glsl: fix the type of ir_constant_data::u16
[mesa.git] / src / compiler / glsl / ir_reader.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 #include "ir_reader.h"
25 #include "glsl_parser_extras.h"
26 #include "compiler/glsl_types.h"
27 #include "s_expression.h"
28
29 static const bool debug = false;
30
31 namespace {
32
33 class ir_reader {
34 public:
35 ir_reader(_mesa_glsl_parse_state *);
36
37 void read(exec_list *instructions, const char *src, bool scan_for_protos);
38
39 private:
40 void *mem_ctx;
41 _mesa_glsl_parse_state *state;
42
43 void ir_read_error(s_expression *, const char *fmt, ...);
44
45 const glsl_type *read_type(s_expression *);
46
47 void scan_for_prototypes(exec_list *, s_expression *);
48 ir_function *read_function(s_expression *, bool skip_body);
49 void read_function_sig(ir_function *, s_expression *, bool skip_body);
50
51 void read_instructions(exec_list *, s_expression *, ir_loop *);
52 ir_instruction *read_instruction(s_expression *, ir_loop *);
53 ir_variable *read_declaration(s_expression *);
54 ir_if *read_if(s_expression *, ir_loop *);
55 ir_loop *read_loop(s_expression *);
56 ir_call *read_call(s_expression *);
57 ir_return *read_return(s_expression *);
58 ir_rvalue *read_rvalue(s_expression *);
59 ir_assignment *read_assignment(s_expression *);
60 ir_expression *read_expression(s_expression *);
61 ir_swizzle *read_swizzle(s_expression *);
62 ir_constant *read_constant(s_expression *);
63 ir_texture *read_texture(s_expression *);
64 ir_emit_vertex *read_emit_vertex(s_expression *);
65 ir_end_primitive *read_end_primitive(s_expression *);
66 ir_barrier *read_barrier(s_expression *);
67
68 ir_dereference *read_dereference(s_expression *);
69 ir_dereference_variable *read_var_ref(s_expression *);
70 };
71
72 } /* anonymous namespace */
73
74 ir_reader::ir_reader(_mesa_glsl_parse_state *state) : state(state)
75 {
76 this->mem_ctx = state;
77 }
78
79 void
80 _mesa_glsl_read_ir(_mesa_glsl_parse_state *state, exec_list *instructions,
81 const char *src, bool scan_for_protos)
82 {
83 ir_reader r(state);
84 r.read(instructions, src, scan_for_protos);
85 }
86
87 void
88 ir_reader::read(exec_list *instructions, const char *src, bool scan_for_protos)
89 {
90 void *sx_mem_ctx = ralloc_context(NULL);
91 s_expression *expr = s_expression::read_expression(sx_mem_ctx, src);
92 if (expr == NULL) {
93 ir_read_error(NULL, "couldn't parse S-Expression.");
94 return;
95 }
96
97 if (scan_for_protos) {
98 scan_for_prototypes(instructions, expr);
99 if (state->error)
100 return;
101 }
102
103 read_instructions(instructions, expr, NULL);
104 ralloc_free(sx_mem_ctx);
105
106 if (debug)
107 validate_ir_tree(instructions);
108 }
109
110 void
111 ir_reader::ir_read_error(s_expression *expr, const char *fmt, ...)
112 {
113 va_list ap;
114
115 state->error = true;
116
117 if (state->current_function != NULL)
118 ralloc_asprintf_append(&state->info_log, "In function %s:\n",
119 state->current_function->function_name());
120 ralloc_strcat(&state->info_log, "error: ");
121
122 va_start(ap, fmt);
123 ralloc_vasprintf_append(&state->info_log, fmt, ap);
124 va_end(ap);
125 ralloc_strcat(&state->info_log, "\n");
126
127 if (expr != NULL) {
128 ralloc_strcat(&state->info_log, "...in this context:\n ");
129 expr->print();
130 ralloc_strcat(&state->info_log, "\n\n");
131 }
132 }
133
134 const glsl_type *
135 ir_reader::read_type(s_expression *expr)
136 {
137 s_expression *s_base_type;
138 s_int *s_size;
139
140 s_pattern pat[] = { "array", s_base_type, s_size };
141 if (MATCH(expr, pat)) {
142 const glsl_type *base_type = read_type(s_base_type);
143 if (base_type == NULL) {
144 ir_read_error(NULL, "when reading base type of array type");
145 return NULL;
146 }
147
148 return glsl_type::get_array_instance(base_type, s_size->value());
149 }
150
151 s_symbol *type_sym = SX_AS_SYMBOL(expr);
152 if (type_sym == NULL) {
153 ir_read_error(expr, "expected <type>");
154 return NULL;
155 }
156
157 const glsl_type *type = state->symbols->get_type(type_sym->value());
158 if (type == NULL)
159 ir_read_error(expr, "invalid type: %s", type_sym->value());
160
161 return type;
162 }
163
164
165 void
166 ir_reader::scan_for_prototypes(exec_list *instructions, s_expression *expr)
167 {
168 s_list *list = SX_AS_LIST(expr);
169 if (list == NULL) {
170 ir_read_error(expr, "Expected (<instruction> ...); found an atom.");
171 return;
172 }
173
174 foreach_in_list(s_list, sub, &list->subexpressions) {
175 if (!sub->is_list())
176 continue; // not a (function ...); ignore it.
