes_u(get_arg(ctx, ctx->args->tes_u));
4499 Operand tes_v(get_arg(ctx, ctx->args->tes_v));
4500 Operand tes_w(0u);
4501
4502 if (ctx->shader->info.tess.primitive_mode == GL_TRIANGLES) {
4503 Temp tmp = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), tes_u, tes_v);
4504 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0x3f800000u /* 1.0f */), tmp);
4505 tes_w = Operand(tmp);
4506 }
4507
4508 Temp tess_coord = bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tes_u, tes_v, tes_w);
4509 emit_split_vector(ctx, tess_coord, 3);
4510 }
4511
4512 Temp load_desc_ptr(isel_context *ctx, unsigned desc_set)
4513 {
4514 if (ctx->program->info->need_indirect_descriptor_sets) {
4515 Builder bld(ctx->program, ctx->block);
4516 Temp ptr64 = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->descriptor_sets[0]));
4517 Operand off = bld.copy(bld.def(s1), Operand(desc_set << 2));
4518 return bld.smem(aco_opcode::s_load_dword, bld.def(s1), ptr64, off);//, false, false, false);
4519 }
4520
4521 return get_arg(ctx, ctx->args->descriptor_sets[desc_set]);
4522 }
4523
4524
4525 void visit_load_resource(isel_context *ctx, nir_intrinsic_instr *instr)
4526 {
4527 Builder bld(ctx->program, ctx->block);
4528 Temp index = get_ssa_temp(ctx, instr->src[0].ssa);
4529 if (!ctx->divergent_vals[instr->dest.ssa.index])
4530 index = bld.as_uniform(index);
4531 unsigned desc_set = nir_intrinsic_desc_set(instr);
4532 unsigned binding = nir_intrinsic_binding(instr);
4533
4534 Temp desc_ptr;
4535 radv_pipeline_layout *pipeline_layout = ctx->options->layout;
4536 radv_descriptor_set_layout *layout = pipeline_layout->set[desc_set].layout;
4537 unsigned offset = layout->binding[binding].offset;
4538 unsigned stride;
4539 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
4540 layout->binding[binding].type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
4541 unsigned idx = pipeline_layout->set[desc_set].dynamic_offset_start + layout->binding[binding].dynamic_offset_offset;
4542 desc_ptr = get_arg(ctx, ctx->args->ac.push_constants);
4543 offset = pipeline_layout->push_constant_size + 16 * idx;
4544 stride = 16;
4545 } else {
4546 desc_ptr = load_desc_ptr(ctx, desc_set);
4547 stride = layout->binding[binding].size;
4548 }
4549
4550 nir_const_value* nir_const_index = nir_src_as_const_value(instr->src[0]);
4551 unsigned const_index = nir_const_index ? nir_const_index->u32 : 0;
4552 if (stride != 1) {
4553 if (nir_const_index) {
4554 const_index = const_index * stride;
4555 } else if (index.type() == RegType::vgpr) {
4556 bool index24bit = layout->binding[binding].array_size <= 0x1000000;
4557 index = bld.v_mul_imm(bld.def(v1), index, stride, index24bit);
4558 } else {
4559 index = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), Operand(index));
4560 }
4561 }
4562 if (offset) {
4563 if (nir_const_index) {
4564 const_index = const_index + offset;
4565 } else if (index.type() == RegType::vgpr) {
4566 index = bld.vadd32(bld.def(v1), Operand(offset), index);
4567 } else {
4568 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), Operand(index));
4569 }
4570 }
4571
4572 if (nir_const_index && const_index == 0) {
4573 index = desc_ptr;
4574 } else if (index.type() == RegType::vgpr) {
4575 index = bld.vadd32(bld.def(v1),
4576 nir_const_index ? Operand(const_index) : Operand(index),
4577 Operand(desc_ptr));
4578 } else {
4579 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
4580 nir_const_index ? Operand(const_index) : Operand(index),
4581 Operand(desc_ptr));
4582 }
4583
4584 bld.copy(Definition(get_ssa_temp(ctx, &instr->dest.ssa)), index);
4585 }
4586
4587 void load_buffer(isel_context *ctx, unsigned num_components, unsigned component_size,
4588 Temp dst, Temp rsrc, Temp offset, int byte_align,
4589 bool glc=false, bool readonly=true)
4590 {
4591 Builder bld(ctx->program, ctx->block);
4592 bool dlc = glc && ctx->options->chip_class >= GFX10;
4593 unsigned num_bytes = num_components * component_size;
4594
4595 aco_opcode op;
4596 if (dst.type() == RegType::vgpr || ((ctx->options->chip_class < GFX8 || component_size < 4) && !readonly)) {
4597 Operand vaddr = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
4598 Operand soffset = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
4599 unsigned const_offset = 0;
4600
4601 /* for small bit sizes add buffer for unaligned loads */
4602 if (byte_align) {
4603 if (num_bytes > 2)
4604 num_bytes += byte_align == -1 ? 4 - component_size : byte_align;
4605 else
4606 byte_align = 0;
4607 }
4608
4609 Temp lower = Temp();
4610 if (num_bytes > 16) {
4611 assert(num_components == 3 || num_components == 4);
4612 op = aco_opcode::buffer_load_dwordx4;
4613 lower = bld.tmp(v4);
4614 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
4615 mubuf->definitions[0] = Definition(lower);
4616 mubuf->operands[0] = Operand(rsrc);
4617 mubuf->operands[1] = vaddr;
4618 mubuf->operands[2] = soffset;
4619 mubuf->offen = (offset.type() == RegType::vgpr);
4620 mubuf->glc = glc;
4621 mubuf->dlc = dlc;
4622 mubuf->barrier = readonly ? barrier_none : barrier_buffer;
4623 mubuf->can_reorder = readonly;
4624 bld.insert(std::move(mubuf));
4625 emit_split_vector(ctx, lower, 2);
4626 num_bytes -= 16;
4627 const_offset = 16;
4628 } else if (num_bytes == 12 && ctx->options->chip_class == GFX6) {
4629 /* GFX6 doesn't support loading vec3, expand to vec4. */
4630 num_bytes = 16;
4631 }
4632
4633 switch (num_bytes) {
4634 case 1:
4635 op = aco_opcode::buffer_load_ubyte;
4636 break;
4637 case 2:
4638 op = aco_opcode::buffer_load_ushort;
4639 break;
4640 case 3:
4641 case 4:
4642 op = aco_opcode::buffer_load_dword;
4643 break;
4644 case 5:
4645 case 6:
4646 case 7:
4647 case 8:
4648 op = aco_opcode::buffer_load_dwordx2;
4649 break;
4650 case 10:
4651 case 12:
4652 assert(ctx->options->chip_class > GFX6);
4653 op = aco_opcode::buffer_load_dwordx3;
4654 break;
4655 case 16:
4656 op = aco_opcode::buffer_load_dwordx4;
4657 break;
4658 default:
4659 unreachable("Load SSBO not implemented for this size.");
4660 }
4661 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
4662 mubuf->operands[0] = Operand(rsrc);
4663 mubuf->operands[1] = vaddr;
4664 mubuf->operands[2] = soffset;
4665 mubuf->offen = (offset.type() == RegType::vgpr);
4666 mubuf->glc = glc;
4667 mubuf->dlc = dlc;
4668 mubuf->barrier = readonly ? barrier_none : barrier_buffer;
4669 mubuf->can_reorder = readonly;
4670 mubuf->offset = const_offset;
4671 aco_ptr<Instruction> instr = std::move(mubuf);
4672
4673 if (component_size < 4) {
4674 Temp vec = num_bytes <= 4 ? bld.tmp(v1) : num_bytes <= 8 ? bld.tmp(v2) : bld.tmp(v3);
4675 instr->definitions[0] = Definition(vec);
4676 bld.insert(std::move(instr));
4677
4678 if (byte_align == -1 || (byte_align && dst.type() == RegType::sgpr)) {
4679 Operand align = byte_align == -1 ? Operand(offset) : Operand((uint32_t)byte_align);
4680 Temp tmp[3] = {vec, vec, vec};
4681
4682 if (vec.size() == 3) {
4683 tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = bld.tmp(v1);
4684 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), Definition(tmp[2]), vec);
4685 } else if (vec.size() == 2) {
4686 tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = tmp[1];
4687 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), vec);
4688 }
4689 for (unsigned i = 0; i < dst.size(); i++)
4690 tmp[i] = bld.vop3(aco_opcode::v_alignbyte_b32, bld.def(v1), tmp[i + 1], tmp[i], align);
4691
4692 vec = tmp[0];
4693 if (dst.size() == 2)
4694 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), tmp[0], tmp[1]);
4695
4696 byte_align = 0;
4697 }
4698
4699 if (dst.type() == RegType::vgpr && num_components == 1) {
4700 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), vec, Operand(byte_align / component_size));
4701 } else {
4702 trim_subdword_vector(ctx, vec, dst, 4 * vec.size() / component_size, ((1 << num_components) - 1) << byte_align / component_size);
4703 }
4704
4705 return;
4706
4707 } else if (dst.size() > 4) {
4708 assert(lower != Temp());
4709 Temp upper = bld.tmp(RegType::vgpr, dst.size() - lower.size());
4710 instr->definitions[0] = Definition(upper);
4711 bld.insert(std::move(instr));
4712 if (dst.size() == 8)
4713 emit_split_vector(ctx, upper, 2);
4714 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size() / 2, 1));
4715 instr->operands[0] = Operand(emit_extract_vector(ctx, lower, 0, v2));
4716 instr->operands[1] = Operand(emit_extract_vector(ctx, lower, 1, v2));
4717 instr->operands[2] = Operand(emit_extract_vector(ctx, upper, 0, v2));
4718 if (dst.size() == 8)
4719 instr->operands[3] = Operand(emit_extract_vector(ctx, upper, 1, v2));
4720 } else if (dst.size() == 3 && ctx->options->chip_class == GFX6) {
4721 Temp vec = bld.tmp(v4);
4722 instr->definitions[0] = Definition(vec);
4723 bld.insert(std::move(instr));
4724 emit_split_vector(ctx, vec, 4);
4725
4726 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 3, 1));
4727 instr->operands[0] = Operand(emit_extract_vector(ctx, vec, 0, v1));
4728 instr->operands[1] = Operand(emit_extract_vector(ctx, vec, 1, v1));
4729 instr->operands[2] = Operand(emit_extract_vector(ctx, vec, 2, v1));
4730 }
4731
4732 if (dst.type() == RegType::sgpr) {
4733 Temp vec = bld.tmp(RegType::vgpr, dst.size());
4734 instr->definitions[0] = Definition(vec);
4735 bld.insert(std::move(instr));
4736 expand_vector(ctx, vec, dst, num_components, (1 << num_components) - 1);
4737 } else {
4738 instr->definitions[0] = Definition(dst);
4739 bld.insert(std::move(instr));
4740 emit_split_vector(ctx, dst, num_components);
4741 }
4742 } else {
4743 /* for small bit sizes add buffer for unaligned loads */
4744 if (byte_align)
4745 num_bytes += byte_align == -1 ? 4 - component_size : byte_align;
4746
4747 switch (num_bytes) {
4748 case 1:
4749 case 2:
4750 case 3:
4751 case 4:
4752 op = aco_opcode::s_buffer_load_dword;
4753 break;
4754 case 5:
4755 case 6:
4756 case 7:
4757 case 8:
4758 op = aco_opcode::s_buffer_load_dwordx2;
4759 break;
4760 case 10:
4761 case 12:
4762 case 16:
4763 op = aco_opcode::s_buffer_load_dwordx4;
4764 break;
4765 case 24:
4766 case 32:
4767 op = aco_opcode::s_buffer_load_dwordx8;
4768 break;
4769 default:
4770 unreachable("Load SSBO not implemented for this size.");
4771 }
4772 offset = bld.as_uniform(offset);
4773 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
4774 load->operands[0] = Operand(rsrc);
4775 load->operands[1] = Operand(offset);
4776 assert(load->operands[1].getTemp().type() == RegType::sgpr);
4777 load->definitions[0] = Definition(dst);
4778 load->glc = glc;
4779 load->dlc = dlc;
4780 load->barrier = readonly ? barrier_none : barrier_buffer;
4781 load->can_reorder = false; // FIXME: currently, it doesn't seem beneficial due to how our scheduler works
4782 assert(ctx->options->chip_class >= GFX8 || !glc);
4783
4784 /* adjust misaligned small bit size loads */
4785 if (byte_align) {
4786 Temp vec = num_bytes <= 4 ? bld.tmp(s1) : num_bytes <= 8 ? bld.tmp(s2) : bld.tmp(s4);
4787 load->definitions[0] = Definition(vec);
4788 bld.insert(std::move(load));
4789 Operand byte_offset = byte_align > 0 ? Operand(uint32_t(byte_align)) : Operand(offset);
4790 byte_align_scalar(ctx, vec, byte_offset, dst);
4791
4792 /* trim vector */
4793 } else if (dst.size() == 3) {
4794 Temp vec = bld.tmp(s4);
4795 load->definitions[0] = Definition(vec);
4796 bld.insert(std::move(load));
4797 emit_split_vector(ctx, vec, 4);
4798
4799 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4800 emit_extract_vector(ctx, vec, 0, s1),
4801 emit_extract_vector(ctx, vec, 1, s1),
4802 emit_extract_vector(ctx, vec, 2, s1));
4803 } else if (dst.size() == 6) {
4804 Temp vec = bld.tmp(s8);
4805 load->definitions[0] = Definition(vec);
4806 bld.insert(std::move(load));
4807 emit_split_vector(ctx, vec, 4);
4808
4809 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4810 emit_extract_vector(ctx, vec, 0, s2),
4811 emit_extract_vector(ctx, vec, 1, s2),
4812 emit_extract_vector(ctx, vec, 2, s2));
4813 } else {
4814 bld.insert(std::move(load));
4815 }
4816 emit_split_vector(ctx, dst, num_components);
4817 }
4818 }
4819
4820 void visit_load_ubo(isel_context *ctx, nir_intrinsic_instr *instr)
4821 {
4822 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4823 Temp rsrc = get_ssa_temp(ctx, instr->src[0].ssa);
4824
4825 Builder bld(ctx->program, ctx->block);
4826
4827 nir_intrinsic_instr* idx_instr = nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
4828 unsigned desc_set = nir_intrinsic_desc_set(idx_instr);
4829 unsigned binding = nir_intrinsic_binding(idx_instr);
4830 radv_descriptor_set_layout *layout = ctx->options->layout->set[desc_set].layout;
4831
4832 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
4833 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
4834 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
4835 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
4836 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
4837 if (ctx->options->chip_class >= GFX10) {
4838 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
4839 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
4840 S_008F0C_RESOURCE_LEVEL(1);
4841 } else {
4842 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
4843 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
4844 }
4845 Temp upper_dwords = bld.pseudo(aco_opcode::p_create_vector, bld.def(s3),
4846 Operand(S_008F04_BASE_ADDRESS_HI(ctx->options->address32_hi)),
4847 Operand(0xFFFFFFFFu),
4848 Operand(desc_type));
4849 rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
4850 rsrc, upper_dwords);
4851 } else {
4852 rsrc = convert_pointer_to_64_bit(ctx, rsrc);
4853 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
4854 }
4855 unsigned size = instr->dest.ssa.bit_size / 8;
4856 int byte_align = 0;
4857 if (size < 4) {
4858 unsigned align_mul = nir_intrinsic_align_mul(instr);
4859 unsigned align_offset = nir_intrinsic_align_offset(instr);
4860 byte_align = align_mul % 4 == 0 ? align_offset : -1;
4861 }
4862 load_buffer(ctx, instr->num_components, size, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa), byte_align);
4863 }
4864
4865 void visit_load_push_constant(isel_context *ctx, nir_intrinsic_instr *instr)
4866 {
4867 Builder bld(ctx->program, ctx->block);
4868 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4869 unsigned offset = nir_intrinsic_base(instr);
4870 unsigned count = instr->dest.ssa.num_components;
4871 nir_const_value *index_cv = nir_src_as_const_value(instr->src[0]);
4872
4873 if (index_cv && instr->dest.ssa.bit_size == 32) {
4874 unsigned start = (offset + index_cv->u32) / 4u;
4875 start -= ctx->args->ac.base_inline_push_consts;
4876 if (start + count <= ctx->args->ac.num_inline_push_consts) {
4877 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
4878 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
4879 for (unsigned i = 0; i < count; ++i) {
4880 elems[i] = get_arg(ctx, ctx->args->ac.inline_push_consts[start + i]);
4881 vec->operands[i] = Operand{elems[i]};
4882 }
4883 vec->definitions[0] = Definition(dst);
4884 ctx->block->instructions.emplace_back(std::move(vec));
4885 ctx->allocated_vec.emplace(dst.id(), elems);
4886 return;
4887 }
4888 }
4889
4890 Temp index = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa));
4891 if (offset != 0) // TODO check if index != 0 as well
4892 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), index);
4893 Temp ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->ac.push_constants));
4894 Temp vec = dst;
4895 bool trim = false;
4896 bool aligned = true;
4897
4898 if (instr->dest.ssa.bit_size == 8) {
4899 aligned = index_cv && (offset + index_cv->u32) % 4 == 0;
4900 bool fits_in_dword = count == 1 || (index_cv && ((offset + index_cv->u32) % 4 + count) <= 4);
4901 if (!aligned)
4902 vec = fits_in_dword ? bld.tmp(s1) : bld.tmp(s2);
4903 } else if (instr->dest.ssa.bit_size == 16) {
4904 aligned = index_cv && (offset + index_cv->u32) % 4 == 0;
4905 if (!aligned)
4906 vec = count == 4 ? bld.tmp(s4) : count > 1 ? bld.tmp(s2) : bld.tmp(s1);
4907 }
4908
4909 aco_opcode op;
4910
4911 switch (vec.size()) {
4912 case 1:
4913 op = aco_opcode::s_load_dword;
4914 break;
4915 case 2:
4916 op = aco_opcode::s_load_dwordx2;
4917 break;
4918 case 3:
4919 vec = bld.tmp(s4);
4920 trim = true;
4921 case 4:
4922 op = aco_opcode::s_load_dwordx4;
4923 break;
4924 case 6:
4925 vec = bld.tmp(s8);
4926 trim = true;
4927 case 8:
4928 op = aco_opcode::s_load_dwordx8;
4929 break;
4930 default:
4931 unreachable("unimplemented or forbidden load_push_constant.");
4932 }
4933
4934 bld.smem(op, Definition(vec), ptr, index);
4935
4936 if (!aligned) {
4937 Operand byte_offset = index_cv ? Operand((offset + index_cv->u32) % 4) : Operand(index);
4938 byte_align_scalar(ctx, vec, byte_offset, dst);
4939 return;
4940 }
4941
4942 if (trim) {
4943 emit_split_vector(ctx, vec, 4);
4944 RegClass rc = dst.size() == 3 ? s1 : s2;
4945 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4946 emit_extract_vector(ctx, vec, 0, rc),
4947 emit_extract_vector(ctx, vec, 1, rc),
4948 emit_extract_vector(ctx, vec, 2, rc));
4949
4950 }
4951 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
4952 }
4953
4954 void visit_load_constant(isel_context *ctx, nir_intrinsic_instr *instr)
4955 {
4956 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4957
4958 Builder bld(ctx->program, ctx->block);
4959
4960 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
4961 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
4962 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
4963 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
4964 if (ctx->options->chip_class >= GFX10) {
4965 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
4966 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
4967 S_008F0C_RESOURCE_LEVEL(1);
4968 } else {
4969 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
4970 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
4971 }
4972
4973 unsigned base = nir_intrinsic_base(instr);
4974 unsigned range = nir_intrinsic_range(instr);
4975
4976 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
4977 if (base && offset.type() == RegType::sgpr)
4978 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), offset, Operand(base));
4979 else if (base && offset.type() == RegType::vgpr)
4980 offset = bld.vadd32(bld.def(v1), Operand(base), offset);
4981
4982 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
4983 bld.sop1(aco_opcode::p_constaddr, bld.def(s2), bld.def(s1, scc), Operand(ctx->constant_data_offset)),
4984 Operand(MIN2(base + range, ctx->shader->constant_data_size)),
4985 Operand(desc_type));
4986 unsigned size = instr->dest.ssa.bit_size / 8;
4987 // TODO: get alignment information for subdword constants
4988 unsigned byte_align = size < 4 ? -1 : 0;
4989 load_buffer(ctx, instr->num_components, size, dst, rsrc, offset, byte_align);
4990 }
4991
4992 void visit_discard_if(isel_context *ctx, nir_intrinsic_instr *instr)
4993 {
4994 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
4995 ctx->cf_info.exec_potentially_empty_discard = true;
4996
4997 ctx->program->needs_exact = true;
4998
4999 // TODO: optimize uniform conditions
5000 Builder bld(ctx->program, ctx->block);
5001 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
5002 assert(src.regClass() == bld.lm);
5003 src = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
5004 bld.pseudo(aco_opcode::p_discard_if, src);
5005 ctx->block->kind |= block_kind_uses_discard_if;
5006 return;
5007 }
5008
5009 void visit_discard(isel_context* ctx, nir_intrinsic_instr *instr)
5010 {
5011 Builder bld(ctx->program, ctx->block);
5012
5013 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
5014 ctx->cf_info.exec_potentially_empty_discard = true;
5015
5016 bool divergent = ctx->cf_info.parent_if.is_divergent ||
5017 ctx->cf_info.parent_loop.has_divergent_continue;
5018
5019 if (ctx->block->loop_nest_depth &&
5020 ((nir_instr_is_last(&instr->instr) && !divergent) || divergent)) {
5021 /* we handle discards the same way as jump instructions */
5022 append_logical_end(ctx->block);
5023
5024 /* in loops, discard behaves like break */
5025 Block *linear_target = ctx->cf_info.parent_loop.exit;
5026 ctx->block->kind |= block_kind_discard;
5027
5028 if (!divergent) {
5029 /* uniform discard - loop ends here */
5030 assert(nir_instr_is_last(&instr->instr));
5031 ctx->block->kind |= block_kind_uniform;
5032 ctx->cf_info.has_branch = true;
5033 bld.branch(aco_opcode::p_branch);
5034 add_linear_edge(ctx->block->index, linear_target);
5035 return;
5036 }
5037
5038 /* we add a break right behind the discard() instructions */
5039 ctx->block->kind |= block_kind_break;
5040 unsigned idx = ctx->block->index;
5041
5042 ctx->cf_info.parent_loop.has_divergent_branch = true;
5043 ctx->cf_info.nir_to_aco[instr->instr.block->index] = idx;
5044
5045 /* remove critical edges from linear CFG */
5046 bld.branch(aco_opcode::p_branch);
5047 Block* break_block = ctx->program->create_and_insert_block();
5048 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
5049 break_block->kind |= block_kind_uniform;
5050 add_linear_edge(idx, break_block);
5051 add_linear_edge(break_block->index, linear_target);
5052 bld.reset(break_block);
5053 bld.branch(aco_opcode::p_branch);
5054
5055 Block* continue_block = ctx->program->create_and_insert_block();
5056 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
5057 add_linear_edge(idx, continue_block);
5058 append_logical_start(continue_block);
5059 ctx->block = continue_block;
5060
5061 return;
5062 }
5063
5064 /* it can currently happen that NIR doesn't remove the unreachable code */
5065 if (!nir_instr_is_last(&instr->instr)) {
5066 ctx->program->needs_exact = true;
5067 /* save exec somewhere temporarily so that it doesn't get
5068 * overwritten before the discard from outer exec masks */
5069 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), Operand(0xFFFFFFFF), Operand(exec, bld.lm));
5070 bld.pseudo(aco_opcode::p_discard_if, cond);
5071 ctx->block->kind |= block_kind_uses_discard_if;
5072 return;
5073 }
5074
5075 /* This condition is incorrect for uniformly branched discards in a loop
5076 * predicated by a divergent condition, but the above code catches that case
5077 * and the discard would end up turning into a discard_if.
5078 * For example:
5079 * if (divergent) {
5080 * while (...) {
5081 * if (uniform) {
5082 * discard;
5083 * }
5084 * }
5085 * }
5086 */
5087 if (!ctx->cf_info.parent_if.is_divergent) {
5088 /* program just ends here */
5089 ctx->block->kind |= block_kind_uniform;
5090 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
5091 0 /* enabled mask */, 9 /* dest */,
5092 false /* compressed */, true/* done */, true /* valid mask */);
5093 bld.sopp(aco_opcode::s_endpgm);
5094 // TODO: it will potentially be followed by a branch which is dead code to sanitize NIR phis
5095 } else {
5096 ctx->block->kind |= block_kind_discard;
5097 /* branch and linear edge is added by visit_if() */
5098 }
5099 }
5100
5101 enum aco_descriptor_type {
5102 ACO_DESC_IMAGE,
5103 ACO_DESC_FMASK,
5104 ACO_DESC_SAMPLER,
5105 ACO_DESC_BUFFER,
5106 ACO_DESC_PLANE_0,
5107 ACO_DESC_PLANE_1,
5108 ACO_DESC_PLANE_2,
5109 };
5110
5111 static bool
5112 should_declare_array(isel_context *ctx, enum glsl_sampler_dim sampler_dim, bool is_array) {
5113 if (sampler_dim == GLSL_SAMPLER_DIM_BUF)
5114 return false;
5115 ac_image_dim dim = ac_get_sampler_dim(ctx->options->chip_class, sampler_dim, is_array);
5116 return dim == ac_image_cube ||
5117 dim == ac_image_1darray ||
5118 dim == ac_image_2darray ||
5119 dim == ac_image_2darraymsaa;
5120 }
5121
5122 Temp get_sampler_desc(isel_context *ctx, nir_deref_instr *deref_instr,
5123 enum aco_descriptor_type desc_type,
5124 const nir_tex_instr *tex_instr, bool image, bool write)
5125 {
5126 /* FIXME: we should lower the deref with some new nir_intrinsic_load_desc
5127 std::unordered_map<uint64_t, Temp>::iterator it = ctx->tex_desc.find((uint64_t) desc_type << 32 | deref_instr->dest.ssa.index);
5128 if (it != ctx->tex_desc.end())
5129 return it->second;
5130 */
5131 Temp index = Temp();
5132 bool index_set = false;
5133 unsigned constant_index = 0;
5134 unsigned descriptor_set;
5135 unsigned base_index;
5136 Builder bld(ctx->program, ctx->block);
5137
5138 if (!deref_instr) {
5139 assert(tex_instr && !image);
5140 descriptor_set = 0;
5141 base_index = tex_instr->sampler_index;
5142 } else {
5143 while(deref_instr->deref_type != nir_deref_type_var) {
5144 unsigned array_size = glsl_get_aoa_size(deref_instr->type);
5145 if (!array_size)
5146 array_size = 1;
5147
5148 assert(deref_instr->deref_type == nir_deref_type_array);
5149 nir_const_value *const_value = nir_src_as_const_value(deref_instr->arr.index);
5150 if (const_value) {
5151 constant_index += array_size * const_value->u32;
5152 } else {
5153 Temp indirect = get_ssa_temp(ctx, deref_instr->arr.index.ssa);
5154 if (indirect.type() == RegType::vgpr)
5155 indirect = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), indirect);
5156
5157 if (array_size != 1)
5158 indirect = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(array_size), indirect);
5159
5160 if (!index_set) {
5161 index = indirect;
5162 index_set = true;
5163 } else {
5164 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), index, indirect);
5165 }
5166 }
5167
5168 deref_instr = nir_src_as_deref(deref_instr->parent);
5169 }
5170 descriptor_set = deref_instr->var->data.descriptor_set;
5171 base_index = deref_instr->var->data.binding;
5172 }
5173
5174 Temp list = load_desc_ptr(ctx, descriptor_set);
5175 list = convert_pointer_to_64_bit(ctx, list);
5176
5177 struct radv_descriptor_set_layout *layout = ctx->options->layout->set[descriptor_set].layout;
5178 struct radv_descriptor_set_binding_layout *binding = layout->binding + base_index;
5179 unsigned offset = binding->offset;
5180 unsigned stride = binding->size;
5181 aco_opcode opcode;
5182 RegClass type;
5183
5184 assert(base_index < layout->binding_count);
5185
5186 switch (desc_type) {
5187 case ACO_DESC_IMAGE:
5188 type = s8;
5189 opcode = aco_opcode::s_load_dwordx8;
5190 break;
5191 case ACO_DESC_FMASK:
5192 type = s8;
5193 opcode = aco_opcode::s_load_dwordx8;
5194 offset += 32;
5195 break;
5196 case ACO_DESC_SAMPLER:
5197 type = s4;
5198 opcode = aco_opcode::s_load_dwordx4;
5199 if (binding->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
5200 offset += radv_combined_image_descriptor_sampler_offset(binding);
5201 break;
5202 case ACO_DESC_BUFFER:
5203 type = s4;
5204 opcode = aco_opcode::s_load_dwordx4;
5205 break;
5206 case ACO_DESC_PLANE_0:
5207 case ACO_DESC_PLANE_1:
5208 type = s8;
5209 opcode = aco_opcode::s_load_dwordx8;
5210 offset += 32 * (desc_type - ACO_DESC_PLANE_0);
5211 break;
5212 case ACO_DESC_PLANE_2:
5213 type = s4;
5214 opcode = aco_opcode::s_load_dwordx4;
5215 offset += 64;
5216 break;
5217 default:
5218 unreachable("invalid desc_type\n");
5219 }
5220
5221 offset += constant_index * stride;
5222
5223 if (desc_type == ACO_DESC_SAMPLER && binding->immutable_samplers_offset &&
5224 (!index_set || binding->immutable_samplers_equal)) {
5225 if (binding->immutable_samplers_equal)
5226 constant_index = 0;
5227
5228 const uint32_t *samplers = radv_immutable_samplers(layout, binding);
5229 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
5230 Operand(samplers[constant_index * 4 + 0]),
5231 Operand(samplers[constant_index * 4 + 1]),
5232 Operand(samplers[constant_index * 4 + 2]),
5233 Operand(samplers[constant_index * 4 + 3]));
5234 }
5235
5236 Operand off;
5237 if (!index_set) {
5238 off = bld.copy(bld.def(s1), Operand(offset));
5239 } else {
5240 off = Operand((Temp)bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset),
5241 bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), index)));
5242 }
5243
5244 Temp res = bld.smem(opcode, bld.def(type), list, off);
5245
5246 if (desc_type == ACO_DESC_PLANE_2) {
5247 Temp components[8];
5248 for (unsigned i = 0; i < 8; i++)
5249 components[i] = bld.tmp(s1);
5250 bld.pseudo(aco_opcode::p_split_vector,
5251 Definition(components[0]),
5252 Definition(components[1]),
5253 Definition(components[2]),
5254 Definition(components[3]),
5255 res);
5256
5257 Temp desc2 = get_sampler_desc(ctx, deref_instr, ACO_DESC_PLANE_1, tex_instr, image, write);
5258 bld.pseudo(aco_opcode::p_split_vector,
5259 bld.def(s1), bld.def(s1), bld.def(s1), bld.def(s1),
5260 Definition(components[4]),
5261 Definition(components[5]),
5262 Definition(components[6]),
5263 Definition(components[7]),
5264 desc2);
5265
5266 res = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
5267 components[0], components[1], components[2], components[3],
5268 components[4], components[5], components[6], components[7]);
5269 }
5270
5271 return res;
5272 }
5273
5274 static int image_type_to_components_count(enum glsl_sampler_dim dim, bool array)
5275 {
5276 switch (dim) {
5277 case GLSL_SAMPLER_DIM_BUF:
5278 return 1;
5279 case GLSL_SAMPLER_DIM_1D:
5280 return array ? 2 : 1;
5281 case GLSL_SAMPLER_DIM_2D:
5282 return array ? 3 : 2;
5283 case GLSL_SAMPLER_DIM_MS:
5284 return array ? 4 : 3;
5285 case GLSL_SAMPLER_DIM_3D:
5286 case GLSL_SAMPLER_DIM_CUBE:
5287 return 3;
5288 case GLSL_SAMPLER_DIM_RECT:
5289 case GLSL_SAMPLER_DIM_SUBPASS:
5290 return 2;
5291 case GLSL_SAMPLER_DIM_SUBPASS_MS:
5292 return 3;
5293 default:
5294 break;
5295 }
5296 return 0;
5297 }
5298
5299
5300 /* Adjust the sample index according to FMASK.
5301 *
5302 * For uncompressed MSAA surfaces, FMASK should return 0x76543210,
5303 * which is the identity mapping. Each nibble says which physical sample
5304 * should be fetched to get that sample.
5305 *
5306 * For example, 0x11111100 means there are only 2 samples stored and
5307 * the second sample covers 3/4 of the pixel. When reading samples 0
5308 * and 1, return physical sample 0 (determined by the first two 0s
5309 * in FMASK), otherwise return physical sample 1.
