aco: fix instruction encoding for LS VGPR init bug workaround
[mesa.git] / src / amd / compiler / aco_instruction_selection.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 * Copyright © 2018 Google
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <algorithm>
27 #include <array>
28 #include <stack>
29 #include <map>
30
31 #include "ac_shader_util.h"
32 #include "aco_ir.h"
33 #include "aco_builder.h"
34 #include "aco_interface.h"
35 #include "aco_instruction_selection_setup.cpp"
36 #include "util/fast_idiv_by_const.h"
37
38 namespace aco {
39 namespace {
40
41 class loop_info_RAII {
42 isel_context* ctx;
43 unsigned header_idx_old;
44 Block* exit_old;
45 bool divergent_cont_old;
46 bool divergent_branch_old;
47 bool divergent_if_old;
48
49 public:
50 loop_info_RAII(isel_context* ctx, unsigned loop_header_idx, Block* loop_exit)
51 : ctx(ctx),
52 header_idx_old(ctx->cf_info.parent_loop.header_idx), exit_old(ctx->cf_info.parent_loop.exit),
53 divergent_cont_old(ctx->cf_info.parent_loop.has_divergent_continue),
54 divergent_branch_old(ctx->cf_info.parent_loop.has_divergent_branch),
55 divergent_if_old(ctx->cf_info.parent_if.is_divergent)
56 {
57 ctx->cf_info.parent_loop.header_idx = loop_header_idx;
58 ctx->cf_info.parent_loop.exit = loop_exit;
59 ctx->cf_info.parent_loop.has_divergent_continue = false;
60 ctx->cf_info.parent_loop.has_divergent_branch = false;
61 ctx->cf_info.parent_if.is_divergent = false;
62 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
63 }
64
65 ~loop_info_RAII()
66 {
67 ctx->cf_info.parent_loop.header_idx = header_idx_old;
68 ctx->cf_info.parent_loop.exit = exit_old;
69 ctx->cf_info.parent_loop.has_divergent_continue = divergent_cont_old;
70 ctx->cf_info.parent_loop.has_divergent_branch = divergent_branch_old;
71 ctx->cf_info.parent_if.is_divergent = divergent_if_old;
72 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth - 1;
73 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent)
74 ctx->cf_info.exec_potentially_empty_discard = false;
75 }
76 };
77
78 struct if_context {
79 Temp cond;
80
81 bool divergent_old;
82 bool exec_potentially_empty_discard_old;
83 bool exec_potentially_empty_break_old;
84 uint16_t exec_potentially_empty_break_depth_old;
85
86 unsigned BB_if_idx;
87 unsigned invert_idx;
88 bool then_branch_divergent;
89 Block BB_invert;
90 Block BB_endif;
91 };
92
93 static void visit_cf_list(struct isel_context *ctx,
94 struct exec_list *list);
95
96 static void add_logical_edge(unsigned pred_idx, Block *succ)
97 {
98 succ->logical_preds.emplace_back(pred_idx);
99 }
100
101
102 static void add_linear_edge(unsigned pred_idx, Block *succ)
103 {
104 succ->linear_preds.emplace_back(pred_idx);
105 }
106
107 static void add_edge(unsigned pred_idx, Block *succ)
108 {
109 add_logical_edge(pred_idx, succ);
110 add_linear_edge(pred_idx, succ);
111 }
112
113 static void append_logical_start(Block *b)
114 {
115 Builder(NULL, b).pseudo(aco_opcode::p_logical_start);
116 }
117
118 static void append_logical_end(Block *b)
119 {
120 Builder(NULL, b).pseudo(aco_opcode::p_logical_end);
121 }
122
123 Temp get_ssa_temp(struct isel_context *ctx, nir_ssa_def *def)
124 {
125 assert(ctx->allocated[def->index].id());
126 return ctx->allocated[def->index];
127 }
128
129 Temp emit_mbcnt(isel_context *ctx, Definition dst,
130 Operand mask_lo = Operand((uint32_t) -1), Operand mask_hi = Operand((uint32_t) -1))
131 {
132 Builder bld(ctx->program, ctx->block);
133 Definition lo_def = ctx->program->wave_size == 32 ? dst : bld.def(v1);
134 Temp thread_id_lo = bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, lo_def, mask_lo, Operand(0u));
135
136 if (ctx->program->wave_size == 32) {
137 return thread_id_lo;
138 } else {
139 Temp thread_id_hi = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32, dst, mask_hi, thread_id_lo);
140 return thread_id_hi;
141 }
142 }
143
144 Temp emit_wqm(isel_context *ctx, Temp src, Temp dst=Temp(0, s1), bool program_needs_wqm = false)
145 {
146 Builder bld(ctx->program, ctx->block);
147
148 if (!dst.id())
149 dst = bld.tmp(src.regClass());
150
151 assert(src.size() == dst.size());
152
153 if (ctx->stage != fragment_fs) {
154 if (!dst.id())
155 return src;
156
157 bld.copy(Definition(dst), src);
158 return dst;
159 }
160
161 bld.pseudo(aco_opcode::p_wqm, Definition(dst), src);
162 ctx->program->needs_wqm |= program_needs_wqm;
163 return dst;
164 }
165
166 static Temp emit_bpermute(isel_context *ctx, Builder &bld, Temp index, Temp data)
167 {
168 if (index.regClass() == s1)
169 return bld.readlane(bld.def(s1), data, index);
170
171 Temp index_x4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), index);
172
173 /* Currently not implemented on GFX6-7 */
174 assert(ctx->options->chip_class >= GFX8);
175
176 if (ctx->options->chip_class <= GFX9 || ctx->program->wave_size == 32) {
177 return bld.ds(aco_opcode::ds_bpermute_b32, bld.def(v1), index_x4, data);
178 }
179
180 /* GFX10, wave64 mode:
181 * The bpermute instruction is limited to half-wave operation, which means that it can't
182 * properly support subgroup shuffle like older generations (or wave32 mode), so we
183 * emulate it here.
184 */
185 if (!ctx->has_gfx10_wave64_bpermute) {
186 ctx->has_gfx10_wave64_bpermute = true;
187 ctx->program->config->num_shared_vgprs = 8; /* Shared VGPRs are allocated in groups of 8 */
188 ctx->program->vgpr_limit -= 4; /* We allocate 8 shared VGPRs, so we'll have 4 fewer normal VGPRs */
189 }
190
191 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
192 Temp lane_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), lane_id);
193 Temp index_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), index);
194 Temp cmp = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm, vcc), lane_is_hi, index_is_hi);
195
196 return bld.reduction(aco_opcode::p_wave64_bpermute, bld.def(v1), bld.def(s2), bld.def(s1, scc),
197 bld.vcc(cmp), Operand(v2.as_linear()), index_x4, data, gfx10_wave64_bpermute);
198 }
199
200 Temp as_vgpr(isel_context *ctx, Temp val)
201 {
202 if (val.type() == RegType::sgpr) {
203 Builder bld(ctx->program, ctx->block);
204 return bld.copy(bld.def(RegType::vgpr, val.size()), val);
205 }
206 assert(val.type() == RegType::vgpr);
207 return val;
208 }
209
210 //assumes a != 0xffffffff
211 void emit_v_div_u32(isel_context *ctx, Temp dst, Temp a, uint32_t b)
212 {
213 assert(b != 0);
214 Builder bld(ctx->program, ctx->block);
215
216 if (util_is_power_of_two_or_zero(b)) {
217 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)util_logbase2(b)), a);
218 return;
219 }
220
221 util_fast_udiv_info info = util_compute_fast_udiv_info(b, 32, 32);
222
223 assert(info.multiplier <= 0xffffffff);
224
225 bool pre_shift = info.pre_shift != 0;
226 bool increment = info.increment != 0;
227 bool multiply = true;
228 bool post_shift = info.post_shift != 0;
229
230 if (!pre_shift && !increment && !multiply && !post_shift) {
231 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), a);
232 return;
233 }
234
235 Temp pre_shift_dst = a;
236 if (pre_shift) {
237 pre_shift_dst = (increment || multiply || post_shift) ? bld.tmp(v1) : dst;
238 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(pre_shift_dst), Operand((uint32_t)info.pre_shift), a);
239 }
240
241 Temp increment_dst = pre_shift_dst;
242 if (increment) {
243 increment_dst = (post_shift || multiply) ? bld.tmp(v1) : dst;
244 bld.vadd32(Definition(increment_dst), Operand((uint32_t) info.increment), pre_shift_dst);
245 }
246
247 Temp multiply_dst = increment_dst;
248 if (multiply) {
249 multiply_dst = post_shift ? bld.tmp(v1) : dst;
250 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(multiply_dst), increment_dst,
251 bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand((uint32_t)info.multiplier)));
252 }
253
254 if (post_shift) {
255 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)info.post_shift), multiply_dst);
256 }
257 }
258
259 void emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, Temp dst)
260 {
261 Builder bld(ctx->program, ctx->block);
262 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(idx));
263 }
264
265
266 Temp emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, RegClass dst_rc)
267 {
268 /* no need to extract the whole vector */
269 if (src.regClass() == dst_rc) {
270 assert(idx == 0);
271 return src;
272 }
273 assert(src.size() > idx);
274 Builder bld(ctx->program, ctx->block);
275 auto it = ctx->allocated_vec.find(src.id());
276 /* the size check needs to be early because elements other than 0 may be garbage */
277 if (it != ctx->allocated_vec.end() && it->second[0].size() == dst_rc.size()) {
278 if (it->second[idx].regClass() == dst_rc) {
279 return it->second[idx];
280 } else {
281 assert(dst_rc.size() == it->second[idx].regClass().size());
282 assert(dst_rc.type() == RegType::vgpr && it->second[idx].type() == RegType::sgpr);
283 return bld.copy(bld.def(dst_rc), it->second[idx]);
284 }
285 }
286
287 if (src.size() == dst_rc.size()) {
288 assert(idx == 0);
289 return bld.copy(bld.def(dst_rc), src);
290 } else {
291 Temp dst = bld.tmp(dst_rc);
292 emit_extract_vector(ctx, src, idx, dst);
293 return dst;
294 }
295 }
296
297 void emit_split_vector(isel_context* ctx, Temp vec_src, unsigned num_components)
298 {
299 if (num_components == 1)
300 return;
301 if (ctx->allocated_vec.find(vec_src.id()) != ctx->allocated_vec.end())
302 return;
303 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_components)};
304 split->operands[0] = Operand(vec_src);
305 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
306 for (unsigned i = 0; i < num_components; i++) {
307 elems[i] = {ctx->program->allocateId(), RegClass(vec_src.type(), vec_src.size() / num_components)};
308 split->definitions[i] = Definition(elems[i]);
309 }
310 ctx->block->instructions.emplace_back(std::move(split));
311 ctx->allocated_vec.emplace(vec_src.id(), elems);
312 }
313
314 /* This vector expansion uses a mask to determine which elements in the new vector
315 * come from the original vector. The other elements are undefined. */
316 void expand_vector(isel_context* ctx, Temp vec_src, Temp dst, unsigned num_components, unsigned mask)
317 {
318 emit_split_vector(ctx, vec_src, util_bitcount(mask));
319
320 if (vec_src == dst)
321 return;
322
323 Builder bld(ctx->program, ctx->block);
324 if (num_components == 1) {
325 if (dst.type() == RegType::sgpr)
326 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec_src);
327 else
328 bld.copy(Definition(dst), vec_src);
329 return;
330 }
331
332 unsigned component_size = dst.size() / num_components;
333 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
334
335 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
336 vec->definitions[0] = Definition(dst);
337 unsigned k = 0;
338 for (unsigned i = 0; i < num_components; i++) {
339 if (mask & (1 << i)) {
340 Temp src = emit_extract_vector(ctx, vec_src, k++, RegClass(vec_src.type(), component_size));
341 if (dst.type() == RegType::sgpr)
342 src = bld.as_uniform(src);
343 vec->operands[i] = Operand(src);
344 } else {
345 vec->operands[i] = Operand(0u);
346 }
347 elems[i] = vec->operands[i].getTemp();
348 }
349 ctx->block->instructions.emplace_back(std::move(vec));
350 ctx->allocated_vec.emplace(dst.id(), elems);
351 }
352
353 Temp bool_to_vector_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s2))
354 {
355 Builder bld(ctx->program, ctx->block);
356 if (!dst.id())
357 dst = bld.tmp(bld.lm);
358
359 assert(val.regClass() == s1);
360 assert(dst.regClass() == bld.lm);
361
362 return bld.sop2(Builder::s_cselect, Definition(dst), Operand((uint32_t) -1), Operand(0u), bld.scc(val));
363 }
364
365 Temp bool_to_scalar_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s1))
366 {
367 Builder bld(ctx->program, ctx->block);
368 if (!dst.id())
369 dst = bld.tmp(s1);
370
371 assert(val.regClass() == bld.lm);
372 assert(dst.regClass() == s1);
373
374 /* if we're currently in WQM mode, ensure that the source is also computed in WQM */
375 Temp tmp = bld.tmp(s1);
376 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.scc(Definition(tmp)), val, Operand(exec, bld.lm));
377 return emit_wqm(ctx, tmp, dst);
378 }
379
380 Temp get_alu_src(struct isel_context *ctx, nir_alu_src src, unsigned size=1)
381 {
382 if (src.src.ssa->num_components == 1 && src.swizzle[0] == 0 && size == 1)
383 return get_ssa_temp(ctx, src.src.ssa);
384
385 if (src.src.ssa->num_components == size) {
386 bool identity_swizzle = true;
387 for (unsigned i = 0; identity_swizzle && i < size; i++) {
388 if (src.swizzle[i] != i)
389 identity_swizzle = false;
390 }
391 if (identity_swizzle)
392 return get_ssa_temp(ctx, src.src.ssa);
393 }
394
395 Temp vec = get_ssa_temp(ctx, src.src.ssa);
396 unsigned elem_size = vec.size() / src.src.ssa->num_components;
397 assert(elem_size > 0); /* TODO: 8 and 16-bit vectors not supported */
398 assert(vec.size() % elem_size == 0);
399
400 RegClass elem_rc = RegClass(vec.type(), elem_size);
401 if (size == 1) {
402 return emit_extract_vector(ctx, vec, src.swizzle[0], elem_rc);
403 } else {
404 assert(size <= 4);
405 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
406 aco_ptr<Pseudo_instruction> vec_instr{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
407 for (unsigned i = 0; i < size; ++i) {
408 elems[i] = emit_extract_vector(ctx, vec, src.swizzle[i], elem_rc);
409 vec_instr->operands[i] = Operand{elems[i]};
410 }
411 Temp dst{ctx->program->allocateId(), RegClass(vec.type(), elem_size * size)};
412 vec_instr->definitions[0] = Definition(dst);
413 ctx->block->instructions.emplace_back(std::move(vec_instr));
414 ctx->allocated_vec.emplace(dst.id(), elems);
415 return dst;
416 }
417 }
418
419 Temp convert_pointer_to_64_bit(isel_context *ctx, Temp ptr)
420 {
421 if (ptr.size() == 2)
422 return ptr;
423 Builder bld(ctx->program, ctx->block);
424 if (ptr.type() == RegType::vgpr)
425 ptr = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), ptr);
426 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s2),
427 ptr, Operand((unsigned)ctx->options->address32_hi));
428 }
429
430 void emit_sop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst, bool writes_scc)
431 {
432 aco_ptr<SOP2_instruction> sop2{create_instruction<SOP2_instruction>(op, Format::SOP2, 2, writes_scc ? 2 : 1)};
433 sop2->operands[0] = Operand(get_alu_src(ctx, instr->src[0]));
434 sop2->operands[1] = Operand(get_alu_src(ctx, instr->src[1]));
435 sop2->definitions[0] = Definition(dst);
436 if (writes_scc)
437 sop2->definitions[1] = Definition(ctx->program->allocateId(), scc, s1);
438 ctx->block->instructions.emplace_back(std::move(sop2));
439 }
440
441 void emit_vop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
442 bool commutative, bool swap_srcs=false, bool flush_denorms = false)
443 {
444 Builder bld(ctx->program, ctx->block);
445 Temp src0 = get_alu_src(ctx, instr->src[swap_srcs ? 1 : 0]);
446 Temp src1 = get_alu_src(ctx, instr->src[swap_srcs ? 0 : 1]);
447 if (src1.type() == RegType::sgpr) {
448 if (commutative && src0.type() == RegType::vgpr) {
449 Temp t = src0;
450 src0 = src1;
451 src1 = t;
452 } else if (src0.type() == RegType::vgpr &&
453 op != aco_opcode::v_madmk_f32 &&
454 op != aco_opcode::v_madak_f32 &&
455 op != aco_opcode::v_madmk_f16 &&
456 op != aco_opcode::v_madak_f16) {
457 /* If the instruction is not commutative, we emit a VOP3A instruction */
458 bld.vop2_e64(op, Definition(dst), src0, src1);
459 return;
460 } else {
461 src1 = bld.copy(bld.def(RegType::vgpr, src1.size()), src1); //TODO: as_vgpr
462 }
463 }
464
465 if (flush_denorms && ctx->program->chip_class < GFX9) {
466 assert(dst.size() == 1);
467 Temp tmp = bld.vop2(op, bld.def(v1), src0, src1);
468 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
469 } else {
470 bld.vop2(op, Definition(dst), src0, src1);
471 }
472 }
473
474 void emit_vop3a_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
475 bool flush_denorms = false)
476 {
477 Temp src0 = get_alu_src(ctx, instr->src[0]);
478 Temp src1 = get_alu_src(ctx, instr->src[1]);
479 Temp src2 = get_alu_src(ctx, instr->src[2]);
480
481 /* ensure that the instruction has at most 1 sgpr operand
482 * The optimizer will inline constants for us */
483 if (src0.type() == RegType::sgpr && src1.type() == RegType::sgpr)
484 src0 = as_vgpr(ctx, src0);
485 if (src1.type() == RegType::sgpr && src2.type() == RegType::sgpr)
486 src1 = as_vgpr(ctx, src1);
487 if (src2.type() == RegType::sgpr && src0.type() == RegType::sgpr)
488 src2 = as_vgpr(ctx, src2);
489
490 Builder bld(ctx->program, ctx->block);
491 if (flush_denorms && ctx->program->chip_class < GFX9) {
492 assert(dst.size() == 1);
493 Temp tmp = bld.vop3(op, Definition(dst), src0, src1, src2);
494 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
495 } else {
496 bld.vop3(op, Definition(dst), src0, src1, src2);
497 }
498 }
499
500 void emit_vop1_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
501 {
502 Builder bld(ctx->program, ctx->block);
503 bld.vop1(op, Definition(dst), get_alu_src(ctx, instr->src[0]));
504 }
505
506 void emit_vopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
507 {
508 Temp src0 = get_alu_src(ctx, instr->src[0]);
509 Temp src1 = get_alu_src(ctx, instr->src[1]);
510 assert(src0.size() == src1.size());
511
512 aco_ptr<Instruction> vopc;
513 if (src1.type() == RegType::sgpr) {
514 if (src0.type() == RegType::vgpr) {
515 /* to swap the operands, we might also have to change the opcode */
516 switch (op) {
517 case aco_opcode::v_cmp_lt_f32:
518 op = aco_opcode::v_cmp_gt_f32;
519 break;
520 case aco_opcode::v_cmp_ge_f32:
521 op = aco_opcode::v_cmp_le_f32;
522 break;
523 case aco_opcode::v_cmp_lt_i32:
524 op = aco_opcode::v_cmp_gt_i32;
525 break;
526 case aco_opcode::v_cmp_ge_i32:
527 op = aco_opcode::v_cmp_le_i32;
528 break;
529 case aco_opcode::v_cmp_lt_u32:
530 op = aco_opcode::v_cmp_gt_u32;
531 break;
532 case aco_opcode::v_cmp_ge_u32:
533 op = aco_opcode::v_cmp_le_u32;
534 break;
535 case aco_opcode::v_cmp_lt_f64:
536 op = aco_opcode::v_cmp_gt_f64;
537 break;
538 case aco_opcode::v_cmp_ge_f64:
539 op = aco_opcode::v_cmp_le_f64;
540 break;
541 case aco_opcode::v_cmp_lt_i64:
542 op = aco_opcode::v_cmp_gt_i64;
543 break;
544 case aco_opcode::v_cmp_ge_i64:
545 op = aco_opcode::v_cmp_le_i64;
546 break;
547 case aco_opcode::v_cmp_lt_u64:
548 op = aco_opcode::v_cmp_gt_u64;
549 break;
550 case aco_opcode::v_cmp_ge_u64:
551 op = aco_opcode::v_cmp_le_u64;
552 break;
553 default: /* eq and ne are commutative */
554 break;
555 }
556 Temp t = src0;
557 src0 = src1;
558 src1 = t;
559 } else {
560 src1 = as_vgpr(ctx, src1);
561 }
562 }
563
564 Builder bld(ctx->program, ctx->block);
565 bld.vopc(op, bld.hint_vcc(Definition(dst)), src0, src1);
566 }
567
568 void emit_sopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
569 {
570 Temp src0 = get_alu_src(ctx, instr->src[0]);
571 Temp src1 = get_alu_src(ctx, instr->src[1]);
572 Builder bld(ctx->program, ctx->block);
573
574 assert(dst.regClass() == bld.lm);
575 assert(src0.type() == RegType::sgpr);
576 assert(src1.type() == RegType::sgpr);
577 assert(src0.regClass() == src1.regClass());
578
579 /* Emit the SALU comparison instruction */
580 Temp cmp = bld.sopc(op, bld.scc(bld.def(s1)), src0, src1);
581 /* Turn the result into a per-lane bool */
582 bool_to_vector_condition(ctx, cmp, dst);
583 }
584
585 void emit_comparison(isel_context *ctx, nir_alu_instr *instr, Temp dst,
586 aco_opcode v32_op, aco_opcode v64_op, aco_opcode s32_op = aco_opcode::num_opcodes, aco_opcode s64_op = aco_opcode::num_opcodes)
587 {
588 aco_opcode s_op = instr->src[0].src.ssa->bit_size == 64 ? s64_op : s32_op;
589 aco_opcode v_op = instr->src[0].src.ssa->bit_size == 64 ? v64_op : v32_op;
590 bool divergent_vals = ctx->divergent_vals[instr->dest.dest.ssa.index];
591 bool use_valu = s_op == aco_opcode::num_opcodes ||
592 divergent_vals ||
593 ctx->allocated[instr->src[0].src.ssa->index].type() == RegType::vgpr ||
594 ctx->allocated[instr->src[1].src.ssa->index].type() == RegType::vgpr;
595 aco_opcode op = use_valu ? v_op : s_op;
596 assert(op != aco_opcode::num_opcodes);
597 assert(dst.regClass() == ctx->program->lane_mask);
598
599 if (use_valu)
600 emit_vopc_instruction(ctx, instr, op, dst);
601 else
602 emit_sopc_instruction(ctx, instr, op, dst);
603 }
604
605 void emit_boolean_logic(isel_context *ctx, nir_alu_instr *instr, Builder::WaveSpecificOpcode op, Temp dst)
606 {
607 Builder bld(ctx->program, ctx->block);
608 Temp src0 = get_alu_src(ctx, instr->src[0]);
609 Temp src1 = get_alu_src(ctx, instr->src[1]);
610
611 assert(dst.regClass() == bld.lm);
612 assert(src0.regClass() == bld.lm);
613 assert(src1.regClass() == bld.lm);
614
615 bld.sop2(op, Definition(dst), bld.def(s1, scc), src0, src1);
616 }
617
618 void emit_bcsel(isel_context *ctx, nir_alu_instr *instr, Temp dst)
619 {
620 Builder bld(ctx->program, ctx->block);
621 Temp cond = get_alu_src(ctx, instr->src[0]);
622 Temp then = get_alu_src(ctx, instr->src[1]);
623 Temp els = get_alu_src(ctx, instr->src[2]);
624
625 assert(cond.regClass() == bld.lm);
626
627 if (dst.type() == RegType::vgpr) {
628 aco_ptr<Instruction> bcsel;
629 if (dst.size() == 1) {
630 then = as_vgpr(ctx, then);
631 els = as_vgpr(ctx, els);
632
633 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), els, then, cond);
634 } else if (dst.size() == 2) {
635 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
636 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), then);
637 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
638 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), els);
639
640 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, cond);
641 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, cond);
642
643 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
644 } else {
645 fprintf(stderr, "Unimplemented NIR instr bit size: ");
646 nir_print_instr(&instr->instr, stderr);
647 fprintf(stderr, "\n");
648 }
649 return;
650 }
651
652 if (instr->dest.dest.ssa.bit_size == 1) {
653 assert(dst.regClass() == bld.lm);
654 assert(then.regClass() == bld.lm);
655 assert(els.regClass() == bld.lm);
656 }
657
658 if (!ctx->divergent_vals[instr->src[0].src.ssa->index]) { /* uniform condition and values in sgpr */
659 if (dst.regClass() == s1 || dst.regClass() == s2) {
660 assert((then.regClass() == s1 || then.regClass() == s2) && els.regClass() == then.regClass());
661 assert(dst.size() == then.size());
662 aco_opcode op = dst.regClass() == s1 ? aco_opcode::s_cselect_b32 : aco_opcode::s_cselect_b64;
663 bld.sop2(op, Definition(dst), then, els, bld.scc(bool_to_scalar_condition(ctx, cond)));
664 } else {
665 fprintf(stderr, "Unimplemented uniform bcsel bit size: ");
666 nir_print_instr(&instr->instr, stderr);
667 fprintf(stderr, "\n");
668 }
669 return;
670 }
671
672 /* divergent boolean bcsel
673 * this implements bcsel on bools: dst = s0 ? s1 : s2
674 * are going to be: dst = (s0 & s1) | (~s0 & s2) */
675 assert(instr->dest.dest.ssa.bit_size == 1);
676
677 if (cond.id() != then.id())
678 then = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), cond, then);
679
680 if (cond.id() == els.id())
681 bld.sop1(Builder::s_mov, Definition(dst), then);
682 else
683 bld.sop2(Builder::s_or, Definition(dst), bld.def(s1, scc), then,
684 bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), els, cond));
685 }
686
687 void emit_scaled_op(isel_context *ctx, Builder& bld, Definition dst, Temp val,
688 aco_opcode op, uint32_t undo)
689 {
690 /* multiply by 16777216 to handle denormals */
691 Temp is_denormal = bld.vopc(aco_opcode::v_cmp_class_f32, bld.hint_vcc(bld.def(bld.lm)),
692 as_vgpr(ctx, val), bld.copy(bld.def(v1), Operand((1u << 7) | (1u << 4))));
693 Temp scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x4b800000u), val);
694 scaled = bld.vop1(op, bld.def(v1), scaled);
695 scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(undo), scaled);
696
697 Temp not_scaled = bld.vop1(op, bld.def(v1), val);
698
699 bld.vop2(aco_opcode::v_cndmask_b32, dst, not_scaled, scaled, is_denormal);
700 }
701
702 void emit_rcp(isel_context *ctx, Builder& bld, Definition dst, Temp val)
703 {
704 if (ctx->block->fp_mode.denorm32 == 0) {
705 bld.vop1(aco_opcode::v_rcp_f32, dst, val);
706 return;
707 }
708
709 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rcp_f32, 0x4b800000u);
710 }
711
712 void emit_rsq(isel_context *ctx, Builder& bld, Definition dst, Temp val)
713 {
714 if (ctx->block->fp_mode.denorm32 == 0) {
715 bld.vop1(aco_opcode::v_rsq_f32, dst, val);
716 return;
717 }
718
719 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rsq_f32, 0x45800000u);
720 }
721
722 void emit_sqrt(isel_context *ctx, Builder& bld, Definition dst, Temp val)
723 {
724 if (ctx->block->fp_mode.denorm32 == 0) {
725 bld.vop1(aco_opcode::v_sqrt_f32, dst, val);
726 return;
727 }
728
729 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_sqrt_f32, 0x39800000u);
730 }
731
732 void emit_log2(isel_context *ctx, Builder& bld, Definition dst, Temp val)
733 {
734 if (ctx->block->fp_mode.denorm32 == 0) {
735 bld.vop1(aco_opcode::v_log_f32, dst, val);
736 return;
737 }
738
739 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_log_f32, 0xc1c00000u);
740 }
741
742 Temp emit_trunc_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
743 {
744 if (ctx->options->chip_class >= GFX7)
745 return bld.vop1(aco_opcode::v_trunc_f64, Definition(dst), val);
746
747 /* GFX6 doesn't support V_TRUNC_F64, lower it. */
748 /* TODO: create more efficient code! */
749 if (val.type() == RegType::sgpr)
750 val = as_vgpr(ctx, val);
751
752 /* Split the input value. */
753 Temp val_lo = bld.tmp(v1), val_hi = bld.tmp(v1);
754 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
755
756 /* Extract the exponent and compute the unbiased value. */
757 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f64, bld.def(v1), val);
758
759 /* Extract the fractional part. */
760 Temp fract_mask = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x000fffffu));
761 fract_mask = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), fract_mask, exponent);
762
763 Temp fract_mask_lo = bld.tmp(v1), fract_mask_hi = bld.tmp(v1);
764 bld.pseudo(aco_opcode::p_split_vector, Definition(fract_mask_lo), Definition(fract_mask_hi), fract_mask);
765
766 Temp fract_lo = bld.tmp(v1), fract_hi = bld.tmp(v1);
767 Temp tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_lo);
768 fract_lo = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_lo, tmp);
769 tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_hi);
770 fract_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_hi, tmp);
771
772 /* Get the sign bit. */
773 Temp sign = bld.vop2(aco_opcode::v_ashr_i32, bld.def(v1), Operand(31u), val_hi);
774
775 /* Decide the operation to apply depending on the unbiased exponent. */
776 Temp exp_lt0 = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)), exponent, Operand(0u));
777 Temp dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_lo, bld.copy(bld.def(v1), Operand(0u)), exp_lt0);
778 Temp dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_hi, sign, exp_lt0);
779 Temp exp_gt51 = bld.vopc_e64(aco_opcode::v_cmp_gt_i32, bld.def(s2), exponent, Operand(51u));
780 dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_lo, val_lo, exp_gt51);
781 dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_hi, val_hi, exp_gt51);
782
783 return bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst_lo, dst_hi);
784 }
785
786 Temp emit_floor_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
787 {
788 if (ctx->options->chip_class >= GFX7)
789 return bld.vop1(aco_opcode::v_floor_f64, Definition(dst), val);
790
791 /* GFX6 doesn't support V_FLOOR_F64, lower it. */
792 Temp src0 = as_vgpr(ctx, val);
793
794 Temp mask = bld.copy(bld.def(s1), Operand(3u)); /* isnan */
795 Temp min_val = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(-1u), Operand(0x3fefffffu));
796
797 Temp isnan = bld.vopc_e64(aco_opcode::v_cmp_class_f64, bld.hint_vcc(bld.def(bld.lm)), src0, mask);
798 Temp fract = bld.vop1(aco_opcode::v_fract_f64, bld.def(v2), src0);
799 Temp min = bld.vop3(aco_opcode::v_min_f64, bld.def(v2), fract, min_val);
800
801 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
802 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), src0);
803 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
804 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), min);
805
806 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, isnan);
807 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, isnan);
808
809 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), dst0, dst1);
810
811 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src0, v);
812 static_cast<VOP3A_instruction*>(add)->neg[1] = true;
813
814 return add->definitions[0].getTemp();
815 }
816
817 void visit_alu_instr(isel_context *ctx, nir_alu_instr *instr)
818 {
819 if (!instr->dest.dest.is_ssa) {
820 fprintf(stderr, "nir alu dst not in ssa: ");
821 nir_print_instr(&instr->instr, stderr);
822 fprintf(stderr, "\n");
823 abort();
824 }
825 Builder bld(ctx->program, ctx->block);
826 Temp dst = get_ssa_temp(ctx, &instr->dest.dest.ssa);
827 switch(instr->op) {
828 case nir_op_vec2:
829 case nir_op_vec3:
830 case nir_op_vec4: {
831 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
832 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.dest.ssa.num_components, 1)};
833 for (unsigned i = 0; i < instr->dest.dest.ssa.num_components; ++i) {
834 elems[i] = get_alu_src(ctx, instr->src[i]);
835 vec->operands[i] = Operand{elems[i]};
836 }
837 vec->definitions[0] = Definition(dst);
838 ctx->block->instructions.emplace_back(std::move(vec));
839 ctx->allocated_vec.emplace(dst.id(), elems);
840 break;
841 }
842 case nir_op_mov: {
843 Temp src = get_alu_src(ctx, instr->src[0]);
844 aco_ptr<Instruction> mov;
845 if (dst.type() == RegType::sgpr) {
846 if (src.type() == RegType::vgpr)
847 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
848 else if (src.regClass() == s1)
849 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
850 else if (src.regClass() == s2)
851 bld.sop1(aco_opcode::s_mov_b64, Definition(dst), src);
852 else
853 unreachable("wrong src register class for nir_op_imov");
854 } else if (dst.regClass() == v1) {
855 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), src);
856 } else if (dst.regClass() == v2) {
857 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
858 } else {
859 nir_print_instr(&instr->instr, stderr);
860 unreachable("Should have been lowered to scalar.");
861 }
862 break;
863 }
864 case nir_op_inot: {
865 Temp src = get_alu_src(ctx, instr->src[0]);
866 if (instr->dest.dest.ssa.bit_size == 1) {
867 assert(src.regClass() == bld.lm);
868 assert(dst.regClass() == bld.lm);
869 /* Don't use s_andn2 here, this allows the optimizer to make a better decision */
870 Temp tmp = bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), src);
871 bld.sop2(Builder::s_and, Definition(dst), bld.def(s1, scc), tmp, Operand(exec, bld.lm));
872 } else if (dst.regClass() == v1) {
873 emit_vop1_instruction(ctx, instr, aco_opcode::v_not_b32, dst);
874 } else if (dst.type() == RegType::sgpr) {
875 aco_opcode opcode = dst.size() == 1 ? aco_opcode::s_not_b32 : aco_opcode::s_not_b64;
876 bld.sop1(opcode, Definition(dst), bld.def(s1, scc), src);
877 } else {
878 fprintf(stderr, "Unimplemented NIR instr bit size: ");
879 nir_print_instr(&instr->instr, stderr);
880 fprintf(stderr, "\n");
881 }
882 break;
883 }
884 case nir_op_ineg: {
885 Temp src = get_alu_src(ctx, instr->src[0]);
886 if (dst.regClass() == v1) {
887 bld.vsub32(Definition(dst), Operand(0u), Operand(src));
888 } else if (dst.regClass() == s1) {
889 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand((uint32_t) -1), src);
890 } else if (dst.size() == 2) {
891 Temp src0 = bld.tmp(dst.type(), 1);
892 Temp src1 = bld.tmp(dst.type(), 1);
893 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
894
895 if (dst.regClass() == s2) {
896 Temp carry = bld.tmp(s1);
897 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), Operand(0u), src0);
898 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), src1, carry);
899 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
900 } else {
901 Temp lower = bld.tmp(v1);
902 Temp borrow = bld.vsub32(Definition(lower), Operand(0u), src0, true).def(1).getTemp();
903 Temp upper = bld.vsub32(bld.def(v1), Operand(0u), src1, false, borrow);
904 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
905 }
906 } else {
907 fprintf(stderr, "Unimplemented NIR instr bit size: ");
908 nir_print_instr(&instr->instr, stderr);
909 fprintf(stderr, "\n");
910 }
911 break;
912 }
913 case nir_op_iabs: {
914 if (dst.regClass() == s1) {
915 bld.sop1(aco_opcode::s_abs_i32, Definition(dst), bld.def(s1, scc), get_alu_src(ctx, instr->src[0]));
916 } else if (dst.regClass() == v1) {
917 Temp src = get_alu_src(ctx, instr->src[0]);
918 bld.vop2(aco_opcode::v_max_i32, Definition(dst), src, bld.vsub32(bld.def(v1), Operand(0u), src));
919 } else {
920 fprintf(stderr, "Unimplemented NIR instr bit size: ");
921 nir_print_instr(&instr->instr, stderr);
922 fprintf(stderr, "\n");
923 }
924 break;
925 }
926 case nir_op_isign: {
927 Temp src = get_alu_src(ctx, instr->src[0]);
928 if (dst.regClass() == s1) {
929 Temp tmp = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
930 Temp gtz = bld.sopc(aco_opcode::s_cmp_gt_i32, bld.def(s1, scc), src, Operand(0u));
931 bld.sop2(aco_opcode::s_add_i32, Definition(dst), bld.def(s1, scc), gtz, tmp);
932 } else if (dst.regClass() == s2) {
933 Temp neg = bld.sop2(aco_opcode::s_ashr_i64, bld.def(s2), bld.def(s1, scc), src, Operand(63u));
934 Temp neqz;
935 if (ctx->program->chip_class >= GFX8)
936 neqz = bld.sopc(aco_opcode::s_cmp_lg_u64, bld.def(s1, scc), src, Operand(0u));
937 else
938 neqz = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), src, Operand(0u)).def(1).getTemp();
939 /* SCC gets zero-extended to 64 bit */
940 bld.sop2(aco_opcode::s_or_b64, Definition(dst), bld.def(s1, scc), neg, bld.scc(neqz));
941 } else if (dst.regClass() == v1) {
942 Temp tmp = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
943 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
944 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(1u), tmp, gtz);
945 } else if (dst.regClass() == v2) {
946 Temp upper = emit_extract_vector(ctx, src, 1, v1);
947 Temp neg = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), upper);
948 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
949 Temp lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(1u), neg, gtz);
950 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), neg, gtz);
951 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
952 } else {
953 fprintf(stderr, "Unimplemented NIR instr bit size: ");
954 nir_print_instr(&instr->instr, stderr);
955 fprintf(stderr, "\n");
956 }
957 break;
958 }
959 case nir_op_imax: {
960 if (dst.regClass() == v1) {
961 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_i32, dst, true);
962 } else if (dst.regClass() == s1) {
963 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_i32, dst, true);
964 } else {
965 fprintf(stderr, "Unimplemented NIR instr bit size: ");
966 nir_print_instr(&instr->instr, stderr);
967 fprintf(stderr, "\n");
968 }
969 break;
970 }
971 case nir_op_umax: {
972 if (dst.regClass() == v1) {
973 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_u32, dst, true);
974 } else if (dst.regClass() == s1) {
975 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_u32, dst, true);
976 } else {
977 fprintf(stderr, "Unimplemented NIR instr bit size: ");
978 nir_print_instr(&instr->instr, stderr);
979 fprintf(stderr, "\n");
980 }
981 break;
982 }
983 case nir_op_imin: {
984 if (dst.regClass() == v1) {
985 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_i32, dst, true);
986 } else if (dst.regClass() == s1) {
987 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_i32, dst, true);
988 } else {
989 fprintf(stderr, "Unimplemented NIR instr bit size: ");
990 nir_print_instr(&instr->instr, stderr);
991 fprintf(stderr, "\n");
992 }
993 break;
994 }
995 case nir_op_umin: {
996 if (dst.regClass() == v1) {
997 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_u32, dst, true);
998 } else if (dst.regClass() == s1) {
999 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_u32, dst, true);
1000 } else {
1001 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1002 nir_print_instr(&instr->instr, stderr);
1003 fprintf(stderr, "\n");
1004 }
1005 break;
1006 }
1007 case nir_op_ior: {
1008 if (instr->dest.dest.ssa.bit_size == 1) {
1009 emit_boolean_logic(ctx, instr, Builder::s_or, dst);
1010 } else if (dst.regClass() == v1) {
1011 emit_vop2_instruction(ctx, instr, aco_opcode::v_or_b32, dst, true);
1012 } else if (dst.regClass() == s1) {
1013 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b32, dst, true);
1014 } else if (dst.regClass() == s2) {
1015 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b64, dst, true);
1016 } else {
1017 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1018 nir_print_instr(&instr->instr, stderr);
1019 fprintf(stderr, "\n");
1020 }
1021 break;
1022 }
1023 case nir_op_iand: {
1024 if (instr->dest.dest.ssa.bit_size == 1) {
1025 emit_boolean_logic(ctx, instr, Builder::s_and, dst);
1026 } else if (dst.regClass() == v1) {
1027 emit_vop2_instruction(ctx, instr, aco_opcode::v_and_b32, dst, true);
1028 } else if (dst.regClass() == s1) {
1029 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b32, dst, true);
1030 } else if (dst.regClass() == s2) {
1031 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b64, dst, true);
1032 } else {
1033 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1034 nir_print_instr(&instr->instr, stderr);
1035 fprintf(stderr, "\n");
1036 }
1037 break;
1038 }
1039 case nir_op_ixor: {
1040 if (instr->dest.dest.ssa.bit_size == 1) {
1041 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
1042 } else if (dst.regClass() == v1) {
1043 emit_vop2_instruction(ctx, instr, aco_opcode::v_xor_b32, dst, true);
1044 } else if (dst.regClass() == s1) {
1045 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b32, dst, true);
1046 } else if (dst.regClass() == s2) {
1047 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b64, dst, true);
1048 } else {
1049 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1050 nir_print_instr(&instr->instr, stderr);
1051 fprintf(stderr, "\n");
1052 }
1053 break;
1054 }
1055 case nir_op_ushr: {
1056 if (dst.regClass() == v1) {
1057 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshrrev_b32, dst, false, true);
1058 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1059 bld.vop3(aco_opcode::v_lshrrev_b64, Definition(dst),
1060 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1061 } else if (dst.regClass() == v2) {
1062 bld.vop3(aco_opcode::v_lshr_b64, Definition(dst),
1063 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1064 } else if (dst.regClass() == s2) {
1065 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b64, dst, true);
1066 } else if (dst.regClass() == s1) {
1067 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b32, dst, true);
1068 } else {
1069 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1070 nir_print_instr(&instr->instr, stderr);
1071 fprintf(stderr, "\n");
1072 }
1073 break;
1074 }
1075 case nir_op_ishl: {
1076 if (dst.regClass() == v1) {
1077 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshlrev_b32, dst, false, true);
1078 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1079 bld.vop3(aco_opcode::v_lshlrev_b64, Definition(dst),
1080 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1081 } else if (dst.regClass() == v2) {
1082 bld.vop3(aco_opcode::v_lshl_b64, Definition(dst),
1083 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1084 } else if (dst.regClass() == s1) {
1085 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b32, dst, true);
1086 } else if (dst.regClass() == s2) {
1087 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b64, dst, true);
1088 } else {
1089 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1090 nir_print_instr(&instr->instr, stderr);
1091 fprintf(stderr, "\n");
1092 }
1093 break;
1094 }
1095 case nir_op_ishr: {
1096 if (dst.regClass() == v1) {
1097 emit_vop2_instruction(ctx, instr, aco_opcode::v_ashrrev_i32, dst, false, true);
1098 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1099 bld.vop3(aco_opcode::v_ashrrev_i64, Definition(dst),
1100 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1101 } else if (dst.regClass() == v2) {
1102 bld.vop3(aco_opcode::v_ashr_i64, Definition(dst),
1103 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1104 } else if (dst.regClass() == s1) {
1105 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i32, dst, true);
1106 } else if (dst.regClass() == s2) {
1107 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i64, dst, true);
1108 } else {
1109 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1110 nir_print_instr(&instr->instr, stderr);
1111 fprintf(stderr, "\n");
1112 }
1113 break;
1114 }
1115 case nir_op_find_lsb: {
1116 Temp src = get_alu_src(ctx, instr->src[0]);
1117 if (src.regClass() == s1) {
1118 bld.sop1(aco_opcode::s_ff1_i32_b32, Definition(dst), src);
1119 } else if (src.regClass() == v1) {
1120 emit_vop1_instruction(ctx, instr, aco_opcode::v_ffbl_b32, dst);
1121 } else if (src.regClass() == s2) {
1122 bld.sop1(aco_opcode::s_ff1_i32_b64, Definition(dst), src);
1123 } else {
1124 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1125 nir_print_instr(&instr->instr, stderr);
1126 fprintf(stderr, "\n");
1127 }
1128 break;
1129 }
1130 case nir_op_ufind_msb:
1131 case nir_op_ifind_msb: {
1132 Temp src = get_alu_src(ctx, instr->src[0]);
1133 if (src.regClass() == s1 || src.regClass() == s2) {
1134 aco_opcode op = src.regClass() == s2 ?