177
178 s_symbol *tag = SX_AS_SYMBOL(sub->subexpressions.get_head());
179 if (tag == NULL || strcmp(tag->value(), "function") != 0)
180 continue; // not a (function ...); ignore it.
181
182 ir_function *f = read_function(sub, true);
183 if (f == NULL)
184 return;
185 instructions->push_tail(f);
186 }
187 }
188
189 ir_function *
190 ir_reader::read_function(s_expression *expr, bool skip_body)
191 {
192 bool added = false;
193 s_symbol *name;
194
195 s_pattern pat[] = { "function", name };
196 if (!PARTIAL_MATCH(expr, pat)) {
197 ir_read_error(expr, "Expected (function <name> (signature ...) ...)");
198 return NULL;
199 }
200
201 ir_function *f = state->symbols->get_function(name->value());
202 if (f == NULL) {
203 f = new(mem_ctx) ir_function(name->value());
204 added = state->symbols->add_function(f);
205 assert(added);
206 }
207
208 /* Skip over "function" tag and function name (which are guaranteed to be
209 * present by the above PARTIAL_MATCH call).
210 */
211 exec_node *node = ((s_list *) expr)->subexpressions.get_head_raw()->next->next;
212 for (/* nothing */; !node->is_tail_sentinel(); node = node->next) {
213 s_expression *s_sig = (s_expression *) node;
214 read_function_sig(f, s_sig, skip_body);
215 }
216 return added ? f : NULL;
217 }
218
219 static bool
220 always_available(const _mesa_glsl_parse_state *)
221 {
222 return true;
223 }
224
225 void
226 ir_reader::read_function_sig(ir_function *f, s_expression *expr, bool skip_body)
227 {
228 s_expression *type_expr;
229 s_list *paramlist;
230 s_list *body_list;
231
232 s_pattern pat[] = { "signature", type_expr, paramlist, body_list };
233 if (!MATCH(expr, pat)) {
234 ir_read_error(expr, "Expected (signature <type> (parameters ...) "
235 "(<instruction> ...))");
236 return;
237 }
238
239 const glsl_type *return_type = read_type(type_expr);
240 if (return_type == NULL)
241 return;
242
243 s_symbol *paramtag = SX_AS_SYMBOL(paramlist->subexpressions.get_head());
244 if (paramtag == NULL || strcmp(paramtag->value(), "parameters") != 0) {
245 ir_read_error(paramlist, "Expected (parameters ...)");
246 return;
247 }
248
249 // Read the parameters list into a temporary place.
250 exec_list hir_parameters;
251 state->symbols->push_scope();
252
253 /* Skip over the "parameters" tag. */
254 exec_node *node = paramlist->subexpressions.get_head_raw()->next;
255 for (/* nothing */; !node->is_tail_sentinel(); node = node->next) {
256 ir_variable *var = read_declaration((s_expression *) node);
257 if (var == NULL)
258 return;
259
260 hir_parameters.push_tail(var);
261 }
262
263 ir_function_signature *sig =
264 f->exact_matching_signature(state, &hir_parameters);
265 if (sig == NULL && skip_body) {
266 /* If scanning for prototypes, generate a new signature. */
267 /* ir_reader doesn't know what languages support a given built-in, so
268 * just say that they're always available. For now, other mechanisms
269 * guarantee the right built-ins are available.
270 */
271 sig = new(mem_ctx) ir_function_signature(return_type, always_available);
272 f->add_signature(sig);
273 } else if (sig != NULL) {
274 const char *badvar = sig->qualifiers_match(&hir_parameters);
275 if (badvar != NULL) {
276 ir_read_error(expr, "function `%s' parameter `%s' qualifiers "
277 "don't match prototype", f->name, badvar);
278 return;
279 }
280
281 if (sig->return_type != return_type) {
282 ir_read_error(expr, "function `%s' return type doesn't "
283 "match prototype", f->name);
284 return;
285 }
286 } else {
287 /* No prototype for this body exists - skip it. */
288 state->symbols->pop_scope();
289 return;
290 }
291 assert(sig != NULL);
292
293 sig->replace_parameters(&hir_parameters);
294
295 if (!skip_body && !body_list->subexpressions.is_empty()) {
296 if (sig->is_defined) {
297 ir_read_error(expr, "function %s redefined", f->name);
298 return;
299 }
300 state->current_function = sig;
301 read_instructions(&sig->body, body_list, NULL);
302 state->current_function = NULL;
303 sig->is_defined = true;
304 }
305
306 state->symbols->pop_scope();
307 }
308
309 void
310 ir_reader::read_instructions(exec_list *instructions, s_expression *expr,
311 ir_loop *loop_ctx)
312 {
313 // Read in a list of instructions
314 s_list *list = SX_AS_LIST(expr);
315 if (list == NULL) {
316 ir_read_error(expr, "Expected (<instruction> ...); found an atom.");
317 return;
318 }
319
320 foreach_in_list(s_expression, sub, &list->subexpressions) {
321 ir_instruction *ir = read_instruction(sub, loop_ctx);
322 if (ir != NULL) {
323 /* Global variable declarations should be moved to the top, before
324 * any functions that might use them. Functions are added to the
325 * instruction stream when scanning for prototypes, so without this
326 * hack, they always appear before variable declarations.
