aco: Use mesa shader stage when loading inputs.
[mesa.git] / src / amd / compiler / aco_instruction_selection.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 * Copyright © 2018 Google
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <algorithm>
27 #include <array>
28 #include <stack>
29 #include <map>
30
31 #include "ac_shader_util.h"
32 #include "aco_ir.h"
33 #include "aco_builder.h"
34 #include "aco_interface.h"
35 #include "aco_instruction_selection_setup.cpp"
36 #include "util/fast_idiv_by_const.h"
37
38 namespace aco {
39 namespace {
40
41 class loop_info_RAII {
42 isel_context* ctx;
43 unsigned header_idx_old;
44 Block* exit_old;
45 bool divergent_cont_old;
46 bool divergent_branch_old;
47 bool divergent_if_old;
48
49 public:
50 loop_info_RAII(isel_context* ctx, unsigned loop_header_idx, Block* loop_exit)
51 : ctx(ctx),
52 header_idx_old(ctx->cf_info.parent_loop.header_idx), exit_old(ctx->cf_info.parent_loop.exit),
53 divergent_cont_old(ctx->cf_info.parent_loop.has_divergent_continue),
54 divergent_branch_old(ctx->cf_info.parent_loop.has_divergent_branch),
55 divergent_if_old(ctx->cf_info.parent_if.is_divergent)
56 {
57 ctx->cf_info.parent_loop.header_idx = loop_header_idx;
58 ctx->cf_info.parent_loop.exit = loop_exit;
59 ctx->cf_info.parent_loop.has_divergent_continue = false;
60 ctx->cf_info.parent_loop.has_divergent_branch = false;
61 ctx->cf_info.parent_if.is_divergent = false;
62 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
63 }
64
65 ~loop_info_RAII()
66 {
67 ctx->cf_info.parent_loop.header_idx = header_idx_old;
68 ctx->cf_info.parent_loop.exit = exit_old;
69 ctx->cf_info.parent_loop.has_divergent_continue = divergent_cont_old;
70 ctx->cf_info.parent_loop.has_divergent_branch = divergent_branch_old;
71 ctx->cf_info.parent_if.is_divergent = divergent_if_old;
72 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth - 1;
73 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent)
74 ctx->cf_info.exec_potentially_empty_discard = false;
75 }
76 };
77
78 struct if_context {
79 Temp cond;
80
81 bool divergent_old;
82 bool exec_potentially_empty_discard_old;
83 bool exec_potentially_empty_break_old;
84 uint16_t exec_potentially_empty_break_depth_old;
85
86 unsigned BB_if_idx;
87 unsigned invert_idx;
88 bool then_branch_divergent;
89 Block BB_invert;
90 Block BB_endif;
91 };
92
93 static void visit_cf_list(struct isel_context *ctx,
94 struct exec_list *list);
95
96 static void add_logical_edge(unsigned pred_idx, Block *succ)
97 {
98 succ->logical_preds.emplace_back(pred_idx);
99 }
100
101
102 static void add_linear_edge(unsigned pred_idx, Block *succ)
103 {
104 succ->linear_preds.emplace_back(pred_idx);
105 }
106
107 static void add_edge(unsigned pred_idx, Block *succ)
108 {
109 add_logical_edge(pred_idx, succ);
110 add_linear_edge(pred_idx, succ);
111 }
112
113 static void append_logical_start(Block *b)
114 {
115 Builder(NULL, b).pseudo(aco_opcode::p_logical_start);
116 }
117
118 static void append_logical_end(Block *b)
119 {
120 Builder(NULL, b).pseudo(aco_opcode::p_logical_end);
121 }
122
123 Temp get_ssa_temp(struct isel_context *ctx, nir_ssa_def *def)
124 {
125 assert(ctx->allocated[def->index].id());
126 return ctx->allocated[def->index];
127 }
128
129 Temp emit_mbcnt(isel_context *ctx, Definition dst,
130 Operand mask_lo = Operand((uint32_t) -1), Operand mask_hi = Operand((uint32_t) -1))
131 {
132 Builder bld(ctx->program, ctx->block);
133 Definition lo_def = ctx->program->wave_size == 32 ? dst : bld.def(v1);
134 Temp thread_id_lo = bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, lo_def, mask_lo, Operand(0u));
135
136 if (ctx->program->wave_size == 32) {
137 return thread_id_lo;
138 } else {
139 Temp thread_id_hi = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32, dst, mask_hi, thread_id_lo);
140 return thread_id_hi;
141 }
142 }
143
144 Temp emit_wqm(isel_context *ctx, Temp src, Temp dst=Temp(0, s1), bool program_needs_wqm = false)
145 {
146 Builder bld(ctx->program, ctx->block);
147
148 if (!dst.id())
149 dst = bld.tmp(src.regClass());
150
151 assert(src.size() == dst.size());
152
153 if (ctx->stage != fragment_fs) {
154 if (!dst.id())
155 return src;
156
157 bld.copy(Definition(dst), src);
158 return dst;
159 }
160
161 bld.pseudo(aco_opcode::p_wqm, Definition(dst), src);
162 ctx->program->needs_wqm |= program_needs_wqm;
163 return dst;
164 }
165
166 static Temp emit_bpermute(isel_context *ctx, Builder &bld, Temp index, Temp data)
167 {
168 if (index.regClass() == s1)
169 return bld.readlane(bld.def(s1), data, index);
170
171 Temp index_x4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), index);
172
173 /* Currently not implemented on GFX6-7 */
174 assert(ctx->options->chip_class >= GFX8);
175
176 if (ctx->options->chip_class <= GFX9 || ctx->program->wave_size == 32) {
177 return bld.ds(aco_opcode::ds_bpermute_b32, bld.def(v1), index_x4, data);
178 }
179
180 /* GFX10, wave64 mode:
181 * The bpermute instruction is limited to half-wave operation, which means that it can't
182 * properly support subgroup shuffle like older generations (or wave32 mode), so we
183 * emulate it here.
184 */
185 if (!ctx->has_gfx10_wave64_bpermute) {
186 ctx->has_gfx10_wave64_bpermute = true;
187 ctx->program->config->num_shared_vgprs = 8; /* Shared VGPRs are allocated in groups of 8 */
188 ctx->program->vgpr_limit -= 4; /* We allocate 8 shared VGPRs, so we'll have 4 fewer normal VGPRs */
189 }
190
191 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
192 Temp lane_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), lane_id);
193 Temp index_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), index);
194 Temp cmp = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm, vcc), lane_is_hi, index_is_hi);
195
196 return bld.reduction(aco_opcode::p_wave64_bpermute, bld.def(v1), bld.def(s2), bld.def(s1, scc),
197 bld.vcc(cmp), Operand(v2.as_linear()), index_x4, data, gfx10_wave64_bpermute);
198 }
199
200 Temp as_vgpr(isel_context *ctx, Temp val)
201 {
202 if (val.type() == RegType::sgpr) {
203 Builder bld(ctx->program, ctx->block);
204 return bld.copy(bld.def(RegType::vgpr, val.size()), val);
205 }
206 assert(val.type() == RegType::vgpr);
207 return val;
208 }
209
210 //assumes a != 0xffffffff
211 void emit_v_div_u32(isel_context *ctx, Temp dst, Temp a, uint32_t b)
212 {
213 assert(b != 0);
214 Builder bld(ctx->program, ctx->block);
215
216 if (util_is_power_of_two_or_zero(b)) {
217 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)util_logbase2(b)), a);
218 return;
219 }
220
221 util_fast_udiv_info info = util_compute_fast_udiv_info(b, 32, 32);
222
223 assert(info.multiplier <= 0xffffffff);
224
225 bool pre_shift = info.pre_shift != 0;
226 bool increment = info.increment != 0;
227 bool multiply = true;
228 bool post_shift = info.post_shift != 0;
229
230 if (!pre_shift && !increment && !multiply && !post_shift) {
231 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), a);
232 return;
233 }
234
235 Temp pre_shift_dst = a;
236 if (pre_shift) {
237 pre_shift_dst = (increment || multiply || post_shift) ? bld.tmp(v1) : dst;
238 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(pre_shift_dst), Operand((uint32_t)info.pre_shift), a);
239 }
240
241 Temp increment_dst = pre_shift_dst;
242 if (increment) {
243 increment_dst = (post_shift || multiply) ? bld.tmp(v1) : dst;
244 bld.vadd32(Definition(increment_dst), Operand((uint32_t) info.increment), pre_shift_dst);
245 }
246
247 Temp multiply_dst = increment_dst;
248 if (multiply) {
249 multiply_dst = post_shift ? bld.tmp(v1) : dst;
250 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(multiply_dst), increment_dst,
251 bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand((uint32_t)info.multiplier)));
252 }
253
254 if (post_shift) {
255 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)info.post_shift), multiply_dst);
256 }
257 }
258
259 void emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, Temp dst)
260 {
261 Builder bld(ctx->program, ctx->block);
262 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(idx));
263 }
264
265
266 Temp emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, RegClass dst_rc)
267 {
268 /* no need to extract the whole vector */
269 if (src.regClass() == dst_rc) {
270 assert(idx == 0);
271 return src;
272 }
273 assert(src.size() > idx);
274 Builder bld(ctx->program, ctx->block);
275 auto it = ctx->allocated_vec.find(src.id());
276 /* the size check needs to be early because elements other than 0 may be garbage */
277 if (it != ctx->allocated_vec.end() && it->second[0].size() == dst_rc.size()) {
278 if (it->second[idx].regClass() == dst_rc) {
279 return it->second[idx];
280 } else {
281 assert(dst_rc.size() == it->second[idx].regClass().size());
282 assert(dst_rc.type() == RegType::vgpr && it->second[idx].type() == RegType::sgpr);
283 return bld.copy(bld.def(dst_rc), it->second[idx]);
284 }
285 }
286
287 if (src.size() == dst_rc.size()) {
288 assert(idx == 0);
289 return bld.copy(bld.def(dst_rc), src);
290 } else {
291 Temp dst = bld.tmp(dst_rc);
292 emit_extract_vector(ctx, src, idx, dst);
293 return dst;
294 }
295 }
296
297 void emit_split_vector(isel_context* ctx, Temp vec_src, unsigned num_components)
298 {
299 if (num_components == 1)
300 return;
301 if (ctx->allocated_vec.find(vec_src.id()) != ctx->allocated_vec.end())
302 return;
303 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_components)};
304 split->operands[0] = Operand(vec_src);
305 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
306 for (unsigned i = 0; i < num_components; i++) {
307 elems[i] = {ctx->program->allocateId(), RegClass(vec_src.type(), vec_src.size() / num_components)};
308 split->definitions[i] = Definition(elems[i]);
309 }
310 ctx->block->instructions.emplace_back(std::move(split));
311 ctx->allocated_vec.emplace(vec_src.id(), elems);
312 }
313
314 /* This vector expansion uses a mask to determine which elements in the new vector
315 * come from the original vector. The other elements are undefined. */
316 void expand_vector(isel_context* ctx, Temp vec_src, Temp dst, unsigned num_components, unsigned mask)
317 {
318 emit_split_vector(ctx, vec_src, util_bitcount(mask));
319
320 if (vec_src == dst)
321 return;
322
323 Builder bld(ctx->program, ctx->block);
324 if (num_components == 1) {
325 if (dst.type() == RegType::sgpr)
326 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec_src);
327 else
328 bld.copy(Definition(dst), vec_src);
329 return;
330 }
331
332 unsigned component_size = dst.size() / num_components;
333 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
334
335 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
336 vec->definitions[0] = Definition(dst);
337 unsigned k = 0;
338 for (unsigned i = 0; i < num_components; i++) {
339 if (mask & (1 << i)) {
340 Temp src = emit_extract_vector(ctx, vec_src, k++, RegClass(vec_src.type(), component_size));
341 if (dst.type() == RegType::sgpr)
342 src = bld.as_uniform(src);
343 vec->operands[i] = Operand(src);
344 } else {
345 vec->operands[i] = Operand(0u);
346 }
347 elems[i] = vec->operands[i].getTemp();
348 }
349 ctx->block->instructions.emplace_back(std::move(vec));
350 ctx->allocated_vec.emplace(dst.id(), elems);
351 }
352
353 Temp bool_to_vector_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s2))
354 {
355 Builder bld(ctx->program, ctx->block);
356 if (!dst.id())
357 dst = bld.tmp(bld.lm);
358
359 assert(val.regClass() == s1);
360 assert(dst.regClass() == bld.lm);
361
362 return bld.sop2(Builder::s_cselect, Definition(dst), Operand((uint32_t) -1), Operand(0u), bld.scc(val));
363 }
364
365 Temp bool_to_scalar_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s1))
366 {
367 Builder bld(ctx->program, ctx->block);
368 if (!dst.id())
369 dst = bld.tmp(s1);
370
371 assert(val.regClass() == bld.lm);
372 assert(dst.regClass() == s1);
373
374 /* if we're currently in WQM mode, ensure that the source is also computed in WQM */
375 Temp tmp = bld.tmp(s1);
376 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.scc(Definition(tmp)), val, Operand(exec, bld.lm));
377 return emit_wqm(ctx, tmp, dst);
378 }
379
380 Temp get_alu_src(struct isel_context *ctx, nir_alu_src src, unsigned size=1)
381 {
382 if (src.src.ssa->num_components == 1 && src.swizzle[0] == 0 && size == 1)
383 return get_ssa_temp(ctx, src.src.ssa);
384
385 if (src.src.ssa->num_components == size) {
386 bool identity_swizzle = true;
387 for (unsigned i = 0; identity_swizzle && i < size; i++) {
388 if (src.swizzle[i] != i)
389 identity_swizzle = false;
390 }
391 if (identity_swizzle)
392 return get_ssa_temp(ctx, src.src.ssa);
393 }
394
395 Temp vec = get_ssa_temp(ctx, src.src.ssa);
396 unsigned elem_size = vec.size() / src.src.ssa->num_components;
397 assert(elem_size > 0); /* TODO: 8 and 16-bit vectors not supported */
398 assert(vec.size() % elem_size == 0);
399
400 RegClass elem_rc = RegClass(vec.type(), elem_size);
401 if (size == 1) {
402 return emit_extract_vector(ctx, vec, src.swizzle[0], elem_rc);
403 } else {
404 assert(size <= 4);
405 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
406 aco_ptr<Pseudo_instruction> vec_instr{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
407 for (unsigned i = 0; i < size; ++i) {
408 elems[i] = emit_extract_vector(ctx, vec, src.swizzle[i], elem_rc);
409 vec_instr->operands[i] = Operand{elems[i]};
410 }
411 Temp dst{ctx->program->allocateId(), RegClass(vec.type(), elem_size * size)};
412 vec_instr->definitions[0] = Definition(dst);
413 ctx->block->instructions.emplace_back(std::move(vec_instr));
414 ctx->allocated_vec.emplace(dst.id(), elems);
415 return dst;
416 }
417 }
418
419 Temp convert_pointer_to_64_bit(isel_context *ctx, Temp ptr)
420 {
421 if (ptr.size() == 2)
422 return ptr;
423 Builder bld(ctx->program, ctx->block);
424 if (ptr.type() == RegType::vgpr)
425 ptr = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), ptr);
426 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s2),
427 ptr, Operand((unsigned)ctx->options->address32_hi));
428 }
429
430 void emit_sop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst, bool writes_scc)
431 {
432 aco_ptr<SOP2_instruction> sop2{create_instruction<SOP2_instruction>(op, Format::SOP2, 2, writes_scc ? 2 : 1)};
433 sop2->operands[0] = Operand(get_alu_src(ctx, instr->src[0]));
434 sop2->operands[1] = Operand(get_alu_src(ctx, instr->src[1]));
435 sop2->definitions[0] = Definition(dst);
436 if (writes_scc)
437 sop2->definitions[1] = Definition(ctx->program->allocateId(), scc, s1);
438 ctx->block->instructions.emplace_back(std::move(sop2));
439 }
440
441 void emit_vop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
442 bool commutative, bool swap_srcs=false, bool flush_denorms = false)
443 {
444 Builder bld(ctx->program, ctx->block);
445 Temp src0 = get_alu_src(ctx, instr->src[swap_srcs ? 1 : 0]);
446 Temp src1 = get_alu_src(ctx, instr->src[swap_srcs ? 0 : 1]);
447 if (src1.type() == RegType::sgpr) {
448 if (commutative && src0.type() == RegType::vgpr) {
449 Temp t = src0;
450 src0 = src1;
451 src1 = t;
452 } else if (src0.type() == RegType::vgpr &&
453 op != aco_opcode::v_madmk_f32 &&
454 op != aco_opcode::v_madak_f32 &&
455 op != aco_opcode::v_madmk_f16 &&
456 op != aco_opcode::v_madak_f16) {
457 /* If the instruction is not commutative, we emit a VOP3A instruction */
458 bld.vop2_e64(op, Definition(dst), src0, src1);
459 return;
460 } else {
461 src1 = bld.copy(bld.def(RegType::vgpr, src1.size()), src1); //TODO: as_vgpr
462 }
463 }
464
465 if (flush_denorms && ctx->program->chip_class < GFX9) {
466 assert(dst.size() == 1);
467 Temp tmp = bld.vop2(op, bld.def(v1), src0, src1);
468 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
469 } else {
470 bld.vop2(op, Definition(dst), src0, src1);
471 }
472 }
473
474 void emit_vop3a_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
475 bool flush_denorms = false)
476 {
477 Temp src0 = get_alu_src(ctx, instr->src[0]);
478 Temp src1 = get_alu_src(ctx, instr->src[1]);
479 Temp src2 = get_alu_src(ctx, instr->src[2]);
480
481 /* ensure that the instruction has at most 1 sgpr operand
482 * The optimizer will inline constants for us */
483 if (src0.type() == RegType::sgpr && src1.type() == RegType::sgpr)
484 src0 = as_vgpr(ctx, src0);
485 if (src1.type() == RegType::sgpr && src2.type() == RegType::sgpr)
486 src1 = as_vgpr(ctx, src1);
487 if (src2.type() == RegType::sgpr && src0.type() == RegType::sgpr)
488 src2 = as_vgpr(ctx, src2);
489
490 Builder bld(ctx->program, ctx->block);
491 if (flush_denorms && ctx->program->chip_class < GFX9) {
492 assert(dst.size() == 1);
493 Temp tmp = bld.vop3(op, Definition(dst), src0, src1, src2);
494 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
495 } else {
496 bld.vop3(op, Definition(dst), src0, src1, src2);
497 }
498 }
499
500 void emit_vop1_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
501 {
502 Builder bld(ctx->program, ctx->block);
503 bld.vop1(op, Definition(dst), get_alu_src(ctx, instr->src[0]));
504 }
505
506 void emit_vopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
507 {
508 Temp src0 = get_alu_src(ctx, instr->src[0]);
509 Temp src1 = get_alu_src(ctx, instr->src[1]);
510 assert(src0.size() == src1.size());
511
512 aco_ptr<Instruction> vopc;
513 if (src1.type() == RegType::sgpr) {
514 if (src0.type() == RegType::vgpr) {
515 /* to swap the operands, we might also have to change the opcode */
516 switch (op) {
517 case aco_opcode::v_cmp_lt_f32:
518 op = aco_opcode::v_cmp_gt_f32;
519 break;
520 case aco_opcode::v_cmp_ge_f32:
521 op = aco_opcode::v_cmp_le_f32;
522 break;
523 case aco_opcode::v_cmp_lt_i32:
524 op = aco_opcode::v_cmp_gt_i32;
525 break;
526 case aco_opcode::v_cmp_ge_i32:
527 op = aco_opcode::v_cmp_le_i32;
528 break;
529 case aco_opcode::v_cmp_lt_u32:
530 op = aco_opcode::v_cmp_gt_u32;
531 break;
532 case aco_opcode::v_cmp_ge_u32:
533 op = aco_opcode::v_cmp_le_u32;
534 break;
535 case aco_opcode::v_cmp_lt_f64:
536 op = aco_opcode::v_cmp_gt_f64;
537 break;
538 case aco_opcode::v_cmp_ge_f64:
539 op = aco_opcode::v_cmp_le_f64;
540 break;
541 case aco_opcode::v_cmp_lt_i64:
542 op = aco_opcode::v_cmp_gt_i64;
543 break;
544 case aco_opcode::v_cmp_ge_i64:
545 op = aco_opcode::v_cmp_le_i64;
546 break;
547 case aco_opcode::v_cmp_lt_u64:
548 op = aco_opcode::v_cmp_gt_u64;
549 break;
550 case aco_opcode::v_cmp_ge_u64:
551 op = aco_opcode::v_cmp_le_u64;
552 break;
553 default: /* eq and ne are commutative */
554 break;
555 }
556 Temp t = src0;
557 src0 = src1;
558 src1 = t;
559 } else {
560 src1 = as_vgpr(ctx, src1);
561 }
562 }
563
564 Builder bld(ctx->program, ctx->block);
565 bld.vopc(op, bld.hint_vcc(Definition(dst)), src0, src1);
566 }
567
568 void emit_sopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
569 {
570 Temp src0 = get_alu_src(ctx, instr->src[0]);
571 Temp src1 = get_alu_src(ctx, instr->src[1]);
572 Builder bld(ctx->program, ctx->block);
573
574 assert(dst.regClass() == bld.lm);
575 assert(src0.type() == RegType::sgpr);
576 assert(src1.type() == RegType::sgpr);
577 assert(src0.regClass() == src1.regClass());
578
579 /* Emit the SALU comparison instruction */
580 Temp cmp = bld.sopc(op, bld.scc(bld.def(s1)), src0, src1);
581 /* Turn the result into a per-lane bool */
582 bool_to_vector_condition(ctx, cmp, dst);
583 }
584
585 void emit_comparison(isel_context *ctx, nir_alu_instr *instr, Temp dst,
586 aco_opcode v32_op, aco_opcode v64_op, aco_opcode s32_op = aco_opcode::num_opcodes, aco_opcode s64_op = aco_opcode::num_opcodes)
587 {
588 aco_opcode s_op = instr->src[0].src.ssa->bit_size == 64 ? s64_op : s32_op;
589 aco_opcode v_op = instr->src[0].src.ssa->bit_size == 64 ? v64_op : v32_op;
590 bool divergent_vals = ctx->divergent_vals[instr->dest.dest.ssa.index];
591 bool use_valu = s_op == aco_opcode::num_opcodes ||
592 divergent_vals ||
593 ctx->allocated[instr->src[0].src.ssa->index].type() == RegType::vgpr ||
594 ctx->allocated[instr->src[1].src.ssa->index].type() == RegType::vgpr;
595 aco_opcode op = use_valu ? v_op : s_op;
596 assert(op != aco_opcode::num_opcodes);
597 assert(dst.regClass() == ctx->program->lane_mask);
598
599 if (use_valu)
600 emit_vopc_instruction(ctx, instr, op, dst);
601 else
602 emit_sopc_instruction(ctx, instr, op, dst);
603 }
604
605 void emit_boolean_logic(isel_context *ctx, nir_alu_instr *instr, Builder::WaveSpecificOpcode op, Temp dst)
606 {
607 Builder bld(ctx->program, ctx->block);
608 Temp src0 = get_alu_src(ctx, instr->src[0]);
609 Temp src1 = get_alu_src(ctx, instr->src[1]);
610
611 assert(dst.regClass() == bld.lm);
612 assert(src0.regClass() == bld.lm);
613 assert(src1.regClass() == bld.lm);
614
615 bld.sop2(op, Definition(dst), bld.def(s1, scc), src0, src1);
616 }
617
618 void emit_bcsel(isel_context *ctx, nir_alu_instr *instr, Temp dst)
619 {
620 Builder bld(ctx->program, ctx->block);
621 Temp cond = get_alu_src(ctx, instr->src[0]);
622 Temp then = get_alu_src(ctx, instr->src[1]);
623 Temp els = get_alu_src(ctx, instr->src[2]);
624
625 assert(cond.regClass() == bld.lm);
626
627 if (dst.type() == RegType::vgpr) {
628 aco_ptr<Instruction> bcsel;
629 if (dst.size() == 1) {
630 then = as_vgpr(ctx, then);
631 els = as_vgpr(ctx, els);
632
633 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), els, then, cond);
634 } else if (dst.size() == 2) {
635 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
636 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), then);
637 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
638 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), els);
639
640 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, cond);
641 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, cond);
642
643 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
644 } else {
645 fprintf(stderr, "Unimplemented NIR instr bit size: ");
646 nir_print_instr(&instr->instr, stderr);
647 fprintf(stderr, "\n");
648 }
649 return;
650 }
651
652 if (instr->dest.dest.ssa.bit_size == 1) {
653 assert(dst.regClass() == bld.lm);
654 assert(then.regClass() == bld.lm);
655 assert(els.regClass() == bld.lm);
656 }
657
658 if (!ctx->divergent_vals[instr->src[0].src.ssa->index]) { /* uniform condition and values in sgpr */
659 if (dst.regClass() == s1 || dst.regClass() == s2) {
660 assert((then.regClass() == s1 || then.regClass() == s2) && els.regClass() == then.regClass());
661 assert(dst.size() == then.size());
662 aco_opcode op = dst.regClass() == s1 ? aco_opcode::s_cselect_b32 : aco_opcode::s_cselect_b64;
663 bld.sop2(op, Definition(dst), then, els, bld.scc(bool_to_scalar_condition(ctx, cond)));
664 } else {
665 fprintf(stderr, "Unimplemented uniform bcsel bit size: ");
666 nir_print_instr(&instr->instr, stderr);
667 fprintf(stderr, "\n");
668 }
669 return;
670 }
671
672 /* divergent boolean bcsel
673 * this implements bcsel on bools: dst = s0 ? s1 : s2
674 * are going to be: dst = (s0 & s1) | (~s0 & s2) */
675 assert(instr->dest.dest.ssa.bit_size == 1);
676
677 if (cond.id() != then.id())
678 then = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), cond, then);
679
680 if (cond.id() == els.id())
681 bld.sop1(Builder::s_mov, Definition(dst), then);
682 else
683 bld.sop2(Builder::s_or, Definition(dst), bld.def(s1, scc), then,
684 bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), els, cond));
685 }
686
687 void emit_scaled_op(isel_context *ctx, Builder& bld, Definition dst, Temp val,
688 aco_opcode op, uint32_t undo)
689 {
690 /* multiply by 16777216 to handle denormals */
691 Temp is_denormal = bld.vopc(aco_opcode::v_cmp_class_f32, bld.hint_vcc(bld.def(bld.lm)),
692 as_vgpr(ctx, val), bld.copy(bld.def(v1), Operand((1u << 7) | (1u << 4))));
693 Temp scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x4b800000u), val);
694 scaled = bld.vop1(op, bld.def(v1), scaled);
695 scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(undo), scaled);
696
697 Temp not_scaled = bld.vop1(op, bld.def(v1), val);
698
699 bld.vop2(aco_opcode::v_cndmask_b32, dst, not_scaled, scaled, is_denormal);
700 }
701
702 void emit_rcp(isel_context *ctx, Builder& bld, Definition dst, Temp val)
703 {
704 if (ctx->block->fp_mode.denorm32 == 0) {
705 bld.vop1(aco_opcode::v_rcp_f32, dst, val);
706 return;
707 }
708
709 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rcp_f32, 0x4b800000u);
710 }
711
712 void emit_rsq(isel_context *ctx, Builder& bld, Definition dst, Temp val)
713 {
714 if (ctx->block->fp_mode.denorm32 == 0) {
715 bld.vop1(aco_opcode::v_rsq_f32, dst, val);
716 return;
717 }
718
719 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rsq_f32, 0x45800000u);
720 }
721
722 void emit_sqrt(isel_context *ctx, Builder& bld, Definition dst, Temp val)
723 {
724 if (ctx->block->fp_mode.denorm32 == 0) {
725 bld.vop1(aco_opcode::v_sqrt_f32, dst, val);
726 return;
727 }
728
729 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_sqrt_f32, 0x39800000u);
730 }
731
732 void emit_log2(isel_context *ctx, Builder& bld, Definition dst, Temp val)
733 {
734 if (ctx->block->fp_mode.denorm32 == 0) {
735 bld.vop1(aco_opcode::v_log_f32, dst, val);
736 return;
737 }
738
739 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_log_f32, 0xc1c00000u);
740 }
741
742 Temp emit_trunc_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
743 {
744 if (ctx->options->chip_class >= GFX7)
745 return bld.vop1(aco_opcode::v_trunc_f64, Definition(dst), val);
746
747 /* GFX6 doesn't support V_TRUNC_F64, lower it. */
748 /* TODO: create more efficient code! */
749 if (val.type() == RegType::sgpr)
750 val = as_vgpr(ctx, val);
751
752 /* Split the input value. */
753 Temp val_lo = bld.tmp(v1), val_hi = bld.tmp(v1);
754 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
755
756 /* Extract the exponent and compute the unbiased value. */
757 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f64, bld.def(v1), val);
758
759 /* Extract the fractional part. */
760 Temp fract_mask = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x000fffffu));
761 fract_mask = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), fract_mask, exponent);
762
763 Temp fract_mask_lo = bld.tmp(v1), fract_mask_hi = bld.tmp(v1);
764 bld.pseudo(aco_opcode::p_split_vector, Definition(fract_mask_lo), Definition(fract_mask_hi), fract_mask);
765
766 Temp fract_lo = bld.tmp(v1), fract_hi = bld.tmp(v1);
767 Temp tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_lo);
768 fract_lo = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_lo, tmp);
769 tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_hi);
770 fract_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_hi, tmp);
771
772 /* Get the sign bit. */
773 Temp sign = bld.vop2(aco_opcode::v_ashr_i32, bld.def(v1), Operand(31u), val_hi);
774
775 /* Decide the operation to apply depending on the unbiased exponent. */
776 Temp exp_lt0 = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)), exponent, Operand(0u));
777 Temp dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_lo, bld.copy(bld.def(v1), Operand(0u)), exp_lt0);
778 Temp dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_hi, sign, exp_lt0);
779 Temp exp_gt51 = bld.vopc_e64(aco_opcode::v_cmp_gt_i32, bld.def(s2), exponent, Operand(51u));
780 dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_lo, val_lo, exp_gt51);
781 dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_hi, val_hi, exp_gt51);
782
783 return bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst_lo, dst_hi);
784 }
785
786 Temp emit_floor_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
787 {
788 if (ctx->options->chip_class >= GFX7)
789 return bld.vop1(aco_opcode::v_floor_f64, Definition(dst), val);
790
791 /* GFX6 doesn't support V_FLOOR_F64, lower it. */
792 Temp src0 = as_vgpr(ctx, val);
793
794 Temp mask = bld.copy(bld.def(s1), Operand(3u)); /* isnan */
795 Temp min_val = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(-1u), Operand(0x3fefffffu));
796
797 Temp isnan = bld.vopc_e64(aco_opcode::v_cmp_class_f64, bld.hint_vcc(bld.def(bld.lm)), src0, mask);
798 Temp fract = bld.vop1(aco_opcode::v_fract_f64, bld.def(v2), src0);
799 Temp min = bld.vop3(aco_opcode::v_min_f64, bld.def(v2), fract, min_val);
800
801 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
802 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), src0);
803 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
804 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), min);
805
806 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, isnan);
807 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, isnan);
808
809 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), dst0, dst1);
810
811 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src0, v);
812 static_cast<VOP3A_instruction*>(add)->neg[1] = true;
813
814 return add->definitions[0].getTemp();
815 }
816
817 void visit_alu_instr(isel_context *ctx, nir_alu_instr *instr)
818 {
819 if (!instr->dest.dest.is_ssa) {
820 fprintf(stderr, "nir alu dst not in ssa: ");
821 nir_print_instr(&instr->instr, stderr);
822 fprintf(stderr, "\n");
823 abort();
824 }
825 Builder bld(ctx->program, ctx->block);
826 Temp dst = get_ssa_temp(ctx, &instr->dest.dest.ssa);
827 switch(instr->op) {
828 case nir_op_vec2:
829 case nir_op_vec3:
830 case nir_op_vec4: {
831 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
832 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.dest.ssa.num_components, 1)};
833 for (unsigned i = 0; i < instr->dest.dest.ssa.num_components; ++i) {
834 elems[i] = get_alu_src(ctx, instr->src[i]);
835 vec->operands[i] = Operand{elems[i]};
836 }
837 vec->definitions[0] = Definition(dst);
838 ctx->block->instructions.emplace_back(std::move(vec));
839 ctx->allocated_vec.emplace(dst.id(), elems);
840 break;
841 }
842 case nir_op_mov: {
843 Temp src = get_alu_src(ctx, instr->src[0]);
844 aco_ptr<Instruction> mov;
845 if (dst.type() == RegType::sgpr) {
846 if (src.type() == RegType::vgpr)
847 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
848 else if (src.regClass() == s1)
849 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
850 else if (src.regClass() == s2)
851 bld.sop1(aco_opcode::s_mov_b64, Definition(dst), src);
852 else
853 unreachable("wrong src register class for nir_op_imov");
854 } else if (dst.regClass() == v1) {
855 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), src);
856 } else if (dst.regClass() == v2) {
857 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
858 } else {
859 nir_print_instr(&instr->instr, stderr);
860 unreachable("Should have been lowered to scalar.");
861 }
862 break;
863 }
864 case nir_op_inot: {
865 Temp src = get_alu_src(ctx, instr->src[0]);
866 if (instr->dest.dest.ssa.bit_size == 1) {
867 assert(src.regClass() == bld.lm);
868 assert(dst.regClass() == bld.lm);
869 /* Don't use s_andn2 here, this allows the optimizer to make a better decision */
870 Temp tmp = bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), src);
871 bld.sop2(Builder::s_and, Definition(dst), bld.def(s1, scc), tmp, Operand(exec, bld.lm));
872 } else if (dst.regClass() == v1) {
873 emit_vop1_instruction(ctx, instr, aco_opcode::v_not_b32, dst);
874 } else if (dst.type() == RegType::sgpr) {
875 aco_opcode opcode = dst.size() == 1 ? aco_opcode::s_not_b32 : aco_opcode::s_not_b64;
876 bld.sop1(opcode, Definition(dst), bld.def(s1, scc), src);
877 } else {
878 fprintf(stderr, "Unimplemented NIR instr bit size: ");
879 nir_print_instr(&instr->instr, stderr);
880 fprintf(stderr, "\n");
881 }
882 break;
883 }
884 case nir_op_ineg: {
885 Temp src = get_alu_src(ctx, instr->src[0]);
886 if (dst.regClass() == v1) {
887 bld.vsub32(Definition(dst), Operand(0u), Operand(src));
888 } else if (dst.regClass() == s1) {
889 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand((uint32_t) -1), src);
890 } else if (dst.size() == 2) {
891 Temp src0 = bld.tmp(dst.type(), 1);
892 Temp src1 = bld.tmp(dst.type(), 1);
893 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
894
895 if (dst.regClass() == s2) {
896 Temp carry = bld.tmp(s1);
897 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), Operand(0u), src0);
898 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), src1, carry);
899 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
900 } else {
901 Temp lower = bld.tmp(v1);
902 Temp borrow = bld.vsub32(Definition(lower), Operand(0u), src0, true).def(1).getTemp();
903 Temp upper = bld.vsub32(bld.def(v1), Operand(0u), src1, false, borrow);
904 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
905 }
906 } else {
907 fprintf(stderr, "Unimplemented NIR instr bit size: ");
908 nir_print_instr(&instr->instr, stderr);
909 fprintf(stderr, "\n");
910 }
911 break;
912 }
913 case nir_op_iabs: {
914 if (dst.regClass() == s1) {
915 bld.sop1(aco_opcode::s_abs_i32, Definition(dst), bld.def(s1, scc), get_alu_src(ctx, instr->src[0]));
916 } else if (dst.regClass() == v1) {
917 Temp src = get_alu_src(ctx, instr->src[0]);
918 bld.vop2(aco_opcode::v_max_i32, Definition(dst), src, bld.vsub32(bld.def(v1), Operand(0u), src));
919 } else {
920 fprintf(stderr, "Unimplemented NIR instr bit size: ");
921 nir_print_instr(&instr->instr, stderr);
922 fprintf(stderr, "\n");
923 }
924 break;
925 }
926 case nir_op_isign: {
927 Temp src = get_alu_src(ctx, instr->src[0]);
928 if (dst.regClass() == s1) {
929 Temp tmp = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
930 Temp gtz = bld.sopc(aco_opcode::s_cmp_gt_i32, bld.def(s1, scc), src, Operand(0u));
931 bld.sop2(aco_opcode::s_add_i32, Definition(dst), bld.def(s1, scc), gtz, tmp);
932 } else if (dst.regClass() == s2) {
933 Temp neg = bld.sop2(aco_opcode::s_ashr_i64, bld.def(s2), bld.def(s1, scc), src, Operand(63u));
934 Temp neqz;
935 if (ctx->program->chip_class >= GFX8)
936 neqz = bld.sopc(aco_opcode::s_cmp_lg_u64, bld.def(s1, scc), src, Operand(0u));
937 else
938 neqz = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), src, Operand(0u)).def(1).getTemp();
939 /* SCC gets zero-extended to 64 bit */
940 bld.sop2(aco_opcode::s_or_b64, Definition(dst), bld.def(s1, scc), neg, bld.scc(neqz));
941 } else if (dst.regClass() == v1) {
942 Temp tmp = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
943 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
944 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(1u), tmp, gtz);
945 } else if (dst.regClass() == v2) {
946 Temp upper = emit_extract_vector(ctx, src, 1, v1);
947 Temp neg = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), upper);
948 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
949 Temp lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(1u), neg, gtz);
950 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), neg, gtz);
951 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
952 } else {
953 fprintf(stderr, "Unimplemented NIR instr bit size: ");
954 nir_print_instr(&instr->instr, stderr);
955 fprintf(stderr, "\n");
956 }
957 break;
958 }
959 case nir_op_imax: {
960 if (dst.regClass() == v1) {
961 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_i32, dst, true);
962 } else if (dst.regClass() == s1) {
963 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_i32, dst, true);
964 } else {
965 fprintf(stderr, "Unimplemented NIR instr bit size: ");
966 nir_print_instr(&instr->instr, stderr);
967 fprintf(stderr, "\n");
968 }
969 break;
970 }
971 case nir_op_umax: {
972 if (dst.regClass() == v1) {
973 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_u32, dst, true);
974 } else if (dst.regClass() == s1) {
975 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_u32, dst, true);
976 } else {
977 fprintf(stderr, "Unimplemented NIR instr bit size: ");
978 nir_print_instr(&instr->instr, stderr);
979 fprintf(stderr, "\n");
980 }
981 break;
982 }
983 case nir_op_imin: {
984 if (dst.regClass() == v1) {
985 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_i32, dst, true);
986 } else if (dst.regClass() == s1) {
987 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_i32, dst, true);
988 } else {
989 fprintf(stderr, "Unimplemented NIR instr bit size: ");
990 nir_print_instr(&instr->instr, stderr);
991 fprintf(stderr, "\n");
992 }
993 break;
994 }
995 case nir_op_umin: {
996 if (dst.regClass() == v1) {
997 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_u32, dst, true);
998 } else if (dst.regClass() == s1) {
999 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_u32, dst, true);
1000 } else {
1001 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1002 nir_print_instr(&instr->instr, stderr);
1003 fprintf(stderr, "\n");
1004 }
1005 break;
1006 }
1007 case nir_op_ior: {
1008 if (instr->dest.dest.ssa.bit_size == 1) {
1009 emit_boolean_logic(ctx, instr, Builder::s_or, dst);
1010 } else if (dst.regClass() == v1) {
1011 emit_vop2_instruction(ctx, instr, aco_opcode::v_or_b32, dst, true);
1012 } else if (dst.regClass() == s1) {
1013 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b32, dst, true);
1014 } else if (dst.regClass() == s2) {
1015 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b64, dst, true);
1016 } else {
1017 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1018 nir_print_instr(&instr->instr, stderr);
1019 fprintf(stderr, "\n");
1020 }
1021 break;
1022 }
1023 case nir_op_iand: {
1024 if (instr->dest.dest.ssa.bit_size == 1) {
1025 emit_boolean_logic(ctx, instr, Builder::s_and, dst);
1026 } else if (dst.regClass() == v1) {
1027 emit_vop2_instruction(ctx, instr, aco_opcode::v_and_b32, dst, true);
1028 } else if (dst.regClass() == s1) {
1029 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b32, dst, true);
1030 } else if (dst.regClass() == s2) {
1031 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b64, dst, true);
1032 } else {
1033 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1034 nir_print_instr(&instr->instr, stderr);
1035 fprintf(stderr, "\n");
1036 }
1037 break;
1038 }
1039 case nir_op_ixor: {
1040 if (instr->dest.dest.ssa.bit_size == 1) {
1041 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
1042 } else if (dst.regClass() == v1) {
1043 emit_vop2_instruction(ctx, instr, aco_opcode::v_xor_b32, dst, true);
1044 } else if (dst.regClass() == s1) {
1045 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b32, dst, true);
1046 } else if (dst.regClass() == s2) {
1047 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b64, dst, true);
1048 } else {
1049 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1050 nir_print_instr(&instr->instr, stderr);
1051 fprintf(stderr, "\n");
1052 }
1053 break;
1054 }
1055 case nir_op_ushr: {
1056 if (dst.regClass() == v1) {
1057 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshrrev_b32, dst, false, true);
1058 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1059 bld.vop3(aco_opcode::v_lshrrev_b64, Definition(dst),
1060 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1061 } else if (dst.regClass() == v2) {
1062 bld.vop3(aco_opcode::v_lshr_b64, Definition(dst),
1063 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1064 } else if (dst.regClass() == s2) {
1065 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b64, dst, true);
1066 } else if (dst.regClass() == s1) {
1067 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b32, dst, true);
1068 } else {
1069 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1070 nir_print_instr(&instr->instr, stderr);
1071 fprintf(stderr, "\n");
1072 }
1073 break;
1074 }
1075 case nir_op_ishl: {
1076 if (dst.regClass() == v1) {
1077 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshlrev_b32, dst, false, true);
1078 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1079 bld.vop3(aco_opcode::v_lshlrev_b64, Definition(dst),
1080 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1081 } else if (dst.regClass() == v2) {
1082 bld.vop3(aco_opcode::v_lshl_b64, Definition(dst),
1083 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1084 } else if (dst.regClass() == s1) {
1085 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b32, dst, true);
1086 } else if (dst.regClass() == s2) {
1087 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b64, dst, true);
1088 } else {
1089 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1090 nir_print_instr(&instr->instr, stderr);
1091 fprintf(stderr, "\n");
1092 }
1093 break;
1094 }
1095 case nir_op_ishr: {
1096 if (dst.regClass() == v1) {
1097 emit_vop2_instruction(ctx, instr, aco_opcode::v_ashrrev_i32, dst, false, true);
1098 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1099 bld.vop3(aco_opcode::v_ashrrev_i64, Definition(dst),
1100 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1101 } else if (dst.regClass() == v2) {
1102 bld.vop3(aco_opcode::v_ashr_i64, Definition(dst),
1103 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1104 } else if (dst.regClass() == s1) {
1105 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i32, dst, true);
1106 } else if (dst.regClass() == s2) {
1107 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i64, dst, true);
1108 } else {
1109 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1110 nir_print_instr(&instr->instr, stderr);
1111 fprintf(stderr, "\n");
1112 }
1113 break;
1114 }
1115 case nir_op_find_lsb: {
1116 Temp src = get_alu_src(ctx, instr->src[0]);
1117 if (src.regClass() == s1) {
1118 bld.sop1(aco_opcode::s_ff1_i32_b32, Definition(dst), src);
1119 } else if (src.regClass() == v1) {
1120 emit_vop1_instruction(ctx, instr, aco_opcode::v_ffbl_b32, dst);
1121 } else if (src.regClass() == s2) {
1122 bld.sop1(aco_opcode::s_ff1_i32_b64, Definition(dst), src);
1123 } else {
1124 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1125 nir_print_instr(&instr->instr, stderr);
1126 fprintf(stderr, "\n");
1127 }
1128 break;
1129 }
1130 case nir_op_ufind_msb:
1131 case nir_op_ifind_msb: {
1132 Temp src = get_alu_src(ctx, instr->src[0]);
1133 if (src.regClass() == s1 || src.regClass() == s2) {
1134 aco_opcode op = src.regClass() == s2 ?
