aco: Enable running TES as ES, including merged TES+GS.
[mesa.git] / src / amd / compiler / aco_instruction_selection.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 * Copyright © 2018 Google
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <algorithm>
27 #include <array>
28 #include <stack>
29 #include <map>
30
31 #include "ac_shader_util.h"
32 #include "aco_ir.h"
33 #include "aco_builder.h"
34 #include "aco_interface.h"
35 #include "aco_instruction_selection_setup.cpp"
36 #include "util/fast_idiv_by_const.h"
37
38 namespace aco {
39 namespace {
40
41 class loop_info_RAII {
42 isel_context* ctx;
43 unsigned header_idx_old;
44 Block* exit_old;
45 bool divergent_cont_old;
46 bool divergent_branch_old;
47 bool divergent_if_old;
48
49 public:
50 loop_info_RAII(isel_context* ctx, unsigned loop_header_idx, Block* loop_exit)
51 : ctx(ctx),
52 header_idx_old(ctx->cf_info.parent_loop.header_idx), exit_old(ctx->cf_info.parent_loop.exit),
53 divergent_cont_old(ctx->cf_info.parent_loop.has_divergent_continue),
54 divergent_branch_old(ctx->cf_info.parent_loop.has_divergent_branch),
55 divergent_if_old(ctx->cf_info.parent_if.is_divergent)
56 {
57 ctx->cf_info.parent_loop.header_idx = loop_header_idx;
58 ctx->cf_info.parent_loop.exit = loop_exit;
59 ctx->cf_info.parent_loop.has_divergent_continue = false;
60 ctx->cf_info.parent_loop.has_divergent_branch = false;
61 ctx->cf_info.parent_if.is_divergent = false;
62 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
63 }
64
65 ~loop_info_RAII()
66 {
67 ctx->cf_info.parent_loop.header_idx = header_idx_old;
68 ctx->cf_info.parent_loop.exit = exit_old;
69 ctx->cf_info.parent_loop.has_divergent_continue = divergent_cont_old;
70 ctx->cf_info.parent_loop.has_divergent_branch = divergent_branch_old;
71 ctx->cf_info.parent_if.is_divergent = divergent_if_old;
72 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth - 1;
73 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent)
74 ctx->cf_info.exec_potentially_empty_discard = false;
75 }
76 };
77
78 struct if_context {
79 Temp cond;
80
81 bool divergent_old;
82 bool exec_potentially_empty_discard_old;
83 bool exec_potentially_empty_break_old;
84 uint16_t exec_potentially_empty_break_depth_old;
85
86 unsigned BB_if_idx;
87 unsigned invert_idx;
88 bool then_branch_divergent;
89 Block BB_invert;
90 Block BB_endif;
91 };
92
93 static void visit_cf_list(struct isel_context *ctx,
94 struct exec_list *list);
95
96 static void add_logical_edge(unsigned pred_idx, Block *succ)
97 {
98 succ->logical_preds.emplace_back(pred_idx);
99 }
100
101
102 static void add_linear_edge(unsigned pred_idx, Block *succ)
103 {
104 succ->linear_preds.emplace_back(pred_idx);
105 }
106
107 static void add_edge(unsigned pred_idx, Block *succ)
108 {
109 add_logical_edge(pred_idx, succ);
110 add_linear_edge(pred_idx, succ);
111 }
112
113 static void append_logical_start(Block *b)
114 {
115 Builder(NULL, b).pseudo(aco_opcode::p_logical_start);
116 }
117
118 static void append_logical_end(Block *b)
119 {
120 Builder(NULL, b).pseudo(aco_opcode::p_logical_end);
121 }
122
123 Temp get_ssa_temp(struct isel_context *ctx, nir_ssa_def *def)
124 {
125 assert(ctx->allocated[def->index].id());
126 return ctx->allocated[def->index];
127 }
128
129 Temp emit_mbcnt(isel_context *ctx, Definition dst,
130 Operand mask_lo = Operand((uint32_t) -1), Operand mask_hi = Operand((uint32_t) -1))
131 {
132 Builder bld(ctx->program, ctx->block);
133 Definition lo_def = ctx->program->wave_size == 32 ? dst : bld.def(v1);
134 Temp thread_id_lo = bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, lo_def, mask_lo, Operand(0u));
135
136 if (ctx->program->wave_size == 32) {
137 return thread_id_lo;
138 } else {
139 Temp thread_id_hi = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32, dst, mask_hi, thread_id_lo);
140 return thread_id_hi;
141 }
142 }
143
144 Temp emit_wqm(isel_context *ctx, Temp src, Temp dst=Temp(0, s1), bool program_needs_wqm = false)
145 {
146 Builder bld(ctx->program, ctx->block);
147
148 if (!dst.id())
149 dst = bld.tmp(src.regClass());
150
151 assert(src.size() == dst.size());
152
153 if (ctx->stage != fragment_fs) {
154 if (!dst.id())
155 return src;
156
157 bld.copy(Definition(dst), src);
158 return dst;
159 }
160
161 bld.pseudo(aco_opcode::p_wqm, Definition(dst), src);
162 ctx->program->needs_wqm |= program_needs_wqm;
163 return dst;
164 }
165
166 static Temp emit_bpermute(isel_context *ctx, Builder &bld, Temp index, Temp data)
167 {
168 if (index.regClass() == s1)
169 return bld.readlane(bld.def(s1), data, index);
170
171 Temp index_x4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), index);
172
173 /* Currently not implemented on GFX6-7 */
174 assert(ctx->options->chip_class >= GFX8);
175
176 if (ctx->options->chip_class <= GFX9 || ctx->program->wave_size == 32) {
177 return bld.ds(aco_opcode::ds_bpermute_b32, bld.def(v1), index_x4, data);
178 }
179
180 /* GFX10, wave64 mode:
181 * The bpermute instruction is limited to half-wave operation, which means that it can't
182 * properly support subgroup shuffle like older generations (or wave32 mode), so we
183 * emulate it here.
184 */
185 if (!ctx->has_gfx10_wave64_bpermute) {
186 ctx->has_gfx10_wave64_bpermute = true;
187 ctx->program->config->num_shared_vgprs = 8; /* Shared VGPRs are allocated in groups of 8 */
188 ctx->program->vgpr_limit -= 4; /* We allocate 8 shared VGPRs, so we'll have 4 fewer normal VGPRs */
189 }
190
191 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
192 Temp lane_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), lane_id);
193 Temp index_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), index);
194 Temp cmp = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm, vcc), lane_is_hi, index_is_hi);
195
196 return bld.reduction(aco_opcode::p_wave64_bpermute, bld.def(v1), bld.def(s2), bld.def(s1, scc),
197 bld.vcc(cmp), Operand(v2.as_linear()), index_x4, data, gfx10_wave64_bpermute);
198 }
199
200 Temp as_vgpr(isel_context *ctx, Temp val)
201 {
202 if (val.type() == RegType::sgpr) {
203 Builder bld(ctx->program, ctx->block);
204 return bld.copy(bld.def(RegType::vgpr, val.size()), val);
205 }
206 assert(val.type() == RegType::vgpr);
207 return val;
208 }
209
210 //assumes a != 0xffffffff
211 void emit_v_div_u32(isel_context *ctx, Temp dst, Temp a, uint32_t b)
212 {
213 assert(b != 0);
214 Builder bld(ctx->program, ctx->block);
215
216 if (util_is_power_of_two_or_zero(b)) {
217 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)util_logbase2(b)), a);
218 return;
219 }
220
221 util_fast_udiv_info info = util_compute_fast_udiv_info(b, 32, 32);
222
223 assert(info.multiplier <= 0xffffffff);
224
225 bool pre_shift = info.pre_shift != 0;
226 bool increment = info.increment != 0;
227 bool multiply = true;
228 bool post_shift = info.post_shift != 0;
229
230 if (!pre_shift && !increment && !multiply && !post_shift) {
231 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), a);
232 return;
233 }
234
235 Temp pre_shift_dst = a;
236 if (pre_shift) {
237 pre_shift_dst = (increment || multiply || post_shift) ? bld.tmp(v1) : dst;
238 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(pre_shift_dst), Operand((uint32_t)info.pre_shift), a);
239 }
240
241 Temp increment_dst = pre_shift_dst;
242 if (increment) {
243 increment_dst = (post_shift || multiply) ? bld.tmp(v1) : dst;
244 bld.vadd32(Definition(increment_dst), Operand((uint32_t) info.increment), pre_shift_dst);
245 }
246
247 Temp multiply_dst = increment_dst;
248 if (multiply) {
249 multiply_dst = post_shift ? bld.tmp(v1) : dst;
250 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(multiply_dst), increment_dst,
251 bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand((uint32_t)info.multiplier)));
252 }
253
254 if (post_shift) {
255 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)info.post_shift), multiply_dst);
256 }
257 }
258
259 void emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, Temp dst)
260 {
261 Builder bld(ctx->program, ctx->block);
262 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(idx));
263 }
264
265
266 Temp emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, RegClass dst_rc)
267 {
268 /* no need to extract the whole vector */
269 if (src.regClass() == dst_rc) {
270 assert(idx == 0);
271 return src;
272 }
273 assert(src.size() > idx);
274 Builder bld(ctx->program, ctx->block);
275 auto it = ctx->allocated_vec.find(src.id());
276 /* the size check needs to be early because elements other than 0 may be garbage */
277 if (it != ctx->allocated_vec.end() && it->second[0].size() == dst_rc.size()) {
278 if (it->second[idx].regClass() == dst_rc) {
279 return it->second[idx];
280 } else {
281 assert(dst_rc.size() == it->second[idx].regClass().size());
282 assert(dst_rc.type() == RegType::vgpr && it->second[idx].type() == RegType::sgpr);
283 return bld.copy(bld.def(dst_rc), it->second[idx]);
284 }
285 }
286
287 if (src.size() == dst_rc.size()) {
288 assert(idx == 0);
289 return bld.copy(bld.def(dst_rc), src);
290 } else {
291 Temp dst = bld.tmp(dst_rc);
292 emit_extract_vector(ctx, src, idx, dst);
293 return dst;
294 }
295 }
296
297 void emit_split_vector(isel_context* ctx, Temp vec_src, unsigned num_components)
298 {
299 if (num_components == 1)
300 return;
301 if (ctx->allocated_vec.find(vec_src.id()) != ctx->allocated_vec.end())
302 return;
303 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_components)};
304 split->operands[0] = Operand(vec_src);
305 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
306 for (unsigned i = 0; i < num_components; i++) {
307 elems[i] = {ctx->program->allocateId(), RegClass(vec_src.type(), vec_src.size() / num_components)};
308 split->definitions[i] = Definition(elems[i]);
309 }
310 ctx->block->instructions.emplace_back(std::move(split));
311 ctx->allocated_vec.emplace(vec_src.id(), elems);
312 }
313
314 /* This vector expansion uses a mask to determine which elements in the new vector
315 * come from the original vector. The other elements are undefined. */
316 void expand_vector(isel_context* ctx, Temp vec_src, Temp dst, unsigned num_components, unsigned mask)
317 {
318 emit_split_vector(ctx, vec_src, util_bitcount(mask));
319
320 if (vec_src == dst)
321 return;
322
323 Builder bld(ctx->program, ctx->block);
324 if (num_components == 1) {
325 if (dst.type() == RegType::sgpr)
326 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec_src);
327 else
328 bld.copy(Definition(dst), vec_src);
329 return;
330 }
331
332 unsigned component_size = dst.size() / num_components;
333 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
334
335 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
336 vec->definitions[0] = Definition(dst);
337 unsigned k = 0;
338 for (unsigned i = 0; i < num_components; i++) {
339 if (mask & (1 << i)) {
340 Temp src = emit_extract_vector(ctx, vec_src, k++, RegClass(vec_src.type(), component_size));
341 if (dst.type() == RegType::sgpr)
342 src = bld.as_uniform(src);
343 vec->operands[i] = Operand(src);
344 } else {
345 vec->operands[i] = Operand(0u);
346 }
347 elems[i] = vec->operands[i].getTemp();
348 }
349 ctx->block->instructions.emplace_back(std::move(vec));
350 ctx->allocated_vec.emplace(dst.id(), elems);
351 }
352
353 Temp bool_to_vector_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s2))
354 {
355 Builder bld(ctx->program, ctx->block);
356 if (!dst.id())
357 dst = bld.tmp(bld.lm);
358
359 assert(val.regClass() == s1);
360 assert(dst.regClass() == bld.lm);
361
362 return bld.sop2(Builder::s_cselect, Definition(dst), Operand((uint32_t) -1), Operand(0u), bld.scc(val));
363 }
364
365 Temp bool_to_scalar_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s1))
366 {
367 Builder bld(ctx->program, ctx->block);
368 if (!dst.id())
369 dst = bld.tmp(s1);
370
371 assert(val.regClass() == bld.lm);
372 assert(dst.regClass() == s1);
373
374 /* if we're currently in WQM mode, ensure that the source is also computed in WQM */
375 Temp tmp = bld.tmp(s1);
376 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.scc(Definition(tmp)), val, Operand(exec, bld.lm));
377 return emit_wqm(ctx, tmp, dst);
378 }
379
380 Temp get_alu_src(struct isel_context *ctx, nir_alu_src src, unsigned size=1)
381 {
382 if (src.src.ssa->num_components == 1 && src.swizzle[0] == 0 && size == 1)
383 return get_ssa_temp(ctx, src.src.ssa);
384
385 if (src.src.ssa->num_components == size) {
386 bool identity_swizzle = true;
387 for (unsigned i = 0; identity_swizzle && i < size; i++) {
388 if (src.swizzle[i] != i)
389 identity_swizzle = false;
390 }
391 if (identity_swizzle)
392 return get_ssa_temp(ctx, src.src.ssa);
393 }
394
395 Temp vec = get_ssa_temp(ctx, src.src.ssa);
396 unsigned elem_size = vec.size() / src.src.ssa->num_components;
397 assert(elem_size > 0); /* TODO: 8 and 16-bit vectors not supported */
398 assert(vec.size() % elem_size == 0);
399
400 RegClass elem_rc = RegClass(vec.type(), elem_size);
401 if (size == 1) {
402 return emit_extract_vector(ctx, vec, src.swizzle[0], elem_rc);
403 } else {
404 assert(size <= 4);
405 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
406 aco_ptr<Pseudo_instruction> vec_instr{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
407 for (unsigned i = 0; i < size; ++i) {
408 elems[i] = emit_extract_vector(ctx, vec, src.swizzle[i], elem_rc);
409 vec_instr->operands[i] = Operand{elems[i]};
410 }
411 Temp dst{ctx->program->allocateId(), RegClass(vec.type(), elem_size * size)};
412 vec_instr->definitions[0] = Definition(dst);
413 ctx->block->instructions.emplace_back(std::move(vec_instr));
414 ctx->allocated_vec.emplace(dst.id(), elems);
415 return dst;
416 }
417 }
418
419 Temp convert_pointer_to_64_bit(isel_context *ctx, Temp ptr)
420 {
421 if (ptr.size() == 2)
422 return ptr;
423 Builder bld(ctx->program, ctx->block);
424 if (ptr.type() == RegType::vgpr)
425 ptr = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), ptr);
426 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s2),
427 ptr, Operand((unsigned)ctx->options->address32_hi));
428 }
429
430 void emit_sop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst, bool writes_scc)
431 {
432 aco_ptr<SOP2_instruction> sop2{create_instruction<SOP2_instruction>(op, Format::SOP2, 2, writes_scc ? 2 : 1)};
433 sop2->operands[0] = Operand(get_alu_src(ctx, instr->src[0]));
434 sop2->operands[1] = Operand(get_alu_src(ctx, instr->src[1]));
435 sop2->definitions[0] = Definition(dst);
436 if (writes_scc)
437 sop2->definitions[1] = Definition(ctx->program->allocateId(), scc, s1);
438 ctx->block->instructions.emplace_back(std::move(sop2));
439 }
440
441 void emit_vop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
442 bool commutative, bool swap_srcs=false, bool flush_denorms = false)
443 {
444 Builder bld(ctx->program, ctx->block);
445 Temp src0 = get_alu_src(ctx, instr->src[swap_srcs ? 1 : 0]);
446 Temp src1 = get_alu_src(ctx, instr->src[swap_srcs ? 0 : 1]);
447 if (src1.type() == RegType::sgpr) {
448 if (commutative && src0.type() == RegType::vgpr) {
449 Temp t = src0;
450 src0 = src1;
451 src1 = t;
452 } else if (src0.type() == RegType::vgpr &&
453 op != aco_opcode::v_madmk_f32 &&
454 op != aco_opcode::v_madak_f32 &&
455 op != aco_opcode::v_madmk_f16 &&
456 op != aco_opcode::v_madak_f16) {
457 /* If the instruction is not commutative, we emit a VOP3A instruction */
458 bld.vop2_e64(op, Definition(dst), src0, src1);
459 return;
460 } else {
461 src1 = bld.copy(bld.def(RegType::vgpr, src1.size()), src1); //TODO: as_vgpr
462 }
463 }
464
465 if (flush_denorms && ctx->program->chip_class < GFX9) {
466 assert(dst.size() == 1);
467 Temp tmp = bld.vop2(op, bld.def(v1), src0, src1);
468 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
469 } else {
470 bld.vop2(op, Definition(dst), src0, src1);
471 }
472 }
473
474 void emit_vop3a_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
475 bool flush_denorms = false)
476 {
477 Temp src0 = get_alu_src(ctx, instr->src[0]);
478 Temp src1 = get_alu_src(ctx, instr->src[1]);
479 Temp src2 = get_alu_src(ctx, instr->src[2]);
480
481 /* ensure that the instruction has at most 1 sgpr operand
482 * The optimizer will inline constants for us */
483 if (src0.type() == RegType::sgpr && src1.type() == RegType::sgpr)
484 src0 = as_vgpr(ctx, src0);
485 if (src1.type() == RegType::sgpr && src2.type() == RegType::sgpr)
486 src1 = as_vgpr(ctx, src1);
487 if (src2.type() == RegType::sgpr && src0.type() == RegType::sgpr)
488 src2 = as_vgpr(ctx, src2);
489
490 Builder bld(ctx->program, ctx->block);
491 if (flush_denorms && ctx->program->chip_class < GFX9) {
492 assert(dst.size() == 1);
493 Temp tmp = bld.vop3(op, Definition(dst), src0, src1, src2);
494 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
495 } else {
496 bld.vop3(op, Definition(dst), src0, src1, src2);
497 }
498 }
499
500 void emit_vop1_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
501 {
502 Builder bld(ctx->program, ctx->block);
503 bld.vop1(op, Definition(dst), get_alu_src(ctx, instr->src[0]));
504 }
505
506 void emit_vopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
507 {
508 Temp src0 = get_alu_src(ctx, instr->src[0]);
509 Temp src1 = get_alu_src(ctx, instr->src[1]);
510 assert(src0.size() == src1.size());
511
512 aco_ptr<Instruction> vopc;
513 if (src1.type() == RegType::sgpr) {
514 if (src0.type() == RegType::vgpr) {
515 /* to swap the operands, we might also have to change the opcode */
516 switch (op) {
517 case aco_opcode::v_cmp_lt_f32:
518 op = aco_opcode::v_cmp_gt_f32;
519 break;
520 case aco_opcode::v_cmp_ge_f32:
521 op = aco_opcode::v_cmp_le_f32;
522 break;
523 case aco_opcode::v_cmp_lt_i32:
524 op = aco_opcode::v_cmp_gt_i32;
525 break;
526 case aco_opcode::v_cmp_ge_i32:
527 op = aco_opcode::v_cmp_le_i32;
528 break;
529 case aco_opcode::v_cmp_lt_u32:
530 op = aco_opcode::v_cmp_gt_u32;
531 break;
532 case aco_opcode::v_cmp_ge_u32:
533 op = aco_opcode::v_cmp_le_u32;
534 break;
535 case aco_opcode::v_cmp_lt_f64:
536 op = aco_opcode::v_cmp_gt_f64;
537 break;
538 case aco_opcode::v_cmp_ge_f64:
539 op = aco_opcode::v_cmp_le_f64;
540 break;
541 case aco_opcode::v_cmp_lt_i64:
542 op = aco_opcode::v_cmp_gt_i64;
543 break;
544 case aco_opcode::v_cmp_ge_i64:
545 op = aco_opcode::v_cmp_le_i64;
546 break;
547 case aco_opcode::v_cmp_lt_u64:
548 op = aco_opcode::v_cmp_gt_u64;
549 break;
550 case aco_opcode::v_cmp_ge_u64:
551 op = aco_opcode::v_cmp_le_u64;
552 break;
553 default: /* eq and ne are commutative */
554 break;
555 }
556 Temp t = src0;
557 src0 = src1;
558 src1 = t;
559 } else {
560 src1 = as_vgpr(ctx, src1);
561 }
562 }
563
564 Builder bld(ctx->program, ctx->block);
565 bld.vopc(op, bld.hint_vcc(Definition(dst)), src0, src1);
566 }
567
568 void emit_sopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
569 {
570 Temp src0 = get_alu_src(ctx, instr->src[0]);
571 Temp src1 = get_alu_src(ctx, instr->src[1]);
572 Builder bld(ctx->program, ctx->block);
573
574 assert(dst.regClass() == bld.lm);
575 assert(src0.type() == RegType::sgpr);
576 assert(src1.type() == RegType::sgpr);
577 assert(src0.regClass() == src1.regClass());
578
579 /* Emit the SALU comparison instruction */
580 Temp cmp = bld.sopc(op, bld.scc(bld.def(s1)), src0, src1);
581 /* Turn the result into a per-lane bool */
582 bool_to_vector_condition(ctx, cmp, dst);
583 }
584
585 void emit_comparison(isel_context *ctx, nir_alu_instr *instr, Temp dst,
586 aco_opcode v32_op, aco_opcode v64_op, aco_opcode s32_op = aco_opcode::num_opcodes, aco_opcode s64_op = aco_opcode::num_opcodes)
587 {
588 aco_opcode s_op = instr->src[0].src.ssa->bit_size == 64 ? s64_op : s32_op;
589 aco_opcode v_op = instr->src[0].src.ssa->bit_size == 64 ? v64_op : v32_op;
590 bool divergent_vals = ctx->divergent_vals[instr->dest.dest.ssa.index];
591 bool use_valu = s_op == aco_opcode::num_opcodes ||
592 divergent_vals ||
593 ctx->allocated[instr->src[0].src.ssa->index].type() == RegType::vgpr ||
594 ctx->allocated[instr->src[1].src.ssa->index].type() == RegType::vgpr;
595 aco_opcode op = use_valu ? v_op : s_op;
596 assert(op != aco_opcode::num_opcodes);
597 assert(dst.regClass() == ctx->program->lane_mask);
598
599 if (use_valu)
600 emit_vopc_instruction(ctx, instr, op, dst);
601 else
602 emit_sopc_instruction(ctx, instr, op, dst);
603 }
604
605 void emit_boolean_logic(isel_context *ctx, nir_alu_instr *instr, Builder::WaveSpecificOpcode op, Temp dst)
606 {
607 Builder bld(ctx->program, ctx->block);
608 Temp src0 = get_alu_src(ctx, instr->src[0]);
609 Temp src1 = get_alu_src(ctx, instr->src[1]);
610
611 assert(dst.regClass() == bld.lm);
612 assert(src0.regClass() == bld.lm);
613 assert(src1.regClass() == bld.lm);
614
615 bld.sop2(op, Definition(dst), bld.def(s1, scc), src0, src1);
616 }
617
618 void emit_bcsel(isel_context *ctx, nir_alu_instr *instr, Temp dst)
619 {
620 Builder bld(ctx->program, ctx->block);
621 Temp cond = get_alu_src(ctx, instr->src[0]);
622 Temp then = get_alu_src(ctx, instr->src[1]);
623 Temp els = get_alu_src(ctx, instr->src[2]);
624
625 assert(cond.regClass() == bld.lm);
626
627 if (dst.type() == RegType::vgpr) {
628 aco_ptr<Instruction> bcsel;
629 if (dst.size() == 1) {
630 then = as_vgpr(ctx, then);
631 els = as_vgpr(ctx, els);
632
633 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), els, then, cond);
634 } else if (dst.size() == 2) {
635 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
636 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), then);
637 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
638 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), els);
639
640 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, cond);
641 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, cond);
642
643 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
644 } else {
645 fprintf(stderr, "Unimplemented NIR instr bit size: ");
646 nir_print_instr(&instr->instr, stderr);
647 fprintf(stderr, "\n");
648 }
649 return;
650 }
651
652 if (instr->dest.dest.ssa.bit_size == 1) {
653 assert(dst.regClass() == bld.lm);
654 assert(then.regClass() == bld.lm);
655 assert(els.regClass() == bld.lm);
656 }
657
658 if (!ctx->divergent_vals[instr->src[0].src.ssa->index]) { /* uniform condition and values in sgpr */
659 if (dst.regClass() == s1 || dst.regClass() == s2) {
660 assert((then.regClass() == s1 || then.regClass() == s2) && els.regClass() == then.regClass());
661 assert(dst.size() == then.size());
662 aco_opcode op = dst.regClass() == s1 ? aco_opcode::s_cselect_b32 : aco_opcode::s_cselect_b64;
663 bld.sop2(op, Definition(dst), then, els, bld.scc(bool_to_scalar_condition(ctx, cond)));
664 } else {
665 fprintf(stderr, "Unimplemented uniform bcsel bit size: ");
666 nir_print_instr(&instr->instr, stderr);
667 fprintf(stderr, "\n");
668 }
669 return;
670 }
671
672 /* divergent boolean bcsel
673 * this implements bcsel on bools: dst = s0 ? s1 : s2
674 * are going to be: dst = (s0 & s1) | (~s0 & s2) */
675 assert(instr->dest.dest.ssa.bit_size == 1);
676
677 if (cond.id() != then.id())
678 then = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), cond, then);
679
680 if (cond.id() == els.id())
681 bld.sop1(Builder::s_mov, Definition(dst), then);
682 else
683 bld.sop2(Builder::s_or, Definition(dst), bld.def(s1, scc), then,
684 bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), els, cond));
685 }
686
687 void emit_scaled_op(isel_context *ctx, Builder& bld, Definition dst, Temp val,
688 aco_opcode op, uint32_t undo)
689 {
690 /* multiply by 16777216 to handle denormals */
691 Temp is_denormal = bld.vopc(aco_opcode::v_cmp_class_f32, bld.hint_vcc(bld.def(bld.lm)),
692 as_vgpr(ctx, val), bld.copy(bld.def(v1), Operand((1u << 7) | (1u << 4))));
693 Temp scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x4b800000u), val);
694 scaled = bld.vop1(op, bld.def(v1), scaled);
695 scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(undo), scaled);
696
697 Temp not_scaled = bld.vop1(op, bld.def(v1), val);
698
699 bld.vop2(aco_opcode::v_cndmask_b32, dst, not_scaled, scaled, is_denormal);
700 }
701
702 void emit_rcp(isel_context *ctx, Builder& bld, Definition dst, Temp val)
703 {
704 if (ctx->block->fp_mode.denorm32 == 0) {
705 bld.vop1(aco_opcode::v_rcp_f32, dst, val);
706 return;
707 }
708
709 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rcp_f32, 0x4b800000u);
710 }
711
712 void emit_rsq(isel_context *ctx, Builder& bld, Definition dst, Temp val)
713 {
714 if (ctx->block->fp_mode.denorm32 == 0) {
715 bld.vop1(aco_opcode::v_rsq_f32, dst, val);
716 return;
717 }
718
719 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rsq_f32, 0x45800000u);
720 }
721
722 void emit_sqrt(isel_context *ctx, Builder& bld, Definition dst, Temp val)
723 {
724 if (ctx->block->fp_mode.denorm32 == 0) {
725 bld.vop1(aco_opcode::v_sqrt_f32, dst, val);
726 return;
727 }
728
729 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_sqrt_f32, 0x39800000u);
730 }
731
732 void emit_log2(isel_context *ctx, Builder& bld, Definition dst, Temp val)
733 {
734 if (ctx->block->fp_mode.denorm32 == 0) {
735 bld.vop1(aco_opcode::v_log_f32, dst, val);
736 return;
737 }
738
739 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_log_f32, 0xc1c00000u);
740 }
741
742 Temp emit_trunc_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
743 {
744 if (ctx->options->chip_class >= GFX7)
745 return bld.vop1(aco_opcode::v_trunc_f64, Definition(dst), val);
746
747 /* GFX6 doesn't support V_TRUNC_F64, lower it. */
748 /* TODO: create more efficient code! */
749 if (val.type() == RegType::sgpr)
750 val = as_vgpr(ctx, val);
751
752 /* Split the input value. */
753 Temp val_lo = bld.tmp(v1), val_hi = bld.tmp(v1);
754 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
755
756 /* Extract the exponent and compute the unbiased value. */
757 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f64, bld.def(v1), val);
758
759 /* Extract the fractional part. */
760 Temp fract_mask = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x000fffffu));
761 fract_mask = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), fract_mask, exponent);
762
763 Temp fract_mask_lo = bld.tmp(v1), fract_mask_hi = bld.tmp(v1);
764 bld.pseudo(aco_opcode::p_split_vector, Definition(fract_mask_lo), Definition(fract_mask_hi), fract_mask);
765
766 Temp fract_lo = bld.tmp(v1), fract_hi = bld.tmp(v1);
767 Temp tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_lo);
768 fract_lo = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_lo, tmp);
769 tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_hi);
770 fract_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_hi, tmp);
771
772 /* Get the sign bit. */
773 Temp sign = bld.vop2(aco_opcode::v_ashr_i32, bld.def(v1), Operand(31u), val_hi);
774
775 /* Decide the operation to apply depending on the unbiased exponent. */
776 Temp exp_lt0 = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)), exponent, Operand(0u));
777 Temp dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_lo, bld.copy(bld.def(v1), Operand(0u)), exp_lt0);
778 Temp dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_hi, sign, exp_lt0);
779 Temp exp_gt51 = bld.vopc_e64(aco_opcode::v_cmp_gt_i32, bld.def(s2), exponent, Operand(51u));
780 dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_lo, val_lo, exp_gt51);
781 dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_hi, val_hi, exp_gt51);
782
783 return bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst_lo, dst_hi);
784 }
785
786 Temp emit_floor_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
787 {
788 if (ctx->options->chip_class >= GFX7)
789 return bld.vop1(aco_opcode::v_floor_f64, Definition(dst), val);
790
791 /* GFX6 doesn't support V_FLOOR_F64, lower it. */
792 Temp src0 = as_vgpr(ctx, val);
793
794 Temp mask = bld.copy(bld.def(s1), Operand(3u)); /* isnan */
795 Temp min_val = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(-1u), Operand(0x3fefffffu));
796
797 Temp isnan = bld.vopc_e64(aco_opcode::v_cmp_class_f64, bld.hint_vcc(bld.def(bld.lm)), src0, mask);
798 Temp fract = bld.vop1(aco_opcode::v_fract_f64, bld.def(v2), src0);
799 Temp min = bld.vop3(aco_opcode::v_min_f64, bld.def(v2), fract, min_val);
800
801 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
802 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), src0);
803 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
804 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), min);
805
806 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, isnan);
807 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, isnan);
808
809 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), dst0, dst1);
810
811 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src0, v);
812 static_cast<VOP3A_instruction*>(add)->neg[1] = true;
813
814 return add->definitions[0].getTemp();
815 }
816
817 void visit_alu_instr(isel_context *ctx, nir_alu_instr *instr)
818 {
819 if (!instr->dest.dest.is_ssa) {
820 fprintf(stderr, "nir alu dst not in ssa: ");
821 nir_print_instr(&instr->instr, stderr);
822 fprintf(stderr, "\n");
823 abort();
824 }
825 Builder bld(ctx->program, ctx->block);
826 Temp dst = get_ssa_temp(ctx, &instr->dest.dest.ssa);
827 switch(instr->op) {
828 case nir_op_vec2:
829 case nir_op_vec3:
830 case nir_op_vec4: {
831 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
832 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.dest.ssa.num_components, 1)};
833 for (unsigned i = 0; i < instr->dest.dest.ssa.num_components; ++i) {
834 elems[i] = get_alu_src(ctx, instr->src[i]);
835 vec->operands[i] = Operand{elems[i]};
836 }
837 vec->definitions[0] = Definition(dst);
838 ctx->block->instructions.emplace_back(std::move(vec));
839 ctx->allocated_vec.emplace(dst.id(), elems);
840 break;
841 }
842 case nir_op_mov: {
843 Temp src = get_alu_src(ctx, instr->src[0]);
844 aco_ptr<Instruction> mov;
845 if (dst.type() == RegType::sgpr) {
846 if (src.type() == RegType::vgpr)
847 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
848 else if (src.regClass() == s1)
849 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
850 else if (src.regClass() == s2)
851 bld.sop1(aco_opcode::s_mov_b64, Definition(dst), src);
852 else
853 unreachable("wrong src register class for nir_op_imov");
854 } else if (dst.regClass() == v1) {
855 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), src);
856 } else if (dst.regClass() == v2) {
857 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
858 } else {
859 nir_print_instr(&instr->instr, stderr);
860 unreachable("Should have been lowered to scalar.");
861 }
862 break;
863 }
864 case nir_op_inot: {
865 Temp src = get_alu_src(ctx, instr->src[0]);
866 if (instr->dest.dest.ssa.bit_size == 1) {
867 assert(src.regClass() == bld.lm);
868 assert(dst.regClass() == bld.lm);
869 /* Don't use s_andn2 here, this allows the optimizer to make a better decision */
870 Temp tmp = bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), src);
871 bld.sop2(Builder::s_and, Definition(dst), bld.def(s1, scc), tmp, Operand(exec, bld.lm));
872 } else if (dst.regClass() == v1) {
873 emit_vop1_instruction(ctx, instr, aco_opcode::v_not_b32, dst);
874 } else if (dst.type() == RegType::sgpr) {
875 aco_opcode opcode = dst.size() == 1 ? aco_opcode::s_not_b32 : aco_opcode::s_not_b64;
876 bld.sop1(opcode, Definition(dst), bld.def(s1, scc), src);
877 } else {
878 fprintf(stderr, "Unimplemented NIR instr bit size: ");
879 nir_print_instr(&instr->instr, stderr);
880 fprintf(stderr, "\n");
881 }
882 break;
883 }
884 case nir_op_ineg: {
885 Temp src = get_alu_src(ctx, instr->src[0]);
886 if (dst.regClass() == v1) {
887 bld.vsub32(Definition(dst), Operand(0u), Operand(src));
888 } else if (dst.regClass() == s1) {
889 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand((uint32_t) -1), src);
890 } else if (dst.size() == 2) {
891 Temp src0 = bld.tmp(dst.type(), 1);
892 Temp src1 = bld.tmp(dst.type(), 1);
893 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
894
895 if (dst.regClass() == s2) {
896 Temp carry = bld.tmp(s1);
897 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), Operand(0u), src0);
898 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), src1, carry);
899 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
900 } else {
901 Temp lower = bld.tmp(v1);
902 Temp borrow = bld.vsub32(Definition(lower), Operand(0u), src0, true).def(1).getTemp();
903 Temp upper = bld.vsub32(bld.def(v1), Operand(0u), src1, false, borrow);
904 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
905 }
906 } else {
907 fprintf(stderr, "Unimplemented NIR instr bit size: ");
908 nir_print_instr(&instr->instr, stderr);
909 fprintf(stderr, "\n");
910 }
911 break;
912 }
913 case nir_op_iabs: {
914 if (dst.regClass() == s1) {
915 bld.sop1(aco_opcode::s_abs_i32, Definition(dst), bld.def(s1, scc), get_alu_src(ctx, instr->src[0]));
916 } else if (dst.regClass() == v1) {
917 Temp src = get_alu_src(ctx, instr->src[0]);
918 bld.vop2(aco_opcode::v_max_i32, Definition(dst), src, bld.vsub32(bld.def(v1), Operand(0u), src));
919 } else {
920 fprintf(stderr, "Unimplemented NIR instr bit size: ");
921 nir_print_instr(&instr->instr, stderr);
922 fprintf(stderr, "\n");
923 }
924 break;
925 }
926 case nir_op_isign: {
927 Temp src = get_alu_src(ctx, instr->src[0]);
928 if (dst.regClass() == s1) {
929 Temp tmp = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
930 Temp gtz = bld.sopc(aco_opcode::s_cmp_gt_i32, bld.def(s1, scc), src, Operand(0u));
931 bld.sop2(aco_opcode::s_add_i32, Definition(dst), bld.def(s1, scc), gtz, tmp);
932 } else if (dst.regClass() == s2) {
933 Temp neg = bld.sop2(aco_opcode::s_ashr_i64, bld.def(s2), bld.def(s1, scc), src, Operand(63u));
934 Temp neqz;
935 if (ctx->program->chip_class >= GFX8)
936 neqz = bld.sopc(aco_opcode::s_cmp_lg_u64, bld.def(s1, scc), src, Operand(0u));
937 else
938 neqz = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), src, Operand(0u)).def(1).getTemp();
939 /* SCC gets zero-extended to 64 bit */
940 bld.sop2(aco_opcode::s_or_b64, Definition(dst), bld.def(s1, scc), neg, bld.scc(neqz));
941 } else if (dst.regClass() == v1) {
942 Temp tmp = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
943 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
944 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(1u), tmp, gtz);
945 } else if (dst.regClass() == v2) {
946 Temp upper = emit_extract_vector(ctx, src, 1, v1);
947 Temp neg = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), upper);
948 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
949 Temp lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(1u), neg, gtz);
950 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), neg, gtz);
951 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
952 } else {
953 fprintf(stderr, "Unimplemented NIR instr bit size: ");
954 nir_print_instr(&instr->instr, stderr);
955 fprintf(stderr, "\n");
956 }
957 break;
958 }
959 case nir_op_imax: {
960 if (dst.regClass() == v1) {
961 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_i32, dst, true);
962 } else if (dst.regClass() == s1) {
963 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_i32, dst, true);
964 } else {
965 fprintf(stderr, "Unimplemented NIR instr bit size: ");
966 nir_print_instr(&instr->instr, stderr);
967 fprintf(stderr, "\n");
968 }
969 break;
970 }
971 case nir_op_umax: {
972 if (dst.regClass() == v1) {
973 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_u32, dst, true);
974 } else if (dst.regClass() == s1) {
975 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_u32, dst, true);
976 } else {
977 fprintf(stderr, "Unimplemented NIR instr bit size: ");
978 nir_print_instr(&instr->instr, stderr);
979 fprintf(stderr, "\n");
980 }
981 break;
982 }
983 case nir_op_imin: {
984 if (dst.regClass() == v1) {
985 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_i32, dst, true);
986 } else if (dst.regClass() == s1) {
987 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_i32, dst, true);
988 } else {
989 fprintf(stderr, "Unimplemented NIR instr bit size: ");
990 nir_print_instr(&instr->instr, stderr);
991 fprintf(stderr, "\n");
992 }
993 break;
994 }
995 case nir_op_umin: {
996 if (dst.regClass() == v1) {
997 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_u32, dst, true);
998 } else if (dst.regClass() == s1) {
999 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_u32, dst, true);
1000 } else {
1001 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1002 nir_print_instr(&instr->instr, stderr);
1003 fprintf(stderr, "\n");
1004 }
1005 break;
1006 }
1007 case nir_op_ior: {
1008 if (instr->dest.dest.ssa.bit_size == 1) {
1009 emit_boolean_logic(ctx, instr, Builder::s_or, dst);
1010 } else if (dst.regClass() == v1) {
1011 emit_vop2_instruction(ctx, instr, aco_opcode::v_or_b32, dst, true);
1012 } else if (dst.regClass() == s1) {
1013 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b32, dst, true);
1014 } else if (dst.regClass() == s2) {
1015 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b64, dst, true);
1016 } else {
1017 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1018 nir_print_instr(&instr->instr, stderr);
1019 fprintf(stderr, "\n");
1020 }
1021 break;
1022 }
1023 case nir_op_iand: {
1024 if (instr->dest.dest.ssa.bit_size == 1) {
1025 emit_boolean_logic(ctx, instr, Builder::s_and, dst);
1026 } else if (dst.regClass() == v1) {
1027 emit_vop2_instruction(ctx, instr, aco_opcode::v_and_b32, dst, true);
1028 } else if (dst.regClass() == s1) {
1029 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b32, dst, true);
1030 } else if (dst.regClass() == s2) {
1031 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b64, dst, true);
1032 } else {
1033 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1034 nir_print_instr(&instr->instr, stderr);
1035 fprintf(stderr, "\n");
1036 }
1037 break;
1038 }
1039 case nir_op_ixor: {
1040 if (instr->dest.dest.ssa.bit_size == 1) {
1041 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
1042 } else if (dst.regClass() == v1) {
1043 emit_vop2_instruction(ctx, instr, aco_opcode::v_xor_b32, dst, true);
1044 } else if (dst.regClass() == s1) {
1045 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b32, dst, true);
1046 } else if (dst.regClass() == s2) {
1047 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b64, dst, true);
1048 } else {
1049 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1050 nir_print_instr(&instr->instr, stderr);
1051 fprintf(stderr, "\n");
1052 }
1053 break;
1054 }
1055 case nir_op_ushr: {
1056 if (dst.regClass() == v1) {
1057 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshrrev_b32, dst, false, true);
1058 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1059 bld.vop3(aco_opcode::v_lshrrev_b64, Definition(dst),
1060 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1061 } else if (dst.regClass() == v2) {
1062 bld.vop3(aco_opcode::v_lshr_b64, Definition(dst),
1063 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1064 } else if (dst.regClass() == s2) {
1065 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b64, dst, true);
1066 } else if (dst.regClass() == s1) {
1067 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b32, dst, true);
1068 } else {
1069 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1070 nir_print_instr(&instr->instr, stderr);
1071 fprintf(stderr, "\n");
1072 }
1073 break;
1074 }
1075 case nir_op_ishl: {
1076 if (dst.regClass() == v1) {
1077 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshlrev_b32, dst, false, true);
1078 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1079 bld.vop3(aco_opcode::v_lshlrev_b64, Definition(dst),
1080 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1081 } else if (dst.regClass() == v2) {
1082 bld.vop3(aco_opcode::v_lshl_b64, Definition(dst),
1083 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1084 } else if (dst.regClass() == s1) {
1085 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b32, dst, true);
1086 } else if (dst.regClass() == s2) {
1087 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b64, dst, true);
1088 } else {
1089 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1090 nir_print_instr(&instr->instr, stderr);
1091 fprintf(stderr, "\n");
1092 }
1093 break;
1094 }
1095 case nir_op_ishr: {
1096 if (dst.regClass() == v1) {
1097 emit_vop2_instruction(ctx, instr, aco_opcode::v_ashrrev_i32, dst, false, true);
1098 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1099 bld.vop3(aco_opcode::v_ashrrev_i64, Definition(dst),
1100 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1101 } else if (dst.regClass() == v2) {
1102 bld.vop3(aco_opcode::v_ashr_i64, Definition(dst),
1103 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1104 } else if (dst.regClass() == s1) {
1105 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i32, dst, true);
1106 } else if (dst.regClass() == s2) {
1107 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i64, dst, true);
1108 } else {
1109 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1110 nir_print_instr(&instr->instr, stderr);
1111 fprintf(stderr, "\n");
1112 }
1113 break;
1114 }
1115 case nir_op_find_lsb: {
1116 Temp src = get_alu_src(ctx, instr->src[0]);
1117 if (src.regClass() == s1) {
1118 bld.sop1(aco_opcode::s_ff1_i32_b32, Definition(dst), src);
1119 } else if (src.regClass() == v1) {
1120 emit_vop1_instruction(ctx, instr, aco_opcode::v_ffbl_b32, dst);
1121 } else if (src.regClass() == s2) {
1122 bld.sop1(aco_opcode::s_ff1_i32_b64, Definition(dst), src);
1123 } else {
1124 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1125 nir_print_instr(&instr->instr, stderr);
1126 fprintf(stderr, "\n");
1127 }
1128 break;
1129 }
1130 case nir_op_ufind_msb:
1131 case nir_op_ifind_msb: {
1132 Temp src = get_alu_src(ctx, instr->src[0]);
1133 if (src.regClass() == s1 || src.regClass() == s2) {
1134 aco_opcode op = src.regClass() == s2 ?