5310 *
5311 * The sample index should be adjusted as follows:
5312 * sample_index = (fmask >> (sample_index * 4)) & 0xF;
5313 */
5314 static Temp adjust_sample_index_using_fmask(isel_context *ctx, bool da, std::vector<Temp>& coords, Operand sample_index, Temp fmask_desc_ptr)
5315 {
5316 Builder bld(ctx->program, ctx->block);
5317 Temp fmask = bld.tmp(v1);
5318 unsigned dim = ctx->options->chip_class >= GFX10
5319 ? ac_get_sampler_dim(ctx->options->chip_class, GLSL_SAMPLER_DIM_2D, da)
5320 : 0;
5321
5322 Temp coord = da ? bld.pseudo(aco_opcode::p_create_vector, bld.def(v3), coords[0], coords[1], coords[2]) :
5323 bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), coords[0], coords[1]);
5324 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(aco_opcode::image_load, Format::MIMG, 3, 1)};
5325 load->operands[0] = Operand(fmask_desc_ptr);
5326 load->operands[1] = Operand(s4); /* no sampler */
5327 load->operands[2] = Operand(coord);
5328 load->definitions[0] = Definition(fmask);
5329 load->glc = false;
5330 load->dlc = false;
5331 load->dmask = 0x1;
5332 load->unrm = true;
5333 load->da = da;
5334 load->dim = dim;
5335 load->can_reorder = true; /* fmask images shouldn't be modified */
5336 ctx->block->instructions.emplace_back(std::move(load));
5337
5338 Operand sample_index4;
5339 if (sample_index.isConstant() && sample_index.constantValue() < 16) {
5340 sample_index4 = Operand(sample_index.constantValue() << 2);
5341 } else if (sample_index.regClass() == s1) {
5342 sample_index4 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), sample_index, Operand(2u));
5343 } else {
5344 assert(sample_index.regClass() == v1);
5345 sample_index4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), sample_index);
5346 }
5347
5348 Temp final_sample;
5349 if (sample_index4.isConstant() && sample_index4.constantValue() == 0)
5350 final_sample = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(15u), fmask);
5351 else if (sample_index4.isConstant() && sample_index4.constantValue() == 28)
5352 final_sample = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(28u), fmask);
5353 else
5354 final_sample = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), fmask, sample_index4, Operand(4u));
5355
5356 /* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK
5357 * resource descriptor is 0 (invalid),
5358 */
5359 Temp compare = bld.tmp(bld.lm);
5360 bld.vopc_e64(aco_opcode::v_cmp_lg_u32, Definition(compare),
5361 Operand(0u), emit_extract_vector(ctx, fmask_desc_ptr, 1, s1)).def(0).setHint(vcc);
5362
5363 Temp sample_index_v = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), sample_index);
5364
5365 /* Replace the MSAA sample index. */
5366 return bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), sample_index_v, final_sample, compare);
5367 }
5368
5369 static Temp get_image_coords(isel_context *ctx, const nir_intrinsic_instr *instr, const struct glsl_type *type)
5370 {
5371
5372 Temp src0 = get_ssa_temp(ctx, instr->src[1].ssa);
5373 enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5374 bool is_array = glsl_sampler_type_is_array(type);
5375 ASSERTED bool add_frag_pos = (dim == GLSL_SAMPLER_DIM_SUBPASS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
5376 assert(!add_frag_pos && "Input attachments should be lowered.");
5377 bool is_ms = (dim == GLSL_SAMPLER_DIM_MS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
5378 bool gfx9_1d = ctx->options->chip_class == GFX9 && dim == GLSL_SAMPLER_DIM_1D;
5379 int count = image_type_to_components_count(dim, is_array);
5380 std::vector<Temp> coords(count);
5381 Builder bld(ctx->program, ctx->block);
5382
5383 if (is_ms) {
5384 count--;
5385 Temp src2 = get_ssa_temp(ctx, instr->src[2].ssa);
5386 /* get sample index */
5387 if (instr->intrinsic == nir_intrinsic_image_deref_load) {
5388 nir_const_value *sample_cv = nir_src_as_const_value(instr->src[2]);
5389 Operand sample_index = sample_cv ? Operand(sample_cv->u32) : Operand(emit_extract_vector(ctx, src2, 0, v1));
5390 std::vector<Temp> fmask_load_address;
5391 for (unsigned i = 0; i < (is_array ? 3 : 2); i++)
5392 fmask_load_address.emplace_back(emit_extract_vector(ctx, src0, i, v1));
5393
5394 Temp fmask_desc_ptr = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_FMASK, nullptr, false, false);
5395 coords[count] = adjust_sample_index_using_fmask(ctx, is_array, fmask_load_address, sample_index, fmask_desc_ptr);
5396 } else {
5397 coords[count] = emit_extract_vector(ctx, src2, 0, v1);
5398 }
5399 }
5400
5401 if (gfx9_1d) {
5402 coords[0] = emit_extract_vector(ctx, src0, 0, v1);
5403 coords.resize(coords.size() + 1);
5404 coords[1] = bld.copy(bld.def(v1), Operand(0u));
5405 if (is_array)
5406 coords[2] = emit_extract_vector(ctx, src0, 1, v1);
5407 } else {
5408 for (int i = 0; i < count; i++)
5409 coords[i] = emit_extract_vector(ctx, src0, i, v1);
5410 }
5411
5412 if (instr->intrinsic == nir_intrinsic_image_deref_load ||
5413 instr->intrinsic == nir_intrinsic_image_deref_store) {
5414 int lod_index = instr->intrinsic == nir_intrinsic_image_deref_load ? 3 : 4;
5415 bool level_zero = nir_src_is_const(instr->src[lod_index]) && nir_src_as_uint(instr->src[lod_index]) == 0;
5416
5417 if (!level_zero)
5418 coords.emplace_back(get_ssa_temp(ctx, instr->src[lod_index].ssa));
5419 }
5420
5421 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
5422 for (unsigned i = 0; i < coords.size(); i++)
5423 vec->operands[i] = Operand(coords[i]);
5424 Temp res = {ctx->program->allocateId(), RegClass(RegType::vgpr, coords.size())};
5425 vec->definitions[0] = Definition(res);
5426 ctx->block->instructions.emplace_back(std::move(vec));
5427 return res;
5428 }
5429
5430
5431 void visit_image_load(isel_context *ctx, nir_intrinsic_instr *instr)
5432 {
5433 Builder bld(ctx->program, ctx->block);
5434 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5435 const struct glsl_type *type = glsl_without_array(var->type);
5436 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5437 bool is_array = glsl_sampler_type_is_array(type);
5438 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5439
5440 if (dim == GLSL_SAMPLER_DIM_BUF) {
5441 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa);
5442 unsigned num_channels = util_last_bit(mask);
5443 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5444 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5445
5446 aco_opcode opcode;
5447 switch (num_channels) {
5448 case 1:
5449 opcode = aco_opcode::buffer_load_format_x;
5450 break;
5451 case 2:
5452 opcode = aco_opcode::buffer_load_format_xy;
5453 break;
5454 case 3:
5455 opcode = aco_opcode::buffer_load_format_xyz;
5456 break;
5457 case 4:
5458 opcode = aco_opcode::buffer_load_format_xyzw;
5459 break;
5460 default:
5461 unreachable(">4 channel buffer image load");
5462 }
5463 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 3, 1)};
5464 load->operands[0] = Operand(rsrc);
5465 load->operands[1] = Operand(vindex);
5466 load->operands[2] = Operand((uint32_t) 0);
5467 Temp tmp;
5468 if (num_channels == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
5469 tmp = dst;
5470 else
5471 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_channels)};
5472 load->definitions[0] = Definition(tmp);
5473 load->idxen = true;
5474 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT);
5475 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
5476 load->barrier = barrier_image;
5477 ctx->block->instructions.emplace_back(std::move(load));
5478
5479 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, (1 << num_channels) - 1);
5480 return;
5481 }
5482
5483 Temp coords = get_image_coords(ctx, instr, type);
5484 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5485
5486 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
5487 unsigned num_components = util_bitcount(dmask);
5488 Temp tmp;
5489 if (num_components == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
5490 tmp = dst;
5491 else
5492 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_components)};
5493
5494 bool level_zero = nir_src_is_const(instr->src[3]) && nir_src_as_uint(instr->src[3]) == 0;
5495 aco_opcode opcode = level_zero ? aco_opcode::image_load : aco_opcode::image_load_mip;
5496
5497 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1)};
5498 load->operands[0] = Operand(resource);
5499 load->operands[1] = Operand(s4); /* no sampler */
5500 load->operands[2] = Operand(coords);
5501 load->definitions[0] = Definition(tmp);
5502 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT) ? 1 : 0;
5503 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
5504 load->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5505 load->dmask = dmask;
5506 load->unrm = true;
5507 load->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5508 load->barrier = barrier_image;
5509 ctx->block->instructions.emplace_back(std::move(load));
5510
5511 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, dmask);
5512 return;
5513 }
5514
5515 void visit_image_store(isel_context *ctx, nir_intrinsic_instr *instr)
5516 {
5517 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5518 const struct glsl_type *type = glsl_without_array(var->type);
5519 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5520 bool is_array = glsl_sampler_type_is_array(type);
5521 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
5522
5523 bool glc = ctx->options->chip_class == GFX6 || var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE) ? 1 : 0;
5524
5525 if (dim == GLSL_SAMPLER_DIM_BUF) {
5526 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5527 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5528 aco_opcode opcode;
5529 switch (data.size()) {
5530 case 1:
5531 opcode = aco_opcode::buffer_store_format_x;
5532 break;
5533 case 2:
5534 opcode = aco_opcode::buffer_store_format_xy;
5535 break;
5536 case 3:
5537 opcode = aco_opcode::buffer_store_format_xyz;
5538 break;
5539 case 4:
5540 opcode = aco_opcode::buffer_store_format_xyzw;
5541 break;
5542 default:
5543 unreachable(">4 channel buffer image store");
5544 }
5545 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
5546 store->operands[0] = Operand(rsrc);
5547 store->operands[1] = Operand(vindex);
5548 store->operands[2] = Operand((uint32_t) 0);
5549 store->operands[3] = Operand(data);
5550 store->idxen = true;
5551 store->glc = glc;
5552 store->dlc = false;
5553 store->disable_wqm = true;
5554 store->barrier = barrier_image;
5555 ctx->program->needs_exact = true;
5556 ctx->block->instructions.emplace_back(std::move(store));
5557 return;
5558 }
5559
5560 assert(data.type() == RegType::vgpr);
5561 Temp coords = get_image_coords(ctx, instr, type);
5562 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5563
5564 bool level_zero = nir_src_is_const(instr->src[4]) && nir_src_as_uint(instr->src[4]) == 0;
5565 aco_opcode opcode = level_zero ? aco_opcode::image_store : aco_opcode::image_store_mip;
5566
5567 aco_ptr<MIMG_instruction> store{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 0)};
5568 store->operands[0] = Operand(resource);
5569 store->operands[1] = Operand(data);
5570 store->operands[2] = Operand(coords);
5571 store->glc = glc;
5572 store->dlc = false;
5573 store->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5574 store->dmask = (1 << data.size()) - 1;
5575 store->unrm = true;
5576 store->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5577 store->disable_wqm = true;
5578 store->barrier = barrier_image;
5579 ctx->program->needs_exact = true;
5580 ctx->block->instructions.emplace_back(std::move(store));
5581 return;
5582 }
5583
5584 void visit_image_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
5585 {
5586 /* return the previous value if dest is ever used */
5587 bool return_previous = false;
5588 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5589 return_previous = true;
5590 break;
5591 }
5592 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5593 return_previous = true;
5594 break;
5595 }
5596
5597 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5598 const struct glsl_type *type = glsl_without_array(var->type);
5599 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5600 bool is_array = glsl_sampler_type_is_array(type);
5601 Builder bld(ctx->program, ctx->block);
5602
5603 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
5604 assert(data.size() == 1 && "64bit ssbo atomics not yet implemented.");
5605
5606 if (instr->intrinsic == nir_intrinsic_image_deref_atomic_comp_swap)
5607 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), get_ssa_temp(ctx, instr->src[4].ssa), data);
5608
5609 aco_opcode buf_op, image_op;
5610 switch (instr->intrinsic) {
5611 case nir_intrinsic_image_deref_atomic_add:
5612 buf_op = aco_opcode::buffer_atomic_add;
5613 image_op = aco_opcode::image_atomic_add;
5614 break;
5615 case nir_intrinsic_image_deref_atomic_umin:
5616 buf_op = aco_opcode::buffer_atomic_umin;
5617 image_op = aco_opcode::image_atomic_umin;
5618 break;
5619 case nir_intrinsic_image_deref_atomic_imin:
5620 buf_op = aco_opcode::buffer_atomic_smin;
5621 image_op = aco_opcode::image_atomic_smin;
5622 break;
5623 case nir_intrinsic_image_deref_atomic_umax:
5624 buf_op = aco_opcode::buffer_atomic_umax;
5625 image_op = aco_opcode::image_atomic_umax;
5626 break;
5627 case nir_intrinsic_image_deref_atomic_imax:
5628 buf_op = aco_opcode::buffer_atomic_smax;
5629 image_op = aco_opcode::image_atomic_smax;
5630 break;
5631 case nir_intrinsic_image_deref_atomic_and:
5632 buf_op = aco_opcode::buffer_atomic_and;
5633 image_op = aco_opcode::image_atomic_and;
5634 break;
5635 case nir_intrinsic_image_deref_atomic_or:
5636 buf_op = aco_opcode::buffer_atomic_or;
5637 image_op = aco_opcode::image_atomic_or;
5638 break;
5639 case nir_intrinsic_image_deref_atomic_xor:
5640 buf_op = aco_opcode::buffer_atomic_xor;
5641 image_op = aco_opcode::image_atomic_xor;
5642 break;
5643 case nir_intrinsic_image_deref_atomic_exchange:
5644 buf_op = aco_opcode::buffer_atomic_swap;
5645 image_op = aco_opcode::image_atomic_swap;
5646 break;
5647 case nir_intrinsic_image_deref_atomic_comp_swap:
5648 buf_op = aco_opcode::buffer_atomic_cmpswap;
5649 image_op = aco_opcode::image_atomic_cmpswap;
5650 break;
5651 default:
5652 unreachable("visit_image_atomic should only be called with nir_intrinsic_image_deref_atomic_* instructions.");
5653 }
5654
5655 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5656
5657 if (dim == GLSL_SAMPLER_DIM_BUF) {
5658 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5659 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5660 //assert(ctx->options->chip_class < GFX9 && "GFX9 stride size workaround not yet implemented.");
5661 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(buf_op, Format::MUBUF, 4, return_previous ? 1 : 0)};
5662 mubuf->operands[0] = Operand(resource);
5663 mubuf->operands[1] = Operand(vindex);
5664 mubuf->operands[2] = Operand((uint32_t)0);
5665 mubuf->operands[3] = Operand(data);
5666 if (return_previous)
5667 mubuf->definitions[0] = Definition(dst);
5668 mubuf->offset = 0;
5669 mubuf->idxen = true;
5670 mubuf->glc = return_previous;
5671 mubuf->dlc = false; /* Not needed for atomics */
5672 mubuf->disable_wqm = true;
5673 mubuf->barrier = barrier_image;
5674 ctx->program->needs_exact = true;
5675 ctx->block->instructions.emplace_back(std::move(mubuf));
5676 return;
5677 }
5678
5679 Temp coords = get_image_coords(ctx, instr, type);
5680 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5681 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(image_op, Format::MIMG, 3, return_previous ? 1 : 0)};
5682 mimg->operands[0] = Operand(resource);
5683 mimg->operands[1] = Operand(data);
5684 mimg->operands[2] = Operand(coords);
5685 if (return_previous)
5686 mimg->definitions[0] = Definition(dst);
5687 mimg->glc = return_previous;
5688 mimg->dlc = false; /* Not needed for atomics */
5689 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5690 mimg->dmask = (1 << data.size()) - 1;
5691 mimg->unrm = true;
5692 mimg->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5693 mimg->disable_wqm = true;
5694 mimg->barrier = barrier_image;
5695 ctx->program->needs_exact = true;
5696 ctx->block->instructions.emplace_back(std::move(mimg));
5697 return;
5698 }
5699
5700 void get_buffer_size(isel_context *ctx, Temp desc, Temp dst, bool in_elements)
5701 {
5702 if (in_elements && ctx->options->chip_class == GFX8) {
5703 /* we only have to divide by 1, 2, 4, 8, 12 or 16 */
5704 Builder bld(ctx->program, ctx->block);
5705
5706 Temp size = emit_extract_vector(ctx, desc, 2, s1);
5707
5708 Temp size_div3 = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), bld.copy(bld.def(v1), Operand(0xaaaaaaabu)), size);
5709 size_div3 = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.as_uniform(size_div3), Operand(1u));
5710
5711 Temp stride = emit_extract_vector(ctx, desc, 1, s1);
5712 stride = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), stride, Operand((5u << 16) | 16u));
5713
5714 Temp is12 = bld.sopc(aco_opcode::s_cmp_eq_i32, bld.def(s1, scc), stride, Operand(12u));
5715 size = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), size_div3, size, bld.scc(is12));
5716
5717 Temp shr_dst = dst.type() == RegType::vgpr ? bld.tmp(s1) : dst;
5718 bld.sop2(aco_opcode::s_lshr_b32, Definition(shr_dst), bld.def(s1, scc),
5719 size, bld.sop1(aco_opcode::s_ff1_i32_b32, bld.def(s1), stride));
5720 if (dst.type() == RegType::vgpr)
5721 bld.copy(Definition(dst), shr_dst);
5722
5723 /* TODO: we can probably calculate this faster with v_skip when stride != 12 */
5724 } else {
5725 emit_extract_vector(ctx, desc, 2, dst);
5726 }
5727 }
5728
5729 void visit_image_size(isel_context *ctx, nir_intrinsic_instr *instr)
5730 {
5731 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5732 const struct glsl_type *type = glsl_without_array(var->type);
5733 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5734 bool is_array = glsl_sampler_type_is_array(type);
5735 Builder bld(ctx->program, ctx->block);
5736
5737 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF) {
5738 Temp desc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, NULL, true, false);
5739 return get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), true);
5740 }
5741
5742 /* LOD */
5743 Temp lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
5744
5745 /* Resource */
5746 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, NULL, true, false);
5747
5748 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5749
5750 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1)};
5751 mimg->operands[0] = Operand(resource);
5752 mimg->operands[1] = Operand(s4); /* no sampler */
5753 mimg->operands[2] = Operand(lod);
5754 uint8_t& dmask = mimg->dmask;
5755 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5756 mimg->dmask = (1 << instr->dest.ssa.num_components) - 1;
5757 mimg->da = glsl_sampler_type_is_array(type);
5758 mimg->can_reorder = true;
5759 Definition& def = mimg->definitions[0];
5760 ctx->block->instructions.emplace_back(std::move(mimg));
5761
5762 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE &&
5763 glsl_sampler_type_is_array(type)) {
5764
5765 assert(instr->dest.ssa.num_components == 3);
5766 Temp tmp = {ctx->program->allocateId(), v3};
5767 def = Definition(tmp);
5768 emit_split_vector(ctx, tmp, 3);
5769
5770 /* divide 3rd value by 6 by multiplying with magic number */
5771 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
5772 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp, 2, v1), c);
5773
5774 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5775 emit_extract_vector(ctx, tmp, 0, v1),
5776 emit_extract_vector(ctx, tmp, 1, v1),
5777 by_6);
5778
5779 } else if (ctx->options->chip_class == GFX9 &&
5780 glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_1D &&
5781 glsl_sampler_type_is_array(type)) {
5782 assert(instr->dest.ssa.num_components == 2);
5783 def = Definition(dst);
5784 dmask = 0x5;
5785 } else {
5786 def = Definition(dst);
5787 }
5788
5789 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
5790 }
5791
5792 void visit_load_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
5793 {
5794 Builder bld(ctx->program, ctx->block);
5795 unsigned num_components = instr->num_components;
5796
5797 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5798 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5799 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
5800
5801 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
5802 unsigned size = instr->dest.ssa.bit_size / 8;
5803 int byte_align = 0;
5804 if (size < 4) {
5805 unsigned align_mul = nir_intrinsic_align_mul(instr);
5806 unsigned align_offset = nir_intrinsic_align_offset(instr);
5807 byte_align = align_mul % 4 == 0 ? align_offset : -1;
5808 }
5809 load_buffer(ctx, num_components, size, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa), byte_align, glc, false);
5810 }
5811
5812 void visit_store_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
5813 {
5814 Builder bld(ctx->program, ctx->block);
5815 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
5816 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
5817 unsigned writemask = nir_intrinsic_write_mask(instr);
5818 Temp offset = get_ssa_temp(ctx, instr->src[2].ssa);
5819
5820 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5821 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
5822
5823 bool smem = !ctx->divergent_vals[instr->src[2].ssa->index] &&
5824 ctx->options->chip_class >= GFX8 &&
5825 elem_size_bytes >= 4;
5826 if (smem)
5827 offset = bld.as_uniform(offset);
5828 bool smem_nonfs = smem && ctx->stage != fragment_fs;
5829
5830 while (writemask) {
5831 int start, count;
5832 u_bit_scan_consecutive_range(&writemask, &start, &count);
5833 if (count == 3 && (smem || ctx->options->chip_class == GFX6)) {
5834 /* GFX6 doesn't support storing vec3, split it. */
5835 writemask |= 1u << (start + 2);
5836 count = 2;
5837 }
5838 int num_bytes = count * elem_size_bytes;
5839
5840 /* dword or larger stores have to be dword-aligned */
5841 if (elem_size_bytes < 4 && num_bytes > 2) {
5842 // TODO: improve alignment check of sub-dword stores
5843 unsigned count_new = 2 / elem_size_bytes;
5844 writemask |= ((1 << (count - count_new)) - 1) << (start + count_new);
5845 count = count_new;
5846 num_bytes = 2;
5847 }
5848
5849 if (num_bytes > 16) {
5850 assert(elem_size_bytes == 8);
5851 writemask |= (((count - 2) << 1) - 1) << (start + 2);
5852 count = 2;
5853 num_bytes = 16;
5854 }
5855
5856 Temp write_data;
5857 if (elem_size_bytes < 4) {
5858 if (data.type() == RegType::sgpr) {
5859 data = as_vgpr(ctx, data);
5860 emit_split_vector(ctx, data, 4 * data.size() / elem_size_bytes);
5861 }
5862 RegClass rc = RegClass(RegType::vgpr, elem_size_bytes).as_subdword();
5863 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
5864 for (int i = 0; i < count; i++)
5865 vec->operands[i] = Operand(emit_extract_vector(ctx, data, start + i, rc));
5866 write_data = bld.tmp(RegClass(RegType::vgpr, num_bytes).as_subdword());
5867 vec->definitions[0] = Definition(write_data);
5868 bld.insert(std::move(vec));
5869 } else if (count != instr->num_components) {
5870 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
5871 for (int i = 0; i < count; i++) {
5872 Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(data.type(), elem_size_bytes / 4));
5873 vec->operands[i] = Operand(smem_nonfs ? bld.as_uniform(elem) : elem);
5874 }
5875 write_data = bld.tmp(!smem ? RegType::vgpr : smem_nonfs ? RegType::sgpr : data.type(), count * elem_size_bytes / 4);
5876 vec->definitions[0] = Definition(write_data);
5877 ctx->block->instructions.emplace_back(std::move(vec));
5878 } else if (!smem && data.type() != RegType::vgpr) {
5879 assert(num_bytes % 4 == 0);
5880 write_data = bld.copy(bld.def(RegType::vgpr, num_bytes / 4), data);
5881 } else if (smem_nonfs && data.type() == RegType::vgpr) {
5882 assert(num_bytes % 4 == 0);
5883 write_data = bld.as_uniform(data);
5884 } else {
5885 write_data = data;
5886 }
5887
5888 aco_opcode vmem_op, smem_op = aco_opcode::last_opcode;
5889 switch (num_bytes) {
5890 case 1:
5891 vmem_op = aco_opcode::buffer_store_byte;
5892 break;
5893 case 2:
5894 vmem_op = aco_opcode::buffer_store_short;
5895 break;
5896 case 4:
5897 vmem_op = aco_opcode::buffer_store_dword;
5898 smem_op = aco_opcode::s_buffer_store_dword;
5899 break;
5900 case 8:
5901 vmem_op = aco_opcode::buffer_store_dwordx2;
5902 smem_op = aco_opcode::s_buffer_store_dwordx2;
5903 break;
5904 case 12:
5905 vmem_op = aco_opcode::buffer_store_dwordx3;
5906 assert(!smem && ctx->options->chip_class > GFX6);
5907 break;
5908 case 16:
5909 vmem_op = aco_opcode::buffer_store_dwordx4;
5910 smem_op = aco_opcode::s_buffer_store_dwordx4;
5911 break;
5912 default:
5913 unreachable("Store SSBO not implemented for this size.");
5914 }
5915 if (ctx->stage == fragment_fs)
5916 smem_op = aco_opcode::p_fs_buffer_store_smem;
5917
5918 if (smem) {
5919 aco_ptr<SMEM_instruction> store{create_instruction<SMEM_instruction>(smem_op, Format::SMEM, 3, 0)};
5920 store->operands[0] = Operand(rsrc);
5921 if (start) {
5922 Temp off = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
5923 offset, Operand(start * elem_size_bytes));
5924 store->operands[1] = Operand(off);
5925 } else {
5926 store->operands[1] = Operand(offset);
5927 }
5928 if (smem_op != aco_opcode::p_fs_buffer_store_smem)
5929 store->operands[1].setFixed(m0);
5930 store->operands[2] = Operand(write_data);
5931 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
5932 store->dlc = false;
5933 store->disable_wqm = true;
5934 store->barrier = barrier_buffer;
5935 ctx->block->instructions.emplace_back(std::move(store));
5936 ctx->program->wb_smem_l1_on_end = true;
5937 if (smem_op == aco_opcode::p_fs_buffer_store_smem) {
5938 ctx->block->kind |= block_kind_needs_lowering;
5939 ctx->program->needs_exact = true;
5940 }
5941 } else {
5942 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(vmem_op, Format::MUBUF, 4, 0)};
5943 store->operands[0] = Operand(rsrc);
5944 store->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
5945 store->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
5946 store->operands[3] = Operand(write_data);
5947 store->offset = start * elem_size_bytes;
5948 store->offen = (offset.type() == RegType::vgpr);
5949 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
5950 store->dlc = false;
5951 store->disable_wqm = true;
5952 store->barrier = barrier_buffer;
5953 ctx->program->needs_exact = true;
5954 ctx->block->instructions.emplace_back(std::move(store));
5955 }
5956 }
5957 }
5958
5959 void visit_atomic_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
5960 {
5961 /* return the previous value if dest is ever used */
5962 bool return_previous = false;
5963 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5964 return_previous = true;
5965 break;
5966 }
5967 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5968 return_previous = true;
5969 break;
5970 }
5971
5972 Builder bld(ctx->program, ctx->block);
5973 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[2].ssa));
5974
5975 if (instr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap)
5976 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
5977 get_ssa_temp(ctx, instr->src[3].ssa), data);
5978
5979 Temp offset = get_ssa_temp(ctx, instr->src[1].ssa);
5980 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5981 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
5982
5983 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5984
5985 aco_opcode op32, op64;
5986 switch (instr->intrinsic) {
5987 case nir_intrinsic_ssbo_atomic_add:
5988 op32 = aco_opcode::buffer_atomic_add;
5989 op64 = aco_opcode::buffer_atomic_add_x2;
5990 break;
5991 case nir_intrinsic_ssbo_atomic_imin:
5992 op32 = aco_opcode::buffer_atomic_smin;
5993 op64 = aco_opcode::buffer_atomic_smin_x2;
5994 break;
5995 case nir_intrinsic_ssbo_atomic_umin:
5996 op32 = aco_opcode::buffer_atomic_umin;
5997 op64 = aco_opcode::buffer_atomic_umin_x2;
5998 break;
5999 case nir_intrinsic_ssbo_atomic_imax:
6000 op32 = aco_opcode::buffer_atomic_smax;
6001 op64 = aco_opcode::buffer_atomic_smax_x2;
6002 break;
6003 case nir_intrinsic_ssbo_atomic_umax:
6004 op32 = aco_opcode::buffer_atomic_umax;
6005 op64 = aco_opcode::buffer_atomic_umax_x2;
6006 break;
6007 case nir_intrinsic_ssbo_atomic_and:
6008 op32 = aco_opcode::buffer_atomic_and;
6009 op64 = aco_opcode::buffer_atomic_and_x2;
6010 break;
6011 case nir_intrinsic_ssbo_atomic_or:
6012 op32 = aco_opcode::buffer_atomic_or;
6013 op64 = aco_opcode::buffer_atomic_or_x2;
6014 break;
6015 case nir_intrinsic_ssbo_atomic_xor:
6016 op32 = aco_opcode::buffer_atomic_xor;
6017 op64 = aco_opcode::buffer_atomic_xor_x2;
6018 break;
6019 case nir_intrinsic_ssbo_atomic_exchange:
6020 op32 = aco_opcode::buffer_atomic_swap;
6021 op64 = aco_opcode::buffer_atomic_swap_x2;
6022 break;
6023 case nir_intrinsic_ssbo_atomic_comp_swap:
6024 op32 = aco_opcode::buffer_atomic_cmpswap;
6025 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
6026 break;
6027 default:
6028 unreachable("visit_atomic_ssbo should only be called with nir_intrinsic_ssbo_atomic_* instructions.");
6029 }
6030 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
6031 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
6032 mubuf->operands[0] = Operand(rsrc);
6033 mubuf->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
6034 mubuf->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
6035 mubuf->operands[3] = Operand(data);
6036 if (return_previous)
6037 mubuf->definitions[0] = Definition(dst);
6038 mubuf->offset = 0;
6039 mubuf->offen = (offset.type() == RegType::vgpr);
6040 mubuf->glc = return_previous;
6041 mubuf->dlc = false; /* Not needed for atomics */
6042 mubuf->disable_wqm = true;
6043 mubuf->barrier = barrier_buffer;
6044 ctx->program->needs_exact = true;
6045 ctx->block->instructions.emplace_back(std::move(mubuf));
6046 }
6047
6048 void visit_get_buffer_size(isel_context *ctx, nir_intrinsic_instr *instr) {
6049
6050 Temp index = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6051 Builder bld(ctx->program, ctx->block);
6052 Temp desc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), index, Operand(0u));
6053 get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), false);
6054 }
6055
6056 Temp get_gfx6_global_rsrc(Builder& bld, Temp addr)
6057 {
6058 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
6059 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
6060
6061 if (addr.type() == RegType::vgpr)
6062 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), Operand(0u), Operand(0u), Operand(-1u), Operand(rsrc_conf));
6063 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), addr, Operand(-1u), Operand(rsrc_conf));
6064 }
6065
6066 void visit_load_global(isel_context *ctx, nir_intrinsic_instr *instr)
6067 {
6068 Builder bld(ctx->program, ctx->block);
6069 unsigned num_components = instr->num_components;
6070 unsigned num_bytes = num_components * instr->dest.ssa.bit_size / 8;
6071
6072 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6073 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
6074
6075 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
6076 bool dlc = glc && ctx->options->chip_class >= GFX10;