1135 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b64 : aco_opcode::s_flbit_i32_i64) :
1136 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b32 : aco_opcode::s_flbit_i32);
1137 Temp msb_rev = bld.sop1(op, bld.def(s1), src);
1138
1139 Builder::Result sub = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc),
1140 Operand(src.size() * 32u - 1u), msb_rev);
1141 Temp msb = sub.def(0).getTemp();
1142 Temp carry = sub.def(1).getTemp();
1143
1144 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t)-1), msb, bld.scc(carry));
1145 } else if (src.regClass() == v1) {
1146 aco_opcode op = instr->op == nir_op_ufind_msb ? aco_opcode::v_ffbh_u32 : aco_opcode::v_ffbh_i32;
1147 Temp msb_rev = bld.tmp(v1);
1148 emit_vop1_instruction(ctx, instr, op, msb_rev);
1149 Temp msb = bld.tmp(v1);
1150 Temp carry = bld.vsub32(Definition(msb), Operand(31u), Operand(msb_rev), true).def(1).getTemp();
1151 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), msb, Operand((uint32_t)-1), carry);
1152 } else {
1153 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1154 nir_print_instr(&instr->instr, stderr);
1155 fprintf(stderr, "\n");
1156 }
1157 break;
1158 }
1159 case nir_op_bitfield_reverse: {
1160 if (dst.regClass() == s1) {
1161 bld.sop1(aco_opcode::s_brev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1162 } else if (dst.regClass() == v1) {
1163 bld.vop1(aco_opcode::v_bfrev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1164 } else {
1165 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1166 nir_print_instr(&instr->instr, stderr);
1167 fprintf(stderr, "\n");
1168 }
1169 break;
1170 }
1171 case nir_op_iadd: {
1172 if (dst.regClass() == s1) {
1173 emit_sop2_instruction(ctx, instr, aco_opcode::s_add_u32, dst, true);
1174 break;
1175 }
1176
1177 Temp src0 = get_alu_src(ctx, instr->src[0]);
1178 Temp src1 = get_alu_src(ctx, instr->src[1]);
1179 if (dst.regClass() == v1) {
1180 bld.vadd32(Definition(dst), Operand(src0), Operand(src1));
1181 break;
1182 }
1183
1184 assert(src0.size() == 2 && src1.size() == 2);
1185 Temp src00 = bld.tmp(src0.type(), 1);
1186 Temp src01 = bld.tmp(dst.type(), 1);
1187 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1188 Temp src10 = bld.tmp(src1.type(), 1);
1189 Temp src11 = bld.tmp(dst.type(), 1);
1190 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1191
1192 if (dst.regClass() == s2) {
1193 Temp carry = bld.tmp(s1);
1194 Temp dst0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1195 Temp dst1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), src01, src11, bld.scc(carry));
1196 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1197 } else if (dst.regClass() == v2) {
1198 Temp dst0 = bld.tmp(v1);
1199 Temp carry = bld.vadd32(Definition(dst0), src00, src10, true).def(1).getTemp();
1200 Temp dst1 = bld.vadd32(bld.def(v1), src01, src11, false, carry);
1201 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1202 } else {
1203 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1204 nir_print_instr(&instr->instr, stderr);
1205 fprintf(stderr, "\n");
1206 }
1207 break;
1208 }
1209 case nir_op_uadd_sat: {
1210 Temp src0 = get_alu_src(ctx, instr->src[0]);
1211 Temp src1 = get_alu_src(ctx, instr->src[1]);
1212 if (dst.regClass() == s1) {
1213 Temp tmp = bld.tmp(s1), carry = bld.tmp(s1);
1214 bld.sop2(aco_opcode::s_add_u32, Definition(tmp), bld.scc(Definition(carry)),
1215 src0, src1);
1216 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t) -1), tmp, bld.scc(carry));
1217 } else if (dst.regClass() == v1) {
1218 if (ctx->options->chip_class >= GFX9) {
1219 aco_ptr<VOP3A_instruction> add{create_instruction<VOP3A_instruction>(aco_opcode::v_add_u32, asVOP3(Format::VOP2), 2, 1)};
1220 add->operands[0] = Operand(src0);
1221 add->operands[1] = Operand(src1);
1222 add->definitions[0] = Definition(dst);
1223 add->clamp = 1;
1224 ctx->block->instructions.emplace_back(std::move(add));
1225 } else {
1226 if (src1.regClass() != v1)
1227 std::swap(src0, src1);
1228 assert(src1.regClass() == v1);
1229 Temp tmp = bld.tmp(v1);
1230 Temp carry = bld.vadd32(Definition(tmp), src0, src1, true).def(1).getTemp();
1231 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), tmp, Operand((uint32_t) -1), carry);
1232 }
1233 } else {
1234 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1235 nir_print_instr(&instr->instr, stderr);
1236 fprintf(stderr, "\n");
1237 }
1238 break;
1239 }
1240 case nir_op_uadd_carry: {
1241 Temp src0 = get_alu_src(ctx, instr->src[0]);
1242 Temp src1 = get_alu_src(ctx, instr->src[1]);
1243 if (dst.regClass() == s1) {
1244 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1245 break;
1246 }
1247 if (dst.regClass() == v1) {
1248 Temp carry = bld.vadd32(bld.def(v1), src0, src1, true).def(1).getTemp();
1249 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), carry);
1250 break;
1251 }
1252
1253 Temp src00 = bld.tmp(src0.type(), 1);
1254 Temp src01 = bld.tmp(dst.type(), 1);
1255 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1256 Temp src10 = bld.tmp(src1.type(), 1);
1257 Temp src11 = bld.tmp(dst.type(), 1);
1258 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1259 if (dst.regClass() == s2) {
1260 Temp carry = bld.tmp(s1);
1261 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1262 carry = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(carry)).def(1).getTemp();
1263 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1264 } else if (dst.regClass() == v2) {
1265 Temp carry = bld.vadd32(bld.def(v1), src00, src10, true).def(1).getTemp();
1266 carry = bld.vadd32(bld.def(v1), src01, src11, true, carry).def(1).getTemp();
1267 carry = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), carry);
1268 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1269 } else {
1270 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1271 nir_print_instr(&instr->instr, stderr);
1272 fprintf(stderr, "\n");
1273 }
1274 break;
1275 }
1276 case nir_op_isub: {
1277 if (dst.regClass() == s1) {
1278 emit_sop2_instruction(ctx, instr, aco_opcode::s_sub_i32, dst, true);
1279 break;
1280 }
1281
1282 Temp src0 = get_alu_src(ctx, instr->src[0]);
1283 Temp src1 = get_alu_src(ctx, instr->src[1]);
1284 if (dst.regClass() == v1) {
1285 bld.vsub32(Definition(dst), src0, src1);
1286 break;
1287 }
1288
1289 Temp src00 = bld.tmp(src0.type(), 1);
1290 Temp src01 = bld.tmp(dst.type(), 1);
1291 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1292 Temp src10 = bld.tmp(src1.type(), 1);
1293 Temp src11 = bld.tmp(dst.type(), 1);
1294 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1295 if (dst.regClass() == s2) {
1296 Temp carry = bld.tmp(s1);
1297 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1298 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), src01, src11, carry);
1299 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1300 } else if (dst.regClass() == v2) {
1301 Temp lower = bld.tmp(v1);
1302 Temp borrow = bld.vsub32(Definition(lower), src00, src10, true).def(1).getTemp();
1303 Temp upper = bld.vsub32(bld.def(v1), src01, src11, false, borrow);
1304 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1305 } else {
1306 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1307 nir_print_instr(&instr->instr, stderr);
1308 fprintf(stderr, "\n");
1309 }
1310 break;
1311 }
1312 case nir_op_usub_borrow: {
1313 Temp src0 = get_alu_src(ctx, instr->src[0]);
1314 Temp src1 = get_alu_src(ctx, instr->src[1]);
1315 if (dst.regClass() == s1) {
1316 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1317 break;
1318 } else if (dst.regClass() == v1) {
1319 Temp borrow = bld.vsub32(bld.def(v1), src0, src1, true).def(1).getTemp();
1320 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), borrow);
1321 break;
1322 }
1323
1324 Temp src00 = bld.tmp(src0.type(), 1);
1325 Temp src01 = bld.tmp(dst.type(), 1);
1326 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1327 Temp src10 = bld.tmp(src1.type(), 1);
1328 Temp src11 = bld.tmp(dst.type(), 1);
1329 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1330 if (dst.regClass() == s2) {
1331 Temp borrow = bld.tmp(s1);
1332 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), src00, src10);
1333 borrow = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(borrow)).def(1).getTemp();
1334 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1335 } else if (dst.regClass() == v2) {
1336 Temp borrow = bld.vsub32(bld.def(v1), src00, src10, true).def(1).getTemp();
1337 borrow = bld.vsub32(bld.def(v1), src01, src11, true, Operand(borrow)).def(1).getTemp();
1338 borrow = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), borrow);
1339 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1340 } else {
1341 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1342 nir_print_instr(&instr->instr, stderr);
1343 fprintf(stderr, "\n");
1344 }
1345 break;
1346 }
1347 case nir_op_imul: {
1348 if (dst.regClass() == v1) {
1349 bld.vop3(aco_opcode::v_mul_lo_u32, Definition(dst),
1350 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1351 } else if (dst.regClass() == s1) {
1352 emit_sop2_instruction(ctx, instr, aco_opcode::s_mul_i32, dst, false);
1353 } else {
1354 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1355 nir_print_instr(&instr->instr, stderr);
1356 fprintf(stderr, "\n");
1357 }
1358 break;
1359 }
1360 case nir_op_umul_high: {
1361 if (dst.regClass() == v1) {
1362 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1363 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1364 bld.sop2(aco_opcode::s_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1365 } else if (dst.regClass() == s1) {
1366 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1367 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1368 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1369 } else {
1370 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1371 nir_print_instr(&instr->instr, stderr);
1372 fprintf(stderr, "\n");
1373 }
1374 break;
1375 }
1376 case nir_op_imul_high: {
1377 if (dst.regClass() == v1) {
1378 bld.vop3(aco_opcode::v_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1379 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1380 bld.sop2(aco_opcode::s_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1381 } else if (dst.regClass() == s1) {
1382 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1383 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1384 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1385 } else {
1386 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1387 nir_print_instr(&instr->instr, stderr);
1388 fprintf(stderr, "\n");
1389 }
1390 break;
1391 }
1392 case nir_op_fmul: {
1393 if (dst.size() == 1) {
1394 emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f32, dst, true);
1395 } else if (dst.size() == 2) {
1396 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), get_alu_src(ctx, instr->src[0]),
1397 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1398 } else {
1399 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1400 nir_print_instr(&instr->instr, stderr);
1401 fprintf(stderr, "\n");
1402 }
1403 break;
1404 }
1405 case nir_op_fadd: {
1406 if (dst.size() == 1) {
1407 emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f32, dst, true);
1408 } else if (dst.size() == 2) {
1409 bld.vop3(aco_opcode::v_add_f64, Definition(dst), get_alu_src(ctx, instr->src[0]),
1410 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1411 } else {
1412 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1413 nir_print_instr(&instr->instr, stderr);
1414 fprintf(stderr, "\n");
1415 }
1416 break;
1417 }
1418 case nir_op_fsub: {
1419 Temp src0 = get_alu_src(ctx, instr->src[0]);
1420 Temp src1 = get_alu_src(ctx, instr->src[1]);
1421 if (dst.size() == 1) {
1422 if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
1423 emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f32, dst, false);
1424 else
1425 emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f32, dst, true);
1426 } else if (dst.size() == 2) {
1427 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst),
1428 get_alu_src(ctx, instr->src[0]),
1429 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1430 VOP3A_instruction* sub = static_cast<VOP3A_instruction*>(add);
1431 sub->neg[1] = true;
1432 } else {
1433 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1434 nir_print_instr(&instr->instr, stderr);
1435 fprintf(stderr, "\n");
1436 }
1437 break;
1438 }
1439 case nir_op_fmax: {
1440 if (dst.size() == 1) {
1441 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1442 } else if (dst.size() == 2) {
1443 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1444 Temp tmp = bld.vop3(aco_opcode::v_max_f64, bld.def(v2),
1445 get_alu_src(ctx, instr->src[0]),
1446 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1447 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1448 } else {
1449 bld.vop3(aco_opcode::v_max_f64, Definition(dst),
1450 get_alu_src(ctx, instr->src[0]),
1451 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1452 }
1453 } else {
1454 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1455 nir_print_instr(&instr->instr, stderr);
1456 fprintf(stderr, "\n");
1457 }
1458 break;
1459 }
1460 case nir_op_fmin: {
1461 if (dst.size() == 1) {
1462 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1463 } else if (dst.size() == 2) {
1464 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1465 Temp tmp = bld.vop3(aco_opcode::v_min_f64, bld.def(v2),
1466 get_alu_src(ctx, instr->src[0]),
1467 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1468 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1469 } else {
1470 bld.vop3(aco_opcode::v_min_f64, Definition(dst),
1471 get_alu_src(ctx, instr->src[0]),
1472 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1473 }
1474 } else {
1475 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1476 nir_print_instr(&instr->instr, stderr);
1477 fprintf(stderr, "\n");
1478 }
1479 break;
1480 }
1481 case nir_op_fmax3: {
1482 if (dst.size() == 1) {
1483 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1484 } else {
1485 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1486 nir_print_instr(&instr->instr, stderr);
1487 fprintf(stderr, "\n");
1488 }
1489 break;
1490 }
1491 case nir_op_fmin3: {
1492 if (dst.size() == 1) {
1493 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1494 } else {
1495 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1496 nir_print_instr(&instr->instr, stderr);
1497 fprintf(stderr, "\n");
1498 }
1499 break;
1500 }
1501 case nir_op_fmed3: {
1502 if (dst.size() == 1) {
1503 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1504 } else {
1505 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1506 nir_print_instr(&instr->instr, stderr);
1507 fprintf(stderr, "\n");
1508 }
1509 break;
1510 }
1511 case nir_op_umax3: {
1512 if (dst.size() == 1) {
1513 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_u32, dst);
1514 } else {
1515 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1516 nir_print_instr(&instr->instr, stderr);
1517 fprintf(stderr, "\n");
1518 }
1519 break;
1520 }
1521 case nir_op_umin3: {
1522 if (dst.size() == 1) {
1523 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_u32, dst);
1524 } else {
1525 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1526 nir_print_instr(&instr->instr, stderr);
1527 fprintf(stderr, "\n");
1528 }
1529 break;
1530 }
1531 case nir_op_umed3: {
1532 if (dst.size() == 1) {
1533 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_u32, dst);
1534 } else {
1535 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1536 nir_print_instr(&instr->instr, stderr);
1537 fprintf(stderr, "\n");
1538 }
1539 break;
1540 }
1541 case nir_op_imax3: {
1542 if (dst.size() == 1) {
1543 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_i32, dst);
1544 } else {
1545 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1546 nir_print_instr(&instr->instr, stderr);
1547 fprintf(stderr, "\n");
1548 }
1549 break;
1550 }
1551 case nir_op_imin3: {
1552 if (dst.size() == 1) {
1553 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_i32, dst);
1554 } else {
1555 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1556 nir_print_instr(&instr->instr, stderr);
1557 fprintf(stderr, "\n");
1558 }
1559 break;
1560 }
1561 case nir_op_imed3: {
1562 if (dst.size() == 1) {
1563 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_i32, dst);
1564 } else {
1565 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1566 nir_print_instr(&instr->instr, stderr);
1567 fprintf(stderr, "\n");
1568 }
1569 break;
1570 }
1571 case nir_op_cube_face_coord: {
1572 Temp in = get_alu_src(ctx, instr->src[0], 3);
1573 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1574 emit_extract_vector(ctx, in, 1, v1),
1575 emit_extract_vector(ctx, in, 2, v1) };
1576 Temp ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), src[0], src[1], src[2]);
1577 ma = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), ma);
1578 Temp sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), src[0], src[1], src[2]);
1579 Temp tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), src[0], src[1], src[2]);
1580 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, ma, Operand(0x3f000000u/*0.5*/));
1581 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, ma, Operand(0x3f000000u/*0.5*/));
1582 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), sc, tc);
1583 break;
1584 }
1585 case nir_op_cube_face_index: {
1586 Temp in = get_alu_src(ctx, instr->src[0], 3);
1587 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1588 emit_extract_vector(ctx, in, 1, v1),
1589 emit_extract_vector(ctx, in, 2, v1) };
1590 bld.vop3(aco_opcode::v_cubeid_f32, Definition(dst), src[0], src[1], src[2]);
1591 break;
1592 }
1593 case nir_op_bcsel: {
1594 emit_bcsel(ctx, instr, dst);
1595 break;
1596 }
1597 case nir_op_frsq: {
1598 if (dst.size() == 1) {
1599 emit_rsq(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1600 } else if (dst.size() == 2) {
1601 emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f64, dst);
1602 } else {
1603 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1604 nir_print_instr(&instr->instr, stderr);
1605 fprintf(stderr, "\n");
1606 }
1607 break;
1608 }
1609 case nir_op_fneg: {
1610 Temp src = get_alu_src(ctx, instr->src[0]);
1611 if (dst.size() == 1) {
1612 if (ctx->block->fp_mode.must_flush_denorms32)
1613 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1614 bld.vop2(aco_opcode::v_xor_b32, Definition(dst), Operand(0x80000000u), as_vgpr(ctx, src));
1615 } else if (dst.size() == 2) {
1616 if (ctx->block->fp_mode.must_flush_denorms16_64)
1617 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1618 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1619 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1620 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), Operand(0x80000000u), upper);
1621 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1622 } else {
1623 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1624 nir_print_instr(&instr->instr, stderr);
1625 fprintf(stderr, "\n");
1626 }
1627 break;
1628 }
1629 case nir_op_fabs: {
1630 Temp src = get_alu_src(ctx, instr->src[0]);
1631 if (dst.size() == 1) {
1632 if (ctx->block->fp_mode.must_flush_denorms32)
1633 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1634 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0x7FFFFFFFu), as_vgpr(ctx, src));
1635 } else if (dst.size() == 2) {
1636 if (ctx->block->fp_mode.must_flush_denorms16_64)
1637 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1638 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1639 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1640 upper = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7FFFFFFFu), upper);
1641 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1642 } else {
1643 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1644 nir_print_instr(&instr->instr, stderr);
1645 fprintf(stderr, "\n");
1646 }
1647 break;
1648 }
1649 case nir_op_fsat: {
1650 Temp src = get_alu_src(ctx, instr->src[0]);
1651 if (dst.size() == 1) {
1652 bld.vop3(aco_opcode::v_med3_f32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
1653 /* apparently, it is not necessary to flush denorms if this instruction is used with these operands */
1654 // TODO: confirm that this holds under any circumstances
1655 } else if (dst.size() == 2) {
1656 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src, Operand(0u));
1657 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(add);
1658 vop3->clamp = true;
1659 } else {
1660 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1661 nir_print_instr(&instr->instr, stderr);
1662 fprintf(stderr, "\n");
1663 }
1664 break;
1665 }
1666 case nir_op_flog2: {
1667 if (dst.size() == 1) {
1668 emit_log2(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1669 } else {
1670 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1671 nir_print_instr(&instr->instr, stderr);
1672 fprintf(stderr, "\n");
1673 }
1674 break;
1675 }
1676 case nir_op_frcp: {
1677 if (dst.size() == 1) {
1678 emit_rcp(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1679 } else if (dst.size() == 2) {
1680 emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f64, dst);
1681 } else {
1682 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1683 nir_print_instr(&instr->instr, stderr);
1684 fprintf(stderr, "\n");
1685 }
1686 break;
1687 }
1688 case nir_op_fexp2: {
1689 if (dst.size() == 1) {
1690 emit_vop1_instruction(ctx, instr, aco_opcode::v_exp_f32, dst);
1691 } else {
1692 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1693 nir_print_instr(&instr->instr, stderr);
1694 fprintf(stderr, "\n");
1695 }
1696 break;
1697 }
1698 case nir_op_fsqrt: {
1699 if (dst.size() == 1) {
1700 emit_sqrt(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1701 } else if (dst.size() == 2) {
1702 emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f64, dst);
1703 } else {
1704 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1705 nir_print_instr(&instr->instr, stderr);
1706 fprintf(stderr, "\n");
1707 }
1708 break;
1709 }
1710 case nir_op_ffract: {
1711 if (dst.size() == 1) {
1712 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f32, dst);
1713 } else if (dst.size() == 2) {
1714 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f64, dst);
1715 } else {
1716 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1717 nir_print_instr(&instr->instr, stderr);
1718 fprintf(stderr, "\n");
1719 }
1720 break;
1721 }
1722 case nir_op_ffloor: {
1723 if (dst.size() == 1) {
1724 emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f32, dst);
1725 } else if (dst.size() == 2) {
1726 emit_floor_f64(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1727 } else {
1728 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1729 nir_print_instr(&instr->instr, stderr);
1730 fprintf(stderr, "\n");
1731 }
1732 break;
1733 }
1734 case nir_op_fceil: {
1735 if (dst.size() == 1) {
1736 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f32, dst);
1737 } else if (dst.size() == 2) {
1738 if (ctx->options->chip_class >= GFX7) {
1739 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f64, dst);
1740 } else {
1741 /* GFX6 doesn't support V_CEIL_F64, lower it. */
1742 Temp src0 = get_alu_src(ctx, instr->src[0]);
1743
1744 /* trunc = trunc(src0)
1745 * if (src0 > 0.0 && src0 != trunc)
1746 * trunc += 1.0
1747 */
1748 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src0);
1749 Temp tmp0 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.def(bld.lm), src0, Operand(0u));
1750 Temp tmp1 = bld.vopc(aco_opcode::v_cmp_lg_f64, bld.hint_vcc(bld.def(bld.lm)), src0, trunc);
1751 Temp cond = bld.sop2(aco_opcode::s_and_b64, bld.hint_vcc(bld.def(s2)), bld.def(s1, scc), tmp0, tmp1);
1752 Temp add = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), bld.copy(bld.def(v1), Operand(0u)), bld.copy(bld.def(v1), Operand(0x3ff00000u)), cond);
1753 add = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), bld.copy(bld.def(v1), Operand(0u)), add);
1754 bld.vop3(aco_opcode::v_add_f64, Definition(dst), trunc, add);
1755 }
1756 } else {
1757 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1758 nir_print_instr(&instr->instr, stderr);
1759 fprintf(stderr, "\n");
1760 }
1761 break;
1762 }
1763 case nir_op_ftrunc: {
1764 if (dst.size() == 1) {
1765 emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f32, dst);
1766 } else if (dst.size() == 2) {
1767 emit_trunc_f64(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1768 } else {
1769 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1770 nir_print_instr(&instr->instr, stderr);
1771 fprintf(stderr, "\n");
1772 }
1773 break;
1774 }
1775 case nir_op_fround_even: {
1776 if (dst.size() == 1) {
1777 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f32, dst);
1778 } else if (dst.size() == 2) {
1779 if (ctx->options->chip_class >= GFX7) {
1780 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f64, dst);
1781 } else {
1782 /* GFX6 doesn't support V_RNDNE_F64, lower it. */
1783 Temp src0 = get_alu_src(ctx, instr->src[0]);
1784
1785 Temp src0_lo = bld.tmp(v1), src0_hi = bld.tmp(v1);
1786 bld.pseudo(aco_opcode::p_split_vector, Definition(src0_lo), Definition(src0_hi), src0);
1787
1788 Temp bitmask = bld.sop1(aco_opcode::s_brev_b32, bld.def(s1), bld.copy(bld.def(s1), Operand(-2u)));
1789 Temp bfi = bld.vop3(aco_opcode::v_bfi_b32, bld.def(v1), bitmask, bld.copy(bld.def(v1), Operand(0x43300000u)), as_vgpr(ctx, src0_hi));
1790 Temp tmp = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), src0, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
1791 Instruction *sub = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), tmp, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
1792 static_cast<VOP3A_instruction*>(sub)->neg[1] = true;
1793 tmp = sub->definitions[0].getTemp();
1794
1795 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x432fffffu));
1796 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.hint_vcc(bld.def(bld.lm)), src0, v);
1797 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
1798 Temp cond = vop3->definitions[0].getTemp();
1799
1800 Temp tmp_lo = bld.tmp(v1), tmp_hi = bld.tmp(v1);
1801 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp_lo), Definition(tmp_hi), tmp);
1802 Temp dst0 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_lo, as_vgpr(ctx, src0_lo), cond);
1803 Temp dst1 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_hi, as_vgpr(ctx, src0_hi), cond);
1804
1805 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1806 }
1807 } else {
1808 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1809 nir_print_instr(&instr->instr, stderr);
1810 fprintf(stderr, "\n");
1811 }
1812 break;
1813 }
1814 case nir_op_fsin:
1815 case nir_op_fcos: {
1816 Temp src = get_alu_src(ctx, instr->src[0]);
1817 aco_ptr<Instruction> norm;
1818 if (dst.size() == 1) {
1819 Temp half_pi = bld.copy(bld.def(s1), Operand(0x3e22f983u));
1820 Temp tmp = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), half_pi, as_vgpr(ctx, src));
1821
1822 /* before GFX9, v_sin_f32 and v_cos_f32 had a valid input domain of [-256, +256] */
1823 if (ctx->options->chip_class < GFX9)
1824 tmp = bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), tmp);
1825
1826 aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f32 : aco_opcode::v_cos_f32;
1827 bld.vop1(opcode, Definition(dst), tmp);
1828 } else {
1829 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1830 nir_print_instr(&instr->instr, stderr);
1831 fprintf(stderr, "\n");
1832 }
1833 break;
1834 }
1835 case nir_op_ldexp: {
1836 if (dst.size() == 1) {
1837 bld.vop3(aco_opcode::v_ldexp_f32, Definition(dst),
1838 as_vgpr(ctx, get_alu_src(ctx, instr->src[0])),
1839 get_alu_src(ctx, instr->src[1]));
1840 } else if (dst.size() == 2) {
1841 bld.vop3(aco_opcode::v_ldexp_f64, Definition(dst),
1842 as_vgpr(ctx, get_alu_src(ctx, instr->src[0])),
1843 get_alu_src(ctx, instr->src[1]));
1844 } else {
1845 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1846 nir_print_instr(&instr->instr, stderr);
1847 fprintf(stderr, "\n");
1848 }
1849 break;
1850 }
1851 case nir_op_frexp_sig: {
1852 if (dst.size() == 1) {
1853 bld.vop1(aco_opcode::v_frexp_mant_f32, Definition(dst),
1854 get_alu_src(ctx, instr->src[0]));
1855 } else if (dst.size() == 2) {
1856 bld.vop1(aco_opcode::v_frexp_mant_f64, Definition(dst),
1857 get_alu_src(ctx, instr->src[0]));
1858 } else {
1859 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1860 nir_print_instr(&instr->instr, stderr);
1861 fprintf(stderr, "\n");
1862 }
1863 break;
1864 }
1865 case nir_op_frexp_exp: {
1866 if (instr->src[0].src.ssa->bit_size == 32) {
1867 bld.vop1(aco_opcode::v_frexp_exp_i32_f32, Definition(dst),
1868 get_alu_src(ctx, instr->src[0]));
1869 } else if (instr->src[0].src.ssa->bit_size == 64) {
1870 bld.vop1(aco_opcode::v_frexp_exp_i32_f64, Definition(dst),
1871 get_alu_src(ctx, instr->src[0]));
1872 } else {
1873 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1874 nir_print_instr(&instr->instr, stderr);
1875 fprintf(stderr, "\n");
1876 }
1877 break;
1878 }
1879 case nir_op_fsign: {
1880 Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
1881 if (dst.size() == 1) {
1882 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1883 src = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0x3f800000u), src, cond);
1884 cond = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1885 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0xbf800000u), src, cond);
1886 } else if (dst.size() == 2) {
1887 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1888 Temp tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0x3FF00000u));
1889 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, emit_extract_vector(ctx, src, 1, v1), cond);
1890
1891 cond = bld.vopc(aco_opcode::v_cmp_le_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1892 tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0xBFF00000u));
1893 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, upper, cond);
1894
1895 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
1896 } else {
1897 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1898 nir_print_instr(&instr->instr, stderr);
1899 fprintf(stderr, "\n");
1900 }
1901 break;
1902 }
1903 case nir_op_f2f32: {
1904 if (instr->src[0].src.ssa->bit_size == 64) {
1905 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f64, dst);
1906 } else {
1907 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1908 nir_print_instr(&instr->instr, stderr);
1909 fprintf(stderr, "\n");
1910 }
1911 break;
1912 }
1913 case nir_op_f2f64: {
1914 if (instr->src[0].src.ssa->bit_size == 32) {
1915 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_f32, dst);
1916 } else {
1917 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1918 nir_print_instr(&instr->instr, stderr);
1919 fprintf(stderr, "\n");
1920 }
1921 break;
1922 }
1923 case nir_op_i2f32: {
1924 assert(dst.size() == 1);
1925 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_i32, dst);
1926 break;
1927 }
1928 case nir_op_i2f64: {
1929 if (instr->src[0].src.ssa->bit_size == 32) {
1930 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_i32, dst);
1931 } else if (instr->src[0].src.ssa->bit_size == 64) {
1932 Temp src = get_alu_src(ctx, instr->src[0]);
1933 RegClass rc = RegClass(src.type(), 1);
1934 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
1935 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1936 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
1937 upper = bld.vop1(aco_opcode::v_cvt_f64_i32, bld.def(v2), upper);
1938 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
1939 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
1940
1941 } else {
1942 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1943 nir_print_instr(&instr->instr, stderr);
1944 fprintf(stderr, "\n");
1945 }
1946 break;
1947 }
1948 case nir_op_u2f32: {
1949 assert(dst.size() == 1);
1950 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_u32, dst);
1951 break;
1952 }
1953 case nir_op_u2f64: {
1954 if (instr->src[0].src.ssa->bit_size == 32) {
1955 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_u32, dst);
1956 } else if (instr->src[0].src.ssa->bit_size == 64) {
1957 Temp src = get_alu_src(ctx, instr->src[0]);
1958 RegClass rc = RegClass(src.type(), 1);
1959 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
1960 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1961 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
1962 upper = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), upper);
1963 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
1964 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
1965 } else {
1966 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1967 nir_print_instr(&instr->instr, stderr);
1968 fprintf(stderr, "\n");
1969 }
1970 break;
1971 }
1972 case nir_op_f2i32: {
1973 Temp src = get_alu_src(ctx, instr->src[0]);
1974 if (instr->src[0].src.ssa->bit_size == 32) {
1975 if (dst.type() == RegType::vgpr)
1976 bld.vop1(aco_opcode::v_cvt_i32_f32, Definition(dst), src);
1977 else
1978 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
1979 bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), src));
1980
1981 } else if (instr->src[0].src.ssa->bit_size == 64) {
1982 if (dst.type() == RegType::vgpr)
1983 bld.vop1(aco_opcode::v_cvt_i32_f64, Definition(dst), src);
1984 else
1985 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
1986 bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), src));
1987
1988 } else {
1989 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1990 nir_print_instr(&instr->instr, stderr);
1991 fprintf(stderr, "\n");
1992 }
1993 break;
1994 }
1995 case nir_op_f2u32: {
1996 Temp src = get_alu_src(ctx, instr->src[0]);
1997 if (instr->src[0].src.ssa->bit_size == 32) {
1998 if (dst.type() == RegType::vgpr)
1999 bld.vop1(aco_opcode::v_cvt_u32_f32, Definition(dst), src);
2000 else
2001 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2002 bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), src));
2003
2004 } else if (instr->src[0].src.ssa->bit_size == 64) {
2005 if (dst.type() == RegType::vgpr)
2006 bld.vop1(aco_opcode::v_cvt_u32_f64, Definition(dst), src);
2007 else
2008 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2009 bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), src));
2010
2011 } else {
2012 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2013 nir_print_instr(&instr->instr, stderr);
2014 fprintf(stderr, "\n");
2015 }
2016 break;
2017 }
2018 case nir_op_f2i64: {
2019 Temp src = get_alu_src(ctx, instr->src[0]);
2020 if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::vgpr) {
2021 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2022 exponent = bld.vop3(aco_opcode::v_med3_i32, bld.def(v1), Operand(0x0u), exponent, Operand(64u));
2023 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2024 Temp sign = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
2025 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2026 mantissa = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(7u), mantissa);
2027 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2028 Temp new_exponent = bld.tmp(v1);
2029 Temp borrow = bld.vsub32(Definition(new_exponent), Operand(63u), exponent, true).def(1).getTemp();
2030 if (ctx->program->chip_class >= GFX8)
2031 mantissa = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), new_exponent, mantissa);
2032 else
2033 mantissa = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), mantissa, new_exponent);
2034 Temp saturate = bld.vop1(aco_opcode::v_bfrev_b32, bld.def(v1), Operand(0xfffffffeu));
2035 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2036 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2037 lower = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), lower, Operand(0xffffffffu), borrow);
2038 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), upper, saturate, borrow);
2039 lower = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, lower);
2040 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, upper);
2041 Temp new_lower = bld.tmp(v1);
2042 borrow = bld.vsub32(Definition(new_lower), lower, sign, true).def(1).getTemp();
2043 Temp new_upper = bld.vsub32(bld.def(v1), upper, sign, false, borrow);
2044 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), new_lower, new_upper);
2045
2046 } else if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::sgpr) {
2047 if (src.type() == RegType::vgpr)
2048 src = bld.as_uniform(src);
2049 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2050 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2051 exponent = bld.sop2(aco_opcode::s_max_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2052 exponent = bld.sop2(aco_opcode::s_min_u32, bld.def(s1), bld.def(s1, scc), Operand(64u), exponent);
2053 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2054 Temp sign = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
2055 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2056 mantissa = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), mantissa, Operand(7u));
2057 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2058 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(63u), exponent);
2059 mantissa = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent);
2060 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), exponent, Operand(0xffffffffu)); // exp >= 64
2061 Temp saturate = bld.sop1(aco_opcode::s_brev_b64, bld.def(s2), Operand(0xfffffffeu));
2062 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), saturate, mantissa, cond);
2063 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2064 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2065 lower = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, lower);
2066 upper = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, upper);
2067 Temp borrow = bld.tmp(s1);
2068 lower = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), lower, sign);
2069 upper = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), upper, sign, borrow);
2070 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2071
2072 } else if (instr->src[0].src.ssa->bit_size == 64) {
2073 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2074 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2075 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2076 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2077 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2078 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2079 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2080 Temp upper = bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), floor);
2081 if (dst.type() == RegType::sgpr) {
2082 lower = bld.as_uniform(lower);
2083 upper = bld.as_uniform(upper);
2084 }
2085 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2086
2087 } else {
2088 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2089 nir_print_instr(&instr->instr, stderr);
2090 fprintf(stderr, "\n");
2091 }
2092 break;
2093 }
2094 case nir_op_f2u64: {
2095 Temp src = get_alu_src(ctx, instr->src[0]);
2096 if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::vgpr) {
2097 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2098 Temp exponent_in_range = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(64u), exponent);
2099 exponent = bld.vop2(aco_opcode::v_max_i32, bld.def(v1), Operand(0x0u), exponent);
2100 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2101 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2102 Temp exponent_small = bld.vsub32(bld.def(v1), Operand(24u), exponent);
2103 Temp small = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), exponent_small, mantissa);
2104 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2105 Temp new_exponent = bld.tmp(v1);
2106 Temp cond_small = bld.vsub32(Definition(new_exponent), exponent, Operand(24u), true).def(1).getTemp();
2107 if (ctx->program->chip_class >= GFX8)
2108 mantissa = bld.vop3(aco_opcode::v_lshlrev_b64, bld.def(v2), new_exponent, mantissa);
2109 else
2110 mantissa = bld.vop3(aco_opcode::v_lshl_b64, bld.def(v2), mantissa, new_exponent);
2111 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2112 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2113 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), lower, small, cond_small);
2114 upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), upper, Operand(0u), cond_small);
2115 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), lower, exponent_in_range);
2116 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), upper, exponent_in_range);
2117 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2118
2119 } else if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::sgpr) {
2120 if (src.type() == RegType::vgpr)
2121 src = bld.as_uniform(src);
2122 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2123 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2124 exponent = bld.sop2(aco_opcode::s_max_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2125 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2126 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2127 Temp exponent_small = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(24u), exponent);
2128 Temp small = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), mantissa, exponent_small);
2129 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2130 Temp exponent_large = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(24u));
2131 mantissa = bld.sop2(aco_opcode::s_lshl_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent_large);
2132 Temp cond = bld.sopc(aco_opcode::s_cmp_ge_i32, bld.def(s1, scc), Operand(64u), exponent);
2133 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), mantissa, Operand(0xffffffffu), cond);
2134 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2135 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2136 Temp cond_small = bld.sopc(aco_opcode::s_cmp_le_i32, bld.def(s1, scc), exponent, Operand(24u));
2137 lower = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), small, lower, cond_small);
2138 upper = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), Operand(0u), upper, cond_small);
2139 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2140
2141 } else if (instr->src[0].src.ssa->bit_size == 64) {
2142 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2143 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2144 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2145 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2146 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2147 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2148 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2149 Temp upper = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), floor);
2150 if (dst.type() == RegType::sgpr) {
2151 lower = bld.as_uniform(lower);
2152 upper = bld.as_uniform(upper);
2153 }
2154 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2155
2156 } else {
2157 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2158 nir_print_instr(&instr->instr, stderr);
2159 fprintf(stderr, "\n");
2160 }
2161 break;
2162 }
2163 case nir_op_b2f32: {
2164 Temp src = get_alu_src(ctx, instr->src[0]);
2165 assert(src.regClass() == bld.lm);
2166
2167 if (dst.regClass() == s1) {
2168 src = bool_to_scalar_condition(ctx, src);
2169 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3f800000u), src);
2170 } else if (dst.regClass() == v1) {
2171 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
2172 } else {
2173 unreachable("Wrong destination register class for nir_op_b2f32.");
2174 }
2175 break;
2176 }
2177 case nir_op_b2f64: {
2178 Temp src = get_alu_src(ctx, instr->src[0]);
2179 assert(src.regClass() == bld.lm);
2180
2181 if (dst.regClass() == s2) {
2182 src = bool_to_scalar_condition(ctx, src);
2183 bld.sop2(aco_opcode::s_cselect_b64, Definition(dst), Operand(0x3f800000u), Operand(0u), bld.scc(src));
2184 } else if (dst.regClass() == v2) {
2185 Temp one = bld.vop1(aco_opcode::v_mov_b32, bld.def(v2), Operand(0x3FF00000u));
2186 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), one, src);
2187 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
2188 } else {
2189 unreachable("Wrong destination register class for nir_op_b2f64.");
2190 }
2191 break;
2192 }
2193 case nir_op_i2i32: {
2194 Temp src = get_alu_src(ctx, instr->src[0]);
2195 if (instr->src[0].src.ssa->bit_size == 64) {
2196 /* we can actually just say dst = src, as it would map the lower register */
2197 emit_extract_vector(ctx, src, 0, dst);
2198 } else {
2199 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2200 nir_print_instr(&instr->instr, stderr);
2201 fprintf(stderr, "\n");
2202 }
2203 break;
2204 }
2205 case nir_op_u2u32: {
2206 Temp src = get_alu_src(ctx, instr->src[0]);
2207 if (instr->src[0].src.ssa->bit_size == 16) {
2208 if (dst.regClass() == s1) {
2209 bld.sop2(aco_opcode::s_and_b32, Definition(dst), bld.def(s1, scc), Operand(0xFFFFu), src);
2210 } else {
2211 // TODO: do better with SDWA
2212 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0xFFFFu), src);
2213 }
2214 } else if (instr->src[0].src.ssa->bit_size == 64) {
2215 /* we can actually just say dst = src, as it would map the lower register */
2216 emit_extract_vector(ctx, src, 0, dst);
2217 } else {
2218 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2219 nir_print_instr(&instr->instr, stderr);
2220 fprintf(stderr, "\n");
2221 }
2222 break;
2223 }
2224 case nir_op_i2i64: {
2225 Temp src = get_alu_src(ctx, instr->src[0]);
2226 if (src.regClass() == s1) {
2227 Temp high = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
2228 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, high);
2229 } else if (src.regClass() == v1) {
2230 Temp high = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
2231 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, high);
2232 } else {
2233 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2234 nir_print_instr(&instr->instr, stderr);
2235 fprintf(stderr, "\n");
2236 }
2237 break;
2238 }
2239 case nir_op_u2u64: {
2240 Temp src = get_alu_src(ctx, instr->src[0]);
2241 if (instr->src[0].src.ssa->bit_size == 32) {
2242 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, Operand(0u));
2243 } else {
2244 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2245 nir_print_instr(&instr->instr, stderr);
2246 fprintf(stderr, "\n");
2247 }
2248 break;
2249 }
2250 case nir_op_b2i32: {
2251 Temp src = get_alu_src(ctx, instr->src[0]);
2252 assert(src.regClass() == bld.lm);
2253
2254 if (dst.regClass() == s1) {
2255 // TODO: in a post-RA optimization, we can check if src is in VCC, and directly use VCCNZ
2256 bool_to_scalar_condition(ctx, src, dst);
2257 } else if (dst.regClass() == v1) {
2258 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), src);
2259 } else {
2260 unreachable("Invalid register class for b2i32");
2261 }
2262 break;
2263 }
2264 case nir_op_i2b1: {
2265 Temp src = get_alu_src(ctx, instr->src[0]);
2266 assert(dst.regClass() == bld.lm);
2267
2268 if (src.type() == RegType::vgpr) {
2269 assert(src.regClass() == v1 || src.regClass() == v2);
2270 assert(dst.regClass() == bld.lm);
2271 bld.vopc(src.size() == 2 ? aco_opcode::v_cmp_lg_u64 : aco_opcode::v_cmp_lg_u32,
2272 Definition(dst), Operand(0u), src).def(0).setHint(vcc);
2273 } else {
2274 assert(src.regClass() == s1 || src.regClass() == s2);
2275 Temp tmp;
2276 if (src.regClass() == s2 && ctx->program->chip_class <= GFX7) {
2277 tmp = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), Operand(0u), src).def(1).getTemp();
2278 } else {
2279 tmp = bld.sopc(src.size() == 2 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::s_cmp_lg_u32,
2280 bld.scc(bld.def(s1)), Operand(0u), src);
2281 }
2282 bool_to_vector_condition(ctx, tmp, dst);
2283 }
2284 break;
2285 }
2286 case nir_op_pack_64_2x32_split: {
2287 Temp src0 = get_alu_src(ctx, instr->src[0]);
2288 Temp src1 = get_alu_src(ctx, instr->src[1]);
2289
2290 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
2291 break;
2292 }
2293 case nir_op_unpack_64_2x32_split_x:
2294 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
2295 break;
2296 case nir_op_unpack_64_2x32_split_y:
2297 bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
2298 break;
2299 case nir_op_pack_half_2x16: {
2300 Temp src = get_alu_src(ctx, instr->src[0], 2);
2301
2302 if (dst.regClass() == v1) {
2303 Temp src0 = bld.tmp(v1);
2304 Temp src1 = bld.tmp(v1);
2305 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
2306 if (!ctx->block->fp_mode.care_about_round32 || ctx->block->fp_mode.round32 == fp_round_tz)
2307 bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, Definition(dst), src0, src1);
2308 else
2309 bld.vop3(aco_opcode::v_cvt_pk_u16_u32, Definition(dst),
2310 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src0),
2311 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src1));
2312 } else {
2313 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2314 nir_print_instr(&instr->instr, stderr);
2315 fprintf(stderr, "\n");
2316 }
2317 break;
2318 }
2319 case nir_op_unpack_half_2x16_split_x: {
2320 if (dst.regClass() == v1) {
2321 Builder bld(ctx->program, ctx->block);
2322 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst), get_alu_src(ctx, instr->src[0]));
2323 } else {
2324 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2325 nir_print_instr(&instr->instr, stderr);
2326 fprintf(stderr, "\n");
2327 }
2328 break;
2329 }
2330 case nir_op_unpack_half_2x16_split_y: {
2331 if (dst.regClass() == v1) {
2332 Builder bld(ctx->program, ctx->block);
2333 /* TODO: use SDWA here */
2334 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst),
2335 bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), as_vgpr(ctx, get_alu_src(ctx, instr->src[0]))));
2336 } else {
2337 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2338 nir_print_instr(&instr->instr, stderr);
2339 fprintf(stderr, "\n");
2340 }
2341 break;
2342 }
2343 case nir_op_fquantize2f16: {
2344 Temp src = get_alu_src(ctx, instr->src[0]);
2345 Temp f16 = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), src);
2346 Temp f32, cmp_res;
2347
2348 if (ctx->program->chip_class >= GFX8) {
2349 Temp mask = bld.copy(bld.def(s1), Operand(0x36Fu)); /* value is NOT negative/positive denormal value */
2350 cmp_res = bld.vopc_e64(aco_opcode::v_cmp_class_f16, bld.hint_vcc(bld.def(bld.lm)), f16, mask);
2351 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2352 } else {
2353 /* 0x38800000 is smallest half float value (2^-14) in 32-bit float,
2354 * so compare the result and flush to 0 if it's smaller.