1135 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b64 : aco_opcode::s_flbit_i32_i64) :
1136 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b32 : aco_opcode::s_flbit_i32);
1137 Temp msb_rev = bld.sop1(op, bld.def(s1), src);
1138
1139 Builder::Result sub = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc),
1140 Operand(src.size() * 32u - 1u), msb_rev);
1141 Temp msb = sub.def(0).getTemp();
1142 Temp carry = sub.def(1).getTemp();
1143
1144 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t)-1), msb, bld.scc(carry));
1145 } else if (src.regClass() == v1) {
1146 aco_opcode op = instr->op == nir_op_ufind_msb ? aco_opcode::v_ffbh_u32 : aco_opcode::v_ffbh_i32;
1147 Temp msb_rev = bld.tmp(v1);
1148 emit_vop1_instruction(ctx, instr, op, msb_rev);
1149 Temp msb = bld.tmp(v1);
1150 Temp carry = bld.vsub32(Definition(msb), Operand(31u), Operand(msb_rev), true).def(1).getTemp();
1151 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), msb, Operand((uint32_t)-1), carry);
1152 } else {
1153 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1154 nir_print_instr(&instr->instr, stderr);
1155 fprintf(stderr, "\n");
1156 }
1157 break;
1158 }
1159 case nir_op_bitfield_reverse: {
1160 if (dst.regClass() == s1) {
1161 bld.sop1(aco_opcode::s_brev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1162 } else if (dst.regClass() == v1) {
1163 bld.vop1(aco_opcode::v_bfrev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1164 } else {
1165 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1166 nir_print_instr(&instr->instr, stderr);
1167 fprintf(stderr, "\n");
1168 }
1169 break;
1170 }
1171 case nir_op_iadd: {
1172 if (dst.regClass() == s1) {
1173 emit_sop2_instruction(ctx, instr, aco_opcode::s_add_u32, dst, true);
1174 break;
1175 }
1176
1177 Temp src0 = get_alu_src(ctx, instr->src[0]);
1178 Temp src1 = get_alu_src(ctx, instr->src[1]);
1179 if (dst.regClass() == v1) {
1180 bld.vadd32(Definition(dst), Operand(src0), Operand(src1));
1181 break;
1182 }
1183
1184 assert(src0.size() == 2 && src1.size() == 2);
1185 Temp src00 = bld.tmp(src0.type(), 1);
1186 Temp src01 = bld.tmp(dst.type(), 1);
1187 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1188 Temp src10 = bld.tmp(src1.type(), 1);
1189 Temp src11 = bld.tmp(dst.type(), 1);
1190 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1191
1192 if (dst.regClass() == s2) {
1193 Temp carry = bld.tmp(s1);
1194 Temp dst0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1195 Temp dst1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), src01, src11, bld.scc(carry));
1196 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1197 } else if (dst.regClass() == v2) {
1198 Temp dst0 = bld.tmp(v1);
1199 Temp carry = bld.vadd32(Definition(dst0), src00, src10, true).def(1).getTemp();
1200 Temp dst1 = bld.vadd32(bld.def(v1), src01, src11, false, carry);
1201 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1202 } else {
1203 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1204 nir_print_instr(&instr->instr, stderr);
1205 fprintf(stderr, "\n");
1206 }
1207 break;
1208 }
1209 case nir_op_uadd_sat: {
1210 Temp src0 = get_alu_src(ctx, instr->src[0]);
1211 Temp src1 = get_alu_src(ctx, instr->src[1]);
1212 if (dst.regClass() == s1) {
1213 Temp tmp = bld.tmp(s1), carry = bld.tmp(s1);
1214 bld.sop2(aco_opcode::s_add_u32, Definition(tmp), bld.scc(Definition(carry)),
1215 src0, src1);
1216 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t) -1), tmp, bld.scc(carry));
1217 } else if (dst.regClass() == v1) {
1218 if (ctx->options->chip_class >= GFX9) {
1219 aco_ptr<VOP3A_instruction> add{create_instruction<VOP3A_instruction>(aco_opcode::v_add_u32, asVOP3(Format::VOP2), 2, 1)};
1220 add->operands[0] = Operand(src0);
1221 add->operands[1] = Operand(src1);
1222 add->definitions[0] = Definition(dst);
1223 add->clamp = 1;
1224 ctx->block->instructions.emplace_back(std::move(add));
1225 } else {
1226 if (src1.regClass() != v1)
1227 std::swap(src0, src1);
1228 assert(src1.regClass() == v1);
1229 Temp tmp = bld.tmp(v1);
1230 Temp carry = bld.vadd32(Definition(tmp), src0, src1, true).def(1).getTemp();
1231 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), tmp, Operand((uint32_t) -1), carry);
1232 }
1233 } else {
1234 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1235 nir_print_instr(&instr->instr, stderr);
1236 fprintf(stderr, "\n");
1237 }
1238 break;
1239 }
1240 case nir_op_uadd_carry: {
1241 Temp src0 = get_alu_src(ctx, instr->src[0]);
1242 Temp src1 = get_alu_src(ctx, instr->src[1]);
1243 if (dst.regClass() == s1) {
1244 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1245 break;
1246 }
1247 if (dst.regClass() == v1) {
1248 Temp carry = bld.vadd32(bld.def(v1), src0, src1, true).def(1).getTemp();
1249 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), carry);
1250 break;
1251 }
1252
1253 Temp src00 = bld.tmp(src0.type(), 1);
1254 Temp src01 = bld.tmp(dst.type(), 1);
1255 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1256 Temp src10 = bld.tmp(src1.type(), 1);
1257 Temp src11 = bld.tmp(dst.type(), 1);
1258 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1259 if (dst.regClass() == s2) {
1260 Temp carry = bld.tmp(s1);
1261 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1262 carry = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(carry)).def(1).getTemp();
1263 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1264 } else if (dst.regClass() == v2) {
1265 Temp carry = bld.vadd32(bld.def(v1), src00, src10, true).def(1).getTemp();
1266 carry = bld.vadd32(bld.def(v1), src01, src11, true, carry).def(1).getTemp();
1267 carry = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), carry);
1268 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1269 } else {
1270 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1271 nir_print_instr(&instr->instr, stderr);
1272 fprintf(stderr, "\n");
1273 }
1274 break;
1275 }
1276 case nir_op_isub: {
1277 if (dst.regClass() == s1) {
1278 emit_sop2_instruction(ctx, instr, aco_opcode::s_sub_i32, dst, true);
1279 break;
1280 }
1281
1282 Temp src0 = get_alu_src(ctx, instr->src[0]);
1283 Temp src1 = get_alu_src(ctx, instr->src[1]);
1284 if (dst.regClass() == v1) {
1285 bld.vsub32(Definition(dst), src0, src1);
1286 break;
1287 }
1288
1289 Temp src00 = bld.tmp(src0.type(), 1);
1290 Temp src01 = bld.tmp(dst.type(), 1);
1291 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1292 Temp src10 = bld.tmp(src1.type(), 1);
1293 Temp src11 = bld.tmp(dst.type(), 1);
1294 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1295 if (dst.regClass() == s2) {
1296 Temp carry = bld.tmp(s1);
1297 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1298 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), src01, src11, carry);
1299 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1300 } else if (dst.regClass() == v2) {
1301 Temp lower = bld.tmp(v1);
1302 Temp borrow = bld.vsub32(Definition(lower), src00, src10, true).def(1).getTemp();
1303 Temp upper = bld.vsub32(bld.def(v1), src01, src11, false, borrow);
1304 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1305 } else {
1306 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1307 nir_print_instr(&instr->instr, stderr);
1308 fprintf(stderr, "\n");
1309 }
1310 break;
1311 }
1312 case nir_op_usub_borrow: {
1313 Temp src0 = get_alu_src(ctx, instr->src[0]);
1314 Temp src1 = get_alu_src(ctx, instr->src[1]);
1315 if (dst.regClass() == s1) {
1316 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1317 break;
1318 } else if (dst.regClass() == v1) {
1319 Temp borrow = bld.vsub32(bld.def(v1), src0, src1, true).def(1).getTemp();
1320 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), borrow);
1321 break;
1322 }
1323
1324 Temp src00 = bld.tmp(src0.type(), 1);
1325 Temp src01 = bld.tmp(dst.type(), 1);
1326 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1327 Temp src10 = bld.tmp(src1.type(), 1);
1328 Temp src11 = bld.tmp(dst.type(), 1);
1329 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1330 if (dst.regClass() == s2) {
1331 Temp borrow = bld.tmp(s1);
1332 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), src00, src10);
1333 borrow = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(borrow)).def(1).getTemp();
1334 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1335 } else if (dst.regClass() == v2) {
1336 Temp borrow = bld.vsub32(bld.def(v1), src00, src10, true).def(1).getTemp();
1337 borrow = bld.vsub32(bld.def(v1), src01, src11, true, Operand(borrow)).def(1).getTemp();
1338 borrow = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), borrow);
1339 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1340 } else {
1341 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1342 nir_print_instr(&instr->instr, stderr);
1343 fprintf(stderr, "\n");
1344 }
1345 break;
1346 }
1347 case nir_op_imul: {
1348 if (dst.regClass() == v1) {
1349 bld.vop3(aco_opcode::v_mul_lo_u32, Definition(dst),
1350 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1351 } else if (dst.regClass() == s1) {
1352 emit_sop2_instruction(ctx, instr, aco_opcode::s_mul_i32, dst, false);
1353 } else {
1354 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1355 nir_print_instr(&instr->instr, stderr);
1356 fprintf(stderr, "\n");
1357 }
1358 break;
1359 }
1360 case nir_op_umul_high: {
1361 if (dst.regClass() == v1) {
1362 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1363 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1364 bld.sop2(aco_opcode::s_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1365 } else if (dst.regClass() == s1) {
1366 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1367 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1368 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1369 } else {
1370 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1371 nir_print_instr(&instr->instr, stderr);
1372 fprintf(stderr, "\n");
1373 }
1374 break;
1375 }
1376 case nir_op_imul_high: {
1377 if (dst.regClass() == v1) {
1378 bld.vop3(aco_opcode::v_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1379 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1380 bld.sop2(aco_opcode::s_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1381 } else if (dst.regClass() == s1) {
1382 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1383 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1384 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1385 } else {
1386 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1387 nir_print_instr(&instr->instr, stderr);
1388 fprintf(stderr, "\n");
1389 }
1390 break;
1391 }
1392 case nir_op_fmul: {
1393 if (dst.size() == 1) {
1394 emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f32, dst, true);
1395 } else if (dst.size() == 2) {
1396 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), get_alu_src(ctx, instr->src[0]),
1397 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1398 } else {
1399 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1400 nir_print_instr(&instr->instr, stderr);
1401 fprintf(stderr, "\n");
1402 }
1403 break;
1404 }
1405 case nir_op_fadd: {
1406 if (dst.size() == 1) {
1407 emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f32, dst, true);
1408 } else if (dst.size() == 2) {
1409 bld.vop3(aco_opcode::v_add_f64, Definition(dst), get_alu_src(ctx, instr->src[0]),
1410 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1411 } else {
1412 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1413 nir_print_instr(&instr->instr, stderr);
1414 fprintf(stderr, "\n");
1415 }
1416 break;
1417 }
1418 case nir_op_fsub: {
1419 Temp src0 = get_alu_src(ctx, instr->src[0]);
1420 Temp src1 = get_alu_src(ctx, instr->src[1]);
1421 if (dst.size() == 1) {
1422 if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
1423 emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f32, dst, false);
1424 else
1425 emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f32, dst, true);
1426 } else if (dst.size() == 2) {
1427 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst),
1428 get_alu_src(ctx, instr->src[0]),
1429 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1430 VOP3A_instruction* sub = static_cast<VOP3A_instruction*>(add);
1431 sub->neg[1] = true;
1432 } else {
1433 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1434 nir_print_instr(&instr->instr, stderr);
1435 fprintf(stderr, "\n");
1436 }
1437 break;
1438 }
1439 case nir_op_fmax: {
1440 if (dst.size() == 1) {
1441 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1442 } else if (dst.size() == 2) {
1443 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1444 Temp tmp = bld.vop3(aco_opcode::v_max_f64, bld.def(v2),
1445 get_alu_src(ctx, instr->src[0]),
1446 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1447 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1448 } else {
1449 bld.vop3(aco_opcode::v_max_f64, Definition(dst),
1450 get_alu_src(ctx, instr->src[0]),
1451 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1452 }
1453 } else {
1454 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1455 nir_print_instr(&instr->instr, stderr);
1456 fprintf(stderr, "\n");
1457 }
1458 break;
1459 }
1460 case nir_op_fmin: {
1461 if (dst.size() == 1) {
1462 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1463 } else if (dst.size() == 2) {
1464 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1465 Temp tmp = bld.vop3(aco_opcode::v_min_f64, bld.def(v2),
1466 get_alu_src(ctx, instr->src[0]),
1467 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1468 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1469 } else {
1470 bld.vop3(aco_opcode::v_min_f64, Definition(dst),
1471 get_alu_src(ctx, instr->src[0]),
1472 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1473 }
1474 } else {
1475 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1476 nir_print_instr(&instr->instr, stderr);
1477 fprintf(stderr, "\n");
1478 }
1479 break;
1480 }
1481 case nir_op_fmax3: {
1482 if (dst.size() == 1) {
1483 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1484 } else {
1485 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1486 nir_print_instr(&instr->instr, stderr);
1487 fprintf(stderr, "\n");
1488 }
1489 break;
1490 }
1491 case nir_op_fmin3: {
1492 if (dst.size() == 1) {
1493 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1494 } else {
1495 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1496 nir_print_instr(&instr->instr, stderr);
1497 fprintf(stderr, "\n");
1498 }
1499 break;
1500 }
1501 case nir_op_fmed3: {
1502 if (dst.size() == 1) {
1503 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1504 } else {
1505 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1506 nir_print_instr(&instr->instr, stderr);
1507 fprintf(stderr, "\n");
1508 }
1509 break;
1510 }
1511 case nir_op_umax3: {
1512 if (dst.size() == 1) {
1513 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_u32, dst);
1514 } else {
1515 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1516 nir_print_instr(&instr->instr, stderr);
1517 fprintf(stderr, "\n");
1518 }
1519 break;
1520 }
1521 case nir_op_umin3: {
1522 if (dst.size() == 1) {
1523 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_u32, dst);
1524 } else {
1525 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1526 nir_print_instr(&instr->instr, stderr);
1527 fprintf(stderr, "\n");
1528 }
1529 break;
1530 }
1531 case nir_op_umed3: {
1532 if (dst.size() == 1) {
1533 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_u32, dst);
1534 } else {
1535 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1536 nir_print_instr(&instr->instr, stderr);
1537 fprintf(stderr, "\n");
1538 }
1539 break;
1540 }
1541 case nir_op_imax3: {
1542 if (dst.size() == 1) {
1543 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_i32, dst);
1544 } else {
1545 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1546 nir_print_instr(&instr->instr, stderr);
1547 fprintf(stderr, "\n");
1548 }
1549 break;
1550 }
1551 case nir_op_imin3: {
1552 if (dst.size() == 1) {
1553 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_i32, dst);
1554 } else {
1555 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1556 nir_print_instr(&instr->instr, stderr);
1557 fprintf(stderr, "\n");
1558 }
1559 break;
1560 }
1561 case nir_op_imed3: {
1562 if (dst.size() == 1) {
1563 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_i32, dst);
1564 } else {
1565 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1566 nir_print_instr(&instr->instr, stderr);
1567 fprintf(stderr, "\n");
1568 }
1569 break;
1570 }
1571 case nir_op_cube_face_coord: {
1572 Temp in = get_alu_src(ctx, instr->src[0], 3);
1573 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1574 emit_extract_vector(ctx, in, 1, v1),
1575 emit_extract_vector(ctx, in, 2, v1) };
1576 Temp ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), src[0], src[1], src[2]);
1577 ma = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), ma);
1578 Temp sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), src[0], src[1], src[2]);
1579 Temp tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), src[0], src[1], src[2]);
1580 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, ma, Operand(0x3f000000u/*0.5*/));
1581 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, ma, Operand(0x3f000000u/*0.5*/));
1582 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), sc, tc);
1583 break;
1584 }
1585 case nir_op_cube_face_index: {
1586 Temp in = get_alu_src(ctx, instr->src[0], 3);
1587 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1588 emit_extract_vector(ctx, in, 1, v1),
1589 emit_extract_vector(ctx, in, 2, v1) };
1590 bld.vop3(aco_opcode::v_cubeid_f32, Definition(dst), src[0], src[1], src[2]);
1591 break;
1592 }
1593 case nir_op_bcsel: {
1594 emit_bcsel(ctx, instr, dst);
1595 break;
1596 }
1597 case nir_op_frsq: {
1598 if (dst.size() == 1) {
1599 emit_rsq(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1600 } else if (dst.size() == 2) {
1601 emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f64, dst);
1602 } else {
1603 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1604 nir_print_instr(&instr->instr, stderr);
1605 fprintf(stderr, "\n");
1606 }
1607 break;
1608 }
1609 case nir_op_fneg: {
1610 Temp src = get_alu_src(ctx, instr->src[0]);
1611 if (dst.size() == 1) {
1612 if (ctx->block->fp_mode.must_flush_denorms32)
1613 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1614 bld.vop2(aco_opcode::v_xor_b32, Definition(dst), Operand(0x80000000u), as_vgpr(ctx, src));
1615 } else if (dst.size() == 2) {
1616 if (ctx->block->fp_mode.must_flush_denorms16_64)
1617 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1618 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1619 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1620 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), Operand(0x80000000u), upper);
1621 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1622 } else {
1623 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1624 nir_print_instr(&instr->instr, stderr);
1625 fprintf(stderr, "\n");
1626 }
1627 break;
1628 }
1629 case nir_op_fabs: {
1630 Temp src = get_alu_src(ctx, instr->src[0]);
1631 if (dst.size() == 1) {
1632 if (ctx->block->fp_mode.must_flush_denorms32)
1633 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1634 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0x7FFFFFFFu), as_vgpr(ctx, src));
1635 } else if (dst.size() == 2) {
1636 if (ctx->block->fp_mode.must_flush_denorms16_64)
1637 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1638 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1639 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1640 upper = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7FFFFFFFu), upper);
1641 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1642 } else {
1643 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1644 nir_print_instr(&instr->instr, stderr);
1645 fprintf(stderr, "\n");
1646 }
1647 break;
1648 }
1649 case nir_op_fsat: {
1650 Temp src = get_alu_src(ctx, instr->src[0]);
1651 if (dst.size() == 1) {
1652 bld.vop3(aco_opcode::v_med3_f32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
1653 /* apparently, it is not necessary to flush denorms if this instruction is used with these operands */
1654 // TODO: confirm that this holds under any circumstances
1655 } else if (dst.size() == 2) {
1656 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src, Operand(0u));
1657 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(add);
1658 vop3->clamp = true;
1659 } else {
1660 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1661 nir_print_instr(&instr->instr, stderr);
1662 fprintf(stderr, "\n");
1663 }
1664 break;
1665 }
1666 case nir_op_flog2: {
1667 if (dst.size() == 1) {
1668 emit_log2(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1669 } else {
1670 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1671 nir_print_instr(&instr->instr, stderr);
1672 fprintf(stderr, "\n");
1673 }
1674 break;
1675 }
1676 case nir_op_frcp: {
1677 if (dst.size() == 1) {
1678 emit_rcp(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1679 } else if (dst.size() == 2) {
1680 emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f64, dst);
1681 } else {
1682 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1683 nir_print_instr(&instr->instr, stderr);
1684 fprintf(stderr, "\n");
1685 }
1686 break;
1687 }
1688 case nir_op_fexp2: {
1689 if (dst.size() == 1) {
1690 emit_vop1_instruction(ctx, instr, aco_opcode::v_exp_f32, dst);
1691 } else {
1692 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1693 nir_print_instr(&instr->instr, stderr);
1694 fprintf(stderr, "\n");
1695 }
1696 break;
1697 }
1698 case nir_op_fsqrt: {
1699 if (dst.size() == 1) {
1700 emit_sqrt(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1701 } else if (dst.size() == 2) {
1702 emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f64, dst);
1703 } else {
1704 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1705 nir_print_instr(&instr->instr, stderr);
1706 fprintf(stderr, "\n");
1707 }
1708 break;
1709 }
1710 case nir_op_ffract: {
1711 if (dst.size() == 1) {
1712 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f32, dst);
1713 } else if (dst.size() == 2) {
1714 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f64, dst);
1715 } else {
1716 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1717 nir_print_instr(&instr->instr, stderr);
1718 fprintf(stderr, "\n");
1719 }
1720 break;
1721 }
1722 case nir_op_ffloor: {
1723 if (dst.size() == 1) {
1724 emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f32, dst);
1725 } else if (dst.size() == 2) {
1726 emit_floor_f64(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1727 } else {
1728 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1729 nir_print_instr(&instr->instr, stderr);
1730 fprintf(stderr, "\n");
1731 }
1732 break;
1733 }
1734 case nir_op_fceil: {
1735 if (dst.size() == 1) {
1736 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f32, dst);
1737 } else if (dst.size() == 2) {
1738 if (ctx->options->chip_class >= GFX7) {
1739 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f64, dst);
1740 } else {
1741 /* GFX6 doesn't support V_CEIL_F64, lower it. */
1742 Temp src0 = get_alu_src(ctx, instr->src[0]);
1743
1744 /* trunc = trunc(src0)
1745 * if (src0 > 0.0 && src0 != trunc)
1746 * trunc += 1.0
1747 */
1748 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src0);
1749 Temp tmp0 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.def(bld.lm), src0, Operand(0u));
1750 Temp tmp1 = bld.vopc(aco_opcode::v_cmp_lg_f64, bld.hint_vcc(bld.def(bld.lm)), src0, trunc);
1751 Temp cond = bld.sop2(aco_opcode::s_and_b64, bld.hint_vcc(bld.def(s2)), bld.def(s1, scc), tmp0, tmp1);
1752 Temp add = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), bld.copy(bld.def(v1), Operand(0u)), bld.copy(bld.def(v1), Operand(0x3ff00000u)), cond);
1753 add = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), bld.copy(bld.def(v1), Operand(0u)), add);
1754 bld.vop3(aco_opcode::v_add_f64, Definition(dst), trunc, add);
1755 }
1756 } else {
1757 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1758 nir_print_instr(&instr->instr, stderr);
1759 fprintf(stderr, "\n");
1760 }
1761 break;
1762 }
1763 case nir_op_ftrunc: {
1764 if (dst.size() == 1) {
1765 emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f32, dst);
1766 } else if (dst.size() == 2) {
1767 emit_trunc_f64(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1768 } else {
1769 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1770 nir_print_instr(&instr->instr, stderr);
1771 fprintf(stderr, "\n");
1772 }
1773 break;
1774 }
1775 case nir_op_fround_even: {
1776 if (dst.size() == 1) {
1777 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f32, dst);
1778 } else if (dst.size() == 2) {
1779 if (ctx->options->chip_class >= GFX7) {
1780 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f64, dst);
1781 } else {
1782 /* GFX6 doesn't support V_RNDNE_F64, lower it. */
1783 Temp src0 = get_alu_src(ctx, instr->src[0]);
1784
1785 Temp src0_lo = bld.tmp(v1), src0_hi = bld.tmp(v1);
1786 bld.pseudo(aco_opcode::p_split_vector, Definition(src0_lo), Definition(src0_hi), src0);
1787
1788 Temp bitmask = bld.sop1(aco_opcode::s_brev_b32, bld.def(s1), bld.copy(bld.def(s1), Operand(-2u)));
1789 Temp bfi = bld.vop3(aco_opcode::v_bfi_b32, bld.def(v1), bitmask, bld.copy(bld.def(v1), Operand(0x43300000u)), as_vgpr(ctx, src0_hi));
1790 Temp tmp = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), src0, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
1791 Instruction *sub = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), tmp, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
1792 static_cast<VOP3A_instruction*>(sub)->neg[1] = true;
1793 tmp = sub->definitions[0].getTemp();
1794
1795 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x432fffffu));
1796 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.hint_vcc(bld.def(bld.lm)), src0, v);
1797 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
1798 Temp cond = vop3->definitions[0].getTemp();
1799
1800 Temp tmp_lo = bld.tmp(v1), tmp_hi = bld.tmp(v1);
1801 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp_lo), Definition(tmp_hi), tmp);
1802 Temp dst0 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_lo, as_vgpr(ctx, src0_lo), cond);
1803 Temp dst1 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_hi, as_vgpr(ctx, src0_hi), cond);
1804
1805 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1806 }
1807 } else {
1808 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1809 nir_print_instr(&instr->instr, stderr);
1810 fprintf(stderr, "\n");
1811 }
1812 break;
1813 }
1814 case nir_op_fsin:
1815 case nir_op_fcos: {
1816 Temp src = get_alu_src(ctx, instr->src[0]);
1817 aco_ptr<Instruction> norm;
1818 if (dst.size() == 1) {
1819 Temp half_pi = bld.copy(bld.def(s1), Operand(0x3e22f983u));
1820 Temp tmp = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), half_pi, as_vgpr(ctx, src));
1821
1822 /* before GFX9, v_sin_f32 and v_cos_f32 had a valid input domain of [-256, +256] */
1823 if (ctx->options->chip_class < GFX9)
1824 tmp = bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), tmp);
1825
1826 aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f32 : aco_opcode::v_cos_f32;
1827 bld.vop1(opcode, Definition(dst), tmp);
1828 } else {
1829 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1830 nir_print_instr(&instr->instr, stderr);
1831 fprintf(stderr, "\n");
1832 }
1833 break;
1834 }
1835 case nir_op_ldexp: {
1836 if (dst.size() == 1) {
1837 bld.vop3(aco_opcode::v_ldexp_f32, Definition(dst),
1838 as_vgpr(ctx, get_alu_src(ctx, instr->src[0])),
1839 get_alu_src(ctx, instr->src[1]));
1840 } else if (dst.size() == 2) {
1841 bld.vop3(aco_opcode::v_ldexp_f64, Definition(dst),
1842 as_vgpr(ctx, get_alu_src(ctx, instr->src[0])),
1843 get_alu_src(ctx, instr->src[1]));
1844 } else {
1845 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1846 nir_print_instr(&instr->instr, stderr);
1847 fprintf(stderr, "\n");
1848 }
1849 break;
1850 }
1851 case nir_op_frexp_sig: {
1852 if (dst.size() == 1) {
1853 bld.vop1(aco_opcode::v_frexp_mant_f32, Definition(dst),
1854 get_alu_src(ctx, instr->src[0]));
1855 } else if (dst.size() == 2) {
1856 bld.vop1(aco_opcode::v_frexp_mant_f64, Definition(dst),
1857 get_alu_src(ctx, instr->src[0]));
1858 } else {
1859 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1860 nir_print_instr(&instr->instr, stderr);
1861 fprintf(stderr, "\n");
1862 }
1863 break;
1864 }
1865 case nir_op_frexp_exp: {
1866 if (instr->src[0].src.ssa->bit_size == 32) {
1867 bld.vop1(aco_opcode::v_frexp_exp_i32_f32, Definition(dst),
1868 get_alu_src(ctx, instr->src[0]));
1869 } else if (instr->src[0].src.ssa->bit_size == 64) {
1870 bld.vop1(aco_opcode::v_frexp_exp_i32_f64, Definition(dst),
1871 get_alu_src(ctx, instr->src[0]));
1872 } else {
1873 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1874 nir_print_instr(&instr->instr, stderr);
1875 fprintf(stderr, "\n");
1876 }
1877 break;
1878 }
1879 case nir_op_fsign: {
1880 Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
1881 if (dst.size() == 1) {
1882 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1883 src = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0x3f800000u), src, cond);
1884 cond = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1885 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0xbf800000u), src, cond);
1886 } else if (dst.size() == 2) {
1887 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1888 Temp tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0x3FF00000u));
1889 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, emit_extract_vector(ctx, src, 1, v1), cond);
1890
1891 cond = bld.vopc(aco_opcode::v_cmp_le_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1892 tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0xBFF00000u));
1893 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, upper, cond);
1894
1895 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
1896 } else {
1897 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1898 nir_print_instr(&instr->instr, stderr);
1899 fprintf(stderr, "\n");
1900 }
1901 break;
1902 }
1903 case nir_op_f2f32: {
1904 if (instr->src[0].src.ssa->bit_size == 64) {
1905 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f64, dst);
1906 } else {
1907 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1908 nir_print_instr(&instr->instr, stderr);
1909 fprintf(stderr, "\n");
1910 }
1911 break;
1912 }
1913 case nir_op_f2f64: {
1914 if (instr->src[0].src.ssa->bit_size == 32) {
1915 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_f32, dst);
1916 } else {
1917 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1918 nir_print_instr(&instr->instr, stderr);
1919 fprintf(stderr, "\n");
1920 }
1921 break;
1922 }
1923 case nir_op_i2f32: {
1924 assert(dst.size() == 1);
1925 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_i32, dst);
1926 break;
1927 }
1928 case nir_op_i2f64: {
1929 if (instr->src[0].src.ssa->bit_size == 32) {
1930 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_i32, dst);
1931 } else if (instr->src[0].src.ssa->bit_size == 64) {
1932 Temp src = get_alu_src(ctx, instr->src[0]);
1933 RegClass rc = RegClass(src.type(), 1);
1934 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
1935 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1936 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
1937 upper = bld.vop1(aco_opcode::v_cvt_f64_i32, bld.def(v2), upper);
1938 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
1939 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
1940
1941 } else {
1942 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1943 nir_print_instr(&instr->instr, stderr);
1944 fprintf(stderr, "\n");
1945 }
1946 break;
1947 }
1948 case nir_op_u2f32: {
1949 assert(dst.size() == 1);
1950 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_u32, dst);
1951 break;
1952 }
1953 case nir_op_u2f64: {
1954 if (instr->src[0].src.ssa->bit_size == 32) {
1955 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_u32, dst);
1956 } else if (instr->src[0].src.ssa->bit_size == 64) {
1957 Temp src = get_alu_src(ctx, instr->src[0]);
1958 RegClass rc = RegClass(src.type(), 1);
1959 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
1960 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1961 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
1962 upper = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), upper);
1963 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
1964 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
1965 } else {
1966 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1967 nir_print_instr(&instr->instr, stderr);
1968 fprintf(stderr, "\n");
1969 }
1970 break;
1971 }
1972 case nir_op_f2i32: {
1973 Temp src = get_alu_src(ctx, instr->src[0]);
1974 if (instr->src[0].src.ssa->bit_size == 32) {
1975 if (dst.type() == RegType::vgpr)
1976 bld.vop1(aco_opcode::v_cvt_i32_f32, Definition(dst), src);
1977 else
1978 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
1979 bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), src));
1980
1981 } else if (instr->src[0].src.ssa->bit_size == 64) {
1982 if (dst.type() == RegType::vgpr)
1983 bld.vop1(aco_opcode::v_cvt_i32_f64, Definition(dst), src);
1984 else
1985 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
1986 bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), src));
1987
1988 } else {
1989 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1990 nir_print_instr(&instr->instr, stderr);
1991 fprintf(stderr, "\n");
1992 }
1993 break;
1994 }
1995 case nir_op_f2u32: {
1996 Temp src = get_alu_src(ctx, instr->src[0]);
1997 if (instr->src[0].src.ssa->bit_size == 32) {
1998 if (dst.type() == RegType::vgpr)
1999 bld.vop1(aco_opcode::v_cvt_u32_f32, Definition(dst), src);
2000 else
2001 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2002 bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), src));
2003
2004 } else if (instr->src[0].src.ssa->bit_size == 64) {
2005 if (dst.type() == RegType::vgpr)
2006 bld.vop1(aco_opcode::v_cvt_u32_f64, Definition(dst), src);
2007 else
2008 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2009 bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), src));
2010
2011 } else {
2012 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2013 nir_print_instr(&instr->instr, stderr);
2014 fprintf(stderr, "\n");
2015 }
2016 break;
2017 }
2018 case nir_op_f2i64: {
2019 Temp src = get_alu_src(ctx, instr->src[0]);
2020 if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::vgpr) {
2021 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2022 exponent = bld.vop3(aco_opcode::v_med3_i32, bld.def(v1), Operand(0x0u), exponent, Operand(64u));
2023 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2024 Temp sign = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
2025 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2026 mantissa = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(7u), mantissa);
2027 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2028 Temp new_exponent = bld.tmp(v1);
2029 Temp borrow = bld.vsub32(Definition(new_exponent), Operand(63u), exponent, true).def(1).getTemp();
2030 if (ctx->program->chip_class >= GFX8)
2031 mantissa = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), new_exponent, mantissa);
2032 else
2033 mantissa = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), mantissa, new_exponent);
2034 Temp saturate = bld.vop1(aco_opcode::v_bfrev_b32, bld.def(v1), Operand(0xfffffffeu));
2035 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2036 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2037 lower = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), lower, Operand(0xffffffffu), borrow);
2038 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), upper, saturate, borrow);
2039 lower = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, lower);
2040 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, upper);
2041 Temp new_lower = bld.tmp(v1);
2042 borrow = bld.vsub32(Definition(new_lower), lower, sign, true).def(1).getTemp();
2043 Temp new_upper = bld.vsub32(bld.def(v1), upper, sign, false, borrow);
2044 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), new_lower, new_upper);
2045
2046 } else if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::sgpr) {
2047 if (src.type() == RegType::vgpr)
2048 src = bld.as_uniform(src);
2049 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2050 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2051 exponent = bld.sop2(aco_opcode::s_max_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2052 exponent = bld.sop2(aco_opcode::s_min_u32, bld.def(s1), bld.def(s1, scc), Operand(64u), exponent);
2053 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2054 Temp sign = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
2055 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2056 mantissa = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), mantissa, Operand(7u));
2057 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2058 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(63u), exponent);
2059 mantissa = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent);
2060 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), exponent, Operand(0xffffffffu)); // exp >= 64
2061 Temp saturate = bld.sop1(aco_opcode::s_brev_b64, bld.def(s2), Operand(0xfffffffeu));
2062 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), saturate, mantissa, cond);
2063 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2064 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2065 lower = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, lower);
2066 upper = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, upper);
2067 Temp borrow = bld.tmp(s1);
2068 lower = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), lower, sign);
2069 upper = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), upper, sign, borrow);
2070 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2071
2072 } else if (instr->src[0].src.ssa->bit_size == 64) {
2073 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2074 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2075 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2076 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2077 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2078 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2079 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2080 Temp upper = bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), floor);
2081 if (dst.type() == RegType::sgpr) {
2082 lower = bld.as_uniform(lower);
2083 upper = bld.as_uniform(upper);
2084 }
2085 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2086
2087 } else {
2088 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2089 nir_print_instr(&instr->instr, stderr);
2090 fprintf(stderr, "\n");
2091 }
2092 break;
2093 }
2094 case nir_op_f2u64: {
2095 Temp src = get_alu_src(ctx, instr->src[0]);
2096 if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::vgpr) {
2097 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2098 Temp exponent_in_range = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(64u), exponent);
2099 exponent = bld.vop2(aco_opcode::v_max_i32, bld.def(v1), Operand(0x0u), exponent);
2100 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2101 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2102 Temp exponent_small = bld.vsub32(bld.def(v1), Operand(24u), exponent);
2103 Temp small = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), exponent_small, mantissa);
2104 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2105 Temp new_exponent = bld.tmp(v1);
2106 Temp cond_small = bld.vsub32(Definition(new_exponent), exponent, Operand(24u), true).def(1).getTemp();
2107 if (ctx->program->chip_class >= GFX8)
2108 mantissa = bld.vop3(aco_opcode::v_lshlrev_b64, bld.def(v2), new_exponent, mantissa);
2109 else
2110 mantissa = bld.vop3(aco_opcode::v_lshl_b64, bld.def(v2), mantissa, new_exponent);
2111 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2112 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2113 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), lower, small, cond_small);
2114 upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), upper, Operand(0u), cond_small);
2115 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), lower, exponent_in_range);
2116 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), upper, exponent_in_range);
2117 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2118
2119 } else if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::sgpr) {
2120 if (src.type() == RegType::vgpr)
2121 src = bld.as_uniform(src);
2122 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2123 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2124 exponent = bld.sop2(aco_opcode::s_max_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2125 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2126 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2127 Temp exponent_small = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(24u), exponent);
2128 Temp small = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), mantissa, exponent_small);
2129 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2130 Temp exponent_large = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(24u));
2131 mantissa = bld.sop2(aco_opcode::s_lshl_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent_large);
2132 Temp cond = bld.sopc(aco_opcode::s_cmp_ge_i32, bld.def(s1, scc), Operand(64u), exponent);
2133 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), mantissa, Operand(0xffffffffu), cond);
2134 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2135 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2136 Temp cond_small = bld.sopc(aco_opcode::s_cmp_le_i32, bld.def(s1, scc), exponent, Operand(24u));
2137 lower = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), small, lower, cond_small);
2138 upper = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), Operand(0u), upper, cond_small);
2139 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2140
2141 } else if (instr->src[0].src.ssa->bit_size == 64) {
2142 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2143 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2144 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2145 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2146 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2147 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2148 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2149 Temp upper = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), floor);
2150 if (dst.type() == RegType::sgpr) {
2151 lower = bld.as_uniform(lower);
2152 upper = bld.as_uniform(upper);
2153 }
2154 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2155
2156 } else {
2157 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2158 nir_print_instr(&instr->instr, stderr);
2159 fprintf(stderr, "\n");
2160 }
2161 break;
2162 }
2163 case nir_op_b2f32: {
2164 Temp src = get_alu_src(ctx, instr->src[0]);
2165 assert(src.regClass() == bld.lm);
2166
2167 if (dst.regClass() == s1) {
2168 src = bool_to_scalar_condition(ctx, src);
2169 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3f800000u), src);
2170 } else if (dst.regClass() == v1) {
2171 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
2172 } else {
2173 unreachable("Wrong destination register class for nir_op_b2f32.");
2174 }
2175 break;
2176 }
2177 case nir_op_b2f64: {
2178 Temp src = get_alu_src(ctx, instr->src[0]);
2179 assert(src.regClass() == bld.lm);
2180
2181 if (dst.regClass() == s2) {
2182 src = bool_to_scalar_condition(ctx, src);
2183 bld.sop2(aco_opcode::s_cselect_b64, Definition(dst), Operand(0x3f800000u), Operand(0u), bld.scc(src));
2184 } else if (dst.regClass() == v2) {
2185 Temp one = bld.vop1(aco_opcode::v_mov_b32, bld.def(v2), Operand(0x3FF00000u));
2186 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), one, src);
2187 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
2188 } else {
2189 unreachable("Wrong destination register class for nir_op_b2f64.");
2190 }
2191 break;
2192 }
2193 case nir_op_i2i32: {
2194 Temp src = get_alu_src(ctx, instr->src[0]);
2195 if (instr->src[0].src.ssa->bit_size == 64) {
2196 /* we can actually just say dst = src, as it would map the lower register */
2197 emit_extract_vector(ctx, src, 0, dst);
2198 } else {
2199 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2200 nir_print_instr(&instr->instr, stderr);
2201 fprintf(stderr, "\n");
2202 }
2203 break;
2204 }
2205 case nir_op_u2u32: {
2206 Temp src = get_alu_src(ctx, instr->src[0]);
2207 if (instr->src[0].src.ssa->bit_size == 16) {
2208 if (dst.regClass() == s1) {
2209 bld.sop2(aco_opcode::s_and_b32, Definition(dst), bld.def(s1, scc), Operand(0xFFFFu), src);
2210 } else {
2211 // TODO: do better with SDWA
2212 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0xFFFFu), src);
2213 }
2214 } else if (instr->src[0].src.ssa->bit_size == 64) {
2215 /* we can actually just say dst = src, as it would map the lower register */
2216 emit_extract_vector(ctx, src, 0, dst);
2217 } else {
2218 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2219 nir_print_instr(&instr->instr, stderr);
2220 fprintf(stderr, "\n");
2221 }
2222 break;
2223 }
2224 case nir_op_i2i64: {
2225 Temp src = get_alu_src(ctx, instr->src[0]);
2226 if (src.regClass() == s1) {
2227 Temp high = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
2228 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, high);
2229 } else if (src.regClass() == v1) {
2230 Temp high = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
2231 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, high);
2232 } else {
2233 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2234 nir_print_instr(&instr->instr, stderr);
2235 fprintf(stderr, "\n");
2236 }
2237 break;
2238 }
2239 case nir_op_u2u64: {
2240 Temp src = get_alu_src(ctx, instr->src[0]);
2241 if (instr->src[0].src.ssa->bit_size == 32) {
2242 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, Operand(0u));
2243 } else {
2244 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2245 nir_print_instr(&instr->instr, stderr);
2246 fprintf(stderr, "\n");
2247 }
2248 break;
2249 }
2250 case nir_op_b2i32: {
2251 Temp src = get_alu_src(ctx, instr->src[0]);
2252 assert(src.regClass() == bld.lm);
2253
2254 if (dst.regClass() == s1) {
2255 // TODO: in a post-RA optimization, we can check if src is in VCC, and directly use VCCNZ
2256 bool_to_scalar_condition(ctx, src, dst);
2257 } else if (dst.regClass() == v1) {
2258 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), src);
2259 } else {
2260 unreachable("Invalid register class for b2i32");
2261 }
2262 break;
2263 }
2264 case nir_op_i2b1: {
2265 Temp src = get_alu_src(ctx, instr->src[0]);
2266 assert(dst.regClass() == bld.lm);
2267
2268 if (src.type() == RegType::vgpr) {
2269 assert(src.regClass() == v1 || src.regClass() == v2);
2270 assert(dst.regClass() == bld.lm);
2271 bld.vopc(src.size() == 2 ? aco_opcode::v_cmp_lg_u64 : aco_opcode::v_cmp_lg_u32,
2272 Definition(dst), Operand(0u), src).def(0).setHint(vcc);
2273 } else {
2274 assert(src.regClass() == s1 || src.regClass() == s2);
2275 Temp tmp;
2276 if (src.regClass() == s2 && ctx->program->chip_class <= GFX7) {
2277 tmp = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), Operand(0u), src).def(1).getTemp();
2278 } else {
2279 tmp = bld.sopc(src.size() == 2 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::s_cmp_lg_u32,
2280 bld.scc(bld.def(s1)), Operand(0u), src);
2281 }
2282 bool_to_vector_condition(ctx, tmp, dst);
2283 }
2284 break;
2285 }
2286 case nir_op_pack_64_2x32_split: {
2287 Temp src0 = get_alu_src(ctx, instr->src[0]);
2288 Temp src1 = get_alu_src(ctx, instr->src[1]);
2289
2290 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
2291 break;
2292 }
2293 case nir_op_unpack_64_2x32_split_x:
2294 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
2295 break;
2296 case nir_op_unpack_64_2x32_split_y:
2297 bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
2298 break;
2299 case nir_op_pack_half_2x16: {
2300 Temp src = get_alu_src(ctx, instr->src[0], 2);
2301
2302 if (dst.regClass() == v1) {
2303 Temp src0 = bld.tmp(v1);
2304 Temp src1 = bld.tmp(v1);
2305 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
2306 if (!ctx->block->fp_mode.care_about_round32 || ctx->block->fp_mode.round32 == fp_round_tz)
2307 bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, Definition(dst), src0, src1);
2308 else
2309 bld.vop3(aco_opcode::v_cvt_pk_u16_u32, Definition(dst),
2310 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src0),
2311 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src1));
2312 } else {
2313 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2314 nir_print_instr(&instr->instr, stderr);
2315 fprintf(stderr, "\n");
2316 }
2317 break;
2318 }
2319 case nir_op_unpack_half_2x16_split_x: {
2320 if (dst.regClass() == v1) {
2321 Builder bld(ctx->program, ctx->block);
2322 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst), get_alu_src(ctx, instr->src[0]));
2323 } else {
2324 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2325 nir_print_instr(&instr->instr, stderr);
2326 fprintf(stderr, "\n");
2327 }
2328 break;
2329 }
2330 case nir_op_unpack_half_2x16_split_y: {
2331 if (dst.regClass() == v1) {
2332 Builder bld(ctx->program, ctx->block);
2333 /* TODO: use SDWA here */
2334 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst),
2335 bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), as_vgpr(ctx, get_alu_src(ctx, instr->src[0]))));
2336 } else {
2337 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2338 nir_print_instr(&instr->instr, stderr);
2339 fprintf(stderr, "\n");
2340 }
2341 break;
2342 }
2343 case nir_op_fquantize2f16: {
2344 Temp src = get_alu_src(ctx, instr->src[0]);
2345 Temp f16 = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), src);
2346 Temp f32, cmp_res;
2347
2348 if (ctx->program->chip_class >= GFX8) {
2349 Temp mask = bld.copy(bld.def(s1), Operand(0x36Fu)); /* value is NOT negative/positive denormal value */
2350 cmp_res = bld.vopc_e64(aco_opcode::v_cmp_class_f16, bld.hint_vcc(bld.def(bld.lm)), f16, mask);
2351 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2352 } else {
2353 /* 0x38800000 is smallest half float value (2^-14) in 32-bit float,
2354 * so compare the result and flush to 0 if it's smaller.