327 */
328 if (state->current_function == NULL && ir->as_variable() != NULL)
329 instructions->push_head(ir);
330 else
331 instructions->push_tail(ir);
332 }
333 }
334 }
335
336
337 ir_instruction *
338 ir_reader::read_instruction(s_expression *expr, ir_loop *loop_ctx)
339 {
340 s_symbol *symbol = SX_AS_SYMBOL(expr);
341 if (symbol != NULL) {
342 if (strcmp(symbol->value(), "break") == 0 && loop_ctx != NULL)
343 return new(mem_ctx) ir_loop_jump(ir_loop_jump::jump_break);
344 if (strcmp(symbol->value(), "continue") == 0 && loop_ctx != NULL)
345 return new(mem_ctx) ir_loop_jump(ir_loop_jump::jump_continue);
346 }
347
348 s_list *list = SX_AS_LIST(expr);
349 if (list == NULL || list->subexpressions.is_empty()) {
350 ir_read_error(expr, "Invalid instruction.\n");
351 return NULL;
352 }
353
354 s_symbol *tag = SX_AS_SYMBOL(list->subexpressions.get_head());
355 if (tag == NULL) {
356 ir_read_error(expr, "expected instruction tag");
357 return NULL;
358 }
359
360 ir_instruction *inst = NULL;
361 if (strcmp(tag->value(), "declare") == 0) {
362 inst = read_declaration(list);
363 } else if (strcmp(tag->value(), "assign") == 0) {
364 inst = read_assignment(list);
365 } else if (strcmp(tag->value(), "if") == 0) {
366 inst = read_if(list, loop_ctx);
367 } else if (strcmp(tag->value(), "loop") == 0) {
368 inst = read_loop(list);
369 } else if (strcmp(tag->value(), "call") == 0) {
370 inst = read_call(list);
371 } else if (strcmp(tag->value(), "return") == 0) {
372 inst = read_return(list);
373 } else if (strcmp(tag->value(), "function") == 0) {
374 inst = read_function(list, false);
375 } else if (strcmp(tag->value(), "emit-vertex") == 0) {
376 inst = read_emit_vertex(list);
377 } else if (strcmp(tag->value(), "end-primitive") == 0) {
378 inst = read_end_primitive(list);
379 } else if (strcmp(tag->value(), "barrier") == 0) {
380 inst = read_barrier(list);
381 } else {
382 inst = read_rvalue(list);
383 if (inst == NULL)
384 ir_read_error(NULL, "when reading instruction");
385 }
386 return inst;
387 }
388
389 ir_variable *
390 ir_reader::read_declaration(s_expression *expr)
391 {
392 s_list *s_quals;
393 s_expression *s_type;
394 s_symbol *s_name;
395
396 s_pattern pat[] = { "declare", s_quals, s_type, s_name };
397 if (!MATCH(expr, pat)) {
398 ir_read_error(expr, "expected (declare (<qualifiers>) <type> <name>)");
399 return NULL;
400 }
401
402 const glsl_type *type = read_type(s_type);
403 if (type == NULL)
404 return NULL;
405
406 ir_variable *var = new(mem_ctx) ir_variable(type, s_name->value(),
407 ir_var_auto);
408
409 foreach_in_list(s_symbol, qualifier, &s_quals->subexpressions) {
410 if (!qualifier->is_symbol()) {
411 ir_read_error(expr, "qualifier list must contain only symbols");
412 return NULL;
413 }
414
415 // FINISHME: Check for duplicate/conflicting qualifiers.