2355 */
2356 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2357 Temp smallest = bld.copy(bld.def(s1), Operand(0x38800000u));
2358 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), f32, smallest);
2359 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
2360 cmp_res = vop3->definitions[0].getTemp();
2361 }
2362
2363 if (ctx->block->fp_mode.preserve_signed_zero_inf_nan32 || ctx->program->chip_class < GFX8) {
2364 Temp copysign_0 = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0u), as_vgpr(ctx, src));
2365 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), copysign_0, f32, cmp_res);
2366 } else {
2367 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), f32, cmp_res);
2368 }
2369 break;
2370 }
2371 case nir_op_bfm: {
2372 Temp bits = get_alu_src(ctx, instr->src[0]);
2373 Temp offset = get_alu_src(ctx, instr->src[1]);
2374
2375 if (dst.regClass() == s1) {
2376 bld.sop2(aco_opcode::s_bfm_b32, Definition(dst), bits, offset);
2377 } else if (dst.regClass() == v1) {
2378 bld.vop3(aco_opcode::v_bfm_b32, Definition(dst), bits, offset);
2379 } else {
2380 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2381 nir_print_instr(&instr->instr, stderr);
2382 fprintf(stderr, "\n");
2383 }
2384 break;
2385 }
2386 case nir_op_bitfield_select: {
2387 /* (mask & insert) | (~mask & base) */
2388 Temp bitmask = get_alu_src(ctx, instr->src[0]);
2389 Temp insert = get_alu_src(ctx, instr->src[1]);
2390 Temp base = get_alu_src(ctx, instr->src[2]);
2391
2392 /* dst = (insert & bitmask) | (base & ~bitmask) */
2393 if (dst.regClass() == s1) {
2394 aco_ptr<Instruction> sop2;
2395 nir_const_value* const_bitmask = nir_src_as_const_value(instr->src[0].src);
2396 nir_const_value* const_insert = nir_src_as_const_value(instr->src[1].src);
2397 Operand lhs;
2398 if (const_insert && const_bitmask) {
2399 lhs = Operand(const_insert->u32 & const_bitmask->u32);
2400 } else {
2401 insert = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), insert, bitmask);
2402 lhs = Operand(insert);
2403 }
2404
2405 Operand rhs;
2406 nir_const_value* const_base = nir_src_as_const_value(instr->src[2].src);
2407 if (const_base && const_bitmask) {
2408 rhs = Operand(const_base->u32 & ~const_bitmask->u32);
2409 } else {
2410 base = bld.sop2(aco_opcode::s_andn2_b32, bld.def(s1), bld.def(s1, scc), base, bitmask);
2411 rhs = Operand(base);
2412 }
2413
2414 bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), rhs, lhs);
2415
2416 } else if (dst.regClass() == v1) {
2417 if (base.type() == RegType::sgpr && (bitmask.type() == RegType::sgpr || (insert.type() == RegType::sgpr)))
2418 base = as_vgpr(ctx, base);
2419 if (insert.type() == RegType::sgpr && bitmask.type() == RegType::sgpr)
2420 insert = as_vgpr(ctx, insert);
2421
2422 bld.vop3(aco_opcode::v_bfi_b32, Definition(dst), bitmask, insert, base);
2423
2424 } else {
2425 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2426 nir_print_instr(&instr->instr, stderr);
2427 fprintf(stderr, "\n");
2428 }
2429 break;
2430 }
2431 case nir_op_ubfe:
2432 case nir_op_ibfe: {
2433 Temp base = get_alu_src(ctx, instr->src[0]);
2434 Temp offset = get_alu_src(ctx, instr->src[1]);
2435 Temp bits = get_alu_src(ctx, instr->src[2]);
2436
2437 if (dst.type() == RegType::sgpr) {
2438 Operand extract;
2439 nir_const_value* const_offset = nir_src_as_const_value(instr->src[1].src);
2440 nir_const_value* const_bits = nir_src_as_const_value(instr->src[2].src);
2441 if (const_offset && const_bits) {
2442 uint32_t const_extract = (const_bits->u32 << 16) | const_offset->u32;
2443 extract = Operand(const_extract);
2444 } else {
2445 Operand width;
2446 if (const_bits) {
2447 width = Operand(const_bits->u32 << 16);
2448 } else {
2449 width = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), bits, Operand(16u));
2450 }
2451 extract = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), offset, width);
2452 }
2453
2454 aco_opcode opcode;
2455 if (dst.regClass() == s1) {
2456 if (instr->op == nir_op_ubfe)
2457 opcode = aco_opcode::s_bfe_u32;
2458 else
2459 opcode = aco_opcode::s_bfe_i32;
2460 } else if (dst.regClass() == s2) {
2461 if (instr->op == nir_op_ubfe)
2462 opcode = aco_opcode::s_bfe_u64;
2463 else
2464 opcode = aco_opcode::s_bfe_i64;
2465 } else {
2466 unreachable("Unsupported BFE bit size");
2467 }
2468
2469 bld.sop2(opcode, Definition(dst), bld.def(s1, scc), base, extract);
2470
2471 } else {
2472 aco_opcode opcode;
2473 if (dst.regClass() == v1) {
2474 if (instr->op == nir_op_ubfe)
2475 opcode = aco_opcode::v_bfe_u32;
2476 else
2477 opcode = aco_opcode::v_bfe_i32;
2478 } else {
2479 unreachable("Unsupported BFE bit size");
2480 }
2481
2482 emit_vop3a_instruction(ctx, instr, opcode, dst);
2483 }
2484 break;
2485 }
2486 case nir_op_bit_count: {
2487 Temp src = get_alu_src(ctx, instr->src[0]);
2488 if (src.regClass() == s1) {
2489 bld.sop1(aco_opcode::s_bcnt1_i32_b32, Definition(dst), bld.def(s1, scc), src);
2490 } else if (src.regClass() == v1) {
2491 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst), src, Operand(0u));
2492 } else if (src.regClass() == v2) {
2493 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst),
2494 emit_extract_vector(ctx, src, 1, v1),
2495 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1),
2496 emit_extract_vector(ctx, src, 0, v1), Operand(0u)));
2497 } else if (src.regClass() == s2) {
2498 bld.sop1(aco_opcode::s_bcnt1_i32_b64, Definition(dst), bld.def(s1, scc), src);
2499 } else {
2500 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2501 nir_print_instr(&instr->instr, stderr);
2502 fprintf(stderr, "\n");
2503 }
2504 break;
2505 }
2506 case nir_op_flt: {
2507 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_f32, aco_opcode::v_cmp_lt_f64);
2508 break;
2509 }
2510 case nir_op_fge: {
2511 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_f32, aco_opcode::v_cmp_ge_f64);
2512 break;
2513 }
2514 case nir_op_feq: {
2515 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_f32, aco_opcode::v_cmp_eq_f64);
2516 break;
2517 }
2518 case nir_op_fne: {
2519 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_neq_f32, aco_opcode::v_cmp_neq_f64);
2520 break;
2521 }
2522 case nir_op_ilt: {
2523 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_i32, aco_opcode::v_cmp_lt_i64, aco_opcode::s_cmp_lt_i32);
2524 break;
2525 }
2526 case nir_op_ige: {
2527 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_i32, aco_opcode::v_cmp_ge_i64, aco_opcode::s_cmp_ge_i32);
2528 break;
2529 }
2530 case nir_op_ieq: {
2531 if (instr->src[0].src.ssa->bit_size == 1)
2532 emit_boolean_logic(ctx, instr, Builder::s_xnor, dst);
2533 else
2534 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_i32, aco_opcode::v_cmp_eq_i64, aco_opcode::s_cmp_eq_i32,
2535 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_eq_u64 : aco_opcode::num_opcodes);
2536 break;
2537 }
2538 case nir_op_ine: {
2539 if (instr->src[0].src.ssa->bit_size == 1)
2540 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
2541 else
2542 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lg_i32, aco_opcode::v_cmp_lg_i64, aco_opcode::s_cmp_lg_i32,
2543 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::num_opcodes);
2544 break;
2545 }
2546 case nir_op_ult: {
2547 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_u32, aco_opcode::v_cmp_lt_u64, aco_opcode::s_cmp_lt_u32);
2548 break;
2549 }
2550 case nir_op_uge: {
2551 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_u32, aco_opcode::v_cmp_ge_u64, aco_opcode::s_cmp_ge_u32);
2552 break;
2553 }
2554 case nir_op_fddx:
2555 case nir_op_fddy:
2556 case nir_op_fddx_fine:
2557 case nir_op_fddy_fine:
2558 case nir_op_fddx_coarse:
2559 case nir_op_fddy_coarse: {
2560 Temp src = get_alu_src(ctx, instr->src[0]);
2561 uint16_t dpp_ctrl1, dpp_ctrl2;
2562 if (instr->op == nir_op_fddx_fine) {
2563 dpp_ctrl1 = dpp_quad_perm(0, 0, 2, 2);
2564 dpp_ctrl2 = dpp_quad_perm(1, 1, 3, 3);
2565 } else if (instr->op == nir_op_fddy_fine) {
2566 dpp_ctrl1 = dpp_quad_perm(0, 1, 0, 1);
2567 dpp_ctrl2 = dpp_quad_perm(2, 3, 2, 3);
2568 } else {
2569 dpp_ctrl1 = dpp_quad_perm(0, 0, 0, 0);
2570 if (instr->op == nir_op_fddx || instr->op == nir_op_fddx_coarse)
2571 dpp_ctrl2 = dpp_quad_perm(1, 1, 1, 1);
2572 else
2573 dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
2574 }
2575
2576 Temp tmp;
2577 if (ctx->program->chip_class >= GFX8) {
2578 Temp tl = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl1);
2579 tmp = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), src, tl, dpp_ctrl2);
2580 } else {
2581 Temp tl = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl1);
2582 Temp tr = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl2);
2583 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), tr, tl);
2584 }
2585 emit_wqm(ctx, tmp, dst, true);
2586 break;
2587 }
2588 default:
2589 fprintf(stderr, "Unknown NIR ALU instr: ");
2590 nir_print_instr(&instr->instr, stderr);
2591 fprintf(stderr, "\n");
2592 }
2593 }
2594
2595 void visit_load_const(isel_context *ctx, nir_load_const_instr *instr)
2596 {
2597 Temp dst = get_ssa_temp(ctx, &instr->def);
2598
2599 // TODO: we really want to have the resulting type as this would allow for 64bit literals
2600 // which get truncated the lsb if double and msb if int
2601 // for now, we only use s_mov_b64 with 64bit inline constants
2602 assert(instr->def.num_components == 1 && "Vector load_const should be lowered to scalar.");
2603 assert(dst.type() == RegType::sgpr);
2604
2605 Builder bld(ctx->program, ctx->block);
2606
2607 if (instr->def.bit_size == 1) {
2608 assert(dst.regClass() == bld.lm);
2609 int val = instr->value[0].b ? -1 : 0;
2610 Operand op = bld.lm.size() == 1 ? Operand((uint32_t) val) : Operand((uint64_t) val);
2611 bld.sop1(Builder::s_mov, Definition(dst), op);
2612 } else if (dst.size() == 1) {
2613 bld.copy(Definition(dst), Operand(instr->value[0].u32));
2614 } else {
2615 assert(dst.size() != 1);
2616 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
2617 if (instr->def.bit_size == 64)
2618 for (unsigned i = 0; i < dst.size(); i++)
2619 vec->operands[i] = Operand{(uint32_t)(instr->value[0].u64 >> i * 32)};
2620 else {
2621 for (unsigned i = 0; i < dst.size(); i++)
2622 vec->operands[i] = Operand{instr->value[i].u32};
2623 }
2624 vec->definitions[0] = Definition(dst);
2625 ctx->block->instructions.emplace_back(std::move(vec));
2626 }
2627 }
2628
2629 uint32_t widen_mask(uint32_t mask, unsigned multiplier)
2630 {
2631 uint32_t new_mask = 0;
2632 for(unsigned i = 0; i < 32 && (1u << i) <= mask; ++i)
2633 if (mask & (1u << i))
2634 new_mask |= ((1u << multiplier) - 1u) << (i * multiplier);
2635 return new_mask;
2636 }
2637
2638 Operand load_lds_size_m0(isel_context *ctx)
2639 {
2640 /* TODO: m0 does not need to be initialized on GFX9+ */
2641 Builder bld(ctx->program, ctx->block);
2642 return bld.m0((Temp)bld.sopk(aco_opcode::s_movk_i32, bld.def(s1, m0), 0xffff));
2643 }
2644
2645 Temp load_lds(isel_context *ctx, unsigned elem_size_bytes, Temp dst,
2646 Temp address, unsigned base_offset, unsigned align)
2647 {
2648 assert(util_is_power_of_two_nonzero(align) && align >= 4);
2649
2650 Builder bld(ctx->program, ctx->block);
2651
2652 Operand m = load_lds_size_m0(ctx);
2653
2654 unsigned num_components = dst.size() * 4u / elem_size_bytes;
2655 unsigned bytes_read = 0;
2656 unsigned result_size = 0;
2657 unsigned total_bytes = num_components * elem_size_bytes;
2658 std::array<Temp, NIR_MAX_VEC_COMPONENTS> result;
2659 bool large_ds_read = ctx->options->chip_class >= GFX7;
2660 bool usable_read2 = ctx->options->chip_class >= GFX7;
2661
2662 while (bytes_read < total_bytes) {
2663 unsigned todo = total_bytes - bytes_read;
2664 bool aligned8 = bytes_read % 8 == 0 && align % 8 == 0;
2665 bool aligned16 = bytes_read % 16 == 0 && align % 16 == 0;
2666
2667 aco_opcode op = aco_opcode::last_opcode;
2668 bool read2 = false;
2669 if (todo >= 16 && aligned16 && large_ds_read) {
2670 op = aco_opcode::ds_read_b128;
2671 todo = 16;
2672 } else if (todo >= 16 && aligned8 && usable_read2) {
2673 op = aco_opcode::ds_read2_b64;
2674 read2 = true;
2675 todo = 16;
2676 } else if (todo >= 12 && aligned16 && large_ds_read) {
2677 op = aco_opcode::ds_read_b96;
2678 todo = 12;
2679 } else if (todo >= 8 && aligned8) {
2680 op = aco_opcode::ds_read_b64;
2681 todo = 8;
2682 } else if (todo >= 8 && usable_read2) {
2683 op = aco_opcode::ds_read2_b32;
2684 read2 = true;
2685 todo = 8;
2686 } else if (todo >= 4) {
2687 op = aco_opcode::ds_read_b32;
2688 todo = 4;
2689 } else {
2690 assert(false);
2691 }
2692 assert(todo % elem_size_bytes == 0);
2693 unsigned num_elements = todo / elem_size_bytes;
2694 unsigned offset = base_offset + bytes_read;
2695 unsigned max_offset = read2 ? 1019 : 65535;
2696
2697 Temp address_offset = address;
2698 if (offset > max_offset) {
2699 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
2700 offset = bytes_read;
2701 }
2702 assert(offset <= max_offset); /* bytes_read shouldn't be large enough for this to happen */
2703
2704 Temp res;
2705 if (num_components == 1 && dst.type() == RegType::vgpr)
2706 res = dst;
2707 else
2708 res = bld.tmp(RegClass(RegType::vgpr, todo / 4));
2709
2710 if (read2)
2711 res = bld.ds(op, Definition(res), address_offset, m, offset / (todo / 2), (offset / (todo / 2)) + 1);
2712 else
2713 res = bld.ds(op, Definition(res), address_offset, m, offset);
2714
2715 if (num_components == 1) {
2716 assert(todo == total_bytes);
2717 if (dst.type() == RegType::sgpr)
2718 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), res);
2719 return dst;
2720 }
2721
2722 if (dst.type() == RegType::sgpr) {
2723 Temp new_res = bld.tmp(RegType::sgpr, res.size());
2724 expand_vector(ctx, res, new_res, res.size(), (1 << res.size()) - 1);
2725 res = new_res;
2726 }
2727
2728 if (num_elements == 1) {
2729 result[result_size++] = res;
2730 } else {
2731 assert(res != dst && res.size() % num_elements == 0);
2732 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_elements)};
2733 split->operands[0] = Operand(res);
2734 for (unsigned i = 0; i < num_elements; i++)
2735 split->definitions[i] = Definition(result[result_size++] = bld.tmp(res.type(), elem_size_bytes / 4));
2736 ctx->block->instructions.emplace_back(std::move(split));
2737 }
2738
2739 bytes_read += todo;
2740 }
2741
2742 assert(result_size == num_components && result_size > 1);
2743 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, result_size, 1)};
2744 for (unsigned i = 0; i < result_size; i++)
2745 vec->operands[i] = Operand(result[i]);
2746 vec->definitions[0] = Definition(dst);
2747 ctx->block->instructions.emplace_back(std::move(vec));
2748 ctx->allocated_vec.emplace(dst.id(), result);
2749
2750 return dst;
2751 }
2752
2753 Temp extract_subvector(isel_context *ctx, Temp data, unsigned start, unsigned size, RegType type)
2754 {
2755 if (start == 0 && size == data.size())
2756 return type == RegType::vgpr ? as_vgpr(ctx, data) : data;
2757
2758 unsigned size_hint = 1;
2759 auto it = ctx->allocated_vec.find(data.id());
2760 if (it != ctx->allocated_vec.end())
2761 size_hint = it->second[0].size();
2762 if (size % size_hint || start % size_hint)
2763 size_hint = 1;
2764
2765 start /= size_hint;
2766 size /= size_hint;
2767
2768 Temp elems[size];
2769 for (unsigned i = 0; i < size; i++)
2770 elems[i] = emit_extract_vector(ctx, data, start + i, RegClass(type, size_hint));
2771
2772 if (size == 1)
2773 return type == RegType::vgpr ? as_vgpr(ctx, elems[0]) : elems[0];
2774
2775 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
2776 for (unsigned i = 0; i < size; i++)
2777 vec->operands[i] = Operand(elems[i]);
2778 Temp res = {ctx->program->allocateId(), RegClass(type, size * size_hint)};
2779 vec->definitions[0] = Definition(res);
2780 ctx->block->instructions.emplace_back(std::move(vec));
2781 return res;
2782 }
2783
2784 void ds_write_helper(isel_context *ctx, Operand m, Temp address, Temp data, unsigned data_start, unsigned total_size, unsigned offset0, unsigned offset1, unsigned align)
2785 {
2786 Builder bld(ctx->program, ctx->block);
2787 unsigned bytes_written = 0;
2788 bool large_ds_write = ctx->options->chip_class >= GFX7;
2789 bool usable_write2 = ctx->options->chip_class >= GFX7;
2790
2791 while (bytes_written < total_size * 4) {
2792 unsigned todo = total_size * 4 - bytes_written;
2793 bool aligned8 = bytes_written % 8 == 0 && align % 8 == 0;
2794 bool aligned16 = bytes_written % 16 == 0 && align % 16 == 0;
2795
2796 aco_opcode op = aco_opcode::last_opcode;
2797 bool write2 = false;
2798 unsigned size = 0;
2799 if (todo >= 16 && aligned16 && large_ds_write) {
2800 op = aco_opcode::ds_write_b128;
2801 size = 4;
2802 } else if (todo >= 16 && aligned8 && usable_write2) {
2803 op = aco_opcode::ds_write2_b64;
2804 write2 = true;
2805 size = 4;
2806 } else if (todo >= 12 && aligned16 && large_ds_write) {
2807 op = aco_opcode::ds_write_b96;
2808 size = 3;
2809 } else if (todo >= 8 && aligned8) {
2810 op = aco_opcode::ds_write_b64;
2811 size = 2;
2812 } else if (todo >= 8 && usable_write2) {
2813 op = aco_opcode::ds_write2_b32;
2814 write2 = true;
2815 size = 2;
2816 } else if (todo >= 4) {
2817 op = aco_opcode::ds_write_b32;
2818 size = 1;
2819 } else {
2820 assert(false);
2821 }
2822
2823 unsigned offset = offset0 + offset1 + bytes_written;
2824 unsigned max_offset = write2 ? 1020 : 65535;
2825 Temp address_offset = address;
2826 if (offset > max_offset) {
2827 address_offset = bld.vadd32(bld.def(v1), Operand(offset0), address_offset);
2828 offset = offset1 + bytes_written;
2829 }
2830 assert(offset <= max_offset); /* offset1 shouldn't be large enough for this to happen */
2831
2832 if (write2) {
2833 Temp val0 = extract_subvector(ctx, data, data_start + (bytes_written >> 2), size / 2, RegType::vgpr);
2834 Temp val1 = extract_subvector(ctx, data, data_start + (bytes_written >> 2) + 1, size / 2, RegType::vgpr);
2835 bld.ds(op, address_offset, val0, val1, m, offset / size / 2, (offset / size / 2) + 1);
2836 } else {
2837 Temp val = extract_subvector(ctx, data, data_start + (bytes_written >> 2), size, RegType::vgpr);
2838 bld.ds(op, address_offset, val, m, offset);
2839 }
2840
2841 bytes_written += size * 4;
2842 }
2843 }
2844
2845 void store_lds(isel_context *ctx, unsigned elem_size_bytes, Temp data, uint32_t wrmask,
2846 Temp address, unsigned base_offset, unsigned align)
2847 {
2848 assert(util_is_power_of_two_nonzero(align) && align >= 4);
2849 assert(elem_size_bytes == 4 || elem_size_bytes == 8);
2850
2851 Operand m = load_lds_size_m0(ctx);
2852
2853 /* we need at most two stores, assuming that the writemask is at most 4 bits wide */
2854 assert(wrmask <= 0x0f);
2855 int start[2], count[2];
2856 u_bit_scan_consecutive_range(&wrmask, &start[0], &count[0]);
2857 u_bit_scan_consecutive_range(&wrmask, &start[1], &count[1]);
2858 assert(wrmask == 0);
2859
2860 /* one combined store is sufficient */
2861 if (count[0] == count[1] && (align % elem_size_bytes) == 0 && (base_offset % elem_size_bytes) == 0) {
2862 Builder bld(ctx->program, ctx->block);
2863
2864 Temp address_offset = address;
2865 if ((base_offset / elem_size_bytes) + start[1] > 255) {
2866 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
2867 base_offset = 0;
2868 }
2869
2870 assert(count[0] == 1);
2871 RegClass xtract_rc(RegType::vgpr, elem_size_bytes / 4);
2872
2873 Temp val0 = emit_extract_vector(ctx, data, start[0], xtract_rc);
2874 Temp val1 = emit_extract_vector(ctx, data, start[1], xtract_rc);
2875 aco_opcode op = elem_size_bytes == 4 ? aco_opcode::ds_write2_b32 : aco_opcode::ds_write2_b64;
2876 base_offset = base_offset / elem_size_bytes;
2877 bld.ds(op, address_offset, val0, val1, m,
2878 base_offset + start[0], base_offset + start[1]);
2879 return;
2880 }
2881
2882 for (unsigned i = 0; i < 2; i++) {
2883 if (count[i] == 0)
2884 continue;
2885
2886 unsigned elem_size_words = elem_size_bytes / 4;
2887 ds_write_helper(ctx, m, address, data, start[i] * elem_size_words, count[i] * elem_size_words,
2888 base_offset, start[i] * elem_size_bytes, align);
2889 }
2890 return;
2891 }
2892
2893 unsigned calculate_lds_alignment(isel_context *ctx, unsigned const_offset)
2894 {
2895 unsigned align = 16;
2896 if (const_offset)
2897 align = std::min(align, 1u << (ffs(const_offset) - 1));
2898
2899 return align;
2900 }
2901
2902
2903 Temp create_vec_from_array(isel_context *ctx, Temp arr[], unsigned cnt, RegType reg_type, unsigned split_cnt = 0u, Temp dst = Temp())
2904 {
2905 Builder bld(ctx->program, ctx->block);
2906
2907 if (!dst.id())
2908 dst = bld.tmp(RegClass(reg_type, cnt * arr[0].size()));
2909
2910 std::array<Temp, NIR_MAX_VEC_COMPONENTS> allocated_vec;
2911 aco_ptr<Pseudo_instruction> instr {create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, cnt, 1)};
2912 instr->definitions[0] = Definition(dst);
2913
2914 for (unsigned i = 0; i < cnt; ++i) {
2915 assert(arr[i].size() == arr[0].size());
2916 allocated_vec[i] = arr[i];
2917 instr->operands[i] = Operand(arr[i]);
2918 }
2919
2920 bld.insert(std::move(instr));
2921
2922 if (split_cnt)
2923 emit_split_vector(ctx, dst, split_cnt);
2924 else
2925 ctx->allocated_vec.emplace(dst.id(), allocated_vec); /* emit_split_vector already does this */
2926
2927 return dst;
2928 }
2929
2930 inline unsigned resolve_excess_vmem_const_offset(Builder &bld, Temp &voffset, unsigned const_offset)
2931 {
2932 if (const_offset >= 4096) {
2933 unsigned excess_const_offset = const_offset / 4096u * 4096u;
2934 const_offset %= 4096u;
2935
2936 if (!voffset.id())
2937 voffset = bld.copy(bld.def(v1), Operand(excess_const_offset));
2938 else if (unlikely(voffset.regClass() == s1))
2939 voffset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), Operand(excess_const_offset), Operand(voffset));
2940 else if (likely(voffset.regClass() == v1))
2941 voffset = bld.vadd32(bld.def(v1), Operand(voffset), Operand(excess_const_offset));
2942 else
2943 unreachable("Unsupported register class of voffset");
2944 }
2945
2946 return const_offset;
2947 }
2948
2949 void emit_single_mubuf_store(isel_context *ctx, Temp descriptor, Temp voffset, Temp soffset, Temp vdata,
2950 unsigned const_offset = 0u, bool allow_reorder = true, bool slc = false)
2951 {
2952 assert(vdata.id());
2953 assert(vdata.size() != 3 || ctx->program->chip_class != GFX6);
2954 assert(vdata.size() >= 1 && vdata.size() <= 4);
2955
2956 Builder bld(ctx->program, ctx->block);
2957 aco_opcode op = (aco_opcode) ((unsigned) aco_opcode::buffer_store_dword + vdata.size() - 1);
2958 const_offset = resolve_excess_vmem_const_offset(bld, voffset, const_offset);
2959
2960 Operand voffset_op = voffset.id() ? Operand(as_vgpr(ctx, voffset)) : Operand(v1);
2961 Operand soffset_op = soffset.id() ? Operand(soffset) : Operand(0u);
2962 Builder::Result r = bld.mubuf(op, Operand(descriptor), voffset_op, soffset_op, Operand(vdata), const_offset,
2963 /* offen */ !voffset_op.isUndefined(), /* idxen*/ false, /* addr64 */ false,
2964 /* disable_wqm */ false, /* glc */ true, /* dlc*/ false, /* slc */ slc);
2965
2966 static_cast<MUBUF_instruction *>(r.instr)->can_reorder = allow_reorder;
2967 }
2968
2969 void store_vmem_mubuf(isel_context *ctx, Temp src, Temp descriptor, Temp voffset, Temp soffset,
2970 unsigned base_const_offset, unsigned elem_size_bytes, unsigned write_mask,
2971 bool allow_combining = true, bool reorder = true, bool slc = false)
2972 {
2973 Builder bld(ctx->program, ctx->block);
2974 assert(elem_size_bytes == 4 || elem_size_bytes == 8);
2975 assert(write_mask);
2976
2977 if (elem_size_bytes == 8) {
2978 elem_size_bytes = 4;
2979 write_mask = widen_mask(write_mask, 2);
2980 }
2981
2982 while (write_mask) {
2983 int start = 0;
2984 int count = 0;
2985 u_bit_scan_consecutive_range(&write_mask, &start, &count);
2986 assert(count > 0);
2987 assert(start >= 0);
2988
2989 while (count > 0) {
2990 unsigned sub_count = allow_combining ? MIN2(count, 4) : 1;
2991 unsigned const_offset = (unsigned) start * elem_size_bytes + base_const_offset;
2992
2993 /* GFX6 doesn't have buffer_store_dwordx3, so make sure not to emit that here either. */
2994 if (unlikely(ctx->program->chip_class == GFX6 && sub_count == 3))
2995 sub_count = 2;
2996
2997 Temp elem = extract_subvector(ctx, src, start, sub_count, RegType::vgpr);
2998 emit_single_mubuf_store(ctx, descriptor, voffset, soffset, elem, const_offset, reorder, slc);
2999
3000 count -= sub_count;
3001 start += sub_count;
3002 }
3003
3004 assert(count == 0);
3005 }
3006 }
3007
3008 Temp emit_single_mubuf_load(isel_context *ctx, Temp descriptor, Temp voffset, Temp soffset,
3009 unsigned const_offset, unsigned size_dwords, bool allow_reorder = true)
3010 {
3011 assert(size_dwords != 3 || ctx->program->chip_class != GFX6);
3012 assert(size_dwords >= 1 && size_dwords <= 4);
3013
3014 Builder bld(ctx->program, ctx->block);
3015 Temp vdata = bld.tmp(RegClass(RegType::vgpr, size_dwords));
3016 aco_opcode op = (aco_opcode) ((unsigned) aco_opcode::buffer_load_dword + size_dwords - 1);
3017 const_offset = resolve_excess_vmem_const_offset(bld, voffset, const_offset);
3018
3019 Operand voffset_op = voffset.id() ? Operand(as_vgpr(ctx, voffset)) : Operand(v1);
3020 Operand soffset_op = soffset.id() ? Operand(soffset) : Operand(0u);
3021 Builder::Result r = bld.mubuf(op, Definition(vdata), Operand(descriptor), voffset_op, soffset_op, const_offset,
3022 /* offen */ !voffset_op.isUndefined(), /* idxen*/ false, /* addr64 */ false,
3023 /* disable_wqm */ false, /* glc */ true,
3024 /* dlc*/ ctx->program->chip_class >= GFX10, /* slc */ false);
3025
3026 static_cast<MUBUF_instruction *>(r.instr)->can_reorder = allow_reorder;
3027
3028 return vdata;
3029 }
3030
3031 void load_vmem_mubuf(isel_context *ctx, Temp dst, Temp descriptor, Temp voffset, Temp soffset,
3032 unsigned base_const_offset, unsigned elem_size_bytes, unsigned num_components,
3033 unsigned stride = 0u, bool allow_combining = true, bool allow_reorder = true)
3034 {
3035 assert(elem_size_bytes == 4 || elem_size_bytes == 8);
3036 assert((num_components * elem_size_bytes / 4) == dst.size());
3037 assert(!!stride != allow_combining);
3038
3039 Builder bld(ctx->program, ctx->block);
3040 unsigned split_cnt = num_components;
3041
3042 if (elem_size_bytes == 8) {
3043 elem_size_bytes = 4;
3044 num_components *= 2;
3045 }
3046
3047 if (!stride)
3048 stride = elem_size_bytes;
3049
3050 unsigned load_size = 1;
3051 if (allow_combining) {
3052 if ((num_components % 4) == 0)
3053 load_size = 4;
3054 else if ((num_components % 3) == 0 && ctx->program->chip_class != GFX6)
3055 load_size = 3;
3056 else if ((num_components % 2) == 0)
3057 load_size = 2;
3058 }
3059
3060 unsigned num_loads = num_components / load_size;
3061 std::array<Temp, NIR_MAX_VEC_COMPONENTS> elems;
3062
3063 for (unsigned i = 0; i < num_loads; ++i) {
3064 unsigned const_offset = i * stride * load_size + base_const_offset;
3065 elems[i] = emit_single_mubuf_load(ctx, descriptor, voffset, soffset, const_offset, load_size, allow_reorder);
3066 }
3067
3068 create_vec_from_array(ctx, elems.data(), num_loads, RegType::vgpr, split_cnt, dst);
3069 }
3070
3071 std::pair<Temp, unsigned> offset_add_from_nir(isel_context *ctx, const std::pair<Temp, unsigned> &base_offset, nir_src *off_src, unsigned stride = 1u)
3072 {
3073 Builder bld(ctx->program, ctx->block);
3074 Temp offset = base_offset.first;
3075 unsigned const_offset = base_offset.second;
3076
3077 if (!nir_src_is_const(*off_src)) {
3078 Temp indirect_offset_arg = get_ssa_temp(ctx, off_src->ssa);
3079 Temp with_stride;
3080
3081 /* Calculate indirect offset with stride */
3082 if (likely(indirect_offset_arg.regClass() == v1))
3083 with_stride = bld.v_mul_imm(bld.def(v1), indirect_offset_arg, stride);
3084 else if (indirect_offset_arg.regClass() == s1)
3085 with_stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), indirect_offset_arg);
3086 else
3087 unreachable("Unsupported register class of indirect offset");
3088
3089 /* Add to the supplied base offset */
3090 if (offset.id() == 0)
3091 offset = with_stride;
3092 else if (unlikely(offset.regClass() == s1 && with_stride.regClass() == s1))
3093 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), with_stride, offset);
3094 else if (offset.size() == 1 && with_stride.size() == 1)
3095 offset = bld.vadd32(bld.def(v1), with_stride, offset);
3096 else
3097 unreachable("Unsupported register class of indirect offset");
3098 } else {
3099 unsigned const_offset_arg = nir_src_as_uint(*off_src);
3100 const_offset += const_offset_arg * stride;
3101 }
3102
3103 return std::make_pair(offset, const_offset);
3104 }
3105
3106 std::pair<Temp, unsigned> offset_add(isel_context *ctx, const std::pair<Temp, unsigned> &off1, const std::pair<Temp, unsigned> &off2)
3107 {
3108 Builder bld(ctx->program, ctx->block);
3109 Temp offset;
3110
3111 if (off1.first.id() && off2.first.id()) {
3112 if (unlikely(off1.first.regClass() == s1 && off2.first.regClass() == s1))
3113 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), off1.first, off2.first);
3114 else if (off1.first.size() == 1 && off2.first.size() == 1)
3115 offset = bld.vadd32(bld.def(v1), off1.first, off2.first);
3116 else
3117 unreachable("Unsupported register class of indirect offset");
3118 } else {
3119 offset = off1.first.id() ? off1.first : off2.first;
3120 }
3121
3122 return std::make_pair(offset, off1.second + off2.second);
3123 }
3124
3125 std::pair<Temp, unsigned> offset_mul(isel_context *ctx, const std::pair<Temp, unsigned> &offs, unsigned multiplier)
3126 {
3127 Builder bld(ctx->program, ctx->block);
3128 unsigned const_offset = offs.second * multiplier;
3129
3130 if (!offs.first.id())
3131 return std::make_pair(offs.first, const_offset);
3132
3133 Temp offset = unlikely(offs.first.regClass() == s1)
3134 ? bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(multiplier), offs.first)
3135 : bld.v_mul_imm(bld.def(v1), offs.first, multiplier);
3136
3137 return std::make_pair(offset, const_offset);
3138 }
3139
3140 std::pair<Temp, unsigned> get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned base_stride, unsigned component_stride)
3141 {
3142 Builder bld(ctx->program, ctx->block);
3143
3144 /* base is the driver_location, which is already multiplied by 4, so is in dwords */
3145 unsigned const_offset = nir_intrinsic_base(instr) * base_stride;
3146 /* component is in bytes */
3147 const_offset += nir_intrinsic_component(instr) * component_stride;
3148
3149 /* offset should be interpreted in relation to the base, so the instruction effectively reads/writes another input/output when it has an offset */
3150 nir_src *off_src = nir_get_io_offset_src(instr);
3151 return offset_add_from_nir(ctx, std::make_pair(Temp(), const_offset), off_src, 4u * base_stride);
3152 }
3153
3154 std::pair<Temp, unsigned> get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned stride = 1u)
3155 {
3156 return get_intrinsic_io_basic_offset(ctx, instr, stride, stride);
3157 }
3158
3159 Temp get_tess_rel_patch_id(isel_context *ctx)
3160 {
3161 Builder bld(ctx->program, ctx->block);
3162
3163 switch (ctx->shader->info.stage) {
3164 case MESA_SHADER_TESS_CTRL:
3165 return bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffu),
3166 get_arg(ctx, ctx->args->ac.tcs_rel_ids));
3167 case MESA_SHADER_TESS_EVAL:
3168 return get_arg(ctx, ctx->args->tes_rel_patch_id);
3169 default:
3170 unreachable("Unsupported stage in get_tess_rel_patch_id");
3171 }
3172 }
3173
3174 std::pair<Temp, unsigned> get_tcs_per_vertex_input_lds_offset(isel_context *ctx, nir_intrinsic_instr *instr)
3175 {
3176 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3177 Builder bld(ctx->program, ctx->block);
3178
3179 uint32_t tcs_in_patch_stride = ctx->args->options->key.tcs.input_vertices * ctx->tcs_num_inputs * 4;
3180 uint32_t tcs_in_vertex_stride = ctx->tcs_num_inputs * 4;
3181
3182 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr);
3183
3184 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
3185 offs = offset_add_from_nir(ctx, offs, vertex_index_src, tcs_in_vertex_stride);
3186
3187 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3188 Temp tcs_in_current_patch_offset = bld.v_mul24_imm(bld.def(v1), rel_patch_id, tcs_in_patch_stride);
3189 offs = offset_add(ctx, offs, std::make_pair(tcs_in_current_patch_offset, 0));
3190
3191 return offset_mul(ctx, offs, 4u);
3192 }
3193
3194 std::pair<Temp, unsigned> get_tcs_output_lds_offset(isel_context *ctx, nir_intrinsic_instr *instr = nullptr, bool per_vertex = false)
3195 {
3196 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3197 Builder bld(ctx->program, ctx->block);
3198
3199 uint32_t input_patch_size = ctx->args->options->key.tcs.input_vertices * ctx->tcs_num_inputs * 16;
3200 uint32_t num_tcs_outputs = util_last_bit64(ctx->args->shader_info->tcs.outputs_written);
3201 uint32_t num_tcs_patch_outputs = util_last_bit64(ctx->args->shader_info->tcs.patch_outputs_written);
3202 uint32_t output_vertex_size = num_tcs_outputs * 16;
3203 uint32_t pervertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
3204 uint32_t output_patch_stride = pervertex_output_patch_size + num_tcs_patch_outputs * 16;
3205
3206 std::pair<Temp, unsigned> offs = instr
3207 ? get_intrinsic_io_basic_offset(ctx, instr, 4u)
3208 : std::make_pair(Temp(), 0u);
3209
3210 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3211 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, output_patch_stride);
3212
3213 if (per_vertex) {
3214 assert(instr);
3215
3216 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
3217 offs = offset_add_from_nir(ctx, offs, vertex_index_src, output_vertex_size);
3218
3219 uint32_t output_patch0_offset = (input_patch_size * ctx->tcs_num_patches);
3220 offs = offset_add(ctx, offs, std::make_pair(patch_off, output_patch0_offset));
3221 } else {
3222 uint32_t output_patch0_patch_data_offset = (input_patch_size * ctx->tcs_num_patches + pervertex_output_patch_size);
3223 offs = offset_add(ctx, offs, std::make_pair(patch_off, output_patch0_patch_data_offset));
3224 }
3225
3226 return offs;
3227 }
3228
3229 std::pair<Temp, unsigned> get_tcs_per_vertex_output_vmem_offset(isel_context *ctx, nir_intrinsic_instr *instr)
3230 {
3231 Builder bld(ctx->program, ctx->block);
3232
3233 unsigned vertices_per_patch = ctx->shader->info.tess.tcs_vertices_out;
3234 unsigned attr_stride = vertices_per_patch * ctx->tcs_num_patches;
3235
3236 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, attr_stride * 4u, 4u);
3237
3238 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3239 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, vertices_per_patch * 16u);
3240 offs = offset_add(ctx, offs, std::make_pair(patch_off, 0u));
3241
3242 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
3243 offs = offset_add_from_nir(ctx, offs, vertex_index_src, 16u);
3244
3245 return offs;
3246 }
3247
3248 std::pair<Temp, unsigned> get_tcs_per_patch_output_vmem_offset(isel_context *ctx, nir_intrinsic_instr *instr = nullptr, unsigned const_base_offset = 0u)
3249 {
3250 Builder bld(ctx->program, ctx->block);
3251
3252 unsigned num_tcs_outputs = ctx->shader->info.stage == MESA_SHADER_TESS_CTRL
3253 ? util_last_bit64(ctx->args->shader_info->tcs.outputs_written)
3254 : ctx->args->options->key.tes.tcs_num_outputs;
3255
3256 unsigned output_vertex_size = num_tcs_outputs * 16;
3257 unsigned per_vertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
3258 unsigned per_patch_data_offset = per_vertex_output_patch_size * ctx->tcs_num_patches;
3259 unsigned attr_stride = ctx->tcs_num_patches;
3260
3261 std::pair<Temp, unsigned> offs = instr
3262 ? get_intrinsic_io_basic_offset(ctx, instr, attr_stride * 4u, 4u)
3263 : std::make_pair(Temp(), 0u);
3264
3265 if (const_base_offset)
3266 offs.second += const_base_offset * attr_stride;
3267
3268 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3269 Temp patch_off = bld.v_mul_imm(bld.def(v1), rel_patch_id, 16u);
3270 offs = offset_add(ctx, offs, std::make_pair(patch_off, per_patch_data_offset));
3271
3272 return offs;
3273 }
3274
3275 void visit_store_ls_or_es_output(isel_context *ctx, nir_intrinsic_instr *instr)
3276 {
3277 Builder bld(ctx->program, ctx->block);
3278
3279 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, 4u);
3280 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
3281 unsigned write_mask = nir_intrinsic_write_mask(instr);
3282 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8u;
3283
3284 if (ctx->stage == vertex_es || ctx->stage == tess_eval_es) {
3285 /* GFX6-8: ES stage is not merged into GS, data is passed from ES to GS in VMEM. */
3286 Temp esgs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_VS * 16u));
3287 Temp es2gs_offset = get_arg(ctx, ctx->args->es2gs_offset);
3288 store_vmem_mubuf(ctx, src, esgs_ring, offs.first, es2gs_offset, offs.second, elem_size_bytes, write_mask, false, true, true);
3289 } else {
3290 Temp lds_base;
3291
3292 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
3293 /* GFX9+: ES stage is merged into GS, data is passed between them using LDS. */
3294 unsigned itemsize = ctx->stage == vertex_geometry_gs
3295 ? ctx->program->info->vs.es_info.esgs_itemsize
3296 : ctx->program->info->tes.es_info.esgs_itemsize;
3297 Temp thread_id = emit_mbcnt(ctx, bld.def(v1));
3298 Temp wave_idx = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(ctx, ctx->args->merged_wave_info), Operand(4u << 16 | 24));
3299 Temp vertex_idx = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), thread_id,
3300 bld.v_mul24_imm(bld.def(v1), as_vgpr(ctx, wave_idx), ctx->program->wave_size));
3301 lds_base = bld.v_mul24_imm(bld.def(v1), vertex_idx, itemsize);
3302 } else if (ctx->stage == vertex_ls || ctx->stage == vertex_tess_control_hs) {
3303 /* GFX6-8: VS runs on LS stage when tessellation is used, but LS shares LDS space with HS.
3304 * GFX9+: LS is merged into HS, but still uses the same LDS layout.
3305 */
3306 unsigned num_tcs_inputs = util_last_bit64(ctx->args->shader_info->vs.ls_outputs_written);
3307 Temp vertex_idx = get_arg(ctx, ctx->args->rel_auto_id);
3308 lds_base = bld.v_mul_imm(bld.def(v1), vertex_idx, num_tcs_inputs * 16u);
3309 } else {
3310 unreachable("Invalid LS or ES stage");
3311 }
3312
3313 offs = offset_add(ctx, offs, std::make_pair(lds_base, 0u));
3314 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
3315 store_lds(ctx, elem_size_bytes, src, write_mask, offs.first, offs.second, lds_align);
3316 }
3317 }
3318
3319 bool should_write_tcs_patch_output_to_vmem(isel_context *ctx, nir_intrinsic_instr *instr)
3320 {
3321 unsigned off = nir_intrinsic_base(instr) * 4u;
3322 nir_src *off_src = nir_get_io_offset_src(instr);
3323
3324 /* Indirect offset, we can't be sure if this is a tess factor, always write to VMEM */
3325 if (!nir_src_is_const(*off_src))
3326 return true;
3327
3328 off += nir_src_as_uint(*off_src) * 16u;
3329
3330 const unsigned tess_index_inner = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_INNER);
3331 const unsigned tess_index_outer = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_OUTER);
3332
3333 return (off != (tess_index_inner * 16u)) &&
3334 (off != (tess_index_outer * 16u));
3335 }
3336
3337 bool should_write_tcs_patch_output_to_lds(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
3338 {
3339 unsigned off = nir_intrinsic_base(instr) * 4u;
3340 nir_src *off_src = nir_get_io_offset_src(instr);
3341
3342 /* When none of the appropriate outputs are read, we are OK to never write to LDS */
3343 if (per_vertex ? ctx->shader->info.outputs_read == 0U : ctx->shader->info.patch_outputs_read == 0u)
3344 return false;
3345
3346 /* Indirect offset, we can't be sure if this is read or not, always write to LDS */
3347 if (!nir_src_is_const(*off_src))
3348 return true;
3349
3350 off += nir_src_as_uint(*off_src) * 16u;
3351
3352 uint64_t out_rd = per_vertex
3353 ? ctx->shader->info.outputs_read
3354 : ctx->shader->info.patch_outputs_read;
3355 while (out_rd) {
3356 unsigned slot = u_bit_scan64(&out_rd) + (per_vertex ? 0 : VARYING_SLOT_PATCH0);
3357 if (off == shader_io_get_unique_index((gl_varying_slot) slot) * 16u)
3358 return true;
3359 }
3360
3361 return false;
3362 }
3363
3364 void visit_store_tcs_output(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
3365 {
3366 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
3367 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3368
3369 Builder bld(ctx->program, ctx->block);
3370
3371 Temp store_val = get_ssa_temp(ctx, instr->src[0].ssa);
3372 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
3373 unsigned write_mask = nir_intrinsic_write_mask(instr);
3374
3375 /* Only write to VMEM if the output is per-vertex or it's per-patch non tess factor */
3376 bool write_to_vmem = per_vertex || should_write_tcs_patch_output_to_vmem(ctx, instr);
3377 /* Only write to LDS if the output is read by the shader, or it's per-patch tess factor */
3378 bool write_to_lds = !write_to_vmem || should_write_tcs_patch_output_to_lds(ctx, instr, per_vertex);
3379
3380 if (write_to_vmem) {
3381 std::pair<Temp, unsigned> vmem_offs = per_vertex
3382 ? get_tcs_per_vertex_output_vmem_offset(ctx, instr)
3383 : get_tcs_per_patch_output_vmem_offset(ctx, instr);
3384
3385 Temp hs_ring_tess_offchip = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
3386 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
3387 store_vmem_mubuf(ctx, store_val, hs_ring_tess_offchip, vmem_offs.first, oc_lds, vmem_offs.second, elem_size_bytes, write_mask, false, false);
3388 }
3389
3390 if (write_to_lds) {
3391 std::pair<Temp, unsigned> lds_offs = get_tcs_output_lds_offset(ctx, instr, per_vertex);
3392 unsigned lds_align = calculate_lds_alignment(ctx, lds_offs.second);
3393 store_lds(ctx, elem_size_bytes, store_val, write_mask, lds_offs.first, lds_offs.second, lds_align);
3394 }
3395 }
3396
3397 void visit_load_tcs_output(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
3398 {
3399 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
3400 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3401
3402 Builder bld(ctx->program, ctx->block);
3403
3404 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3405 std::pair<Temp, unsigned> lds_offs = get_tcs_output_lds_offset(ctx, instr, per_vertex);
3406 unsigned lds_align = calculate_lds_alignment(ctx, lds_offs.second);
3407 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
3408
3409 load_lds(ctx, elem_size_bytes, dst, lds_offs.first, lds_offs.second, lds_align);
3410 }
3411
3412 void visit_store_output(isel_context *ctx, nir_intrinsic_instr *instr)
3413 {
3414 if (ctx->stage == vertex_vs ||
3415 ctx->stage == tess_eval_vs ||
3416 ctx->stage == fragment_fs ||
3417 ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
3418 unsigned write_mask = nir_intrinsic_write_mask(instr);
3419 unsigned component = nir_intrinsic_component(instr);
3420 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
3421 unsigned idx = nir_intrinsic_base(instr) + component;
3422
3423 nir_instr *off_instr = instr->src[1].ssa->parent_instr;
3424 if (off_instr->type != nir_instr_type_load_const) {
3425 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
3426 nir_print_instr(off_instr, stderr);
3427 fprintf(stderr, "\n");
3428 }
3429 idx += nir_instr_as_load_const(off_instr)->value[0].u32 * 4u;
3430
3431 if (instr->src[0].ssa->bit_size == 64)
3432 write_mask = widen_mask(write_mask, 2);
3433
3434 for (unsigned i = 0; i < 8; ++i) {
3435 if (write_mask & (1 << i)) {
3436 ctx->outputs.mask[idx / 4u] |= 1 << (idx % 4u);
3437 ctx->outputs.outputs[idx / 4u][idx % 4u] = emit_extract_vector(ctx, src, i, v1);
3438 }
3439 idx++;
3440 }
3441 } else if (ctx->stage == vertex_es ||
3442 ctx->stage == vertex_ls ||
3443 ctx->stage == tess_eval_es ||
3444 (ctx->stage == vertex_tess_control_hs && ctx->shader->info.stage == MESA_SHADER_VERTEX) ||
3445 (ctx->stage == vertex_geometry_gs && ctx->shader->info.stage == MESA_SHADER_VERTEX) ||
3446 (ctx->stage == tess_eval_geometry_gs && ctx->shader->info.stage == MESA_SHADER_TESS_EVAL)) {
3447 visit_store_ls_or_es_output(ctx, instr);
3448 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
3449 visit_store_tcs_output(ctx, instr, false);
3450 } else {
3451 unreachable("Shader stage not implemented");
3452 }
3453 }
3454
3455 void visit_load_output(isel_context *ctx, nir_intrinsic_instr *instr)
3456 {
3457 visit_load_tcs_output(ctx, instr, false);
3458 }
3459
3460 void emit_interp_instr(isel_context *ctx, unsigned idx, unsigned component, Temp src, Temp dst, Temp prim_mask)
3461 {
3462 Temp coord1 = emit_extract_vector(ctx, src, 0, v1);
3463 Temp coord2 = emit_extract_vector(ctx, src, 1, v1);
3464
3465 Builder bld(ctx->program, ctx->block);
3466 Builder::Result interp_p1 = bld.vintrp(aco_opcode::v_interp_p1_f32, bld.def(v1), coord1, bld.m0(prim_mask), idx, component);
3467 if (ctx->program->has_16bank_lds)
3468 interp_p1.instr->operands[0].setLateKill(true);
3469 bld.vintrp(aco_opcode::v_interp_p2_f32, Definition(dst), coord2, bld.m0(prim_mask), interp_p1, idx, component);
3470 }
3471
3472 void emit_load_frag_coord(isel_context *ctx, Temp dst, unsigned num_components)
3473 {
3474 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1));
3475 for (unsigned i = 0; i < num_components; i++)
3476 vec->operands[i] = Operand(get_arg(ctx, ctx->args->ac.frag_pos[i]));
3477 if (G_0286CC_POS_W_FLOAT_ENA(ctx->program->config->spi_ps_input_ena)) {
3478 assert(num_components == 4);
3479 Builder bld(ctx->program, ctx->block);
3480 vec->operands[3] = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), get_arg(ctx, ctx->args->ac.frag_pos[3]));
3481 }
3482
3483 for (Operand& op : vec->operands)
3484 op = op.isUndefined() ? Operand(0u) : op;
3485
3486 vec->definitions[0] = Definition(dst);
3487 ctx->block->instructions.emplace_back(std::move(vec));
3488 emit_split_vector(ctx, dst, num_components);
3489 return;
3490 }
3491
3492 void visit_load_interpolated_input(isel_context *ctx, nir_intrinsic_instr *instr)
3493 {
3494 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3495 Temp coords = get_ssa_temp(ctx, instr->src[0].ssa);
3496 unsigned idx = nir_intrinsic_base(instr);
3497 unsigned component = nir_intrinsic_component(instr);
3498 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
3499
3500 nir_const_value* offset = nir_src_as_const_value(instr->src[1]);
3501 if (offset) {
3502 assert(offset->u32 == 0);
3503 } else {
3504 /* the lower 15bit of the prim_mask contain the offset into LDS
3505 * while the upper bits contain the number of prims */
3506 Temp offset_src = get_ssa_temp(ctx, instr->src[1].ssa);
3507 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
3508 Builder bld(ctx->program, ctx->block);
3509 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
3510 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
3511 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
3512 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
3513 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
3514 }
3515
3516 if (instr->dest.ssa.num_components == 1) {
3517 emit_interp_instr(ctx, idx, component, coords, dst, prim_mask);
3518 } else {
3519 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.ssa.num_components, 1));
3520 for (unsigned i = 0; i < instr->dest.ssa.num_components; i++)
3521 {
3522 Temp tmp = {ctx->program->allocateId(), v1};
3523 emit_interp_instr(ctx, idx, component+i, coords, tmp, prim_mask);
3524 vec->operands[i] = Operand(tmp);
3525 }
3526 vec->definitions[0] = Definition(dst);
3527 ctx->block->instructions.emplace_back(std::move(vec));
3528 }
3529 }
3530
3531 bool check_vertex_fetch_size(isel_context *ctx, const ac_data_format_info *vtx_info,
3532 unsigned offset, unsigned stride, unsigned channels)
3533 {
3534 unsigned vertex_byte_size = vtx_info->chan_byte_size * channels;
3535 if (vtx_info->chan_byte_size != 4 && channels == 3)
3536 return false;
3537 return (ctx->options->chip_class != GFX6 && ctx->options->chip_class != GFX10) ||
3538 (offset % vertex_byte_size == 0 && stride % vertex_byte_size == 0);
3539 }
3540
3541 uint8_t get_fetch_data_format(isel_context *ctx, const ac_data_format_info *vtx_info,
3542 unsigned offset, unsigned stride, unsigned *channels)
3543 {
3544 if (!vtx_info->chan_byte_size) {
3545 *channels = vtx_info->num_channels;
3546 return vtx_info->chan_format;
3547 }
3548
3549 unsigned num_channels = *channels;
3550 if (!check_vertex_fetch_size(ctx, vtx_info, offset, stride, *channels)) {
3551 unsigned new_channels = num_channels + 1;
3552 /* first, assume more loads is worse and try using a larger data format */
3553 while (new_channels <= 4 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels)) {
3554 new_channels++;
3555 /* don't make the attribute potentially out-of-bounds */
3556 if (offset + new_channels * vtx_info->chan_byte_size > stride)
3557 new_channels = 5;
3558 }
3559
3560 if (new_channels == 5) {
3561 /* then try decreasing load size (at the cost of more loads) */
3562 new_channels = *channels;
3563 while (new_channels > 1 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels))
3564 new_channels--;
3565 }
3566
3567 if (new_channels < *channels)
3568 *channels = new_channels;
3569 num_channels = new_channels;
3570 }
3571
3572 switch (vtx_info->chan_format) {
3573 case V_008F0C_BUF_DATA_FORMAT_8:
3574 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_8, V_008F0C_BUF_DATA_FORMAT_8_8,
3575 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_8_8_8_8}[num_channels - 1];
3576 case V_008F0C_BUF_DATA_FORMAT_16:
3577 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_16, V_008F0C_BUF_DATA_FORMAT_16_16,
3578 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_16_16_16_16}[num_channels - 1];
3579 case V_008F0C_BUF_DATA_FORMAT_32:
3580 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_32, V_008F0C_BUF_DATA_FORMAT_32_32,
3581 V_008F0C_BUF_DATA_FORMAT_32_32_32, V_008F0C_BUF_DATA_FORMAT_32_32_32_32}[num_channels - 1];
3582 }
3583 unreachable("shouldn't reach here");
3584 return V_008F0C_BUF_DATA_FORMAT_INVALID;
3585 }
3586
3587 /* For 2_10_10_10 formats the alpha is handled as unsigned by pre-vega HW.
3588 * so we may need to fix it up. */
3589 Temp adjust_vertex_fetch_alpha(isel_context *ctx, unsigned adjustment, Temp alpha)
3590 {
3591 Builder bld(ctx->program, ctx->block);
3592
3593 if (adjustment == RADV_ALPHA_ADJUST_SSCALED)
3594 alpha = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), alpha);
3595
3596 /* For the integer-like cases, do a natural sign extension.
3597 *
3598 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
3599 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
3600 * exponent.