2355 */
2356 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2357 Temp smallest = bld.copy(bld.def(s1), Operand(0x38800000u));
2358 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), f32, smallest);
2359 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
2360 cmp_res = vop3->definitions[0].getTemp();
2361 }
2362
2363 if (ctx->block->fp_mode.preserve_signed_zero_inf_nan32 || ctx->program->chip_class < GFX8) {
2364 Temp copysign_0 = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0u), as_vgpr(ctx, src));
2365 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), copysign_0, f32, cmp_res);
2366 } else {
2367 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), f32, cmp_res);
2368 }
2369 break;
2370 }
2371 case nir_op_bfm: {
2372 Temp bits = get_alu_src(ctx, instr->src[0]);
2373 Temp offset = get_alu_src(ctx, instr->src[1]);
2374
2375 if (dst.regClass() == s1) {
2376 bld.sop2(aco_opcode::s_bfm_b32, Definition(dst), bits, offset);
2377 } else if (dst.regClass() == v1) {
2378 bld.vop3(aco_opcode::v_bfm_b32, Definition(dst), bits, offset);
2379 } else {
2380 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2381 nir_print_instr(&instr->instr, stderr);
2382 fprintf(stderr, "\n");
2383 }
2384 break;
2385 }
2386 case nir_op_bitfield_select: {
2387 /* (mask & insert) | (~mask & base) */
2388 Temp bitmask = get_alu_src(ctx, instr->src[0]);
2389 Temp insert = get_alu_src(ctx, instr->src[1]);
2390 Temp base = get_alu_src(ctx, instr->src[2]);
2391
2392 /* dst = (insert & bitmask) | (base & ~bitmask) */
2393 if (dst.regClass() == s1) {
2394 aco_ptr<Instruction> sop2;
2395 nir_const_value* const_bitmask = nir_src_as_const_value(instr->src[0].src);
2396 nir_const_value* const_insert = nir_src_as_const_value(instr->src[1].src);
2397 Operand lhs;
2398 if (const_insert && const_bitmask) {
2399 lhs = Operand(const_insert->u32 & const_bitmask->u32);
2400 } else {
2401 insert = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), insert, bitmask);
2402 lhs = Operand(insert);
2403 }
2404
2405 Operand rhs;
2406 nir_const_value* const_base = nir_src_as_const_value(instr->src[2].src);
2407 if (const_base && const_bitmask) {
2408 rhs = Operand(const_base->u32 & ~const_bitmask->u32);
2409 } else {
2410 base = bld.sop2(aco_opcode::s_andn2_b32, bld.def(s1), bld.def(s1, scc), base, bitmask);
2411 rhs = Operand(base);
2412 }
2413
2414 bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), rhs, lhs);
2415
2416 } else if (dst.regClass() == v1) {
2417 if (base.type() == RegType::sgpr && (bitmask.type() == RegType::sgpr || (insert.type() == RegType::sgpr)))
2418 base = as_vgpr(ctx, base);
2419 if (insert.type() == RegType::sgpr && bitmask.type() == RegType::sgpr)
2420 insert = as_vgpr(ctx, insert);
2421
2422 bld.vop3(aco_opcode::v_bfi_b32, Definition(dst), bitmask, insert, base);
2423
2424 } else {
2425 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2426 nir_print_instr(&instr->instr, stderr);
2427 fprintf(stderr, "\n");
2428 }
2429 break;
2430 }
2431 case nir_op_ubfe:
2432 case nir_op_ibfe: {
2433 Temp base = get_alu_src(ctx, instr->src[0]);
2434 Temp offset = get_alu_src(ctx, instr->src[1]);
2435 Temp bits = get_alu_src(ctx, instr->src[2]);
2436
2437 if (dst.type() == RegType::sgpr) {
2438 Operand extract;
2439 nir_const_value* const_offset = nir_src_as_const_value(instr->src[1].src);
2440 nir_const_value* const_bits = nir_src_as_const_value(instr->src[2].src);
2441 if (const_offset && const_bits) {
2442 uint32_t const_extract = (const_bits->u32 << 16) | const_offset->u32;
2443 extract = Operand(const_extract);
2444 } else {
2445 Operand width;
2446 if (const_bits) {
2447 width = Operand(const_bits->u32 << 16);
2448 } else {
2449 width = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), bits, Operand(16u));
2450 }
2451 extract = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), offset, width);
2452 }
2453
2454 aco_opcode opcode;
2455 if (dst.regClass() == s1) {
2456 if (instr->op == nir_op_ubfe)
2457 opcode = aco_opcode::s_bfe_u32;
2458 else
2459 opcode = aco_opcode::s_bfe_i32;
2460 } else if (dst.regClass() == s2) {
2461 if (instr->op == nir_op_ubfe)
2462 opcode = aco_opcode::s_bfe_u64;
2463 else
2464 opcode = aco_opcode::s_bfe_i64;
2465 } else {
2466 unreachable("Unsupported BFE bit size");
2467 }
2468
2469 bld.sop2(opcode, Definition(dst), bld.def(s1, scc), base, extract);
2470
2471 } else {
2472 aco_opcode opcode;
2473 if (dst.regClass() == v1) {
2474 if (instr->op == nir_op_ubfe)
2475 opcode = aco_opcode::v_bfe_u32;
2476 else
2477 opcode = aco_opcode::v_bfe_i32;
2478 } else {
2479 unreachable("Unsupported BFE bit size");
2480 }
2481
2482 emit_vop3a_instruction(ctx, instr, opcode, dst);
2483 }
2484 break;
2485 }
2486 case nir_op_bit_count: {
2487 Temp src = get_alu_src(ctx, instr->src[0]);
2488 if (src.regClass() == s1) {
2489 bld.sop1(aco_opcode::s_bcnt1_i32_b32, Definition(dst), bld.def(s1, scc), src);
2490 } else if (src.regClass() == v1) {
2491 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst), src, Operand(0u));
2492 } else if (src.regClass() == v2) {
2493 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst),
2494 emit_extract_vector(ctx, src, 1, v1),
2495 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1),
2496 emit_extract_vector(ctx, src, 0, v1), Operand(0u)));
2497 } else if (src.regClass() == s2) {
2498 bld.sop1(aco_opcode::s_bcnt1_i32_b64, Definition(dst), bld.def(s1, scc), src);
2499 } else {
2500 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2501 nir_print_instr(&instr->instr, stderr);
2502 fprintf(stderr, "\n");
2503 }
2504 break;
2505 }
2506 case nir_op_flt: {
2507 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_f32, aco_opcode::v_cmp_lt_f64);
2508 break;
2509 }
2510 case nir_op_fge: {
2511 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_f32, aco_opcode::v_cmp_ge_f64);
2512 break;
2513 }
2514 case nir_op_feq: {
2515 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_f32, aco_opcode::v_cmp_eq_f64);
2516 break;
2517 }
2518 case nir_op_fne: {
2519 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_neq_f32, aco_opcode::v_cmp_neq_f64);
2520 break;
2521 }
2522 case nir_op_ilt: {
2523 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_i32, aco_opcode::v_cmp_lt_i64, aco_opcode::s_cmp_lt_i32);
2524 break;
2525 }
2526 case nir_op_ige: {
2527 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_i32, aco_opcode::v_cmp_ge_i64, aco_opcode::s_cmp_ge_i32);
2528 break;
2529 }
2530 case nir_op_ieq: {
2531 if (instr->src[0].src.ssa->bit_size == 1)
2532 emit_boolean_logic(ctx, instr, Builder::s_xnor, dst);
2533 else
2534 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_i32, aco_opcode::v_cmp_eq_i64, aco_opcode::s_cmp_eq_i32,
2535 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_eq_u64 : aco_opcode::num_opcodes);
2536 break;
2537 }
2538 case nir_op_ine: {
2539 if (instr->src[0].src.ssa->bit_size == 1)
2540 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
2541 else
2542 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lg_i32, aco_opcode::v_cmp_lg_i64, aco_opcode::s_cmp_lg_i32,
2543 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::num_opcodes);
2544 break;
2545 }
2546 case nir_op_ult: {
2547 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_u32, aco_opcode::v_cmp_lt_u64, aco_opcode::s_cmp_lt_u32);
2548 break;
2549 }
2550 case nir_op_uge: {
2551 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_u32, aco_opcode::v_cmp_ge_u64, aco_opcode::s_cmp_ge_u32);
2552 break;
2553 }
2554 case nir_op_fddx:
2555 case nir_op_fddy:
2556 case nir_op_fddx_fine:
2557 case nir_op_fddy_fine:
2558 case nir_op_fddx_coarse:
2559 case nir_op_fddy_coarse: {
2560 Temp src = get_alu_src(ctx, instr->src[0]);
2561 uint16_t dpp_ctrl1, dpp_ctrl2;
2562 if (instr->op == nir_op_fddx_fine) {
2563 dpp_ctrl1 = dpp_quad_perm(0, 0, 2, 2);
2564 dpp_ctrl2 = dpp_quad_perm(1, 1, 3, 3);
2565 } else if (instr->op == nir_op_fddy_fine) {
2566 dpp_ctrl1 = dpp_quad_perm(0, 1, 0, 1);
2567 dpp_ctrl2 = dpp_quad_perm(2, 3, 2, 3);
2568 } else {
2569 dpp_ctrl1 = dpp_quad_perm(0, 0, 0, 0);
2570 if (instr->op == nir_op_fddx || instr->op == nir_op_fddx_coarse)
2571 dpp_ctrl2 = dpp_quad_perm(1, 1, 1, 1);
2572 else
2573 dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
2574 }
2575
2576 Temp tmp;
2577 if (ctx->program->chip_class >= GFX8) {
2578 Temp tl = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl1);
2579 tmp = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), src, tl, dpp_ctrl2);
2580 } else {
2581 Temp tl = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl1);
2582 Temp tr = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl2);
2583 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), tr, tl);
2584 }
2585 emit_wqm(ctx, tmp, dst, true);
2586 break;
2587 }
2588 default:
2589 fprintf(stderr, "Unknown NIR ALU instr: ");
2590 nir_print_instr(&instr->instr, stderr);
2591 fprintf(stderr, "\n");
2592 }
2593 }
2594
2595 void visit_load_const(isel_context *ctx, nir_load_const_instr *instr)
2596 {
2597 Temp dst = get_ssa_temp(ctx, &instr->def);
2598
2599 // TODO: we really want to have the resulting type as this would allow for 64bit literals
2600 // which get truncated the lsb if double and msb if int
2601 // for now, we only use s_mov_b64 with 64bit inline constants
2602 assert(instr->def.num_components == 1 && "Vector load_const should be lowered to scalar.");
2603 assert(dst.type() == RegType::sgpr);
2604
2605 Builder bld(ctx->program, ctx->block);
2606
2607 if (instr->def.bit_size == 1) {
2608 assert(dst.regClass() == bld.lm);
2609 int val = instr->value[0].b ? -1 : 0;
2610 Operand op = bld.lm.size() == 1 ? Operand((uint32_t) val) : Operand((uint64_t) val);
2611 bld.sop1(Builder::s_mov, Definition(dst), op);
2612 } else if (dst.size() == 1) {
2613 bld.copy(Definition(dst), Operand(instr->value[0].u32));
2614 } else {
2615 assert(dst.size() != 1);
2616 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
2617 if (instr->def.bit_size == 64)
2618 for (unsigned i = 0; i < dst.size(); i++)
2619 vec->operands[i] = Operand{(uint32_t)(instr->value[0].u64 >> i * 32)};
2620 else {
2621 for (unsigned i = 0; i < dst.size(); i++)
2622 vec->operands[i] = Operand{instr->value[i].u32};
2623 }
2624 vec->definitions[0] = Definition(dst);
2625 ctx->block->instructions.emplace_back(std::move(vec));
2626 }
2627 }
2628
2629 uint32_t widen_mask(uint32_t mask, unsigned multiplier)
2630 {
2631 uint32_t new_mask = 0;
2632 for(unsigned i = 0; i < 32 && (1u << i) <= mask; ++i)
2633 if (mask & (1u << i))
2634 new_mask |= ((1u << multiplier) - 1u) << (i * multiplier);
2635 return new_mask;
2636 }
2637
2638 Operand load_lds_size_m0(isel_context *ctx)
2639 {
2640 /* TODO: m0 does not need to be initialized on GFX9+ */
2641 Builder bld(ctx->program, ctx->block);
2642 return bld.m0((Temp)bld.sopk(aco_opcode::s_movk_i32, bld.def(s1, m0), 0xffff));
2643 }
2644
2645 void load_lds(isel_context *ctx, unsigned elem_size_bytes, Temp dst,
2646 Temp address, unsigned base_offset, unsigned align)
2647 {
2648 assert(util_is_power_of_two_nonzero(align) && align >= 4);
2649
2650 Builder bld(ctx->program, ctx->block);
2651
2652 Operand m = load_lds_size_m0(ctx);
2653
2654 unsigned num_components = dst.size() * 4u / elem_size_bytes;
2655 unsigned bytes_read = 0;
2656 unsigned result_size = 0;
2657 unsigned total_bytes = num_components * elem_size_bytes;
2658 std::array<Temp, NIR_MAX_VEC_COMPONENTS> result;
2659 bool large_ds_read = ctx->options->chip_class >= GFX7;
2660 bool usable_read2 = ctx->options->chip_class >= GFX7;
2661
2662 while (bytes_read < total_bytes) {
2663 unsigned todo = total_bytes - bytes_read;
2664 bool aligned8 = bytes_read % 8 == 0 && align % 8 == 0;
2665 bool aligned16 = bytes_read % 16 == 0 && align % 16 == 0;
2666
2667 aco_opcode op = aco_opcode::last_opcode;
2668 bool read2 = false;
2669 if (todo >= 16 && aligned16 && large_ds_read) {
2670 op = aco_opcode::ds_read_b128;
2671 todo = 16;
2672 } else if (todo >= 16 && aligned8 && usable_read2) {
2673 op = aco_opcode::ds_read2_b64;
2674 read2 = true;
2675 todo = 16;
2676 } else if (todo >= 12 && aligned16 && large_ds_read) {
2677 op = aco_opcode::ds_read_b96;
2678 todo = 12;
2679 } else if (todo >= 8 && aligned8) {
2680 op = aco_opcode::ds_read_b64;
2681 todo = 8;
2682 } else if (todo >= 8 && usable_read2) {
2683 op = aco_opcode::ds_read2_b32;
2684 read2 = true;
2685 todo = 8;
2686 } else if (todo >= 4) {
2687 op = aco_opcode::ds_read_b32;
2688 todo = 4;
2689 } else {
2690 assert(false);
2691 }
2692 assert(todo % elem_size_bytes == 0);
2693 unsigned num_elements = todo / elem_size_bytes;
2694 unsigned offset = base_offset + bytes_read;
2695 unsigned max_offset = read2 ? 1019 : 65535;
2696
2697 Temp address_offset = address;
2698 if (offset > max_offset) {
2699 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
2700 offset = bytes_read;
2701 }
2702 assert(offset <= max_offset); /* bytes_read shouldn't be large enough for this to happen */
2703
2704 Temp res;
2705 if (num_components == 1 && dst.type() == RegType::vgpr)
2706 res = dst;
2707 else
2708 res = bld.tmp(RegClass(RegType::vgpr, todo / 4));
2709
2710 if (read2)
2711 res = bld.ds(op, Definition(res), address_offset, m, offset >> 2, (offset >> 2) + 1);
2712 else
2713 res = bld.ds(op, Definition(res), address_offset, m, offset);
2714
2715 if (num_components == 1) {
2716 assert(todo == total_bytes);
2717 if (dst.type() == RegType::sgpr)
2718 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), res);
2719 return;
2720 }
2721
2722 if (dst.type() == RegType::sgpr) {
2723 Temp new_res = bld.tmp(RegType::sgpr, res.size());
2724 expand_vector(ctx, res, new_res, res.size(), (1 << res.size()) - 1);
2725 res = new_res;
2726 }
2727
2728 if (num_elements == 1) {
2729 result[result_size++] = res;
2730 } else {
2731 assert(res != dst && res.size() % num_elements == 0);
2732 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_elements)};
2733 split->operands[0] = Operand(res);
2734 for (unsigned i = 0; i < num_elements; i++)
2735 split->definitions[i] = Definition(result[result_size++] = bld.tmp(res.type(), elem_size_bytes / 4));
2736 ctx->block->instructions.emplace_back(std::move(split));
2737 }
2738
2739 bytes_read += todo;
2740 }
2741
2742 assert(result_size == num_components && result_size > 1);
2743 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, result_size, 1)};
2744 for (unsigned i = 0; i < result_size; i++)
2745 vec->operands[i] = Operand(result[i]);
2746 vec->definitions[0] = Definition(dst);
2747 ctx->block->instructions.emplace_back(std::move(vec));
2748 ctx->allocated_vec.emplace(dst.id(), result);
2749 }
2750
2751 Temp extract_subvector(isel_context *ctx, Temp data, unsigned start, unsigned size, RegType type)
2752 {
2753 if (start == 0 && size == data.size())
2754 return type == RegType::vgpr ? as_vgpr(ctx, data) : data;
2755
2756 unsigned size_hint = 1;
2757 auto it = ctx->allocated_vec.find(data.id());
2758 if (it != ctx->allocated_vec.end())
2759 size_hint = it->second[0].size();
2760 if (size % size_hint || start % size_hint)
2761 size_hint = 1;
2762
2763 start /= size_hint;
2764 size /= size_hint;
2765
2766 Temp elems[size];
2767 for (unsigned i = 0; i < size; i++)
2768 elems[i] = emit_extract_vector(ctx, data, start + i, RegClass(type, size_hint));
2769
2770 if (size == 1)
2771 return type == RegType::vgpr ? as_vgpr(ctx, elems[0]) : elems[0];
2772
2773 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
2774 for (unsigned i = 0; i < size; i++)
2775 vec->operands[i] = Operand(elems[i]);
2776 Temp res = {ctx->program->allocateId(), RegClass(type, size * size_hint)};
2777 vec->definitions[0] = Definition(res);
2778 ctx->block->instructions.emplace_back(std::move(vec));
2779 return res;
2780 }
2781
2782 void ds_write_helper(isel_context *ctx, Operand m, Temp address, Temp data, unsigned data_start, unsigned total_size, unsigned offset0, unsigned offset1, unsigned align)
2783 {
2784 Builder bld(ctx->program, ctx->block);
2785 unsigned bytes_written = 0;
2786 bool large_ds_write = ctx->options->chip_class >= GFX7;
2787 bool usable_write2 = ctx->options->chip_class >= GFX7;
2788
2789 while (bytes_written < total_size * 4) {
2790 unsigned todo = total_size * 4 - bytes_written;
2791 bool aligned8 = bytes_written % 8 == 0 && align % 8 == 0;
2792 bool aligned16 = bytes_written % 16 == 0 && align % 16 == 0;
2793
2794 aco_opcode op = aco_opcode::last_opcode;
2795 bool write2 = false;
2796 unsigned size = 0;
2797 if (todo >= 16 && aligned16 && large_ds_write) {
2798 op = aco_opcode::ds_write_b128;
2799 size = 4;
2800 } else if (todo >= 16 && aligned8 && usable_write2) {
2801 op = aco_opcode::ds_write2_b64;
2802 write2 = true;
2803 size = 4;
2804 } else if (todo >= 12 && aligned16 && large_ds_write) {
2805 op = aco_opcode::ds_write_b96;
2806 size = 3;
2807 } else if (todo >= 8 && aligned8) {
2808 op = aco_opcode::ds_write_b64;
2809 size = 2;
2810 } else if (todo >= 8 && usable_write2) {
2811 op = aco_opcode::ds_write2_b32;
2812 write2 = true;
2813 size = 2;
2814 } else if (todo >= 4) {
2815 op = aco_opcode::ds_write_b32;
2816 size = 1;
2817 } else {
2818 assert(false);
2819 }
2820
2821 unsigned offset = offset0 + offset1 + bytes_written;
2822 unsigned max_offset = write2 ? 1020 : 65535;
2823 Temp address_offset = address;
2824 if (offset > max_offset) {
2825 address_offset = bld.vadd32(bld.def(v1), Operand(offset0), address_offset);
2826 offset = offset1 + bytes_written;
2827 }
2828 assert(offset <= max_offset); /* offset1 shouldn't be large enough for this to happen */
2829
2830 if (write2) {
2831 Temp val0 = extract_subvector(ctx, data, data_start + (bytes_written >> 2), size / 2, RegType::vgpr);
2832 Temp val1 = extract_subvector(ctx, data, data_start + (bytes_written >> 2) + 1, size / 2, RegType::vgpr);
2833 bld.ds(op, address_offset, val0, val1, m, offset >> 2, (offset >> 2) + 1);
2834 } else {
2835 Temp val = extract_subvector(ctx, data, data_start + (bytes_written >> 2), size, RegType::vgpr);
2836 bld.ds(op, address_offset, val, m, offset);
2837 }
2838
2839 bytes_written += size * 4;
2840 }
2841 }
2842
2843 void store_lds(isel_context *ctx, unsigned elem_size_bytes, Temp data, uint32_t wrmask,
2844 Temp address, unsigned base_offset, unsigned align)
2845 {
2846 assert(util_is_power_of_two_nonzero(align) && align >= 4);
2847
2848 Operand m = load_lds_size_m0(ctx);
2849
2850 /* we need at most two stores for 32bit variables */
2851 int start[2], count[2];
2852 u_bit_scan_consecutive_range(&wrmask, &start[0], &count[0]);
2853 u_bit_scan_consecutive_range(&wrmask, &start[1], &count[1]);
2854 assert(wrmask == 0);
2855
2856 /* one combined store is sufficient */
2857 if (count[0] == count[1]) {
2858 Builder bld(ctx->program, ctx->block);
2859
2860 Temp address_offset = address;
2861 if ((base_offset >> 2) + start[1] > 255) {
2862 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
2863 base_offset = 0;
2864 }
2865
2866 assert(count[0] == 1);
2867 Temp val0 = emit_extract_vector(ctx, data, start[0], v1);
2868 Temp val1 = emit_extract_vector(ctx, data, start[1], v1);
2869 aco_opcode op = elem_size_bytes == 4 ? aco_opcode::ds_write2_b32 : aco_opcode::ds_write2_b64;
2870 base_offset = base_offset / elem_size_bytes;
2871 bld.ds(op, address_offset, val0, val1, m,
2872 base_offset + start[0], base_offset + start[1]);
2873 return;
2874 }
2875
2876 for (unsigned i = 0; i < 2; i++) {
2877 if (count[i] == 0)
2878 continue;
2879
2880 unsigned elem_size_words = elem_size_bytes / 4;
2881 ds_write_helper(ctx, m, address, data, start[i] * elem_size_words, count[i] * elem_size_words,
2882 base_offset, start[i] * elem_size_bytes, align);
2883 }
2884 return;
2885 }
2886
2887 void visit_store_vsgs_output(isel_context *ctx, nir_intrinsic_instr *instr)
2888 {
2889 unsigned write_mask = nir_intrinsic_write_mask(instr);
2890 unsigned component = nir_intrinsic_component(instr);
2891 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
2892 unsigned idx = (nir_intrinsic_base(instr) + component) * 4u;
2893 Operand offset(s1);
2894 Builder bld(ctx->program, ctx->block);
2895
2896 nir_instr *off_instr = instr->src[1].ssa->parent_instr;
2897 if (off_instr->type != nir_instr_type_load_const)
2898 offset = bld.v_mul24_imm(bld.def(v1), get_ssa_temp(ctx, instr->src[1].ssa), 16u);
2899 else
2900 idx += nir_instr_as_load_const(off_instr)->value[0].u32 * 16u;
2901
2902 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8u;
2903 if (ctx->stage == vertex_es) {
2904 Temp esgs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_VS * 16u));
2905
2906 Temp elems[NIR_MAX_VEC_COMPONENTS * 2];
2907 if (elem_size_bytes == 8) {
2908 for (unsigned i = 0; i < src.size() / 2; i++) {
2909 Temp elem = emit_extract_vector(ctx, src, i, v2);
2910 elems[i*2] = bld.tmp(v1);
2911 elems[i*2+1] = bld.tmp(v1);
2912 bld.pseudo(aco_opcode::p_split_vector, Definition(elems[i*2]), Definition(elems[i*2+1]), elem);
2913 }
2914 write_mask = widen_mask(write_mask, 2);
2915 elem_size_bytes /= 2u;
2916 } else {
2917 for (unsigned i = 0; i < src.size(); i++)
2918 elems[i] = emit_extract_vector(ctx, src, i, v1);
2919 }
2920
2921 while (write_mask) {
2922 unsigned index = u_bit_scan(&write_mask);
2923 unsigned offset = index * elem_size_bytes;
2924 Temp elem = emit_extract_vector(ctx, src, index, RegClass(RegType::vgpr, elem_size_bytes / 4));
2925
2926 Operand vaddr_offset(v1);
2927 unsigned const_offset = idx + offset;
2928 if (const_offset >= 4096u) {
2929 vaddr_offset = bld.copy(bld.def(v1), Operand(const_offset / 4096u * 4096u));
2930 const_offset %= 4096u;
2931 }
2932
2933 aco_ptr<MTBUF_instruction> mtbuf{create_instruction<MTBUF_instruction>(aco_opcode::tbuffer_store_format_x, Format::MTBUF, 4, 0)};
2934 mtbuf->operands[0] = Operand(esgs_ring);
2935 mtbuf->operands[1] = vaddr_offset;
2936 mtbuf->operands[2] = Operand(get_arg(ctx, ctx->args->es2gs_offset));
2937 mtbuf->operands[3] = Operand(elem);
2938 mtbuf->offen = !vaddr_offset.isUndefined();
2939 mtbuf->dfmt = V_008F0C_BUF_DATA_FORMAT_32;
2940 mtbuf->nfmt = V_008F0C_BUF_NUM_FORMAT_UINT;
2941 mtbuf->offset = const_offset;
2942 mtbuf->glc = true;
2943 mtbuf->slc = true;
2944 mtbuf->barrier = barrier_none;
2945 mtbuf->can_reorder = true;
2946 bld.insert(std::move(mtbuf));
2947 }
2948 } else {
2949 unsigned itemsize = ctx->program->info->vs.es_info.esgs_itemsize;
2950
2951 Temp vertex_idx = emit_mbcnt(ctx, bld.def(v1));
2952 Temp wave_idx = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(ctx, ctx->args->merged_wave_info), Operand(4u << 16 | 24));
2953 vertex_idx = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), vertex_idx,
2954 bld.v_mul24_imm(bld.def(v1), as_vgpr(ctx, wave_idx), ctx->program->wave_size));
2955
2956 Temp lds_base = bld.v_mul24_imm(bld.def(v1), vertex_idx, itemsize);
2957 if (!offset.isUndefined())
2958 lds_base = bld.vadd32(bld.def(v1), offset, lds_base);
2959
2960 unsigned align = 1 << (ffs(itemsize) - 1);
2961 if (idx)
2962 align = std::min(align, 1u << (ffs(idx) - 1));
2963
2964 store_lds(ctx, elem_size_bytes, src, write_mask, lds_base, idx, align);
2965 }
2966 }
2967
2968 void visit_store_output(isel_context *ctx, nir_intrinsic_instr *instr)
2969 {
2970 if (ctx->stage == vertex_vs ||
2971 ctx->stage == fragment_fs ||
2972 ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
2973 unsigned write_mask = nir_intrinsic_write_mask(instr);
2974 unsigned component = nir_intrinsic_component(instr);
2975 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
2976 unsigned idx = nir_intrinsic_base(instr) + component;
2977
2978 nir_instr *off_instr = instr->src[1].ssa->parent_instr;
2979 if (off_instr->type != nir_instr_type_load_const) {
2980 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
2981 nir_print_instr(off_instr, stderr);
2982 fprintf(stderr, "\n");
2983 }
2984 idx += nir_instr_as_load_const(off_instr)->value[0].u32 * 4u;
2985
2986 if (instr->src[0].ssa->bit_size == 64)
2987 write_mask = widen_mask(write_mask, 2);
2988
2989 for (unsigned i = 0; i < 8; ++i) {
2990 if (write_mask & (1 << i)) {
2991 ctx->outputs.mask[idx / 4u] |= 1 << (idx % 4u);
2992 ctx->outputs.outputs[idx / 4u][idx % 4u] = emit_extract_vector(ctx, src, i, v1);
2993 }
2994 idx++;
2995 }
2996 } else if (ctx->stage == vertex_es ||
2997 (ctx->stage == vertex_geometry_gs && ctx->shader->info.stage == MESA_SHADER_VERTEX)) {
2998 visit_store_vsgs_output(ctx, instr);
2999 } else {
3000 unreachable("Shader stage not implemented");
3001 }
3002 }
3003
3004 void emit_interp_instr(isel_context *ctx, unsigned idx, unsigned component, Temp src, Temp dst, Temp prim_mask)
3005 {
3006 Temp coord1 = emit_extract_vector(ctx, src, 0, v1);
3007 Temp coord2 = emit_extract_vector(ctx, src, 1, v1);
3008
3009 Builder bld(ctx->program, ctx->block);
3010 Temp tmp = bld.vintrp(aco_opcode::v_interp_p1_f32, bld.def(v1), coord1, bld.m0(prim_mask), idx, component);
3011 bld.vintrp(aco_opcode::v_interp_p2_f32, Definition(dst), coord2, bld.m0(prim_mask), tmp, idx, component);
3012 }
3013
3014 void emit_load_frag_coord(isel_context *ctx, Temp dst, unsigned num_components)
3015 {
3016 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1));
3017 for (unsigned i = 0; i < num_components; i++)
3018 vec->operands[i] = Operand(get_arg(ctx, ctx->args->ac.frag_pos[i]));
3019 if (G_0286CC_POS_W_FLOAT_ENA(ctx->program->config->spi_ps_input_ena)) {
3020 assert(num_components == 4);
3021 Builder bld(ctx->program, ctx->block);
3022 vec->operands[3] = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), get_arg(ctx, ctx->args->ac.frag_pos[3]));
3023 }
3024
3025 for (Operand& op : vec->operands)
3026 op = op.isUndefined() ? Operand(0u) : op;
3027
3028 vec->definitions[0] = Definition(dst);
3029 ctx->block->instructions.emplace_back(std::move(vec));
3030 emit_split_vector(ctx, dst, num_components);
3031 return;
3032 }
3033
3034 void visit_load_interpolated_input(isel_context *ctx, nir_intrinsic_instr *instr)
3035 {
3036 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3037 Temp coords = get_ssa_temp(ctx, instr->src[0].ssa);
3038 unsigned idx = nir_intrinsic_base(instr);
3039 unsigned component = nir_intrinsic_component(instr);
3040 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
3041
3042 nir_const_value* offset = nir_src_as_const_value(instr->src[1]);
3043 if (offset) {
3044 assert(offset->u32 == 0);
3045 } else {
3046 /* the lower 15bit of the prim_mask contain the offset into LDS
3047 * while the upper bits contain the number of prims */
3048 Temp offset_src = get_ssa_temp(ctx, instr->src[1].ssa);
3049 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
3050 Builder bld(ctx->program, ctx->block);
3051 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
3052 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
3053 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
3054 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
3055 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
3056 }
3057
3058 if (instr->dest.ssa.num_components == 1) {
3059 emit_interp_instr(ctx, idx, component, coords, dst, prim_mask);
3060 } else {
3061 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.ssa.num_components, 1));
3062 for (unsigned i = 0; i < instr->dest.ssa.num_components; i++)
3063 {
3064 Temp tmp = {ctx->program->allocateId(), v1};
3065 emit_interp_instr(ctx, idx, component+i, coords, tmp, prim_mask);
3066 vec->operands[i] = Operand(tmp);
3067 }
3068 vec->definitions[0] = Definition(dst);
3069 ctx->block->instructions.emplace_back(std::move(vec));
3070 }
3071 }
3072
3073 bool check_vertex_fetch_size(isel_context *ctx, const ac_data_format_info *vtx_info,
3074 unsigned offset, unsigned stride, unsigned channels)
3075 {
3076 unsigned vertex_byte_size = vtx_info->chan_byte_size * channels;
3077 if (vtx_info->chan_byte_size != 4 && channels == 3)
3078 return false;
3079 return (ctx->options->chip_class != GFX6 && ctx->options->chip_class != GFX10) ||
3080 (offset % vertex_byte_size == 0 && stride % vertex_byte_size == 0);
3081 }
3082
3083 uint8_t get_fetch_data_format(isel_context *ctx, const ac_data_format_info *vtx_info,
3084 unsigned offset, unsigned stride, unsigned *channels)
3085 {
3086 if (!vtx_info->chan_byte_size) {
3087 *channels = vtx_info->num_channels;
3088 return vtx_info->chan_format;
3089 }
3090
3091 unsigned num_channels = *channels;
3092 if (!check_vertex_fetch_size(ctx, vtx_info, offset, stride, *channels)) {
3093 unsigned new_channels = num_channels + 1;
3094 /* first, assume more loads is worse and try using a larger data format */
3095 while (new_channels <= 4 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels)) {
3096 new_channels++;
3097 /* don't make the attribute potentially out-of-bounds */
3098 if (offset + new_channels * vtx_info->chan_byte_size > stride)
3099 new_channels = 5;
3100 }
3101
3102 if (new_channels == 5) {
3103 /* then try decreasing load size (at the cost of more loads) */
3104 new_channels = *channels;
3105 while (new_channels > 1 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels))
3106 new_channels--;
3107 }
3108
3109 if (new_channels < *channels)
3110 *channels = new_channels;
3111 num_channels = new_channels;
3112 }
3113
3114 switch (vtx_info->chan_format) {
3115 case V_008F0C_BUF_DATA_FORMAT_8:
3116 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_8, V_008F0C_BUF_DATA_FORMAT_8_8,
3117 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_8_8_8_8}[num_channels - 1];
3118 case V_008F0C_BUF_DATA_FORMAT_16:
3119 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_16, V_008F0C_BUF_DATA_FORMAT_16_16,
3120 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_16_16_16_16}[num_channels - 1];
3121 case V_008F0C_BUF_DATA_FORMAT_32:
3122 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_32, V_008F0C_BUF_DATA_FORMAT_32_32,
3123 V_008F0C_BUF_DATA_FORMAT_32_32_32, V_008F0C_BUF_DATA_FORMAT_32_32_32_32}[num_channels - 1];
3124 }
3125 unreachable("shouldn't reach here");
3126 return V_008F0C_BUF_DATA_FORMAT_INVALID;
3127 }
3128
3129 /* For 2_10_10_10 formats the alpha is handled as unsigned by pre-vega HW.
3130 * so we may need to fix it up. */
3131 Temp adjust_vertex_fetch_alpha(isel_context *ctx, unsigned adjustment, Temp alpha)
3132 {
3133 Builder bld(ctx->program, ctx->block);
3134
3135 if (adjustment == RADV_ALPHA_ADJUST_SSCALED)
3136 alpha = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), alpha);
3137
3138 /* For the integer-like cases, do a natural sign extension.
3139 *
3140 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
3141 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
3142 * exponent.
3143 */
3144 alpha = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(adjustment == RADV_ALPHA_ADJUST_SNORM ? 7u : 30u), alpha);
3145 alpha = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(30u), alpha);
3146
3147 /* Convert back to the right type. */
3148 if (adjustment == RADV_ALPHA_ADJUST_SNORM) {
3149 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
3150 Temp clamp = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0xbf800000u), alpha);
3151 alpha = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xbf800000u), alpha, clamp);
3152 } else if (adjustment == RADV_ALPHA_ADJUST_SSCALED) {
3153 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
3154 }
3155
3156 return alpha;
3157 }
3158
3159 void visit_load_input(isel_context *ctx, nir_intrinsic_instr *instr)
3160 {
3161 Builder bld(ctx->program, ctx->block);
3162 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3163 if (ctx->shader->info.stage == MESA_SHADER_VERTEX) {
3164
3165 nir_instr *off_instr = instr->src[0].ssa->parent_instr;
3166 if (off_instr->type != nir_instr_type_load_const) {
3167 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
3168 nir_print_instr(off_instr, stderr);
3169 fprintf(stderr, "\n");
3170 }
3171 uint32_t offset = nir_instr_as_load_const(off_instr)->value[0].u32;
3172
3173 Temp vertex_buffers = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->vertex_buffers));
3174
3175 unsigned location = nir_intrinsic_base(instr) / 4 - VERT_ATTRIB_GENERIC0 + offset;
3176 unsigned component = nir_intrinsic_component(instr);
3177 unsigned attrib_binding = ctx->options->key.vs.vertex_attribute_bindings[location];
3178 uint32_t attrib_offset = ctx->options->key.vs.vertex_attribute_offsets[location];
3179 uint32_t attrib_stride = ctx->options->key.vs.vertex_attribute_strides[location];
3180 unsigned attrib_format = ctx->options->key.vs.vertex_attribute_formats[location];
3181
3182 unsigned dfmt = attrib_format & 0xf;
3183 unsigned nfmt = (attrib_format >> 4) & 0x7;
3184 const struct ac_data_format_info *vtx_info = ac_get_data_format_info(dfmt);
3185
3186 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa) << component;
3187 unsigned num_channels = MIN2(util_last_bit(mask), vtx_info->num_channels);
3188 unsigned alpha_adjust = (ctx->options->key.vs.alpha_adjust >> (location * 2)) & 3;
3189 bool post_shuffle = ctx->options->key.vs.post_shuffle & (1 << location);
3190 if (post_shuffle)
3191 num_channels = MAX2(num_channels, 3);
3192
3193 Operand off = bld.copy(bld.def(s1), Operand(attrib_binding * 16u));
3194 Temp list = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), vertex_buffers, off);
3195
3196 Temp index;
3197 if (ctx->options->key.vs.instance_rate_inputs & (1u << location)) {
3198 uint32_t divisor = ctx->options->key.vs.instance_rate_divisors[location];
3199 Temp start_instance = get_arg(ctx, ctx->args->ac.start_instance);
3200 if (divisor) {
3201 Temp instance_id = get_arg(ctx, ctx->args->ac.instance_id);
3202 if (divisor != 1) {
3203 Temp divided = bld.tmp(v1);
3204 emit_v_div_u32(ctx, divided, as_vgpr(ctx, instance_id), divisor);
3205 index = bld.vadd32(bld.def(v1), start_instance, divided);
3206 } else {
3207 index = bld.vadd32(bld.def(v1), start_instance, instance_id);
3208 }
3209 } else {
3210 index = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), start_instance);
3211 }
3212 } else {
3213 index = bld.vadd32(bld.def(v1),
3214 get_arg(ctx, ctx->args->ac.base_vertex),
3215 get_arg(ctx, ctx->args->ac.vertex_id));
3216 }
3217
3218 Temp channels[num_channels];
3219 unsigned channel_start = 0;
3220 bool direct_fetch = false;
3221
3222 /* skip unused channels at the start */
3223 if (vtx_info->chan_byte_size && !post_shuffle) {
3224 channel_start = ffs(mask) - 1;
3225 for (unsigned i = 0; i < channel_start; i++)
3226 channels[i] = Temp(0, s1);
3227 } else if (vtx_info->chan_byte_size && post_shuffle && !(mask & 0x8)) {
3228 num_channels = 3 - (ffs(mask) - 1);
3229 }
3230
3231 /* load channels */
3232 while (channel_start < num_channels) {
3233 unsigned fetch_size = num_channels - channel_start;
3234 unsigned fetch_offset = attrib_offset + channel_start * vtx_info->chan_byte_size;
3235 bool expanded = false;
3236
3237 /* use MUBUF when possible to avoid possible alignment issues */
3238 /* TODO: we could use SDWA to unpack 8/16-bit attributes without extra instructions */
3239 bool use_mubuf = (nfmt == V_008F0C_BUF_NUM_FORMAT_FLOAT ||
3240 nfmt == V_008F0C_BUF_NUM_FORMAT_UINT ||
3241 nfmt == V_008F0C_BUF_NUM_FORMAT_SINT) &&
3242 vtx_info->chan_byte_size == 4;
3243 unsigned fetch_dfmt = V_008F0C_BUF_DATA_FORMAT_INVALID;
3244 if (!use_mubuf) {
3245 fetch_dfmt = get_fetch_data_format(ctx, vtx_info, fetch_offset, attrib_stride, &fetch_size);
3246 } else {
3247 if (fetch_size == 3 && ctx->options->chip_class == GFX6) {
3248 /* GFX6 only supports loading vec3 with MTBUF, expand to vec4. */
3249 fetch_size = 4;
3250 expanded = true;
3251 }
3252 }
3253
3254 Temp fetch_index = index;
3255 if (attrib_stride != 0 && fetch_offset > attrib_stride) {
3256 fetch_index = bld.vadd32(bld.def(v1), Operand(fetch_offset / attrib_stride), fetch_index);
3257 fetch_offset = fetch_offset % attrib_stride;
3258 }
3259
3260 Operand soffset(0u);
3261 if (fetch_offset >= 4096) {
3262 soffset = bld.copy(bld.def(s1), Operand(fetch_offset / 4096 * 4096));
3263 fetch_offset %= 4096;
3264 }
3265
3266 aco_opcode opcode;
3267 switch (fetch_size) {
3268 case 1:
3269 opcode = use_mubuf ? aco_opcode::buffer_load_dword : aco_opcode::tbuffer_load_format_x;
3270 break;
3271 case 2:
3272 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx2 : aco_opcode::tbuffer_load_format_xy;
3273 break;
3274 case 3:
3275 assert(ctx->options->chip_class >= GFX7 ||
3276 (!use_mubuf && ctx->options->chip_class == GFX6));
3277 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx3 : aco_opcode::tbuffer_load_format_xyz;
3278 break;
3279 case 4:
3280 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx4 : aco_opcode::tbuffer_load_format_xyzw;
3281 break;
3282 default:
3283 unreachable("Unimplemented load_input vector size");
3284 }
3285
3286 Temp fetch_dst;
3287 if (channel_start == 0 && fetch_size == dst.size() && !post_shuffle &&
3288 !expanded && (alpha_adjust == RADV_ALPHA_ADJUST_NONE ||
3289 num_channels <= 3)) {
3290 direct_fetch = true;
3291 fetch_dst = dst;
3292 } else {
3293 fetch_dst = bld.tmp(RegType::vgpr, fetch_size);
3294 }
3295
3296 if (use_mubuf) {
3297 Instruction *mubuf = bld.mubuf(opcode,
3298 Definition(fetch_dst), list, fetch_index, soffset,
3299 fetch_offset, false, true).instr;
3300 static_cast<MUBUF_instruction*>(mubuf)->can_reorder = true;
3301 } else {
3302 Instruction *mtbuf = bld.mtbuf(opcode,
3303 Definition(fetch_dst), list, fetch_index, soffset,
3304 fetch_dfmt, nfmt, fetch_offset, false, true).instr;
3305 static_cast<MTBUF_instruction*>(mtbuf)->can_reorder = true;
3306 }
3307
3308 emit_split_vector(ctx, fetch_dst, fetch_dst.size());
3309
3310 if (fetch_size == 1) {
3311 channels[channel_start] = fetch_dst;
3312 } else {
3313 for (unsigned i = 0; i < MIN2(fetch_size, num_channels - channel_start); i++)
3314 channels[channel_start + i] = emit_extract_vector(ctx, fetch_dst, i, v1);
3315 }
3316
3317 channel_start += fetch_size;
3318 }
3319
3320 if (!direct_fetch) {
3321 bool is_float = nfmt != V_008F0C_BUF_NUM_FORMAT_UINT &&
3322 nfmt != V_008F0C_BUF_NUM_FORMAT_SINT;
3323
3324 static const unsigned swizzle_normal[4] = {0, 1, 2, 3};
3325 static const unsigned swizzle_post_shuffle[4] = {2, 1, 0, 3};
3326 const unsigned *swizzle = post_shuffle ? swizzle_post_shuffle : swizzle_normal;
3327
3328 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
3329 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
3330 unsigned num_temp = 0;
3331 for (unsigned i = 0; i < dst.size(); i++) {
3332 unsigned idx = i + component;
3333 if (swizzle[idx] < num_channels && channels[swizzle[idx]].id()) {
3334 Temp channel = channels[swizzle[idx]];
3335 if (idx == 3 && alpha_adjust != RADV_ALPHA_ADJUST_NONE)
3336 channel = adjust_vertex_fetch_alpha(ctx, alpha_adjust, channel);
3337 vec->operands[i] = Operand(channel);
3338
3339 num_temp++;
3340 elems[i] = channel;
3341 } else if (is_float && idx == 3) {
3342 vec->operands[i] = Operand(0x3f800000u);
3343 } else if (!is_float && idx == 3) {
3344 vec->operands[i] = Operand(1u);
3345 } else {
3346 vec->operands[i] = Operand(0u);
3347 }
3348 }
3349 vec->definitions[0] = Definition(dst);
3350 ctx->block->instructions.emplace_back(std::move(vec));
3351 emit_split_vector(ctx, dst, dst.size());
3352
3353 if (num_temp == dst.size())
3354 ctx->allocated_vec.emplace(dst.id(), elems);
3355 }
3356 } else if (ctx->shader->info.stage == MESA_SHADER_FRAGMENT) {
3357 unsigned offset_idx = instr->intrinsic == nir_intrinsic_load_input ? 0 : 1;
3358 nir_instr *off_instr = instr->src[offset_idx].ssa->parent_instr;
3359 if (off_instr->type != nir_instr_type_load_const ||
3360 nir_instr_as_load_const(off_instr)->value[0].u32 != 0) {
3361 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
3362 nir_print_instr(off_instr, stderr);
3363 fprintf(stderr, "\n");
3364 }
3365
3366 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
3367 nir_const_value* offset = nir_src_as_const_value(instr->src[offset_idx]);
3368 if (offset) {
3369 assert(offset->u32 == 0);
3370 } else {
3371 /* the lower 15bit of the prim_mask contain the offset into LDS
3372 * while the upper bits contain the number of prims */
3373 Temp offset_src = get_ssa_temp(ctx, instr->src[offset_idx].ssa);
3374 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
3375 Builder bld(ctx->program, ctx->block);
3376 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
3377 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
3378 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
3379 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
3380 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
3381 }
3382
3383 unsigned idx = nir_intrinsic_base(instr);
3384 unsigned component = nir_intrinsic_component(instr);
3385 unsigned vertex_id = 2; /* P0 */
3386
3387 if (instr->intrinsic == nir_intrinsic_load_input_vertex) {
3388 nir_const_value* src0 = nir_src_as_const_value(instr->src[0]);
3389 switch (src0->u32) {
3390 case 0:
3391 vertex_id = 2; /* P0 */
3392 break;
3393 case 1:
3394 vertex_id = 0; /* P10 */
3395 break;
3396 case 2:
3397 vertex_id = 1; /* P20 */
3398 break;
3399 default:
3400 unreachable("invalid vertex index");
3401 }
3402 }
3403
3404 if (dst.size() == 1) {
3405 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(dst), Operand(vertex_id), bld.m0(prim_mask), idx, component);
3406 } else {
3407 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
3408 for (unsigned i = 0; i < dst.size(); i++)
3409 vec->operands[i] = bld.vintrp(aco_opcode::v_interp_mov_f32, bld.def(v1), Operand(vertex_id), bld.m0(prim_mask), idx, component + i);
3410 vec->definitions[0] = Definition(dst);
3411 bld.insert(std::move(vec));
3412 }
3413
3414 } else {
3415 unreachable("Shader stage not implemented");
3416 }
3417 }
3418
3419 void visit_load_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
3420 {
3421 assert(ctx->stage == vertex_geometry_gs || ctx->stage == geometry_gs);
3422 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
3423
3424 Builder bld(ctx->program, ctx->block);
3425 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3426
3427 Temp offset = Temp();
3428 if (instr->src[0].ssa->parent_instr->type != nir_instr_type_load_const) {
3429 /* better code could be created, but this case probably doesn't happen
3430 * much in practice */
3431 Temp indirect_vertex = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
3432 for (unsigned i = 0; i < ctx->shader->info.gs.vertices_in; i++) {
3433 Temp elem;
3434 if (ctx->stage == vertex_geometry_gs) {
3435 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i / 2u * 2u]);
3436 if (i % 2u)
3437 elem = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), elem);
3438 } else {
3439 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i]);
3440 }
3441 if (offset.id()) {
3442 Temp cond = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(s2)),
3443 Operand(i), indirect_vertex);
3444 offset = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), offset, elem, cond);
3445 } else {
3446 offset = elem;
3447 }
3448 }
3449 if (ctx->stage == vertex_geometry_gs)
3450 offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu), offset);
3451 } else {
3452 unsigned vertex = nir_src_as_uint(instr->src[0]);
3453 if (ctx->stage == vertex_geometry_gs)
3454 offset = bld.vop3(
3455 aco_opcode::v_bfe_u32, bld.def(v1), get_arg(ctx, ctx->args->gs_vtx_offset[vertex / 2u * 2u]),
3456 Operand((vertex % 2u) * 16u), Operand(16u));
3457 else
3458 offset = get_arg(ctx, ctx->args->gs_vtx_offset[vertex]);
3459 }
3460
3461 unsigned const_offset = nir_intrinsic_base(instr);
3462 const_offset += nir_intrinsic_component(instr);
3463
3464 nir_instr *off_instr = instr->src[1].ssa->parent_instr;
3465 if (off_instr->type != nir_instr_type_load_const) {
3466 Temp indirect_offset = get_ssa_temp(ctx, instr->src[1].ssa);
3467 offset = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u),
3468 bld.vadd32(bld.def(v1), indirect_offset, offset));
3469 } else {
3470 const_offset += nir_instr_as_load_const(off_instr)->value[0].u32 * 4u;
3471 }
3472 const_offset *= 4u;
3473
3474 offset = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), offset);
3475
3476 unsigned itemsize = ctx->program->info->vs.es_info.esgs_itemsize;
3477
3478 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
3479 if (ctx->stage == geometry_gs) {
3480 Temp esgs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_GS * 16u));
3481
3482 const_offset *= ctx->program->wave_size;
3483
3484 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
3485 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(
3486 aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.ssa.num_components, 1)};
3487 for (unsigned i = 0; i < instr->dest.ssa.num_components; i++) {
3488 Temp subelems[2];
3489 for (unsigned j = 0; j < elem_size_bytes / 4; j++) {
3490 Operand soffset(0u);
3491 if (const_offset >= 4096u)
3492 soffset = bld.copy(bld.def(s1), Operand(const_offset / 4096u * 4096u));
3493
3494 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dword, Format::MUBUF, 3, 1)};
3495 mubuf->definitions[0] = bld.def(v1);
3496 subelems[j] = mubuf->definitions[0].getTemp();
3497 mubuf->operands[0] = Operand(esgs_ring);
3498 mubuf->operands[1] = Operand(offset);
3499 mubuf->operands[2] = Operand(soffset);
3500 mubuf->offen = true;
3501 mubuf->offset = const_offset % 4096u;
3502 mubuf->glc = true;
3503 mubuf->dlc = ctx->options->chip_class >= GFX10;
3504 mubuf->barrier = barrier_none;
3505 mubuf->can_reorder = true;
3506 bld.insert(std::move(mubuf));
3507
3508 const_offset += ctx->program->wave_size * 4u;
3509 }
3510
3511 if (elem_size_bytes == 4)
3512 elems[i] = subelems[0];
3513 else
3514 elems[i] = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), subelems[0], subelems[1]);
3515 vec->operands[i] = Operand(elems[i]);
3516 }
3517 vec->definitions[0] = Definition(dst);
3518 ctx->block->instructions.emplace_back(std::move(vec));
3519 ctx->allocated_vec.emplace(dst.id(), elems);
3520 } else {
3521 unsigned align = 16; /* alignment of indirect offset */
3522 align = std::min(align, 1u << (ffs(itemsize) - 1));
3523 if (const_offset)
3524 align = std::min(align, 1u << (ffs(const_offset) - 1));
3525
3526 load_lds(ctx, elem_size_bytes, dst, offset, const_offset, align);
3527 }
3528 }
3529
3530 void visit_load_tess_coord(isel_context *ctx, nir_intrinsic_instr *instr)
3531 {
3532 assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
3533
3534 Builder bld(ctx->program, ctx->block);
3535 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3536
3537 Operand tes_u(get_arg(ctx, ctx->args->tes_u));
3538 Operand tes_v(get_arg(ctx, ctx->args->tes_v));
3539 Operand tes_w(0u);
3540
3541 if (ctx->shader->info.tess.primitive_mode == GL_TRIANGLES) {
3542 Temp tmp = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), tes_u, tes_v);
3543 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0x3f800000u /* 1.0f */), tmp);
3544 tes_w = Operand(tmp);
3545 }
3546
3547 Temp tess_coord = bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tes_u, tes_v, tes_w);
3548 emit_split_vector(ctx, tess_coord, 3);
3549 }
3550
3551 Temp load_desc_ptr(isel_context *ctx, unsigned desc_set)
3552 {
3553 if (ctx->program->info->need_indirect_descriptor_sets) {
3554 Builder bld(ctx->program, ctx->block);
3555 Temp ptr64 = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->descriptor_sets[0]));