1135 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b64 : aco_opcode::s_flbit_i32_i64) :
1136 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b32 : aco_opcode::s_flbit_i32);
1137 Temp msb_rev = bld.sop1(op, bld.def(s1), src);
1138
1139 Builder::Result sub = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc),
1140 Operand(src.size() * 32u - 1u), msb_rev);
1141 Temp msb = sub.def(0).getTemp();
1142 Temp carry = sub.def(1).getTemp();
1143
1144 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t)-1), msb, bld.scc(carry));
1145 } else if (src.regClass() == v1) {
1146 aco_opcode op = instr->op == nir_op_ufind_msb ? aco_opcode::v_ffbh_u32 : aco_opcode::v_ffbh_i32;
1147 Temp msb_rev = bld.tmp(v1);
1148 emit_vop1_instruction(ctx, instr, op, msb_rev);
1149 Temp msb = bld.tmp(v1);
1150 Temp carry = bld.vsub32(Definition(msb), Operand(31u), Operand(msb_rev), true).def(1).getTemp();
1151 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), msb, Operand((uint32_t)-1), carry);
1152 } else {
1153 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1154 nir_print_instr(&instr->instr, stderr);
1155 fprintf(stderr, "\n");
1156 }
1157 break;
1158 }
1159 case nir_op_bitfield_reverse: {
1160 if (dst.regClass() == s1) {
1161 bld.sop1(aco_opcode::s_brev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1162 } else if (dst.regClass() == v1) {
1163 bld.vop1(aco_opcode::v_bfrev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1164 } else {
1165 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1166 nir_print_instr(&instr->instr, stderr);
1167 fprintf(stderr, "\n");
1168 }
1169 break;
1170 }
1171 case nir_op_iadd: {
1172 if (dst.regClass() == s1) {
1173 emit_sop2_instruction(ctx, instr, aco_opcode::s_add_u32, dst, true);
1174 break;
1175 }
1176
1177 Temp src0 = get_alu_src(ctx, instr->src[0]);
1178 Temp src1 = get_alu_src(ctx, instr->src[1]);
1179 if (dst.regClass() == v1) {
1180 bld.vadd32(Definition(dst), Operand(src0), Operand(src1));
1181 break;
1182 }
1183
1184 assert(src0.size() == 2 && src1.size() == 2);
1185 Temp src00 = bld.tmp(src0.type(), 1);
1186 Temp src01 = bld.tmp(dst.type(), 1);
1187 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1188 Temp src10 = bld.tmp(src1.type(), 1);
1189 Temp src11 = bld.tmp(dst.type(), 1);
1190 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1191
1192 if (dst.regClass() == s2) {
1193 Temp carry = bld.tmp(s1);
1194 Temp dst0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1195 Temp dst1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), src01, src11, bld.scc(carry));
1196 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1197 } else if (dst.regClass() == v2) {
1198 Temp dst0 = bld.tmp(v1);
1199 Temp carry = bld.vadd32(Definition(dst0), src00, src10, true).def(1).getTemp();
1200 Temp dst1 = bld.vadd32(bld.def(v1), src01, src11, false, carry);
1201 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1202 } else {
1203 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1204 nir_print_instr(&instr->instr, stderr);
1205 fprintf(stderr, "\n");
1206 }
1207 break;
1208 }
1209 case nir_op_uadd_sat: {
1210 Temp src0 = get_alu_src(ctx, instr->src[0]);
1211 Temp src1 = get_alu_src(ctx, instr->src[1]);
1212 if (dst.regClass() == s1) {
1213 Temp tmp = bld.tmp(s1), carry = bld.tmp(s1);
1214 bld.sop2(aco_opcode::s_add_u32, Definition(tmp), bld.scc(Definition(carry)),
1215 src0, src1);
1216 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t) -1), tmp, bld.scc(carry));
1217 } else if (dst.regClass() == v1) {
1218 if (ctx->options->chip_class >= GFX9) {
1219 aco_ptr<VOP3A_instruction> add{create_instruction<VOP3A_instruction>(aco_opcode::v_add_u32, asVOP3(Format::VOP2), 2, 1)};
1220 add->operands[0] = Operand(src0);
1221 add->operands[1] = Operand(src1);
1222 add->definitions[0] = Definition(dst);
1223 add->clamp = 1;
1224 ctx->block->instructions.emplace_back(std::move(add));
1225 } else {
1226 if (src1.regClass() != v1)
1227 std::swap(src0, src1);
1228 assert(src1.regClass() == v1);
1229 Temp tmp = bld.tmp(v1);
1230 Temp carry = bld.vadd32(Definition(tmp), src0, src1, true).def(1).getTemp();
1231 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), tmp, Operand((uint32_t) -1), carry);
1232 }
1233 } else {
1234 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1235 nir_print_instr(&instr->instr, stderr);
1236 fprintf(stderr, "\n");
1237 }
1238 break;
1239 }
1240 case nir_op_uadd_carry: {
1241 Temp src0 = get_alu_src(ctx, instr->src[0]);
1242 Temp src1 = get_alu_src(ctx, instr->src[1]);
1243 if (dst.regClass() == s1) {
1244 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1245 break;
1246 }
1247 if (dst.regClass() == v1) {
1248 Temp carry = bld.vadd32(bld.def(v1), src0, src1, true).def(1).getTemp();
1249 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), carry);
1250 break;
1251 }
1252
1253 Temp src00 = bld.tmp(src0.type(), 1);
1254 Temp src01 = bld.tmp(dst.type(), 1);
1255 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1256 Temp src10 = bld.tmp(src1.type(), 1);
1257 Temp src11 = bld.tmp(dst.type(), 1);
1258 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1259 if (dst.regClass() == s2) {
1260 Temp carry = bld.tmp(s1);
1261 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1262 carry = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(carry)).def(1).getTemp();
1263 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1264 } else if (dst.regClass() == v2) {
1265 Temp carry = bld.vadd32(bld.def(v1), src00, src10, true).def(1).getTemp();
1266 carry = bld.vadd32(bld.def(v1), src01, src11, true, carry).def(1).getTemp();
1267 carry = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), carry);
1268 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1269 } else {
1270 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1271 nir_print_instr(&instr->instr, stderr);
1272 fprintf(stderr, "\n");
1273 }
1274 break;
1275 }
1276 case nir_op_isub: {
1277 if (dst.regClass() == s1) {
1278 emit_sop2_instruction(ctx, instr, aco_opcode::s_sub_i32, dst, true);
1279 break;
1280 }
1281
1282 Temp src0 = get_alu_src(ctx, instr->src[0]);
1283 Temp src1 = get_alu_src(ctx, instr->src[1]);
1284 if (dst.regClass() == v1) {
1285 bld.vsub32(Definition(dst), src0, src1);
1286 break;
1287 }
1288
1289 Temp src00 = bld.tmp(src0.type(), 1);
1290 Temp src01 = bld.tmp(dst.type(), 1);
1291 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1292 Temp src10 = bld.tmp(src1.type(), 1);
1293 Temp src11 = bld.tmp(dst.type(), 1);
1294 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1295 if (dst.regClass() == s2) {
1296 Temp carry = bld.tmp(s1);
1297 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1298 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), src01, src11, carry);
1299 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1300 } else if (dst.regClass() == v2) {
1301 Temp lower = bld.tmp(v1);
1302 Temp borrow = bld.vsub32(Definition(lower), src00, src10, true).def(1).getTemp();
1303 Temp upper = bld.vsub32(bld.def(v1), src01, src11, false, borrow);
1304 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1305 } else {
1306 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1307 nir_print_instr(&instr->instr, stderr);
1308 fprintf(stderr, "\n");
1309 }
1310 break;
1311 }
1312 case nir_op_usub_borrow: {
1313 Temp src0 = get_alu_src(ctx, instr->src[0]);
1314 Temp src1 = get_alu_src(ctx, instr->src[1]);
1315 if (dst.regClass() == s1) {
1316 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1317 break;
1318 } else if (dst.regClass() == v1) {
1319 Temp borrow = bld.vsub32(bld.def(v1), src0, src1, true).def(1).getTemp();
1320 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), borrow);
1321 break;
1322 }
1323
1324 Temp src00 = bld.tmp(src0.type(), 1);
1325 Temp src01 = bld.tmp(dst.type(), 1);
1326 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1327 Temp src10 = bld.tmp(src1.type(), 1);
1328 Temp src11 = bld.tmp(dst.type(), 1);
1329 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1330 if (dst.regClass() == s2) {
1331 Temp borrow = bld.tmp(s1);
1332 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), src00, src10);
1333 borrow = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(borrow)).def(1).getTemp();
1334 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1335 } else if (dst.regClass() == v2) {
1336 Temp borrow = bld.vsub32(bld.def(v1), src00, src10, true).def(1).getTemp();
1337 borrow = bld.vsub32(bld.def(v1), src01, src11, true, Operand(borrow)).def(1).getTemp();
1338 borrow = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), borrow);
1339 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1340 } else {
1341 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1342 nir_print_instr(&instr->instr, stderr);
1343 fprintf(stderr, "\n");
1344 }
1345 break;
1346 }
1347 case nir_op_imul: {
1348 if (dst.regClass() == v1) {
1349 bld.vop3(aco_opcode::v_mul_lo_u32, Definition(dst),
1350 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1351 } else if (dst.regClass() == s1) {
1352 emit_sop2_instruction(ctx, instr, aco_opcode::s_mul_i32, dst, false);
1353 } else {
1354 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1355 nir_print_instr(&instr->instr, stderr);
1356 fprintf(stderr, "\n");
1357 }
1358 break;
1359 }
1360 case nir_op_umul_high: {
1361 if (dst.regClass() == v1) {
1362 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1363 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1364 bld.sop2(aco_opcode::s_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1365 } else if (dst.regClass() == s1) {
1366 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1367 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1368 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1369 } else {
1370 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1371 nir_print_instr(&instr->instr, stderr);
1372 fprintf(stderr, "\n");
1373 }
1374 break;
1375 }
1376 case nir_op_imul_high: {
1377 if (dst.regClass() == v1) {
1378 bld.vop3(aco_opcode::v_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1379 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1380 bld.sop2(aco_opcode::s_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1381 } else if (dst.regClass() == s1) {
1382 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1383 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1384 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1385 } else {
1386 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1387 nir_print_instr(&instr->instr, stderr);
1388 fprintf(stderr, "\n");
1389 }
1390 break;
1391 }
1392 case nir_op_fmul: {
1393 if (dst.size() == 1) {
1394 emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f32, dst, true);
1395 } else if (dst.size() == 2) {
1396 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), get_alu_src(ctx, instr->src[0]),
1397 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1398 } else {
1399 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1400 nir_print_instr(&instr->instr, stderr);
1401 fprintf(stderr, "\n");
1402 }
1403 break;
1404 }
1405 case nir_op_fadd: {
1406 if (dst.size() == 1) {
1407 emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f32, dst, true);
1408 } else if (dst.size() == 2) {
1409 bld.vop3(aco_opcode::v_add_f64, Definition(dst), get_alu_src(ctx, instr->src[0]),
1410 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1411 } else {
1412 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1413 nir_print_instr(&instr->instr, stderr);
1414 fprintf(stderr, "\n");
1415 }
1416 break;
1417 }
1418 case nir_op_fsub: {
1419 Temp src0 = get_alu_src(ctx, instr->src[0]);
1420 Temp src1 = get_alu_src(ctx, instr->src[1]);
1421 if (dst.size() == 1) {
1422 if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
1423 emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f32, dst, false);
1424 else
1425 emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f32, dst, true);
1426 } else if (dst.size() == 2) {
1427 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst),
1428 get_alu_src(ctx, instr->src[0]),
1429 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1430 VOP3A_instruction* sub = static_cast<VOP3A_instruction*>(add);
1431 sub->neg[1] = true;
1432 } else {
1433 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1434 nir_print_instr(&instr->instr, stderr);
1435 fprintf(stderr, "\n");
1436 }
1437 break;
1438 }
1439 case nir_op_fmax: {
1440 if (dst.size() == 1) {
1441 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1442 } else if (dst.size() == 2) {
1443 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1444 Temp tmp = bld.vop3(aco_opcode::v_max_f64, bld.def(v2),
1445 get_alu_src(ctx, instr->src[0]),
1446 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1447 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1448 } else {
1449 bld.vop3(aco_opcode::v_max_f64, Definition(dst),
1450 get_alu_src(ctx, instr->src[0]),
1451 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1452 }
1453 } else {
1454 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1455 nir_print_instr(&instr->instr, stderr);
1456 fprintf(stderr, "\n");
1457 }
1458 break;
1459 }
1460 case nir_op_fmin: {
1461 if (dst.size() == 1) {
1462 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1463 } else if (dst.size() == 2) {
1464 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1465 Temp tmp = bld.vop3(aco_opcode::v_min_f64, bld.def(v2),
1466 get_alu_src(ctx, instr->src[0]),
1467 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1468 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1469 } else {
1470 bld.vop3(aco_opcode::v_min_f64, Definition(dst),
1471 get_alu_src(ctx, instr->src[0]),
1472 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1473 }
1474 } else {
1475 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1476 nir_print_instr(&instr->instr, stderr);
1477 fprintf(stderr, "\n");
1478 }
1479 break;
1480 }
1481 case nir_op_fmax3: {
1482 if (dst.size() == 1) {
1483 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1484 } else {
1485 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1486 nir_print_instr(&instr->instr, stderr);
1487 fprintf(stderr, "\n");
1488 }
1489 break;
1490 }
1491 case nir_op_fmin3: {
1492 if (dst.size() == 1) {
1493 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1494 } else {
1495 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1496 nir_print_instr(&instr->instr, stderr);
1497 fprintf(stderr, "\n");
1498 }
1499 break;
1500 }
1501 case nir_op_fmed3: {
1502 if (dst.size() == 1) {
1503 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1504 } else {
1505 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1506 nir_print_instr(&instr->instr, stderr);
1507 fprintf(stderr, "\n");
1508 }
1509 break;
1510 }
1511 case nir_op_umax3: {
1512 if (dst.size() == 1) {
1513 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_u32, dst);
1514 } else {
1515 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1516 nir_print_instr(&instr->instr, stderr);
1517 fprintf(stderr, "\n");
1518 }
1519 break;
1520 }
1521 case nir_op_umin3: {
1522 if (dst.size() == 1) {
1523 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_u32, dst);
1524 } else {
1525 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1526 nir_print_instr(&instr->instr, stderr);
1527 fprintf(stderr, "\n");
1528 }
1529 break;
1530 }
1531 case nir_op_umed3: {
1532 if (dst.size() == 1) {
1533 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_u32, dst);
1534 } else {
1535 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1536 nir_print_instr(&instr->instr, stderr);
1537 fprintf(stderr, "\n");
1538 }
1539 break;
1540 }
1541 case nir_op_imax3: {
1542 if (dst.size() == 1) {
1543 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_i32, dst);
1544 } else {
1545 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1546 nir_print_instr(&instr->instr, stderr);
1547 fprintf(stderr, "\n");
1548 }
1549 break;
1550 }
1551 case nir_op_imin3: {
1552 if (dst.size() == 1) {
1553 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_i32, dst);
1554 } else {
1555 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1556 nir_print_instr(&instr->instr, stderr);
1557 fprintf(stderr, "\n");
1558 }
1559 break;
1560 }
1561 case nir_op_imed3: {
1562 if (dst.size() == 1) {
1563 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_i32, dst);
1564 } else {
1565 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1566 nir_print_instr(&instr->instr, stderr);
1567 fprintf(stderr, "\n");
1568 }
1569 break;
1570 }
1571 case nir_op_cube_face_coord: {
1572 Temp in = get_alu_src(ctx, instr->src[0], 3);
1573 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1574 emit_extract_vector(ctx, in, 1, v1),
1575 emit_extract_vector(ctx, in, 2, v1) };
1576 Temp ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), src[0], src[1], src[2]);
1577 ma = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), ma);
1578 Temp sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), src[0], src[1], src[2]);
1579 Temp tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), src[0], src[1], src[2]);
1580 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, ma, Operand(0x3f000000u/*0.5*/));
1581 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, ma, Operand(0x3f000000u/*0.5*/));
1582 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), sc, tc);
1583 break;
1584 }
1585 case nir_op_cube_face_index: {
1586 Temp in = get_alu_src(ctx, instr->src[0], 3);
1587 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1588 emit_extract_vector(ctx, in, 1, v1),
1589 emit_extract_vector(ctx, in, 2, v1) };
1590 bld.vop3(aco_opcode::v_cubeid_f32, Definition(dst), src[0], src[1], src[2]);
1591 break;
1592 }
1593 case nir_op_bcsel: {
1594 emit_bcsel(ctx, instr, dst);
1595 break;
1596 }
1597 case nir_op_frsq: {
1598 if (dst.size() == 1) {
1599 emit_rsq(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1600 } else if (dst.size() == 2) {
1601 emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f64, dst);
1602 } else {
1603 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1604 nir_print_instr(&instr->instr, stderr);
1605 fprintf(stderr, "\n");
1606 }
1607 break;
1608 }
1609 case nir_op_fneg: {
1610 Temp src = get_alu_src(ctx, instr->src[0]);
1611 if (dst.size() == 1) {
1612 if (ctx->block->fp_mode.must_flush_denorms32)
1613 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1614 bld.vop2(aco_opcode::v_xor_b32, Definition(dst), Operand(0x80000000u), as_vgpr(ctx, src));
1615 } else if (dst.size() == 2) {
1616 if (ctx->block->fp_mode.must_flush_denorms16_64)
1617 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1618 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1619 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1620 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), Operand(0x80000000u), upper);
1621 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1622 } else {
1623 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1624 nir_print_instr(&instr->instr, stderr);
1625 fprintf(stderr, "\n");
1626 }
1627 break;
1628 }
1629 case nir_op_fabs: {
1630 Temp src = get_alu_src(ctx, instr->src[0]);
1631 if (dst.size() == 1) {
1632 if (ctx->block->fp_mode.must_flush_denorms32)
1633 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1634 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0x7FFFFFFFu), as_vgpr(ctx, src));
1635 } else if (dst.size() == 2) {
1636 if (ctx->block->fp_mode.must_flush_denorms16_64)
1637 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1638 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1639 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1640 upper = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7FFFFFFFu), upper);
1641 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1642 } else {
1643 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1644 nir_print_instr(&instr->instr, stderr);
1645 fprintf(stderr, "\n");
1646 }
1647 break;
1648 }
1649 case nir_op_fsat: {
1650 Temp src = get_alu_src(ctx, instr->src[0]);
1651 if (dst.size() == 1) {
1652 bld.vop3(aco_opcode::v_med3_f32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
1653 /* apparently, it is not necessary to flush denorms if this instruction is used with these operands */
1654 // TODO: confirm that this holds under any circumstances
1655 } else if (dst.size() == 2) {
1656 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src, Operand(0u));
1657 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(add);
1658 vop3->clamp = true;
1659 } else {
1660 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1661 nir_print_instr(&instr->instr, stderr);
1662 fprintf(stderr, "\n");
1663 }
1664 break;
1665 }
1666 case nir_op_flog2: {
1667 if (dst.size() == 1) {
1668 emit_log2(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1669 } else {
1670 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1671 nir_print_instr(&instr->instr, stderr);
1672 fprintf(stderr, "\n");
1673 }
1674 break;
1675 }
1676 case nir_op_frcp: {
1677 if (dst.size() == 1) {
1678 emit_rcp(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1679 } else if (dst.size() == 2) {
1680 emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f64, dst);
1681 } else {
1682 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1683 nir_print_instr(&instr->instr, stderr);
1684 fprintf(stderr, "\n");
1685 }
1686 break;
1687 }
1688 case nir_op_fexp2: {
1689 if (dst.size() == 1) {
1690 emit_vop1_instruction(ctx, instr, aco_opcode::v_exp_f32, dst);
1691 } else {
1692 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1693 nir_print_instr(&instr->instr, stderr);
1694 fprintf(stderr, "\n");
1695 }
1696 break;
1697 }
1698 case nir_op_fsqrt: {
1699 if (dst.size() == 1) {
1700 emit_sqrt(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1701 } else if (dst.size() == 2) {
1702 emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f64, dst);
1703 } else {
1704 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1705 nir_print_instr(&instr->instr, stderr);
1706 fprintf(stderr, "\n");
1707 }
1708 break;
1709 }
1710 case nir_op_ffract: {
1711 if (dst.size() == 1) {
1712 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f32, dst);
1713 } else if (dst.size() == 2) {
1714 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f64, dst);
1715 } else {
1716 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1717 nir_print_instr(&instr->instr, stderr);
1718 fprintf(stderr, "\n");
1719 }
1720 break;
1721 }
1722 case nir_op_ffloor: {
1723 if (dst.size() == 1) {
1724 emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f32, dst);
1725 } else if (dst.size() == 2) {
1726 emit_floor_f64(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1727 } else {
1728 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1729 nir_print_instr(&instr->instr, stderr);
1730 fprintf(stderr, "\n");
1731 }
1732 break;
1733 }
1734 case nir_op_fceil: {
1735 if (dst.size() == 1) {
1736 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f32, dst);
1737 } else if (dst.size() == 2) {
1738 if (ctx->options->chip_class >= GFX7) {
1739 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f64, dst);
1740 } else {
1741 /* GFX6 doesn't support V_CEIL_F64, lower it. */
1742 Temp src0 = get_alu_src(ctx, instr->src[0]);
1743
1744 /* trunc = trunc(src0)
1745 * if (src0 > 0.0 && src0 != trunc)
1746 * trunc += 1.0
1747 */
1748 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src0);
1749 Temp tmp0 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.def(bld.lm), src0, Operand(0u));
1750 Temp tmp1 = bld.vopc(aco_opcode::v_cmp_lg_f64, bld.hint_vcc(bld.def(bld.lm)), src0, trunc);
1751 Temp cond = bld.sop2(aco_opcode::s_and_b64, bld.hint_vcc(bld.def(s2)), bld.def(s1, scc), tmp0, tmp1);
1752 Temp add = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), bld.copy(bld.def(v1), Operand(0u)), bld.copy(bld.def(v1), Operand(0x3ff00000u)), cond);
1753 add = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), bld.copy(bld.def(v1), Operand(0u)), add);
1754 bld.vop3(aco_opcode::v_add_f64, Definition(dst), trunc, add);
1755 }
1756 } else {
1757 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1758 nir_print_instr(&instr->instr, stderr);
1759 fprintf(stderr, "\n");
1760 }
1761 break;
1762 }
1763 case nir_op_ftrunc: {
1764 if (dst.size() == 1) {
1765 emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f32, dst);
1766 } else if (dst.size() == 2) {
1767 emit_trunc_f64(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1768 } else {
1769 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1770 nir_print_instr(&instr->instr, stderr);
1771 fprintf(stderr, "\n");
1772 }
1773 break;
1774 }
1775 case nir_op_fround_even: {
1776 if (dst.size() == 1) {
1777 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f32, dst);
1778 } else if (dst.size() == 2) {
1779 if (ctx->options->chip_class >= GFX7) {
1780 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f64, dst);
1781 } else {
1782 /* GFX6 doesn't support V_RNDNE_F64, lower it. */
1783 Temp src0 = get_alu_src(ctx, instr->src[0]);
1784
1785 Temp src0_lo = bld.tmp(v1), src0_hi = bld.tmp(v1);
1786 bld.pseudo(aco_opcode::p_split_vector, Definition(src0_lo), Definition(src0_hi), src0);
1787
1788 Temp bitmask = bld.sop1(aco_opcode::s_brev_b32, bld.def(s1), bld.copy(bld.def(s1), Operand(-2u)));
1789 Temp bfi = bld.vop3(aco_opcode::v_bfi_b32, bld.def(v1), bitmask, bld.copy(bld.def(v1), Operand(0x43300000u)), as_vgpr(ctx, src0_hi));
1790 Temp tmp = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), src0, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
1791 Instruction *sub = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), tmp, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
1792 static_cast<VOP3A_instruction*>(sub)->neg[1] = true;
1793 tmp = sub->definitions[0].getTemp();
1794
1795 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x432fffffu));
1796 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.hint_vcc(bld.def(bld.lm)), src0, v);
1797 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
1798 Temp cond = vop3->definitions[0].getTemp();
1799
1800 Temp tmp_lo = bld.tmp(v1), tmp_hi = bld.tmp(v1);
1801 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp_lo), Definition(tmp_hi), tmp);
1802 Temp dst0 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_lo, as_vgpr(ctx, src0_lo), cond);
1803 Temp dst1 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_hi, as_vgpr(ctx, src0_hi), cond);
1804
1805 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1806 }
1807 } else {
1808 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1809 nir_print_instr(&instr->instr, stderr);
1810 fprintf(stderr, "\n");
1811 }
1812 break;
1813 }
1814 case nir_op_fsin:
1815 case nir_op_fcos: {
1816 Temp src = get_alu_src(ctx, instr->src[0]);
1817 aco_ptr<Instruction> norm;
1818 if (dst.size() == 1) {
1819 Temp half_pi = bld.copy(bld.def(s1), Operand(0x3e22f983u));
1820 Temp tmp = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), half_pi, as_vgpr(ctx, src));
1821
1822 /* before GFX9, v_sin_f32 and v_cos_f32 had a valid input domain of [-256, +256] */
1823 if (ctx->options->chip_class < GFX9)
1824 tmp = bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), tmp);
1825
1826 aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f32 : aco_opcode::v_cos_f32;
1827 bld.vop1(opcode, Definition(dst), tmp);
1828 } else {
1829 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1830 nir_print_instr(&instr->instr, stderr);
1831 fprintf(stderr, "\n");
1832 }
1833 break;
1834 }
1835 case nir_op_ldexp: {
1836 if (dst.size() == 1) {
1837 bld.vop3(aco_opcode::v_ldexp_f32, Definition(dst),
1838 as_vgpr(ctx, get_alu_src(ctx, instr->src[0])),
1839 get_alu_src(ctx, instr->src[1]));
1840 } else if (dst.size() == 2) {
1841 bld.vop3(aco_opcode::v_ldexp_f64, Definition(dst),
1842 as_vgpr(ctx, get_alu_src(ctx, instr->src[0])),
1843 get_alu_src(ctx, instr->src[1]));
1844 } else {
1845 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1846 nir_print_instr(&instr->instr, stderr);
1847 fprintf(stderr, "\n");
1848 }
1849 break;
1850 }
1851 case nir_op_frexp_sig: {
1852 if (dst.size() == 1) {
1853 bld.vop1(aco_opcode::v_frexp_mant_f32, Definition(dst),
1854 get_alu_src(ctx, instr->src[0]));
1855 } else if (dst.size() == 2) {
1856 bld.vop1(aco_opcode::v_frexp_mant_f64, Definition(dst),
1857 get_alu_src(ctx, instr->src[0]));
1858 } else {
1859 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1860 nir_print_instr(&instr->instr, stderr);
1861 fprintf(stderr, "\n");
1862 }
1863 break;
1864 }
1865 case nir_op_frexp_exp: {
1866 if (instr->src[0].src.ssa->bit_size == 32) {
1867 bld.vop1(aco_opcode::v_frexp_exp_i32_f32, Definition(dst),
1868 get_alu_src(ctx, instr->src[0]));
1869 } else if (instr->src[0].src.ssa->bit_size == 64) {
1870 bld.vop1(aco_opcode::v_frexp_exp_i32_f64, Definition(dst),
1871 get_alu_src(ctx, instr->src[0]));
1872 } else {
1873 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1874 nir_print_instr(&instr->instr, stderr);
1875 fprintf(stderr, "\n");
1876 }
1877 break;
1878 }
1879 case nir_op_fsign: {
1880 Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
1881 if (dst.size() == 1) {
1882 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1883 src = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0x3f800000u), src, cond);
1884 cond = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1885 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0xbf800000u), src, cond);
1886 } else if (dst.size() == 2) {
1887 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1888 Temp tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0x3FF00000u));
1889 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, emit_extract_vector(ctx, src, 1, v1), cond);
1890
1891 cond = bld.vopc(aco_opcode::v_cmp_le_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1892 tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0xBFF00000u));
1893 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, upper, cond);
1894
1895 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
1896 } else {
1897 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1898 nir_print_instr(&instr->instr, stderr);
1899 fprintf(stderr, "\n");
1900 }
1901 break;
1902 }
1903 case nir_op_f2f32: {
1904 if (instr->src[0].src.ssa->bit_size == 64) {
1905 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f64, dst);
1906 } else {
1907 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1908 nir_print_instr(&instr->instr, stderr);
1909 fprintf(stderr, "\n");
1910 }
1911 break;
1912 }
1913 case nir_op_f2f64: {
1914 if (instr->src[0].src.ssa->bit_size == 32) {
1915 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_f32, dst);
1916 } else {
1917 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1918 nir_print_instr(&instr->instr, stderr);
1919 fprintf(stderr, "\n");
1920 }
1921 break;
1922 }
1923 case nir_op_i2f32: {
1924 assert(dst.size() == 1);
1925 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_i32, dst);
1926 break;
1927 }
1928 case nir_op_i2f64: {
1929 if (instr->src[0].src.ssa->bit_size == 32) {
1930 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_i32, dst);
1931 } else if (instr->src[0].src.ssa->bit_size == 64) {
1932 Temp src = get_alu_src(ctx, instr->src[0]);
1933 RegClass rc = RegClass(src.type(), 1);
1934 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
1935 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1936 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
1937 upper = bld.vop1(aco_opcode::v_cvt_f64_i32, bld.def(v2), upper);
1938 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
1939 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
1940
1941 } else {
1942 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1943 nir_print_instr(&instr->instr, stderr);
1944 fprintf(stderr, "\n");
1945 }
1946 break;
1947 }
1948 case nir_op_u2f32: {
1949 assert(dst.size() == 1);
1950 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_u32, dst);
1951 break;
1952 }
1953 case nir_op_u2f64: {
1954 if (instr->src[0].src.ssa->bit_size == 32) {
1955 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_u32, dst);
1956 } else if (instr->src[0].src.ssa->bit_size == 64) {
1957 Temp src = get_alu_src(ctx, instr->src[0]);
1958 RegClass rc = RegClass(src.type(), 1);
1959 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
1960 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1961 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
1962 upper = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), upper);
1963 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
1964 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
1965 } else {
1966 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1967 nir_print_instr(&instr->instr, stderr);
1968 fprintf(stderr, "\n");
1969 }
1970 break;
1971 }
1972 case nir_op_f2i32: {
1973 Temp src = get_alu_src(ctx, instr->src[0]);
1974 if (instr->src[0].src.ssa->bit_size == 32) {
1975 if (dst.type() == RegType::vgpr)
1976 bld.vop1(aco_opcode::v_cvt_i32_f32, Definition(dst), src);
1977 else
1978 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
1979 bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), src));
1980
1981 } else if (instr->src[0].src.ssa->bit_size == 64) {
1982 if (dst.type() == RegType::vgpr)
1983 bld.vop1(aco_opcode::v_cvt_i32_f64, Definition(dst), src);
1984 else
1985 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
1986 bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), src));
1987
1988 } else {
1989 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1990 nir_print_instr(&instr->instr, stderr);
1991 fprintf(stderr, "\n");
1992 }
1993 break;
1994 }
1995 case nir_op_f2u32: {
1996 Temp src = get_alu_src(ctx, instr->src[0]);
1997 if (instr->src[0].src.ssa->bit_size == 32) {
1998 if (dst.type() == RegType::vgpr)
1999 bld.vop1(aco_opcode::v_cvt_u32_f32, Definition(dst), src);
2000 else
2001 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2002 bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), src));
2003
2004 } else if (instr->src[0].src.ssa->bit_size == 64) {
2005 if (dst.type() == RegType::vgpr)
2006 bld.vop1(aco_opcode::v_cvt_u32_f64, Definition(dst), src);
2007 else
2008 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2009 bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), src));
2010
2011 } else {
2012 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2013 nir_print_instr(&instr->instr, stderr);
2014 fprintf(stderr, "\n");
2015 }
2016 break;
2017 }
2018 case nir_op_f2i64: {
2019 Temp src = get_alu_src(ctx, instr->src[0]);
2020 if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::vgpr) {
2021 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2022 exponent = bld.vop3(aco_opcode::v_med3_i32, bld.def(v1), Operand(0x0u), exponent, Operand(64u));
2023 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2024 Temp sign = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
2025 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2026 mantissa = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(7u), mantissa);
2027 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2028 Temp new_exponent = bld.tmp(v1);
2029 Temp borrow = bld.vsub32(Definition(new_exponent), Operand(63u), exponent, true).def(1).getTemp();
2030 if (ctx->program->chip_class >= GFX8)
2031 mantissa = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), new_exponent, mantissa);
2032 else
2033 mantissa = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), mantissa, new_exponent);
2034 Temp saturate = bld.vop1(aco_opcode::v_bfrev_b32, bld.def(v1), Operand(0xfffffffeu));
2035 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2036 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2037 lower = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), lower, Operand(0xffffffffu), borrow);
2038 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), upper, saturate, borrow);
2039 lower = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, lower);
2040 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, upper);
2041 Temp new_lower = bld.tmp(v1);
2042 borrow = bld.vsub32(Definition(new_lower), lower, sign, true).def(1).getTemp();
2043 Temp new_upper = bld.vsub32(bld.def(v1), upper, sign, false, borrow);
2044 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), new_lower, new_upper);
2045
2046 } else if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::sgpr) {
2047 if (src.type() == RegType::vgpr)
2048 src = bld.as_uniform(src);
2049 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2050 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2051 exponent = bld.sop2(aco_opcode::s_max_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2052 exponent = bld.sop2(aco_opcode::s_min_u32, bld.def(s1), bld.def(s1, scc), Operand(64u), exponent);
2053 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2054 Temp sign = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
2055 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2056 mantissa = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), mantissa, Operand(7u));
2057 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2058 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(63u), exponent);
2059 mantissa = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent);
2060 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), exponent, Operand(0xffffffffu)); // exp >= 64
2061 Temp saturate = bld.sop1(aco_opcode::s_brev_b64, bld.def(s2), Operand(0xfffffffeu));
2062 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), saturate, mantissa, cond);
2063 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2064 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2065 lower = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, lower);
2066 upper = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, upper);
2067 Temp borrow = bld.tmp(s1);
2068 lower = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), lower, sign);
2069 upper = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), upper, sign, borrow);
2070 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2071
2072 } else if (instr->src[0].src.ssa->bit_size == 64) {
2073 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2074 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2075 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2076 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2077 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2078 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2079 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2080 Temp upper = bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), floor);
2081 if (dst.type() == RegType::sgpr) {
2082 lower = bld.as_uniform(lower);
2083 upper = bld.as_uniform(upper);
2084 }
2085 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2086
2087 } else {
2088 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2089 nir_print_instr(&instr->instr, stderr);
2090 fprintf(stderr, "\n");
2091 }
2092 break;
2093 }
2094 case nir_op_f2u64: {
2095 Temp src = get_alu_src(ctx, instr->src[0]);
2096 if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::vgpr) {
2097 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2098 Temp exponent_in_range = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(64u), exponent);
2099 exponent = bld.vop2(aco_opcode::v_max_i32, bld.def(v1), Operand(0x0u), exponent);
2100 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2101 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2102 Temp exponent_small = bld.vsub32(bld.def(v1), Operand(24u), exponent);
2103 Temp small = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), exponent_small, mantissa);
2104 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2105 Temp new_exponent = bld.tmp(v1);
2106 Temp cond_small = bld.vsub32(Definition(new_exponent), exponent, Operand(24u), true).def(1).getTemp();
2107 if (ctx->program->chip_class >= GFX8)
2108 mantissa = bld.vop3(aco_opcode::v_lshlrev_b64, bld.def(v2), new_exponent, mantissa);
2109 else
2110 mantissa = bld.vop3(aco_opcode::v_lshl_b64, bld.def(v2), mantissa, new_exponent);
2111 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2112 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2113 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), lower, small, cond_small);
2114 upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), upper, Operand(0u), cond_small);
2115 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), lower, exponent_in_range);
2116 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), upper, exponent_in_range);
2117 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2118
2119 } else if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::sgpr) {
2120 if (src.type() == RegType::vgpr)
2121 src = bld.as_uniform(src);
2122 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2123 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2124 exponent = bld.sop2(aco_opcode::s_max_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2125 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2126 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2127 Temp exponent_small = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(24u), exponent);
2128 Temp small = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), mantissa, exponent_small);
2129 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2130 Temp exponent_large = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(24u));
2131 mantissa = bld.sop2(aco_opcode::s_lshl_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent_large);
2132 Temp cond = bld.sopc(aco_opcode::s_cmp_ge_i32, bld.def(s1, scc), Operand(64u), exponent);
2133 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), mantissa, Operand(0xffffffffu), cond);
2134 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2135 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2136 Temp cond_small = bld.sopc(aco_opcode::s_cmp_le_i32, bld.def(s1, scc), exponent, Operand(24u));
2137 lower = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), small, lower, cond_small);
2138 upper = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), Operand(0u), upper, cond_small);
2139 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2140
2141 } else if (instr->src[0].src.ssa->bit_size == 64) {
2142 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2143 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2144 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2145 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2146 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2147 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2148 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2149 Temp upper = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), floor);
2150 if (dst.type() == RegType::sgpr) {
2151 lower = bld.as_uniform(lower);
2152 upper = bld.as_uniform(upper);
2153 }
2154 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2155
2156 } else {
2157 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2158 nir_print_instr(&instr->instr, stderr);
2159 fprintf(stderr, "\n");
2160 }
2161 break;
2162 }
2163 case nir_op_b2f32: {
2164 Temp src = get_alu_src(ctx, instr->src[0]);
2165 assert(src.regClass() == bld.lm);
2166
2167 if (dst.regClass() == s1) {
2168 src = bool_to_scalar_condition(ctx, src);
2169 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3f800000u), src);
2170 } else if (dst.regClass() == v1) {
2171 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
2172 } else {
2173 unreachable("Wrong destination register class for nir_op_b2f32.");
2174 }
2175 break;
2176 }
2177 case nir_op_b2f64: {
2178 Temp src = get_alu_src(ctx, instr->src[0]);
2179 assert(src.regClass() == bld.lm);
2180
2181 if (dst.regClass() == s2) {
2182 src = bool_to_scalar_condition(ctx, src);
2183 bld.sop2(aco_opcode::s_cselect_b64, Definition(dst), Operand(0x3f800000u), Operand(0u), bld.scc(src));
2184 } else if (dst.regClass() == v2) {
2185 Temp one = bld.vop1(aco_opcode::v_mov_b32, bld.def(v2), Operand(0x3FF00000u));
2186 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), one, src);
2187 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
2188 } else {
2189 unreachable("Wrong destination register class for nir_op_b2f64.");
2190 }
2191 break;
2192 }
2193 case nir_op_i2i32: {
2194 Temp src = get_alu_src(ctx, instr->src[0]);
2195 if (instr->src[0].src.ssa->bit_size == 64) {
2196 /* we can actually just say dst = src, as it would map the lower register */
2197 emit_extract_vector(ctx, src, 0, dst);
2198 } else {
2199 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2200 nir_print_instr(&instr->instr, stderr);
2201 fprintf(stderr, "\n");
2202 }
2203 break;
2204 }
2205 case nir_op_u2u32: {
2206 Temp src = get_alu_src(ctx, instr->src[0]);
2207 if (instr->src[0].src.ssa->bit_size == 16) {
2208 if (dst.regClass() == s1) {
2209 bld.sop2(aco_opcode::s_and_b32, Definition(dst), bld.def(s1, scc), Operand(0xFFFFu), src);
2210 } else {
2211 // TODO: do better with SDWA
2212 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0xFFFFu), src);
2213 }
2214 } else if (instr->src[0].src.ssa->bit_size == 64) {
2215 /* we can actually just say dst = src, as it would map the lower register */
2216 emit_extract_vector(ctx, src, 0, dst);
2217 } else {
2218 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2219 nir_print_instr(&instr->instr, stderr);
2220 fprintf(stderr, "\n");
2221 }
2222 break;
2223 }
2224 case nir_op_i2i64: {
2225 Temp src = get_alu_src(ctx, instr->src[0]);
2226 if (src.regClass() == s1) {
2227 Temp high = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
2228 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, high);
2229 } else if (src.regClass() == v1) {
2230 Temp high = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
2231 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, high);
2232 } else {
2233 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2234 nir_print_instr(&instr->instr, stderr);
2235 fprintf(stderr, "\n");
2236 }
2237 break;
2238 }
2239 case nir_op_u2u64: {
2240 Temp src = get_alu_src(ctx, instr->src[0]);
2241 if (instr->src[0].src.ssa->bit_size == 32) {
2242 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, Operand(0u));
2243 } else {
2244 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2245 nir_print_instr(&instr->instr, stderr);
2246 fprintf(stderr, "\n");
2247 }
2248 break;
2249 }
2250 case nir_op_b2i32: {
2251 Temp src = get_alu_src(ctx, instr->src[0]);
2252 assert(src.regClass() == bld.lm);
2253
2254 if (dst.regClass() == s1) {
2255 // TODO: in a post-RA optimization, we can check if src is in VCC, and directly use VCCNZ
2256 bool_to_scalar_condition(ctx, src, dst);
2257 } else if (dst.regClass() == v1) {
2258 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), src);
2259 } else {
2260 unreachable("Invalid register class for b2i32");
2261 }
2262 break;
2263 }
2264 case nir_op_i2b1: {
2265 Temp src = get_alu_src(ctx, instr->src[0]);
2266 assert(dst.regClass() == bld.lm);
2267
2268 if (src.type() == RegType::vgpr) {
2269 assert(src.regClass() == v1 || src.regClass() == v2);
2270 assert(dst.regClass() == bld.lm);
2271 bld.vopc(src.size() == 2 ? aco_opcode::v_cmp_lg_u64 : aco_opcode::v_cmp_lg_u32,
2272 Definition(dst), Operand(0u), src).def(0).setHint(vcc);
2273 } else {
2274 assert(src.regClass() == s1 || src.regClass() == s2);
2275 Temp tmp;
2276 if (src.regClass() == s2 && ctx->program->chip_class <= GFX7) {
2277 tmp = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), Operand(0u), src).def(1).getTemp();
2278 } else {
2279 tmp = bld.sopc(src.size() == 2 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::s_cmp_lg_u32,
2280 bld.scc(bld.def(s1)), Operand(0u), src);
2281 }
2282 bool_to_vector_condition(ctx, tmp, dst);
2283 }
2284 break;
2285 }
2286 case nir_op_pack_64_2x32_split: {
2287 Temp src0 = get_alu_src(ctx, instr->src[0]);
2288 Temp src1 = get_alu_src(ctx, instr->src[1]);
2289
2290 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
2291 break;
2292 }
2293 case nir_op_unpack_64_2x32_split_x:
2294 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
2295 break;
2296 case nir_op_unpack_64_2x32_split_y:
2297 bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
2298 break;
2299 case nir_op_pack_half_2x16: {
2300 Temp src = get_alu_src(ctx, instr->src[0], 2);
2301
2302 if (dst.regClass() == v1) {
2303 Temp src0 = bld.tmp(v1);
2304 Temp src1 = bld.tmp(v1);
2305 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
2306 if (!ctx->block->fp_mode.care_about_round32 || ctx->block->fp_mode.round32 == fp_round_tz)
2307 bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, Definition(dst), src0, src1);
2308 else
2309 bld.vop3(aco_opcode::v_cvt_pk_u16_u32, Definition(dst),
2310 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src0),
2311 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src1));
2312 } else {
2313 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2314 nir_print_instr(&instr->instr, stderr);
2315 fprintf(stderr, "\n");
2316 }
2317 break;
2318 }
2319 case nir_op_unpack_half_2x16_split_x: {
2320 if (dst.regClass() == v1) {
2321 Builder bld(ctx->program, ctx->block);
2322 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst), get_alu_src(ctx, instr->src[0]));
2323 } else {
2324 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2325 nir_print_instr(&instr->instr, stderr);
2326 fprintf(stderr, "\n");
2327 }
2328 break;
2329 }
2330 case nir_op_unpack_half_2x16_split_y: {
2331 if (dst.regClass() == v1) {
2332 Builder bld(ctx->program, ctx->block);
2333 /* TODO: use SDWA here */
2334 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst),
2335 bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), as_vgpr(ctx, get_alu_src(ctx, instr->src[0]))));
2336 } else {
2337 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2338 nir_print_instr(&instr->instr, stderr);
2339 fprintf(stderr, "\n");
2340 }
2341 break;
2342 }
2343 case nir_op_fquantize2f16: {
2344 Temp src = get_alu_src(ctx, instr->src[0]);
2345 Temp f16 = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), src);
2346 Temp f32, cmp_res;
2347
2348 if (ctx->program->chip_class >= GFX8) {
2349 Temp mask = bld.copy(bld.def(s1), Operand(0x36Fu)); /* value is NOT negative/positive denormal value */
2350 cmp_res = bld.vopc_e64(aco_opcode::v_cmp_class_f16, bld.hint_vcc(bld.def(bld.lm)), f16, mask);
2351 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2352 } else {
2353 /* 0x38800000 is smallest half float value (2^-14) in 32-bit float,
2354 * so compare the result and flush to 0 if it's smaller.