6077 aco_opcode op;
6078 if (dst.type() == RegType::vgpr || (glc && ctx->options->chip_class < GFX8)) {
6079 bool global = ctx->options->chip_class >= GFX9;
6080
6081 if (ctx->options->chip_class >= GFX7) {
6082 aco_opcode op;
6083 switch (num_bytes) {
6084 case 4:
6085 op = global ? aco_opcode::global_load_dword : aco_opcode::flat_load_dword;
6086 break;
6087 case 8:
6088 op = global ? aco_opcode::global_load_dwordx2 : aco_opcode::flat_load_dwordx2;
6089 break;
6090 case 12:
6091 op = global ? aco_opcode::global_load_dwordx3 : aco_opcode::flat_load_dwordx3;
6092 break;
6093 case 16:
6094 op = global ? aco_opcode::global_load_dwordx4 : aco_opcode::flat_load_dwordx4;
6095 break;
6096 default:
6097 unreachable("load_global not implemented for this size.");
6098 }
6099
6100 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 2, 1)};
6101 flat->operands[0] = Operand(addr);
6102 flat->operands[1] = Operand(s1);
6103 flat->glc = glc;
6104 flat->dlc = dlc;
6105 flat->barrier = barrier_buffer;
6106
6107 if (dst.type() == RegType::sgpr) {
6108 Temp vec = bld.tmp(RegType::vgpr, dst.size());
6109 flat->definitions[0] = Definition(vec);
6110 ctx->block->instructions.emplace_back(std::move(flat));
6111 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
6112 } else {
6113 flat->definitions[0] = Definition(dst);
6114 ctx->block->instructions.emplace_back(std::move(flat));
6115 }
6116 emit_split_vector(ctx, dst, num_components);
6117 } else {
6118 assert(ctx->options->chip_class == GFX6);
6119
6120 /* GFX6 doesn't support loading vec3, expand to vec4. */
6121 num_bytes = num_bytes == 12 ? 16 : num_bytes;
6122
6123 aco_opcode op;
6124 switch (num_bytes) {
6125 case 4:
6126 op = aco_opcode::buffer_load_dword;
6127 break;
6128 case 8:
6129 op = aco_opcode::buffer_load_dwordx2;
6130 break;
6131 case 16:
6132 op = aco_opcode::buffer_load_dwordx4;
6133 break;
6134 default:
6135 unreachable("load_global not implemented for this size.");
6136 }
6137
6138 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
6139
6140 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
6141 mubuf->operands[0] = Operand(rsrc);
6142 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
6143 mubuf->operands[2] = Operand(0u);
6144 mubuf->glc = glc;
6145 mubuf->dlc = false;
6146 mubuf->offset = 0;
6147 mubuf->addr64 = addr.type() == RegType::vgpr;
6148 mubuf->disable_wqm = false;
6149 mubuf->barrier = barrier_buffer;
6150 aco_ptr<Instruction> instr = std::move(mubuf);
6151
6152 /* expand vector */
6153 if (dst.size() == 3) {
6154 Temp vec = bld.tmp(v4);
6155 instr->definitions[0] = Definition(vec);
6156 bld.insert(std::move(instr));
6157 emit_split_vector(ctx, vec, 4);
6158
6159 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 3, 1));
6160 instr->operands[0] = Operand(emit_extract_vector(ctx, vec, 0, v1));
6161 instr->operands[1] = Operand(emit_extract_vector(ctx, vec, 1, v1));
6162 instr->operands[2] = Operand(emit_extract_vector(ctx, vec, 2, v1));
6163 }
6164
6165 if (dst.type() == RegType::sgpr) {
6166 Temp vec = bld.tmp(RegType::vgpr, dst.size());
6167 instr->definitions[0] = Definition(vec);
6168 bld.insert(std::move(instr));
6169 expand_vector(ctx, vec, dst, num_components, (1 << num_components) - 1);
6170 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
6171 } else {
6172 instr->definitions[0] = Definition(dst);
6173 bld.insert(std::move(instr));
6174 emit_split_vector(ctx, dst, num_components);
6175 }
6176 }
6177 } else {
6178 switch (num_bytes) {
6179 case 4:
6180 op = aco_opcode::s_load_dword;
6181 break;
6182 case 8:
6183 op = aco_opcode::s_load_dwordx2;
6184 break;
6185 case 12:
6186 case 16:
6187 op = aco_opcode::s_load_dwordx4;
6188 break;
6189 default:
6190 unreachable("load_global not implemented for this size.");
6191 }
6192 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
6193 load->operands[0] = Operand(addr);
6194 load->operands[1] = Operand(0u);
6195 load->definitions[0] = Definition(dst);
6196 load->glc = glc;
6197 load->dlc = dlc;
6198 load->barrier = barrier_buffer;
6199 assert(ctx->options->chip_class >= GFX8 || !glc);
6200
6201 if (dst.size() == 3) {
6202 /* trim vector */
6203 Temp vec = bld.tmp(s4);
6204 load->definitions[0] = Definition(vec);
6205 ctx->block->instructions.emplace_back(std::move(load));
6206 emit_split_vector(ctx, vec, 4);
6207
6208 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6209 emit_extract_vector(ctx, vec, 0, s1),
6210 emit_extract_vector(ctx, vec, 1, s1),
6211 emit_extract_vector(ctx, vec, 2, s1));
6212 } else {
6213 ctx->block->instructions.emplace_back(std::move(load));
6214 }
6215 }
6216 }
6217
6218 void visit_store_global(isel_context *ctx, nir_intrinsic_instr *instr)
6219 {
6220 Builder bld(ctx->program, ctx->block);
6221 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6222
6223 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6224 Temp addr = get_ssa_temp(ctx, instr->src[1].ssa);
6225
6226 if (ctx->options->chip_class >= GFX7)
6227 addr = as_vgpr(ctx, addr);
6228
6229 unsigned writemask = nir_intrinsic_write_mask(instr);
6230 while (writemask) {
6231 int start, count;
6232 u_bit_scan_consecutive_range(&writemask, &start, &count);
6233 if (count == 3 && ctx->options->chip_class == GFX6) {
6234 /* GFX6 doesn't support storing vec3, split it. */
6235 writemask |= 1u << (start + 2);
6236 count = 2;
6237 }
6238 unsigned num_bytes = count * elem_size_bytes;
6239
6240 Temp write_data = data;
6241 if (count != instr->num_components) {
6242 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
6243 for (int i = 0; i < count; i++)
6244 vec->operands[i] = Operand(emit_extract_vector(ctx, data, start + i, v1));
6245 write_data = bld.tmp(RegType::vgpr, count);
6246 vec->definitions[0] = Definition(write_data);
6247 ctx->block->instructions.emplace_back(std::move(vec));
6248 }
6249
6250 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
6251 unsigned offset = start * elem_size_bytes;
6252
6253 if (ctx->options->chip_class >= GFX7) {
6254 if (offset > 0 && ctx->options->chip_class < GFX9) {
6255 Temp addr0 = bld.tmp(v1), addr1 = bld.tmp(v1);
6256 Temp new_addr0 = bld.tmp(v1), new_addr1 = bld.tmp(v1);
6257 Temp carry = bld.tmp(bld.lm);
6258 bld.pseudo(aco_opcode::p_split_vector, Definition(addr0), Definition(addr1), addr);
6259
6260 bld.vop2(aco_opcode::v_add_co_u32, Definition(new_addr0), bld.hint_vcc(Definition(carry)),
6261 Operand(offset), addr0);
6262 bld.vop2(aco_opcode::v_addc_co_u32, Definition(new_addr1), bld.def(bld.lm),
6263 Operand(0u), addr1,
6264 carry).def(1).setHint(vcc);
6265
6266 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_addr0, new_addr1);
6267
6268 offset = 0;
6269 }
6270
6271 bool global = ctx->options->chip_class >= GFX9;
6272 aco_opcode op;
6273 switch (num_bytes) {
6274 case 4:
6275 op = global ? aco_opcode::global_store_dword : aco_opcode::flat_store_dword;
6276 break;
6277 case 8:
6278 op = global ? aco_opcode::global_store_dwordx2 : aco_opcode::flat_store_dwordx2;
6279 break;
6280 case 12:
6281 op = global ? aco_opcode::global_store_dwordx3 : aco_opcode::flat_store_dwordx3;
6282 break;
6283 case 16:
6284 op = global ? aco_opcode::global_store_dwordx4 : aco_opcode::flat_store_dwordx4;
6285 break;
6286 default:
6287 unreachable("store_global not implemented for this size.");
6288 }
6289
6290 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, 0)};
6291 flat->operands[0] = Operand(addr);
6292 flat->operands[1] = Operand(s1);
6293 flat->operands[2] = Operand(data);
6294 flat->glc = glc;
6295 flat->dlc = false;
6296 flat->offset = offset;
6297 flat->disable_wqm = true;
6298 flat->barrier = barrier_buffer;
6299 ctx->program->needs_exact = true;
6300 ctx->block->instructions.emplace_back(std::move(flat));
6301 } else {
6302 assert(ctx->options->chip_class == GFX6);
6303
6304 aco_opcode op;
6305 switch (num_bytes) {
6306 case 4:
6307 op = aco_opcode::buffer_store_dword;
6308 break;
6309 case 8:
6310 op = aco_opcode::buffer_store_dwordx2;
6311 break;
6312 case 16:
6313 op = aco_opcode::buffer_store_dwordx4;
6314 break;
6315 default:
6316 unreachable("store_global not implemented for this size.");
6317 }
6318
6319 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
6320
6321 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, 0)};
6322 mubuf->operands[0] = Operand(rsrc);
6323 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
6324 mubuf->operands[2] = Operand(0u);
6325 mubuf->operands[3] = Operand(write_data);
6326 mubuf->glc = glc;
6327 mubuf->dlc = false;
6328 mubuf->offset = offset;
6329 mubuf->addr64 = addr.type() == RegType::vgpr;
6330 mubuf->disable_wqm = true;
6331 mubuf->barrier = barrier_buffer;
6332 ctx->program->needs_exact = true;
6333 ctx->block->instructions.emplace_back(std::move(mubuf));
6334 }
6335 }
6336 }
6337
6338 void visit_global_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
6339 {
6340 /* return the previous value if dest is ever used */
6341 bool return_previous = false;
6342 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6343 return_previous = true;
6344 break;
6345 }
6346 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6347 return_previous = true;
6348 break;
6349 }
6350
6351 Builder bld(ctx->program, ctx->block);
6352 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
6353 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6354
6355 if (ctx->options->chip_class >= GFX7)
6356 addr = as_vgpr(ctx, addr);
6357
6358 if (instr->intrinsic == nir_intrinsic_global_atomic_comp_swap)
6359 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
6360 get_ssa_temp(ctx, instr->src[2].ssa), data);
6361
6362 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6363
6364 aco_opcode op32, op64;
6365
6366 if (ctx->options->chip_class >= GFX7) {
6367 bool global = ctx->options->chip_class >= GFX9;
6368 switch (instr->intrinsic) {
6369 case nir_intrinsic_global_atomic_add:
6370 op32 = global ? aco_opcode::global_atomic_add : aco_opcode::flat_atomic_add;
6371 op64 = global ? aco_opcode::global_atomic_add_x2 : aco_opcode::flat_atomic_add_x2;
6372 break;
6373 case nir_intrinsic_global_atomic_imin:
6374 op32 = global ? aco_opcode::global_atomic_smin : aco_opcode::flat_atomic_smin;
6375 op64 = global ? aco_opcode::global_atomic_smin_x2 : aco_opcode::flat_atomic_smin_x2;
6376 break;
6377 case nir_intrinsic_global_atomic_umin:
6378 op32 = global ? aco_opcode::global_atomic_umin : aco_opcode::flat_atomic_umin;
6379 op64 = global ? aco_opcode::global_atomic_umin_x2 : aco_opcode::flat_atomic_umin_x2;
6380 break;
6381 case nir_intrinsic_global_atomic_imax:
6382 op32 = global ? aco_opcode::global_atomic_smax : aco_opcode::flat_atomic_smax;
6383 op64 = global ? aco_opcode::global_atomic_smax_x2 : aco_opcode::flat_atomic_smax_x2;
6384 break;
6385 case nir_intrinsic_global_atomic_umax:
6386 op32 = global ? aco_opcode::global_atomic_umax : aco_opcode::flat_atomic_umax;
6387 op64 = global ? aco_opcode::global_atomic_umax_x2 : aco_opcode::flat_atomic_umax_x2;
6388 break;
6389 case nir_intrinsic_global_atomic_and:
6390 op32 = global ? aco_opcode::global_atomic_and : aco_opcode::flat_atomic_and;
6391 op64 = global ? aco_opcode::global_atomic_and_x2 : aco_opcode::flat_atomic_and_x2;
6392 break;
6393 case nir_intrinsic_global_atomic_or:
6394 op32 = global ? aco_opcode::global_atomic_or : aco_opcode::flat_atomic_or;
6395 op64 = global ? aco_opcode::global_atomic_or_x2 : aco_opcode::flat_atomic_or_x2;
6396 break;
6397 case nir_intrinsic_global_atomic_xor:
6398 op32 = global ? aco_opcode::global_atomic_xor : aco_opcode::flat_atomic_xor;
6399 op64 = global ? aco_opcode::global_atomic_xor_x2 : aco_opcode::flat_atomic_xor_x2;
6400 break;
6401 case nir_intrinsic_global_atomic_exchange:
6402 op32 = global ? aco_opcode::global_atomic_swap : aco_opcode::flat_atomic_swap;
6403 op64 = global ? aco_opcode::global_atomic_swap_x2 : aco_opcode::flat_atomic_swap_x2;
6404 break;
6405 case nir_intrinsic_global_atomic_comp_swap:
6406 op32 = global ? aco_opcode::global_atomic_cmpswap : aco_opcode::flat_atomic_cmpswap;
6407 op64 = global ? aco_opcode::global_atomic_cmpswap_x2 : aco_opcode::flat_atomic_cmpswap_x2;
6408 break;
6409 default:
6410 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
6411 }
6412
6413 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
6414 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, return_previous ? 1 : 0)};
6415 flat->operands[0] = Operand(addr);
6416 flat->operands[1] = Operand(s1);
6417 flat->operands[2] = Operand(data);
6418 if (return_previous)
6419 flat->definitions[0] = Definition(dst);
6420 flat->glc = return_previous;
6421 flat->dlc = false; /* Not needed for atomics */
6422 flat->offset = 0;
6423 flat->disable_wqm = true;
6424 flat->barrier = barrier_buffer;
6425 ctx->program->needs_exact = true;
6426 ctx->block->instructions.emplace_back(std::move(flat));
6427 } else {
6428 assert(ctx->options->chip_class == GFX6);
6429
6430 switch (instr->intrinsic) {
6431 case nir_intrinsic_global_atomic_add:
6432 op32 = aco_opcode::buffer_atomic_add;
6433 op64 = aco_opcode::buffer_atomic_add_x2;
6434 break;
6435 case nir_intrinsic_global_atomic_imin:
6436 op32 = aco_opcode::buffer_atomic_smin;
6437 op64 = aco_opcode::buffer_atomic_smin_x2;
6438 break;
6439 case nir_intrinsic_global_atomic_umin:
6440 op32 = aco_opcode::buffer_atomic_umin;
6441 op64 = aco_opcode::buffer_atomic_umin_x2;
6442 break;
6443 case nir_intrinsic_global_atomic_imax:
6444 op32 = aco_opcode::buffer_atomic_smax;
6445 op64 = aco_opcode::buffer_atomic_smax_x2;
6446 break;
6447 case nir_intrinsic_global_atomic_umax:
6448 op32 = aco_opcode::buffer_atomic_umax;
6449 op64 = aco_opcode::buffer_atomic_umax_x2;
6450 break;
6451 case nir_intrinsic_global_atomic_and:
6452 op32 = aco_opcode::buffer_atomic_and;
6453 op64 = aco_opcode::buffer_atomic_and_x2;
6454 break;
6455 case nir_intrinsic_global_atomic_or:
6456 op32 = aco_opcode::buffer_atomic_or;
6457 op64 = aco_opcode::buffer_atomic_or_x2;
6458 break;
6459 case nir_intrinsic_global_atomic_xor:
6460 op32 = aco_opcode::buffer_atomic_xor;
6461 op64 = aco_opcode::buffer_atomic_xor_x2;
6462 break;
6463 case nir_intrinsic_global_atomic_exchange:
6464 op32 = aco_opcode::buffer_atomic_swap;
6465 op64 = aco_opcode::buffer_atomic_swap_x2;
6466 break;
6467 case nir_intrinsic_global_atomic_comp_swap:
6468 op32 = aco_opcode::buffer_atomic_cmpswap;
6469 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
6470 break;
6471 default:
6472 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
6473 }
6474
6475 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
6476
6477 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
6478
6479 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
6480 mubuf->operands[0] = Operand(rsrc);
6481 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
6482 mubuf->operands[2] = Operand(0u);
6483 mubuf->operands[3] = Operand(data);
6484 if (return_previous)
6485 mubuf->definitions[0] = Definition(dst);
6486 mubuf->glc = return_previous;
6487 mubuf->dlc = false;
6488 mubuf->offset = 0;
6489 mubuf->addr64 = addr.type() == RegType::vgpr;
6490 mubuf->disable_wqm = true;
6491 mubuf->barrier = barrier_buffer;
6492 ctx->program->needs_exact = true;
6493 ctx->block->instructions.emplace_back(std::move(mubuf));
6494 }
6495 }
6496
6497 void emit_memory_barrier(isel_context *ctx, nir_intrinsic_instr *instr) {
6498 Builder bld(ctx->program, ctx->block);
6499 switch(instr->intrinsic) {
6500 case nir_intrinsic_group_memory_barrier:
6501 case nir_intrinsic_memory_barrier:
6502 bld.barrier(aco_opcode::p_memory_barrier_common);
6503 break;
6504 case nir_intrinsic_memory_barrier_buffer:
6505 bld.barrier(aco_opcode::p_memory_barrier_buffer);
6506 break;
6507 case nir_intrinsic_memory_barrier_image:
6508 bld.barrier(aco_opcode::p_memory_barrier_image);
6509 break;
6510 case nir_intrinsic_memory_barrier_tcs_patch:
6511 case nir_intrinsic_memory_barrier_shared:
6512 bld.barrier(aco_opcode::p_memory_barrier_shared);
6513 break;
6514 default:
6515 unreachable("Unimplemented memory barrier intrinsic");
6516 break;
6517 }
6518 }
6519
6520 void visit_load_shared(isel_context *ctx, nir_intrinsic_instr *instr)
6521 {
6522 // TODO: implement sparse reads using ds_read2_b32 and nir_ssa_def_components_read()
6523 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6524 assert(instr->dest.ssa.bit_size >= 32 && "Bitsize not supported in load_shared.");
6525 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6526 Builder bld(ctx->program, ctx->block);
6527
6528 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
6529 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
6530 load_lds(ctx, elem_size_bytes, dst, address, nir_intrinsic_base(instr), align);
6531 }
6532
6533 void visit_store_shared(isel_context *ctx, nir_intrinsic_instr *instr)
6534 {
6535 unsigned writemask = nir_intrinsic_write_mask(instr);
6536 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
6537 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6538 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6539 assert(elem_size_bytes >= 4 && "Only 32bit & 64bit store_shared currently supported.");
6540
6541 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
6542 store_lds(ctx, elem_size_bytes, data, writemask, address, nir_intrinsic_base(instr), align);
6543 }
6544
6545 void visit_shared_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
6546 {
6547 unsigned offset = nir_intrinsic_base(instr);
6548 Operand m = load_lds_size_m0(ctx);
6549 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6550 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6551
6552 unsigned num_operands = 3;
6553 aco_opcode op32, op64, op32_rtn, op64_rtn;
6554 switch(instr->intrinsic) {
6555 case nir_intrinsic_shared_atomic_add:
6556 op32 = aco_opcode::ds_add_u32;
6557 op64 = aco_opcode::ds_add_u64;
6558 op32_rtn = aco_opcode::ds_add_rtn_u32;
6559 op64_rtn = aco_opcode::ds_add_rtn_u64;
6560 break;
6561 case nir_intrinsic_shared_atomic_imin:
6562 op32 = aco_opcode::ds_min_i32;
6563 op64 = aco_opcode::ds_min_i64;
6564 op32_rtn = aco_opcode::ds_min_rtn_i32;
6565 op64_rtn = aco_opcode::ds_min_rtn_i64;
6566 break;
6567 case nir_intrinsic_shared_atomic_umin:
6568 op32 = aco_opcode::ds_min_u32;
6569 op64 = aco_opcode::ds_min_u64;
6570 op32_rtn = aco_opcode::ds_min_rtn_u32;
6571 op64_rtn = aco_opcode::ds_min_rtn_u64;
6572 break;
6573 case nir_intrinsic_shared_atomic_imax:
6574 op32 = aco_opcode::ds_max_i32;
6575 op64 = aco_opcode::ds_max_i64;
6576 op32_rtn = aco_opcode::ds_max_rtn_i32;
6577 op64_rtn = aco_opcode::ds_max_rtn_i64;
6578 break;
6579 case nir_intrinsic_shared_atomic_umax:
6580 op32 = aco_opcode::ds_max_u32;
6581 op64 = aco_opcode::ds_max_u64;
6582 op32_rtn = aco_opcode::ds_max_rtn_u32;
6583 op64_rtn = aco_opcode::ds_max_rtn_u64;
6584 break;
6585 case nir_intrinsic_shared_atomic_and:
6586 op32 = aco_opcode::ds_and_b32;
6587 op64 = aco_opcode::ds_and_b64;
6588 op32_rtn = aco_opcode::ds_and_rtn_b32;
6589 op64_rtn = aco_opcode::ds_and_rtn_b64;
6590 break;
6591 case nir_intrinsic_shared_atomic_or:
6592 op32 = aco_opcode::ds_or_b32;
6593 op64 = aco_opcode::ds_or_b64;
6594 op32_rtn = aco_opcode::ds_or_rtn_b32;
6595 op64_rtn = aco_opcode::ds_or_rtn_b64;
6596 break;
6597 case nir_intrinsic_shared_atomic_xor:
6598 op32 = aco_opcode::ds_xor_b32;
6599 op64 = aco_opcode::ds_xor_b64;
6600 op32_rtn = aco_opcode::ds_xor_rtn_b32;
6601 op64_rtn = aco_opcode::ds_xor_rtn_b64;
6602 break;
6603 case nir_intrinsic_shared_atomic_exchange:
6604 op32 = aco_opcode::ds_write_b32;
6605 op64 = aco_opcode::ds_write_b64;
6606 op32_rtn = aco_opcode::ds_wrxchg_rtn_b32;
6607 op64_rtn = aco_opcode::ds_wrxchg2_rtn_b64;
6608 break;
6609 case nir_intrinsic_shared_atomic_comp_swap:
6610 op32 = aco_opcode::ds_cmpst_b32;
6611 op64 = aco_opcode::ds_cmpst_b64;
6612 op32_rtn = aco_opcode::ds_cmpst_rtn_b32;
6613 op64_rtn = aco_opcode::ds_cmpst_rtn_b64;
6614 num_operands = 4;
6615 break;
6616 default:
6617 unreachable("Unhandled shared atomic intrinsic");
6618 }
6619
6620 /* return the previous value if dest is ever used */
6621 bool return_previous = false;
6622 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6623 return_previous = true;
6624 break;
6625 }
6626 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6627 return_previous = true;
6628 break;
6629 }
6630
6631 aco_opcode op;
6632 if (data.size() == 1) {
6633 assert(instr->dest.ssa.bit_size == 32);
6634 op = return_previous ? op32_rtn : op32;
6635 } else {
6636 assert(instr->dest.ssa.bit_size == 64);
6637 op = return_previous ? op64_rtn : op64;
6638 }
6639
6640 if (offset > 65535) {
6641 Builder bld(ctx->program, ctx->block);
6642 address = bld.vadd32(bld.def(v1), Operand(offset), address);
6643 offset = 0;
6644 }
6645
6646 aco_ptr<DS_instruction> ds;
6647 ds.reset(create_instruction<DS_instruction>(op, Format::DS, num_operands, return_previous ? 1 : 0));
6648 ds->operands[0] = Operand(address);
6649 ds->operands[1] = Operand(data);
6650 if (num_operands == 4)
6651 ds->operands[2] = Operand(get_ssa_temp(ctx, instr->src[2].ssa));
6652 ds->operands[num_operands - 1] = m;
6653 ds->offset0 = offset;
6654 if (return_previous)
6655 ds->definitions[0] = Definition(get_ssa_temp(ctx, &instr->dest.ssa));
6656 ctx->block->instructions.emplace_back(std::move(ds));
6657 }
6658
6659 Temp get_scratch_resource(isel_context *ctx)
6660 {
6661 Builder bld(ctx->program, ctx->block);
6662 Temp scratch_addr = ctx->program->private_segment_buffer;
6663 if (ctx->stage != compute_cs)
6664 scratch_addr = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), scratch_addr, Operand(0u));
6665
6666 uint32_t rsrc_conf = S_008F0C_ADD_TID_ENABLE(1) |
6667 S_008F0C_INDEX_STRIDE(ctx->program->wave_size == 64 ? 3 : 2);;
6668
6669 if (ctx->program->chip_class >= GFX10) {
6670 rsrc_conf |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
6671 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
6672 S_008F0C_RESOURCE_LEVEL(1);
6673 } else if (ctx->program->chip_class <= GFX7) { /* dfmt modifies stride on GFX8/GFX9 when ADD_TID_EN=1 */
6674 rsrc_conf |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
6675 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
6676 }
6677
6678 /* older generations need element size = 16 bytes. element size removed in GFX9 */
6679 if (ctx->program->chip_class <= GFX8)
6680 rsrc_conf |= S_008F0C_ELEMENT_SIZE(3);
6681
6682 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), scratch_addr, Operand(-1u), Operand(rsrc_conf));
6683 }
6684
6685 void visit_load_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
6686 assert(instr->dest.ssa.bit_size == 32 || instr->dest.ssa.bit_size == 64);
6687 Builder bld(ctx->program, ctx->block);
6688 Temp rsrc = get_scratch_resource(ctx);
6689 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6690 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6691
6692 aco_opcode op;
6693 switch (dst.size()) {
6694 case 1:
6695 op = aco_opcode::buffer_load_dword;
6696 break;
6697 case 2:
6698 op = aco_opcode::buffer_load_dwordx2;
6699 break;
6700 case 3:
6701 op = aco_opcode::buffer_load_dwordx3;
6702 break;
6703 case 4:
6704 op = aco_opcode::buffer_load_dwordx4;
6705 break;
6706 case 6:
6707 case 8: {
6708 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
6709 Temp lower = bld.mubuf(aco_opcode::buffer_load_dwordx4,
6710 bld.def(v4), rsrc, offset,
6711 ctx->program->scratch_offset, 0, true);
6712 Temp upper = bld.mubuf(dst.size() == 6 ? aco_opcode::buffer_load_dwordx2 :
6713 aco_opcode::buffer_load_dwordx4,
6714 dst.size() == 6 ? bld.def(v2) : bld.def(v4),
6715 rsrc, offset, ctx->program->scratch_offset, 16, true);
6716 emit_split_vector(ctx, lower, 2);
6717 elems[0] = emit_extract_vector(ctx, lower, 0, v2);
6718 elems[1] = emit_extract_vector(ctx, lower, 1, v2);
6719 if (dst.size() == 8) {
6720 emit_split_vector(ctx, upper, 2);
6721 elems[2] = emit_extract_vector(ctx, upper, 0, v2);
6722 elems[3] = emit_extract_vector(ctx, upper, 1, v2);
6723 } else {
6724 elems[2] = upper;
6725 }
6726
6727 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
6728 Format::PSEUDO, dst.size() / 2, 1)};
6729 for (unsigned i = 0; i < dst.size() / 2; i++)
6730 vec->operands[i] = Operand(elems[i]);
6731 vec->definitions[0] = Definition(dst);
6732 bld.insert(std::move(vec));
6733 ctx->allocated_vec.emplace(dst.id(), elems);
6734 return;
6735 }
6736 default:
6737 unreachable("Wrong dst size for nir_intrinsic_load_scratch");
6738 }
6739
6740 bld.mubuf(op, Definition(dst), rsrc, offset, ctx->program->scratch_offset, 0, true);
6741 emit_split_vector(ctx, dst, instr->num_components);
6742 }
6743
6744 void visit_store_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
6745 assert(instr->src[0].ssa->bit_size == 32 || instr->src[0].ssa->bit_size == 64);
6746 Builder bld(ctx->program, ctx->block);
6747 Temp rsrc = get_scratch_resource(ctx);
6748 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6749 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6750
6751 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6752 unsigned writemask = nir_intrinsic_write_mask(instr);
6753
6754 while (writemask) {
6755 int start, count;
6756 u_bit_scan_consecutive_range(&writemask, &start, &count);
6757 int num_bytes = count * elem_size_bytes;
6758
6759 if (num_bytes > 16) {
6760 assert(elem_size_bytes == 8);
6761 writemask |= (((count - 2) << 1) - 1) << (start + 2);
6762 count = 2;
6763 num_bytes = 16;
6764 }
6765
6766 // TODO: check alignment of sub-dword stores
6767 // TODO: split 3 bytes. there is no store instruction for that
6768
6769 Temp write_data;
6770 if (count != instr->num_components) {
6771 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
6772 for (int i = 0; i < count; i++) {
6773 Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(RegType::vgpr, elem_size_bytes / 4));
6774 vec->operands[i] = Operand(elem);
6775 }
6776 write_data = bld.tmp(RegClass(RegType::vgpr, count * elem_size_bytes / 4));
6777 vec->definitions[0] = Definition(write_data);
6778 ctx->block->instructions.emplace_back(std::move(vec));
6779 } else {
6780 write_data = data;
6781 }
6782
6783 aco_opcode op;
6784 switch (num_bytes) {
6785 case 4:
6786 op = aco_opcode::buffer_store_dword;
6787 break;
6788 case 8:
6789 op = aco_opcode::buffer_store_dwordx2;
6790 break;
6791 case 12:
6792 op = aco_opcode::buffer_store_dwordx3;
6793 break;
6794 case 16:
6795 op = aco_opcode::buffer_store_dwordx4;
6796 break;
6797 default:
6798 unreachable("Invalid data size for nir_intrinsic_store_scratch.");
6799 }
6800
6801 bld.mubuf(op, rsrc, offset, ctx->program->scratch_offset, write_data, start * elem_size_bytes, true);
6802 }
6803 }
6804
6805 void visit_load_sample_mask_in(isel_context *ctx, nir_intrinsic_instr *instr) {
6806 uint8_t log2_ps_iter_samples;
6807 if (ctx->program->info->ps.force_persample) {
6808 log2_ps_iter_samples =
6809 util_logbase2(ctx->options->key.fs.num_samples);
6810 } else {
6811 log2_ps_iter_samples = ctx->options->key.fs.log2_ps_iter_samples;
6812 }
6813
6814 /* The bit pattern matches that used by fixed function fragment
6815 * processing. */
6816 static const unsigned ps_iter_masks[] = {
6817 0xffff, /* not used */
6818 0x5555,
6819 0x1111,
6820 0x0101,
6821 0x0001,
6822 };
6823 assert(log2_ps_iter_samples < ARRAY_SIZE(ps_iter_masks));
6824
6825 Builder bld(ctx->program, ctx->block);
6826
6827 Temp sample_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
6828 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
6829 Temp ps_iter_mask = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(ps_iter_masks[log2_ps_iter_samples]));
6830 Temp mask = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), sample_id, ps_iter_mask);
6831 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6832 bld.vop2(aco_opcode::v_and_b32, Definition(dst), mask, get_arg(ctx, ctx->args->ac.sample_coverage));
6833 }
6834
6835 void visit_emit_vertex_with_counter(isel_context *ctx, nir_intrinsic_instr *instr) {
6836 Builder bld(ctx->program, ctx->block);
6837
6838 unsigned stream = nir_intrinsic_stream_id(instr);
6839 Temp next_vertex = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6840 next_vertex = bld.v_mul_imm(bld.def(v1), next_vertex, 4u);
6841 nir_const_value *next_vertex_cv = nir_src_as_const_value(instr->src[0]);
6842
6843 /* get GSVS ring */
6844 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_GSVS_GS * 16u));
6845
6846 unsigned num_components =
6847 ctx->program->info->gs.num_stream_output_components[stream];
6848 assert(num_components);
6849
6850 unsigned stride = 4u * num_components * ctx->shader->info.gs.vertices_out;
6851 unsigned stream_offset = 0;
6852 for (unsigned i = 0; i < stream; i++) {
6853 unsigned prev_stride = 4u * ctx->program->info->gs.num_stream_output_components[i] * ctx->shader->info.gs.vertices_out;
6854 stream_offset += prev_stride * ctx->program->wave_size;
6855 }
6856
6857 /* Limit on the stride field for <= GFX7. */
6858 assert(stride < (1 << 14));
6859
6860 Temp gsvs_dwords[4];
6861 for (unsigned i = 0; i < 4; i++)
6862 gsvs_dwords[i] = bld.tmp(s1);
6863 bld.pseudo(aco_opcode::p_split_vector,
6864 Definition(gsvs_dwords[0]),
6865 Definition(gsvs_dwords[1]),
6866 Definition(gsvs_dwords[2]),
6867 Definition(gsvs_dwords[3]),
6868 gsvs_ring);
6869
6870 if (stream_offset) {
6871 Temp stream_offset_tmp = bld.copy(bld.def(s1), Operand(stream_offset));
6872
6873 Temp carry = bld.tmp(s1);
6874 gsvs_dwords[0] = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), gsvs_dwords[0], stream_offset_tmp);
6875 gsvs_dwords[1] = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(0u), bld.scc(carry));
6876 }
6877
6878 gsvs_dwords[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(S_008F04_STRIDE(stride)));
6879 gsvs_dwords[2] = bld.copy(bld.def(s1), Operand((uint32_t)ctx->program->wave_size));
6880
6881 gsvs_ring = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
6882 gsvs_dwords[0], gsvs_dwords[1], gsvs_dwords[2], gsvs_dwords[3]);
6883
6884 unsigned offset = 0;
6885 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; i++) {
6886 if (ctx->program->info->gs.output_streams[i] != stream)
6887 continue;
6888
6889 for (unsigned j = 0; j < 4; j++) {
6890 if (!(ctx->program->info->gs.output_usage_mask[i] & (1 << j)))
6891 continue;
6892
6893 if (ctx->outputs.mask[i] & (1 << j)) {
6894 Operand vaddr_offset = next_vertex_cv ? Operand(v1) : Operand(next_vertex);
6895 unsigned const_offset = (offset + (next_vertex_cv ? next_vertex_cv->u32 : 0u)) * 4u;
6896 if (const_offset >= 4096u) {
6897 if (vaddr_offset.isUndefined())
6898 vaddr_offset = bld.copy(bld.def(v1), Operand(const_offset / 4096u * 4096u));
6899 else
6900 vaddr_offset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), vaddr_offset);
6901 const_offset %= 4096u;
6902 }
6903
6904 aco_ptr<MTBUF_instruction> mtbuf{create_instruction<MTBUF_instruction>(aco_opcode::tbuffer_store_format_x, Format::MTBUF, 4, 0)};
6905 mtbuf->operands[0] = Operand(gsvs_ring);
6906 mtbuf->operands[1] = vaddr_offset;
6907 mtbuf->operands[2] = Operand(get_arg(ctx, ctx->args->gs2vs_offset));
6908 mtbuf->operands[3] = Operand(ctx->outputs.temps[i * 4u + j]);
6909 mtbuf->offen = !vaddr_offset.isUndefined();
6910 mtbuf->dfmt = V_008F0C_BUF_DATA_FORMAT_32;
6911 mtbuf->nfmt = V_008F0C_BUF_NUM_FORMAT_UINT;