3601 */
3602 alpha = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(adjustment == RADV_ALPHA_ADJUST_SNORM ? 7u : 30u), alpha);
3603 alpha = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(30u), alpha);
3604
3605 /* Convert back to the right type. */
3606 if (adjustment == RADV_ALPHA_ADJUST_SNORM) {
3607 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
3608 Temp clamp = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0xbf800000u), alpha);
3609 alpha = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xbf800000u), alpha, clamp);
3610 } else if (adjustment == RADV_ALPHA_ADJUST_SSCALED) {
3611 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
3612 }
3613
3614 return alpha;
3615 }
3616
3617 void visit_load_input(isel_context *ctx, nir_intrinsic_instr *instr)
3618 {
3619 Builder bld(ctx->program, ctx->block);
3620 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3621 if (ctx->shader->info.stage == MESA_SHADER_VERTEX) {
3622
3623 nir_instr *off_instr = instr->src[0].ssa->parent_instr;
3624 if (off_instr->type != nir_instr_type_load_const) {
3625 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
3626 nir_print_instr(off_instr, stderr);
3627 fprintf(stderr, "\n");
3628 }
3629 uint32_t offset = nir_instr_as_load_const(off_instr)->value[0].u32;
3630
3631 Temp vertex_buffers = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->vertex_buffers));
3632
3633 unsigned location = nir_intrinsic_base(instr) / 4 - VERT_ATTRIB_GENERIC0 + offset;
3634 unsigned component = nir_intrinsic_component(instr);
3635 unsigned attrib_binding = ctx->options->key.vs.vertex_attribute_bindings[location];
3636 uint32_t attrib_offset = ctx->options->key.vs.vertex_attribute_offsets[location];
3637 uint32_t attrib_stride = ctx->options->key.vs.vertex_attribute_strides[location];
3638 unsigned attrib_format = ctx->options->key.vs.vertex_attribute_formats[location];
3639
3640 unsigned dfmt = attrib_format & 0xf;
3641 unsigned nfmt = (attrib_format >> 4) & 0x7;
3642 const struct ac_data_format_info *vtx_info = ac_get_data_format_info(dfmt);
3643
3644 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa) << component;
3645 unsigned num_channels = MIN2(util_last_bit(mask), vtx_info->num_channels);
3646 unsigned alpha_adjust = (ctx->options->key.vs.alpha_adjust >> (location * 2)) & 3;
3647 bool post_shuffle = ctx->options->key.vs.post_shuffle & (1 << location);
3648 if (post_shuffle)
3649 num_channels = MAX2(num_channels, 3);
3650
3651 Operand off = bld.copy(bld.def(s1), Operand(attrib_binding * 16u));
3652 Temp list = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), vertex_buffers, off);
3653
3654 Temp index;
3655 if (ctx->options->key.vs.instance_rate_inputs & (1u << location)) {
3656 uint32_t divisor = ctx->options->key.vs.instance_rate_divisors[location];
3657 Temp start_instance = get_arg(ctx, ctx->args->ac.start_instance);
3658 if (divisor) {
3659 Temp instance_id = get_arg(ctx, ctx->args->ac.instance_id);
3660 if (divisor != 1) {
3661 Temp divided = bld.tmp(v1);
3662 emit_v_div_u32(ctx, divided, as_vgpr(ctx, instance_id), divisor);
3663 index = bld.vadd32(bld.def(v1), start_instance, divided);
3664 } else {
3665 index = bld.vadd32(bld.def(v1), start_instance, instance_id);
3666 }
3667 } else {
3668 index = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), start_instance);
3669 }
3670 } else {
3671 index = bld.vadd32(bld.def(v1),
3672 get_arg(ctx, ctx->args->ac.base_vertex),
3673 get_arg(ctx, ctx->args->ac.vertex_id));
3674 }
3675
3676 Temp channels[num_channels];
3677 unsigned channel_start = 0;
3678 bool direct_fetch = false;
3679
3680 /* skip unused channels at the start */
3681 if (vtx_info->chan_byte_size && !post_shuffle) {
3682 channel_start = ffs(mask) - 1;
3683 for (unsigned i = 0; i < channel_start; i++)
3684 channels[i] = Temp(0, s1);
3685 } else if (vtx_info->chan_byte_size && post_shuffle && !(mask & 0x8)) {
3686 num_channels = 3 - (ffs(mask) - 1);
3687 }
3688
3689 /* load channels */
3690 while (channel_start < num_channels) {
3691 unsigned fetch_size = num_channels - channel_start;
3692 unsigned fetch_offset = attrib_offset + channel_start * vtx_info->chan_byte_size;
3693 bool expanded = false;
3694
3695 /* use MUBUF when possible to avoid possible alignment issues */
3696 /* TODO: we could use SDWA to unpack 8/16-bit attributes without extra instructions */
3697 bool use_mubuf = (nfmt == V_008F0C_BUF_NUM_FORMAT_FLOAT ||
3698 nfmt == V_008F0C_BUF_NUM_FORMAT_UINT ||
3699 nfmt == V_008F0C_BUF_NUM_FORMAT_SINT) &&
3700 vtx_info->chan_byte_size == 4;
3701 unsigned fetch_dfmt = V_008F0C_BUF_DATA_FORMAT_INVALID;
3702 if (!use_mubuf) {
3703 fetch_dfmt = get_fetch_data_format(ctx, vtx_info, fetch_offset, attrib_stride, &fetch_size);
3704 } else {
3705 if (fetch_size == 3 && ctx->options->chip_class == GFX6) {
3706 /* GFX6 only supports loading vec3 with MTBUF, expand to vec4. */
3707 fetch_size = 4;
3708 expanded = true;
3709 }
3710 }
3711
3712 Temp fetch_index = index;
3713 if (attrib_stride != 0 && fetch_offset > attrib_stride) {
3714 fetch_index = bld.vadd32(bld.def(v1), Operand(fetch_offset / attrib_stride), fetch_index);
3715 fetch_offset = fetch_offset % attrib_stride;
3716 }
3717
3718 Operand soffset(0u);
3719 if (fetch_offset >= 4096) {
3720 soffset = bld.copy(bld.def(s1), Operand(fetch_offset / 4096 * 4096));
3721 fetch_offset %= 4096;
3722 }
3723
3724 aco_opcode opcode;
3725 switch (fetch_size) {
3726 case 1:
3727 opcode = use_mubuf ? aco_opcode::buffer_load_dword : aco_opcode::tbuffer_load_format_x;
3728 break;
3729 case 2:
3730 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx2 : aco_opcode::tbuffer_load_format_xy;
3731 break;
3732 case 3:
3733 assert(ctx->options->chip_class >= GFX7 ||
3734 (!use_mubuf && ctx->options->chip_class == GFX6));
3735 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx3 : aco_opcode::tbuffer_load_format_xyz;
3736 break;
3737 case 4:
3738 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx4 : aco_opcode::tbuffer_load_format_xyzw;
3739 break;
3740 default:
3741 unreachable("Unimplemented load_input vector size");
3742 }
3743
3744 Temp fetch_dst;
3745 if (channel_start == 0 && fetch_size == dst.size() && !post_shuffle &&
3746 !expanded && (alpha_adjust == RADV_ALPHA_ADJUST_NONE ||
3747 num_channels <= 3)) {
3748 direct_fetch = true;
3749 fetch_dst = dst;
3750 } else {
3751 fetch_dst = bld.tmp(RegType::vgpr, fetch_size);
3752 }
3753
3754 if (use_mubuf) {
3755 Instruction *mubuf = bld.mubuf(opcode,
3756 Definition(fetch_dst), list, fetch_index, soffset,
3757 fetch_offset, false, true).instr;
3758 static_cast<MUBUF_instruction*>(mubuf)->can_reorder = true;
3759 } else {
3760 Instruction *mtbuf = bld.mtbuf(opcode,
3761 Definition(fetch_dst), list, fetch_index, soffset,
3762 fetch_dfmt, nfmt, fetch_offset, false, true).instr;
3763 static_cast<MTBUF_instruction*>(mtbuf)->can_reorder = true;
3764 }
3765
3766 emit_split_vector(ctx, fetch_dst, fetch_dst.size());
3767
3768 if (fetch_size == 1) {
3769 channels[channel_start] = fetch_dst;
3770 } else {
3771 for (unsigned i = 0; i < MIN2(fetch_size, num_channels - channel_start); i++)
3772 channels[channel_start + i] = emit_extract_vector(ctx, fetch_dst, i, v1);
3773 }
3774
3775 channel_start += fetch_size;
3776 }
3777
3778 if (!direct_fetch) {
3779 bool is_float = nfmt != V_008F0C_BUF_NUM_FORMAT_UINT &&
3780 nfmt != V_008F0C_BUF_NUM_FORMAT_SINT;
3781
3782 static const unsigned swizzle_normal[4] = {0, 1, 2, 3};
3783 static const unsigned swizzle_post_shuffle[4] = {2, 1, 0, 3};
3784 const unsigned *swizzle = post_shuffle ? swizzle_post_shuffle : swizzle_normal;
3785
3786 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
3787 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
3788 unsigned num_temp = 0;
3789 for (unsigned i = 0; i < dst.size(); i++) {
3790 unsigned idx = i + component;
3791 if (swizzle[idx] < num_channels && channels[swizzle[idx]].id()) {
3792 Temp channel = channels[swizzle[idx]];
3793 if (idx == 3 && alpha_adjust != RADV_ALPHA_ADJUST_NONE)
3794 channel = adjust_vertex_fetch_alpha(ctx, alpha_adjust, channel);
3795 vec->operands[i] = Operand(channel);
3796
3797 num_temp++;
3798 elems[i] = channel;
3799 } else if (is_float && idx == 3) {
3800 vec->operands[i] = Operand(0x3f800000u);
3801 } else if (!is_float && idx == 3) {
3802 vec->operands[i] = Operand(1u);
3803 } else {
3804 vec->operands[i] = Operand(0u);
3805 }
3806 }
3807 vec->definitions[0] = Definition(dst);
3808 ctx->block->instructions.emplace_back(std::move(vec));
3809 emit_split_vector(ctx, dst, dst.size());
3810
3811 if (num_temp == dst.size())
3812 ctx->allocated_vec.emplace(dst.id(), elems);
3813 }
3814 } else if (ctx->shader->info.stage == MESA_SHADER_FRAGMENT) {
3815 unsigned offset_idx = instr->intrinsic == nir_intrinsic_load_input ? 0 : 1;
3816 nir_instr *off_instr = instr->src[offset_idx].ssa->parent_instr;
3817 if (off_instr->type != nir_instr_type_load_const ||
3818 nir_instr_as_load_const(off_instr)->value[0].u32 != 0) {
3819 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
3820 nir_print_instr(off_instr, stderr);
3821 fprintf(stderr, "\n");
3822 }
3823
3824 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
3825 nir_const_value* offset = nir_src_as_const_value(instr->src[offset_idx]);
3826 if (offset) {
3827 assert(offset->u32 == 0);
3828 } else {
3829 /* the lower 15bit of the prim_mask contain the offset into LDS
3830 * while the upper bits contain the number of prims */
3831 Temp offset_src = get_ssa_temp(ctx, instr->src[offset_idx].ssa);
3832 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
3833 Builder bld(ctx->program, ctx->block);
3834 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
3835 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
3836 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
3837 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
3838 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
3839 }
3840
3841 unsigned idx = nir_intrinsic_base(instr);
3842 unsigned component = nir_intrinsic_component(instr);
3843 unsigned vertex_id = 2; /* P0 */
3844
3845 if (instr->intrinsic == nir_intrinsic_load_input_vertex) {
3846 nir_const_value* src0 = nir_src_as_const_value(instr->src[0]);
3847 switch (src0->u32) {
3848 case 0:
3849 vertex_id = 2; /* P0 */
3850 break;
3851 case 1:
3852 vertex_id = 0; /* P10 */
3853 break;
3854 case 2:
3855 vertex_id = 1; /* P20 */
3856 break;
3857 default:
3858 unreachable("invalid vertex index");
3859 }
3860 }
3861
3862 if (dst.size() == 1) {
3863 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(dst), Operand(vertex_id), bld.m0(prim_mask), idx, component);
3864 } else {
3865 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
3866 for (unsigned i = 0; i < dst.size(); i++)
3867 vec->operands[i] = bld.vintrp(aco_opcode::v_interp_mov_f32, bld.def(v1), Operand(vertex_id), bld.m0(prim_mask), idx, component + i);
3868 vec->definitions[0] = Definition(dst);
3869 bld.insert(std::move(vec));
3870 }
3871
3872 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_EVAL) {
3873 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
3874 Temp soffset = get_arg(ctx, ctx->args->oc_lds);
3875 std::pair<Temp, unsigned> offs = get_tcs_per_patch_output_vmem_offset(ctx, instr);
3876 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8u;
3877
3878 load_vmem_mubuf(ctx, dst, ring, offs.first, soffset, offs.second, elem_size_bytes, instr->dest.ssa.num_components);
3879 } else {
3880 unreachable("Shader stage not implemented");
3881 }
3882 }
3883
3884 std::pair<Temp, unsigned> get_gs_per_vertex_input_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned base_stride = 1u)
3885 {
3886 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
3887
3888 Builder bld(ctx->program, ctx->block);
3889 nir_src *vertex_src = nir_get_io_vertex_index_src(instr);
3890 Temp vertex_offset;
3891
3892 if (!nir_src_is_const(*vertex_src)) {
3893 /* better code could be created, but this case probably doesn't happen
3894 * much in practice */
3895 Temp indirect_vertex = as_vgpr(ctx, get_ssa_temp(ctx, vertex_src->ssa));
3896 for (unsigned i = 0; i < ctx->shader->info.gs.vertices_in; i++) {
3897 Temp elem;
3898
3899 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
3900 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i / 2u * 2u]);
3901 if (i % 2u)
3902 elem = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), elem);
3903 } else {
3904 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i]);
3905 }
3906
3907 if (vertex_offset.id()) {
3908 Temp cond = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)),
3909 Operand(i), indirect_vertex);
3910 vertex_offset = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), vertex_offset, elem, cond);
3911 } else {
3912 vertex_offset = elem;
3913 }
3914 }
3915
3916 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs)
3917 vertex_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu), vertex_offset);
3918 } else {
3919 unsigned vertex = nir_src_as_uint(*vertex_src);
3920 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs)
3921 vertex_offset = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
3922 get_arg(ctx, ctx->args->gs_vtx_offset[vertex / 2u * 2u]),
3923 Operand((vertex % 2u) * 16u), Operand(16u));
3924 else
3925 vertex_offset = get_arg(ctx, ctx->args->gs_vtx_offset[vertex]);
3926 }
3927
3928 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, base_stride);
3929 offs = offset_add(ctx, offs, std::make_pair(vertex_offset, 0u));
3930 return offset_mul(ctx, offs, 4u);
3931 }
3932
3933 void visit_load_gs_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
3934 {
3935 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
3936
3937 Builder bld(ctx->program, ctx->block);
3938 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3939 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
3940
3941 if (ctx->stage == geometry_gs) {
3942 std::pair<Temp, unsigned> offs = get_gs_per_vertex_input_offset(ctx, instr, ctx->program->wave_size);
3943 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_GS * 16u));
3944 load_vmem_mubuf(ctx, dst, ring, offs.first, Temp(), offs.second, elem_size_bytes, instr->dest.ssa.num_components, 4u * ctx->program->wave_size, false, true);
3945 } else if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
3946 std::pair<Temp, unsigned> offs = get_gs_per_vertex_input_offset(ctx, instr);
3947 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
3948 load_lds(ctx, elem_size_bytes, dst, offs.first, offs.second, lds_align);
3949 } else {
3950 unreachable("Unsupported GS stage.");
3951 }
3952 }
3953
3954 void visit_load_tcs_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
3955 {
3956 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3957
3958 Builder bld(ctx->program, ctx->block);
3959 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3960 std::pair<Temp, unsigned> offs = get_tcs_per_vertex_input_lds_offset(ctx, instr);
3961 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
3962 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
3963
3964 load_lds(ctx, elem_size_bytes, dst, offs.first, offs.second, lds_align);
3965 }
3966
3967 void visit_load_tes_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
3968 {
3969 assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
3970
3971 Builder bld(ctx->program, ctx->block);
3972
3973 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
3974 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
3975 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3976
3977 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
3978 std::pair<Temp, unsigned> offs = get_tcs_per_vertex_output_vmem_offset(ctx, instr);
3979
3980 load_vmem_mubuf(ctx, dst, ring, offs.first, oc_lds, offs.second, elem_size_bytes, instr->dest.ssa.num_components, 0u, true, true);
3981 }
3982
3983 void visit_load_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
3984 {
3985 switch (ctx->shader->info.stage) {
3986 case MESA_SHADER_GEOMETRY:
3987 visit_load_gs_per_vertex_input(ctx, instr);
3988 break;
3989 case MESA_SHADER_TESS_CTRL:
3990 visit_load_tcs_per_vertex_input(ctx, instr);
3991 break;
3992 case MESA_SHADER_TESS_EVAL:
3993 visit_load_tes_per_vertex_input(ctx, instr);
3994 break;
3995 default:
3996 unreachable("Unimplemented shader stage");
3997 }
3998 }
3999
4000 void visit_load_per_vertex_output(isel_context *ctx, nir_intrinsic_instr *instr)
4001 {
4002 visit_load_tcs_output(ctx, instr, true);
4003 }
4004
4005 void visit_store_per_vertex_output(isel_context *ctx, nir_intrinsic_instr *instr)
4006 {
4007 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
4008 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4009
4010 visit_store_tcs_output(ctx, instr, true);
4011 }
4012
4013 void visit_load_tess_coord(isel_context *ctx, nir_intrinsic_instr *instr)
4014 {
4015 assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
4016
4017 Builder bld(ctx->program, ctx->block);
4018 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4019
4020 Operand tes_u(get_arg(ctx, ctx->args->tes_u));
4021 Operand tes_v(get_arg(ctx, ctx->args->tes_v));
4022 Operand tes_w(0u);
4023
4024 if (ctx->shader->info.tess.primitive_mode == GL_TRIANGLES) {
4025 Temp tmp = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), tes_u, tes_v);
4026 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0x3f800000u /* 1.0f */), tmp);
4027 tes_w = Operand(tmp);
4028 }
4029
4030 Temp tess_coord = bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tes_u, tes_v, tes_w);
4031 emit_split_vector(ctx, tess_coord, 3);
4032 }
4033
4034 Temp load_desc_ptr(isel_context *ctx, unsigned desc_set)
4035 {
4036 if (ctx->program->info->need_indirect_descriptor_sets) {
4037 Builder bld(ctx->program, ctx->block);
4038 Temp ptr64 = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->descriptor_sets[0]));
4039 Operand off = bld.copy(bld.def(s1), Operand(desc_set << 2));
4040 return bld.smem(aco_opcode::s_load_dword, bld.def(s1), ptr64, off);//, false, false, false);
4041 }
4042
4043 return get_arg(ctx, ctx->args->descriptor_sets[desc_set]);
4044 }
4045
4046
4047 void visit_load_resource(isel_context *ctx, nir_intrinsic_instr *instr)
4048 {
4049 Builder bld(ctx->program, ctx->block);
4050 Temp index = get_ssa_temp(ctx, instr->src[0].ssa);
4051 if (!ctx->divergent_vals[instr->dest.ssa.index])
4052 index = bld.as_uniform(index);
4053 unsigned desc_set = nir_intrinsic_desc_set(instr);
4054 unsigned binding = nir_intrinsic_binding(instr);
4055
4056 Temp desc_ptr;
4057 radv_pipeline_layout *pipeline_layout = ctx->options->layout;
4058 radv_descriptor_set_layout *layout = pipeline_layout->set[desc_set].layout;
4059 unsigned offset = layout->binding[binding].offset;
4060 unsigned stride;
4061 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
4062 layout->binding[binding].type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
4063 unsigned idx = pipeline_layout->set[desc_set].dynamic_offset_start + layout->binding[binding].dynamic_offset_offset;
4064 desc_ptr = get_arg(ctx, ctx->args->ac.push_constants);
4065 offset = pipeline_layout->push_constant_size + 16 * idx;
4066 stride = 16;
4067 } else {
4068 desc_ptr = load_desc_ptr(ctx, desc_set);
4069 stride = layout->binding[binding].size;
4070 }
4071
4072 nir_const_value* nir_const_index = nir_src_as_const_value(instr->src[0]);
4073 unsigned const_index = nir_const_index ? nir_const_index->u32 : 0;
4074 if (stride != 1) {
4075 if (nir_const_index) {
4076 const_index = const_index * stride;
4077 } else if (index.type() == RegType::vgpr) {
4078 bool index24bit = layout->binding[binding].array_size <= 0x1000000;
4079 index = bld.v_mul_imm(bld.def(v1), index, stride, index24bit);
4080 } else {
4081 index = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), Operand(index));
4082 }
4083 }
4084 if (offset) {
4085 if (nir_const_index) {
4086 const_index = const_index + offset;
4087 } else if (index.type() == RegType::vgpr) {
4088 index = bld.vadd32(bld.def(v1), Operand(offset), index);
4089 } else {
4090 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), Operand(index));
4091 }
4092 }
4093
4094 if (nir_const_index && const_index == 0) {
4095 index = desc_ptr;
4096 } else if (index.type() == RegType::vgpr) {
4097 index = bld.vadd32(bld.def(v1),
4098 nir_const_index ? Operand(const_index) : Operand(index),
4099 Operand(desc_ptr));
4100 } else {
4101 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
4102 nir_const_index ? Operand(const_index) : Operand(index),
4103 Operand(desc_ptr));
4104 }
4105
4106 bld.copy(Definition(get_ssa_temp(ctx, &instr->dest.ssa)), index);
4107 }
4108
4109 void load_buffer(isel_context *ctx, unsigned num_components, Temp dst,
4110 Temp rsrc, Temp offset, bool glc=false, bool readonly=true)
4111 {
4112 Builder bld(ctx->program, ctx->block);
4113
4114 unsigned num_bytes = dst.size() * 4;
4115 bool dlc = glc && ctx->options->chip_class >= GFX10;
4116
4117 aco_opcode op;
4118 if (dst.type() == RegType::vgpr || (ctx->options->chip_class < GFX8 && !readonly)) {
4119 Operand vaddr = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
4120 Operand soffset = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
4121 unsigned const_offset = 0;
4122
4123 Temp lower = Temp();
4124 if (num_bytes > 16) {
4125 assert(num_components == 3 || num_components == 4);
4126 op = aco_opcode::buffer_load_dwordx4;
4127 lower = bld.tmp(v4);
4128 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
4129 mubuf->definitions[0] = Definition(lower);
4130 mubuf->operands[0] = Operand(rsrc);
4131 mubuf->operands[1] = vaddr;
4132 mubuf->operands[2] = soffset;
4133 mubuf->offen = (offset.type() == RegType::vgpr);
4134 mubuf->glc = glc;
4135 mubuf->dlc = dlc;
4136 mubuf->barrier = readonly ? barrier_none : barrier_buffer;
4137 mubuf->can_reorder = readonly;
4138 bld.insert(std::move(mubuf));
4139 emit_split_vector(ctx, lower, 2);
4140 num_bytes -= 16;
4141 const_offset = 16;
4142 } else if (num_bytes == 12 && ctx->options->chip_class == GFX6) {
4143 /* GFX6 doesn't support loading vec3, expand to vec4. */
4144 num_bytes = 16;
4145 }
4146
4147 switch (num_bytes) {
4148 case 4:
4149 op = aco_opcode::buffer_load_dword;
4150 break;
4151 case 8:
4152 op = aco_opcode::buffer_load_dwordx2;
4153 break;
4154 case 12:
4155 assert(ctx->options->chip_class > GFX6);
4156 op = aco_opcode::buffer_load_dwordx3;
4157 break;
4158 case 16:
4159 op = aco_opcode::buffer_load_dwordx4;
4160 break;
4161 default:
4162 unreachable("Load SSBO not implemented for this size.");
4163 }
4164 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
4165 mubuf->operands[0] = Operand(rsrc);
4166 mubuf->operands[1] = vaddr;
4167 mubuf->operands[2] = soffset;
4168 mubuf->offen = (offset.type() == RegType::vgpr);
4169 mubuf->glc = glc;
4170 mubuf->dlc = dlc;
4171 mubuf->barrier = readonly ? barrier_none : barrier_buffer;
4172 mubuf->can_reorder = readonly;
4173 mubuf->offset = const_offset;
4174 aco_ptr<Instruction> instr = std::move(mubuf);
4175
4176 if (dst.size() > 4) {
4177 assert(lower != Temp());
4178 Temp upper = bld.tmp(RegType::vgpr, dst.size() - lower.size());
4179 instr->definitions[0] = Definition(upper);
4180 bld.insert(std::move(instr));
4181 if (dst.size() == 8)
4182 emit_split_vector(ctx, upper, 2);
4183 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size() / 2, 1));
4184 instr->operands[0] = Operand(emit_extract_vector(ctx, lower, 0, v2));
4185 instr->operands[1] = Operand(emit_extract_vector(ctx, lower, 1, v2));
4186 instr->operands[2] = Operand(emit_extract_vector(ctx, upper, 0, v2));
4187 if (dst.size() == 8)
4188 instr->operands[3] = Operand(emit_extract_vector(ctx, upper, 1, v2));
4189 } else if (dst.size() == 3 && ctx->options->chip_class == GFX6) {
4190 Temp vec = bld.tmp(v4);
4191 instr->definitions[0] = Definition(vec);
4192 bld.insert(std::move(instr));
4193 emit_split_vector(ctx, vec, 4);
4194
4195 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 3, 1));
4196 instr->operands[0] = Operand(emit_extract_vector(ctx, vec, 0, v1));
4197 instr->operands[1] = Operand(emit_extract_vector(ctx, vec, 1, v1));
4198 instr->operands[2] = Operand(emit_extract_vector(ctx, vec, 2, v1));
4199 }
4200
4201 if (dst.type() == RegType::sgpr) {
4202 Temp vec = bld.tmp(RegType::vgpr, dst.size());
4203 instr->definitions[0] = Definition(vec);
4204 bld.insert(std::move(instr));
4205 expand_vector(ctx, vec, dst, num_components, (1 << num_components) - 1);
4206 } else {
4207 instr->definitions[0] = Definition(dst);
4208 bld.insert(std::move(instr));
4209 emit_split_vector(ctx, dst, num_components);
4210 }
4211 } else {
4212 switch (num_bytes) {
4213 case 4:
4214 op = aco_opcode::s_buffer_load_dword;
4215 break;
4216 case 8:
4217 op = aco_opcode::s_buffer_load_dwordx2;
4218 break;
4219 case 12:
4220 case 16:
4221 op = aco_opcode::s_buffer_load_dwordx4;
4222 break;
4223 case 24:
4224 case 32:
4225 op = aco_opcode::s_buffer_load_dwordx8;
4226 break;
4227 default:
4228 unreachable("Load SSBO not implemented for this size.");
4229 }
4230 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
4231 load->operands[0] = Operand(rsrc);
4232 load->operands[1] = Operand(bld.as_uniform(offset));
4233 assert(load->operands[1].getTemp().type() == RegType::sgpr);
4234 load->definitions[0] = Definition(dst);
4235 load->glc = glc;
4236 load->dlc = dlc;
4237 load->barrier = readonly ? barrier_none : barrier_buffer;
4238 load->can_reorder = false; // FIXME: currently, it doesn't seem beneficial due to how our scheduler works
4239 assert(ctx->options->chip_class >= GFX8 || !glc);
4240
4241 /* trim vector */
4242 if (dst.size() == 3) {
4243 Temp vec = bld.tmp(s4);
4244 load->definitions[0] = Definition(vec);
4245 bld.insert(std::move(load));
4246 emit_split_vector(ctx, vec, 4);
4247
4248 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4249 emit_extract_vector(ctx, vec, 0, s1),
4250 emit_extract_vector(ctx, vec, 1, s1),
4251 emit_extract_vector(ctx, vec, 2, s1));
4252 } else if (dst.size() == 6) {
4253 Temp vec = bld.tmp(s8);
4254 load->definitions[0] = Definition(vec);
4255 bld.insert(std::move(load));
4256 emit_split_vector(ctx, vec, 4);
4257
4258 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4259 emit_extract_vector(ctx, vec, 0, s2),
4260 emit_extract_vector(ctx, vec, 1, s2),
4261 emit_extract_vector(ctx, vec, 2, s2));
4262 } else {
4263 bld.insert(std::move(load));
4264 }
4265 emit_split_vector(ctx, dst, num_components);
4266 }
4267 }
4268
4269 void visit_load_ubo(isel_context *ctx, nir_intrinsic_instr *instr)
4270 {
4271 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4272 Temp rsrc = get_ssa_temp(ctx, instr->src[0].ssa);
4273
4274 Builder bld(ctx->program, ctx->block);
4275
4276 nir_intrinsic_instr* idx_instr = nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
4277 unsigned desc_set = nir_intrinsic_desc_set(idx_instr);
4278 unsigned binding = nir_intrinsic_binding(idx_instr);
4279 radv_descriptor_set_layout *layout = ctx->options->layout->set[desc_set].layout;
4280
4281 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
4282 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
4283 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
4284 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
4285 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
4286 if (ctx->options->chip_class >= GFX10) {
4287 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
4288 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
4289 S_008F0C_RESOURCE_LEVEL(1);
4290 } else {
4291 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
4292 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
4293 }
4294 Temp upper_dwords = bld.pseudo(aco_opcode::p_create_vector, bld.def(s3),
4295 Operand(S_008F04_BASE_ADDRESS_HI(ctx->options->address32_hi)),
4296 Operand(0xFFFFFFFFu),
4297 Operand(desc_type));
4298 rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
4299 rsrc, upper_dwords);
4300 } else {
4301 rsrc = convert_pointer_to_64_bit(ctx, rsrc);
4302 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
4303 }
4304
4305 load_buffer(ctx, instr->num_components, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa));
4306 }
4307
4308 void visit_load_push_constant(isel_context *ctx, nir_intrinsic_instr *instr)
4309 {
4310 Builder bld(ctx->program, ctx->block);
4311 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4312
4313 unsigned offset = nir_intrinsic_base(instr);
4314 nir_const_value *index_cv = nir_src_as_const_value(instr->src[0]);
4315 if (index_cv && instr->dest.ssa.bit_size == 32) {
4316
4317 unsigned count = instr->dest.ssa.num_components;
4318 unsigned start = (offset + index_cv->u32) / 4u;
4319 start -= ctx->args->ac.base_inline_push_consts;
4320 if (start + count <= ctx->args->ac.num_inline_push_consts) {
4321 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
4322 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
4323 for (unsigned i = 0; i < count; ++i) {
4324 elems[i] = get_arg(ctx, ctx->args->ac.inline_push_consts[start + i]);
4325 vec->operands[i] = Operand{elems[i]};
4326 }
4327 vec->definitions[0] = Definition(dst);
4328 ctx->block->instructions.emplace_back(std::move(vec));
4329 ctx->allocated_vec.emplace(dst.id(), elems);
4330 return;
4331 }
4332 }
4333
4334 Temp index = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa));
4335 if (offset != 0) // TODO check if index != 0 as well
4336 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), index);
4337 Temp ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->ac.push_constants));
4338 Temp vec = dst;
4339 bool trim = false;
4340 aco_opcode op;
4341
4342 switch (dst.size()) {
4343 case 1:
4344 op = aco_opcode::s_load_dword;
4345 break;
4346 case 2:
4347 op = aco_opcode::s_load_dwordx2;
4348 break;
4349 case 3:
4350 vec = bld.tmp(s4);
4351 trim = true;
4352 case 4:
4353 op = aco_opcode::s_load_dwordx4;
4354 break;
4355 case 6:
4356 vec = bld.tmp(s8);
4357 trim = true;
4358 case 8:
4359 op = aco_opcode::s_load_dwordx8;
4360 break;
4361 default:
4362 unreachable("unimplemented or forbidden load_push_constant.");
4363 }
4364
4365 bld.smem(op, Definition(vec), ptr, index);
4366
4367 if (trim) {
4368 emit_split_vector(ctx, vec, 4);
4369 RegClass rc = dst.size() == 3 ? s1 : s2;
4370 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4371 emit_extract_vector(ctx, vec, 0, rc),
4372 emit_extract_vector(ctx, vec, 1, rc),
4373 emit_extract_vector(ctx, vec, 2, rc));
4374
4375 }
4376 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
4377 }
4378
4379 void visit_load_constant(isel_context *ctx, nir_intrinsic_instr *instr)
4380 {
4381 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4382
4383 Builder bld(ctx->program, ctx->block);
4384
4385 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
4386 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
4387 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
4388 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
4389 if (ctx->options->chip_class >= GFX10) {
4390 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
4391 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
4392 S_008F0C_RESOURCE_LEVEL(1);
4393 } else {
4394 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
4395 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
4396 }
4397
4398 unsigned base = nir_intrinsic_base(instr);
4399 unsigned range = nir_intrinsic_range(instr);
4400
4401 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
4402 if (base && offset.type() == RegType::sgpr)
4403 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), offset, Operand(base));
4404 else if (base && offset.type() == RegType::vgpr)
4405 offset = bld.vadd32(bld.def(v1), Operand(base), offset);
4406
4407 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
4408 bld.sop1(aco_opcode::p_constaddr, bld.def(s2), bld.def(s1, scc), Operand(ctx->constant_data_offset)),
4409 Operand(MIN2(base + range, ctx->shader->constant_data_size)),
4410 Operand(desc_type));
4411
4412 load_buffer(ctx, instr->num_components, dst, rsrc, offset);
4413 }
4414
4415 void visit_discard_if(isel_context *ctx, nir_intrinsic_instr *instr)
4416 {
4417 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
4418 ctx->cf_info.exec_potentially_empty_discard = true;
4419
4420 ctx->program->needs_exact = true;
4421
4422 // TODO: optimize uniform conditions
4423 Builder bld(ctx->program, ctx->block);
4424 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
4425 assert(src.regClass() == bld.lm);
4426 src = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
4427 bld.pseudo(aco_opcode::p_discard_if, src);
4428 ctx->block->kind |= block_kind_uses_discard_if;
4429 return;
4430 }
4431
4432 void visit_discard(isel_context* ctx, nir_intrinsic_instr *instr)
4433 {
4434 Builder bld(ctx->program, ctx->block);
4435
4436 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
4437 ctx->cf_info.exec_potentially_empty_discard = true;
4438
4439 bool divergent = ctx->cf_info.parent_if.is_divergent ||
4440 ctx->cf_info.parent_loop.has_divergent_continue;
4441
4442 if (ctx->block->loop_nest_depth &&
4443 ((nir_instr_is_last(&instr->instr) && !divergent) || divergent)) {
4444 /* we handle discards the same way as jump instructions */
4445 append_logical_end(ctx->block);
4446
4447 /* in loops, discard behaves like break */
4448 Block *linear_target = ctx->cf_info.parent_loop.exit;
4449 ctx->block->kind |= block_kind_discard;
4450
4451 if (!divergent) {
4452 /* uniform discard - loop ends here */
4453 assert(nir_instr_is_last(&instr->instr));
4454 ctx->block->kind |= block_kind_uniform;
4455 ctx->cf_info.has_branch = true;
4456 bld.branch(aco_opcode::p_branch);
4457 add_linear_edge(ctx->block->index, linear_target);
4458 return;
4459 }
4460
4461 /* we add a break right behind the discard() instructions */
4462 ctx->block->kind |= block_kind_break;
4463 unsigned idx = ctx->block->index;
4464
4465 /* remove critical edges from linear CFG */
4466 bld.branch(aco_opcode::p_branch);
4467 Block* break_block = ctx->program->create_and_insert_block();
4468 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
4469 break_block->kind |= block_kind_uniform;
4470 add_linear_edge(idx, break_block);
4471 add_linear_edge(break_block->index, linear_target);
4472 bld.reset(break_block);
4473 bld.branch(aco_opcode::p_branch);
4474
4475 Block* continue_block = ctx->program->create_and_insert_block();
4476 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
4477 add_linear_edge(idx, continue_block);
4478 append_logical_start(continue_block);
4479 ctx->block = continue_block;
4480
4481 return;
4482 }
4483
4484 /* it can currently happen that NIR doesn't remove the unreachable code */
4485 if (!nir_instr_is_last(&instr->instr)) {
4486 ctx->program->needs_exact = true;
4487 /* save exec somewhere temporarily so that it doesn't get
4488 * overwritten before the discard from outer exec masks */
4489 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), Operand(0xFFFFFFFF), Operand(exec, bld.lm));
4490 bld.pseudo(aco_opcode::p_discard_if, cond);
4491 ctx->block->kind |= block_kind_uses_discard_if;
4492 return;
4493 }
4494
4495 /* This condition is incorrect for uniformly branched discards in a loop
4496 * predicated by a divergent condition, but the above code catches that case
4497 * and the discard would end up turning into a discard_if.
4498 * For example:
4499 * if (divergent) {
4500 * while (...) {
4501 * if (uniform) {
4502 * discard;
4503 * }
4504 * }
4505 * }
4506 */
4507 if (!ctx->cf_info.parent_if.is_divergent) {
4508 /* program just ends here */
4509 ctx->block->kind |= block_kind_uniform;
4510 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
4511 0 /* enabled mask */, 9 /* dest */,
4512 false /* compressed */, true/* done */, true /* valid mask */);
4513 bld.sopp(aco_opcode::s_endpgm);
4514 // TODO: it will potentially be followed by a branch which is dead code to sanitize NIR phis
4515 } else {
4516 ctx->block->kind |= block_kind_discard;
4517 /* branch and linear edge is added by visit_if() */
4518 }
4519 }
4520
4521 enum aco_descriptor_type {
4522 ACO_DESC_IMAGE,
4523 ACO_DESC_FMASK,
4524 ACO_DESC_SAMPLER,
4525 ACO_DESC_BUFFER,
4526 ACO_DESC_PLANE_0,
4527 ACO_DESC_PLANE_1,
4528 ACO_DESC_PLANE_2,
4529 };
4530
4531 static bool
4532 should_declare_array(isel_context *ctx, enum glsl_sampler_dim sampler_dim, bool is_array) {
4533 if (sampler_dim == GLSL_SAMPLER_DIM_BUF)
4534 return false;
4535 ac_image_dim dim = ac_get_sampler_dim(ctx->options->chip_class, sampler_dim, is_array);
4536 return dim == ac_image_cube ||
4537 dim == ac_image_1darray ||
4538 dim == ac_image_2darray ||
4539 dim == ac_image_2darraymsaa;
4540 }
4541
4542 Temp get_sampler_desc(isel_context *ctx, nir_deref_instr *deref_instr,
4543 enum aco_descriptor_type desc_type,
4544 const nir_tex_instr *tex_instr, bool image, bool write)
4545 {
4546 /* FIXME: we should lower the deref with some new nir_intrinsic_load_desc
4547 std::unordered_map<uint64_t, Temp>::iterator it = ctx->tex_desc.find((uint64_t) desc_type << 32 | deref_instr->dest.ssa.index);
4548 if (it != ctx->tex_desc.end())
4549 return it->second;
4550 */
4551 Temp index = Temp();
4552 bool index_set = false;
4553 unsigned constant_index = 0;
4554 unsigned descriptor_set;
4555 unsigned base_index;
4556 Builder bld(ctx->program, ctx->block);
4557
4558 if (!deref_instr) {
4559 assert(tex_instr && !image);
4560 descriptor_set = 0;
4561 base_index = tex_instr->sampler_index;
4562 } else {
4563 while(deref_instr->deref_type != nir_deref_type_var) {
4564 unsigned array_size = glsl_get_aoa_size(deref_instr->type);
4565 if (!array_size)
4566 array_size = 1;
4567
4568 assert(deref_instr->deref_type == nir_deref_type_array);
4569 nir_const_value *const_value = nir_src_as_const_value(deref_instr->arr.index);
4570 if (const_value) {
4571 constant_index += array_size * const_value->u32;
4572 } else {
4573 Temp indirect = get_ssa_temp(ctx, deref_instr->arr.index.ssa);
4574 if (indirect.type() == RegType::vgpr)
4575 indirect = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), indirect);
4576
4577 if (array_size != 1)
4578 indirect = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(array_size), indirect);
4579
4580 if (!index_set) {
4581 index = indirect;
4582 index_set = true;
4583 } else {
4584 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), index, indirect);
4585 }
4586 }
4587
4588 deref_instr = nir_src_as_deref(deref_instr->parent);
4589 }
4590 descriptor_set = deref_instr->var->data.descriptor_set;
4591 base_index = deref_instr->var->data.binding;
4592 }
4593
4594 Temp list = load_desc_ptr(ctx, descriptor_set);
4595 list = convert_pointer_to_64_bit(ctx, list);
4596
4597 struct radv_descriptor_set_layout *layout = ctx->options->layout->set[descriptor_set].layout;
4598 struct radv_descriptor_set_binding_layout *binding = layout->binding + base_index;
4599 unsigned offset = binding->offset;
4600 unsigned stride = binding->size;
4601 aco_opcode opcode;
4602 RegClass type;
4603
4604 assert(base_index < layout->binding_count);
4605
4606 switch (desc_type) {
4607 case ACO_DESC_IMAGE:
4608 type = s8;
4609 opcode = aco_opcode::s_load_dwordx8;
4610 break;
4611 case ACO_DESC_FMASK:
4612 type = s8;
4613 opcode = aco_opcode::s_load_dwordx8;
4614 offset += 32;
4615 break;
4616 case ACO_DESC_SAMPLER:
4617 type = s4;
4618 opcode = aco_opcode::s_load_dwordx4;
4619 if (binding->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
4620 offset += radv_combined_image_descriptor_sampler_offset(binding);
4621 break;
4622 case ACO_DESC_BUFFER:
4623 type = s4;
4624 opcode = aco_opcode::s_load_dwordx4;
4625 break;
4626 case ACO_DESC_PLANE_0:
4627 case ACO_DESC_PLANE_1:
4628 type = s8;
4629 opcode = aco_opcode::s_load_dwordx8;
4630 offset += 32 * (desc_type - ACO_DESC_PLANE_0);
4631 break;
4632 case ACO_DESC_PLANE_2:
4633 type = s4;
4634 opcode = aco_opcode::s_load_dwordx4;
4635 offset += 64;
4636 break;
4637 default:
4638 unreachable("invalid desc_type\n");
4639 }
4640
4641 offset += constant_index * stride;
4642
4643 if (desc_type == ACO_DESC_SAMPLER && binding->immutable_samplers_offset &&
4644 (!index_set || binding->immutable_samplers_equal)) {
4645 if (binding->immutable_samplers_equal)
4646 constant_index = 0;
4647
4648 const uint32_t *samplers = radv_immutable_samplers(layout, binding);
4649 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
4650 Operand(samplers[constant_index * 4 + 0]),
4651 Operand(samplers[constant_index * 4 + 1]),
4652 Operand(samplers[constant_index * 4 + 2]),
4653 Operand(samplers[constant_index * 4 + 3]));
4654 }
4655
4656 Operand off;
4657 if (!index_set) {
4658 off = bld.copy(bld.def(s1), Operand(offset));
4659 } else {
4660 off = Operand((Temp)bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset),
4661 bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), index)));
4662 }
4663
4664 Temp res = bld.smem(opcode, bld.def(type), list, off);
4665
4666 if (desc_type == ACO_DESC_PLANE_2) {
4667 Temp components[8];
4668 for (unsigned i = 0; i < 8; i++)
4669 components[i] = bld.tmp(s1);
4670 bld.pseudo(aco_opcode::p_split_vector,
4671 Definition(components[0]),
4672 Definition(components[1]),
4673 Definition(components[2]),
4674 Definition(components[3]),
4675 res);
4676
4677 Temp desc2 = get_sampler_desc(ctx, deref_instr, ACO_DESC_PLANE_1, tex_instr, image, write);
4678 bld.pseudo(aco_opcode::p_split_vector,
4679 bld.def(s1), bld.def(s1), bld.def(s1), bld.def(s1),
4680 Definition(components[4]),
4681 Definition(components[5]),
4682 Definition(components[6]),
4683 Definition(components[7]),
4684 desc2);
4685
4686 res = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
4687 components[0], components[1], components[2], components[3],
4688 components[4], components[5], components[6], components[7]);
4689 }
4690
4691 return res;
4692 }
4693
4694 static int image_type_to_components_count(enum glsl_sampler_dim dim, bool array)
4695 {
4696 switch (dim) {
4697 case GLSL_SAMPLER_DIM_BUF:
4698 return 1;
4699 case GLSL_SAMPLER_DIM_1D:
4700 return array ? 2 : 1;
4701 case GLSL_SAMPLER_DIM_2D:
4702 return array ? 3 : 2;
4703 case GLSL_SAMPLER_DIM_MS:
4704 return array ? 4 : 3;
4705 case GLSL_SAMPLER_DIM_3D:
4706 case GLSL_SAMPLER_DIM_CUBE:
4707 return 3;
4708 case GLSL_SAMPLER_DIM_RECT:
4709 case GLSL_SAMPLER_DIM_SUBPASS:
4710 return 2;
4711 case GLSL_SAMPLER_DIM_SUBPASS_MS:
4712 return 3;
4713 default:
4714 break;
4715 }
4716 return 0;
4717 }
4718
4719
4720 /* Adjust the sample index according to FMASK.
4721 *
4722 * For uncompressed MSAA surfaces, FMASK should return 0x76543210,
4723 * which is the identity mapping. Each nibble says which physical sample
4724 * should be fetched to get that sample.
4725 *
4726 * For example, 0x11111100 means there are only 2 samples stored and
4727 * the second sample covers 3/4 of the pixel. When reading samples 0
4728 * and 1, return physical sample 0 (determined by the first two 0s
4729 * in FMASK), otherwise return physical sample 1.