416 if (strcmp(qualifier->value(), "centroid") == 0) {
417 var->data.centroid = 1;
418 } else if (strcmp(qualifier->value(), "sample") == 0) {
419 var->data.sample = 1;
420 } else if (strcmp(qualifier->value(), "patch") == 0) {
421 var->data.patch = 1;
422 } else if (strcmp(qualifier->value(), "explicit_invariant") == 0) {
423 var->data.explicit_invariant = true;
424 } else if (strcmp(qualifier->value(), "invariant") == 0) {
425 var->data.invariant = true;
426 } else if (strcmp(qualifier->value(), "uniform") == 0) {
427 var->data.mode = ir_var_uniform;
428 } else if (strcmp(qualifier->value(), "shader_storage") == 0) {
429 var->data.mode = ir_var_shader_storage;
430 } else if (strcmp(qualifier->value(), "auto") == 0) {
431 var->data.mode = ir_var_auto;
432 } else if (strcmp(qualifier->value(), "in") == 0) {
433 var->data.mode = ir_var_function_in;
434 } else if (strcmp(qualifier->value(), "shader_in") == 0) {
435 var->data.mode = ir_var_shader_in;
436 } else if (strcmp(qualifier->value(), "const_in") == 0) {
437 var->data.mode = ir_var_const_in;
438 } else if (strcmp(qualifier->value(), "out") == 0) {
439 var->data.mode = ir_var_function_out;
440 } else if (strcmp(qualifier->value(), "shader_out") == 0) {
441 var->data.mode = ir_var_shader_out;
442 } else if (strcmp(qualifier->value(), "inout") == 0) {
443 var->data.mode = ir_var_function_inout;
444 } else if (strcmp(qualifier->value(), "temporary") == 0) {
445 var->data.mode = ir_var_temporary;
446 } else if (strcmp(qualifier->value(), "stream1") == 0) {
447 var->data.stream = 1;
448 } else if (strcmp(qualifier->value(), "stream2") == 0) {
449 var->data.stream = 2;
450 } else if (strcmp(qualifier->value(), "stream3") == 0) {
451 var->data.stream = 3;
452 } else if (strcmp(qualifier->value(), "smooth") == 0) {
453 var->data.interpolation = INTERP_MODE_SMOOTH;
454 } else if (strcmp(qualifier->value(), "flat") == 0) {
455 var->data.interpolation = INTERP_MODE_FLAT;
456 } else if (strcmp(qualifier->value(), "noperspective") == 0) {
457 var->data.interpolation = INTERP_MODE_NOPERSPECTIVE;
458 } else {
459 ir_read_error(expr, "unknown qualifier: %s", qualifier->value());
460 return NULL;
461 }
462 }
463
464 // Add the variable to the symbol table
465 state->symbols->add_variable(var);
466
467 return var;
468 }
469
470
471 ir_if *
472 ir_reader::read_if(s_expression *expr, ir_loop *loop_ctx)
473 {
474 s_expression *s_cond;
475 s_expression *s_then;
476 s_expression *s_else;
477
478 s_pattern pat[] = { "if", s_cond, s_then, s_else };
479 if (!MATCH(expr, pat)) {
480 ir_read_error(expr, "expected (if <condition> (<then>...) (<else>...))");
481 return NULL;
482 }
483
484 ir_rvalue *condition = read_rvalue(s_cond);
485 if (condition == NULL) {
486 ir_read_error(NULL, "when reading condition of (if ...)");
487 return NULL;
488 }
489
490 ir_if *iff = new(mem_ctx) ir_if(condition);
491
492 read_instructions(&iff->then_instructions, s_then, loop_ctx);
493 read_instructions(&iff->else_instructions, s_else, loop_ctx);
494 if (state->error) {
495 delete iff;
496 iff = NULL;
497 }
498 return iff;
499 }
500
501
502 ir_loop *
503 ir_reader::read_loop(s_expression *expr)
504 {
505 s_expression *s_body;
506
507 s_pattern loop_pat[] = { "loop", s_body };
508 if (!MATCH(expr, loop_pat)) {
509 ir_read_error(expr, "expected (loop <body>)");
510 return NULL;
511 }
512
513 ir_loop *loop = new(mem_ctx) ir_loop;
514
515 read_instructions(&loop->body_instructions, s_body, loop);
516 if (state->error) {
517 delete loop;
518 loop = NULL;
519 }
520 return loop;
521 }
522
523
524 ir_return *
525 ir_reader::read_return(s_expression *expr)
526 {
527 s_expression *s_retval;
528
529 s_pattern return_value_pat[] = { "return", s_retval};
530 s_pattern return_void_pat[] = { "return" };
531 if (MATCH(expr, return_value_pat)) {
532 ir_rvalue *retval = read_rvalue(s_retval);
533 if (retval == NULL) {
534 ir_read_error(NULL, "when reading return value");
535 return NULL;
536 }
537 return new(mem_ctx) ir_return(retval);
538 } else if (MATCH(expr, return_void_pat)) {
539 return new(mem_ctx) ir_return;
540 } else {
541 ir_read_error(expr, "expected (return <rvalue>) or (return)");
542 return NULL;
543 }
544 }
545
546
547 ir_rvalue *
548 ir_reader::read_rvalue(s_expression *expr)
549 {
550 s_list *list = SX_AS_LIST(expr);
551 if (list == NULL || list->subexpressions.is_empty())
552 return NULL;
553
554 s_symbol *tag = SX_AS_SYMBOL(list->subexpressions.get_head());
555 if (tag == NULL) {
556 ir_read_error(expr, "expected rvalue tag");
557 return NULL;
558 }
559
560 ir_rvalue *rvalue = read_dereference(list);