2355 */
2356 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2357 Temp smallest = bld.copy(bld.def(s1), Operand(0x38800000u));
2358 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), f32, smallest);
2359 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
2360 cmp_res = vop3->definitions[0].getTemp();
2361 }
2362
2363 if (ctx->block->fp_mode.preserve_signed_zero_inf_nan32 || ctx->program->chip_class < GFX8) {
2364 Temp copysign_0 = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0u), as_vgpr(ctx, src));
2365 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), copysign_0, f32, cmp_res);
2366 } else {
2367 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), f32, cmp_res);
2368 }
2369 break;
2370 }
2371 case nir_op_bfm: {
2372 Temp bits = get_alu_src(ctx, instr->src[0]);
2373 Temp offset = get_alu_src(ctx, instr->src[1]);
2374
2375 if (dst.regClass() == s1) {
2376 bld.sop2(aco_opcode::s_bfm_b32, Definition(dst), bits, offset);
2377 } else if (dst.regClass() == v1) {
2378 bld.vop3(aco_opcode::v_bfm_b32, Definition(dst), bits, offset);
2379 } else {
2380 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2381 nir_print_instr(&instr->instr, stderr);
2382 fprintf(stderr, "\n");
2383 }
2384 break;
2385 }
2386 case nir_op_bitfield_select: {
2387 /* (mask & insert) | (~mask & base) */
2388 Temp bitmask = get_alu_src(ctx, instr->src[0]);
2389 Temp insert = get_alu_src(ctx, instr->src[1]);
2390 Temp base = get_alu_src(ctx, instr->src[2]);
2391
2392 /* dst = (insert & bitmask) | (base & ~bitmask) */
2393 if (dst.regClass() == s1) {
2394 aco_ptr<Instruction> sop2;
2395 nir_const_value* const_bitmask = nir_src_as_const_value(instr->src[0].src);
2396 nir_const_value* const_insert = nir_src_as_const_value(instr->src[1].src);
2397 Operand lhs;
2398 if (const_insert && const_bitmask) {
2399 lhs = Operand(const_insert->u32 & const_bitmask->u32);
2400 } else {
2401 insert = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), insert, bitmask);
2402 lhs = Operand(insert);
2403 }
2404
2405 Operand rhs;
2406 nir_const_value* const_base = nir_src_as_const_value(instr->src[2].src);
2407 if (const_base && const_bitmask) {
2408 rhs = Operand(const_base->u32 & ~const_bitmask->u32);
2409 } else {
2410 base = bld.sop2(aco_opcode::s_andn2_b32, bld.def(s1), bld.def(s1, scc), base, bitmask);
2411 rhs = Operand(base);
2412 }
2413
2414 bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), rhs, lhs);
2415
2416 } else if (dst.regClass() == v1) {
2417 if (base.type() == RegType::sgpr && (bitmask.type() == RegType::sgpr || (insert.type() == RegType::sgpr)))
2418 base = as_vgpr(ctx, base);
2419 if (insert.type() == RegType::sgpr && bitmask.type() == RegType::sgpr)
2420 insert = as_vgpr(ctx, insert);
2421
2422 bld.vop3(aco_opcode::v_bfi_b32, Definition(dst), bitmask, insert, base);
2423
2424 } else {
2425 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2426 nir_print_instr(&instr->instr, stderr);
2427 fprintf(stderr, "\n");
2428 }
2429 break;
2430 }
2431 case nir_op_ubfe:
2432 case nir_op_ibfe: {
2433 Temp base = get_alu_src(ctx, instr->src[0]);
2434 Temp offset = get_alu_src(ctx, instr->src[1]);
2435 Temp bits = get_alu_src(ctx, instr->src[2]);
2436
2437 if (dst.type() == RegType::sgpr) {
2438 Operand extract;
2439 nir_const_value* const_offset = nir_src_as_const_value(instr->src[1].src);
2440 nir_const_value* const_bits = nir_src_as_const_value(instr->src[2].src);
2441 if (const_offset && const_bits) {
2442 uint32_t const_extract = (const_bits->u32 << 16) | const_offset->u32;
2443 extract = Operand(const_extract);
2444 } else {
2445 Operand width;
2446 if (const_bits) {
2447 width = Operand(const_bits->u32 << 16);
2448 } else {
2449 width = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), bits, Operand(16u));
2450 }
2451 extract = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), offset, width);
2452 }
2453
2454 aco_opcode opcode;
2455 if (dst.regClass() == s1) {
2456 if (instr->op == nir_op_ubfe)
2457 opcode = aco_opcode::s_bfe_u32;
2458 else
2459 opcode = aco_opcode::s_bfe_i32;
2460 } else if (dst.regClass() == s2) {
2461 if (instr->op == nir_op_ubfe)
2462 opcode = aco_opcode::s_bfe_u64;
2463 else
2464 opcode = aco_opcode::s_bfe_i64;
2465 } else {
2466 unreachable("Unsupported BFE bit size");
2467 }
2468
2469 bld.sop2(opcode, Definition(dst), bld.def(s1, scc), base, extract);
2470
2471 } else {
2472 aco_opcode opcode;
2473 if (dst.regClass() == v1) {
2474 if (instr->op == nir_op_ubfe)
2475 opcode = aco_opcode::v_bfe_u32;
2476 else
2477 opcode = aco_opcode::v_bfe_i32;
2478 } else {
2479 unreachable("Unsupported BFE bit size");
2480 }
2481
2482 emit_vop3a_instruction(ctx, instr, opcode, dst);
2483 }
2484 break;
2485 }
2486 case nir_op_bit_count: {
2487 Temp src = get_alu_src(ctx, instr->src[0]);
2488 if (src.regClass() == s1) {
2489 bld.sop1(aco_opcode::s_bcnt1_i32_b32, Definition(dst), bld.def(s1, scc), src);
2490 } else if (src.regClass() == v1) {
2491 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst), src, Operand(0u));
2492 } else if (src.regClass() == v2) {
2493 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst),
2494 emit_extract_vector(ctx, src, 1, v1),
2495 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1),
2496 emit_extract_vector(ctx, src, 0, v1), Operand(0u)));
2497 } else if (src.regClass() == s2) {
2498 bld.sop1(aco_opcode::s_bcnt1_i32_b64, Definition(dst), bld.def(s1, scc), src);
2499 } else {
2500 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2501 nir_print_instr(&instr->instr, stderr);
2502 fprintf(stderr, "\n");
2503 }
2504 break;
2505 }
2506 case nir_op_flt: {
2507 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_f32, aco_opcode::v_cmp_lt_f64);
2508 break;
2509 }
2510 case nir_op_fge: {
2511 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_f32, aco_opcode::v_cmp_ge_f64);
2512 break;
2513 }
2514 case nir_op_feq: {
2515 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_f32, aco_opcode::v_cmp_eq_f64);
2516 break;
2517 }
2518 case nir_op_fne: {
2519 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_neq_f32, aco_opcode::v_cmp_neq_f64);
2520 break;
2521 }
2522 case nir_op_ilt: {
2523 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_i32, aco_opcode::v_cmp_lt_i64, aco_opcode::s_cmp_lt_i32);
2524 break;
2525 }
2526 case nir_op_ige: {
2527 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_i32, aco_opcode::v_cmp_ge_i64, aco_opcode::s_cmp_ge_i32);
2528 break;
2529 }
2530 case nir_op_ieq: {
2531 if (instr->src[0].src.ssa->bit_size == 1)
2532 emit_boolean_logic(ctx, instr, Builder::s_xnor, dst);
2533 else
2534 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_i32, aco_opcode::v_cmp_eq_i64, aco_opcode::s_cmp_eq_i32,
2535 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_eq_u64 : aco_opcode::num_opcodes);
2536 break;
2537 }
2538 case nir_op_ine: {
2539 if (instr->src[0].src.ssa->bit_size == 1)
2540 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
2541 else
2542 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lg_i32, aco_opcode::v_cmp_lg_i64, aco_opcode::s_cmp_lg_i32,
2543 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::num_opcodes);
2544 break;
2545 }
2546 case nir_op_ult: {
2547 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_u32, aco_opcode::v_cmp_lt_u64, aco_opcode::s_cmp_lt_u32);
2548 break;
2549 }
2550 case nir_op_uge: {
2551 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_u32, aco_opcode::v_cmp_ge_u64, aco_opcode::s_cmp_ge_u32);
2552 break;
2553 }
2554 case nir_op_fddx:
2555 case nir_op_fddy:
2556 case nir_op_fddx_fine:
2557 case nir_op_fddy_fine:
2558 case nir_op_fddx_coarse:
2559 case nir_op_fddy_coarse: {
2560 Temp src = get_alu_src(ctx, instr->src[0]);
2561 uint16_t dpp_ctrl1, dpp_ctrl2;
2562 if (instr->op == nir_op_fddx_fine) {
2563 dpp_ctrl1 = dpp_quad_perm(0, 0, 2, 2);
2564 dpp_ctrl2 = dpp_quad_perm(1, 1, 3, 3);
2565 } else if (instr->op == nir_op_fddy_fine) {
2566 dpp_ctrl1 = dpp_quad_perm(0, 1, 0, 1);
2567 dpp_ctrl2 = dpp_quad_perm(2, 3, 2, 3);
2568 } else {
2569 dpp_ctrl1 = dpp_quad_perm(0, 0, 0, 0);
2570 if (instr->op == nir_op_fddx || instr->op == nir_op_fddx_coarse)
2571 dpp_ctrl2 = dpp_quad_perm(1, 1, 1, 1);
2572 else
2573 dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
2574 }
2575
2576 Temp tmp;
2577 if (ctx->program->chip_class >= GFX8) {
2578 Temp tl = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl1);
2579 tmp = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), src, tl, dpp_ctrl2);
2580 } else {
2581 Temp tl = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl1);
2582 Temp tr = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl2);
2583 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), tr, tl);
2584 }
2585 emit_wqm(ctx, tmp, dst, true);
2586 break;
2587 }
2588 default:
2589 fprintf(stderr, "Unknown NIR ALU instr: ");
2590 nir_print_instr(&instr->instr, stderr);
2591 fprintf(stderr, "\n");
2592 }
2593 }
2594
2595 void visit_load_const(isel_context *ctx, nir_load_const_instr *instr)
2596 {
2597 Temp dst = get_ssa_temp(ctx, &instr->def);
2598
2599 // TODO: we really want to have the resulting type as this would allow for 64bit literals
2600 // which get truncated the lsb if double and msb if int
2601 // for now, we only use s_mov_b64 with 64bit inline constants
2602 assert(instr->def.num_components == 1 && "Vector load_const should be lowered to scalar.");
2603 assert(dst.type() == RegType::sgpr);
2604
2605 Builder bld(ctx->program, ctx->block);
2606
2607 if (instr->def.bit_size == 1) {
2608 assert(dst.regClass() == bld.lm);
2609 int val = instr->value[0].b ? -1 : 0;
2610 Operand op = bld.lm.size() == 1 ? Operand((uint32_t) val) : Operand((uint64_t) val);
2611 bld.sop1(Builder::s_mov, Definition(dst), op);
2612 } else if (dst.size() == 1) {
2613 bld.copy(Definition(dst), Operand(instr->value[0].u32));
2614 } else {
2615 assert(dst.size() != 1);
2616 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
2617 if (instr->def.bit_size == 64)
2618 for (unsigned i = 0; i < dst.size(); i++)
2619 vec->operands[i] = Operand{(uint32_t)(instr->value[0].u64 >> i * 32)};
2620 else {
2621 for (unsigned i = 0; i < dst.size(); i++)
2622 vec->operands[i] = Operand{instr->value[i].u32};
2623 }
2624 vec->definitions[0] = Definition(dst);
2625 ctx->block->instructions.emplace_back(std::move(vec));
2626 }
2627 }
2628
2629 uint32_t widen_mask(uint32_t mask, unsigned multiplier)
2630 {
2631 uint32_t new_mask = 0;
2632 for(unsigned i = 0; i < 32 && (1u << i) <= mask; ++i)
2633 if (mask & (1u << i))
2634 new_mask |= ((1u << multiplier) - 1u) << (i * multiplier);
2635 return new_mask;
2636 }
2637
2638 Operand load_lds_size_m0(isel_context *ctx)
2639 {
2640 /* TODO: m0 does not need to be initialized on GFX9+ */
2641 Builder bld(ctx->program, ctx->block);
2642 return bld.m0((Temp)bld.sopk(aco_opcode::s_movk_i32, bld.def(s1, m0), 0xffff));
2643 }
2644
2645 Temp load_lds(isel_context *ctx, unsigned elem_size_bytes, Temp dst,
2646 Temp address, unsigned base_offset, unsigned align)
2647 {
2648 assert(util_is_power_of_two_nonzero(align) && align >= 4);
2649
2650 Builder bld(ctx->program, ctx->block);
2651
2652 Operand m = load_lds_size_m0(ctx);
2653
2654 unsigned num_components = dst.size() * 4u / elem_size_bytes;
2655 unsigned bytes_read = 0;
2656 unsigned result_size = 0;
2657 unsigned total_bytes = num_components * elem_size_bytes;
2658 std::array<Temp, NIR_MAX_VEC_COMPONENTS> result;
2659 bool large_ds_read = ctx->options->chip_class >= GFX7;
2660 bool usable_read2 = ctx->options->chip_class >= GFX7;
2661
2662 while (bytes_read < total_bytes) {
2663 unsigned todo = total_bytes - bytes_read;
2664 bool aligned8 = bytes_read % 8 == 0 && align % 8 == 0;
2665 bool aligned16 = bytes_read % 16 == 0 && align % 16 == 0;
2666
2667 aco_opcode op = aco_opcode::last_opcode;
2668 bool read2 = false;
2669 if (todo >= 16 && aligned16 && large_ds_read) {
2670 op = aco_opcode::ds_read_b128;
2671 todo = 16;
2672 } else if (todo >= 16 && aligned8 && usable_read2) {
2673 op = aco_opcode::ds_read2_b64;
2674 read2 = true;
2675 todo = 16;
2676 } else if (todo >= 12 && aligned16 && large_ds_read) {
2677 op = aco_opcode::ds_read_b96;
2678 todo = 12;
2679 } else if (todo >= 8 && aligned8) {
2680 op = aco_opcode::ds_read_b64;
2681 todo = 8;
2682 } else if (todo >= 8 && usable_read2) {
2683 op = aco_opcode::ds_read2_b32;
2684 read2 = true;
2685 todo = 8;
2686 } else if (todo >= 4) {
2687 op = aco_opcode::ds_read_b32;
2688 todo = 4;
2689 } else {
2690 assert(false);
2691 }
2692 assert(todo % elem_size_bytes == 0);
2693 unsigned num_elements = todo / elem_size_bytes;
2694 unsigned offset = base_offset + bytes_read;
2695 unsigned max_offset = read2 ? 1019 : 65535;
2696
2697 Temp address_offset = address;
2698 if (offset > max_offset) {
2699 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
2700 offset = bytes_read;
2701 }
2702 assert(offset <= max_offset); /* bytes_read shouldn't be large enough for this to happen */
2703
2704 Temp res;
2705 if (num_components == 1 && dst.type() == RegType::vgpr)
2706 res = dst;
2707 else
2708 res = bld.tmp(RegClass(RegType::vgpr, todo / 4));
2709
2710 if (read2)
2711 res = bld.ds(op, Definition(res), address_offset, m, offset / (todo / 2), (offset / (todo / 2)) + 1);
2712 else
2713 res = bld.ds(op, Definition(res), address_offset, m, offset);
2714
2715 if (num_components == 1) {
2716 assert(todo == total_bytes);
2717 if (dst.type() == RegType::sgpr)
2718 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), res);
2719 return dst;
2720 }
2721
2722 if (dst.type() == RegType::sgpr) {
2723 Temp new_res = bld.tmp(RegType::sgpr, res.size());
2724 expand_vector(ctx, res, new_res, res.size(), (1 << res.size()) - 1);
2725 res = new_res;
2726 }
2727
2728 if (num_elements == 1) {
2729 result[result_size++] = res;
2730 } else {
2731 assert(res != dst && res.size() % num_elements == 0);
2732 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_elements)};
2733 split->operands[0] = Operand(res);
2734 for (unsigned i = 0; i < num_elements; i++)
2735 split->definitions[i] = Definition(result[result_size++] = bld.tmp(res.type(), elem_size_bytes / 4));
2736 ctx->block->instructions.emplace_back(std::move(split));
2737 }
2738
2739 bytes_read += todo;
2740 }
2741
2742 assert(result_size == num_components && result_size > 1);
2743 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, result_size, 1)};
2744 for (unsigned i = 0; i < result_size; i++)
2745 vec->operands[i] = Operand(result[i]);
2746 vec->definitions[0] = Definition(dst);
2747 ctx->block->instructions.emplace_back(std::move(vec));
2748 ctx->allocated_vec.emplace(dst.id(), result);
2749
2750 return dst;
2751 }
2752
2753 Temp extract_subvector(isel_context *ctx, Temp data, unsigned start, unsigned size, RegType type)
2754 {
2755 if (start == 0 && size == data.size())
2756 return type == RegType::vgpr ? as_vgpr(ctx, data) : data;
2757
2758 unsigned size_hint = 1;
2759 auto it = ctx->allocated_vec.find(data.id());
2760 if (it != ctx->allocated_vec.end())
2761 size_hint = it->second[0].size();
2762 if (size % size_hint || start % size_hint)
2763 size_hint = 1;
2764
2765 start /= size_hint;
2766 size /= size_hint;
2767
2768 Temp elems[size];
2769 for (unsigned i = 0; i < size; i++)
2770 elems[i] = emit_extract_vector(ctx, data, start + i, RegClass(type, size_hint));
2771
2772 if (size == 1)
2773 return type == RegType::vgpr ? as_vgpr(ctx, elems[0]) : elems[0];
2774
2775 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
2776 for (unsigned i = 0; i < size; i++)
2777 vec->operands[i] = Operand(elems[i]);
2778 Temp res = {ctx->program->allocateId(), RegClass(type, size * size_hint)};
2779 vec->definitions[0] = Definition(res);
2780 ctx->block->instructions.emplace_back(std::move(vec));
2781 return res;
2782 }
2783
2784 void ds_write_helper(isel_context *ctx, Operand m, Temp address, Temp data, unsigned data_start, unsigned total_size, unsigned offset0, unsigned offset1, unsigned align)
2785 {
2786 Builder bld(ctx->program, ctx->block);
2787 unsigned bytes_written = 0;
2788 bool large_ds_write = ctx->options->chip_class >= GFX7;
2789 bool usable_write2 = ctx->options->chip_class >= GFX7;
2790
2791 while (bytes_written < total_size * 4) {
2792 unsigned todo = total_size * 4 - bytes_written;
2793 bool aligned8 = bytes_written % 8 == 0 && align % 8 == 0;
2794 bool aligned16 = bytes_written % 16 == 0 && align % 16 == 0;
2795
2796 aco_opcode op = aco_opcode::last_opcode;
2797 bool write2 = false;
2798 unsigned size = 0;
2799 if (todo >= 16 && aligned16 && large_ds_write) {
2800 op = aco_opcode::ds_write_b128;
2801 size = 4;
2802 } else if (todo >= 16 && aligned8 && usable_write2) {
2803 op = aco_opcode::ds_write2_b64;
2804 write2 = true;
2805 size = 4;
2806 } else if (todo >= 12 && aligned16 && large_ds_write) {
2807 op = aco_opcode::ds_write_b96;
2808 size = 3;
2809 } else if (todo >= 8 && aligned8) {
2810 op = aco_opcode::ds_write_b64;
2811 size = 2;
2812 } else if (todo >= 8 && usable_write2) {
2813 op = aco_opcode::ds_write2_b32;
2814 write2 = true;
2815 size = 2;
2816 } else if (todo >= 4) {
2817 op = aco_opcode::ds_write_b32;
2818 size = 1;
2819 } else {
2820 assert(false);
2821 }
2822
2823 unsigned offset = offset0 + offset1 + bytes_written;
2824 unsigned max_offset = write2 ? 1020 : 65535;
2825 Temp address_offset = address;
2826 if (offset > max_offset) {
2827 address_offset = bld.vadd32(bld.def(v1), Operand(offset0), address_offset);
2828 offset = offset1 + bytes_written;
2829 }
2830 assert(offset <= max_offset); /* offset1 shouldn't be large enough for this to happen */
2831
2832 if (write2) {
2833 Temp val0 = extract_subvector(ctx, data, data_start + (bytes_written >> 2), size / 2, RegType::vgpr);
2834 Temp val1 = extract_subvector(ctx, data, data_start + (bytes_written >> 2) + 1, size / 2, RegType::vgpr);
2835 bld.ds(op, address_offset, val0, val1, m, offset / size / 2, (offset / size / 2) + 1);
2836 } else {
2837 Temp val = extract_subvector(ctx, data, data_start + (bytes_written >> 2), size, RegType::vgpr);
2838 bld.ds(op, address_offset, val, m, offset);
2839 }
2840
2841 bytes_written += size * 4;
2842 }
2843 }
2844
2845 void store_lds(isel_context *ctx, unsigned elem_size_bytes, Temp data, uint32_t wrmask,
2846 Temp address, unsigned base_offset, unsigned align)
2847 {
2848 assert(util_is_power_of_two_nonzero(align) && align >= 4);
2849 assert(elem_size_bytes == 4 || elem_size_bytes == 8);
2850
2851 Operand m = load_lds_size_m0(ctx);
2852
2853 /* we need at most two stores, assuming that the writemask is at most 4 bits wide */
2854 assert(wrmask <= 0x0f);
2855 int start[2], count[2];
2856 u_bit_scan_consecutive_range(&wrmask, &start[0], &count[0]);
2857 u_bit_scan_consecutive_range(&wrmask, &start[1], &count[1]);
2858 assert(wrmask == 0);
2859
2860 /* one combined store is sufficient */
2861 if (count[0] == count[1] && (align % elem_size_bytes) == 0 && (base_offset % elem_size_bytes) == 0) {
2862 Builder bld(ctx->program, ctx->block);
2863
2864 Temp address_offset = address;
2865 if ((base_offset / elem_size_bytes) + start[1] > 255) {
2866 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
2867 base_offset = 0;
2868 }
2869
2870 assert(count[0] == 1);
2871 RegClass xtract_rc(RegType::vgpr, elem_size_bytes / 4);
2872
2873 Temp val0 = emit_extract_vector(ctx, data, start[0], xtract_rc);
2874 Temp val1 = emit_extract_vector(ctx, data, start[1], xtract_rc);
2875 aco_opcode op = elem_size_bytes == 4 ? aco_opcode::ds_write2_b32 : aco_opcode::ds_write2_b64;
2876 base_offset = base_offset / elem_size_bytes;
2877 bld.ds(op, address_offset, val0, val1, m,
2878 base_offset + start[0], base_offset + start[1]);
2879 return;
2880 }
2881
2882 for (unsigned i = 0; i < 2; i++) {
2883 if (count[i] == 0)
2884 continue;
2885
2886 unsigned elem_size_words = elem_size_bytes / 4;
2887 ds_write_helper(ctx, m, address, data, start[i] * elem_size_words, count[i] * elem_size_words,
2888 base_offset, start[i] * elem_size_bytes, align);
2889 }
2890 return;
2891 }
2892
2893 unsigned calculate_lds_alignment(isel_context *ctx, unsigned const_offset)
2894 {
2895 unsigned align = 16;
2896 if (const_offset)
2897 align = std::min(align, 1u << (ffs(const_offset) - 1));
2898
2899 return align;
2900 }
2901
2902
2903 Temp create_vec_from_array(isel_context *ctx, Temp arr[], unsigned cnt, RegType reg_type, unsigned split_cnt = 0u, Temp dst = Temp())
2904 {
2905 Builder bld(ctx->program, ctx->block);
2906
2907 if (!dst.id())
2908 dst = bld.tmp(RegClass(reg_type, cnt * arr[0].size()));
2909
2910 std::array<Temp, NIR_MAX_VEC_COMPONENTS> allocated_vec;
2911 aco_ptr<Pseudo_instruction> instr {create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, cnt, 1)};
2912 instr->definitions[0] = Definition(dst);
2913
2914 for (unsigned i = 0; i < cnt; ++i) {
2915 assert(arr[i].size() == arr[0].size());
2916 allocated_vec[i] = arr[i];
2917 instr->operands[i] = Operand(arr[i]);
2918 }
2919
2920 bld.insert(std::move(instr));
2921
2922 if (split_cnt)
2923 emit_split_vector(ctx, dst, split_cnt);
2924 else
2925 ctx->allocated_vec.emplace(dst.id(), allocated_vec); /* emit_split_vector already does this */
2926
2927 return dst;
2928 }
2929
2930 inline unsigned resolve_excess_vmem_const_offset(Builder &bld, Temp &voffset, unsigned const_offset)
2931 {
2932 if (const_offset >= 4096) {
2933 unsigned excess_const_offset = const_offset / 4096u * 4096u;
2934 const_offset %= 4096u;
2935
2936 if (!voffset.id())
2937 voffset = bld.copy(bld.def(v1), Operand(excess_const_offset));
2938 else if (unlikely(voffset.regClass() == s1))
2939 voffset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), Operand(excess_const_offset), Operand(voffset));
2940 else if (likely(voffset.regClass() == v1))
2941 voffset = bld.vadd32(bld.def(v1), Operand(voffset), Operand(excess_const_offset));
2942 else
2943 unreachable("Unsupported register class of voffset");
2944 }
2945
2946 return const_offset;
2947 }
2948
2949 void emit_single_mubuf_store(isel_context *ctx, Temp descriptor, Temp voffset, Temp soffset, Temp vdata,
2950 unsigned const_offset = 0u, bool allow_reorder = true, bool slc = false)
2951 {
2952 assert(vdata.id());
2953 assert(vdata.size() != 3 || ctx->program->chip_class != GFX6);
2954 assert(vdata.size() >= 1 && vdata.size() <= 4);
2955
2956 Builder bld(ctx->program, ctx->block);
2957 aco_opcode op = (aco_opcode) ((unsigned) aco_opcode::buffer_store_dword + vdata.size() - 1);
2958 const_offset = resolve_excess_vmem_const_offset(bld, voffset, const_offset);
2959
2960 Operand voffset_op = voffset.id() ? Operand(as_vgpr(ctx, voffset)) : Operand(v1);
2961 Operand soffset_op = soffset.id() ? Operand(soffset) : Operand(0u);
2962 Builder::Result r = bld.mubuf(op, Operand(descriptor), voffset_op, soffset_op, Operand(vdata), const_offset,
2963 /* offen */ !voffset_op.isUndefined(), /* idxen*/ false, /* addr64 */ false,
2964 /* disable_wqm */ false, /* glc */ true, /* dlc*/ false, /* slc */ slc);
2965
2966 static_cast<MUBUF_instruction *>(r.instr)->can_reorder = allow_reorder;
2967 }
2968
2969 void store_vmem_mubuf(isel_context *ctx, Temp src, Temp descriptor, Temp voffset, Temp soffset,
2970 unsigned base_const_offset, unsigned elem_size_bytes, unsigned write_mask,
2971 bool allow_combining = true, bool reorder = true, bool slc = false)
2972 {
2973 Builder bld(ctx->program, ctx->block);
2974 assert(elem_size_bytes == 4 || elem_size_bytes == 8);
2975 assert(write_mask);
2976
2977 if (elem_size_bytes == 8) {
2978 elem_size_bytes = 4;
2979 write_mask = widen_mask(write_mask, 2);
2980 }
2981
2982 while (write_mask) {
2983 int start = 0;
2984 int count = 0;
2985 u_bit_scan_consecutive_range(&write_mask, &start, &count);
2986 assert(count > 0);
2987 assert(start >= 0);
2988
2989 while (count > 0) {
2990 unsigned sub_count = allow_combining ? MIN2(count, 4) : 1;
2991 unsigned const_offset = (unsigned) start * elem_size_bytes + base_const_offset;
2992
2993 /* GFX6 doesn't have buffer_store_dwordx3, so make sure not to emit that here either. */
2994 if (unlikely(ctx->program->chip_class == GFX6 && sub_count == 3))
2995 sub_count = 2;
2996
2997 Temp elem = extract_subvector(ctx, src, start, sub_count, RegType::vgpr);
2998 emit_single_mubuf_store(ctx, descriptor, voffset, soffset, elem, const_offset, reorder, slc);
2999
3000 count -= sub_count;
3001 start += sub_count;
3002 }
3003
3004 assert(count == 0);
3005 }
3006 }
3007
3008 Temp emit_single_mubuf_load(isel_context *ctx, Temp descriptor, Temp voffset, Temp soffset,
3009 unsigned const_offset, unsigned size_dwords, bool allow_reorder = true)
3010 {
3011 assert(size_dwords != 3 || ctx->program->chip_class != GFX6);
3012 assert(size_dwords >= 1 && size_dwords <= 4);
3013
3014 Builder bld(ctx->program, ctx->block);
3015 Temp vdata = bld.tmp(RegClass(RegType::vgpr, size_dwords));
3016 aco_opcode op = (aco_opcode) ((unsigned) aco_opcode::buffer_load_dword + size_dwords - 1);
3017 const_offset = resolve_excess_vmem_const_offset(bld, voffset, const_offset);
3018
3019 Operand voffset_op = voffset.id() ? Operand(as_vgpr(ctx, voffset)) : Operand(v1);
3020 Operand soffset_op = soffset.id() ? Operand(soffset) : Operand(0u);
3021 Builder::Result r = bld.mubuf(op, Definition(vdata), Operand(descriptor), voffset_op, soffset_op, const_offset,
3022 /* offen */ !voffset_op.isUndefined(), /* idxen*/ false, /* addr64 */ false,
3023 /* disable_wqm */ false, /* glc */ true,
3024 /* dlc*/ ctx->program->chip_class >= GFX10, /* slc */ false);
3025
3026 static_cast<MUBUF_instruction *>(r.instr)->can_reorder = allow_reorder;
3027
3028 return vdata;
3029 }
3030
3031 void load_vmem_mubuf(isel_context *ctx, Temp dst, Temp descriptor, Temp voffset, Temp soffset,
3032 unsigned base_const_offset, unsigned elem_size_bytes, unsigned num_components,
3033 unsigned stride = 0u, bool allow_combining = true, bool allow_reorder = true)
3034 {
3035 assert(elem_size_bytes == 4 || elem_size_bytes == 8);
3036 assert((num_components * elem_size_bytes / 4) == dst.size());
3037 assert(!!stride != allow_combining);
3038
3039 Builder bld(ctx->program, ctx->block);
3040 unsigned split_cnt = num_components;
3041
3042 if (elem_size_bytes == 8) {
3043 elem_size_bytes = 4;
3044 num_components *= 2;
3045 }
3046
3047 if (!stride)
3048 stride = elem_size_bytes;
3049
3050 unsigned load_size = 1;
3051 if (allow_combining) {
3052 if ((num_components % 4) == 0)
3053 load_size = 4;
3054 else if ((num_components % 3) == 0 && ctx->program->chip_class != GFX6)
3055 load_size = 3;
3056 else if ((num_components % 2) == 0)
3057 load_size = 2;
3058 }
3059
3060 unsigned num_loads = num_components / load_size;
3061 std::array<Temp, NIR_MAX_VEC_COMPONENTS> elems;
3062
3063 for (unsigned i = 0; i < num_loads; ++i) {
3064 unsigned const_offset = i * stride * load_size + base_const_offset;
3065 elems[i] = emit_single_mubuf_load(ctx, descriptor, voffset, soffset, const_offset, load_size, allow_reorder);
3066 }
3067
3068 create_vec_from_array(ctx, elems.data(), num_loads, RegType::vgpr, split_cnt, dst);
3069 }
3070
3071 std::pair<Temp, unsigned> offset_add_from_nir(isel_context *ctx, const std::pair<Temp, unsigned> &base_offset, nir_src *off_src, unsigned stride = 1u)
3072 {
3073 Builder bld(ctx->program, ctx->block);
3074 Temp offset = base_offset.first;
3075 unsigned const_offset = base_offset.second;
3076
3077 if (!nir_src_is_const(*off_src)) {
3078 Temp indirect_offset_arg = get_ssa_temp(ctx, off_src->ssa);
3079 Temp with_stride;
3080
3081 /* Calculate indirect offset with stride */
3082 if (likely(indirect_offset_arg.regClass() == v1))
3083 with_stride = bld.v_mul_imm(bld.def(v1), indirect_offset_arg, stride);
3084 else if (indirect_offset_arg.regClass() == s1)
3085 with_stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), indirect_offset_arg);
3086 else
3087 unreachable("Unsupported register class of indirect offset");
3088
3089 /* Add to the supplied base offset */
3090 if (offset.id() == 0)
3091 offset = with_stride;
3092 else if (unlikely(offset.regClass() == s1 && with_stride.regClass() == s1))
3093 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), with_stride, offset);
3094 else if (offset.size() == 1 && with_stride.size() == 1)
3095 offset = bld.vadd32(bld.def(v1), with_stride, offset);
3096 else
3097 unreachable("Unsupported register class of indirect offset");
3098 } else {
3099 unsigned const_offset_arg = nir_src_as_uint(*off_src);
3100 const_offset += const_offset_arg * stride;
3101 }
3102
3103 return std::make_pair(offset, const_offset);
3104 }
3105
3106 std::pair<Temp, unsigned> offset_add(isel_context *ctx, const std::pair<Temp, unsigned> &off1, const std::pair<Temp, unsigned> &off2)
3107 {
3108 Builder bld(ctx->program, ctx->block);
3109 Temp offset;
3110
3111 if (off1.first.id() && off2.first.id()) {
3112 if (unlikely(off1.first.regClass() == s1 && off2.first.regClass() == s1))
3113 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), off1.first, off2.first);
3114 else if (off1.first.size() == 1 && off2.first.size() == 1)
3115 offset = bld.vadd32(bld.def(v1), off1.first, off2.first);
3116 else
3117 unreachable("Unsupported register class of indirect offset");
3118 } else {
3119 offset = off1.first.id() ? off1.first : off2.first;
3120 }
3121
3122 return std::make_pair(offset, off1.second + off2.second);
3123 }
3124
3125 std::pair<Temp, unsigned> offset_mul(isel_context *ctx, const std::pair<Temp, unsigned> &offs, unsigned multiplier)
3126 {
3127 Builder bld(ctx->program, ctx->block);
3128 unsigned const_offset = offs.second * multiplier;
3129
3130 if (!offs.first.id())
3131 return std::make_pair(offs.first, const_offset);
3132
3133 Temp offset = unlikely(offs.first.regClass() == s1)
3134 ? bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(multiplier), offs.first)
3135 : bld.v_mul_imm(bld.def(v1), offs.first, multiplier);
3136
3137 return std::make_pair(offset, const_offset);
3138 }
3139
3140 std::pair<Temp, unsigned> get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned base_stride, unsigned component_stride)
3141 {
3142 Builder bld(ctx->program, ctx->block);
3143
3144 /* base is the driver_location, which is already multiplied by 4, so is in dwords */
3145 unsigned const_offset = nir_intrinsic_base(instr) * base_stride;
3146 /* component is in bytes */
3147 const_offset += nir_intrinsic_component(instr) * component_stride;
3148
3149 /* offset should be interpreted in relation to the base, so the instruction effectively reads/writes another input/output when it has an offset */
3150 nir_src *off_src = nir_get_io_offset_src(instr);
3151 return offset_add_from_nir(ctx, std::make_pair(Temp(), const_offset), off_src, 4u * base_stride);
3152 }
3153
3154 std::pair<Temp, unsigned> get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned stride = 1u)
3155 {
3156 return get_intrinsic_io_basic_offset(ctx, instr, stride, stride);
3157 }
3158
3159 Temp get_tess_rel_patch_id(isel_context *ctx)
3160 {
3161 Builder bld(ctx->program, ctx->block);
3162
3163 switch (ctx->shader->info.stage) {
3164 case MESA_SHADER_TESS_CTRL:
3165 return bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffu),
3166 get_arg(ctx, ctx->args->ac.tcs_rel_ids));
3167 case MESA_SHADER_TESS_EVAL:
3168 return get_arg(ctx, ctx->args->tes_rel_patch_id);
3169 default:
3170 unreachable("Unsupported stage in get_tess_rel_patch_id");
3171 }
3172 }
3173
3174 std::pair<Temp, unsigned> get_tcs_per_vertex_input_lds_offset(isel_context *ctx, nir_intrinsic_instr *instr)
3175 {
3176 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3177 Builder bld(ctx->program, ctx->block);
3178
3179 uint32_t tcs_in_patch_stride = ctx->args->options->key.tcs.input_vertices * ctx->tcs_num_inputs * 4;
3180 uint32_t tcs_in_vertex_stride = ctx->tcs_num_inputs * 4;
3181
3182 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr);
3183
3184 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
3185 offs = offset_add_from_nir(ctx, offs, vertex_index_src, tcs_in_vertex_stride);
3186
3187 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3188 Temp tcs_in_current_patch_offset = bld.v_mul24_imm(bld.def(v1), rel_patch_id, tcs_in_patch_stride);
3189 offs = offset_add(ctx, offs, std::make_pair(tcs_in_current_patch_offset, 0));
3190
3191 return offset_mul(ctx, offs, 4u);
3192 }
3193
3194 std::pair<Temp, unsigned> get_tcs_output_lds_offset(isel_context *ctx, nir_intrinsic_instr *instr = nullptr, bool per_vertex = false)
3195 {
3196 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3197 Builder bld(ctx->program, ctx->block);
3198
3199 uint32_t input_patch_size = ctx->args->options->key.tcs.input_vertices * ctx->tcs_num_inputs * 16;
3200 uint32_t num_tcs_outputs = util_last_bit64(ctx->args->shader_info->tcs.outputs_written);
3201 uint32_t num_tcs_patch_outputs = util_last_bit64(ctx->args->shader_info->tcs.patch_outputs_written);
3202 uint32_t output_vertex_size = num_tcs_outputs * 16;
3203 uint32_t pervertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
3204 uint32_t output_patch_stride = pervertex_output_patch_size + num_tcs_patch_outputs * 16;
3205
3206 std::pair<Temp, unsigned> offs = instr
3207 ? get_intrinsic_io_basic_offset(ctx, instr, 4u)
3208 : std::make_pair(Temp(), 0u);
3209
3210 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3211 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, output_patch_stride);
3212
3213 if (per_vertex) {
3214 assert(instr);
3215
3216 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
3217 offs = offset_add_from_nir(ctx, offs, vertex_index_src, output_vertex_size);
3218
3219 uint32_t output_patch0_offset = (input_patch_size * ctx->tcs_num_patches);
3220 offs = offset_add(ctx, offs, std::make_pair(patch_off, output_patch0_offset));
3221 } else {
3222 uint32_t output_patch0_patch_data_offset = (input_patch_size * ctx->tcs_num_patches + pervertex_output_patch_size);
3223 offs = offset_add(ctx, offs, std::make_pair(patch_off, output_patch0_patch_data_offset));
3224 }
3225
3226 return offs;
3227 }
3228
3229 std::pair<Temp, unsigned> get_tcs_per_vertex_output_vmem_offset(isel_context *ctx, nir_intrinsic_instr *instr)
3230 {
3231 Builder bld(ctx->program, ctx->block);
3232
3233 unsigned vertices_per_patch = ctx->shader->info.tess.tcs_vertices_out;
3234 unsigned attr_stride = vertices_per_patch * ctx->tcs_num_patches;
3235
3236 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, attr_stride * 4u, 4u);
3237
3238 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3239 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, vertices_per_patch * 16u);
3240 offs = offset_add(ctx, offs, std::make_pair(patch_off, 0u));
3241
3242 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
3243 offs = offset_add_from_nir(ctx, offs, vertex_index_src, 16u);
3244
3245 return offs;
3246 }
3247
3248 std::pair<Temp, unsigned> get_tcs_per_patch_output_vmem_offset(isel_context *ctx, nir_intrinsic_instr *instr = nullptr, unsigned const_base_offset = 0u)
3249 {
3250 Builder bld(ctx->program, ctx->block);
3251
3252 unsigned num_tcs_outputs = ctx->shader->info.stage == MESA_SHADER_TESS_CTRL
3253 ? util_last_bit64(ctx->args->shader_info->tcs.outputs_written)
3254 : ctx->args->options->key.tes.tcs_num_outputs;
3255
3256 unsigned output_vertex_size = num_tcs_outputs * 16;
3257 unsigned per_vertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
3258 unsigned per_patch_data_offset = per_vertex_output_patch_size * ctx->tcs_num_patches;
3259 unsigned attr_stride = ctx->tcs_num_patches;
3260
3261 std::pair<Temp, unsigned> offs = instr
3262 ? get_intrinsic_io_basic_offset(ctx, instr, attr_stride * 4u, 4u)
3263 : std::make_pair(Temp(), 0u);
3264
3265 if (const_base_offset)
3266 offs.second += const_base_offset * attr_stride;
3267
3268 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3269 Temp patch_off = bld.v_mul_imm(bld.def(v1), rel_patch_id, 16u);
3270 offs = offset_add(ctx, offs, std::make_pair(patch_off, per_patch_data_offset));
3271
3272 return offs;
3273 }
3274
3275 void visit_store_ls_or_es_output(isel_context *ctx, nir_intrinsic_instr *instr)
3276 {
3277 Builder bld(ctx->program, ctx->block);
3278
3279 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, 4u);
3280 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
3281 unsigned write_mask = nir_intrinsic_write_mask(instr);
3282 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8u;
3283
3284 if (ctx->stage == vertex_es || ctx->stage == tess_eval_es) {
3285 /* GFX6-8: ES stage is not merged into GS, data is passed from ES to GS in VMEM. */
3286 Temp esgs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_VS * 16u));
3287 Temp es2gs_offset = get_arg(ctx, ctx->args->es2gs_offset);
3288 store_vmem_mubuf(ctx, src, esgs_ring, offs.first, es2gs_offset, offs.second, elem_size_bytes, write_mask, false, true, true);
3289 } else {
3290 Temp lds_base;
3291
3292 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
3293 /* GFX9+: ES stage is merged into GS, data is passed between them using LDS. */
3294 unsigned itemsize = ctx->stage == vertex_geometry_gs
3295 ? ctx->program->info->vs.es_info.esgs_itemsize
3296 : ctx->program->info->tes.es_info.esgs_itemsize;
3297 Temp thread_id = emit_mbcnt(ctx, bld.def(v1));
3298 Temp wave_idx = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(ctx, ctx->args->merged_wave_info), Operand(4u << 16 | 24));
3299 Temp vertex_idx = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), thread_id,
3300 bld.v_mul24_imm(bld.def(v1), as_vgpr(ctx, wave_idx), ctx->program->wave_size));
3301 lds_base = bld.v_mul24_imm(bld.def(v1), vertex_idx, itemsize);
3302 } else if (ctx->stage == vertex_ls || ctx->stage == vertex_tess_control_hs) {
3303 /* GFX6-8: VS runs on LS stage when tessellation is used, but LS shares LDS space with HS.
3304 * GFX9+: LS is merged into HS, but still uses the same LDS layout.
3305 */
3306 unsigned num_tcs_inputs = util_last_bit64(ctx->args->shader_info->vs.ls_outputs_written);
3307 Temp vertex_idx = get_arg(ctx, ctx->args->rel_auto_id);
3308 lds_base = bld.v_mul_imm(bld.def(v1), vertex_idx, num_tcs_inputs * 16u);
3309 } else {
3310 unreachable("Invalid LS or ES stage");
3311 }
3312
3313 offs = offset_add(ctx, offs, std::make_pair(lds_base, 0u));
3314 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
3315 store_lds(ctx, elem_size_bytes, src, write_mask, offs.first, offs.second, lds_align);
3316 }
3317 }
3318
3319 void visit_store_tcs_output(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
3320 {
3321 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
3322 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3323
3324 Builder bld(ctx->program, ctx->block);
3325
3326 Temp store_val = get_ssa_temp(ctx, instr->src[0].ssa);
3327 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
3328 unsigned write_mask = nir_intrinsic_write_mask(instr);
3329
3330 /* TODO: Only write to VMEM if the output is per-vertex or it's per-patch non tess factor */
3331 bool write_to_vmem = true;
3332 /* TODO: Only write to LDS if the output is read by the shader, or it's per-patch tess factor */
3333 bool write_to_lds = true;
3334
3335 if (write_to_vmem) {
3336 std::pair<Temp, unsigned> vmem_offs = per_vertex
3337 ? get_tcs_per_vertex_output_vmem_offset(ctx, instr)
3338 : get_tcs_per_patch_output_vmem_offset(ctx, instr);
3339
3340 Temp hs_ring_tess_offchip = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
3341 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
3342 store_vmem_mubuf(ctx, store_val, hs_ring_tess_offchip, vmem_offs.first, oc_lds, vmem_offs.second, elem_size_bytes, write_mask, false, false);
3343 }
3344
3345 if (write_to_lds) {
3346 std::pair<Temp, unsigned> lds_offs = get_tcs_output_lds_offset(ctx, instr, per_vertex);
3347 unsigned lds_align = calculate_lds_alignment(ctx, lds_offs.second);
3348 store_lds(ctx, elem_size_bytes, store_val, write_mask, lds_offs.first, lds_offs.second, lds_align);
3349 }
3350 }
3351
3352 void visit_load_tcs_output(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
3353 {
3354 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
3355 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3356
3357 Builder bld(ctx->program, ctx->block);
3358
3359 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3360 std::pair<Temp, unsigned> lds_offs = get_tcs_output_lds_offset(ctx, instr, per_vertex);
3361 unsigned lds_align = calculate_lds_alignment(ctx, lds_offs.second);
3362 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
3363
3364 load_lds(ctx, elem_size_bytes, dst, lds_offs.first, lds_offs.second, lds_align);
3365 }
3366
3367 void visit_store_output(isel_context *ctx, nir_intrinsic_instr *instr)
3368 {
3369 if (ctx->stage == vertex_vs ||
3370 ctx->stage == tess_eval_vs ||
3371 ctx->stage == fragment_fs ||
3372 ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
3373 unsigned write_mask = nir_intrinsic_write_mask(instr);
3374 unsigned component = nir_intrinsic_component(instr);
3375 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
3376 unsigned idx = nir_intrinsic_base(instr) + component;
3377
3378 nir_instr *off_instr = instr->src[1].ssa->parent_instr;
3379 if (off_instr->type != nir_instr_type_load_const) {
3380 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
3381 nir_print_instr(off_instr, stderr);
3382 fprintf(stderr, "\n");
3383 }
3384 idx += nir_instr_as_load_const(off_instr)->value[0].u32 * 4u;
3385
3386 if (instr->src[0].ssa->bit_size == 64)
3387 write_mask = widen_mask(write_mask, 2);
3388
3389 for (unsigned i = 0; i < 8; ++i) {
3390 if (write_mask & (1 << i)) {
3391 ctx->outputs.mask[idx / 4u] |= 1 << (idx % 4u);
3392 ctx->outputs.outputs[idx / 4u][idx % 4u] = emit_extract_vector(ctx, src, i, v1);
3393 }
3394 idx++;
3395 }
3396 } else if (ctx->stage == vertex_es ||
3397 ctx->stage == vertex_ls ||
3398 ctx->stage == tess_eval_es ||
3399 (ctx->stage == vertex_tess_control_hs && ctx->shader->info.stage == MESA_SHADER_VERTEX) ||
3400 (ctx->stage == vertex_geometry_gs && ctx->shader->info.stage == MESA_SHADER_VERTEX) ||
3401 (ctx->stage == tess_eval_geometry_gs && ctx->shader->info.stage == MESA_SHADER_TESS_EVAL)) {
3402 visit_store_ls_or_es_output(ctx, instr);
3403 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
3404 visit_store_tcs_output(ctx, instr, false);
3405 } else {
3406 unreachable("Shader stage not implemented");
3407 }
3408 }
3409
3410 void visit_load_output(isel_context *ctx, nir_intrinsic_instr *instr)
3411 {
3412 visit_load_tcs_output(ctx, instr, false);
3413 }
3414
3415 void emit_interp_instr(isel_context *ctx, unsigned idx, unsigned component, Temp src, Temp dst, Temp prim_mask)
3416 {
3417 Temp coord1 = emit_extract_vector(ctx, src, 0, v1);
3418 Temp coord2 = emit_extract_vector(ctx, src, 1, v1);
3419
3420 Builder bld(ctx->program, ctx->block);
3421 Temp tmp = bld.vintrp(aco_opcode::v_interp_p1_f32, bld.def(v1), coord1, bld.m0(prim_mask), idx, component);
3422 bld.vintrp(aco_opcode::v_interp_p2_f32, Definition(dst), coord2, bld.m0(prim_mask), tmp, idx, component);
3423 }
3424
3425 void emit_load_frag_coord(isel_context *ctx, Temp dst, unsigned num_components)
3426 {
3427 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1));
3428 for (unsigned i = 0; i < num_components; i++)
3429 vec->operands[i] = Operand(get_arg(ctx, ctx->args->ac.frag_pos[i]));
3430 if (G_0286CC_POS_W_FLOAT_ENA(ctx->program->config->spi_ps_input_ena)) {
3431 assert(num_components == 4);
3432 Builder bld(ctx->program, ctx->block);
3433 vec->operands[3] = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), get_arg(ctx, ctx->args->ac.frag_pos[3]));
3434 }
3435
3436 for (Operand& op : vec->operands)
3437 op = op.isUndefined() ? Operand(0u) : op;
3438
3439 vec->definitions[0] = Definition(dst);
3440 ctx->block->instructions.emplace_back(std::move(vec));
3441 emit_split_vector(ctx, dst, num_components);
3442 return;
3443 }
3444
3445 void visit_load_interpolated_input(isel_context *ctx, nir_intrinsic_instr *instr)
3446 {
3447 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3448 Temp coords = get_ssa_temp(ctx, instr->src[0].ssa);
3449 unsigned idx = nir_intrinsic_base(instr);
3450 unsigned component = nir_intrinsic_component(instr);
3451 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
3452
3453 nir_const_value* offset = nir_src_as_const_value(instr->src[1]);
3454 if (offset) {
3455 assert(offset->u32 == 0);
3456 } else {
3457 /* the lower 15bit of the prim_mask contain the offset into LDS
3458 * while the upper bits contain the number of prims */
3459 Temp offset_src = get_ssa_temp(ctx, instr->src[1].ssa);
3460 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
3461 Builder bld(ctx->program, ctx->block);
3462 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
3463 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
3464 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
3465 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
3466 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
3467 }
3468
3469 if (instr->dest.ssa.num_components == 1) {
3470 emit_interp_instr(ctx, idx, component, coords, dst, prim_mask);
3471 } else {
3472 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.ssa.num_components, 1));
3473 for (unsigned i = 0; i < instr->dest.ssa.num_components; i++)
3474 {
3475 Temp tmp = {ctx->program->allocateId(), v1};
3476 emit_interp_instr(ctx, idx, component+i, coords, tmp, prim_mask);
3477 vec->operands[i] = Operand(tmp);
3478 }
3479 vec->definitions[0] = Definition(dst);
3480 ctx->block->instructions.emplace_back(std::move(vec));
3481 }
3482 }
3483
3484 bool check_vertex_fetch_size(isel_context *ctx, const ac_data_format_info *vtx_info,
3485 unsigned offset, unsigned stride, unsigned channels)
3486 {
3487 unsigned vertex_byte_size = vtx_info->chan_byte_size * channels;
3488 if (vtx_info->chan_byte_size != 4 && channels == 3)
3489 return false;
3490 return (ctx->options->chip_class != GFX6 && ctx->options->chip_class != GFX10) ||
3491 (offset % vertex_byte_size == 0 && stride % vertex_byte_size == 0);
3492 }
3493
3494 uint8_t get_fetch_data_format(isel_context *ctx, const ac_data_format_info *vtx_info,
3495 unsigned offset, unsigned stride, unsigned *channels)
3496 {
3497 if (!vtx_info->chan_byte_size) {
3498 *channels = vtx_info->num_channels;
3499 return vtx_info->chan_format;
3500 }
3501
3502 unsigned num_channels = *channels;
3503 if (!check_vertex_fetch_size(ctx, vtx_info, offset, stride, *channels)) {
3504 unsigned new_channels = num_channels + 1;
3505 /* first, assume more loads is worse and try using a larger data format */
3506 while (new_channels <= 4 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels)) {
3507 new_channels++;
3508 /* don't make the attribute potentially out-of-bounds */
3509 if (offset + new_channels * vtx_info->chan_byte_size > stride)
3510 new_channels = 5;
3511 }
3512
3513 if (new_channels == 5) {
3514 /* then try decreasing load size (at the cost of more loads) */
3515 new_channels = *channels;
3516 while (new_channels > 1 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels))
3517 new_channels--;
3518 }
3519
3520 if (new_channels < *channels)
3521 *channels = new_channels;
3522 num_channels = new_channels;
3523 }
3524
3525 switch (vtx_info->chan_format) {
3526 case V_008F0C_BUF_DATA_FORMAT_8:
3527 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_8, V_008F0C_BUF_DATA_FORMAT_8_8,
3528 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_8_8_8_8}[num_channels - 1];
3529 case V_008F0C_BUF_DATA_FORMAT_16:
3530 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_16, V_008F0C_BUF_DATA_FORMAT_16_16,
3531 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_16_16_16_16}[num_channels - 1];
3532 case V_008F0C_BUF_DATA_FORMAT_32:
3533 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_32, V_008F0C_BUF_DATA_FORMAT_32_32,
3534 V_008F0C_BUF_DATA_FORMAT_32_32_32, V_008F0C_BUF_DATA_FORMAT_32_32_32_32}[num_channels - 1];
3535 }
3536 unreachable("shouldn't reach here");
3537 return V_008F0C_BUF_DATA_FORMAT_INVALID;
3538 }
3539
3540 /* For 2_10_10_10 formats the alpha is handled as unsigned by pre-vega HW.
3541 * so we may need to fix it up. */
3542 Temp adjust_vertex_fetch_alpha(isel_context *ctx, unsigned adjustment, Temp alpha)
3543 {
3544 Builder bld(ctx->program, ctx->block);
3545
3546 if (adjustment == RADV_ALPHA_ADJUST_SSCALED)
3547 alpha = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), alpha);
3548
3549 /* For the integer-like cases, do a natural sign extension.
3550 *
3551 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
3552 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
3553 * exponent.