4730 *
4731 * The sample index should be adjusted as follows:
4732 * sample_index = (fmask >> (sample_index * 4)) & 0xF;
4733 */
4734 static Temp adjust_sample_index_using_fmask(isel_context *ctx, bool da, std::vector<Temp>& coords, Operand sample_index, Temp fmask_desc_ptr)
4735 {
4736 Builder bld(ctx->program, ctx->block);
4737 Temp fmask = bld.tmp(v1);
4738 unsigned dim = ctx->options->chip_class >= GFX10
4739 ? ac_get_sampler_dim(ctx->options->chip_class, GLSL_SAMPLER_DIM_2D, da)
4740 : 0;
4741
4742 Temp coord = da ? bld.pseudo(aco_opcode::p_create_vector, bld.def(v3), coords[0], coords[1], coords[2]) :
4743 bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), coords[0], coords[1]);
4744 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(aco_opcode::image_load, Format::MIMG, 3, 1)};
4745 load->operands[0] = Operand(fmask_desc_ptr);
4746 load->operands[1] = Operand(s4); /* no sampler */
4747 load->operands[2] = Operand(coord);
4748 load->definitions[0] = Definition(fmask);
4749 load->glc = false;
4750 load->dlc = false;
4751 load->dmask = 0x1;
4752 load->unrm = true;
4753 load->da = da;
4754 load->dim = dim;
4755 load->can_reorder = true; /* fmask images shouldn't be modified */
4756 ctx->block->instructions.emplace_back(std::move(load));
4757
4758 Operand sample_index4;
4759 if (sample_index.isConstant() && sample_index.constantValue() < 16) {
4760 sample_index4 = Operand(sample_index.constantValue() << 2);
4761 } else if (sample_index.regClass() == s1) {
4762 sample_index4 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), sample_index, Operand(2u));
4763 } else {
4764 assert(sample_index.regClass() == v1);
4765 sample_index4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), sample_index);
4766 }
4767
4768 Temp final_sample;
4769 if (sample_index4.isConstant() && sample_index4.constantValue() == 0)
4770 final_sample = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(15u), fmask);
4771 else if (sample_index4.isConstant() && sample_index4.constantValue() == 28)
4772 final_sample = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(28u), fmask);
4773 else
4774 final_sample = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), fmask, sample_index4, Operand(4u));
4775
4776 /* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK
4777 * resource descriptor is 0 (invalid),
4778 */
4779 Temp compare = bld.tmp(bld.lm);
4780 bld.vopc_e64(aco_opcode::v_cmp_lg_u32, Definition(compare),
4781 Operand(0u), emit_extract_vector(ctx, fmask_desc_ptr, 1, s1)).def(0).setHint(vcc);
4782
4783 Temp sample_index_v = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), sample_index);
4784
4785 /* Replace the MSAA sample index. */
4786 return bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), sample_index_v, final_sample, compare);
4787 }
4788
4789 static Temp get_image_coords(isel_context *ctx, const nir_intrinsic_instr *instr, const struct glsl_type *type)
4790 {
4791
4792 Temp src0 = get_ssa_temp(ctx, instr->src[1].ssa);
4793 enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4794 bool is_array = glsl_sampler_type_is_array(type);
4795 ASSERTED bool add_frag_pos = (dim == GLSL_SAMPLER_DIM_SUBPASS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
4796 assert(!add_frag_pos && "Input attachments should be lowered.");
4797 bool is_ms = (dim == GLSL_SAMPLER_DIM_MS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
4798 bool gfx9_1d = ctx->options->chip_class == GFX9 && dim == GLSL_SAMPLER_DIM_1D;
4799 int count = image_type_to_components_count(dim, is_array);
4800 std::vector<Temp> coords(count);
4801 Builder bld(ctx->program, ctx->block);
4802
4803 if (is_ms) {
4804 count--;
4805 Temp src2 = get_ssa_temp(ctx, instr->src[2].ssa);
4806 /* get sample index */
4807 if (instr->intrinsic == nir_intrinsic_image_deref_load) {
4808 nir_const_value *sample_cv = nir_src_as_const_value(instr->src[2]);
4809 Operand sample_index = sample_cv ? Operand(sample_cv->u32) : Operand(emit_extract_vector(ctx, src2, 0, v1));
4810 std::vector<Temp> fmask_load_address;
4811 for (unsigned i = 0; i < (is_array ? 3 : 2); i++)
4812 fmask_load_address.emplace_back(emit_extract_vector(ctx, src0, i, v1));
4813
4814 Temp fmask_desc_ptr = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_FMASK, nullptr, false, false);
4815 coords[count] = adjust_sample_index_using_fmask(ctx, is_array, fmask_load_address, sample_index, fmask_desc_ptr);
4816 } else {
4817 coords[count] = emit_extract_vector(ctx, src2, 0, v1);
4818 }
4819 }
4820
4821 if (gfx9_1d) {
4822 coords[0] = emit_extract_vector(ctx, src0, 0, v1);
4823 coords.resize(coords.size() + 1);
4824 coords[1] = bld.copy(bld.def(v1), Operand(0u));
4825 if (is_array)
4826 coords[2] = emit_extract_vector(ctx, src0, 1, v1);
4827 } else {
4828 for (int i = 0; i < count; i++)
4829 coords[i] = emit_extract_vector(ctx, src0, i, v1);
4830 }
4831
4832 if (instr->intrinsic == nir_intrinsic_image_deref_load ||
4833 instr->intrinsic == nir_intrinsic_image_deref_store) {
4834 int lod_index = instr->intrinsic == nir_intrinsic_image_deref_load ? 3 : 4;
4835 bool level_zero = nir_src_is_const(instr->src[lod_index]) && nir_src_as_uint(instr->src[lod_index]) == 0;
4836
4837 if (!level_zero)
4838 coords.emplace_back(get_ssa_temp(ctx, instr->src[lod_index].ssa));
4839 }
4840
4841 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
4842 for (unsigned i = 0; i < coords.size(); i++)
4843 vec->operands[i] = Operand(coords[i]);
4844 Temp res = {ctx->program->allocateId(), RegClass(RegType::vgpr, coords.size())};
4845 vec->definitions[0] = Definition(res);
4846 ctx->block->instructions.emplace_back(std::move(vec));
4847 return res;
4848 }
4849
4850
4851 void visit_image_load(isel_context *ctx, nir_intrinsic_instr *instr)
4852 {
4853 Builder bld(ctx->program, ctx->block);
4854 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
4855 const struct glsl_type *type = glsl_without_array(var->type);
4856 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4857 bool is_array = glsl_sampler_type_is_array(type);
4858 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4859
4860 if (dim == GLSL_SAMPLER_DIM_BUF) {
4861 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa);
4862 unsigned num_channels = util_last_bit(mask);
4863 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
4864 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
4865
4866 aco_opcode opcode;
4867 switch (num_channels) {
4868 case 1:
4869 opcode = aco_opcode::buffer_load_format_x;
4870 break;
4871 case 2:
4872 opcode = aco_opcode::buffer_load_format_xy;
4873 break;
4874 case 3:
4875 opcode = aco_opcode::buffer_load_format_xyz;
4876 break;
4877 case 4:
4878 opcode = aco_opcode::buffer_load_format_xyzw;
4879 break;
4880 default:
4881 unreachable(">4 channel buffer image load");
4882 }
4883 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 3, 1)};
4884 load->operands[0] = Operand(rsrc);
4885 load->operands[1] = Operand(vindex);
4886 load->operands[2] = Operand((uint32_t) 0);
4887 Temp tmp;
4888 if (num_channels == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
4889 tmp = dst;
4890 else
4891 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_channels)};
4892 load->definitions[0] = Definition(tmp);
4893 load->idxen = true;
4894 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT);
4895 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
4896 load->barrier = barrier_image;
4897 ctx->block->instructions.emplace_back(std::move(load));
4898
4899 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, (1 << num_channels) - 1);
4900 return;
4901 }
4902
4903 Temp coords = get_image_coords(ctx, instr, type);
4904 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
4905
4906 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
4907 unsigned num_components = util_bitcount(dmask);
4908 Temp tmp;
4909 if (num_components == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
4910 tmp = dst;
4911 else
4912 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_components)};
4913
4914 bool level_zero = nir_src_is_const(instr->src[3]) && nir_src_as_uint(instr->src[3]) == 0;
4915 aco_opcode opcode = level_zero ? aco_opcode::image_load : aco_opcode::image_load_mip;
4916
4917 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1)};
4918 load->operands[0] = Operand(resource);
4919 load->operands[1] = Operand(s4); /* no sampler */
4920 load->operands[2] = Operand(coords);
4921 load->definitions[0] = Definition(tmp);
4922 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT) ? 1 : 0;
4923 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
4924 load->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
4925 load->dmask = dmask;
4926 load->unrm = true;
4927 load->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
4928 load->barrier = barrier_image;
4929 ctx->block->instructions.emplace_back(std::move(load));
4930
4931 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, dmask);
4932 return;
4933 }
4934
4935 void visit_image_store(isel_context *ctx, nir_intrinsic_instr *instr)
4936 {
4937 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
4938 const struct glsl_type *type = glsl_without_array(var->type);
4939 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4940 bool is_array = glsl_sampler_type_is_array(type);
4941 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
4942
4943 bool glc = ctx->options->chip_class == GFX6 || var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE) ? 1 : 0;
4944
4945 if (dim == GLSL_SAMPLER_DIM_BUF) {
4946 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
4947 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
4948 aco_opcode opcode;
4949 switch (data.size()) {
4950 case 1:
4951 opcode = aco_opcode::buffer_store_format_x;
4952 break;
4953 case 2:
4954 opcode = aco_opcode::buffer_store_format_xy;
4955 break;
4956 case 3:
4957 opcode = aco_opcode::buffer_store_format_xyz;
4958 break;
4959 case 4:
4960 opcode = aco_opcode::buffer_store_format_xyzw;
4961 break;
4962 default:
4963 unreachable(">4 channel buffer image store");
4964 }
4965 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
4966 store->operands[0] = Operand(rsrc);
4967 store->operands[1] = Operand(vindex);
4968 store->operands[2] = Operand((uint32_t) 0);
4969 store->operands[3] = Operand(data);
4970 store->idxen = true;
4971 store->glc = glc;
4972 store->dlc = false;
4973 store->disable_wqm = true;
4974 store->barrier = barrier_image;
4975 ctx->program->needs_exact = true;
4976 ctx->block->instructions.emplace_back(std::move(store));
4977 return;
4978 }
4979
4980 assert(data.type() == RegType::vgpr);
4981 Temp coords = get_image_coords(ctx, instr, type);
4982 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
4983
4984 bool level_zero = nir_src_is_const(instr->src[4]) && nir_src_as_uint(instr->src[4]) == 0;
4985 aco_opcode opcode = level_zero ? aco_opcode::image_store : aco_opcode::image_store_mip;
4986
4987 aco_ptr<MIMG_instruction> store{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 0)};
4988 store->operands[0] = Operand(resource);
4989 store->operands[1] = Operand(data);
4990 store->operands[2] = Operand(coords);
4991 store->glc = glc;
4992 store->dlc = false;
4993 store->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
4994 store->dmask = (1 << data.size()) - 1;
4995 store->unrm = true;
4996 store->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
4997 store->disable_wqm = true;
4998 store->barrier = barrier_image;
4999 ctx->program->needs_exact = true;
5000 ctx->block->instructions.emplace_back(std::move(store));
5001 return;
5002 }
5003
5004 void visit_image_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
5005 {
5006 /* return the previous value if dest is ever used */
5007 bool return_previous = false;
5008 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5009 return_previous = true;
5010 break;
5011 }
5012 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5013 return_previous = true;
5014 break;
5015 }
5016
5017 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5018 const struct glsl_type *type = glsl_without_array(var->type);
5019 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5020 bool is_array = glsl_sampler_type_is_array(type);
5021 Builder bld(ctx->program, ctx->block);
5022
5023 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
5024 assert(data.size() == 1 && "64bit ssbo atomics not yet implemented.");
5025
5026 if (instr->intrinsic == nir_intrinsic_image_deref_atomic_comp_swap)
5027 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), get_ssa_temp(ctx, instr->src[4].ssa), data);
5028
5029 aco_opcode buf_op, image_op;
5030 switch (instr->intrinsic) {
5031 case nir_intrinsic_image_deref_atomic_add:
5032 buf_op = aco_opcode::buffer_atomic_add;
5033 image_op = aco_opcode::image_atomic_add;
5034 break;
5035 case nir_intrinsic_image_deref_atomic_umin:
5036 buf_op = aco_opcode::buffer_atomic_umin;
5037 image_op = aco_opcode::image_atomic_umin;
5038 break;
5039 case nir_intrinsic_image_deref_atomic_imin:
5040 buf_op = aco_opcode::buffer_atomic_smin;
5041 image_op = aco_opcode::image_atomic_smin;
5042 break;
5043 case nir_intrinsic_image_deref_atomic_umax:
5044 buf_op = aco_opcode::buffer_atomic_umax;
5045 image_op = aco_opcode::image_atomic_umax;
5046 break;
5047 case nir_intrinsic_image_deref_atomic_imax:
5048 buf_op = aco_opcode::buffer_atomic_smax;
5049 image_op = aco_opcode::image_atomic_smax;
5050 break;
5051 case nir_intrinsic_image_deref_atomic_and:
5052 buf_op = aco_opcode::buffer_atomic_and;
5053 image_op = aco_opcode::image_atomic_and;
5054 break;
5055 case nir_intrinsic_image_deref_atomic_or:
5056 buf_op = aco_opcode::buffer_atomic_or;
5057 image_op = aco_opcode::image_atomic_or;
5058 break;
5059 case nir_intrinsic_image_deref_atomic_xor:
5060 buf_op = aco_opcode::buffer_atomic_xor;
5061 image_op = aco_opcode::image_atomic_xor;
5062 break;
5063 case nir_intrinsic_image_deref_atomic_exchange:
5064 buf_op = aco_opcode::buffer_atomic_swap;
5065 image_op = aco_opcode::image_atomic_swap;
5066 break;
5067 case nir_intrinsic_image_deref_atomic_comp_swap:
5068 buf_op = aco_opcode::buffer_atomic_cmpswap;
5069 image_op = aco_opcode::image_atomic_cmpswap;
5070 break;
5071 default:
5072 unreachable("visit_image_atomic should only be called with nir_intrinsic_image_deref_atomic_* instructions.");
5073 }
5074
5075 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5076
5077 if (dim == GLSL_SAMPLER_DIM_BUF) {
5078 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5079 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5080 //assert(ctx->options->chip_class < GFX9 && "GFX9 stride size workaround not yet implemented.");
5081 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(buf_op, Format::MUBUF, 4, return_previous ? 1 : 0)};
5082 mubuf->operands[0] = Operand(resource);
5083 mubuf->operands[1] = Operand(vindex);
5084 mubuf->operands[2] = Operand((uint32_t)0);
5085 mubuf->operands[3] = Operand(data);
5086 if (return_previous)
5087 mubuf->definitions[0] = Definition(dst);
5088 mubuf->offset = 0;
5089 mubuf->idxen = true;
5090 mubuf->glc = return_previous;
5091 mubuf->dlc = false; /* Not needed for atomics */
5092 mubuf->disable_wqm = true;
5093 mubuf->barrier = barrier_image;
5094 ctx->program->needs_exact = true;
5095 ctx->block->instructions.emplace_back(std::move(mubuf));
5096 return;
5097 }
5098
5099 Temp coords = get_image_coords(ctx, instr, type);
5100 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5101 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(image_op, Format::MIMG, 3, return_previous ? 1 : 0)};
5102 mimg->operands[0] = Operand(resource);
5103 mimg->operands[1] = Operand(data);
5104 mimg->operands[2] = Operand(coords);
5105 if (return_previous)
5106 mimg->definitions[0] = Definition(dst);
5107 mimg->glc = return_previous;
5108 mimg->dlc = false; /* Not needed for atomics */
5109 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5110 mimg->dmask = (1 << data.size()) - 1;
5111 mimg->unrm = true;
5112 mimg->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5113 mimg->disable_wqm = true;
5114 mimg->barrier = barrier_image;
5115 ctx->program->needs_exact = true;
5116 ctx->block->instructions.emplace_back(std::move(mimg));
5117 return;
5118 }
5119
5120 void get_buffer_size(isel_context *ctx, Temp desc, Temp dst, bool in_elements)
5121 {
5122 if (in_elements && ctx->options->chip_class == GFX8) {
5123 /* we only have to divide by 1, 2, 4, 8, 12 or 16 */
5124 Builder bld(ctx->program, ctx->block);
5125
5126 Temp size = emit_extract_vector(ctx, desc, 2, s1);
5127
5128 Temp size_div3 = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), bld.copy(bld.def(v1), Operand(0xaaaaaaabu)), size);
5129 size_div3 = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.as_uniform(size_div3), Operand(1u));
5130
5131 Temp stride = emit_extract_vector(ctx, desc, 1, s1);
5132 stride = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), stride, Operand((5u << 16) | 16u));
5133
5134 Temp is12 = bld.sopc(aco_opcode::s_cmp_eq_i32, bld.def(s1, scc), stride, Operand(12u));
5135 size = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), size_div3, size, bld.scc(is12));
5136
5137 Temp shr_dst = dst.type() == RegType::vgpr ? bld.tmp(s1) : dst;
5138 bld.sop2(aco_opcode::s_lshr_b32, Definition(shr_dst), bld.def(s1, scc),
5139 size, bld.sop1(aco_opcode::s_ff1_i32_b32, bld.def(s1), stride));
5140 if (dst.type() == RegType::vgpr)
5141 bld.copy(Definition(dst), shr_dst);
5142
5143 /* TODO: we can probably calculate this faster with v_skip when stride != 12 */
5144 } else {
5145 emit_extract_vector(ctx, desc, 2, dst);
5146 }
5147 }
5148
5149 void visit_image_size(isel_context *ctx, nir_intrinsic_instr *instr)
5150 {
5151 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5152 const struct glsl_type *type = glsl_without_array(var->type);
5153 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5154 bool is_array = glsl_sampler_type_is_array(type);
5155 Builder bld(ctx->program, ctx->block);
5156
5157 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF) {
5158 Temp desc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, NULL, true, false);
5159 return get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), true);
5160 }
5161
5162 /* LOD */
5163 Temp lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
5164
5165 /* Resource */
5166 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, NULL, true, false);
5167
5168 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5169
5170 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1)};
5171 mimg->operands[0] = Operand(resource);
5172 mimg->operands[1] = Operand(s4); /* no sampler */
5173 mimg->operands[2] = Operand(lod);
5174 uint8_t& dmask = mimg->dmask;
5175 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5176 mimg->dmask = (1 << instr->dest.ssa.num_components) - 1;
5177 mimg->da = glsl_sampler_type_is_array(type);
5178 mimg->can_reorder = true;
5179 Definition& def = mimg->definitions[0];
5180 ctx->block->instructions.emplace_back(std::move(mimg));
5181
5182 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE &&
5183 glsl_sampler_type_is_array(type)) {
5184
5185 assert(instr->dest.ssa.num_components == 3);
5186 Temp tmp = {ctx->program->allocateId(), v3};
5187 def = Definition(tmp);
5188 emit_split_vector(ctx, tmp, 3);
5189
5190 /* divide 3rd value by 6 by multiplying with magic number */
5191 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
5192 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp, 2, v1), c);
5193
5194 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5195 emit_extract_vector(ctx, tmp, 0, v1),
5196 emit_extract_vector(ctx, tmp, 1, v1),
5197 by_6);
5198
5199 } else if (ctx->options->chip_class == GFX9 &&
5200 glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_1D &&
5201 glsl_sampler_type_is_array(type)) {
5202 assert(instr->dest.ssa.num_components == 2);
5203 def = Definition(dst);
5204 dmask = 0x5;
5205 } else {
5206 def = Definition(dst);
5207 }
5208
5209 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
5210 }
5211
5212 void visit_load_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
5213 {
5214 Builder bld(ctx->program, ctx->block);
5215 unsigned num_components = instr->num_components;
5216
5217 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5218 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5219 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
5220
5221 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
5222 load_buffer(ctx, num_components, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa), glc, false);
5223 }
5224
5225 void visit_store_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
5226 {
5227 Builder bld(ctx->program, ctx->block);
5228 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
5229 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
5230 unsigned writemask = nir_intrinsic_write_mask(instr);
5231 Temp offset = get_ssa_temp(ctx, instr->src[2].ssa);
5232
5233 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5234 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
5235
5236 bool smem = !ctx->divergent_vals[instr->src[2].ssa->index] &&
5237 ctx->options->chip_class >= GFX8;
5238 if (smem)
5239 offset = bld.as_uniform(offset);
5240 bool smem_nonfs = smem && ctx->stage != fragment_fs;
5241
5242 while (writemask) {
5243 int start, count;
5244 u_bit_scan_consecutive_range(&writemask, &start, &count);
5245 if (count == 3 && (smem || ctx->options->chip_class == GFX6)) {
5246 /* GFX6 doesn't support storing vec3, split it. */
5247 writemask |= 1u << (start + 2);
5248 count = 2;
5249 }
5250 int num_bytes = count * elem_size_bytes;
5251
5252 if (num_bytes > 16) {
5253 assert(elem_size_bytes == 8);
5254 writemask |= (((count - 2) << 1) - 1) << (start + 2);
5255 count = 2;
5256 num_bytes = 16;
5257 }
5258
5259 // TODO: check alignment of sub-dword stores
5260 // TODO: split 3 bytes. there is no store instruction for that
5261
5262 Temp write_data;
5263 if (count != instr->num_components) {
5264 emit_split_vector(ctx, data, instr->num_components);
5265 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
5266 for (int i = 0; i < count; i++) {
5267 Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(data.type(), elem_size_bytes / 4));
5268 vec->operands[i] = Operand(smem_nonfs ? bld.as_uniform(elem) : elem);
5269 }
5270 write_data = bld.tmp(!smem ? RegType::vgpr : smem_nonfs ? RegType::sgpr : data.type(), count * elem_size_bytes / 4);
5271 vec->definitions[0] = Definition(write_data);
5272 ctx->block->instructions.emplace_back(std::move(vec));
5273 } else if (!smem && data.type() != RegType::vgpr) {
5274 assert(num_bytes % 4 == 0);
5275 write_data = bld.copy(bld.def(RegType::vgpr, num_bytes / 4), data);
5276 } else if (smem_nonfs && data.type() == RegType::vgpr) {
5277 assert(num_bytes % 4 == 0);
5278 write_data = bld.as_uniform(data);
5279 } else {
5280 write_data = data;
5281 }
5282
5283 aco_opcode vmem_op, smem_op;
5284 switch (num_bytes) {
5285 case 4:
5286 vmem_op = aco_opcode::buffer_store_dword;
5287 smem_op = aco_opcode::s_buffer_store_dword;
5288 break;
5289 case 8:
5290 vmem_op = aco_opcode::buffer_store_dwordx2;
5291 smem_op = aco_opcode::s_buffer_store_dwordx2;
5292 break;
5293 case 12:
5294 vmem_op = aco_opcode::buffer_store_dwordx3;
5295 smem_op = aco_opcode::last_opcode;
5296 assert(!smem && ctx->options->chip_class > GFX6);
5297 break;
5298 case 16:
5299 vmem_op = aco_opcode::buffer_store_dwordx4;
5300 smem_op = aco_opcode::s_buffer_store_dwordx4;
5301 break;
5302 default:
5303 unreachable("Store SSBO not implemented for this size.");
5304 }
5305 if (ctx->stage == fragment_fs)
5306 smem_op = aco_opcode::p_fs_buffer_store_smem;
5307
5308 if (smem) {
5309 aco_ptr<SMEM_instruction> store{create_instruction<SMEM_instruction>(smem_op, Format::SMEM, 3, 0)};
5310 store->operands[0] = Operand(rsrc);
5311 if (start) {
5312 Temp off = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
5313 offset, Operand(start * elem_size_bytes));
5314 store->operands[1] = Operand(off);
5315 } else {
5316 store->operands[1] = Operand(offset);
5317 }
5318 if (smem_op != aco_opcode::p_fs_buffer_store_smem)
5319 store->operands[1].setFixed(m0);
5320 store->operands[2] = Operand(write_data);
5321 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
5322 store->dlc = false;
5323 store->disable_wqm = true;
5324 store->barrier = barrier_buffer;
5325 ctx->block->instructions.emplace_back(std::move(store));
5326 ctx->program->wb_smem_l1_on_end = true;
5327 if (smem_op == aco_opcode::p_fs_buffer_store_smem) {
5328 ctx->block->kind |= block_kind_needs_lowering;
5329 ctx->program->needs_exact = true;
5330 }
5331 } else {
5332 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(vmem_op, Format::MUBUF, 4, 0)};
5333 store->operands[0] = Operand(rsrc);
5334 store->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
5335 store->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
5336 store->operands[3] = Operand(write_data);
5337 store->offset = start * elem_size_bytes;
5338 store->offen = (offset.type() == RegType::vgpr);
5339 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
5340 store->dlc = false;
5341 store->disable_wqm = true;
5342 store->barrier = barrier_buffer;
5343 ctx->program->needs_exact = true;
5344 ctx->block->instructions.emplace_back(std::move(store));
5345 }
5346 }
5347 }
5348
5349 void visit_atomic_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
5350 {
5351 /* return the previous value if dest is ever used */
5352 bool return_previous = false;
5353 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5354 return_previous = true;
5355 break;
5356 }
5357 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5358 return_previous = true;
5359 break;
5360 }
5361
5362 Builder bld(ctx->program, ctx->block);
5363 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[2].ssa));
5364
5365 if (instr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap)
5366 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
5367 get_ssa_temp(ctx, instr->src[3].ssa), data);
5368
5369 Temp offset = get_ssa_temp(ctx, instr->src[1].ssa);
5370 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5371 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
5372
5373 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5374
5375 aco_opcode op32, op64;
5376 switch (instr->intrinsic) {
5377 case nir_intrinsic_ssbo_atomic_add:
5378 op32 = aco_opcode::buffer_atomic_add;
5379 op64 = aco_opcode::buffer_atomic_add_x2;
5380 break;
5381 case nir_intrinsic_ssbo_atomic_imin:
5382 op32 = aco_opcode::buffer_atomic_smin;
5383 op64 = aco_opcode::buffer_atomic_smin_x2;
5384 break;
5385 case nir_intrinsic_ssbo_atomic_umin:
5386 op32 = aco_opcode::buffer_atomic_umin;
5387 op64 = aco_opcode::buffer_atomic_umin_x2;
5388 break;
5389 case nir_intrinsic_ssbo_atomic_imax:
5390 op32 = aco_opcode::buffer_atomic_smax;
5391 op64 = aco_opcode::buffer_atomic_smax_x2;
5392 break;
5393 case nir_intrinsic_ssbo_atomic_umax:
5394 op32 = aco_opcode::buffer_atomic_umax;
5395 op64 = aco_opcode::buffer_atomic_umax_x2;
5396 break;
5397 case nir_intrinsic_ssbo_atomic_and:
5398 op32 = aco_opcode::buffer_atomic_and;
5399 op64 = aco_opcode::buffer_atomic_and_x2;
5400 break;
5401 case nir_intrinsic_ssbo_atomic_or:
5402 op32 = aco_opcode::buffer_atomic_or;
5403 op64 = aco_opcode::buffer_atomic_or_x2;
5404 break;
5405 case nir_intrinsic_ssbo_atomic_xor:
5406 op32 = aco_opcode::buffer_atomic_xor;
5407 op64 = aco_opcode::buffer_atomic_xor_x2;
5408 break;
5409 case nir_intrinsic_ssbo_atomic_exchange:
5410 op32 = aco_opcode::buffer_atomic_swap;
5411 op64 = aco_opcode::buffer_atomic_swap_x2;
5412 break;
5413 case nir_intrinsic_ssbo_atomic_comp_swap:
5414 op32 = aco_opcode::buffer_atomic_cmpswap;
5415 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
5416 break;
5417 default:
5418 unreachable("visit_atomic_ssbo should only be called with nir_intrinsic_ssbo_atomic_* instructions.");
5419 }
5420 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
5421 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
5422 mubuf->operands[0] = Operand(rsrc);
5423 mubuf->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
5424 mubuf->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
5425 mubuf->operands[3] = Operand(data);
5426 if (return_previous)
5427 mubuf->definitions[0] = Definition(dst);
5428 mubuf->offset = 0;
5429 mubuf->offen = (offset.type() == RegType::vgpr);
5430 mubuf->glc = return_previous;
5431 mubuf->dlc = false; /* Not needed for atomics */
5432 mubuf->disable_wqm = true;
5433 mubuf->barrier = barrier_buffer;
5434 ctx->program->needs_exact = true;
5435 ctx->block->instructions.emplace_back(std::move(mubuf));
5436 }
5437
5438 void visit_get_buffer_size(isel_context *ctx, nir_intrinsic_instr *instr) {
5439
5440 Temp index = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5441 Builder bld(ctx->program, ctx->block);
5442 Temp desc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), index, Operand(0u));
5443 get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), false);
5444 }
5445
5446 Temp get_gfx6_global_rsrc(Builder& bld, Temp addr)
5447 {
5448 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5449 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
5450
5451 if (addr.type() == RegType::vgpr)
5452 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), Operand(0u), Operand(0u), Operand(-1u), Operand(rsrc_conf));
5453 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), addr, Operand(-1u), Operand(rsrc_conf));
5454 }
5455
5456 void visit_load_global(isel_context *ctx, nir_intrinsic_instr *instr)
5457 {
5458 Builder bld(ctx->program, ctx->block);
5459 unsigned num_components = instr->num_components;
5460 unsigned num_bytes = num_components * instr->dest.ssa.bit_size / 8;
5461
5462 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5463 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
5464
5465 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
5466 bool dlc = glc && ctx->options->chip_class >= GFX10;
5467 aco_opcode op;
5468 if (dst.type() == RegType::vgpr || (glc && ctx->options->chip_class < GFX8)) {
5469 bool global = ctx->options->chip_class >= GFX9;
5470
5471 if (ctx->options->chip_class >= GFX7) {
5472 aco_opcode op;
5473 switch (num_bytes) {
5474 case 4:
5475 op = global ? aco_opcode::global_load_dword : aco_opcode::flat_load_dword;
5476 break;
5477 case 8:
5478 op = global ? aco_opcode::global_load_dwordx2 : aco_opcode::flat_load_dwordx2;
5479 break;
5480 case 12:
5481 op = global ? aco_opcode::global_load_dwordx3 : aco_opcode::flat_load_dwordx3;
5482 break;
5483 case 16:
5484 op = global ? aco_opcode::global_load_dwordx4 : aco_opcode::flat_load_dwordx4;
5485 break;
5486 default:
5487 unreachable("load_global not implemented for this size.");
5488 }
5489
5490 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 2, 1)};
5491 flat->operands[0] = Operand(addr);
5492 flat->operands[1] = Operand(s1);
5493 flat->glc = glc;
5494 flat->dlc = dlc;
5495 flat->barrier = barrier_buffer;
5496
5497 if (dst.type() == RegType::sgpr) {
5498 Temp vec = bld.tmp(RegType::vgpr, dst.size());
5499 flat->definitions[0] = Definition(vec);
5500 ctx->block->instructions.emplace_back(std::move(flat));
5501 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
5502 } else {
5503 flat->definitions[0] = Definition(dst);
5504 ctx->block->instructions.emplace_back(std::move(flat));
5505 }
5506 emit_split_vector(ctx, dst, num_components);
5507 } else {
5508 assert(ctx->options->chip_class == GFX6);
5509
5510 /* GFX6 doesn't support loading vec3, expand to vec4. */
5511 num_bytes = num_bytes == 12 ? 16 : num_bytes;
5512
5513 aco_opcode op;
5514 switch (num_bytes) {
5515 case 4:
5516 op = aco_opcode::buffer_load_dword;
5517 break;
5518 case 8:
5519 op = aco_opcode::buffer_load_dwordx2;
5520 break;
5521 case 16:
5522 op = aco_opcode::buffer_load_dwordx4;
5523 break;
5524 default:
5525 unreachable("load_global not implemented for this size.");
5526 }
5527
5528 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
5529
5530 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
5531 mubuf->operands[0] = Operand(rsrc);
5532 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
5533 mubuf->operands[2] = Operand(0u);
5534 mubuf->glc = glc;
5535 mubuf->dlc = false;
5536 mubuf->offset = 0;
5537 mubuf->addr64 = addr.type() == RegType::vgpr;
5538 mubuf->disable_wqm = false;
5539 mubuf->barrier = barrier_buffer;
5540 aco_ptr<Instruction> instr = std::move(mubuf);
5541
5542 /* expand vector */
5543 if (dst.size() == 3) {
5544 Temp vec = bld.tmp(v4);
5545 instr->definitions[0] = Definition(vec);
5546 bld.insert(std::move(instr));
5547 emit_split_vector(ctx, vec, 4);
5548
5549 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 3, 1));
5550 instr->operands[0] = Operand(emit_extract_vector(ctx, vec, 0, v1));
5551 instr->operands[1] = Operand(emit_extract_vector(ctx, vec, 1, v1));
5552 instr->operands[2] = Operand(emit_extract_vector(ctx, vec, 2, v1));
5553 }
5554
5555 if (dst.type() == RegType::sgpr) {
5556 Temp vec = bld.tmp(RegType::vgpr, dst.size());
5557 instr->definitions[0] = Definition(vec);
5558 bld.insert(std::move(instr));
5559 expand_vector(ctx, vec, dst, num_components, (1 << num_components) - 1);
5560 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
5561 } else {
5562 instr->definitions[0] = Definition(dst);
5563 bld.insert(std::move(instr));
5564 emit_split_vector(ctx, dst, num_components);
5565 }
5566 }
5567 } else {
5568 switch (num_bytes) {
5569 case 4:
5570 op = aco_opcode::s_load_dword;
5571 break;
5572 case 8:
5573 op = aco_opcode::s_load_dwordx2;
5574 break;
5575 case 12:
5576 case 16:
5577 op = aco_opcode::s_load_dwordx4;
5578 break;
5579 default:
5580 unreachable("load_global not implemented for this size.");
5581 }
5582 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
5583 load->operands[0] = Operand(addr);
5584 load->operands[1] = Operand(0u);
5585 load->definitions[0] = Definition(dst);
5586 load->glc = glc;
5587 load->dlc = dlc;
5588 load->barrier = barrier_buffer;
5589 assert(ctx->options->chip_class >= GFX8 || !glc);
5590
5591 if (dst.size() == 3) {
5592 /* trim vector */
5593 Temp vec = bld.tmp(s4);
5594 load->definitions[0] = Definition(vec);
5595 ctx->block->instructions.emplace_back(std::move(load));
5596 emit_split_vector(ctx, vec, 4);
5597
5598 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5599 emit_extract_vector(ctx, vec, 0, s1),
5600 emit_extract_vector(ctx, vec, 1, s1),
5601 emit_extract_vector(ctx, vec, 2, s1));
5602 } else {
5603 ctx->block->instructions.emplace_back(std::move(load));
5604 }
5605 }
5606 }
5607
5608 void visit_store_global(isel_context *ctx, nir_intrinsic_instr *instr)
5609 {
5610 Builder bld(ctx->program, ctx->block);
5611 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
5612
5613 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5614 Temp addr = get_ssa_temp(ctx, instr->src[1].ssa);
5615
5616 if (ctx->options->chip_class >= GFX7)
5617 addr = as_vgpr(ctx, addr);
5618
5619 unsigned writemask = nir_intrinsic_write_mask(instr);
5620 while (writemask) {
5621 int start, count;
5622 u_bit_scan_consecutive_range(&writemask, &start, &count);
5623 if (count == 3 && ctx->options->chip_class == GFX6) {
5624 /* GFX6 doesn't support storing vec3, split it. */
5625 writemask |= 1u << (start + 2);
5626 count = 2;
5627 }
5628 unsigned num_bytes = count * elem_size_bytes;
5629
5630 Temp write_data = data;
5631 if (count != instr->num_components) {
5632 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
5633 for (int i = 0; i < count; i++)
5634 vec->operands[i] = Operand(emit_extract_vector(ctx, data, start + i, v1));
5635 write_data = bld.tmp(RegType::vgpr, count);
5636 vec->definitions[0] = Definition(write_data);
5637 ctx->block->instructions.emplace_back(std::move(vec));
5638 }
5639
5640 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
5641 unsigned offset = start * elem_size_bytes;
5642
5643 if (ctx->options->chip_class >= GFX7) {
5644 if (offset > 0 && ctx->options->chip_class < GFX9) {
5645 Temp addr0 = bld.tmp(v1), addr1 = bld.tmp(v1);
5646 Temp new_addr0 = bld.tmp(v1), new_addr1 = bld.tmp(v1);
5647 Temp carry = bld.tmp(bld.lm);
5648 bld.pseudo(aco_opcode::p_split_vector, Definition(addr0), Definition(addr1), addr);
5649
5650 bld.vop2(aco_opcode::v_add_co_u32, Definition(new_addr0), bld.hint_vcc(Definition(carry)),
5651 Operand(offset), addr0);
5652 bld.vop2(aco_opcode::v_addc_co_u32, Definition(new_addr1), bld.def(bld.lm),
5653 Operand(0u), addr1,
5654 carry).def(1).setHint(vcc);
5655
5656 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_addr0, new_addr1);
5657
5658 offset = 0;
5659 }
5660
5661 bool global = ctx->options->chip_class >= GFX9;
5662 aco_opcode op;
5663 switch (num_bytes) {
5664 case 4:
5665 op = global ? aco_opcode::global_store_dword : aco_opcode::flat_store_dword;
5666 break;
5667 case 8:
5668 op = global ? aco_opcode::global_store_dwordx2 : aco_opcode::flat_store_dwordx2;
5669 break;
5670 case 12:
5671 op = global ? aco_opcode::global_store_dwordx3 : aco_opcode::flat_store_dwordx3;
5672 break;
5673 case 16:
5674 op = global ? aco_opcode::global_store_dwordx4 : aco_opcode::flat_store_dwordx4;
5675 break;
5676 default:
5677 unreachable("store_global not implemented for this size.");
5678 }
5679
5680 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, 0)};
5681 flat->operands[0] = Operand(addr);
5682 flat->operands[1] = Operand(s1);
5683 flat->operands[2] = Operand(data);
5684 flat->glc = glc;
5685 flat->dlc = false;
5686 flat->offset = offset;
5687 flat->disable_wqm = true;
5688 flat->barrier = barrier_buffer;
5689 ctx->program->needs_exact = true;
5690 ctx->block->instructions.emplace_back(std::move(flat));
5691 } else {
5692 assert(ctx->options->chip_class == GFX6);
5693
5694 aco_opcode op;
5695 switch (num_bytes) {
5696 case 4:
5697 op = aco_opcode::buffer_store_dword;
5698 break;
5699 case 8:
5700 op = aco_opcode::buffer_store_dwordx2;
5701 break;
5702 case 16:
5703 op = aco_opcode::buffer_store_dwordx4;
5704 break;
5705 default:
5706 unreachable("store_global not implemented for this size.");
5707 }
5708
5709 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
5710
5711 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, 0)};
5712 mubuf->operands[0] = Operand(rsrc);
5713 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
5714 mubuf->operands[2] = Operand(0u);
5715 mubuf->operands[3] = Operand(write_data);
5716 mubuf->glc = glc;
5717 mubuf->dlc = false;
5718 mubuf->offset = offset;
5719 mubuf->addr64 = addr.type() == RegType::vgpr;
5720 mubuf->disable_wqm = true;
5721 mubuf->barrier = barrier_buffer;
5722 ctx->program->needs_exact = true;
5723 ctx->block->instructions.emplace_back(std::move(mubuf));
5724 }
5725 }
5726 }
5727
5728 void visit_global_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
5729 {
5730 /* return the previous value if dest is ever used */
5731 bool return_previous = false;
5732 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5733 return_previous = true;
5734 break;
5735 }
5736 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5737 return_previous = true;
5738 break;
5739 }
5740
5741 Builder bld(ctx->program, ctx->block);
5742 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
5743 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5744
5745 if (ctx->options->chip_class >= GFX7)
5746 addr = as_vgpr(ctx, addr);
5747
5748 if (instr->intrinsic == nir_intrinsic_global_atomic_comp_swap)
5749 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
5750 get_ssa_temp(ctx, instr->src[2].ssa), data);
5751
5752 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5753
5754 aco_opcode op32, op64;
5755
5756 if (ctx->options->chip_class >= GFX7) {
5757 bool global = ctx->options->chip_class >= GFX9;
5758 switch (instr->intrinsic) {
5759 case nir_intrinsic_global_atomic_add:
5760 op32 = global ? aco_opcode::global_atomic_add : aco_opcode::flat_atomic_add;
5761 op64 = global ? aco_opcode::global_atomic_add_x2 : aco_opcode::flat_atomic_add_x2;
5762 break;
5763 case nir_intrinsic_global_atomic_imin:
5764 op32 = global ? aco_opcode::global_atomic_smin : aco_opcode::flat_atomic_smin;
5765 op64 = global ? aco_opcode::global_atomic_smin_x2 : aco_opcode::flat_atomic_smin_x2;
5766 break;
5767 case nir_intrinsic_global_atomic_umin:
5768 op32 = global ? aco_opcode::global_atomic_umin : aco_opcode::flat_atomic_umin;
5769 op64 = global ? aco_opcode::global_atomic_umin_x2 : aco_opcode::flat_atomic_umin_x2;
5770 break;
5771 case nir_intrinsic_global_atomic_imax:
5772 op32 = global ? aco_opcode::global_atomic_smax : aco_opcode::flat_atomic_smax;
5773 op64 = global ? aco_opcode::global_atomic_smax_x2 : aco_opcode::flat_atomic_smax_x2;
5774 break;
5775 case nir_intrinsic_global_atomic_umax:
5776 op32 = global ? aco_opcode::global_atomic_umax : aco_opcode::flat_atomic_umax;
5777 op64 = global ? aco_opcode::global_atomic_umax_x2 : aco_opcode::flat_atomic_umax_x2;
5778 break;
5779 case nir_intrinsic_global_atomic_and:
5780 op32 = global ? aco_opcode::global_atomic_and : aco_opcode::flat_atomic_and;
5781 op64 = global ? aco_opcode::global_atomic_and_x2 : aco_opcode::flat_atomic_and_x2;
5782 break;
5783 case nir_intrinsic_global_atomic_or:
5784 op32 = global ? aco_opcode::global_atomic_or : aco_opcode::flat_atomic_or;
5785 op64 = global ? aco_opcode::global_atomic_or_x2 : aco_opcode::flat_atomic_or_x2;
5786 break;
5787 case nir_intrinsic_global_atomic_xor:
5788 op32 = global ? aco_opcode::global_atomic_xor : aco_opcode::flat_atomic_xor;
5789 op64 = global ? aco_opcode::global_atomic_xor_x2 : aco_opcode::flat_atomic_xor_x2;
5790 break;
5791 case nir_intrinsic_global_atomic_exchange:
5792 op32 = global ? aco_opcode::global_atomic_swap : aco_opcode::flat_atomic_swap;
5793 op64 = global ? aco_opcode::global_atomic_swap_x2 : aco_opcode::flat_atomic_swap_x2;
5794 break;
5795 case nir_intrinsic_global_atomic_comp_swap:
5796 op32 = global ? aco_opcode::global_atomic_cmpswap : aco_opcode::flat_atomic_cmpswap;
5797 op64 = global ? aco_opcode::global_atomic_cmpswap_x2 : aco_opcode::flat_atomic_cmpswap_x2;
5798 break;
5799 default:
5800 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
5801 }
5802
5803 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
5804 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, return_previous ? 1 : 0)};
5805 flat->operands[0] = Operand(addr);
5806 flat->operands[1] = Operand(s1);
5807 flat->operands[2] = Operand(data);
5808 if (return_previous)
5809 flat->definitions[0] = Definition(dst);
5810 flat->glc = return_previous;
5811 flat->dlc = false; /* Not needed for atomics */
5812 flat->offset = 0;
5813 flat->disable_wqm = true;
5814 flat->barrier = barrier_buffer;
5815 ctx->program->needs_exact = true;
5816 ctx->block->instructions.emplace_back(std::move(flat));
5817 } else {
5818 assert(ctx->options->chip_class == GFX6);
5819
5820 switch (instr->intrinsic) {
5821 case nir_intrinsic_global_atomic_add:
5822 op32 = aco_opcode::buffer_atomic_add;
5823 op64 = aco_opcode::buffer_atomic_add_x2;
5824 break;
5825 case nir_intrinsic_global_atomic_imin:
5826 op32 = aco_opcode::buffer_atomic_smin;
5827 op64 = aco_opcode::buffer_atomic_smin_x2;
5828 break;
5829 case nir_intrinsic_global_atomic_umin:
5830 op32 = aco_opcode::buffer_atomic_umin;
5831 op64 = aco_opcode::buffer_atomic_umin_x2;
5832 break;
5833 case nir_intrinsic_global_atomic_imax:
5834 op32 = aco_opcode::buffer_atomic_smax;
5835 op64 = aco_opcode::buffer_atomic_smax_x2;
5836 break;
5837 case nir_intrinsic_global_atomic_umax:
5838 op32 = aco_opcode::buffer_atomic_umax;
5839 op64 = aco_opcode::buffer_atomic_umax_x2;
5840 break;
5841 case nir_intrinsic_global_atomic_and:
5842 op32 = aco_opcode::buffer_atomic_and;
5843 op64 = aco_opcode::buffer_atomic_and_x2;
5844 break;
5845 case nir_intrinsic_global_atomic_or:
5846 op32 = aco_opcode::buffer_atomic_or;
5847 op64 = aco_opcode::buffer_atomic_or_x2;
5848 break;
5849 case nir_intrinsic_global_atomic_xor:
5850 op32 = aco_opcode::buffer_atomic_xor;
5851 op64 = aco_opcode::buffer_atomic_xor_x2;
5852 break;
5853 case nir_intrinsic_global_atomic_exchange:
5854 op32 = aco_opcode::buffer_atomic_swap;
5855 op64 = aco_opcode::buffer_atomic_swap_x2;
5856 break;
5857 case nir_intrinsic_global_atomic_comp_swap:
5858 op32 = aco_opcode::buffer_atomic_cmpswap;
5859 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
5860 break;
5861 default:
5862 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
5863 }
5864
5865 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
5866
5867 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
5868
5869 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
5870 mubuf->operands[0] = Operand(rsrc);
5871 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
5872 mubuf->operands[2] = Operand(0u);
5873 mubuf->operands[3] = Operand(data);
5874 if (return_previous)
5875 mubuf->definitions[0] = Definition(dst);
5876 mubuf->glc = return_previous;
5877 mubuf->dlc = false;
5878 mubuf->offset = 0;
5879 mubuf->addr64 = addr.type() == RegType::vgpr;
5880 mubuf->disable_wqm = true;
5881 mubuf->barrier = barrier_buffer;
5882 ctx->program->needs_exact = true;
5883 ctx->block->instructions.emplace_back(std::move(mubuf));
5884 }
5885 }
5886
5887 void emit_memory_barrier(isel_context *ctx, nir_intrinsic_instr *instr) {
5888 Builder bld(ctx->program, ctx->block);
5889 switch(instr->intrinsic) {
5890 case nir_intrinsic_group_memory_barrier:
5891 case nir_intrinsic_memory_barrier:
5892 bld.barrier(aco_opcode::p_memory_barrier_common);
5893 break;
5894 case nir_intrinsic_memory_barrier_buffer:
5895 bld.barrier(aco_opcode::p_memory_barrier_buffer);
5896 break;
5897 case nir_intrinsic_memory_barrier_image:
5898 bld.barrier(aco_opcode::p_memory_barrier_image);
5899 break;
5900 case nir_intrinsic_memory_barrier_tcs_patch:
5901 case nir_intrinsic_memory_barrier_shared:
5902 bld.barrier(aco_opcode::p_memory_barrier_shared);
5903 break;
5904 default:
5905 unreachable("Unimplemented memory barrier intrinsic");
5906 break;
5907 }
5908 }
5909
5910 void visit_load_shared(isel_context *ctx, nir_intrinsic_instr *instr)
5911 {
5912 // TODO: implement sparse reads using ds_read2_b32 and nir_ssa_def_components_read()
5913 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5914 assert(instr->dest.ssa.bit_size >= 32 && "Bitsize not supported in load_shared.");
5915 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5916 Builder bld(ctx->program, ctx->block);
5917
5918 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
5919 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
5920 load_lds(ctx, elem_size_bytes, dst, address, nir_intrinsic_base(instr), align);
5921 }
5922
5923 void visit_store_shared(isel_context *ctx, nir_intrinsic_instr *instr)
5924 {
5925 unsigned writemask = nir_intrinsic_write_mask(instr);
5926 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
5927 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5928 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
5929 assert(elem_size_bytes >= 4 && "Only 32bit & 64bit store_shared currently supported.");
5930
5931 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
5932 store_lds(ctx, elem_size_bytes, data, writemask, address, nir_intrinsic_base(instr), align);
5933 }
5934
5935 void visit_shared_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
5936 {
5937 unsigned offset = nir_intrinsic_base(instr);
5938 Operand m = load_lds_size_m0(ctx);
5939 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5940 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5941
5942 unsigned num_operands = 3;
5943 aco_opcode op32, op64, op32_rtn, op64_rtn;
5944 switch(instr->intrinsic) {
5945 case nir_intrinsic_shared_atomic_add:
5946 op32 = aco_opcode::ds_add_u32;
5947 op64 = aco_opcode::ds_add_u64;
5948 op32_rtn = aco_opcode::ds_add_rtn_u32;
5949 op64_rtn = aco_opcode::ds_add_rtn_u64;
5950 break;
5951 case nir_intrinsic_shared_atomic_imin:
5952 op32 = aco_opcode::ds_min_i32;
5953 op64 = aco_opcode::ds_min_i64;
5954 op32_rtn = aco_opcode::ds_min_rtn_i32;
5955 op64_rtn = aco_opcode::ds_min_rtn_i64;
5956 break;
5957 case nir_intrinsic_shared_atomic_umin:
5958 op32 = aco_opcode::ds_min_u32;
5959 op64 = aco_opcode::ds_min_u64;
5960 op32_rtn = aco_opcode::ds_min_rtn_u32;
5961 op64_rtn = aco_opcode::ds_min_rtn_u64;
5962 break;
5963 case nir_intrinsic_shared_atomic_imax:
5964 op32 = aco_opcode::ds_max_i32;
5965 op64 = aco_opcode::ds_max_i64;
5966 op32_rtn = aco_opcode::ds_max_rtn_i32;
5967 op64_rtn = aco_opcode::ds_max_rtn_i64;
5968 break;
5969 case nir_intrinsic_shared_atomic_umax:
5970 op32 = aco_opcode::ds_max_u32;
5971 op64 = aco_opcode::ds_max_u64;
5972 op32_rtn = aco_opcode::ds_max_rtn_u32;
5973 op64_rtn = aco_opcode::ds_max_rtn_u64;
5974 break;
5975 case nir_intrinsic_shared_atomic_and:
5976 op32 = aco_opcode::ds_and_b32;
5977 op64 = aco_opcode::ds_and_b64;
5978 op32_rtn = aco_opcode::ds_and_rtn_b32;
5979 op64_rtn = aco_opcode::ds_and_rtn_b64;
5980 break;
5981 case nir_intrinsic_shared_atomic_or:
5982 op32 = aco_opcode::ds_or_b32;
5983 op64 = aco_opcode::ds_or_b64;
5984 op32_rtn = aco_opcode::ds_or_rtn_b32;
5985 op64_rtn = aco_opcode::ds_or_rtn_b64;
5986 break;
5987 case nir_intrinsic_shared_atomic_xor:
5988 op32 = aco_opcode::ds_xor_b32;
5989 op64 = aco_opcode::ds_xor_b64;
5990 op32_rtn = aco_opcode::ds_xor_rtn_b32;
5991 op64_rtn = aco_opcode::ds_xor_rtn_b64;
5992 break;
5993 case nir_intrinsic_shared_atomic_exchange:
5994 op32 = aco_opcode::ds_write_b32;
5995 op64 = aco_opcode::ds_write_b64;
5996 op32_rtn = aco_opcode::ds_wrxchg_rtn_b32;
5997 op64_rtn = aco_opcode::ds_wrxchg2_rtn_b64;
5998 break;
5999 case nir_intrinsic_shared_atomic_comp_swap:
6000 op32 = aco_opcode::ds_cmpst_b32;
6001 op64 = aco_opcode::ds_cmpst_b64;
6002 op32_rtn = aco_opcode::ds_cmpst_rtn_b32;
6003 op64_rtn = aco_opcode::ds_cmpst_rtn_b64;
6004 num_operands = 4;
6005 break;
6006 default:
6007 unreachable("Unhandled shared atomic intrinsic");
6008 }
6009
6010 /* return the previous value if dest is ever used */
6011 bool return_previous = false;
6012 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6013 return_previous = true;
6014 break;
6015 }
6016 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6017 return_previous = true;
6018 break;
6019 }
6020
6021 aco_opcode op;
6022 if (data.size() == 1) {
6023 assert(instr->dest.ssa.bit_size == 32);
6024 op = return_previous ? op32_rtn : op32;
6025 } else {
6026 assert(instr->dest.ssa.bit_size == 64);
6027 op = return_previous ? op64_rtn : op64;
6028 }
6029
6030 if (offset > 65535) {
6031 Builder bld(ctx->program, ctx->block);
6032 address = bld.vadd32(bld.def(v1), Operand(offset), address);
6033 offset = 0;
6034 }
6035
6036 aco_ptr<DS_instruction> ds;
6037 ds.reset(create_instruction<DS_instruction>(op, Format::DS, num_operands, return_previous ? 1 : 0));
6038 ds->operands[0] = Operand(address);
6039 ds->operands[1] = Operand(data);
6040 if (num_operands == 4)
6041 ds->operands[2] = Operand(get_ssa_temp(ctx, instr->src[2].ssa));
6042 ds->operands[num_operands - 1] = m;
6043 ds->offset0 = offset;
6044 if (return_previous)
6045 ds->definitions[0] = Definition(get_ssa_temp(ctx, &instr->dest.ssa));
6046 ctx->block->instructions.emplace_back(std::move(ds));
6047 }
6048
6049 Temp get_scratch_resource(isel_context *ctx)
6050 {
6051 Builder bld(ctx->program, ctx->block);
6052 Temp scratch_addr = ctx->program->private_segment_buffer;
6053 if (ctx->stage != compute_cs)
6054 scratch_addr = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), scratch_addr, Operand(0u));
6055
6056 uint32_t rsrc_conf = S_008F0C_ADD_TID_ENABLE(1) |
6057 S_008F0C_INDEX_STRIDE(ctx->program->wave_size == 64 ? 3 : 2);;
6058
6059 if (ctx->program->chip_class >= GFX10) {
6060 rsrc_conf |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
6061 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
6062 S_008F0C_RESOURCE_LEVEL(1);
6063 } else if (ctx->program->chip_class <= GFX7) { /* dfmt modifies stride on GFX8/GFX9 when ADD_TID_EN=1 */
6064 rsrc_conf |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
6065 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
6066 }
6067
6068 /* older generations need element size = 16 bytes. element size removed in GFX9 */
6069 if (ctx->program->chip_class <= GFX8)
6070 rsrc_conf |= S_008F0C_ELEMENT_SIZE(3);
6071
6072 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), scratch_addr, Operand(-1u), Operand(rsrc_conf));
6073 }
6074
6075 void visit_load_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
6076 assert(instr->dest.ssa.bit_size == 32 || instr->dest.ssa.bit_size == 64);
6077 Builder bld(ctx->program, ctx->block);
6078 Temp rsrc = get_scratch_resource(ctx);
6079 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6080 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6081
6082 aco_opcode op;
6083 switch (dst.size()) {
6084 case 1:
6085 op = aco_opcode::buffer_load_dword;
6086 break;
6087 case 2:
6088 op = aco_opcode::buffer_load_dwordx2;
6089 break;
6090 case 3:
6091 op = aco_opcode::buffer_load_dwordx3;
6092 break;
6093 case 4:
6094 op = aco_opcode::buffer_load_dwordx4;
6095 break;
6096 case 6:
6097 case 8: {
6098 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
6099 Temp lower = bld.mubuf(aco_opcode::buffer_load_dwordx4,
6100 bld.def(v4), rsrc, offset,
6101 ctx->program->scratch_offset, 0, true);
6102 Temp upper = bld.mubuf(dst.size() == 6 ? aco_opcode::buffer_load_dwordx2 :
6103 aco_opcode::buffer_load_dwordx4,
6104 dst.size() == 6 ? bld.def(v2) : bld.def(v4),
6105 rsrc, offset, ctx->program->scratch_offset, 16, true);
6106 emit_split_vector(ctx, lower, 2);
6107 elems[0] = emit_extract_vector(ctx, lower, 0, v2);
6108 elems[1] = emit_extract_vector(ctx, lower, 1, v2);
6109 if (dst.size() == 8) {
6110 emit_split_vector(ctx, upper, 2);
6111 elems[2] = emit_extract_vector(ctx, upper, 0, v2);
6112 elems[3] = emit_extract_vector(ctx, upper, 1, v2);
6113 } else {
6114 elems[2] = upper;
6115 }
6116
6117 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
6118 Format::PSEUDO, dst.size() / 2, 1)};
6119 for (unsigned i = 0; i < dst.size() / 2; i++)
6120 vec->operands[i] = Operand(elems[i]);
6121 vec->definitions[0] = Definition(dst);
6122 bld.insert(std::move(vec));
6123 ctx->allocated_vec.emplace(dst.id(), elems);
6124 return;
6125 }
6126 default:
6127 unreachable("Wrong dst size for nir_intrinsic_load_scratch");
6128 }
6129
6130 bld.mubuf(op, Definition(dst), rsrc, offset, ctx->program->scratch_offset, 0, true);
6131 emit_split_vector(ctx, dst, instr->num_components);
6132 }
6133
6134 void visit_store_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
6135 assert(instr->src[0].ssa->bit_size == 32 || instr->src[0].ssa->bit_size == 64);
6136 Builder bld(ctx->program, ctx->block);
6137 Temp rsrc = get_scratch_resource(ctx);
6138 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6139 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6140
6141 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6142 unsigned writemask = nir_intrinsic_write_mask(instr);
6143
6144 while (writemask) {
6145 int start, count;
6146 u_bit_scan_consecutive_range(&writemask, &start, &count);
6147 int num_bytes = count * elem_size_bytes;
6148
6149 if (num_bytes > 16) {
6150 assert(elem_size_bytes == 8);
6151 writemask |= (((count - 2) << 1) - 1) << (start + 2);
6152 count = 2;
6153 num_bytes = 16;
6154 }
6155
6156 // TODO: check alignment of sub-dword stores
6157 // TODO: split 3 bytes. there is no store instruction for that
6158
6159 Temp write_data;
6160 if (count != instr->num_components) {
6161 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
6162 for (int i = 0; i < count; i++) {
6163 Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(RegType::vgpr, elem_size_bytes / 4));
6164 vec->operands[i] = Operand(elem);
6165 }
6166 write_data = bld.tmp(RegClass(RegType::vgpr, count * elem_size_bytes / 4));
6167 vec->definitions[0] = Definition(write_data);
6168 ctx->block->instructions.emplace_back(std::move(vec));
6169 } else {
6170 write_data = data;
6171 }
6172
6173 aco_opcode op;
6174 switch (num_bytes) {
6175 case 4:
6176 op = aco_opcode::buffer_store_dword;
6177 break;
6178 case 8:
6179 op = aco_opcode::buffer_store_dwordx2;
6180 break;
6181 case 12:
6182 op = aco_opcode::buffer_store_dwordx3;
6183 break;
6184 case 16:
6185 op = aco_opcode::buffer_store_dwordx4;
6186 break;
6187 default:
6188 unreachable("Invalid data size for nir_intrinsic_store_scratch.");
6189 }
6190
6191 bld.mubuf(op, rsrc, offset, ctx->program->scratch_offset, write_data, start * elem_size_bytes, true);
6192 }
6193 }
6194
6195 void visit_load_sample_mask_in(isel_context *ctx, nir_intrinsic_instr *instr) {
6196 uint8_t log2_ps_iter_samples;
6197 if (ctx->program->info->ps.force_persample) {
6198 log2_ps_iter_samples =
6199 util_logbase2(ctx->options->key.fs.num_samples);
6200 } else {
6201 log2_ps_iter_samples = ctx->options->key.fs.log2_ps_iter_samples;
6202 }
6203
6204 /* The bit pattern matches that used by fixed function fragment
6205 * processing. */
6206 static const unsigned ps_iter_masks[] = {
6207 0xffff, /* not used */
6208 0x5555,
6209 0x1111,
6210 0x0101,
6211 0x0001,
6212 };
6213 assert(log2_ps_iter_samples < ARRAY_SIZE(ps_iter_masks));
6214
6215 Builder bld(ctx->program, ctx->block);
6216
6217 Temp sample_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
6218 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
6219 Temp ps_iter_mask = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(ps_iter_masks[log2_ps_iter_samples]));
6220 Temp mask = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), sample_id, ps_iter_mask);
6221 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6222 bld.vop2(aco_opcode::v_and_b32, Definition(dst), mask, get_arg(ctx, ctx->args->ac.sample_coverage));
6223 }
6224
6225 void visit_emit_vertex_with_counter(isel_context *ctx, nir_intrinsic_instr *instr) {
6226 Builder bld(ctx->program, ctx->block);
6227
6228 unsigned stream = nir_intrinsic_stream_id(instr);
6229 Temp next_vertex = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6230 next_vertex = bld.v_mul_imm(bld.def(v1), next_vertex, 4u);
6231 nir_const_value *next_vertex_cv = nir_src_as_const_value(instr->src[0]);
6232
6233 /* get GSVS ring */
6234 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_GSVS_GS * 16u));
6235
6236 unsigned num_components =
6237 ctx->program->info->gs.num_stream_output_components[stream];