3556 Operand off = bld.copy(bld.def(s1), Operand(desc_set << 2));
3557 return bld.smem(aco_opcode::s_load_dword, bld.def(s1), ptr64, off);//, false, false, false);
3558 }
3559
3560 return get_arg(ctx, ctx->args->descriptor_sets[desc_set]);
3561 }
3562
3563
3564 void visit_load_resource(isel_context *ctx, nir_intrinsic_instr *instr)
3565 {
3566 Builder bld(ctx->program, ctx->block);
3567 Temp index = get_ssa_temp(ctx, instr->src[0].ssa);
3568 if (!ctx->divergent_vals[instr->dest.ssa.index])
3569 index = bld.as_uniform(index);
3570 unsigned desc_set = nir_intrinsic_desc_set(instr);
3571 unsigned binding = nir_intrinsic_binding(instr);
3572
3573 Temp desc_ptr;
3574 radv_pipeline_layout *pipeline_layout = ctx->options->layout;
3575 radv_descriptor_set_layout *layout = pipeline_layout->set[desc_set].layout;
3576 unsigned offset = layout->binding[binding].offset;
3577 unsigned stride;
3578 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
3579 layout->binding[binding].type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
3580 unsigned idx = pipeline_layout->set[desc_set].dynamic_offset_start + layout->binding[binding].dynamic_offset_offset;
3581 desc_ptr = get_arg(ctx, ctx->args->ac.push_constants);
3582 offset = pipeline_layout->push_constant_size + 16 * idx;
3583 stride = 16;
3584 } else {
3585 desc_ptr = load_desc_ptr(ctx, desc_set);
3586 stride = layout->binding[binding].size;
3587 }
3588
3589 nir_const_value* nir_const_index = nir_src_as_const_value(instr->src[0]);
3590 unsigned const_index = nir_const_index ? nir_const_index->u32 : 0;
3591 if (stride != 1) {
3592 if (nir_const_index) {
3593 const_index = const_index * stride;
3594 } else if (index.type() == RegType::vgpr) {
3595 bool index24bit = layout->binding[binding].array_size <= 0x1000000;
3596 index = bld.v_mul_imm(bld.def(v1), index, stride, index24bit);
3597 } else {
3598 index = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), Operand(index));
3599 }
3600 }
3601 if (offset) {
3602 if (nir_const_index) {
3603 const_index = const_index + offset;
3604 } else if (index.type() == RegType::vgpr) {
3605 index = bld.vadd32(bld.def(v1), Operand(offset), index);
3606 } else {
3607 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), Operand(index));
3608 }
3609 }
3610
3611 if (nir_const_index && const_index == 0) {
3612 index = desc_ptr;
3613 } else if (index.type() == RegType::vgpr) {
3614 index = bld.vadd32(bld.def(v1),
3615 nir_const_index ? Operand(const_index) : Operand(index),
3616 Operand(desc_ptr));
3617 } else {
3618 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
3619 nir_const_index ? Operand(const_index) : Operand(index),
3620 Operand(desc_ptr));
3621 }
3622
3623 bld.copy(Definition(get_ssa_temp(ctx, &instr->dest.ssa)), index);
3624 }
3625
3626 void load_buffer(isel_context *ctx, unsigned num_components, Temp dst,
3627 Temp rsrc, Temp offset, bool glc=false, bool readonly=true)
3628 {
3629 Builder bld(ctx->program, ctx->block);
3630
3631 unsigned num_bytes = dst.size() * 4;
3632 bool dlc = glc && ctx->options->chip_class >= GFX10;
3633
3634 aco_opcode op;
3635 if (dst.type() == RegType::vgpr || (ctx->options->chip_class < GFX8 && !readonly)) {
3636 Operand vaddr = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
3637 Operand soffset = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
3638 unsigned const_offset = 0;
3639
3640 Temp lower = Temp();
3641 if (num_bytes > 16) {
3642 assert(num_components == 3 || num_components == 4);
3643 op = aco_opcode::buffer_load_dwordx4;
3644 lower = bld.tmp(v4);
3645 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
3646 mubuf->definitions[0] = Definition(lower);
3647 mubuf->operands[0] = Operand(rsrc);
3648 mubuf->operands[1] = vaddr;
3649 mubuf->operands[2] = soffset;
3650 mubuf->offen = (offset.type() == RegType::vgpr);
3651 mubuf->glc = glc;
3652 mubuf->dlc = dlc;
3653 mubuf->barrier = readonly ? barrier_none : barrier_buffer;
3654 mubuf->can_reorder = readonly;
3655 bld.insert(std::move(mubuf));
3656 emit_split_vector(ctx, lower, 2);
3657 num_bytes -= 16;
3658 const_offset = 16;
3659 } else if (num_bytes == 12 && ctx->options->chip_class == GFX6) {
3660 /* GFX6 doesn't support loading vec3, expand to vec4. */
3661 num_bytes = 16;
3662 }
3663
3664 switch (num_bytes) {
3665 case 4:
3666 op = aco_opcode::buffer_load_dword;
3667 break;
3668 case 8:
3669 op = aco_opcode::buffer_load_dwordx2;
3670 break;
3671 case 12:
3672 assert(ctx->options->chip_class > GFX6);
3673 op = aco_opcode::buffer_load_dwordx3;
3674 break;
3675 case 16:
3676 op = aco_opcode::buffer_load_dwordx4;
3677 break;
3678 default:
3679 unreachable("Load SSBO not implemented for this size.");
3680 }
3681 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
3682 mubuf->operands[0] = Operand(rsrc);
3683 mubuf->operands[1] = vaddr;
3684 mubuf->operands[2] = soffset;
3685 mubuf->offen = (offset.type() == RegType::vgpr);
3686 mubuf->glc = glc;
3687 mubuf->dlc = dlc;
3688 mubuf->barrier = readonly ? barrier_none : barrier_buffer;
3689 mubuf->can_reorder = readonly;
3690 mubuf->offset = const_offset;
3691 aco_ptr<Instruction> instr = std::move(mubuf);
3692
3693 if (dst.size() > 4) {
3694 assert(lower != Temp());
3695 Temp upper = bld.tmp(RegType::vgpr, dst.size() - lower.size());
3696 instr->definitions[0] = Definition(upper);
3697 bld.insert(std::move(instr));
3698 if (dst.size() == 8)
3699 emit_split_vector(ctx, upper, 2);
3700 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size() / 2, 1));
3701 instr->operands[0] = Operand(emit_extract_vector(ctx, lower, 0, v2));
3702 instr->operands[1] = Operand(emit_extract_vector(ctx, lower, 1, v2));
3703 instr->operands[2] = Operand(emit_extract_vector(ctx, upper, 0, v2));
3704 if (dst.size() == 8)
3705 instr->operands[3] = Operand(emit_extract_vector(ctx, upper, 1, v2));
3706 } else if (dst.size() == 3 && ctx->options->chip_class == GFX6) {
3707 Temp vec = bld.tmp(v4);
3708 instr->definitions[0] = Definition(vec);
3709 bld.insert(std::move(instr));
3710 emit_split_vector(ctx, vec, 4);
3711
3712 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 3, 1));
3713 instr->operands[0] = Operand(emit_extract_vector(ctx, vec, 0, v1));
3714 instr->operands[1] = Operand(emit_extract_vector(ctx, vec, 1, v1));
3715 instr->operands[2] = Operand(emit_extract_vector(ctx, vec, 2, v1));
3716 }
3717
3718 if (dst.type() == RegType::sgpr) {
3719 Temp vec = bld.tmp(RegType::vgpr, dst.size());
3720 instr->definitions[0] = Definition(vec);
3721 bld.insert(std::move(instr));
3722 expand_vector(ctx, vec, dst, num_components, (1 << num_components) - 1);
3723 } else {
3724 instr->definitions[0] = Definition(dst);
3725 bld.insert(std::move(instr));
3726 emit_split_vector(ctx, dst, num_components);
3727 }
3728 } else {
3729 switch (num_bytes) {
3730 case 4:
3731 op = aco_opcode::s_buffer_load_dword;
3732 break;
3733 case 8:
3734 op = aco_opcode::s_buffer_load_dwordx2;
3735 break;
3736 case 12:
3737 case 16:
3738 op = aco_opcode::s_buffer_load_dwordx4;
3739 break;
3740 case 24:
3741 case 32:
3742 op = aco_opcode::s_buffer_load_dwordx8;
3743 break;
3744 default:
3745 unreachable("Load SSBO not implemented for this size.");
3746 }
3747 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
3748 load->operands[0] = Operand(rsrc);
3749 load->operands[1] = Operand(bld.as_uniform(offset));
3750 assert(load->operands[1].getTemp().type() == RegType::sgpr);
3751 load->definitions[0] = Definition(dst);
3752 load->glc = glc;
3753 load->dlc = dlc;
3754 load->barrier = readonly ? barrier_none : barrier_buffer;
3755 load->can_reorder = false; // FIXME: currently, it doesn't seem beneficial due to how our scheduler works
3756 assert(ctx->options->chip_class >= GFX8 || !glc);
3757
3758 /* trim vector */
3759 if (dst.size() == 3) {
3760 Temp vec = bld.tmp(s4);
3761 load->definitions[0] = Definition(vec);
3762 bld.insert(std::move(load));
3763 emit_split_vector(ctx, vec, 4);
3764
3765 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
3766 emit_extract_vector(ctx, vec, 0, s1),
3767 emit_extract_vector(ctx, vec, 1, s1),
3768 emit_extract_vector(ctx, vec, 2, s1));
3769 } else if (dst.size() == 6) {
3770 Temp vec = bld.tmp(s8);
3771 load->definitions[0] = Definition(vec);
3772 bld.insert(std::move(load));
3773 emit_split_vector(ctx, vec, 4);
3774
3775 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
3776 emit_extract_vector(ctx, vec, 0, s2),
3777 emit_extract_vector(ctx, vec, 1, s2),
3778 emit_extract_vector(ctx, vec, 2, s2));
3779 } else {
3780 bld.insert(std::move(load));
3781 }
3782 emit_split_vector(ctx, dst, num_components);
3783 }
3784 }
3785
3786 void visit_load_ubo(isel_context *ctx, nir_intrinsic_instr *instr)
3787 {
3788 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3789 Temp rsrc = get_ssa_temp(ctx, instr->src[0].ssa);
3790
3791 Builder bld(ctx->program, ctx->block);
3792
3793 nir_intrinsic_instr* idx_instr = nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
3794 unsigned desc_set = nir_intrinsic_desc_set(idx_instr);
3795 unsigned binding = nir_intrinsic_binding(idx_instr);
3796 radv_descriptor_set_layout *layout = ctx->options->layout->set[desc_set].layout;
3797
3798 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
3799 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
3800 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
3801 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
3802 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
3803 if (ctx->options->chip_class >= GFX10) {
3804 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
3805 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
3806 S_008F0C_RESOURCE_LEVEL(1);
3807 } else {
3808 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
3809 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
3810 }
3811 Temp upper_dwords = bld.pseudo(aco_opcode::p_create_vector, bld.def(s3),
3812 Operand(S_008F04_BASE_ADDRESS_HI(ctx->options->address32_hi)),
3813 Operand(0xFFFFFFFFu),
3814 Operand(desc_type));
3815 rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
3816 rsrc, upper_dwords);
3817 } else {
3818 rsrc = convert_pointer_to_64_bit(ctx, rsrc);
3819 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
3820 }
3821
3822 load_buffer(ctx, instr->num_components, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa));
3823 }
3824
3825 void visit_load_push_constant(isel_context *ctx, nir_intrinsic_instr *instr)
3826 {
3827 Builder bld(ctx->program, ctx->block);
3828 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3829
3830 unsigned offset = nir_intrinsic_base(instr);
3831 nir_const_value *index_cv = nir_src_as_const_value(instr->src[0]);
3832 if (index_cv && instr->dest.ssa.bit_size == 32) {
3833
3834 unsigned count = instr->dest.ssa.num_components;
3835 unsigned start = (offset + index_cv->u32) / 4u;
3836 start -= ctx->args->ac.base_inline_push_consts;
3837 if (start + count <= ctx->args->ac.num_inline_push_consts) {
3838 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
3839 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
3840 for (unsigned i = 0; i < count; ++i) {
3841 elems[i] = get_arg(ctx, ctx->args->ac.inline_push_consts[start + i]);
3842 vec->operands[i] = Operand{elems[i]};
3843 }
3844 vec->definitions[0] = Definition(dst);
3845 ctx->block->instructions.emplace_back(std::move(vec));
3846 ctx->allocated_vec.emplace(dst.id(), elems);
3847 return;
3848 }
3849 }
3850
3851 Temp index = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa));
3852 if (offset != 0) // TODO check if index != 0 as well
3853 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), index);
3854 Temp ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->ac.push_constants));
3855 Temp vec = dst;
3856 bool trim = false;
3857 aco_opcode op;
3858
3859 switch (dst.size()) {
3860 case 1:
3861 op = aco_opcode::s_load_dword;
3862 break;
3863 case 2:
3864 op = aco_opcode::s_load_dwordx2;
3865 break;
3866 case 3:
3867 vec = bld.tmp(s4);
3868 trim = true;
3869 case 4:
3870 op = aco_opcode::s_load_dwordx4;
3871 break;
3872 case 6:
3873 vec = bld.tmp(s8);
3874 trim = true;
3875 case 8:
3876 op = aco_opcode::s_load_dwordx8;
3877 break;
3878 default:
3879 unreachable("unimplemented or forbidden load_push_constant.");
3880 }
3881
3882 bld.smem(op, Definition(vec), ptr, index);
3883
3884 if (trim) {
3885 emit_split_vector(ctx, vec, 4);
3886 RegClass rc = dst.size() == 3 ? s1 : s2;
3887 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
3888 emit_extract_vector(ctx, vec, 0, rc),
3889 emit_extract_vector(ctx, vec, 1, rc),
3890 emit_extract_vector(ctx, vec, 2, rc));
3891
3892 }
3893 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
3894 }
3895
3896 void visit_load_constant(isel_context *ctx, nir_intrinsic_instr *instr)
3897 {
3898 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3899
3900 Builder bld(ctx->program, ctx->block);
3901
3902 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
3903 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
3904 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
3905 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
3906 if (ctx->options->chip_class >= GFX10) {
3907 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
3908 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
3909 S_008F0C_RESOURCE_LEVEL(1);
3910 } else {
3911 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
3912 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
3913 }
3914
3915 unsigned base = nir_intrinsic_base(instr);
3916 unsigned range = nir_intrinsic_range(instr);
3917
3918 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
3919 if (base && offset.type() == RegType::sgpr)
3920 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), offset, Operand(base));
3921 else if (base && offset.type() == RegType::vgpr)
3922 offset = bld.vadd32(bld.def(v1), Operand(base), offset);
3923
3924 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
3925 bld.sop1(aco_opcode::p_constaddr, bld.def(s2), bld.def(s1, scc), Operand(ctx->constant_data_offset)),
3926 Operand(MIN2(base + range, ctx->shader->constant_data_size)),
3927 Operand(desc_type));
3928
3929 load_buffer(ctx, instr->num_components, dst, rsrc, offset);
3930 }
3931
3932 void visit_discard_if(isel_context *ctx, nir_intrinsic_instr *instr)
3933 {
3934 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
3935 ctx->cf_info.exec_potentially_empty_discard = true;
3936
3937 ctx->program->needs_exact = true;
3938
3939 // TODO: optimize uniform conditions
3940 Builder bld(ctx->program, ctx->block);
3941 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
3942 assert(src.regClass() == bld.lm);
3943 src = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
3944 bld.pseudo(aco_opcode::p_discard_if, src);
3945 ctx->block->kind |= block_kind_uses_discard_if;
3946 return;
3947 }
3948
3949 void visit_discard(isel_context* ctx, nir_intrinsic_instr *instr)
3950 {
3951 Builder bld(ctx->program, ctx->block);
3952
3953 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
3954 ctx->cf_info.exec_potentially_empty_discard = true;
3955
3956 bool divergent = ctx->cf_info.parent_if.is_divergent ||
3957 ctx->cf_info.parent_loop.has_divergent_continue;
3958
3959 if (ctx->block->loop_nest_depth &&
3960 ((nir_instr_is_last(&instr->instr) && !divergent) || divergent)) {
3961 /* we handle discards the same way as jump instructions */
3962 append_logical_end(ctx->block);
3963
3964 /* in loops, discard behaves like break */
3965 Block *linear_target = ctx->cf_info.parent_loop.exit;
3966 ctx->block->kind |= block_kind_discard;
3967
3968 if (!divergent) {
3969 /* uniform discard - loop ends here */
3970 assert(nir_instr_is_last(&instr->instr));
3971 ctx->block->kind |= block_kind_uniform;
3972 ctx->cf_info.has_branch = true;
3973 bld.branch(aco_opcode::p_branch);
3974 add_linear_edge(ctx->block->index, linear_target);
3975 return;
3976 }
3977
3978 /* we add a break right behind the discard() instructions */
3979 ctx->block->kind |= block_kind_break;
3980 unsigned idx = ctx->block->index;
3981
3982 /* remove critical edges from linear CFG */
3983 bld.branch(aco_opcode::p_branch);
3984 Block* break_block = ctx->program->create_and_insert_block();
3985 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
3986 break_block->kind |= block_kind_uniform;
3987 add_linear_edge(idx, break_block);
3988 add_linear_edge(break_block->index, linear_target);
3989 bld.reset(break_block);
3990 bld.branch(aco_opcode::p_branch);
3991
3992 Block* continue_block = ctx->program->create_and_insert_block();
3993 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
3994 add_linear_edge(idx, continue_block);
3995 append_logical_start(continue_block);
3996 ctx->block = continue_block;
3997
3998 return;
3999 }
4000
4001 /* it can currently happen that NIR doesn't remove the unreachable code */
4002 if (!nir_instr_is_last(&instr->instr)) {
4003 ctx->program->needs_exact = true;
4004 /* save exec somewhere temporarily so that it doesn't get
4005 * overwritten before the discard from outer exec masks */
4006 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), Operand(0xFFFFFFFF), Operand(exec, bld.lm));
4007 bld.pseudo(aco_opcode::p_discard_if, cond);
4008 ctx->block->kind |= block_kind_uses_discard_if;
4009 return;
4010 }
4011
4012 /* This condition is incorrect for uniformly branched discards in a loop
4013 * predicated by a divergent condition, but the above code catches that case
4014 * and the discard would end up turning into a discard_if.
4015 * For example:
4016 * if (divergent) {
4017 * while (...) {
4018 * if (uniform) {
4019 * discard;
4020 * }
4021 * }
4022 * }
4023 */
4024 if (!ctx->cf_info.parent_if.is_divergent) {
4025 /* program just ends here */
4026 ctx->block->kind |= block_kind_uniform;
4027 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
4028 0 /* enabled mask */, 9 /* dest */,
4029 false /* compressed */, true/* done */, true /* valid mask */);
4030 bld.sopp(aco_opcode::s_endpgm);
4031 // TODO: it will potentially be followed by a branch which is dead code to sanitize NIR phis
4032 } else {
4033 ctx->block->kind |= block_kind_discard;
4034 /* branch and linear edge is added by visit_if() */
4035 }
4036 }
4037
4038 enum aco_descriptor_type {
4039 ACO_DESC_IMAGE,
4040 ACO_DESC_FMASK,
4041 ACO_DESC_SAMPLER,
4042 ACO_DESC_BUFFER,
4043 ACO_DESC_PLANE_0,
4044 ACO_DESC_PLANE_1,
4045 ACO_DESC_PLANE_2,
4046 };
4047
4048 static bool
4049 should_declare_array(isel_context *ctx, enum glsl_sampler_dim sampler_dim, bool is_array) {
4050 if (sampler_dim == GLSL_SAMPLER_DIM_BUF)
4051 return false;
4052 ac_image_dim dim = ac_get_sampler_dim(ctx->options->chip_class, sampler_dim, is_array);
4053 return dim == ac_image_cube ||
4054 dim == ac_image_1darray ||
4055 dim == ac_image_2darray ||
4056 dim == ac_image_2darraymsaa;
4057 }
4058
4059 Temp get_sampler_desc(isel_context *ctx, nir_deref_instr *deref_instr,
4060 enum aco_descriptor_type desc_type,
4061 const nir_tex_instr *tex_instr, bool image, bool write)
4062 {
4063 /* FIXME: we should lower the deref with some new nir_intrinsic_load_desc
4064 std::unordered_map<uint64_t, Temp>::iterator it = ctx->tex_desc.find((uint64_t) desc_type << 32 | deref_instr->dest.ssa.index);
4065 if (it != ctx->tex_desc.end())
4066 return it->second;
4067 */
4068 Temp index = Temp();
4069 bool index_set = false;
4070 unsigned constant_index = 0;
4071 unsigned descriptor_set;
4072 unsigned base_index;
4073 Builder bld(ctx->program, ctx->block);
4074
4075 if (!deref_instr) {
4076 assert(tex_instr && !image);
4077 descriptor_set = 0;
4078 base_index = tex_instr->sampler_index;
4079 } else {
4080 while(deref_instr->deref_type != nir_deref_type_var) {
4081 unsigned array_size = glsl_get_aoa_size(deref_instr->type);
4082 if (!array_size)
4083 array_size = 1;
4084
4085 assert(deref_instr->deref_type == nir_deref_type_array);
4086 nir_const_value *const_value = nir_src_as_const_value(deref_instr->arr.index);
4087 if (const_value) {
4088 constant_index += array_size * const_value->u32;
4089 } else {
4090 Temp indirect = get_ssa_temp(ctx, deref_instr->arr.index.ssa);
4091 if (indirect.type() == RegType::vgpr)
4092 indirect = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), indirect);
4093
4094 if (array_size != 1)
4095 indirect = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(array_size), indirect);
4096
4097 if (!index_set) {
4098 index = indirect;
4099 index_set = true;
4100 } else {
4101 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), index, indirect);
4102 }
4103 }
4104
4105 deref_instr = nir_src_as_deref(deref_instr->parent);
4106 }
4107 descriptor_set = deref_instr->var->data.descriptor_set;
4108 base_index = deref_instr->var->data.binding;
4109 }
4110
4111 Temp list = load_desc_ptr(ctx, descriptor_set);
4112 list = convert_pointer_to_64_bit(ctx, list);
4113
4114 struct radv_descriptor_set_layout *layout = ctx->options->layout->set[descriptor_set].layout;
4115 struct radv_descriptor_set_binding_layout *binding = layout->binding + base_index;
4116 unsigned offset = binding->offset;
4117 unsigned stride = binding->size;
4118 aco_opcode opcode;
4119 RegClass type;
4120
4121 assert(base_index < layout->binding_count);
4122
4123 switch (desc_type) {
4124 case ACO_DESC_IMAGE:
4125 type = s8;
4126 opcode = aco_opcode::s_load_dwordx8;
4127 break;
4128 case ACO_DESC_FMASK:
4129 type = s8;
4130 opcode = aco_opcode::s_load_dwordx8;
4131 offset += 32;
4132 break;
4133 case ACO_DESC_SAMPLER:
4134 type = s4;
4135 opcode = aco_opcode::s_load_dwordx4;
4136 if (binding->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
4137 offset += radv_combined_image_descriptor_sampler_offset(binding);
4138 break;
4139 case ACO_DESC_BUFFER:
4140 type = s4;
4141 opcode = aco_opcode::s_load_dwordx4;
4142 break;
4143 case ACO_DESC_PLANE_0:
4144 case ACO_DESC_PLANE_1:
4145 type = s8;
4146 opcode = aco_opcode::s_load_dwordx8;
4147 offset += 32 * (desc_type - ACO_DESC_PLANE_0);
4148 break;
4149 case ACO_DESC_PLANE_2:
4150 type = s4;
4151 opcode = aco_opcode::s_load_dwordx4;
4152 offset += 64;
4153 break;
4154 default:
4155 unreachable("invalid desc_type\n");
4156 }
4157
4158 offset += constant_index * stride;
4159
4160 if (desc_type == ACO_DESC_SAMPLER && binding->immutable_samplers_offset &&
4161 (!index_set || binding->immutable_samplers_equal)) {
4162 if (binding->immutable_samplers_equal)
4163 constant_index = 0;
4164
4165 const uint32_t *samplers = radv_immutable_samplers(layout, binding);
4166 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
4167 Operand(samplers[constant_index * 4 + 0]),
4168 Operand(samplers[constant_index * 4 + 1]),
4169 Operand(samplers[constant_index * 4 + 2]),
4170 Operand(samplers[constant_index * 4 + 3]));
4171 }
4172
4173 Operand off;
4174 if (!index_set) {
4175 off = bld.copy(bld.def(s1), Operand(offset));
4176 } else {
4177 off = Operand((Temp)bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset),
4178 bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), index)));
4179 }
4180
4181 Temp res = bld.smem(opcode, bld.def(type), list, off);
4182
4183 if (desc_type == ACO_DESC_PLANE_2) {
4184 Temp components[8];
4185 for (unsigned i = 0; i < 8; i++)
4186 components[i] = bld.tmp(s1);
4187 bld.pseudo(aco_opcode::p_split_vector,
4188 Definition(components[0]),
4189 Definition(components[1]),
4190 Definition(components[2]),
4191 Definition(components[3]),
4192 res);
4193
4194 Temp desc2 = get_sampler_desc(ctx, deref_instr, ACO_DESC_PLANE_1, tex_instr, image, write);
4195 bld.pseudo(aco_opcode::p_split_vector,
4196 bld.def(s1), bld.def(s1), bld.def(s1), bld.def(s1),
4197 Definition(components[4]),
4198 Definition(components[5]),
4199 Definition(components[6]),
4200 Definition(components[7]),
4201 desc2);
4202
4203 res = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
4204 components[0], components[1], components[2], components[3],
4205 components[4], components[5], components[6], components[7]);
4206 }
4207
4208 return res;
4209 }
4210
4211 static int image_type_to_components_count(enum glsl_sampler_dim dim, bool array)
4212 {
4213 switch (dim) {
4214 case GLSL_SAMPLER_DIM_BUF:
4215 return 1;
4216 case GLSL_SAMPLER_DIM_1D:
4217 return array ? 2 : 1;
4218 case GLSL_SAMPLER_DIM_2D:
4219 return array ? 3 : 2;
4220 case GLSL_SAMPLER_DIM_MS:
4221 return array ? 4 : 3;
4222 case GLSL_SAMPLER_DIM_3D:
4223 case GLSL_SAMPLER_DIM_CUBE:
4224 return 3;
4225 case GLSL_SAMPLER_DIM_RECT:
4226 case GLSL_SAMPLER_DIM_SUBPASS:
4227 return 2;
4228 case GLSL_SAMPLER_DIM_SUBPASS_MS:
4229 return 3;
4230 default:
4231 break;
4232 }
4233 return 0;
4234 }
4235
4236
4237 /* Adjust the sample index according to FMASK.
4238 *
4239 * For uncompressed MSAA surfaces, FMASK should return 0x76543210,
4240 * which is the identity mapping. Each nibble says which physical sample
4241 * should be fetched to get that sample.
4242 *
4243 * For example, 0x11111100 means there are only 2 samples stored and
4244 * the second sample covers 3/4 of the pixel. When reading samples 0
4245 * and 1, return physical sample 0 (determined by the first two 0s
4246 * in FMASK), otherwise return physical sample 1.
4247 *
4248 * The sample index should be adjusted as follows:
4249 * sample_index = (fmask >> (sample_index * 4)) & 0xF;
4250 */
4251 static Temp adjust_sample_index_using_fmask(isel_context *ctx, bool da, std::vector<Temp>& coords, Operand sample_index, Temp fmask_desc_ptr)
4252 {
4253 Builder bld(ctx->program, ctx->block);
4254 Temp fmask = bld.tmp(v1);
4255 unsigned dim = ctx->options->chip_class >= GFX10
4256 ? ac_get_sampler_dim(ctx->options->chip_class, GLSL_SAMPLER_DIM_2D, da)
4257 : 0;
4258
4259 Temp coord = da ? bld.pseudo(aco_opcode::p_create_vector, bld.def(v3), coords[0], coords[1], coords[2]) :
4260 bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), coords[0], coords[1]);
4261 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(aco_opcode::image_load, Format::MIMG, 3, 1)};
4262 load->operands[0] = Operand(fmask_desc_ptr);
4263 load->operands[1] = Operand(s4); /* no sampler */
4264 load->operands[2] = Operand(coord);
4265 load->definitions[0] = Definition(fmask);
4266 load->glc = false;
4267 load->dlc = false;
4268 load->dmask = 0x1;
4269 load->unrm = true;
4270 load->da = da;
4271 load->dim = dim;
4272 load->can_reorder = true; /* fmask images shouldn't be modified */
4273 ctx->block->instructions.emplace_back(std::move(load));
4274
4275 Operand sample_index4;
4276 if (sample_index.isConstant() && sample_index.constantValue() < 16) {
4277 sample_index4 = Operand(sample_index.constantValue() << 2);
4278 } else if (sample_index.regClass() == s1) {
4279 sample_index4 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), sample_index, Operand(2u));
4280 } else {
4281 assert(sample_index.regClass() == v1);
4282 sample_index4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), sample_index);
4283 }
4284
4285 Temp final_sample;
4286 if (sample_index4.isConstant() && sample_index4.constantValue() == 0)
4287 final_sample = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(15u), fmask);
4288 else if (sample_index4.isConstant() && sample_index4.constantValue() == 28)
4289 final_sample = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(28u), fmask);
4290 else
4291 final_sample = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), fmask, sample_index4, Operand(4u));
4292
4293 /* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK
4294 * resource descriptor is 0 (invalid),
4295 */
4296 Temp compare = bld.tmp(bld.lm);
4297 bld.vopc_e64(aco_opcode::v_cmp_lg_u32, Definition(compare),
4298 Operand(0u), emit_extract_vector(ctx, fmask_desc_ptr, 1, s1)).def(0).setHint(vcc);
4299
4300 Temp sample_index_v = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), sample_index);
4301
4302 /* Replace the MSAA sample index. */
4303 return bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), sample_index_v, final_sample, compare);
4304 }
4305
4306 static Temp get_image_coords(isel_context *ctx, const nir_intrinsic_instr *instr, const struct glsl_type *type)
4307 {
4308
4309 Temp src0 = get_ssa_temp(ctx, instr->src[1].ssa);
4310 enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4311 bool is_array = glsl_sampler_type_is_array(type);
4312 ASSERTED bool add_frag_pos = (dim == GLSL_SAMPLER_DIM_SUBPASS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
4313 assert(!add_frag_pos && "Input attachments should be lowered.");
4314 bool is_ms = (dim == GLSL_SAMPLER_DIM_MS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
4315 bool gfx9_1d = ctx->options->chip_class == GFX9 && dim == GLSL_SAMPLER_DIM_1D;
4316 int count = image_type_to_components_count(dim, is_array);
4317 std::vector<Temp> coords(count);
4318 Builder bld(ctx->program, ctx->block);
4319
4320 if (is_ms) {
4321 count--;
4322 Temp src2 = get_ssa_temp(ctx, instr->src[2].ssa);
4323 /* get sample index */
4324 if (instr->intrinsic == nir_intrinsic_image_deref_load) {
4325 nir_const_value *sample_cv = nir_src_as_const_value(instr->src[2]);
4326 Operand sample_index = sample_cv ? Operand(sample_cv->u32) : Operand(emit_extract_vector(ctx, src2, 0, v1));
4327 std::vector<Temp> fmask_load_address;
4328 for (unsigned i = 0; i < (is_array ? 3 : 2); i++)
4329 fmask_load_address.emplace_back(emit_extract_vector(ctx, src0, i, v1));
4330
4331 Temp fmask_desc_ptr = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_FMASK, nullptr, false, false);
4332 coords[count] = adjust_sample_index_using_fmask(ctx, is_array, fmask_load_address, sample_index, fmask_desc_ptr);
4333 } else {
4334 coords[count] = emit_extract_vector(ctx, src2, 0, v1);
4335 }
4336 }
4337
4338 if (gfx9_1d) {
4339 coords[0] = emit_extract_vector(ctx, src0, 0, v1);
4340 coords.resize(coords.size() + 1);
4341 coords[1] = bld.copy(bld.def(v1), Operand(0u));
4342 if (is_array)
4343 coords[2] = emit_extract_vector(ctx, src0, 1, v1);
4344 } else {
4345 for (int i = 0; i < count; i++)
4346 coords[i] = emit_extract_vector(ctx, src0, i, v1);
4347 }
4348
4349 if (instr->intrinsic == nir_intrinsic_image_deref_load ||
4350 instr->intrinsic == nir_intrinsic_image_deref_store) {
4351 int lod_index = instr->intrinsic == nir_intrinsic_image_deref_load ? 3 : 4;
4352 bool level_zero = nir_src_is_const(instr->src[lod_index]) && nir_src_as_uint(instr->src[lod_index]) == 0;
4353
4354 if (!level_zero)
4355 coords.emplace_back(get_ssa_temp(ctx, instr->src[lod_index].ssa));
4356 }
4357
4358 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
4359 for (unsigned i = 0; i < coords.size(); i++)
4360 vec->operands[i] = Operand(coords[i]);
4361 Temp res = {ctx->program->allocateId(), RegClass(RegType::vgpr, coords.size())};
4362 vec->definitions[0] = Definition(res);
4363 ctx->block->instructions.emplace_back(std::move(vec));
4364 return res;
4365 }
4366
4367
4368 void visit_image_load(isel_context *ctx, nir_intrinsic_instr *instr)
4369 {
4370 Builder bld(ctx->program, ctx->block);
4371 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
4372 const struct glsl_type *type = glsl_without_array(var->type);
4373 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4374 bool is_array = glsl_sampler_type_is_array(type);
4375 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4376
4377 if (dim == GLSL_SAMPLER_DIM_BUF) {
4378 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa);
4379 unsigned num_channels = util_last_bit(mask);
4380 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
4381 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
4382
4383 aco_opcode opcode;
4384 switch (num_channels) {
4385 case 1:
4386 opcode = aco_opcode::buffer_load_format_x;
4387 break;
4388 case 2:
4389 opcode = aco_opcode::buffer_load_format_xy;
4390 break;
4391 case 3:
4392 opcode = aco_opcode::buffer_load_format_xyz;
4393 break;
4394 case 4:
4395 opcode = aco_opcode::buffer_load_format_xyzw;
4396 break;
4397 default:
4398 unreachable(">4 channel buffer image load");
4399 }
4400 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 3, 1)};
4401 load->operands[0] = Operand(rsrc);
4402 load->operands[1] = Operand(vindex);
4403 load->operands[2] = Operand((uint32_t) 0);
4404 Temp tmp;
4405 if (num_channels == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
4406 tmp = dst;
4407 else
4408 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_channels)};
4409 load->definitions[0] = Definition(tmp);
4410 load->idxen = true;
4411 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT);
4412 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
4413 load->barrier = barrier_image;
4414 ctx->block->instructions.emplace_back(std::move(load));
4415
4416 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, (1 << num_channels) - 1);
4417 return;
4418 }
4419
4420 Temp coords = get_image_coords(ctx, instr, type);
4421 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
4422
4423 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
4424 unsigned num_components = util_bitcount(dmask);
4425 Temp tmp;
4426 if (num_components == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
4427 tmp = dst;
4428 else
4429 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_components)};
4430
4431 bool level_zero = nir_src_is_const(instr->src[3]) && nir_src_as_uint(instr->src[3]) == 0;
4432 aco_opcode opcode = level_zero ? aco_opcode::image_load : aco_opcode::image_load_mip;
4433
4434 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1)};
4435 load->operands[0] = Operand(resource);
4436 load->operands[1] = Operand(s4); /* no sampler */
4437 load->operands[2] = Operand(coords);
4438 load->definitions[0] = Definition(tmp);
4439 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT) ? 1 : 0;
4440 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
4441 load->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
4442 load->dmask = dmask;
4443 load->unrm = true;
4444 load->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
4445 load->barrier = barrier_image;
4446 ctx->block->instructions.emplace_back(std::move(load));
4447
4448 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, dmask);
4449 return;
4450 }
4451
4452 void visit_image_store(isel_context *ctx, nir_intrinsic_instr *instr)
4453 {
4454 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
4455 const struct glsl_type *type = glsl_without_array(var->type);
4456 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4457 bool is_array = glsl_sampler_type_is_array(type);
4458 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
4459
4460 bool glc = ctx->options->chip_class == GFX6 || var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE) ? 1 : 0;
4461
4462 if (dim == GLSL_SAMPLER_DIM_BUF) {
4463 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
4464 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
4465 aco_opcode opcode;
4466 switch (data.size()) {
4467 case 1:
4468 opcode = aco_opcode::buffer_store_format_x;
4469 break;
4470 case 2:
4471 opcode = aco_opcode::buffer_store_format_xy;
4472 break;
4473 case 3:
4474 opcode = aco_opcode::buffer_store_format_xyz;
4475 break;
4476 case 4:
4477 opcode = aco_opcode::buffer_store_format_xyzw;
4478 break;
4479 default:
4480 unreachable(">4 channel buffer image store");
4481 }
4482 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
4483 store->operands[0] = Operand(rsrc);
4484 store->operands[1] = Operand(vindex);
4485 store->operands[2] = Operand((uint32_t) 0);
4486 store->operands[3] = Operand(data);
4487 store->idxen = true;
4488 store->glc = glc;
4489 store->dlc = false;
4490 store->disable_wqm = true;
4491 store->barrier = barrier_image;
4492 ctx->program->needs_exact = true;
4493 ctx->block->instructions.emplace_back(std::move(store));
4494 return;
4495 }
4496
4497 assert(data.type() == RegType::vgpr);
4498 Temp coords = get_image_coords(ctx, instr, type);
4499 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
4500
4501 bool level_zero = nir_src_is_const(instr->src[4]) && nir_src_as_uint(instr->src[4]) == 0;
4502 aco_opcode opcode = level_zero ? aco_opcode::image_store : aco_opcode::image_store_mip;
4503
4504 aco_ptr<MIMG_instruction> store{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 0)};
4505 store->operands[0] = Operand(resource);
4506 store->operands[1] = Operand(data);
4507 store->operands[2] = Operand(coords);
4508 store->glc = glc;
4509 store->dlc = false;
4510 store->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
4511 store->dmask = (1 << data.size()) - 1;
4512 store->unrm = true;
4513 store->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
4514 store->disable_wqm = true;
4515 store->barrier = barrier_image;
4516 ctx->program->needs_exact = true;
4517 ctx->block->instructions.emplace_back(std::move(store));
4518 return;
4519 }
4520
4521 void visit_image_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
4522 {
4523 /* return the previous value if dest is ever used */
4524 bool return_previous = false;
4525 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
4526 return_previous = true;
4527 break;
4528 }
4529 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
4530 return_previous = true;
4531 break;
4532 }
4533
4534 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
4535 const struct glsl_type *type = glsl_without_array(var->type);
4536 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4537 bool is_array = glsl_sampler_type_is_array(type);
4538 Builder bld(ctx->program, ctx->block);
4539
4540 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
4541 assert(data.size() == 1 && "64bit ssbo atomics not yet implemented.");
4542
4543 if (instr->intrinsic == nir_intrinsic_image_deref_atomic_comp_swap)
4544 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), get_ssa_temp(ctx, instr->src[4].ssa), data);
4545
4546 aco_opcode buf_op, image_op;
4547 switch (instr->intrinsic) {
4548 case nir_intrinsic_image_deref_atomic_add:
4549 buf_op = aco_opcode::buffer_atomic_add;
4550 image_op = aco_opcode::image_atomic_add;
4551 break;
4552 case nir_intrinsic_image_deref_atomic_umin:
4553 buf_op = aco_opcode::buffer_atomic_umin;
4554 image_op = aco_opcode::image_atomic_umin;
4555 break;
4556 case nir_intrinsic_image_deref_atomic_imin:
4557 buf_op = aco_opcode::buffer_atomic_smin;
4558 image_op = aco_opcode::image_atomic_smin;
4559 break;
4560 case nir_intrinsic_image_deref_atomic_umax:
4561 buf_op = aco_opcode::buffer_atomic_umax;
4562 image_op = aco_opcode::image_atomic_umax;
4563 break;
4564 case nir_intrinsic_image_deref_atomic_imax:
4565 buf_op = aco_opcode::buffer_atomic_smax;
4566 image_op = aco_opcode::image_atomic_smax;
4567 break;
4568 case nir_intrinsic_image_deref_atomic_and:
4569 buf_op = aco_opcode::buffer_atomic_and;
4570 image_op = aco_opcode::image_atomic_and;
4571 break;
4572 case nir_intrinsic_image_deref_atomic_or:
4573 buf_op = aco_opcode::buffer_atomic_or;
4574 image_op = aco_opcode::image_atomic_or;
4575 break;
4576 case nir_intrinsic_image_deref_atomic_xor:
4577 buf_op = aco_opcode::buffer_atomic_xor;
4578 image_op = aco_opcode::image_atomic_xor;
4579 break;
4580 case nir_intrinsic_image_deref_atomic_exchange:
4581 buf_op = aco_opcode::buffer_atomic_swap;
4582 image_op = aco_opcode::image_atomic_swap;
4583 break;
4584 case nir_intrinsic_image_deref_atomic_comp_swap:
4585 buf_op = aco_opcode::buffer_atomic_cmpswap;
4586 image_op = aco_opcode::image_atomic_cmpswap;
4587 break;
4588 default:
4589 unreachable("visit_image_atomic should only be called with nir_intrinsic_image_deref_atomic_* instructions.");
4590 }
4591
4592 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4593
4594 if (dim == GLSL_SAMPLER_DIM_BUF) {
4595 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
4596 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
4597 //assert(ctx->options->chip_class < GFX9 && "GFX9 stride size workaround not yet implemented.");
4598 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(buf_op, Format::MUBUF, 4, return_previous ? 1 : 0)};
4599 mubuf->operands[0] = Operand(resource);
4600 mubuf->operands[1] = Operand(vindex);
4601 mubuf->operands[2] = Operand((uint32_t)0);
4602 mubuf->operands[3] = Operand(data);
4603 if (return_previous)
4604 mubuf->definitions[0] = Definition(dst);
4605 mubuf->offset = 0;
4606 mubuf->idxen = true;
4607 mubuf->glc = return_previous;
4608 mubuf->dlc = false; /* Not needed for atomics */
4609 mubuf->disable_wqm = true;
4610 mubuf->barrier = barrier_image;
4611 ctx->program->needs_exact = true;
4612 ctx->block->instructions.emplace_back(std::move(mubuf));
4613 return;
4614 }
4615
4616 Temp coords = get_image_coords(ctx, instr, type);
4617 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
4618 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(image_op, Format::MIMG, 3, return_previous ? 1 : 0)};
4619 mimg->operands[0] = Operand(resource);
4620 mimg->operands[1] = Operand(data);
4621 mimg->operands[2] = Operand(coords);
4622 if (return_previous)
4623 mimg->definitions[0] = Definition(dst);
4624 mimg->glc = return_previous;
4625 mimg->dlc = false; /* Not needed for atomics */
4626 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
4627 mimg->dmask = (1 << data.size()) - 1;
4628 mimg->unrm = true;
4629 mimg->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
4630 mimg->disable_wqm = true;
4631 mimg->barrier = barrier_image;
4632 ctx->program->needs_exact = true;
4633 ctx->block->instructions.emplace_back(std::move(mimg));
4634 return;
4635 }
4636
4637 void get_buffer_size(isel_context *ctx, Temp desc, Temp dst, bool in_elements)
4638 {
4639 if (in_elements && ctx->options->chip_class == GFX8) {
4640 /* we only have to divide by 1, 2, 4, 8, 12 or 16 */
4641 Builder bld(ctx->program, ctx->block);
4642
4643 Temp size = emit_extract_vector(ctx, desc, 2, s1);
4644
4645 Temp size_div3 = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), bld.copy(bld.def(v1), Operand(0xaaaaaaabu)), size);
4646 size_div3 = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.as_uniform(size_div3), Operand(1u));
4647
4648 Temp stride = emit_extract_vector(ctx, desc, 1, s1);
4649 stride = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), stride, Operand((5u << 16) | 16u));
4650
4651 Temp is12 = bld.sopc(aco_opcode::s_cmp_eq_i32, bld.def(s1, scc), stride, Operand(12u));
4652 size = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), size_div3, size, bld.scc(is12));
4653
4654 Temp shr_dst = dst.type() == RegType::vgpr ? bld.tmp(s1) : dst;
4655 bld.sop2(aco_opcode::s_lshr_b32, Definition(shr_dst), bld.def(s1, scc),
4656 size, bld.sop1(aco_opcode::s_ff1_i32_b32, bld.def(s1), stride));
4657 if (dst.type() == RegType::vgpr)
4658 bld.copy(Definition(dst), shr_dst);
4659
4660 /* TODO: we can probably calculate this faster with v_skip when stride != 12 */
4661 } else {
4662 emit_extract_vector(ctx, desc, 2, dst);
4663 }
4664 }
4665
4666 void visit_image_size(isel_context *ctx, nir_intrinsic_instr *instr)
4667 {
4668 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
4669 const struct glsl_type *type = glsl_without_array(var->type);
4670 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4671 bool is_array = glsl_sampler_type_is_array(type);
4672 Builder bld(ctx->program, ctx->block);
4673
4674 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF) {
4675 Temp desc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, NULL, true, false);
4676 return get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), true);
4677 }
4678
4679 /* LOD */
4680 Temp lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
4681
4682 /* Resource */
4683 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, NULL, true, false);
4684
4685 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4686
4687 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1)};
4688 mimg->operands[0] = Operand(resource);
4689 mimg->operands[1] = Operand(s4); /* no sampler */
4690 mimg->operands[2] = Operand(lod);
4691 uint8_t& dmask = mimg->dmask;
4692 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
4693 mimg->dmask = (1 << instr->dest.ssa.num_components) - 1;
4694 mimg->da = glsl_sampler_type_is_array(type);
4695 mimg->can_reorder = true;
4696 Definition& def = mimg->definitions[0];
4697 ctx->block->instructions.emplace_back(std::move(mimg));
4698
4699 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE &&
4700 glsl_sampler_type_is_array(type)) {
4701
4702 assert(instr->dest.ssa.num_components == 3);
4703 Temp tmp = {ctx->program->allocateId(), v3};
4704 def = Definition(tmp);
4705 emit_split_vector(ctx, tmp, 3);
4706
4707 /* divide 3rd value by 6 by multiplying with magic number */
4708 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
4709 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp, 2, v1), c);
4710
4711 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4712 emit_extract_vector(ctx, tmp, 0, v1),
4713 emit_extract_vector(ctx, tmp, 1, v1),
4714 by_6);
4715
4716 } else if (ctx->options->chip_class == GFX9 &&
4717 glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_1D &&
4718 glsl_sampler_type_is_array(type)) {
4719 assert(instr->dest.ssa.num_components == 2);
4720 def = Definition(dst);
4721 dmask = 0x5;
4722 } else {
4723 def = Definition(dst);
4724 }
4725
4726 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
4727 }
4728
4729 void visit_load_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
4730 {
4731 Builder bld(ctx->program, ctx->block);
4732 unsigned num_components = instr->num_components;
4733
4734 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4735 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
4736 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
4737
4738 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
4739 load_buffer(ctx, num_components, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa), glc, false);
4740 }
4741
4742 void visit_store_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
4743 {
4744 Builder bld(ctx->program, ctx->block);
4745 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
4746 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
4747 unsigned writemask = nir_intrinsic_write_mask(instr);
4748 Temp offset = get_ssa_temp(ctx, instr->src[2].ssa);
4749
4750 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
4751 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
4752
4753 bool smem = !ctx->divergent_vals[instr->src[2].ssa->index] &&
4754 ctx->options->chip_class >= GFX8;
4755 if (smem)
4756 offset = bld.as_uniform(offset);
4757 bool smem_nonfs = smem && ctx->stage != fragment_fs;
4758
4759 while (writemask) {
4760 int start, count;
4761 u_bit_scan_consecutive_range(&writemask, &start, &count);
4762 if (count == 3 && (smem || ctx->options->chip_class == GFX6)) {
4763 /* GFX6 doesn't support storing vec3, split it. */
4764 writemask |= 1u << (start + 2);
4765 count = 2;
4766 }
4767 int num_bytes = count * elem_size_bytes;
4768
4769 if (num_bytes > 16) {
4770 assert(elem_size_bytes == 8);
4771 writemask |= (((count - 2) << 1) - 1) << (start + 2);
4772 count = 2;
4773 num_bytes = 16;
4774 }
4775
4776 // TODO: check alignment of sub-dword stores
4777 // TODO: split 3 bytes. there is no store instruction for that
4778
4779 Temp write_data;
4780 if (count != instr->num_components) {
4781 emit_split_vector(ctx, data, instr->num_components);
4782 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