3554 */
3555 alpha = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(adjustment == RADV_ALPHA_ADJUST_SNORM ? 7u : 30u), alpha);
3556 alpha = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(30u), alpha);
3557
3558 /* Convert back to the right type. */
3559 if (adjustment == RADV_ALPHA_ADJUST_SNORM) {
3560 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
3561 Temp clamp = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0xbf800000u), alpha);
3562 alpha = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xbf800000u), alpha, clamp);
3563 } else if (adjustment == RADV_ALPHA_ADJUST_SSCALED) {
3564 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
3565 }
3566
3567 return alpha;
3568 }
3569
3570 void visit_load_input(isel_context *ctx, nir_intrinsic_instr *instr)
3571 {
3572 Builder bld(ctx->program, ctx->block);
3573 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3574 if (ctx->shader->info.stage == MESA_SHADER_VERTEX) {
3575
3576 nir_instr *off_instr = instr->src[0].ssa->parent_instr;
3577 if (off_instr->type != nir_instr_type_load_const) {
3578 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
3579 nir_print_instr(off_instr, stderr);
3580 fprintf(stderr, "\n");
3581 }
3582 uint32_t offset = nir_instr_as_load_const(off_instr)->value[0].u32;
3583
3584 Temp vertex_buffers = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->vertex_buffers));
3585
3586 unsigned location = nir_intrinsic_base(instr) / 4 - VERT_ATTRIB_GENERIC0 + offset;
3587 unsigned component = nir_intrinsic_component(instr);
3588 unsigned attrib_binding = ctx->options->key.vs.vertex_attribute_bindings[location];
3589 uint32_t attrib_offset = ctx->options->key.vs.vertex_attribute_offsets[location];
3590 uint32_t attrib_stride = ctx->options->key.vs.vertex_attribute_strides[location];
3591 unsigned attrib_format = ctx->options->key.vs.vertex_attribute_formats[location];
3592
3593 unsigned dfmt = attrib_format & 0xf;
3594 unsigned nfmt = (attrib_format >> 4) & 0x7;
3595 const struct ac_data_format_info *vtx_info = ac_get_data_format_info(dfmt);
3596
3597 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa) << component;
3598 unsigned num_channels = MIN2(util_last_bit(mask), vtx_info->num_channels);
3599 unsigned alpha_adjust = (ctx->options->key.vs.alpha_adjust >> (location * 2)) & 3;
3600 bool post_shuffle = ctx->options->key.vs.post_shuffle & (1 << location);
3601 if (post_shuffle)
3602 num_channels = MAX2(num_channels, 3);
3603
3604 Operand off = bld.copy(bld.def(s1), Operand(attrib_binding * 16u));
3605 Temp list = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), vertex_buffers, off);
3606
3607 Temp index;
3608 if (ctx->options->key.vs.instance_rate_inputs & (1u << location)) {
3609 uint32_t divisor = ctx->options->key.vs.instance_rate_divisors[location];
3610 Temp start_instance = get_arg(ctx, ctx->args->ac.start_instance);
3611 if (divisor) {
3612 Temp instance_id = get_arg(ctx, ctx->args->ac.instance_id);
3613 if (divisor != 1) {
3614 Temp divided = bld.tmp(v1);
3615 emit_v_div_u32(ctx, divided, as_vgpr(ctx, instance_id), divisor);
3616 index = bld.vadd32(bld.def(v1), start_instance, divided);
3617 } else {
3618 index = bld.vadd32(bld.def(v1), start_instance, instance_id);
3619 }
3620 } else {
3621 index = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), start_instance);
3622 }
3623 } else {
3624 index = bld.vadd32(bld.def(v1),
3625 get_arg(ctx, ctx->args->ac.base_vertex),
3626 get_arg(ctx, ctx->args->ac.vertex_id));
3627 }
3628
3629 Temp channels[num_channels];
3630 unsigned channel_start = 0;
3631 bool direct_fetch = false;
3632
3633 /* skip unused channels at the start */
3634 if (vtx_info->chan_byte_size && !post_shuffle) {
3635 channel_start = ffs(mask) - 1;
3636 for (unsigned i = 0; i < channel_start; i++)
3637 channels[i] = Temp(0, s1);
3638 } else if (vtx_info->chan_byte_size && post_shuffle && !(mask & 0x8)) {
3639 num_channels = 3 - (ffs(mask) - 1);
3640 }
3641
3642 /* load channels */
3643 while (channel_start < num_channels) {
3644 unsigned fetch_size = num_channels - channel_start;
3645 unsigned fetch_offset = attrib_offset + channel_start * vtx_info->chan_byte_size;
3646 bool expanded = false;
3647
3648 /* use MUBUF when possible to avoid possible alignment issues */
3649 /* TODO: we could use SDWA to unpack 8/16-bit attributes without extra instructions */
3650 bool use_mubuf = (nfmt == V_008F0C_BUF_NUM_FORMAT_FLOAT ||
3651 nfmt == V_008F0C_BUF_NUM_FORMAT_UINT ||
3652 nfmt == V_008F0C_BUF_NUM_FORMAT_SINT) &&
3653 vtx_info->chan_byte_size == 4;
3654 unsigned fetch_dfmt = V_008F0C_BUF_DATA_FORMAT_INVALID;
3655 if (!use_mubuf) {
3656 fetch_dfmt = get_fetch_data_format(ctx, vtx_info, fetch_offset, attrib_stride, &fetch_size);
3657 } else {
3658 if (fetch_size == 3 && ctx->options->chip_class == GFX6) {
3659 /* GFX6 only supports loading vec3 with MTBUF, expand to vec4. */
3660 fetch_size = 4;
3661 expanded = true;
3662 }
3663 }
3664
3665 Temp fetch_index = index;
3666 if (attrib_stride != 0 && fetch_offset > attrib_stride) {
3667 fetch_index = bld.vadd32(bld.def(v1), Operand(fetch_offset / attrib_stride), fetch_index);
3668 fetch_offset = fetch_offset % attrib_stride;
3669 }
3670
3671 Operand soffset(0u);
3672 if (fetch_offset >= 4096) {
3673 soffset = bld.copy(bld.def(s1), Operand(fetch_offset / 4096 * 4096));
3674 fetch_offset %= 4096;
3675 }
3676
3677 aco_opcode opcode;
3678 switch (fetch_size) {
3679 case 1:
3680 opcode = use_mubuf ? aco_opcode::buffer_load_dword : aco_opcode::tbuffer_load_format_x;
3681 break;
3682 case 2:
3683 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx2 : aco_opcode::tbuffer_load_format_xy;
3684 break;
3685 case 3:
3686 assert(ctx->options->chip_class >= GFX7 ||
3687 (!use_mubuf && ctx->options->chip_class == GFX6));
3688 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx3 : aco_opcode::tbuffer_load_format_xyz;
3689 break;
3690 case 4:
3691 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx4 : aco_opcode::tbuffer_load_format_xyzw;
3692 break;
3693 default:
3694 unreachable("Unimplemented load_input vector size");
3695 }
3696
3697 Temp fetch_dst;
3698 if (channel_start == 0 && fetch_size == dst.size() && !post_shuffle &&
3699 !expanded && (alpha_adjust == RADV_ALPHA_ADJUST_NONE ||
3700 num_channels <= 3)) {
3701 direct_fetch = true;
3702 fetch_dst = dst;
3703 } else {
3704 fetch_dst = bld.tmp(RegType::vgpr, fetch_size);
3705 }
3706
3707 if (use_mubuf) {
3708 Instruction *mubuf = bld.mubuf(opcode,
3709 Definition(fetch_dst), list, fetch_index, soffset,
3710 fetch_offset, false, true).instr;
3711 static_cast<MUBUF_instruction*>(mubuf)->can_reorder = true;
3712 } else {
3713 Instruction *mtbuf = bld.mtbuf(opcode,
3714 Definition(fetch_dst), list, fetch_index, soffset,
3715 fetch_dfmt, nfmt, fetch_offset, false, true).instr;
3716 static_cast<MTBUF_instruction*>(mtbuf)->can_reorder = true;
3717 }
3718
3719 emit_split_vector(ctx, fetch_dst, fetch_dst.size());
3720
3721 if (fetch_size == 1) {
3722 channels[channel_start] = fetch_dst;
3723 } else {
3724 for (unsigned i = 0; i < MIN2(fetch_size, num_channels - channel_start); i++)
3725 channels[channel_start + i] = emit_extract_vector(ctx, fetch_dst, i, v1);
3726 }
3727
3728 channel_start += fetch_size;
3729 }
3730
3731 if (!direct_fetch) {
3732 bool is_float = nfmt != V_008F0C_BUF_NUM_FORMAT_UINT &&
3733 nfmt != V_008F0C_BUF_NUM_FORMAT_SINT;
3734
3735 static const unsigned swizzle_normal[4] = {0, 1, 2, 3};
3736 static const unsigned swizzle_post_shuffle[4] = {2, 1, 0, 3};
3737 const unsigned *swizzle = post_shuffle ? swizzle_post_shuffle : swizzle_normal;
3738
3739 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
3740 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
3741 unsigned num_temp = 0;
3742 for (unsigned i = 0; i < dst.size(); i++) {
3743 unsigned idx = i + component;
3744 if (swizzle[idx] < num_channels && channels[swizzle[idx]].id()) {
3745 Temp channel = channels[swizzle[idx]];
3746 if (idx == 3 && alpha_adjust != RADV_ALPHA_ADJUST_NONE)
3747 channel = adjust_vertex_fetch_alpha(ctx, alpha_adjust, channel);
3748 vec->operands[i] = Operand(channel);
3749
3750 num_temp++;
3751 elems[i] = channel;
3752 } else if (is_float && idx == 3) {
3753 vec->operands[i] = Operand(0x3f800000u);
3754 } else if (!is_float && idx == 3) {
3755 vec->operands[i] = Operand(1u);
3756 } else {
3757 vec->operands[i] = Operand(0u);
3758 }
3759 }
3760 vec->definitions[0] = Definition(dst);
3761 ctx->block->instructions.emplace_back(std::move(vec));
3762 emit_split_vector(ctx, dst, dst.size());
3763
3764 if (num_temp == dst.size())
3765 ctx->allocated_vec.emplace(dst.id(), elems);
3766 }
3767 } else if (ctx->shader->info.stage == MESA_SHADER_FRAGMENT) {
3768 unsigned offset_idx = instr->intrinsic == nir_intrinsic_load_input ? 0 : 1;
3769 nir_instr *off_instr = instr->src[offset_idx].ssa->parent_instr;
3770 if (off_instr->type != nir_instr_type_load_const ||
3771 nir_instr_as_load_const(off_instr)->value[0].u32 != 0) {
3772 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
3773 nir_print_instr(off_instr, stderr);
3774 fprintf(stderr, "\n");
3775 }
3776
3777 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
3778 nir_const_value* offset = nir_src_as_const_value(instr->src[offset_idx]);
3779 if (offset) {
3780 assert(offset->u32 == 0);
3781 } else {
3782 /* the lower 15bit of the prim_mask contain the offset into LDS
3783 * while the upper bits contain the number of prims */
3784 Temp offset_src = get_ssa_temp(ctx, instr->src[offset_idx].ssa);
3785 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
3786 Builder bld(ctx->program, ctx->block);
3787 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
3788 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
3789 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
3790 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
3791 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
3792 }
3793
3794 unsigned idx = nir_intrinsic_base(instr);
3795 unsigned component = nir_intrinsic_component(instr);
3796 unsigned vertex_id = 2; /* P0 */
3797
3798 if (instr->intrinsic == nir_intrinsic_load_input_vertex) {
3799 nir_const_value* src0 = nir_src_as_const_value(instr->src[0]);
3800 switch (src0->u32) {
3801 case 0:
3802 vertex_id = 2; /* P0 */
3803 break;
3804 case 1:
3805 vertex_id = 0; /* P10 */
3806 break;
3807 case 2:
3808 vertex_id = 1; /* P20 */
3809 break;
3810 default:
3811 unreachable("invalid vertex index");
3812 }
3813 }
3814
3815 if (dst.size() == 1) {
3816 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(dst), Operand(vertex_id), bld.m0(prim_mask), idx, component);
3817 } else {
3818 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
3819 for (unsigned i = 0; i < dst.size(); i++)
3820 vec->operands[i] = bld.vintrp(aco_opcode::v_interp_mov_f32, bld.def(v1), Operand(vertex_id), bld.m0(prim_mask), idx, component + i);
3821 vec->definitions[0] = Definition(dst);
3822 bld.insert(std::move(vec));
3823 }
3824
3825 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_EVAL) {
3826 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
3827 Temp soffset = get_arg(ctx, ctx->args->oc_lds);
3828 std::pair<Temp, unsigned> offs = get_tcs_per_patch_output_vmem_offset(ctx, instr);
3829 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8u;
3830
3831 load_vmem_mubuf(ctx, dst, ring, offs.first, soffset, offs.second, elem_size_bytes, instr->dest.ssa.num_components);
3832 } else {
3833 unreachable("Shader stage not implemented");
3834 }
3835 }
3836
3837 std::pair<Temp, unsigned> get_gs_per_vertex_input_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned base_stride = 1u)
3838 {
3839 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
3840
3841 Builder bld(ctx->program, ctx->block);
3842 nir_src *vertex_src = nir_get_io_vertex_index_src(instr);
3843 Temp vertex_offset;
3844
3845 if (!nir_src_is_const(*vertex_src)) {
3846 /* better code could be created, but this case probably doesn't happen
3847 * much in practice */
3848 Temp indirect_vertex = as_vgpr(ctx, get_ssa_temp(ctx, vertex_src->ssa));
3849 for (unsigned i = 0; i < ctx->shader->info.gs.vertices_in; i++) {
3850 Temp elem;
3851
3852 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
3853 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i / 2u * 2u]);
3854 if (i % 2u)
3855 elem = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), elem);
3856 } else {
3857 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i]);
3858 }
3859
3860 if (vertex_offset.id()) {
3861 Temp cond = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)),
3862 Operand(i), indirect_vertex);
3863 vertex_offset = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), vertex_offset, elem, cond);
3864 } else {
3865 vertex_offset = elem;
3866 }
3867 }
3868
3869 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs)
3870 vertex_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu), vertex_offset);
3871 } else {
3872 unsigned vertex = nir_src_as_uint(*vertex_src);
3873 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs)
3874 vertex_offset = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
3875 get_arg(ctx, ctx->args->gs_vtx_offset[vertex / 2u * 2u]),
3876 Operand((vertex % 2u) * 16u), Operand(16u));
3877 else
3878 vertex_offset = get_arg(ctx, ctx->args->gs_vtx_offset[vertex]);
3879 }
3880
3881 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, base_stride);
3882 offs = offset_add(ctx, offs, std::make_pair(vertex_offset, 0u));
3883 return offset_mul(ctx, offs, 4u);
3884 }
3885
3886 void visit_load_gs_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
3887 {
3888 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
3889
3890 Builder bld(ctx->program, ctx->block);
3891 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3892 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
3893
3894 if (ctx->stage == geometry_gs) {
3895 std::pair<Temp, unsigned> offs = get_gs_per_vertex_input_offset(ctx, instr, ctx->program->wave_size);
3896 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_GS * 16u));
3897 load_vmem_mubuf(ctx, dst, ring, offs.first, Temp(), offs.second, elem_size_bytes, instr->dest.ssa.num_components, 4u * ctx->program->wave_size, false, true);
3898 } else if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
3899 std::pair<Temp, unsigned> offs = get_gs_per_vertex_input_offset(ctx, instr);
3900 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
3901 load_lds(ctx, elem_size_bytes, dst, offs.first, offs.second, lds_align);
3902 } else {
3903 unreachable("Unsupported GS stage.");
3904 }
3905 }
3906
3907 void visit_load_tcs_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
3908 {
3909 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3910
3911 Builder bld(ctx->program, ctx->block);
3912 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3913 std::pair<Temp, unsigned> offs = get_tcs_per_vertex_input_lds_offset(ctx, instr);
3914 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
3915 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
3916
3917 load_lds(ctx, elem_size_bytes, dst, offs.first, offs.second, lds_align);
3918 }
3919
3920 void visit_load_tes_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
3921 {
3922 assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
3923
3924 Builder bld(ctx->program, ctx->block);
3925
3926 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
3927 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
3928 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3929
3930 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
3931 std::pair<Temp, unsigned> offs = get_tcs_per_vertex_output_vmem_offset(ctx, instr);
3932
3933 load_vmem_mubuf(ctx, dst, ring, offs.first, oc_lds, offs.second, elem_size_bytes, instr->dest.ssa.num_components, 0u, true, true);
3934 }
3935
3936 void visit_load_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
3937 {
3938 switch (ctx->shader->info.stage) {
3939 case MESA_SHADER_GEOMETRY:
3940 visit_load_gs_per_vertex_input(ctx, instr);
3941 break;
3942 case MESA_SHADER_TESS_CTRL:
3943 visit_load_tcs_per_vertex_input(ctx, instr);
3944 break;
3945 case MESA_SHADER_TESS_EVAL:
3946 visit_load_tes_per_vertex_input(ctx, instr);
3947 break;
3948 default:
3949 unreachable("Unimplemented shader stage");
3950 }
3951 }
3952
3953 void visit_load_per_vertex_output(isel_context *ctx, nir_intrinsic_instr *instr)
3954 {
3955 visit_load_tcs_output(ctx, instr, true);
3956 }
3957
3958 void visit_store_per_vertex_output(isel_context *ctx, nir_intrinsic_instr *instr)
3959 {
3960 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
3961 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3962
3963 visit_store_tcs_output(ctx, instr, true);
3964 }
3965
3966 void visit_load_tess_coord(isel_context *ctx, nir_intrinsic_instr *instr)
3967 {
3968 assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
3969
3970 Builder bld(ctx->program, ctx->block);
3971 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3972
3973 Operand tes_u(get_arg(ctx, ctx->args->tes_u));
3974 Operand tes_v(get_arg(ctx, ctx->args->tes_v));
3975 Operand tes_w(0u);
3976
3977 if (ctx->shader->info.tess.primitive_mode == GL_TRIANGLES) {
3978 Temp tmp = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), tes_u, tes_v);
3979 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0x3f800000u /* 1.0f */), tmp);
3980 tes_w = Operand(tmp);
3981 }
3982
3983 Temp tess_coord = bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tes_u, tes_v, tes_w);
3984 emit_split_vector(ctx, tess_coord, 3);
3985 }
3986
3987 Temp load_desc_ptr(isel_context *ctx, unsigned desc_set)
3988 {
3989 if (ctx->program->info->need_indirect_descriptor_sets) {
3990 Builder bld(ctx->program, ctx->block);
3991 Temp ptr64 = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->descriptor_sets[0]));
3992 Operand off = bld.copy(bld.def(s1), Operand(desc_set << 2));
3993 return bld.smem(aco_opcode::s_load_dword, bld.def(s1), ptr64, off);//, false, false, false);
3994 }
3995
3996 return get_arg(ctx, ctx->args->descriptor_sets[desc_set]);
3997 }
3998
3999
4000 void visit_load_resource(isel_context *ctx, nir_intrinsic_instr *instr)
4001 {
4002 Builder bld(ctx->program, ctx->block);
4003 Temp index = get_ssa_temp(ctx, instr->src[0].ssa);
4004 if (!ctx->divergent_vals[instr->dest.ssa.index])
4005 index = bld.as_uniform(index);
4006 unsigned desc_set = nir_intrinsic_desc_set(instr);
4007 unsigned binding = nir_intrinsic_binding(instr);
4008
4009 Temp desc_ptr;
4010 radv_pipeline_layout *pipeline_layout = ctx->options->layout;
4011 radv_descriptor_set_layout *layout = pipeline_layout->set[desc_set].layout;
4012 unsigned offset = layout->binding[binding].offset;
4013 unsigned stride;
4014 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
4015 layout->binding[binding].type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
4016 unsigned idx = pipeline_layout->set[desc_set].dynamic_offset_start + layout->binding[binding].dynamic_offset_offset;
4017 desc_ptr = get_arg(ctx, ctx->args->ac.push_constants);
4018 offset = pipeline_layout->push_constant_size + 16 * idx;
4019 stride = 16;
4020 } else {
4021 desc_ptr = load_desc_ptr(ctx, desc_set);
4022 stride = layout->binding[binding].size;
4023 }
4024
4025 nir_const_value* nir_const_index = nir_src_as_const_value(instr->src[0]);
4026 unsigned const_index = nir_const_index ? nir_const_index->u32 : 0;
4027 if (stride != 1) {
4028 if (nir_const_index) {
4029 const_index = const_index * stride;
4030 } else if (index.type() == RegType::vgpr) {
4031 bool index24bit = layout->binding[binding].array_size <= 0x1000000;
4032 index = bld.v_mul_imm(bld.def(v1), index, stride, index24bit);
4033 } else {
4034 index = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), Operand(index));
4035 }
4036 }
4037 if (offset) {
4038 if (nir_const_index) {
4039 const_index = const_index + offset;
4040 } else if (index.type() == RegType::vgpr) {
4041 index = bld.vadd32(bld.def(v1), Operand(offset), index);
4042 } else {
4043 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), Operand(index));
4044 }
4045 }
4046
4047 if (nir_const_index && const_index == 0) {
4048 index = desc_ptr;
4049 } else if (index.type() == RegType::vgpr) {
4050 index = bld.vadd32(bld.def(v1),
4051 nir_const_index ? Operand(const_index) : Operand(index),
4052 Operand(desc_ptr));
4053 } else {
4054 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
4055 nir_const_index ? Operand(const_index) : Operand(index),
4056 Operand(desc_ptr));
4057 }
4058
4059 bld.copy(Definition(get_ssa_temp(ctx, &instr->dest.ssa)), index);
4060 }
4061
4062 void load_buffer(isel_context *ctx, unsigned num_components, Temp dst,
4063 Temp rsrc, Temp offset, bool glc=false, bool readonly=true)
4064 {
4065 Builder bld(ctx->program, ctx->block);
4066
4067 unsigned num_bytes = dst.size() * 4;
4068 bool dlc = glc && ctx->options->chip_class >= GFX10;
4069
4070 aco_opcode op;
4071 if (dst.type() == RegType::vgpr || (ctx->options->chip_class < GFX8 && !readonly)) {
4072 Operand vaddr = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
4073 Operand soffset = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
4074 unsigned const_offset = 0;
4075
4076 Temp lower = Temp();
4077 if (num_bytes > 16) {
4078 assert(num_components == 3 || num_components == 4);
4079 op = aco_opcode::buffer_load_dwordx4;
4080 lower = bld.tmp(v4);
4081 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
4082 mubuf->definitions[0] = Definition(lower);
4083 mubuf->operands[0] = Operand(rsrc);
4084 mubuf->operands[1] = vaddr;
4085 mubuf->operands[2] = soffset;
4086 mubuf->offen = (offset.type() == RegType::vgpr);
4087 mubuf->glc = glc;
4088 mubuf->dlc = dlc;
4089 mubuf->barrier = readonly ? barrier_none : barrier_buffer;
4090 mubuf->can_reorder = readonly;
4091 bld.insert(std::move(mubuf));
4092 emit_split_vector(ctx, lower, 2);
4093 num_bytes -= 16;
4094 const_offset = 16;
4095 } else if (num_bytes == 12 && ctx->options->chip_class == GFX6) {
4096 /* GFX6 doesn't support loading vec3, expand to vec4. */
4097 num_bytes = 16;
4098 }
4099
4100 switch (num_bytes) {
4101 case 4:
4102 op = aco_opcode::buffer_load_dword;
4103 break;
4104 case 8:
4105 op = aco_opcode::buffer_load_dwordx2;
4106 break;
4107 case 12:
4108 assert(ctx->options->chip_class > GFX6);
4109 op = aco_opcode::buffer_load_dwordx3;
4110 break;
4111 case 16:
4112 op = aco_opcode::buffer_load_dwordx4;
4113 break;
4114 default:
4115 unreachable("Load SSBO not implemented for this size.");
4116 }
4117 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
4118 mubuf->operands[0] = Operand(rsrc);
4119 mubuf->operands[1] = vaddr;
4120 mubuf->operands[2] = soffset;
4121 mubuf->offen = (offset.type() == RegType::vgpr);
4122 mubuf->glc = glc;
4123 mubuf->dlc = dlc;
4124 mubuf->barrier = readonly ? barrier_none : barrier_buffer;
4125 mubuf->can_reorder = readonly;
4126 mubuf->offset = const_offset;
4127 aco_ptr<Instruction> instr = std::move(mubuf);
4128
4129 if (dst.size() > 4) {
4130 assert(lower != Temp());
4131 Temp upper = bld.tmp(RegType::vgpr, dst.size() - lower.size());
4132 instr->definitions[0] = Definition(upper);
4133 bld.insert(std::move(instr));
4134 if (dst.size() == 8)
4135 emit_split_vector(ctx, upper, 2);
4136 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size() / 2, 1));
4137 instr->operands[0] = Operand(emit_extract_vector(ctx, lower, 0, v2));
4138 instr->operands[1] = Operand(emit_extract_vector(ctx, lower, 1, v2));
4139 instr->operands[2] = Operand(emit_extract_vector(ctx, upper, 0, v2));
4140 if (dst.size() == 8)
4141 instr->operands[3] = Operand(emit_extract_vector(ctx, upper, 1, v2));
4142 } else if (dst.size() == 3 && ctx->options->chip_class == GFX6) {
4143 Temp vec = bld.tmp(v4);
4144 instr->definitions[0] = Definition(vec);
4145 bld.insert(std::move(instr));
4146 emit_split_vector(ctx, vec, 4);
4147
4148 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 3, 1));
4149 instr->operands[0] = Operand(emit_extract_vector(ctx, vec, 0, v1));
4150 instr->operands[1] = Operand(emit_extract_vector(ctx, vec, 1, v1));
4151 instr->operands[2] = Operand(emit_extract_vector(ctx, vec, 2, v1));
4152 }
4153
4154 if (dst.type() == RegType::sgpr) {
4155 Temp vec = bld.tmp(RegType::vgpr, dst.size());
4156 instr->definitions[0] = Definition(vec);
4157 bld.insert(std::move(instr));
4158 expand_vector(ctx, vec, dst, num_components, (1 << num_components) - 1);
4159 } else {
4160 instr->definitions[0] = Definition(dst);
4161 bld.insert(std::move(instr));
4162 emit_split_vector(ctx, dst, num_components);
4163 }
4164 } else {
4165 switch (num_bytes) {
4166 case 4:
4167 op = aco_opcode::s_buffer_load_dword;
4168 break;
4169 case 8:
4170 op = aco_opcode::s_buffer_load_dwordx2;
4171 break;
4172 case 12:
4173 case 16:
4174 op = aco_opcode::s_buffer_load_dwordx4;
4175 break;
4176 case 24:
4177 case 32:
4178 op = aco_opcode::s_buffer_load_dwordx8;
4179 break;
4180 default:
4181 unreachable("Load SSBO not implemented for this size.");
4182 }
4183 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
4184 load->operands[0] = Operand(rsrc);
4185 load->operands[1] = Operand(bld.as_uniform(offset));
4186 assert(load->operands[1].getTemp().type() == RegType::sgpr);
4187 load->definitions[0] = Definition(dst);
4188 load->glc = glc;
4189 load->dlc = dlc;
4190 load->barrier = readonly ? barrier_none : barrier_buffer;
4191 load->can_reorder = false; // FIXME: currently, it doesn't seem beneficial due to how our scheduler works
4192 assert(ctx->options->chip_class >= GFX8 || !glc);
4193
4194 /* trim vector */
4195 if (dst.size() == 3) {
4196 Temp vec = bld.tmp(s4);
4197 load->definitions[0] = Definition(vec);
4198 bld.insert(std::move(load));
4199 emit_split_vector(ctx, vec, 4);
4200
4201 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4202 emit_extract_vector(ctx, vec, 0, s1),
4203 emit_extract_vector(ctx, vec, 1, s1),
4204 emit_extract_vector(ctx, vec, 2, s1));
4205 } else if (dst.size() == 6) {
4206 Temp vec = bld.tmp(s8);
4207 load->definitions[0] = Definition(vec);
4208 bld.insert(std::move(load));
4209 emit_split_vector(ctx, vec, 4);
4210
4211 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4212 emit_extract_vector(ctx, vec, 0, s2),
4213 emit_extract_vector(ctx, vec, 1, s2),
4214 emit_extract_vector(ctx, vec, 2, s2));
4215 } else {
4216 bld.insert(std::move(load));
4217 }
4218 emit_split_vector(ctx, dst, num_components);
4219 }
4220 }
4221
4222 void visit_load_ubo(isel_context *ctx, nir_intrinsic_instr *instr)
4223 {
4224 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4225 Temp rsrc = get_ssa_temp(ctx, instr->src[0].ssa);
4226
4227 Builder bld(ctx->program, ctx->block);
4228
4229 nir_intrinsic_instr* idx_instr = nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
4230 unsigned desc_set = nir_intrinsic_desc_set(idx_instr);
4231 unsigned binding = nir_intrinsic_binding(idx_instr);
4232 radv_descriptor_set_layout *layout = ctx->options->layout->set[desc_set].layout;
4233
4234 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
4235 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
4236 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
4237 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
4238 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
4239 if (ctx->options->chip_class >= GFX10) {
4240 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
4241 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
4242 S_008F0C_RESOURCE_LEVEL(1);
4243 } else {
4244 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
4245 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
4246 }
4247 Temp upper_dwords = bld.pseudo(aco_opcode::p_create_vector, bld.def(s3),
4248 Operand(S_008F04_BASE_ADDRESS_HI(ctx->options->address32_hi)),
4249 Operand(0xFFFFFFFFu),
4250 Operand(desc_type));
4251 rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
4252 rsrc, upper_dwords);
4253 } else {
4254 rsrc = convert_pointer_to_64_bit(ctx, rsrc);
4255 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
4256 }
4257
4258 load_buffer(ctx, instr->num_components, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa));
4259 }
4260
4261 void visit_load_push_constant(isel_context *ctx, nir_intrinsic_instr *instr)
4262 {
4263 Builder bld(ctx->program, ctx->block);
4264 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4265
4266 unsigned offset = nir_intrinsic_base(instr);
4267 nir_const_value *index_cv = nir_src_as_const_value(instr->src[0]);
4268 if (index_cv && instr->dest.ssa.bit_size == 32) {
4269
4270 unsigned count = instr->dest.ssa.num_components;
4271 unsigned start = (offset + index_cv->u32) / 4u;
4272 start -= ctx->args->ac.base_inline_push_consts;
4273 if (start + count <= ctx->args->ac.num_inline_push_consts) {
4274 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
4275 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
4276 for (unsigned i = 0; i < count; ++i) {
4277 elems[i] = get_arg(ctx, ctx->args->ac.inline_push_consts[start + i]);
4278 vec->operands[i] = Operand{elems[i]};
4279 }
4280 vec->definitions[0] = Definition(dst);
4281 ctx->block->instructions.emplace_back(std::move(vec));
4282 ctx->allocated_vec.emplace(dst.id(), elems);
4283 return;
4284 }
4285 }
4286
4287 Temp index = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa));
4288 if (offset != 0) // TODO check if index != 0 as well
4289 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), index);
4290 Temp ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->ac.push_constants));
4291 Temp vec = dst;
4292 bool trim = false;
4293 aco_opcode op;
4294
4295 switch (dst.size()) {
4296 case 1:
4297 op = aco_opcode::s_load_dword;
4298 break;
4299 case 2:
4300 op = aco_opcode::s_load_dwordx2;
4301 break;
4302 case 3:
4303 vec = bld.tmp(s4);
4304 trim = true;
4305 case 4:
4306 op = aco_opcode::s_load_dwordx4;
4307 break;
4308 case 6:
4309 vec = bld.tmp(s8);
4310 trim = true;
4311 case 8:
4312 op = aco_opcode::s_load_dwordx8;
4313 break;
4314 default:
4315 unreachable("unimplemented or forbidden load_push_constant.");
4316 }
4317
4318 bld.smem(op, Definition(vec), ptr, index);
4319
4320 if (trim) {
4321 emit_split_vector(ctx, vec, 4);
4322 RegClass rc = dst.size() == 3 ? s1 : s2;
4323 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4324 emit_extract_vector(ctx, vec, 0, rc),
4325 emit_extract_vector(ctx, vec, 1, rc),
4326 emit_extract_vector(ctx, vec, 2, rc));
4327
4328 }
4329 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
4330 }
4331
4332 void visit_load_constant(isel_context *ctx, nir_intrinsic_instr *instr)
4333 {
4334 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4335
4336 Builder bld(ctx->program, ctx->block);
4337
4338 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
4339 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
4340 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
4341 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
4342 if (ctx->options->chip_class >= GFX10) {
4343 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
4344 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
4345 S_008F0C_RESOURCE_LEVEL(1);
4346 } else {
4347 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
4348 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
4349 }
4350
4351 unsigned base = nir_intrinsic_base(instr);
4352 unsigned range = nir_intrinsic_range(instr);
4353
4354 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
4355 if (base && offset.type() == RegType::sgpr)
4356 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), offset, Operand(base));
4357 else if (base && offset.type() == RegType::vgpr)
4358 offset = bld.vadd32(bld.def(v1), Operand(base), offset);
4359
4360 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
4361 bld.sop1(aco_opcode::p_constaddr, bld.def(s2), bld.def(s1, scc), Operand(ctx->constant_data_offset)),
4362 Operand(MIN2(base + range, ctx->shader->constant_data_size)),
4363 Operand(desc_type));
4364
4365 load_buffer(ctx, instr->num_components, dst, rsrc, offset);
4366 }
4367
4368 void visit_discard_if(isel_context *ctx, nir_intrinsic_instr *instr)
4369 {
4370 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
4371 ctx->cf_info.exec_potentially_empty_discard = true;
4372
4373 ctx->program->needs_exact = true;
4374
4375 // TODO: optimize uniform conditions
4376 Builder bld(ctx->program, ctx->block);
4377 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
4378 assert(src.regClass() == bld.lm);
4379 src = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
4380 bld.pseudo(aco_opcode::p_discard_if, src);
4381 ctx->block->kind |= block_kind_uses_discard_if;
4382 return;
4383 }
4384
4385 void visit_discard(isel_context* ctx, nir_intrinsic_instr *instr)
4386 {
4387 Builder bld(ctx->program, ctx->block);
4388
4389 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
4390 ctx->cf_info.exec_potentially_empty_discard = true;
4391
4392 bool divergent = ctx->cf_info.parent_if.is_divergent ||
4393 ctx->cf_info.parent_loop.has_divergent_continue;
4394
4395 if (ctx->block->loop_nest_depth &&
4396 ((nir_instr_is_last(&instr->instr) && !divergent) || divergent)) {
4397 /* we handle discards the same way as jump instructions */
4398 append_logical_end(ctx->block);
4399
4400 /* in loops, discard behaves like break */
4401 Block *linear_target = ctx->cf_info.parent_loop.exit;
4402 ctx->block->kind |= block_kind_discard;
4403
4404 if (!divergent) {
4405 /* uniform discard - loop ends here */
4406 assert(nir_instr_is_last(&instr->instr));
4407 ctx->block->kind |= block_kind_uniform;
4408 ctx->cf_info.has_branch = true;
4409 bld.branch(aco_opcode::p_branch);
4410 add_linear_edge(ctx->block->index, linear_target);
4411 return;
4412 }
4413
4414 /* we add a break right behind the discard() instructions */
4415 ctx->block->kind |= block_kind_break;
4416 unsigned idx = ctx->block->index;
4417
4418 /* remove critical edges from linear CFG */
4419 bld.branch(aco_opcode::p_branch);
4420 Block* break_block = ctx->program->create_and_insert_block();
4421 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
4422 break_block->kind |= block_kind_uniform;
4423 add_linear_edge(idx, break_block);
4424 add_linear_edge(break_block->index, linear_target);
4425 bld.reset(break_block);
4426 bld.branch(aco_opcode::p_branch);
4427
4428 Block* continue_block = ctx->program->create_and_insert_block();
4429 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
4430 add_linear_edge(idx, continue_block);
4431 append_logical_start(continue_block);
4432 ctx->block = continue_block;
4433
4434 return;
4435 }
4436
4437 /* it can currently happen that NIR doesn't remove the unreachable code */
4438 if (!nir_instr_is_last(&instr->instr)) {
4439 ctx->program->needs_exact = true;
4440 /* save exec somewhere temporarily so that it doesn't get
4441 * overwritten before the discard from outer exec masks */
4442 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), Operand(0xFFFFFFFF), Operand(exec, bld.lm));
4443 bld.pseudo(aco_opcode::p_discard_if, cond);
4444 ctx->block->kind |= block_kind_uses_discard_if;
4445 return;
4446 }
4447
4448 /* This condition is incorrect for uniformly branched discards in a loop
4449 * predicated by a divergent condition, but the above code catches that case
4450 * and the discard would end up turning into a discard_if.
4451 * For example:
4452 * if (divergent) {
4453 * while (...) {
4454 * if (uniform) {
4455 * discard;
4456 * }
4457 * }
4458 * }
4459 */
4460 if (!ctx->cf_info.parent_if.is_divergent) {
4461 /* program just ends here */
4462 ctx->block->kind |= block_kind_uniform;
4463 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
4464 0 /* enabled mask */, 9 /* dest */,
4465 false /* compressed */, true/* done */, true /* valid mask */);
4466 bld.sopp(aco_opcode::s_endpgm);
4467 // TODO: it will potentially be followed by a branch which is dead code to sanitize NIR phis
4468 } else {
4469 ctx->block->kind |= block_kind_discard;
4470 /* branch and linear edge is added by visit_if() */
4471 }
4472 }
4473
4474 enum aco_descriptor_type {
4475 ACO_DESC_IMAGE,
4476 ACO_DESC_FMASK,
4477 ACO_DESC_SAMPLER,
4478 ACO_DESC_BUFFER,
4479 ACO_DESC_PLANE_0,
4480 ACO_DESC_PLANE_1,
4481 ACO_DESC_PLANE_2,
4482 };
4483
4484 static bool
4485 should_declare_array(isel_context *ctx, enum glsl_sampler_dim sampler_dim, bool is_array) {
4486 if (sampler_dim == GLSL_SAMPLER_DIM_BUF)
4487 return false;
4488 ac_image_dim dim = ac_get_sampler_dim(ctx->options->chip_class, sampler_dim, is_array);
4489 return dim == ac_image_cube ||
4490 dim == ac_image_1darray ||
4491 dim == ac_image_2darray ||
4492 dim == ac_image_2darraymsaa;
4493 }
4494
4495 Temp get_sampler_desc(isel_context *ctx, nir_deref_instr *deref_instr,
4496 enum aco_descriptor_type desc_type,
4497 const nir_tex_instr *tex_instr, bool image, bool write)
4498 {
4499 /* FIXME: we should lower the deref with some new nir_intrinsic_load_desc
4500 std::unordered_map<uint64_t, Temp>::iterator it = ctx->tex_desc.find((uint64_t) desc_type << 32 | deref_instr->dest.ssa.index);
4501 if (it != ctx->tex_desc.end())
4502 return it->second;
4503 */
4504 Temp index = Temp();
4505 bool index_set = false;
4506 unsigned constant_index = 0;
4507 unsigned descriptor_set;
4508 unsigned base_index;
4509 Builder bld(ctx->program, ctx->block);
4510
4511 if (!deref_instr) {
4512 assert(tex_instr && !image);
4513 descriptor_set = 0;
4514 base_index = tex_instr->sampler_index;
4515 } else {
4516 while(deref_instr->deref_type != nir_deref_type_var) {
4517 unsigned array_size = glsl_get_aoa_size(deref_instr->type);
4518 if (!array_size)
4519 array_size = 1;
4520
4521 assert(deref_instr->deref_type == nir_deref_type_array);
4522 nir_const_value *const_value = nir_src_as_const_value(deref_instr->arr.index);
4523 if (const_value) {
4524 constant_index += array_size * const_value->u32;
4525 } else {
4526 Temp indirect = get_ssa_temp(ctx, deref_instr->arr.index.ssa);
4527 if (indirect.type() == RegType::vgpr)
4528 indirect = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), indirect);
4529
4530 if (array_size != 1)
4531 indirect = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(array_size), indirect);
4532
4533 if (!index_set) {
4534 index = indirect;
4535 index_set = true;
4536 } else {
4537 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), index, indirect);
4538 }
4539 }
4540
4541 deref_instr = nir_src_as_deref(deref_instr->parent);
4542 }
4543 descriptor_set = deref_instr->var->data.descriptor_set;
4544 base_index = deref_instr->var->data.binding;
4545 }
4546
4547 Temp list = load_desc_ptr(ctx, descriptor_set);
4548 list = convert_pointer_to_64_bit(ctx, list);
4549
4550 struct radv_descriptor_set_layout *layout = ctx->options->layout->set[descriptor_set].layout;
4551 struct radv_descriptor_set_binding_layout *binding = layout->binding + base_index;
4552 unsigned offset = binding->offset;
4553 unsigned stride = binding->size;
4554 aco_opcode opcode;
4555 RegClass type;
4556
4557 assert(base_index < layout->binding_count);
4558
4559 switch (desc_type) {
4560 case ACO_DESC_IMAGE:
4561 type = s8;
4562 opcode = aco_opcode::s_load_dwordx8;
4563 break;
4564 case ACO_DESC_FMASK:
4565 type = s8;
4566 opcode = aco_opcode::s_load_dwordx8;
4567 offset += 32;
4568 break;
4569 case ACO_DESC_SAMPLER:
4570 type = s4;
4571 opcode = aco_opcode::s_load_dwordx4;
4572 if (binding->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
4573 offset += radv_combined_image_descriptor_sampler_offset(binding);
4574 break;
4575 case ACO_DESC_BUFFER:
4576 type = s4;
4577 opcode = aco_opcode::s_load_dwordx4;
4578 break;
4579 case ACO_DESC_PLANE_0:
4580 case ACO_DESC_PLANE_1:
4581 type = s8;
4582 opcode = aco_opcode::s_load_dwordx8;
4583 offset += 32 * (desc_type - ACO_DESC_PLANE_0);
4584 break;
4585 case ACO_DESC_PLANE_2:
4586 type = s4;
4587 opcode = aco_opcode::s_load_dwordx4;
4588 offset += 64;
4589 break;
4590 default:
4591 unreachable("invalid desc_type\n");
4592 }
4593
4594 offset += constant_index * stride;
4595
4596 if (desc_type == ACO_DESC_SAMPLER && binding->immutable_samplers_offset &&
4597 (!index_set || binding->immutable_samplers_equal)) {
4598 if (binding->immutable_samplers_equal)
4599 constant_index = 0;
4600
4601 const uint32_t *samplers = radv_immutable_samplers(layout, binding);
4602 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
4603 Operand(samplers[constant_index * 4 + 0]),
4604 Operand(samplers[constant_index * 4 + 1]),
4605 Operand(samplers[constant_index * 4 + 2]),
4606 Operand(samplers[constant_index * 4 + 3]));
4607 }
4608
4609 Operand off;
4610 if (!index_set) {
4611 off = bld.copy(bld.def(s1), Operand(offset));
4612 } else {
4613 off = Operand((Temp)bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset),
4614 bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), index)));
4615 }
4616
4617 Temp res = bld.smem(opcode, bld.def(type), list, off);
4618
4619 if (desc_type == ACO_DESC_PLANE_2) {
4620 Temp components[8];
4621 for (unsigned i = 0; i < 8; i++)
4622 components[i] = bld.tmp(s1);
4623 bld.pseudo(aco_opcode::p_split_vector,
4624 Definition(components[0]),
4625 Definition(components[1]),
4626 Definition(components[2]),
4627 Definition(components[3]),
4628 res);
4629
4630 Temp desc2 = get_sampler_desc(ctx, deref_instr, ACO_DESC_PLANE_1, tex_instr, image, write);
4631 bld.pseudo(aco_opcode::p_split_vector,
4632 bld.def(s1), bld.def(s1), bld.def(s1), bld.def(s1),
4633 Definition(components[4]),
4634 Definition(components[5]),
4635 Definition(components[6]),
4636 Definition(components[7]),
4637 desc2);
4638
4639 res = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
4640 components[0], components[1], components[2], components[3],
4641 components[4], components[5], components[6], components[7]);
4642 }
4643
4644 return res;
4645 }
4646
4647 static int image_type_to_components_count(enum glsl_sampler_dim dim, bool array)
4648 {
4649 switch (dim) {
4650 case GLSL_SAMPLER_DIM_BUF:
4651 return 1;
4652 case GLSL_SAMPLER_DIM_1D:
4653 return array ? 2 : 1;
4654 case GLSL_SAMPLER_DIM_2D:
4655 return array ? 3 : 2;
4656 case GLSL_SAMPLER_DIM_MS:
4657 return array ? 4 : 3;
4658 case GLSL_SAMPLER_DIM_3D:
4659 case GLSL_SAMPLER_DIM_CUBE:
4660 return 3;
4661 case GLSL_SAMPLER_DIM_RECT:
4662 case GLSL_SAMPLER_DIM_SUBPASS:
4663 return 2;
4664 case GLSL_SAMPLER_DIM_SUBPASS_MS:
4665 return 3;
4666 default:
4667 break;
4668 }
4669 return 0;
4670 }
4671
4672
4673 /* Adjust the sample index according to FMASK.
4674 *
4675 * For uncompressed MSAA surfaces, FMASK should return 0x76543210,
4676 * which is the identity mapping. Each nibble says which physical sample
4677 * should be fetched to get that sample.
4678 *
4679 * For example, 0x11111100 means there are only 2 samples stored and
4680 * the second sample covers 3/4 of the pixel. When reading samples 0
4681 * and 1, return physical sample 0 (determined by the first two 0s
4682 * in FMASK), otherwise return physical sample 1.