6238 assert(num_components);
6239
6240 unsigned stride = 4u * num_components * ctx->shader->info.gs.vertices_out;
6241 unsigned stream_offset = 0;
6242 for (unsigned i = 0; i < stream; i++) {
6243 unsigned prev_stride = 4u * ctx->program->info->gs.num_stream_output_components[i] * ctx->shader->info.gs.vertices_out;
6244 stream_offset += prev_stride * ctx->program->wave_size;
6245 }
6246
6247 /* Limit on the stride field for <= GFX7. */
6248 assert(stride < (1 << 14));
6249
6250 Temp gsvs_dwords[4];
6251 for (unsigned i = 0; i < 4; i++)
6252 gsvs_dwords[i] = bld.tmp(s1);
6253 bld.pseudo(aco_opcode::p_split_vector,
6254 Definition(gsvs_dwords[0]),
6255 Definition(gsvs_dwords[1]),
6256 Definition(gsvs_dwords[2]),
6257 Definition(gsvs_dwords[3]),
6258 gsvs_ring);
6259
6260 if (stream_offset) {
6261 Temp stream_offset_tmp = bld.copy(bld.def(s1), Operand(stream_offset));
6262
6263 Temp carry = bld.tmp(s1);
6264 gsvs_dwords[0] = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), gsvs_dwords[0], stream_offset_tmp);
6265 gsvs_dwords[1] = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(0u), bld.scc(carry));
6266 }
6267
6268 gsvs_dwords[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(S_008F04_STRIDE(stride)));
6269 gsvs_dwords[2] = bld.copy(bld.def(s1), Operand((uint32_t)ctx->program->wave_size));
6270
6271 gsvs_ring = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
6272 gsvs_dwords[0], gsvs_dwords[1], gsvs_dwords[2], gsvs_dwords[3]);
6273
6274 unsigned offset = 0;
6275 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; i++) {
6276 if (ctx->program->info->gs.output_streams[i] != stream)
6277 continue;
6278
6279 for (unsigned j = 0; j < 4; j++) {
6280 if (!(ctx->program->info->gs.output_usage_mask[i] & (1 << j)))
6281 continue;
6282
6283 if (ctx->outputs.mask[i] & (1 << j)) {
6284 Operand vaddr_offset = next_vertex_cv ? Operand(v1) : Operand(next_vertex);
6285 unsigned const_offset = (offset + (next_vertex_cv ? next_vertex_cv->u32 : 0u)) * 4u;
6286 if (const_offset >= 4096u) {
6287 if (vaddr_offset.isUndefined())
6288 vaddr_offset = bld.copy(bld.def(v1), Operand(const_offset / 4096u * 4096u));
6289 else
6290 vaddr_offset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), vaddr_offset);
6291 const_offset %= 4096u;
6292 }
6293
6294 aco_ptr<MTBUF_instruction> mtbuf{create_instruction<MTBUF_instruction>(aco_opcode::tbuffer_store_format_x, Format::MTBUF, 4, 0)};
6295 mtbuf->operands[0] = Operand(gsvs_ring);
6296 mtbuf->operands[1] = vaddr_offset;
6297 mtbuf->operands[2] = Operand(get_arg(ctx, ctx->args->gs2vs_offset));
6298 mtbuf->operands[3] = Operand(ctx->outputs.outputs[i][j]);
6299 mtbuf->offen = !vaddr_offset.isUndefined();
6300 mtbuf->dfmt = V_008F0C_BUF_DATA_FORMAT_32;
6301 mtbuf->nfmt = V_008F0C_BUF_NUM_FORMAT_UINT;
6302 mtbuf->offset = const_offset;
6303 mtbuf->glc = true;
6304 mtbuf->slc = true;
6305 mtbuf->barrier = barrier_gs_data;
6306 mtbuf->can_reorder = true;
6307 bld.insert(std::move(mtbuf));
6308 }
6309
6310 offset += ctx->shader->info.gs.vertices_out;
6311 }
6312
6313 /* outputs for the next vertex are undefined and keeping them around can
6314 * create invalid IR with control flow */
6315 ctx->outputs.mask[i] = 0;
6316 }
6317
6318 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(false, true, stream));
6319 }
6320
6321 Temp emit_boolean_reduce(isel_context *ctx, nir_op op, unsigned cluster_size, Temp src)
6322 {
6323 Builder bld(ctx->program, ctx->block);
6324
6325 if (cluster_size == 1) {
6326 return src;
6327 } if (op == nir_op_iand && cluster_size == 4) {
6328 //subgroupClusteredAnd(val, 4) -> ~wqm(exec & ~val)
6329 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
6330 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc),
6331 bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc), tmp));
6332 } else if (op == nir_op_ior && cluster_size == 4) {
6333 //subgroupClusteredOr(val, 4) -> wqm(val & exec)
6334 return bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc),
6335 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)));
6336 } else if (op == nir_op_iand && cluster_size == ctx->program->wave_size) {
6337 //subgroupAnd(val) -> (exec & ~val) == 0
6338 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
6339 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
6340 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), cond);
6341 } else if (op == nir_op_ior && cluster_size == ctx->program->wave_size) {
6342 //subgroupOr(val) -> (val & exec) != 0
6343 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)).def(1).getTemp();
6344 return bool_to_vector_condition(ctx, tmp);
6345 } else if (op == nir_op_ixor && cluster_size == ctx->program->wave_size) {
6346 //subgroupXor(val) -> s_bcnt1_i32_b64(val & exec) & 1
6347 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
6348 tmp = bld.sop1(Builder::s_bcnt1_i32, bld.def(s1), bld.def(s1, scc), tmp);
6349 tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), tmp, Operand(1u)).def(1).getTemp();
6350 return bool_to_vector_condition(ctx, tmp);
6351 } else {
6352 //subgroupClustered{And,Or,Xor}(val, n) ->
6353 //lane_id = v_mbcnt_hi_u32_b32(-1, v_mbcnt_lo_u32_b32(-1, 0)) ; just v_mbcnt_lo_u32_b32 on wave32
6354 //cluster_offset = ~(n - 1) & lane_id
6355 //cluster_mask = ((1 << n) - 1)
6356 //subgroupClusteredAnd():
6357 // return ((val | ~exec) >> cluster_offset) & cluster_mask == cluster_mask
6358 //subgroupClusteredOr():
6359 // return ((val & exec) >> cluster_offset) & cluster_mask != 0
6360 //subgroupClusteredXor():
6361 // return v_bnt_u32_b32(((val & exec) >> cluster_offset) & cluster_mask, 0) & 1 != 0
6362 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
6363 Temp cluster_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(~uint32_t(cluster_size - 1)), lane_id);
6364
6365 Temp tmp;
6366 if (op == nir_op_iand)
6367 tmp = bld.sop2(Builder::s_orn2, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
6368 else
6369 tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
6370
6371 uint32_t cluster_mask = cluster_size == 32 ? -1 : (1u << cluster_size) - 1u;
6372
6373 if (ctx->program->chip_class <= GFX7)
6374 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), tmp, cluster_offset);
6375 else if (ctx->program->wave_size == 64)
6376 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), cluster_offset, tmp);
6377 else
6378 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), cluster_offset, tmp);
6379 tmp = emit_extract_vector(ctx, tmp, 0, v1);
6380 if (cluster_mask != 0xffffffff)
6381 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(cluster_mask), tmp);
6382
6383 Definition cmp_def = Definition();
6384 if (op == nir_op_iand) {
6385 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(cluster_mask), tmp).def(0);
6386 } else if (op == nir_op_ior) {
6387 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
6388 } else if (op == nir_op_ixor) {
6389 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u),
6390 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1), tmp, Operand(0u)));
6391 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
6392 }
6393 cmp_def.setHint(vcc);
6394 return cmp_def.getTemp();
6395 }
6396 }
6397
6398 Temp emit_boolean_exclusive_scan(isel_context *ctx, nir_op op, Temp src)
6399 {
6400 Builder bld(ctx->program, ctx->block);
6401
6402 //subgroupExclusiveAnd(val) -> mbcnt(exec & ~val) == 0
6403 //subgroupExclusiveOr(val) -> mbcnt(val & exec) != 0
6404 //subgroupExclusiveXor(val) -> mbcnt(val & exec) & 1 != 0
6405 Temp tmp;
6406 if (op == nir_op_iand)
6407 tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
6408 else
6409 tmp = bld.sop2(Builder::s_and, bld.def(s2), bld.def(s1, scc), src, Operand(exec, bld.lm));
6410
6411 Builder::Result lohi = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), bld.def(s1), tmp);
6412 Temp lo = lohi.def(0).getTemp();
6413 Temp hi = lohi.def(1).getTemp();
6414 Temp mbcnt = emit_mbcnt(ctx, bld.def(v1), Operand(lo), Operand(hi));
6415
6416 Definition cmp_def = Definition();
6417 if (op == nir_op_iand)
6418 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
6419 else if (op == nir_op_ior)
6420 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
6421 else if (op == nir_op_ixor)
6422 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u),
6423 bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), mbcnt)).def(0);
6424 cmp_def.setHint(vcc);
6425 return cmp_def.getTemp();
6426 }
6427
6428 Temp emit_boolean_inclusive_scan(isel_context *ctx, nir_op op, Temp src)
6429 {
6430 Builder bld(ctx->program, ctx->block);
6431
6432 //subgroupInclusiveAnd(val) -> subgroupExclusiveAnd(val) && val
6433 //subgroupInclusiveOr(val) -> subgroupExclusiveOr(val) || val
6434 //subgroupInclusiveXor(val) -> subgroupExclusiveXor(val) ^^ val
6435 Temp tmp = emit_boolean_exclusive_scan(ctx, op, src);
6436 if (op == nir_op_iand)
6437 return bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
6438 else if (op == nir_op_ior)
6439 return bld.sop2(Builder::s_or, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
6440 else if (op == nir_op_ixor)
6441 return bld.sop2(Builder::s_xor, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
6442
6443 assert(false);
6444 return Temp();
6445 }
6446
6447 void emit_uniform_subgroup(isel_context *ctx, nir_intrinsic_instr *instr, Temp src)
6448 {
6449 Builder bld(ctx->program, ctx->block);
6450 Definition dst(get_ssa_temp(ctx, &instr->dest.ssa));
6451 if (src.regClass().type() == RegType::vgpr) {
6452 bld.pseudo(aco_opcode::p_as_uniform, dst, src);
6453 } else if (src.regClass() == s1) {
6454 bld.sop1(aco_opcode::s_mov_b32, dst, src);
6455 } else if (src.regClass() == s2) {
6456 bld.sop1(aco_opcode::s_mov_b64, dst, src);
6457 } else {
6458 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6459 nir_print_instr(&instr->instr, stderr);
6460 fprintf(stderr, "\n");
6461 }
6462 }
6463
6464 void emit_interp_center(isel_context *ctx, Temp dst, Temp pos1, Temp pos2)
6465 {
6466 Builder bld(ctx->program, ctx->block);
6467 Temp persp_center = get_arg(ctx, ctx->args->ac.persp_center);
6468 Temp p1 = emit_extract_vector(ctx, persp_center, 0, v1);
6469 Temp p2 = emit_extract_vector(ctx, persp_center, 1, v1);
6470
6471 Temp ddx_1, ddx_2, ddy_1, ddy_2;
6472 uint32_t dpp_ctrl0 = dpp_quad_perm(0, 0, 0, 0);
6473 uint32_t dpp_ctrl1 = dpp_quad_perm(1, 1, 1, 1);
6474 uint32_t dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
6475
6476 /* Build DD X/Y */
6477 if (ctx->program->chip_class >= GFX8) {
6478 Temp tl_1 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p1, dpp_ctrl0);
6479 ddx_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl1);
6480 ddy_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl2);
6481 Temp tl_2 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p2, dpp_ctrl0);
6482 ddx_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl1);
6483 ddy_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl2);
6484 } else {
6485 Temp tl_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl0);
6486 ddx_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl1);
6487 ddx_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_1, tl_1);
6488 ddx_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl2);
6489 ddx_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_2, tl_1);
6490 Temp tl_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl0);
6491 ddy_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl1);
6492 ddy_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_1, tl_2);
6493 ddy_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl2);
6494 ddy_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_2, tl_2);
6495 }
6496
6497 /* res_k = p_k + ddx_k * pos1 + ddy_k * pos2 */
6498 Temp tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_1, pos1, p1);
6499 Temp tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_2, pos1, p2);
6500 tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_1, pos2, tmp1);
6501 tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_2, pos2, tmp2);
6502 Temp wqm1 = bld.tmp(v1);
6503 emit_wqm(ctx, tmp1, wqm1, true);
6504 Temp wqm2 = bld.tmp(v1);
6505 emit_wqm(ctx, tmp2, wqm2, true);
6506 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), wqm1, wqm2);
6507 return;
6508 }
6509
6510 void visit_intrinsic(isel_context *ctx, nir_intrinsic_instr *instr)
6511 {
6512 Builder bld(ctx->program, ctx->block);
6513 switch(instr->intrinsic) {
6514 case nir_intrinsic_load_barycentric_sample:
6515 case nir_intrinsic_load_barycentric_pixel:
6516 case nir_intrinsic_load_barycentric_centroid: {
6517 glsl_interp_mode mode = (glsl_interp_mode)nir_intrinsic_interp_mode(instr);
6518 Temp bary = Temp(0, s2);
6519 switch (mode) {
6520 case INTERP_MODE_SMOOTH:
6521 case INTERP_MODE_NONE:
6522 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
6523 bary = get_arg(ctx, ctx->args->ac.persp_center);
6524 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
6525 bary = ctx->persp_centroid;
6526 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
6527 bary = get_arg(ctx, ctx->args->ac.persp_sample);
6528 break;
6529 case INTERP_MODE_NOPERSPECTIVE:
6530 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
6531 bary = get_arg(ctx, ctx->args->ac.linear_center);
6532 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
6533 bary = ctx->linear_centroid;
6534 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
6535 bary = get_arg(ctx, ctx->args->ac.linear_sample);
6536 break;
6537 default:
6538 break;
6539 }
6540 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6541 Temp p1 = emit_extract_vector(ctx, bary, 0, v1);
6542 Temp p2 = emit_extract_vector(ctx, bary, 1, v1);
6543 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6544 Operand(p1), Operand(p2));
6545 emit_split_vector(ctx, dst, 2);
6546 break;
6547 }
6548 case nir_intrinsic_load_barycentric_model: {
6549 Temp model = get_arg(ctx, ctx->args->ac.pull_model);
6550
6551 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6552 Temp p1 = emit_extract_vector(ctx, model, 0, v1);
6553 Temp p2 = emit_extract_vector(ctx, model, 1, v1);
6554 Temp p3 = emit_extract_vector(ctx, model, 2, v1);
6555 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6556 Operand(p1), Operand(p2), Operand(p3));
6557 emit_split_vector(ctx, dst, 3);
6558 break;
6559 }
6560 case nir_intrinsic_load_barycentric_at_sample: {
6561 uint32_t sample_pos_offset = RING_PS_SAMPLE_POSITIONS * 16;
6562 switch (ctx->options->key.fs.num_samples) {
6563 case 2: sample_pos_offset += 1 << 3; break;
6564 case 4: sample_pos_offset += 3 << 3; break;
6565 case 8: sample_pos_offset += 7 << 3; break;
6566 default: break;
6567 }
6568 Temp sample_pos;
6569 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
6570 nir_const_value* const_addr = nir_src_as_const_value(instr->src[0]);
6571 Temp private_segment_buffer = ctx->program->private_segment_buffer;
6572 if (addr.type() == RegType::sgpr) {
6573 Operand offset;
6574 if (const_addr) {
6575 sample_pos_offset += const_addr->u32 << 3;
6576 offset = Operand(sample_pos_offset);
6577 } else if (ctx->options->chip_class >= GFX9) {
6578 offset = bld.sop2(aco_opcode::s_lshl3_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
6579 } else {
6580 offset = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), addr, Operand(3u));
6581 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
6582 }
6583
6584 Operand off = bld.copy(bld.def(s1), Operand(offset));
6585 sample_pos = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), private_segment_buffer, off);
6586
6587 } else if (ctx->options->chip_class >= GFX9) {
6588 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
6589 sample_pos = bld.global(aco_opcode::global_load_dwordx2, bld.def(v2), addr, private_segment_buffer, sample_pos_offset);
6590 } else if (ctx->options->chip_class >= GFX7) {
6591 /* addr += private_segment_buffer + sample_pos_offset */
6592 Temp tmp0 = bld.tmp(s1);
6593 Temp tmp1 = bld.tmp(s1);
6594 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp0), Definition(tmp1), private_segment_buffer);
6595 Definition scc_tmp = bld.def(s1, scc);
6596 tmp0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), scc_tmp, tmp0, Operand(sample_pos_offset));
6597 tmp1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), tmp1, Operand(0u), bld.scc(scc_tmp.getTemp()));
6598 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
6599 Temp pck0 = bld.tmp(v1);
6600 Temp carry = bld.vadd32(Definition(pck0), tmp0, addr, true).def(1).getTemp();
6601 tmp1 = as_vgpr(ctx, tmp1);
6602 Temp pck1 = bld.vop2_e64(aco_opcode::v_addc_co_u32, bld.def(v1), bld.hint_vcc(bld.def(bld.lm)), tmp1, Operand(0u), carry);
6603 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), pck0, pck1);
6604
6605 /* sample_pos = flat_load_dwordx2 addr */
6606 sample_pos = bld.flat(aco_opcode::flat_load_dwordx2, bld.def(v2), addr, Operand(s1));
6607 } else {
6608 assert(ctx->options->chip_class == GFX6);
6609
6610 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
6611 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
6612 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), private_segment_buffer, Operand(0u), Operand(rsrc_conf));
6613
6614 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
6615 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), addr, Operand(0u));
6616
6617 sample_pos = bld.tmp(v2);
6618
6619 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dwordx2, Format::MUBUF, 3, 1)};
6620 load->definitions[0] = Definition(sample_pos);
6621 load->operands[0] = Operand(rsrc);
6622 load->operands[1] = Operand(addr);
6623 load->operands[2] = Operand(0u);
6624 load->offset = sample_pos_offset;
6625 load->offen = 0;
6626 load->addr64 = true;
6627 load->glc = false;
6628 load->dlc = false;
6629 load->disable_wqm = false;
6630 load->barrier = barrier_none;
6631 load->can_reorder = true;
6632 ctx->block->instructions.emplace_back(std::move(load));
6633 }
6634
6635 /* sample_pos -= 0.5 */
6636 Temp pos1 = bld.tmp(RegClass(sample_pos.type(), 1));
6637 Temp pos2 = bld.tmp(RegClass(sample_pos.type(), 1));
6638 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), sample_pos);
6639 pos1 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos1, Operand(0x3f000000u));
6640 pos2 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos2, Operand(0x3f000000u));
6641
6642 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
6643 break;
6644 }
6645 case nir_intrinsic_load_barycentric_at_offset: {
6646 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
6647 RegClass rc = RegClass(offset.type(), 1);
6648 Temp pos1 = bld.tmp(rc), pos2 = bld.tmp(rc);
6649 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), offset);
6650 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
6651 break;
6652 }
6653 case nir_intrinsic_load_front_face: {
6654 bld.vopc(aco_opcode::v_cmp_lg_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6655 Operand(0u), get_arg(ctx, ctx->args->ac.front_face)).def(0).setHint(vcc);
6656 break;
6657 }
6658 case nir_intrinsic_load_view_index: {
6659 if (ctx->stage & (sw_vs | sw_gs | sw_tcs | sw_tes)) {
6660 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6661 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.view_index)));
6662 break;
6663 }
6664
6665 /* fallthrough */
6666 }
6667 case nir_intrinsic_load_layer_id: {
6668 unsigned idx = nir_intrinsic_base(instr);
6669 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6670 Operand(2u), bld.m0(get_arg(ctx, ctx->args->ac.prim_mask)), idx, 0);
6671 break;
6672 }
6673 case nir_intrinsic_load_frag_coord: {
6674 emit_load_frag_coord(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 4);
6675 break;
6676 }
6677 case nir_intrinsic_load_sample_pos: {
6678 Temp posx = get_arg(ctx, ctx->args->ac.frag_pos[0]);
6679 Temp posy = get_arg(ctx, ctx->args->ac.frag_pos[1]);
6680 bld.pseudo(aco_opcode::p_create_vector, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6681 posx.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posx) : Operand(0u),
6682 posy.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posy) : Operand(0u));
6683 break;
6684 }
6685 case nir_intrinsic_load_tess_coord:
6686 visit_load_tess_coord(ctx, instr);
6687 break;
6688 case nir_intrinsic_load_interpolated_input:
6689 visit_load_interpolated_input(ctx, instr);
6690 break;
6691 case nir_intrinsic_store_output:
6692 visit_store_output(ctx, instr);
6693 break;
6694 case nir_intrinsic_load_input:
6695 case nir_intrinsic_load_input_vertex:
6696 visit_load_input(ctx, instr);
6697 break;
6698 case nir_intrinsic_load_output:
6699 visit_load_output(ctx, instr);
6700 break;
6701 case nir_intrinsic_load_per_vertex_input:
6702 visit_load_per_vertex_input(ctx, instr);
6703 break;
6704 case nir_intrinsic_load_per_vertex_output:
6705 visit_load_per_vertex_output(ctx, instr);
6706 break;
6707 case nir_intrinsic_store_per_vertex_output:
6708 visit_store_per_vertex_output(ctx, instr);
6709 break;
6710 case nir_intrinsic_load_ubo:
6711 visit_load_ubo(ctx, instr);
6712 break;
6713 case nir_intrinsic_load_push_constant:
6714 visit_load_push_constant(ctx, instr);
6715 break;
6716 case nir_intrinsic_load_constant:
6717 visit_load_constant(ctx, instr);
6718 break;
6719 case nir_intrinsic_vulkan_resource_index:
6720 visit_load_resource(ctx, instr);
6721 break;
6722 case nir_intrinsic_discard:
6723 visit_discard(ctx, instr);
6724 break;
6725 case nir_intrinsic_discard_if:
6726 visit_discard_if(ctx, instr);
6727 break;
6728 case nir_intrinsic_load_shared:
6729 visit_load_shared(ctx, instr);
6730 break;
6731 case nir_intrinsic_store_shared:
6732 visit_store_shared(ctx, instr);
6733 break;
6734 case nir_intrinsic_shared_atomic_add:
6735 case nir_intrinsic_shared_atomic_imin:
6736 case nir_intrinsic_shared_atomic_umin:
6737 case nir_intrinsic_shared_atomic_imax:
6738 case nir_intrinsic_shared_atomic_umax:
6739 case nir_intrinsic_shared_atomic_and:
6740 case nir_intrinsic_shared_atomic_or:
6741 case nir_intrinsic_shared_atomic_xor:
6742 case nir_intrinsic_shared_atomic_exchange:
6743 case nir_intrinsic_shared_atomic_comp_swap:
6744 visit_shared_atomic(ctx, instr);
6745 break;
6746 case nir_intrinsic_image_deref_load:
6747 visit_image_load(ctx, instr);
6748 break;
6749 case nir_intrinsic_image_deref_store:
6750 visit_image_store(ctx, instr);
6751 break;
6752 case nir_intrinsic_image_deref_atomic_add:
6753 case nir_intrinsic_image_deref_atomic_umin:
6754 case nir_intrinsic_image_deref_atomic_imin:
6755 case nir_intrinsic_image_deref_atomic_umax:
6756 case nir_intrinsic_image_deref_atomic_imax:
6757 case nir_intrinsic_image_deref_atomic_and:
6758 case nir_intrinsic_image_deref_atomic_or:
6759 case nir_intrinsic_image_deref_atomic_xor:
6760 case nir_intrinsic_image_deref_atomic_exchange:
6761 case nir_intrinsic_image_deref_atomic_comp_swap:
6762 visit_image_atomic(ctx, instr);
6763 break;
6764 case nir_intrinsic_image_deref_size:
6765 visit_image_size(ctx, instr);
6766 break;
6767 case nir_intrinsic_load_ssbo:
6768 visit_load_ssbo(ctx, instr);
6769 break;
6770 case nir_intrinsic_store_ssbo:
6771 visit_store_ssbo(ctx, instr);
6772 break;
6773 case nir_intrinsic_load_global:
6774 visit_load_global(ctx, instr);
6775 break;
6776 case nir_intrinsic_store_global:
6777 visit_store_global(ctx, instr);
6778 break;
6779 case nir_intrinsic_global_atomic_add:
6780 case nir_intrinsic_global_atomic_imin:
6781 case nir_intrinsic_global_atomic_umin:
6782 case nir_intrinsic_global_atomic_imax:
6783 case nir_intrinsic_global_atomic_umax:
6784 case nir_intrinsic_global_atomic_and:
6785 case nir_intrinsic_global_atomic_or:
6786 case nir_intrinsic_global_atomic_xor:
6787 case nir_intrinsic_global_atomic_exchange:
6788 case nir_intrinsic_global_atomic_comp_swap:
6789 visit_global_atomic(ctx, instr);
6790 break;
6791 case nir_intrinsic_ssbo_atomic_add:
6792 case nir_intrinsic_ssbo_atomic_imin:
6793 case nir_intrinsic_ssbo_atomic_umin:
6794 case nir_intrinsic_ssbo_atomic_imax:
6795 case nir_intrinsic_ssbo_atomic_umax:
6796 case nir_intrinsic_ssbo_atomic_and:
6797 case nir_intrinsic_ssbo_atomic_or:
6798 case nir_intrinsic_ssbo_atomic_xor:
6799 case nir_intrinsic_ssbo_atomic_exchange:
6800 case nir_intrinsic_ssbo_atomic_comp_swap:
6801 visit_atomic_ssbo(ctx, instr);
6802 break;
6803 case nir_intrinsic_load_scratch:
6804 visit_load_scratch(ctx, instr);
6805 break;
6806 case nir_intrinsic_store_scratch:
6807 visit_store_scratch(ctx, instr);
6808 break;
6809 case nir_intrinsic_get_buffer_size:
6810 visit_get_buffer_size(ctx, instr);
6811 break;
6812 case nir_intrinsic_control_barrier: {
6813 if (ctx->program->chip_class == GFX6 && ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
6814 /* GFX6 only (thanks to a hw bug workaround):
6815 * The real barrier instruction isn’t needed, because an entire patch
6816 * always fits into a single wave.
6817 */
6818 break;
6819 }
6820
6821 if (ctx->shader->info.stage == MESA_SHADER_COMPUTE) {
6822 unsigned* bsize = ctx->program->info->cs.block_size;
6823 unsigned workgroup_size = bsize[0] * bsize[1] * bsize[2];
6824 if (workgroup_size > ctx->program->wave_size)
6825 bld.sopp(aco_opcode::s_barrier);
6826 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
6827 /* For each patch provided during rendering, n​ TCS shader invocations will be processed,
6828 * where n​ is the number of vertices in the output patch.
6829 */
6830 unsigned workgroup_size = ctx->tcs_num_patches * ctx->shader->info.tess.tcs_vertices_out;
6831 if (workgroup_size > ctx->program->wave_size)
6832 bld.sopp(aco_opcode::s_barrier);
6833 } else {
6834 /* We don't know the workgroup size, so always emit the s_barrier. */
6835 bld.sopp(aco_opcode::s_barrier);
6836 }
6837
6838 break;
6839 }
6840 case nir_intrinsic_memory_barrier_tcs_patch:
6841 case nir_intrinsic_group_memory_barrier:
6842 case nir_intrinsic_memory_barrier:
6843 case nir_intrinsic_memory_barrier_buffer:
6844 case nir_intrinsic_memory_barrier_image:
6845 case nir_intrinsic_memory_barrier_shared:
6846 emit_memory_barrier(ctx, instr);
6847 break;
6848 case nir_intrinsic_load_num_work_groups: {
6849 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6850 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.num_work_groups)));
6851 emit_split_vector(ctx, dst, 3);
6852 break;
6853 }
6854 case nir_intrinsic_load_local_invocation_id: {
6855 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6856 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.local_invocation_ids)));
6857 emit_split_vector(ctx, dst, 3);
6858 break;
6859 }
6860 case nir_intrinsic_load_work_group_id: {
6861 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6862 struct ac_arg *args = ctx->args->ac.workgroup_ids;
6863 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6864 args[0].used ? Operand(get_arg(ctx, args[0])) : Operand(0u),
6865 args[1].used ? Operand(get_arg(ctx, args[1])) : Operand(0u),
6866 args[2].used ? Operand(get_arg(ctx, args[2])) : Operand(0u));
6867 emit_split_vector(ctx, dst, 3);
6868 break;
6869 }
6870 case nir_intrinsic_load_local_invocation_index: {
6871 Temp id = emit_mbcnt(ctx, bld.def(v1));
6872
6873 /* The tg_size bits [6:11] contain the subgroup id,
6874 * we need this multiplied by the wave size, and then OR the thread id to it.
6875 */
6876 if (ctx->program->wave_size == 64) {
6877 /* After the s_and the bits are already multiplied by 64 (left shifted by 6) so we can just feed that to v_or */
6878 Temp tg_num = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfc0u),
6879 get_arg(ctx, ctx->args->ac.tg_size));
6880 bld.vop2(aco_opcode::v_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, id);
6881 } else {
6882 /* Extract the bit field and multiply the result by 32 (left shift by 5), then do the OR */
6883 Temp tg_num = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
6884 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
6885 bld.vop3(aco_opcode::v_lshl_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, Operand(0x5u), id);
6886 }
6887 break;
6888 }
6889 case nir_intrinsic_load_subgroup_id: {
6890 if (ctx->stage == compute_cs) {
6891 bld.sop2(aco_opcode::s_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc),
6892 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
6893 } else {
6894 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x0u));
6895 }
6896 break;
6897 }
6898 case nir_intrinsic_load_subgroup_invocation: {
6899 emit_mbcnt(ctx, Definition(get_ssa_temp(ctx, &instr->dest.ssa)));
6900 break;
6901 }
6902 case nir_intrinsic_load_num_subgroups: {
6903 if (ctx->stage == compute_cs)
6904 bld.sop2(aco_opcode::s_and_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc), Operand(0x3fu),
6905 get_arg(ctx, ctx->args->ac.tg_size));
6906 else
6907 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x1u));
6908 break;
6909 }
6910 case nir_intrinsic_ballot: {
6911 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6912 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6913 Definition tmp = bld.def(dst.regClass());
6914 Definition lanemask_tmp = dst.size() == bld.lm.size() ? tmp : bld.def(src.regClass());
6915 if (instr->src[0].ssa->bit_size == 1) {
6916 assert(src.regClass() == bld.lm);
6917 bld.sop2(Builder::s_and, lanemask_tmp, bld.def(s1, scc), Operand(exec, bld.lm), src);
6918 } else if (instr->src[0].ssa->bit_size == 32 && src.regClass() == v1) {
6919 bld.vopc(aco_opcode::v_cmp_lg_u32, lanemask_tmp, Operand(0u), src);
6920 } else if (instr->src[0].ssa->bit_size == 64 && src.regClass() == v2) {
6921 bld.vopc(aco_opcode::v_cmp_lg_u64, lanemask_tmp, Operand(0u), src);
6922 } else {
6923 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6924 nir_print_instr(&instr->instr, stderr);
6925 fprintf(stderr, "\n");
6926 }
6927 if (dst.size() != bld.lm.size()) {
6928 /* Wave32 with ballot size set to 64 */
6929 bld.pseudo(aco_opcode::p_create_vector, Definition(tmp), lanemask_tmp.getTemp(), Operand(0u));
6930 }
6931 emit_wqm(ctx, tmp.getTemp(), dst);
6932 break;
6933 }
6934 case nir_intrinsic_shuffle:
6935 case nir_intrinsic_read_invocation: {
6936 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6937 if (!ctx->divergent_vals[instr->src[0].ssa->index]) {
6938 emit_uniform_subgroup(ctx, instr, src);
6939 } else {
6940 Temp tid = get_ssa_temp(ctx, instr->src[1].ssa);
6941 if (instr->intrinsic == nir_intrinsic_read_invocation || !ctx->divergent_vals[instr->src[1].ssa->index])
6942 tid = bld.as_uniform(tid);
6943 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6944 if (src.regClass() == v1) {
6945 emit_wqm(ctx, emit_bpermute(ctx, bld, tid, src), dst);
6946 } else if (src.regClass() == v2) {
6947 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
6948 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
6949 lo = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, lo));
6950 hi = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, hi));
6951 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6952 emit_split_vector(ctx, dst, 2);
6953 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == s1) {
6954 assert(src.regClass() == bld.lm);
6955 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src, tid);
6956 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
6957 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == v1) {
6958 assert(src.regClass() == bld.lm);
6959 Temp tmp;
6960 if (ctx->program->chip_class <= GFX7)
6961 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), src, tid);
6962 else if (ctx->program->wave_size == 64)
6963 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), tid, src);
6964 else
6965 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), tid, src);
6966 tmp = emit_extract_vector(ctx, tmp, 0, v1);
6967 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), tmp);
6968 emit_wqm(ctx, bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp), dst);
6969 } else {
6970 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6971 nir_print_instr(&instr->instr, stderr);
6972 fprintf(stderr, "\n");
6973 }
6974 }
6975 break;
6976 }
6977 case nir_intrinsic_load_sample_id: {
6978 bld.vop3(aco_opcode::v_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6979 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
6980 break;
6981 }
6982 case nir_intrinsic_load_sample_mask_in: {
6983 visit_load_sample_mask_in(ctx, instr);
6984 break;
6985 }
6986 case nir_intrinsic_read_first_invocation: {
6987 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6988 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6989 if (src.regClass() == v1) {
6990 emit_wqm(ctx,
6991 bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), src),
6992 dst);
6993 } else if (src.regClass() == v2) {
6994 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
6995 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
6996 lo = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), lo));
6997 hi = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), hi));
6998 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6999 emit_split_vector(ctx, dst, 2);
7000 } else if (instr->dest.ssa.bit_size == 1) {
7001 assert(src.regClass() == bld.lm);
7002 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src,
7003 bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)));
7004 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7005 } else if (src.regClass() == s1) {
7006 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
7007 } else if (src.regClass() == s2) {
7008 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
7009 } else {
7010 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7011 nir_print_instr(&instr->instr, stderr);
7012 fprintf(stderr, "\n");
7013 }
7014 break;
7015 }
7016 case nir_intrinsic_vote_all: {
7017 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7018 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7019 assert(src.regClass() == bld.lm);
7020 assert(dst.regClass() == bld.lm);
7021
7022 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
7023 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
7024 bld.sop1(Builder::s_not, Definition(dst), bld.def(s1, scc), cond);
7025 break;
7026 }
7027 case nir_intrinsic_vote_any: {
7028 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7029 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7030 assert(src.regClass() == bld.lm);
7031 assert(dst.regClass() == bld.lm);
7032
7033 Temp tmp = bool_to_scalar_condition(ctx, src);
7034 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7035 break;
7036 }
7037 case nir_intrinsic_reduce:
7038 case nir_intrinsic_inclusive_scan:
7039 case nir_intrinsic_exclusive_scan: {
7040 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7041 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7042 nir_op op = (nir_op) nir_intrinsic_reduction_op(instr);
7043 unsigned cluster_size = instr->intrinsic == nir_intrinsic_reduce ?
7044 nir_intrinsic_cluster_size(instr) : 0;
7045 cluster_size = util_next_power_of_two(MIN2(cluster_size ? cluster_size : ctx->program->wave_size, ctx->program->wave_size));
7046
7047 if (!ctx->divergent_vals[instr->src[0].ssa->index] && (op == nir_op_ior || op == nir_op_iand)) {
7048 emit_uniform_subgroup(ctx, instr, src);
7049 } else if (instr->dest.ssa.bit_size == 1) {
7050 if (op == nir_op_imul || op == nir_op_umin || op == nir_op_imin)
7051 op = nir_op_iand;
7052 else if (op == nir_op_iadd)
7053 op = nir_op_ixor;
7054 else if (op == nir_op_umax || op == nir_op_imax)
7055 op = nir_op_ior;
7056 assert(op == nir_op_iand || op == nir_op_ior || op == nir_op_ixor);
7057
7058 switch (instr->intrinsic) {
7059 case nir_intrinsic_reduce:
7060 emit_wqm(ctx, emit_boolean_reduce(ctx, op, cluster_size, src), dst);
7061 break;
7062 case nir_intrinsic_exclusive_scan:
7063 emit_wqm(ctx, emit_boolean_exclusive_scan(ctx, op, src), dst);
7064 break;
7065 case nir_intrinsic_inclusive_scan:
7066 emit_wqm(ctx, emit_boolean_inclusive_scan(ctx, op, src), dst);
7067 break;
7068 default:
7069 assert(false);
7070 }
7071 } else if (cluster_size == 1) {
7072 bld.copy(Definition(dst), src);
7073 } else {
7074 src = as_vgpr(ctx, src);
7075
7076 ReduceOp reduce_op;
7077 switch (op) {
7078 #define CASE(name) case nir_op_##name: reduce_op = (src.regClass() == v1) ? name##32 : name##64; break;
7079 CASE(iadd)
7080 CASE(imul)
7081 CASE(fadd)
7082 CASE(fmul)
7083 CASE(imin)
7084 CASE(umin)
7085 CASE(fmin)
7086 CASE(imax)
7087 CASE(umax)
7088 CASE(fmax)
7089 CASE(iand)
7090 CASE(ior)
7091 CASE(ixor)
7092 default:
7093 unreachable("unknown reduction op");
7094 #undef CASE
7095 }
7096
7097 aco_opcode aco_op;
7098 switch (instr->intrinsic) {
7099 case nir_intrinsic_reduce: aco_op = aco_opcode::p_reduce; break;
7100 case nir_intrinsic_inclusive_scan: aco_op = aco_opcode::p_inclusive_scan; break;
7101 case nir_intrinsic_exclusive_scan: aco_op = aco_opcode::p_exclusive_scan; break;
7102 default:
7103 unreachable("unknown reduce intrinsic");
7104 }
7105
7106 aco_ptr<Pseudo_reduction_instruction> reduce{create_instruction<Pseudo_reduction_instruction>(aco_op, Format::PSEUDO_REDUCTION, 3, 5)};
7107 reduce->operands[0] = Operand(src);
7108 // filled in by aco_reduce_assign.cpp, used internally as part of the
7109 // reduce sequence
7110 assert(dst.size() == 1 || dst.size() == 2);
7111 reduce->operands[1] = Operand(RegClass(RegType::vgpr, dst.size()).as_linear());
7112 reduce->operands[2] = Operand(v1.as_linear());
7113
7114 Temp tmp_dst = bld.tmp(dst.regClass());
7115 reduce->definitions[0] = Definition(tmp_dst);
7116 reduce->definitions[1] = bld.def(ctx->program->lane_mask); // used internally
7117 reduce->definitions[2] = Definition();
7118 reduce->definitions[3] = Definition(scc, s1);
7119 reduce->definitions[4] = Definition();
7120 reduce->reduce_op = reduce_op;
7121 reduce->cluster_size = cluster_size;
7122 ctx->block->instructions.emplace_back(std::move(reduce));
7123
7124 emit_wqm(ctx, tmp_dst, dst);
7125 }
7126 break;
7127 }
7128 case nir_intrinsic_quad_broadcast: {
7129 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7130 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
7131 emit_uniform_subgroup(ctx, instr, src);
7132 } else {
7133 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7134 unsigned lane = nir_src_as_const_value(instr->src[1])->u32;
7135 uint32_t dpp_ctrl = dpp_quad_perm(lane, lane, lane, lane);
7136
7137 if (instr->dest.ssa.bit_size == 1) {
7138 assert(src.regClass() == bld.lm);
7139 assert(dst.regClass() == bld.lm);
7140 uint32_t half_mask = 0x11111111u << lane;
7141 Temp mask_tmp = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(half_mask), Operand(half_mask));
7142 Temp tmp = bld.tmp(bld.lm);
7143 bld.sop1(Builder::s_wqm, Definition(tmp),
7144 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), mask_tmp,
7145 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm))));
7146 emit_wqm(ctx, tmp, dst);
7147 } else if (instr->dest.ssa.bit_size == 32) {
7148 if (ctx->program->chip_class >= GFX8)
7149 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), dst);
7150 else
7151 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), dst);
7152 } else if (instr->dest.ssa.bit_size == 64) {
7153 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7154 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7155 if (ctx->program->chip_class >= GFX8) {
7156 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
7157 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
7158 } else {
7159 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, (1 << 15) | dpp_ctrl));
7160 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, (1 << 15) | dpp_ctrl));
7161 }
7162 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7163 emit_split_vector(ctx, dst, 2);
7164 } else {
7165 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7166 nir_print_instr(&instr->instr, stderr);
7167 fprintf(stderr, "\n");
7168 }
7169 }
7170 break;
7171 }
7172 case nir_intrinsic_quad_swap_horizontal:
7173 case nir_intrinsic_quad_swap_vertical:
7174 case nir_intrinsic_quad_swap_diagonal:
7175 case nir_intrinsic_quad_swizzle_amd: {
7176 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7177 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
7178 emit_uniform_subgroup(ctx, instr, src);
7179 break;
7180 }
7181 uint16_t dpp_ctrl = 0;
7182 switch (instr->intrinsic) {
7183 case nir_intrinsic_quad_swap_horizontal:
7184 dpp_ctrl = dpp_quad_perm(1, 0, 3, 2);
7185 break;
7186 case nir_intrinsic_quad_swap_vertical:
7187 dpp_ctrl = dpp_quad_perm(2, 3, 0, 1);
7188 break;
7189 case nir_intrinsic_quad_swap_diagonal:
7190 dpp_ctrl = dpp_quad_perm(3, 2, 1, 0);
7191 break;
7192 case nir_intrinsic_quad_swizzle_amd:
7193 dpp_ctrl = nir_intrinsic_swizzle_mask(instr);
7194 break;
7195 default:
7196 break;
7197 }
7198 if (ctx->program->chip_class < GFX8)
7199 dpp_ctrl |= (1 << 15);
7200
7201 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7202 if (instr->dest.ssa.bit_size == 1) {
7203 assert(src.regClass() == bld.lm);
7204 src = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand((uint32_t)-1), src);
7205 if (ctx->program->chip_class >= GFX8)
7206 src = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
7207 else
7208 src = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
7209 Temp tmp = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), src);
7210 emit_wqm(ctx, tmp, dst);
7211 } else if (instr->dest.ssa.bit_size == 32) {
7212 Temp tmp;
7213 if (ctx->program->chip_class >= GFX8)
7214 tmp = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
7215 else
7216 tmp = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
7217 emit_wqm(ctx, tmp, dst);
7218 } else if (instr->dest.ssa.bit_size == 64) {
7219 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7220 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7221 if (ctx->program->chip_class >= GFX8) {
7222 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
7223 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
7224 } else {
7225 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, dpp_ctrl));
7226 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, dpp_ctrl));
7227 }
7228 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7229 emit_split_vector(ctx, dst, 2);
7230 } else {
7231 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7232 nir_print_instr(&instr->instr, stderr);
7233 fprintf(stderr, "\n");
7234 }
7235 break;
7236 }
7237 case nir_intrinsic_masked_swizzle_amd: {
7238 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7239 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
7240 emit_uniform_subgroup(ctx, instr, src);
7241 break;
7242 }
7243 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7244 uint32_t mask = nir_intrinsic_swizzle_mask(instr);
7245 if (dst.regClass() == v1) {
7246 emit_wqm(ctx,
7247 bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, mask, 0, false),
7248 dst);
7249 } else if (dst.regClass() == v2) {
7250 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7251 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7252 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, mask, 0, false));
7253 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, mask, 0, false));
7254 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7255 emit_split_vector(ctx, dst, 2);
7256 } else {
7257 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7258 nir_print_instr(&instr->instr, stderr);
7259 fprintf(stderr, "\n");
7260 }
7261 break;
7262 }
7263 case nir_intrinsic_write_invocation_amd: {
7264 Temp src = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
7265 Temp val = bld.as_uniform(get_ssa_temp(ctx, instr->src[1].ssa));
7266 Temp lane = bld.as_uniform(get_ssa_temp(ctx, instr->src[2].ssa));
7267 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7268 if (dst.regClass() == v1) {
7269 /* src2 is ignored for writelane. RA assigns the same reg for dst */
7270 emit_wqm(ctx, bld.writelane(bld.def(v1), val, lane, src), dst);
7271 } else if (dst.regClass() == v2) {
7272 Temp src_lo = bld.tmp(v1), src_hi = bld.tmp(v1);
7273 Temp val_lo = bld.tmp(s1), val_hi = bld.tmp(s1);
7274 bld.pseudo(aco_opcode::p_split_vector, Definition(src_lo), Definition(src_hi), src);
7275 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
7276 Temp lo = emit_wqm(ctx, bld.writelane(bld.def(v1), val_lo, lane, src_hi));
7277 Temp hi = emit_wqm(ctx, bld.writelane(bld.def(v1), val_hi, lane, src_hi));
7278 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7279 emit_split_vector(ctx, dst, 2);
7280 } else {
7281 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7282 nir_print_instr(&instr->instr, stderr);
7283 fprintf(stderr, "\n");
7284 }
7285 break;
7286 }
7287 case nir_intrinsic_mbcnt_amd: {
7288 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7289 RegClass rc = RegClass(src.type(), 1);
7290 Temp mask_lo = bld.tmp(rc), mask_hi = bld.tmp(rc);
7291 bld.pseudo(aco_opcode::p_split_vector, Definition(mask_lo), Definition(mask_hi), src);
7292 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7293 Temp wqm_tmp = emit_mbcnt(ctx, bld.def(v1), Operand(mask_lo), Operand(mask_hi));
7294 emit_wqm(ctx, wqm_tmp, dst);
7295 break;
7296 }
7297 case nir_intrinsic_load_helper_invocation: {
7298 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7299 bld.pseudo(aco_opcode::p_load_helper, Definition(dst));
7300 ctx->block->kind |= block_kind_needs_lowering;
7301 ctx->program->needs_exact = true;
7302 break;
7303 }
7304 case nir_intrinsic_is_helper_invocation: {
7305 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7306 bld.pseudo(aco_opcode::p_is_helper, Definition(dst));
7307 ctx->block->kind |= block_kind_needs_lowering;
7308 ctx->program->needs_exact = true;
7309 break;
7310 }
7311 case nir_intrinsic_demote:
7312 bld.pseudo(aco_opcode::p_demote_to_helper, Operand(-1u));
7313
7314 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
7315 ctx->cf_info.exec_potentially_empty_discard = true;
7316 ctx->block->kind |= block_kind_uses_demote;
7317 ctx->program->needs_exact = true;
7318 break;
7319 case nir_intrinsic_demote_if: {
7320 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7321 assert(src.regClass() == bld.lm);
7322 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
7323 bld.pseudo(aco_opcode::p_demote_to_helper, cond);
7324
7325 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
7326 ctx->cf_info.exec_potentially_empty_discard = true;
7327 ctx->block->kind |= block_kind_uses_demote;
7328 ctx->program->needs_exact = true;
7329 break;
7330 }
7331 case nir_intrinsic_first_invocation: {
7332 emit_wqm(ctx, bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)),
7333 get_ssa_temp(ctx, &instr->dest.ssa));
7334 break;
7335 }
7336 case nir_intrinsic_shader_clock:
7337 bld.smem(aco_opcode::s_memtime, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), false);
7338 emit_split_vector(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 2);
7339 break;
7340 case nir_intrinsic_load_vertex_id_zero_base: {
7341 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7342 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.vertex_id));
7343 break;
7344 }
7345 case nir_intrinsic_load_first_vertex: {
7346 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7347 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.base_vertex));
7348 break;
7349 }
7350 case nir_intrinsic_load_base_instance: {
7351 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7352 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.start_instance));
7353 break;
7354 }
7355 case nir_intrinsic_load_instance_id: {
7356 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7357 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.instance_id));
7358 break;
7359 }
7360 case nir_intrinsic_load_draw_id: {
7361 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7362 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.draw_id));
7363 break;
7364 }
7365 case nir_intrinsic_load_invocation_id: {
7366 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7367
7368 if (ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
7369 if (ctx->options->chip_class >= GFX10)
7370 bld.vop2_e64(aco_opcode::v_and_b32, Definition(dst), Operand(127u), get_arg(ctx, ctx->args->ac.gs_invocation_id));
7371 else
7372 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_invocation_id));
7373 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
7374 bld.vop3(aco_opcode::v_bfe_u32, Definition(dst),
7375 get_arg(ctx, ctx->args->ac.tcs_rel_ids), Operand(8u), Operand(5u));
7376 } else {
7377 unreachable("Unsupported stage for load_invocation_id");
7378 }
7379
7380 break;
7381 }
7382 case nir_intrinsic_load_primitive_id: {
7383 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7384
7385 switch (ctx->shader->info.stage) {
7386 case MESA_SHADER_GEOMETRY:
7387 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_prim_id));
7388 break;
7389 case MESA_SHADER_TESS_CTRL:
7390 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tcs_patch_id));
7391 break;
7392 case MESA_SHADER_TESS_EVAL:
7393 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tes_patch_id));
7394 break;
7395 default:
7396 unreachable("Unimplemented shader stage for nir_intrinsic_load_primitive_id");
7397 }
7398
7399 break;
7400 }
7401 case nir_intrinsic_load_patch_vertices_in: {
7402 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL ||
7403 ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
7404
7405 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7406 bld.copy(Definition(dst), Operand(ctx->args->options->key.tcs.input_vertices));
7407 break;
7408 }
7409 case nir_intrinsic_emit_vertex_with_counter: {
7410 visit_emit_vertex_with_counter(ctx, instr);
7411 break;
7412 }
7413 case nir_intrinsic_end_primitive_with_counter: {
7414 unsigned stream = nir_intrinsic_stream_id(instr);
7415 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(true, false, stream));
7416 break;
7417 }
7418 case nir_intrinsic_set_vertex_count: {
7419 /* unused, the HW keeps track of this for us */
7420 break;
7421 }
7422 default:
7423 fprintf(stderr, "Unimplemented intrinsic instr: ");
7424 nir_print_instr(&instr->instr, stderr);
7425 fprintf(stderr, "\n");
7426 abort();
7427
7428 break;
7429 }
7430 }
7431
7432
7433 void tex_fetch_ptrs(isel_context *ctx, nir_tex_instr *instr,
7434 Temp *res_ptr, Temp *samp_ptr, Temp *fmask_ptr,
7435 enum glsl_base_type *stype)
7436 {
7437 nir_deref_instr *texture_deref_instr = NULL;
7438 nir_deref_instr *sampler_deref_instr = NULL;
7439 int plane = -1;
7440
7441 for (unsigned i = 0; i < instr->num_srcs; i++) {
7442 switch (instr->src[i].src_type) {
7443 case nir_tex_src_texture_deref:
7444 texture_deref_instr = nir_src_as_deref(instr->src[i].src);
7445 break;
7446 case nir_tex_src_sampler_deref:
7447 sampler_deref_instr = nir_src_as_deref(instr->src[i].src);
7448 break;
7449 case nir_tex_src_plane:
7450 plane = nir_src_as_int(instr->src[i].src);
7451 break;
7452 default:
7453 break;
7454 }
7455 }
7456
7457 *stype = glsl_get_sampler_result_type(texture_deref_instr->type);
7458
7459 if (!sampler_deref_instr)
7460 sampler_deref_instr = texture_deref_instr;
7461
7462 if (plane >= 0) {
7463 assert(instr->op != nir_texop_txf_ms &&
7464 instr->op != nir_texop_samples_identical);
7465 assert(instr->sampler_dim != GLSL_SAMPLER_DIM_BUF);
7466 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, (aco_descriptor_type)(ACO_DESC_PLANE_0 + plane), instr, false, false);
7467 } else if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
7468 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_BUFFER, instr, false, false);
7469 } else if (instr->op == nir_texop_fragment_mask_fetch) {
7470 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
7471 } else {
7472 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_IMAGE, instr, false, false);
7473 }
7474 if (samp_ptr) {
7475 *samp_ptr = get_sampler_desc(ctx, sampler_deref_instr, ACO_DESC_SAMPLER, instr, false, false);
7476
7477 if (instr->sampler_dim < GLSL_SAMPLER_DIM_RECT && ctx->options->chip_class < GFX8) {
7478 /* fix sampler aniso on SI/CI: samp[0] = samp[0] & img[7] */
7479 Builder bld(ctx->program, ctx->block);
7480
7481 /* to avoid unnecessary moves, we split and recombine sampler and image */
7482 Temp img[8] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1),
7483 bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
7484 Temp samp[4] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
7485 bld.pseudo(aco_opcode::p_split_vector, Definition(img[0]), Definition(img[1]),
7486 Definition(img[2]), Definition(img[3]), Definition(img[4]),
7487 Definition(img[5]), Definition(img[6]), Definition(img[7]), *res_ptr);
7488 bld.pseudo(aco_opcode::p_split_vector, Definition(samp[0]), Definition(samp[1]),
7489 Definition(samp[2]), Definition(samp[3]), *samp_ptr);
7490
7491 samp[0] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), samp[0], img[7]);
7492 *res_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
7493 img[0], img[1], img[2], img[3],
7494 img[4], img[5], img[6], img[7]);
7495 *samp_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
7496 samp[0], samp[1], samp[2], samp[3]);
7497 }
7498 }
7499 if (fmask_ptr && (instr->op == nir_texop_txf_ms ||
7500 instr->op == nir_texop_samples_identical))
7501 *fmask_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
7502 }
7503
7504 void build_cube_select(isel_context *ctx, Temp ma, Temp id, Temp deriv,
7505 Temp *out_ma, Temp *out_sc, Temp *out_tc)
7506 {
7507 Builder bld(ctx->program, ctx->block);
7508
7509 Temp deriv_x = emit_extract_vector(ctx, deriv, 0, v1);
7510 Temp deriv_y = emit_extract_vector(ctx, deriv, 1, v1);
7511 Temp deriv_z = emit_extract_vector(ctx, deriv, 2, v1);
7512
7513 Operand neg_one(0xbf800000u);
7514 Operand one(0x3f800000u);
7515 Operand two(0x40000000u);
7516 Operand four(0x40800000u);
7517
7518 Temp is_ma_positive = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), ma);
7519 Temp sgn_ma = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, one, is_ma_positive);
7520 Temp neg_sgn_ma = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0u), sgn_ma);
7521
7522 Temp is_ma_z = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), four, id);
7523 Temp is_ma_y = bld.vopc(aco_opcode::v_cmp_le_f32, bld.def(bld.lm), two, id);
7524 is_ma_y = bld.sop2(Builder::s_andn2, bld.hint_vcc(bld.def(bld.lm)), is_ma_y, is_ma_z);
7525 Temp is_not_ma_x = bld.sop2(aco_opcode::s_or_b64, bld.hint_vcc(bld.def(bld.lm)), bld.def(s1, scc), is_ma_z, is_ma_y);
7526
7527 // select sc
7528 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_z, deriv_x, is_not_ma_x);
7529 Temp sgn = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1),
7530 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_sgn_ma, sgn_ma, is_ma_z),
7531 one, is_ma_y);
7532 *out_sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
7533
7534 // select tc
7535 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_y, deriv_z, is_ma_y);
7536 sgn = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, sgn_ma, is_ma_y);
7537 *out_tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
7538
7539 // select ma
7540 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
7541 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_x, deriv_y, is_ma_y),
7542 deriv_z, is_ma_z);
7543 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffffu), tmp);
7544 *out_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), two, tmp);
7545 }
7546
7547 void prepare_cube_coords(isel_context *ctx, std::vector<Temp>& coords, Temp* ddx, Temp* ddy, bool is_deriv, bool is_array)
7548 {
7549 Builder bld(ctx->program, ctx->block);
7550 Temp ma, tc, sc, id;
7551
7552 if (is_array) {
7553 coords[3] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[3]);
7554
7555 // see comment in ac_prepare_cube_coords()
7556 if (ctx->options->chip_class <= GFX8)
7557 coords[3] = bld.vop2(aco_opcode::v_max_f32, bld.def(v1), Operand(0u), coords[3]);
7558 }
7559
7560 ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), coords[0], coords[1], coords[2]);
7561
7562 aco_ptr<VOP3A_instruction> vop3a{create_instruction<VOP3A_instruction>(aco_opcode::v_rcp_f32, asVOP3(Format::VOP1), 1, 1)};
7563 vop3a->operands[0] = Operand(ma);
7564 vop3a->abs[0] = true;
7565 Temp invma = bld.tmp(v1);
7566 vop3a->definitions[0] = Definition(invma);
7567 ctx->block->instructions.emplace_back(std::move(vop3a));
7568
7569 sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
7570 if (!is_deriv)
7571 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, invma, Operand(0x3fc00000u/*1.5*/));
7572
7573 tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
7574 if (!is_deriv)
7575 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, invma, Operand(0x3fc00000u/*1.5*/));
7576
7577 id = bld.vop3(aco_opcode::v_cubeid_f32, bld.def(v1), coords[0], coords[1], coords[2]);
7578
7579 if (is_deriv) {
7580 sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), sc, invma);
7581 tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tc, invma);
7582
7583 for (unsigned i = 0; i < 2; i++) {
7584 // see comment in ac_prepare_cube_coords()
7585 Temp deriv_ma;
7586 Temp deriv_sc, deriv_tc;
7587 build_cube_select(ctx, ma, id, i ? *ddy : *ddx,
7588 &deriv_ma, &deriv_sc, &deriv_tc);
7589
7590 deriv_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, invma);
7591
7592 Temp x = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
7593 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_sc, invma),
7594 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, sc));
7595 Temp y = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
7596 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_tc, invma),
7597 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, tc));
7598 *(i ? ddy : ddx) = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), x, y);
7599 }
7600
7601 sc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), sc);
7602 tc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), tc);
7603 }
7604
7605 if (is_array)
7606 id = bld.vop2(aco_opcode::v_madmk_f32, bld.def(v1), coords[3], id, Operand(0x41000000u/*8.0*/));
7607 coords.resize(3);
7608 coords[0] = sc;
7609 coords[1] = tc;
7610 coords[2] = id;
7611 }
7612
7613 void get_const_vec(nir_ssa_def *vec, nir_const_value *cv[4])
7614 {
7615 if (vec->parent_instr->type != nir_instr_type_alu)
7616 return;
7617 nir_alu_instr *vec_instr = nir_instr_as_alu(vec->parent_instr);
7618 if (vec_instr->op != nir_op_vec(vec->num_components))
7619 return;
7620
7621 for (unsigned i = 0; i < vec->num_components; i++) {
7622 cv[i] = vec_instr->src[i].swizzle[0] == 0 ?