561 if (rvalue != NULL || state->error)
562 return rvalue;
563 else if (strcmp(tag->value(), "swiz") == 0) {
564 rvalue = read_swizzle(list);
565 } else if (strcmp(tag->value(), "expression") == 0) {
566 rvalue = read_expression(list);
567 } else if (strcmp(tag->value(), "constant") == 0) {
568 rvalue = read_constant(list);
569 } else {
570 rvalue = read_texture(list);
571 if (rvalue == NULL && !state->error)
572 ir_read_error(expr, "unrecognized rvalue tag: %s", tag->value());
573 }
574
575 return rvalue;
576 }
577
578 ir_assignment *
579 ir_reader::read_assignment(s_expression *expr)
580 {
581 s_expression *cond_expr = NULL;
582 s_expression *lhs_expr, *rhs_expr;
583 s_list *mask_list;
584
585 s_pattern pat4[] = { "assign", mask_list, lhs_expr, rhs_expr };
586 s_pattern pat5[] = { "assign", cond_expr, mask_list, lhs_expr, rhs_expr };
587 if (!MATCH(expr, pat4) && !MATCH(expr, pat5)) {
588 ir_read_error(expr, "expected (assign [<condition>] (<write mask>) "
589 "<lhs> <rhs>)");
590 return NULL;
591 }
592
593 ir_rvalue *condition = NULL;
594 if (cond_expr != NULL) {
595 condition = read_rvalue(cond_expr);
596 if (condition == NULL) {
597 ir_read_error(NULL, "when reading condition of assignment");
598 return NULL;
599 }
600 }
601
602 unsigned mask = 0;
603
604 s_symbol *mask_symbol;
605 s_pattern mask_pat[] = { mask_symbol };
606 if (MATCH(mask_list, mask_pat)) {
607 const char *mask_str = mask_symbol->value();
608 unsigned mask_length = strlen(mask_str);
609 if (mask_length > 4) {
610 ir_read_error(expr, "invalid write mask: %s", mask_str);
611 return NULL;
612 }
613
614 const unsigned idx_map[] = { 3, 0, 1, 2 }; /* w=bit 3, x=0, y=1, z=2 */
615
616 for (unsigned i = 0; i < mask_length; i++) {
617 if (mask_str[i] < 'w' || mask_str[i] > 'z') {
618 ir_read_error(expr, "write mask contains invalid character: %c",
619 mask_str[i]);
620 return NULL;
621 }
622 mask |= 1 << idx_map[mask_str[i] - 'w'];
623 }
624 } else if (!mask_list->subexpressions.is_empty()) {
625 ir_read_error(mask_list, "expected () or (<write mask>)");
626 return NULL;
627 }
628
629 ir_dereference *lhs = read_dereference(lhs_expr);
630 if (lhs == NULL) {
631 ir_read_error(NULL, "when reading left-hand side of assignment");
632 return NULL;
633 }
634
635 ir_rvalue *rhs = read_rvalue(rhs_expr);
636 if (rhs == NULL) {
637 ir_read_error(NULL, "when reading right-hand side of assignment");
638 return NULL;
639 }
640
641 if (mask == 0 && (lhs->type->is_vector() || lhs->type->is_scalar())) {
642 ir_read_error(expr, "non-zero write mask required.");
643 return NULL;
644 }
645
646 return new(mem_ctx) ir_assignment(lhs, rhs, condition, mask);
647 }
648
649 ir_call *
650 ir_reader::read_call(s_expression *expr)
651 {
652 s_symbol *name;
653 s_list *params;
654 s_list *s_return = NULL;
655
656 ir_dereference_variable *return_deref = NULL;
657
658 s_pattern void_pat[] = { "call", name, params };
659 s_pattern non_void_pat[] = { "call", name, s_return, params };
660 if (MATCH(expr, non_void_pat)) {
661 return_deref = read_var_ref(s_return);
662 if (return_deref == NULL) {
663 ir_read_error(s_return, "when reading a call's return storage");
664 return NULL;
665 }
666 } else if (!MATCH(expr, void_pat)) {
667 ir_read_error(expr, "expected (call <name> [<deref>] (<param> ...))");
668 return NULL;
669 }
670
671 exec_list parameters;
672
673 foreach_in_list(s_expression, e, &params->subexpressions) {
674 ir_rvalue *param = read_rvalue(e);
675 if (param == NULL) {
676 ir_read_error(e, "when reading parameter to function call");
677 return NULL;
678 }
679 parameters.push_tail(param);
680 }
681
682 ir_function *f = state->symbols->get_function(name->value());
683 if (f == NULL) {
684 ir_read_error(expr, "found call to undefined function %s",
685 name->value());
686 return NULL;
687 }
688
689 ir_function_signature *callee =
690 f->matching_signature(state, &parameters, true);
691 if (callee == NULL) {
692 ir_read_error(expr, "couldn't find matching signature for function "
693 "%s", name->value());
694 return NULL;
695 }
696
697 if (callee->return_type == glsl_type::void_type && return_deref) {
698 ir_read_error(expr, "call has return value storage but void type");
699 return NULL;
700 } else if (callee->return_type != glsl_type::void_type && !return_deref) {
701 ir_read_error(expr, "call has non-void type but no return value storage");
702 return NULL;
703 }
704
705 return new(mem_ctx) ir_call(callee, return_deref, &parameters);
706 }
707
708 ir_expression *
709 ir_reader::read_expression(s_expression *expr)
710 {
711 s_expression *s_type;