4783 for (int i = 0; i < count; i++) {
4784 Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(data.type(), elem_size_bytes / 4));
4785 vec->operands[i] = Operand(smem_nonfs ? bld.as_uniform(elem) : elem);
4786 }
4787 write_data = bld.tmp(!smem ? RegType::vgpr : smem_nonfs ? RegType::sgpr : data.type(), count * elem_size_bytes / 4);
4788 vec->definitions[0] = Definition(write_data);
4789 ctx->block->instructions.emplace_back(std::move(vec));
4790 } else if (!smem && data.type() != RegType::vgpr) {
4791 assert(num_bytes % 4 == 0);
4792 write_data = bld.copy(bld.def(RegType::vgpr, num_bytes / 4), data);
4793 } else if (smem_nonfs && data.type() == RegType::vgpr) {
4794 assert(num_bytes % 4 == 0);
4795 write_data = bld.as_uniform(data);
4796 } else {
4797 write_data = data;
4798 }
4799
4800 aco_opcode vmem_op, smem_op;
4801 switch (num_bytes) {
4802 case 4:
4803 vmem_op = aco_opcode::buffer_store_dword;
4804 smem_op = aco_opcode::s_buffer_store_dword;
4805 break;
4806 case 8:
4807 vmem_op = aco_opcode::buffer_store_dwordx2;
4808 smem_op = aco_opcode::s_buffer_store_dwordx2;
4809 break;
4810 case 12:
4811 vmem_op = aco_opcode::buffer_store_dwordx3;
4812 smem_op = aco_opcode::last_opcode;
4813 assert(!smem && ctx->options->chip_class > GFX6);
4814 break;
4815 case 16:
4816 vmem_op = aco_opcode::buffer_store_dwordx4;
4817 smem_op = aco_opcode::s_buffer_store_dwordx4;
4818 break;
4819 default:
4820 unreachable("Store SSBO not implemented for this size.");
4821 }
4822 if (ctx->stage == fragment_fs)
4823 smem_op = aco_opcode::p_fs_buffer_store_smem;
4824
4825 if (smem) {
4826 aco_ptr<SMEM_instruction> store{create_instruction<SMEM_instruction>(smem_op, Format::SMEM, 3, 0)};
4827 store->operands[0] = Operand(rsrc);
4828 if (start) {
4829 Temp off = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
4830 offset, Operand(start * elem_size_bytes));
4831 store->operands[1] = Operand(off);
4832 } else {
4833 store->operands[1] = Operand(offset);
4834 }
4835 if (smem_op != aco_opcode::p_fs_buffer_store_smem)
4836 store->operands[1].setFixed(m0);
4837 store->operands[2] = Operand(write_data);
4838 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
4839 store->dlc = false;
4840 store->disable_wqm = true;
4841 store->barrier = barrier_buffer;
4842 ctx->block->instructions.emplace_back(std::move(store));
4843 ctx->program->wb_smem_l1_on_end = true;
4844 if (smem_op == aco_opcode::p_fs_buffer_store_smem) {
4845 ctx->block->kind |= block_kind_needs_lowering;
4846 ctx->program->needs_exact = true;
4847 }
4848 } else {
4849 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(vmem_op, Format::MUBUF, 4, 0)};
4850 store->operands[0] = Operand(rsrc);
4851 store->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
4852 store->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
4853 store->operands[3] = Operand(write_data);
4854 store->offset = start * elem_size_bytes;
4855 store->offen = (offset.type() == RegType::vgpr);
4856 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
4857 store->dlc = false;
4858 store->disable_wqm = true;
4859 store->barrier = barrier_buffer;
4860 ctx->program->needs_exact = true;
4861 ctx->block->instructions.emplace_back(std::move(store));
4862 }
4863 }
4864 }
4865
4866 void visit_atomic_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
4867 {
4868 /* return the previous value if dest is ever used */
4869 bool return_previous = false;
4870 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
4871 return_previous = true;
4872 break;
4873 }
4874 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
4875 return_previous = true;
4876 break;
4877 }
4878
4879 Builder bld(ctx->program, ctx->block);
4880 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[2].ssa));
4881
4882 if (instr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap)
4883 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
4884 get_ssa_temp(ctx, instr->src[3].ssa), data);
4885
4886 Temp offset = get_ssa_temp(ctx, instr->src[1].ssa);
4887 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
4888 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
4889
4890 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4891
4892 aco_opcode op32, op64;
4893 switch (instr->intrinsic) {
4894 case nir_intrinsic_ssbo_atomic_add:
4895 op32 = aco_opcode::buffer_atomic_add;
4896 op64 = aco_opcode::buffer_atomic_add_x2;
4897 break;
4898 case nir_intrinsic_ssbo_atomic_imin:
4899 op32 = aco_opcode::buffer_atomic_smin;
4900 op64 = aco_opcode::buffer_atomic_smin_x2;
4901 break;
4902 case nir_intrinsic_ssbo_atomic_umin:
4903 op32 = aco_opcode::buffer_atomic_umin;
4904 op64 = aco_opcode::buffer_atomic_umin_x2;
4905 break;
4906 case nir_intrinsic_ssbo_atomic_imax:
4907 op32 = aco_opcode::buffer_atomic_smax;
4908 op64 = aco_opcode::buffer_atomic_smax_x2;
4909 break;
4910 case nir_intrinsic_ssbo_atomic_umax:
4911 op32 = aco_opcode::buffer_atomic_umax;
4912 op64 = aco_opcode::buffer_atomic_umax_x2;
4913 break;
4914 case nir_intrinsic_ssbo_atomic_and:
4915 op32 = aco_opcode::buffer_atomic_and;
4916 op64 = aco_opcode::buffer_atomic_and_x2;
4917 break;
4918 case nir_intrinsic_ssbo_atomic_or:
4919 op32 = aco_opcode::buffer_atomic_or;
4920 op64 = aco_opcode::buffer_atomic_or_x2;
4921 break;
4922 case nir_intrinsic_ssbo_atomic_xor:
4923 op32 = aco_opcode::buffer_atomic_xor;
4924 op64 = aco_opcode::buffer_atomic_xor_x2;
4925 break;
4926 case nir_intrinsic_ssbo_atomic_exchange:
4927 op32 = aco_opcode::buffer_atomic_swap;
4928 op64 = aco_opcode::buffer_atomic_swap_x2;
4929 break;
4930 case nir_intrinsic_ssbo_atomic_comp_swap:
4931 op32 = aco_opcode::buffer_atomic_cmpswap;
4932 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
4933 break;
4934 default:
4935 unreachable("visit_atomic_ssbo should only be called with nir_intrinsic_ssbo_atomic_* instructions.");
4936 }
4937 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
4938 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
4939 mubuf->operands[0] = Operand(rsrc);
4940 mubuf->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
4941 mubuf->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
4942 mubuf->operands[3] = Operand(data);
4943 if (return_previous)
4944 mubuf->definitions[0] = Definition(dst);
4945 mubuf->offset = 0;
4946 mubuf->offen = (offset.type() == RegType::vgpr);
4947 mubuf->glc = return_previous;
4948 mubuf->dlc = false; /* Not needed for atomics */
4949 mubuf->disable_wqm = true;
4950 mubuf->barrier = barrier_buffer;
4951 ctx->program->needs_exact = true;
4952 ctx->block->instructions.emplace_back(std::move(mubuf));
4953 }
4954
4955 void visit_get_buffer_size(isel_context *ctx, nir_intrinsic_instr *instr) {
4956
4957 Temp index = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
4958 Builder bld(ctx->program, ctx->block);
4959 Temp desc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), index, Operand(0u));
4960 get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), false);
4961 }
4962
4963 Temp get_gfx6_global_rsrc(Builder& bld, Temp addr)
4964 {
4965 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
4966 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
4967
4968 if (addr.type() == RegType::vgpr)
4969 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), Operand(0u), Operand(0u), Operand(-1u), Operand(rsrc_conf));
4970 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), addr, Operand(-1u), Operand(rsrc_conf));
4971 }
4972
4973 void visit_load_global(isel_context *ctx, nir_intrinsic_instr *instr)
4974 {
4975 Builder bld(ctx->program, ctx->block);
4976 unsigned num_components = instr->num_components;
4977 unsigned num_bytes = num_components * instr->dest.ssa.bit_size / 8;
4978
4979 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4980 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
4981
4982 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
4983 bool dlc = glc && ctx->options->chip_class >= GFX10;
4984 aco_opcode op;
4985 if (dst.type() == RegType::vgpr || (glc && ctx->options->chip_class < GFX8)) {
4986 bool global = ctx->options->chip_class >= GFX9;
4987
4988 if (ctx->options->chip_class >= GFX7) {
4989 aco_opcode op;
4990 switch (num_bytes) {
4991 case 4:
4992 op = global ? aco_opcode::global_load_dword : aco_opcode::flat_load_dword;
4993 break;
4994 case 8:
4995 op = global ? aco_opcode::global_load_dwordx2 : aco_opcode::flat_load_dwordx2;
4996 break;
4997 case 12:
4998 op = global ? aco_opcode::global_load_dwordx3 : aco_opcode::flat_load_dwordx3;
4999 break;
5000 case 16:
5001 op = global ? aco_opcode::global_load_dwordx4 : aco_opcode::flat_load_dwordx4;
5002 break;
5003 default:
5004 unreachable("load_global not implemented for this size.");
5005 }
5006
5007 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 2, 1)};
5008 flat->operands[0] = Operand(addr);
5009 flat->operands[1] = Operand(s1);
5010 flat->glc = glc;
5011 flat->dlc = dlc;
5012 flat->barrier = barrier_buffer;
5013
5014 if (dst.type() == RegType::sgpr) {
5015 Temp vec = bld.tmp(RegType::vgpr, dst.size());
5016 flat->definitions[0] = Definition(vec);
5017 ctx->block->instructions.emplace_back(std::move(flat));
5018 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
5019 } else {
5020 flat->definitions[0] = Definition(dst);
5021 ctx->block->instructions.emplace_back(std::move(flat));
5022 }
5023 emit_split_vector(ctx, dst, num_components);
5024 } else {
5025 assert(ctx->options->chip_class == GFX6);
5026
5027 /* GFX6 doesn't support loading vec3, expand to vec4. */
5028 num_bytes = num_bytes == 12 ? 16 : num_bytes;
5029
5030 aco_opcode op;
5031 switch (num_bytes) {
5032 case 4:
5033 op = aco_opcode::buffer_load_dword;
5034 break;
5035 case 8:
5036 op = aco_opcode::buffer_load_dwordx2;
5037 break;
5038 case 16:
5039 op = aco_opcode::buffer_load_dwordx4;
5040 break;
5041 default:
5042 unreachable("load_global not implemented for this size.");
5043 }
5044
5045 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
5046
5047 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
5048 mubuf->operands[0] = Operand(rsrc);
5049 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
5050 mubuf->operands[2] = Operand(0u);
5051 mubuf->glc = glc;
5052 mubuf->dlc = false;
5053 mubuf->offset = 0;
5054 mubuf->addr64 = addr.type() == RegType::vgpr;
5055 mubuf->disable_wqm = false;
5056 mubuf->barrier = barrier_buffer;
5057 aco_ptr<Instruction> instr = std::move(mubuf);
5058
5059 /* expand vector */
5060 if (dst.size() == 3) {
5061 Temp vec = bld.tmp(v4);
5062 instr->definitions[0] = Definition(vec);
5063 bld.insert(std::move(instr));
5064 emit_split_vector(ctx, vec, 4);
5065
5066 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 3, 1));
5067 instr->operands[0] = Operand(emit_extract_vector(ctx, vec, 0, v1));
5068 instr->operands[1] = Operand(emit_extract_vector(ctx, vec, 1, v1));
5069 instr->operands[2] = Operand(emit_extract_vector(ctx, vec, 2, v1));
5070 }
5071
5072 if (dst.type() == RegType::sgpr) {
5073 Temp vec = bld.tmp(RegType::vgpr, dst.size());
5074 instr->definitions[0] = Definition(vec);
5075 bld.insert(std::move(instr));
5076 expand_vector(ctx, vec, dst, num_components, (1 << num_components) - 1);
5077 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
5078 } else {
5079 instr->definitions[0] = Definition(dst);
5080 bld.insert(std::move(instr));
5081 emit_split_vector(ctx, dst, num_components);
5082 }
5083 }
5084 } else {
5085 switch (num_bytes) {
5086 case 4:
5087 op = aco_opcode::s_load_dword;
5088 break;
5089 case 8:
5090 op = aco_opcode::s_load_dwordx2;
5091 break;
5092 case 12:
5093 case 16:
5094 op = aco_opcode::s_load_dwordx4;
5095 break;
5096 default:
5097 unreachable("load_global not implemented for this size.");
5098 }
5099 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
5100 load->operands[0] = Operand(addr);
5101 load->operands[1] = Operand(0u);
5102 load->definitions[0] = Definition(dst);
5103 load->glc = glc;
5104 load->dlc = dlc;
5105 load->barrier = barrier_buffer;
5106 assert(ctx->options->chip_class >= GFX8 || !glc);
5107
5108 if (dst.size() == 3) {
5109 /* trim vector */
5110 Temp vec = bld.tmp(s4);
5111 load->definitions[0] = Definition(vec);
5112 ctx->block->instructions.emplace_back(std::move(load));
5113 emit_split_vector(ctx, vec, 4);
5114
5115 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5116 emit_extract_vector(ctx, vec, 0, s1),
5117 emit_extract_vector(ctx, vec, 1, s1),
5118 emit_extract_vector(ctx, vec, 2, s1));
5119 } else {
5120 ctx->block->instructions.emplace_back(std::move(load));
5121 }
5122 }
5123 }
5124
5125 void visit_store_global(isel_context *ctx, nir_intrinsic_instr *instr)
5126 {
5127 Builder bld(ctx->program, ctx->block);
5128 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
5129
5130 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5131 Temp addr = get_ssa_temp(ctx, instr->src[1].ssa);
5132
5133 if (ctx->options->chip_class >= GFX7)
5134 addr = as_vgpr(ctx, addr);
5135
5136 unsigned writemask = nir_intrinsic_write_mask(instr);
5137 while (writemask) {
5138 int start, count;
5139 u_bit_scan_consecutive_range(&writemask, &start, &count);
5140 if (count == 3 && ctx->options->chip_class == GFX6) {
5141 /* GFX6 doesn't support storing vec3, split it. */
5142 writemask |= 1u << (start + 2);
5143 count = 2;
5144 }
5145 unsigned num_bytes = count * elem_size_bytes;
5146
5147 Temp write_data = data;
5148 if (count != instr->num_components) {
5149 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
5150 for (int i = 0; i < count; i++)
5151 vec->operands[i] = Operand(emit_extract_vector(ctx, data, start + i, v1));
5152 write_data = bld.tmp(RegType::vgpr, count);
5153 vec->definitions[0] = Definition(write_data);
5154 ctx->block->instructions.emplace_back(std::move(vec));
5155 }
5156
5157 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
5158 unsigned offset = start * elem_size_bytes;
5159
5160 if (ctx->options->chip_class >= GFX7) {
5161 if (offset > 0 && ctx->options->chip_class < GFX9) {
5162 Temp addr0 = bld.tmp(v1), addr1 = bld.tmp(v1);
5163 Temp new_addr0 = bld.tmp(v1), new_addr1 = bld.tmp(v1);
5164 Temp carry = bld.tmp(bld.lm);
5165 bld.pseudo(aco_opcode::p_split_vector, Definition(addr0), Definition(addr1), addr);
5166
5167 bld.vop2(aco_opcode::v_add_co_u32, Definition(new_addr0), bld.hint_vcc(Definition(carry)),
5168 Operand(offset), addr0);
5169 bld.vop2(aco_opcode::v_addc_co_u32, Definition(new_addr1), bld.def(bld.lm),
5170 Operand(0u), addr1,
5171 carry).def(1).setHint(vcc);
5172
5173 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_addr0, new_addr1);
5174
5175 offset = 0;
5176 }
5177
5178 bool global = ctx->options->chip_class >= GFX9;
5179 aco_opcode op;
5180 switch (num_bytes) {
5181 case 4:
5182 op = global ? aco_opcode::global_store_dword : aco_opcode::flat_store_dword;
5183 break;
5184 case 8:
5185 op = global ? aco_opcode::global_store_dwordx2 : aco_opcode::flat_store_dwordx2;
5186 break;
5187 case 12:
5188 op = global ? aco_opcode::global_store_dwordx3 : aco_opcode::flat_store_dwordx3;
5189 break;
5190 case 16:
5191 op = global ? aco_opcode::global_store_dwordx4 : aco_opcode::flat_store_dwordx4;
5192 break;
5193 default:
5194 unreachable("store_global not implemented for this size.");
5195 }
5196
5197 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, 0)};
5198 flat->operands[0] = Operand(addr);
5199 flat->operands[1] = Operand(s1);
5200 flat->operands[2] = Operand(data);
5201 flat->glc = glc;
5202 flat->dlc = false;
5203 flat->offset = offset;
5204 flat->disable_wqm = true;
5205 flat->barrier = barrier_buffer;
5206 ctx->program->needs_exact = true;
5207 ctx->block->instructions.emplace_back(std::move(flat));
5208 } else {
5209 assert(ctx->options->chip_class == GFX6);
5210
5211 aco_opcode op;
5212 switch (num_bytes) {
5213 case 4:
5214 op = aco_opcode::buffer_store_dword;
5215 break;
5216 case 8:
5217 op = aco_opcode::buffer_store_dwordx2;
5218 break;
5219 case 16:
5220 op = aco_opcode::buffer_store_dwordx4;
5221 break;
5222 default:
5223 unreachable("store_global not implemented for this size.");
5224 }
5225
5226 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
5227
5228 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, 0)};
5229 mubuf->operands[0] = Operand(rsrc);
5230 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
5231 mubuf->operands[2] = Operand(0u);
5232 mubuf->operands[3] = Operand(write_data);
5233 mubuf->glc = glc;
5234 mubuf->dlc = false;
5235 mubuf->offset = offset;
5236 mubuf->addr64 = addr.type() == RegType::vgpr;
5237 mubuf->disable_wqm = true;
5238 mubuf->barrier = barrier_buffer;
5239 ctx->program->needs_exact = true;
5240 ctx->block->instructions.emplace_back(std::move(mubuf));
5241 }
5242 }
5243 }
5244
5245 void visit_global_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
5246 {
5247 /* return the previous value if dest is ever used */
5248 bool return_previous = false;
5249 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5250 return_previous = true;
5251 break;
5252 }
5253 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5254 return_previous = true;
5255 break;
5256 }
5257
5258 Builder bld(ctx->program, ctx->block);
5259 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
5260 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5261
5262 if (ctx->options->chip_class >= GFX7)
5263 addr = as_vgpr(ctx, addr);
5264
5265 if (instr->intrinsic == nir_intrinsic_global_atomic_comp_swap)
5266 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
5267 get_ssa_temp(ctx, instr->src[2].ssa), data);
5268
5269 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5270
5271 aco_opcode op32, op64;
5272
5273 if (ctx->options->chip_class >= GFX7) {
5274 bool global = ctx->options->chip_class >= GFX9;
5275 switch (instr->intrinsic) {
5276 case nir_intrinsic_global_atomic_add:
5277 op32 = global ? aco_opcode::global_atomic_add : aco_opcode::flat_atomic_add;
5278 op64 = global ? aco_opcode::global_atomic_add_x2 : aco_opcode::flat_atomic_add_x2;
5279 break;
5280 case nir_intrinsic_global_atomic_imin:
5281 op32 = global ? aco_opcode::global_atomic_smin : aco_opcode::flat_atomic_smin;
5282 op64 = global ? aco_opcode::global_atomic_smin_x2 : aco_opcode::flat_atomic_smin_x2;
5283 break;
5284 case nir_intrinsic_global_atomic_umin:
5285 op32 = global ? aco_opcode::global_atomic_umin : aco_opcode::flat_atomic_umin;
5286 op64 = global ? aco_opcode::global_atomic_umin_x2 : aco_opcode::flat_atomic_umin_x2;
5287 break;
5288 case nir_intrinsic_global_atomic_imax:
5289 op32 = global ? aco_opcode::global_atomic_smax : aco_opcode::flat_atomic_smax;
5290 op64 = global ? aco_opcode::global_atomic_smax_x2 : aco_opcode::flat_atomic_smax_x2;
5291 break;
5292 case nir_intrinsic_global_atomic_umax:
5293 op32 = global ? aco_opcode::global_atomic_umax : aco_opcode::flat_atomic_umax;
5294 op64 = global ? aco_opcode::global_atomic_umax_x2 : aco_opcode::flat_atomic_umax_x2;
5295 break;
5296 case nir_intrinsic_global_atomic_and:
5297 op32 = global ? aco_opcode::global_atomic_and : aco_opcode::flat_atomic_and;
5298 op64 = global ? aco_opcode::global_atomic_and_x2 : aco_opcode::flat_atomic_and_x2;
5299 break;
5300 case nir_intrinsic_global_atomic_or:
5301 op32 = global ? aco_opcode::global_atomic_or : aco_opcode::flat_atomic_or;
5302 op64 = global ? aco_opcode::global_atomic_or_x2 : aco_opcode::flat_atomic_or_x2;
5303 break;
5304 case nir_intrinsic_global_atomic_xor:
5305 op32 = global ? aco_opcode::global_atomic_xor : aco_opcode::flat_atomic_xor;
5306 op64 = global ? aco_opcode::global_atomic_xor_x2 : aco_opcode::flat_atomic_xor_x2;
5307 break;
5308 case nir_intrinsic_global_atomic_exchange:
5309 op32 = global ? aco_opcode::global_atomic_swap : aco_opcode::flat_atomic_swap;
5310 op64 = global ? aco_opcode::global_atomic_swap_x2 : aco_opcode::flat_atomic_swap_x2;
5311 break;
5312 case nir_intrinsic_global_atomic_comp_swap:
5313 op32 = global ? aco_opcode::global_atomic_cmpswap : aco_opcode::flat_atomic_cmpswap;
5314 op64 = global ? aco_opcode::global_atomic_cmpswap_x2 : aco_opcode::flat_atomic_cmpswap_x2;
5315 break;
5316 default:
5317 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
5318 }
5319
5320 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
5321 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, return_previous ? 1 : 0)};
5322 flat->operands[0] = Operand(addr);
5323 flat->operands[1] = Operand(s1);
5324 flat->operands[2] = Operand(data);
5325 if (return_previous)
5326 flat->definitions[0] = Definition(dst);
5327 flat->glc = return_previous;
5328 flat->dlc = false; /* Not needed for atomics */
5329 flat->offset = 0;
5330 flat->disable_wqm = true;
5331 flat->barrier = barrier_buffer;
5332 ctx->program->needs_exact = true;
5333 ctx->block->instructions.emplace_back(std::move(flat));
5334 } else {
5335 assert(ctx->options->chip_class == GFX6);
5336
5337 switch (instr->intrinsic) {
5338 case nir_intrinsic_global_atomic_add:
5339 op32 = aco_opcode::buffer_atomic_add;
5340 op64 = aco_opcode::buffer_atomic_add_x2;
5341 break;
5342 case nir_intrinsic_global_atomic_imin:
5343 op32 = aco_opcode::buffer_atomic_smin;
5344 op64 = aco_opcode::buffer_atomic_smin_x2;
5345 break;
5346 case nir_intrinsic_global_atomic_umin:
5347 op32 = aco_opcode::buffer_atomic_umin;
5348 op64 = aco_opcode::buffer_atomic_umin_x2;
5349 break;
5350 case nir_intrinsic_global_atomic_imax:
5351 op32 = aco_opcode::buffer_atomic_smax;
5352 op64 = aco_opcode::buffer_atomic_smax_x2;
5353 break;
5354 case nir_intrinsic_global_atomic_umax:
5355 op32 = aco_opcode::buffer_atomic_umax;
5356 op64 = aco_opcode::buffer_atomic_umax_x2;
5357 break;
5358 case nir_intrinsic_global_atomic_and:
5359 op32 = aco_opcode::buffer_atomic_and;
5360 op64 = aco_opcode::buffer_atomic_and_x2;
5361 break;
5362 case nir_intrinsic_global_atomic_or:
5363 op32 = aco_opcode::buffer_atomic_or;
5364 op64 = aco_opcode::buffer_atomic_or_x2;
5365 break;
5366 case nir_intrinsic_global_atomic_xor:
5367 op32 = aco_opcode::buffer_atomic_xor;
5368 op64 = aco_opcode::buffer_atomic_xor_x2;
5369 break;
5370 case nir_intrinsic_global_atomic_exchange:
5371 op32 = aco_opcode::buffer_atomic_swap;
5372 op64 = aco_opcode::buffer_atomic_swap_x2;
5373 break;
5374 case nir_intrinsic_global_atomic_comp_swap:
5375 op32 = aco_opcode::buffer_atomic_cmpswap;
5376 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
5377 break;
5378 default:
5379 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
5380 }
5381
5382 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
5383
5384 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
5385
5386 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
5387 mubuf->operands[0] = Operand(rsrc);
5388 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
5389 mubuf->operands[2] = Operand(0u);
5390 mubuf->operands[3] = Operand(data);
5391 if (return_previous)
5392 mubuf->definitions[0] = Definition(dst);
5393 mubuf->glc = return_previous;
5394 mubuf->dlc = false;
5395 mubuf->offset = 0;
5396 mubuf->addr64 = addr.type() == RegType::vgpr;
5397 mubuf->disable_wqm = true;
5398 mubuf->barrier = barrier_buffer;
5399 ctx->program->needs_exact = true;
5400 ctx->block->instructions.emplace_back(std::move(mubuf));
5401 }
5402 }
5403
5404 void emit_memory_barrier(isel_context *ctx, nir_intrinsic_instr *instr) {
5405 Builder bld(ctx->program, ctx->block);
5406 switch(instr->intrinsic) {
5407 case nir_intrinsic_group_memory_barrier:
5408 case nir_intrinsic_memory_barrier:
5409 bld.barrier(aco_opcode::p_memory_barrier_common);
5410 break;
5411 case nir_intrinsic_memory_barrier_buffer:
5412 bld.barrier(aco_opcode::p_memory_barrier_buffer);
5413 break;
5414 case nir_intrinsic_memory_barrier_image:
5415 bld.barrier(aco_opcode::p_memory_barrier_image);
5416 break;
5417 case nir_intrinsic_memory_barrier_tcs_patch:
5418 case nir_intrinsic_memory_barrier_shared:
5419 bld.barrier(aco_opcode::p_memory_barrier_shared);
5420 break;
5421 default:
5422 unreachable("Unimplemented memory barrier intrinsic");
5423 break;
5424 }
5425 }
5426
5427 void visit_load_shared(isel_context *ctx, nir_intrinsic_instr *instr)
5428 {
5429 // TODO: implement sparse reads using ds_read2_b32 and nir_ssa_def_components_read()
5430 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5431 assert(instr->dest.ssa.bit_size >= 32 && "Bitsize not supported in load_shared.");
5432 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5433 Builder bld(ctx->program, ctx->block);
5434
5435 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
5436 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
5437 load_lds(ctx, elem_size_bytes, dst, address, nir_intrinsic_base(instr), align);
5438 }
5439
5440 void visit_store_shared(isel_context *ctx, nir_intrinsic_instr *instr)
5441 {
5442 unsigned writemask = nir_intrinsic_write_mask(instr);
5443 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
5444 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5445 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
5446 assert(elem_size_bytes >= 4 && "Only 32bit & 64bit store_shared currently supported.");
5447
5448 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
5449 store_lds(ctx, elem_size_bytes, data, writemask, address, nir_intrinsic_base(instr), align);
5450 }
5451
5452 void visit_shared_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
5453 {
5454 unsigned offset = nir_intrinsic_base(instr);
5455 Operand m = load_lds_size_m0(ctx);
5456 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5457 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5458
5459 unsigned num_operands = 3;
5460 aco_opcode op32, op64, op32_rtn, op64_rtn;
5461 switch(instr->intrinsic) {
5462 case nir_intrinsic_shared_atomic_add:
5463 op32 = aco_opcode::ds_add_u32;
5464 op64 = aco_opcode::ds_add_u64;
5465 op32_rtn = aco_opcode::ds_add_rtn_u32;
5466 op64_rtn = aco_opcode::ds_add_rtn_u64;
5467 break;
5468 case nir_intrinsic_shared_atomic_imin:
5469 op32 = aco_opcode::ds_min_i32;
5470 op64 = aco_opcode::ds_min_i64;
5471 op32_rtn = aco_opcode::ds_min_rtn_i32;
5472 op64_rtn = aco_opcode::ds_min_rtn_i64;
5473 break;
5474 case nir_intrinsic_shared_atomic_umin:
5475 op32 = aco_opcode::ds_min_u32;
5476 op64 = aco_opcode::ds_min_u64;
5477 op32_rtn = aco_opcode::ds_min_rtn_u32;
5478 op64_rtn = aco_opcode::ds_min_rtn_u64;
5479 break;
5480 case nir_intrinsic_shared_atomic_imax:
5481 op32 = aco_opcode::ds_max_i32;
5482 op64 = aco_opcode::ds_max_i64;
5483 op32_rtn = aco_opcode::ds_max_rtn_i32;
5484 op64_rtn = aco_opcode::ds_max_rtn_i64;
5485 break;
5486 case nir_intrinsic_shared_atomic_umax:
5487 op32 = aco_opcode::ds_max_u32;
5488 op64 = aco_opcode::ds_max_u64;
5489 op32_rtn = aco_opcode::ds_max_rtn_u32;
5490 op64_rtn = aco_opcode::ds_max_rtn_u64;
5491 break;
5492 case nir_intrinsic_shared_atomic_and:
5493 op32 = aco_opcode::ds_and_b32;
5494 op64 = aco_opcode::ds_and_b64;
5495 op32_rtn = aco_opcode::ds_and_rtn_b32;
5496 op64_rtn = aco_opcode::ds_and_rtn_b64;
5497 break;
5498 case nir_intrinsic_shared_atomic_or:
5499 op32 = aco_opcode::ds_or_b32;
5500 op64 = aco_opcode::ds_or_b64;
5501 op32_rtn = aco_opcode::ds_or_rtn_b32;
5502 op64_rtn = aco_opcode::ds_or_rtn_b64;
5503 break;
5504 case nir_intrinsic_shared_atomic_xor:
5505 op32 = aco_opcode::ds_xor_b32;
5506 op64 = aco_opcode::ds_xor_b64;
5507 op32_rtn = aco_opcode::ds_xor_rtn_b32;
5508 op64_rtn = aco_opcode::ds_xor_rtn_b64;
5509 break;
5510 case nir_intrinsic_shared_atomic_exchange:
5511 op32 = aco_opcode::ds_write_b32;
5512 op64 = aco_opcode::ds_write_b64;
5513 op32_rtn = aco_opcode::ds_wrxchg_rtn_b32;
5514 op64_rtn = aco_opcode::ds_wrxchg2_rtn_b64;
5515 break;
5516 case nir_intrinsic_shared_atomic_comp_swap:
5517 op32 = aco_opcode::ds_cmpst_b32;
5518 op64 = aco_opcode::ds_cmpst_b64;
5519 op32_rtn = aco_opcode::ds_cmpst_rtn_b32;
5520 op64_rtn = aco_opcode::ds_cmpst_rtn_b64;
5521 num_operands = 4;
5522 break;
5523 default:
5524 unreachable("Unhandled shared atomic intrinsic");
5525 }
5526
5527 /* return the previous value if dest is ever used */
5528 bool return_previous = false;
5529 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5530 return_previous = true;
5531 break;
5532 }
5533 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5534 return_previous = true;
5535 break;
5536 }
5537
5538 aco_opcode op;
5539 if (data.size() == 1) {
5540 assert(instr->dest.ssa.bit_size == 32);
5541 op = return_previous ? op32_rtn : op32;
5542 } else {
5543 assert(instr->dest.ssa.bit_size == 64);
5544 op = return_previous ? op64_rtn : op64;
5545 }
5546
5547 if (offset > 65535) {
5548 Builder bld(ctx->program, ctx->block);
5549 address = bld.vadd32(bld.def(v1), Operand(offset), address);
5550 offset = 0;
5551 }
5552
5553 aco_ptr<DS_instruction> ds;
5554 ds.reset(create_instruction<DS_instruction>(op, Format::DS, num_operands, return_previous ? 1 : 0));
5555 ds->operands[0] = Operand(address);
5556 ds->operands[1] = Operand(data);
5557 if (num_operands == 4)
5558 ds->operands[2] = Operand(get_ssa_temp(ctx, instr->src[2].ssa));
5559 ds->operands[num_operands - 1] = m;
5560 ds->offset0 = offset;
5561 if (return_previous)
5562 ds->definitions[0] = Definition(get_ssa_temp(ctx, &instr->dest.ssa));
5563 ctx->block->instructions.emplace_back(std::move(ds));
5564 }
5565
5566 Temp get_scratch_resource(isel_context *ctx)
5567 {
5568 Builder bld(ctx->program, ctx->block);
5569 Temp scratch_addr = ctx->program->private_segment_buffer;
5570 if (ctx->stage != compute_cs)
5571 scratch_addr = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), scratch_addr, Operand(0u));
5572
5573 uint32_t rsrc_conf = S_008F0C_ADD_TID_ENABLE(1) |
5574 S_008F0C_INDEX_STRIDE(ctx->program->wave_size == 64 ? 3 : 2);;
5575
5576 if (ctx->program->chip_class >= GFX10) {
5577 rsrc_conf |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
5578 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
5579 S_008F0C_RESOURCE_LEVEL(1);
5580 } else if (ctx->program->chip_class <= GFX7) { /* dfmt modifies stride on GFX8/GFX9 when ADD_TID_EN=1 */
5581 rsrc_conf |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5582 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
5583 }
5584
5585 /* older generations need element size = 16 bytes. element size removed in GFX9 */
5586 if (ctx->program->chip_class <= GFX8)
5587 rsrc_conf |= S_008F0C_ELEMENT_SIZE(3);
5588
5589 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), scratch_addr, Operand(-1u), Operand(rsrc_conf));
5590 }
5591
5592 void visit_load_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
5593 assert(instr->dest.ssa.bit_size == 32 || instr->dest.ssa.bit_size == 64);
5594 Builder bld(ctx->program, ctx->block);
5595 Temp rsrc = get_scratch_resource(ctx);
5596 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5597 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5598
5599 aco_opcode op;
5600 switch (dst.size()) {
5601 case 1:
5602 op = aco_opcode::buffer_load_dword;
5603 break;
5604 case 2:
5605 op = aco_opcode::buffer_load_dwordx2;
5606 break;
5607 case 3:
5608 op = aco_opcode::buffer_load_dwordx3;
5609 break;
5610 case 4:
5611 op = aco_opcode::buffer_load_dwordx4;
5612 break;
5613 case 6:
5614 case 8: {
5615 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
5616 Temp lower = bld.mubuf(aco_opcode::buffer_load_dwordx4,
5617 bld.def(v4), rsrc, offset,
5618 ctx->program->scratch_offset, 0, true);
5619 Temp upper = bld.mubuf(dst.size() == 6 ? aco_opcode::buffer_load_dwordx2 :
5620 aco_opcode::buffer_load_dwordx4,
5621 dst.size() == 6 ? bld.def(v2) : bld.def(v4),
5622 rsrc, offset, ctx->program->scratch_offset, 16, true);
5623 emit_split_vector(ctx, lower, 2);
5624 elems[0] = emit_extract_vector(ctx, lower, 0, v2);
5625 elems[1] = emit_extract_vector(ctx, lower, 1, v2);
5626 if (dst.size() == 8) {
5627 emit_split_vector(ctx, upper, 2);
5628 elems[2] = emit_extract_vector(ctx, upper, 0, v2);
5629 elems[3] = emit_extract_vector(ctx, upper, 1, v2);
5630 } else {
5631 elems[2] = upper;
5632 }
5633
5634 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
5635 Format::PSEUDO, dst.size() / 2, 1)};
5636 for (unsigned i = 0; i < dst.size() / 2; i++)
5637 vec->operands[i] = Operand(elems[i]);
5638 vec->definitions[0] = Definition(dst);
5639 bld.insert(std::move(vec));
5640 ctx->allocated_vec.emplace(dst.id(), elems);
5641 return;
5642 }
5643 default:
5644 unreachable("Wrong dst size for nir_intrinsic_load_scratch");
5645 }
5646
5647 bld.mubuf(op, Definition(dst), rsrc, offset, ctx->program->scratch_offset, 0, true);
5648 emit_split_vector(ctx, dst, instr->num_components);
5649 }
5650
5651 void visit_store_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
5652 assert(instr->src[0].ssa->bit_size == 32 || instr->src[0].ssa->bit_size == 64);
5653 Builder bld(ctx->program, ctx->block);
5654 Temp rsrc = get_scratch_resource(ctx);
5655 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5656 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5657
5658 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
5659 unsigned writemask = nir_intrinsic_write_mask(instr);
5660
5661 while (writemask) {
5662 int start, count;
5663 u_bit_scan_consecutive_range(&writemask, &start, &count);
5664 int num_bytes = count * elem_size_bytes;
5665
5666 if (num_bytes > 16) {
5667 assert(elem_size_bytes == 8);
5668 writemask |= (((count - 2) << 1) - 1) << (start + 2);
5669 count = 2;
5670 num_bytes = 16;
5671 }
5672
5673 // TODO: check alignment of sub-dword stores
5674 // TODO: split 3 bytes. there is no store instruction for that
5675
5676 Temp write_data;
5677 if (count != instr->num_components) {
5678 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
5679 for (int i = 0; i < count; i++) {
5680 Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(RegType::vgpr, elem_size_bytes / 4));
5681 vec->operands[i] = Operand(elem);
5682 }
5683 write_data = bld.tmp(RegClass(RegType::vgpr, count * elem_size_bytes / 4));
5684 vec->definitions[0] = Definition(write_data);
5685 ctx->block->instructions.emplace_back(std::move(vec));
5686 } else {
5687 write_data = data;
5688 }
5689
5690 aco_opcode op;
5691 switch (num_bytes) {
5692 case 4:
5693 op = aco_opcode::buffer_store_dword;
5694 break;
5695 case 8:
5696 op = aco_opcode::buffer_store_dwordx2;
5697 break;
5698 case 12:
5699 op = aco_opcode::buffer_store_dwordx3;
5700 break;
5701 case 16:
5702 op = aco_opcode::buffer_store_dwordx4;
5703 break;
5704 default:
5705 unreachable("Invalid data size for nir_intrinsic_store_scratch.");
5706 }
5707
5708 bld.mubuf(op, rsrc, offset, ctx->program->scratch_offset, write_data, start * elem_size_bytes, true);
5709 }
5710 }
5711
5712 void visit_load_sample_mask_in(isel_context *ctx, nir_intrinsic_instr *instr) {
5713 uint8_t log2_ps_iter_samples;
5714 if (ctx->program->info->ps.force_persample) {
5715 log2_ps_iter_samples =
5716 util_logbase2(ctx->options->key.fs.num_samples);
5717 } else {
5718 log2_ps_iter_samples = ctx->options->key.fs.log2_ps_iter_samples;
5719 }
5720
5721 /* The bit pattern matches that used by fixed function fragment
5722 * processing. */
5723 static const unsigned ps_iter_masks[] = {
5724 0xffff, /* not used */
5725 0x5555,
5726 0x1111,
5727 0x0101,
5728 0x0001,
5729 };
5730 assert(log2_ps_iter_samples < ARRAY_SIZE(ps_iter_masks));
5731
5732 Builder bld(ctx->program, ctx->block);
5733
5734 Temp sample_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
5735 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
5736 Temp ps_iter_mask = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(ps_iter_masks[log2_ps_iter_samples]));
5737 Temp mask = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), sample_id, ps_iter_mask);
5738 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5739 bld.vop2(aco_opcode::v_and_b32, Definition(dst), mask, get_arg(ctx, ctx->args->ac.sample_coverage));
5740 }
5741
5742 void visit_emit_vertex_with_counter(isel_context *ctx, nir_intrinsic_instr *instr) {
5743 Builder bld(ctx->program, ctx->block);
5744
5745 unsigned stream = nir_intrinsic_stream_id(instr);
5746 Temp next_vertex = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5747 next_vertex = bld.v_mul_imm(bld.def(v1), next_vertex, 4u);
5748 nir_const_value *next_vertex_cv = nir_src_as_const_value(instr->src[0]);
5749
5750 /* get GSVS ring */
5751 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_GSVS_GS * 16u));
5752
5753 unsigned num_components =
5754 ctx->program->info->gs.num_stream_output_components[stream];
5755 assert(num_components);
5756
5757 unsigned stride = 4u * num_components * ctx->shader->info.gs.vertices_out;
5758 unsigned stream_offset = 0;
5759 for (unsigned i = 0; i < stream; i++) {
5760 unsigned prev_stride = 4u * ctx->program->info->gs.num_stream_output_components[i] * ctx->shader->info.gs.vertices_out;
5761 stream_offset += prev_stride * ctx->program->wave_size;
5762 }
5763
5764 /* Limit on the stride field for <= GFX7. */
5765 assert(stride < (1 << 14));
5766
5767 Temp gsvs_dwords[4];
5768 for (unsigned i = 0; i < 4; i++)
5769 gsvs_dwords[i] = bld.tmp(s1);
5770 bld.pseudo(aco_opcode::p_split_vector,
5771 Definition(gsvs_dwords[0]),
5772 Definition(gsvs_dwords[1]),
5773 Definition(gsvs_dwords[2]),
5774 Definition(gsvs_dwords[3]),
5775 gsvs_ring);
5776
5777 if (stream_offset) {
5778 Temp stream_offset_tmp = bld.copy(bld.def(s1), Operand(stream_offset));
5779
5780 Temp carry = bld.tmp(s1);
5781 gsvs_dwords[0] = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), gsvs_dwords[0], stream_offset_tmp);
5782 gsvs_dwords[1] = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(0u), bld.scc(carry));
5783 }
5784
5785 gsvs_dwords[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(S_008F04_STRIDE(stride)));
5786 gsvs_dwords[2] = bld.copy(bld.def(s1), Operand((uint32_t)ctx->program->wave_size));
5787
5788 gsvs_ring = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
5789 gsvs_dwords[0], gsvs_dwords[1], gsvs_dwords[2], gsvs_dwords[3]);
5790
5791 unsigned offset = 0;
5792 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; i++) {
5793 if (ctx->program->info->gs.output_streams[i] != stream)
5794 continue;
5795
5796 for (unsigned j = 0; j < 4; j++) {
5797 if (!(ctx->program->info->gs.output_usage_mask[i] & (1 << j)))
5798 continue;
5799
5800 if (ctx->outputs.mask[i] & (1 << j)) {
5801 Operand vaddr_offset = next_vertex_cv ? Operand(v1) : Operand(next_vertex);
5802 unsigned const_offset = (offset + (next_vertex_cv ? next_vertex_cv->u32 : 0u)) * 4u;
5803 if (const_offset >= 4096u) {
5804 if (vaddr_offset.isUndefined())
5805 vaddr_offset = bld.copy(bld.def(v1), Operand(const_offset / 4096u * 4096u));
5806 else
5807 vaddr_offset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), vaddr_offset);
5808 const_offset %= 4096u;
5809 }
5810
5811 aco_ptr<MTBUF_instruction> mtbuf{create_instruction<MTBUF_instruction>(aco_opcode::tbuffer_store_format_x, Format::MTBUF, 4, 0)};
5812 mtbuf->operands[0] = Operand(gsvs_ring);
5813 mtbuf->operands[1] = vaddr_offset;
5814 mtbuf->operands[2] = Operand(get_arg(ctx, ctx->args->gs2vs_offset));
5815 mtbuf->operands[3] = Operand(ctx->outputs.outputs[i][j]);
5816 mtbuf->offen = !vaddr_offset.isUndefined();
5817 mtbuf->dfmt = V_008F0C_BUF_DATA_FORMAT_32;
5818 mtbuf->nfmt = V_008F0C_BUF_NUM_FORMAT_UINT;
5819 mtbuf->offset = const_offset;
5820 mtbuf->glc = true;
5821 mtbuf->slc = true;
5822 mtbuf->barrier = barrier_gs_data;
5823 mtbuf->can_reorder = true;
5824 bld.insert(std::move(mtbuf));
5825 }
5826
5827 offset += ctx->shader->info.gs.vertices_out;
5828 }
5829
5830 /* outputs for the next vertex are undefined and keeping them around can
5831 * create invalid IR with control flow */
5832 ctx->outputs.mask[i] = 0;
5833 }
5834
5835 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(false, true, stream));
5836 }
5837
5838 Temp emit_boolean_reduce(isel_context *ctx, nir_op op, unsigned cluster_size, Temp src)
5839 {
5840 Builder bld(ctx->program, ctx->block);
5841
5842 if (cluster_size == 1) {
5843 return src;
5844 } if (op == nir_op_iand && cluster_size == 4) {
5845 //subgroupClusteredAnd(val, 4) -> ~wqm(exec & ~val)
5846 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
5847 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc),
5848 bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc), tmp));
5849 } else if (op == nir_op_ior && cluster_size == 4) {
5850 //subgroupClusteredOr(val, 4) -> wqm(val & exec)
5851 return bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc),
5852 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)));
5853 } else if (op == nir_op_iand && cluster_size == ctx->program->wave_size) {
5854 //subgroupAnd(val) -> (exec & ~val) == 0
5855 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
5856 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
5857 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), cond);
5858 } else if (op == nir_op_ior && cluster_size == ctx->program->wave_size) {
5859 //subgroupOr(val) -> (val & exec) != 0
5860 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)).def(1).getTemp();
5861 return bool_to_vector_condition(ctx, tmp);
5862 } else if (op == nir_op_ixor && cluster_size == ctx->program->wave_size) {
5863 //subgroupXor(val) -> s_bcnt1_i32_b64(val & exec) & 1
5864 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
5865 tmp = bld.sop1(Builder::s_bcnt1_i32, bld.def(s1), bld.def(s1, scc), tmp);
5866 tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), tmp, Operand(1u)).def(1).getTemp();
5867 return bool_to_vector_condition(ctx, tmp);
5868 } else {
5869 //subgroupClustered{And,Or,Xor}(val, n) ->
5870 //lane_id = v_mbcnt_hi_u32_b32(-1, v_mbcnt_lo_u32_b32(-1, 0)) ; just v_mbcnt_lo_u32_b32 on wave32
5871 //cluster_offset = ~(n - 1) & lane_id
5872 //cluster_mask = ((1 << n) - 1)
5873 //subgroupClusteredAnd():
5874 // return ((val | ~exec) >> cluster_offset) & cluster_mask == cluster_mask
5875 //subgroupClusteredOr():
5876 // return ((val & exec) >> cluster_offset) & cluster_mask != 0
5877 //subgroupClusteredXor():
5878 // return v_bnt_u32_b32(((val & exec) >> cluster_offset) & cluster_mask, 0) & 1 != 0
5879 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
5880 Temp cluster_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(~uint32_t(cluster_size - 1)), lane_id);
5881
5882 Temp tmp;
5883 if (op == nir_op_iand)
5884 tmp = bld.sop2(Builder::s_orn2, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
5885 else
5886 tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
5887
5888 uint32_t cluster_mask = cluster_size == 32 ? -1 : (1u << cluster_size) - 1u;
5889
5890 if (ctx->program->chip_class <= GFX7)
5891 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), tmp, cluster_offset);
5892 else if (ctx->program->wave_size == 64)
5893 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), cluster_offset, tmp);
5894 else
5895 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), cluster_offset, tmp);
5896 tmp = emit_extract_vector(ctx, tmp, 0, v1);
5897 if (cluster_mask != 0xffffffff)
5898 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(cluster_mask), tmp);
5899
5900 Definition cmp_def = Definition();
5901 if (op == nir_op_iand) {
5902 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(cluster_mask), tmp).def(0);
5903 } else if (op == nir_op_ior) {
5904 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
5905 } else if (op == nir_op_ixor) {
5906 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u),
5907 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1), tmp, Operand(0u)));
5908 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
5909 }
5910 cmp_def.setHint(vcc);
5911 return cmp_def.getTemp();
5912 }
5913 }
5914
5915 Temp emit_boolean_exclusive_scan(isel_context *ctx, nir_op op, Temp src)
5916 {
5917 Builder bld(ctx->program, ctx->block);
5918
5919 //subgroupExclusiveAnd(val) -> mbcnt(exec & ~val) == 0
5920 //subgroupExclusiveOr(val) -> mbcnt(val & exec) != 0
5921 //subgroupExclusiveXor(val) -> mbcnt(val & exec) & 1 != 0
5922 Temp tmp;
5923 if (op == nir_op_iand)
5924 tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
5925 else
5926 tmp = bld.sop2(Builder::s_and, bld.def(s2), bld.def(s1, scc), src, Operand(exec, bld.lm));
5927
5928 Builder::Result lohi = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), bld.def(s1), tmp);
5929 Temp lo = lohi.def(0).getTemp();
5930 Temp hi = lohi.def(1).getTemp();
5931 Temp mbcnt = emit_mbcnt(ctx, bld.def(v1), Operand(lo), Operand(hi));
5932
5933 Definition cmp_def = Definition();
5934 if (op == nir_op_iand)
5935 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
5936 else if (op == nir_op_ior)
5937 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
5938 else if (op == nir_op_ixor)
5939 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u),
5940 bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), mbcnt)).def(0);
5941 cmp_def.setHint(vcc);
5942 return cmp_def.getTemp();
5943 }
5944
5945 Temp emit_boolean_inclusive_scan(isel_context *ctx, nir_op op, Temp src)
5946 {
5947 Builder bld(ctx->program, ctx->block);
5948
5949 //subgroupInclusiveAnd(val) -> subgroupExclusiveAnd(val) && val
5950 //subgroupInclusiveOr(val) -> subgroupExclusiveOr(val) || val
5951 //subgroupInclusiveXor(val) -> subgroupExclusiveXor(val) ^^ val
5952 Temp tmp = emit_boolean_exclusive_scan(ctx, op, src);
5953 if (op == nir_op_iand)
5954 return bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
5955 else if (op == nir_op_ior)
5956 return bld.sop2(Builder::s_or, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
5957 else if (op == nir_op_ixor)
5958 return bld.sop2(Builder::s_xor, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
5959
5960 assert(false);
5961 return Temp();
5962 }
5963
5964 void emit_uniform_subgroup(isel_context *ctx, nir_intrinsic_instr *instr, Temp src)
5965 {
5966 Builder bld(ctx->program, ctx->block);
5967 Definition dst(get_ssa_temp(ctx, &instr->dest.ssa));
5968 if (src.regClass().type() == RegType::vgpr) {
5969 bld.pseudo(aco_opcode::p_as_uniform, dst, src);
5970 } else if (src.regClass() == s1) {
5971 bld.sop1(aco_opcode::s_mov_b32, dst, src);
5972 } else if (src.regClass() == s2) {
5973 bld.sop1(aco_opcode::s_mov_b64, dst, src);
5974 } else {
5975 fprintf(stderr, "Unimplemented NIR instr bit size: ");
5976 nir_print_instr(&instr->instr, stderr);
5977 fprintf(stderr, "\n");
5978 }
5979 }
5980
5981 void emit_interp_center(isel_context *ctx, Temp dst, Temp pos1, Temp pos2)
5982 {
5983 Builder bld(ctx->program, ctx->block);
5984 Temp persp_center = get_arg(ctx, ctx->args->ac.persp_center);
5985 Temp p1 = emit_extract_vector(ctx, persp_center, 0, v1);
5986 Temp p2 = emit_extract_vector(ctx, persp_center, 1, v1);
5987
5988 Temp ddx_1, ddx_2, ddy_1, ddy_2;
5989 uint32_t dpp_ctrl0 = dpp_quad_perm(0, 0, 0, 0);
5990 uint32_t dpp_ctrl1 = dpp_quad_perm(1, 1, 1, 1);
5991 uint32_t dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
5992
5993 /* Build DD X/Y */
5994 if (ctx->program->chip_class >= GFX8) {
5995 Temp tl_1 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p1, dpp_ctrl0);
5996 ddx_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl1);
5997 ddy_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl2);
5998 Temp tl_2 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p2, dpp_ctrl0);
5999 ddx_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl1);
6000 ddy_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl2);