7623 nir_src_as_const_value(vec_instr->src[i].src) : NULL;
7624 }
7625 }
7626
7627 void visit_tex(isel_context *ctx, nir_tex_instr *instr)
7628 {
7629 Builder bld(ctx->program, ctx->block);
7630 bool has_bias = false, has_lod = false, level_zero = false, has_compare = false,
7631 has_offset = false, has_ddx = false, has_ddy = false, has_derivs = false, has_sample_index = false;
7632 Temp resource, sampler, fmask_ptr, bias = Temp(), compare = Temp(), sample_index = Temp(),
7633 lod = Temp(), offset = Temp(), ddx = Temp(), ddy = Temp();
7634 std::vector<Temp> coords;
7635 std::vector<Temp> derivs;
7636 nir_const_value *sample_index_cv = NULL;
7637 nir_const_value *const_offset[4] = {NULL, NULL, NULL, NULL};
7638 enum glsl_base_type stype;
7639 tex_fetch_ptrs(ctx, instr, &resource, &sampler, &fmask_ptr, &stype);
7640
7641 bool tg4_integer_workarounds = ctx->options->chip_class <= GFX8 && instr->op == nir_texop_tg4 &&
7642 (stype == GLSL_TYPE_UINT || stype == GLSL_TYPE_INT);
7643 bool tg4_integer_cube_workaround = tg4_integer_workarounds &&
7644 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE;
7645
7646 for (unsigned i = 0; i < instr->num_srcs; i++) {
7647 switch (instr->src[i].src_type) {
7648 case nir_tex_src_coord: {
7649 Temp coord = get_ssa_temp(ctx, instr->src[i].src.ssa);
7650 for (unsigned i = 0; i < coord.size(); i++)
7651 coords.emplace_back(emit_extract_vector(ctx, coord, i, v1));
7652 break;
7653 }
7654 case nir_tex_src_bias:
7655 if (instr->op == nir_texop_txb) {
7656 bias = get_ssa_temp(ctx, instr->src[i].src.ssa);
7657 has_bias = true;
7658 }
7659 break;
7660 case nir_tex_src_lod: {
7661 nir_const_value *val = nir_src_as_const_value(instr->src[i].src);
7662
7663 if (val && val->f32 <= 0.0) {
7664 level_zero = true;
7665 } else {
7666 lod = get_ssa_temp(ctx, instr->src[i].src.ssa);
7667 has_lod = true;
7668 }
7669 break;
7670 }
7671 case nir_tex_src_comparator:
7672 if (instr->is_shadow) {
7673 compare = get_ssa_temp(ctx, instr->src[i].src.ssa);
7674 has_compare = true;
7675 }
7676 break;
7677 case nir_tex_src_offset:
7678 offset = get_ssa_temp(ctx, instr->src[i].src.ssa);
7679 get_const_vec(instr->src[i].src.ssa, const_offset);
7680 has_offset = true;
7681 break;
7682 case nir_tex_src_ddx:
7683 ddx = get_ssa_temp(ctx, instr->src[i].src.ssa);
7684 has_ddx = true;
7685 break;
7686 case nir_tex_src_ddy:
7687 ddy = get_ssa_temp(ctx, instr->src[i].src.ssa);
7688 has_ddy = true;
7689 break;
7690 case nir_tex_src_ms_index:
7691 sample_index = get_ssa_temp(ctx, instr->src[i].src.ssa);
7692 sample_index_cv = nir_src_as_const_value(instr->src[i].src);
7693 has_sample_index = true;
7694 break;
7695 case nir_tex_src_texture_offset:
7696 case nir_tex_src_sampler_offset:
7697 default:
7698 break;
7699 }
7700 }
7701
7702 if (instr->op == nir_texop_txs && instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
7703 return get_buffer_size(ctx, resource, get_ssa_temp(ctx, &instr->dest.ssa), true);
7704
7705 if (instr->op == nir_texop_texture_samples) {
7706 Temp dword3 = emit_extract_vector(ctx, resource, 3, s1);
7707
7708 Temp samples_log2 = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(16u | 4u<<16));
7709 Temp samples = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), Operand(1u), samples_log2);
7710 Temp type = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(28u | 4u<<16 /* offset=28, width=4 */));
7711 Temp is_msaa = bld.sopc(aco_opcode::s_cmp_ge_u32, bld.def(s1, scc), type, Operand(14u));
7712
7713 bld.sop2(aco_opcode::s_cselect_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7714 samples, Operand(1u), bld.scc(is_msaa));
7715 return;
7716 }
7717
7718 if (has_offset && instr->op != nir_texop_txf && instr->op != nir_texop_txf_ms) {
7719 aco_ptr<Instruction> tmp_instr;
7720 Temp acc, pack = Temp();
7721
7722 uint32_t pack_const = 0;
7723 for (unsigned i = 0; i < offset.size(); i++) {
7724 if (!const_offset[i])
7725 continue;
7726 pack_const |= (const_offset[i]->u32 & 0x3Fu) << (8u * i);
7727 }
7728
7729 if (offset.type() == RegType::sgpr) {
7730 for (unsigned i = 0; i < offset.size(); i++) {
7731 if (const_offset[i])
7732 continue;
7733
7734 acc = emit_extract_vector(ctx, offset, i, s1);
7735 acc = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(0x3Fu));
7736
7737 if (i) {
7738 acc = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(8u * i));
7739 }
7740
7741 if (pack == Temp()) {
7742 pack = acc;
7743 } else {
7744 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), pack, acc);
7745 }
7746 }
7747
7748 if (pack_const && pack != Temp())
7749 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(pack_const), pack);
7750 } else {
7751 for (unsigned i = 0; i < offset.size(); i++) {
7752 if (const_offset[i])
7753 continue;
7754
7755 acc = emit_extract_vector(ctx, offset, i, v1);
7756 acc = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x3Fu), acc);
7757
7758 if (i) {
7759 acc = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(8u * i), acc);
7760 }
7761
7762 if (pack == Temp()) {
7763 pack = acc;
7764 } else {
7765 pack = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), pack, acc);
7766 }
7767 }
7768
7769 if (pack_const && pack != Temp())
7770 pack = bld.sop2(aco_opcode::v_or_b32, bld.def(v1), Operand(pack_const), pack);
7771 }
7772 if (pack_const && pack == Temp())
7773 offset = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(pack_const));
7774 else if (pack == Temp())
7775 has_offset = false;
7776 else
7777 offset = pack;
7778 }
7779
7780 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE && instr->coord_components)
7781 prepare_cube_coords(ctx, coords, &ddx, &ddy, instr->op == nir_texop_txd, instr->is_array && instr->op != nir_texop_lod);
7782
7783 /* pack derivatives */
7784 if (has_ddx || has_ddy) {
7785 if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D && ctx->options->chip_class == GFX9) {
7786 assert(has_ddx && has_ddy && ddx.size() == 1 && ddy.size() == 1);
7787 Temp zero = bld.copy(bld.def(v1), Operand(0u));
7788 derivs = {ddy, zero, ddy, zero};
7789 } else {
7790 for (unsigned i = 0; has_ddx && i < ddx.size(); i++)
7791 derivs.emplace_back(emit_extract_vector(ctx, ddx, i, v1));
7792 for (unsigned i = 0; has_ddy && i < ddy.size(); i++)
7793 derivs.emplace_back(emit_extract_vector(ctx, ddy, i, v1));
7794 }
7795 has_derivs = true;
7796 }
7797
7798 if (instr->coord_components > 1 &&
7799 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
7800 instr->is_array &&
7801 instr->op != nir_texop_txf)
7802 coords[1] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[1]);
7803
7804 if (instr->coord_components > 2 &&
7805 (instr->sampler_dim == GLSL_SAMPLER_DIM_2D ||
7806 instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
7807 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS ||
7808 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
7809 instr->is_array &&
7810 instr->op != nir_texop_txf &&
7811 instr->op != nir_texop_txf_ms &&
7812 instr->op != nir_texop_fragment_fetch &&
7813 instr->op != nir_texop_fragment_mask_fetch)
7814 coords[2] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[2]);
7815
7816 if (ctx->options->chip_class == GFX9 &&
7817 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
7818 instr->op != nir_texop_lod && instr->coord_components) {
7819 assert(coords.size() > 0 && coords.size() < 3);
7820
7821 coords.insert(std::next(coords.begin()), bld.copy(bld.def(v1), instr->op == nir_texop_txf ?
7822 Operand((uint32_t) 0) :
7823 Operand((uint32_t) 0x3f000000)));
7824 }
7825
7826 bool da = should_declare_array(ctx, instr->sampler_dim, instr->is_array);
7827
7828 if (instr->op == nir_texop_samples_identical)
7829 resource = fmask_ptr;
7830
7831 else if ((instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
7832 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
7833 instr->op != nir_texop_txs &&
7834 instr->op != nir_texop_fragment_fetch &&
7835 instr->op != nir_texop_fragment_mask_fetch) {
7836 assert(has_sample_index);
7837 Operand op(sample_index);
7838 if (sample_index_cv)
7839 op = Operand(sample_index_cv->u32);
7840 sample_index = adjust_sample_index_using_fmask(ctx, da, coords, op, fmask_ptr);
7841 }
7842
7843 if (has_offset && (instr->op == nir_texop_txf || instr->op == nir_texop_txf_ms)) {
7844 for (unsigned i = 0; i < std::min(offset.size(), instr->coord_components); i++) {
7845 Temp off = emit_extract_vector(ctx, offset, i, v1);
7846 coords[i] = bld.vadd32(bld.def(v1), coords[i], off);
7847 }
7848 has_offset = false;
7849 }
7850
7851 /* Build tex instruction */
7852 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
7853 unsigned dim = ctx->options->chip_class >= GFX10 && instr->sampler_dim != GLSL_SAMPLER_DIM_BUF
7854 ? ac_get_sampler_dim(ctx->options->chip_class, instr->sampler_dim, instr->is_array)
7855 : 0;
7856 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7857 Temp tmp_dst = dst;
7858
7859 /* gather4 selects the component by dmask and always returns vec4 */
7860 if (instr->op == nir_texop_tg4) {
7861 assert(instr->dest.ssa.num_components == 4);
7862 if (instr->is_shadow)
7863 dmask = 1;
7864 else
7865 dmask = 1 << instr->component;
7866 if (tg4_integer_cube_workaround || dst.type() == RegType::sgpr)
7867 tmp_dst = bld.tmp(v4);
7868 } else if (instr->op == nir_texop_samples_identical) {
7869 tmp_dst = bld.tmp(v1);
7870 } else if (util_bitcount(dmask) != instr->dest.ssa.num_components || dst.type() == RegType::sgpr) {
7871 tmp_dst = bld.tmp(RegClass(RegType::vgpr, util_bitcount(dmask)));
7872 }
7873
7874 aco_ptr<MIMG_instruction> tex;
7875 if (instr->op == nir_texop_txs || instr->op == nir_texop_query_levels) {
7876 if (!has_lod)
7877 lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
7878
7879 bool div_by_6 = instr->op == nir_texop_txs &&
7880 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
7881 instr->is_array &&
7882 (dmask & (1 << 2));
7883 if (tmp_dst.id() == dst.id() && div_by_6)
7884 tmp_dst = bld.tmp(tmp_dst.regClass());
7885
7886 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
7887 tex->operands[0] = Operand(resource);
7888 tex->operands[1] = Operand(s4); /* no sampler */
7889 tex->operands[2] = Operand(as_vgpr(ctx,lod));
7890 if (ctx->options->chip_class == GFX9 &&
7891 instr->op == nir_texop_txs &&
7892 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
7893 instr->is_array) {
7894 tex->dmask = (dmask & 0x1) | ((dmask & 0x2) << 1);
7895 } else if (instr->op == nir_texop_query_levels) {
7896 tex->dmask = 1 << 3;
7897 } else {
7898 tex->dmask = dmask;
7899 }
7900 tex->da = da;
7901 tex->definitions[0] = Definition(tmp_dst);
7902 tex->dim = dim;
7903 tex->can_reorder = true;
7904 ctx->block->instructions.emplace_back(std::move(tex));
7905
7906 if (div_by_6) {
7907 /* divide 3rd value by 6 by multiplying with magic number */
7908 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
7909 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
7910 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp_dst, 2, v1), c);
7911 assert(instr->dest.ssa.num_components == 3);
7912 Temp tmp = dst.type() == RegType::vgpr ? dst : bld.tmp(v3);
7913 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
7914 emit_extract_vector(ctx, tmp_dst, 0, v1),
7915 emit_extract_vector(ctx, tmp_dst, 1, v1),
7916 by_6);
7917
7918 }
7919
7920 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
7921 return;
7922 }
7923
7924 Temp tg4_compare_cube_wa64 = Temp();
7925
7926 if (tg4_integer_workarounds) {
7927 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
7928 tex->operands[0] = Operand(resource);
7929 tex->operands[1] = Operand(s4); /* no sampler */
7930 tex->operands[2] = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
7931 tex->dim = dim;
7932 tex->dmask = 0x3;
7933 tex->da = da;
7934 Temp size = bld.tmp(v2);
7935 tex->definitions[0] = Definition(size);
7936 tex->can_reorder = true;
7937 ctx->block->instructions.emplace_back(std::move(tex));
7938 emit_split_vector(ctx, size, size.size());
7939
7940 Temp half_texel[2];
7941 for (unsigned i = 0; i < 2; i++) {
7942 half_texel[i] = emit_extract_vector(ctx, size, i, v1);
7943 half_texel[i] = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), half_texel[i]);
7944 half_texel[i] = bld.vop1(aco_opcode::v_rcp_iflag_f32, bld.def(v1), half_texel[i]);
7945 half_texel[i] = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0xbf000000/*-0.5*/), half_texel[i]);
7946 }
7947
7948 Temp new_coords[2] = {
7949 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[0], half_texel[0]),
7950 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[1], half_texel[1])
7951 };
7952
7953 if (tg4_integer_cube_workaround) {
7954 // see comment in ac_nir_to_llvm.c's lower_gather4_integer()
7955 Temp desc[resource.size()];
7956 aco_ptr<Instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector,
7957 Format::PSEUDO, 1, resource.size())};
7958 split->operands[0] = Operand(resource);
7959 for (unsigned i = 0; i < resource.size(); i++) {
7960 desc[i] = bld.tmp(s1);
7961 split->definitions[i] = Definition(desc[i]);
7962 }
7963 ctx->block->instructions.emplace_back(std::move(split));
7964
7965 Temp dfmt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), desc[1], Operand(20u | (6u << 16)));
7966 Temp compare_cube_wa = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), dfmt,
7967 Operand((uint32_t)V_008F14_IMG_DATA_FORMAT_8_8_8_8));
7968
7969 Temp nfmt;
7970 if (stype == GLSL_TYPE_UINT) {
7971 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
7972 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_USCALED),
7973 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_UINT),
7974 bld.scc(compare_cube_wa));
7975 } else {
7976 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
7977 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SSCALED),
7978 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SINT),
7979 bld.scc(compare_cube_wa));
7980 }
7981 tg4_compare_cube_wa64 = bld.tmp(bld.lm);
7982 bool_to_vector_condition(ctx, compare_cube_wa, tg4_compare_cube_wa64);
7983
7984 nfmt = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), nfmt, Operand(26u));
7985
7986 desc[1] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), desc[1],
7987 Operand((uint32_t)C_008F14_NUM_FORMAT));
7988 desc[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), desc[1], nfmt);
7989
7990 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
7991 Format::PSEUDO, resource.size(), 1)};
7992 for (unsigned i = 0; i < resource.size(); i++)
7993 vec->operands[i] = Operand(desc[i]);
7994 resource = bld.tmp(resource.regClass());
7995 vec->definitions[0] = Definition(resource);
7996 ctx->block->instructions.emplace_back(std::move(vec));
7997
7998 new_coords[0] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
7999 new_coords[0], coords[0], tg4_compare_cube_wa64);
8000 new_coords[1] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8001 new_coords[1], coords[1], tg4_compare_cube_wa64);
8002 }
8003 coords[0] = new_coords[0];
8004 coords[1] = new_coords[1];
8005 }
8006
8007 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
8008 //FIXME: if (ctx->abi->gfx9_stride_size_workaround) return ac_build_buffer_load_format_gfx9_safe()
8009
8010 assert(coords.size() == 1);
8011 unsigned last_bit = util_last_bit(nir_ssa_def_components_read(&instr->dest.ssa));
8012 aco_opcode op;
8013 switch (last_bit) {
8014 case 1:
8015 op = aco_opcode::buffer_load_format_x; break;
8016 case 2:
8017 op = aco_opcode::buffer_load_format_xy; break;
8018 case 3:
8019 op = aco_opcode::buffer_load_format_xyz; break;
8020 case 4:
8021 op = aco_opcode::buffer_load_format_xyzw; break;
8022 default:
8023 unreachable("Tex instruction loads more than 4 components.");
8024 }
8025
8026 /* if the instruction return value matches exactly the nir dest ssa, we can use it directly */
8027 if (last_bit == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
8028 tmp_dst = dst;
8029 else
8030 tmp_dst = bld.tmp(RegType::vgpr, last_bit);
8031
8032 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
8033 mubuf->operands[0] = Operand(resource);
8034 mubuf->operands[1] = Operand(coords[0]);
8035 mubuf->operands[2] = Operand((uint32_t) 0);
8036 mubuf->definitions[0] = Definition(tmp_dst);
8037 mubuf->idxen = true;
8038 mubuf->can_reorder = true;
8039 ctx->block->instructions.emplace_back(std::move(mubuf));
8040
8041 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, (1 << last_bit) - 1);
8042 return;
8043 }
8044
8045 /* gather MIMG address components */
8046 std::vector<Temp> args;
8047 if (has_offset)
8048 args.emplace_back(offset);
8049 if (has_bias)
8050 args.emplace_back(bias);
8051 if (has_compare)
8052 args.emplace_back(compare);
8053 if (has_derivs)
8054 args.insert(args.end(), derivs.begin(), derivs.end());
8055
8056 args.insert(args.end(), coords.begin(), coords.end());
8057 if (has_sample_index)
8058 args.emplace_back(sample_index);
8059 if (has_lod)
8060 args.emplace_back(lod);
8061
8062 Temp arg = bld.tmp(RegClass(RegType::vgpr, args.size()));
8063 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, args.size(), 1)};
8064 vec->definitions[0] = Definition(arg);
8065 for (unsigned i = 0; i < args.size(); i++)
8066 vec->operands[i] = Operand(args[i]);
8067 ctx->block->instructions.emplace_back(std::move(vec));
8068
8069
8070 if (instr->op == nir_texop_txf ||
8071 instr->op == nir_texop_txf_ms ||
8072 instr->op == nir_texop_samples_identical ||
8073 instr->op == nir_texop_fragment_fetch ||
8074 instr->op == nir_texop_fragment_mask_fetch) {
8075 aco_opcode op = level_zero || instr->sampler_dim == GLSL_SAMPLER_DIM_MS || instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS ? aco_opcode::image_load : aco_opcode::image_load_mip;
8076 tex.reset(create_instruction<MIMG_instruction>(op, Format::MIMG, 3, 1));
8077 tex->operands[0] = Operand(resource);
8078 tex->operands[1] = Operand(s4); /* no sampler */
8079 tex->operands[2] = Operand(arg);
8080 tex->dim = dim;
8081 tex->dmask = dmask;
8082 tex->unrm = true;
8083 tex->da = da;
8084 tex->definitions[0] = Definition(tmp_dst);
8085 tex->can_reorder = true;
8086 ctx->block->instructions.emplace_back(std::move(tex));
8087
8088 if (instr->op == nir_texop_samples_identical) {
8089 assert(dmask == 1 && dst.regClass() == v1);
8090 assert(dst.id() != tmp_dst.id());
8091
8092 Temp tmp = bld.tmp(bld.lm);
8093 bld.vopc(aco_opcode::v_cmp_eq_u32, Definition(tmp), Operand(0u), tmp_dst).def(0).setHint(vcc);
8094 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand((uint32_t)-1), tmp);
8095
8096 } else {
8097 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
8098 }
8099 return;
8100 }
8101
8102 // TODO: would be better to do this by adding offsets, but needs the opcodes ordered.
8103 aco_opcode opcode = aco_opcode::image_sample;
8104 if (has_offset) { /* image_sample_*_o */
8105 if (has_compare) {
8106 opcode = aco_opcode::image_sample_c_o;
8107 if (has_derivs)
8108 opcode = aco_opcode::image_sample_c_d_o;
8109 if (has_bias)
8110 opcode = aco_opcode::image_sample_c_b_o;
8111 if (level_zero)
8112 opcode = aco_opcode::image_sample_c_lz_o;
8113 if (has_lod)
8114 opcode = aco_opcode::image_sample_c_l_o;
8115 } else {
8116 opcode = aco_opcode::image_sample_o;
8117 if (has_derivs)
8118 opcode = aco_opcode::image_sample_d_o;
8119 if (has_bias)
8120 opcode = aco_opcode::image_sample_b_o;
8121 if (level_zero)
8122 opcode = aco_opcode::image_sample_lz_o;
8123 if (has_lod)
8124 opcode = aco_opcode::image_sample_l_o;
8125 }
8126 } else { /* no offset */
8127 if (has_compare) {
8128 opcode = aco_opcode::image_sample_c;
8129 if (has_derivs)
8130 opcode = aco_opcode::image_sample_c_d;
8131 if (has_bias)
8132 opcode = aco_opcode::image_sample_c_b;
8133 if (level_zero)
8134 opcode = aco_opcode::image_sample_c_lz;
8135 if (has_lod)
8136 opcode = aco_opcode::image_sample_c_l;
8137 } else {
8138 opcode = aco_opcode::image_sample;
8139 if (has_derivs)
8140 opcode = aco_opcode::image_sample_d;
8141 if (has_bias)
8142 opcode = aco_opcode::image_sample_b;
8143 if (level_zero)
8144 opcode = aco_opcode::image_sample_lz;
8145 if (has_lod)
8146 opcode = aco_opcode::image_sample_l;
8147 }
8148 }
8149
8150 if (instr->op == nir_texop_tg4) {
8151 if (has_offset) {
8152 opcode = aco_opcode::image_gather4_lz_o;
8153 if (has_compare)
8154 opcode = aco_opcode::image_gather4_c_lz_o;
8155 } else {
8156 opcode = aco_opcode::image_gather4_lz;
8157 if (has_compare)
8158 opcode = aco_opcode::image_gather4_c_lz;
8159 }
8160 } else if (instr->op == nir_texop_lod) {
8161 opcode = aco_opcode::image_get_lod;
8162 }
8163
8164 /* we don't need the bias, sample index, compare value or offset to be
8165 * computed in WQM but if the p_create_vector copies the coordinates, then it
8166 * needs to be in WQM */
8167 if (ctx->stage == fragment_fs &&
8168 !has_derivs && !has_lod && !level_zero &&
8169 instr->sampler_dim != GLSL_SAMPLER_DIM_MS &&
8170 instr->sampler_dim != GLSL_SAMPLER_DIM_SUBPASS_MS)
8171 arg = emit_wqm(ctx, arg, bld.tmp(arg.regClass()), true);
8172
8173 tex.reset(create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1));
8174 tex->operands[0] = Operand(resource);
8175 tex->operands[1] = Operand(sampler);
8176 tex->operands[2] = Operand(arg);
8177 tex->dim = dim;
8178 tex->dmask = dmask;
8179 tex->da = da;
8180 tex->definitions[0] = Definition(tmp_dst);
8181 tex->can_reorder = true;
8182 ctx->block->instructions.emplace_back(std::move(tex));
8183
8184 if (tg4_integer_cube_workaround) {
8185 assert(tmp_dst.id() != dst.id());
8186 assert(tmp_dst.size() == dst.size() && dst.size() == 4);
8187
8188 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
8189 Temp val[4];
8190 for (unsigned i = 0; i < dst.size(); i++) {
8191 val[i] = emit_extract_vector(ctx, tmp_dst, i, v1);
8192 Temp cvt_val;
8193 if (stype == GLSL_TYPE_UINT)
8194 cvt_val = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), val[i]);
8195 else
8196 cvt_val = bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), val[i]);
8197 val[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), val[i], cvt_val, tg4_compare_cube_wa64);
8198 }
8199 Temp tmp = dst.regClass() == v4 ? dst : bld.tmp(v4);
8200 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
8201 val[0], val[1], val[2], val[3]);
8202 }
8203 unsigned mask = instr->op == nir_texop_tg4 ? 0xF : dmask;
8204 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, mask);
8205
8206 }
8207
8208
8209 Operand get_phi_operand(isel_context *ctx, nir_ssa_def *ssa)
8210 {
8211 Temp tmp = get_ssa_temp(ctx, ssa);
8212 if (ssa->parent_instr->type == nir_instr_type_ssa_undef)
8213 return Operand(tmp.regClass());
8214 else
8215 return Operand(tmp);
8216 }
8217
8218 void visit_phi(isel_context *ctx, nir_phi_instr *instr)
8219 {
8220 aco_ptr<Pseudo_instruction> phi;
8221 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8222 assert(instr->dest.ssa.bit_size != 1 || dst.regClass() == ctx->program->lane_mask);
8223
8224 bool logical = !dst.is_linear() || ctx->divergent_vals[instr->dest.ssa.index];
8225 logical |= ctx->block->kind & block_kind_merge;
8226 aco_opcode opcode = logical ? aco_opcode::p_phi : aco_opcode::p_linear_phi;
8227
8228 /* we want a sorted list of sources, since the predecessor list is also sorted */
8229 std::map<unsigned, nir_ssa_def*> phi_src;
8230 nir_foreach_phi_src(src, instr)
8231 phi_src[src->pred->index] = src->src.ssa;
8232
8233 std::vector<unsigned>& preds = logical ? ctx->block->logical_preds : ctx->block->linear_preds;
8234 unsigned num_operands = 0;
8235 Operand operands[std::max(exec_list_length(&instr->srcs), (unsigned)preds.size())];
8236 unsigned num_defined = 0;
8237 unsigned cur_pred_idx = 0;
8238 for (std::pair<unsigned, nir_ssa_def *> src : phi_src) {
8239 if (cur_pred_idx < preds.size()) {
8240 /* handle missing preds (IF merges with discard/break) and extra preds (loop exit with discard) */
8241 unsigned block = ctx->cf_info.nir_to_aco[src.first];
8242 unsigned skipped = 0;
8243 while (cur_pred_idx + skipped < preds.size() && preds[cur_pred_idx + skipped] != block)
8244 skipped++;
8245 if (cur_pred_idx + skipped < preds.size()) {
8246 for (unsigned i = 0; i < skipped; i++)
8247 operands[num_operands++] = Operand(dst.regClass());
8248 cur_pred_idx += skipped;
8249 } else {
8250 continue;
8251 }
8252 }
8253 cur_pred_idx++;
8254 Operand op = get_phi_operand(ctx, src.second);
8255 operands[num_operands++] = op;
8256 num_defined += !op.isUndefined();
8257 }
8258 /* handle block_kind_continue_or_break at loop exit blocks */
8259 while (cur_pred_idx++ < preds.size())
8260 operands[num_operands++] = Operand(dst.regClass());
8261
8262 if (num_defined == 0) {
8263 Builder bld(ctx->program, ctx->block);
8264 if (dst.regClass() == s1) {
8265 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), Operand(0u));
8266 } else if (dst.regClass() == v1) {
8267 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), Operand(0u));
8268 } else {
8269 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
8270 for (unsigned i = 0; i < dst.size(); i++)
8271 vec->operands[i] = Operand(0u);
8272 vec->definitions[0] = Definition(dst);
8273 ctx->block->instructions.emplace_back(std::move(vec));
8274 }
8275 return;
8276 }
8277
8278 /* we can use a linear phi in some cases if one src is undef */
8279 if (dst.is_linear() && ctx->block->kind & block_kind_merge && num_defined == 1) {
8280 phi.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, num_operands, 1));
8281
8282 Block *linear_else = &ctx->program->blocks[ctx->block->linear_preds[1]];
8283 Block *invert = &ctx->program->blocks[linear_else->linear_preds[0]];
8284 assert(invert->kind & block_kind_invert);
8285
8286 unsigned then_block = invert->linear_preds[0];
8287
8288 Block* insert_block = NULL;
8289 for (unsigned i = 0; i < num_operands; i++) {
8290 Operand op = operands[i];
8291 if (op.isUndefined())
8292 continue;
8293 insert_block = ctx->block->logical_preds[i] == then_block ? invert : ctx->block;
8294 phi->operands[0] = op;
8295 break;
8296 }
8297 assert(insert_block); /* should be handled by the "num_defined == 0" case above */
8298 phi->operands[1] = Operand(dst.regClass());
8299 phi->definitions[0] = Definition(dst);
8300 insert_block->instructions.emplace(insert_block->instructions.begin(), std::move(phi));
8301 return;
8302 }
8303
8304 /* try to scalarize vector phis */
8305 if (instr->dest.ssa.bit_size != 1 && dst.size() > 1) {
8306 // TODO: scalarize linear phis on divergent ifs
8307 bool can_scalarize = (opcode == aco_opcode::p_phi || !(ctx->block->kind & block_kind_merge));
8308 std::array<Temp, NIR_MAX_VEC_COMPONENTS> new_vec;
8309 for (unsigned i = 0; can_scalarize && (i < num_operands); i++) {
8310 Operand src = operands[i];
8311 if (src.isTemp() && ctx->allocated_vec.find(src.tempId()) == ctx->allocated_vec.end())
8312 can_scalarize = false;
8313 }
8314 if (can_scalarize) {
8315 unsigned num_components = instr->dest.ssa.num_components;
8316 assert(dst.size() % num_components == 0);
8317 RegClass rc = RegClass(dst.type(), dst.size() / num_components);
8318
8319 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
8320 for (unsigned k = 0; k < num_components; k++) {
8321 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
8322 for (unsigned i = 0; i < num_operands; i++) {
8323 Operand src = operands[i];
8324 phi->operands[i] = src.isTemp() ? Operand(ctx->allocated_vec[src.tempId()][k]) : Operand(rc);
8325 }
8326 Temp phi_dst = {ctx->program->allocateId(), rc};
8327 phi->definitions[0] = Definition(phi_dst);
8328 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
8329 new_vec[k] = phi_dst;
8330 vec->operands[k] = Operand(phi_dst);
8331 }
8332 vec->definitions[0] = Definition(dst);
8333 ctx->block->instructions.emplace_back(std::move(vec));
8334 ctx->allocated_vec.emplace(dst.id(), new_vec);
8335 return;
8336 }
8337 }
8338
8339 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
8340 for (unsigned i = 0; i < num_operands; i++)
8341 phi->operands[i] = operands[i];
8342 phi->definitions[0] = Definition(dst);
8343 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
8344 }
8345
8346
8347 void visit_undef(isel_context *ctx, nir_ssa_undef_instr *instr)
8348 {
8349 Temp dst = get_ssa_temp(ctx, &instr->def);
8350
8351 assert(dst.type() == RegType::sgpr);
8352
8353 if (dst.size() == 1) {
8354 Builder(ctx->program, ctx->block).copy(Definition(dst), Operand(0u));
8355 } else {
8356 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
8357 for (unsigned i = 0; i < dst.size(); i++)
8358 vec->operands[i] = Operand(0u);
8359 vec->definitions[0] = Definition(dst);
8360 ctx->block->instructions.emplace_back(std::move(vec));
8361 }
8362 }
8363
8364 void visit_jump(isel_context *ctx, nir_jump_instr *instr)
8365 {
8366 Builder bld(ctx->program, ctx->block);
8367 Block *logical_target;
8368 append_logical_end(ctx->block);
8369 unsigned idx = ctx->block->index;
8370
8371 switch (instr->type) {
8372 case nir_jump_break:
8373 logical_target = ctx->cf_info.parent_loop.exit;
8374 add_logical_edge(idx, logical_target);
8375 ctx->block->kind |= block_kind_break;
8376
8377 if (!ctx->cf_info.parent_if.is_divergent &&
8378 !ctx->cf_info.parent_loop.has_divergent_continue) {
8379 /* uniform break - directly jump out of the loop */
8380 ctx->block->kind |= block_kind_uniform;
8381 ctx->cf_info.has_branch = true;
8382 bld.branch(aco_opcode::p_branch);
8383 add_linear_edge(idx, logical_target);
8384 return;
8385 }
8386 ctx->cf_info.parent_loop.has_divergent_branch = true;
8387 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
8388 break;
8389 case nir_jump_continue:
8390 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
8391 add_logical_edge(idx, logical_target);
8392 ctx->block->kind |= block_kind_continue;
8393
8394 if (ctx->cf_info.parent_if.is_divergent) {
8395 /* for potential uniform breaks after this continue,
8396 we must ensure that they are handled correctly */
8397 ctx->cf_info.parent_loop.has_divergent_continue = true;
8398 ctx->cf_info.parent_loop.has_divergent_branch = true;
8399 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
8400 } else {
8401 /* uniform continue - directly jump to the loop header */
8402 ctx->block->kind |= block_kind_uniform;
8403 ctx->cf_info.has_branch = true;
8404 bld.branch(aco_opcode::p_branch);
8405 add_linear_edge(idx, logical_target);
8406 return;
8407 }
8408 break;
8409 default:
8410 fprintf(stderr, "Unknown NIR jump instr: ");
8411 nir_print_instr(&instr->instr, stderr);
8412 fprintf(stderr, "\n");
8413 abort();
8414 }
8415
8416 if (ctx->cf_info.parent_if.is_divergent && !ctx->cf_info.exec_potentially_empty_break) {
8417 ctx->cf_info.exec_potentially_empty_break = true;
8418 ctx->cf_info.exec_potentially_empty_break_depth = ctx->cf_info.loop_nest_depth;
8419 }
8420
8421 /* remove critical edges from linear CFG */
8422 bld.branch(aco_opcode::p_branch);
8423 Block* break_block = ctx->program->create_and_insert_block();
8424 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8425 break_block->kind |= block_kind_uniform;
8426 add_linear_edge(idx, break_block);
8427 /* the loop_header pointer might be invalidated by this point */
8428 if (instr->type == nir_jump_continue)
8429 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
8430 add_linear_edge(break_block->index, logical_target);
8431 bld.reset(break_block);
8432 bld.branch(aco_opcode::p_branch);
8433
8434 Block* continue_block = ctx->program->create_and_insert_block();
8435 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8436 add_linear_edge(idx, continue_block);
8437 append_logical_start(continue_block);
8438 ctx->block = continue_block;
8439 return;
8440 }
8441
8442 void visit_block(isel_context *ctx, nir_block *block)
8443 {
8444 nir_foreach_instr(instr, block) {
8445 switch (instr->type) {
8446 case nir_instr_type_alu:
8447 visit_alu_instr(ctx, nir_instr_as_alu(instr));
8448 break;
8449 case nir_instr_type_load_const:
8450 visit_load_const(ctx, nir_instr_as_load_const(instr));
8451 break;
8452 case nir_instr_type_intrinsic:
8453 visit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
8454 break;
8455 case nir_instr_type_tex:
8456 visit_tex(ctx, nir_instr_as_tex(instr));
8457 break;
8458 case nir_instr_type_phi:
8459 visit_phi(ctx, nir_instr_as_phi(instr));
8460 break;
8461 case nir_instr_type_ssa_undef:
8462 visit_undef(ctx, nir_instr_as_ssa_undef(instr));
8463 break;
8464 case nir_instr_type_deref:
8465 break;
8466 case nir_instr_type_jump:
8467 visit_jump(ctx, nir_instr_as_jump(instr));
8468 break;
8469 default:
8470 fprintf(stderr, "Unknown NIR instr type: ");
8471 nir_print_instr(instr, stderr);
8472 fprintf(stderr, "\n");
8473 //abort();
8474 }
8475 }
8476
8477 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8478 ctx->cf_info.nir_to_aco[block->index] = ctx->block->index;
8479 }
8480
8481
8482
8483 static void visit_loop(isel_context *ctx, nir_loop *loop)
8484 {
8485 //TODO: we might want to wrap the loop around a branch if exec_potentially_empty=true
8486 append_logical_end(ctx->block);
8487 ctx->block->kind |= block_kind_loop_preheader | block_kind_uniform;
8488 Builder bld(ctx->program, ctx->block);
8489 bld.branch(aco_opcode::p_branch);
8490 unsigned loop_preheader_idx = ctx->block->index;
8491
8492 Block loop_exit = Block();
8493 loop_exit.loop_nest_depth = ctx->cf_info.loop_nest_depth;
8494 loop_exit.kind |= (block_kind_loop_exit | (ctx->block->kind & block_kind_top_level));
8495
8496 Block* loop_header = ctx->program->create_and_insert_block();
8497 loop_header->loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
8498 loop_header->kind |= block_kind_loop_header;
8499 add_edge(loop_preheader_idx, loop_header);
8500 ctx->block = loop_header;
8501
8502 /* emit loop body */
8503 unsigned loop_header_idx = loop_header->index;
8504 loop_info_RAII loop_raii(ctx, loop_header_idx, &loop_exit);
8505 append_logical_start(ctx->block);
8506 visit_cf_list(ctx, &loop->body);
8507
8508 //TODO: what if a loop ends with a unconditional or uniformly branched continue and this branch is never taken?
8509 if (!ctx->cf_info.has_branch) {
8510 append_logical_end(ctx->block);
8511 if (ctx->cf_info.exec_potentially_empty_discard || ctx->cf_info.exec_potentially_empty_break) {
8512 /* Discards can result in code running with an empty exec mask.
8513 * This would result in divergent breaks not ever being taken. As a
8514 * workaround, break the loop when the loop mask is empty instead of
8515 * always continuing. */
8516 ctx->block->kind |= (block_kind_continue_or_break | block_kind_uniform);
8517 unsigned block_idx = ctx->block->index;
8518
8519 /* create helper blocks to avoid critical edges */
8520 Block *break_block = ctx->program->create_and_insert_block();
8521 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8522 break_block->kind = block_kind_uniform;
8523 bld.reset(break_block);
8524 bld.branch(aco_opcode::p_branch);
8525 add_linear_edge(block_idx, break_block);
8526 add_linear_edge(break_block->index, &loop_exit);
8527
8528 Block *continue_block = ctx->program->create_and_insert_block();
8529 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8530 continue_block->kind = block_kind_uniform;
8531 bld.reset(continue_block);
8532 bld.branch(aco_opcode::p_branch);
8533 add_linear_edge(block_idx, continue_block);
8534 add_linear_edge(continue_block->index, &ctx->program->blocks[loop_header_idx]);
8535
8536 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8537 add_logical_edge(block_idx, &ctx->program->blocks[loop_header_idx]);
8538 ctx->block = &ctx->program->blocks[block_idx];
8539 } else {
8540 ctx->block->kind |= (block_kind_continue | block_kind_uniform);
8541 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8542 add_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
8543 else
8544 add_linear_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
8545 }
8546
8547 bld.reset(ctx->block);
8548 bld.branch(aco_opcode::p_branch);
8549 }
8550
8551 /* fixup phis in loop header from unreachable blocks */
8552 if (ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch) {
8553 bool linear = ctx->cf_info.has_branch;
8554 bool logical = ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch;
8555 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
8556 if ((logical && instr->opcode == aco_opcode::p_phi) ||
8557 (linear && instr->opcode == aco_opcode::p_linear_phi)) {
8558 /* the last operand should be the one that needs to be removed */
8559 instr->operands.pop_back();
8560 } else if (!is_phi(instr)) {
8561 break;
8562 }
8563 }
8564 }
8565
8566 ctx->cf_info.has_branch = false;
8567
8568 // TODO: if the loop has not a single exit, we must add one °°
8569 /* emit loop successor block */
8570 ctx->block = ctx->program->insert_block(std::move(loop_exit));
8571 append_logical_start(ctx->block);
8572
8573 #if 0
8574 // TODO: check if it is beneficial to not branch on continues
8575 /* trim linear phis in loop header */
8576 for (auto&& instr : loop_entry->instructions) {
8577 if (instr->opcode == aco_opcode::p_linear_phi) {
8578 aco_ptr<Pseudo_instruction> new_phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, loop_entry->linear_predecessors.size(), 1)};
8579 new_phi->definitions[0] = instr->definitions[0];
8580 for (unsigned i = 0; i < new_phi->operands.size(); i++)
8581 new_phi->operands[i] = instr->operands[i];
8582 /* check that the remaining operands are all the same */
8583 for (unsigned i = new_phi->operands.size(); i < instr->operands.size(); i++)
8584 assert(instr->operands[i].tempId() == instr->operands.back().tempId());
8585 instr.swap(new_phi);
8586 } else if (instr->opcode == aco_opcode::p_phi) {
8587 continue;
8588 } else {
8589 break;
8590 }
8591 }
8592 #endif
8593 }
8594
8595 static void begin_divergent_if_then(isel_context *ctx, if_context *ic, Temp cond)
8596 {
8597 ic->cond = cond;
8598
8599 append_logical_end(ctx->block);
8600 ctx->block->kind |= block_kind_branch;
8601
8602 /* branch to linear then block */
8603 assert(cond.regClass() == ctx->program->lane_mask);
8604 aco_ptr<Pseudo_branch_instruction> branch;
8605 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
8606 branch->operands[0] = Operand(cond);
8607 ctx->block->instructions.push_back(std::move(branch));
8608
8609 ic->BB_if_idx = ctx->block->index;
8610 ic->BB_invert = Block();
8611 ic->BB_invert.loop_nest_depth = ctx->cf_info.loop_nest_depth;
8612 /* Invert blocks are intentionally not marked as top level because they
8613 * are not part of the logical cfg. */
8614 ic->BB_invert.kind |= block_kind_invert;
8615 ic->BB_endif = Block();
8616 ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
8617 ic->BB_endif.kind |= (block_kind_merge | (ctx->block->kind & block_kind_top_level));
8618
8619 ic->exec_potentially_empty_discard_old = ctx->cf_info.exec_potentially_empty_discard;
8620 ic->exec_potentially_empty_break_old = ctx->cf_info.exec_potentially_empty_break;
8621 ic->exec_potentially_empty_break_depth_old = ctx->cf_info.exec_potentially_empty_break_depth;
8622 ic->divergent_old = ctx->cf_info.parent_if.is_divergent;
8623 ctx->cf_info.parent_if.is_divergent = true;
8624
8625 /* divergent branches use cbranch_execz */
8626 ctx->cf_info.exec_potentially_empty_discard = false;
8627 ctx->cf_info.exec_potentially_empty_break = false;
8628 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
8629
8630 /** emit logical then block */
8631 Block* BB_then_logical = ctx->program->create_and_insert_block();
8632 BB_then_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8633 add_edge(ic->BB_if_idx, BB_then_logical);
8634 ctx->block = BB_then_logical;
8635 append_logical_start(BB_then_logical);
8636 }
8637
8638 static void begin_divergent_if_else(isel_context *ctx, if_context *ic)
8639 {
8640 Block *BB_then_logical = ctx->block;
8641 append_logical_end(BB_then_logical);
8642 /* branch from logical then block to invert block */
8643 aco_ptr<Pseudo_branch_instruction> branch;
8644 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8645 BB_then_logical->instructions.emplace_back(std::move(branch));
8646 add_linear_edge(BB_then_logical->index, &ic->BB_invert);
8647 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8648 add_logical_edge(BB_then_logical->index, &ic->BB_endif);
8649 BB_then_logical->kind |= block_kind_uniform;
8650 assert(!ctx->cf_info.has_branch);
8651 ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
8652 ctx->cf_info.parent_loop.has_divergent_branch = false;
8653
8654 /** emit linear then block */
8655 Block* BB_then_linear = ctx->program->create_and_insert_block();
8656 BB_then_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8657 BB_then_linear->kind |= block_kind_uniform;
8658 add_linear_edge(ic->BB_if_idx, BB_then_linear);
8659 /* branch from linear then block to invert block */
8660 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8661 BB_then_linear->instructions.emplace_back(std::move(branch));
8662 add_linear_edge(BB_then_linear->index, &ic->BB_invert);
8663
8664 /** emit invert merge block */
8665 ctx->block = ctx->program->insert_block(std::move(ic->BB_invert));
8666 ic->invert_idx = ctx->block->index;
8667
8668 /* branch to linear else block (skip else) */
8669 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_nz, Format::PSEUDO_BRANCH, 1, 0));
8670 branch->operands[0] = Operand(ic->cond);
8671 ctx->block->instructions.push_back(std::move(branch));
8672
8673 ic->exec_potentially_empty_discard_old |= ctx->cf_info.exec_potentially_empty_discard;
8674 ic->exec_potentially_empty_break_old |= ctx->cf_info.exec_potentially_empty_break;
8675 ic->exec_potentially_empty_break_depth_old =
8676 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
8677 /* divergent branches use cbranch_execz */
8678 ctx->cf_info.exec_potentially_empty_discard = false;
8679 ctx->cf_info.exec_potentially_empty_break = false;
8680 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
8681
8682 /** emit logical else block */
8683 Block* BB_else_logical = ctx->program->create_and_insert_block();
8684 BB_else_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8685 add_logical_edge(ic->BB_if_idx, BB_else_logical);
8686 add_linear_edge(ic->invert_idx, BB_else_logical);
8687 ctx->block = BB_else_logical;
8688 append_logical_start(BB_else_logical);
8689 }
8690
8691 static void end_divergent_if(isel_context *ctx, if_context *ic)
8692 {
8693 Block *BB_else_logical = ctx->block;
8694 append_logical_end(BB_else_logical);
8695
8696 /* branch from logical else block to endif block */
8697 aco_ptr<Pseudo_branch_instruction> branch;
8698 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8699 BB_else_logical->instructions.emplace_back(std::move(branch));
8700 add_linear_edge(BB_else_logical->index, &ic->BB_endif);
8701 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8702 add_logical_edge(BB_else_logical->index, &ic->BB_endif);
8703 BB_else_logical->kind |= block_kind_uniform;
8704
8705 assert(!ctx->cf_info.has_branch);
8706 ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
8707
8708
8709 /** emit linear else block */
8710 Block* BB_else_linear = ctx->program->create_and_insert_block();
8711 BB_else_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8712 BB_else_linear->kind |= block_kind_uniform;
8713 add_linear_edge(ic->invert_idx, BB_else_linear);
8714
8715 /* branch from linear else block to endif block */
8716 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8717 BB_else_linear->instructions.emplace_back(std::move(branch));
8718 add_linear_edge(BB_else_linear->index, &ic->BB_endif);
8719
8720
8721 /** emit endif merge block */
8722 ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
8723 append_logical_start(ctx->block);
8724
8725
8726 ctx->cf_info.parent_if.is_divergent = ic->divergent_old;
8727 ctx->cf_info.exec_potentially_empty_discard |= ic->exec_potentially_empty_discard_old;
8728 ctx->cf_info.exec_potentially_empty_break |= ic->exec_potentially_empty_break_old;
8729 ctx->cf_info.exec_potentially_empty_break_depth =
8730 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
8731 if (ctx->cf_info.loop_nest_depth == ctx->cf_info.exec_potentially_empty_break_depth &&
8732 !ctx->cf_info.parent_if.is_divergent) {
8733 ctx->cf_info.exec_potentially_empty_break = false;
8734 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
8735 }
8736 /* uniform control flow never has an empty exec-mask */
8737 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent) {
8738 ctx->cf_info.exec_potentially_empty_discard = false;
8739 ctx->cf_info.exec_potentially_empty_break = false;
8740 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
8741 }
8742 }
8743
8744 static void visit_if(isel_context *ctx, nir_if *if_stmt)
8745 {
8746 Temp cond = get_ssa_temp(ctx, if_stmt->condition.ssa);
8747 Builder bld(ctx->program, ctx->block);
8748 aco_ptr<Pseudo_branch_instruction> branch;
8749
8750 if (!ctx->divergent_vals[if_stmt->condition.ssa->index]) { /* uniform condition */
8751 /**
8752 * Uniform conditionals are represented in the following way*) :
8753 *
8754 * The linear and logical CFG:
8755 * BB_IF
8756 * / \
8757 * BB_THEN (logical) BB_ELSE (logical)
8758 * \ /
8759 * BB_ENDIF
8760 *
8761 * *) Exceptions may be due to break and continue statements within loops
8762 * If a break/continue happens within uniform control flow, it branches
8763 * to the loop exit/entry block. Otherwise, it branches to the next
8764 * merge block.