4683 *
4684 * The sample index should be adjusted as follows:
4685 * sample_index = (fmask >> (sample_index * 4)) & 0xF;
4686 */
4687 static Temp adjust_sample_index_using_fmask(isel_context *ctx, bool da, std::vector<Temp>& coords, Operand sample_index, Temp fmask_desc_ptr)
4688 {
4689 Builder bld(ctx->program, ctx->block);
4690 Temp fmask = bld.tmp(v1);
4691 unsigned dim = ctx->options->chip_class >= GFX10
4692 ? ac_get_sampler_dim(ctx->options->chip_class, GLSL_SAMPLER_DIM_2D, da)
4693 : 0;
4694
4695 Temp coord = da ? bld.pseudo(aco_opcode::p_create_vector, bld.def(v3), coords[0], coords[1], coords[2]) :
4696 bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), coords[0], coords[1]);
4697 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(aco_opcode::image_load, Format::MIMG, 3, 1)};
4698 load->operands[0] = Operand(fmask_desc_ptr);
4699 load->operands[1] = Operand(s4); /* no sampler */
4700 load->operands[2] = Operand(coord);
4701 load->definitions[0] = Definition(fmask);
4702 load->glc = false;
4703 load->dlc = false;
4704 load->dmask = 0x1;
4705 load->unrm = true;
4706 load->da = da;
4707 load->dim = dim;
4708 load->can_reorder = true; /* fmask images shouldn't be modified */
4709 ctx->block->instructions.emplace_back(std::move(load));
4710
4711 Operand sample_index4;
4712 if (sample_index.isConstant() && sample_index.constantValue() < 16) {
4713 sample_index4 = Operand(sample_index.constantValue() << 2);
4714 } else if (sample_index.regClass() == s1) {
4715 sample_index4 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), sample_index, Operand(2u));
4716 } else {
4717 assert(sample_index.regClass() == v1);
4718 sample_index4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), sample_index);
4719 }
4720
4721 Temp final_sample;
4722 if (sample_index4.isConstant() && sample_index4.constantValue() == 0)
4723 final_sample = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(15u), fmask);
4724 else if (sample_index4.isConstant() && sample_index4.constantValue() == 28)
4725 final_sample = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(28u), fmask);
4726 else
4727 final_sample = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), fmask, sample_index4, Operand(4u));
4728
4729 /* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK
4730 * resource descriptor is 0 (invalid),
4731 */
4732 Temp compare = bld.tmp(bld.lm);
4733 bld.vopc_e64(aco_opcode::v_cmp_lg_u32, Definition(compare),
4734 Operand(0u), emit_extract_vector(ctx, fmask_desc_ptr, 1, s1)).def(0).setHint(vcc);
4735
4736 Temp sample_index_v = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), sample_index);
4737
4738 /* Replace the MSAA sample index. */
4739 return bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), sample_index_v, final_sample, compare);
4740 }
4741
4742 static Temp get_image_coords(isel_context *ctx, const nir_intrinsic_instr *instr, const struct glsl_type *type)
4743 {
4744
4745 Temp src0 = get_ssa_temp(ctx, instr->src[1].ssa);
4746 enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4747 bool is_array = glsl_sampler_type_is_array(type);
4748 ASSERTED bool add_frag_pos = (dim == GLSL_SAMPLER_DIM_SUBPASS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
4749 assert(!add_frag_pos && "Input attachments should be lowered.");
4750 bool is_ms = (dim == GLSL_SAMPLER_DIM_MS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
4751 bool gfx9_1d = ctx->options->chip_class == GFX9 && dim == GLSL_SAMPLER_DIM_1D;
4752 int count = image_type_to_components_count(dim, is_array);
4753 std::vector<Temp> coords(count);
4754 Builder bld(ctx->program, ctx->block);
4755
4756 if (is_ms) {
4757 count--;
4758 Temp src2 = get_ssa_temp(ctx, instr->src[2].ssa);
4759 /* get sample index */
4760 if (instr->intrinsic == nir_intrinsic_image_deref_load) {
4761 nir_const_value *sample_cv = nir_src_as_const_value(instr->src[2]);
4762 Operand sample_index = sample_cv ? Operand(sample_cv->u32) : Operand(emit_extract_vector(ctx, src2, 0, v1));
4763 std::vector<Temp> fmask_load_address;
4764 for (unsigned i = 0; i < (is_array ? 3 : 2); i++)
4765 fmask_load_address.emplace_back(emit_extract_vector(ctx, src0, i, v1));
4766
4767 Temp fmask_desc_ptr = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_FMASK, nullptr, false, false);
4768 coords[count] = adjust_sample_index_using_fmask(ctx, is_array, fmask_load_address, sample_index, fmask_desc_ptr);
4769 } else {
4770 coords[count] = emit_extract_vector(ctx, src2, 0, v1);
4771 }
4772 }
4773
4774 if (gfx9_1d) {
4775 coords[0] = emit_extract_vector(ctx, src0, 0, v1);
4776 coords.resize(coords.size() + 1);
4777 coords[1] = bld.copy(bld.def(v1), Operand(0u));
4778 if (is_array)
4779 coords[2] = emit_extract_vector(ctx, src0, 1, v1);
4780 } else {
4781 for (int i = 0; i < count; i++)
4782 coords[i] = emit_extract_vector(ctx, src0, i, v1);
4783 }
4784
4785 if (instr->intrinsic == nir_intrinsic_image_deref_load ||
4786 instr->intrinsic == nir_intrinsic_image_deref_store) {
4787 int lod_index = instr->intrinsic == nir_intrinsic_image_deref_load ? 3 : 4;
4788 bool level_zero = nir_src_is_const(instr->src[lod_index]) && nir_src_as_uint(instr->src[lod_index]) == 0;
4789
4790 if (!level_zero)
4791 coords.emplace_back(get_ssa_temp(ctx, instr->src[lod_index].ssa));
4792 }
4793
4794 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
4795 for (unsigned i = 0; i < coords.size(); i++)
4796 vec->operands[i] = Operand(coords[i]);
4797 Temp res = {ctx->program->allocateId(), RegClass(RegType::vgpr, coords.size())};
4798 vec->definitions[0] = Definition(res);
4799 ctx->block->instructions.emplace_back(std::move(vec));
4800 return res;
4801 }
4802
4803
4804 void visit_image_load(isel_context *ctx, nir_intrinsic_instr *instr)
4805 {
4806 Builder bld(ctx->program, ctx->block);
4807 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
4808 const struct glsl_type *type = glsl_without_array(var->type);
4809 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4810 bool is_array = glsl_sampler_type_is_array(type);
4811 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4812
4813 if (dim == GLSL_SAMPLER_DIM_BUF) {
4814 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa);
4815 unsigned num_channels = util_last_bit(mask);
4816 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
4817 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
4818
4819 aco_opcode opcode;
4820 switch (num_channels) {
4821 case 1:
4822 opcode = aco_opcode::buffer_load_format_x;
4823 break;
4824 case 2:
4825 opcode = aco_opcode::buffer_load_format_xy;
4826 break;
4827 case 3:
4828 opcode = aco_opcode::buffer_load_format_xyz;
4829 break;
4830 case 4:
4831 opcode = aco_opcode::buffer_load_format_xyzw;
4832 break;
4833 default:
4834 unreachable(">4 channel buffer image load");
4835 }
4836 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 3, 1)};
4837 load->operands[0] = Operand(rsrc);
4838 load->operands[1] = Operand(vindex);
4839 load->operands[2] = Operand((uint32_t) 0);
4840 Temp tmp;
4841 if (num_channels == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
4842 tmp = dst;
4843 else
4844 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_channels)};
4845 load->definitions[0] = Definition(tmp);
4846 load->idxen = true;
4847 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT);
4848 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
4849 load->barrier = barrier_image;
4850 ctx->block->instructions.emplace_back(std::move(load));
4851
4852 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, (1 << num_channels) - 1);
4853 return;
4854 }
4855
4856 Temp coords = get_image_coords(ctx, instr, type);
4857 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
4858
4859 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
4860 unsigned num_components = util_bitcount(dmask);
4861 Temp tmp;
4862 if (num_components == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
4863 tmp = dst;
4864 else
4865 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_components)};
4866
4867 bool level_zero = nir_src_is_const(instr->src[3]) && nir_src_as_uint(instr->src[3]) == 0;
4868 aco_opcode opcode = level_zero ? aco_opcode::image_load : aco_opcode::image_load_mip;
4869
4870 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1)};
4871 load->operands[0] = Operand(resource);
4872 load->operands[1] = Operand(s4); /* no sampler */
4873 load->operands[2] = Operand(coords);
4874 load->definitions[0] = Definition(tmp);
4875 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT) ? 1 : 0;
4876 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
4877 load->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
4878 load->dmask = dmask;
4879 load->unrm = true;
4880 load->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
4881 load->barrier = barrier_image;
4882 ctx->block->instructions.emplace_back(std::move(load));
4883
4884 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, dmask);
4885 return;
4886 }
4887
4888 void visit_image_store(isel_context *ctx, nir_intrinsic_instr *instr)
4889 {
4890 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
4891 const struct glsl_type *type = glsl_without_array(var->type);
4892 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4893 bool is_array = glsl_sampler_type_is_array(type);
4894 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
4895
4896 bool glc = ctx->options->chip_class == GFX6 || var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE) ? 1 : 0;
4897
4898 if (dim == GLSL_SAMPLER_DIM_BUF) {
4899 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
4900 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
4901 aco_opcode opcode;
4902 switch (data.size()) {
4903 case 1:
4904 opcode = aco_opcode::buffer_store_format_x;
4905 break;
4906 case 2:
4907 opcode = aco_opcode::buffer_store_format_xy;
4908 break;
4909 case 3:
4910 opcode = aco_opcode::buffer_store_format_xyz;
4911 break;
4912 case 4:
4913 opcode = aco_opcode::buffer_store_format_xyzw;
4914 break;
4915 default:
4916 unreachable(">4 channel buffer image store");
4917 }
4918 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
4919 store->operands[0] = Operand(rsrc);
4920 store->operands[1] = Operand(vindex);
4921 store->operands[2] = Operand((uint32_t) 0);
4922 store->operands[3] = Operand(data);
4923 store->idxen = true;
4924 store->glc = glc;
4925 store->dlc = false;
4926 store->disable_wqm = true;
4927 store->barrier = barrier_image;
4928 ctx->program->needs_exact = true;
4929 ctx->block->instructions.emplace_back(std::move(store));
4930 return;
4931 }
4932
4933 assert(data.type() == RegType::vgpr);
4934 Temp coords = get_image_coords(ctx, instr, type);
4935 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
4936
4937 bool level_zero = nir_src_is_const(instr->src[4]) && nir_src_as_uint(instr->src[4]) == 0;
4938 aco_opcode opcode = level_zero ? aco_opcode::image_store : aco_opcode::image_store_mip;
4939
4940 aco_ptr<MIMG_instruction> store{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 0)};
4941 store->operands[0] = Operand(resource);
4942 store->operands[1] = Operand(data);
4943 store->operands[2] = Operand(coords);
4944 store->glc = glc;
4945 store->dlc = false;
4946 store->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
4947 store->dmask = (1 << data.size()) - 1;
4948 store->unrm = true;
4949 store->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
4950 store->disable_wqm = true;
4951 store->barrier = barrier_image;
4952 ctx->program->needs_exact = true;
4953 ctx->block->instructions.emplace_back(std::move(store));
4954 return;
4955 }
4956
4957 void visit_image_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
4958 {
4959 /* return the previous value if dest is ever used */
4960 bool return_previous = false;
4961 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
4962 return_previous = true;
4963 break;
4964 }
4965 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
4966 return_previous = true;
4967 break;
4968 }
4969
4970 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
4971 const struct glsl_type *type = glsl_without_array(var->type);
4972 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4973 bool is_array = glsl_sampler_type_is_array(type);
4974 Builder bld(ctx->program, ctx->block);
4975
4976 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
4977 assert(data.size() == 1 && "64bit ssbo atomics not yet implemented.");
4978
4979 if (instr->intrinsic == nir_intrinsic_image_deref_atomic_comp_swap)
4980 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), get_ssa_temp(ctx, instr->src[4].ssa), data);
4981
4982 aco_opcode buf_op, image_op;
4983 switch (instr->intrinsic) {
4984 case nir_intrinsic_image_deref_atomic_add:
4985 buf_op = aco_opcode::buffer_atomic_add;
4986 image_op = aco_opcode::image_atomic_add;
4987 break;
4988 case nir_intrinsic_image_deref_atomic_umin:
4989 buf_op = aco_opcode::buffer_atomic_umin;
4990 image_op = aco_opcode::image_atomic_umin;
4991 break;
4992 case nir_intrinsic_image_deref_atomic_imin:
4993 buf_op = aco_opcode::buffer_atomic_smin;
4994 image_op = aco_opcode::image_atomic_smin;
4995 break;
4996 case nir_intrinsic_image_deref_atomic_umax:
4997 buf_op = aco_opcode::buffer_atomic_umax;
4998 image_op = aco_opcode::image_atomic_umax;
4999 break;
5000 case nir_intrinsic_image_deref_atomic_imax:
5001 buf_op = aco_opcode::buffer_atomic_smax;
5002 image_op = aco_opcode::image_atomic_smax;
5003 break;
5004 case nir_intrinsic_image_deref_atomic_and:
5005 buf_op = aco_opcode::buffer_atomic_and;
5006 image_op = aco_opcode::image_atomic_and;
5007 break;
5008 case nir_intrinsic_image_deref_atomic_or:
5009 buf_op = aco_opcode::buffer_atomic_or;
5010 image_op = aco_opcode::image_atomic_or;
5011 break;
5012 case nir_intrinsic_image_deref_atomic_xor:
5013 buf_op = aco_opcode::buffer_atomic_xor;
5014 image_op = aco_opcode::image_atomic_xor;
5015 break;
5016 case nir_intrinsic_image_deref_atomic_exchange:
5017 buf_op = aco_opcode::buffer_atomic_swap;
5018 image_op = aco_opcode::image_atomic_swap;
5019 break;
5020 case nir_intrinsic_image_deref_atomic_comp_swap:
5021 buf_op = aco_opcode::buffer_atomic_cmpswap;
5022 image_op = aco_opcode::image_atomic_cmpswap;
5023 break;
5024 default:
5025 unreachable("visit_image_atomic should only be called with nir_intrinsic_image_deref_atomic_* instructions.");
5026 }
5027
5028 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5029
5030 if (dim == GLSL_SAMPLER_DIM_BUF) {
5031 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5032 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5033 //assert(ctx->options->chip_class < GFX9 && "GFX9 stride size workaround not yet implemented.");
5034 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(buf_op, Format::MUBUF, 4, return_previous ? 1 : 0)};
5035 mubuf->operands[0] = Operand(resource);
5036 mubuf->operands[1] = Operand(vindex);
5037 mubuf->operands[2] = Operand((uint32_t)0);
5038 mubuf->operands[3] = Operand(data);
5039 if (return_previous)
5040 mubuf->definitions[0] = Definition(dst);
5041 mubuf->offset = 0;
5042 mubuf->idxen = true;
5043 mubuf->glc = return_previous;
5044 mubuf->dlc = false; /* Not needed for atomics */
5045 mubuf->disable_wqm = true;
5046 mubuf->barrier = barrier_image;
5047 ctx->program->needs_exact = true;
5048 ctx->block->instructions.emplace_back(std::move(mubuf));
5049 return;
5050 }
5051
5052 Temp coords = get_image_coords(ctx, instr, type);
5053 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5054 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(image_op, Format::MIMG, 3, return_previous ? 1 : 0)};
5055 mimg->operands[0] = Operand(resource);
5056 mimg->operands[1] = Operand(data);
5057 mimg->operands[2] = Operand(coords);
5058 if (return_previous)
5059 mimg->definitions[0] = Definition(dst);
5060 mimg->glc = return_previous;
5061 mimg->dlc = false; /* Not needed for atomics */
5062 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5063 mimg->dmask = (1 << data.size()) - 1;
5064 mimg->unrm = true;
5065 mimg->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5066 mimg->disable_wqm = true;
5067 mimg->barrier = barrier_image;
5068 ctx->program->needs_exact = true;
5069 ctx->block->instructions.emplace_back(std::move(mimg));
5070 return;
5071 }
5072
5073 void get_buffer_size(isel_context *ctx, Temp desc, Temp dst, bool in_elements)
5074 {
5075 if (in_elements && ctx->options->chip_class == GFX8) {
5076 /* we only have to divide by 1, 2, 4, 8, 12 or 16 */
5077 Builder bld(ctx->program, ctx->block);
5078
5079 Temp size = emit_extract_vector(ctx, desc, 2, s1);
5080
5081 Temp size_div3 = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), bld.copy(bld.def(v1), Operand(0xaaaaaaabu)), size);
5082 size_div3 = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.as_uniform(size_div3), Operand(1u));
5083
5084 Temp stride = emit_extract_vector(ctx, desc, 1, s1);
5085 stride = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), stride, Operand((5u << 16) | 16u));
5086
5087 Temp is12 = bld.sopc(aco_opcode::s_cmp_eq_i32, bld.def(s1, scc), stride, Operand(12u));
5088 size = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), size_div3, size, bld.scc(is12));
5089
5090 Temp shr_dst = dst.type() == RegType::vgpr ? bld.tmp(s1) : dst;
5091 bld.sop2(aco_opcode::s_lshr_b32, Definition(shr_dst), bld.def(s1, scc),
5092 size, bld.sop1(aco_opcode::s_ff1_i32_b32, bld.def(s1), stride));
5093 if (dst.type() == RegType::vgpr)
5094 bld.copy(Definition(dst), shr_dst);
5095
5096 /* TODO: we can probably calculate this faster with v_skip when stride != 12 */
5097 } else {
5098 emit_extract_vector(ctx, desc, 2, dst);
5099 }
5100 }
5101
5102 void visit_image_size(isel_context *ctx, nir_intrinsic_instr *instr)
5103 {
5104 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5105 const struct glsl_type *type = glsl_without_array(var->type);
5106 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5107 bool is_array = glsl_sampler_type_is_array(type);
5108 Builder bld(ctx->program, ctx->block);
5109
5110 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF) {
5111 Temp desc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, NULL, true, false);
5112 return get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), true);
5113 }
5114
5115 /* LOD */
5116 Temp lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
5117
5118 /* Resource */
5119 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, NULL, true, false);
5120
5121 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5122
5123 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1)};
5124 mimg->operands[0] = Operand(resource);
5125 mimg->operands[1] = Operand(s4); /* no sampler */
5126 mimg->operands[2] = Operand(lod);
5127 uint8_t& dmask = mimg->dmask;
5128 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5129 mimg->dmask = (1 << instr->dest.ssa.num_components) - 1;
5130 mimg->da = glsl_sampler_type_is_array(type);
5131 mimg->can_reorder = true;
5132 Definition& def = mimg->definitions[0];
5133 ctx->block->instructions.emplace_back(std::move(mimg));
5134
5135 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE &&
5136 glsl_sampler_type_is_array(type)) {
5137
5138 assert(instr->dest.ssa.num_components == 3);
5139 Temp tmp = {ctx->program->allocateId(), v3};
5140 def = Definition(tmp);
5141 emit_split_vector(ctx, tmp, 3);
5142
5143 /* divide 3rd value by 6 by multiplying with magic number */
5144 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
5145 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp, 2, v1), c);
5146
5147 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5148 emit_extract_vector(ctx, tmp, 0, v1),
5149 emit_extract_vector(ctx, tmp, 1, v1),
5150 by_6);
5151
5152 } else if (ctx->options->chip_class == GFX9 &&
5153 glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_1D &&
5154 glsl_sampler_type_is_array(type)) {
5155 assert(instr->dest.ssa.num_components == 2);
5156 def = Definition(dst);
5157 dmask = 0x5;
5158 } else {
5159 def = Definition(dst);
5160 }
5161
5162 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
5163 }
5164
5165 void visit_load_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
5166 {
5167 Builder bld(ctx->program, ctx->block);
5168 unsigned num_components = instr->num_components;
5169
5170 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5171 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5172 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
5173
5174 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
5175 load_buffer(ctx, num_components, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa), glc, false);
5176 }
5177
5178 void visit_store_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
5179 {
5180 Builder bld(ctx->program, ctx->block);
5181 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
5182 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
5183 unsigned writemask = nir_intrinsic_write_mask(instr);
5184 Temp offset = get_ssa_temp(ctx, instr->src[2].ssa);
5185
5186 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5187 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
5188
5189 bool smem = !ctx->divergent_vals[instr->src[2].ssa->index] &&
5190 ctx->options->chip_class >= GFX8;
5191 if (smem)
5192 offset = bld.as_uniform(offset);
5193 bool smem_nonfs = smem && ctx->stage != fragment_fs;
5194
5195 while (writemask) {
5196 int start, count;
5197 u_bit_scan_consecutive_range(&writemask, &start, &count);
5198 if (count == 3 && (smem || ctx->options->chip_class == GFX6)) {
5199 /* GFX6 doesn't support storing vec3, split it. */
5200 writemask |= 1u << (start + 2);
5201 count = 2;
5202 }
5203 int num_bytes = count * elem_size_bytes;
5204
5205 if (num_bytes > 16) {
5206 assert(elem_size_bytes == 8);
5207 writemask |= (((count - 2) << 1) - 1) << (start + 2);
5208 count = 2;
5209 num_bytes = 16;
5210 }
5211
5212 // TODO: check alignment of sub-dword stores
5213 // TODO: split 3 bytes. there is no store instruction for that
5214
5215 Temp write_data;
5216 if (count != instr->num_components) {
5217 emit_split_vector(ctx, data, instr->num_components);
5218 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
5219 for (int i = 0; i < count; i++) {
5220 Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(data.type(), elem_size_bytes / 4));
5221 vec->operands[i] = Operand(smem_nonfs ? bld.as_uniform(elem) : elem);
5222 }
5223 write_data = bld.tmp(!smem ? RegType::vgpr : smem_nonfs ? RegType::sgpr : data.type(), count * elem_size_bytes / 4);
5224 vec->definitions[0] = Definition(write_data);
5225 ctx->block->instructions.emplace_back(std::move(vec));
5226 } else if (!smem && data.type() != RegType::vgpr) {
5227 assert(num_bytes % 4 == 0);
5228 write_data = bld.copy(bld.def(RegType::vgpr, num_bytes / 4), data);
5229 } else if (smem_nonfs && data.type() == RegType::vgpr) {
5230 assert(num_bytes % 4 == 0);
5231 write_data = bld.as_uniform(data);
5232 } else {
5233 write_data = data;
5234 }
5235
5236 aco_opcode vmem_op, smem_op;
5237 switch (num_bytes) {
5238 case 4:
5239 vmem_op = aco_opcode::buffer_store_dword;
5240 smem_op = aco_opcode::s_buffer_store_dword;
5241 break;
5242 case 8:
5243 vmem_op = aco_opcode::buffer_store_dwordx2;
5244 smem_op = aco_opcode::s_buffer_store_dwordx2;
5245 break;
5246 case 12:
5247 vmem_op = aco_opcode::buffer_store_dwordx3;
5248 smem_op = aco_opcode::last_opcode;
5249 assert(!smem && ctx->options->chip_class > GFX6);
5250 break;
5251 case 16:
5252 vmem_op = aco_opcode::buffer_store_dwordx4;
5253 smem_op = aco_opcode::s_buffer_store_dwordx4;
5254 break;
5255 default:
5256 unreachable("Store SSBO not implemented for this size.");
5257 }
5258 if (ctx->stage == fragment_fs)
5259 smem_op = aco_opcode::p_fs_buffer_store_smem;
5260
5261 if (smem) {
5262 aco_ptr<SMEM_instruction> store{create_instruction<SMEM_instruction>(smem_op, Format::SMEM, 3, 0)};
5263 store->operands[0] = Operand(rsrc);
5264 if (start) {
5265 Temp off = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
5266 offset, Operand(start * elem_size_bytes));
5267 store->operands[1] = Operand(off);
5268 } else {
5269 store->operands[1] = Operand(offset);
5270 }
5271 if (smem_op != aco_opcode::p_fs_buffer_store_smem)
5272 store->operands[1].setFixed(m0);
5273 store->operands[2] = Operand(write_data);
5274 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
5275 store->dlc = false;
5276 store->disable_wqm = true;
5277 store->barrier = barrier_buffer;
5278 ctx->block->instructions.emplace_back(std::move(store));
5279 ctx->program->wb_smem_l1_on_end = true;
5280 if (smem_op == aco_opcode::p_fs_buffer_store_smem) {
5281 ctx->block->kind |= block_kind_needs_lowering;
5282 ctx->program->needs_exact = true;
5283 }
5284 } else {
5285 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(vmem_op, Format::MUBUF, 4, 0)};
5286 store->operands[0] = Operand(rsrc);
5287 store->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
5288 store->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
5289 store->operands[3] = Operand(write_data);
5290 store->offset = start * elem_size_bytes;
5291 store->offen = (offset.type() == RegType::vgpr);
5292 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
5293 store->dlc = false;
5294 store->disable_wqm = true;
5295 store->barrier = barrier_buffer;
5296 ctx->program->needs_exact = true;
5297 ctx->block->instructions.emplace_back(std::move(store));
5298 }
5299 }
5300 }
5301
5302 void visit_atomic_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
5303 {
5304 /* return the previous value if dest is ever used */
5305 bool return_previous = false;
5306 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5307 return_previous = true;
5308 break;
5309 }
5310 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5311 return_previous = true;
5312 break;
5313 }
5314
5315 Builder bld(ctx->program, ctx->block);
5316 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[2].ssa));
5317
5318 if (instr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap)
5319 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
5320 get_ssa_temp(ctx, instr->src[3].ssa), data);
5321
5322 Temp offset = get_ssa_temp(ctx, instr->src[1].ssa);
5323 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5324 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
5325
5326 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5327
5328 aco_opcode op32, op64;
5329 switch (instr->intrinsic) {
5330 case nir_intrinsic_ssbo_atomic_add:
5331 op32 = aco_opcode::buffer_atomic_add;
5332 op64 = aco_opcode::buffer_atomic_add_x2;
5333 break;
5334 case nir_intrinsic_ssbo_atomic_imin:
5335 op32 = aco_opcode::buffer_atomic_smin;
5336 op64 = aco_opcode::buffer_atomic_smin_x2;
5337 break;
5338 case nir_intrinsic_ssbo_atomic_umin:
5339 op32 = aco_opcode::buffer_atomic_umin;
5340 op64 = aco_opcode::buffer_atomic_umin_x2;
5341 break;
5342 case nir_intrinsic_ssbo_atomic_imax:
5343 op32 = aco_opcode::buffer_atomic_smax;
5344 op64 = aco_opcode::buffer_atomic_smax_x2;
5345 break;
5346 case nir_intrinsic_ssbo_atomic_umax:
5347 op32 = aco_opcode::buffer_atomic_umax;
5348 op64 = aco_opcode::buffer_atomic_umax_x2;
5349 break;
5350 case nir_intrinsic_ssbo_atomic_and:
5351 op32 = aco_opcode::buffer_atomic_and;
5352 op64 = aco_opcode::buffer_atomic_and_x2;
5353 break;
5354 case nir_intrinsic_ssbo_atomic_or:
5355 op32 = aco_opcode::buffer_atomic_or;
5356 op64 = aco_opcode::buffer_atomic_or_x2;
5357 break;
5358 case nir_intrinsic_ssbo_atomic_xor:
5359 op32 = aco_opcode::buffer_atomic_xor;
5360 op64 = aco_opcode::buffer_atomic_xor_x2;
5361 break;
5362 case nir_intrinsic_ssbo_atomic_exchange:
5363 op32 = aco_opcode::buffer_atomic_swap;
5364 op64 = aco_opcode::buffer_atomic_swap_x2;
5365 break;
5366 case nir_intrinsic_ssbo_atomic_comp_swap:
5367 op32 = aco_opcode::buffer_atomic_cmpswap;
5368 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
5369 break;
5370 default:
5371 unreachable("visit_atomic_ssbo should only be called with nir_intrinsic_ssbo_atomic_* instructions.");
5372 }
5373 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
5374 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
5375 mubuf->operands[0] = Operand(rsrc);
5376 mubuf->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
5377 mubuf->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
5378 mubuf->operands[3] = Operand(data);
5379 if (return_previous)
5380 mubuf->definitions[0] = Definition(dst);
5381 mubuf->offset = 0;
5382 mubuf->offen = (offset.type() == RegType::vgpr);
5383 mubuf->glc = return_previous;
5384 mubuf->dlc = false; /* Not needed for atomics */
5385 mubuf->disable_wqm = true;
5386 mubuf->barrier = barrier_buffer;
5387 ctx->program->needs_exact = true;
5388 ctx->block->instructions.emplace_back(std::move(mubuf));
5389 }
5390
5391 void visit_get_buffer_size(isel_context *ctx, nir_intrinsic_instr *instr) {
5392
5393 Temp index = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5394 Builder bld(ctx->program, ctx->block);
5395 Temp desc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), index, Operand(0u));
5396 get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), false);
5397 }
5398
5399 Temp get_gfx6_global_rsrc(Builder& bld, Temp addr)
5400 {
5401 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5402 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
5403
5404 if (addr.type() == RegType::vgpr)
5405 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), Operand(0u), Operand(0u), Operand(-1u), Operand(rsrc_conf));
5406 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), addr, Operand(-1u), Operand(rsrc_conf));
5407 }
5408
5409 void visit_load_global(isel_context *ctx, nir_intrinsic_instr *instr)
5410 {
5411 Builder bld(ctx->program, ctx->block);
5412 unsigned num_components = instr->num_components;
5413 unsigned num_bytes = num_components * instr->dest.ssa.bit_size / 8;
5414
5415 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5416 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
5417
5418 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
5419 bool dlc = glc && ctx->options->chip_class >= GFX10;
5420 aco_opcode op;
5421 if (dst.type() == RegType::vgpr || (glc && ctx->options->chip_class < GFX8)) {
5422 bool global = ctx->options->chip_class >= GFX9;
5423
5424 if (ctx->options->chip_class >= GFX7) {
5425 aco_opcode op;
5426 switch (num_bytes) {
5427 case 4:
5428 op = global ? aco_opcode::global_load_dword : aco_opcode::flat_load_dword;
5429 break;
5430 case 8:
5431 op = global ? aco_opcode::global_load_dwordx2 : aco_opcode::flat_load_dwordx2;
5432 break;
5433 case 12:
5434 op = global ? aco_opcode::global_load_dwordx3 : aco_opcode::flat_load_dwordx3;
5435 break;
5436 case 16:
5437 op = global ? aco_opcode::global_load_dwordx4 : aco_opcode::flat_load_dwordx4;
5438 break;
5439 default:
5440 unreachable("load_global not implemented for this size.");
5441 }
5442
5443 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 2, 1)};
5444 flat->operands[0] = Operand(addr);
5445 flat->operands[1] = Operand(s1);
5446 flat->glc = glc;
5447 flat->dlc = dlc;
5448 flat->barrier = barrier_buffer;
5449
5450 if (dst.type() == RegType::sgpr) {
5451 Temp vec = bld.tmp(RegType::vgpr, dst.size());
5452 flat->definitions[0] = Definition(vec);
5453 ctx->block->instructions.emplace_back(std::move(flat));
5454 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
5455 } else {
5456 flat->definitions[0] = Definition(dst);
5457 ctx->block->instructions.emplace_back(std::move(flat));
5458 }
5459 emit_split_vector(ctx, dst, num_components);
5460 } else {
5461 assert(ctx->options->chip_class == GFX6);
5462
5463 /* GFX6 doesn't support loading vec3, expand to vec4. */
5464 num_bytes = num_bytes == 12 ? 16 : num_bytes;
5465
5466 aco_opcode op;
5467 switch (num_bytes) {
5468 case 4:
5469 op = aco_opcode::buffer_load_dword;
5470 break;
5471 case 8:
5472 op = aco_opcode::buffer_load_dwordx2;
5473 break;
5474 case 16:
5475 op = aco_opcode::buffer_load_dwordx4;
5476 break;
5477 default:
5478 unreachable("load_global not implemented for this size.");
5479 }
5480
5481 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
5482
5483 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
5484 mubuf->operands[0] = Operand(rsrc);
5485 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
5486 mubuf->operands[2] = Operand(0u);
5487 mubuf->glc = glc;
5488 mubuf->dlc = false;
5489 mubuf->offset = 0;
5490 mubuf->addr64 = addr.type() == RegType::vgpr;
5491 mubuf->disable_wqm = false;
5492 mubuf->barrier = barrier_buffer;
5493 aco_ptr<Instruction> instr = std::move(mubuf);
5494
5495 /* expand vector */
5496 if (dst.size() == 3) {
5497 Temp vec = bld.tmp(v4);
5498 instr->definitions[0] = Definition(vec);
5499 bld.insert(std::move(instr));
5500 emit_split_vector(ctx, vec, 4);
5501
5502 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 3, 1));
5503 instr->operands[0] = Operand(emit_extract_vector(ctx, vec, 0, v1));
5504 instr->operands[1] = Operand(emit_extract_vector(ctx, vec, 1, v1));
5505 instr->operands[2] = Operand(emit_extract_vector(ctx, vec, 2, v1));
5506 }
5507
5508 if (dst.type() == RegType::sgpr) {
5509 Temp vec = bld.tmp(RegType::vgpr, dst.size());
5510 instr->definitions[0] = Definition(vec);
5511 bld.insert(std::move(instr));
5512 expand_vector(ctx, vec, dst, num_components, (1 << num_components) - 1);
5513 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
5514 } else {
5515 instr->definitions[0] = Definition(dst);
5516 bld.insert(std::move(instr));
5517 emit_split_vector(ctx, dst, num_components);
5518 }
5519 }
5520 } else {
5521 switch (num_bytes) {
5522 case 4:
5523 op = aco_opcode::s_load_dword;
5524 break;
5525 case 8:
5526 op = aco_opcode::s_load_dwordx2;
5527 break;
5528 case 12:
5529 case 16:
5530 op = aco_opcode::s_load_dwordx4;
5531 break;
5532 default:
5533 unreachable("load_global not implemented for this size.");
5534 }
5535 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
5536 load->operands[0] = Operand(addr);
5537 load->operands[1] = Operand(0u);
5538 load->definitions[0] = Definition(dst);
5539 load->glc = glc;
5540 load->dlc = dlc;
5541 load->barrier = barrier_buffer;
5542 assert(ctx->options->chip_class >= GFX8 || !glc);
5543
5544 if (dst.size() == 3) {
5545 /* trim vector */
5546 Temp vec = bld.tmp(s4);
5547 load->definitions[0] = Definition(vec);
5548 ctx->block->instructions.emplace_back(std::move(load));
5549 emit_split_vector(ctx, vec, 4);
5550
5551 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5552 emit_extract_vector(ctx, vec, 0, s1),
5553 emit_extract_vector(ctx, vec, 1, s1),
5554 emit_extract_vector(ctx, vec, 2, s1));
5555 } else {
5556 ctx->block->instructions.emplace_back(std::move(load));
5557 }
5558 }
5559 }
5560
5561 void visit_store_global(isel_context *ctx, nir_intrinsic_instr *instr)
5562 {
5563 Builder bld(ctx->program, ctx->block);
5564 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
5565
5566 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5567 Temp addr = get_ssa_temp(ctx, instr->src[1].ssa);
5568
5569 if (ctx->options->chip_class >= GFX7)
5570 addr = as_vgpr(ctx, addr);
5571
5572 unsigned writemask = nir_intrinsic_write_mask(instr);
5573 while (writemask) {
5574 int start, count;
5575 u_bit_scan_consecutive_range(&writemask, &start, &count);
5576 if (count == 3 && ctx->options->chip_class == GFX6) {
5577 /* GFX6 doesn't support storing vec3, split it. */
5578 writemask |= 1u << (start + 2);
5579 count = 2;
5580 }
5581 unsigned num_bytes = count * elem_size_bytes;
5582
5583 Temp write_data = data;
5584 if (count != instr->num_components) {
5585 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
5586 for (int i = 0; i < count; i++)
5587 vec->operands[i] = Operand(emit_extract_vector(ctx, data, start + i, v1));
5588 write_data = bld.tmp(RegType::vgpr, count);
5589 vec->definitions[0] = Definition(write_data);
5590 ctx->block->instructions.emplace_back(std::move(vec));
5591 }
5592
5593 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
5594 unsigned offset = start * elem_size_bytes;
5595
5596 if (ctx->options->chip_class >= GFX7) {
5597 if (offset > 0 && ctx->options->chip_class < GFX9) {
5598 Temp addr0 = bld.tmp(v1), addr1 = bld.tmp(v1);
5599 Temp new_addr0 = bld.tmp(v1), new_addr1 = bld.tmp(v1);
5600 Temp carry = bld.tmp(bld.lm);
5601 bld.pseudo(aco_opcode::p_split_vector, Definition(addr0), Definition(addr1), addr);
5602
5603 bld.vop2(aco_opcode::v_add_co_u32, Definition(new_addr0), bld.hint_vcc(Definition(carry)),
5604 Operand(offset), addr0);
5605 bld.vop2(aco_opcode::v_addc_co_u32, Definition(new_addr1), bld.def(bld.lm),
5606 Operand(0u), addr1,
5607 carry).def(1).setHint(vcc);
5608
5609 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_addr0, new_addr1);
5610
5611 offset = 0;
5612 }
5613
5614 bool global = ctx->options->chip_class >= GFX9;
5615 aco_opcode op;
5616 switch (num_bytes) {
5617 case 4:
5618 op = global ? aco_opcode::global_store_dword : aco_opcode::flat_store_dword;
5619 break;
5620 case 8:
5621 op = global ? aco_opcode::global_store_dwordx2 : aco_opcode::flat_store_dwordx2;
5622 break;
5623 case 12:
5624 op = global ? aco_opcode::global_store_dwordx3 : aco_opcode::flat_store_dwordx3;
5625 break;
5626 case 16:
5627 op = global ? aco_opcode::global_store_dwordx4 : aco_opcode::flat_store_dwordx4;
5628 break;
5629 default:
5630 unreachable("store_global not implemented for this size.");
5631 }
5632
5633 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, 0)};
5634 flat->operands[0] = Operand(addr);
5635 flat->operands[1] = Operand(s1);
5636 flat->operands[2] = Operand(data);
5637 flat->glc = glc;
5638 flat->dlc = false;
5639 flat->offset = offset;
5640 flat->disable_wqm = true;
5641 flat->barrier = barrier_buffer;
5642 ctx->program->needs_exact = true;
5643 ctx->block->instructions.emplace_back(std::move(flat));
5644 } else {
5645 assert(ctx->options->chip_class == GFX6);
5646
5647 aco_opcode op;
5648 switch (num_bytes) {
5649 case 4:
5650 op = aco_opcode::buffer_store_dword;
5651 break;
5652 case 8:
5653 op = aco_opcode::buffer_store_dwordx2;
5654 break;
5655 case 16:
5656 op = aco_opcode::buffer_store_dwordx4;
5657 break;
5658 default:
5659 unreachable("store_global not implemented for this size.");
5660 }
5661
5662 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
5663
5664 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, 0)};
5665 mubuf->operands[0] = Operand(rsrc);
5666 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
5667 mubuf->operands[2] = Operand(0u);
5668 mubuf->operands[3] = Operand(write_data);
5669 mubuf->glc = glc;
5670 mubuf->dlc = false;
5671 mubuf->offset = offset;
5672 mubuf->addr64 = addr.type() == RegType::vgpr;
5673 mubuf->disable_wqm = true;
5674 mubuf->barrier = barrier_buffer;
5675 ctx->program->needs_exact = true;
5676 ctx->block->instructions.emplace_back(std::move(mubuf));
5677 }
5678 }
5679 }
5680
5681 void visit_global_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
5682 {
5683 /* return the previous value if dest is ever used */
5684 bool return_previous = false;
5685 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5686 return_previous = true;
5687 break;
5688 }
5689 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5690 return_previous = true;
5691 break;
5692 }
5693
5694 Builder bld(ctx->program, ctx->block);
5695 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
5696 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5697
5698 if (ctx->options->chip_class >= GFX7)
5699 addr = as_vgpr(ctx, addr);
5700
5701 if (instr->intrinsic == nir_intrinsic_global_atomic_comp_swap)
5702 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
5703 get_ssa_temp(ctx, instr->src[2].ssa), data);
5704
5705 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5706
5707 aco_opcode op32, op64;
5708
5709 if (ctx->options->chip_class >= GFX7) {
5710 bool global = ctx->options->chip_class >= GFX9;
5711 switch (instr->intrinsic) {
5712 case nir_intrinsic_global_atomic_add:
5713 op32 = global ? aco_opcode::global_atomic_add : aco_opcode::flat_atomic_add;
5714 op64 = global ? aco_opcode::global_atomic_add_x2 : aco_opcode::flat_atomic_add_x2;
5715 break;
5716 case nir_intrinsic_global_atomic_imin:
5717 op32 = global ? aco_opcode::global_atomic_smin : aco_opcode::flat_atomic_smin;
5718 op64 = global ? aco_opcode::global_atomic_smin_x2 : aco_opcode::flat_atomic_smin_x2;
5719 break;
5720 case nir_intrinsic_global_atomic_umin:
5721 op32 = global ? aco_opcode::global_atomic_umin : aco_opcode::flat_atomic_umin;
5722 op64 = global ? aco_opcode::global_atomic_umin_x2 : aco_opcode::flat_atomic_umin_x2;
5723 break;
5724 case nir_intrinsic_global_atomic_imax:
5725 op32 = global ? aco_opcode::global_atomic_smax : aco_opcode::flat_atomic_smax;
5726 op64 = global ? aco_opcode::global_atomic_smax_x2 : aco_opcode::flat_atomic_smax_x2;
5727 break;
5728 case nir_intrinsic_global_atomic_umax:
5729 op32 = global ? aco_opcode::global_atomic_umax : aco_opcode::flat_atomic_umax;
5730 op64 = global ? aco_opcode::global_atomic_umax_x2 : aco_opcode::flat_atomic_umax_x2;
5731 break;
5732 case nir_intrinsic_global_atomic_and:
5733 op32 = global ? aco_opcode::global_atomic_and : aco_opcode::flat_atomic_and;
5734 op64 = global ? aco_opcode::global_atomic_and_x2 : aco_opcode::flat_atomic_and_x2;
5735 break;
5736 case nir_intrinsic_global_atomic_or:
5737 op32 = global ? aco_opcode::global_atomic_or : aco_opcode::flat_atomic_or;
5738 op64 = global ? aco_opcode::global_atomic_or_x2 : aco_opcode::flat_atomic_or_x2;
5739 break;
5740 case nir_intrinsic_global_atomic_xor:
5741 op32 = global ? aco_opcode::global_atomic_xor : aco_opcode::flat_atomic_xor;
5742 op64 = global ? aco_opcode::global_atomic_xor_x2 : aco_opcode::flat_atomic_xor_x2;
5743 break;
5744 case nir_intrinsic_global_atomic_exchange:
5745 op32 = global ? aco_opcode::global_atomic_swap : aco_opcode::flat_atomic_swap;
5746 op64 = global ? aco_opcode::global_atomic_swap_x2 : aco_opcode::flat_atomic_swap_x2;
5747 break;
5748 case nir_intrinsic_global_atomic_comp_swap:
5749 op32 = global ? aco_opcode::global_atomic_cmpswap : aco_opcode::flat_atomic_cmpswap;
5750 op64 = global ? aco_opcode::global_atomic_cmpswap_x2 : aco_opcode::flat_atomic_cmpswap_x2;
5751 break;
5752 default:
5753 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
5754 }
5755
5756 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
5757 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, return_previous ? 1 : 0)};
5758 flat->operands[0] = Operand(addr);
5759 flat->operands[1] = Operand(s1);
5760 flat->operands[2] = Operand(data);
5761 if (return_previous)
5762 flat->definitions[0] = Definition(dst);
5763 flat->glc = return_previous;
5764 flat->dlc = false; /* Not needed for atomics */
5765 flat->offset = 0;
5766 flat->disable_wqm = true;
5767 flat->barrier = barrier_buffer;
5768 ctx->program->needs_exact = true;
5769 ctx->block->instructions.emplace_back(std::move(flat));
5770 } else {
5771 assert(ctx->options->chip_class == GFX6);
5772
5773 switch (instr->intrinsic) {
5774 case nir_intrinsic_global_atomic_add:
5775 op32 = aco_opcode::buffer_atomic_add;
5776 op64 = aco_opcode::buffer_atomic_add_x2;
5777 break;
5778 case nir_intrinsic_global_atomic_imin:
5779 op32 = aco_opcode::buffer_atomic_smin;
5780 op64 = aco_opcode::buffer_atomic_smin_x2;
5781 break;
5782 case nir_intrinsic_global_atomic_umin:
5783 op32 = aco_opcode::buffer_atomic_umin;
5784 op64 = aco_opcode::buffer_atomic_umin_x2;
5785 break;
5786 case nir_intrinsic_global_atomic_imax:
5787 op32 = aco_opcode::buffer_atomic_smax;
5788 op64 = aco_opcode::buffer_atomic_smax_x2;
5789 break;
5790 case nir_intrinsic_global_atomic_umax:
5791 op32 = aco_opcode::buffer_atomic_umax;
5792 op64 = aco_opcode::buffer_atomic_umax_x2;
5793 break;
5794 case nir_intrinsic_global_atomic_and:
5795 op32 = aco_opcode::buffer_atomic_and;
5796 op64 = aco_opcode::buffer_atomic_and_x2;
5797 break;
5798 case nir_intrinsic_global_atomic_or:
5799 op32 = aco_opcode::buffer_atomic_or;
5800 op64 = aco_opcode::buffer_atomic_or_x2;
5801 break;
5802 case nir_intrinsic_global_atomic_xor:
5803 op32 = aco_opcode::buffer_atomic_xor;
5804 op64 = aco_opcode::buffer_atomic_xor_x2;
5805 break;
5806 case nir_intrinsic_global_atomic_exchange:
5807 op32 = aco_opcode::buffer_atomic_swap;
5808 op64 = aco_opcode::buffer_atomic_swap_x2;
5809 break;
5810 case nir_intrinsic_global_atomic_comp_swap:
5811 op32 = aco_opcode::buffer_atomic_cmpswap;
5812 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
5813 break;
5814 default:
5815 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
5816 }
5817
5818 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
5819
5820 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
5821
5822 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
5823 mubuf->operands[0] = Operand(rsrc);
5824 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
5825 mubuf->operands[2] = Operand(0u);
5826 mubuf->operands[3] = Operand(data);
5827 if (return_previous)
5828 mubuf->definitions[0] = Definition(dst);
5829 mubuf->glc = return_previous;
5830 mubuf->dlc = false;
5831 mubuf->offset = 0;
5832 mubuf->addr64 = addr.type() == RegType::vgpr;
5833 mubuf->disable_wqm = true;
5834 mubuf->barrier = barrier_buffer;
5835 ctx->program->needs_exact = true;
5836 ctx->block->instructions.emplace_back(std::move(mubuf));
5837 }
5838 }
5839
5840 void emit_memory_barrier(isel_context *ctx, nir_intrinsic_instr *instr) {
5841 Builder bld(ctx->program, ctx->block);
5842 switch(instr->intrinsic) {
5843 case nir_intrinsic_group_memory_barrier:
5844 case nir_intrinsic_memory_barrier:
5845 bld.barrier(aco_opcode::p_memory_barrier_common);
5846 break;
5847 case nir_intrinsic_memory_barrier_buffer:
5848 bld.barrier(aco_opcode::p_memory_barrier_buffer);
5849 break;
5850 case nir_intrinsic_memory_barrier_image:
5851 bld.barrier(aco_opcode::p_memory_barrier_image);
5852 break;
5853 case nir_intrinsic_memory_barrier_tcs_patch:
5854 case nir_intrinsic_memory_barrier_shared:
5855 bld.barrier(aco_opcode::p_memory_barrier_shared);
5856 break;
5857 default:
5858 unreachable("Unimplemented memory barrier intrinsic");
5859 break;
5860 }
5861 }
5862
5863 void visit_load_shared(isel_context *ctx, nir_intrinsic_instr *instr)
5864 {
5865 // TODO: implement sparse reads using ds_read2_b32 and nir_ssa_def_components_read()
5866 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5867 assert(instr->dest.ssa.bit_size >= 32 && "Bitsize not supported in load_shared.");
5868 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5869 Builder bld(ctx->program, ctx->block);
5870
5871 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
5872 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
5873 load_lds(ctx, elem_size_bytes, dst, address, nir_intrinsic_base(instr), align);
5874 }
5875
5876 void visit_store_shared(isel_context *ctx, nir_intrinsic_instr *instr)
5877 {
5878 unsigned writemask = nir_intrinsic_write_mask(instr);
5879 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
5880 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5881 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
5882 assert(elem_size_bytes >= 4 && "Only 32bit & 64bit store_shared currently supported.");
5883
5884 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
5885 store_lds(ctx, elem_size_bytes, data, writemask, address, nir_intrinsic_base(instr), align);
5886 }
5887
5888 void visit_shared_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
5889 {
5890 unsigned offset = nir_intrinsic_base(instr);
5891 Operand m = load_lds_size_m0(ctx);
5892 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5893 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5894
5895 unsigned num_operands = 3;
5896 aco_opcode op32, op64, op32_rtn, op64_rtn;
5897 switch(instr->intrinsic) {
5898 case nir_intrinsic_shared_atomic_add:
5899 op32 = aco_opcode::ds_add_u32;
5900 op64 = aco_opcode::ds_add_u64;
5901 op32_rtn = aco_opcode::ds_add_rtn_u32;
5902 op64_rtn = aco_opcode::ds_add_rtn_u64;
5903 break;
5904 case nir_intrinsic_shared_atomic_imin:
5905 op32 = aco_opcode::ds_min_i32;
5906 op64 = aco_opcode::ds_min_i64;
5907 op32_rtn = aco_opcode::ds_min_rtn_i32;
5908 op64_rtn = aco_opcode::ds_min_rtn_i64;
5909 break;
5910 case nir_intrinsic_shared_atomic_umin:
5911 op32 = aco_opcode::ds_min_u32;
5912 op64 = aco_opcode::ds_min_u64;
5913 op32_rtn = aco_opcode::ds_min_rtn_u32;
5914 op64_rtn = aco_opcode::ds_min_rtn_u64;
5915 break;
5916 case nir_intrinsic_shared_atomic_imax:
5917 op32 = aco_opcode::ds_max_i32;
5918 op64 = aco_opcode::ds_max_i64;
5919 op32_rtn = aco_opcode::ds_max_rtn_i32;
5920 op64_rtn = aco_opcode::ds_max_rtn_i64;
5921 break;
5922 case nir_intrinsic_shared_atomic_umax:
5923 op32 = aco_opcode::ds_max_u32;
5924 op64 = aco_opcode::ds_max_u64;
5925 op32_rtn = aco_opcode::ds_max_rtn_u32;
5926 op64_rtn = aco_opcode::ds_max_rtn_u64;
5927 break;
5928 case nir_intrinsic_shared_atomic_and:
5929 op32 = aco_opcode::ds_and_b32;
5930 op64 = aco_opcode::ds_and_b64;
5931 op32_rtn = aco_opcode::ds_and_rtn_b32;
5932 op64_rtn = aco_opcode::ds_and_rtn_b64;
5933 break;
5934 case nir_intrinsic_shared_atomic_or:
5935 op32 = aco_opcode::ds_or_b32;
5936 op64 = aco_opcode::ds_or_b64;
5937 op32_rtn = aco_opcode::ds_or_rtn_b32;
5938 op64_rtn = aco_opcode::ds_or_rtn_b64;
5939 break;
5940 case nir_intrinsic_shared_atomic_xor:
5941 op32 = aco_opcode::ds_xor_b32;
5942 op64 = aco_opcode::ds_xor_b64;
5943 op32_rtn = aco_opcode::ds_xor_rtn_b32;
5944 op64_rtn = aco_opcode::ds_xor_rtn_b64;
5945 break;
5946 case nir_intrinsic_shared_atomic_exchange:
5947 op32 = aco_opcode::ds_write_b32;
5948 op64 = aco_opcode::ds_write_b64;
5949 op32_rtn = aco_opcode::ds_wrxchg_rtn_b32;
5950 op64_rtn = aco_opcode::ds_wrxchg2_rtn_b64;
5951 break;
5952 case nir_intrinsic_shared_atomic_comp_swap:
5953 op32 = aco_opcode::ds_cmpst_b32;
5954 op64 = aco_opcode::ds_cmpst_b64;
5955 op32_rtn = aco_opcode::ds_cmpst_rtn_b32;
5956 op64_rtn = aco_opcode::ds_cmpst_rtn_b64;
5957 num_operands = 4;
5958 break;
5959 default:
5960 unreachable("Unhandled shared atomic intrinsic");
5961 }
5962
5963 /* return the previous value if dest is ever used */
5964 bool return_previous = false;
5965 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5966 return_previous = true;
5967 break;
5968 }
5969 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5970 return_previous = true;
5971 break;
5972 }
5973
5974 aco_opcode op;
5975 if (data.size() == 1) {
5976 assert(instr->dest.ssa.bit_size == 32);
5977 op = return_previous ? op32_rtn : op32;
5978 } else {
5979 assert(instr->dest.ssa.bit_size == 64);
5980 op = return_previous ? op64_rtn : op64;
5981 }
5982
5983 if (offset > 65535) {
5984 Builder bld(ctx->program, ctx->block);
5985 address = bld.vadd32(bld.def(v1), Operand(offset), address);
5986 offset = 0;
5987 }
5988
5989 aco_ptr<DS_instruction> ds;
5990 ds.reset(create_instruction<DS_instruction>(op, Format::DS, num_operands, return_previous ? 1 : 0));
5991 ds->operands[0] = Operand(address);
5992 ds->operands[1] = Operand(data);
5993 if (num_operands == 4)
5994 ds->operands[2] = Operand(get_ssa_temp(ctx, instr->src[2].ssa));
5995 ds->operands[num_operands - 1] = m;
5996 ds->offset0 = offset;
5997 if (return_previous)
5998 ds->definitions[0] = Definition(get_ssa_temp(ctx, &instr->dest.ssa));
5999 ctx->block->instructions.emplace_back(std::move(ds));
6000 }
6001
6002 Temp get_scratch_resource(isel_context *ctx)
6003 {
6004 Builder bld(ctx->program, ctx->block);
6005 Temp scratch_addr = ctx->program->private_segment_buffer;
6006 if (ctx->stage != compute_cs)
6007 scratch_addr = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), scratch_addr, Operand(0u));
6008
6009 uint32_t rsrc_conf = S_008F0C_ADD_TID_ENABLE(1) |
6010 S_008F0C_INDEX_STRIDE(ctx->program->wave_size == 64 ? 3 : 2);;
6011
6012 if (ctx->program->chip_class >= GFX10) {
6013 rsrc_conf |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
6014 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
6015 S_008F0C_RESOURCE_LEVEL(1);
6016 } else if (ctx->program->chip_class <= GFX7) { /* dfmt modifies stride on GFX8/GFX9 when ADD_TID_EN=1 */
6017 rsrc_conf |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
6018 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
6019 }
6020
6021 /* older generations need element size = 16 bytes. element size removed in GFX9 */
6022 if (ctx->program->chip_class <= GFX8)
6023 rsrc_conf |= S_008F0C_ELEMENT_SIZE(3);
6024
6025 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), scratch_addr, Operand(-1u), Operand(rsrc_conf));
6026 }
6027
6028 void visit_load_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
6029 assert(instr->dest.ssa.bit_size == 32 || instr->dest.ssa.bit_size == 64);
6030 Builder bld(ctx->program, ctx->block);
6031 Temp rsrc = get_scratch_resource(ctx);
6032 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6033 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6034
6035 aco_opcode op;
6036 switch (dst.size()) {
6037 case 1:
6038 op = aco_opcode::buffer_load_dword;
6039 break;
6040 case 2:
6041 op = aco_opcode::buffer_load_dwordx2;
6042 break;
6043 case 3:
6044 op = aco_opcode::buffer_load_dwordx3;
6045 break;
6046 case 4:
6047 op = aco_opcode::buffer_load_dwordx4;
6048 break;
6049 case 6:
6050 case 8: {
6051 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
6052 Temp lower = bld.mubuf(aco_opcode::buffer_load_dwordx4,
6053 bld.def(v4), rsrc, offset,
6054 ctx->program->scratch_offset, 0, true);
6055 Temp upper = bld.mubuf(dst.size() == 6 ? aco_opcode::buffer_load_dwordx2 :
6056 aco_opcode::buffer_load_dwordx4,
6057 dst.size() == 6 ? bld.def(v2) : bld.def(v4),
6058 rsrc, offset, ctx->program->scratch_offset, 16, true);
6059 emit_split_vector(ctx, lower, 2);
6060 elems[0] = emit_extract_vector(ctx, lower, 0, v2);
6061 elems[1] = emit_extract_vector(ctx, lower, 1, v2);
6062 if (dst.size() == 8) {
6063 emit_split_vector(ctx, upper, 2);
6064 elems[2] = emit_extract_vector(ctx, upper, 0, v2);
6065 elems[3] = emit_extract_vector(ctx, upper, 1, v2);
6066 } else {
6067 elems[2] = upper;
6068 }
6069
6070 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
6071 Format::PSEUDO, dst.size() / 2, 1)};
6072 for (unsigned i = 0; i < dst.size() / 2; i++)
6073 vec->operands[i] = Operand(elems[i]);
6074 vec->definitions[0] = Definition(dst);
6075 bld.insert(std::move(vec));
6076 ctx->allocated_vec.emplace(dst.id(), elems);
6077 return;
6078 }
6079 default:
6080 unreachable("Wrong dst size for nir_intrinsic_load_scratch");
6081 }
6082
6083 bld.mubuf(op, Definition(dst), rsrc, offset, ctx->program->scratch_offset, 0, true);
6084 emit_split_vector(ctx, dst, instr->num_components);
6085 }
6086
6087 void visit_store_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
6088 assert(instr->src[0].ssa->bit_size == 32 || instr->src[0].ssa->bit_size == 64);
6089 Builder bld(ctx->program, ctx->block);
6090 Temp rsrc = get_scratch_resource(ctx);
6091 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6092 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6093
6094 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6095 unsigned writemask = nir_intrinsic_write_mask(instr);
6096
6097 while (writemask) {
6098 int start, count;
6099 u_bit_scan_consecutive_range(&writemask, &start, &count);
6100 int num_bytes = count * elem_size_bytes;
6101
6102 if (num_bytes > 16) {
6103 assert(elem_size_bytes == 8);
6104 writemask |= (((count - 2) << 1) - 1) << (start + 2);
6105 count = 2;
6106 num_bytes = 16;
6107 }
6108
6109 // TODO: check alignment of sub-dword stores
6110 // TODO: split 3 bytes. there is no store instruction for that
6111
6112 Temp write_data;
6113 if (count != instr->num_components) {
6114 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
6115 for (int i = 0; i < count; i++) {
6116 Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(RegType::vgpr, elem_size_bytes / 4));
6117 vec->operands[i] = Operand(elem);
6118 }
6119 write_data = bld.tmp(RegClass(RegType::vgpr, count * elem_size_bytes / 4));
6120 vec->definitions[0] = Definition(write_data);
6121 ctx->block->instructions.emplace_back(std::move(vec));
6122 } else {
6123 write_data = data;
6124 }
6125
6126 aco_opcode op;
6127 switch (num_bytes) {
6128 case 4:
6129 op = aco_opcode::buffer_store_dword;
6130 break;
6131 case 8:
6132 op = aco_opcode::buffer_store_dwordx2;
6133 break;
6134 case 12:
6135 op = aco_opcode::buffer_store_dwordx3;
6136 break;
6137 case 16:
6138 op = aco_opcode::buffer_store_dwordx4;
6139 break;
6140 default:
6141 unreachable("Invalid data size for nir_intrinsic_store_scratch.");
6142 }
6143
6144 bld.mubuf(op, rsrc, offset, ctx->program->scratch_offset, write_data, start * elem_size_bytes, true);
6145 }
6146 }
6147
6148 void visit_load_sample_mask_in(isel_context *ctx, nir_intrinsic_instr *instr) {
6149 uint8_t log2_ps_iter_samples;
6150 if (ctx->program->info->ps.force_persample) {
6151 log2_ps_iter_samples =
6152 util_logbase2(ctx->options->key.fs.num_samples);
6153 } else {
6154 log2_ps_iter_samples = ctx->options->key.fs.log2_ps_iter_samples;
6155 }
6156
6157 /* The bit pattern matches that used by fixed function fragment
6158 * processing. */
6159 static const unsigned ps_iter_masks[] = {
6160 0xffff, /* not used */
6161 0x5555,
6162 0x1111,
6163 0x0101,
6164 0x0001,
6165 };
6166 assert(log2_ps_iter_samples < ARRAY_SIZE(ps_iter_masks));
6167
6168 Builder bld(ctx->program, ctx->block);
6169
6170 Temp sample_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
6171 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
6172 Temp ps_iter_mask = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(ps_iter_masks[log2_ps_iter_samples]));
6173 Temp mask = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), sample_id, ps_iter_mask);
6174 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6175 bld.vop2(aco_opcode::v_and_b32, Definition(dst), mask, get_arg(ctx, ctx->args->ac.sample_coverage));
6176 }
6177
6178 void visit_emit_vertex_with_counter(isel_context *ctx, nir_intrinsic_instr *instr) {
6179 Builder bld(ctx->program, ctx->block);
6180
6181 unsigned stream = nir_intrinsic_stream_id(instr);
6182 Temp next_vertex = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6183 next_vertex = bld.v_mul_imm(bld.def(v1), next_vertex, 4u);
6184 nir_const_value *next_vertex_cv = nir_src_as_const_value(instr->src[0]);
6185
6186 /* get GSVS ring */
6187 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_GSVS_GS * 16u));
6188
6189 unsigned num_components =
6190 ctx->program->info->gs.num_stream_output_components[stream];