6912 mtbuf->offset = const_offset;
6913 mtbuf->glc = true;
6914 mtbuf->slc = true;
6915 mtbuf->barrier = barrier_gs_data;
6916 mtbuf->can_reorder = true;
6917 bld.insert(std::move(mtbuf));
6918 }
6919
6920 offset += ctx->shader->info.gs.vertices_out;
6921 }
6922
6923 /* outputs for the next vertex are undefined and keeping them around can
6924 * create invalid IR with control flow */
6925 ctx->outputs.mask[i] = 0;
6926 }
6927
6928 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(false, true, stream));
6929 }
6930
6931 Temp emit_boolean_reduce(isel_context *ctx, nir_op op, unsigned cluster_size, Temp src)
6932 {
6933 Builder bld(ctx->program, ctx->block);
6934
6935 if (cluster_size == 1) {
6936 return src;
6937 } if (op == nir_op_iand && cluster_size == 4) {
6938 //subgroupClusteredAnd(val, 4) -> ~wqm(exec & ~val)
6939 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
6940 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc),
6941 bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc), tmp));
6942 } else if (op == nir_op_ior && cluster_size == 4) {
6943 //subgroupClusteredOr(val, 4) -> wqm(val & exec)
6944 return bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc),
6945 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)));
6946 } else if (op == nir_op_iand && cluster_size == ctx->program->wave_size) {
6947 //subgroupAnd(val) -> (exec & ~val) == 0
6948 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
6949 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
6950 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), cond);
6951 } else if (op == nir_op_ior && cluster_size == ctx->program->wave_size) {
6952 //subgroupOr(val) -> (val & exec) != 0
6953 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)).def(1).getTemp();
6954 return bool_to_vector_condition(ctx, tmp);
6955 } else if (op == nir_op_ixor && cluster_size == ctx->program->wave_size) {
6956 //subgroupXor(val) -> s_bcnt1_i32_b64(val & exec) & 1
6957 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
6958 tmp = bld.sop1(Builder::s_bcnt1_i32, bld.def(s1), bld.def(s1, scc), tmp);
6959 tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), tmp, Operand(1u)).def(1).getTemp();
6960 return bool_to_vector_condition(ctx, tmp);
6961 } else {
6962 //subgroupClustered{And,Or,Xor}(val, n) ->
6963 //lane_id = v_mbcnt_hi_u32_b32(-1, v_mbcnt_lo_u32_b32(-1, 0)) ; just v_mbcnt_lo_u32_b32 on wave32
6964 //cluster_offset = ~(n - 1) & lane_id
6965 //cluster_mask = ((1 << n) - 1)
6966 //subgroupClusteredAnd():
6967 // return ((val | ~exec) >> cluster_offset) & cluster_mask == cluster_mask
6968 //subgroupClusteredOr():
6969 // return ((val & exec) >> cluster_offset) & cluster_mask != 0
6970 //subgroupClusteredXor():
6971 // return v_bnt_u32_b32(((val & exec) >> cluster_offset) & cluster_mask, 0) & 1 != 0
6972 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
6973 Temp cluster_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(~uint32_t(cluster_size - 1)), lane_id);
6974
6975 Temp tmp;
6976 if (op == nir_op_iand)
6977 tmp = bld.sop2(Builder::s_orn2, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
6978 else
6979 tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
6980
6981 uint32_t cluster_mask = cluster_size == 32 ? -1 : (1u << cluster_size) - 1u;
6982
6983 if (ctx->program->chip_class <= GFX7)
6984 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), tmp, cluster_offset);
6985 else if (ctx->program->wave_size == 64)
6986 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), cluster_offset, tmp);
6987 else
6988 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), cluster_offset, tmp);
6989 tmp = emit_extract_vector(ctx, tmp, 0, v1);
6990 if (cluster_mask != 0xffffffff)
6991 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(cluster_mask), tmp);
6992
6993 Definition cmp_def = Definition();
6994 if (op == nir_op_iand) {
6995 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(cluster_mask), tmp).def(0);
6996 } else if (op == nir_op_ior) {
6997 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
6998 } else if (op == nir_op_ixor) {
6999 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u),
7000 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1), tmp, Operand(0u)));
7001 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
7002 }
7003 cmp_def.setHint(vcc);
7004 return cmp_def.getTemp();
7005 }
7006 }
7007
7008 Temp emit_boolean_exclusive_scan(isel_context *ctx, nir_op op, Temp src)
7009 {
7010 Builder bld(ctx->program, ctx->block);
7011
7012 //subgroupExclusiveAnd(val) -> mbcnt(exec & ~val) == 0
7013 //subgroupExclusiveOr(val) -> mbcnt(val & exec) != 0
7014 //subgroupExclusiveXor(val) -> mbcnt(val & exec) & 1 != 0
7015 Temp tmp;
7016 if (op == nir_op_iand)
7017 tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
7018 else
7019 tmp = bld.sop2(Builder::s_and, bld.def(s2), bld.def(s1, scc), src, Operand(exec, bld.lm));
7020
7021 Builder::Result lohi = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), bld.def(s1), tmp);
7022 Temp lo = lohi.def(0).getTemp();
7023 Temp hi = lohi.def(1).getTemp();
7024 Temp mbcnt = emit_mbcnt(ctx, bld.def(v1), Operand(lo), Operand(hi));
7025
7026 Definition cmp_def = Definition();
7027 if (op == nir_op_iand)
7028 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
7029 else if (op == nir_op_ior)
7030 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
7031 else if (op == nir_op_ixor)
7032 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u),
7033 bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), mbcnt)).def(0);
7034 cmp_def.setHint(vcc);
7035 return cmp_def.getTemp();
7036 }
7037
7038 Temp emit_boolean_inclusive_scan(isel_context *ctx, nir_op op, Temp src)
7039 {
7040 Builder bld(ctx->program, ctx->block);
7041
7042 //subgroupInclusiveAnd(val) -> subgroupExclusiveAnd(val) && val
7043 //subgroupInclusiveOr(val) -> subgroupExclusiveOr(val) || val
7044 //subgroupInclusiveXor(val) -> subgroupExclusiveXor(val) ^^ val
7045 Temp tmp = emit_boolean_exclusive_scan(ctx, op, src);
7046 if (op == nir_op_iand)
7047 return bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
7048 else if (op == nir_op_ior)
7049 return bld.sop2(Builder::s_or, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
7050 else if (op == nir_op_ixor)
7051 return bld.sop2(Builder::s_xor, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
7052
7053 assert(false);
7054 return Temp();
7055 }
7056
7057 void emit_uniform_subgroup(isel_context *ctx, nir_intrinsic_instr *instr, Temp src)
7058 {
7059 Builder bld(ctx->program, ctx->block);
7060 Definition dst(get_ssa_temp(ctx, &instr->dest.ssa));
7061 if (src.regClass().type() == RegType::vgpr) {
7062 bld.pseudo(aco_opcode::p_as_uniform, dst, src);
7063 } else if (src.regClass() == s1) {
7064 bld.sop1(aco_opcode::s_mov_b32, dst, src);
7065 } else if (src.regClass() == s2) {
7066 bld.sop1(aco_opcode::s_mov_b64, dst, src);
7067 } else {
7068 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7069 nir_print_instr(&instr->instr, stderr);
7070 fprintf(stderr, "\n");
7071 }
7072 }
7073
7074 void emit_interp_center(isel_context *ctx, Temp dst, Temp pos1, Temp pos2)
7075 {
7076 Builder bld(ctx->program, ctx->block);
7077 Temp persp_center = get_arg(ctx, ctx->args->ac.persp_center);
7078 Temp p1 = emit_extract_vector(ctx, persp_center, 0, v1);
7079 Temp p2 = emit_extract_vector(ctx, persp_center, 1, v1);
7080
7081 Temp ddx_1, ddx_2, ddy_1, ddy_2;
7082 uint32_t dpp_ctrl0 = dpp_quad_perm(0, 0, 0, 0);
7083 uint32_t dpp_ctrl1 = dpp_quad_perm(1, 1, 1, 1);
7084 uint32_t dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
7085
7086 /* Build DD X/Y */
7087 if (ctx->program->chip_class >= GFX8) {
7088 Temp tl_1 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p1, dpp_ctrl0);
7089 ddx_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl1);
7090 ddy_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl2);
7091 Temp tl_2 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p2, dpp_ctrl0);
7092 ddx_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl1);
7093 ddy_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl2);
7094 } else {
7095 Temp tl_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl0);
7096 ddx_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl1);
7097 ddx_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_1, tl_1);
7098 ddx_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl2);
7099 ddx_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_2, tl_1);
7100 Temp tl_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl0);
7101 ddy_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl1);
7102 ddy_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_1, tl_2);
7103 ddy_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl2);
7104 ddy_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_2, tl_2);
7105 }
7106
7107 /* res_k = p_k + ddx_k * pos1 + ddy_k * pos2 */
7108 Temp tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_1, pos1, p1);
7109 Temp tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_2, pos1, p2);
7110 tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_1, pos2, tmp1);
7111 tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_2, pos2, tmp2);
7112 Temp wqm1 = bld.tmp(v1);
7113 emit_wqm(ctx, tmp1, wqm1, true);
7114 Temp wqm2 = bld.tmp(v1);
7115 emit_wqm(ctx, tmp2, wqm2, true);
7116 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), wqm1, wqm2);
7117 return;
7118 }
7119
7120 void visit_intrinsic(isel_context *ctx, nir_intrinsic_instr *instr)
7121 {
7122 Builder bld(ctx->program, ctx->block);
7123 switch(instr->intrinsic) {
7124 case nir_intrinsic_load_barycentric_sample:
7125 case nir_intrinsic_load_barycentric_pixel:
7126 case nir_intrinsic_load_barycentric_centroid: {
7127 glsl_interp_mode mode = (glsl_interp_mode)nir_intrinsic_interp_mode(instr);
7128 Temp bary = Temp(0, s2);
7129 switch (mode) {
7130 case INTERP_MODE_SMOOTH:
7131 case INTERP_MODE_NONE:
7132 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
7133 bary = get_arg(ctx, ctx->args->ac.persp_center);
7134 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
7135 bary = ctx->persp_centroid;
7136 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
7137 bary = get_arg(ctx, ctx->args->ac.persp_sample);
7138 break;
7139 case INTERP_MODE_NOPERSPECTIVE:
7140 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
7141 bary = get_arg(ctx, ctx->args->ac.linear_center);
7142 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
7143 bary = ctx->linear_centroid;
7144 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
7145 bary = get_arg(ctx, ctx->args->ac.linear_sample);
7146 break;
7147 default:
7148 break;
7149 }
7150 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7151 Temp p1 = emit_extract_vector(ctx, bary, 0, v1);
7152 Temp p2 = emit_extract_vector(ctx, bary, 1, v1);
7153 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
7154 Operand(p1), Operand(p2));
7155 emit_split_vector(ctx, dst, 2);
7156 break;
7157 }
7158 case nir_intrinsic_load_barycentric_model: {
7159 Temp model = get_arg(ctx, ctx->args->ac.pull_model);
7160
7161 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7162 Temp p1 = emit_extract_vector(ctx, model, 0, v1);
7163 Temp p2 = emit_extract_vector(ctx, model, 1, v1);
7164 Temp p3 = emit_extract_vector(ctx, model, 2, v1);
7165 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
7166 Operand(p1), Operand(p2), Operand(p3));
7167 emit_split_vector(ctx, dst, 3);
7168 break;
7169 }
7170 case nir_intrinsic_load_barycentric_at_sample: {
7171 uint32_t sample_pos_offset = RING_PS_SAMPLE_POSITIONS * 16;
7172 switch (ctx->options->key.fs.num_samples) {
7173 case 2: sample_pos_offset += 1 << 3; break;
7174 case 4: sample_pos_offset += 3 << 3; break;
7175 case 8: sample_pos_offset += 7 << 3; break;
7176 default: break;
7177 }
7178 Temp sample_pos;
7179 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
7180 nir_const_value* const_addr = nir_src_as_const_value(instr->src[0]);
7181 Temp private_segment_buffer = ctx->program->private_segment_buffer;
7182 if (addr.type() == RegType::sgpr) {
7183 Operand offset;
7184 if (const_addr) {
7185 sample_pos_offset += const_addr->u32 << 3;
7186 offset = Operand(sample_pos_offset);
7187 } else if (ctx->options->chip_class >= GFX9) {
7188 offset = bld.sop2(aco_opcode::s_lshl3_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
7189 } else {
7190 offset = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), addr, Operand(3u));
7191 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
7192 }
7193
7194 Operand off = bld.copy(bld.def(s1), Operand(offset));
7195 sample_pos = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), private_segment_buffer, off);
7196
7197 } else if (ctx->options->chip_class >= GFX9) {
7198 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
7199 sample_pos = bld.global(aco_opcode::global_load_dwordx2, bld.def(v2), addr, private_segment_buffer, sample_pos_offset);
7200 } else if (ctx->options->chip_class >= GFX7) {
7201 /* addr += private_segment_buffer + sample_pos_offset */
7202 Temp tmp0 = bld.tmp(s1);
7203 Temp tmp1 = bld.tmp(s1);
7204 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp0), Definition(tmp1), private_segment_buffer);
7205 Definition scc_tmp = bld.def(s1, scc);
7206 tmp0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), scc_tmp, tmp0, Operand(sample_pos_offset));
7207 tmp1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), tmp1, Operand(0u), bld.scc(scc_tmp.getTemp()));
7208 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
7209 Temp pck0 = bld.tmp(v1);
7210 Temp carry = bld.vadd32(Definition(pck0), tmp0, addr, true).def(1).getTemp();
7211 tmp1 = as_vgpr(ctx, tmp1);
7212 Temp pck1 = bld.vop2_e64(aco_opcode::v_addc_co_u32, bld.def(v1), bld.hint_vcc(bld.def(bld.lm)), tmp1, Operand(0u), carry);
7213 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), pck0, pck1);
7214
7215 /* sample_pos = flat_load_dwordx2 addr */
7216 sample_pos = bld.flat(aco_opcode::flat_load_dwordx2, bld.def(v2), addr, Operand(s1));
7217 } else {
7218 assert(ctx->options->chip_class == GFX6);
7219
7220 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
7221 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
7222 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), private_segment_buffer, Operand(0u), Operand(rsrc_conf));
7223
7224 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
7225 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), addr, Operand(0u));
7226
7227 sample_pos = bld.tmp(v2);
7228
7229 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dwordx2, Format::MUBUF, 3, 1)};
7230 load->definitions[0] = Definition(sample_pos);
7231 load->operands[0] = Operand(rsrc);
7232 load->operands[1] = Operand(addr);
7233 load->operands[2] = Operand(0u);
7234 load->offset = sample_pos_offset;
7235 load->offen = 0;
7236 load->addr64 = true;
7237 load->glc = false;
7238 load->dlc = false;
7239 load->disable_wqm = false;
7240 load->barrier = barrier_none;
7241 load->can_reorder = true;
7242 ctx->block->instructions.emplace_back(std::move(load));
7243 }
7244
7245 /* sample_pos -= 0.5 */
7246 Temp pos1 = bld.tmp(RegClass(sample_pos.type(), 1));
7247 Temp pos2 = bld.tmp(RegClass(sample_pos.type(), 1));
7248 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), sample_pos);
7249 pos1 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos1, Operand(0x3f000000u));
7250 pos2 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos2, Operand(0x3f000000u));
7251
7252 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
7253 break;
7254 }
7255 case nir_intrinsic_load_barycentric_at_offset: {
7256 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
7257 RegClass rc = RegClass(offset.type(), 1);
7258 Temp pos1 = bld.tmp(rc), pos2 = bld.tmp(rc);
7259 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), offset);
7260 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
7261 break;
7262 }
7263 case nir_intrinsic_load_front_face: {
7264 bld.vopc(aco_opcode::v_cmp_lg_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7265 Operand(0u), get_arg(ctx, ctx->args->ac.front_face)).def(0).setHint(vcc);
7266 break;
7267 }
7268 case nir_intrinsic_load_view_index: {
7269 if (ctx->stage & (sw_vs | sw_gs | sw_tcs | sw_tes)) {
7270 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7271 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.view_index)));
7272 break;
7273 }
7274
7275 /* fallthrough */
7276 }
7277 case nir_intrinsic_load_layer_id: {
7278 unsigned idx = nir_intrinsic_base(instr);
7279 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7280 Operand(2u), bld.m0(get_arg(ctx, ctx->args->ac.prim_mask)), idx, 0);
7281 break;
7282 }
7283 case nir_intrinsic_load_frag_coord: {
7284 emit_load_frag_coord(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 4);
7285 break;
7286 }
7287 case nir_intrinsic_load_sample_pos: {
7288 Temp posx = get_arg(ctx, ctx->args->ac.frag_pos[0]);
7289 Temp posy = get_arg(ctx, ctx->args->ac.frag_pos[1]);
7290 bld.pseudo(aco_opcode::p_create_vector, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7291 posx.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posx) : Operand(0u),
7292 posy.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posy) : Operand(0u));
7293 break;
7294 }
7295 case nir_intrinsic_load_tess_coord:
7296 visit_load_tess_coord(ctx, instr);
7297 break;
7298 case nir_intrinsic_load_interpolated_input:
7299 visit_load_interpolated_input(ctx, instr);
7300 break;
7301 case nir_intrinsic_store_output:
7302 visit_store_output(ctx, instr);
7303 break;
7304 case nir_intrinsic_load_input:
7305 case nir_intrinsic_load_input_vertex:
7306 visit_load_input(ctx, instr);
7307 break;
7308 case nir_intrinsic_load_output:
7309 visit_load_output(ctx, instr);
7310 break;
7311 case nir_intrinsic_load_per_vertex_input:
7312 visit_load_per_vertex_input(ctx, instr);
7313 break;
7314 case nir_intrinsic_load_per_vertex_output:
7315 visit_load_per_vertex_output(ctx, instr);
7316 break;
7317 case nir_intrinsic_store_per_vertex_output:
7318 visit_store_per_vertex_output(ctx, instr);
7319 break;
7320 case nir_intrinsic_load_ubo:
7321 visit_load_ubo(ctx, instr);
7322 break;
7323 case nir_intrinsic_load_push_constant:
7324 visit_load_push_constant(ctx, instr);
7325 break;
7326 case nir_intrinsic_load_constant:
7327 visit_load_constant(ctx, instr);
7328 break;
7329 case nir_intrinsic_vulkan_resource_index:
7330 visit_load_resource(ctx, instr);
7331 break;
7332 case nir_intrinsic_discard:
7333 visit_discard(ctx, instr);
7334 break;
7335 case nir_intrinsic_discard_if:
7336 visit_discard_if(ctx, instr);
7337 break;
7338 case nir_intrinsic_load_shared:
7339 visit_load_shared(ctx, instr);
7340 break;
7341 case nir_intrinsic_store_shared:
7342 visit_store_shared(ctx, instr);
7343 break;
7344 case nir_intrinsic_shared_atomic_add:
7345 case nir_intrinsic_shared_atomic_imin:
7346 case nir_intrinsic_shared_atomic_umin:
7347 case nir_intrinsic_shared_atomic_imax:
7348 case nir_intrinsic_shared_atomic_umax:
7349 case nir_intrinsic_shared_atomic_and:
7350 case nir_intrinsic_shared_atomic_or:
7351 case nir_intrinsic_shared_atomic_xor:
7352 case nir_intrinsic_shared_atomic_exchange:
7353 case nir_intrinsic_shared_atomic_comp_swap:
7354 visit_shared_atomic(ctx, instr);
7355 break;
7356 case nir_intrinsic_image_deref_load:
7357 visit_image_load(ctx, instr);
7358 break;
7359 case nir_intrinsic_image_deref_store:
7360 visit_image_store(ctx, instr);
7361 break;
7362 case nir_intrinsic_image_deref_atomic_add:
7363 case nir_intrinsic_image_deref_atomic_umin:
7364 case nir_intrinsic_image_deref_atomic_imin:
7365 case nir_intrinsic_image_deref_atomic_umax:
7366 case nir_intrinsic_image_deref_atomic_imax:
7367 case nir_intrinsic_image_deref_atomic_and:
7368 case nir_intrinsic_image_deref_atomic_or:
7369 case nir_intrinsic_image_deref_atomic_xor:
7370 case nir_intrinsic_image_deref_atomic_exchange:
7371 case nir_intrinsic_image_deref_atomic_comp_swap:
7372 visit_image_atomic(ctx, instr);
7373 break;
7374 case nir_intrinsic_image_deref_size:
7375 visit_image_size(ctx, instr);
7376 break;
7377 case nir_intrinsic_load_ssbo:
7378 visit_load_ssbo(ctx, instr);
7379 break;
7380 case nir_intrinsic_store_ssbo:
7381 visit_store_ssbo(ctx, instr);
7382 break;
7383 case nir_intrinsic_load_global:
7384 visit_load_global(ctx, instr);
7385 break;
7386 case nir_intrinsic_store_global:
7387 visit_store_global(ctx, instr);
7388 break;
7389 case nir_intrinsic_global_atomic_add:
7390 case nir_intrinsic_global_atomic_imin:
7391 case nir_intrinsic_global_atomic_umin:
7392 case nir_intrinsic_global_atomic_imax:
7393 case nir_intrinsic_global_atomic_umax:
7394 case nir_intrinsic_global_atomic_and:
7395 case nir_intrinsic_global_atomic_or:
7396 case nir_intrinsic_global_atomic_xor:
7397 case nir_intrinsic_global_atomic_exchange:
7398 case nir_intrinsic_global_atomic_comp_swap:
7399 visit_global_atomic(ctx, instr);
7400 break;
7401 case nir_intrinsic_ssbo_atomic_add:
7402 case nir_intrinsic_ssbo_atomic_imin:
7403 case nir_intrinsic_ssbo_atomic_umin:
7404 case nir_intrinsic_ssbo_atomic_imax:
7405 case nir_intrinsic_ssbo_atomic_umax:
7406 case nir_intrinsic_ssbo_atomic_and:
7407 case nir_intrinsic_ssbo_atomic_or:
7408 case nir_intrinsic_ssbo_atomic_xor:
7409 case nir_intrinsic_ssbo_atomic_exchange:
7410 case nir_intrinsic_ssbo_atomic_comp_swap:
7411 visit_atomic_ssbo(ctx, instr);
7412 break;
7413 case nir_intrinsic_load_scratch:
7414 visit_load_scratch(ctx, instr);
7415 break;
7416 case nir_intrinsic_store_scratch:
7417 visit_store_scratch(ctx, instr);
7418 break;
7419 case nir_intrinsic_get_buffer_size:
7420 visit_get_buffer_size(ctx, instr);
7421 break;
7422 case nir_intrinsic_control_barrier: {
7423 if (ctx->program->chip_class == GFX6 && ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
7424 /* GFX6 only (thanks to a hw bug workaround):
7425 * The real barrier instruction isn’t needed, because an entire patch
7426 * always fits into a single wave.
7427 */
7428 break;
7429 }
7430
7431 if (ctx->program->workgroup_size > ctx->program->wave_size)
7432 bld.sopp(aco_opcode::s_barrier);
7433
7434 break;
7435 }
7436 case nir_intrinsic_memory_barrier_tcs_patch:
7437 case nir_intrinsic_group_memory_barrier:
7438 case nir_intrinsic_memory_barrier:
7439 case nir_intrinsic_memory_barrier_buffer:
7440 case nir_intrinsic_memory_barrier_image:
7441 case nir_intrinsic_memory_barrier_shared:
7442 emit_memory_barrier(ctx, instr);
7443 break;
7444 case nir_intrinsic_load_num_work_groups: {
7445 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7446 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.num_work_groups)));
7447 emit_split_vector(ctx, dst, 3);
7448 break;
7449 }
7450 case nir_intrinsic_load_local_invocation_id: {
7451 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7452 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.local_invocation_ids)));
7453 emit_split_vector(ctx, dst, 3);
7454 break;
7455 }
7456 case nir_intrinsic_load_work_group_id: {
7457 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7458 struct ac_arg *args = ctx->args->ac.workgroup_ids;
7459 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
7460 args[0].used ? Operand(get_arg(ctx, args[0])) : Operand(0u),
7461 args[1].used ? Operand(get_arg(ctx, args[1])) : Operand(0u),
7462 args[2].used ? Operand(get_arg(ctx, args[2])) : Operand(0u));
7463 emit_split_vector(ctx, dst, 3);
7464 break;
7465 }
7466 case nir_intrinsic_load_local_invocation_index: {
7467 Temp id = emit_mbcnt(ctx, bld.def(v1));
7468
7469 /* The tg_size bits [6:11] contain the subgroup id,
7470 * we need this multiplied by the wave size, and then OR the thread id to it.
7471 */
7472 if (ctx->program->wave_size == 64) {
7473 /* After the s_and the bits are already multiplied by 64 (left shifted by 6) so we can just feed that to v_or */
7474 Temp tg_num = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfc0u),
7475 get_arg(ctx, ctx->args->ac.tg_size));
7476 bld.vop2(aco_opcode::v_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, id);
7477 } else {
7478 /* Extract the bit field and multiply the result by 32 (left shift by 5), then do the OR */
7479 Temp tg_num = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
7480 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
7481 bld.vop3(aco_opcode::v_lshl_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, Operand(0x5u), id);
7482 }
7483 break;
7484 }
7485 case nir_intrinsic_load_subgroup_id: {
7486 if (ctx->stage == compute_cs) {
7487 bld.sop2(aco_opcode::s_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc),
7488 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
7489 } else {
7490 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x0u));
7491 }
7492 break;
7493 }
7494 case nir_intrinsic_load_subgroup_invocation: {
7495 emit_mbcnt(ctx, Definition(get_ssa_temp(ctx, &instr->dest.ssa)));
7496 break;
7497 }
7498 case nir_intrinsic_load_num_subgroups: {
7499 if (ctx->stage == compute_cs)
7500 bld.sop2(aco_opcode::s_and_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc), Operand(0x3fu),
7501 get_arg(ctx, ctx->args->ac.tg_size));
7502 else
7503 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x1u));
7504 break;
7505 }
7506 case nir_intrinsic_ballot: {
7507 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7508 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7509 Definition tmp = bld.def(dst.regClass());
7510 Definition lanemask_tmp = dst.size() == bld.lm.size() ? tmp : bld.def(src.regClass());
7511 if (instr->src[0].ssa->bit_size == 1) {
7512 assert(src.regClass() == bld.lm);
7513 bld.sop2(Builder::s_and, lanemask_tmp, bld.def(s1, scc), Operand(exec, bld.lm), src);
7514 } else if (instr->src[0].ssa->bit_size == 32 && src.regClass() == v1) {
7515 bld.vopc(aco_opcode::v_cmp_lg_u32, lanemask_tmp, Operand(0u), src);
7516 } else if (instr->src[0].ssa->bit_size == 64 && src.regClass() == v2) {
7517 bld.vopc(aco_opcode::v_cmp_lg_u64, lanemask_tmp, Operand(0u), src);
7518 } else {
7519 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7520 nir_print_instr(&instr->instr, stderr);
7521 fprintf(stderr, "\n");
7522 }
7523 if (dst.size() != bld.lm.size()) {
7524 /* Wave32 with ballot size set to 64 */
7525 bld.pseudo(aco_opcode::p_create_vector, Definition(tmp), lanemask_tmp.getTemp(), Operand(0u));
7526 }
7527 emit_wqm(ctx, tmp.getTemp(), dst);
7528 break;
7529 }
7530 case nir_intrinsic_shuffle:
7531 case nir_intrinsic_read_invocation: {
7532 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7533 if (!ctx->divergent_vals[instr->src[0].ssa->index]) {
7534 emit_uniform_subgroup(ctx, instr, src);
7535 } else {
7536 Temp tid = get_ssa_temp(ctx, instr->src[1].ssa);
7537 if (instr->intrinsic == nir_intrinsic_read_invocation || !ctx->divergent_vals[instr->src[1].ssa->index])
7538 tid = bld.as_uniform(tid);
7539 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7540 if (src.regClass() == v1) {
7541 emit_wqm(ctx, emit_bpermute(ctx, bld, tid, src), dst);
7542 } else if (src.regClass() == v2) {
7543 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7544 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7545 lo = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, lo));
7546 hi = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, hi));
7547 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7548 emit_split_vector(ctx, dst, 2);
7549 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == s1) {
7550 assert(src.regClass() == bld.lm);
7551 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src, tid);
7552 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7553 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == v1) {
7554 assert(src.regClass() == bld.lm);
7555 Temp tmp;
7556 if (ctx->program->chip_class <= GFX7)
7557 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), src, tid);
7558 else if (ctx->program->wave_size == 64)
7559 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), tid, src);
7560 else
7561 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), tid, src);
7562 tmp = emit_extract_vector(ctx, tmp, 0, v1);
7563 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), tmp);
7564 emit_wqm(ctx, bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp), dst);
7565 } else {
7566 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7567 nir_print_instr(&instr->instr, stderr);
7568 fprintf(stderr, "\n");
7569 }
7570 }
7571 break;
7572 }
7573 case nir_intrinsic_load_sample_id: {
7574 bld.vop3(aco_opcode::v_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7575 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
7576 break;
7577 }
7578 case nir_intrinsic_load_sample_mask_in: {
7579 visit_load_sample_mask_in(ctx, instr);
7580 break;
7581 }
7582 case nir_intrinsic_read_first_invocation: {
7583 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7584 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7585 if (src.regClass() == v1) {
7586 emit_wqm(ctx,
7587 bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), src),
7588 dst);
7589 } else if (src.regClass() == v2) {
7590 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7591 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7592 lo = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), lo));
7593 hi = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), hi));
7594 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7595 emit_split_vector(ctx, dst, 2);
7596 } else if (instr->dest.ssa.bit_size == 1) {
7597 assert(src.regClass() == bld.lm);
7598 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src,
7599 bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)));
7600 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7601 } else if (src.regClass() == s1) {
7602 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
7603 } else if (src.regClass() == s2) {
7604 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
7605 } else {
7606 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7607 nir_print_instr(&instr->instr, stderr);
7608 fprintf(stderr, "\n");
7609 }
7610 break;
7611 }
7612 case nir_intrinsic_vote_all: {
7613 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7614 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7615 assert(src.regClass() == bld.lm);
7616 assert(dst.regClass() == bld.lm);
7617
7618 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
7619 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
7620 bld.sop1(Builder::s_not, Definition(dst), bld.def(s1, scc), cond);
7621 break;
7622 }
7623 case nir_intrinsic_vote_any: {
7624 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7625 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7626 assert(src.regClass() == bld.lm);
7627 assert(dst.regClass() == bld.lm);
7628
7629 Temp tmp = bool_to_scalar_condition(ctx, src);
7630 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7631 break;
7632 }
7633 case nir_intrinsic_reduce:
7634 case nir_intrinsic_inclusive_scan:
7635 case nir_intrinsic_exclusive_scan: {
7636 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7637 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7638 nir_op op = (nir_op) nir_intrinsic_reduction_op(instr);
7639 unsigned cluster_size = instr->intrinsic == nir_intrinsic_reduce ?