712 s_symbol *s_op;
713 s_expression *s_arg[4] = {NULL};
714
715 s_pattern pat[] = { "expression", s_type, s_op, s_arg[0] };
716 if (!PARTIAL_MATCH(expr, pat)) {
717 ir_read_error(expr, "expected (expression <type> <operator> "
718 "<operand> [<operand>] [<operand>] [<operand>])");
719 return NULL;
720 }
721 s_arg[1] = (s_expression *) s_arg[0]->next; // may be tail sentinel
722 s_arg[2] = (s_expression *) s_arg[1]->next; // may be tail sentinel or NULL
723 if (s_arg[2])
724 s_arg[3] = (s_expression *) s_arg[2]->next; // may be tail sentinel or NULL
725
726 const glsl_type *type = read_type(s_type);
727 if (type == NULL)
728 return NULL;
729
730 /* Read the operator */
731 ir_expression_operation op = ir_expression::get_operator(s_op->value());
732 if (op == (ir_expression_operation) -1) {
733 ir_read_error(expr, "invalid operator: %s", s_op->value());
734 return NULL;
735 }
736
737 /* Skip "expression" <type> <operation> by subtracting 3. */
738 int num_operands = (int) ((s_list *) expr)->subexpressions.length() - 3;
739
740 int expected_operands = ir_expression::get_num_operands(op);
741 if (num_operands != expected_operands) {
742 ir_read_error(expr, "found %d expression operands, expected %d",
743 num_operands, expected_operands);
744 return NULL;
745 }
746
747 ir_rvalue *arg[4] = {NULL};
748 for (int i = 0; i < num_operands; i++) {
749 arg[i] = read_rvalue(s_arg[i]);
750 if (arg[i] == NULL) {
751 ir_read_error(NULL, "when reading operand #%d of %s", i, s_op->value());
752 return NULL;
753 }
754 }
755
756 return new(mem_ctx) ir_expression(op, type, arg[0], arg[1], arg[2], arg[3]);
757 }
758
759 ir_swizzle *
760 ir_reader::read_swizzle(s_expression *expr)
761 {
762 s_symbol *swiz;
763 s_expression *sub;
764
765 s_pattern pat[] = { "swiz", swiz, sub };
766 if (!MATCH(expr, pat)) {
767 ir_read_error(expr, "expected (swiz <swizzle> <rvalue>)");
768 return NULL;
769 }
770
771 if (strlen(swiz->value()) > 4) {
772 ir_read_error(expr, "expected a valid swizzle; found %s", swiz->value());
773 return NULL;
774 }
775
776 ir_rvalue *rvalue = read_rvalue(sub);
777 if (rvalue == NULL)
778 return NULL;
779
780 ir_swizzle *ir = ir_swizzle::create(rvalue, swiz->value(),
781 rvalue->type->vector_elements);
782 if (ir == NULL)
783 ir_read_error(expr, "invalid swizzle");
784
785 return ir;
786 }
787
788 ir_constant *
789 ir_reader::read_constant(s_expression *expr)
790 {
791 s_expression *type_expr;
792 s_list *values;
793
794 s_pattern pat[] = { "constant", type_expr, values };
795 if (!MATCH(expr, pat)) {
796 ir_read_error(expr, "expected (constant <type> (...))");
797 return NULL;
798 }
799
800 const glsl_type *type = read_type(type_expr);
801 if (type == NULL)
802 return NULL;
803
804 if (values == NULL) {
805 ir_read_error(expr, "expected (constant <type> (...))");
806 return NULL;
807 }
808
809 if (type->is_array()) {
810 unsigned elements_supplied = 0;
811 exec_list elements;
812 foreach_in_list(s_expression, elt, &values->subexpressions) {
813 ir_constant *ir_elt = read_constant(elt);
814 if (ir_elt == NULL)
815 return NULL;
816 elements.push_tail(ir_elt);
817 elements_supplied++;
818 }
819
820 if (elements_supplied != type->length) {
821 ir_read_error(values, "expected exactly %u array elements, "
822 "given %u", type->length, elements_supplied);
823 return NULL;
824 }
825 return new(mem_ctx) ir_constant(type, &elements);
826 }
827
828 ir_constant_data data = { { 0 } };
829
830 // Read in list of values (at most 16).
831 unsigned k = 0;
832 foreach_in_list(s_expression, expr, &values->subexpressions) {
833 if (k >= 16) {
834 ir_read_error(values, "expected at most 16 numbers");
835 return NULL;
836 }
837
838 if (type->is_float()) {
839 s_number *value = SX_AS_NUMBER(expr);
840 if (value == NULL) {
841 ir_read_error(values, "expected numbers");
842 return NULL;
843 }
844 data.f[k] = value->fvalue();
845 } else {
846 s_int *value = SX_AS_INT(expr);
847 if (value == NULL) {
848 ir_read_error(values, "expected integers");
849 return NULL;
850 }
851
852 switch (type->base_type) {
853 case GLSL_TYPE_UINT: {
854 data.u[k] = value->value();
855 break;
856 }
857 case GLSL_TYPE_INT: {
858 data.i[k] = value->value();
859 break;
860 }
861 case GLSL_TYPE_BOOL: {
862 data.b[k] = value->value();
863 break;
864 }
865 default:
866 ir_read_error(values, "unsupported constant type");
867 return NULL;
868 }
869 }
870 ++k;
871 }
872 if (k != type->components()) {
873 ir_read_error(values, "expected %u constant values, found %u",
874 type->components(), k);
875 return NULL;
876 }
877
878 return new(mem_ctx) ir_constant(type, &data);