6191 assert(num_components);
6192
6193 unsigned stride = 4u * num_components * ctx->shader->info.gs.vertices_out;
6194 unsigned stream_offset = 0;
6195 for (unsigned i = 0; i < stream; i++) {
6196 unsigned prev_stride = 4u * ctx->program->info->gs.num_stream_output_components[i] * ctx->shader->info.gs.vertices_out;
6197 stream_offset += prev_stride * ctx->program->wave_size;
6198 }
6199
6200 /* Limit on the stride field for <= GFX7. */
6201 assert(stride < (1 << 14));
6202
6203 Temp gsvs_dwords[4];
6204 for (unsigned i = 0; i < 4; i++)
6205 gsvs_dwords[i] = bld.tmp(s1);
6206 bld.pseudo(aco_opcode::p_split_vector,
6207 Definition(gsvs_dwords[0]),
6208 Definition(gsvs_dwords[1]),
6209 Definition(gsvs_dwords[2]),
6210 Definition(gsvs_dwords[3]),
6211 gsvs_ring);
6212
6213 if (stream_offset) {
6214 Temp stream_offset_tmp = bld.copy(bld.def(s1), Operand(stream_offset));
6215
6216 Temp carry = bld.tmp(s1);
6217 gsvs_dwords[0] = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), gsvs_dwords[0], stream_offset_tmp);
6218 gsvs_dwords[1] = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(0u), bld.scc(carry));
6219 }
6220
6221 gsvs_dwords[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(S_008F04_STRIDE(stride)));
6222 gsvs_dwords[2] = bld.copy(bld.def(s1), Operand((uint32_t)ctx->program->wave_size));
6223
6224 gsvs_ring = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
6225 gsvs_dwords[0], gsvs_dwords[1], gsvs_dwords[2], gsvs_dwords[3]);
6226
6227 unsigned offset = 0;
6228 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; i++) {
6229 if (ctx->program->info->gs.output_streams[i] != stream)
6230 continue;
6231
6232 for (unsigned j = 0; j < 4; j++) {
6233 if (!(ctx->program->info->gs.output_usage_mask[i] & (1 << j)))
6234 continue;
6235
6236 if (ctx->outputs.mask[i] & (1 << j)) {
6237 Operand vaddr_offset = next_vertex_cv ? Operand(v1) : Operand(next_vertex);
6238 unsigned const_offset = (offset + (next_vertex_cv ? next_vertex_cv->u32 : 0u)) * 4u;
6239 if (const_offset >= 4096u) {
6240 if (vaddr_offset.isUndefined())
6241 vaddr_offset = bld.copy(bld.def(v1), Operand(const_offset / 4096u * 4096u));
6242 else
6243 vaddr_offset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), vaddr_offset);
6244 const_offset %= 4096u;
6245 }
6246
6247 aco_ptr<MTBUF_instruction> mtbuf{create_instruction<MTBUF_instruction>(aco_opcode::tbuffer_store_format_x, Format::MTBUF, 4, 0)};
6248 mtbuf->operands[0] = Operand(gsvs_ring);
6249 mtbuf->operands[1] = vaddr_offset;
6250 mtbuf->operands[2] = Operand(get_arg(ctx, ctx->args->gs2vs_offset));
6251 mtbuf->operands[3] = Operand(ctx->outputs.outputs[i][j]);
6252 mtbuf->offen = !vaddr_offset.isUndefined();
6253 mtbuf->dfmt = V_008F0C_BUF_DATA_FORMAT_32;
6254 mtbuf->nfmt = V_008F0C_BUF_NUM_FORMAT_UINT;
6255 mtbuf->offset = const_offset;
6256 mtbuf->glc = true;
6257 mtbuf->slc = true;
6258 mtbuf->barrier = barrier_gs_data;
6259 mtbuf->can_reorder = true;
6260 bld.insert(std::move(mtbuf));
6261 }
6262
6263 offset += ctx->shader->info.gs.vertices_out;
6264 }
6265
6266 /* outputs for the next vertex are undefined and keeping them around can
6267 * create invalid IR with control flow */
6268 ctx->outputs.mask[i] = 0;
6269 }
6270
6271 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(false, true, stream));
6272 }
6273
6274 Temp emit_boolean_reduce(isel_context *ctx, nir_op op, unsigned cluster_size, Temp src)
6275 {
6276 Builder bld(ctx->program, ctx->block);
6277
6278 if (cluster_size == 1) {
6279 return src;
6280 } if (op == nir_op_iand && cluster_size == 4) {
6281 //subgroupClusteredAnd(val, 4) -> ~wqm(exec & ~val)
6282 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
6283 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc),
6284 bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc), tmp));
6285 } else if (op == nir_op_ior && cluster_size == 4) {
6286 //subgroupClusteredOr(val, 4) -> wqm(val & exec)
6287 return bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc),
6288 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)));
6289 } else if (op == nir_op_iand && cluster_size == ctx->program->wave_size) {
6290 //subgroupAnd(val) -> (exec & ~val) == 0
6291 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
6292 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
6293 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), cond);
6294 } else if (op == nir_op_ior && cluster_size == ctx->program->wave_size) {
6295 //subgroupOr(val) -> (val & exec) != 0
6296 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)).def(1).getTemp();
6297 return bool_to_vector_condition(ctx, tmp);
6298 } else if (op == nir_op_ixor && cluster_size == ctx->program->wave_size) {
6299 //subgroupXor(val) -> s_bcnt1_i32_b64(val & exec) & 1
6300 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
6301 tmp = bld.sop1(Builder::s_bcnt1_i32, bld.def(s1), bld.def(s1, scc), tmp);
6302 tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), tmp, Operand(1u)).def(1).getTemp();
6303 return bool_to_vector_condition(ctx, tmp);
6304 } else {
6305 //subgroupClustered{And,Or,Xor}(val, n) ->
6306 //lane_id = v_mbcnt_hi_u32_b32(-1, v_mbcnt_lo_u32_b32(-1, 0)) ; just v_mbcnt_lo_u32_b32 on wave32
6307 //cluster_offset = ~(n - 1) & lane_id
6308 //cluster_mask = ((1 << n) - 1)
6309 //subgroupClusteredAnd():
6310 // return ((val | ~exec) >> cluster_offset) & cluster_mask == cluster_mask
6311 //subgroupClusteredOr():
6312 // return ((val & exec) >> cluster_offset) & cluster_mask != 0
6313 //subgroupClusteredXor():
6314 // return v_bnt_u32_b32(((val & exec) >> cluster_offset) & cluster_mask, 0) & 1 != 0
6315 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
6316 Temp cluster_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(~uint32_t(cluster_size - 1)), lane_id);
6317
6318 Temp tmp;
6319 if (op == nir_op_iand)
6320 tmp = bld.sop2(Builder::s_orn2, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
6321 else
6322 tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
6323
6324 uint32_t cluster_mask = cluster_size == 32 ? -1 : (1u << cluster_size) - 1u;
6325
6326 if (ctx->program->chip_class <= GFX7)
6327 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), tmp, cluster_offset);
6328 else if (ctx->program->wave_size == 64)
6329 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), cluster_offset, tmp);
6330 else
6331 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), cluster_offset, tmp);
6332 tmp = emit_extract_vector(ctx, tmp, 0, v1);
6333 if (cluster_mask != 0xffffffff)
6334 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(cluster_mask), tmp);
6335
6336 Definition cmp_def = Definition();
6337 if (op == nir_op_iand) {
6338 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(cluster_mask), tmp).def(0);
6339 } else if (op == nir_op_ior) {
6340 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
6341 } else if (op == nir_op_ixor) {
6342 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u),
6343 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1), tmp, Operand(0u)));
6344 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
6345 }
6346 cmp_def.setHint(vcc);
6347 return cmp_def.getTemp();
6348 }
6349 }
6350
6351 Temp emit_boolean_exclusive_scan(isel_context *ctx, nir_op op, Temp src)
6352 {
6353 Builder bld(ctx->program, ctx->block);
6354
6355 //subgroupExclusiveAnd(val) -> mbcnt(exec & ~val) == 0
6356 //subgroupExclusiveOr(val) -> mbcnt(val & exec) != 0
6357 //subgroupExclusiveXor(val) -> mbcnt(val & exec) & 1 != 0
6358 Temp tmp;
6359 if (op == nir_op_iand)
6360 tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
6361 else
6362 tmp = bld.sop2(Builder::s_and, bld.def(s2), bld.def(s1, scc), src, Operand(exec, bld.lm));
6363
6364 Builder::Result lohi = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), bld.def(s1), tmp);
6365 Temp lo = lohi.def(0).getTemp();
6366 Temp hi = lohi.def(1).getTemp();
6367 Temp mbcnt = emit_mbcnt(ctx, bld.def(v1), Operand(lo), Operand(hi));
6368
6369 Definition cmp_def = Definition();
6370 if (op == nir_op_iand)
6371 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
6372 else if (op == nir_op_ior)
6373 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
6374 else if (op == nir_op_ixor)
6375 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u),
6376 bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), mbcnt)).def(0);
6377 cmp_def.setHint(vcc);
6378 return cmp_def.getTemp();
6379 }
6380
6381 Temp emit_boolean_inclusive_scan(isel_context *ctx, nir_op op, Temp src)
6382 {
6383 Builder bld(ctx->program, ctx->block);
6384
6385 //subgroupInclusiveAnd(val) -> subgroupExclusiveAnd(val) && val
6386 //subgroupInclusiveOr(val) -> subgroupExclusiveOr(val) || val
6387 //subgroupInclusiveXor(val) -> subgroupExclusiveXor(val) ^^ val
6388 Temp tmp = emit_boolean_exclusive_scan(ctx, op, src);
6389 if (op == nir_op_iand)
6390 return bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
6391 else if (op == nir_op_ior)
6392 return bld.sop2(Builder::s_or, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
6393 else if (op == nir_op_ixor)
6394 return bld.sop2(Builder::s_xor, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
6395
6396 assert(false);
6397 return Temp();
6398 }
6399
6400 void emit_uniform_subgroup(isel_context *ctx, nir_intrinsic_instr *instr, Temp src)
6401 {
6402 Builder bld(ctx->program, ctx->block);
6403 Definition dst(get_ssa_temp(ctx, &instr->dest.ssa));
6404 if (src.regClass().type() == RegType::vgpr) {
6405 bld.pseudo(aco_opcode::p_as_uniform, dst, src);
6406 } else if (src.regClass() == s1) {
6407 bld.sop1(aco_opcode::s_mov_b32, dst, src);
6408 } else if (src.regClass() == s2) {
6409 bld.sop1(aco_opcode::s_mov_b64, dst, src);
6410 } else {
6411 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6412 nir_print_instr(&instr->instr, stderr);
6413 fprintf(stderr, "\n");
6414 }
6415 }
6416
6417 void emit_interp_center(isel_context *ctx, Temp dst, Temp pos1, Temp pos2)
6418 {
6419 Builder bld(ctx->program, ctx->block);
6420 Temp persp_center = get_arg(ctx, ctx->args->ac.persp_center);
6421 Temp p1 = emit_extract_vector(ctx, persp_center, 0, v1);
6422 Temp p2 = emit_extract_vector(ctx, persp_center, 1, v1);
6423
6424 Temp ddx_1, ddx_2, ddy_1, ddy_2;
6425 uint32_t dpp_ctrl0 = dpp_quad_perm(0, 0, 0, 0);
6426 uint32_t dpp_ctrl1 = dpp_quad_perm(1, 1, 1, 1);
6427 uint32_t dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
6428
6429 /* Build DD X/Y */
6430 if (ctx->program->chip_class >= GFX8) {
6431 Temp tl_1 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p1, dpp_ctrl0);
6432 ddx_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl1);
6433 ddy_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl2);
6434 Temp tl_2 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p2, dpp_ctrl0);
6435 ddx_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl1);
6436 ddy_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl2);
6437 } else {
6438 Temp tl_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl0);
6439 ddx_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl1);
6440 ddx_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_1, tl_1);
6441 ddx_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl2);
6442 ddx_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_2, tl_1);
6443 Temp tl_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl0);
6444 ddy_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl1);
6445 ddy_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_1, tl_2);
6446 ddy_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl2);
6447 ddy_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_2, tl_2);
6448 }
6449
6450 /* res_k = p_k + ddx_k * pos1 + ddy_k * pos2 */
6451 Temp tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_1, pos1, p1);
6452 Temp tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_2, pos1, p2);
6453 tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_1, pos2, tmp1);
6454 tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_2, pos2, tmp2);
6455 Temp wqm1 = bld.tmp(v1);
6456 emit_wqm(ctx, tmp1, wqm1, true);
6457 Temp wqm2 = bld.tmp(v1);
6458 emit_wqm(ctx, tmp2, wqm2, true);
6459 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), wqm1, wqm2);
6460 return;
6461 }
6462
6463 void visit_intrinsic(isel_context *ctx, nir_intrinsic_instr *instr)
6464 {
6465 Builder bld(ctx->program, ctx->block);
6466 switch(instr->intrinsic) {
6467 case nir_intrinsic_load_barycentric_sample:
6468 case nir_intrinsic_load_barycentric_pixel:
6469 case nir_intrinsic_load_barycentric_centroid: {
6470 glsl_interp_mode mode = (glsl_interp_mode)nir_intrinsic_interp_mode(instr);
6471 Temp bary = Temp(0, s2);
6472 switch (mode) {
6473 case INTERP_MODE_SMOOTH:
6474 case INTERP_MODE_NONE:
6475 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
6476 bary = get_arg(ctx, ctx->args->ac.persp_center);
6477 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
6478 bary = ctx->persp_centroid;
6479 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
6480 bary = get_arg(ctx, ctx->args->ac.persp_sample);
6481 break;
6482 case INTERP_MODE_NOPERSPECTIVE:
6483 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
6484 bary = get_arg(ctx, ctx->args->ac.linear_center);
6485 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
6486 bary = ctx->linear_centroid;
6487 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
6488 bary = get_arg(ctx, ctx->args->ac.linear_sample);
6489 break;
6490 default:
6491 break;
6492 }
6493 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6494 Temp p1 = emit_extract_vector(ctx, bary, 0, v1);
6495 Temp p2 = emit_extract_vector(ctx, bary, 1, v1);
6496 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6497 Operand(p1), Operand(p2));
6498 emit_split_vector(ctx, dst, 2);
6499 break;
6500 }
6501 case nir_intrinsic_load_barycentric_model: {
6502 Temp model = get_arg(ctx, ctx->args->ac.pull_model);
6503
6504 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6505 Temp p1 = emit_extract_vector(ctx, model, 0, v1);
6506 Temp p2 = emit_extract_vector(ctx, model, 1, v1);
6507 Temp p3 = emit_extract_vector(ctx, model, 2, v1);
6508 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6509 Operand(p1), Operand(p2), Operand(p3));
6510 emit_split_vector(ctx, dst, 3);
6511 break;
6512 }
6513 case nir_intrinsic_load_barycentric_at_sample: {
6514 uint32_t sample_pos_offset = RING_PS_SAMPLE_POSITIONS * 16;
6515 switch (ctx->options->key.fs.num_samples) {
6516 case 2: sample_pos_offset += 1 << 3; break;
6517 case 4: sample_pos_offset += 3 << 3; break;
6518 case 8: sample_pos_offset += 7 << 3; break;
6519 default: break;
6520 }
6521 Temp sample_pos;
6522 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
6523 nir_const_value* const_addr = nir_src_as_const_value(instr->src[0]);
6524 Temp private_segment_buffer = ctx->program->private_segment_buffer;
6525 if (addr.type() == RegType::sgpr) {
6526 Operand offset;
6527 if (const_addr) {
6528 sample_pos_offset += const_addr->u32 << 3;
6529 offset = Operand(sample_pos_offset);
6530 } else if (ctx->options->chip_class >= GFX9) {
6531 offset = bld.sop2(aco_opcode::s_lshl3_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
6532 } else {
6533 offset = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), addr, Operand(3u));
6534 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
6535 }
6536
6537 Operand off = bld.copy(bld.def(s1), Operand(offset));
6538 sample_pos = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), private_segment_buffer, off);
6539
6540 } else if (ctx->options->chip_class >= GFX9) {
6541 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
6542 sample_pos = bld.global(aco_opcode::global_load_dwordx2, bld.def(v2), addr, private_segment_buffer, sample_pos_offset);
6543 } else if (ctx->options->chip_class >= GFX7) {
6544 /* addr += private_segment_buffer + sample_pos_offset */
6545 Temp tmp0 = bld.tmp(s1);
6546 Temp tmp1 = bld.tmp(s1);
6547 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp0), Definition(tmp1), private_segment_buffer);
6548 Definition scc_tmp = bld.def(s1, scc);
6549 tmp0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), scc_tmp, tmp0, Operand(sample_pos_offset));
6550 tmp1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), tmp1, Operand(0u), bld.scc(scc_tmp.getTemp()));
6551 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
6552 Temp pck0 = bld.tmp(v1);
6553 Temp carry = bld.vadd32(Definition(pck0), tmp0, addr, true).def(1).getTemp();
6554 tmp1 = as_vgpr(ctx, tmp1);
6555 Temp pck1 = bld.vop2_e64(aco_opcode::v_addc_co_u32, bld.def(v1), bld.hint_vcc(bld.def(bld.lm)), tmp1, Operand(0u), carry);
6556 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), pck0, pck1);
6557
6558 /* sample_pos = flat_load_dwordx2 addr */
6559 sample_pos = bld.flat(aco_opcode::flat_load_dwordx2, bld.def(v2), addr, Operand(s1));
6560 } else {
6561 assert(ctx->options->chip_class == GFX6);
6562
6563 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
6564 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
6565 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), private_segment_buffer, Operand(0u), Operand(rsrc_conf));
6566
6567 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
6568 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), addr, Operand(0u));
6569
6570 sample_pos = bld.tmp(v2);
6571
6572 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dwordx2, Format::MUBUF, 3, 1)};
6573 load->definitions[0] = Definition(sample_pos);
6574 load->operands[0] = Operand(rsrc);
6575 load->operands[1] = Operand(addr);
6576 load->operands[2] = Operand(0u);
6577 load->offset = sample_pos_offset;
6578 load->offen = 0;
6579 load->addr64 = true;
6580 load->glc = false;
6581 load->dlc = false;
6582 load->disable_wqm = false;
6583 load->barrier = barrier_none;
6584 load->can_reorder = true;
6585 ctx->block->instructions.emplace_back(std::move(load));
6586 }
6587
6588 /* sample_pos -= 0.5 */
6589 Temp pos1 = bld.tmp(RegClass(sample_pos.type(), 1));
6590 Temp pos2 = bld.tmp(RegClass(sample_pos.type(), 1));
6591 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), sample_pos);
6592 pos1 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos1, Operand(0x3f000000u));
6593 pos2 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos2, Operand(0x3f000000u));
6594
6595 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
6596 break;
6597 }
6598 case nir_intrinsic_load_barycentric_at_offset: {
6599 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
6600 RegClass rc = RegClass(offset.type(), 1);
6601 Temp pos1 = bld.tmp(rc), pos2 = bld.tmp(rc);
6602 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), offset);
6603 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
6604 break;
6605 }
6606 case nir_intrinsic_load_front_face: {
6607 bld.vopc(aco_opcode::v_cmp_lg_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6608 Operand(0u), get_arg(ctx, ctx->args->ac.front_face)).def(0).setHint(vcc);
6609 break;
6610 }
6611 case nir_intrinsic_load_view_index: {
6612 if (ctx->stage & (sw_vs | sw_gs | sw_tcs | sw_tes)) {
6613 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6614 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.view_index)));
6615 break;
6616 }
6617
6618 /* fallthrough */
6619 }
6620 case nir_intrinsic_load_layer_id: {
6621 unsigned idx = nir_intrinsic_base(instr);
6622 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6623 Operand(2u), bld.m0(get_arg(ctx, ctx->args->ac.prim_mask)), idx, 0);
6624 break;
6625 }
6626 case nir_intrinsic_load_frag_coord: {
6627 emit_load_frag_coord(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 4);
6628 break;
6629 }
6630 case nir_intrinsic_load_sample_pos: {
6631 Temp posx = get_arg(ctx, ctx->args->ac.frag_pos[0]);
6632 Temp posy = get_arg(ctx, ctx->args->ac.frag_pos[1]);
6633 bld.pseudo(aco_opcode::p_create_vector, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6634 posx.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posx) : Operand(0u),
6635 posy.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posy) : Operand(0u));
6636 break;
6637 }
6638 case nir_intrinsic_load_tess_coord:
6639 visit_load_tess_coord(ctx, instr);
6640 break;
6641 case nir_intrinsic_load_interpolated_input:
6642 visit_load_interpolated_input(ctx, instr);
6643 break;
6644 case nir_intrinsic_store_output:
6645 visit_store_output(ctx, instr);
6646 break;
6647 case nir_intrinsic_load_input:
6648 case nir_intrinsic_load_input_vertex:
6649 visit_load_input(ctx, instr);
6650 break;
6651 case nir_intrinsic_load_output:
6652 visit_load_output(ctx, instr);
6653 break;
6654 case nir_intrinsic_load_per_vertex_input:
6655 visit_load_per_vertex_input(ctx, instr);
6656 break;
6657 case nir_intrinsic_load_per_vertex_output:
6658 visit_load_per_vertex_output(ctx, instr);
6659 break;
6660 case nir_intrinsic_store_per_vertex_output:
6661 visit_store_per_vertex_output(ctx, instr);
6662 break;
6663 case nir_intrinsic_load_ubo:
6664 visit_load_ubo(ctx, instr);
6665 break;
6666 case nir_intrinsic_load_push_constant:
6667 visit_load_push_constant(ctx, instr);
6668 break;
6669 case nir_intrinsic_load_constant:
6670 visit_load_constant(ctx, instr);
6671 break;
6672 case nir_intrinsic_vulkan_resource_index:
6673 visit_load_resource(ctx, instr);
6674 break;
6675 case nir_intrinsic_discard:
6676 visit_discard(ctx, instr);
6677 break;
6678 case nir_intrinsic_discard_if:
6679 visit_discard_if(ctx, instr);
6680 break;
6681 case nir_intrinsic_load_shared:
6682 visit_load_shared(ctx, instr);
6683 break;
6684 case nir_intrinsic_store_shared:
6685 visit_store_shared(ctx, instr);
6686 break;
6687 case nir_intrinsic_shared_atomic_add:
6688 case nir_intrinsic_shared_atomic_imin:
6689 case nir_intrinsic_shared_atomic_umin:
6690 case nir_intrinsic_shared_atomic_imax:
6691 case nir_intrinsic_shared_atomic_umax:
6692 case nir_intrinsic_shared_atomic_and:
6693 case nir_intrinsic_shared_atomic_or:
6694 case nir_intrinsic_shared_atomic_xor:
6695 case nir_intrinsic_shared_atomic_exchange:
6696 case nir_intrinsic_shared_atomic_comp_swap:
6697 visit_shared_atomic(ctx, instr);
6698 break;
6699 case nir_intrinsic_image_deref_load:
6700 visit_image_load(ctx, instr);
6701 break;
6702 case nir_intrinsic_image_deref_store:
6703 visit_image_store(ctx, instr);
6704 break;
6705 case nir_intrinsic_image_deref_atomic_add:
6706 case nir_intrinsic_image_deref_atomic_umin:
6707 case nir_intrinsic_image_deref_atomic_imin:
6708 case nir_intrinsic_image_deref_atomic_umax:
6709 case nir_intrinsic_image_deref_atomic_imax:
6710 case nir_intrinsic_image_deref_atomic_and:
6711 case nir_intrinsic_image_deref_atomic_or:
6712 case nir_intrinsic_image_deref_atomic_xor:
6713 case nir_intrinsic_image_deref_atomic_exchange:
6714 case nir_intrinsic_image_deref_atomic_comp_swap:
6715 visit_image_atomic(ctx, instr);
6716 break;
6717 case nir_intrinsic_image_deref_size:
6718 visit_image_size(ctx, instr);
6719 break;
6720 case nir_intrinsic_load_ssbo:
6721 visit_load_ssbo(ctx, instr);
6722 break;
6723 case nir_intrinsic_store_ssbo:
6724 visit_store_ssbo(ctx, instr);
6725 break;
6726 case nir_intrinsic_load_global:
6727 visit_load_global(ctx, instr);
6728 break;
6729 case nir_intrinsic_store_global:
6730 visit_store_global(ctx, instr);
6731 break;
6732 case nir_intrinsic_global_atomic_add:
6733 case nir_intrinsic_global_atomic_imin:
6734 case nir_intrinsic_global_atomic_umin:
6735 case nir_intrinsic_global_atomic_imax:
6736 case nir_intrinsic_global_atomic_umax:
6737 case nir_intrinsic_global_atomic_and:
6738 case nir_intrinsic_global_atomic_or:
6739 case nir_intrinsic_global_atomic_xor:
6740 case nir_intrinsic_global_atomic_exchange:
6741 case nir_intrinsic_global_atomic_comp_swap:
6742 visit_global_atomic(ctx, instr);
6743 break;
6744 case nir_intrinsic_ssbo_atomic_add:
6745 case nir_intrinsic_ssbo_atomic_imin:
6746 case nir_intrinsic_ssbo_atomic_umin:
6747 case nir_intrinsic_ssbo_atomic_imax:
6748 case nir_intrinsic_ssbo_atomic_umax:
6749 case nir_intrinsic_ssbo_atomic_and:
6750 case nir_intrinsic_ssbo_atomic_or:
6751 case nir_intrinsic_ssbo_atomic_xor:
6752 case nir_intrinsic_ssbo_atomic_exchange:
6753 case nir_intrinsic_ssbo_atomic_comp_swap:
6754 visit_atomic_ssbo(ctx, instr);
6755 break;
6756 case nir_intrinsic_load_scratch:
6757 visit_load_scratch(ctx, instr);
6758 break;
6759 case nir_intrinsic_store_scratch:
6760 visit_store_scratch(ctx, instr);
6761 break;
6762 case nir_intrinsic_get_buffer_size:
6763 visit_get_buffer_size(ctx, instr);
6764 break;
6765 case nir_intrinsic_control_barrier: {
6766 if (ctx->program->chip_class == GFX6 && ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
6767 /* GFX6 only (thanks to a hw bug workaround):
6768 * The real barrier instruction isn’t needed, because an entire patch
6769 * always fits into a single wave.
6770 */
6771 break;
6772 }
6773
6774 if (ctx->shader->info.stage == MESA_SHADER_COMPUTE) {
6775 unsigned* bsize = ctx->program->info->cs.block_size;
6776 unsigned workgroup_size = bsize[0] * bsize[1] * bsize[2];
6777 if (workgroup_size > ctx->program->wave_size)
6778 bld.sopp(aco_opcode::s_barrier);
6779 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
6780 /* For each patch provided during rendering, n​ TCS shader invocations will be processed,
6781 * where n​ is the number of vertices in the output patch.
6782 */
6783 unsigned workgroup_size = ctx->tcs_num_patches * ctx->shader->info.tess.tcs_vertices_out;
6784 if (workgroup_size > ctx->program->wave_size)
6785 bld.sopp(aco_opcode::s_barrier);
6786 } else {
6787 /* We don't know the workgroup size, so always emit the s_barrier. */
6788 bld.sopp(aco_opcode::s_barrier);
6789 }
6790
6791 break;
6792 }
6793 case nir_intrinsic_memory_barrier_tcs_patch:
6794 case nir_intrinsic_group_memory_barrier:
6795 case nir_intrinsic_memory_barrier:
6796 case nir_intrinsic_memory_barrier_buffer:
6797 case nir_intrinsic_memory_barrier_image:
6798 case nir_intrinsic_memory_barrier_shared:
6799 emit_memory_barrier(ctx, instr);
6800 break;
6801 case nir_intrinsic_load_num_work_groups: {
6802 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6803 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.num_work_groups)));
6804 emit_split_vector(ctx, dst, 3);
6805 break;
6806 }
6807 case nir_intrinsic_load_local_invocation_id: {
6808 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6809 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.local_invocation_ids)));
6810 emit_split_vector(ctx, dst, 3);
6811 break;
6812 }
6813 case nir_intrinsic_load_work_group_id: {
6814 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6815 struct ac_arg *args = ctx->args->ac.workgroup_ids;
6816 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6817 args[0].used ? Operand(get_arg(ctx, args[0])) : Operand(0u),
6818 args[1].used ? Operand(get_arg(ctx, args[1])) : Operand(0u),
6819 args[2].used ? Operand(get_arg(ctx, args[2])) : Operand(0u));
6820 emit_split_vector(ctx, dst, 3);
6821 break;
6822 }
6823 case nir_intrinsic_load_local_invocation_index: {
6824 Temp id = emit_mbcnt(ctx, bld.def(v1));
6825
6826 /* The tg_size bits [6:11] contain the subgroup id,
6827 * we need this multiplied by the wave size, and then OR the thread id to it.
6828 */
6829 if (ctx->program->wave_size == 64) {
6830 /* After the s_and the bits are already multiplied by 64 (left shifted by 6) so we can just feed that to v_or */
6831 Temp tg_num = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfc0u),
6832 get_arg(ctx, ctx->args->ac.tg_size));
6833 bld.vop2(aco_opcode::v_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, id);
6834 } else {
6835 /* Extract the bit field and multiply the result by 32 (left shift by 5), then do the OR */
6836 Temp tg_num = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
6837 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
6838 bld.vop3(aco_opcode::v_lshl_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, Operand(0x5u), id);
6839 }
6840 break;
6841 }
6842 case nir_intrinsic_load_subgroup_id: {
6843 if (ctx->stage == compute_cs) {
6844 bld.sop2(aco_opcode::s_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc),
6845 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
6846 } else {
6847 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x0u));
6848 }
6849 break;
6850 }
6851 case nir_intrinsic_load_subgroup_invocation: {
6852 emit_mbcnt(ctx, Definition(get_ssa_temp(ctx, &instr->dest.ssa)));
6853 break;
6854 }
6855 case nir_intrinsic_load_num_subgroups: {
6856 if (ctx->stage == compute_cs)
6857 bld.sop2(aco_opcode::s_and_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc), Operand(0x3fu),
6858 get_arg(ctx, ctx->args->ac.tg_size));
6859 else
6860 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x1u));
6861 break;
6862 }
6863 case nir_intrinsic_ballot: {
6864 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6865 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6866 Definition tmp = bld.def(dst.regClass());
6867 Definition lanemask_tmp = dst.size() == bld.lm.size() ? tmp : bld.def(src.regClass());
6868 if (instr->src[0].ssa->bit_size == 1) {
6869 assert(src.regClass() == bld.lm);
6870 bld.sop2(Builder::s_and, lanemask_tmp, bld.def(s1, scc), Operand(exec, bld.lm), src);
6871 } else if (instr->src[0].ssa->bit_size == 32 && src.regClass() == v1) {
6872 bld.vopc(aco_opcode::v_cmp_lg_u32, lanemask_tmp, Operand(0u), src);
6873 } else if (instr->src[0].ssa->bit_size == 64 && src.regClass() == v2) {
6874 bld.vopc(aco_opcode::v_cmp_lg_u64, lanemask_tmp, Operand(0u), src);
6875 } else {
6876 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6877 nir_print_instr(&instr->instr, stderr);
6878 fprintf(stderr, "\n");
6879 }
6880 if (dst.size() != bld.lm.size()) {
6881 /* Wave32 with ballot size set to 64 */
6882 bld.pseudo(aco_opcode::p_create_vector, Definition(tmp), lanemask_tmp.getTemp(), Operand(0u));
6883 }
6884 emit_wqm(ctx, tmp.getTemp(), dst);
6885 break;
6886 }
6887 case nir_intrinsic_shuffle:
6888 case nir_intrinsic_read_invocation: {
6889 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6890 if (!ctx->divergent_vals[instr->src[0].ssa->index]) {
6891 emit_uniform_subgroup(ctx, instr, src);
6892 } else {
6893 Temp tid = get_ssa_temp(ctx, instr->src[1].ssa);
6894 if (instr->intrinsic == nir_intrinsic_read_invocation || !ctx->divergent_vals[instr->src[1].ssa->index])
6895 tid = bld.as_uniform(tid);
6896 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6897 if (src.regClass() == v1) {
6898 emit_wqm(ctx, emit_bpermute(ctx, bld, tid, src), dst);
6899 } else if (src.regClass() == v2) {
6900 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
6901 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
6902 lo = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, lo));
6903 hi = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, hi));
6904 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6905 emit_split_vector(ctx, dst, 2);
6906 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == s1) {
6907 assert(src.regClass() == bld.lm);
6908 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src, tid);
6909 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
6910 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == v1) {
6911 assert(src.regClass() == bld.lm);
6912 Temp tmp;
6913 if (ctx->program->chip_class <= GFX7)
6914 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), src, tid);
6915 else if (ctx->program->wave_size == 64)
6916 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), tid, src);
6917 else
6918 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), tid, src);
6919 tmp = emit_extract_vector(ctx, tmp, 0, v1);
6920 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), tmp);
6921 emit_wqm(ctx, bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp), dst);
6922 } else {
6923 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6924 nir_print_instr(&instr->instr, stderr);
6925 fprintf(stderr, "\n");
6926 }
6927 }
6928 break;
6929 }
6930 case nir_intrinsic_load_sample_id: {
6931 bld.vop3(aco_opcode::v_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6932 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
6933 break;
6934 }
6935 case nir_intrinsic_load_sample_mask_in: {
6936 visit_load_sample_mask_in(ctx, instr);
6937 break;
6938 }
6939 case nir_intrinsic_read_first_invocation: {
6940 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6941 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6942 if (src.regClass() == v1) {
6943 emit_wqm(ctx,
6944 bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), src),
6945 dst);
6946 } else if (src.regClass() == v2) {
6947 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
6948 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
6949 lo = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), lo));
6950 hi = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), hi));
6951 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6952 emit_split_vector(ctx, dst, 2);
6953 } else if (instr->dest.ssa.bit_size == 1) {
6954 assert(src.regClass() == bld.lm);
6955 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src,
6956 bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)));
6957 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
6958 } else if (src.regClass() == s1) {
6959 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
6960 } else if (src.regClass() == s2) {
6961 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
6962 } else {
6963 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6964 nir_print_instr(&instr->instr, stderr);
6965 fprintf(stderr, "\n");
6966 }
6967 break;
6968 }
6969 case nir_intrinsic_vote_all: {
6970 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6971 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6972 assert(src.regClass() == bld.lm);
6973 assert(dst.regClass() == bld.lm);
6974
6975 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
6976 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
6977 bld.sop1(Builder::s_not, Definition(dst), bld.def(s1, scc), cond);
6978 break;
6979 }
6980 case nir_intrinsic_vote_any: {
6981 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6982 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6983 assert(src.regClass() == bld.lm);
6984 assert(dst.regClass() == bld.lm);
6985
6986 Temp tmp = bool_to_scalar_condition(ctx, src);
6987 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
6988 break;
6989 }
6990 case nir_intrinsic_reduce:
6991 case nir_intrinsic_inclusive_scan:
6992 case nir_intrinsic_exclusive_scan: {
6993 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6994 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6995 nir_op op = (nir_op) nir_intrinsic_reduction_op(instr);
6996 unsigned cluster_size = instr->intrinsic == nir_intrinsic_reduce ?
6997 nir_intrinsic_cluster_size(instr) : 0;
6998 cluster_size = util_next_power_of_two(MIN2(cluster_size ? cluster_size : ctx->program->wave_size, ctx->program->wave_size));
6999
7000 if (!ctx->divergent_vals[instr->src[0].ssa->index] && (op == nir_op_ior || op == nir_op_iand)) {
7001 emit_uniform_subgroup(ctx, instr, src);
7002 } else if (instr->dest.ssa.bit_size == 1) {
7003 if (op == nir_op_imul || op == nir_op_umin || op == nir_op_imin)
7004 op = nir_op_iand;
7005 else if (op == nir_op_iadd)
7006 op = nir_op_ixor;
7007 else if (op == nir_op_umax || op == nir_op_imax)
7008 op = nir_op_ior;
7009 assert(op == nir_op_iand || op == nir_op_ior || op == nir_op_ixor);
7010
7011 switch (instr->intrinsic) {
7012 case nir_intrinsic_reduce:
7013 emit_wqm(ctx, emit_boolean_reduce(ctx, op, cluster_size, src), dst);
7014 break;
7015 case nir_intrinsic_exclusive_scan:
7016 emit_wqm(ctx, emit_boolean_exclusive_scan(ctx, op, src), dst);
7017 break;
7018 case nir_intrinsic_inclusive_scan:
7019 emit_wqm(ctx, emit_boolean_inclusive_scan(ctx, op, src), dst);
7020 break;
7021 default:
7022 assert(false);
7023 }
7024 } else if (cluster_size == 1) {
7025 bld.copy(Definition(dst), src);
7026 } else {
7027 src = as_vgpr(ctx, src);
7028
7029 ReduceOp reduce_op;
7030 switch (op) {
7031 #define CASE(name) case nir_op_##name: reduce_op = (src.regClass() == v1) ? name##32 : name##64; break;
7032 CASE(iadd)
7033 CASE(imul)
7034 CASE(fadd)
7035 CASE(fmul)
7036 CASE(imin)
7037 CASE(umin)
7038 CASE(fmin)
7039 CASE(imax)
7040 CASE(umax)
7041 CASE(fmax)
7042 CASE(iand)
7043 CASE(ior)
7044 CASE(ixor)
7045 default:
7046 unreachable("unknown reduction op");
7047 #undef CASE
7048 }
7049
7050 aco_opcode aco_op;
7051 switch (instr->intrinsic) {
7052 case nir_intrinsic_reduce: aco_op = aco_opcode::p_reduce; break;
7053 case nir_intrinsic_inclusive_scan: aco_op = aco_opcode::p_inclusive_scan; break;
7054 case nir_intrinsic_exclusive_scan: aco_op = aco_opcode::p_exclusive_scan; break;
7055 default:
7056 unreachable("unknown reduce intrinsic");
7057 }
7058
7059 aco_ptr<Pseudo_reduction_instruction> reduce{create_instruction<Pseudo_reduction_instruction>(aco_op, Format::PSEUDO_REDUCTION, 3, 5)};
7060 reduce->operands[0] = Operand(src);
7061 // filled in by aco_reduce_assign.cpp, used internally as part of the
7062 // reduce sequence
7063 assert(dst.size() == 1 || dst.size() == 2);
7064 reduce->operands[1] = Operand(RegClass(RegType::vgpr, dst.size()).as_linear());
7065 reduce->operands[2] = Operand(v1.as_linear());
7066
7067 Temp tmp_dst = bld.tmp(dst.regClass());
7068 reduce->definitions[0] = Definition(tmp_dst);
7069 reduce->definitions[1] = bld.def(ctx->program->lane_mask); // used internally
7070 reduce->definitions[2] = Definition();
7071 reduce->definitions[3] = Definition(scc, s1);
7072 reduce->definitions[4] = Definition();
7073 reduce->reduce_op = reduce_op;
7074 reduce->cluster_size = cluster_size;
7075 ctx->block->instructions.emplace_back(std::move(reduce));
7076
7077 emit_wqm(ctx, tmp_dst, dst);
7078 }
7079 break;
7080 }
7081 case nir_intrinsic_quad_broadcast: {
7082 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7083 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
7084 emit_uniform_subgroup(ctx, instr, src);
7085 } else {
7086 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7087 unsigned lane = nir_src_as_const_value(instr->src[1])->u32;
7088 uint32_t dpp_ctrl = dpp_quad_perm(lane, lane, lane, lane);
7089
7090 if (instr->dest.ssa.bit_size == 1) {
7091 assert(src.regClass() == bld.lm);
7092 assert(dst.regClass() == bld.lm);
7093 uint32_t half_mask = 0x11111111u << lane;
7094 Temp mask_tmp = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(half_mask), Operand(half_mask));
7095 Temp tmp = bld.tmp(bld.lm);
7096 bld.sop1(Builder::s_wqm, Definition(tmp),
7097 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), mask_tmp,
7098 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm))));
7099 emit_wqm(ctx, tmp, dst);
7100 } else if (instr->dest.ssa.bit_size == 32) {
7101 if (ctx->program->chip_class >= GFX8)
7102 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), dst);
7103 else
7104 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), dst);
7105 } else if (instr->dest.ssa.bit_size == 64) {
7106 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7107 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7108 if (ctx->program->chip_class >= GFX8) {
7109 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
7110 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
7111 } else {
7112 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, (1 << 15) | dpp_ctrl));
7113 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, (1 << 15) | dpp_ctrl));
7114 }
7115 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7116 emit_split_vector(ctx, dst, 2);
7117 } else {
7118 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7119 nir_print_instr(&instr->instr, stderr);
7120 fprintf(stderr, "\n");
7121 }
7122 }
7123 break;
7124 }
7125 case nir_intrinsic_quad_swap_horizontal:
7126 case nir_intrinsic_quad_swap_vertical:
7127 case nir_intrinsic_quad_swap_diagonal:
7128 case nir_intrinsic_quad_swizzle_amd: {
7129 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7130 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
7131 emit_uniform_subgroup(ctx, instr, src);
7132 break;
7133 }
7134 uint16_t dpp_ctrl = 0;
7135 switch (instr->intrinsic) {
7136 case nir_intrinsic_quad_swap_horizontal:
7137 dpp_ctrl = dpp_quad_perm(1, 0, 3, 2);
7138 break;
7139 case nir_intrinsic_quad_swap_vertical:
7140 dpp_ctrl = dpp_quad_perm(2, 3, 0, 1);
7141 break;
7142 case nir_intrinsic_quad_swap_diagonal:
7143 dpp_ctrl = dpp_quad_perm(3, 2, 1, 0);
7144 break;
7145 case nir_intrinsic_quad_swizzle_amd:
7146 dpp_ctrl = nir_intrinsic_swizzle_mask(instr);
7147 break;
7148 default:
7149 break;
7150 }
7151 if (ctx->program->chip_class < GFX8)
7152 dpp_ctrl |= (1 << 15);
7153
7154 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7155 if (instr->dest.ssa.bit_size == 1) {
7156 assert(src.regClass() == bld.lm);
7157 src = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand((uint32_t)-1), src);
7158 if (ctx->program->chip_class >= GFX8)
7159 src = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
7160 else
7161 src = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
7162 Temp tmp = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), src);
7163 emit_wqm(ctx, tmp, dst);
7164 } else if (instr->dest.ssa.bit_size == 32) {
7165 Temp tmp;
7166 if (ctx->program->chip_class >= GFX8)
7167 tmp = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
7168 else
7169 tmp = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
7170 emit_wqm(ctx, tmp, dst);
7171 } else if (instr->dest.ssa.bit_size == 64) {
7172 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7173 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7174 if (ctx->program->chip_class >= GFX8) {
7175 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
7176 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
7177 } else {
7178 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, dpp_ctrl));
7179 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, dpp_ctrl));
7180 }
7181 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7182 emit_split_vector(ctx, dst, 2);
7183 } else {
7184 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7185 nir_print_instr(&instr->instr, stderr);
7186 fprintf(stderr, "\n");
7187 }
7188 break;
7189 }
7190 case nir_intrinsic_masked_swizzle_amd: {
7191 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7192 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
7193 emit_uniform_subgroup(ctx, instr, src);
7194 break;
7195 }
7196 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7197 uint32_t mask = nir_intrinsic_swizzle_mask(instr);
7198 if (dst.regClass() == v1) {
7199 emit_wqm(ctx,
7200 bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, mask, 0, false),
7201 dst);
7202 } else if (dst.regClass() == v2) {
7203 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7204 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7205 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, mask, 0, false));
7206 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, mask, 0, false));
7207 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7208 emit_split_vector(ctx, dst, 2);
7209 } else {
7210 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7211 nir_print_instr(&instr->instr, stderr);
7212 fprintf(stderr, "\n");
7213 }
7214 break;
7215 }
7216 case nir_intrinsic_write_invocation_amd: {
7217 Temp src = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
7218 Temp val = bld.as_uniform(get_ssa_temp(ctx, instr->src[1].ssa));
7219 Temp lane = bld.as_uniform(get_ssa_temp(ctx, instr->src[2].ssa));
7220 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7221 if (dst.regClass() == v1) {
7222 /* src2 is ignored for writelane. RA assigns the same reg for dst */
7223 emit_wqm(ctx, bld.writelane(bld.def(v1), val, lane, src), dst);
7224 } else if (dst.regClass() == v2) {
7225 Temp src_lo = bld.tmp(v1), src_hi = bld.tmp(v1);
7226 Temp val_lo = bld.tmp(s1), val_hi = bld.tmp(s1);
7227 bld.pseudo(aco_opcode::p_split_vector, Definition(src_lo), Definition(src_hi), src);
7228 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
7229 Temp lo = emit_wqm(ctx, bld.writelane(bld.def(v1), val_lo, lane, src_hi));
7230 Temp hi = emit_wqm(ctx, bld.writelane(bld.def(v1), val_hi, lane, src_hi));
7231 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7232 emit_split_vector(ctx, dst, 2);
7233 } else {
7234 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7235 nir_print_instr(&instr->instr, stderr);
7236 fprintf(stderr, "\n");
7237 }
7238 break;
7239 }
7240 case nir_intrinsic_mbcnt_amd: {
7241 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7242 RegClass rc = RegClass(src.type(), 1);
7243 Temp mask_lo = bld.tmp(rc), mask_hi = bld.tmp(rc);
7244 bld.pseudo(aco_opcode::p_split_vector, Definition(mask_lo), Definition(mask_hi), src);
7245 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7246 Temp wqm_tmp = emit_mbcnt(ctx, bld.def(v1), Operand(mask_lo), Operand(mask_hi));
7247 emit_wqm(ctx, wqm_tmp, dst);
7248 break;
7249 }
7250 case nir_intrinsic_load_helper_invocation: {
7251 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7252 bld.pseudo(aco_opcode::p_load_helper, Definition(dst));
7253 ctx->block->kind |= block_kind_needs_lowering;
7254 ctx->program->needs_exact = true;
7255 break;
7256 }
7257 case nir_intrinsic_is_helper_invocation: {
7258 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7259 bld.pseudo(aco_opcode::p_is_helper, Definition(dst));
7260 ctx->block->kind |= block_kind_needs_lowering;
7261 ctx->program->needs_exact = true;
7262 break;
7263 }
7264 case nir_intrinsic_demote:
7265 bld.pseudo(aco_opcode::p_demote_to_helper, Operand(-1u));
7266
7267 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
7268 ctx->cf_info.exec_potentially_empty_discard = true;
7269 ctx->block->kind |= block_kind_uses_demote;
7270 ctx->program->needs_exact = true;
7271 break;
7272 case nir_intrinsic_demote_if: {
7273 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7274 assert(src.regClass() == bld.lm);
7275 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
7276 bld.pseudo(aco_opcode::p_demote_to_helper, cond);
7277
7278 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
7279 ctx->cf_info.exec_potentially_empty_discard = true;
7280 ctx->block->kind |= block_kind_uses_demote;
7281 ctx->program->needs_exact = true;
7282 break;
7283 }
7284 case nir_intrinsic_first_invocation: {
7285 emit_wqm(ctx, bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)),
7286 get_ssa_temp(ctx, &instr->dest.ssa));
7287 break;
7288 }
7289 case nir_intrinsic_shader_clock:
7290 bld.smem(aco_opcode::s_memtime, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), false);
7291 emit_split_vector(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 2);
7292 break;
7293 case nir_intrinsic_load_vertex_id_zero_base: {
7294 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7295 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.vertex_id));
7296 break;
7297 }
7298 case nir_intrinsic_load_first_vertex: {
7299 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7300 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.base_vertex));
7301 break;
7302 }
7303 case nir_intrinsic_load_base_instance: {
7304 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7305 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.start_instance));
7306 break;
7307 }
7308 case nir_intrinsic_load_instance_id: {
7309 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7310 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.instance_id));
7311 break;
7312 }
7313 case nir_intrinsic_load_draw_id: {
7314 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7315 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.draw_id));
7316 break;
7317 }
7318 case nir_intrinsic_load_invocation_id: {
7319 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7320
7321 if (ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
7322 if (ctx->options->chip_class >= GFX10)
7323 bld.vop2_e64(aco_opcode::v_and_b32, Definition(dst), Operand(127u), get_arg(ctx, ctx->args->ac.gs_invocation_id));
7324 else
7325 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_invocation_id));
7326 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
7327 bld.vop3(aco_opcode::v_bfe_u32, Definition(dst),
7328 get_arg(ctx, ctx->args->ac.tcs_rel_ids), Operand(8u), Operand(5u));
7329 } else {
7330 unreachable("Unsupported stage for load_invocation_id");
7331 }
7332
7333 break;
7334 }
7335 case nir_intrinsic_load_primitive_id: {
7336 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7337
7338 switch (ctx->shader->info.stage) {
7339 case MESA_SHADER_GEOMETRY:
7340 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_prim_id));
7341 break;
7342 case MESA_SHADER_TESS_CTRL:
7343 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tcs_patch_id));
7344 break;
7345 case MESA_SHADER_TESS_EVAL:
7346 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tes_patch_id));
7347 break;
7348 default:
7349 unreachable("Unimplemented shader stage for nir_intrinsic_load_primitive_id");
7350 }
7351
7352 break;
7353 }
7354 case nir_intrinsic_load_patch_vertices_in: {
7355 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL ||
7356 ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
7357
7358 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7359 bld.copy(Definition(dst), Operand(ctx->args->options->key.tcs.input_vertices));
7360 break;
7361 }
7362 case nir_intrinsic_emit_vertex_with_counter: {
7363 visit_emit_vertex_with_counter(ctx, instr);
7364 break;
7365 }
7366 case nir_intrinsic_end_primitive_with_counter: {
7367 unsigned stream = nir_intrinsic_stream_id(instr);
7368 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(true, false, stream));
7369 break;
7370 }
7371 case nir_intrinsic_set_vertex_count: {
7372 /* unused, the HW keeps track of this for us */
7373 break;
7374 }
7375 default:
7376 fprintf(stderr, "Unimplemented intrinsic instr: ");
7377 nir_print_instr(&instr->instr, stderr);
7378 fprintf(stderr, "\n");
7379 abort();
7380
7381 break;
7382 }
7383 }
7384
7385
7386 void tex_fetch_ptrs(isel_context *ctx, nir_tex_instr *instr,
7387 Temp *res_ptr, Temp *samp_ptr, Temp *fmask_ptr,
7388 enum glsl_base_type *stype)
7389 {
7390 nir_deref_instr *texture_deref_instr = NULL;
7391 nir_deref_instr *sampler_deref_instr = NULL;
7392 int plane = -1;
7393
7394 for (unsigned i = 0; i < instr->num_srcs; i++) {
7395 switch (instr->src[i].src_type) {
7396 case nir_tex_src_texture_deref:
7397 texture_deref_instr = nir_src_as_deref(instr->src[i].src);
7398 break;
7399 case nir_tex_src_sampler_deref:
7400 sampler_deref_instr = nir_src_as_deref(instr->src[i].src);
7401 break;
7402 case nir_tex_src_plane:
7403 plane = nir_src_as_int(instr->src[i].src);
7404 break;
7405 default:
7406 break;
7407 }
7408 }
7409
7410 *stype = glsl_get_sampler_result_type(texture_deref_instr->type);
7411
7412 if (!sampler_deref_instr)
7413 sampler_deref_instr = texture_deref_instr;
7414
7415 if (plane >= 0) {
7416 assert(instr->op != nir_texop_txf_ms &&
7417 instr->op != nir_texop_samples_identical);
7418 assert(instr->sampler_dim != GLSL_SAMPLER_DIM_BUF);
7419 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, (aco_descriptor_type)(ACO_DESC_PLANE_0 + plane), instr, false, false);
7420 } else if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
7421 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_BUFFER, instr, false, false);
7422 } else if (instr->op == nir_texop_fragment_mask_fetch) {
7423 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
7424 } else {
7425 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_IMAGE, instr, false, false);
7426 }
7427 if (samp_ptr) {
7428 *samp_ptr = get_sampler_desc(ctx, sampler_deref_instr, ACO_DESC_SAMPLER, instr, false, false);
7429
7430 if (instr->sampler_dim < GLSL_SAMPLER_DIM_RECT && ctx->options->chip_class < GFX8) {
7431 /* fix sampler aniso on SI/CI: samp[0] = samp[0] & img[7] */
7432 Builder bld(ctx->program, ctx->block);
7433
7434 /* to avoid unnecessary moves, we split and recombine sampler and image */
7435 Temp img[8] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1),
7436 bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
7437 Temp samp[4] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
7438 bld.pseudo(aco_opcode::p_split_vector, Definition(img[0]), Definition(img[1]),
7439 Definition(img[2]), Definition(img[3]), Definition(img[4]),
7440 Definition(img[5]), Definition(img[6]), Definition(img[7]), *res_ptr);
7441 bld.pseudo(aco_opcode::p_split_vector, Definition(samp[0]), Definition(samp[1]),
7442 Definition(samp[2]), Definition(samp[3]), *samp_ptr);
7443
7444 samp[0] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), samp[0], img[7]);
7445 *res_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
7446 img[0], img[1], img[2], img[3],
7447 img[4], img[5], img[6], img[7]);
7448 *samp_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
7449 samp[0], samp[1], samp[2], samp[3]);
7450 }
7451 }
7452 if (fmask_ptr && (instr->op == nir_texop_txf_ms ||
7453 instr->op == nir_texop_samples_identical))
7454 *fmask_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
7455 }
7456
7457 void build_cube_select(isel_context *ctx, Temp ma, Temp id, Temp deriv,
7458 Temp *out_ma, Temp *out_sc, Temp *out_tc)
7459 {
7460 Builder bld(ctx->program, ctx->block);
7461
7462 Temp deriv_x = emit_extract_vector(ctx, deriv, 0, v1);
7463 Temp deriv_y = emit_extract_vector(ctx, deriv, 1, v1);
7464 Temp deriv_z = emit_extract_vector(ctx, deriv, 2, v1);
7465
7466 Operand neg_one(0xbf800000u);
7467 Operand one(0x3f800000u);
7468 Operand two(0x40000000u);
7469 Operand four(0x40800000u);
7470
7471 Temp is_ma_positive = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), ma);
7472 Temp sgn_ma = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, one, is_ma_positive);
7473 Temp neg_sgn_ma = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0u), sgn_ma);
7474
7475 Temp is_ma_z = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), four, id);
7476 Temp is_ma_y = bld.vopc(aco_opcode::v_cmp_le_f32, bld.def(bld.lm), two, id);
7477 is_ma_y = bld.sop2(Builder::s_andn2, bld.hint_vcc(bld.def(bld.lm)), is_ma_y, is_ma_z);
7478 Temp is_not_ma_x = bld.sop2(aco_opcode::s_or_b64, bld.hint_vcc(bld.def(bld.lm)), bld.def(s1, scc), is_ma_z, is_ma_y);
7479
7480 // select sc
7481 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_z, deriv_x, is_not_ma_x);
7482 Temp sgn = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1),
7483 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_sgn_ma, sgn_ma, is_ma_z),
7484 one, is_ma_y);
7485 *out_sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
7486
7487 // select tc
7488 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_y, deriv_z, is_ma_y);
7489 sgn = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, sgn_ma, is_ma_y);
7490 *out_tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
7491
7492 // select ma
7493 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
7494 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_x, deriv_y, is_ma_y),
7495 deriv_z, is_ma_z);
7496 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffffu), tmp);
7497 *out_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), two, tmp);
7498 }
7499
7500 void prepare_cube_coords(isel_context *ctx, std::vector<Temp>& coords, Temp* ddx, Temp* ddy, bool is_deriv, bool is_array)
7501 {
7502 Builder bld(ctx->program, ctx->block);
7503 Temp ma, tc, sc, id;
7504
7505 if (is_array) {
7506 coords[3] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[3]);
7507
7508 // see comment in ac_prepare_cube_coords()
7509 if (ctx->options->chip_class <= GFX8)
7510 coords[3] = bld.vop2(aco_opcode::v_max_f32, bld.def(v1), Operand(0u), coords[3]);
7511 }
7512
7513 ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), coords[0], coords[1], coords[2]);
7514
7515 aco_ptr<VOP3A_instruction> vop3a{create_instruction<VOP3A_instruction>(aco_opcode::v_rcp_f32, asVOP3(Format::VOP1), 1, 1)};
7516 vop3a->operands[0] = Operand(ma);
7517 vop3a->abs[0] = true;
7518 Temp invma = bld.tmp(v1);
7519 vop3a->definitions[0] = Definition(invma);
7520 ctx->block->instructions.emplace_back(std::move(vop3a));
7521
7522 sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
7523 if (!is_deriv)
7524 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, invma, Operand(0x3fc00000u/*1.5*/));
7525
7526 tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
7527 if (!is_deriv)
7528 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, invma, Operand(0x3fc00000u/*1.5*/));
7529
7530 id = bld.vop3(aco_opcode::v_cubeid_f32, bld.def(v1), coords[0], coords[1], coords[2]);
7531
7532 if (is_deriv) {
7533 sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), sc, invma);
7534 tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tc, invma);
7535
7536 for (unsigned i = 0; i < 2; i++) {
7537 // see comment in ac_prepare_cube_coords()
7538 Temp deriv_ma;
7539 Temp deriv_sc, deriv_tc;
7540 build_cube_select(ctx, ma, id, i ? *ddy : *ddx,
7541 &deriv_ma, &deriv_sc, &deriv_tc);
7542
7543 deriv_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, invma);
7544
7545 Temp x = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
7546 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_sc, invma),
7547 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, sc));
7548 Temp y = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
7549 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_tc, invma),
7550 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, tc));
7551 *(i ? ddy : ddx) = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), x, y);
7552 }
7553
7554 sc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), sc);
7555 tc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), tc);
7556 }
7557
7558 if (is_array)
7559 id = bld.vop2(aco_opcode::v_madmk_f32, bld.def(v1), coords[3], id, Operand(0x41000000u/*8.0*/));
7560 coords.resize(3);
7561 coords[0] = sc;
7562 coords[1] = tc;
7563 coords[2] = id;
7564 }
7565
7566 void get_const_vec(nir_ssa_def *vec, nir_const_value *cv[4])
7567 {
7568 if (vec->parent_instr->type != nir_instr_type_alu)
7569 return;
7570 nir_alu_instr *vec_instr = nir_instr_as_alu(vec->parent_instr);
7571 if (vec_instr->op != nir_op_vec(vec->num_components))
7572 return;
7573
7574 for (unsigned i = 0; i < vec->num_components; i++) {
7575 cv[i] = vec_instr->src[i].swizzle[0] == 0 ?