6001 } else {
6002 Temp tl_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl0);
6003 ddx_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl1);
6004 ddx_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_1, tl_1);
6005 ddx_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl2);
6006 ddx_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_2, tl_1);
6007 Temp tl_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl0);
6008 ddy_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl1);
6009 ddy_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_1, tl_2);
6010 ddy_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl2);
6011 ddy_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_2, tl_2);
6012 }
6013
6014 /* res_k = p_k + ddx_k * pos1 + ddy_k * pos2 */
6015 Temp tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_1, pos1, p1);
6016 Temp tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_2, pos1, p2);
6017 tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_1, pos2, tmp1);
6018 tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_2, pos2, tmp2);
6019 Temp wqm1 = bld.tmp(v1);
6020 emit_wqm(ctx, tmp1, wqm1, true);
6021 Temp wqm2 = bld.tmp(v1);
6022 emit_wqm(ctx, tmp2, wqm2, true);
6023 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), wqm1, wqm2);
6024 return;
6025 }
6026
6027 void visit_intrinsic(isel_context *ctx, nir_intrinsic_instr *instr)
6028 {
6029 Builder bld(ctx->program, ctx->block);
6030 switch(instr->intrinsic) {
6031 case nir_intrinsic_load_barycentric_sample:
6032 case nir_intrinsic_load_barycentric_pixel:
6033 case nir_intrinsic_load_barycentric_centroid: {
6034 glsl_interp_mode mode = (glsl_interp_mode)nir_intrinsic_interp_mode(instr);
6035 Temp bary = Temp(0, s2);
6036 switch (mode) {
6037 case INTERP_MODE_SMOOTH:
6038 case INTERP_MODE_NONE:
6039 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
6040 bary = get_arg(ctx, ctx->args->ac.persp_center);
6041 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
6042 bary = ctx->persp_centroid;
6043 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
6044 bary = get_arg(ctx, ctx->args->ac.persp_sample);
6045 break;
6046 case INTERP_MODE_NOPERSPECTIVE:
6047 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
6048 bary = get_arg(ctx, ctx->args->ac.linear_center);
6049 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
6050 bary = ctx->linear_centroid;
6051 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
6052 bary = get_arg(ctx, ctx->args->ac.linear_sample);
6053 break;
6054 default:
6055 break;
6056 }
6057 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6058 Temp p1 = emit_extract_vector(ctx, bary, 0, v1);
6059 Temp p2 = emit_extract_vector(ctx, bary, 1, v1);
6060 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6061 Operand(p1), Operand(p2));
6062 emit_split_vector(ctx, dst, 2);
6063 break;
6064 }
6065 case nir_intrinsic_load_barycentric_model: {
6066 Temp model = get_arg(ctx, ctx->args->ac.pull_model);
6067
6068 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6069 Temp p1 = emit_extract_vector(ctx, model, 0, v1);
6070 Temp p2 = emit_extract_vector(ctx, model, 1, v1);
6071 Temp p3 = emit_extract_vector(ctx, model, 2, v1);
6072 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6073 Operand(p1), Operand(p2), Operand(p3));
6074 emit_split_vector(ctx, dst, 3);
6075 break;
6076 }
6077 case nir_intrinsic_load_barycentric_at_sample: {
6078 uint32_t sample_pos_offset = RING_PS_SAMPLE_POSITIONS * 16;
6079 switch (ctx->options->key.fs.num_samples) {
6080 case 2: sample_pos_offset += 1 << 3; break;
6081 case 4: sample_pos_offset += 3 << 3; break;
6082 case 8: sample_pos_offset += 7 << 3; break;
6083 default: break;
6084 }
6085 Temp sample_pos;
6086 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
6087 nir_const_value* const_addr = nir_src_as_const_value(instr->src[0]);
6088 Temp private_segment_buffer = ctx->program->private_segment_buffer;
6089 if (addr.type() == RegType::sgpr) {
6090 Operand offset;
6091 if (const_addr) {
6092 sample_pos_offset += const_addr->u32 << 3;
6093 offset = Operand(sample_pos_offset);
6094 } else if (ctx->options->chip_class >= GFX9) {
6095 offset = bld.sop2(aco_opcode::s_lshl3_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
6096 } else {
6097 offset = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), addr, Operand(3u));
6098 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
6099 }
6100
6101 Operand off = bld.copy(bld.def(s1), Operand(offset));
6102 sample_pos = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), private_segment_buffer, off);
6103
6104 } else if (ctx->options->chip_class >= GFX9) {
6105 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
6106 sample_pos = bld.global(aco_opcode::global_load_dwordx2, bld.def(v2), addr, private_segment_buffer, sample_pos_offset);
6107 } else if (ctx->options->chip_class >= GFX7) {
6108 /* addr += private_segment_buffer + sample_pos_offset */
6109 Temp tmp0 = bld.tmp(s1);
6110 Temp tmp1 = bld.tmp(s1);
6111 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp0), Definition(tmp1), private_segment_buffer);
6112 Definition scc_tmp = bld.def(s1, scc);
6113 tmp0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), scc_tmp, tmp0, Operand(sample_pos_offset));
6114 tmp1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), tmp1, Operand(0u), bld.scc(scc_tmp.getTemp()));
6115 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
6116 Temp pck0 = bld.tmp(v1);
6117 Temp carry = bld.vadd32(Definition(pck0), tmp0, addr, true).def(1).getTemp();
6118 tmp1 = as_vgpr(ctx, tmp1);
6119 Temp pck1 = bld.vop2_e64(aco_opcode::v_addc_co_u32, bld.def(v1), bld.hint_vcc(bld.def(bld.lm)), tmp1, Operand(0u), carry);
6120 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), pck0, pck1);
6121
6122 /* sample_pos = flat_load_dwordx2 addr */
6123 sample_pos = bld.flat(aco_opcode::flat_load_dwordx2, bld.def(v2), addr, Operand(s1));
6124 } else {
6125 assert(ctx->options->chip_class == GFX6);
6126
6127 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
6128 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
6129 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), private_segment_buffer, Operand(0u), Operand(rsrc_conf));
6130
6131 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
6132 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), addr, Operand(0u));
6133
6134 sample_pos = bld.tmp(v2);
6135
6136 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dwordx2, Format::MUBUF, 3, 1)};
6137 load->definitions[0] = Definition(sample_pos);
6138 load->operands[0] = Operand(rsrc);
6139 load->operands[1] = Operand(addr);
6140 load->operands[2] = Operand(0u);
6141 load->offset = sample_pos_offset;
6142 load->offen = 0;
6143 load->addr64 = true;
6144 load->glc = false;
6145 load->dlc = false;
6146 load->disable_wqm = false;
6147 load->barrier = barrier_none;
6148 load->can_reorder = true;
6149 ctx->block->instructions.emplace_back(std::move(load));
6150 }
6151
6152 /* sample_pos -= 0.5 */
6153 Temp pos1 = bld.tmp(RegClass(sample_pos.type(), 1));
6154 Temp pos2 = bld.tmp(RegClass(sample_pos.type(), 1));
6155 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), sample_pos);
6156 pos1 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos1, Operand(0x3f000000u));
6157 pos2 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos2, Operand(0x3f000000u));
6158
6159 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
6160 break;
6161 }
6162 case nir_intrinsic_load_barycentric_at_offset: {
6163 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
6164 RegClass rc = RegClass(offset.type(), 1);
6165 Temp pos1 = bld.tmp(rc), pos2 = bld.tmp(rc);
6166 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), offset);
6167 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
6168 break;
6169 }
6170 case nir_intrinsic_load_front_face: {
6171 bld.vopc(aco_opcode::v_cmp_lg_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6172 Operand(0u), get_arg(ctx, ctx->args->ac.front_face)).def(0).setHint(vcc);
6173 break;
6174 }
6175 case nir_intrinsic_load_view_index: {
6176 if (ctx->stage & (sw_vs | sw_gs | sw_tcs | sw_tes)) {
6177 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6178 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.view_index)));
6179 break;
6180 }
6181
6182 /* fallthrough */
6183 }
6184 case nir_intrinsic_load_layer_id: {
6185 unsigned idx = nir_intrinsic_base(instr);
6186 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6187 Operand(2u), bld.m0(get_arg(ctx, ctx->args->ac.prim_mask)), idx, 0);
6188 break;
6189 }
6190 case nir_intrinsic_load_frag_coord: {
6191 emit_load_frag_coord(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 4);
6192 break;
6193 }
6194 case nir_intrinsic_load_sample_pos: {
6195 Temp posx = get_arg(ctx, ctx->args->ac.frag_pos[0]);
6196 Temp posy = get_arg(ctx, ctx->args->ac.frag_pos[1]);
6197 bld.pseudo(aco_opcode::p_create_vector, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6198 posx.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posx) : Operand(0u),
6199 posy.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posy) : Operand(0u));
6200 break;
6201 }
6202 case nir_intrinsic_load_tess_coord:
6203 visit_load_tess_coord(ctx, instr);
6204 break;
6205 case nir_intrinsic_load_interpolated_input:
6206 visit_load_interpolated_input(ctx, instr);
6207 break;
6208 case nir_intrinsic_store_output:
6209 visit_store_output(ctx, instr);
6210 break;
6211 case nir_intrinsic_load_input:
6212 case nir_intrinsic_load_input_vertex:
6213 visit_load_input(ctx, instr);
6214 break;
6215 case nir_intrinsic_load_per_vertex_input:
6216 visit_load_per_vertex_input(ctx, instr);
6217 break;
6218 case nir_intrinsic_load_ubo:
6219 visit_load_ubo(ctx, instr);
6220 break;
6221 case nir_intrinsic_load_push_constant:
6222 visit_load_push_constant(ctx, instr);
6223 break;
6224 case nir_intrinsic_load_constant:
6225 visit_load_constant(ctx, instr);
6226 break;
6227 case nir_intrinsic_vulkan_resource_index:
6228 visit_load_resource(ctx, instr);
6229 break;
6230 case nir_intrinsic_discard:
6231 visit_discard(ctx, instr);
6232 break;
6233 case nir_intrinsic_discard_if:
6234 visit_discard_if(ctx, instr);
6235 break;
6236 case nir_intrinsic_load_shared:
6237 visit_load_shared(ctx, instr);
6238 break;
6239 case nir_intrinsic_store_shared:
6240 visit_store_shared(ctx, instr);
6241 break;
6242 case nir_intrinsic_shared_atomic_add:
6243 case nir_intrinsic_shared_atomic_imin:
6244 case nir_intrinsic_shared_atomic_umin:
6245 case nir_intrinsic_shared_atomic_imax:
6246 case nir_intrinsic_shared_atomic_umax:
6247 case nir_intrinsic_shared_atomic_and:
6248 case nir_intrinsic_shared_atomic_or:
6249 case nir_intrinsic_shared_atomic_xor:
6250 case nir_intrinsic_shared_atomic_exchange:
6251 case nir_intrinsic_shared_atomic_comp_swap:
6252 visit_shared_atomic(ctx, instr);
6253 break;
6254 case nir_intrinsic_image_deref_load:
6255 visit_image_load(ctx, instr);
6256 break;
6257 case nir_intrinsic_image_deref_store:
6258 visit_image_store(ctx, instr);
6259 break;
6260 case nir_intrinsic_image_deref_atomic_add:
6261 case nir_intrinsic_image_deref_atomic_umin:
6262 case nir_intrinsic_image_deref_atomic_imin:
6263 case nir_intrinsic_image_deref_atomic_umax:
6264 case nir_intrinsic_image_deref_atomic_imax:
6265 case nir_intrinsic_image_deref_atomic_and:
6266 case nir_intrinsic_image_deref_atomic_or:
6267 case nir_intrinsic_image_deref_atomic_xor:
6268 case nir_intrinsic_image_deref_atomic_exchange:
6269 case nir_intrinsic_image_deref_atomic_comp_swap:
6270 visit_image_atomic(ctx, instr);
6271 break;
6272 case nir_intrinsic_image_deref_size:
6273 visit_image_size(ctx, instr);
6274 break;
6275 case nir_intrinsic_load_ssbo:
6276 visit_load_ssbo(ctx, instr);
6277 break;
6278 case nir_intrinsic_store_ssbo:
6279 visit_store_ssbo(ctx, instr);
6280 break;
6281 case nir_intrinsic_load_global:
6282 visit_load_global(ctx, instr);
6283 break;
6284 case nir_intrinsic_store_global:
6285 visit_store_global(ctx, instr);
6286 break;
6287 case nir_intrinsic_global_atomic_add:
6288 case nir_intrinsic_global_atomic_imin:
6289 case nir_intrinsic_global_atomic_umin:
6290 case nir_intrinsic_global_atomic_imax:
6291 case nir_intrinsic_global_atomic_umax:
6292 case nir_intrinsic_global_atomic_and:
6293 case nir_intrinsic_global_atomic_or:
6294 case nir_intrinsic_global_atomic_xor:
6295 case nir_intrinsic_global_atomic_exchange:
6296 case nir_intrinsic_global_atomic_comp_swap:
6297 visit_global_atomic(ctx, instr);
6298 break;
6299 case nir_intrinsic_ssbo_atomic_add:
6300 case nir_intrinsic_ssbo_atomic_imin:
6301 case nir_intrinsic_ssbo_atomic_umin:
6302 case nir_intrinsic_ssbo_atomic_imax:
6303 case nir_intrinsic_ssbo_atomic_umax:
6304 case nir_intrinsic_ssbo_atomic_and:
6305 case nir_intrinsic_ssbo_atomic_or:
6306 case nir_intrinsic_ssbo_atomic_xor:
6307 case nir_intrinsic_ssbo_atomic_exchange:
6308 case nir_intrinsic_ssbo_atomic_comp_swap:
6309 visit_atomic_ssbo(ctx, instr);
6310 break;
6311 case nir_intrinsic_load_scratch:
6312 visit_load_scratch(ctx, instr);
6313 break;
6314 case nir_intrinsic_store_scratch:
6315 visit_store_scratch(ctx, instr);
6316 break;
6317 case nir_intrinsic_get_buffer_size:
6318 visit_get_buffer_size(ctx, instr);
6319 break;
6320 case nir_intrinsic_control_barrier: {
6321 if (ctx->program->chip_class == GFX6 && ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
6322 /* GFX6 only (thanks to a hw bug workaround):
6323 * The real barrier instruction isn’t needed, because an entire patch
6324 * always fits into a single wave.
6325 */
6326 break;
6327 }
6328
6329 if (ctx->shader->info.stage == MESA_SHADER_COMPUTE) {
6330 unsigned* bsize = ctx->program->info->cs.block_size;
6331 unsigned workgroup_size = bsize[0] * bsize[1] * bsize[2];
6332 if (workgroup_size > ctx->program->wave_size)
6333 bld.sopp(aco_opcode::s_barrier);
6334 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
6335 /* For each patch provided during rendering, n​ TCS shader invocations will be processed,
6336 * where n​ is the number of vertices in the output patch.
6337 */
6338 unsigned workgroup_size = ctx->tcs_num_patches * ctx->shader->info.tess.tcs_vertices_out;
6339 if (workgroup_size > ctx->program->wave_size)
6340 bld.sopp(aco_opcode::s_barrier);
6341 } else {
6342 /* We don't know the workgroup size, so always emit the s_barrier. */
6343 bld.sopp(aco_opcode::s_barrier);
6344 }
6345
6346 break;
6347 }
6348 case nir_intrinsic_memory_barrier_tcs_patch:
6349 case nir_intrinsic_group_memory_barrier:
6350 case nir_intrinsic_memory_barrier:
6351 case nir_intrinsic_memory_barrier_buffer:
6352 case nir_intrinsic_memory_barrier_image:
6353 case nir_intrinsic_memory_barrier_shared:
6354 emit_memory_barrier(ctx, instr);
6355 break;
6356 case nir_intrinsic_load_num_work_groups: {
6357 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6358 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.num_work_groups)));
6359 emit_split_vector(ctx, dst, 3);
6360 break;
6361 }
6362 case nir_intrinsic_load_local_invocation_id: {
6363 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6364 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.local_invocation_ids)));
6365 emit_split_vector(ctx, dst, 3);
6366 break;
6367 }
6368 case nir_intrinsic_load_work_group_id: {
6369 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6370 struct ac_arg *args = ctx->args->ac.workgroup_ids;
6371 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6372 args[0].used ? Operand(get_arg(ctx, args[0])) : Operand(0u),
6373 args[1].used ? Operand(get_arg(ctx, args[1])) : Operand(0u),
6374 args[2].used ? Operand(get_arg(ctx, args[2])) : Operand(0u));
6375 emit_split_vector(ctx, dst, 3);
6376 break;
6377 }
6378 case nir_intrinsic_load_local_invocation_index: {
6379 Temp id = emit_mbcnt(ctx, bld.def(v1));
6380
6381 /* The tg_size bits [6:11] contain the subgroup id,
6382 * we need this multiplied by the wave size, and then OR the thread id to it.
6383 */
6384 if (ctx->program->wave_size == 64) {
6385 /* After the s_and the bits are already multiplied by 64 (left shifted by 6) so we can just feed that to v_or */
6386 Temp tg_num = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfc0u),
6387 get_arg(ctx, ctx->args->ac.tg_size));
6388 bld.vop2(aco_opcode::v_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, id);
6389 } else {
6390 /* Extract the bit field and multiply the result by 32 (left shift by 5), then do the OR */
6391 Temp tg_num = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
6392 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
6393 bld.vop3(aco_opcode::v_lshl_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, Operand(0x5u), id);
6394 }
6395 break;
6396 }
6397 case nir_intrinsic_load_subgroup_id: {
6398 if (ctx->stage == compute_cs) {
6399 bld.sop2(aco_opcode::s_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc),
6400 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
6401 } else {
6402 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x0u));
6403 }
6404 break;
6405 }
6406 case nir_intrinsic_load_subgroup_invocation: {
6407 emit_mbcnt(ctx, Definition(get_ssa_temp(ctx, &instr->dest.ssa)));
6408 break;
6409 }
6410 case nir_intrinsic_load_num_subgroups: {
6411 if (ctx->stage == compute_cs)
6412 bld.sop2(aco_opcode::s_and_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc), Operand(0x3fu),
6413 get_arg(ctx, ctx->args->ac.tg_size));
6414 else
6415 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x1u));
6416 break;
6417 }
6418 case nir_intrinsic_ballot: {
6419 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6420 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6421 Definition tmp = bld.def(dst.regClass());
6422 Definition lanemask_tmp = dst.size() == bld.lm.size() ? tmp : bld.def(src.regClass());
6423 if (instr->src[0].ssa->bit_size == 1) {
6424 assert(src.regClass() == bld.lm);
6425 bld.sop2(Builder::s_and, lanemask_tmp, bld.def(s1, scc), Operand(exec, bld.lm), src);
6426 } else if (instr->src[0].ssa->bit_size == 32 && src.regClass() == v1) {
6427 bld.vopc(aco_opcode::v_cmp_lg_u32, lanemask_tmp, Operand(0u), src);
6428 } else if (instr->src[0].ssa->bit_size == 64 && src.regClass() == v2) {
6429 bld.vopc(aco_opcode::v_cmp_lg_u64, lanemask_tmp, Operand(0u), src);
6430 } else {
6431 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6432 nir_print_instr(&instr->instr, stderr);
6433 fprintf(stderr, "\n");
6434 }
6435 if (dst.size() != bld.lm.size()) {
6436 /* Wave32 with ballot size set to 64 */
6437 bld.pseudo(aco_opcode::p_create_vector, Definition(tmp), lanemask_tmp.getTemp(), Operand(0u));
6438 }
6439 emit_wqm(ctx, tmp.getTemp(), dst);
6440 break;
6441 }
6442 case nir_intrinsic_shuffle:
6443 case nir_intrinsic_read_invocation: {
6444 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6445 if (!ctx->divergent_vals[instr->src[0].ssa->index]) {
6446 emit_uniform_subgroup(ctx, instr, src);
6447 } else {
6448 Temp tid = get_ssa_temp(ctx, instr->src[1].ssa);
6449 if (instr->intrinsic == nir_intrinsic_read_invocation || !ctx->divergent_vals[instr->src[1].ssa->index])
6450 tid = bld.as_uniform(tid);
6451 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6452 if (src.regClass() == v1) {
6453 emit_wqm(ctx, emit_bpermute(ctx, bld, tid, src), dst);
6454 } else if (src.regClass() == v2) {
6455 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
6456 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
6457 lo = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, lo));
6458 hi = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, hi));
6459 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6460 emit_split_vector(ctx, dst, 2);
6461 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == s1) {
6462 assert(src.regClass() == bld.lm);
6463 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src, tid);
6464 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
6465 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == v1) {
6466 assert(src.regClass() == bld.lm);
6467 Temp tmp;
6468 if (ctx->program->chip_class <= GFX7)
6469 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), src, tid);
6470 else if (ctx->program->wave_size == 64)
6471 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), tid, src);
6472 else
6473 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), tid, src);
6474 tmp = emit_extract_vector(ctx, tmp, 0, v1);
6475 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), tmp);
6476 emit_wqm(ctx, bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp), dst);
6477 } else {
6478 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6479 nir_print_instr(&instr->instr, stderr);
6480 fprintf(stderr, "\n");
6481 }
6482 }
6483 break;
6484 }
6485 case nir_intrinsic_load_sample_id: {
6486 bld.vop3(aco_opcode::v_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6487 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
6488 break;
6489 }
6490 case nir_intrinsic_load_sample_mask_in: {
6491 visit_load_sample_mask_in(ctx, instr);
6492 break;
6493 }
6494 case nir_intrinsic_read_first_invocation: {
6495 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6496 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6497 if (src.regClass() == v1) {
6498 emit_wqm(ctx,
6499 bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), src),
6500 dst);
6501 } else if (src.regClass() == v2) {
6502 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
6503 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
6504 lo = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), lo));
6505 hi = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), hi));
6506 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6507 emit_split_vector(ctx, dst, 2);
6508 } else if (instr->dest.ssa.bit_size == 1) {
6509 assert(src.regClass() == bld.lm);
6510 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src,
6511 bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)));
6512 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
6513 } else if (src.regClass() == s1) {
6514 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
6515 } else if (src.regClass() == s2) {
6516 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
6517 } else {
6518 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6519 nir_print_instr(&instr->instr, stderr);
6520 fprintf(stderr, "\n");
6521 }
6522 break;
6523 }
6524 case nir_intrinsic_vote_all: {
6525 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6526 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6527 assert(src.regClass() == bld.lm);
6528 assert(dst.regClass() == bld.lm);
6529
6530 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
6531 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
6532 bld.sop1(Builder::s_not, Definition(dst), bld.def(s1, scc), cond);
6533 break;
6534 }
6535 case nir_intrinsic_vote_any: {
6536 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6537 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6538 assert(src.regClass() == bld.lm);
6539 assert(dst.regClass() == bld.lm);
6540
6541 Temp tmp = bool_to_scalar_condition(ctx, src);
6542 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
6543 break;
6544 }
6545 case nir_intrinsic_reduce:
6546 case nir_intrinsic_inclusive_scan:
6547 case nir_intrinsic_exclusive_scan: {
6548 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6549 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6550 nir_op op = (nir_op) nir_intrinsic_reduction_op(instr);
6551 unsigned cluster_size = instr->intrinsic == nir_intrinsic_reduce ?
6552 nir_intrinsic_cluster_size(instr) : 0;
6553 cluster_size = util_next_power_of_two(MIN2(cluster_size ? cluster_size : ctx->program->wave_size, ctx->program->wave_size));
6554
6555 if (!ctx->divergent_vals[instr->src[0].ssa->index] && (op == nir_op_ior || op == nir_op_iand)) {
6556 emit_uniform_subgroup(ctx, instr, src);
6557 } else if (instr->dest.ssa.bit_size == 1) {
6558 if (op == nir_op_imul || op == nir_op_umin || op == nir_op_imin)
6559 op = nir_op_iand;
6560 else if (op == nir_op_iadd)
6561 op = nir_op_ixor;
6562 else if (op == nir_op_umax || op == nir_op_imax)
6563 op = nir_op_ior;
6564 assert(op == nir_op_iand || op == nir_op_ior || op == nir_op_ixor);
6565
6566 switch (instr->intrinsic) {
6567 case nir_intrinsic_reduce:
6568 emit_wqm(ctx, emit_boolean_reduce(ctx, op, cluster_size, src), dst);
6569 break;
6570 case nir_intrinsic_exclusive_scan:
6571 emit_wqm(ctx, emit_boolean_exclusive_scan(ctx, op, src), dst);
6572 break;
6573 case nir_intrinsic_inclusive_scan:
6574 emit_wqm(ctx, emit_boolean_inclusive_scan(ctx, op, src), dst);
6575 break;
6576 default:
6577 assert(false);
6578 }
6579 } else if (cluster_size == 1) {
6580 bld.copy(Definition(dst), src);
6581 } else {
6582 src = as_vgpr(ctx, src);
6583
6584 ReduceOp reduce_op;
6585 switch (op) {
6586 #define CASE(name) case nir_op_##name: reduce_op = (src.regClass() == v1) ? name##32 : name##64; break;
6587 CASE(iadd)
6588 CASE(imul)
6589 CASE(fadd)
6590 CASE(fmul)
6591 CASE(imin)
6592 CASE(umin)
6593 CASE(fmin)
6594 CASE(imax)
6595 CASE(umax)
6596 CASE(fmax)
6597 CASE(iand)
6598 CASE(ior)
6599 CASE(ixor)
6600 default:
6601 unreachable("unknown reduction op");
6602 #undef CASE
6603 }
6604
6605 aco_opcode aco_op;
6606 switch (instr->intrinsic) {
6607 case nir_intrinsic_reduce: aco_op = aco_opcode::p_reduce; break;
6608 case nir_intrinsic_inclusive_scan: aco_op = aco_opcode::p_inclusive_scan; break;
6609 case nir_intrinsic_exclusive_scan: aco_op = aco_opcode::p_exclusive_scan; break;
6610 default:
6611 unreachable("unknown reduce intrinsic");
6612 }
6613
6614 aco_ptr<Pseudo_reduction_instruction> reduce{create_instruction<Pseudo_reduction_instruction>(aco_op, Format::PSEUDO_REDUCTION, 3, 5)};
6615 reduce->operands[0] = Operand(src);
6616 // filled in by aco_reduce_assign.cpp, used internally as part of the
6617 // reduce sequence
6618 assert(dst.size() == 1 || dst.size() == 2);
6619 reduce->operands[1] = Operand(RegClass(RegType::vgpr, dst.size()).as_linear());
6620 reduce->operands[2] = Operand(v1.as_linear());
6621
6622 Temp tmp_dst = bld.tmp(dst.regClass());
6623 reduce->definitions[0] = Definition(tmp_dst);
6624 reduce->definitions[1] = bld.def(ctx->program->lane_mask); // used internally
6625 reduce->definitions[2] = Definition();
6626 reduce->definitions[3] = Definition(scc, s1);
6627 reduce->definitions[4] = Definition();
6628 reduce->reduce_op = reduce_op;
6629 reduce->cluster_size = cluster_size;
6630 ctx->block->instructions.emplace_back(std::move(reduce));
6631
6632 emit_wqm(ctx, tmp_dst, dst);
6633 }
6634 break;
6635 }
6636 case nir_intrinsic_quad_broadcast: {
6637 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6638 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
6639 emit_uniform_subgroup(ctx, instr, src);
6640 } else {
6641 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6642 unsigned lane = nir_src_as_const_value(instr->src[1])->u32;
6643 uint32_t dpp_ctrl = dpp_quad_perm(lane, lane, lane, lane);
6644
6645 if (instr->dest.ssa.bit_size == 1) {
6646 assert(src.regClass() == bld.lm);
6647 assert(dst.regClass() == bld.lm);
6648 uint32_t half_mask = 0x11111111u << lane;
6649 Temp mask_tmp = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(half_mask), Operand(half_mask));
6650 Temp tmp = bld.tmp(bld.lm);
6651 bld.sop1(Builder::s_wqm, Definition(tmp),
6652 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), mask_tmp,
6653 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm))));
6654 emit_wqm(ctx, tmp, dst);
6655 } else if (instr->dest.ssa.bit_size == 32) {
6656 if (ctx->program->chip_class >= GFX8)
6657 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), dst);
6658 else
6659 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), dst);
6660 } else if (instr->dest.ssa.bit_size == 64) {
6661 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
6662 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
6663 if (ctx->program->chip_class >= GFX8) {
6664 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
6665 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
6666 } else {
6667 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, (1 << 15) | dpp_ctrl));
6668 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, (1 << 15) | dpp_ctrl));
6669 }
6670 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6671 emit_split_vector(ctx, dst, 2);
6672 } else {
6673 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6674 nir_print_instr(&instr->instr, stderr);
6675 fprintf(stderr, "\n");
6676 }
6677 }
6678 break;
6679 }
6680 case nir_intrinsic_quad_swap_horizontal:
6681 case nir_intrinsic_quad_swap_vertical:
6682 case nir_intrinsic_quad_swap_diagonal:
6683 case nir_intrinsic_quad_swizzle_amd: {
6684 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6685 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
6686 emit_uniform_subgroup(ctx, instr, src);
6687 break;
6688 }
6689 uint16_t dpp_ctrl = 0;
6690 switch (instr->intrinsic) {
6691 case nir_intrinsic_quad_swap_horizontal:
6692 dpp_ctrl = dpp_quad_perm(1, 0, 3, 2);
6693 break;
6694 case nir_intrinsic_quad_swap_vertical:
6695 dpp_ctrl = dpp_quad_perm(2, 3, 0, 1);
6696 break;
6697 case nir_intrinsic_quad_swap_diagonal:
6698 dpp_ctrl = dpp_quad_perm(3, 2, 1, 0);
6699 break;
6700 case nir_intrinsic_quad_swizzle_amd:
6701 dpp_ctrl = nir_intrinsic_swizzle_mask(instr);
6702 break;
6703 default:
6704 break;
6705 }
6706 if (ctx->program->chip_class < GFX8)
6707 dpp_ctrl |= (1 << 15);
6708
6709 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6710 if (instr->dest.ssa.bit_size == 1) {
6711 assert(src.regClass() == bld.lm);
6712 src = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand((uint32_t)-1), src);
6713 if (ctx->program->chip_class >= GFX8)
6714 src = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
6715 else
6716 src = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
6717 Temp tmp = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), src);
6718 emit_wqm(ctx, tmp, dst);
6719 } else if (instr->dest.ssa.bit_size == 32) {
6720 Temp tmp;
6721 if (ctx->program->chip_class >= GFX8)
6722 tmp = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
6723 else
6724 tmp = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
6725 emit_wqm(ctx, tmp, dst);
6726 } else if (instr->dest.ssa.bit_size == 64) {
6727 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
6728 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
6729 if (ctx->program->chip_class >= GFX8) {
6730 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
6731 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
6732 } else {
6733 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, dpp_ctrl));
6734 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, dpp_ctrl));
6735 }
6736 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6737 emit_split_vector(ctx, dst, 2);
6738 } else {
6739 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6740 nir_print_instr(&instr->instr, stderr);
6741 fprintf(stderr, "\n");
6742 }
6743 break;
6744 }
6745 case nir_intrinsic_masked_swizzle_amd: {
6746 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6747 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
6748 emit_uniform_subgroup(ctx, instr, src);
6749 break;
6750 }
6751 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6752 uint32_t mask = nir_intrinsic_swizzle_mask(instr);
6753 if (dst.regClass() == v1) {
6754 emit_wqm(ctx,
6755 bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, mask, 0, false),
6756 dst);
6757 } else if (dst.regClass() == v2) {
6758 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
6759 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
6760 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, mask, 0, false));
6761 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, mask, 0, false));
6762 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6763 emit_split_vector(ctx, dst, 2);
6764 } else {
6765 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6766 nir_print_instr(&instr->instr, stderr);
6767 fprintf(stderr, "\n");
6768 }
6769 break;
6770 }
6771 case nir_intrinsic_write_invocation_amd: {
6772 Temp src = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6773 Temp val = bld.as_uniform(get_ssa_temp(ctx, instr->src[1].ssa));
6774 Temp lane = bld.as_uniform(get_ssa_temp(ctx, instr->src[2].ssa));
6775 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6776 if (dst.regClass() == v1) {
6777 /* src2 is ignored for writelane. RA assigns the same reg for dst */
6778 emit_wqm(ctx, bld.writelane(bld.def(v1), val, lane, src), dst);
6779 } else if (dst.regClass() == v2) {
6780 Temp src_lo = bld.tmp(v1), src_hi = bld.tmp(v1);
6781 Temp val_lo = bld.tmp(s1), val_hi = bld.tmp(s1);
6782 bld.pseudo(aco_opcode::p_split_vector, Definition(src_lo), Definition(src_hi), src);
6783 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
6784 Temp lo = emit_wqm(ctx, bld.writelane(bld.def(v1), val_lo, lane, src_hi));
6785 Temp hi = emit_wqm(ctx, bld.writelane(bld.def(v1), val_hi, lane, src_hi));
6786 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6787 emit_split_vector(ctx, dst, 2);
6788 } else {
6789 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6790 nir_print_instr(&instr->instr, stderr);
6791 fprintf(stderr, "\n");
6792 }
6793 break;
6794 }
6795 case nir_intrinsic_mbcnt_amd: {
6796 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6797 RegClass rc = RegClass(src.type(), 1);
6798 Temp mask_lo = bld.tmp(rc), mask_hi = bld.tmp(rc);
6799 bld.pseudo(aco_opcode::p_split_vector, Definition(mask_lo), Definition(mask_hi), src);
6800 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6801 Temp wqm_tmp = emit_mbcnt(ctx, bld.def(v1), Operand(mask_lo), Operand(mask_hi));
6802 emit_wqm(ctx, wqm_tmp, dst);
6803 break;
6804 }
6805 case nir_intrinsic_load_helper_invocation: {
6806 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6807 bld.pseudo(aco_opcode::p_load_helper, Definition(dst));
6808 ctx->block->kind |= block_kind_needs_lowering;
6809 ctx->program->needs_exact = true;
6810 break;
6811 }
6812 case nir_intrinsic_is_helper_invocation: {
6813 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6814 bld.pseudo(aco_opcode::p_is_helper, Definition(dst));
6815 ctx->block->kind |= block_kind_needs_lowering;
6816 ctx->program->needs_exact = true;
6817 break;
6818 }
6819 case nir_intrinsic_demote:
6820 bld.pseudo(aco_opcode::p_demote_to_helper, Operand(-1u));
6821
6822 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
6823 ctx->cf_info.exec_potentially_empty_discard = true;
6824 ctx->block->kind |= block_kind_uses_demote;
6825 ctx->program->needs_exact = true;
6826 break;
6827 case nir_intrinsic_demote_if: {
6828 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6829 assert(src.regClass() == bld.lm);
6830 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
6831 bld.pseudo(aco_opcode::p_demote_to_helper, cond);
6832
6833 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
6834 ctx->cf_info.exec_potentially_empty_discard = true;
6835 ctx->block->kind |= block_kind_uses_demote;
6836 ctx->program->needs_exact = true;
6837 break;
6838 }
6839 case nir_intrinsic_first_invocation: {
6840 emit_wqm(ctx, bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)),
6841 get_ssa_temp(ctx, &instr->dest.ssa));
6842 break;
6843 }
6844 case nir_intrinsic_shader_clock:
6845 bld.smem(aco_opcode::s_memtime, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), false);
6846 emit_split_vector(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 2);
6847 break;
6848 case nir_intrinsic_load_vertex_id_zero_base: {
6849 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6850 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.vertex_id));
6851 break;
6852 }
6853 case nir_intrinsic_load_first_vertex: {
6854 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6855 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.base_vertex));
6856 break;
6857 }
6858 case nir_intrinsic_load_base_instance: {
6859 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6860 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.start_instance));
6861 break;
6862 }
6863 case nir_intrinsic_load_instance_id: {
6864 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6865 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.instance_id));
6866 break;
6867 }
6868 case nir_intrinsic_load_draw_id: {
6869 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6870 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.draw_id));
6871 break;
6872 }
6873 case nir_intrinsic_load_invocation_id: {
6874 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6875
6876 if (ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
6877 if (ctx->options->chip_class >= GFX10)
6878 bld.vop2_e64(aco_opcode::v_and_b32, Definition(dst), Operand(127u), get_arg(ctx, ctx->args->ac.gs_invocation_id));
6879 else
6880 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_invocation_id));
6881 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
6882 bld.vop3(aco_opcode::v_bfe_u32, Definition(dst),
6883 get_arg(ctx, ctx->args->ac.tcs_rel_ids), Operand(8u), Operand(5u));
6884 } else {
6885 unreachable("Unsupported stage for load_invocation_id");
6886 }
6887
6888 break;
6889 }
6890 case nir_intrinsic_load_primitive_id: {
6891 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6892
6893 switch (ctx->shader->info.stage) {
6894 case MESA_SHADER_GEOMETRY:
6895 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_prim_id));
6896 break;
6897 case MESA_SHADER_TESS_CTRL:
6898 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tcs_patch_id));
6899 break;
6900 case MESA_SHADER_TESS_EVAL:
6901 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tes_patch_id));
6902 break;
6903 default:
6904 unreachable("Unimplemented shader stage for nir_intrinsic_load_primitive_id");
6905 }
6906
6907 break;
6908 }
6909 case nir_intrinsic_load_patch_vertices_in: {
6910 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL ||
6911 ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
6912
6913 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6914 bld.copy(Definition(dst), Operand(ctx->args->options->key.tcs.input_vertices));
6915 break;
6916 }
6917 case nir_intrinsic_emit_vertex_with_counter: {
6918 visit_emit_vertex_with_counter(ctx, instr);
6919 break;
6920 }
6921 case nir_intrinsic_end_primitive_with_counter: {
6922 unsigned stream = nir_intrinsic_stream_id(instr);
6923 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(true, false, stream));
6924 break;
6925 }
6926 case nir_intrinsic_set_vertex_count: {
6927 /* unused, the HW keeps track of this for us */
6928 break;
6929 }
6930 default:
6931 fprintf(stderr, "Unimplemented intrinsic instr: ");
6932 nir_print_instr(&instr->instr, stderr);
6933 fprintf(stderr, "\n");
6934 abort();
6935
6936 break;
6937 }
6938 }
6939
6940
6941 void tex_fetch_ptrs(isel_context *ctx, nir_tex_instr *instr,
6942 Temp *res_ptr, Temp *samp_ptr, Temp *fmask_ptr,
6943 enum glsl_base_type *stype)
6944 {
6945 nir_deref_instr *texture_deref_instr = NULL;
6946 nir_deref_instr *sampler_deref_instr = NULL;
6947 int plane = -1;
6948
6949 for (unsigned i = 0; i < instr->num_srcs; i++) {
6950 switch (instr->src[i].src_type) {
6951 case nir_tex_src_texture_deref:
6952 texture_deref_instr = nir_src_as_deref(instr->src[i].src);
6953 break;
6954 case nir_tex_src_sampler_deref:
6955 sampler_deref_instr = nir_src_as_deref(instr->src[i].src);
6956 break;
6957 case nir_tex_src_plane:
6958 plane = nir_src_as_int(instr->src[i].src);
6959 break;
6960 default:
6961 break;
6962 }
6963 }
6964
6965 *stype = glsl_get_sampler_result_type(texture_deref_instr->type);
6966
6967 if (!sampler_deref_instr)
6968 sampler_deref_instr = texture_deref_instr;
6969
6970 if (plane >= 0) {
6971 assert(instr->op != nir_texop_txf_ms &&
6972 instr->op != nir_texop_samples_identical);
6973 assert(instr->sampler_dim != GLSL_SAMPLER_DIM_BUF);
6974 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, (aco_descriptor_type)(ACO_DESC_PLANE_0 + plane), instr, false, false);
6975 } else if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
6976 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_BUFFER, instr, false, false);
6977 } else if (instr->op == nir_texop_fragment_mask_fetch) {
6978 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
6979 } else {
6980 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_IMAGE, instr, false, false);
6981 }
6982 if (samp_ptr) {
6983 *samp_ptr = get_sampler_desc(ctx, sampler_deref_instr, ACO_DESC_SAMPLER, instr, false, false);
6984
6985 if (instr->sampler_dim < GLSL_SAMPLER_DIM_RECT && ctx->options->chip_class < GFX8) {
6986 /* fix sampler aniso on SI/CI: samp[0] = samp[0] & img[7] */
6987 Builder bld(ctx->program, ctx->block);
6988
6989 /* to avoid unnecessary moves, we split and recombine sampler and image */
6990 Temp img[8] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1),
6991 bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
6992 Temp samp[4] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
6993 bld.pseudo(aco_opcode::p_split_vector, Definition(img[0]), Definition(img[1]),
6994 Definition(img[2]), Definition(img[3]), Definition(img[4]),
6995 Definition(img[5]), Definition(img[6]), Definition(img[7]), *res_ptr);
6996 bld.pseudo(aco_opcode::p_split_vector, Definition(samp[0]), Definition(samp[1]),
6997 Definition(samp[2]), Definition(samp[3]), *samp_ptr);
6998
6999 samp[0] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), samp[0], img[7]);
7000 *res_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
7001 img[0], img[1], img[2], img[3],
7002 img[4], img[5], img[6], img[7]);
7003 *samp_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
7004 samp[0], samp[1], samp[2], samp[3]);
7005 }
7006 }
7007 if (fmask_ptr && (instr->op == nir_texop_txf_ms ||
7008 instr->op == nir_texop_samples_identical))
7009 *fmask_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
7010 }
7011
7012 void build_cube_select(isel_context *ctx, Temp ma, Temp id, Temp deriv,
7013 Temp *out_ma, Temp *out_sc, Temp *out_tc)
7014 {
7015 Builder bld(ctx->program, ctx->block);
7016
7017 Temp deriv_x = emit_extract_vector(ctx, deriv, 0, v1);
7018 Temp deriv_y = emit_extract_vector(ctx, deriv, 1, v1);
7019 Temp deriv_z = emit_extract_vector(ctx, deriv, 2, v1);
7020
7021 Operand neg_one(0xbf800000u);
7022 Operand one(0x3f800000u);
7023 Operand two(0x40000000u);
7024 Operand four(0x40800000u);
7025
7026 Temp is_ma_positive = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), ma);
7027 Temp sgn_ma = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, one, is_ma_positive);
7028 Temp neg_sgn_ma = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0u), sgn_ma);
7029
7030 Temp is_ma_z = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), four, id);
7031 Temp is_ma_y = bld.vopc(aco_opcode::v_cmp_le_f32, bld.def(bld.lm), two, id);
7032 is_ma_y = bld.sop2(Builder::s_andn2, bld.hint_vcc(bld.def(bld.lm)), is_ma_y, is_ma_z);
7033 Temp is_not_ma_x = bld.sop2(aco_opcode::s_or_b64, bld.hint_vcc(bld.def(bld.lm)), bld.def(s1, scc), is_ma_z, is_ma_y);
7034
7035 // select sc
7036 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_z, deriv_x, is_not_ma_x);
7037 Temp sgn = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1),
7038 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_sgn_ma, sgn_ma, is_ma_z),
7039 one, is_ma_y);
7040 *out_sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
7041
7042 // select tc
7043 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_y, deriv_z, is_ma_y);
7044 sgn = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, sgn_ma, is_ma_y);
7045 *out_tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
7046
7047 // select ma
7048 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
7049 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_x, deriv_y, is_ma_y),
7050 deriv_z, is_ma_z);
7051 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffffu), tmp);
7052 *out_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), two, tmp);
7053 }
7054
7055 void prepare_cube_coords(isel_context *ctx, std::vector<Temp>& coords, Temp* ddx, Temp* ddy, bool is_deriv, bool is_array)
7056 {
7057 Builder bld(ctx->program, ctx->block);
7058 Temp ma, tc, sc, id;
7059
7060 if (is_array) {
7061 coords[3] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[3]);
7062
7063 // see comment in ac_prepare_cube_coords()
7064 if (ctx->options->chip_class <= GFX8)
7065 coords[3] = bld.vop2(aco_opcode::v_max_f32, bld.def(v1), Operand(0u), coords[3]);
7066 }
7067
7068 ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), coords[0], coords[1], coords[2]);
7069
7070 aco_ptr<VOP3A_instruction> vop3a{create_instruction<VOP3A_instruction>(aco_opcode::v_rcp_f32, asVOP3(Format::VOP1), 1, 1)};
7071 vop3a->operands[0] = Operand(ma);
7072 vop3a->abs[0] = true;
7073 Temp invma = bld.tmp(v1);
7074 vop3a->definitions[0] = Definition(invma);
7075 ctx->block->instructions.emplace_back(std::move(vop3a));
7076
7077 sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
7078 if (!is_deriv)
7079 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, invma, Operand(0x3fc00000u/*1.5*/));
7080
7081 tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
7082 if (!is_deriv)
7083 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, invma, Operand(0x3fc00000u/*1.5*/));
7084
7085 id = bld.vop3(aco_opcode::v_cubeid_f32, bld.def(v1), coords[0], coords[1], coords[2]);
7086
7087 if (is_deriv) {
7088 sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), sc, invma);
7089 tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tc, invma);
7090
7091 for (unsigned i = 0; i < 2; i++) {
7092 // see comment in ac_prepare_cube_coords()
7093 Temp deriv_ma;
7094 Temp deriv_sc, deriv_tc;
7095 build_cube_select(ctx, ma, id, i ? *ddy : *ddx,
7096 &deriv_ma, &deriv_sc, &deriv_tc);
7097
7098 deriv_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, invma);
7099
7100 Temp x = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
7101 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_sc, invma),
7102 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, sc));
7103 Temp y = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
7104 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_tc, invma),
7105 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, tc));
7106 *(i ? ddy : ddx) = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), x, y);
7107 }
7108
7109 sc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), sc);
7110 tc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), tc);
7111 }
7112
7113 if (is_array)
7114 id = bld.vop2(aco_opcode::v_madmk_f32, bld.def(v1), coords[3], id, Operand(0x41000000u/*8.0*/));
7115 coords.resize(3);
7116 coords[0] = sc;
7117 coords[1] = tc;
7118 coords[2] = id;
7119 }
7120
7121 void get_const_vec(nir_ssa_def *vec, nir_const_value *cv[4])
7122 {
7123 if (vec->parent_instr->type != nir_instr_type_alu)
7124 return;
7125 nir_alu_instr *vec_instr = nir_instr_as_alu(vec->parent_instr);
7126 if (vec_instr->op != nir_op_vec(vec->num_components))
7127 return;
7128
7129 for (unsigned i = 0; i < vec->num_components; i++) {
7130 cv[i] = vec_instr->src[i].swizzle[0] == 0 ?