879 }
880
881 ir_dereference_variable *
882 ir_reader::read_var_ref(s_expression *expr)
883 {
884 s_symbol *s_var;
885 s_pattern var_pat[] = { "var_ref", s_var };
886
887 if (MATCH(expr, var_pat)) {
888 ir_variable *var = state->symbols->get_variable(s_var->value());
889 if (var == NULL) {
890 ir_read_error(expr, "undeclared variable: %s", s_var->value());
891 return NULL;
892 }
893 return new(mem_ctx) ir_dereference_variable(var);
894 }
895 return NULL;
896 }
897
898 ir_dereference *
899 ir_reader::read_dereference(s_expression *expr)
900 {
901 s_expression *s_subject;
902 s_expression *s_index;
903 s_symbol *s_field;
904
905 s_pattern array_pat[] = { "array_ref", s_subject, s_index };
906 s_pattern record_pat[] = { "record_ref", s_subject, s_field };
907
908 ir_dereference_variable *var_ref = read_var_ref(expr);
909 if (var_ref != NULL) {
910 return var_ref;
911 } else if (MATCH(expr, array_pat)) {
912 ir_rvalue *subject = read_rvalue(s_subject);
913 if (subject == NULL) {
914 ir_read_error(NULL, "when reading the subject of an array_ref");
915 return NULL;
916 }
917
918 ir_rvalue *idx = read_rvalue(s_index);
919 if (idx == NULL) {
920 ir_read_error(NULL, "when reading the index of an array_ref");
921 return NULL;
922 }
923 return new(mem_ctx) ir_dereference_array(subject, idx);
924 } else if (MATCH(expr, record_pat)) {
925 ir_rvalue *subject = read_rvalue(s_subject);
926 if (subject == NULL) {
927 ir_read_error(NULL, "when reading the subject of a record_ref");
928 return NULL;
929 }
930 return new(mem_ctx) ir_dereference_record(subject, s_field->value());
931 }
932 return NULL;
933 }
934
935 ir_texture *
936 ir_reader::read_texture(s_expression *expr)
937 {
938 s_symbol *tag = NULL;
939 s_expression *s_type = NULL;
940 s_expression *s_sampler = NULL;
941 s_expression *s_coord = NULL;
942 s_expression *s_offset = NULL;
943 s_expression *s_proj = NULL;
944 s_list *s_shadow = NULL;
945 s_expression *s_lod = NULL;
946 s_expression *s_sample_index = NULL;
947 s_expression *s_component = NULL;
948
949 ir_texture_opcode op = ir_tex; /* silence warning */
950
951 s_pattern tex_pattern[] =
952 { "tex", s_type, s_sampler, s_coord, s_offset, s_proj, s_shadow };
953 s_pattern lod_pattern[] =
954 { "lod", s_type, s_sampler, s_coord };
955 s_pattern txf_pattern[] =
956 { "txf", s_type, s_sampler, s_coord, s_offset, s_lod };
957 s_pattern txf_ms_pattern[] =
958 { "txf_ms", s_type, s_sampler, s_coord, s_sample_index };
959 s_pattern txs_pattern[] =
960 { "txs", s_type, s_sampler, s_lod };
961 s_pattern tg4_pattern[] =
962 { "tg4", s_type, s_sampler, s_coord, s_offset, s_component };
963 s_pattern query_levels_pattern[] =
964 { "query_levels", s_type, s_sampler };
965 s_pattern texture_samples_pattern[] =
966 { "samples", s_type, s_sampler };
967 s_pattern other_pattern[] =
968 { tag, s_type, s_sampler, s_coord, s_offset, s_proj, s_shadow, s_lod };
969
970 if (MATCH(expr, lod_pattern)) {
971 op = ir_lod;
972 } else if (MATCH(expr, tex_pattern)) {
973 op = ir_tex;
974 } else if (MATCH(expr, txf_pattern)) {
975 op = ir_txf;
976 } else if (MATCH(expr, txf_ms_pattern)) {
977 op = ir_txf_ms;
978 } else if (MATCH(expr, txs_pattern)) {
979 op = ir_txs;
980 } else if (MATCH(expr, tg4_pattern)) {
981 op = ir_tg4;
982 } else if (MATCH(expr, query_levels_pattern)) {
983 op = ir_query_levels;
984 } else if (MATCH(expr, texture_samples_pattern)) {
985 op = ir_texture_samples;
986 } else if (MATCH(expr, other_pattern)) {
987 op = ir_texture::get_opcode(tag->value());
988 if (op == (ir_texture_opcode) -1)
989 return NULL;
990 } else {
991 ir_read_error(NULL, "unexpected texture pattern %s", tag->value());
992 return NULL;
993 }
994
995 ir_texture *tex = new(mem_ctx) ir_texture(op);
996
997 // Read return type
998 const glsl_type *type = read_type(s_type);
999 if (type == NULL) {
1000 ir_read_error(NULL, "when reading type in (%s ...)",
1001 tex->opcode_string());
1002 return NULL;
1003 }
1004
1005 // Read sampler (must be a deref)
1006 ir_dereference *sampler = read_dereference(s_sampler);
1007 if (sampler == NULL) {
1008 ir_read_error(NULL, "when reading sampler in (%s ...)",
1009 tex->opcode_string());
1010 return NULL;
1011 }
1012 tex->set_sampler(sampler, type);
1013
1014 if (op != ir_txs) {
1015 // Read coordinate (any rvalue)
1016 tex->coordinate = read_rvalue(s_coord);
1017 if (tex->coordinate == NULL) {
1018 ir_read_error(NULL, "when reading coordinate in (%s ...)",
1019 tex->opcode_string());
1020 return NULL;
1021 }
1022
1023 if (op != ir_txf_ms && op != ir_lod) {
1024 // Read texel offset - either 0 or an rvalue.