7576 nir_src_as_const_value(vec_instr->src[i].src) : NULL;
7577 }
7578 }
7579
7580 void visit_tex(isel_context *ctx, nir_tex_instr *instr)
7581 {
7582 Builder bld(ctx->program, ctx->block);
7583 bool has_bias = false, has_lod = false, level_zero = false, has_compare = false,
7584 has_offset = false, has_ddx = false, has_ddy = false, has_derivs = false, has_sample_index = false;
7585 Temp resource, sampler, fmask_ptr, bias = Temp(), compare = Temp(), sample_index = Temp(),
7586 lod = Temp(), offset = Temp(), ddx = Temp(), ddy = Temp();
7587 std::vector<Temp> coords;
7588 std::vector<Temp> derivs;
7589 nir_const_value *sample_index_cv = NULL;
7590 nir_const_value *const_offset[4] = {NULL, NULL, NULL, NULL};
7591 enum glsl_base_type stype;
7592 tex_fetch_ptrs(ctx, instr, &resource, &sampler, &fmask_ptr, &stype);
7593
7594 bool tg4_integer_workarounds = ctx->options->chip_class <= GFX8 && instr->op == nir_texop_tg4 &&
7595 (stype == GLSL_TYPE_UINT || stype == GLSL_TYPE_INT);
7596 bool tg4_integer_cube_workaround = tg4_integer_workarounds &&
7597 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE;
7598
7599 for (unsigned i = 0; i < instr->num_srcs; i++) {
7600 switch (instr->src[i].src_type) {
7601 case nir_tex_src_coord: {
7602 Temp coord = get_ssa_temp(ctx, instr->src[i].src.ssa);
7603 for (unsigned i = 0; i < coord.size(); i++)
7604 coords.emplace_back(emit_extract_vector(ctx, coord, i, v1));
7605 break;
7606 }
7607 case nir_tex_src_bias:
7608 if (instr->op == nir_texop_txb) {
7609 bias = get_ssa_temp(ctx, instr->src[i].src.ssa);
7610 has_bias = true;
7611 }
7612 break;
7613 case nir_tex_src_lod: {
7614 nir_const_value *val = nir_src_as_const_value(instr->src[i].src);
7615
7616 if (val && val->f32 <= 0.0) {
7617 level_zero = true;
7618 } else {
7619 lod = get_ssa_temp(ctx, instr->src[i].src.ssa);
7620 has_lod = true;
7621 }
7622 break;
7623 }
7624 case nir_tex_src_comparator:
7625 if (instr->is_shadow) {
7626 compare = get_ssa_temp(ctx, instr->src[i].src.ssa);
7627 has_compare = true;
7628 }
7629 break;
7630 case nir_tex_src_offset:
7631 offset = get_ssa_temp(ctx, instr->src[i].src.ssa);
7632 get_const_vec(instr->src[i].src.ssa, const_offset);
7633 has_offset = true;
7634 break;
7635 case nir_tex_src_ddx:
7636 ddx = get_ssa_temp(ctx, instr->src[i].src.ssa);
7637 has_ddx = true;
7638 break;
7639 case nir_tex_src_ddy:
7640 ddy = get_ssa_temp(ctx, instr->src[i].src.ssa);
7641 has_ddy = true;
7642 break;
7643 case nir_tex_src_ms_index:
7644 sample_index = get_ssa_temp(ctx, instr->src[i].src.ssa);
7645 sample_index_cv = nir_src_as_const_value(instr->src[i].src);
7646 has_sample_index = true;
7647 break;
7648 case nir_tex_src_texture_offset:
7649 case nir_tex_src_sampler_offset:
7650 default:
7651 break;
7652 }
7653 }
7654
7655 if (instr->op == nir_texop_txs && instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
7656 return get_buffer_size(ctx, resource, get_ssa_temp(ctx, &instr->dest.ssa), true);
7657
7658 if (instr->op == nir_texop_texture_samples) {
7659 Temp dword3 = emit_extract_vector(ctx, resource, 3, s1);
7660
7661 Temp samples_log2 = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(16u | 4u<<16));
7662 Temp samples = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), Operand(1u), samples_log2);
7663 Temp type = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(28u | 4u<<16 /* offset=28, width=4 */));
7664 Temp is_msaa = bld.sopc(aco_opcode::s_cmp_ge_u32, bld.def(s1, scc), type, Operand(14u));
7665
7666 bld.sop2(aco_opcode::s_cselect_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7667 samples, Operand(1u), bld.scc(is_msaa));
7668 return;
7669 }
7670
7671 if (has_offset && instr->op != nir_texop_txf && instr->op != nir_texop_txf_ms) {
7672 aco_ptr<Instruction> tmp_instr;
7673 Temp acc, pack = Temp();
7674
7675 uint32_t pack_const = 0;
7676 for (unsigned i = 0; i < offset.size(); i++) {
7677 if (!const_offset[i])
7678 continue;
7679 pack_const |= (const_offset[i]->u32 & 0x3Fu) << (8u * i);
7680 }
7681
7682 if (offset.type() == RegType::sgpr) {
7683 for (unsigned i = 0; i < offset.size(); i++) {
7684 if (const_offset[i])
7685 continue;
7686
7687 acc = emit_extract_vector(ctx, offset, i, s1);
7688 acc = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(0x3Fu));
7689
7690 if (i) {
7691 acc = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(8u * i));
7692 }
7693
7694 if (pack == Temp()) {
7695 pack = acc;
7696 } else {
7697 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), pack, acc);
7698 }
7699 }
7700
7701 if (pack_const && pack != Temp())
7702 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(pack_const), pack);
7703 } else {
7704 for (unsigned i = 0; i < offset.size(); i++) {
7705 if (const_offset[i])
7706 continue;
7707
7708 acc = emit_extract_vector(ctx, offset, i, v1);
7709 acc = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x3Fu), acc);
7710
7711 if (i) {
7712 acc = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(8u * i), acc);
7713 }
7714
7715 if (pack == Temp()) {
7716 pack = acc;
7717 } else {
7718 pack = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), pack, acc);
7719 }
7720 }
7721
7722 if (pack_const && pack != Temp())
7723 pack = bld.sop2(aco_opcode::v_or_b32, bld.def(v1), Operand(pack_const), pack);
7724 }
7725 if (pack_const && pack == Temp())
7726 offset = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(pack_const));
7727 else if (pack == Temp())
7728 has_offset = false;
7729 else
7730 offset = pack;
7731 }
7732
7733 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE && instr->coord_components)
7734 prepare_cube_coords(ctx, coords, &ddx, &ddy, instr->op == nir_texop_txd, instr->is_array && instr->op != nir_texop_lod);
7735
7736 /* pack derivatives */
7737 if (has_ddx || has_ddy) {
7738 if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D && ctx->options->chip_class == GFX9) {
7739 assert(has_ddx && has_ddy && ddx.size() == 1 && ddy.size() == 1);
7740 Temp zero = bld.copy(bld.def(v1), Operand(0u));
7741 derivs = {ddy, zero, ddy, zero};
7742 } else {
7743 for (unsigned i = 0; has_ddx && i < ddx.size(); i++)
7744 derivs.emplace_back(emit_extract_vector(ctx, ddx, i, v1));
7745 for (unsigned i = 0; has_ddy && i < ddy.size(); i++)
7746 derivs.emplace_back(emit_extract_vector(ctx, ddy, i, v1));
7747 }
7748 has_derivs = true;
7749 }
7750
7751 if (instr->coord_components > 1 &&
7752 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
7753 instr->is_array &&
7754 instr->op != nir_texop_txf)
7755 coords[1] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[1]);
7756
7757 if (instr->coord_components > 2 &&
7758 (instr->sampler_dim == GLSL_SAMPLER_DIM_2D ||
7759 instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
7760 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS ||
7761 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
7762 instr->is_array &&
7763 instr->op != nir_texop_txf &&
7764 instr->op != nir_texop_txf_ms &&
7765 instr->op != nir_texop_fragment_fetch &&
7766 instr->op != nir_texop_fragment_mask_fetch)
7767 coords[2] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[2]);
7768
7769 if (ctx->options->chip_class == GFX9 &&
7770 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
7771 instr->op != nir_texop_lod && instr->coord_components) {
7772 assert(coords.size() > 0 && coords.size() < 3);
7773
7774 coords.insert(std::next(coords.begin()), bld.copy(bld.def(v1), instr->op == nir_texop_txf ?
7775 Operand((uint32_t) 0) :
7776 Operand((uint32_t) 0x3f000000)));
7777 }
7778
7779 bool da = should_declare_array(ctx, instr->sampler_dim, instr->is_array);
7780
7781 if (instr->op == nir_texop_samples_identical)
7782 resource = fmask_ptr;
7783
7784 else if ((instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
7785 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
7786 instr->op != nir_texop_txs &&
7787 instr->op != nir_texop_fragment_fetch &&
7788 instr->op != nir_texop_fragment_mask_fetch) {
7789 assert(has_sample_index);
7790 Operand op(sample_index);
7791 if (sample_index_cv)
7792 op = Operand(sample_index_cv->u32);
7793 sample_index = adjust_sample_index_using_fmask(ctx, da, coords, op, fmask_ptr);
7794 }
7795
7796 if (has_offset && (instr->op == nir_texop_txf || instr->op == nir_texop_txf_ms)) {
7797 for (unsigned i = 0; i < std::min(offset.size(), instr->coord_components); i++) {
7798 Temp off = emit_extract_vector(ctx, offset, i, v1);
7799 coords[i] = bld.vadd32(bld.def(v1), coords[i], off);
7800 }
7801 has_offset = false;
7802 }
7803
7804 /* Build tex instruction */
7805 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
7806 unsigned dim = ctx->options->chip_class >= GFX10 && instr->sampler_dim != GLSL_SAMPLER_DIM_BUF
7807 ? ac_get_sampler_dim(ctx->options->chip_class, instr->sampler_dim, instr->is_array)
7808 : 0;
7809 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7810 Temp tmp_dst = dst;
7811
7812 /* gather4 selects the component by dmask and always returns vec4 */
7813 if (instr->op == nir_texop_tg4) {
7814 assert(instr->dest.ssa.num_components == 4);
7815 if (instr->is_shadow)
7816 dmask = 1;
7817 else
7818 dmask = 1 << instr->component;
7819 if (tg4_integer_cube_workaround || dst.type() == RegType::sgpr)
7820 tmp_dst = bld.tmp(v4);
7821 } else if (instr->op == nir_texop_samples_identical) {
7822 tmp_dst = bld.tmp(v1);
7823 } else if (util_bitcount(dmask) != instr->dest.ssa.num_components || dst.type() == RegType::sgpr) {
7824 tmp_dst = bld.tmp(RegClass(RegType::vgpr, util_bitcount(dmask)));
7825 }
7826
7827 aco_ptr<MIMG_instruction> tex;
7828 if (instr->op == nir_texop_txs || instr->op == nir_texop_query_levels) {
7829 if (!has_lod)
7830 lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
7831
7832 bool div_by_6 = instr->op == nir_texop_txs &&
7833 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
7834 instr->is_array &&
7835 (dmask & (1 << 2));
7836 if (tmp_dst.id() == dst.id() && div_by_6)
7837 tmp_dst = bld.tmp(tmp_dst.regClass());
7838
7839 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
7840 tex->operands[0] = Operand(resource);
7841 tex->operands[1] = Operand(s4); /* no sampler */
7842 tex->operands[2] = Operand(as_vgpr(ctx,lod));
7843 if (ctx->options->chip_class == GFX9 &&
7844 instr->op == nir_texop_txs &&
7845 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
7846 instr->is_array) {
7847 tex->dmask = (dmask & 0x1) | ((dmask & 0x2) << 1);
7848 } else if (instr->op == nir_texop_query_levels) {
7849 tex->dmask = 1 << 3;
7850 } else {
7851 tex->dmask = dmask;
7852 }
7853 tex->da = da;
7854 tex->definitions[0] = Definition(tmp_dst);
7855 tex->dim = dim;
7856 tex->can_reorder = true;
7857 ctx->block->instructions.emplace_back(std::move(tex));
7858
7859 if (div_by_6) {
7860 /* divide 3rd value by 6 by multiplying with magic number */
7861 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
7862 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
7863 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp_dst, 2, v1), c);
7864 assert(instr->dest.ssa.num_components == 3);
7865 Temp tmp = dst.type() == RegType::vgpr ? dst : bld.tmp(v3);
7866 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
7867 emit_extract_vector(ctx, tmp_dst, 0, v1),
7868 emit_extract_vector(ctx, tmp_dst, 1, v1),
7869 by_6);
7870
7871 }
7872
7873 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
7874 return;
7875 }
7876
7877 Temp tg4_compare_cube_wa64 = Temp();
7878
7879 if (tg4_integer_workarounds) {
7880 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
7881 tex->operands[0] = Operand(resource);
7882 tex->operands[1] = Operand(s4); /* no sampler */
7883 tex->operands[2] = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
7884 tex->dim = dim;
7885 tex->dmask = 0x3;
7886 tex->da = da;
7887 Temp size = bld.tmp(v2);
7888 tex->definitions[0] = Definition(size);
7889 tex->can_reorder = true;
7890 ctx->block->instructions.emplace_back(std::move(tex));
7891 emit_split_vector(ctx, size, size.size());
7892
7893 Temp half_texel[2];
7894 for (unsigned i = 0; i < 2; i++) {
7895 half_texel[i] = emit_extract_vector(ctx, size, i, v1);
7896 half_texel[i] = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), half_texel[i]);
7897 half_texel[i] = bld.vop1(aco_opcode::v_rcp_iflag_f32, bld.def(v1), half_texel[i]);
7898 half_texel[i] = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0xbf000000/*-0.5*/), half_texel[i]);
7899 }
7900
7901 Temp new_coords[2] = {
7902 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[0], half_texel[0]),
7903 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[1], half_texel[1])
7904 };
7905
7906 if (tg4_integer_cube_workaround) {
7907 // see comment in ac_nir_to_llvm.c's lower_gather4_integer()
7908 Temp desc[resource.size()];
7909 aco_ptr<Instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector,
7910 Format::PSEUDO, 1, resource.size())};
7911 split->operands[0] = Operand(resource);
7912 for (unsigned i = 0; i < resource.size(); i++) {
7913 desc[i] = bld.tmp(s1);
7914 split->definitions[i] = Definition(desc[i]);
7915 }
7916 ctx->block->instructions.emplace_back(std::move(split));
7917
7918 Temp dfmt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), desc[1], Operand(20u | (6u << 16)));
7919 Temp compare_cube_wa = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), dfmt,
7920 Operand((uint32_t)V_008F14_IMG_DATA_FORMAT_8_8_8_8));
7921
7922 Temp nfmt;
7923 if (stype == GLSL_TYPE_UINT) {
7924 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
7925 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_USCALED),
7926 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_UINT),
7927 bld.scc(compare_cube_wa));
7928 } else {
7929 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
7930 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SSCALED),
7931 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SINT),
7932 bld.scc(compare_cube_wa));
7933 }
7934 tg4_compare_cube_wa64 = bld.tmp(bld.lm);
7935 bool_to_vector_condition(ctx, compare_cube_wa, tg4_compare_cube_wa64);
7936
7937 nfmt = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), nfmt, Operand(26u));
7938
7939 desc[1] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), desc[1],
7940 Operand((uint32_t)C_008F14_NUM_FORMAT));
7941 desc[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), desc[1], nfmt);
7942
7943 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
7944 Format::PSEUDO, resource.size(), 1)};
7945 for (unsigned i = 0; i < resource.size(); i++)
7946 vec->operands[i] = Operand(desc[i]);
7947 resource = bld.tmp(resource.regClass());
7948 vec->definitions[0] = Definition(resource);
7949 ctx->block->instructions.emplace_back(std::move(vec));
7950
7951 new_coords[0] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
7952 new_coords[0], coords[0], tg4_compare_cube_wa64);
7953 new_coords[1] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
7954 new_coords[1], coords[1], tg4_compare_cube_wa64);
7955 }
7956 coords[0] = new_coords[0];
7957 coords[1] = new_coords[1];
7958 }
7959
7960 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
7961 //FIXME: if (ctx->abi->gfx9_stride_size_workaround) return ac_build_buffer_load_format_gfx9_safe()
7962
7963 assert(coords.size() == 1);
7964 unsigned last_bit = util_last_bit(nir_ssa_def_components_read(&instr->dest.ssa));
7965 aco_opcode op;
7966 switch (last_bit) {
7967 case 1:
7968 op = aco_opcode::buffer_load_format_x; break;
7969 case 2:
7970 op = aco_opcode::buffer_load_format_xy; break;
7971 case 3:
7972 op = aco_opcode::buffer_load_format_xyz; break;
7973 case 4:
7974 op = aco_opcode::buffer_load_format_xyzw; break;
7975 default:
7976 unreachable("Tex instruction loads more than 4 components.");
7977 }
7978
7979 /* if the instruction return value matches exactly the nir dest ssa, we can use it directly */
7980 if (last_bit == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
7981 tmp_dst = dst;
7982 else
7983 tmp_dst = bld.tmp(RegType::vgpr, last_bit);
7984
7985 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
7986 mubuf->operands[0] = Operand(resource);
7987 mubuf->operands[1] = Operand(coords[0]);
7988 mubuf->operands[2] = Operand((uint32_t) 0);
7989 mubuf->definitions[0] = Definition(tmp_dst);
7990 mubuf->idxen = true;
7991 mubuf->can_reorder = true;
7992 ctx->block->instructions.emplace_back(std::move(mubuf));
7993
7994 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, (1 << last_bit) - 1);
7995 return;
7996 }
7997
7998 /* gather MIMG address components */
7999 std::vector<Temp> args;
8000 if (has_offset)
8001 args.emplace_back(offset);
8002 if (has_bias)
8003 args.emplace_back(bias);
8004 if (has_compare)
8005 args.emplace_back(compare);
8006 if (has_derivs)
8007 args.insert(args.end(), derivs.begin(), derivs.end());
8008
8009 args.insert(args.end(), coords.begin(), coords.end());
8010 if (has_sample_index)
8011 args.emplace_back(sample_index);
8012 if (has_lod)
8013 args.emplace_back(lod);
8014
8015 Temp arg = bld.tmp(RegClass(RegType::vgpr, args.size()));
8016 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, args.size(), 1)};
8017 vec->definitions[0] = Definition(arg);
8018 for (unsigned i = 0; i < args.size(); i++)
8019 vec->operands[i] = Operand(args[i]);
8020 ctx->block->instructions.emplace_back(std::move(vec));
8021
8022
8023 if (instr->op == nir_texop_txf ||
8024 instr->op == nir_texop_txf_ms ||
8025 instr->op == nir_texop_samples_identical ||
8026 instr->op == nir_texop_fragment_fetch ||
8027 instr->op == nir_texop_fragment_mask_fetch) {
8028 aco_opcode op = level_zero || instr->sampler_dim == GLSL_SAMPLER_DIM_MS || instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS ? aco_opcode::image_load : aco_opcode::image_load_mip;
8029 tex.reset(create_instruction<MIMG_instruction>(op, Format::MIMG, 3, 1));
8030 tex->operands[0] = Operand(resource);
8031 tex->operands[1] = Operand(s4); /* no sampler */
8032 tex->operands[2] = Operand(arg);
8033 tex->dim = dim;
8034 tex->dmask = dmask;
8035 tex->unrm = true;
8036 tex->da = da;
8037 tex->definitions[0] = Definition(tmp_dst);
8038 tex->can_reorder = true;
8039 ctx->block->instructions.emplace_back(std::move(tex));
8040
8041 if (instr->op == nir_texop_samples_identical) {
8042 assert(dmask == 1 && dst.regClass() == v1);
8043 assert(dst.id() != tmp_dst.id());
8044
8045 Temp tmp = bld.tmp(bld.lm);
8046 bld.vopc(aco_opcode::v_cmp_eq_u32, Definition(tmp), Operand(0u), tmp_dst).def(0).setHint(vcc);
8047 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand((uint32_t)-1), tmp);
8048
8049 } else {
8050 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
8051 }
8052 return;
8053 }
8054
8055 // TODO: would be better to do this by adding offsets, but needs the opcodes ordered.
8056 aco_opcode opcode = aco_opcode::image_sample;
8057 if (has_offset) { /* image_sample_*_o */
8058 if (has_compare) {
8059 opcode = aco_opcode::image_sample_c_o;
8060 if (has_derivs)
8061 opcode = aco_opcode::image_sample_c_d_o;
8062 if (has_bias)
8063 opcode = aco_opcode::image_sample_c_b_o;
8064 if (level_zero)
8065 opcode = aco_opcode::image_sample_c_lz_o;
8066 if (has_lod)
8067 opcode = aco_opcode::image_sample_c_l_o;
8068 } else {
8069 opcode = aco_opcode::image_sample_o;
8070 if (has_derivs)
8071 opcode = aco_opcode::image_sample_d_o;
8072 if (has_bias)
8073 opcode = aco_opcode::image_sample_b_o;
8074 if (level_zero)
8075 opcode = aco_opcode::image_sample_lz_o;
8076 if (has_lod)
8077 opcode = aco_opcode::image_sample_l_o;
8078 }
8079 } else { /* no offset */
8080 if (has_compare) {
8081 opcode = aco_opcode::image_sample_c;
8082 if (has_derivs)
8083 opcode = aco_opcode::image_sample_c_d;
8084 if (has_bias)
8085 opcode = aco_opcode::image_sample_c_b;
8086 if (level_zero)
8087 opcode = aco_opcode::image_sample_c_lz;
8088 if (has_lod)
8089 opcode = aco_opcode::image_sample_c_l;
8090 } else {
8091 opcode = aco_opcode::image_sample;
8092 if (has_derivs)
8093 opcode = aco_opcode::image_sample_d;
8094 if (has_bias)
8095 opcode = aco_opcode::image_sample_b;
8096 if (level_zero)
8097 opcode = aco_opcode::image_sample_lz;
8098 if (has_lod)
8099 opcode = aco_opcode::image_sample_l;
8100 }
8101 }
8102
8103 if (instr->op == nir_texop_tg4) {
8104 if (has_offset) {
8105 opcode = aco_opcode::image_gather4_lz_o;
8106 if (has_compare)
8107 opcode = aco_opcode::image_gather4_c_lz_o;
8108 } else {
8109 opcode = aco_opcode::image_gather4_lz;
8110 if (has_compare)
8111 opcode = aco_opcode::image_gather4_c_lz;
8112 }
8113 } else if (instr->op == nir_texop_lod) {
8114 opcode = aco_opcode::image_get_lod;
8115 }
8116
8117 /* we don't need the bias, sample index, compare value or offset to be
8118 * computed in WQM but if the p_create_vector copies the coordinates, then it
8119 * needs to be in WQM */
8120 if (ctx->stage == fragment_fs &&
8121 !has_derivs && !has_lod && !level_zero &&
8122 instr->sampler_dim != GLSL_SAMPLER_DIM_MS &&
8123 instr->sampler_dim != GLSL_SAMPLER_DIM_SUBPASS_MS)
8124 arg = emit_wqm(ctx, arg, bld.tmp(arg.regClass()), true);
8125
8126 tex.reset(create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1));
8127 tex->operands[0] = Operand(resource);
8128 tex->operands[1] = Operand(sampler);
8129 tex->operands[2] = Operand(arg);
8130 tex->dim = dim;
8131 tex->dmask = dmask;
8132 tex->da = da;
8133 tex->definitions[0] = Definition(tmp_dst);
8134 tex->can_reorder = true;
8135 ctx->block->instructions.emplace_back(std::move(tex));
8136
8137 if (tg4_integer_cube_workaround) {
8138 assert(tmp_dst.id() != dst.id());
8139 assert(tmp_dst.size() == dst.size() && dst.size() == 4);
8140
8141 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
8142 Temp val[4];
8143 for (unsigned i = 0; i < dst.size(); i++) {
8144 val[i] = emit_extract_vector(ctx, tmp_dst, i, v1);
8145 Temp cvt_val;
8146 if (stype == GLSL_TYPE_UINT)
8147 cvt_val = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), val[i]);
8148 else
8149 cvt_val = bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), val[i]);
8150 val[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), val[i], cvt_val, tg4_compare_cube_wa64);
8151 }
8152 Temp tmp = dst.regClass() == v4 ? dst : bld.tmp(v4);
8153 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
8154 val[0], val[1], val[2], val[3]);
8155 }
8156 unsigned mask = instr->op == nir_texop_tg4 ? 0xF : dmask;
8157 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, mask);
8158
8159 }
8160
8161
8162 Operand get_phi_operand(isel_context *ctx, nir_ssa_def *ssa)
8163 {
8164 Temp tmp = get_ssa_temp(ctx, ssa);
8165 if (ssa->parent_instr->type == nir_instr_type_ssa_undef)
8166 return Operand(tmp.regClass());
8167 else
8168 return Operand(tmp);
8169 }
8170
8171 void visit_phi(isel_context *ctx, nir_phi_instr *instr)
8172 {
8173 aco_ptr<Pseudo_instruction> phi;
8174 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8175 assert(instr->dest.ssa.bit_size != 1 || dst.regClass() == ctx->program->lane_mask);
8176
8177 bool logical = !dst.is_linear() || ctx->divergent_vals[instr->dest.ssa.index];
8178 logical |= ctx->block->kind & block_kind_merge;
8179 aco_opcode opcode = logical ? aco_opcode::p_phi : aco_opcode::p_linear_phi;
8180
8181 /* we want a sorted list of sources, since the predecessor list is also sorted */
8182 std::map<unsigned, nir_ssa_def*> phi_src;
8183 nir_foreach_phi_src(src, instr)
8184 phi_src[src->pred->index] = src->src.ssa;
8185
8186 std::vector<unsigned>& preds = logical ? ctx->block->logical_preds : ctx->block->linear_preds;
8187 unsigned num_operands = 0;
8188 Operand operands[std::max(exec_list_length(&instr->srcs), (unsigned)preds.size())];
8189 unsigned num_defined = 0;
8190 unsigned cur_pred_idx = 0;
8191 for (std::pair<unsigned, nir_ssa_def *> src : phi_src) {
8192 if (cur_pred_idx < preds.size()) {
8193 /* handle missing preds (IF merges with discard/break) and extra preds (loop exit with discard) */
8194 unsigned block = ctx->cf_info.nir_to_aco[src.first];
8195 unsigned skipped = 0;
8196 while (cur_pred_idx + skipped < preds.size() && preds[cur_pred_idx + skipped] != block)
8197 skipped++;
8198 if (cur_pred_idx + skipped < preds.size()) {
8199 for (unsigned i = 0; i < skipped; i++)
8200 operands[num_operands++] = Operand(dst.regClass());
8201 cur_pred_idx += skipped;
8202 } else {
8203 continue;
8204 }
8205 }
8206 cur_pred_idx++;
8207 Operand op = get_phi_operand(ctx, src.second);
8208 operands[num_operands++] = op;
8209 num_defined += !op.isUndefined();
8210 }
8211 /* handle block_kind_continue_or_break at loop exit blocks */
8212 while (cur_pred_idx++ < preds.size())
8213 operands[num_operands++] = Operand(dst.regClass());
8214
8215 if (num_defined == 0) {
8216 Builder bld(ctx->program, ctx->block);
8217 if (dst.regClass() == s1) {
8218 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), Operand(0u));
8219 } else if (dst.regClass() == v1) {
8220 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), Operand(0u));
8221 } else {
8222 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
8223 for (unsigned i = 0; i < dst.size(); i++)
8224 vec->operands[i] = Operand(0u);
8225 vec->definitions[0] = Definition(dst);
8226 ctx->block->instructions.emplace_back(std::move(vec));
8227 }
8228 return;
8229 }
8230
8231 /* we can use a linear phi in some cases if one src is undef */
8232 if (dst.is_linear() && ctx->block->kind & block_kind_merge && num_defined == 1) {
8233 phi.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, num_operands, 1));
8234
8235 Block *linear_else = &ctx->program->blocks[ctx->block->linear_preds[1]];
8236 Block *invert = &ctx->program->blocks[linear_else->linear_preds[0]];
8237 assert(invert->kind & block_kind_invert);
8238
8239 unsigned then_block = invert->linear_preds[0];
8240
8241 Block* insert_block = NULL;
8242 for (unsigned i = 0; i < num_operands; i++) {
8243 Operand op = operands[i];
8244 if (op.isUndefined())
8245 continue;
8246 insert_block = ctx->block->logical_preds[i] == then_block ? invert : ctx->block;
8247 phi->operands[0] = op;
8248 break;
8249 }
8250 assert(insert_block); /* should be handled by the "num_defined == 0" case above */
8251 phi->operands[1] = Operand(dst.regClass());
8252 phi->definitions[0] = Definition(dst);
8253 insert_block->instructions.emplace(insert_block->instructions.begin(), std::move(phi));
8254 return;
8255 }
8256
8257 /* try to scalarize vector phis */
8258 if (instr->dest.ssa.bit_size != 1 && dst.size() > 1) {
8259 // TODO: scalarize linear phis on divergent ifs
8260 bool can_scalarize = (opcode == aco_opcode::p_phi || !(ctx->block->kind & block_kind_merge));
8261 std::array<Temp, NIR_MAX_VEC_COMPONENTS> new_vec;
8262 for (unsigned i = 0; can_scalarize && (i < num_operands); i++) {
8263 Operand src = operands[i];
8264 if (src.isTemp() && ctx->allocated_vec.find(src.tempId()) == ctx->allocated_vec.end())
8265 can_scalarize = false;
8266 }
8267 if (can_scalarize) {
8268 unsigned num_components = instr->dest.ssa.num_components;
8269 assert(dst.size() % num_components == 0);
8270 RegClass rc = RegClass(dst.type(), dst.size() / num_components);
8271
8272 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
8273 for (unsigned k = 0; k < num_components; k++) {
8274 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
8275 for (unsigned i = 0; i < num_operands; i++) {
8276 Operand src = operands[i];
8277 phi->operands[i] = src.isTemp() ? Operand(ctx->allocated_vec[src.tempId()][k]) : Operand(rc);
8278 }
8279 Temp phi_dst = {ctx->program->allocateId(), rc};
8280 phi->definitions[0] = Definition(phi_dst);
8281 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
8282 new_vec[k] = phi_dst;
8283 vec->operands[k] = Operand(phi_dst);
8284 }
8285 vec->definitions[0] = Definition(dst);
8286 ctx->block->instructions.emplace_back(std::move(vec));
8287 ctx->allocated_vec.emplace(dst.id(), new_vec);
8288 return;
8289 }
8290 }
8291
8292 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
8293 for (unsigned i = 0; i < num_operands; i++)
8294 phi->operands[i] = operands[i];
8295 phi->definitions[0] = Definition(dst);
8296 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
8297 }
8298
8299
8300 void visit_undef(isel_context *ctx, nir_ssa_undef_instr *instr)
8301 {
8302 Temp dst = get_ssa_temp(ctx, &instr->def);
8303
8304 assert(dst.type() == RegType::sgpr);
8305
8306 if (dst.size() == 1) {
8307 Builder(ctx->program, ctx->block).copy(Definition(dst), Operand(0u));
8308 } else {
8309 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
8310 for (unsigned i = 0; i < dst.size(); i++)
8311 vec->operands[i] = Operand(0u);
8312 vec->definitions[0] = Definition(dst);
8313 ctx->block->instructions.emplace_back(std::move(vec));
8314 }
8315 }
8316
8317 void visit_jump(isel_context *ctx, nir_jump_instr *instr)
8318 {
8319 Builder bld(ctx->program, ctx->block);
8320 Block *logical_target;
8321 append_logical_end(ctx->block);
8322 unsigned idx = ctx->block->index;
8323
8324 switch (instr->type) {
8325 case nir_jump_break:
8326 logical_target = ctx->cf_info.parent_loop.exit;
8327 add_logical_edge(idx, logical_target);
8328 ctx->block->kind |= block_kind_break;
8329
8330 if (!ctx->cf_info.parent_if.is_divergent &&
8331 !ctx->cf_info.parent_loop.has_divergent_continue) {
8332 /* uniform break - directly jump out of the loop */
8333 ctx->block->kind |= block_kind_uniform;
8334 ctx->cf_info.has_branch = true;
8335 bld.branch(aco_opcode::p_branch);
8336 add_linear_edge(idx, logical_target);
8337 return;
8338 }
8339 ctx->cf_info.parent_loop.has_divergent_branch = true;
8340 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
8341 break;
8342 case nir_jump_continue:
8343 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
8344 add_logical_edge(idx, logical_target);
8345 ctx->block->kind |= block_kind_continue;
8346
8347 if (ctx->cf_info.parent_if.is_divergent) {
8348 /* for potential uniform breaks after this continue,
8349 we must ensure that they are handled correctly */
8350 ctx->cf_info.parent_loop.has_divergent_continue = true;
8351 ctx->cf_info.parent_loop.has_divergent_branch = true;
8352 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
8353 } else {
8354 /* uniform continue - directly jump to the loop header */
8355 ctx->block->kind |= block_kind_uniform;
8356 ctx->cf_info.has_branch = true;
8357 bld.branch(aco_opcode::p_branch);
8358 add_linear_edge(idx, logical_target);
8359 return;
8360 }
8361 break;
8362 default:
8363 fprintf(stderr, "Unknown NIR jump instr: ");
8364 nir_print_instr(&instr->instr, stderr);
8365 fprintf(stderr, "\n");
8366 abort();
8367 }
8368
8369 if (ctx->cf_info.parent_if.is_divergent && !ctx->cf_info.exec_potentially_empty_break) {
8370 ctx->cf_info.exec_potentially_empty_break = true;
8371 ctx->cf_info.exec_potentially_empty_break_depth = ctx->cf_info.loop_nest_depth;
8372 }
8373
8374 /* remove critical edges from linear CFG */
8375 bld.branch(aco_opcode::p_branch);
8376 Block* break_block = ctx->program->create_and_insert_block();
8377 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8378 break_block->kind |= block_kind_uniform;
8379 add_linear_edge(idx, break_block);
8380 /* the loop_header pointer might be invalidated by this point */
8381 if (instr->type == nir_jump_continue)
8382 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
8383 add_linear_edge(break_block->index, logical_target);
8384 bld.reset(break_block);
8385 bld.branch(aco_opcode::p_branch);
8386
8387 Block* continue_block = ctx->program->create_and_insert_block();
8388 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8389 add_linear_edge(idx, continue_block);
8390 append_logical_start(continue_block);
8391 ctx->block = continue_block;
8392 return;
8393 }
8394
8395 void visit_block(isel_context *ctx, nir_block *block)
8396 {
8397 nir_foreach_instr(instr, block) {
8398 switch (instr->type) {
8399 case nir_instr_type_alu:
8400 visit_alu_instr(ctx, nir_instr_as_alu(instr));
8401 break;
8402 case nir_instr_type_load_const:
8403 visit_load_const(ctx, nir_instr_as_load_const(instr));
8404 break;
8405 case nir_instr_type_intrinsic:
8406 visit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
8407 break;
8408 case nir_instr_type_tex:
8409 visit_tex(ctx, nir_instr_as_tex(instr));
8410 break;
8411 case nir_instr_type_phi:
8412 visit_phi(ctx, nir_instr_as_phi(instr));
8413 break;
8414 case nir_instr_type_ssa_undef:
8415 visit_undef(ctx, nir_instr_as_ssa_undef(instr));
8416 break;
8417 case nir_instr_type_deref:
8418 break;
8419 case nir_instr_type_jump:
8420 visit_jump(ctx, nir_instr_as_jump(instr));
8421 break;
8422 default:
8423 fprintf(stderr, "Unknown NIR instr type: ");
8424 nir_print_instr(instr, stderr);
8425 fprintf(stderr, "\n");
8426 //abort();
8427 }
8428 }
8429
8430 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8431 ctx->cf_info.nir_to_aco[block->index] = ctx->block->index;
8432 }
8433
8434
8435
8436 static void visit_loop(isel_context *ctx, nir_loop *loop)
8437 {
8438 //TODO: we might want to wrap the loop around a branch if exec_potentially_empty=true
8439 append_logical_end(ctx->block);
8440 ctx->block->kind |= block_kind_loop_preheader | block_kind_uniform;
8441 Builder bld(ctx->program, ctx->block);
8442 bld.branch(aco_opcode::p_branch);
8443 unsigned loop_preheader_idx = ctx->block->index;
8444
8445 Block loop_exit = Block();
8446 loop_exit.loop_nest_depth = ctx->cf_info.loop_nest_depth;
8447 loop_exit.kind |= (block_kind_loop_exit | (ctx->block->kind & block_kind_top_level));
8448
8449 Block* loop_header = ctx->program->create_and_insert_block();
8450 loop_header->loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
8451 loop_header->kind |= block_kind_loop_header;
8452 add_edge(loop_preheader_idx, loop_header);
8453 ctx->block = loop_header;
8454
8455 /* emit loop body */
8456 unsigned loop_header_idx = loop_header->index;
8457 loop_info_RAII loop_raii(ctx, loop_header_idx, &loop_exit);
8458 append_logical_start(ctx->block);
8459 visit_cf_list(ctx, &loop->body);
8460
8461 //TODO: what if a loop ends with a unconditional or uniformly branched continue and this branch is never taken?
8462 if (!ctx->cf_info.has_branch) {
8463 append_logical_end(ctx->block);
8464 if (ctx->cf_info.exec_potentially_empty_discard || ctx->cf_info.exec_potentially_empty_break) {
8465 /* Discards can result in code running with an empty exec mask.
8466 * This would result in divergent breaks not ever being taken. As a
8467 * workaround, break the loop when the loop mask is empty instead of
8468 * always continuing. */
8469 ctx->block->kind |= (block_kind_continue_or_break | block_kind_uniform);
8470 unsigned block_idx = ctx->block->index;
8471
8472 /* create helper blocks to avoid critical edges */
8473 Block *break_block = ctx->program->create_and_insert_block();
8474 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8475 break_block->kind = block_kind_uniform;
8476 bld.reset(break_block);
8477 bld.branch(aco_opcode::p_branch);
8478 add_linear_edge(block_idx, break_block);
8479 add_linear_edge(break_block->index, &loop_exit);
8480
8481 Block *continue_block = ctx->program->create_and_insert_block();
8482 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8483 continue_block->kind = block_kind_uniform;
8484 bld.reset(continue_block);
8485 bld.branch(aco_opcode::p_branch);
8486 add_linear_edge(block_idx, continue_block);
8487 add_linear_edge(continue_block->index, &ctx->program->blocks[loop_header_idx]);
8488
8489 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8490 add_logical_edge(block_idx, &ctx->program->blocks[loop_header_idx]);
8491 ctx->block = &ctx->program->blocks[block_idx];
8492 } else {
8493 ctx->block->kind |= (block_kind_continue | block_kind_uniform);
8494 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8495 add_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
8496 else
8497 add_linear_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
8498 }
8499
8500 bld.reset(ctx->block);
8501 bld.branch(aco_opcode::p_branch);
8502 }
8503
8504 /* fixup phis in loop header from unreachable blocks */
8505 if (ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch) {
8506 bool linear = ctx->cf_info.has_branch;
8507 bool logical = ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch;
8508 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
8509 if ((logical && instr->opcode == aco_opcode::p_phi) ||
8510 (linear && instr->opcode == aco_opcode::p_linear_phi)) {
8511 /* the last operand should be the one that needs to be removed */
8512 instr->operands.pop_back();
8513 } else if (!is_phi(instr)) {
8514 break;
8515 }
8516 }
8517 }
8518
8519 ctx->cf_info.has_branch = false;
8520
8521 // TODO: if the loop has not a single exit, we must add one °°
8522 /* emit loop successor block */
8523 ctx->block = ctx->program->insert_block(std::move(loop_exit));
8524 append_logical_start(ctx->block);
8525
8526 #if 0
8527 // TODO: check if it is beneficial to not branch on continues
8528 /* trim linear phis in loop header */
8529 for (auto&& instr : loop_entry->instructions) {
8530 if (instr->opcode == aco_opcode::p_linear_phi) {
8531 aco_ptr<Pseudo_instruction> new_phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, loop_entry->linear_predecessors.size(), 1)};
8532 new_phi->definitions[0] = instr->definitions[0];
8533 for (unsigned i = 0; i < new_phi->operands.size(); i++)
8534 new_phi->operands[i] = instr->operands[i];
8535 /* check that the remaining operands are all the same */
8536 for (unsigned i = new_phi->operands.size(); i < instr->operands.size(); i++)
8537 assert(instr->operands[i].tempId() == instr->operands.back().tempId());
8538 instr.swap(new_phi);
8539 } else if (instr->opcode == aco_opcode::p_phi) {
8540 continue;
8541 } else {
8542 break;
8543 }
8544 }
8545 #endif
8546 }
8547
8548 static void begin_divergent_if_then(isel_context *ctx, if_context *ic, Temp cond)
8549 {
8550 ic->cond = cond;
8551
8552 append_logical_end(ctx->block);
8553 ctx->block->kind |= block_kind_branch;
8554
8555 /* branch to linear then block */
8556 assert(cond.regClass() == ctx->program->lane_mask);
8557 aco_ptr<Pseudo_branch_instruction> branch;
8558 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
8559 branch->operands[0] = Operand(cond);
8560 ctx->block->instructions.push_back(std::move(branch));
8561
8562 ic->BB_if_idx = ctx->block->index;
8563 ic->BB_invert = Block();
8564 ic->BB_invert.loop_nest_depth = ctx->cf_info.loop_nest_depth;
8565 /* Invert blocks are intentionally not marked as top level because they
8566 * are not part of the logical cfg. */
8567 ic->BB_invert.kind |= block_kind_invert;
8568 ic->BB_endif = Block();
8569 ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
8570 ic->BB_endif.kind |= (block_kind_merge | (ctx->block->kind & block_kind_top_level));
8571
8572 ic->exec_potentially_empty_discard_old = ctx->cf_info.exec_potentially_empty_discard;
8573 ic->exec_potentially_empty_break_old = ctx->cf_info.exec_potentially_empty_break;
8574 ic->exec_potentially_empty_break_depth_old = ctx->cf_info.exec_potentially_empty_break_depth;
8575 ic->divergent_old = ctx->cf_info.parent_if.is_divergent;
8576 ctx->cf_info.parent_if.is_divergent = true;
8577
8578 /* divergent branches use cbranch_execz */
8579 ctx->cf_info.exec_potentially_empty_discard = false;
8580 ctx->cf_info.exec_potentially_empty_break = false;
8581 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
8582
8583 /** emit logical then block */
8584 Block* BB_then_logical = ctx->program->create_and_insert_block();
8585 BB_then_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8586 add_edge(ic->BB_if_idx, BB_then_logical);
8587 ctx->block = BB_then_logical;
8588 append_logical_start(BB_then_logical);
8589 }
8590
8591 static void begin_divergent_if_else(isel_context *ctx, if_context *ic)
8592 {
8593 Block *BB_then_logical = ctx->block;
8594 append_logical_end(BB_then_logical);
8595 /* branch from logical then block to invert block */
8596 aco_ptr<Pseudo_branch_instruction> branch;
8597 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8598 BB_then_logical->instructions.emplace_back(std::move(branch));
8599 add_linear_edge(BB_then_logical->index, &ic->BB_invert);
8600 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8601 add_logical_edge(BB_then_logical->index, &ic->BB_endif);
8602 BB_then_logical->kind |= block_kind_uniform;
8603 assert(!ctx->cf_info.has_branch);
8604 ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
8605 ctx->cf_info.parent_loop.has_divergent_branch = false;
8606
8607 /** emit linear then block */
8608 Block* BB_then_linear = ctx->program->create_and_insert_block();
8609 BB_then_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8610 BB_then_linear->kind |= block_kind_uniform;
8611 add_linear_edge(ic->BB_if_idx, BB_then_linear);
8612 /* branch from linear then block to invert block */
8613 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8614 BB_then_linear->instructions.emplace_back(std::move(branch));
8615 add_linear_edge(BB_then_linear->index, &ic->BB_invert);
8616
8617 /** emit invert merge block */
8618 ctx->block = ctx->program->insert_block(std::move(ic->BB_invert));
8619 ic->invert_idx = ctx->block->index;
8620
8621 /* branch to linear else block (skip else) */
8622 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_nz, Format::PSEUDO_BRANCH, 1, 0));
8623 branch->operands[0] = Operand(ic->cond);
8624 ctx->block->instructions.push_back(std::move(branch));
8625
8626 ic->exec_potentially_empty_discard_old |= ctx->cf_info.exec_potentially_empty_discard;
8627 ic->exec_potentially_empty_break_old |= ctx->cf_info.exec_potentially_empty_break;
8628 ic->exec_potentially_empty_break_depth_old =
8629 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
8630 /* divergent branches use cbranch_execz */
8631 ctx->cf_info.exec_potentially_empty_discard = false;
8632 ctx->cf_info.exec_potentially_empty_break = false;
8633 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
8634
8635 /** emit logical else block */
8636 Block* BB_else_logical = ctx->program->create_and_insert_block();
8637 BB_else_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8638 add_logical_edge(ic->BB_if_idx, BB_else_logical);
8639 add_linear_edge(ic->invert_idx, BB_else_logical);
8640 ctx->block = BB_else_logical;
8641 append_logical_start(BB_else_logical);
8642 }
8643
8644 static void end_divergent_if(isel_context *ctx, if_context *ic)
8645 {
8646 Block *BB_else_logical = ctx->block;
8647 append_logical_end(BB_else_logical);
8648
8649 /* branch from logical else block to endif block */
8650 aco_ptr<Pseudo_branch_instruction> branch;
8651 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8652 BB_else_logical->instructions.emplace_back(std::move(branch));
8653 add_linear_edge(BB_else_logical->index, &ic->BB_endif);
8654 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8655 add_logical_edge(BB_else_logical->index, &ic->BB_endif);
8656 BB_else_logical->kind |= block_kind_uniform;
8657
8658 assert(!ctx->cf_info.has_branch);
8659 ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
8660
8661
8662 /** emit linear else block */
8663 Block* BB_else_linear = ctx->program->create_and_insert_block();
8664 BB_else_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8665 BB_else_linear->kind |= block_kind_uniform;
8666 add_linear_edge(ic->invert_idx, BB_else_linear);
8667
8668 /* branch from linear else block to endif block */
8669 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8670 BB_else_linear->instructions.emplace_back(std::move(branch));
8671 add_linear_edge(BB_else_linear->index, &ic->BB_endif);
8672
8673
8674 /** emit endif merge block */
8675 ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
8676 append_logical_start(ctx->block);
8677
8678
8679 ctx->cf_info.parent_if.is_divergent = ic->divergent_old;
8680 ctx->cf_info.exec_potentially_empty_discard |= ic->exec_potentially_empty_discard_old;
8681 ctx->cf_info.exec_potentially_empty_break |= ic->exec_potentially_empty_break_old;
8682 ctx->cf_info.exec_potentially_empty_break_depth =
8683 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
8684 if (ctx->cf_info.loop_nest_depth == ctx->cf_info.exec_potentially_empty_break_depth &&
8685 !ctx->cf_info.parent_if.is_divergent) {
8686 ctx->cf_info.exec_potentially_empty_break = false;
8687 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
8688 }
8689 /* uniform control flow never has an empty exec-mask */
8690 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent) {
8691 ctx->cf_info.exec_potentially_empty_discard = false;
8692 ctx->cf_info.exec_potentially_empty_break = false;
8693 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
8694 }
8695 }
8696
8697 static void visit_if(isel_context *ctx, nir_if *if_stmt)
8698 {
8699 Temp cond = get_ssa_temp(ctx, if_stmt->condition.ssa);
8700 Builder bld(ctx->program, ctx->block);
8701 aco_ptr<Pseudo_branch_instruction> branch;
8702
8703 if (!ctx->divergent_vals[if_stmt->condition.ssa->index]) { /* uniform condition */
8704 /**
8705 * Uniform conditionals are represented in the following way*) :
8706 *
8707 * The linear and logical CFG:
8708 * BB_IF
8709 * / \
8710 * BB_THEN (logical) BB_ELSE (logical)
8711 * \ /
8712 * BB_ENDIF
8713 *
8714 * *) Exceptions may be due to break and continue statements within loops
8715 * If a break/continue happens within uniform control flow, it branches
8716 * to the loop exit/entry block. Otherwise, it branches to the next
8717 * merge block.