7131 nir_src_as_const_value(vec_instr->src[i].src) : NULL;
7132 }
7133 }
7134
7135 void visit_tex(isel_context *ctx, nir_tex_instr *instr)
7136 {
7137 Builder bld(ctx->program, ctx->block);
7138 bool has_bias = false, has_lod = false, level_zero = false, has_compare = false,
7139 has_offset = false, has_ddx = false, has_ddy = false, has_derivs = false, has_sample_index = false;
7140 Temp resource, sampler, fmask_ptr, bias = Temp(), compare = Temp(), sample_index = Temp(),
7141 lod = Temp(), offset = Temp(), ddx = Temp(), ddy = Temp();
7142 std::vector<Temp> coords;
7143 std::vector<Temp> derivs;
7144 nir_const_value *sample_index_cv = NULL;
7145 nir_const_value *const_offset[4] = {NULL, NULL, NULL, NULL};
7146 enum glsl_base_type stype;
7147 tex_fetch_ptrs(ctx, instr, &resource, &sampler, &fmask_ptr, &stype);
7148
7149 bool tg4_integer_workarounds = ctx->options->chip_class <= GFX8 && instr->op == nir_texop_tg4 &&
7150 (stype == GLSL_TYPE_UINT || stype == GLSL_TYPE_INT);
7151 bool tg4_integer_cube_workaround = tg4_integer_workarounds &&
7152 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE;
7153
7154 for (unsigned i = 0; i < instr->num_srcs; i++) {
7155 switch (instr->src[i].src_type) {
7156 case nir_tex_src_coord: {
7157 Temp coord = get_ssa_temp(ctx, instr->src[i].src.ssa);
7158 for (unsigned i = 0; i < coord.size(); i++)
7159 coords.emplace_back(emit_extract_vector(ctx, coord, i, v1));
7160 break;
7161 }
7162 case nir_tex_src_bias:
7163 if (instr->op == nir_texop_txb) {
7164 bias = get_ssa_temp(ctx, instr->src[i].src.ssa);
7165 has_bias = true;
7166 }
7167 break;
7168 case nir_tex_src_lod: {
7169 nir_const_value *val = nir_src_as_const_value(instr->src[i].src);
7170
7171 if (val && val->f32 <= 0.0) {
7172 level_zero = true;
7173 } else {
7174 lod = get_ssa_temp(ctx, instr->src[i].src.ssa);
7175 has_lod = true;
7176 }
7177 break;
7178 }
7179 case nir_tex_src_comparator:
7180 if (instr->is_shadow) {
7181 compare = get_ssa_temp(ctx, instr->src[i].src.ssa);
7182 has_compare = true;
7183 }
7184 break;
7185 case nir_tex_src_offset:
7186 offset = get_ssa_temp(ctx, instr->src[i].src.ssa);
7187 get_const_vec(instr->src[i].src.ssa, const_offset);
7188 has_offset = true;
7189 break;
7190 case nir_tex_src_ddx:
7191 ddx = get_ssa_temp(ctx, instr->src[i].src.ssa);
7192 has_ddx = true;
7193 break;
7194 case nir_tex_src_ddy:
7195 ddy = get_ssa_temp(ctx, instr->src[i].src.ssa);
7196 has_ddy = true;
7197 break;
7198 case nir_tex_src_ms_index:
7199 sample_index = get_ssa_temp(ctx, instr->src[i].src.ssa);
7200 sample_index_cv = nir_src_as_const_value(instr->src[i].src);
7201 has_sample_index = true;
7202 break;
7203 case nir_tex_src_texture_offset:
7204 case nir_tex_src_sampler_offset:
7205 default:
7206 break;
7207 }
7208 }
7209
7210 if (instr->op == nir_texop_txs && instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
7211 return get_buffer_size(ctx, resource, get_ssa_temp(ctx, &instr->dest.ssa), true);
7212
7213 if (instr->op == nir_texop_texture_samples) {
7214 Temp dword3 = emit_extract_vector(ctx, resource, 3, s1);
7215
7216 Temp samples_log2 = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(16u | 4u<<16));
7217 Temp samples = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), Operand(1u), samples_log2);
7218 Temp type = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(28u | 4u<<16 /* offset=28, width=4 */));
7219 Temp is_msaa = bld.sopc(aco_opcode::s_cmp_ge_u32, bld.def(s1, scc), type, Operand(14u));
7220
7221 bld.sop2(aco_opcode::s_cselect_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7222 samples, Operand(1u), bld.scc(is_msaa));
7223 return;
7224 }
7225
7226 if (has_offset && instr->op != nir_texop_txf && instr->op != nir_texop_txf_ms) {
7227 aco_ptr<Instruction> tmp_instr;
7228 Temp acc, pack = Temp();
7229
7230 uint32_t pack_const = 0;
7231 for (unsigned i = 0; i < offset.size(); i++) {
7232 if (!const_offset[i])
7233 continue;
7234 pack_const |= (const_offset[i]->u32 & 0x3Fu) << (8u * i);
7235 }
7236
7237 if (offset.type() == RegType::sgpr) {
7238 for (unsigned i = 0; i < offset.size(); i++) {
7239 if (const_offset[i])
7240 continue;
7241
7242 acc = emit_extract_vector(ctx, offset, i, s1);
7243 acc = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(0x3Fu));
7244
7245 if (i) {
7246 acc = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(8u * i));
7247 }
7248
7249 if (pack == Temp()) {
7250 pack = acc;
7251 } else {
7252 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), pack, acc);
7253 }
7254 }
7255
7256 if (pack_const && pack != Temp())
7257 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(pack_const), pack);
7258 } else {
7259 for (unsigned i = 0; i < offset.size(); i++) {
7260 if (const_offset[i])
7261 continue;
7262
7263 acc = emit_extract_vector(ctx, offset, i, v1);
7264 acc = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x3Fu), acc);
7265
7266 if (i) {
7267 acc = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(8u * i), acc);
7268 }
7269
7270 if (pack == Temp()) {
7271 pack = acc;
7272 } else {
7273 pack = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), pack, acc);
7274 }
7275 }
7276
7277 if (pack_const && pack != Temp())
7278 pack = bld.sop2(aco_opcode::v_or_b32, bld.def(v1), Operand(pack_const), pack);
7279 }
7280 if (pack_const && pack == Temp())
7281 offset = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(pack_const));
7282 else if (pack == Temp())
7283 has_offset = false;
7284 else
7285 offset = pack;
7286 }
7287
7288 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE && instr->coord_components)
7289 prepare_cube_coords(ctx, coords, &ddx, &ddy, instr->op == nir_texop_txd, instr->is_array && instr->op != nir_texop_lod);
7290
7291 /* pack derivatives */
7292 if (has_ddx || has_ddy) {
7293 if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D && ctx->options->chip_class == GFX9) {
7294 assert(has_ddx && has_ddy && ddx.size() == 1 && ddy.size() == 1);
7295 Temp zero = bld.copy(bld.def(v1), Operand(0u));
7296 derivs = {ddy, zero, ddy, zero};
7297 } else {
7298 for (unsigned i = 0; has_ddx && i < ddx.size(); i++)
7299 derivs.emplace_back(emit_extract_vector(ctx, ddx, i, v1));
7300 for (unsigned i = 0; has_ddy && i < ddy.size(); i++)
7301 derivs.emplace_back(emit_extract_vector(ctx, ddy, i, v1));
7302 }
7303 has_derivs = true;
7304 }
7305
7306 if (instr->coord_components > 1 &&
7307 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
7308 instr->is_array &&
7309 instr->op != nir_texop_txf)
7310 coords[1] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[1]);
7311
7312 if (instr->coord_components > 2 &&
7313 (instr->sampler_dim == GLSL_SAMPLER_DIM_2D ||
7314 instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
7315 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS ||
7316 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
7317 instr->is_array &&
7318 instr->op != nir_texop_txf &&
7319 instr->op != nir_texop_txf_ms &&
7320 instr->op != nir_texop_fragment_fetch &&
7321 instr->op != nir_texop_fragment_mask_fetch)
7322 coords[2] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[2]);
7323
7324 if (ctx->options->chip_class == GFX9 &&
7325 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
7326 instr->op != nir_texop_lod && instr->coord_components) {
7327 assert(coords.size() > 0 && coords.size() < 3);
7328
7329 coords.insert(std::next(coords.begin()), bld.copy(bld.def(v1), instr->op == nir_texop_txf ?
7330 Operand((uint32_t) 0) :
7331 Operand((uint32_t) 0x3f000000)));
7332 }
7333
7334 bool da = should_declare_array(ctx, instr->sampler_dim, instr->is_array);
7335
7336 if (instr->op == nir_texop_samples_identical)
7337 resource = fmask_ptr;
7338
7339 else if ((instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
7340 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
7341 instr->op != nir_texop_txs &&
7342 instr->op != nir_texop_fragment_fetch &&
7343 instr->op != nir_texop_fragment_mask_fetch) {
7344 assert(has_sample_index);
7345 Operand op(sample_index);
7346 if (sample_index_cv)
7347 op = Operand(sample_index_cv->u32);
7348 sample_index = adjust_sample_index_using_fmask(ctx, da, coords, op, fmask_ptr);
7349 }
7350
7351 if (has_offset && (instr->op == nir_texop_txf || instr->op == nir_texop_txf_ms)) {
7352 for (unsigned i = 0; i < std::min(offset.size(), instr->coord_components); i++) {
7353 Temp off = emit_extract_vector(ctx, offset, i, v1);
7354 coords[i] = bld.vadd32(bld.def(v1), coords[i], off);
7355 }
7356 has_offset = false;
7357 }
7358
7359 /* Build tex instruction */
7360 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
7361 unsigned dim = ctx->options->chip_class >= GFX10 && instr->sampler_dim != GLSL_SAMPLER_DIM_BUF
7362 ? ac_get_sampler_dim(ctx->options->chip_class, instr->sampler_dim, instr->is_array)
7363 : 0;
7364 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7365 Temp tmp_dst = dst;
7366
7367 /* gather4 selects the component by dmask and always returns vec4 */
7368 if (instr->op == nir_texop_tg4) {
7369 assert(instr->dest.ssa.num_components == 4);
7370 if (instr->is_shadow)
7371 dmask = 1;
7372 else
7373 dmask = 1 << instr->component;
7374 if (tg4_integer_cube_workaround || dst.type() == RegType::sgpr)
7375 tmp_dst = bld.tmp(v4);
7376 } else if (instr->op == nir_texop_samples_identical) {
7377 tmp_dst = bld.tmp(v1);
7378 } else if (util_bitcount(dmask) != instr->dest.ssa.num_components || dst.type() == RegType::sgpr) {
7379 tmp_dst = bld.tmp(RegClass(RegType::vgpr, util_bitcount(dmask)));
7380 }
7381
7382 aco_ptr<MIMG_instruction> tex;
7383 if (instr->op == nir_texop_txs || instr->op == nir_texop_query_levels) {
7384 if (!has_lod)
7385 lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
7386
7387 bool div_by_6 = instr->op == nir_texop_txs &&
7388 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
7389 instr->is_array &&
7390 (dmask & (1 << 2));
7391 if (tmp_dst.id() == dst.id() && div_by_6)
7392 tmp_dst = bld.tmp(tmp_dst.regClass());
7393
7394 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
7395 tex->operands[0] = Operand(resource);
7396 tex->operands[1] = Operand(s4); /* no sampler */
7397 tex->operands[2] = Operand(as_vgpr(ctx,lod));
7398 if (ctx->options->chip_class == GFX9 &&
7399 instr->op == nir_texop_txs &&
7400 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
7401 instr->is_array) {
7402 tex->dmask = (dmask & 0x1) | ((dmask & 0x2) << 1);
7403 } else if (instr->op == nir_texop_query_levels) {
7404 tex->dmask = 1 << 3;
7405 } else {
7406 tex->dmask = dmask;
7407 }
7408 tex->da = da;
7409 tex->definitions[0] = Definition(tmp_dst);
7410 tex->dim = dim;
7411 tex->can_reorder = true;
7412 ctx->block->instructions.emplace_back(std::move(tex));
7413
7414 if (div_by_6) {
7415 /* divide 3rd value by 6 by multiplying with magic number */
7416 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
7417 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
7418 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp_dst, 2, v1), c);
7419 assert(instr->dest.ssa.num_components == 3);
7420 Temp tmp = dst.type() == RegType::vgpr ? dst : bld.tmp(v3);
7421 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
7422 emit_extract_vector(ctx, tmp_dst, 0, v1),
7423 emit_extract_vector(ctx, tmp_dst, 1, v1),
7424 by_6);
7425
7426 }
7427
7428 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
7429 return;
7430 }
7431
7432 Temp tg4_compare_cube_wa64 = Temp();
7433
7434 if (tg4_integer_workarounds) {
7435 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
7436 tex->operands[0] = Operand(resource);
7437 tex->operands[1] = Operand(s4); /* no sampler */
7438 tex->operands[2] = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
7439 tex->dim = dim;
7440 tex->dmask = 0x3;
7441 tex->da = da;
7442 Temp size = bld.tmp(v2);
7443 tex->definitions[0] = Definition(size);
7444 tex->can_reorder = true;
7445 ctx->block->instructions.emplace_back(std::move(tex));
7446 emit_split_vector(ctx, size, size.size());
7447
7448 Temp half_texel[2];
7449 for (unsigned i = 0; i < 2; i++) {
7450 half_texel[i] = emit_extract_vector(ctx, size, i, v1);
7451 half_texel[i] = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), half_texel[i]);
7452 half_texel[i] = bld.vop1(aco_opcode::v_rcp_iflag_f32, bld.def(v1), half_texel[i]);
7453 half_texel[i] = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0xbf000000/*-0.5*/), half_texel[i]);
7454 }
7455
7456 Temp new_coords[2] = {
7457 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[0], half_texel[0]),
7458 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[1], half_texel[1])
7459 };
7460
7461 if (tg4_integer_cube_workaround) {
7462 // see comment in ac_nir_to_llvm.c's lower_gather4_integer()
7463 Temp desc[resource.size()];
7464 aco_ptr<Instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector,
7465 Format::PSEUDO, 1, resource.size())};
7466 split->operands[0] = Operand(resource);
7467 for (unsigned i = 0; i < resource.size(); i++) {
7468 desc[i] = bld.tmp(s1);
7469 split->definitions[i] = Definition(desc[i]);
7470 }
7471 ctx->block->instructions.emplace_back(std::move(split));
7472
7473 Temp dfmt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), desc[1], Operand(20u | (6u << 16)));
7474 Temp compare_cube_wa = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), dfmt,
7475 Operand((uint32_t)V_008F14_IMG_DATA_FORMAT_8_8_8_8));
7476
7477 Temp nfmt;
7478 if (stype == GLSL_TYPE_UINT) {
7479 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
7480 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_USCALED),
7481 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_UINT),
7482 bld.scc(compare_cube_wa));
7483 } else {
7484 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
7485 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SSCALED),
7486 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SINT),
7487 bld.scc(compare_cube_wa));
7488 }
7489 tg4_compare_cube_wa64 = bld.tmp(bld.lm);
7490 bool_to_vector_condition(ctx, compare_cube_wa, tg4_compare_cube_wa64);
7491
7492 nfmt = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), nfmt, Operand(26u));
7493
7494 desc[1] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), desc[1],
7495 Operand((uint32_t)C_008F14_NUM_FORMAT));
7496 desc[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), desc[1], nfmt);
7497
7498 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
7499 Format::PSEUDO, resource.size(), 1)};
7500 for (unsigned i = 0; i < resource.size(); i++)
7501 vec->operands[i] = Operand(desc[i]);
7502 resource = bld.tmp(resource.regClass());
7503 vec->definitions[0] = Definition(resource);
7504 ctx->block->instructions.emplace_back(std::move(vec));
7505
7506 new_coords[0] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
7507 new_coords[0], coords[0], tg4_compare_cube_wa64);
7508 new_coords[1] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
7509 new_coords[1], coords[1], tg4_compare_cube_wa64);
7510 }
7511 coords[0] = new_coords[0];
7512 coords[1] = new_coords[1];
7513 }
7514
7515 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
7516 //FIXME: if (ctx->abi->gfx9_stride_size_workaround) return ac_build_buffer_load_format_gfx9_safe()
7517
7518 assert(coords.size() == 1);
7519 unsigned last_bit = util_last_bit(nir_ssa_def_components_read(&instr->dest.ssa));
7520 aco_opcode op;
7521 switch (last_bit) {
7522 case 1:
7523 op = aco_opcode::buffer_load_format_x; break;
7524 case 2:
7525 op = aco_opcode::buffer_load_format_xy; break;
7526 case 3:
7527 op = aco_opcode::buffer_load_format_xyz; break;
7528 case 4:
7529 op = aco_opcode::buffer_load_format_xyzw; break;
7530 default:
7531 unreachable("Tex instruction loads more than 4 components.");
7532 }
7533
7534 /* if the instruction return value matches exactly the nir dest ssa, we can use it directly */
7535 if (last_bit == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
7536 tmp_dst = dst;
7537 else
7538 tmp_dst = bld.tmp(RegType::vgpr, last_bit);
7539
7540 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
7541 mubuf->operands[0] = Operand(resource);
7542 mubuf->operands[1] = Operand(coords[0]);
7543 mubuf->operands[2] = Operand((uint32_t) 0);
7544 mubuf->definitions[0] = Definition(tmp_dst);
7545 mubuf->idxen = true;
7546 mubuf->can_reorder = true;
7547 ctx->block->instructions.emplace_back(std::move(mubuf));
7548
7549 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, (1 << last_bit) - 1);
7550 return;
7551 }
7552
7553 /* gather MIMG address components */
7554 std::vector<Temp> args;
7555 if (has_offset)
7556 args.emplace_back(offset);
7557 if (has_bias)
7558 args.emplace_back(bias);
7559 if (has_compare)
7560 args.emplace_back(compare);
7561 if (has_derivs)
7562 args.insert(args.end(), derivs.begin(), derivs.end());
7563
7564 args.insert(args.end(), coords.begin(), coords.end());
7565 if (has_sample_index)
7566 args.emplace_back(sample_index);
7567 if (has_lod)
7568 args.emplace_back(lod);
7569
7570 Temp arg = bld.tmp(RegClass(RegType::vgpr, args.size()));
7571 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, args.size(), 1)};
7572 vec->definitions[0] = Definition(arg);
7573 for (unsigned i = 0; i < args.size(); i++)
7574 vec->operands[i] = Operand(args[i]);
7575 ctx->block->instructions.emplace_back(std::move(vec));
7576
7577
7578 if (instr->op == nir_texop_txf ||
7579 instr->op == nir_texop_txf_ms ||
7580 instr->op == nir_texop_samples_identical ||
7581 instr->op == nir_texop_fragment_fetch ||
7582 instr->op == nir_texop_fragment_mask_fetch) {
7583 aco_opcode op = level_zero || instr->sampler_dim == GLSL_SAMPLER_DIM_MS || instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS ? aco_opcode::image_load : aco_opcode::image_load_mip;
7584 tex.reset(create_instruction<MIMG_instruction>(op, Format::MIMG, 3, 1));
7585 tex->operands[0] = Operand(resource);
7586 tex->operands[1] = Operand(s4); /* no sampler */
7587 tex->operands[2] = Operand(arg);
7588 tex->dim = dim;
7589 tex->dmask = dmask;
7590 tex->unrm = true;
7591 tex->da = da;
7592 tex->definitions[0] = Definition(tmp_dst);
7593 tex->can_reorder = true;
7594 ctx->block->instructions.emplace_back(std::move(tex));
7595
7596 if (instr->op == nir_texop_samples_identical) {
7597 assert(dmask == 1 && dst.regClass() == v1);
7598 assert(dst.id() != tmp_dst.id());
7599
7600 Temp tmp = bld.tmp(bld.lm);
7601 bld.vopc(aco_opcode::v_cmp_eq_u32, Definition(tmp), Operand(0u), tmp_dst).def(0).setHint(vcc);
7602 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand((uint32_t)-1), tmp);
7603
7604 } else {
7605 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
7606 }
7607 return;
7608 }
7609
7610 // TODO: would be better to do this by adding offsets, but needs the opcodes ordered.
7611 aco_opcode opcode = aco_opcode::image_sample;
7612 if (has_offset) { /* image_sample_*_o */
7613 if (has_compare) {
7614 opcode = aco_opcode::image_sample_c_o;
7615 if (has_derivs)
7616 opcode = aco_opcode::image_sample_c_d_o;
7617 if (has_bias)
7618 opcode = aco_opcode::image_sample_c_b_o;
7619 if (level_zero)
7620 opcode = aco_opcode::image_sample_c_lz_o;
7621 if (has_lod)
7622 opcode = aco_opcode::image_sample_c_l_o;
7623 } else {
7624 opcode = aco_opcode::image_sample_o;
7625 if (has_derivs)
7626 opcode = aco_opcode::image_sample_d_o;
7627 if (has_bias)
7628 opcode = aco_opcode::image_sample_b_o;
7629 if (level_zero)
7630 opcode = aco_opcode::image_sample_lz_o;
7631 if (has_lod)
7632 opcode = aco_opcode::image_sample_l_o;
7633 }
7634 } else { /* no offset */
7635 if (has_compare) {
7636 opcode = aco_opcode::image_sample_c;
7637 if (has_derivs)
7638 opcode = aco_opcode::image_sample_c_d;
7639 if (has_bias)
7640 opcode = aco_opcode::image_sample_c_b;
7641 if (level_zero)
7642 opcode = aco_opcode::image_sample_c_lz;
7643 if (has_lod)
7644 opcode = aco_opcode::image_sample_c_l;
7645 } else {
7646 opcode = aco_opcode::image_sample;
7647 if (has_derivs)
7648 opcode = aco_opcode::image_sample_d;
7649 if (has_bias)
7650 opcode = aco_opcode::image_sample_b;
7651 if (level_zero)
7652 opcode = aco_opcode::image_sample_lz;
7653 if (has_lod)
7654 opcode = aco_opcode::image_sample_l;
7655 }
7656 }
7657
7658 if (instr->op == nir_texop_tg4) {
7659 if (has_offset) {
7660 opcode = aco_opcode::image_gather4_lz_o;
7661 if (has_compare)
7662 opcode = aco_opcode::image_gather4_c_lz_o;
7663 } else {
7664 opcode = aco_opcode::image_gather4_lz;
7665 if (has_compare)
7666 opcode = aco_opcode::image_gather4_c_lz;
7667 }
7668 } else if (instr->op == nir_texop_lod) {
7669 opcode = aco_opcode::image_get_lod;
7670 }
7671
7672 /* we don't need the bias, sample index, compare value or offset to be
7673 * computed in WQM but if the p_create_vector copies the coordinates, then it
7674 * needs to be in WQM */
7675 if (ctx->stage == fragment_fs &&
7676 !has_derivs && !has_lod && !level_zero &&
7677 instr->sampler_dim != GLSL_SAMPLER_DIM_MS &&
7678 instr->sampler_dim != GLSL_SAMPLER_DIM_SUBPASS_MS)
7679 arg = emit_wqm(ctx, arg, bld.tmp(arg.regClass()), true);
7680
7681 tex.reset(create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1));
7682 tex->operands[0] = Operand(resource);
7683 tex->operands[1] = Operand(sampler);
7684 tex->operands[2] = Operand(arg);
7685 tex->dim = dim;
7686 tex->dmask = dmask;
7687 tex->da = da;
7688 tex->definitions[0] = Definition(tmp_dst);
7689 tex->can_reorder = true;
7690 ctx->block->instructions.emplace_back(std::move(tex));
7691
7692 if (tg4_integer_cube_workaround) {
7693 assert(tmp_dst.id() != dst.id());
7694 assert(tmp_dst.size() == dst.size() && dst.size() == 4);
7695
7696 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
7697 Temp val[4];
7698 for (unsigned i = 0; i < dst.size(); i++) {
7699 val[i] = emit_extract_vector(ctx, tmp_dst, i, v1);
7700 Temp cvt_val;
7701 if (stype == GLSL_TYPE_UINT)
7702 cvt_val = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), val[i]);
7703 else
7704 cvt_val = bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), val[i]);
7705 val[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), val[i], cvt_val, tg4_compare_cube_wa64);
7706 }
7707 Temp tmp = dst.regClass() == v4 ? dst : bld.tmp(v4);
7708 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
7709 val[0], val[1], val[2], val[3]);
7710 }
7711 unsigned mask = instr->op == nir_texop_tg4 ? 0xF : dmask;
7712 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, mask);
7713
7714 }
7715
7716
7717 Operand get_phi_operand(isel_context *ctx, nir_ssa_def *ssa)
7718 {
7719 Temp tmp = get_ssa_temp(ctx, ssa);
7720 if (ssa->parent_instr->type == nir_instr_type_ssa_undef)
7721 return Operand(tmp.regClass());
7722 else
7723 return Operand(tmp);
7724 }
7725
7726 void visit_phi(isel_context *ctx, nir_phi_instr *instr)
7727 {
7728 aco_ptr<Pseudo_instruction> phi;
7729 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7730 assert(instr->dest.ssa.bit_size != 1 || dst.regClass() == ctx->program->lane_mask);
7731
7732 bool logical = !dst.is_linear() || ctx->divergent_vals[instr->dest.ssa.index];
7733 logical |= ctx->block->kind & block_kind_merge;
7734 aco_opcode opcode = logical ? aco_opcode::p_phi : aco_opcode::p_linear_phi;
7735
7736 /* we want a sorted list of sources, since the predecessor list is also sorted */
7737 std::map<unsigned, nir_ssa_def*> phi_src;
7738 nir_foreach_phi_src(src, instr)
7739 phi_src[src->pred->index] = src->src.ssa;
7740
7741 std::vector<unsigned>& preds = logical ? ctx->block->logical_preds : ctx->block->linear_preds;
7742 unsigned num_operands = 0;
7743 Operand operands[std::max(exec_list_length(&instr->srcs), (unsigned)preds.size())];
7744 unsigned num_defined = 0;
7745 unsigned cur_pred_idx = 0;
7746 for (std::pair<unsigned, nir_ssa_def *> src : phi_src) {
7747 if (cur_pred_idx < preds.size()) {
7748 /* handle missing preds (IF merges with discard/break) and extra preds (loop exit with discard) */
7749 unsigned block = ctx->cf_info.nir_to_aco[src.first];
7750 unsigned skipped = 0;
7751 while (cur_pred_idx + skipped < preds.size() && preds[cur_pred_idx + skipped] != block)
7752 skipped++;
7753 if (cur_pred_idx + skipped < preds.size()) {
7754 for (unsigned i = 0; i < skipped; i++)
7755 operands[num_operands++] = Operand(dst.regClass());
7756 cur_pred_idx += skipped;
7757 } else {
7758 continue;
7759 }
7760 }
7761 cur_pred_idx++;
7762 Operand op = get_phi_operand(ctx, src.second);
7763 operands[num_operands++] = op;
7764 num_defined += !op.isUndefined();
7765 }
7766 /* handle block_kind_continue_or_break at loop exit blocks */
7767 while (cur_pred_idx++ < preds.size())
7768 operands[num_operands++] = Operand(dst.regClass());
7769
7770 if (num_defined == 0) {
7771 Builder bld(ctx->program, ctx->block);
7772 if (dst.regClass() == s1) {
7773 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), Operand(0u));
7774 } else if (dst.regClass() == v1) {
7775 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), Operand(0u));
7776 } else {
7777 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
7778 for (unsigned i = 0; i < dst.size(); i++)
7779 vec->operands[i] = Operand(0u);
7780 vec->definitions[0] = Definition(dst);
7781 ctx->block->instructions.emplace_back(std::move(vec));
7782 }
7783 return;
7784 }
7785
7786 /* we can use a linear phi in some cases if one src is undef */
7787 if (dst.is_linear() && ctx->block->kind & block_kind_merge && num_defined == 1) {
7788 phi.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, num_operands, 1));
7789
7790 Block *linear_else = &ctx->program->blocks[ctx->block->linear_preds[1]];
7791 Block *invert = &ctx->program->blocks[linear_else->linear_preds[0]];
7792 assert(invert->kind & block_kind_invert);
7793
7794 unsigned then_block = invert->linear_preds[0];
7795
7796 Block* insert_block = NULL;
7797 for (unsigned i = 0; i < num_operands; i++) {
7798 Operand op = operands[i];
7799 if (op.isUndefined())
7800 continue;
7801 insert_block = ctx->block->logical_preds[i] == then_block ? invert : ctx->block;
7802 phi->operands[0] = op;
7803 break;
7804 }
7805 assert(insert_block); /* should be handled by the "num_defined == 0" case above */
7806 phi->operands[1] = Operand(dst.regClass());
7807 phi->definitions[0] = Definition(dst);
7808 insert_block->instructions.emplace(insert_block->instructions.begin(), std::move(phi));
7809 return;
7810 }
7811
7812 /* try to scalarize vector phis */
7813 if (instr->dest.ssa.bit_size != 1 && dst.size() > 1) {
7814 // TODO: scalarize linear phis on divergent ifs
7815 bool can_scalarize = (opcode == aco_opcode::p_phi || !(ctx->block->kind & block_kind_merge));
7816 std::array<Temp, NIR_MAX_VEC_COMPONENTS> new_vec;
7817 for (unsigned i = 0; can_scalarize && (i < num_operands); i++) {
7818 Operand src = operands[i];
7819 if (src.isTemp() && ctx->allocated_vec.find(src.tempId()) == ctx->allocated_vec.end())
7820 can_scalarize = false;
7821 }
7822 if (can_scalarize) {
7823 unsigned num_components = instr->dest.ssa.num_components;
7824 assert(dst.size() % num_components == 0);
7825 RegClass rc = RegClass(dst.type(), dst.size() / num_components);
7826
7827 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
7828 for (unsigned k = 0; k < num_components; k++) {
7829 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
7830 for (unsigned i = 0; i < num_operands; i++) {
7831 Operand src = operands[i];
7832 phi->operands[i] = src.isTemp() ? Operand(ctx->allocated_vec[src.tempId()][k]) : Operand(rc);
7833 }
7834 Temp phi_dst = {ctx->program->allocateId(), rc};
7835 phi->definitions[0] = Definition(phi_dst);
7836 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
7837 new_vec[k] = phi_dst;
7838 vec->operands[k] = Operand(phi_dst);
7839 }
7840 vec->definitions[0] = Definition(dst);
7841 ctx->block->instructions.emplace_back(std::move(vec));
7842 ctx->allocated_vec.emplace(dst.id(), new_vec);
7843 return;
7844 }
7845 }
7846
7847 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
7848 for (unsigned i = 0; i < num_operands; i++)
7849 phi->operands[i] = operands[i];
7850 phi->definitions[0] = Definition(dst);
7851 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
7852 }
7853
7854
7855 void visit_undef(isel_context *ctx, nir_ssa_undef_instr *instr)
7856 {
7857 Temp dst = get_ssa_temp(ctx, &instr->def);
7858
7859 assert(dst.type() == RegType::sgpr);
7860
7861 if (dst.size() == 1) {
7862 Builder(ctx->program, ctx->block).copy(Definition(dst), Operand(0u));
7863 } else {
7864 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
7865 for (unsigned i = 0; i < dst.size(); i++)
7866 vec->operands[i] = Operand(0u);
7867 vec->definitions[0] = Definition(dst);
7868 ctx->block->instructions.emplace_back(std::move(vec));
7869 }
7870 }
7871
7872 void visit_jump(isel_context *ctx, nir_jump_instr *instr)
7873 {
7874 Builder bld(ctx->program, ctx->block);
7875 Block *logical_target;
7876 append_logical_end(ctx->block);
7877 unsigned idx = ctx->block->index;
7878
7879 switch (instr->type) {
7880 case nir_jump_break:
7881 logical_target = ctx->cf_info.parent_loop.exit;
7882 add_logical_edge(idx, logical_target);
7883 ctx->block->kind |= block_kind_break;
7884
7885 if (!ctx->cf_info.parent_if.is_divergent &&
7886 !ctx->cf_info.parent_loop.has_divergent_continue) {
7887 /* uniform break - directly jump out of the loop */
7888 ctx->block->kind |= block_kind_uniform;
7889 ctx->cf_info.has_branch = true;
7890 bld.branch(aco_opcode::p_branch);
7891 add_linear_edge(idx, logical_target);
7892 return;
7893 }
7894 ctx->cf_info.parent_loop.has_divergent_branch = true;
7895 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
7896 break;
7897 case nir_jump_continue:
7898 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
7899 add_logical_edge(idx, logical_target);
7900 ctx->block->kind |= block_kind_continue;
7901
7902 if (ctx->cf_info.parent_if.is_divergent) {
7903 /* for potential uniform breaks after this continue,
7904 we must ensure that they are handled correctly */
7905 ctx->cf_info.parent_loop.has_divergent_continue = true;
7906 ctx->cf_info.parent_loop.has_divergent_branch = true;
7907 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
7908 } else {
7909 /* uniform continue - directly jump to the loop header */
7910 ctx->block->kind |= block_kind_uniform;
7911 ctx->cf_info.has_branch = true;
7912 bld.branch(aco_opcode::p_branch);
7913 add_linear_edge(idx, logical_target);
7914 return;
7915 }
7916 break;
7917 default:
7918 fprintf(stderr, "Unknown NIR jump instr: ");
7919 nir_print_instr(&instr->instr, stderr);
7920 fprintf(stderr, "\n");
7921 abort();
7922 }
7923
7924 if (ctx->cf_info.parent_if.is_divergent && !ctx->cf_info.exec_potentially_empty_break) {
7925 ctx->cf_info.exec_potentially_empty_break = true;
7926 ctx->cf_info.exec_potentially_empty_break_depth = ctx->cf_info.loop_nest_depth;
7927 }
7928
7929 /* remove critical edges from linear CFG */
7930 bld.branch(aco_opcode::p_branch);
7931 Block* break_block = ctx->program->create_and_insert_block();
7932 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
7933 break_block->kind |= block_kind_uniform;
7934 add_linear_edge(idx, break_block);
7935 /* the loop_header pointer might be invalidated by this point */
7936 if (instr->type == nir_jump_continue)
7937 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
7938 add_linear_edge(break_block->index, logical_target);
7939 bld.reset(break_block);
7940 bld.branch(aco_opcode::p_branch);
7941
7942 Block* continue_block = ctx->program->create_and_insert_block();
7943 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
7944 add_linear_edge(idx, continue_block);
7945 append_logical_start(continue_block);
7946 ctx->block = continue_block;
7947 return;
7948 }
7949
7950 void visit_block(isel_context *ctx, nir_block *block)
7951 {
7952 nir_foreach_instr(instr, block) {
7953 switch (instr->type) {
7954 case nir_instr_type_alu:
7955 visit_alu_instr(ctx, nir_instr_as_alu(instr));
7956 break;
7957 case nir_instr_type_load_const:
7958 visit_load_const(ctx, nir_instr_as_load_const(instr));
7959 break;
7960 case nir_instr_type_intrinsic:
7961 visit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
7962 break;
7963 case nir_instr_type_tex:
7964 visit_tex(ctx, nir_instr_as_tex(instr));
7965 break;
7966 case nir_instr_type_phi:
7967 visit_phi(ctx, nir_instr_as_phi(instr));
7968 break;
7969 case nir_instr_type_ssa_undef:
7970 visit_undef(ctx, nir_instr_as_ssa_undef(instr));
7971 break;
7972 case nir_instr_type_deref:
7973 break;
7974 case nir_instr_type_jump:
7975 visit_jump(ctx, nir_instr_as_jump(instr));
7976 break;
7977 default:
7978 fprintf(stderr, "Unknown NIR instr type: ");
7979 nir_print_instr(instr, stderr);
7980 fprintf(stderr, "\n");
7981 //abort();
7982 }
7983 }
7984
7985 if (!ctx->cf_info.parent_loop.has_divergent_branch)
7986 ctx->cf_info.nir_to_aco[block->index] = ctx->block->index;
7987 }
7988
7989
7990
7991 static void visit_loop(isel_context *ctx, nir_loop *loop)
7992 {
7993 //TODO: we might want to wrap the loop around a branch if exec_potentially_empty=true
7994 append_logical_end(ctx->block);
7995 ctx->block->kind |= block_kind_loop_preheader | block_kind_uniform;
7996 Builder bld(ctx->program, ctx->block);
7997 bld.branch(aco_opcode::p_branch);
7998 unsigned loop_preheader_idx = ctx->block->index;
7999
8000 Block loop_exit = Block();
8001 loop_exit.loop_nest_depth = ctx->cf_info.loop_nest_depth;
8002 loop_exit.kind |= (block_kind_loop_exit | (ctx->block->kind & block_kind_top_level));
8003
8004 Block* loop_header = ctx->program->create_and_insert_block();
8005 loop_header->loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
8006 loop_header->kind |= block_kind_loop_header;
8007 add_edge(loop_preheader_idx, loop_header);
8008 ctx->block = loop_header;
8009
8010 /* emit loop body */
8011 unsigned loop_header_idx = loop_header->index;
8012 loop_info_RAII loop_raii(ctx, loop_header_idx, &loop_exit);
8013 append_logical_start(ctx->block);
8014 visit_cf_list(ctx, &loop->body);
8015
8016 //TODO: what if a loop ends with a unconditional or uniformly branched continue and this branch is never taken?
8017 if (!ctx->cf_info.has_branch) {
8018 append_logical_end(ctx->block);
8019 if (ctx->cf_info.exec_potentially_empty_discard || ctx->cf_info.exec_potentially_empty_break) {
8020 /* Discards can result in code running with an empty exec mask.