7640 nir_intrinsic_cluster_size(instr) : 0;
7641 cluster_size = util_next_power_of_two(MIN2(cluster_size ? cluster_size : ctx->program->wave_size, ctx->program->wave_size));
7642
7643 if (!ctx->divergent_vals[instr->src[0].ssa->index] && (op == nir_op_ior || op == nir_op_iand)) {
7644 emit_uniform_subgroup(ctx, instr, src);
7645 } else if (instr->dest.ssa.bit_size == 1) {
7646 if (op == nir_op_imul || op == nir_op_umin || op == nir_op_imin)
7647 op = nir_op_iand;
7648 else if (op == nir_op_iadd)
7649 op = nir_op_ixor;
7650 else if (op == nir_op_umax || op == nir_op_imax)
7651 op = nir_op_ior;
7652 assert(op == nir_op_iand || op == nir_op_ior || op == nir_op_ixor);
7653
7654 switch (instr->intrinsic) {
7655 case nir_intrinsic_reduce:
7656 emit_wqm(ctx, emit_boolean_reduce(ctx, op, cluster_size, src), dst);
7657 break;
7658 case nir_intrinsic_exclusive_scan:
7659 emit_wqm(ctx, emit_boolean_exclusive_scan(ctx, op, src), dst);
7660 break;
7661 case nir_intrinsic_inclusive_scan:
7662 emit_wqm(ctx, emit_boolean_inclusive_scan(ctx, op, src), dst);
7663 break;
7664 default:
7665 assert(false);
7666 }
7667 } else if (cluster_size == 1) {
7668 bld.copy(Definition(dst), src);
7669 } else {
7670 src = as_vgpr(ctx, src);
7671
7672 ReduceOp reduce_op;
7673 switch (op) {
7674 #define CASE(name) case nir_op_##name: reduce_op = (src.regClass() == v1) ? name##32 : name##64; break;
7675 CASE(iadd)
7676 CASE(imul)
7677 CASE(fadd)
7678 CASE(fmul)
7679 CASE(imin)
7680 CASE(umin)
7681 CASE(fmin)
7682 CASE(imax)
7683 CASE(umax)
7684 CASE(fmax)
7685 CASE(iand)
7686 CASE(ior)
7687 CASE(ixor)
7688 default:
7689 unreachable("unknown reduction op");
7690 #undef CASE
7691 }
7692
7693 aco_opcode aco_op;
7694 switch (instr->intrinsic) {
7695 case nir_intrinsic_reduce: aco_op = aco_opcode::p_reduce; break;
7696 case nir_intrinsic_inclusive_scan: aco_op = aco_opcode::p_inclusive_scan; break;
7697 case nir_intrinsic_exclusive_scan: aco_op = aco_opcode::p_exclusive_scan; break;
7698 default:
7699 unreachable("unknown reduce intrinsic");
7700 }
7701
7702 aco_ptr<Pseudo_reduction_instruction> reduce{create_instruction<Pseudo_reduction_instruction>(aco_op, Format::PSEUDO_REDUCTION, 3, 5)};
7703 reduce->operands[0] = Operand(src);
7704 // filled in by aco_reduce_assign.cpp, used internally as part of the
7705 // reduce sequence
7706 assert(dst.size() == 1 || dst.size() == 2);
7707 reduce->operands[1] = Operand(RegClass(RegType::vgpr, dst.size()).as_linear());
7708 reduce->operands[2] = Operand(v1.as_linear());
7709
7710 Temp tmp_dst = bld.tmp(dst.regClass());
7711 reduce->definitions[0] = Definition(tmp_dst);
7712 reduce->definitions[1] = bld.def(ctx->program->lane_mask); // used internally
7713 reduce->definitions[2] = Definition();
7714 reduce->definitions[3] = Definition(scc, s1);
7715 reduce->definitions[4] = Definition();
7716 reduce->reduce_op = reduce_op;
7717 reduce->cluster_size = cluster_size;
7718 ctx->block->instructions.emplace_back(std::move(reduce));
7719
7720 emit_wqm(ctx, tmp_dst, dst);
7721 }
7722 break;
7723 }
7724 case nir_intrinsic_quad_broadcast: {
7725 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7726 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
7727 emit_uniform_subgroup(ctx, instr, src);
7728 } else {
7729 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7730 unsigned lane = nir_src_as_const_value(instr->src[1])->u32;
7731 uint32_t dpp_ctrl = dpp_quad_perm(lane, lane, lane, lane);
7732
7733 if (instr->dest.ssa.bit_size == 1) {
7734 assert(src.regClass() == bld.lm);
7735 assert(dst.regClass() == bld.lm);
7736 uint32_t half_mask = 0x11111111u << lane;
7737 Temp mask_tmp = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(half_mask), Operand(half_mask));
7738 Temp tmp = bld.tmp(bld.lm);
7739 bld.sop1(Builder::s_wqm, Definition(tmp),
7740 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), mask_tmp,
7741 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm))));
7742 emit_wqm(ctx, tmp, dst);
7743 } else if (instr->dest.ssa.bit_size == 32) {
7744 if (ctx->program->chip_class >= GFX8)
7745 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), dst);
7746 else
7747 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), dst);
7748 } else if (instr->dest.ssa.bit_size == 64) {
7749 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7750 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7751 if (ctx->program->chip_class >= GFX8) {
7752 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
7753 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
7754 } else {
7755 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, (1 << 15) | dpp_ctrl));
7756 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, (1 << 15) | dpp_ctrl));
7757 }
7758 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7759 emit_split_vector(ctx, dst, 2);
7760 } else {
7761 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7762 nir_print_instr(&instr->instr, stderr);
7763 fprintf(stderr, "\n");
7764 }
7765 }
7766 break;
7767 }
7768 case nir_intrinsic_quad_swap_horizontal:
7769 case nir_intrinsic_quad_swap_vertical:
7770 case nir_intrinsic_quad_swap_diagonal:
7771 case nir_intrinsic_quad_swizzle_amd: {
7772 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7773 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
7774 emit_uniform_subgroup(ctx, instr, src);
7775 break;
7776 }
7777 uint16_t dpp_ctrl = 0;
7778 switch (instr->intrinsic) {
7779 case nir_intrinsic_quad_swap_horizontal:
7780 dpp_ctrl = dpp_quad_perm(1, 0, 3, 2);
7781 break;
7782 case nir_intrinsic_quad_swap_vertical:
7783 dpp_ctrl = dpp_quad_perm(2, 3, 0, 1);
7784 break;
7785 case nir_intrinsic_quad_swap_diagonal:
7786 dpp_ctrl = dpp_quad_perm(3, 2, 1, 0);
7787 break;
7788 case nir_intrinsic_quad_swizzle_amd:
7789 dpp_ctrl = nir_intrinsic_swizzle_mask(instr);
7790 break;
7791 default:
7792 break;
7793 }
7794 if (ctx->program->chip_class < GFX8)
7795 dpp_ctrl |= (1 << 15);
7796
7797 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7798 if (instr->dest.ssa.bit_size == 1) {
7799 assert(src.regClass() == bld.lm);
7800 src = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand((uint32_t)-1), src);
7801 if (ctx->program->chip_class >= GFX8)
7802 src = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
7803 else
7804 src = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
7805 Temp tmp = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), src);
7806 emit_wqm(ctx, tmp, dst);
7807 } else if (instr->dest.ssa.bit_size == 32) {
7808 Temp tmp;
7809 if (ctx->program->chip_class >= GFX8)
7810 tmp = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
7811 else
7812 tmp = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
7813 emit_wqm(ctx, tmp, dst);
7814 } else if (instr->dest.ssa.bit_size == 64) {
7815 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7816 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7817 if (ctx->program->chip_class >= GFX8) {
7818 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
7819 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
7820 } else {
7821 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, dpp_ctrl));
7822 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, dpp_ctrl));
7823 }
7824 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7825 emit_split_vector(ctx, dst, 2);
7826 } else {
7827 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7828 nir_print_instr(&instr->instr, stderr);
7829 fprintf(stderr, "\n");
7830 }
7831 break;
7832 }
7833 case nir_intrinsic_masked_swizzle_amd: {
7834 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7835 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
7836 emit_uniform_subgroup(ctx, instr, src);
7837 break;
7838 }
7839 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7840 uint32_t mask = nir_intrinsic_swizzle_mask(instr);
7841 if (dst.regClass() == v1) {
7842 emit_wqm(ctx,
7843 bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, mask, 0, false),
7844 dst);
7845 } else if (dst.regClass() == v2) {
7846 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7847 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7848 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, mask, 0, false));
7849 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, mask, 0, false));
7850 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7851 emit_split_vector(ctx, dst, 2);
7852 } else {
7853 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7854 nir_print_instr(&instr->instr, stderr);
7855 fprintf(stderr, "\n");
7856 }
7857 break;
7858 }
7859 case nir_intrinsic_write_invocation_amd: {
7860 Temp src = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
7861 Temp val = bld.as_uniform(get_ssa_temp(ctx, instr->src[1].ssa));
7862 Temp lane = bld.as_uniform(get_ssa_temp(ctx, instr->src[2].ssa));
7863 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7864 if (dst.regClass() == v1) {
7865 /* src2 is ignored for writelane. RA assigns the same reg for dst */
7866 emit_wqm(ctx, bld.writelane(bld.def(v1), val, lane, src), dst);
7867 } else if (dst.regClass() == v2) {
7868 Temp src_lo = bld.tmp(v1), src_hi = bld.tmp(v1);
7869 Temp val_lo = bld.tmp(s1), val_hi = bld.tmp(s1);
7870 bld.pseudo(aco_opcode::p_split_vector, Definition(src_lo), Definition(src_hi), src);
7871 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
7872 Temp lo = emit_wqm(ctx, bld.writelane(bld.def(v1), val_lo, lane, src_hi));
7873 Temp hi = emit_wqm(ctx, bld.writelane(bld.def(v1), val_hi, lane, src_hi));
7874 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7875 emit_split_vector(ctx, dst, 2);
7876 } else {
7877 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7878 nir_print_instr(&instr->instr, stderr);
7879 fprintf(stderr, "\n");
7880 }
7881 break;
7882 }
7883 case nir_intrinsic_mbcnt_amd: {
7884 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7885 RegClass rc = RegClass(src.type(), 1);
7886 Temp mask_lo = bld.tmp(rc), mask_hi = bld.tmp(rc);
7887 bld.pseudo(aco_opcode::p_split_vector, Definition(mask_lo), Definition(mask_hi), src);
7888 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7889 Temp wqm_tmp = emit_mbcnt(ctx, bld.def(v1), Operand(mask_lo), Operand(mask_hi));
7890 emit_wqm(ctx, wqm_tmp, dst);
7891 break;
7892 }
7893 case nir_intrinsic_load_helper_invocation: {
7894 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7895 bld.pseudo(aco_opcode::p_load_helper, Definition(dst));
7896 ctx->block->kind |= block_kind_needs_lowering;
7897 ctx->program->needs_exact = true;
7898 break;
7899 }
7900 case nir_intrinsic_is_helper_invocation: {
7901 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7902 bld.pseudo(aco_opcode::p_is_helper, Definition(dst));
7903 ctx->block->kind |= block_kind_needs_lowering;
7904 ctx->program->needs_exact = true;
7905 break;
7906 }
7907 case nir_intrinsic_demote:
7908 bld.pseudo(aco_opcode::p_demote_to_helper, Operand(-1u));
7909
7910 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
7911 ctx->cf_info.exec_potentially_empty_discard = true;
7912 ctx->block->kind |= block_kind_uses_demote;
7913 ctx->program->needs_exact = true;
7914 break;
7915 case nir_intrinsic_demote_if: {
7916 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7917 assert(src.regClass() == bld.lm);
7918 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
7919 bld.pseudo(aco_opcode::p_demote_to_helper, cond);
7920
7921 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
7922 ctx->cf_info.exec_potentially_empty_discard = true;
7923 ctx->block->kind |= block_kind_uses_demote;
7924 ctx->program->needs_exact = true;
7925 break;
7926 }
7927 case nir_intrinsic_first_invocation: {
7928 emit_wqm(ctx, bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)),
7929 get_ssa_temp(ctx, &instr->dest.ssa));
7930 break;
7931 }
7932 case nir_intrinsic_shader_clock:
7933 bld.smem(aco_opcode::s_memtime, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), false);
7934 emit_split_vector(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 2);
7935 break;
7936 case nir_intrinsic_load_vertex_id_zero_base: {
7937 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7938 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.vertex_id));
7939 break;
7940 }
7941 case nir_intrinsic_load_first_vertex: {
7942 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7943 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.base_vertex));
7944 break;
7945 }
7946 case nir_intrinsic_load_base_instance: {
7947 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7948 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.start_instance));
7949 break;
7950 }
7951 case nir_intrinsic_load_instance_id: {
7952 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7953 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.instance_id));
7954 break;
7955 }
7956 case nir_intrinsic_load_draw_id: {
7957 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7958 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.draw_id));
7959 break;
7960 }
7961 case nir_intrinsic_load_invocation_id: {
7962 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7963
7964 if (ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
7965 if (ctx->options->chip_class >= GFX10)
7966 bld.vop2_e64(aco_opcode::v_and_b32, Definition(dst), Operand(127u), get_arg(ctx, ctx->args->ac.gs_invocation_id));
7967 else
7968 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_invocation_id));
7969 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
7970 bld.vop3(aco_opcode::v_bfe_u32, Definition(dst),
7971 get_arg(ctx, ctx->args->ac.tcs_rel_ids), Operand(8u), Operand(5u));
7972 } else {
7973 unreachable("Unsupported stage for load_invocation_id");
7974 }
7975
7976 break;
7977 }
7978 case nir_intrinsic_load_primitive_id: {
7979 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7980
7981 switch (ctx->shader->info.stage) {
7982 case MESA_SHADER_GEOMETRY:
7983 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_prim_id));
7984 break;
7985 case MESA_SHADER_TESS_CTRL:
7986 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tcs_patch_id));
7987 break;
7988 case MESA_SHADER_TESS_EVAL:
7989 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tes_patch_id));
7990 break;
7991 default:
7992 unreachable("Unimplemented shader stage for nir_intrinsic_load_primitive_id");
7993 }
7994
7995 break;
7996 }
7997 case nir_intrinsic_load_patch_vertices_in: {
7998 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL ||
7999 ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
8000
8001 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8002 bld.copy(Definition(dst), Operand(ctx->args->options->key.tcs.input_vertices));
8003 break;
8004 }
8005 case nir_intrinsic_emit_vertex_with_counter: {
8006 visit_emit_vertex_with_counter(ctx, instr);
8007 break;
8008 }
8009 case nir_intrinsic_end_primitive_with_counter: {
8010 unsigned stream = nir_intrinsic_stream_id(instr);
8011 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(true, false, stream));
8012 break;
8013 }
8014 case nir_intrinsic_set_vertex_count: {
8015 /* unused, the HW keeps track of this for us */
8016 break;
8017 }
8018 default:
8019 fprintf(stderr, "Unimplemented intrinsic instr: ");
8020 nir_print_instr(&instr->instr, stderr);
8021 fprintf(stderr, "\n");
8022 abort();
8023
8024 break;
8025 }
8026 }
8027
8028
8029 void tex_fetch_ptrs(isel_context *ctx, nir_tex_instr *instr,
8030 Temp *res_ptr, Temp *samp_ptr, Temp *fmask_ptr,
8031 enum glsl_base_type *stype)
8032 {
8033 nir_deref_instr *texture_deref_instr = NULL;
8034 nir_deref_instr *sampler_deref_instr = NULL;
8035 int plane = -1;
8036
8037 for (unsigned i = 0; i < instr->num_srcs; i++) {
8038 switch (instr->src[i].src_type) {
8039 case nir_tex_src_texture_deref:
8040 texture_deref_instr = nir_src_as_deref(instr->src[i].src);
8041 break;
8042 case nir_tex_src_sampler_deref:
8043 sampler_deref_instr = nir_src_as_deref(instr->src[i].src);
8044 break;
8045 case nir_tex_src_plane:
8046 plane = nir_src_as_int(instr->src[i].src);
8047 break;
8048 default:
8049 break;
8050 }
8051 }
8052
8053 *stype = glsl_get_sampler_result_type(texture_deref_instr->type);
8054
8055 if (!sampler_deref_instr)
8056 sampler_deref_instr = texture_deref_instr;
8057
8058 if (plane >= 0) {
8059 assert(instr->op != nir_texop_txf_ms &&
8060 instr->op != nir_texop_samples_identical);
8061 assert(instr->sampler_dim != GLSL_SAMPLER_DIM_BUF);
8062 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, (aco_descriptor_type)(ACO_DESC_PLANE_0 + plane), instr, false, false);
8063 } else if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
8064 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_BUFFER, instr, false, false);
8065 } else if (instr->op == nir_texop_fragment_mask_fetch) {
8066 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
8067 } else {
8068 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_IMAGE, instr, false, false);
8069 }
8070 if (samp_ptr) {
8071 *samp_ptr = get_sampler_desc(ctx, sampler_deref_instr, ACO_DESC_SAMPLER, instr, false, false);
8072
8073 if (instr->sampler_dim < GLSL_SAMPLER_DIM_RECT && ctx->options->chip_class < GFX8) {
8074 /* fix sampler aniso on SI/CI: samp[0] = samp[0] & img[7] */
8075 Builder bld(ctx->program, ctx->block);
8076
8077 /* to avoid unnecessary moves, we split and recombine sampler and image */
8078 Temp img[8] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1),
8079 bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
8080 Temp samp[4] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
8081 bld.pseudo(aco_opcode::p_split_vector, Definition(img[0]), Definition(img[1]),
8082 Definition(img[2]), Definition(img[3]), Definition(img[4]),
8083 Definition(img[5]), Definition(img[6]), Definition(img[7]), *res_ptr);
8084 bld.pseudo(aco_opcode::p_split_vector, Definition(samp[0]), Definition(samp[1]),
8085 Definition(samp[2]), Definition(samp[3]), *samp_ptr);
8086
8087 samp[0] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), samp[0], img[7]);
8088 *res_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
8089 img[0], img[1], img[2], img[3],
8090 img[4], img[5], img[6], img[7]);
8091 *samp_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
8092 samp[0], samp[1], samp[2], samp[3]);
8093 }
8094 }
8095 if (fmask_ptr && (instr->op == nir_texop_txf_ms ||
8096 instr->op == nir_texop_samples_identical))
8097 *fmask_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
8098 }
8099
8100 void build_cube_select(isel_context *ctx, Temp ma, Temp id, Temp deriv,
8101 Temp *out_ma, Temp *out_sc, Temp *out_tc)
8102 {
8103 Builder bld(ctx->program, ctx->block);
8104
8105 Temp deriv_x = emit_extract_vector(ctx, deriv, 0, v1);
8106 Temp deriv_y = emit_extract_vector(ctx, deriv, 1, v1);
8107 Temp deriv_z = emit_extract_vector(ctx, deriv, 2, v1);
8108
8109 Operand neg_one(0xbf800000u);
8110 Operand one(0x3f800000u);
8111 Operand two(0x40000000u);
8112 Operand four(0x40800000u);
8113
8114 Temp is_ma_positive = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), ma);
8115 Temp sgn_ma = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, one, is_ma_positive);
8116 Temp neg_sgn_ma = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0u), sgn_ma);
8117
8118 Temp is_ma_z = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), four, id);
8119 Temp is_ma_y = bld.vopc(aco_opcode::v_cmp_le_f32, bld.def(bld.lm), two, id);
8120 is_ma_y = bld.sop2(Builder::s_andn2, bld.hint_vcc(bld.def(bld.lm)), is_ma_y, is_ma_z);
8121 Temp is_not_ma_x = bld.sop2(aco_opcode::s_or_b64, bld.hint_vcc(bld.def(bld.lm)), bld.def(s1, scc), is_ma_z, is_ma_y);
8122
8123 // select sc
8124 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_z, deriv_x, is_not_ma_x);
8125 Temp sgn = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1),
8126 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_sgn_ma, sgn_ma, is_ma_z),
8127 one, is_ma_y);
8128 *out_sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
8129
8130 // select tc
8131 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_y, deriv_z, is_ma_y);
8132 sgn = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, sgn_ma, is_ma_y);
8133 *out_tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
8134
8135 // select ma
8136 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8137 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_x, deriv_y, is_ma_y),
8138 deriv_z, is_ma_z);
8139 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffffu), tmp);
8140 *out_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), two, tmp);
8141 }
8142
8143 void prepare_cube_coords(isel_context *ctx, std::vector<Temp>& coords, Temp* ddx, Temp* ddy, bool is_deriv, bool is_array)
8144 {
8145 Builder bld(ctx->program, ctx->block);
8146 Temp ma, tc, sc, id;
8147
8148 if (is_array) {
8149 coords[3] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[3]);
8150
8151 // see comment in ac_prepare_cube_coords()
8152 if (ctx->options->chip_class <= GFX8)
8153 coords[3] = bld.vop2(aco_opcode::v_max_f32, bld.def(v1), Operand(0u), coords[3]);
8154 }
8155
8156 ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8157
8158 aco_ptr<VOP3A_instruction> vop3a{create_instruction<VOP3A_instruction>(aco_opcode::v_rcp_f32, asVOP3(Format::VOP1), 1, 1)};
8159 vop3a->operands[0] = Operand(ma);
8160 vop3a->abs[0] = true;
8161 Temp invma = bld.tmp(v1);
8162 vop3a->definitions[0] = Definition(invma);
8163 ctx->block->instructions.emplace_back(std::move(vop3a));
8164
8165 sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8166 if (!is_deriv)
8167 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, invma, Operand(0x3fc00000u/*1.5*/));
8168
8169 tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8170 if (!is_deriv)
8171 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, invma, Operand(0x3fc00000u/*1.5*/));
8172
8173 id = bld.vop3(aco_opcode::v_cubeid_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8174
8175 if (is_deriv) {
8176 sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), sc, invma);
8177 tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tc, invma);
8178
8179 for (unsigned i = 0; i < 2; i++) {
8180 // see comment in ac_prepare_cube_coords()
8181 Temp deriv_ma;
8182 Temp deriv_sc, deriv_tc;
8183 build_cube_select(ctx, ma, id, i ? *ddy : *ddx,
8184 &deriv_ma, &deriv_sc, &deriv_tc);
8185
8186 deriv_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, invma);
8187
8188 Temp x = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
8189 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_sc, invma),
8190 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, sc));
8191 Temp y = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
8192 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_tc, invma),
8193 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, tc));
8194 *(i ? ddy : ddx) = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), x, y);
8195 }
8196
8197 sc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), sc);
8198 tc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), tc);
8199 }
8200
8201 if (is_array)
8202 id = bld.vop2(aco_opcode::v_madmk_f32, bld.def(v1), coords[3], id, Operand(0x41000000u/*8.0*/));
8203 coords.resize(3);
8204 coords[0] = sc;
8205 coords[1] = tc;
8206 coords[2] = id;
8207 }
8208
8209 void get_const_vec(nir_ssa_def *vec, nir_const_value *cv[4])
8210 {
8211 if (vec->parent_instr->type != nir_instr_type_alu)
8212 return;
8213 nir_alu_instr *vec_instr = nir_instr_as_alu(vec->parent_instr);
8214 if (vec_instr->op != nir_op_vec(vec->num_components))
8215 return;
8216
8217 for (unsigned i = 0; i < vec->num_components; i++) {
8218 cv[i] = vec_instr->src[i].swizzle[0] == 0 ?
8219 nir_src_as_const_value(vec_instr->src[i].src) : NULL;
8220 }
8221 }
8222
8223 void visit_tex(isel_context *ctx, nir_tex_instr *instr)
8224 {
8225 Builder bld(ctx->program, ctx->block);
8226 bool has_bias = false, has_lod = false, level_zero = false, has_compare = false,
8227 has_offset = false, has_ddx = false, has_ddy = false, has_derivs = false, has_sample_index = false;
8228 Temp resource, sampler, fmask_ptr, bias = Temp(), compare = Temp(), sample_index = Temp(),
8229 lod = Temp(), offset = Temp(), ddx = Temp(), ddy = Temp();
8230 std::vector<Temp> coords;
8231 std::vector<Temp> derivs;
8232 nir_const_value *sample_index_cv = NULL;
8233 nir_const_value *const_offset[4] = {NULL, NULL, NULL, NULL};
8234 enum glsl_base_type stype;
8235 tex_fetch_ptrs(ctx, instr, &resource, &sampler, &fmask_ptr, &stype);
8236
8237 bool tg4_integer_workarounds = ctx->options->chip_class <= GFX8 && instr->op == nir_texop_tg4 &&
8238 (stype == GLSL_TYPE_UINT || stype == GLSL_TYPE_INT);
8239 bool tg4_integer_cube_workaround = tg4_integer_workarounds &&
8240 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE;
8241
8242 for (unsigned i = 0; i < instr->num_srcs; i++) {
8243 switch (instr->src[i].src_type) {
8244 case nir_tex_src_coord: {
8245 Temp coord = get_ssa_temp(ctx, instr->src[i].src.ssa);
8246 for (unsigned i = 0; i < coord.size(); i++)
8247 coords.emplace_back(emit_extract_vector(ctx, coord, i, v1));
8248 break;
8249 }
8250 case nir_tex_src_bias:
8251 if (instr->op == nir_texop_txb) {
8252 bias = get_ssa_temp(ctx, instr->src[i].src.ssa);
8253 has_bias = true;
8254 }
8255 break;
8256 case nir_tex_src_lod: {
8257 nir_const_value *val = nir_src_as_const_value(instr->src[i].src);
8258
8259 if (val && val->f32 <= 0.0) {
8260 level_zero = true;
8261 } else {
8262 lod = get_ssa_temp(ctx, instr->src[i].src.ssa);
8263 has_lod = true;
8264 }
8265 break;
8266 }
8267 case nir_tex_src_comparator:
8268 if (instr->is_shadow) {
8269 compare = get_ssa_temp(ctx, instr->src[i].src.ssa);
8270 has_compare = true;
8271 }
8272 break;
8273 case nir_tex_src_offset:
8274 offset = get_ssa_temp(ctx, instr->src[i].src.ssa);
8275 get_const_vec(instr->src[i].src.ssa, const_offset);
8276 has_offset = true;
8277 break;
8278 case nir_tex_src_ddx:
8279 ddx = get_ssa_temp(ctx, instr->src[i].src.ssa);
8280 has_ddx = true;
8281 break;
8282 case nir_tex_src_ddy:
8283 ddy = get_ssa_temp(ctx, instr->src[i].src.ssa);
8284 has_ddy = true;
8285 break;
8286 case nir_tex_src_ms_index:
8287 sample_index = get_ssa_temp(ctx, instr->src[i].src.ssa);
8288 sample_index_cv = nir_src_as_const_value(instr->src[i].src);
8289 has_sample_index = true;
8290 break;
8291 case nir_tex_src_texture_offset:
8292 case nir_tex_src_sampler_offset:
8293 default:
8294 break;
8295 }
8296 }
8297
8298 if (instr->op == nir_texop_txs && instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
8299 return get_buffer_size(ctx, resource, get_ssa_temp(ctx, &instr->dest.ssa), true);
8300
8301 if (instr->op == nir_texop_texture_samples) {
8302 Temp dword3 = emit_extract_vector(ctx, resource, 3, s1);
8303
8304 Temp samples_log2 = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(16u | 4u<<16));
8305 Temp samples = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), Operand(1u), samples_log2);
8306 Temp type = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(28u | 4u<<16 /* offset=28, width=4 */));
8307 Temp is_msaa = bld.sopc(aco_opcode::s_cmp_ge_u32, bld.def(s1, scc), type, Operand(14u));
8308
8309 bld.sop2(aco_opcode::s_cselect_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
8310 samples, Operand(1u), bld.scc(is_msaa));
8311 return;
8312 }
8313
8314 if (has_offset && instr->op != nir_texop_txf && instr->op != nir_texop_txf_ms) {
8315 aco_ptr<Instruction> tmp_instr;
8316 Temp acc, pack = Temp();
8317
8318 uint32_t pack_const = 0;
8319 for (unsigned i = 0; i < offset.size(); i++) {
8320 if (!const_offset[i])
8321 continue;
8322 pack_const |= (const_offset[i]->u32 & 0x3Fu) << (8u * i);
8323 }
8324
8325 if (offset.type() == RegType::sgpr) {
8326 for (unsigned i = 0; i < offset.size(); i++) {
8327 if (const_offset[i])
8328 continue;
8329
8330 acc = emit_extract_vector(ctx, offset, i, s1);
8331 acc = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(0x3Fu));
8332
8333 if (i) {
8334 acc = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(8u * i));
8335 }
8336
8337 if (pack == Temp()) {
8338 pack = acc;
8339 } else {
8340 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), pack, acc);
8341 }
8342 }
8343
8344 if (pack_const && pack != Temp())
8345 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(pack_const), pack);
8346 } else {
8347 for (unsigned i = 0; i < offset.size(); i++) {
8348 if (const_offset[i])
8349 continue;
8350
8351 acc = emit_extract_vector(ctx, offset, i, v1);
8352 acc = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x3Fu), acc);
8353
8354 if (i) {
8355 acc = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(8u * i), acc);
8356 }
8357
8358 if (pack == Temp()) {
8359 pack = acc;
8360 } else {
8361 pack = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), pack, acc);
8362 }
8363 }
8364
8365 if (pack_const && pack != Temp())
8366 pack = bld.sop2(aco_opcode::v_or_b32, bld.def(v1), Operand(pack_const), pack);
8367 }
8368 if (pack_const && pack == Temp())
8369 offset = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(pack_const));
8370 else if (pack == Temp())
8371 has_offset = false;
8372 else
8373 offset = pack;
8374 }
8375
8376 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE && instr->coord_components)
8377 prepare_cube_coords(ctx, coords, &ddx, &ddy, instr->op == nir_texop_txd, instr->is_array && instr->op != nir_texop_lod);
8378
8379 /* pack derivatives */
8380 if (has_ddx || has_ddy) {
8381 if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D && ctx->options->chip_class == GFX9) {
8382 assert(has_ddx && has_ddy && ddx.size() == 1 && ddy.size() == 1);
8383 Temp zero = bld.copy(bld.def(v1), Operand(0u));
8384 derivs = {ddx, zero, ddy, zero};
8385 } else {
8386 for (unsigned i = 0; has_ddx && i < ddx.size(); i++)
8387 derivs.emplace_back(emit_extract_vector(ctx, ddx, i, v1));
8388 for (unsigned i = 0; has_ddy && i < ddy.size(); i++)
8389 derivs.emplace_back(emit_extract_vector(ctx, ddy, i, v1));
8390 }
8391 has_derivs = true;
8392 }
8393
8394 if (instr->coord_components > 1 &&
8395 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
8396 instr->is_array &&
8397 instr->op != nir_texop_txf)
8398 coords[1] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[1]);
8399
8400 if (instr->coord_components > 2 &&
8401 (instr->sampler_dim == GLSL_SAMPLER_DIM_2D ||
8402 instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
8403 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS ||
8404 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
8405 instr->is_array &&
8406 instr->op != nir_texop_txf &&
8407 instr->op != nir_texop_txf_ms &&
8408 instr->op != nir_texop_fragment_fetch &&
8409 instr->op != nir_texop_fragment_mask_fetch)
8410 coords[2] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[2]);
8411
8412 if (ctx->options->chip_class == GFX9 &&
8413 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
8414 instr->op != nir_texop_lod && instr->coord_components) {
8415 assert(coords.size() > 0 && coords.size() < 3);
8416
8417 coords.insert(std::next(coords.begin()), bld.copy(bld.def(v1), instr->op == nir_texop_txf ?
8418 Operand((uint32_t) 0) :
8419 Operand((uint32_t) 0x3f000000)));
8420 }
8421
8422 bool da = should_declare_array(ctx, instr->sampler_dim, instr->is_array);
8423
8424 if (instr->op == nir_texop_samples_identical)
8425 resource = fmask_ptr;
8426
8427 else if ((instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
8428 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
8429 instr->op != nir_texop_txs &&
8430 instr->op != nir_texop_fragment_fetch &&
8431 instr->op != nir_texop_fragment_mask_fetch) {
8432 assert(has_sample_index);
8433 Operand op(sample_index);
8434 if (sample_index_cv)
8435 op = Operand(sample_index_cv->u32);
8436 sample_index = adjust_sample_index_using_fmask(ctx, da, coords, op, fmask_ptr);
8437 }
8438
8439 if (has_offset && (instr->op == nir_texop_txf || instr->op == nir_texop_txf_ms)) {
8440 for (unsigned i = 0; i < std::min(offset.size(), instr->coord_components); i++) {
8441 Temp off = emit_extract_vector(ctx, offset, i, v1);
8442 coords[i] = bld.vadd32(bld.def(v1), coords[i], off);
8443 }
8444 has_offset = false;
8445 }
8446
8447 /* Build tex instruction */
8448 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
8449 unsigned dim = ctx->options->chip_class >= GFX10 && instr->sampler_dim != GLSL_SAMPLER_DIM_BUF
8450 ? ac_get_sampler_dim(ctx->options->chip_class, instr->sampler_dim, instr->is_array)
8451 : 0;
8452 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8453 Temp tmp_dst = dst;
8454
8455 /* gather4 selects the component by dmask and always returns vec4 */
8456 if (instr->op == nir_texop_tg4) {
8457 assert(instr->dest.ssa.num_components == 4);
8458 if (instr->is_shadow)
8459 dmask = 1;
8460 else
8461 dmask = 1 << instr->component;
8462 if (tg4_integer_cube_workaround || dst.type() == RegType::sgpr)
8463 tmp_dst = bld.tmp(v4);
8464 } else if (instr->op == nir_texop_samples_identical) {
8465 tmp_dst = bld.tmp(v1);
8466 } else if (util_bitcount(dmask) != instr->dest.ssa.num_components || dst.type() == RegType::sgpr) {
8467 tmp_dst = bld.tmp(RegClass(RegType::vgpr, util_bitcount(dmask)));
8468 }
8469
8470 aco_ptr<MIMG_instruction> tex;
8471 if (instr->op == nir_texop_txs || instr->op == nir_texop_query_levels) {
8472 if (!has_lod)
8473 lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
8474
8475 bool div_by_6 = instr->op == nir_texop_txs &&
8476 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
8477 instr->is_array &&
8478 (dmask & (1 << 2));
8479 if (tmp_dst.id() == dst.id() && div_by_6)
8480 tmp_dst = bld.tmp(tmp_dst.regClass());
8481
8482 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
8483 tex->operands[0] = Operand(resource);
8484 tex->operands[1] = Operand(s4); /* no sampler */
8485 tex->operands[2] = Operand(as_vgpr(ctx,lod));
8486 if (ctx->options->chip_class == GFX9 &&
8487 instr->op == nir_texop_txs &&
8488 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
8489 instr->is_array) {
8490 tex->dmask = (dmask & 0x1) | ((dmask & 0x2) << 1);
8491 } else if (instr->op == nir_texop_query_levels) {
8492 tex->dmask = 1 << 3;
8493 } else {
8494 tex->dmask = dmask;
8495 }
8496 tex->da = da;
8497 tex->definitions[0] = Definition(tmp_dst);
8498 tex->dim = dim;
8499 tex->can_reorder = true;
8500 ctx->block->instructions.emplace_back(std::move(tex));
8501
8502 if (div_by_6) {
8503 /* divide 3rd value by 6 by multiplying with magic number */
8504 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
8505 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
8506 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp_dst, 2, v1), c);
8507 assert(instr->dest.ssa.num_components == 3);
8508 Temp tmp = dst.type() == RegType::vgpr ? dst : bld.tmp(v3);
8509 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
8510 emit_extract_vector(ctx, tmp_dst, 0, v1),
8511 emit_extract_vector(ctx, tmp_dst, 1, v1),
8512 by_6);
8513
8514 }
8515
8516 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
8517 return;
8518 }
8519
8520 Temp tg4_compare_cube_wa64 = Temp();
8521
8522 if (tg4_integer_workarounds) {
8523 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
8524 tex->operands[0] = Operand(resource);
8525 tex->operands[1] = Operand(s4); /* no sampler */
8526 tex->operands[2] = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
8527 tex->dim = dim;
8528 tex->dmask = 0x3;
8529 tex->da = da;
8530 Temp size = bld.tmp(v2);
8531 tex->definitions[0] = Definition(size);
8532 tex->can_reorder = true;
8533 ctx->block->instructions.emplace_back(std::move(tex));
8534 emit_split_vector(ctx, size, size.size());
8535
8536 Temp half_texel[2];
8537 for (unsigned i = 0; i < 2; i++) {
8538 half_texel[i] = emit_extract_vector(ctx, size, i, v1);
8539 half_texel[i] = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), half_texel[i]);
8540 half_texel[i] = bld.vop1(aco_opcode::v_rcp_iflag_f32, bld.def(v1), half_texel[i]);
8541 half_texel[i] = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0xbf000000/*-0.5*/), half_texel[i]);
8542 }
8543
8544 Temp new_coords[2] = {
8545 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[0], half_texel[0]),
8546 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[1], half_texel[1])
8547 };
8548
8549 if (tg4_integer_cube_workaround) {
8550 // see comment in ac_nir_to_llvm.c's lower_gather4_integer()
8551 Temp desc[resource.size()];
8552 aco_ptr<Instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector,
8553 Format::PSEUDO, 1, resource.size())};
8554 split->operands[0] = Operand(resource);
8555 for (unsigned i = 0; i < resource.size(); i++) {
8556 desc[i] = bld.tmp(s1);
8557 split->definitions[i] = Definition(desc[i]);
8558 }
8559 ctx->block->instructions.emplace_back(std::move(split));
8560
8561 Temp dfmt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), desc[1], Operand(20u | (6u << 16)));
8562 Temp compare_cube_wa = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), dfmt,
8563 Operand((uint32_t)V_008F14_IMG_DATA_FORMAT_8_8_8_8));
8564
8565 Temp nfmt;
8566 if (stype == GLSL_TYPE_UINT) {
8567 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
8568 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_USCALED),
8569 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_UINT),
8570 bld.scc(compare_cube_wa));
8571 } else {
8572 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
8573 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SSCALED),
8574 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SINT),
8575 bld.scc(compare_cube_wa));
8576 }
8577 tg4_compare_cube_wa64 = bld.tmp(bld.lm);
8578 bool_to_vector_condition(ctx, compare_cube_wa, tg4_compare_cube_wa64);
8579
8580 nfmt = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), nfmt, Operand(26u));
8581
8582 desc[1] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), desc[1],
8583 Operand((uint32_t)C_008F14_NUM_FORMAT));
8584 desc[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), desc[1], nfmt);
8585
8586 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
8587 Format::PSEUDO, resource.size(), 1)};
8588 for (unsigned i = 0; i < resource.size(); i++)
8589 vec->operands[i] = Operand(desc[i]);
8590 resource = bld.tmp(resource.regClass());
8591 vec->definitions[0] = Definition(resource);
8592 ctx->block->instructions.emplace_back(std::move(vec));
8593
8594 new_coords[0] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8595 new_coords[0], coords[0], tg4_compare_cube_wa64);
8596 new_coords[1] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8597 new_coords[1], coords[1], tg4_compare_cube_wa64);
8598 }
8599 coords[0] = new_coords[0];
8600 coords[1] = new_coords[1];
8601 }
8602
8603 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
8604 //FIXME: if (ctx->abi->gfx9_stride_size_workaround) return ac_build_buffer_load_format_gfx9_safe()
8605
8606 assert(coords.size() == 1);
8607 unsigned last_bit = util_last_bit(nir_ssa_def_components_read(&instr->dest.ssa));
8608 aco_opcode op;
8609 switch (last_bit) {
8610 case 1:
8611 op = aco_opcode::buffer_load_format_x; break;
8612 case 2:
8613 op = aco_opcode::buffer_load_format_xy; break;
8614 case 3:
8615 op = aco_opcode::buffer_load_format_xyz; break;
8616 case 4:
8617 op = aco_opcode::buffer_load_format_xyzw; break;
8618 default:
8619 unreachable("Tex instruction loads more than 4 components.");
8620 }
8621
8622 /* if the instruction return value matches exactly the nir dest ssa, we can use it directly */
8623 if (last_bit == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
8624 tmp_dst = dst;
8625 else
8626 tmp_dst = bld.tmp(RegType::vgpr, last_bit);
8627
8628 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
8629 mubuf->operands[0] = Operand(resource);
8630 mubuf->operands[1] = Operand(coords[0]);
8631 mubuf->operands[2] = Operand((uint32_t) 0);
8632 mubuf->definitions[0] = Definition(tmp_dst);
8633 mubuf->idxen = true;
8634 mubuf->can_reorder = true;
8635 ctx->block->instructions.emplace_back(std::move(mubuf));
8636
8637 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, (1 << last_bit) - 1);
8638 return;
8639 }
8640
8641 /* gather MIMG address components */
8642 std::vector<Temp> args;
8643 if (has_offset)
8644 args.emplace_back(offset);
8645 if (has_bias)
8646 args.emplace_back(bias);
8647 if (has_compare)
8648 args.emplace_back(compare);
8649 if (has_derivs)
8650 args.insert(args.end(), derivs.begin(), derivs.end());
8651
8652 args.insert(args.end(), coords.begin(), coords.end());
8653 if (has_sample_index)
8654 args.emplace_back(sample_index);
8655 if (has_lod)
8656 args.emplace_back(lod);
8657
8658 Temp arg = bld.tmp(RegClass(RegType::vgpr, args.size()));
8659 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, args.size(), 1)};
8660 vec->definitions[0] = Definition(arg);
8661 for (unsigned i = 0; i < args.size(); i++)
8662 vec->operands[i] = Operand(args[i]);
8663 ctx->block->instructions.emplace_back(std::move(vec));
8664
8665
8666 if (instr->op == nir_texop_txf ||
8667 instr->op == nir_texop_txf_ms ||
8668 instr->op == nir_texop_samples_identical ||
8669 instr->op == nir_texop_fragment_fetch ||
8670 instr->op == nir_texop_fragment_mask_fetch) {
8671 aco_opcode op = level_zero || instr->sampler_dim == GLSL_SAMPLER_DIM_MS || instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS ? aco_opcode::image_load : aco_opcode::image_load_mip;
8672 tex.reset(create_instruction<MIMG_instruction>(op, Format::MIMG, 3, 1));
8673 tex->operands[0] = Operand(resource);
8674 tex->operands[1] = Operand(s4); /* no sampler */
8675 tex->operands[2] = Operand(arg);
8676 tex->dim = dim;
8677 tex->dmask = dmask;
8678 tex->unrm = true;
8679 tex->da = da;
8680 tex->definitions[0] = Definition(tmp_dst);
8681 tex->can_reorder = true;
8682 ctx->block->instructions.emplace_back(std::move(tex));
8683
8684 if (instr->op == nir_texop_samples_identical) {
8685 assert(dmask == 1 && dst.regClass() == v1);
8686 assert(dst.id() != tmp_dst.id());
8687
8688 Temp tmp = bld.tmp(bld.lm);
8689 bld.vopc(aco_opcode::v_cmp_eq_u32, Definition(tmp), Operand(0u), tmp_dst).def(0).setHint(vcc);
8690 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand((uint32_t)-1), tmp);
8691
8692 } else {
8693 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
8694 }
8695 return;
8696 }
8697
8698 // TODO: would be better to do this by adding offsets, but needs the opcodes ordered.