8718 **/
8719 append_logical_end(ctx->block);
8720 ctx->block->kind |= block_kind_uniform;
8721
8722 /* emit branch */
8723 assert(cond.regClass() == bld.lm);
8724 // TODO: in a post-RA optimizer, we could check if the condition is in VCC and omit this instruction
8725 cond = bool_to_scalar_condition(ctx, cond);
8726
8727 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
8728 branch->operands[0] = Operand(cond);
8729 branch->operands[0].setFixed(scc);
8730 ctx->block->instructions.emplace_back(std::move(branch));
8731
8732 unsigned BB_if_idx = ctx->block->index;
8733 Block BB_endif = Block();
8734 BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
8735 BB_endif.kind |= ctx->block->kind & block_kind_top_level;
8736
8737 /** emit then block */
8738 Block* BB_then = ctx->program->create_and_insert_block();
8739 BB_then->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8740 add_edge(BB_if_idx, BB_then);
8741 append_logical_start(BB_then);
8742 ctx->block = BB_then;
8743 visit_cf_list(ctx, &if_stmt->then_list);
8744 BB_then = ctx->block;
8745 bool then_branch = ctx->cf_info.has_branch;
8746 bool then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
8747
8748 if (!then_branch) {
8749 append_logical_end(BB_then);
8750 /* branch from then block to endif block */
8751 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8752 BB_then->instructions.emplace_back(std::move(branch));
8753 add_linear_edge(BB_then->index, &BB_endif);
8754 if (!then_branch_divergent)
8755 add_logical_edge(BB_then->index, &BB_endif);
8756 BB_then->kind |= block_kind_uniform;
8757 }
8758
8759 ctx->cf_info.has_branch = false;
8760 ctx->cf_info.parent_loop.has_divergent_branch = false;
8761
8762 /** emit else block */
8763 Block* BB_else = ctx->program->create_and_insert_block();
8764 BB_else->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8765 add_edge(BB_if_idx, BB_else);
8766 append_logical_start(BB_else);
8767 ctx->block = BB_else;
8768 visit_cf_list(ctx, &if_stmt->else_list);
8769 BB_else = ctx->block;
8770
8771 if (!ctx->cf_info.has_branch) {
8772 append_logical_end(BB_else);
8773 /* branch from then block to endif block */
8774 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8775 BB_else->instructions.emplace_back(std::move(branch));
8776 add_linear_edge(BB_else->index, &BB_endif);
8777 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8778 add_logical_edge(BB_else->index, &BB_endif);
8779 BB_else->kind |= block_kind_uniform;
8780 }
8781
8782 ctx->cf_info.has_branch &= then_branch;
8783 ctx->cf_info.parent_loop.has_divergent_branch &= then_branch_divergent;
8784
8785 /** emit endif merge block */
8786 if (!ctx->cf_info.has_branch) {
8787 ctx->block = ctx->program->insert_block(std::move(BB_endif));
8788 append_logical_start(ctx->block);
8789 }
8790 } else { /* non-uniform condition */
8791 /**
8792 * To maintain a logical and linear CFG without critical edges,
8793 * non-uniform conditionals are represented in the following way*) :
8794 *
8795 * The linear CFG:
8796 * BB_IF
8797 * / \
8798 * BB_THEN (logical) BB_THEN (linear)
8799 * \ /
8800 * BB_INVERT (linear)
8801 * / \
8802 * BB_ELSE (logical) BB_ELSE (linear)
8803 * \ /
8804 * BB_ENDIF
8805 *
8806 * The logical CFG:
8807 * BB_IF
8808 * / \
8809 * BB_THEN (logical) BB_ELSE (logical)
8810 * \ /
8811 * BB_ENDIF
8812 *
8813 * *) Exceptions may be due to break and continue statements within loops
8814 **/
8815
8816 if_context ic;
8817
8818 begin_divergent_if_then(ctx, &ic, cond);
8819 visit_cf_list(ctx, &if_stmt->then_list);
8820
8821 begin_divergent_if_else(ctx, &ic);
8822 visit_cf_list(ctx, &if_stmt->else_list);
8823
8824 end_divergent_if(ctx, &ic);
8825 }
8826 }
8827
8828 static void visit_cf_list(isel_context *ctx,
8829 struct exec_list *list)
8830 {
8831 foreach_list_typed(nir_cf_node, node, node, list) {
8832 switch (node->type) {
8833 case nir_cf_node_block:
8834 visit_block(ctx, nir_cf_node_as_block(node));
8835 break;
8836 case nir_cf_node_if:
8837 visit_if(ctx, nir_cf_node_as_if(node));
8838 break;
8839 case nir_cf_node_loop:
8840 visit_loop(ctx, nir_cf_node_as_loop(node));
8841 break;
8842 default:
8843 unreachable("unimplemented cf list type");
8844 }
8845 }
8846 }
8847
8848 static void export_vs_varying(isel_context *ctx, int slot, bool is_pos, int *next_pos)
8849 {
8850 assert(ctx->stage == vertex_vs ||
8851 ctx->stage == tess_eval_vs ||
8852 ctx->stage == gs_copy_vs);
8853
8854 int offset = ctx->stage == tess_eval_vs
8855 ? ctx->program->info->tes.outinfo.vs_output_param_offset[slot]
8856 : ctx->program->info->vs.outinfo.vs_output_param_offset[slot];
8857 uint64_t mask = ctx->outputs.mask[slot];
8858 if (!is_pos && !mask)
8859 return;
8860 if (!is_pos && offset == AC_EXP_PARAM_UNDEFINED)
8861 return;
8862 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
8863 exp->enabled_mask = mask;
8864 for (unsigned i = 0; i < 4; ++i) {
8865 if (mask & (1 << i))
8866 exp->operands[i] = Operand(ctx->outputs.outputs[slot][i]);
8867 else
8868 exp->operands[i] = Operand(v1);
8869 }
8870 /* Navi10-14 skip POS0 exports if EXEC=0 and DONE=0, causing a hang.
8871 * Setting valid_mask=1 prevents it and has no other effect.
8872 */
8873 exp->valid_mask = ctx->options->chip_class >= GFX10 && is_pos && *next_pos == 0;
8874 exp->done = false;
8875 exp->compressed = false;
8876 if (is_pos)
8877 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
8878 else
8879 exp->dest = V_008DFC_SQ_EXP_PARAM + offset;
8880 ctx->block->instructions.emplace_back(std::move(exp));
8881 }
8882
8883 static void export_vs_psiz_layer_viewport(isel_context *ctx, int *next_pos)
8884 {
8885 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
8886 exp->enabled_mask = 0;
8887 for (unsigned i = 0; i < 4; ++i)
8888 exp->operands[i] = Operand(v1);
8889 if (ctx->outputs.mask[VARYING_SLOT_PSIZ]) {
8890 exp->operands[0] = Operand(ctx->outputs.outputs[VARYING_SLOT_PSIZ][0]);
8891 exp->enabled_mask |= 0x1;
8892 }
8893 if (ctx->outputs.mask[VARYING_SLOT_LAYER]) {
8894 exp->operands[2] = Operand(ctx->outputs.outputs[VARYING_SLOT_LAYER][0]);
8895 exp->enabled_mask |= 0x4;
8896 }
8897 if (ctx->outputs.mask[VARYING_SLOT_VIEWPORT]) {
8898 if (ctx->options->chip_class < GFX9) {
8899 exp->operands[3] = Operand(ctx->outputs.outputs[VARYING_SLOT_VIEWPORT][0]);
8900 exp->enabled_mask |= 0x8;
8901 } else {
8902 Builder bld(ctx->program, ctx->block);
8903
8904 Temp out = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u),
8905 Operand(ctx->outputs.outputs[VARYING_SLOT_VIEWPORT][0]));
8906 if (exp->operands[2].isTemp())
8907 out = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(out), exp->operands[2]);
8908
8909 exp->operands[2] = Operand(out);
8910 exp->enabled_mask |= 0x4;
8911 }
8912 }
8913 exp->valid_mask = ctx->options->chip_class >= GFX10 && *next_pos == 0;
8914 exp->done = false;
8915 exp->compressed = false;
8916 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
8917 ctx->block->instructions.emplace_back(std::move(exp));
8918 }
8919
8920 static void create_vs_exports(isel_context *ctx)
8921 {
8922 assert(ctx->stage == vertex_vs ||
8923 ctx->stage == tess_eval_vs ||
8924 ctx->stage == gs_copy_vs);
8925
8926 radv_vs_output_info *outinfo = ctx->stage == tess_eval_vs
8927 ? &ctx->program->info->tes.outinfo
8928 : &ctx->program->info->vs.outinfo;
8929
8930 if (outinfo->export_prim_id) {
8931 ctx->outputs.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
8932 ctx->outputs.outputs[VARYING_SLOT_PRIMITIVE_ID][0] = get_arg(ctx, ctx->args->vs_prim_id);
8933 }
8934
8935 if (ctx->options->key.has_multiview_view_index) {
8936 ctx->outputs.mask[VARYING_SLOT_LAYER] |= 0x1;
8937 ctx->outputs.outputs[VARYING_SLOT_LAYER][0] = as_vgpr(ctx, get_arg(ctx, ctx->args->ac.view_index));
8938 }
8939
8940 /* the order these position exports are created is important */
8941 int next_pos = 0;
8942 export_vs_varying(ctx, VARYING_SLOT_POS, true, &next_pos);
8943 if (outinfo->writes_pointsize || outinfo->writes_layer || outinfo->writes_viewport_index) {
8944 export_vs_psiz_layer_viewport(ctx, &next_pos);
8945 }
8946 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
8947 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, true, &next_pos);
8948 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
8949 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, true, &next_pos);
8950
8951 if (ctx->export_clip_dists) {
8952 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
8953 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, false, &next_pos);
8954 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
8955 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, false, &next_pos);
8956 }
8957
8958 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
8959 if (i < VARYING_SLOT_VAR0 && i != VARYING_SLOT_LAYER &&
8960 i != VARYING_SLOT_PRIMITIVE_ID)
8961 continue;
8962
8963 export_vs_varying(ctx, i, false, NULL);
8964 }
8965 }
8966
8967 static void export_fs_mrt_z(isel_context *ctx)
8968 {
8969 Builder bld(ctx->program, ctx->block);
8970 unsigned enabled_channels = 0;
8971 bool compr = false;
8972 Operand values[4];
8973
8974 for (unsigned i = 0; i < 4; ++i) {
8975 values[i] = Operand(v1);
8976 }
8977
8978 /* Both stencil and sample mask only need 16-bits. */
8979 if (!ctx->program->info->ps.writes_z &&
8980 (ctx->program->info->ps.writes_stencil ||
8981 ctx->program->info->ps.writes_sample_mask)) {
8982 compr = true; /* COMPR flag */
8983
8984 if (ctx->program->info->ps.writes_stencil) {
8985 /* Stencil should be in X[23:16]. */
8986 values[0] = Operand(ctx->outputs.outputs[FRAG_RESULT_STENCIL][0]);
8987 values[0] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u), values[0]);
8988 enabled_channels |= 0x3;
8989 }
8990
8991 if (ctx->program->info->ps.writes_sample_mask) {
8992 /* SampleMask should be in Y[15:0]. */
8993 values[1] = Operand(ctx->outputs.outputs[FRAG_RESULT_SAMPLE_MASK][0]);
8994 enabled_channels |= 0xc;
8995 }
8996 } else {
8997 if (ctx->program->info->ps.writes_z) {
8998 values[0] = Operand(ctx->outputs.outputs[FRAG_RESULT_DEPTH][0]);
8999 enabled_channels |= 0x1;
9000 }
9001
9002 if (ctx->program->info->ps.writes_stencil) {
9003 values[1] = Operand(ctx->outputs.outputs[FRAG_RESULT_STENCIL][0]);
9004 enabled_channels |= 0x2;
9005 }
9006
9007 if (ctx->program->info->ps.writes_sample_mask) {
9008 values[2] = Operand(ctx->outputs.outputs[FRAG_RESULT_SAMPLE_MASK][0]);
9009 enabled_channels |= 0x4;
9010 }
9011 }
9012
9013 /* GFX6 (except OLAND and HAINAN) has a bug that it only looks at the X
9014 * writemask component.
9015 */
9016 if (ctx->options->chip_class == GFX6 &&
9017 ctx->options->family != CHIP_OLAND &&
9018 ctx->options->family != CHIP_HAINAN) {
9019 enabled_channels |= 0x1;
9020 }
9021
9022 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
9023 enabled_channels, V_008DFC_SQ_EXP_MRTZ, compr);
9024 }
9025
9026 static void export_fs_mrt_color(isel_context *ctx, int slot)
9027 {
9028 Builder bld(ctx->program, ctx->block);
9029 unsigned write_mask = ctx->outputs.mask[slot];
9030 Operand values[4];
9031
9032 for (unsigned i = 0; i < 4; ++i) {
9033 if (write_mask & (1 << i)) {
9034 values[i] = Operand(ctx->outputs.outputs[slot][i]);
9035 } else {
9036 values[i] = Operand(v1);
9037 }
9038 }
9039
9040 unsigned target, col_format;
9041 unsigned enabled_channels = 0;
9042 aco_opcode compr_op = (aco_opcode)0;
9043
9044 slot -= FRAG_RESULT_DATA0;
9045 target = V_008DFC_SQ_EXP_MRT + slot;
9046 col_format = (ctx->options->key.fs.col_format >> (4 * slot)) & 0xf;
9047
9048 bool is_int8 = (ctx->options->key.fs.is_int8 >> slot) & 1;
9049 bool is_int10 = (ctx->options->key.fs.is_int10 >> slot) & 1;
9050
9051 switch (col_format)
9052 {
9053 case V_028714_SPI_SHADER_ZERO:
9054 enabled_channels = 0; /* writemask */
9055 target = V_008DFC_SQ_EXP_NULL;
9056 break;
9057
9058 case V_028714_SPI_SHADER_32_R:
9059 enabled_channels = 1;
9060 break;
9061
9062 case V_028714_SPI_SHADER_32_GR:
9063 enabled_channels = 0x3;
9064 break;
9065
9066 case V_028714_SPI_SHADER_32_AR:
9067 if (ctx->options->chip_class >= GFX10) {
9068 /* Special case: on GFX10, the outputs are different for 32_AR */
9069 enabled_channels = 0x3;
9070 values[1] = values[3];
9071 values[3] = Operand(v1);
9072 } else {
9073 enabled_channels = 0x9;
9074 }
9075 break;
9076
9077 case V_028714_SPI_SHADER_FP16_ABGR:
9078 enabled_channels = 0x5;
9079 compr_op = aco_opcode::v_cvt_pkrtz_f16_f32;
9080 break;
9081
9082 case V_028714_SPI_SHADER_UNORM16_ABGR:
9083 enabled_channels = 0x5;
9084 compr_op = aco_opcode::v_cvt_pknorm_u16_f32;
9085 break;
9086
9087 case V_028714_SPI_SHADER_SNORM16_ABGR:
9088 enabled_channels = 0x5;
9089 compr_op = aco_opcode::v_cvt_pknorm_i16_f32;
9090 break;
9091
9092 case V_028714_SPI_SHADER_UINT16_ABGR: {
9093 enabled_channels = 0x5;
9094 compr_op = aco_opcode::v_cvt_pk_u16_u32;
9095 if (is_int8 || is_int10) {
9096 /* clamp */
9097 uint32_t max_rgb = is_int8 ? 255 : is_int10 ? 1023 : 0;
9098 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
9099
9100 for (unsigned i = 0; i < 4; i++) {
9101 if ((write_mask >> i) & 1) {
9102 values[i] = bld.vop2(aco_opcode::v_min_u32, bld.def(v1),
9103 i == 3 && is_int10 ? Operand(3u) : Operand(max_rgb_val),
9104 values[i]);
9105 }
9106 }
9107 }
9108 break;
9109 }
9110
9111 case V_028714_SPI_SHADER_SINT16_ABGR:
9112 enabled_channels = 0x5;
9113 compr_op = aco_opcode::v_cvt_pk_i16_i32;
9114 if (is_int8 || is_int10) {
9115 /* clamp */
9116 uint32_t max_rgb = is_int8 ? 127 : is_int10 ? 511 : 0;
9117 uint32_t min_rgb = is_int8 ? -128 :is_int10 ? -512 : 0;
9118 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
9119 Temp min_rgb_val = bld.copy(bld.def(s1), Operand(min_rgb));
9120
9121 for (unsigned i = 0; i < 4; i++) {
9122 if ((write_mask >> i) & 1) {
9123 values[i] = bld.vop2(aco_opcode::v_min_i32, bld.def(v1),
9124 i == 3 && is_int10 ? Operand(1u) : Operand(max_rgb_val),
9125 values[i]);
9126 values[i] = bld.vop2(aco_opcode::v_max_i32, bld.def(v1),
9127 i == 3 && is_int10 ? Operand(-2u) : Operand(min_rgb_val),
9128 values[i]);
9129 }
9130 }
9131 }
9132 break;
9133
9134 case V_028714_SPI_SHADER_32_ABGR:
9135 enabled_channels = 0xF;
9136 break;
9137
9138 default:
9139 break;
9140 }
9141
9142 if (target == V_008DFC_SQ_EXP_NULL)
9143 return;
9144
9145 if ((bool) compr_op) {
9146 for (int i = 0; i < 2; i++) {
9147 /* check if at least one of the values to be compressed is enabled */
9148 unsigned enabled = (write_mask >> (i*2) | write_mask >> (i*2+1)) & 0x1;
9149 if (enabled) {
9150 enabled_channels |= enabled << (i*2);
9151 values[i] = bld.vop3(compr_op, bld.def(v1),
9152 values[i*2].isUndefined() ? Operand(0u) : values[i*2],
9153 values[i*2+1].isUndefined() ? Operand(0u): values[i*2+1]);
9154 } else {
9155 values[i] = Operand(v1);
9156 }
9157 }
9158 values[2] = Operand(v1);
9159 values[3] = Operand(v1);
9160 } else {
9161 for (int i = 0; i < 4; i++)
9162 values[i] = enabled_channels & (1 << i) ? values[i] : Operand(v1);
9163 }
9164
9165 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
9166 enabled_channels, target, (bool) compr_op);
9167 }
9168
9169 static void create_fs_exports(isel_context *ctx)
9170 {
9171 /* Export depth, stencil and sample mask. */
9172 if (ctx->outputs.mask[FRAG_RESULT_DEPTH] ||
9173 ctx->outputs.mask[FRAG_RESULT_STENCIL] ||
9174 ctx->outputs.mask[FRAG_RESULT_SAMPLE_MASK]) {
9175 export_fs_mrt_z(ctx);
9176 }
9177
9178 /* Export all color render targets. */
9179 for (unsigned i = FRAG_RESULT_DATA0; i < FRAG_RESULT_DATA7 + 1; ++i) {
9180 if (ctx->outputs.mask[i])
9181 export_fs_mrt_color(ctx, i);
9182 }
9183 }
9184
9185 static void write_tcs_tess_factors(isel_context *ctx)
9186 {
9187 unsigned outer_comps;
9188 unsigned inner_comps;
9189
9190 switch (ctx->args->options->key.tcs.primitive_mode) {
9191 case GL_ISOLINES:
9192 outer_comps = 2;
9193 inner_comps = 0;
9194 break;
9195 case GL_TRIANGLES:
9196 outer_comps = 3;
9197 inner_comps = 1;
9198 break;
9199 case GL_QUADS:
9200 outer_comps = 4;
9201 inner_comps = 2;
9202 break;
9203 default:
9204 return;
9205 }
9206
9207 const unsigned tess_index_inner = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_INNER);
9208 const unsigned tess_index_outer = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_OUTER);
9209
9210 Builder bld(ctx->program, ctx->block);
9211
9212 bld.barrier(aco_opcode::p_memory_barrier_shared);
9213 unsigned workgroup_size = ctx->tcs_num_patches * ctx->shader->info.tess.tcs_vertices_out;
9214 if (unlikely(ctx->program->chip_class != GFX6 && workgroup_size > ctx->program->wave_size))
9215 bld.sopp(aco_opcode::s_barrier);
9216
9217 Temp tcs_rel_ids = get_arg(ctx, ctx->args->ac.tcs_rel_ids);
9218 Temp invocation_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), tcs_rel_ids, Operand(8u), Operand(5u));
9219
9220 Temp invocation_id_is_zero = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), invocation_id);
9221 if_context ic_invocation_id_is_zero;
9222 begin_divergent_if_then(ctx, &ic_invocation_id_is_zero, invocation_id_is_zero);
9223 bld.reset(ctx->block);
9224
9225 Temp hs_ring_tess_factor = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_FACTOR * 16u));
9226
9227 std::pair<Temp, unsigned> lds_base = get_tcs_output_lds_offset(ctx);
9228 unsigned stride = inner_comps + outer_comps;
9229 Temp inner[4];
9230 Temp outer[4];
9231 Temp out[6];
9232 assert(inner_comps <= (sizeof(inner) / sizeof(Temp)));
9233 assert(outer_comps <= (sizeof(outer) / sizeof(Temp)));
9234 assert(stride <= (sizeof(out) / sizeof(Temp)));
9235
9236 if (ctx->args->options->key.tcs.primitive_mode == GL_ISOLINES) {
9237 // LINES reversal
9238 outer[0] = out[1] = load_lds(ctx, 4, bld.tmp(v1), lds_base.first, lds_base.second + tess_index_outer * 16 + 0 * 4, 4);
9239 outer[1] = out[0] = load_lds(ctx, 4, bld.tmp(v1), lds_base.first, lds_base.second + tess_index_outer * 16 + 1 * 4, 4);
9240 } else {
9241 for (unsigned i = 0; i < outer_comps; ++i)
9242 outer[i] = out[i] = load_lds(ctx, 4, bld.tmp(v1), lds_base.first, lds_base.second + tess_index_outer * 16 + i * 4, 4);
9243
9244 for (unsigned i = 0; i < inner_comps; ++i)
9245 inner[i] = out[outer_comps + i] = load_lds(ctx, 4, bld.tmp(v1), lds_base.first, lds_base.second + tess_index_inner * 16 + i * 4, 4);
9246 }
9247
9248 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
9249 Temp tf_base = get_arg(ctx, ctx->args->tess_factor_offset);
9250 Temp byte_offset = bld.v_mul_imm(bld.def(v1), rel_patch_id, stride * 4u);
9251 unsigned tf_const_offset = 0;
9252
9253 if (ctx->program->chip_class <= GFX8) {
9254 Temp rel_patch_id_is_zero = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), rel_patch_id);
9255 if_context ic_rel_patch_id_is_zero;
9256 begin_divergent_if_then(ctx, &ic_rel_patch_id_is_zero, rel_patch_id_is_zero);
9257 bld.reset(ctx->block);
9258
9259 /* Store the dynamic HS control word. */
9260 Temp control_word = bld.copy(bld.def(v1), Operand(0x80000000u));
9261 bld.mubuf(aco_opcode::buffer_store_dword,
9262 /* SRSRC */ hs_ring_tess_factor, /* VADDR */ Operand(v1), /* SOFFSET */ tf_base, /* VDATA */ control_word,
9263 /* immediate OFFSET */ 0, /* OFFEN */ false, /* idxen*/ false, /* addr64 */ false,
9264 /* disable_wqm */ false, /* glc */ true);
9265 tf_const_offset += 4;
9266
9267 begin_divergent_if_else(ctx, &ic_rel_patch_id_is_zero);
9268 end_divergent_if(ctx, &ic_rel_patch_id_is_zero);
9269 bld.reset(ctx->block);
9270 }
9271
9272 assert(stride == 2 || stride == 4 || stride == 6);
9273 Temp tf_vec = create_vec_from_array(ctx, out, stride, RegType::vgpr);
9274 store_vmem_mubuf(ctx, tf_vec, hs_ring_tess_factor, byte_offset, tf_base, tf_const_offset, 4, (1 << stride) - 1, true, false);
9275
9276 begin_divergent_if_else(ctx, &ic_invocation_id_is_zero);
9277 end_divergent_if(ctx, &ic_invocation_id_is_zero);
9278 }
9279
9280 static void emit_stream_output(isel_context *ctx,
9281 Temp const *so_buffers,
9282 Temp const *so_write_offset,
9283 const struct radv_stream_output *output)
9284 {
9285 unsigned num_comps = util_bitcount(output->component_mask);
9286 unsigned writemask = (1 << num_comps) - 1;
9287 unsigned loc = output->location;
9288 unsigned buf = output->buffer;
9289
9290 assert(num_comps && num_comps <= 4);
9291 if (!num_comps || num_comps > 4)
9292 return;
9293
9294 unsigned start = ffs(output->component_mask) - 1;
9295
9296 Temp out[4];
9297 bool all_undef = true;
9298 assert(ctx->stage == vertex_vs || ctx->stage == gs_copy_vs);
9299 for (unsigned i = 0; i < num_comps; i++) {
9300 out[i] = ctx->outputs.outputs[loc][start + i];
9301 all_undef = all_undef && !out[i].id();
9302 }
9303 if (all_undef)
9304 return;
9305
9306 while (writemask) {
9307 int start, count;
9308 u_bit_scan_consecutive_range(&writemask, &start, &count);
9309 if (count == 3 && ctx->options->chip_class == GFX6) {
9310 /* GFX6 doesn't support storing vec3, split it. */
9311 writemask |= 1u << (start + 2);
9312 count = 2;
9313 }
9314
9315 unsigned offset = output->offset + start * 4;
9316
9317 Temp write_data = {ctx->program->allocateId(), RegClass(RegType::vgpr, count)};
9318 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
9319 for (int i = 0; i < count; ++i)
9320 vec->operands[i] = (ctx->outputs.mask[loc] & 1 << (start + i)) ? Operand(out[start + i]) : Operand(0u);
9321 vec->definitions[0] = Definition(write_data);
9322 ctx->block->instructions.emplace_back(std::move(vec));
9323
9324 aco_opcode opcode;
9325 switch (count) {
9326 case 1:
9327 opcode = aco_opcode::buffer_store_dword;
9328 break;
9329 case 2:
9330 opcode = aco_opcode::buffer_store_dwordx2;
9331 break;
9332 case 3:
9333 opcode = aco_opcode::buffer_store_dwordx3;
9334 break;
9335 case 4:
9336 opcode = aco_opcode::buffer_store_dwordx4;
9337 break;
9338 default:
9339 unreachable("Unsupported dword count.");
9340 }
9341
9342 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
9343 store->operands[0] = Operand(so_buffers[buf]);
9344 store->operands[1] = Operand(so_write_offset[buf]);
9345 store->operands[2] = Operand((uint32_t) 0);
9346 store->operands[3] = Operand(write_data);
9347 if (offset > 4095) {
9348 /* Don't think this can happen in RADV, but maybe GL? It's easy to do this anyway. */
9349 Builder bld(ctx->program, ctx->block);
9350 store->operands[0] = bld.vadd32(bld.def(v1), Operand(offset), Operand(so_write_offset[buf]));
9351 } else {
9352 store->offset = offset;
9353 }
9354 store->offen = true;
9355 store->glc = true;
9356 store->dlc = false;
9357 store->slc = true;
9358 store->can_reorder = true;
9359 ctx->block->instructions.emplace_back(std::move(store));
9360 }
9361 }
9362
9363 static void emit_streamout(isel_context *ctx, unsigned stream)
9364 {
9365 Builder bld(ctx->program, ctx->block);
9366
9367 Temp so_buffers[4];
9368 Temp buf_ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->streamout_buffers));
9369 for (unsigned i = 0; i < 4; i++) {
9370 unsigned stride = ctx->program->info->so.strides[i];
9371 if (!stride)
9372 continue;
9373
9374 Operand off = bld.copy(bld.def(s1), Operand(i * 16u));
9375 so_buffers[i] = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), buf_ptr, off);
9376 }
9377
9378 Temp so_vtx_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
9379 get_arg(ctx, ctx->args->streamout_config), Operand(0x70010u));
9380
9381 Temp tid = emit_mbcnt(ctx, bld.def(v1));
9382
9383 Temp can_emit = bld.vopc(aco_opcode::v_cmp_gt_i32, bld.def(bld.lm), so_vtx_count, tid);
9384
9385 if_context ic;
9386 begin_divergent_if_then(ctx, &ic, can_emit);
9387
9388 bld.reset(ctx->block);
9389
9390 Temp so_write_index = bld.vadd32(bld.def(v1), get_arg(ctx, ctx->args->streamout_write_idx), tid);
9391
9392 Temp so_write_offset[4];
9393
9394 for (unsigned i = 0; i < 4; i++) {
9395 unsigned stride = ctx->program->info->so.strides[i];
9396 if (!stride)
9397 continue;
9398
9399 if (stride == 1) {
9400 Temp offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
9401 get_arg(ctx, ctx->args->streamout_write_idx),
9402 get_arg(ctx, ctx->args->streamout_offset[i]));
9403 Temp new_offset = bld.vadd32(bld.def(v1), offset, tid);
9404
9405 so_write_offset[i] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), new_offset);
9406 } else {
9407 Temp offset = bld.v_mul_imm(bld.def(v1), so_write_index, stride * 4u);
9408 Temp offset2 = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(4u),
9409 get_arg(ctx, ctx->args->streamout_offset[i]));
9410 so_write_offset[i] = bld.vadd32(bld.def(v1), offset, offset2);
9411 }
9412 }
9413
9414 for (unsigned i = 0; i < ctx->program->info->so.num_outputs; i++) {
9415 struct radv_stream_output *output =
9416 &ctx->program->info->so.outputs[i];
9417 if (stream != output->stream)
9418 continue;
9419
9420 emit_stream_output(ctx, so_buffers, so_write_offset, output);
9421 }
9422
9423 begin_divergent_if_else(ctx, &ic);
9424 end_divergent_if(ctx, &ic);
9425 }
9426
9427 } /* end namespace */
9428
9429 void fix_ls_vgpr_init_bug(isel_context *ctx, Pseudo_instruction *startpgm)
9430 {
9431 assert(ctx->shader->info.stage == MESA_SHADER_VERTEX);
9432 Builder bld(ctx->program, ctx->block);
9433 constexpr unsigned hs_idx = 1u;
9434 Builder::Result hs_thread_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
9435 get_arg(ctx, ctx->args->merged_wave_info),
9436 Operand((8u << 16) | (hs_idx * 8u)));
9437 Temp ls_has_nonzero_hs_threads = bool_to_vector_condition(ctx, hs_thread_count.def(1).getTemp());
9438
9439 /* If there are no HS threads, SPI mistakenly loads the LS VGPRs starting at VGPR 0. */
9440
9441 Temp instance_id = bld.sop2(aco_opcode::v_cndmask_b32, bld.def(v1),
9442 get_arg(ctx, ctx->args->ac.instance_id),
9443 get_arg(ctx, ctx->args->rel_auto_id),
9444 ls_has_nonzero_hs_threads);
9445 Temp rel_auto_id = bld.sop2(aco_opcode::v_cndmask_b32, bld.def(v1),
9446 get_arg(ctx, ctx->args->rel_auto_id),
9447 get_arg(ctx, ctx->args->ac.tcs_rel_ids),
9448 ls_has_nonzero_hs_threads);
9449 Temp vertex_id = bld.sop2(aco_opcode::v_cndmask_b32, bld.def(v1),
9450 get_arg(ctx, ctx->args->ac.vertex_id),
9451 get_arg(ctx, ctx->args->ac.tcs_patch_id),
9452 ls_has_nonzero_hs_threads);
9453
9454 ctx->arg_temps[ctx->args->ac.instance_id.arg_index] = instance_id;
9455 ctx->arg_temps[ctx->args->rel_auto_id.arg_index] = rel_auto_id;
9456 ctx->arg_temps[ctx->args->ac.vertex_id.arg_index] = vertex_id;
9457 }
9458
9459 void split_arguments(isel_context *ctx, Pseudo_instruction *startpgm)
9460 {
9461 /* Split all arguments except for the first (ring_offsets) and the last
9462 * (exec) so that the dead channels don't stay live throughout the program.
9463 */
9464 for (int i = 1; i < startpgm->definitions.size() - 1; i++) {
9465 if (startpgm->definitions[i].regClass().size() > 1) {
9466 emit_split_vector(ctx, startpgm->definitions[i].getTemp(),
9467 startpgm->definitions[i].regClass().size());
9468 }
9469 }
9470 }
9471
9472 void handle_bc_optimize(isel_context *ctx)
9473 {
9474 /* needed when SPI_PS_IN_CONTROL.BC_OPTIMIZE_DISABLE is set to 0 */
9475 Builder bld(ctx->program, ctx->block);
9476 uint32_t spi_ps_input_ena = ctx->program->config->spi_ps_input_ena;
9477 bool uses_center = G_0286CC_PERSP_CENTER_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTER_ENA(spi_ps_input_ena);
9478 bool uses_centroid = G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena);
9479 ctx->persp_centroid = get_arg(ctx, ctx->args->ac.persp_centroid);
9480 ctx->linear_centroid = get_arg(ctx, ctx->args->ac.linear_centroid);
9481 if (uses_center && uses_centroid) {
9482 Temp sel = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)),
9483 get_arg(ctx, ctx->args->ac.prim_mask), Operand(0u));
9484
9485 if (G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena)) {
9486 Temp new_coord[2];
9487 for (unsigned i = 0; i < 2; i++) {
9488 Temp persp_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_centroid), i, v1);
9489 Temp persp_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_center), i, v1);
9490 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
9491 persp_centroid, persp_center, sel);
9492 }
9493 ctx->persp_centroid = bld.tmp(v2);
9494 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->persp_centroid),
9495 Operand(new_coord[0]), Operand(new_coord[1]));
9496 emit_split_vector(ctx, ctx->persp_centroid, 2);
9497 }
9498
9499 if (G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena)) {
9500 Temp new_coord[2];
9501 for (unsigned i = 0; i < 2; i++) {
9502 Temp linear_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_centroid), i, v1);
9503 Temp linear_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_center), i, v1);
9504 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
9505 linear_centroid, linear_center, sel);
9506 }
9507 ctx->linear_centroid = bld.tmp(v2);
9508 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->linear_centroid),
9509 Operand(new_coord[0]), Operand(new_coord[1]));
9510 emit_split_vector(ctx, ctx->linear_centroid, 2);
9511 }
9512 }
9513 }
9514
9515 void setup_fp_mode(isel_context *ctx, nir_shader *shader)
9516 {
9517 Program *program = ctx->program;
9518
9519 unsigned float_controls = shader->info.float_controls_execution_mode;
9520
9521 program->next_fp_mode.preserve_signed_zero_inf_nan32 =
9522 float_controls & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32;
9523 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 =
9524 float_controls & (FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16 |
9525 FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64);
9526
9527 program->next_fp_mode.must_flush_denorms32 =
9528 float_controls & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32;
9529 program->next_fp_mode.must_flush_denorms16_64 =
9530 float_controls & (FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 |
9531 FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64);
9532
9533 program->next_fp_mode.care_about_round32 =
9534 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32);
9535
9536 program->next_fp_mode.care_about_round16_64 =
9537 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64 |
9538 FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
9539
9540 /* default to preserving fp16 and fp64 denorms, since it's free */
9541 if (program->next_fp_mode.must_flush_denorms16_64)
9542 program->next_fp_mode.denorm16_64 = 0;
9543 else
9544 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
9545
9546 /* preserving fp32 denorms is expensive, so only do it if asked */
9547 if (float_controls & FLOAT_CONTROLS_DENORM_PRESERVE_FP32)
9548 program->next_fp_mode.denorm32 = fp_denorm_keep;
9549 else
9550 program->next_fp_mode.denorm32 = 0;
9551
9552 if (float_controls & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32)
9553 program->next_fp_mode.round32 = fp_round_tz;
9554 else
9555 program->next_fp_mode.round32 = fp_round_ne;
9556
9557 if (float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64))
9558 program->next_fp_mode.round16_64 = fp_round_tz;
9559 else
9560 program->next_fp_mode.round16_64 = fp_round_ne;
9561
9562 ctx->block->fp_mode = program->next_fp_mode;
9563 }
9564
9565 void cleanup_cfg(Program *program)
9566 {
9567 /* create linear_succs/logical_succs */
9568 for (Block& BB : program->blocks) {
9569 for (unsigned idx : BB.linear_preds)
9570 program->blocks[idx].linear_succs.emplace_back(BB.index);
9571 for (unsigned idx : BB.logical_preds)
9572 program->blocks[idx].logical_succs.emplace_back(BB.index);
9573 }
9574 }
9575
9576 void select_program(Program *program,
9577 unsigned shader_count,
9578 struct nir_shader *const *shaders,
9579 ac_shader_config* config,
9580 struct radv_shader_args *args)
9581 {
9582 isel_context ctx = setup_isel_context(program, shader_count, shaders, config, args, false);
9583
9584 for (unsigned i = 0; i < shader_count; i++) {
9585 nir_shader *nir = shaders[i];
9586 init_context(&ctx, nir);
9587
9588 setup_fp_mode(&ctx, nir);
9589
9590 if (!i) {
9591 /* needs to be after init_context() for FS */
9592 Pseudo_instruction *startpgm = add_startpgm(&ctx);
9593 append_logical_start(ctx.block);
9594
9595 if (unlikely(args->options->has_ls_vgpr_init_bug && ctx.stage == vertex_tess_control_hs))
9596 fix_ls_vgpr_init_bug(&ctx, startpgm);
9597
9598 split_arguments(&ctx, startpgm);
9599 }
9600
9601 if_context ic;
9602 if (shader_count >= 2) {
9603 Builder bld(ctx.program, ctx.block);
9604 Temp count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(&ctx, args->merged_wave_info), Operand((8u << 16) | (i * 8u)));
9605 Temp thread_id = emit_mbcnt(&ctx, bld.def(v1));
9606 Temp cond = bld.vopc(aco_opcode::v_cmp_gt_u32, bld.hint_vcc(bld.def(bld.lm)), count, thread_id);
9607
9608 begin_divergent_if_then(&ctx, &ic, cond);
9609 }
9610
9611 if (i) {
9612 Builder bld(ctx.program, ctx.block);
9613
9614 bld.barrier(aco_opcode::p_memory_barrier_shared);
9615 bld.sopp(aco_opcode::s_barrier);
9616
9617 if (ctx.stage == vertex_geometry_gs || ctx.stage == tess_eval_geometry_gs) {
9618 ctx.gs_wave_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1, m0), bld.def(s1, scc), get_arg(&ctx, args->merged_wave_info), Operand((8u << 16) | 16u));
9619 }
9620 } else if (ctx.stage == geometry_gs)
9621 ctx.gs_wave_id = get_arg(&ctx, args->gs_wave_id);
9622
9623 if (ctx.stage == fragment_fs)
9624 handle_bc_optimize(&ctx);
9625
9626 nir_function_impl *func = nir_shader_get_entrypoint(nir);
9627 visit_cf_list(&ctx, &func->body);
9628
9629 if (ctx.program->info->so.num_outputs && (ctx.stage == vertex_vs || ctx.stage == tess_eval_vs))
9630 emit_streamout(&ctx, 0);
9631
9632 if (ctx.stage == vertex_vs || ctx.stage == tess_eval_vs) {
9633 create_vs_exports(&ctx);
9634 } else if (nir->info.stage == MESA_SHADER_GEOMETRY) {
9635 Builder bld(ctx.program, ctx.block);
9636 bld.barrier(aco_opcode::p_memory_barrier_gs_data);
9637 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx.gs_wave_id), -1, sendmsg_gs_done(false, false, 0));
9638 } else if (nir->info.stage == MESA_SHADER_TESS_CTRL) {
9639 write_tcs_tess_factors(&ctx);
9640 }
9641
9642 if (ctx.stage == fragment_fs)
9643 create_fs_exports(&ctx);
9644
9645 if (shader_count >= 2) {
9646 begin_divergent_if_else(&ctx, &ic);
9647 end_divergent_if(&ctx, &ic);
9648 }
9649
9650 ralloc_free(ctx.divergent_vals);
9651 }
9652
9653 program->config->float_mode = program->blocks[0].fp_mode.val;
9654
9655 append_logical_end(ctx.block);
9656 ctx.block->kind |= block_kind_uniform | block_kind_export_end;
9657 Builder bld(ctx.program, ctx.block);
9658 if (ctx.program->wb_smem_l1_on_end)
9659 bld.smem(aco_opcode::s_dcache_wb, false);
9660 bld.sopp(aco_opcode::s_endpgm);
9661
9662 cleanup_cfg(program);
9663 }
9664
9665 void select_gs_copy_shader(Program *program, struct nir_shader *gs_shader,
9666 ac_shader_config* config,
9667 struct radv_shader_args *args)
9668 {
9669 isel_context ctx = setup_isel_context(program, 1, &gs_shader, config, args, true);
9670
9671 program->next_fp_mode.preserve_signed_zero_inf_nan32 = false;
9672 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 = false;
9673 program->next_fp_mode.must_flush_denorms32 = false;
9674 program->next_fp_mode.must_flush_denorms16_64 = false;
9675 program->next_fp_mode.care_about_round32 = false;
9676 program->next_fp_mode.care_about_round16_64 = false;
9677 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
9678 program->next_fp_mode.denorm32 = 0;
9679 program->next_fp_mode.round32 = fp_round_ne;
9680 program->next_fp_mode.round16_64 = fp_round_ne;
9681 ctx.block->fp_mode = program->next_fp_mode;
9682
9683 add_startpgm(&ctx);
9684 append_logical_start(ctx.block);
9685
9686 Builder bld(ctx.program, ctx.block);
9687
9688 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), program->private_segment_buffer, Operand(RING_GSVS_VS * 16u));
9689
9690 Operand stream_id(0u);
9691 if (args->shader_info->so.num_outputs)
9692 stream_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
9693 get_arg(&ctx, ctx.args->streamout_config), Operand(0x20018u));
9694
9695 Temp vtx_offset = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), get_arg(&ctx, ctx.args->ac.vertex_id));
9696
9697 std::stack<Block> endif_blocks;
9698
9699 for (unsigned stream = 0; stream < 4; stream++) {
9700 if (stream_id.isConstant() && stream != stream_id.constantValue())
9701 continue;
9702
9703 unsigned num_components = args->shader_info->gs.num_stream_output_components[stream];
9704 if (stream > 0 && (!num_components || !args->shader_info->so.num_outputs))
9705 continue;
9706
9707 memset(ctx.outputs.mask, 0, sizeof(ctx.outputs.mask));
9708
9709 unsigned BB_if_idx = ctx.block->index;
9710 Block BB_endif = Block();
9711 if (!stream_id.isConstant()) {
9712 /* begin IF */
9713 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), stream_id, Operand(stream));
9714 append_logical_end(ctx.block);
9715 ctx.block->kind |= block_kind_uniform;
9716 bld.branch(aco_opcode::p_cbranch_z, cond);
9717
9718 BB_endif.kind |= ctx.block->kind & block_kind_top_level;
9719
9720 ctx.block = ctx.program->create_and_insert_block();
9721 add_edge(BB_if_idx, ctx.block);
9722 bld.reset(ctx.block);
9723 append_logical_start(ctx.block);
9724 }
9725
9726 unsigned offset = 0;
9727 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
9728 if (args->shader_info->gs.output_streams[i] != stream)
9729 continue;
9730
9731 unsigned output_usage_mask = args->shader_info->gs.output_usage_mask[i];
9732 unsigned length = util_last_bit(output_usage_mask);
9733 for (unsigned j = 0; j < length; ++j) {
9734 if (!(output_usage_mask & (1 << j)))
9735 continue;
9736
9737 unsigned const_offset = offset * args->shader_info->gs.vertices_out * 16 * 4;
9738 Temp voffset = vtx_offset;
9739 if (const_offset >= 4096u) {
9740 voffset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), voffset);
9741 const_offset %= 4096u;
9742 }
9743
9744 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dword, Format::MUBUF, 3, 1)};
9745 mubuf->definitions[0] = bld.def(v1);
9746 mubuf->operands[0] = Operand(gsvs_ring);
9747 mubuf->operands[1] = Operand(voffset);
9748 mubuf->operands[2] = Operand(0u);
9749 mubuf->offen = true;
9750 mubuf->offset = const_offset;
9751 mubuf->glc = true;
9752 mubuf->slc = true;
9753 mubuf->dlc = args->options->chip_class >= GFX10;
9754 mubuf->barrier = barrier_none;
9755 mubuf->can_reorder = true;
9756
9757 ctx.outputs.mask[i] |= 1 << j;
9758 ctx.outputs.outputs[i][j] = mubuf->definitions[0].getTemp();
9759
9760 bld.insert(std::move(mubuf));
9761
9762 offset++;
9763 }
9764 }
9765
9766 if (args->shader_info->so.num_outputs) {
9767 emit_streamout(&ctx, stream);
9768 bld.reset(ctx.block);
9769 }
9770
9771 if (stream == 0) {
9772 create_vs_exports(&ctx);
9773 ctx.block->kind |= block_kind_export_end;
9774 }
9775
9776 if (!stream_id.isConstant()) {
9777 append_logical_end(ctx.block);
9778
9779 /* branch from then block to endif block */
9780 bld.branch(aco_opcode::p_branch);
9781 add_edge(ctx.block->index, &BB_endif);
9782 ctx.block->kind |= block_kind_uniform;
9783
9784 /* emit else block */
9785 ctx.block = ctx.program->create_and_insert_block();
9786 add_edge(BB_if_idx, ctx.block);
9787 bld.reset(ctx.block);
9788 append_logical_start(ctx.block);
9789
9790 endif_blocks.push(std::move(BB_endif));
9791 }
9792 }
9793
9794 while (!endif_blocks.empty()) {
9795 Block BB_endif = std::move(endif_blocks.top());
9796 endif_blocks.pop();
9797
9798 Block *BB_else = ctx.block;
9799
9800 append_logical_end(BB_else);
9801 /* branch from else block to endif block */
9802 bld.branch(aco_opcode::p_branch);
9803 add_edge(BB_else->index, &BB_endif);
9804 BB_else->kind |= block_kind_uniform;
9805
9806 /** emit endif merge block */
9807 ctx.block = program->insert_block(std::move(BB_endif));
9808 bld.reset(ctx.block);
9809 append_logical_start(ctx.block);
9810 }
9811
9812 program->config->float_mode = program->blocks[0].fp_mode.val;
9813
9814 append_logical_end(ctx.block);
9815 ctx.block->kind |= block_kind_uniform;
9816 bld.sopp(aco_opcode::s_endpgm);
9817
9818 cleanup_cfg(program);
9819 }
9820 }