8021 * This would result in divergent breaks not ever being taken. As a
8022 * workaround, break the loop when the loop mask is empty instead of
8023 * always continuing. */
8024 ctx->block->kind |= (block_kind_continue_or_break | block_kind_uniform);
8025 unsigned block_idx = ctx->block->index;
8026
8027 /* create helper blocks to avoid critical edges */
8028 Block *break_block = ctx->program->create_and_insert_block();
8029 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8030 break_block->kind = block_kind_uniform;
8031 bld.reset(break_block);
8032 bld.branch(aco_opcode::p_branch);
8033 add_linear_edge(block_idx, break_block);
8034 add_linear_edge(break_block->index, &loop_exit);
8035
8036 Block *continue_block = ctx->program->create_and_insert_block();
8037 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8038 continue_block->kind = block_kind_uniform;
8039 bld.reset(continue_block);
8040 bld.branch(aco_opcode::p_branch);
8041 add_linear_edge(block_idx, continue_block);
8042 add_linear_edge(continue_block->index, &ctx->program->blocks[loop_header_idx]);
8043
8044 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8045 add_logical_edge(block_idx, &ctx->program->blocks[loop_header_idx]);
8046 ctx->block = &ctx->program->blocks[block_idx];
8047 } else {
8048 ctx->block->kind |= (block_kind_continue | block_kind_uniform);
8049 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8050 add_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
8051 else
8052 add_linear_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
8053 }
8054
8055 bld.reset(ctx->block);
8056 bld.branch(aco_opcode::p_branch);
8057 }
8058
8059 /* fixup phis in loop header from unreachable blocks */
8060 if (ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch) {
8061 bool linear = ctx->cf_info.has_branch;
8062 bool logical = ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch;
8063 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
8064 if ((logical && instr->opcode == aco_opcode::p_phi) ||
8065 (linear && instr->opcode == aco_opcode::p_linear_phi)) {
8066 /* the last operand should be the one that needs to be removed */
8067 instr->operands.pop_back();
8068 } else if (!is_phi(instr)) {
8069 break;
8070 }
8071 }
8072 }
8073
8074 ctx->cf_info.has_branch = false;
8075
8076 // TODO: if the loop has not a single exit, we must add one °°
8077 /* emit loop successor block */
8078 ctx->block = ctx->program->insert_block(std::move(loop_exit));
8079 append_logical_start(ctx->block);
8080
8081 #if 0
8082 // TODO: check if it is beneficial to not branch on continues
8083 /* trim linear phis in loop header */
8084 for (auto&& instr : loop_entry->instructions) {
8085 if (instr->opcode == aco_opcode::p_linear_phi) {
8086 aco_ptr<Pseudo_instruction> new_phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, loop_entry->linear_predecessors.size(), 1)};
8087 new_phi->definitions[0] = instr->definitions[0];
8088 for (unsigned i = 0; i < new_phi->operands.size(); i++)
8089 new_phi->operands[i] = instr->operands[i];
8090 /* check that the remaining operands are all the same */
8091 for (unsigned i = new_phi->operands.size(); i < instr->operands.size(); i++)
8092 assert(instr->operands[i].tempId() == instr->operands.back().tempId());
8093 instr.swap(new_phi);
8094 } else if (instr->opcode == aco_opcode::p_phi) {
8095 continue;
8096 } else {
8097 break;
8098 }
8099 }
8100 #endif
8101 }
8102
8103 static void begin_divergent_if_then(isel_context *ctx, if_context *ic, Temp cond)
8104 {
8105 ic->cond = cond;
8106
8107 append_logical_end(ctx->block);
8108 ctx->block->kind |= block_kind_branch;
8109
8110 /* branch to linear then block */
8111 assert(cond.regClass() == ctx->program->lane_mask);
8112 aco_ptr<Pseudo_branch_instruction> branch;
8113 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
8114 branch->operands[0] = Operand(cond);
8115 ctx->block->instructions.push_back(std::move(branch));
8116
8117 ic->BB_if_idx = ctx->block->index;
8118 ic->BB_invert = Block();
8119 ic->BB_invert.loop_nest_depth = ctx->cf_info.loop_nest_depth;
8120 /* Invert blocks are intentionally not marked as top level because they
8121 * are not part of the logical cfg. */
8122 ic->BB_invert.kind |= block_kind_invert;
8123 ic->BB_endif = Block();
8124 ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
8125 ic->BB_endif.kind |= (block_kind_merge | (ctx->block->kind & block_kind_top_level));
8126
8127 ic->exec_potentially_empty_discard_old = ctx->cf_info.exec_potentially_empty_discard;
8128 ic->exec_potentially_empty_break_old = ctx->cf_info.exec_potentially_empty_break;
8129 ic->exec_potentially_empty_break_depth_old = ctx->cf_info.exec_potentially_empty_break_depth;
8130 ic->divergent_old = ctx->cf_info.parent_if.is_divergent;
8131 ctx->cf_info.parent_if.is_divergent = true;
8132
8133 /* divergent branches use cbranch_execz */
8134 ctx->cf_info.exec_potentially_empty_discard = false;
8135 ctx->cf_info.exec_potentially_empty_break = false;
8136 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
8137
8138 /** emit logical then block */
8139 Block* BB_then_logical = ctx->program->create_and_insert_block();
8140 BB_then_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8141 add_edge(ic->BB_if_idx, BB_then_logical);
8142 ctx->block = BB_then_logical;
8143 append_logical_start(BB_then_logical);
8144 }
8145
8146 static void begin_divergent_if_else(isel_context *ctx, if_context *ic)
8147 {
8148 Block *BB_then_logical = ctx->block;
8149 append_logical_end(BB_then_logical);
8150 /* branch from logical then block to invert block */
8151 aco_ptr<Pseudo_branch_instruction> branch;
8152 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8153 BB_then_logical->instructions.emplace_back(std::move(branch));
8154 add_linear_edge(BB_then_logical->index, &ic->BB_invert);
8155 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8156 add_logical_edge(BB_then_logical->index, &ic->BB_endif);
8157 BB_then_logical->kind |= block_kind_uniform;
8158 assert(!ctx->cf_info.has_branch);
8159 ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
8160 ctx->cf_info.parent_loop.has_divergent_branch = false;
8161
8162 /** emit linear then block */
8163 Block* BB_then_linear = ctx->program->create_and_insert_block();
8164 BB_then_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8165 BB_then_linear->kind |= block_kind_uniform;
8166 add_linear_edge(ic->BB_if_idx, BB_then_linear);
8167 /* branch from linear then block to invert block */
8168 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8169 BB_then_linear->instructions.emplace_back(std::move(branch));
8170 add_linear_edge(BB_then_linear->index, &ic->BB_invert);
8171
8172 /** emit invert merge block */
8173 ctx->block = ctx->program->insert_block(std::move(ic->BB_invert));
8174 ic->invert_idx = ctx->block->index;
8175
8176 /* branch to linear else block (skip else) */
8177 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_nz, Format::PSEUDO_BRANCH, 1, 0));
8178 branch->operands[0] = Operand(ic->cond);
8179 ctx->block->instructions.push_back(std::move(branch));
8180
8181 ic->exec_potentially_empty_discard_old |= ctx->cf_info.exec_potentially_empty_discard;
8182 ic->exec_potentially_empty_break_old |= ctx->cf_info.exec_potentially_empty_break;
8183 ic->exec_potentially_empty_break_depth_old =
8184 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
8185 /* divergent branches use cbranch_execz */
8186 ctx->cf_info.exec_potentially_empty_discard = false;
8187 ctx->cf_info.exec_potentially_empty_break = false;
8188 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
8189
8190 /** emit logical else block */
8191 Block* BB_else_logical = ctx->program->create_and_insert_block();
8192 BB_else_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8193 add_logical_edge(ic->BB_if_idx, BB_else_logical);
8194 add_linear_edge(ic->invert_idx, BB_else_logical);
8195 ctx->block = BB_else_logical;
8196 append_logical_start(BB_else_logical);
8197 }
8198
8199 static void end_divergent_if(isel_context *ctx, if_context *ic)
8200 {
8201 Block *BB_else_logical = ctx->block;
8202 append_logical_end(BB_else_logical);
8203
8204 /* branch from logical else block to endif block */
8205 aco_ptr<Pseudo_branch_instruction> branch;
8206 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8207 BB_else_logical->instructions.emplace_back(std::move(branch));
8208 add_linear_edge(BB_else_logical->index, &ic->BB_endif);
8209 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8210 add_logical_edge(BB_else_logical->index, &ic->BB_endif);
8211 BB_else_logical->kind |= block_kind_uniform;
8212
8213 assert(!ctx->cf_info.has_branch);
8214 ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
8215
8216
8217 /** emit linear else block */
8218 Block* BB_else_linear = ctx->program->create_and_insert_block();
8219 BB_else_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8220 BB_else_linear->kind |= block_kind_uniform;
8221 add_linear_edge(ic->invert_idx, BB_else_linear);
8222
8223 /* branch from linear else block to endif block */
8224 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8225 BB_else_linear->instructions.emplace_back(std::move(branch));
8226 add_linear_edge(BB_else_linear->index, &ic->BB_endif);
8227
8228
8229 /** emit endif merge block */
8230 ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
8231 append_logical_start(ctx->block);
8232
8233
8234 ctx->cf_info.parent_if.is_divergent = ic->divergent_old;
8235 ctx->cf_info.exec_potentially_empty_discard |= ic->exec_potentially_empty_discard_old;
8236 ctx->cf_info.exec_potentially_empty_break |= ic->exec_potentially_empty_break_old;
8237 ctx->cf_info.exec_potentially_empty_break_depth =
8238 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
8239 if (ctx->cf_info.loop_nest_depth == ctx->cf_info.exec_potentially_empty_break_depth &&
8240 !ctx->cf_info.parent_if.is_divergent) {
8241 ctx->cf_info.exec_potentially_empty_break = false;
8242 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
8243 }
8244 /* uniform control flow never has an empty exec-mask */
8245 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent) {
8246 ctx->cf_info.exec_potentially_empty_discard = false;
8247 ctx->cf_info.exec_potentially_empty_break = false;
8248 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
8249 }
8250 }
8251
8252 static void visit_if(isel_context *ctx, nir_if *if_stmt)
8253 {
8254 Temp cond = get_ssa_temp(ctx, if_stmt->condition.ssa);
8255 Builder bld(ctx->program, ctx->block);
8256 aco_ptr<Pseudo_branch_instruction> branch;
8257
8258 if (!ctx->divergent_vals[if_stmt->condition.ssa->index]) { /* uniform condition */
8259 /**
8260 * Uniform conditionals are represented in the following way*) :
8261 *
8262 * The linear and logical CFG:
8263 * BB_IF
8264 * / \
8265 * BB_THEN (logical) BB_ELSE (logical)
8266 * \ /
8267 * BB_ENDIF
8268 *
8269 * *) Exceptions may be due to break and continue statements within loops
8270 * If a break/continue happens within uniform control flow, it branches
8271 * to the loop exit/entry block. Otherwise, it branches to the next
8272 * merge block.
8273 **/
8274 append_logical_end(ctx->block);
8275 ctx->block->kind |= block_kind_uniform;
8276
8277 /* emit branch */
8278 assert(cond.regClass() == bld.lm);
8279 // TODO: in a post-RA optimizer, we could check if the condition is in VCC and omit this instruction
8280 cond = bool_to_scalar_condition(ctx, cond);
8281
8282 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
8283 branch->operands[0] = Operand(cond);
8284 branch->operands[0].setFixed(scc);
8285 ctx->block->instructions.emplace_back(std::move(branch));
8286
8287 unsigned BB_if_idx = ctx->block->index;
8288 Block BB_endif = Block();
8289 BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
8290 BB_endif.kind |= ctx->block->kind & block_kind_top_level;
8291
8292 /** emit then block */
8293 Block* BB_then = ctx->program->create_and_insert_block();
8294 BB_then->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8295 add_edge(BB_if_idx, BB_then);
8296 append_logical_start(BB_then);
8297 ctx->block = BB_then;
8298 visit_cf_list(ctx, &if_stmt->then_list);
8299 BB_then = ctx->block;
8300 bool then_branch = ctx->cf_info.has_branch;
8301 bool then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
8302
8303 if (!then_branch) {
8304 append_logical_end(BB_then);
8305 /* branch from then block to endif block */
8306 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8307 BB_then->instructions.emplace_back(std::move(branch));
8308 add_linear_edge(BB_then->index, &BB_endif);
8309 if (!then_branch_divergent)
8310 add_logical_edge(BB_then->index, &BB_endif);
8311 BB_then->kind |= block_kind_uniform;
8312 }
8313
8314 ctx->cf_info.has_branch = false;
8315 ctx->cf_info.parent_loop.has_divergent_branch = false;
8316
8317 /** emit else block */
8318 Block* BB_else = ctx->program->create_and_insert_block();
8319 BB_else->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8320 add_edge(BB_if_idx, BB_else);
8321 append_logical_start(BB_else);
8322 ctx->block = BB_else;
8323 visit_cf_list(ctx, &if_stmt->else_list);
8324 BB_else = ctx->block;
8325
8326 if (!ctx->cf_info.has_branch) {
8327 append_logical_end(BB_else);
8328 /* branch from then block to endif block */
8329 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8330 BB_else->instructions.emplace_back(std::move(branch));
8331 add_linear_edge(BB_else->index, &BB_endif);
8332 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8333 add_logical_edge(BB_else->index, &BB_endif);
8334 BB_else->kind |= block_kind_uniform;
8335 }
8336
8337 ctx->cf_info.has_branch &= then_branch;
8338 ctx->cf_info.parent_loop.has_divergent_branch &= then_branch_divergent;
8339
8340 /** emit endif merge block */
8341 if (!ctx->cf_info.has_branch) {
8342 ctx->block = ctx->program->insert_block(std::move(BB_endif));
8343 append_logical_start(ctx->block);
8344 }
8345 } else { /* non-uniform condition */
8346 /**
8347 * To maintain a logical and linear CFG without critical edges,
8348 * non-uniform conditionals are represented in the following way*) :
8349 *
8350 * The linear CFG:
8351 * BB_IF
8352 * / \
8353 * BB_THEN (logical) BB_THEN (linear)
8354 * \ /
8355 * BB_INVERT (linear)
8356 * / \
8357 * BB_ELSE (logical) BB_ELSE (linear)
8358 * \ /
8359 * BB_ENDIF
8360 *
8361 * The logical CFG:
8362 * BB_IF
8363 * / \
8364 * BB_THEN (logical) BB_ELSE (logical)
8365 * \ /
8366 * BB_ENDIF
8367 *
8368 * *) Exceptions may be due to break and continue statements within loops
8369 **/
8370
8371 if_context ic;
8372
8373 begin_divergent_if_then(ctx, &ic, cond);
8374 visit_cf_list(ctx, &if_stmt->then_list);
8375
8376 begin_divergent_if_else(ctx, &ic);
8377 visit_cf_list(ctx, &if_stmt->else_list);
8378
8379 end_divergent_if(ctx, &ic);
8380 }
8381 }
8382
8383 static void visit_cf_list(isel_context *ctx,
8384 struct exec_list *list)
8385 {
8386 foreach_list_typed(nir_cf_node, node, node, list) {
8387 switch (node->type) {
8388 case nir_cf_node_block:
8389 visit_block(ctx, nir_cf_node_as_block(node));
8390 break;
8391 case nir_cf_node_if:
8392 visit_if(ctx, nir_cf_node_as_if(node));
8393 break;
8394 case nir_cf_node_loop:
8395 visit_loop(ctx, nir_cf_node_as_loop(node));
8396 break;
8397 default:
8398 unreachable("unimplemented cf list type");
8399 }
8400 }
8401 }
8402
8403 static void export_vs_varying(isel_context *ctx, int slot, bool is_pos, int *next_pos)
8404 {
8405 int offset = ctx->program->info->vs.outinfo.vs_output_param_offset[slot];
8406 uint64_t mask = ctx->outputs.mask[slot];
8407 if (!is_pos && !mask)
8408 return;
8409 if (!is_pos && offset == AC_EXP_PARAM_UNDEFINED)
8410 return;
8411 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
8412 exp->enabled_mask = mask;
8413 for (unsigned i = 0; i < 4; ++i) {
8414 if (mask & (1 << i))
8415 exp->operands[i] = Operand(ctx->outputs.outputs[slot][i]);
8416 else
8417 exp->operands[i] = Operand(v1);
8418 }
8419 /* Navi10-14 skip POS0 exports if EXEC=0 and DONE=0, causing a hang.
8420 * Setting valid_mask=1 prevents it and has no other effect.
8421 */
8422 exp->valid_mask = ctx->options->chip_class >= GFX10 && is_pos && *next_pos == 0;
8423 exp->done = false;
8424 exp->compressed = false;
8425 if (is_pos)
8426 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
8427 else
8428 exp->dest = V_008DFC_SQ_EXP_PARAM + offset;
8429 ctx->block->instructions.emplace_back(std::move(exp));
8430 }
8431
8432 static void export_vs_psiz_layer_viewport(isel_context *ctx, int *next_pos)
8433 {
8434 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
8435 exp->enabled_mask = 0;
8436 for (unsigned i = 0; i < 4; ++i)
8437 exp->operands[i] = Operand(v1);
8438 if (ctx->outputs.mask[VARYING_SLOT_PSIZ]) {
8439 exp->operands[0] = Operand(ctx->outputs.outputs[VARYING_SLOT_PSIZ][0]);
8440 exp->enabled_mask |= 0x1;
8441 }
8442 if (ctx->outputs.mask[VARYING_SLOT_LAYER]) {
8443 exp->operands[2] = Operand(ctx->outputs.outputs[VARYING_SLOT_LAYER][0]);
8444 exp->enabled_mask |= 0x4;
8445 }
8446 if (ctx->outputs.mask[VARYING_SLOT_VIEWPORT]) {
8447 if (ctx->options->chip_class < GFX9) {
8448 exp->operands[3] = Operand(ctx->outputs.outputs[VARYING_SLOT_VIEWPORT][0]);
8449 exp->enabled_mask |= 0x8;
8450 } else {
8451 Builder bld(ctx->program, ctx->block);
8452
8453 Temp out = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u),
8454 Operand(ctx->outputs.outputs[VARYING_SLOT_VIEWPORT][0]));
8455 if (exp->operands[2].isTemp())
8456 out = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(out), exp->operands[2]);
8457
8458 exp->operands[2] = Operand(out);
8459 exp->enabled_mask |= 0x4;
8460 }
8461 }
8462 exp->valid_mask = ctx->options->chip_class >= GFX10 && *next_pos == 0;
8463 exp->done = false;
8464 exp->compressed = false;
8465 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
8466 ctx->block->instructions.emplace_back(std::move(exp));
8467 }
8468
8469 static void create_vs_exports(isel_context *ctx)
8470 {
8471 radv_vs_output_info *outinfo = &ctx->program->info->vs.outinfo;
8472
8473 if (outinfo->export_prim_id) {
8474 ctx->outputs.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
8475 ctx->outputs.outputs[VARYING_SLOT_PRIMITIVE_ID][0] = get_arg(ctx, ctx->args->vs_prim_id);
8476 }
8477
8478 if (ctx->options->key.has_multiview_view_index) {
8479 ctx->outputs.mask[VARYING_SLOT_LAYER] |= 0x1;
8480 ctx->outputs.outputs[VARYING_SLOT_LAYER][0] = as_vgpr(ctx, get_arg(ctx, ctx->args->ac.view_index));
8481 }
8482
8483 /* the order these position exports are created is important */
8484 int next_pos = 0;
8485 export_vs_varying(ctx, VARYING_SLOT_POS, true, &next_pos);
8486 if (outinfo->writes_pointsize || outinfo->writes_layer || outinfo->writes_viewport_index) {
8487 export_vs_psiz_layer_viewport(ctx, &next_pos);
8488 }
8489 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
8490 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, true, &next_pos);
8491 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
8492 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, true, &next_pos);
8493
8494 if (ctx->export_clip_dists) {
8495 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
8496 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, false, &next_pos);
8497 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
8498 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, false, &next_pos);
8499 }
8500
8501 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
8502 if (i < VARYING_SLOT_VAR0 && i != VARYING_SLOT_LAYER &&
8503 i != VARYING_SLOT_PRIMITIVE_ID)
8504 continue;
8505
8506 export_vs_varying(ctx, i, false, NULL);
8507 }
8508 }
8509
8510 static void export_fs_mrt_z(isel_context *ctx)
8511 {
8512 Builder bld(ctx->program, ctx->block);
8513 unsigned enabled_channels = 0;
8514 bool compr = false;
8515 Operand values[4];
8516
8517 for (unsigned i = 0; i < 4; ++i) {
8518 values[i] = Operand(v1);
8519 }
8520
8521 /* Both stencil and sample mask only need 16-bits. */
8522 if (!ctx->program->info->ps.writes_z &&
8523 (ctx->program->info->ps.writes_stencil ||
8524 ctx->program->info->ps.writes_sample_mask)) {
8525 compr = true; /* COMPR flag */
8526
8527 if (ctx->program->info->ps.writes_stencil) {
8528 /* Stencil should be in X[23:16]. */
8529 values[0] = Operand(ctx->outputs.outputs[FRAG_RESULT_STENCIL][0]);
8530 values[0] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u), values[0]);
8531 enabled_channels |= 0x3;
8532 }
8533
8534 if (ctx->program->info->ps.writes_sample_mask) {
8535 /* SampleMask should be in Y[15:0]. */
8536 values[1] = Operand(ctx->outputs.outputs[FRAG_RESULT_SAMPLE_MASK][0]);
8537 enabled_channels |= 0xc;
8538 }
8539 } else {
8540 if (ctx->program->info->ps.writes_z) {
8541 values[0] = Operand(ctx->outputs.outputs[FRAG_RESULT_DEPTH][0]);
8542 enabled_channels |= 0x1;
8543 }
8544
8545 if (ctx->program->info->ps.writes_stencil) {
8546 values[1] = Operand(ctx->outputs.outputs[FRAG_RESULT_STENCIL][0]);
8547 enabled_channels |= 0x2;
8548 }
8549
8550 if (ctx->program->info->ps.writes_sample_mask) {
8551 values[2] = Operand(ctx->outputs.outputs[FRAG_RESULT_SAMPLE_MASK][0]);
8552 enabled_channels |= 0x4;
8553 }
8554 }
8555
8556 /* GFX6 (except OLAND and HAINAN) has a bug that it only looks at the X
8557 * writemask component.
8558 */
8559 if (ctx->options->chip_class == GFX6 &&
8560 ctx->options->family != CHIP_OLAND &&
8561 ctx->options->family != CHIP_HAINAN) {
8562 enabled_channels |= 0x1;
8563 }
8564
8565 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
8566 enabled_channels, V_008DFC_SQ_EXP_MRTZ, compr);
8567 }
8568
8569 static void export_fs_mrt_color(isel_context *ctx, int slot)
8570 {
8571 Builder bld(ctx->program, ctx->block);
8572 unsigned write_mask = ctx->outputs.mask[slot];
8573 Operand values[4];
8574
8575 for (unsigned i = 0; i < 4; ++i) {
8576 if (write_mask & (1 << i)) {
8577 values[i] = Operand(ctx->outputs.outputs[slot][i]);
8578 } else {
8579 values[i] = Operand(v1);
8580 }
8581 }
8582
8583 unsigned target, col_format;
8584 unsigned enabled_channels = 0;
8585 aco_opcode compr_op = (aco_opcode)0;
8586
8587 slot -= FRAG_RESULT_DATA0;
8588 target = V_008DFC_SQ_EXP_MRT + slot;
8589 col_format = (ctx->options->key.fs.col_format >> (4 * slot)) & 0xf;
8590
8591 bool is_int8 = (ctx->options->key.fs.is_int8 >> slot) & 1;
8592 bool is_int10 = (ctx->options->key.fs.is_int10 >> slot) & 1;
8593
8594 switch (col_format)
8595 {
8596 case V_028714_SPI_SHADER_ZERO:
8597 enabled_channels = 0; /* writemask */
8598 target = V_008DFC_SQ_EXP_NULL;
8599 break;
8600
8601 case V_028714_SPI_SHADER_32_R:
8602 enabled_channels = 1;
8603 break;
8604
8605 case V_028714_SPI_SHADER_32_GR:
8606 enabled_channels = 0x3;
8607 break;
8608
8609 case V_028714_SPI_SHADER_32_AR:
8610 if (ctx->options->chip_class >= GFX10) {
8611 /* Special case: on GFX10, the outputs are different for 32_AR */
8612 enabled_channels = 0x3;
8613 values[1] = values[3];
8614 values[3] = Operand(v1);
8615 } else {
8616 enabled_channels = 0x9;
8617 }
8618 break;
8619
8620 case V_028714_SPI_SHADER_FP16_ABGR:
8621 enabled_channels = 0x5;
8622 compr_op = aco_opcode::v_cvt_pkrtz_f16_f32;
8623 break;
8624
8625 case V_028714_SPI_SHADER_UNORM16_ABGR:
8626 enabled_channels = 0x5;
8627 compr_op = aco_opcode::v_cvt_pknorm_u16_f32;
8628 break;
8629
8630 case V_028714_SPI_SHADER_SNORM16_ABGR:
8631 enabled_channels = 0x5;
8632 compr_op = aco_opcode::v_cvt_pknorm_i16_f32;
8633 break;
8634
8635 case V_028714_SPI_SHADER_UINT16_ABGR: {
8636 enabled_channels = 0x5;
8637 compr_op = aco_opcode::v_cvt_pk_u16_u32;
8638 if (is_int8 || is_int10) {
8639 /* clamp */
8640 uint32_t max_rgb = is_int8 ? 255 : is_int10 ? 1023 : 0;
8641 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
8642
8643 for (unsigned i = 0; i < 4; i++) {
8644 if ((write_mask >> i) & 1) {
8645 values[i] = bld.vop2(aco_opcode::v_min_u32, bld.def(v1),
8646 i == 3 && is_int10 ? Operand(3u) : Operand(max_rgb_val),
8647 values[i]);
8648 }
8649 }
8650 }
8651 break;
8652 }
8653
8654 case V_028714_SPI_SHADER_SINT16_ABGR:
8655 enabled_channels = 0x5;
8656 compr_op = aco_opcode::v_cvt_pk_i16_i32;
8657 if (is_int8 || is_int10) {
8658 /* clamp */
8659 uint32_t max_rgb = is_int8 ? 127 : is_int10 ? 511 : 0;
8660 uint32_t min_rgb = is_int8 ? -128 :is_int10 ? -512 : 0;
8661 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
8662 Temp min_rgb_val = bld.copy(bld.def(s1), Operand(min_rgb));
8663
8664 for (unsigned i = 0; i < 4; i++) {
8665 if ((write_mask >> i) & 1) {
8666 values[i] = bld.vop2(aco_opcode::v_min_i32, bld.def(v1),
8667 i == 3 && is_int10 ? Operand(1u) : Operand(max_rgb_val),
8668 values[i]);
8669 values[i] = bld.vop2(aco_opcode::v_max_i32, bld.def(v1),
8670 i == 3 && is_int10 ? Operand(-2u) : Operand(min_rgb_val),
8671 values[i]);
8672 }
8673 }
8674 }
8675 break;
8676
8677 case V_028714_SPI_SHADER_32_ABGR:
8678 enabled_channels = 0xF;
8679 break;
8680
8681 default:
8682 break;
8683 }
8684
8685 if (target == V_008DFC_SQ_EXP_NULL)
8686 return;
8687
8688 if ((bool) compr_op) {
8689 for (int i = 0; i < 2; i++) {
8690 /* check if at least one of the values to be compressed is enabled */
8691 unsigned enabled = (write_mask >> (i*2) | write_mask >> (i*2+1)) & 0x1;
8692 if (enabled) {
8693 enabled_channels |= enabled << (i*2);
8694 values[i] = bld.vop3(compr_op, bld.def(v1),
8695 values[i*2].isUndefined() ? Operand(0u) : values[i*2],
8696 values[i*2+1].isUndefined() ? Operand(0u): values[i*2+1]);
8697 } else {
8698 values[i] = Operand(v1);
8699 }
8700 }
8701 values[2] = Operand(v1);
8702 values[3] = Operand(v1);
8703 } else {
8704 for (int i = 0; i < 4; i++)
8705 values[i] = enabled_channels & (1 << i) ? values[i] : Operand(v1);
8706 }
8707
8708 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
8709 enabled_channels, target, (bool) compr_op);
8710 }
8711
8712 static void create_fs_exports(isel_context *ctx)
8713 {
8714 /* Export depth, stencil and sample mask. */
8715 if (ctx->outputs.mask[FRAG_RESULT_DEPTH] ||
8716 ctx->outputs.mask[FRAG_RESULT_STENCIL] ||
8717 ctx->outputs.mask[FRAG_RESULT_SAMPLE_MASK]) {
8718 export_fs_mrt_z(ctx);
8719 }
8720
8721 /* Export all color render targets. */
8722 for (unsigned i = FRAG_RESULT_DATA0; i < FRAG_RESULT_DATA7 + 1; ++i) {
8723 if (ctx->outputs.mask[i])
8724 export_fs_mrt_color(ctx, i);
8725 }
8726 }
8727
8728 static void emit_stream_output(isel_context *ctx,
8729 Temp const *so_buffers,
8730 Temp const *so_write_offset,
8731 const struct radv_stream_output *output)
8732 {
8733 unsigned num_comps = util_bitcount(output->component_mask);
8734 unsigned writemask = (1 << num_comps) - 1;
8735 unsigned loc = output->location;
8736 unsigned buf = output->buffer;
8737
8738 assert(num_comps && num_comps <= 4);
8739 if (!num_comps || num_comps > 4)
8740 return;
8741
8742 unsigned start = ffs(output->component_mask) - 1;
8743
8744 Temp out[4];
8745 bool all_undef = true;
8746 assert(ctx->stage == vertex_vs || ctx->stage == gs_copy_vs);
8747 for (unsigned i = 0; i < num_comps; i++) {
8748 out[i] = ctx->outputs.outputs[loc][start + i];
8749 all_undef = all_undef && !out[i].id();
8750 }
8751 if (all_undef)
8752 return;
8753
8754 while (writemask) {
8755 int start, count;
8756 u_bit_scan_consecutive_range(&writemask, &start, &count);
8757 if (count == 3 && ctx->options->chip_class == GFX6) {
8758 /* GFX6 doesn't support storing vec3, split it. */
8759 writemask |= 1u << (start + 2);
8760 count = 2;
8761 }
8762
8763 unsigned offset = output->offset + start * 4;
8764
8765 Temp write_data = {ctx->program->allocateId(), RegClass(RegType::vgpr, count)};
8766 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
8767 for (int i = 0; i < count; ++i)
8768 vec->operands[i] = (ctx->outputs.mask[loc] & 1 << (start + i)) ? Operand(out[start + i]) : Operand(0u);
8769 vec->definitions[0] = Definition(write_data);
8770 ctx->block->instructions.emplace_back(std::move(vec));
8771
8772 aco_opcode opcode;
8773 switch (count) {
8774 case 1:
8775 opcode = aco_opcode::buffer_store_dword;
8776 break;
8777 case 2:
8778 opcode = aco_opcode::buffer_store_dwordx2;
8779 break;
8780 case 3:
8781 opcode = aco_opcode::buffer_store_dwordx3;
8782 break;
8783 case 4:
8784 opcode = aco_opcode::buffer_store_dwordx4;
8785 break;
8786 default:
8787 unreachable("Unsupported dword count.");
8788 }
8789
8790 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
8791 store->operands[0] = Operand(so_buffers[buf]);
8792 store->operands[1] = Operand(so_write_offset[buf]);
8793 store->operands[2] = Operand((uint32_t) 0);
8794 store->operands[3] = Operand(write_data);
8795 if (offset > 4095) {
8796 /* Don't think this can happen in RADV, but maybe GL? It's easy to do this anyway. */
8797 Builder bld(ctx->program, ctx->block);
8798 store->operands[0] = bld.vadd32(bld.def(v1), Operand(offset), Operand(so_write_offset[buf]));
8799 } else {
8800 store->offset = offset;
8801 }
8802 store->offen = true;
8803 store->glc = true;
8804 store->dlc = false;
8805 store->slc = true;
8806 store->can_reorder = true;
8807 ctx->block->instructions.emplace_back(std::move(store));
8808 }
8809 }
8810
8811 static void emit_streamout(isel_context *ctx, unsigned stream)
8812 {
8813 Builder bld(ctx->program, ctx->block);
8814
8815 Temp so_buffers[4];
8816 Temp buf_ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->streamout_buffers));
8817 for (unsigned i = 0; i < 4; i++) {
8818 unsigned stride = ctx->program->info->so.strides[i];
8819 if (!stride)
8820 continue;
8821
8822 Operand off = bld.copy(bld.def(s1), Operand(i * 16u));
8823 so_buffers[i] = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), buf_ptr, off);
8824 }
8825
8826 Temp so_vtx_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
8827 get_arg(ctx, ctx->args->streamout_config), Operand(0x70010u));
8828
8829 Temp tid = emit_mbcnt(ctx, bld.def(v1));
8830
8831 Temp can_emit = bld.vopc(aco_opcode::v_cmp_gt_i32, bld.def(bld.lm), so_vtx_count, tid);
8832
8833 if_context ic;
8834 begin_divergent_if_then(ctx, &ic, can_emit);
8835
8836 bld.reset(ctx->block);
8837
8838 Temp so_write_index = bld.vadd32(bld.def(v1), get_arg(ctx, ctx->args->streamout_write_idx), tid);
8839
8840 Temp so_write_offset[4];
8841
8842 for (unsigned i = 0; i < 4; i++) {
8843 unsigned stride = ctx->program->info->so.strides[i];
8844 if (!stride)
8845 continue;
8846
8847 if (stride == 1) {
8848 Temp offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
8849 get_arg(ctx, ctx->args->streamout_write_idx),
8850 get_arg(ctx, ctx->args->streamout_offset[i]));
8851 Temp new_offset = bld.vadd32(bld.def(v1), offset, tid);
8852
8853 so_write_offset[i] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), new_offset);
8854 } else {
8855 Temp offset = bld.v_mul_imm(bld.def(v1), so_write_index, stride * 4u);
8856 Temp offset2 = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(4u),
8857 get_arg(ctx, ctx->args->streamout_offset[i]));
8858 so_write_offset[i] = bld.vadd32(bld.def(v1), offset, offset2);
8859 }
8860 }
8861
8862 for (unsigned i = 0; i < ctx->program->info->so.num_outputs; i++) {
8863 struct radv_stream_output *output =
8864 &ctx->program->info->so.outputs[i];
8865 if (stream != output->stream)
8866 continue;
8867
8868 emit_stream_output(ctx, so_buffers, so_write_offset, output);
8869 }
8870
8871 begin_divergent_if_else(ctx, &ic);
8872 end_divergent_if(ctx, &ic);
8873 }
8874
8875 } /* end namespace */
8876
8877 void split_arguments(isel_context *ctx, Pseudo_instruction *startpgm)
8878 {
8879 /* Split all arguments except for the first (ring_offsets) and the last
8880 * (exec) so that the dead channels don't stay live throughout the program.
8881 */
8882 for (int i = 1; i < startpgm->definitions.size() - 1; i++) {
8883 if (startpgm->definitions[i].regClass().size() > 1) {
8884 emit_split_vector(ctx, startpgm->definitions[i].getTemp(),
8885 startpgm->definitions[i].regClass().size());
8886 }
8887 }
8888 }
8889
8890 void handle_bc_optimize(isel_context *ctx)
8891 {
8892 /* needed when SPI_PS_IN_CONTROL.BC_OPTIMIZE_DISABLE is set to 0 */
8893 Builder bld(ctx->program, ctx->block);
8894 uint32_t spi_ps_input_ena = ctx->program->config->spi_ps_input_ena;
8895 bool uses_center = G_0286CC_PERSP_CENTER_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTER_ENA(spi_ps_input_ena);
8896 bool uses_centroid = G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena);
8897 ctx->persp_centroid = get_arg(ctx, ctx->args->ac.persp_centroid);
8898 ctx->linear_centroid = get_arg(ctx, ctx->args->ac.linear_centroid);
8899 if (uses_center && uses_centroid) {
8900 Temp sel = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)),
8901 get_arg(ctx, ctx->args->ac.prim_mask), Operand(0u));
8902
8903 if (G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena)) {
8904 Temp new_coord[2];
8905 for (unsigned i = 0; i < 2; i++) {
8906 Temp persp_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_centroid), i, v1);
8907 Temp persp_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_center), i, v1);
8908 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8909 persp_centroid, persp_center, sel);
8910 }
8911 ctx->persp_centroid = bld.tmp(v2);
8912 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->persp_centroid),
8913 Operand(new_coord[0]), Operand(new_coord[1]));
8914 emit_split_vector(ctx, ctx->persp_centroid, 2);
8915 }
8916
8917 if (G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena)) {
8918 Temp new_coord[2];
8919 for (unsigned i = 0; i < 2; i++) {
8920 Temp linear_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_centroid), i, v1);
8921 Temp linear_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_center), i, v1);
8922 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8923 linear_centroid, linear_center, sel);
8924 }
8925 ctx->linear_centroid = bld.tmp(v2);
8926 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->linear_centroid),
8927 Operand(new_coord[0]), Operand(new_coord[1]));
8928 emit_split_vector(ctx, ctx->linear_centroid, 2);
8929 }
8930 }
8931 }
8932
8933 void setup_fp_mode(isel_context *ctx, nir_shader *shader)
8934 {
8935 Program *program = ctx->program;
8936
8937 unsigned float_controls = shader->info.float_controls_execution_mode;
8938
8939 program->next_fp_mode.preserve_signed_zero_inf_nan32 =
8940 float_controls & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32;
8941 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 =
8942 float_controls & (FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16 |
8943 FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64);
8944
8945 program->next_fp_mode.must_flush_denorms32 =
8946 float_controls & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32;
8947 program->next_fp_mode.must_flush_denorms16_64 =
8948 float_controls & (FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 |
8949 FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64);
8950
8951 program->next_fp_mode.care_about_round32 =
8952 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32);
8953
8954 program->next_fp_mode.care_about_round16_64 =
8955 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64 |
8956 FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
8957
8958 /* default to preserving fp16 and fp64 denorms, since it's free */
8959 if (program->next_fp_mode.must_flush_denorms16_64)
8960 program->next_fp_mode.denorm16_64 = 0;
8961 else
8962 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
8963
8964 /* preserving fp32 denorms is expensive, so only do it if asked */
8965 if (float_controls & FLOAT_CONTROLS_DENORM_PRESERVE_FP32)
8966 program->next_fp_mode.denorm32 = fp_denorm_keep;
8967 else
8968 program->next_fp_mode.denorm32 = 0;
8969
8970 if (float_controls & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32)
8971 program->next_fp_mode.round32 = fp_round_tz;
8972 else
8973 program->next_fp_mode.round32 = fp_round_ne;
8974
8975 if (float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64))
8976 program->next_fp_mode.round16_64 = fp_round_tz;
8977 else
8978 program->next_fp_mode.round16_64 = fp_round_ne;
8979
8980 ctx->block->fp_mode = program->next_fp_mode;
8981 }
8982
8983 void cleanup_cfg(Program *program)
8984 {
8985 /* create linear_succs/logical_succs */
8986 for (Block& BB : program->blocks) {
8987 for (unsigned idx : BB.linear_preds)
8988 program->blocks[idx].linear_succs.emplace_back(BB.index);
8989 for (unsigned idx : BB.logical_preds)
8990 program->blocks[idx].logical_succs.emplace_back(BB.index);
8991 }
8992 }
8993
8994 void select_program(Program *program,
8995 unsigned shader_count,
8996 struct nir_shader *const *shaders,
8997 ac_shader_config* config,
8998 struct radv_shader_args *args)
8999 {
9000 isel_context ctx = setup_isel_context(program, shader_count, shaders, config, args, false);
9001
9002 for (unsigned i = 0; i < shader_count; i++) {
9003 nir_shader *nir = shaders[i];
9004 init_context(&ctx, nir);
9005
9006 setup_fp_mode(&ctx, nir);
9007
9008 if (!i) {
9009 /* needs to be after init_context() for FS */
9010 Pseudo_instruction *startpgm = add_startpgm(&ctx);
9011 append_logical_start(ctx.block);
9012 split_arguments(&ctx, startpgm);
9013 }
9014
9015 if_context ic;
9016 if (shader_count >= 2) {
9017 Builder bld(ctx.program, ctx.block);
9018 Temp count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(&ctx, args->merged_wave_info), Operand((8u << 16) | (i * 8u)));
9019 Temp thread_id = emit_mbcnt(&ctx, bld.def(v1));
9020 Temp cond = bld.vopc(aco_opcode::v_cmp_gt_u32, bld.hint_vcc(bld.def(bld.lm)), count, thread_id);
9021
9022 begin_divergent_if_then(&ctx, &ic, cond);
9023 }
9024
9025 if (i) {
9026 Builder bld(ctx.program, ctx.block);
9027 assert(ctx.stage == vertex_geometry_gs);
9028 bld.barrier(aco_opcode::p_memory_barrier_shared);
9029 bld.sopp(aco_opcode::s_barrier);
9030
9031 ctx.gs_wave_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1, m0), bld.def(s1, scc), get_arg(&ctx, args->merged_wave_info), Operand((8u << 16) | 16u));
9032 } else if (ctx.stage == geometry_gs)
9033 ctx.gs_wave_id = get_arg(&ctx, args->gs_wave_id);
9034
9035 if (ctx.stage == fragment_fs)
9036 handle_bc_optimize(&ctx);
9037
9038 nir_function_impl *func = nir_shader_get_entrypoint(nir);
9039 visit_cf_list(&ctx, &func->body);
9040
9041 if (ctx.program->info->so.num_outputs && ctx.stage == vertex_vs)
9042 emit_streamout(&ctx, 0);
9043
9044 if (ctx.stage == vertex_vs) {
9045 create_vs_exports(&ctx);
9046 } else if (nir->info.stage == MESA_SHADER_GEOMETRY) {
9047 Builder bld(ctx.program, ctx.block);
9048 bld.barrier(aco_opcode::p_memory_barrier_gs_data);
9049 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx.gs_wave_id), -1, sendmsg_gs_done(false, false, 0));
9050 }
9051
9052 if (ctx.stage == fragment_fs)
9053 create_fs_exports(&ctx);
9054
9055 if (shader_count >= 2) {
9056 begin_divergent_if_else(&ctx, &ic);
9057 end_divergent_if(&ctx, &ic);
9058 }
9059
9060 ralloc_free(ctx.divergent_vals);
9061 }
9062
9063 program->config->float_mode = program->blocks[0].fp_mode.val;
9064
9065 append_logical_end(ctx.block);
9066 ctx.block->kind |= block_kind_uniform | block_kind_export_end;
9067 Builder bld(ctx.program, ctx.block);
9068 if (ctx.program->wb_smem_l1_on_end)
9069 bld.smem(aco_opcode::s_dcache_wb, false);
9070 bld.sopp(aco_opcode::s_endpgm);
9071
9072 cleanup_cfg(program);
9073 }
9074
9075 void select_gs_copy_shader(Program *program, struct nir_shader *gs_shader,
9076 ac_shader_config* config,
9077 struct radv_shader_args *args)
9078 {
9079 isel_context ctx = setup_isel_context(program, 1, &gs_shader, config, args, true);
9080
9081 program->next_fp_mode.preserve_signed_zero_inf_nan32 = false;
9082 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 = false;
9083 program->next_fp_mode.must_flush_denorms32 = false;
9084 program->next_fp_mode.must_flush_denorms16_64 = false;
9085 program->next_fp_mode.care_about_round32 = false;
9086 program->next_fp_mode.care_about_round16_64 = false;
9087 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
9088 program->next_fp_mode.denorm32 = 0;
9089 program->next_fp_mode.round32 = fp_round_ne;
9090 program->next_fp_mode.round16_64 = fp_round_ne;
9091 ctx.block->fp_mode = program->next_fp_mode;
9092
9093 add_startpgm(&ctx);
9094 append_logical_start(ctx.block);
9095
9096 Builder bld(ctx.program, ctx.block);
9097
9098 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), program->private_segment_buffer, Operand(RING_GSVS_VS * 16u));
9099
9100 Operand stream_id(0u);
9101 if (args->shader_info->so.num_outputs)
9102 stream_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
9103 get_arg(&ctx, ctx.args->streamout_config), Operand(0x20018u));
9104
9105 Temp vtx_offset = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), get_arg(&ctx, ctx.args->ac.vertex_id));
9106
9107 std::stack<Block> endif_blocks;
9108
9109 for (unsigned stream = 0; stream < 4; stream++) {
9110 if (stream_id.isConstant() && stream != stream_id.constantValue())
9111 continue;
9112
9113 unsigned num_components = args->shader_info->gs.num_stream_output_components[stream];
9114 if (stream > 0 && (!num_components || !args->shader_info->so.num_outputs))
9115 continue;
9116
9117 memset(ctx.outputs.mask, 0, sizeof(ctx.outputs.mask));
9118
9119 unsigned BB_if_idx = ctx.block->index;
9120 Block BB_endif = Block();
9121 if (!stream_id.isConstant()) {
9122 /* begin IF */
9123 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), stream_id, Operand(stream));
9124 append_logical_end(ctx.block);
9125 ctx.block->kind |= block_kind_uniform;
9126 bld.branch(aco_opcode::p_cbranch_z, cond);
9127
9128 BB_endif.kind |= ctx.block->kind & block_kind_top_level;
9129
9130 ctx.block = ctx.program->create_and_insert_block();
9131 add_edge(BB_if_idx, ctx.block);
9132 bld.reset(ctx.block);
9133 append_logical_start(ctx.block);
9134 }
9135
9136 unsigned offset = 0;
9137 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
9138 if (args->shader_info->gs.output_streams[i] != stream)
9139 continue;
9140
9141 unsigned output_usage_mask = args->shader_info->gs.output_usage_mask[i];
9142 unsigned length = util_last_bit(output_usage_mask);
9143 for (unsigned j = 0; j < length; ++j) {
9144 if (!(output_usage_mask & (1 << j)))
9145 continue;
9146
9147 unsigned const_offset = offset * args->shader_info->gs.vertices_out * 16 * 4;
9148 Temp voffset = vtx_offset;
9149 if (const_offset >= 4096u) {
9150 voffset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), voffset);
9151 const_offset %= 4096u;
9152 }
9153
9154 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dword, Format::MUBUF, 3, 1)};
9155 mubuf->definitions[0] = bld.def(v1);
9156 mubuf->operands[0] = Operand(gsvs_ring);
9157 mubuf->operands[1] = Operand(voffset);
9158 mubuf->operands[2] = Operand(0u);
9159 mubuf->offen = true;
9160 mubuf->offset = const_offset;
9161 mubuf->glc = true;
9162 mubuf->slc = true;
9163 mubuf->dlc = args->options->chip_class >= GFX10;
9164 mubuf->barrier = barrier_none;
9165 mubuf->can_reorder = true;
9166
9167 ctx.outputs.mask[i] |= 1 << j;
9168 ctx.outputs.outputs[i][j] = mubuf->definitions[0].getTemp();
9169
9170 bld.insert(std::move(mubuf));
9171
9172 offset++;
9173 }
9174 }
9175
9176 if (args->shader_info->so.num_outputs) {
9177 emit_streamout(&ctx, stream);
9178 bld.reset(ctx.block);
9179 }
9180
9181 if (stream == 0) {
9182 create_vs_exports(&ctx);
9183 ctx.block->kind |= block_kind_export_end;
9184 }
9185
9186 if (!stream_id.isConstant()) {
9187 append_logical_end(ctx.block);
9188
9189 /* branch from then block to endif block */
9190 bld.branch(aco_opcode::p_branch);
9191 add_edge(ctx.block->index, &BB_endif);
9192 ctx.block->kind |= block_kind_uniform;
9193
9194 /* emit else block */
9195 ctx.block = ctx.program->create_and_insert_block();
9196 add_edge(BB_if_idx, ctx.block);
9197 bld.reset(ctx.block);
9198 append_logical_start(ctx.block);
9199
9200 endif_blocks.push(std::move(BB_endif));
9201 }
9202 }
9203
9204 while (!endif_blocks.empty()) {
9205 Block BB_endif = std::move(endif_blocks.top());
9206 endif_blocks.pop();
9207
9208 Block *BB_else = ctx.block;
9209
9210 append_logical_end(BB_else);
9211 /* branch from else block to endif block */
9212 bld.branch(aco_opcode::p_branch);
9213 add_edge(BB_else->index, &BB_endif);
9214 BB_else->kind |= block_kind_uniform;
9215
9216 /** emit endif merge block */
9217 ctx.block = program->insert_block(std::move(BB_endif));
9218 bld.reset(ctx.block);
9219 append_logical_start(ctx.block);
9220 }
9221
9222 program->config->float_mode = program->blocks[0].fp_mode.val;
9223
9224 append_logical_end(ctx.block);
9225 ctx.block->kind |= block_kind_uniform;
9226 bld.sopp(aco_opcode::s_endpgm);
9227
9228 cleanup_cfg(program);
9229 }
9230 }