8699 aco_opcode opcode = aco_opcode::image_sample;
8700 if (has_offset) { /* image_sample_*_o */
8701 if (has_compare) {
8702 opcode = aco_opcode::image_sample_c_o;
8703 if (has_derivs)
8704 opcode = aco_opcode::image_sample_c_d_o;
8705 if (has_bias)
8706 opcode = aco_opcode::image_sample_c_b_o;
8707 if (level_zero)
8708 opcode = aco_opcode::image_sample_c_lz_o;
8709 if (has_lod)
8710 opcode = aco_opcode::image_sample_c_l_o;
8711 } else {
8712 opcode = aco_opcode::image_sample_o;
8713 if (has_derivs)
8714 opcode = aco_opcode::image_sample_d_o;
8715 if (has_bias)
8716 opcode = aco_opcode::image_sample_b_o;
8717 if (level_zero)
8718 opcode = aco_opcode::image_sample_lz_o;
8719 if (has_lod)
8720 opcode = aco_opcode::image_sample_l_o;
8721 }
8722 } else { /* no offset */
8723 if (has_compare) {
8724 opcode = aco_opcode::image_sample_c;
8725 if (has_derivs)
8726 opcode = aco_opcode::image_sample_c_d;
8727 if (has_bias)
8728 opcode = aco_opcode::image_sample_c_b;
8729 if (level_zero)
8730 opcode = aco_opcode::image_sample_c_lz;
8731 if (has_lod)
8732 opcode = aco_opcode::image_sample_c_l;
8733 } else {
8734 opcode = aco_opcode::image_sample;
8735 if (has_derivs)
8736 opcode = aco_opcode::image_sample_d;
8737 if (has_bias)
8738 opcode = aco_opcode::image_sample_b;
8739 if (level_zero)
8740 opcode = aco_opcode::image_sample_lz;
8741 if (has_lod)
8742 opcode = aco_opcode::image_sample_l;
8743 }
8744 }
8745
8746 if (instr->op == nir_texop_tg4) {
8747 if (has_offset) {
8748 opcode = aco_opcode::image_gather4_lz_o;
8749 if (has_compare)
8750 opcode = aco_opcode::image_gather4_c_lz_o;
8751 } else {
8752 opcode = aco_opcode::image_gather4_lz;
8753 if (has_compare)
8754 opcode = aco_opcode::image_gather4_c_lz;
8755 }
8756 } else if (instr->op == nir_texop_lod) {
8757 opcode = aco_opcode::image_get_lod;
8758 }
8759
8760 /* we don't need the bias, sample index, compare value or offset to be
8761 * computed in WQM but if the p_create_vector copies the coordinates, then it
8762 * needs to be in WQM */
8763 if (ctx->stage == fragment_fs &&
8764 !has_derivs && !has_lod && !level_zero &&
8765 instr->sampler_dim != GLSL_SAMPLER_DIM_MS &&
8766 instr->sampler_dim != GLSL_SAMPLER_DIM_SUBPASS_MS)
8767 arg = emit_wqm(ctx, arg, bld.tmp(arg.regClass()), true);
8768
8769 tex.reset(create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1));
8770 tex->operands[0] = Operand(resource);
8771 tex->operands[1] = Operand(sampler);
8772 tex->operands[2] = Operand(arg);
8773 tex->dim = dim;
8774 tex->dmask = dmask;
8775 tex->da = da;
8776 tex->definitions[0] = Definition(tmp_dst);
8777 tex->can_reorder = true;
8778 ctx->block->instructions.emplace_back(std::move(tex));
8779
8780 if (tg4_integer_cube_workaround) {
8781 assert(tmp_dst.id() != dst.id());
8782 assert(tmp_dst.size() == dst.size() && dst.size() == 4);
8783
8784 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
8785 Temp val[4];
8786 for (unsigned i = 0; i < dst.size(); i++) {
8787 val[i] = emit_extract_vector(ctx, tmp_dst, i, v1);
8788 Temp cvt_val;
8789 if (stype == GLSL_TYPE_UINT)
8790 cvt_val = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), val[i]);
8791 else
8792 cvt_val = bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), val[i]);
8793 val[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), val[i], cvt_val, tg4_compare_cube_wa64);
8794 }
8795 Temp tmp = dst.regClass() == v4 ? dst : bld.tmp(v4);
8796 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
8797 val[0], val[1], val[2], val[3]);
8798 }
8799 unsigned mask = instr->op == nir_texop_tg4 ? 0xF : dmask;
8800 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, mask);
8801
8802 }
8803
8804
8805 Operand get_phi_operand(isel_context *ctx, nir_ssa_def *ssa)
8806 {
8807 Temp tmp = get_ssa_temp(ctx, ssa);
8808 if (ssa->parent_instr->type == nir_instr_type_ssa_undef)
8809 return Operand(tmp.regClass());
8810 else
8811 return Operand(tmp);
8812 }
8813
8814 void visit_phi(isel_context *ctx, nir_phi_instr *instr)
8815 {
8816 aco_ptr<Pseudo_instruction> phi;
8817 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8818 assert(instr->dest.ssa.bit_size != 1 || dst.regClass() == ctx->program->lane_mask);
8819
8820 bool logical = !dst.is_linear() || ctx->divergent_vals[instr->dest.ssa.index];
8821 logical |= ctx->block->kind & block_kind_merge;
8822 aco_opcode opcode = logical ? aco_opcode::p_phi : aco_opcode::p_linear_phi;
8823
8824 /* we want a sorted list of sources, since the predecessor list is also sorted */
8825 std::map<unsigned, nir_ssa_def*> phi_src;
8826 nir_foreach_phi_src(src, instr)
8827 phi_src[src->pred->index] = src->src.ssa;
8828
8829 std::vector<unsigned>& preds = logical ? ctx->block->logical_preds : ctx->block->linear_preds;
8830 unsigned num_operands = 0;
8831 Operand operands[std::max(exec_list_length(&instr->srcs), (unsigned)preds.size()) + 1];
8832 unsigned num_defined = 0;
8833 unsigned cur_pred_idx = 0;
8834 for (std::pair<unsigned, nir_ssa_def *> src : phi_src) {
8835 if (cur_pred_idx < preds.size()) {
8836 /* handle missing preds (IF merges with discard/break) and extra preds (loop exit with discard) */
8837 unsigned block = ctx->cf_info.nir_to_aco[src.first];
8838 unsigned skipped = 0;
8839 while (cur_pred_idx + skipped < preds.size() && preds[cur_pred_idx + skipped] != block)
8840 skipped++;
8841 if (cur_pred_idx + skipped < preds.size()) {
8842 for (unsigned i = 0; i < skipped; i++)
8843 operands[num_operands++] = Operand(dst.regClass());
8844 cur_pred_idx += skipped;
8845 } else {
8846 continue;
8847 }
8848 }
8849 /* Handle missing predecessors at the end. This shouldn't happen with loop
8850 * headers and we can't ignore these sources for loop header phis. */
8851 if (!(ctx->block->kind & block_kind_loop_header) && cur_pred_idx >= preds.size())
8852 continue;
8853 cur_pred_idx++;
8854 Operand op = get_phi_operand(ctx, src.second);
8855 operands[num_operands++] = op;
8856 num_defined += !op.isUndefined();
8857 }
8858 /* handle block_kind_continue_or_break at loop exit blocks */
8859 while (cur_pred_idx++ < preds.size())
8860 operands[num_operands++] = Operand(dst.regClass());
8861
8862 /* If the loop ends with a break, still add a linear continue edge in case
8863 * that break is divergent or continue_or_break is used. We'll either remove
8864 * this operand later in visit_loop() if it's not necessary or replace the
8865 * undef with something correct. */
8866 if (!logical && ctx->block->kind & block_kind_loop_header) {
8867 nir_loop *loop = nir_cf_node_as_loop(instr->instr.block->cf_node.parent);
8868 nir_block *last = nir_loop_last_block(loop);
8869 if (last->successors[0] != instr->instr.block)
8870 operands[num_operands++] = Operand(RegClass());
8871 }
8872
8873 if (num_defined == 0) {
8874 Builder bld(ctx->program, ctx->block);
8875 if (dst.regClass() == s1) {
8876 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), Operand(0u));
8877 } else if (dst.regClass() == v1) {
8878 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), Operand(0u));
8879 } else {
8880 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
8881 for (unsigned i = 0; i < dst.size(); i++)
8882 vec->operands[i] = Operand(0u);
8883 vec->definitions[0] = Definition(dst);
8884 ctx->block->instructions.emplace_back(std::move(vec));
8885 }
8886 return;
8887 }
8888
8889 /* we can use a linear phi in some cases if one src is undef */
8890 if (dst.is_linear() && ctx->block->kind & block_kind_merge && num_defined == 1) {
8891 phi.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, num_operands, 1));
8892
8893 Block *linear_else = &ctx->program->blocks[ctx->block->linear_preds[1]];
8894 Block *invert = &ctx->program->blocks[linear_else->linear_preds[0]];
8895 assert(invert->kind & block_kind_invert);
8896
8897 unsigned then_block = invert->linear_preds[0];
8898
8899 Block* insert_block = NULL;
8900 for (unsigned i = 0; i < num_operands; i++) {
8901 Operand op = operands[i];
8902 if (op.isUndefined())
8903 continue;
8904 insert_block = ctx->block->logical_preds[i] == then_block ? invert : ctx->block;
8905 phi->operands[0] = op;
8906 break;
8907 }
8908 assert(insert_block); /* should be handled by the "num_defined == 0" case above */
8909 phi->operands[1] = Operand(dst.regClass());
8910 phi->definitions[0] = Definition(dst);
8911 insert_block->instructions.emplace(insert_block->instructions.begin(), std::move(phi));
8912 return;
8913 }
8914
8915 /* try to scalarize vector phis */
8916 if (instr->dest.ssa.bit_size != 1 && dst.size() > 1) {
8917 // TODO: scalarize linear phis on divergent ifs
8918 bool can_scalarize = (opcode == aco_opcode::p_phi || !(ctx->block->kind & block_kind_merge));
8919 std::array<Temp, NIR_MAX_VEC_COMPONENTS> new_vec;
8920 for (unsigned i = 0; can_scalarize && (i < num_operands); i++) {
8921 Operand src = operands[i];
8922 if (src.isTemp() && ctx->allocated_vec.find(src.tempId()) == ctx->allocated_vec.end())
8923 can_scalarize = false;
8924 }
8925 if (can_scalarize) {
8926 unsigned num_components = instr->dest.ssa.num_components;
8927 assert(dst.size() % num_components == 0);
8928 RegClass rc = RegClass(dst.type(), dst.size() / num_components);
8929
8930 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
8931 for (unsigned k = 0; k < num_components; k++) {
8932 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
8933 for (unsigned i = 0; i < num_operands; i++) {
8934 Operand src = operands[i];
8935 phi->operands[i] = src.isTemp() ? Operand(ctx->allocated_vec[src.tempId()][k]) : Operand(rc);
8936 }
8937 Temp phi_dst = {ctx->program->allocateId(), rc};
8938 phi->definitions[0] = Definition(phi_dst);
8939 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
8940 new_vec[k] = phi_dst;
8941 vec->operands[k] = Operand(phi_dst);
8942 }
8943 vec->definitions[0] = Definition(dst);
8944 ctx->block->instructions.emplace_back(std::move(vec));
8945 ctx->allocated_vec.emplace(dst.id(), new_vec);
8946 return;
8947 }
8948 }
8949
8950 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
8951 for (unsigned i = 0; i < num_operands; i++)
8952 phi->operands[i] = operands[i];
8953 phi->definitions[0] = Definition(dst);
8954 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
8955 }
8956
8957
8958 void visit_undef(isel_context *ctx, nir_ssa_undef_instr *instr)
8959 {
8960 Temp dst = get_ssa_temp(ctx, &instr->def);
8961
8962 assert(dst.type() == RegType::sgpr);
8963
8964 if (dst.size() == 1) {
8965 Builder(ctx->program, ctx->block).copy(Definition(dst), Operand(0u));
8966 } else {
8967 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
8968 for (unsigned i = 0; i < dst.size(); i++)
8969 vec->operands[i] = Operand(0u);
8970 vec->definitions[0] = Definition(dst);
8971 ctx->block->instructions.emplace_back(std::move(vec));
8972 }
8973 }
8974
8975 void visit_jump(isel_context *ctx, nir_jump_instr *instr)
8976 {
8977 Builder bld(ctx->program, ctx->block);
8978 Block *logical_target;
8979 append_logical_end(ctx->block);
8980 unsigned idx = ctx->block->index;
8981
8982 switch (instr->type) {
8983 case nir_jump_break:
8984 logical_target = ctx->cf_info.parent_loop.exit;
8985 add_logical_edge(idx, logical_target);
8986 ctx->block->kind |= block_kind_break;
8987
8988 if (!ctx->cf_info.parent_if.is_divergent &&
8989 !ctx->cf_info.parent_loop.has_divergent_continue) {
8990 /* uniform break - directly jump out of the loop */
8991 ctx->block->kind |= block_kind_uniform;
8992 ctx->cf_info.has_branch = true;
8993 bld.branch(aco_opcode::p_branch);
8994 add_linear_edge(idx, logical_target);
8995 return;
8996 }
8997 ctx->cf_info.parent_loop.has_divergent_branch = true;
8998 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
8999 break;
9000 case nir_jump_continue:
9001 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
9002 add_logical_edge(idx, logical_target);
9003 ctx->block->kind |= block_kind_continue;
9004
9005 if (ctx->cf_info.parent_if.is_divergent) {
9006 /* for potential uniform breaks after this continue,
9007 we must ensure that they are handled correctly */
9008 ctx->cf_info.parent_loop.has_divergent_continue = true;
9009 ctx->cf_info.parent_loop.has_divergent_branch = true;
9010 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
9011 } else {
9012 /* uniform continue - directly jump to the loop header */
9013 ctx->block->kind |= block_kind_uniform;
9014 ctx->cf_info.has_branch = true;
9015 bld.branch(aco_opcode::p_branch);
9016 add_linear_edge(idx, logical_target);
9017 return;
9018 }
9019 break;
9020 default:
9021 fprintf(stderr, "Unknown NIR jump instr: ");
9022 nir_print_instr(&instr->instr, stderr);
9023 fprintf(stderr, "\n");
9024 abort();
9025 }
9026
9027 if (ctx->cf_info.parent_if.is_divergent && !ctx->cf_info.exec_potentially_empty_break) {
9028 ctx->cf_info.exec_potentially_empty_break = true;
9029 ctx->cf_info.exec_potentially_empty_break_depth = ctx->cf_info.loop_nest_depth;
9030 }
9031
9032 /* remove critical edges from linear CFG */
9033 bld.branch(aco_opcode::p_branch);
9034 Block* break_block = ctx->program->create_and_insert_block();
9035 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9036 break_block->kind |= block_kind_uniform;
9037 add_linear_edge(idx, break_block);
9038 /* the loop_header pointer might be invalidated by this point */
9039 if (instr->type == nir_jump_continue)
9040 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
9041 add_linear_edge(break_block->index, logical_target);
9042 bld.reset(break_block);
9043 bld.branch(aco_opcode::p_branch);
9044
9045 Block* continue_block = ctx->program->create_and_insert_block();
9046 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9047 add_linear_edge(idx, continue_block);
9048 append_logical_start(continue_block);
9049 ctx->block = continue_block;
9050 return;
9051 }
9052
9053 void visit_block(isel_context *ctx, nir_block *block)
9054 {
9055 nir_foreach_instr(instr, block) {
9056 switch (instr->type) {
9057 case nir_instr_type_alu:
9058 visit_alu_instr(ctx, nir_instr_as_alu(instr));
9059 break;
9060 case nir_instr_type_load_const:
9061 visit_load_const(ctx, nir_instr_as_load_const(instr));
9062 break;
9063 case nir_instr_type_intrinsic:
9064 visit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
9065 break;
9066 case nir_instr_type_tex:
9067 visit_tex(ctx, nir_instr_as_tex(instr));
9068 break;
9069 case nir_instr_type_phi:
9070 visit_phi(ctx, nir_instr_as_phi(instr));
9071 break;
9072 case nir_instr_type_ssa_undef:
9073 visit_undef(ctx, nir_instr_as_ssa_undef(instr));
9074 break;
9075 case nir_instr_type_deref:
9076 break;
9077 case nir_instr_type_jump:
9078 visit_jump(ctx, nir_instr_as_jump(instr));
9079 break;
9080 default:
9081 fprintf(stderr, "Unknown NIR instr type: ");
9082 nir_print_instr(instr, stderr);
9083 fprintf(stderr, "\n");
9084 //abort();
9085 }
9086 }
9087
9088 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9089 ctx->cf_info.nir_to_aco[block->index] = ctx->block->index;
9090 }
9091
9092
9093
9094 static Operand create_continue_phis(isel_context *ctx, unsigned first, unsigned last,
9095 aco_ptr<Instruction>& header_phi, Operand *vals)
9096 {
9097 vals[0] = Operand(header_phi->definitions[0].getTemp());
9098 RegClass rc = vals[0].regClass();
9099
9100 unsigned loop_nest_depth = ctx->program->blocks[first].loop_nest_depth;
9101
9102 unsigned next_pred = 1;
9103
9104 for (unsigned idx = first + 1; idx <= last; idx++) {
9105 Block& block = ctx->program->blocks[idx];
9106 if (block.loop_nest_depth != loop_nest_depth) {
9107 vals[idx - first] = vals[idx - 1 - first];
9108 continue;
9109 }
9110
9111 if (block.kind & block_kind_continue) {
9112 vals[idx - first] = header_phi->operands[next_pred];
9113 next_pred++;
9114 continue;
9115 }
9116
9117 bool all_same = true;
9118 for (unsigned i = 1; all_same && (i < block.linear_preds.size()); i++)
9119 all_same = vals[block.linear_preds[i] - first] == vals[block.linear_preds[0] - first];
9120
9121 Operand val;
9122 if (all_same) {
9123 val = vals[block.linear_preds[0] - first];
9124 } else {
9125 aco_ptr<Instruction> phi(create_instruction<Pseudo_instruction>(
9126 aco_opcode::p_linear_phi, Format::PSEUDO, block.linear_preds.size(), 1));
9127 for (unsigned i = 0; i < block.linear_preds.size(); i++)
9128 phi->operands[i] = vals[block.linear_preds[i] - first];
9129 val = Operand(Temp(ctx->program->allocateId(), rc));
9130 phi->definitions[0] = Definition(val.getTemp());
9131 block.instructions.emplace(block.instructions.begin(), std::move(phi));
9132 }
9133 vals[idx - first] = val;
9134 }
9135
9136 return vals[last - first];
9137 }
9138
9139 static void visit_loop(isel_context *ctx, nir_loop *loop)
9140 {
9141 //TODO: we might want to wrap the loop around a branch if exec_potentially_empty=true
9142 append_logical_end(ctx->block);
9143 ctx->block->kind |= block_kind_loop_preheader | block_kind_uniform;
9144 Builder bld(ctx->program, ctx->block);
9145 bld.branch(aco_opcode::p_branch);
9146 unsigned loop_preheader_idx = ctx->block->index;
9147
9148 Block loop_exit = Block();
9149 loop_exit.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9150 loop_exit.kind |= (block_kind_loop_exit | (ctx->block->kind & block_kind_top_level));
9151
9152 Block* loop_header = ctx->program->create_and_insert_block();
9153 loop_header->loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
9154 loop_header->kind |= block_kind_loop_header;
9155 add_edge(loop_preheader_idx, loop_header);
9156 ctx->block = loop_header;
9157
9158 /* emit loop body */
9159 unsigned loop_header_idx = loop_header->index;
9160 loop_info_RAII loop_raii(ctx, loop_header_idx, &loop_exit);
9161 append_logical_start(ctx->block);
9162 bool unreachable = visit_cf_list(ctx, &loop->body);
9163
9164 //TODO: what if a loop ends with a unconditional or uniformly branched continue and this branch is never taken?
9165 if (!ctx->cf_info.has_branch) {
9166 append_logical_end(ctx->block);
9167 if (ctx->cf_info.exec_potentially_empty_discard || ctx->cf_info.exec_potentially_empty_break) {
9168 /* Discards can result in code running with an empty exec mask.
9169 * This would result in divergent breaks not ever being taken. As a
9170 * workaround, break the loop when the loop mask is empty instead of
9171 * always continuing. */
9172 ctx->block->kind |= (block_kind_continue_or_break | block_kind_uniform);
9173 unsigned block_idx = ctx->block->index;
9174
9175 /* create helper blocks to avoid critical edges */
9176 Block *break_block = ctx->program->create_and_insert_block();
9177 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9178 break_block->kind = block_kind_uniform;
9179 bld.reset(break_block);
9180 bld.branch(aco_opcode::p_branch);
9181 add_linear_edge(block_idx, break_block);
9182 add_linear_edge(break_block->index, &loop_exit);
9183
9184 Block *continue_block = ctx->program->create_and_insert_block();
9185 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9186 continue_block->kind = block_kind_uniform;
9187 bld.reset(continue_block);
9188 bld.branch(aco_opcode::p_branch);
9189 add_linear_edge(block_idx, continue_block);
9190 add_linear_edge(continue_block->index, &ctx->program->blocks[loop_header_idx]);
9191
9192 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9193 add_logical_edge(block_idx, &ctx->program->blocks[loop_header_idx]);
9194 ctx->block = &ctx->program->blocks[block_idx];
9195 } else {
9196 ctx->block->kind |= (block_kind_continue | block_kind_uniform);
9197 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9198 add_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
9199 else
9200 add_linear_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
9201 }
9202
9203 bld.reset(ctx->block);
9204 bld.branch(aco_opcode::p_branch);
9205 }
9206
9207 /* Fixup phis in loop header from unreachable blocks.