8765 **/
8766 append_logical_end(ctx->block);
8767 ctx->block->kind |= block_kind_uniform;
8768
8769 /* emit branch */
8770 assert(cond.regClass() == bld.lm);
8771 // TODO: in a post-RA optimizer, we could check if the condition is in VCC and omit this instruction
8772 cond = bool_to_scalar_condition(ctx, cond);
8773
8774 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
8775 branch->operands[0] = Operand(cond);
8776 branch->operands[0].setFixed(scc);
8777 ctx->block->instructions.emplace_back(std::move(branch));
8778
8779 unsigned BB_if_idx = ctx->block->index;
8780 Block BB_endif = Block();
8781 BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
8782 BB_endif.kind |= ctx->block->kind & block_kind_top_level;
8783
8784 /** emit then block */
8785 Block* BB_then = ctx->program->create_and_insert_block();
8786 BB_then->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8787 add_edge(BB_if_idx, BB_then);
8788 append_logical_start(BB_then);
8789 ctx->block = BB_then;
8790 visit_cf_list(ctx, &if_stmt->then_list);
8791 BB_then = ctx->block;
8792 bool then_branch = ctx->cf_info.has_branch;
8793 bool then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
8794
8795 if (!then_branch) {
8796 append_logical_end(BB_then);
8797 /* branch from then block to endif block */
8798 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8799 BB_then->instructions.emplace_back(std::move(branch));
8800 add_linear_edge(BB_then->index, &BB_endif);
8801 if (!then_branch_divergent)
8802 add_logical_edge(BB_then->index, &BB_endif);
8803 BB_then->kind |= block_kind_uniform;
8804 }
8805
8806 ctx->cf_info.has_branch = false;
8807 ctx->cf_info.parent_loop.has_divergent_branch = false;
8808
8809 /** emit else block */
8810 Block* BB_else = ctx->program->create_and_insert_block();
8811 BB_else->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8812 add_edge(BB_if_idx, BB_else);
8813 append_logical_start(BB_else);
8814 ctx->block = BB_else;
8815 visit_cf_list(ctx, &if_stmt->else_list);
8816 BB_else = ctx->block;
8817
8818 if (!ctx->cf_info.has_branch) {
8819 append_logical_end(BB_else);
8820 /* branch from then block to endif block */
8821 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8822 BB_else->instructions.emplace_back(std::move(branch));
8823 add_linear_edge(BB_else->index, &BB_endif);
8824 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8825 add_logical_edge(BB_else->index, &BB_endif);
8826 BB_else->kind |= block_kind_uniform;
8827 }
8828
8829 ctx->cf_info.has_branch &= then_branch;
8830 ctx->cf_info.parent_loop.has_divergent_branch &= then_branch_divergent;
8831
8832 /** emit endif merge block */
8833 if (!ctx->cf_info.has_branch) {
8834 ctx->block = ctx->program->insert_block(std::move(BB_endif));
8835 append_logical_start(ctx->block);
8836 }
8837 } else { /* non-uniform condition */
8838 /**
8839 * To maintain a logical and linear CFG without critical edges,
8840 * non-uniform conditionals are represented in the following way*) :
8841 *
8842 * The linear CFG:
8843 * BB_IF
8844 * / \
8845 * BB_THEN (logical) BB_THEN (linear)
8846 * \ /
8847 * BB_INVERT (linear)
8848 * / \
8849 * BB_ELSE (logical) BB_ELSE (linear)
8850 * \ /
8851 * BB_ENDIF
8852 *
8853 * The logical CFG:
8854 * BB_IF
8855 * / \
8856 * BB_THEN (logical) BB_ELSE (logical)
8857 * \ /
8858 * BB_ENDIF
8859 *
8860 * *) Exceptions may be due to break and continue statements within loops
8861 **/
8862
8863 if_context ic;
8864
8865 begin_divergent_if_then(ctx, &ic, cond);
8866 visit_cf_list(ctx, &if_stmt->then_list);
8867
8868 begin_divergent_if_else(ctx, &ic);
8869 visit_cf_list(ctx, &if_stmt->else_list);
8870
8871 end_divergent_if(ctx, &ic);
8872 }
8873 }
8874
8875 static void visit_cf_list(isel_context *ctx,
8876 struct exec_list *list)
8877 {
8878 foreach_list_typed(nir_cf_node, node, node, list) {
8879 switch (node->type) {
8880 case nir_cf_node_block:
8881 visit_block(ctx, nir_cf_node_as_block(node));
8882 break;
8883 case nir_cf_node_if:
8884 visit_if(ctx, nir_cf_node_as_if(node));
8885 break;
8886 case nir_cf_node_loop:
8887 visit_loop(ctx, nir_cf_node_as_loop(node));
8888 break;
8889 default:
8890 unreachable("unimplemented cf list type");
8891 }
8892 }
8893 }
8894
8895 static void export_vs_varying(isel_context *ctx, int slot, bool is_pos, int *next_pos)
8896 {
8897 assert(ctx->stage == vertex_vs ||
8898 ctx->stage == tess_eval_vs ||
8899 ctx->stage == gs_copy_vs);
8900
8901 int offset = ctx->stage == tess_eval_vs
8902 ? ctx->program->info->tes.outinfo.vs_output_param_offset[slot]
8903 : ctx->program->info->vs.outinfo.vs_output_param_offset[slot];
8904 uint64_t mask = ctx->outputs.mask[slot];
8905 if (!is_pos && !mask)
8906 return;
8907 if (!is_pos && offset == AC_EXP_PARAM_UNDEFINED)
8908 return;
8909 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
8910 exp->enabled_mask = mask;
8911 for (unsigned i = 0; i < 4; ++i) {
8912 if (mask & (1 << i))
8913 exp->operands[i] = Operand(ctx->outputs.outputs[slot][i]);
8914 else
8915 exp->operands[i] = Operand(v1);
8916 }
8917 /* Navi10-14 skip POS0 exports if EXEC=0 and DONE=0, causing a hang.
8918 * Setting valid_mask=1 prevents it and has no other effect.
8919 */
8920 exp->valid_mask = ctx->options->chip_class >= GFX10 && is_pos && *next_pos == 0;
8921 exp->done = false;
8922 exp->compressed = false;
8923 if (is_pos)
8924 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
8925 else
8926 exp->dest = V_008DFC_SQ_EXP_PARAM + offset;
8927 ctx->block->instructions.emplace_back(std::move(exp));
8928 }
8929
8930 static void export_vs_psiz_layer_viewport(isel_context *ctx, int *next_pos)
8931 {
8932 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
8933 exp->enabled_mask = 0;
8934 for (unsigned i = 0; i < 4; ++i)
8935 exp->operands[i] = Operand(v1);
8936 if (ctx->outputs.mask[VARYING_SLOT_PSIZ]) {
8937 exp->operands[0] = Operand(ctx->outputs.outputs[VARYING_SLOT_PSIZ][0]);
8938 exp->enabled_mask |= 0x1;
8939 }
8940 if (ctx->outputs.mask[VARYING_SLOT_LAYER]) {
8941 exp->operands[2] = Operand(ctx->outputs.outputs[VARYING_SLOT_LAYER][0]);
8942 exp->enabled_mask |= 0x4;
8943 }
8944 if (ctx->outputs.mask[VARYING_SLOT_VIEWPORT]) {
8945 if (ctx->options->chip_class < GFX9) {
8946 exp->operands[3] = Operand(ctx->outputs.outputs[VARYING_SLOT_VIEWPORT][0]);
8947 exp->enabled_mask |= 0x8;
8948 } else {
8949 Builder bld(ctx->program, ctx->block);
8950
8951 Temp out = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u),
8952 Operand(ctx->outputs.outputs[VARYING_SLOT_VIEWPORT][0]));
8953 if (exp->operands[2].isTemp())
8954 out = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(out), exp->operands[2]);
8955
8956 exp->operands[2] = Operand(out);
8957 exp->enabled_mask |= 0x4;
8958 }
8959 }
8960 exp->valid_mask = ctx->options->chip_class >= GFX10 && *next_pos == 0;
8961 exp->done = false;
8962 exp->compressed = false;
8963 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
8964 ctx->block->instructions.emplace_back(std::move(exp));
8965 }
8966
8967 static void create_vs_exports(isel_context *ctx)
8968 {
8969 assert(ctx->stage == vertex_vs ||
8970 ctx->stage == tess_eval_vs ||
8971 ctx->stage == gs_copy_vs);
8972
8973 radv_vs_output_info *outinfo = ctx->stage == tess_eval_vs
8974 ? &ctx->program->info->tes.outinfo
8975 : &ctx->program->info->vs.outinfo;
8976
8977 if (outinfo->export_prim_id) {
8978 ctx->outputs.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
8979 ctx->outputs.outputs[VARYING_SLOT_PRIMITIVE_ID][0] = get_arg(ctx, ctx->args->vs_prim_id);
8980 }
8981
8982 if (ctx->options->key.has_multiview_view_index) {
8983 ctx->outputs.mask[VARYING_SLOT_LAYER] |= 0x1;
8984 ctx->outputs.outputs[VARYING_SLOT_LAYER][0] = as_vgpr(ctx, get_arg(ctx, ctx->args->ac.view_index));
8985 }
8986
8987 /* the order these position exports are created is important */
8988 int next_pos = 0;
8989 export_vs_varying(ctx, VARYING_SLOT_POS, true, &next_pos);
8990 if (outinfo->writes_pointsize || outinfo->writes_layer || outinfo->writes_viewport_index) {
8991 export_vs_psiz_layer_viewport(ctx, &next_pos);
8992 }
8993 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
8994 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, true, &next_pos);
8995 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
8996 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, true, &next_pos);
8997
8998 if (ctx->export_clip_dists) {
8999 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
9000 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, false, &next_pos);
9001 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
9002 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, false, &next_pos);
9003 }
9004
9005 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
9006 if (i < VARYING_SLOT_VAR0 && i != VARYING_SLOT_LAYER &&
9007 i != VARYING_SLOT_PRIMITIVE_ID)
9008 continue;
9009
9010 export_vs_varying(ctx, i, false, NULL);
9011 }
9012 }
9013
9014 static void export_fs_mrt_z(isel_context *ctx)
9015 {
9016 Builder bld(ctx->program, ctx->block);
9017 unsigned enabled_channels = 0;
9018 bool compr = false;
9019 Operand values[4];
9020
9021 for (unsigned i = 0; i < 4; ++i) {
9022 values[i] = Operand(v1);
9023 }
9024
9025 /* Both stencil and sample mask only need 16-bits. */
9026 if (!ctx->program->info->ps.writes_z &&
9027 (ctx->program->info->ps.writes_stencil ||
9028 ctx->program->info->ps.writes_sample_mask)) {
9029 compr = true; /* COMPR flag */
9030
9031 if (ctx->program->info->ps.writes_stencil) {
9032 /* Stencil should be in X[23:16]. */
9033 values[0] = Operand(ctx->outputs.outputs[FRAG_RESULT_STENCIL][0]);
9034 values[0] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u), values[0]);
9035 enabled_channels |= 0x3;
9036 }
9037
9038 if (ctx->program->info->ps.writes_sample_mask) {
9039 /* SampleMask should be in Y[15:0]. */
9040 values[1] = Operand(ctx->outputs.outputs[FRAG_RESULT_SAMPLE_MASK][0]);
9041 enabled_channels |= 0xc;
9042 }
9043 } else {
9044 if (ctx->program->info->ps.writes_z) {
9045 values[0] = Operand(ctx->outputs.outputs[FRAG_RESULT_DEPTH][0]);
9046 enabled_channels |= 0x1;
9047 }
9048
9049 if (ctx->program->info->ps.writes_stencil) {
9050 values[1] = Operand(ctx->outputs.outputs[FRAG_RESULT_STENCIL][0]);
9051 enabled_channels |= 0x2;
9052 }
9053
9054 if (ctx->program->info->ps.writes_sample_mask) {
9055 values[2] = Operand(ctx->outputs.outputs[FRAG_RESULT_SAMPLE_MASK][0]);
9056 enabled_channels |= 0x4;
9057 }
9058 }
9059
9060 /* GFX6 (except OLAND and HAINAN) has a bug that it only looks at the X
9061 * writemask component.
9062 */
9063 if (ctx->options->chip_class == GFX6 &&
9064 ctx->options->family != CHIP_OLAND &&
9065 ctx->options->family != CHIP_HAINAN) {
9066 enabled_channels |= 0x1;
9067 }
9068
9069 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
9070 enabled_channels, V_008DFC_SQ_EXP_MRTZ, compr);
9071 }
9072
9073 static void export_fs_mrt_color(isel_context *ctx, int slot)
9074 {
9075 Builder bld(ctx->program, ctx->block);
9076 unsigned write_mask = ctx->outputs.mask[slot];
9077 Operand values[4];
9078
9079 for (unsigned i = 0; i < 4; ++i) {
9080 if (write_mask & (1 << i)) {
9081 values[i] = Operand(ctx->outputs.outputs[slot][i]);
9082 } else {
9083 values[i] = Operand(v1);
9084 }
9085 }
9086
9087 unsigned target, col_format;
9088 unsigned enabled_channels = 0;
9089 aco_opcode compr_op = (aco_opcode)0;
9090
9091 slot -= FRAG_RESULT_DATA0;
9092 target = V_008DFC_SQ_EXP_MRT + slot;
9093 col_format = (ctx->options->key.fs.col_format >> (4 * slot)) & 0xf;
9094
9095 bool is_int8 = (ctx->options->key.fs.is_int8 >> slot) & 1;
9096 bool is_int10 = (ctx->options->key.fs.is_int10 >> slot) & 1;
9097
9098 switch (col_format)
9099 {
9100 case V_028714_SPI_SHADER_ZERO:
9101 enabled_channels = 0; /* writemask */
9102 target = V_008DFC_SQ_EXP_NULL;
9103 break;
9104
9105 case V_028714_SPI_SHADER_32_R:
9106 enabled_channels = 1;
9107 break;
9108
9109 case V_028714_SPI_SHADER_32_GR:
9110 enabled_channels = 0x3;
9111 break;
9112
9113 case V_028714_SPI_SHADER_32_AR:
9114 if (ctx->options->chip_class >= GFX10) {
9115 /* Special case: on GFX10, the outputs are different for 32_AR */
9116 enabled_channels = 0x3;
9117 values[1] = values[3];
9118 values[3] = Operand(v1);
9119 } else {
9120 enabled_channels = 0x9;
9121 }
9122 break;
9123
9124 case V_028714_SPI_SHADER_FP16_ABGR:
9125 enabled_channels = 0x5;
9126 compr_op = aco_opcode::v_cvt_pkrtz_f16_f32;
9127 break;
9128
9129 case V_028714_SPI_SHADER_UNORM16_ABGR:
9130 enabled_channels = 0x5;
9131 compr_op = aco_opcode::v_cvt_pknorm_u16_f32;
9132 break;
9133
9134 case V_028714_SPI_SHADER_SNORM16_ABGR:
9135 enabled_channels = 0x5;
9136 compr_op = aco_opcode::v_cvt_pknorm_i16_f32;
9137 break;
9138
9139 case V_028714_SPI_SHADER_UINT16_ABGR: {
9140 enabled_channels = 0x5;
9141 compr_op = aco_opcode::v_cvt_pk_u16_u32;
9142 if (is_int8 || is_int10) {
9143 /* clamp */
9144 uint32_t max_rgb = is_int8 ? 255 : is_int10 ? 1023 : 0;
9145 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
9146
9147 for (unsigned i = 0; i < 4; i++) {
9148 if ((write_mask >> i) & 1) {
9149 values[i] = bld.vop2(aco_opcode::v_min_u32, bld.def(v1),
9150 i == 3 && is_int10 ? Operand(3u) : Operand(max_rgb_val),
9151 values[i]);
9152 }
9153 }
9154 }
9155 break;
9156 }
9157
9158 case V_028714_SPI_SHADER_SINT16_ABGR:
9159 enabled_channels = 0x5;
9160 compr_op = aco_opcode::v_cvt_pk_i16_i32;
9161 if (is_int8 || is_int10) {
9162 /* clamp */
9163 uint32_t max_rgb = is_int8 ? 127 : is_int10 ? 511 : 0;
9164 uint32_t min_rgb = is_int8 ? -128 :is_int10 ? -512 : 0;
9165 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
9166 Temp min_rgb_val = bld.copy(bld.def(s1), Operand(min_rgb));
9167
9168 for (unsigned i = 0; i < 4; i++) {
9169 if ((write_mask >> i) & 1) {
9170 values[i] = bld.vop2(aco_opcode::v_min_i32, bld.def(v1),
9171 i == 3 && is_int10 ? Operand(1u) : Operand(max_rgb_val),
9172 values[i]);
9173 values[i] = bld.vop2(aco_opcode::v_max_i32, bld.def(v1),
9174 i == 3 && is_int10 ? Operand(-2u) : Operand(min_rgb_val),
9175 values[i]);
9176 }
9177 }
9178 }
9179 break;
9180
9181 case V_028714_SPI_SHADER_32_ABGR:
9182 enabled_channels = 0xF;
9183 break;
9184
9185 default:
9186 break;
9187 }
9188
9189 if (target == V_008DFC_SQ_EXP_NULL)
9190 return;
9191
9192 if ((bool) compr_op) {
9193 for (int i = 0; i < 2; i++) {
9194 /* check if at least one of the values to be compressed is enabled */
9195 unsigned enabled = (write_mask >> (i*2) | write_mask >> (i*2+1)) & 0x1;
9196 if (enabled) {
9197 enabled_channels |= enabled << (i*2);
9198 values[i] = bld.vop3(compr_op, bld.def(v1),
9199 values[i*2].isUndefined() ? Operand(0u) : values[i*2],
9200 values[i*2+1].isUndefined() ? Operand(0u): values[i*2+1]);
9201 } else {
9202 values[i] = Operand(v1);
9203 }
9204 }
9205 values[2] = Operand(v1);
9206 values[3] = Operand(v1);
9207 } else {
9208 for (int i = 0; i < 4; i++)
9209 values[i] = enabled_channels & (1 << i) ? values[i] : Operand(v1);
9210 }
9211
9212 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
9213 enabled_channels, target, (bool) compr_op);
9214 }
9215
9216 static void create_fs_exports(isel_context *ctx)
9217 {
9218 /* Export depth, stencil and sample mask. */
9219 if (ctx->outputs.mask[FRAG_RESULT_DEPTH] ||
9220 ctx->outputs.mask[FRAG_RESULT_STENCIL] ||
9221 ctx->outputs.mask[FRAG_RESULT_SAMPLE_MASK]) {
9222 export_fs_mrt_z(ctx);
9223 }
9224
9225 /* Export all color render targets. */
9226 for (unsigned i = FRAG_RESULT_DATA0; i < FRAG_RESULT_DATA7 + 1; ++i) {
9227 if (ctx->outputs.mask[i])
9228 export_fs_mrt_color(ctx, i);
9229 }
9230 }
9231
9232 static void write_tcs_tess_factors(isel_context *ctx)
9233 {
9234 unsigned outer_comps;
9235 unsigned inner_comps;
9236
9237 switch (ctx->args->options->key.tcs.primitive_mode) {
9238 case GL_ISOLINES:
9239 outer_comps = 2;
9240 inner_comps = 0;
9241 break;
9242 case GL_TRIANGLES:
9243 outer_comps = 3;
9244 inner_comps = 1;
9245 break;
9246 case GL_QUADS:
9247 outer_comps = 4;
9248 inner_comps = 2;
9249 break;
9250 default:
9251 return;
9252 }
9253
9254 const unsigned tess_index_inner = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_INNER);
9255 const unsigned tess_index_outer = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_OUTER);
9256
9257 Builder bld(ctx->program, ctx->block);
9258
9259 bld.barrier(aco_opcode::p_memory_barrier_shared);
9260 unsigned workgroup_size = ctx->tcs_num_patches * ctx->shader->info.tess.tcs_vertices_out;
9261 if (unlikely(ctx->program->chip_class != GFX6 && workgroup_size > ctx->program->wave_size))
9262 bld.sopp(aco_opcode::s_barrier);
9263
9264 Temp tcs_rel_ids = get_arg(ctx, ctx->args->ac.tcs_rel_ids);
9265 Temp invocation_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), tcs_rel_ids, Operand(8u), Operand(5u));
9266
9267 Temp invocation_id_is_zero = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), invocation_id);
9268 if_context ic_invocation_id_is_zero;
9269 begin_divergent_if_then(ctx, &ic_invocation_id_is_zero, invocation_id_is_zero);
9270 bld.reset(ctx->block);
9271
9272 Temp hs_ring_tess_factor = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_FACTOR * 16u));
9273
9274 std::pair<Temp, unsigned> lds_base = get_tcs_output_lds_offset(ctx);
9275 unsigned stride = inner_comps + outer_comps;
9276 Temp inner[4];
9277 Temp outer[4];
9278 Temp out[6];
9279 assert(inner_comps <= (sizeof(inner) / sizeof(Temp)));
9280 assert(outer_comps <= (sizeof(outer) / sizeof(Temp)));
9281 assert(stride <= (sizeof(out) / sizeof(Temp)));
9282
9283 if (ctx->args->options->key.tcs.primitive_mode == GL_ISOLINES) {
9284 // LINES reversal
9285 outer[0] = out[1] = load_lds(ctx, 4, bld.tmp(v1), lds_base.first, lds_base.second + tess_index_outer * 16 + 0 * 4, 4);
9286 outer[1] = out[0] = load_lds(ctx, 4, bld.tmp(v1), lds_base.first, lds_base.second + tess_index_outer * 16 + 1 * 4, 4);
9287 } else {
9288 for (unsigned i = 0; i < outer_comps; ++i)
9289 outer[i] = out[i] = load_lds(ctx, 4, bld.tmp(v1), lds_base.first, lds_base.second + tess_index_outer * 16 + i * 4, 4);
9290
9291 for (unsigned i = 0; i < inner_comps; ++i)
9292 inner[i] = out[outer_comps + i] = load_lds(ctx, 4, bld.tmp(v1), lds_base.first, lds_base.second + tess_index_inner * 16 + i * 4, 4);
9293 }
9294
9295 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
9296 Temp tf_base = get_arg(ctx, ctx->args->tess_factor_offset);
9297 Temp byte_offset = bld.v_mul_imm(bld.def(v1), rel_patch_id, stride * 4u);
9298 unsigned tf_const_offset = 0;
9299
9300 if (ctx->program->chip_class <= GFX8) {
9301 Temp rel_patch_id_is_zero = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), rel_patch_id);
9302 if_context ic_rel_patch_id_is_zero;
9303 begin_divergent_if_then(ctx, &ic_rel_patch_id_is_zero, rel_patch_id_is_zero);
9304 bld.reset(ctx->block);
9305
9306 /* Store the dynamic HS control word. */
9307 Temp control_word = bld.copy(bld.def(v1), Operand(0x80000000u));
9308 bld.mubuf(aco_opcode::buffer_store_dword,
9309 /* SRSRC */ hs_ring_tess_factor, /* VADDR */ Operand(v1), /* SOFFSET */ tf_base, /* VDATA */ control_word,
9310 /* immediate OFFSET */ 0, /* OFFEN */ false, /* idxen*/ false, /* addr64 */ false,
9311 /* disable_wqm */ false, /* glc */ true);
9312 tf_const_offset += 4;
9313
9314 begin_divergent_if_else(ctx, &ic_rel_patch_id_is_zero);
9315 end_divergent_if(ctx, &ic_rel_patch_id_is_zero);
9316 bld.reset(ctx->block);
9317 }
9318
9319 assert(stride == 2 || stride == 4 || stride == 6);
9320 Temp tf_vec = create_vec_from_array(ctx, out, stride, RegType::vgpr);
9321 store_vmem_mubuf(ctx, tf_vec, hs_ring_tess_factor, byte_offset, tf_base, tf_const_offset, 4, (1 << stride) - 1, true, false);
9322
9323 /* Store to offchip for TES to read - only if TES reads them */
9324 if (ctx->args->options->key.tcs.tes_reads_tess_factors) {
9325 Temp hs_ring_tess_offchip = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
9326 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
9327
9328 std::pair<Temp, unsigned> vmem_offs_outer = get_tcs_per_patch_output_vmem_offset(ctx, nullptr, tess_index_outer * 16);
9329 Temp outer_vec = create_vec_from_array(ctx, outer, outer_comps, RegType::vgpr);
9330 store_vmem_mubuf(ctx, outer_vec, hs_ring_tess_offchip, vmem_offs_outer.first, oc_lds, vmem_offs_outer.second, 4, (1 << outer_comps) - 1, true, false);
9331
9332 if (likely(inner_comps)) {
9333 std::pair<Temp, unsigned> vmem_offs_inner = get_tcs_per_patch_output_vmem_offset(ctx, nullptr, tess_index_inner * 16);
9334 Temp inner_vec = create_vec_from_array(ctx, inner, inner_comps, RegType::vgpr);
9335 store_vmem_mubuf(ctx, inner_vec, hs_ring_tess_offchip, vmem_offs_inner.first, oc_lds, vmem_offs_inner.second, 4, (1 << inner_comps) - 1, true, false);
9336 }
9337 }
9338
9339 begin_divergent_if_else(ctx, &ic_invocation_id_is_zero);
9340 end_divergent_if(ctx, &ic_invocation_id_is_zero);
9341 }
9342
9343 static void emit_stream_output(isel_context *ctx,
9344 Temp const *so_buffers,
9345 Temp const *so_write_offset,
9346 const struct radv_stream_output *output)
9347 {
9348 unsigned num_comps = util_bitcount(output->component_mask);
9349 unsigned writemask = (1 << num_comps) - 1;
9350 unsigned loc = output->location;
9351 unsigned buf = output->buffer;
9352
9353 assert(num_comps && num_comps <= 4);
9354 if (!num_comps || num_comps > 4)
9355 return;
9356
9357 unsigned start = ffs(output->component_mask) - 1;
9358
9359 Temp out[4];
9360 bool all_undef = true;
9361 assert(ctx->stage == vertex_vs || ctx->stage == gs_copy_vs);
9362 for (unsigned i = 0; i < num_comps; i++) {
9363 out[i] = ctx->outputs.outputs[loc][start + i];
9364 all_undef = all_undef && !out[i].id();
9365 }
9366 if (all_undef)
9367 return;
9368
9369 while (writemask) {
9370 int start, count;
9371 u_bit_scan_consecutive_range(&writemask, &start, &count);
9372 if (count == 3 && ctx->options->chip_class == GFX6) {
9373 /* GFX6 doesn't support storing vec3, split it. */
9374 writemask |= 1u << (start + 2);
9375 count = 2;
9376 }
9377
9378 unsigned offset = output->offset + start * 4;
9379
9380 Temp write_data = {ctx->program->allocateId(), RegClass(RegType::vgpr, count)};
9381 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
9382 for (int i = 0; i < count; ++i)
9383 vec->operands[i] = (ctx->outputs.mask[loc] & 1 << (start + i)) ? Operand(out[start + i]) : Operand(0u);
9384 vec->definitions[0] = Definition(write_data);
9385 ctx->block->instructions.emplace_back(std::move(vec));
9386
9387 aco_opcode opcode;
9388 switch (count) {
9389 case 1:
9390 opcode = aco_opcode::buffer_store_dword;
9391 break;
9392 case 2:
9393 opcode = aco_opcode::buffer_store_dwordx2;
9394 break;
9395 case 3:
9396 opcode = aco_opcode::buffer_store_dwordx3;
9397 break;
9398 case 4:
9399 opcode = aco_opcode::buffer_store_dwordx4;
9400 break;
9401 default:
9402 unreachable("Unsupported dword count.");
9403 }
9404
9405 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
9406 store->operands[0] = Operand(so_buffers[buf]);
9407 store->operands[1] = Operand(so_write_offset[buf]);
9408 store->operands[2] = Operand((uint32_t) 0);
9409 store->operands[3] = Operand(write_data);
9410 if (offset > 4095) {
9411 /* Don't think this can happen in RADV, but maybe GL? It's easy to do this anyway. */
9412 Builder bld(ctx->program, ctx->block);
9413 store->operands[0] = bld.vadd32(bld.def(v1), Operand(offset), Operand(so_write_offset[buf]));
9414 } else {
9415 store->offset = offset;
9416 }
9417 store->offen = true;
9418 store->glc = true;
9419 store->dlc = false;
9420 store->slc = true;
9421 store->can_reorder = true;
9422 ctx->block->instructions.emplace_back(std::move(store));
9423 }
9424 }
9425
9426 static void emit_streamout(isel_context *ctx, unsigned stream)
9427 {
9428 Builder bld(ctx->program, ctx->block);
9429
9430 Temp so_buffers[4];
9431 Temp buf_ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->streamout_buffers));
9432 for (unsigned i = 0; i < 4; i++) {
9433 unsigned stride = ctx->program->info->so.strides[i];
9434 if (!stride)
9435 continue;
9436
9437 Operand off = bld.copy(bld.def(s1), Operand(i * 16u));
9438 so_buffers[i] = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), buf_ptr, off);
9439 }
9440
9441 Temp so_vtx_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
9442 get_arg(ctx, ctx->args->streamout_config), Operand(0x70010u));
9443
9444 Temp tid = emit_mbcnt(ctx, bld.def(v1));
9445
9446 Temp can_emit = bld.vopc(aco_opcode::v_cmp_gt_i32, bld.def(bld.lm), so_vtx_count, tid);
9447
9448 if_context ic;
9449 begin_divergent_if_then(ctx, &ic, can_emit);
9450
9451 bld.reset(ctx->block);
9452
9453 Temp so_write_index = bld.vadd32(bld.def(v1), get_arg(ctx, ctx->args->streamout_write_idx), tid);
9454
9455 Temp so_write_offset[4];
9456
9457 for (unsigned i = 0; i < 4; i++) {
9458 unsigned stride = ctx->program->info->so.strides[i];
9459 if (!stride)
9460 continue;
9461
9462 if (stride == 1) {
9463 Temp offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
9464 get_arg(ctx, ctx->args->streamout_write_idx),
9465 get_arg(ctx, ctx->args->streamout_offset[i]));
9466 Temp new_offset = bld.vadd32(bld.def(v1), offset, tid);
9467
9468 so_write_offset[i] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), new_offset);
9469 } else {
9470 Temp offset = bld.v_mul_imm(bld.def(v1), so_write_index, stride * 4u);
9471 Temp offset2 = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(4u),
9472 get_arg(ctx, ctx->args->streamout_offset[i]));
9473 so_write_offset[i] = bld.vadd32(bld.def(v1), offset, offset2);
9474 }
9475 }
9476
9477 for (unsigned i = 0; i < ctx->program->info->so.num_outputs; i++) {
9478 struct radv_stream_output *output =
9479 &ctx->program->info->so.outputs[i];
9480 if (stream != output->stream)
9481 continue;
9482
9483 emit_stream_output(ctx, so_buffers, so_write_offset, output);
9484 }
9485
9486 begin_divergent_if_else(ctx, &ic);
9487 end_divergent_if(ctx, &ic);
9488 }
9489
9490 } /* end namespace */
9491
9492 void fix_ls_vgpr_init_bug(isel_context *ctx, Pseudo_instruction *startpgm)
9493 {
9494 assert(ctx->shader->info.stage == MESA_SHADER_VERTEX);
9495 Builder bld(ctx->program, ctx->block);
9496 constexpr unsigned hs_idx = 1u;
9497 Builder::Result hs_thread_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
9498 get_arg(ctx, ctx->args->merged_wave_info),
9499 Operand((8u << 16) | (hs_idx * 8u)));
9500 Temp ls_has_nonzero_hs_threads = bool_to_vector_condition(ctx, hs_thread_count.def(1).getTemp());
9501
9502 /* If there are no HS threads, SPI mistakenly loads the LS VGPRs starting at VGPR 0. */
9503
9504 Temp instance_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
9505 get_arg(ctx, ctx->args->ac.instance_id),
9506 get_arg(ctx, ctx->args->rel_auto_id),
9507 ls_has_nonzero_hs_threads);
9508 Temp rel_auto_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
9509 get_arg(ctx, ctx->args->rel_auto_id),
9510 get_arg(ctx, ctx->args->ac.tcs_rel_ids),
9511 ls_has_nonzero_hs_threads);
9512 Temp vertex_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
9513 get_arg(ctx, ctx->args->ac.vertex_id),
9514 get_arg(ctx, ctx->args->ac.tcs_patch_id),
9515 ls_has_nonzero_hs_threads);
9516
9517 ctx->arg_temps[ctx->args->ac.instance_id.arg_index] = instance_id;
9518 ctx->arg_temps[ctx->args->rel_auto_id.arg_index] = rel_auto_id;
9519 ctx->arg_temps[ctx->args->ac.vertex_id.arg_index] = vertex_id;
9520 }
9521
9522 void split_arguments(isel_context *ctx, Pseudo_instruction *startpgm)
9523 {
9524 /* Split all arguments except for the first (ring_offsets) and the last
9525 * (exec) so that the dead channels don't stay live throughout the program.
9526 */
9527 for (int i = 1; i < startpgm->definitions.size() - 1; i++) {
9528 if (startpgm->definitions[i].regClass().size() > 1) {
9529 emit_split_vector(ctx, startpgm->definitions[i].getTemp(),
9530 startpgm->definitions[i].regClass().size());
9531 }
9532 }
9533 }
9534
9535 void handle_bc_optimize(isel_context *ctx)
9536 {
9537 /* needed when SPI_PS_IN_CONTROL.BC_OPTIMIZE_DISABLE is set to 0 */
9538 Builder bld(ctx->program, ctx->block);
9539 uint32_t spi_ps_input_ena = ctx->program->config->spi_ps_input_ena;
9540 bool uses_center = G_0286CC_PERSP_CENTER_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTER_ENA(spi_ps_input_ena);
9541 bool uses_centroid = G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena);
9542 ctx->persp_centroid = get_arg(ctx, ctx->args->ac.persp_centroid);
9543 ctx->linear_centroid = get_arg(ctx, ctx->args->ac.linear_centroid);
9544 if (uses_center && uses_centroid) {
9545 Temp sel = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)),
9546 get_arg(ctx, ctx->args->ac.prim_mask), Operand(0u));
9547
9548 if (G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena)) {
9549 Temp new_coord[2];
9550 for (unsigned i = 0; i < 2; i++) {
9551 Temp persp_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_centroid), i, v1);
9552 Temp persp_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_center), i, v1);
9553 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
9554 persp_centroid, persp_center, sel);
9555 }
9556 ctx->persp_centroid = bld.tmp(v2);
9557 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->persp_centroid),
9558 Operand(new_coord[0]), Operand(new_coord[1]));
9559 emit_split_vector(ctx, ctx->persp_centroid, 2);
9560 }
9561
9562 if (G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena)) {
9563 Temp new_coord[2];
9564 for (unsigned i = 0; i < 2; i++) {
9565 Temp linear_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_centroid), i, v1);
9566 Temp linear_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_center), i, v1);
9567 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
9568 linear_centroid, linear_center, sel);
9569 }
9570 ctx->linear_centroid = bld.tmp(v2);
9571 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->linear_centroid),
9572 Operand(new_coord[0]), Operand(new_coord[1]));
9573 emit_split_vector(ctx, ctx->linear_centroid, 2);
9574 }
9575 }
9576 }
9577
9578 void setup_fp_mode(isel_context *ctx, nir_shader *shader)
9579 {
9580 Program *program = ctx->program;
9581
9582 unsigned float_controls = shader->info.float_controls_execution_mode;
9583
9584 program->next_fp_mode.preserve_signed_zero_inf_nan32 =
9585 float_controls & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32;
9586 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 =
9587 float_controls & (FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16 |
9588 FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64);
9589
9590 program->next_fp_mode.must_flush_denorms32 =
9591 float_controls & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32;
9592 program->next_fp_mode.must_flush_denorms16_64 =
9593 float_controls & (FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 |
9594 FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64);
9595
9596 program->next_fp_mode.care_about_round32 =
9597 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32);
9598
9599 program->next_fp_mode.care_about_round16_64 =
9600 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64 |
9601 FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
9602
9603 /* default to preserving fp16 and fp64 denorms, since it's free */
9604 if (program->next_fp_mode.must_flush_denorms16_64)
9605 program->next_fp_mode.denorm16_64 = 0;
9606 else
9607 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
9608
9609 /* preserving fp32 denorms is expensive, so only do it if asked */
9610 if (float_controls & FLOAT_CONTROLS_DENORM_PRESERVE_FP32)
9611 program->next_fp_mode.denorm32 = fp_denorm_keep;
9612 else
9613 program->next_fp_mode.denorm32 = 0;
9614
9615 if (float_controls & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32)
9616 program->next_fp_mode.round32 = fp_round_tz;
9617 else
9618 program->next_fp_mode.round32 = fp_round_ne;
9619
9620 if (float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64))
9621 program->next_fp_mode.round16_64 = fp_round_tz;
9622 else
9623 program->next_fp_mode.round16_64 = fp_round_ne;
9624
9625 ctx->block->fp_mode = program->next_fp_mode;
9626 }
9627
9628 void cleanup_cfg(Program *program)
9629 {
9630 /* create linear_succs/logical_succs */
9631 for (Block& BB : program->blocks) {
9632 for (unsigned idx : BB.linear_preds)
9633 program->blocks[idx].linear_succs.emplace_back(BB.index);
9634 for (unsigned idx : BB.logical_preds)
9635 program->blocks[idx].logical_succs.emplace_back(BB.index);
9636 }
9637 }
9638
9639 void select_program(Program *program,
9640 unsigned shader_count,
9641 struct nir_shader *const *shaders,
9642 ac_shader_config* config,
9643 struct radv_shader_args *args)
9644 {
9645 isel_context ctx = setup_isel_context(program, shader_count, shaders, config, args, false);
9646
9647 for (unsigned i = 0; i < shader_count; i++) {
9648 nir_shader *nir = shaders[i];
9649 init_context(&ctx, nir);
9650
9651 setup_fp_mode(&ctx, nir);
9652
9653 if (!i) {
9654 /* needs to be after init_context() for FS */
9655 Pseudo_instruction *startpgm = add_startpgm(&ctx);
9656 append_logical_start(ctx.block);
9657
9658 if (unlikely(args->options->has_ls_vgpr_init_bug && ctx.stage == vertex_tess_control_hs))
9659 fix_ls_vgpr_init_bug(&ctx, startpgm);
9660
9661 split_arguments(&ctx, startpgm);
9662 }
9663
9664 /* In a merged VS+TCS HS, the VS implementation can be completely empty. */
9665 nir_function_impl *func = nir_shader_get_entrypoint(nir);
9666 bool empty_shader = nir_cf_list_is_empty_block(&func->body) &&
9667 ((nir->info.stage == MESA_SHADER_VERTEX &&
9668 (ctx.stage == vertex_tess_control_hs || ctx.stage == vertex_geometry_gs)) ||
9669 (nir->info.stage == MESA_SHADER_TESS_EVAL &&
9670 ctx.stage == tess_eval_geometry_gs));
9671
9672 if_context ic;
9673 if (shader_count >= 2 && !empty_shader) {
9674 Builder bld(ctx.program, ctx.block);
9675 Temp count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(&ctx, args->merged_wave_info), Operand((8u << 16) | (i * 8u)));
9676 Temp thread_id = emit_mbcnt(&ctx, bld.def(v1));
9677 Temp cond = bld.vopc(aco_opcode::v_cmp_gt_u32, bld.hint_vcc(bld.def(bld.lm)), count, thread_id);
9678
9679 begin_divergent_if_then(&ctx, &ic, cond);
9680 }
9681
9682 if (i) {
9683 Builder bld(ctx.program, ctx.block);
9684
9685 bld.barrier(aco_opcode::p_memory_barrier_shared);
9686 bld.sopp(aco_opcode::s_barrier);
9687
9688 if (ctx.stage == vertex_geometry_gs || ctx.stage == tess_eval_geometry_gs) {
9689 ctx.gs_wave_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1, m0), bld.def(s1, scc), get_arg(&ctx, args->merged_wave_info), Operand((8u << 16) | 16u));
9690 }
9691 } else if (ctx.stage == geometry_gs)
9692 ctx.gs_wave_id = get_arg(&ctx, args->gs_wave_id);
9693
9694 if (ctx.stage == fragment_fs)
9695 handle_bc_optimize(&ctx);
9696
9697 visit_cf_list(&ctx, &func->body);
9698
9699 if (ctx.program->info->so.num_outputs && (ctx.stage == vertex_vs || ctx.stage == tess_eval_vs))
9700 emit_streamout(&ctx, 0);
9701
9702 if (ctx.stage == vertex_vs || ctx.stage == tess_eval_vs) {
9703 create_vs_exports(&ctx);
9704 } else if (nir->info.stage == MESA_SHADER_GEOMETRY) {
9705 Builder bld(ctx.program, ctx.block);
9706 bld.barrier(aco_opcode::p_memory_barrier_gs_data);
9707 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx.gs_wave_id), -1, sendmsg_gs_done(false, false, 0));
9708 } else if (nir->info.stage == MESA_SHADER_TESS_CTRL) {
9709 write_tcs_tess_factors(&ctx);
9710 }
9711
9712 if (ctx.stage == fragment_fs)
9713 create_fs_exports(&ctx);
9714
9715 if (shader_count >= 2 && !empty_shader) {
9716 begin_divergent_if_else(&ctx, &ic);
9717 end_divergent_if(&ctx, &ic);
9718 }
9719
9720 ralloc_free(ctx.divergent_vals);
9721 }
9722
9723 program->config->float_mode = program->blocks[0].fp_mode.val;
9724
9725 append_logical_end(ctx.block);
9726 ctx.block->kind |= block_kind_uniform | block_kind_export_end;
9727 Builder bld(ctx.program, ctx.block);
9728 if (ctx.program->wb_smem_l1_on_end)
9729 bld.smem(aco_opcode::s_dcache_wb, false);
9730 bld.sopp(aco_opcode::s_endpgm);
9731
9732 cleanup_cfg(program);
9733 }
9734
9735 void select_gs_copy_shader(Program *program, struct nir_shader *gs_shader,
9736 ac_shader_config* config,
9737 struct radv_shader_args *args)
9738 {
9739 isel_context ctx = setup_isel_context(program, 1, &gs_shader, config, args, true);
9740
9741 program->next_fp_mode.preserve_signed_zero_inf_nan32 = false;
9742 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 = false;
9743 program->next_fp_mode.must_flush_denorms32 = false;
9744 program->next_fp_mode.must_flush_denorms16_64 = false;
9745 program->next_fp_mode.care_about_round32 = false;
9746 program->next_fp_mode.care_about_round16_64 = false;
9747 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
9748 program->next_fp_mode.denorm32 = 0;
9749 program->next_fp_mode.round32 = fp_round_ne;
9750 program->next_fp_mode.round16_64 = fp_round_ne;
9751 ctx.block->fp_mode = program->next_fp_mode;
9752
9753 add_startpgm(&ctx);
9754 append_logical_start(ctx.block);
9755
9756 Builder bld(ctx.program, ctx.block);
9757
9758 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), program->private_segment_buffer, Operand(RING_GSVS_VS * 16u));
9759
9760 Operand stream_id(0u);
9761 if (args->shader_info->so.num_outputs)
9762 stream_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
9763 get_arg(&ctx, ctx.args->streamout_config), Operand(0x20018u));
9764
9765 Temp vtx_offset = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), get_arg(&ctx, ctx.args->ac.vertex_id));
9766
9767 std::stack<Block> endif_blocks;
9768
9769 for (unsigned stream = 0; stream < 4; stream++) {
9770 if (stream_id.isConstant() && stream != stream_id.constantValue())
9771 continue;
9772
9773 unsigned num_components = args->shader_info->gs.num_stream_output_components[stream];
9774 if (stream > 0 && (!num_components || !args->shader_info->so.num_outputs))
9775 continue;
9776
9777 memset(ctx.outputs.mask, 0, sizeof(ctx.outputs.mask));
9778
9779 unsigned BB_if_idx = ctx.block->index;
9780 Block BB_endif = Block();
9781 if (!stream_id.isConstant()) {
9782 /* begin IF */
9783 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), stream_id, Operand(stream));
9784 append_logical_end(ctx.block);
9785 ctx.block->kind |= block_kind_uniform;
9786 bld.branch(aco_opcode::p_cbranch_z, cond);
9787
9788 BB_endif.kind |= ctx.block->kind & block_kind_top_level;
9789
9790 ctx.block = ctx.program->create_and_insert_block();
9791 add_edge(BB_if_idx, ctx.block);
9792 bld.reset(ctx.block);
9793 append_logical_start(ctx.block);
9794 }
9795
9796 unsigned offset = 0;
9797 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
9798 if (args->shader_info->gs.output_streams[i] != stream)
9799 continue;
9800
9801 unsigned output_usage_mask = args->shader_info->gs.output_usage_mask[i];
9802 unsigned length = util_last_bit(output_usage_mask);
9803 for (unsigned j = 0; j < length; ++j) {
9804 if (!(output_usage_mask & (1 << j)))
9805 continue;
9806
9807 unsigned const_offset = offset * args->shader_info->gs.vertices_out * 16 * 4;
9808 Temp voffset = vtx_offset;
9809 if (const_offset >= 4096u) {
9810 voffset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), voffset);
9811 const_offset %= 4096u;
9812 }
9813
9814 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dword, Format::MUBUF, 3, 1)};
9815 mubuf->definitions[0] = bld.def(v1);
9816 mubuf->operands[0] = Operand(gsvs_ring);
9817 mubuf->operands[1] = Operand(voffset);
9818 mubuf->operands[2] = Operand(0u);
9819 mubuf->offen = true;
9820 mubuf->offset = const_offset;
9821 mubuf->glc = true;
9822 mubuf->slc = true;
9823 mubuf->dlc = args->options->chip_class >= GFX10;
9824 mubuf->barrier = barrier_none;
9825 mubuf->can_reorder = true;
9826
9827 ctx.outputs.mask[i] |= 1 << j;
9828 ctx.outputs.outputs[i][j] = mubuf->definitions[0].getTemp();
9829
9830 bld.insert(std::move(mubuf));
9831
9832 offset++;
9833 }
9834 }
9835
9836 if (args->shader_info->so.num_outputs) {
9837 emit_streamout(&ctx, stream);
9838 bld.reset(ctx.block);
9839 }
9840
9841 if (stream == 0) {
9842 create_vs_exports(&ctx);
9843 ctx.block->kind |= block_kind_export_end;
9844 }
9845
9846 if (!stream_id.isConstant()) {
9847 append_logical_end(ctx.block);
9848
9849 /* branch from then block to endif block */
9850 bld.branch(aco_opcode::p_branch);
9851 add_edge(ctx.block->index, &BB_endif);
9852 ctx.block->kind |= block_kind_uniform;
9853
9854 /* emit else block */
9855 ctx.block = ctx.program->create_and_insert_block();
9856 add_edge(BB_if_idx, ctx.block);
9857 bld.reset(ctx.block);
9858 append_logical_start(ctx.block);
9859
9860 endif_blocks.push(std::move(BB_endif));
9861 }
9862 }
9863
9864 while (!endif_blocks.empty()) {
9865 Block BB_endif = std::move(endif_blocks.top());
9866 endif_blocks.pop();
9867
9868 Block *BB_else = ctx.block;
9869
9870 append_logical_end(BB_else);
9871 /* branch from else block to endif block */
9872 bld.branch(aco_opcode::p_branch);
9873 add_edge(BB_else->index, &BB_endif);
9874 BB_else->kind |= block_kind_uniform;
9875
9876 /** emit endif merge block */
9877 ctx.block = program->insert_block(std::move(BB_endif));
9878 bld.reset(ctx.block);
9879 append_logical_start(ctx.block);
9880 }
9881
9882 program->config->float_mode = program->blocks[0].fp_mode.val;
9883
9884 append_logical_end(ctx.block);
9885 ctx.block->kind |= block_kind_uniform;
9886 bld.sopp(aco_opcode::s_endpgm);
9887
9888 cleanup_cfg(program);
9889 }
9890 }