9208 * has_branch/has_divergent_branch also indicates if the loop ends with a
9209 * break/continue instruction, but we don't emit those if unreachable=true */
9210 if (unreachable) {
9211 assert(ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch);
9212 bool linear = ctx->cf_info.has_branch;
9213 bool logical = ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch;
9214 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
9215 if ((logical && instr->opcode == aco_opcode::p_phi) ||
9216 (linear && instr->opcode == aco_opcode::p_linear_phi)) {
9217 /* the last operand should be the one that needs to be removed */
9218 instr->operands.pop_back();
9219 } else if (!is_phi(instr)) {
9220 break;
9221 }
9222 }
9223 }
9224
9225 /* Fixup linear phis in loop header from expecting a continue. Both this fixup
9226 * and the previous one shouldn't both happen at once because a break in the
9227 * merge block would get CSE'd */
9228 if (nir_loop_last_block(loop)->successors[0] != nir_loop_first_block(loop)) {
9229 unsigned num_vals = ctx->cf_info.has_branch ? 1 : (ctx->block->index - loop_header_idx + 1);
9230 Operand vals[num_vals];
9231 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
9232 if (instr->opcode == aco_opcode::p_linear_phi) {
9233 if (ctx->cf_info.has_branch)
9234 instr->operands.pop_back();
9235 else
9236 instr->operands.back() = create_continue_phis(ctx, loop_header_idx, ctx->block->index, instr, vals);
9237 } else if (!is_phi(instr)) {
9238 break;
9239 }
9240 }
9241 }
9242
9243 ctx->cf_info.has_branch = false;
9244
9245 // TODO: if the loop has not a single exit, we must add one °°
9246 /* emit loop successor block */
9247 ctx->block = ctx->program->insert_block(std::move(loop_exit));
9248 append_logical_start(ctx->block);
9249
9250 #if 0
9251 // TODO: check if it is beneficial to not branch on continues
9252 /* trim linear phis in loop header */
9253 for (auto&& instr : loop_entry->instructions) {
9254 if (instr->opcode == aco_opcode::p_linear_phi) {
9255 aco_ptr<Pseudo_instruction> new_phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, loop_entry->linear_predecessors.size(), 1)};
9256 new_phi->definitions[0] = instr->definitions[0];
9257 for (unsigned i = 0; i < new_phi->operands.size(); i++)
9258 new_phi->operands[i] = instr->operands[i];
9259 /* check that the remaining operands are all the same */
9260 for (unsigned i = new_phi->operands.size(); i < instr->operands.size(); i++)
9261 assert(instr->operands[i].tempId() == instr->operands.back().tempId());
9262 instr.swap(new_phi);
9263 } else if (instr->opcode == aco_opcode::p_phi) {
9264 continue;
9265 } else {
9266 break;
9267 }
9268 }
9269 #endif
9270 }
9271
9272 static void begin_divergent_if_then(isel_context *ctx, if_context *ic, Temp cond)
9273 {
9274 ic->cond = cond;
9275
9276 append_logical_end(ctx->block);
9277 ctx->block->kind |= block_kind_branch;
9278
9279 /* branch to linear then block */
9280 assert(cond.regClass() == ctx->program->lane_mask);
9281 aco_ptr<Pseudo_branch_instruction> branch;
9282 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
9283 branch->operands[0] = Operand(cond);
9284 ctx->block->instructions.push_back(std::move(branch));
9285
9286 ic->BB_if_idx = ctx->block->index;
9287 ic->BB_invert = Block();
9288 ic->BB_invert.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9289 /* Invert blocks are intentionally not marked as top level because they
9290 * are not part of the logical cfg. */
9291 ic->BB_invert.kind |= block_kind_invert;
9292 ic->BB_endif = Block();
9293 ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9294 ic->BB_endif.kind |= (block_kind_merge | (ctx->block->kind & block_kind_top_level));
9295
9296 ic->exec_potentially_empty_discard_old = ctx->cf_info.exec_potentially_empty_discard;
9297 ic->exec_potentially_empty_break_old = ctx->cf_info.exec_potentially_empty_break;
9298 ic->exec_potentially_empty_break_depth_old = ctx->cf_info.exec_potentially_empty_break_depth;
9299 ic->divergent_old = ctx->cf_info.parent_if.is_divergent;
9300 ctx->cf_info.parent_if.is_divergent = true;
9301
9302 /* divergent branches use cbranch_execz */
9303 ctx->cf_info.exec_potentially_empty_discard = false;
9304 ctx->cf_info.exec_potentially_empty_break = false;
9305 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9306
9307 /** emit logical then block */
9308 Block* BB_then_logical = ctx->program->create_and_insert_block();
9309 BB_then_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9310 add_edge(ic->BB_if_idx, BB_then_logical);
9311 ctx->block = BB_then_logical;
9312 append_logical_start(BB_then_logical);
9313 }
9314
9315 static void begin_divergent_if_else(isel_context *ctx, if_context *ic)
9316 {
9317 Block *BB_then_logical = ctx->block;
9318 append_logical_end(BB_then_logical);
9319 /* branch from logical then block to invert block */
9320 aco_ptr<Pseudo_branch_instruction> branch;
9321 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9322 BB_then_logical->instructions.emplace_back(std::move(branch));
9323 add_linear_edge(BB_then_logical->index, &ic->BB_invert);
9324 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9325 add_logical_edge(BB_then_logical->index, &ic->BB_endif);
9326 BB_then_logical->kind |= block_kind_uniform;
9327 assert(!ctx->cf_info.has_branch);
9328 ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
9329 ctx->cf_info.parent_loop.has_divergent_branch = false;
9330
9331 /** emit linear then block */
9332 Block* BB_then_linear = ctx->program->create_and_insert_block();
9333 BB_then_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9334 BB_then_linear->kind |= block_kind_uniform;
9335 add_linear_edge(ic->BB_if_idx, BB_then_linear);
9336 /* branch from linear then block to invert block */
9337 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9338 BB_then_linear->instructions.emplace_back(std::move(branch));
9339 add_linear_edge(BB_then_linear->index, &ic->BB_invert);
9340
9341 /** emit invert merge block */
9342 ctx->block = ctx->program->insert_block(std::move(ic->BB_invert));
9343 ic->invert_idx = ctx->block->index;
9344
9345 /* branch to linear else block (skip else) */
9346 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_nz, Format::PSEUDO_BRANCH, 1, 0));
9347 branch->operands[0] = Operand(ic->cond);
9348 ctx->block->instructions.push_back(std::move(branch));
9349
9350 ic->exec_potentially_empty_discard_old |= ctx->cf_info.exec_potentially_empty_discard;
9351 ic->exec_potentially_empty_break_old |= ctx->cf_info.exec_potentially_empty_break;
9352 ic->exec_potentially_empty_break_depth_old =
9353 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
9354 /* divergent branches use cbranch_execz */
9355 ctx->cf_info.exec_potentially_empty_discard = false;
9356 ctx->cf_info.exec_potentially_empty_break = false;
9357 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9358
9359 /** emit logical else block */
9360 Block* BB_else_logical = ctx->program->create_and_insert_block();
9361 BB_else_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9362 add_logical_edge(ic->BB_if_idx, BB_else_logical);
9363 add_linear_edge(ic->invert_idx, BB_else_logical);
9364 ctx->block = BB_else_logical;
9365 append_logical_start(BB_else_logical);
9366 }
9367
9368 static void end_divergent_if(isel_context *ctx, if_context *ic)
9369 {
9370 Block *BB_else_logical = ctx->block;
9371 append_logical_end(BB_else_logical);
9372
9373 /* branch from logical else block to endif block */
9374 aco_ptr<Pseudo_branch_instruction> branch;
9375 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9376 BB_else_logical->instructions.emplace_back(std::move(branch));
9377 add_linear_edge(BB_else_logical->index, &ic->BB_endif);
9378 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9379 add_logical_edge(BB_else_logical->index, &ic->BB_endif);
9380 BB_else_logical->kind |= block_kind_uniform;
9381
9382 assert(!ctx->cf_info.has_branch);
9383 ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
9384
9385
9386 /** emit linear else block */
9387 Block* BB_else_linear = ctx->program->create_and_insert_block();
9388 BB_else_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9389 BB_else_linear->kind |= block_kind_uniform;
9390 add_linear_edge(ic->invert_idx, BB_else_linear);
9391
9392 /* branch from linear else block to endif block */
9393 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9394 BB_else_linear->instructions.emplace_back(std::move(branch));
9395 add_linear_edge(BB_else_linear->index, &ic->BB_endif);
9396
9397
9398 /** emit endif merge block */
9399 ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
9400 append_logical_start(ctx->block);
9401
9402
9403 ctx->cf_info.parent_if.is_divergent = ic->divergent_old;
9404 ctx->cf_info.exec_potentially_empty_discard |= ic->exec_potentially_empty_discard_old;
9405 ctx->cf_info.exec_potentially_empty_break |= ic->exec_potentially_empty_break_old;
9406 ctx->cf_info.exec_potentially_empty_break_depth =
9407 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
9408 if (ctx->cf_info.loop_nest_depth == ctx->cf_info.exec_potentially_empty_break_depth &&
9409 !ctx->cf_info.parent_if.is_divergent) {
9410 ctx->cf_info.exec_potentially_empty_break = false;
9411 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9412 }
9413 /* uniform control flow never has an empty exec-mask */
9414 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent) {
9415 ctx->cf_info.exec_potentially_empty_discard = false;
9416 ctx->cf_info.exec_potentially_empty_break = false;
9417 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9418 }
9419 }
9420
9421 static void begin_uniform_if_then(isel_context *ctx, if_context *ic, Temp cond)
9422 {
9423 assert(cond.regClass() == s1);
9424
9425 append_logical_end(ctx->block);
9426 ctx->block->kind |= block_kind_uniform;
9427
9428 aco_ptr<Pseudo_branch_instruction> branch;
9429 aco_opcode branch_opcode = aco_opcode::p_cbranch_z;
9430 branch.reset(create_instruction<Pseudo_branch_instruction>(branch_opcode, Format::PSEUDO_BRANCH, 1, 0));
9431 branch->operands[0] = Operand(cond);
9432 branch->operands[0].setFixed(scc);
9433 ctx->block->instructions.emplace_back(std::move(branch));
9434
9435 ic->BB_if_idx = ctx->block->index;
9436 ic->BB_endif = Block();
9437 ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9438 ic->BB_endif.kind |= ctx->block->kind & block_kind_top_level;
9439
9440 ctx->cf_info.has_branch = false;
9441 ctx->cf_info.parent_loop.has_divergent_branch = false;
9442
9443 /** emit then block */
9444 Block* BB_then = ctx->program->create_and_insert_block();
9445 BB_then->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9446 add_edge(ic->BB_if_idx, BB_then);
9447 append_logical_start(BB_then);
9448 ctx->block = BB_then;
9449 }
9450
9451 static void begin_uniform_if_else(isel_context *ctx, if_context *ic)
9452 {
9453 Block *BB_then = ctx->block;
9454
9455 ic->uniform_has_then_branch = ctx->cf_info.has_branch;
9456 ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
9457
9458 if (!ic->uniform_has_then_branch) {
9459 append_logical_end(BB_then);
9460 /* branch from then block to endif block */
9461 aco_ptr<Pseudo_branch_instruction> branch;
9462 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9463 BB_then->instructions.emplace_back(std::move(branch));
9464 add_linear_edge(BB_then->index, &ic->BB_endif);
9465 if (!ic->then_branch_divergent)
9466 add_logical_edge(BB_then->index, &ic->BB_endif);
9467 BB_then->kind |= block_kind_uniform;
9468 }
9469
9470 ctx->cf_info.has_branch = false;
9471 ctx->cf_info.parent_loop.has_divergent_branch = false;
9472
9473 /** emit else block */
9474 Block* BB_else = ctx->program->create_and_insert_block();
9475 BB_else->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9476 add_edge(ic->BB_if_idx, BB_else);
9477 append_logical_start(BB_else);
9478 ctx->block = BB_else;
9479 }
9480
9481 static void end_uniform_if(isel_context *ctx, if_context *ic)
9482 {
9483 Block *BB_else = ctx->block;
9484
9485 if (!ctx->cf_info.has_branch) {
9486 append_logical_end(BB_else);
9487 /* branch from then block to endif block */
9488 aco_ptr<Pseudo_branch_instruction> branch;
9489 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9490 BB_else->instructions.emplace_back(std::move(branch));
9491 add_linear_edge(BB_else->index, &ic->BB_endif);
9492 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9493 add_logical_edge(BB_else->index, &ic->BB_endif);
9494 BB_else->kind |= block_kind_uniform;
9495 }
9496
9497 ctx->cf_info.has_branch &= ic->uniform_has_then_branch;
9498 ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
9499
9500 /** emit endif merge block */
9501 if (!ctx->cf_info.has_branch) {
9502 ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
9503 append_logical_start(ctx->block);
9504 }
9505 }
9506
9507 static bool visit_if(isel_context *ctx, nir_if *if_stmt)
9508 {
9509 Temp cond = get_ssa_temp(ctx, if_stmt->condition.ssa);
9510 Builder bld(ctx->program, ctx->block);
9511 aco_ptr<Pseudo_branch_instruction> branch;
9512 if_context ic;
9513
9514 if (!ctx->divergent_vals[if_stmt->condition.ssa->index]) { /* uniform condition */
9515 /**
9516 * Uniform conditionals are represented in the following way*) :
9517 *
9518 * The linear and logical CFG:
9519 * BB_IF
9520 * / \
9521 * BB_THEN (logical) BB_ELSE (logical)
9522 * \ /
9523 * BB_ENDIF
9524 *
9525 * *) Exceptions may be due to break and continue statements within loops
9526 * If a break/continue happens within uniform control flow, it branches
9527 * to the loop exit/entry block. Otherwise, it branches to the next
9528 * merge block.
9529 **/
9530
9531 // TODO: in a post-RA optimizer, we could check if the condition is in VCC and omit this instruction
9532 assert(cond.regClass() == ctx->program->lane_mask);
9533 cond = bool_to_scalar_condition(ctx, cond);
9534
9535 begin_uniform_if_then(ctx, &ic, cond);
9536 visit_cf_list(ctx, &if_stmt->then_list);
9537
9538 begin_uniform_if_else(ctx, &ic);
9539 visit_cf_list(ctx, &if_stmt->else_list);
9540
9541 end_uniform_if(ctx, &ic);
9542
9543 return !ctx->cf_info.has_branch;
9544 } else { /* non-uniform condition */
9545 /**
9546 * To maintain a logical and linear CFG without critical edges,
9547 * non-uniform conditionals are represented in the following way*) :
9548 *
9549 * The linear CFG:
9550 * BB_IF
9551 * / \
9552 * BB_THEN (logical) BB_THEN (linear)
9553 * \ /
9554 * BB_INVERT (linear)
9555 * / \
9556 * BB_ELSE (logical) BB_ELSE (linear)
9557 * \ /
9558 * BB_ENDIF
9559 *
9560 * The logical CFG:
9561 * BB_IF
9562 * / \
9563 * BB_THEN (logical) BB_ELSE (logical)
9564 * \ /
9565 * BB_ENDIF
9566 *
9567 * *) Exceptions may be due to break and continue statements within loops
9568 **/
9569
9570 begin_divergent_if_then(ctx, &ic, cond);
9571 visit_cf_list(ctx, &if_stmt->then_list);
9572
9573 begin_divergent_if_else(ctx, &ic);
9574 visit_cf_list(ctx, &if_stmt->else_list);
9575
9576 end_divergent_if(ctx, &ic);
9577
9578 return true;
9579 }
9580 }
9581
9582 static bool visit_cf_list(isel_context *ctx,
9583 struct exec_list *list)
9584 {
9585 foreach_list_typed(nir_cf_node, node, node, list) {
9586 switch (node->type) {
9587 case nir_cf_node_block:
9588 visit_block(ctx, nir_cf_node_as_block(node));
9589 break;
9590 case nir_cf_node_if:
9591 if (!visit_if(ctx, nir_cf_node_as_if(node)))
9592 return true;
9593 break;
9594 case nir_cf_node_loop:
9595 visit_loop(ctx, nir_cf_node_as_loop(node));
9596 break;
9597 default:
9598 unreachable("unimplemented cf list type");
9599 }
9600 }
9601 return false;
9602 }
9603
9604 static void create_null_export(isel_context *ctx)
9605 {
9606 /* Some shader stages always need to have exports.
9607 * So when there is none, we need to add a null export.
9608 */
9609
9610 unsigned dest = (ctx->program->stage & hw_fs) ? 9 /* NULL */ : V_008DFC_SQ_EXP_POS;
9611 bool vm = (ctx->program->stage & hw_fs) || ctx->program->chip_class >= GFX10;
9612 Builder bld(ctx->program, ctx->block);
9613 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
9614 /* enabled_mask */ 0, dest, /* compr */ false, /* done */ true, vm);
9615 }
9616
9617 static bool export_vs_varying(isel_context *ctx, int slot, bool is_pos, int *next_pos)
9618 {
9619 assert(ctx->stage == vertex_vs ||
9620 ctx->stage == tess_eval_vs ||
9621 ctx->stage == gs_copy_vs ||
9622 ctx->stage == ngg_vertex_gs ||
9623 ctx->stage == ngg_tess_eval_gs);
9624
9625 int offset = (ctx->stage & sw_tes)
9626 ? ctx->program->info->tes.outinfo.vs_output_param_offset[slot]
9627 : ctx->program->info->vs.outinfo.vs_output_param_offset[slot];
9628 uint64_t mask = ctx->outputs.mask[slot];
9629 if (!is_pos && !mask)
9630 return false;
9631 if (!is_pos && offset == AC_EXP_PARAM_UNDEFINED)
9632 return false;
9633 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
9634 exp->enabled_mask = mask;
9635 for (unsigned i = 0; i < 4; ++i) {
9636 if (mask & (1 << i))
9637 exp->operands[i] = Operand(ctx->outputs.temps[slot * 4u + i]);
9638 else
9639 exp->operands[i] = Operand(v1);
9640 }
9641 /* Navi10-14 skip POS0 exports if EXEC=0 and DONE=0, causing a hang.
9642 * Setting valid_mask=1 prevents it and has no other effect.
9643 */
9644 exp->valid_mask = ctx->options->chip_class >= GFX10 && is_pos && *next_pos == 0;
9645 exp->done = false;
9646 exp->compressed = false;
9647 if (is_pos)
9648 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
9649 else
9650 exp->dest = V_008DFC_SQ_EXP_PARAM + offset;
9651 ctx->block->instructions.emplace_back(std::move(exp));
9652
9653 return true;
9654 }
9655
9656 static void export_vs_psiz_layer_viewport(isel_context *ctx, int *next_pos)
9657 {
9658 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
9659 exp->enabled_mask = 0;
9660 for (unsigned i = 0; i < 4; ++i)
9661 exp->operands[i] = Operand(v1);
9662 if (ctx->outputs.mask[VARYING_SLOT_PSIZ]) {
9663 exp->operands[0] = Operand(ctx->outputs.temps[VARYING_SLOT_PSIZ * 4u]);
9664 exp->enabled_mask |= 0x1;
9665 }
9666 if (ctx->outputs.mask[VARYING_SLOT_LAYER]) {
9667 exp->operands[2] = Operand(ctx->outputs.temps[VARYING_SLOT_LAYER * 4u]);
9668 exp->enabled_mask |= 0x4;
9669 }
9670 if (ctx->outputs.mask[VARYING_SLOT_VIEWPORT]) {
9671 if (ctx->options->chip_class < GFX9) {
9672 exp->operands[3] = Operand(ctx->outputs.temps[VARYING_SLOT_VIEWPORT * 4u]);
9673 exp->enabled_mask |= 0x8;
9674 } else {
9675 Builder bld(ctx->program, ctx->block);
9676
9677 Temp out = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u),
9678 Operand(ctx->outputs.temps[VARYING_SLOT_VIEWPORT * 4u]));
9679 if (exp->operands[2].isTemp())
9680 out = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(out), exp->operands[2]);
9681
9682 exp->operands[2] = Operand(out);
9683 exp->enabled_mask |= 0x4;
9684 }
9685 }
9686 exp->valid_mask = ctx->options->chip_class >= GFX10 && *next_pos == 0;
9687 exp->done = false;
9688 exp->compressed = false;
9689 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
9690 ctx->block->instructions.emplace_back(std::move(exp));
9691 }
9692
9693 static void create_export_phis(isel_context *ctx)
9694 {
9695 /* Used when exports are needed, but the output temps are defined in a preceding block.
9696 * This function will set up phis in order to access the outputs in the next block.
9697 */
9698
9699 assert(ctx->block->instructions.back()->opcode == aco_opcode::p_logical_start);
9700 aco_ptr<Instruction> logical_start = aco_ptr<Instruction>(ctx->block->instructions.back().release());
9701 ctx->block->instructions.pop_back();
9702
9703 Builder bld(ctx->program, ctx->block);
9704
9705 for (unsigned slot = 0; slot <= VARYING_SLOT_VAR31; ++slot) {
9706 uint64_t mask = ctx->outputs.mask[slot];
9707 for (unsigned i = 0; i < 4; ++i) {
9708 if (!(mask & (1 << i)))
9709 continue;
9710
9711 Temp old = ctx->outputs.temps[slot * 4 + i];
9712 Temp phi = bld.pseudo(aco_opcode::p_phi, bld.def(v1), old, Operand(v1));
9713 ctx->outputs.temps[slot * 4 + i] = phi;
9714 }
9715 }
9716
9717 bld.insert(std::move(logical_start));
9718 }
9719
9720 static void create_vs_exports(isel_context *ctx)
9721 {
9722 assert(ctx->stage == vertex_vs ||
9723 ctx->stage == tess_eval_vs ||
9724 ctx->stage == gs_copy_vs ||
9725 ctx->stage == ngg_vertex_gs ||
9726 ctx->stage == ngg_tess_eval_gs);
9727
9728 radv_vs_output_info *outinfo = (ctx->stage & sw_tes)
9729 ? &ctx->program->info->tes.outinfo
9730 : &ctx->program->info->vs.outinfo;
9731
9732 if (outinfo->export_prim_id && !(ctx->stage & hw_ngg_gs)) {
9733 ctx->outputs.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
9734 ctx->outputs.temps[VARYING_SLOT_PRIMITIVE_ID * 4u] = get_arg(ctx, ctx->args->vs_prim_id);
9735 }
9736
9737 if (ctx->options->key.has_multiview_view_index) {
9738 ctx->outputs.mask[VARYING_SLOT_LAYER] |= 0x1;
9739 ctx->outputs.temps[VARYING_SLOT_LAYER * 4u] = as_vgpr(ctx, get_arg(ctx, ctx->args->ac.view_index));
9740 }
9741
9742 /* the order these position exports are created is important */
9743 int next_pos = 0;
9744 bool exported_pos = export_vs_varying(ctx, VARYING_SLOT_POS, true, &next_pos);
9745 if (outinfo->writes_pointsize || outinfo->writes_layer || outinfo->writes_viewport_index) {
9746 export_vs_psiz_layer_viewport(ctx, &next_pos);
9747 exported_pos = true;
9748 }
9749 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
9750 exported_pos |= export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, true, &next_pos);
9751 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
9752 exported_pos |= export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, true, &next_pos);
9753
9754 if (ctx->export_clip_dists) {
9755 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
9756 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, false, &next_pos);
9757 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
9758 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, false, &next_pos);
9759 }
9760
9761 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
9762 if (i < VARYING_SLOT_VAR0 &&
9763 i != VARYING_SLOT_LAYER &&
9764 i != VARYING_SLOT_PRIMITIVE_ID &&
9765 i != VARYING_SLOT_VIEWPORT)
9766 continue;
9767
9768 export_vs_varying(ctx, i, false, NULL);
9769 }
9770
9771 if (!exported_pos)
9772 create_null_export(ctx);
9773 }
9774
9775 static bool export_fs_mrt_z(isel_context *ctx)
9776 {
9777 Builder bld(ctx->program, ctx->block);
9778 unsigned enabled_channels = 0;
9779 bool compr = false;
9780 Operand values[4];
9781
9782 for (unsigned i = 0; i < 4; ++i) {
9783 values[i] = Operand(v1);
9784 }
9785
9786 /* Both stencil and sample mask only need 16-bits. */
9787 if (!ctx->program->info->ps.writes_z &&
9788 (ctx->program->info->ps.writes_stencil ||
9789 ctx->program->info->ps.writes_sample_mask)) {
9790 compr = true; /* COMPR flag */
9791
9792 if (ctx->program->info->ps.writes_stencil) {
9793 /* Stencil should be in X[23:16]. */
9794 values[0] = Operand(ctx->outputs.temps[FRAG_RESULT_STENCIL * 4u]);
9795 values[0] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u), values[0]);
9796 enabled_channels |= 0x3;
9797 }
9798
9799 if (ctx->program->info->ps.writes_sample_mask) {
9800 /* SampleMask should be in Y[15:0]. */
9801 values[1] = Operand(ctx->outputs.temps[FRAG_RESULT_SAMPLE_MASK * 4u]);
9802 enabled_channels |= 0xc;
9803 }
9804 } else {
9805 if (ctx->program->info->ps.writes_z) {
9806 values[0] = Operand(ctx->outputs.temps[FRAG_RESULT_DEPTH * 4u]);
9807 enabled_channels |= 0x1;
9808 }
9809
9810 if (ctx->program->info->ps.writes_stencil) {
9811 values[1] = Operand(ctx->outputs.temps[FRAG_RESULT_STENCIL * 4u]);
9812 enabled_channels |= 0x2;
9813 }
9814
9815 if (ctx->program->info->ps.writes_sample_mask) {
9816 values[2] = Operand(ctx->outputs.temps[FRAG_RESULT_SAMPLE_MASK * 4u]);
9817 enabled_channels |= 0x4;
9818 }
9819 }
9820
9821 /* GFX6 (except OLAND and HAINAN) has a bug that it only looks at the X
9822 * writemask component.
9823 */
9824 if (ctx->options->chip_class == GFX6 &&
9825 ctx->options->family != CHIP_OLAND &&
9826 ctx->options->family != CHIP_HAINAN) {
9827 enabled_channels |= 0x1;
9828 }
9829
9830 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
9831 enabled_channels, V_008DFC_SQ_EXP_MRTZ, compr);
9832
9833 return true;
9834 }
9835
9836 static bool export_fs_mrt_color(isel_context *ctx, int slot)
9837 {
9838 Builder bld(ctx->program, ctx->block);
9839 unsigned write_mask = ctx->outputs.mask[slot];
9840 Operand values[4];
9841
9842 for (unsigned i = 0; i < 4; ++i) {
9843 if (write_mask & (1 << i)) {
9844 values[i] = Operand(ctx->outputs.temps[slot * 4u + i]);
9845 } else {
9846 values[i] = Operand(v1);
9847 }
9848 }
9849
9850 unsigned target, col_format;
9851 unsigned enabled_channels = 0;
9852 aco_opcode compr_op = (aco_opcode)0;
9853
9854 slot -= FRAG_RESULT_DATA0;
9855 target = V_008DFC_SQ_EXP_MRT + slot;
9856 col_format = (ctx->options->key.fs.col_format >> (4 * slot)) & 0xf;
9857
9858 bool is_int8 = (ctx->options->key.fs.is_int8 >> slot) & 1;
9859 bool is_int10 = (ctx->options->key.fs.is_int10 >> slot) & 1;
9860
9861 switch (col_format)
9862 {
9863 case V_028714_SPI_SHADER_ZERO:
9864 enabled_channels = 0; /* writemask */
9865 target = V_008DFC_SQ_EXP_NULL;
9866 break;
9867
9868 case V_028714_SPI_SHADER_32_R:
9869 enabled_channels = 1;
9870 break;
9871
9872 case V_028714_SPI_SHADER_32_GR:
9873 enabled_channels = 0x3;
9874 break;
9875
9876 case V_028714_SPI_SHADER_32_AR:
9877 if (ctx->options->chip_class >= GFX10) {
9878 /* Special case: on GFX10, the outputs are different for 32_AR */
9879 enabled_channels = 0x3;
9880 values[1] = values[3];
9881 values[3] = Operand(v1);
9882 } else {
9883 enabled_channels = 0x9;
9884 }
9885 break;
9886
9887 case V_028714_SPI_SHADER_FP16_ABGR:
9888 enabled_channels = 0x5;
9889 compr_op = aco_opcode::v_cvt_pkrtz_f16_f32;
9890 break;
9891
9892 case V_028714_SPI_SHADER_UNORM16_ABGR:
9893 enabled_channels = 0x5;
9894 compr_op = aco_opcode::v_cvt_pknorm_u16_f32;
9895 break;
9896
9897 case V_028714_SPI_SHADER_SNORM16_ABGR:
9898 enabled_channels = 0x5;
9899 compr_op = aco_opcode::v_cvt_pknorm_i16_f32;
9900 break;
9901
9902 case V_028714_SPI_SHADER_UINT16_ABGR: {
9903 enabled_channels = 0x5;
9904 compr_op = aco_opcode::v_cvt_pk_u16_u32;
9905 if (is_int8 || is_int10) {
9906 /* clamp */
9907 uint32_t max_rgb = is_int8 ? 255 : is_int10 ? 1023 : 0;
9908 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
9909
9910 for (unsigned i = 0; i < 4; i++) {
9911 if ((write_mask >> i) & 1) {
9912 values[i] = bld.vop2(aco_opcode::v_min_u32, bld.def(v1),
9913 i == 3 && is_int10 ? Operand(3u) : Operand(max_rgb_val),
9914 values[i]);
9915 }
9916 }
9917 }
9918 break;
9919 }
9920
9921 case V_028714_SPI_SHADER_SINT16_ABGR:
9922 enabled_channels = 0x5;
9923 compr_op = aco_opcode::v_cvt_pk_i16_i32;
9924 if (is_int8 || is_int10) {
9925 /* clamp */
9926 uint32_t max_rgb = is_int8 ? 127 : is_int10 ? 511 : 0;
9927 uint32_t min_rgb = is_int8 ? -128 :is_int10 ? -512 : 0;
9928 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
9929 Temp min_rgb_val = bld.copy(bld.def(s1), Operand(min_rgb));
9930
9931 for (unsigned i = 0; i < 4; i++) {
9932 if ((write_mask >> i) & 1) {
9933 values[i] = bld.vop2(aco_opcode::v_min_i32, bld.def(v1),
9934 i == 3 && is_int10 ? Operand(1u) : Operand(max_rgb_val),
9935 values[i]);
9936 values[i] = bld.vop2(aco_opcode::v_max_i32, bld.def(v1),
9937 i == 3 && is_int10 ? Operand(-2u) : Operand(min_rgb_val),
9938 values[i]);
9939 }
9940 }
9941 }
9942 break;
9943
9944 case V_028714_SPI_SHADER_32_ABGR:
9945 enabled_channels = 0xF;
9946 break;
9947
9948 default:
9949 break;
9950 }
9951
9952 if (target == V_008DFC_SQ_EXP_NULL)
9953 return false;
9954
9955 if ((bool) compr_op) {
9956 for (int i = 0; i < 2; i++) {
9957 /* check if at least one of the values to be compressed is enabled */
9958 unsigned enabled = (write_mask >> (i*2) | write_mask >> (i*2+1)) & 0x1;
9959 if (enabled) {
9960 enabled_channels |= enabled << (i*2);
9961 values[i] = bld.vop3(compr_op, bld.def(v1),
9962 values[i*2].isUndefined() ? Operand(0u) : values[i*2],
9963 values[i*2+1].isUndefined() ? Operand(0u): values[i*2+1]);
9964 } else {
9965 values[i] = Operand(v1);
9966 }
9967 }
9968 values[2] = Operand(v1);
9969 values[3] = Operand(v1);
9970 } else {
9971 for (int i = 0; i < 4; i++)
9972 values[i] = enabled_channels & (1 << i) ? values[i] : Operand(v1);
9973 }
9974
9975 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
9976 enabled_channels, target, (bool) compr_op);
9977 return true;
9978 }
9979
9980 static void create_fs_exports(isel_context *ctx)
9981 {
9982 bool exported = false;
9983
9984 /* Export depth, stencil and sample mask. */
9985 if (ctx->outputs.mask[FRAG_RESULT_DEPTH] ||
9986 ctx->outputs.mask[FRAG_RESULT_STENCIL] ||
9987 ctx->outputs.mask[FRAG_RESULT_SAMPLE_MASK])
9988 exported |= export_fs_mrt_z(ctx);
9989
9990 /* Export all color render targets. */
9991 for (unsigned i = FRAG_RESULT_DATA0; i < FRAG_RESULT_DATA7 + 1; ++i)
9992 if (ctx->outputs.mask[i])
9993 exported |= export_fs_mrt_color(ctx, i);
9994
9995 if (!exported)
9996 create_null_export(ctx);
9997 }
9998
9999 static void write_tcs_tess_factors(isel_context *ctx)
10000 {
10001 unsigned outer_comps;
10002 unsigned inner_comps;
10003
10004 switch (ctx->args->options->key.tcs.primitive_mode) {
10005 case GL_ISOLINES:
10006 outer_comps = 2;
10007 inner_comps = 0;
10008 break;
10009 case GL_TRIANGLES:
10010 outer_comps = 3;
10011 inner_comps = 1;
10012 break;
10013 case GL_QUADS:
10014 outer_comps = 4;
10015 inner_comps = 2;
10016 break;
10017 default:
10018 return;
10019 }
10020
10021 Builder bld(ctx->program, ctx->block);
10022
10023 bld.barrier(aco_opcode::p_memory_barrier_shared);
10024 if (unlikely(ctx->program->chip_class != GFX6 && ctx->program->workgroup_size > ctx->program->wave_size))
10025 bld.sopp(aco_opcode::s_barrier);
10026
10027 Temp tcs_rel_ids = get_arg(ctx, ctx->args->ac.tcs_rel_ids);
10028 Temp invocation_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), tcs_rel_ids, Operand(8u), Operand(5u));
10029
10030 Temp invocation_id_is_zero = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), invocation_id);
10031 if_context ic_invocation_id_is_zero;
10032 begin_divergent_if_then(ctx, &ic_invocation_id_is_zero, invocation_id_is_zero);
10033 bld.reset(ctx->block);
10034
10035 Temp hs_ring_tess_factor = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_FACTOR * 16u));
10036
10037 std::pair<Temp, unsigned> lds_base = get_tcs_output_lds_offset(ctx);
10038 unsigned stride = inner_comps + outer_comps;
10039 unsigned lds_align = calculate_lds_alignment(ctx, lds_base.second);
10040 Temp tf_inner_vec;
10041 Temp tf_outer_vec;
10042 Temp out[6];
10043 assert(stride <= (sizeof(out) / sizeof(Temp)));
10044
10045 if (ctx->args->options->key.tcs.primitive_mode == GL_ISOLINES) {
10046 // LINES reversal
10047 tf_outer_vec = load_lds(ctx, 4, bld.tmp(v2), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_out_loc, lds_align);
10048 out[1] = emit_extract_vector(ctx, tf_outer_vec, 0, v1);
10049 out[0] = emit_extract_vector(ctx, tf_outer_vec, 1, v1);
10050 } else {
10051 tf_outer_vec = load_lds(ctx, 4, bld.tmp(RegClass(RegType::vgpr, outer_comps)), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_out_loc, lds_align);
10052 tf_inner_vec = load_lds(ctx, 4, bld.tmp(RegClass(RegType::vgpr, inner_comps)), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_in_loc, lds_align);
10053
10054 for (unsigned i = 0; i < outer_comps; ++i)
10055 out[i] = emit_extract_vector(ctx, tf_outer_vec, i, v1);
10056 for (unsigned i = 0; i < inner_comps; ++i)
10057 out[outer_comps + i] = emit_extract_vector(ctx, tf_inner_vec, i, v1);
10058 }
10059
10060 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
10061 Temp tf_base = get_arg(ctx, ctx->args->tess_factor_offset);
10062 Temp byte_offset = bld.v_mul_imm(bld.def(v1), rel_patch_id, stride * 4u);
10063 unsigned tf_const_offset = 0;
10064
10065 if (ctx->program->chip_class <= GFX8) {
10066 Temp rel_patch_id_is_zero = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), rel_patch_id);
10067 if_context ic_rel_patch_id_is_zero;
10068 begin_divergent_if_then(ctx, &ic_rel_patch_id_is_zero, rel_patch_id_is_zero);
10069 bld.reset(ctx->block);
10070
10071 /* Store the dynamic HS control word. */
10072 Temp control_word = bld.copy(bld.def(v1), Operand(0x80000000u));
10073 bld.mubuf(aco_opcode::buffer_store_dword,
10074 /* SRSRC */ hs_ring_tess_factor, /* VADDR */ Operand(v1), /* SOFFSET */ tf_base, /* VDATA */ control_word,
10075 /* immediate OFFSET */ 0, /* OFFEN */ false, /* idxen*/ false, /* addr64 */ false,
10076 /* disable_wqm */ false, /* glc */ true);
10077 tf_const_offset += 4;
10078
10079 begin_divergent_if_else(ctx, &ic_rel_patch_id_is_zero);
10080 end_divergent_if(ctx, &ic_rel_patch_id_is_zero);
10081 bld.reset(ctx->block);
10082 }
10083
10084 assert(stride == 2 || stride == 4 || stride == 6);
10085 Temp tf_vec = create_vec_from_array(ctx, out, stride, RegType::vgpr, 4u);
10086 store_vmem_mubuf(ctx, tf_vec, hs_ring_tess_factor, byte_offset, tf_base, tf_const_offset, 4, (1 << stride) - 1, true, false);
10087
10088 /* Store to offchip for TES to read - only if TES reads them */
10089 if (ctx->args->options->key.tcs.tes_reads_tess_factors) {
10090 Temp hs_ring_tess_offchip = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
10091 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
10092
10093 std::pair<Temp, unsigned> vmem_offs_outer = get_tcs_per_patch_output_vmem_offset(ctx, nullptr, ctx->tcs_tess_lvl_out_loc);
10094 store_vmem_mubuf(ctx, tf_outer_vec, hs_ring_tess_offchip, vmem_offs_outer.first, oc_lds, vmem_offs_outer.second, 4, (1 << outer_comps) - 1, true, false);
10095
10096 if (likely(inner_comps)) {
10097 std::pair<Temp, unsigned> vmem_offs_inner = get_tcs_per_patch_output_vmem_offset(ctx, nullptr, ctx->tcs_tess_lvl_in_loc);
10098 store_vmem_mubuf(ctx, tf_inner_vec, hs_ring_tess_offchip, vmem_offs_inner.first, oc_lds, vmem_offs_inner.second, 4, (1 << inner_comps) - 1, true, false);
10099 }
10100 }
10101
10102 begin_divergent_if_else(ctx, &ic_invocation_id_is_zero);
10103 end_divergent_if(ctx, &ic_invocation_id_is_zero);
10104 }
10105
10106 static void emit_stream_output(isel_context *ctx,
10107 Temp const *so_buffers,
10108 Temp const *so_write_offset,
10109 const struct radv_stream_output *output)
10110 {
10111 unsigned num_comps = util_bitcount(output->component_mask);
10112 unsigned writemask = (1 << num_comps) - 1;
10113 unsigned loc = output->location;
10114 unsigned buf = output->buffer;
10115
10116 assert(num_comps && num_comps <= 4);
10117 if (!num_comps || num_comps > 4)
10118 return;
10119
10120 unsigned start = ffs(output->component_mask) - 1;
10121
10122 Temp out[4];
10123 bool all_undef = true;
10124 assert(ctx->stage & hw_vs);
10125 for (unsigned i = 0; i < num_comps; i++) {
10126 out[i] = ctx->outputs.temps[loc * 4 + start + i];
10127 all_undef = all_undef && !out[i].id();
10128 }
10129 if (all_undef)
10130 return;
10131
10132 while (writemask) {
10133 int start, count;
10134 u_bit_scan_consecutive_range(&writemask, &start, &count);
10135 if (count == 3 && ctx->options->chip_class == GFX6) {
10136 /* GFX6 doesn't support storing vec3, split it. */
10137 writemask |= 1u << (start + 2);
10138 count = 2;
10139 }
10140
10141 unsigned offset = output->offset + start * 4;
10142
10143 Temp write_data = {ctx->program->allocateId(), RegClass(RegType::vgpr, count)};
10144 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
10145 for (int i = 0; i < count; ++i)
10146 vec->operands[i] = (ctx->outputs.mask[loc] & 1 << (start + i)) ? Operand(out[start + i]) : Operand(0u);
10147 vec->definitions[0] = Definition(write_data);
10148 ctx->block->instructions.emplace_back(std::move(vec));
10149
10150 aco_opcode opcode;
10151 switch (count) {
10152 case 1:
10153 opcode = aco_opcode::buffer_store_dword;
10154 break;
10155 case 2:
10156 opcode = aco_opcode::buffer_store_dwordx2;
10157 break;
10158 case 3:
10159 opcode = aco_opcode::buffer_store_dwordx3;
10160 break;
10161 case 4:
10162 opcode = aco_opcode::buffer_store_dwordx4;
10163 break;
10164 default:
10165 unreachable("Unsupported dword count.");
10166 }
10167
10168 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
10169 store->operands[0] = Operand(so_buffers[buf]);
10170 store->operands[1] = Operand(so_write_offset[buf]);
10171 store->operands[2] = Operand((uint32_t) 0);
10172 store->operands[3] = Operand(write_data);
10173 if (offset > 4095) {
10174 /* Don't think this can happen in RADV, but maybe GL? It's easy to do this anyway. */
10175 Builder bld(ctx->program, ctx->block);
10176 store->operands[0] = bld.vadd32(bld.def(v1), Operand(offset), Operand(so_write_offset[buf]));
10177 } else {
10178 store->offset = offset;
10179 }
10180 store->offen = true;
10181 store->glc = true;
10182 store->dlc = false;
10183 store->slc = true;
10184 store->can_reorder = true;
10185 ctx->block->instructions.emplace_back(std::move(store));
10186 }
10187 }
10188
10189 static void emit_streamout(isel_context *ctx, unsigned stream)
10190 {
10191 Builder bld(ctx->program, ctx->block);
10192
10193 Temp so_buffers[4];
10194 Temp buf_ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->streamout_buffers));
10195 for (unsigned i = 0; i < 4; i++) {
10196 unsigned stride = ctx->program->info->so.strides[i];
10197 if (!stride)
10198 continue;
10199
10200 Operand off = bld.copy(bld.def(s1), Operand(i * 16u));
10201 so_buffers[i] = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), buf_ptr, off);
10202 }
10203
10204 Temp so_vtx_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10205 get_arg(ctx, ctx->args->streamout_config), Operand(0x70010u));
10206
10207 Temp tid = emit_mbcnt(ctx, bld.def(v1));
10208
10209 Temp can_emit = bld.vopc(aco_opcode::v_cmp_gt_i32, bld.def(bld.lm), so_vtx_count, tid);
10210
10211 if_context ic;
10212 begin_divergent_if_then(ctx, &ic, can_emit);
10213
10214 bld.reset(ctx->block);
10215
10216 Temp so_write_index = bld.vadd32(bld.def(v1), get_arg(ctx, ctx->args->streamout_write_idx), tid);
10217
10218 Temp so_write_offset[4];
10219
10220 for (unsigned i = 0; i < 4; i++) {
10221 unsigned stride = ctx->program->info->so.strides[i];
10222 if (!stride)
10223 continue;
10224
10225 if (stride == 1) {
10226 Temp offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
10227 get_arg(ctx, ctx->args->streamout_write_idx),
10228 get_arg(ctx, ctx->args->streamout_offset[i]));
10229 Temp new_offset = bld.vadd32(bld.def(v1), offset, tid);
10230
10231 so_write_offset[i] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), new_offset);
10232 } else {
10233 Temp offset = bld.v_mul_imm(bld.def(v1), so_write_index, stride * 4u);
10234 Temp offset2 = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(4u),
10235 get_arg(ctx, ctx->args->streamout_offset[i]));
10236 so_write_offset[i] = bld.vadd32(bld.def(v1), offset, offset2);
10237 }
10238 }
10239
10240 for (unsigned i = 0; i < ctx->program->info->so.num_outputs; i++) {
10241 struct radv_stream_output *output =
10242 &ctx->program->info->so.outputs[i];
10243 if (stream != output->stream)
10244 continue;
10245
10246 emit_stream_output(ctx, so_buffers, so_write_offset, output);
10247 }
10248
10249 begin_divergent_if_else(ctx, &ic);
10250 end_divergent_if(ctx, &ic);
10251 }
10252
10253 } /* end namespace */
10254
10255 void fix_ls_vgpr_init_bug(isel_context *ctx, Pseudo_instruction *startpgm)
10256 {
10257 assert(ctx->shader->info.stage == MESA_SHADER_VERTEX);
10258 Builder bld(ctx->program, ctx->block);
10259 constexpr unsigned hs_idx = 1u;
10260 Builder::Result hs_thread_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10261 get_arg(ctx, ctx->args->merged_wave_info),
10262 Operand((8u << 16) | (hs_idx * 8u)));
10263 Temp ls_has_nonzero_hs_threads = bool_to_vector_condition(ctx, hs_thread_count.def(1).getTemp());
10264
10265 /* If there are no HS threads, SPI mistakenly loads the LS VGPRs starting at VGPR 0. */
10266
10267 Temp instance_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10268 get_arg(ctx, ctx->args->rel_auto_id),
10269 get_arg(ctx, ctx->args->ac.instance_id),
10270 ls_has_nonzero_hs_threads);
10271 Temp rel_auto_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10272 get_arg(ctx, ctx->args->ac.tcs_rel_ids),
10273 get_arg(ctx, ctx->args->rel_auto_id),
10274 ls_has_nonzero_hs_threads);
10275 Temp vertex_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10276 get_arg(ctx, ctx->args->ac.tcs_patch_id),
10277 get_arg(ctx, ctx->args->ac.vertex_id),
10278 ls_has_nonzero_hs_threads);
10279
10280 ctx->arg_temps[ctx->args->ac.instance_id.arg_index] = instance_id;
10281 ctx->arg_temps[ctx->args->rel_auto_id.arg_index] = rel_auto_id;
10282 ctx->arg_temps[ctx->args->ac.vertex_id.arg_index] = vertex_id;
10283 }
10284
10285 void split_arguments(isel_context *ctx, Pseudo_instruction *startpgm)
10286 {
10287 /* Split all arguments except for the first (ring_offsets) and the last
10288 * (exec) so that the dead channels don't stay live throughout the program.
10289 */
10290 for (int i = 1; i < startpgm->definitions.size() - 1; i++) {
10291 if (startpgm->definitions[i].regClass().size() > 1) {
10292 emit_split_vector(ctx, startpgm->definitions[i].getTemp(),
10293 startpgm->definitions[i].regClass().size());
10294 }
10295 }
10296 }
10297
10298 void handle_bc_optimize(isel_context *ctx)
10299 {
10300 /* needed when SPI_PS_IN_CONTROL.BC_OPTIMIZE_DISABLE is set to 0 */
10301 Builder bld(ctx->program, ctx->block);
10302 uint32_t spi_ps_input_ena = ctx->program->config->spi_ps_input_ena;
10303 bool uses_center = G_0286CC_PERSP_CENTER_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTER_ENA(spi_ps_input_ena);
10304 bool uses_centroid = G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena);
10305 ctx->persp_centroid = get_arg(ctx, ctx->args->ac.persp_centroid);
10306 ctx->linear_centroid = get_arg(ctx, ctx->args->ac.linear_centroid);
10307 if (uses_center && uses_centroid) {
10308 Temp sel = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)),
10309 get_arg(ctx, ctx->args->ac.prim_mask), Operand(0u));
10310
10311 if (G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena)) {
10312 Temp new_coord[2];
10313 for (unsigned i = 0; i < 2; i++) {
10314 Temp persp_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_centroid), i, v1);
10315 Temp persp_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_center), i, v1);
10316 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10317 persp_centroid, persp_center, sel);
10318 }
10319 ctx->persp_centroid = bld.tmp(v2);
10320 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->persp_centroid),
10321 Operand(new_coord[0]), Operand(new_coord[1]));
10322 emit_split_vector(ctx, ctx->persp_centroid, 2);
10323 }
10324
10325 if (G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena)) {
10326 Temp new_coord[2];
10327 for (unsigned i = 0; i < 2; i++) {
10328 Temp linear_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_centroid), i, v1);
10329 Temp linear_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_center), i, v1);
10330 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10331 linear_centroid, linear_center, sel);
10332 }
10333 ctx->linear_centroid = bld.tmp(v2);
10334 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->linear_centroid),
10335 Operand(new_coord[0]), Operand(new_coord[1]));
10336 emit_split_vector(ctx, ctx->linear_centroid, 2);
10337 }
10338 }
10339 }
10340
10341 void setup_fp_mode(isel_context *ctx, nir_shader *shader)
10342 {
10343 Program *program = ctx->program;
10344
10345 unsigned float_controls = shader->info.float_controls_execution_mode;
10346
10347 program->next_fp_mode.preserve_signed_zero_inf_nan32 =
10348 float_controls & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32;
10349 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 =
10350 float_controls & (FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16 |
10351 FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64);
10352
10353 program->next_fp_mode.must_flush_denorms32 =
10354 float_controls & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32;
10355 program->next_fp_mode.must_flush_denorms16_64 =
10356 float_controls & (FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 |
10357 FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64);
10358
10359 program->next_fp_mode.care_about_round32 =
10360 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32);
10361
10362 program->next_fp_mode.care_about_round16_64 =
10363 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64 |
10364 FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
10365
10366 /* default to preserving fp16 and fp64 denorms, since it's free */
10367 if (program->next_fp_mode.must_flush_denorms16_64)
10368 program->next_fp_mode.denorm16_64 = 0;
10369 else
10370 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
10371
10372 /* preserving fp32 denorms is expensive, so only do it if asked */
10373 if (float_controls & FLOAT_CONTROLS_DENORM_PRESERVE_FP32)
10374 program->next_fp_mode.denorm32 = fp_denorm_keep;
10375 else
10376 program->next_fp_mode.denorm32 = 0;
10377
10378 if (float_controls & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32)
10379 program->next_fp_mode.round32 = fp_round_tz;
10380 else
10381 program->next_fp_mode.round32 = fp_round_ne;
10382
10383 if (float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64))
10384 program->next_fp_mode.round16_64 = fp_round_tz;
10385 else
10386 program->next_fp_mode.round16_64 = fp_round_ne;
10387
10388 ctx->block->fp_mode = program->next_fp_mode;
10389 }
10390
10391 void cleanup_cfg(Program *program)
10392 {
10393 /* create linear_succs/logical_succs */
10394 for (Block& BB : program->blocks) {
10395 for (unsigned idx : BB.linear_preds)
10396 program->blocks[idx].linear_succs.emplace_back(BB.index);
10397 for (unsigned idx : BB.logical_preds)
10398 program->blocks[idx].logical_succs.emplace_back(BB.index);
10399 }
10400 }
10401
10402 Temp merged_wave_info_to_mask(isel_context *ctx, unsigned i)
10403 {
10404 Builder bld(ctx->program, ctx->block);
10405
10406 /* The s_bfm only cares about s0.u[5:0] so we don't need either s_bfe nor s_and here */
10407 Temp count = i == 0
10408 ? get_arg(ctx, ctx->args->merged_wave_info)
10409 : bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc),
10410 get_arg(ctx, ctx->args->merged_wave_info), Operand(i * 8u));
10411
10412 Temp mask = bld.sop2(aco_opcode::s_bfm_b64, bld.def(s2), count, Operand(0u));
10413 Temp cond;
10414
10415 if (ctx->program->wave_size == 64) {
10416 /* Special case for 64 active invocations, because 64 doesn't work with s_bfm */
10417 Temp active_64 = bld.sopc(aco_opcode::s_bitcmp1_b32, bld.def(s1, scc), count, Operand(6u /* log2(64) */));
10418 cond = bld.sop2(Builder::s_cselect, bld.def(bld.lm), Operand(-1u), mask, bld.scc(active_64));
10419 } else {
10420 /* We use s_bfm_b64 (not _b32) which works with 32, but we need to extract the lower half of the register */
10421 cond = emit_extract_vector(ctx, mask, 0, bld.lm);
10422 }
10423
10424 return cond;
10425 }
10426
10427 bool ngg_early_prim_export(isel_context *ctx)
10428 {
10429 /* TODO: Check edge flags, and if they are written, return false. (Needed for OpenGL, not for Vulkan.) */
10430 return true;
10431 }
10432
10433 void ngg_emit_sendmsg_gs_alloc_req(isel_context *ctx)
10434 {
10435 Builder bld(ctx->program, ctx->block);
10436
10437 /* It is recommended to do the GS_ALLOC_REQ as soon and as quickly as possible, so we set the maximum priority (3). */
10438 bld.sopp(aco_opcode::s_setprio, -1u, 0x3u);
10439
10440 /* Get the id of the current wave within the threadgroup (workgroup) */
10441 Builder::Result wave_id_in_tg = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10442 get_arg(ctx, ctx->args->merged_wave_info), Operand(24u | (4u << 16)));
10443
10444 /* Execute the following code only on the first wave (wave id 0),
10445 * use the SCC def to tell if the wave id is zero or not.
10446 */
10447 Temp cond = wave_id_in_tg.def(1).getTemp();
10448 if_context ic;
10449 begin_uniform_if_then(ctx, &ic, cond);
10450 begin_uniform_if_else(ctx, &ic);
10451 bld.reset(ctx->block);
10452
10453 /* Number of vertices output by VS/TES */
10454 Temp vtx_cnt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10455 get_arg(ctx, ctx->args->gs_tg_info), Operand(12u | (9u << 16u)));
10456 /* Number of primitives output by VS/TES */
10457 Temp prm_cnt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10458 get_arg(ctx, ctx->args->gs_tg_info), Operand(22u | (9u << 16u)));
10459
10460 /* Put the number of vertices and primitives into m0 for the GS_ALLOC_REQ */
10461 Temp tmp = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), prm_cnt, Operand(12u));
10462 tmp = bld.sop2(aco_opcode::s_or_b32, bld.m0(bld.def(s1)), bld.def(s1, scc), tmp, vtx_cnt);
10463
10464 /* Request the SPI to allocate space for the primitives and vertices that will be exported by the threadgroup. */
10465 bld.sopp(aco_opcode::s_sendmsg, bld.m0(tmp), -1, sendmsg_gs_alloc_req);
10466
10467 /* After the GS_ALLOC_REQ is done, reset priority to default (0). */
10468 bld.sopp(aco_opcode::s_setprio, -1u, 0x0u);
10469
10470 end_uniform_if(ctx, &ic);
10471 }
10472
10473 Temp ngg_get_prim_exp_arg(isel_context *ctx, unsigned num_vertices, const Temp vtxindex[])
10474 {
10475 Builder bld(ctx->program, ctx->block);
10476
10477 if (ctx->args->options->key.vs_common_out.as_ngg_passthrough) {
10478 return get_arg(ctx, ctx->args->gs_vtx_offset[0]);
10479 }
10480
10481 Temp gs_invocation_id = get_arg(ctx, ctx->args->ac.gs_invocation_id);
10482 Temp tmp;
10483
10484 for (unsigned i = 0; i < num_vertices; ++i) {
10485 assert(vtxindex[i].id());
10486
10487 if (i)
10488 tmp = bld.vop3(aco_opcode::v_lshl_add_u32, bld.def(v1), vtxindex[i], Operand(10u * i), tmp);
10489 else
10490 tmp = vtxindex[i];
10491
10492 /* The initial edge flag is always false in tess eval shaders. */
10493 if (ctx->stage == ngg_vertex_gs) {
10494 Temp edgeflag = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), gs_invocation_id, Operand(8 + i), Operand(1u));
10495 tmp = bld.vop3(aco_opcode::v_lshl_add_u32, bld.def(v1), edgeflag, Operand(10u * i + 9u), tmp);
10496 }
10497 }
10498
10499 /* TODO: Set isnull field in case of merged NGG VS+GS. */
10500
10501 return tmp;
10502 }
10503
10504 void ngg_emit_prim_export(isel_context *ctx, unsigned num_vertices_per_primitive, const Temp vtxindex[])
10505 {
10506 Builder bld(ctx->program, ctx->block);
10507 Temp prim_exp_arg = ngg_get_prim_exp_arg(ctx, num_vertices_per_primitive, vtxindex);
10508
10509 bld.exp(aco_opcode::exp, prim_exp_arg, Operand(v1), Operand(v1), Operand(v1),
10510 1 /* enabled mask */, V_008DFC_SQ_EXP_PRIM /* dest */,
10511 false /* compressed */, true/* done */, false /* valid mask */);
10512 }
10513
10514 void ngg_emit_nogs_gsthreads(isel_context *ctx)
10515 {
10516 /* Emit the things that NGG GS threads need to do, for shaders that don't have SW GS.
10517 * These must always come before VS exports.
10518 *
10519 * It is recommended to do these as early as possible. They can be at the beginning when
10520 * there is no SW GS and the shader doesn't write edge flags.
10521 */
10522
10523 if_context ic;
10524 Temp is_gs_thread = merged_wave_info_to_mask(ctx, 1);
10525 begin_divergent_if_then(ctx, &ic, is_gs_thread);
10526
10527 Builder bld(ctx->program, ctx->block);
10528 constexpr unsigned max_vertices_per_primitive = 3;
10529 unsigned num_vertices_per_primitive = max_vertices_per_primitive;
10530
10531 if (ctx->stage == ngg_vertex_gs) {
10532 /* TODO: optimize for points & lines */
10533 } else if (ctx->stage == ngg_tess_eval_gs) {
10534 if (ctx->shader->info.tess.point_mode)
10535 num_vertices_per_primitive = 1;
10536 else if (ctx->shader->info.tess.primitive_mode == GL_ISOLINES)
10537 num_vertices_per_primitive = 2;
10538 } else {
10539 unreachable("Unsupported NGG shader stage");
10540 }
10541
10542 Temp vtxindex[max_vertices_per_primitive];
10543 vtxindex[0] = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu),
10544 get_arg(ctx, ctx->args->gs_vtx_offset[0]));
10545 vtxindex[1] = num_vertices_per_primitive < 2 ? Temp(0, v1) :
10546 bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
10547 get_arg(ctx, ctx->args->gs_vtx_offset[0]), Operand(16u), Operand(16u));
10548 vtxindex[2] = num_vertices_per_primitive < 3 ? Temp(0, v1) :
10549 bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu),
10550 get_arg(ctx, ctx->args->gs_vtx_offset[2]));
10551
10552 /* Export primitive data to the index buffer. */
10553 ngg_emit_prim_export(ctx, num_vertices_per_primitive, vtxindex);
10554
10555 /* Export primitive ID. */
10556 if (ctx->stage == ngg_vertex_gs && ctx->args->options->key.vs_common_out.export_prim_id) {
10557 /* Copy Primitive IDs from GS threads to the LDS address corresponding to the ES thread of the provoking vertex. */
10558 Temp prim_id = get_arg(ctx, ctx->args->ac.gs_prim_id);
10559 Temp provoking_vtx_index = vtxindex[0];
10560 Temp addr = bld.v_mul_imm(bld.def(v1), provoking_vtx_index, 4u);
10561
10562 store_lds(ctx, 4, prim_id, 0x1u, addr, 0u, 4u);
10563 }
10564
10565 begin_divergent_if_else(ctx, &ic);
10566 end_divergent_if(ctx, &ic);
10567 }
10568
10569 void ngg_emit_nogs_output(isel_context *ctx)
10570 {
10571 /* Emits NGG GS output, for stages that don't have SW GS. */
10572
10573 if_context ic;
10574 Builder bld(ctx->program, ctx->block);
10575 bool late_prim_export = !ngg_early_prim_export(ctx);
10576
10577 /* NGG streamout is currently disabled by default. */
10578 assert(!ctx->args->shader_info->so.num_outputs);
10579
10580 if (late_prim_export) {
10581 /* VS exports are output to registers in a predecessor block. Emit phis to get them into this block. */
10582 create_export_phis(ctx);
10583 /* Do what we need to do in the GS threads. */
10584 ngg_emit_nogs_gsthreads(ctx);
10585
10586 /* What comes next should be executed on ES threads. */
10587 Temp is_es_thread = merged_wave_info_to_mask(ctx, 0);
10588 begin_divergent_if_then(ctx, &ic, is_es_thread);
10589 bld.reset(ctx->block);
10590 }
10591
10592 /* Export VS outputs */
10593 ctx->block->kind |= block_kind_export_end;
10594 create_vs_exports(ctx);
10595
10596 /* Export primitive ID */
10597 if (ctx->args->options->key.vs_common_out.export_prim_id) {
10598 Temp prim_id;
10599
10600 if (ctx->stage == ngg_vertex_gs) {
10601 /* Wait for GS threads to store primitive ID in LDS. */
10602 bld.barrier(aco_opcode::p_memory_barrier_shared);
10603 bld.sopp(aco_opcode::s_barrier);
10604
10605 /* Calculate LDS address where the GS threads stored the primitive ID. */
10606 Temp wave_id_in_tg = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10607 get_arg(ctx, ctx->args->merged_wave_info), Operand(24u | (4u << 16)));
10608 Temp thread_id_in_wave = emit_mbcnt(ctx, bld.def(v1));
10609 Temp wave_id_mul = bld.v_mul_imm(bld.def(v1), as_vgpr(ctx, wave_id_in_tg), ctx->program->wave_size);
10610 Temp thread_id_in_tg = bld.vadd32(bld.def(v1), Operand(wave_id_mul), Operand(thread_id_in_wave));
10611 Temp addr = bld.v_mul_imm(bld.def(v1), thread_id_in_tg, 4u);
10612
10613 /* Load primitive ID from LDS. */
10614 prim_id = load_lds(ctx, 4, bld.tmp(v1), addr, 0u, 4u);
10615 } else if (ctx->stage == ngg_tess_eval_gs) {
10616 /* TES: Just use the patch ID as the primitive ID. */
10617 prim_id = get_arg(ctx, ctx->args->ac.tes_patch_id);
10618 } else {
10619 unreachable("unsupported NGG shader stage.");
10620 }
10621
10622 ctx->outputs.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
10623 ctx->outputs.temps[VARYING_SLOT_PRIMITIVE_ID * 4u] = prim_id;
10624
10625 export_vs_varying(ctx, VARYING_SLOT_PRIMITIVE_ID, false, nullptr);
10626 }
10627
10628 if (late_prim_export) {
10629 begin_divergent_if_else(ctx, &ic);
10630 end_divergent_if(ctx, &ic);
10631 bld.reset(ctx->block);
10632 }
10633 }
10634
10635 void select_program(Program *program,
10636 unsigned shader_count,
10637 struct nir_shader *const *shaders,
10638 ac_shader_config* config,
10639 struct radv_shader_args *args)
10640 {
10641 isel_context ctx = setup_isel_context(program, shader_count, shaders, config, args, false);
10642 if_context ic_merged_wave_info;
10643 bool ngg_no_gs = ctx.stage == ngg_vertex_gs || ctx.stage == ngg_tess_eval_gs;
10644
10645 for (unsigned i = 0; i < shader_count; i++) {
10646 nir_shader *nir = shaders[i];
10647 init_context(&ctx, nir);
10648
10649 setup_fp_mode(&ctx, nir);
10650
10651 if (!i) {
10652 /* needs to be after init_context() for FS */
10653 Pseudo_instruction *startpgm = add_startpgm(&ctx);
10654 append_logical_start(ctx.block);
10655
10656 if (unlikely(args->options->has_ls_vgpr_init_bug && ctx.stage == vertex_tess_control_hs))
10657 fix_ls_vgpr_init_bug(&ctx, startpgm);
10658
10659 split_arguments(&ctx, startpgm);
10660 }
10661
10662 if (ngg_no_gs) {
10663 ngg_emit_sendmsg_gs_alloc_req(&ctx);
10664
10665 if (ngg_early_prim_export(&ctx))
10666 ngg_emit_nogs_gsthreads(&ctx);
10667 }
10668
10669 /* In a merged VS+TCS HS, the VS implementation can be completely empty. */
10670 nir_function_impl *func = nir_shader_get_entrypoint(nir);
10671 bool empty_shader = nir_cf_list_is_empty_block(&func->body) &&
10672 ((nir->info.stage == MESA_SHADER_VERTEX &&
10673 (ctx.stage == vertex_tess_control_hs || ctx.stage == vertex_geometry_gs)) ||
10674 (nir->info.stage == MESA_SHADER_TESS_EVAL &&
10675 ctx.stage == tess_eval_geometry_gs));
10676
10677 bool check_merged_wave_info = ctx.tcs_in_out_eq ? i == 0 : ((shader_count >= 2 && !empty_shader) || ngg_no_gs);
10678 bool endif_merged_wave_info = ctx.tcs_in_out_eq ? i == 1 : check_merged_wave_info;
10679 if (check_merged_wave_info) {
10680 Temp cond = merged_wave_info_to_mask(&ctx, i);
10681 begin_divergent_if_then(&ctx, &ic_merged_wave_info, cond);
10682 }
10683
10684 if (i) {
10685 Builder bld(ctx.program, ctx.block);
10686
10687 bld.barrier(aco_opcode::p_memory_barrier_shared);
10688 bld.sopp(aco_opcode::s_barrier);
10689
10690 if (ctx.stage == vertex_geometry_gs || ctx.stage == tess_eval_geometry_gs) {
10691 ctx.gs_wave_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1, m0), bld.def(s1, scc), get_arg(&ctx, args->merged_wave_info), Operand((8u << 16) | 16u));
10692 }
10693 } else if (ctx.stage == geometry_gs)
10694 ctx.gs_wave_id = get_arg(&ctx, args->gs_wave_id);
10695
10696 if (ctx.stage == fragment_fs)
10697 handle_bc_optimize(&ctx);
10698
10699 visit_cf_list(&ctx, &func->body);
10700
10701 if (ctx.program->info->so.num_outputs && (ctx.stage & hw_vs))
10702 emit_streamout(&ctx, 0);
10703
10704 if (ctx.stage & hw_vs) {
10705 create_vs_exports(&ctx);
10706 ctx.block->kind |= block_kind_export_end;
10707 } else if (ngg_no_gs && ngg_early_prim_export(&ctx)) {
10708 ngg_emit_nogs_output(&ctx);
10709 } else if (nir->info.stage == MESA_SHADER_GEOMETRY) {
10710 Builder bld(ctx.program, ctx.block);
10711 bld.barrier(aco_opcode::p_memory_barrier_gs_data);
10712 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx.gs_wave_id), -1, sendmsg_gs_done(false, false, 0));
10713 } else if (nir->info.stage == MESA_SHADER_TESS_CTRL) {
10714 write_tcs_tess_factors(&ctx);
10715 }
10716
10717 if (ctx.stage == fragment_fs) {
10718 create_fs_exports(&ctx);
10719 ctx.block->kind |= block_kind_export_end;
10720 }
10721
10722 if (endif_merged_wave_info) {
10723 begin_divergent_if_else(&ctx, &ic_merged_wave_info);
10724 end_divergent_if(&ctx, &ic_merged_wave_info);
10725 }
10726
10727 if (ngg_no_gs && !ngg_early_prim_export(&ctx))
10728 ngg_emit_nogs_output(&ctx);
10729
10730 ralloc_free(ctx.divergent_vals);
10731
10732 if (i == 0 && ctx.stage == vertex_tess_control_hs && ctx.tcs_in_out_eq) {
10733 /* Outputs of the previous stage are inputs to the next stage */
10734 ctx.inputs = ctx.outputs;
10735 ctx.outputs = shader_io_state();
10736 }
10737 }
10738
10739 program->config->float_mode = program->blocks[0].fp_mode.val;
10740
10741 append_logical_end(ctx.block);
10742 ctx.block->kind |= block_kind_uniform;
10743 Builder bld(ctx.program, ctx.block);
10744 if (ctx.program->wb_smem_l1_on_end)
10745 bld.smem(aco_opcode::s_dcache_wb, false);
10746 bld.sopp(aco_opcode::s_endpgm);
10747
10748 cleanup_cfg(program);
10749 }
10750
10751 void select_gs_copy_shader(Program *program, struct nir_shader *gs_shader,
10752 ac_shader_config* config,
10753 struct radv_shader_args *args)
10754 {
10755 isel_context ctx = setup_isel_context(program, 1, &gs_shader, config, args, true);
10756
10757 program->next_fp_mode.preserve_signed_zero_inf_nan32 = false;
10758 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 = false;
10759 program->next_fp_mode.must_flush_denorms32 = false;
10760 program->next_fp_mode.must_flush_denorms16_64 = false;
10761 program->next_fp_mode.care_about_round32 = false;
10762 program->next_fp_mode.care_about_round16_64 = false;
10763 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
10764 program->next_fp_mode.denorm32 = 0;
10765 program->next_fp_mode.round32 = fp_round_ne;
10766 program->next_fp_mode.round16_64 = fp_round_ne;
10767 ctx.block->fp_mode = program->next_fp_mode;
10768
10769 add_startpgm(&ctx);
10770 append_logical_start(ctx.block);
10771
10772 Builder bld(ctx.program, ctx.block);
10773
10774 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), program->private_segment_buffer, Operand(RING_GSVS_VS * 16u));
10775
10776 Operand stream_id(0u);
10777 if (args->shader_info->so.num_outputs)
10778 stream_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10779 get_arg(&ctx, ctx.args->streamout_config), Operand(0x20018u));
10780
10781 Temp vtx_offset = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), get_arg(&ctx, ctx.args->ac.vertex_id));
10782
10783 std::stack<Block> endif_blocks;
10784
10785 for (unsigned stream = 0; stream < 4; stream++) {
10786 if (stream_id.isConstant() && stream != stream_id.constantValue())
10787 continue;
10788
10789 unsigned num_components = args->shader_info->gs.num_stream_output_components[stream];
10790 if (stream > 0 && (!num_components || !args->shader_info->so.num_outputs))
10791 continue;
10792
10793 memset(ctx.outputs.mask, 0, sizeof(ctx.outputs.mask));
10794
10795 unsigned BB_if_idx = ctx.block->index;
10796 Block BB_endif = Block();
10797 if (!stream_id.isConstant()) {
10798 /* begin IF */
10799 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), stream_id, Operand(stream));
10800 append_logical_end(ctx.block);
10801 ctx.block->kind |= block_kind_uniform;
10802 bld.branch(aco_opcode::p_cbranch_z, cond);
10803
10804 BB_endif.kind |= ctx.block->kind & block_kind_top_level;
10805
10806 ctx.block = ctx.program->create_and_insert_block();
10807 add_edge(BB_if_idx, ctx.block);
10808 bld.reset(ctx.block);
10809 append_logical_start(ctx.block);
10810 }
10811
10812 unsigned offset = 0;
10813 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
10814 if (args->shader_info->gs.output_streams[i] != stream)
10815 continue;
10816
10817 unsigned output_usage_mask = args->shader_info->gs.output_usage_mask[i];
10818 unsigned length = util_last_bit(output_usage_mask);
10819 for (unsigned j = 0; j < length; ++j) {
10820 if (!(output_usage_mask & (1 << j)))
10821 continue;
10822
10823 unsigned const_offset = offset * args->shader_info->gs.vertices_out * 16 * 4;
10824 Temp voffset = vtx_offset;
10825 if (const_offset >= 4096u) {
10826 voffset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), voffset);
10827 const_offset %= 4096u;
10828 }
10829
10830 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dword, Format::MUBUF, 3, 1)};
10831 mubuf->definitions[0] = bld.def(v1);
10832 mubuf->operands[0] = Operand(gsvs_ring);
10833 mubuf->operands[1] = Operand(voffset);
10834 mubuf->operands[2] = Operand(0u);
10835 mubuf->offen = true;
10836 mubuf->offset = const_offset;
10837 mubuf->glc = true;
10838 mubuf->slc = true;
10839 mubuf->dlc = args->options->chip_class >= GFX10;
10840 mubuf->barrier = barrier_none;
10841 mubuf->can_reorder = true;
10842
10843 ctx.outputs.mask[i] |= 1 << j;
10844 ctx.outputs.temps[i * 4u + j] = mubuf->definitions[0].getTemp();
10845
10846 bld.insert(std::move(mubuf));
10847
10848 offset++;
10849 }
10850 }
10851
10852 if (args->shader_info->so.num_outputs) {
10853 emit_streamout(&ctx, stream);
10854 bld.reset(ctx.block);
10855 }
10856
10857 if (stream == 0) {
10858 create_vs_exports(&ctx);
10859 ctx.block->kind |= block_kind_export_end;
10860 }
10861
10862 if (!stream_id.isConstant()) {
10863 append_logical_end(ctx.block);
10864
10865 /* branch from then block to endif block */
10866 bld.branch(aco_opcode::p_branch);
10867 add_edge(ctx.block->index, &BB_endif);
10868 ctx.block->kind |= block_kind_uniform;
10869
10870 /* emit else block */
10871 ctx.block = ctx.program->create_and_insert_block();
10872 add_edge(BB_if_idx, ctx.block);
10873 bld.reset(ctx.block);
10874 append_logical_start(ctx.block);
10875
10876 endif_blocks.push(std::move(BB_endif));
10877 }
10878 }
10879
10880 while (!endif_blocks.empty()) {
10881 Block BB_endif = std::move(endif_blocks.top());
10882 endif_blocks.pop();
10883
10884 Block *BB_else = ctx.block;
10885
10886 append_logical_end(BB_else);
10887 /* branch from else block to endif block */
10888 bld.branch(aco_opcode::p_branch);
10889 add_edge(BB_else->index, &BB_endif);
10890 BB_else->kind |= block_kind_uniform;
10891
10892 /** emit endif merge block */
10893 ctx.block = program->insert_block(std::move(BB_endif));
10894 bld.reset(ctx.block);
10895 append_logical_start(ctx.block);
10896 }
10897
10898 program->config->float_mode = program->blocks[0].fp_mode.val;
10899
10900 append_logical_end(ctx.block);
10901 ctx.block->kind |= block_kind_uniform;
10902 bld.sopp(aco_opcode::s_endpgm);
10903
10904 cleanup_cfg(program);
10905 }
10906 }