1025 s_int *si_offset = SX_AS_INT(s_offset);
1026 if (si_offset == NULL || si_offset->value() != 0) {
1027 tex->offset = read_rvalue(s_offset);
1028 if (tex->offset == NULL) {
1029 ir_read_error(s_offset, "expected 0 or an expression");
1030 return NULL;
1031 }
1032 }
1033 }
1034 }
1035
1036 if (op != ir_txf && op != ir_txf_ms &&
1037 op != ir_txs && op != ir_lod && op != ir_tg4 &&
1038 op != ir_query_levels && op != ir_texture_samples) {
1039 s_int *proj_as_int = SX_AS_INT(s_proj);
1040 if (proj_as_int && proj_as_int->value() == 1) {
1041 tex->projector = NULL;
1042 } else {
1043 tex->projector = read_rvalue(s_proj);
1044 if (tex->projector == NULL) {
1045 ir_read_error(NULL, "when reading projective divide in (%s ..)",
1046 tex->opcode_string());
1047 return NULL;
1048 }
1049 }
1050
1051 if (s_shadow->subexpressions.is_empty()) {
1052 tex->shadow_comparator = NULL;
1053 } else {
1054 tex->shadow_comparator = read_rvalue(s_shadow);
1055 if (tex->shadow_comparator == NULL) {
1056 ir_read_error(NULL, "when reading shadow comparator in (%s ..)",
1057 tex->opcode_string());
1058 return NULL;
1059 }
1060 }
1061 }
1062
1063 switch (op) {
1064 case ir_txb:
1065 tex->lod_info.bias = read_rvalue(s_lod);
1066 if (tex->lod_info.bias == NULL) {
1067 ir_read_error(NULL, "when reading LOD bias in (txb ...)");
1068 return NULL;
1069 }
1070 break;
1071 case ir_txl:
1072 case ir_txf:
1073 case ir_txs:
1074 tex->lod_info.lod = read_rvalue(s_lod);
1075 if (tex->lod_info.lod == NULL) {
1076 ir_read_error(NULL, "when reading LOD in (%s ...)",
1077 tex->opcode_string());
1078 return NULL;
1079 }
1080 break;
1081 case ir_txf_ms:
1082 tex->lod_info.sample_index = read_rvalue(s_sample_index);
1083 if (tex->lod_info.sample_index == NULL) {
1084 ir_read_error(NULL, "when reading sample_index in (txf_ms ...)");
1085 return NULL;
1086 }
1087 break;
1088 case ir_txd: {
1089 s_expression *s_dx, *s_dy;
1090 s_pattern dxdy_pat[] = { s_dx, s_dy };
1091 if (!MATCH(s_lod, dxdy_pat)) {
1092 ir_read_error(s_lod, "expected (dPdx dPdy) in (txd ...)");
1093 return NULL;
1094 }
1095 tex->lod_info.grad.dPdx = read_rvalue(s_dx);
1096 if (tex->lod_info.grad.dPdx == NULL) {
1097 ir_read_error(NULL, "when reading dPdx in (txd ...)");
1098 return NULL;
1099 }
1100 tex->lod_info.grad.dPdy = read_rvalue(s_dy);
1101 if (tex->lod_info.grad.dPdy == NULL) {
1102 ir_read_error(NULL, "when reading dPdy in (txd ...)");
1103 return NULL;
1104 }
1105 break;
1106 }
1107 case ir_tg4:
1108 tex->lod_info.component = read_rvalue(s_component);
1109 if (tex->lod_info.component == NULL) {
1110 ir_read_error(NULL, "when reading component in (tg4 ...)");
1111 return NULL;
1112 }
1113 break;
1114 default:
1115 // tex and lod don't have any extra parameters.
1116 break;
1117 };
1118 return tex;
1119 }
1120
1121 ir_emit_vertex *
1122 ir_reader::read_emit_vertex(s_expression *expr)
1123 {
1124 s_expression *s_stream = NULL;
1125
1126 s_pattern pat[] = { "emit-vertex", s_stream };
1127
1128 if (MATCH(expr, pat)) {
1129 ir_rvalue *stream = read_dereference(s_stream);
1130 if (stream == NULL) {
1131 ir_read_error(NULL, "when reading stream info in emit-vertex");
1132 return NULL;
1133 }
1134 return new(mem_ctx) ir_emit_vertex(stream);
1135 }
1136 ir_read_error(NULL, "when reading emit-vertex");
1137 return NULL;
1138 }
1139
1140 ir_end_primitive *
1141 ir_reader::read_end_primitive(s_expression *expr)
1142 {
1143 s_expression *s_stream = NULL;
1144
1145 s_pattern pat[] = { "end-primitive", s_stream };
1146
1147 if (MATCH(expr, pat)) {
1148 ir_rvalue *stream = read_dereference(s_stream);
1149 if (stream == NULL) {
1150 ir_read_error(NULL, "when reading stream info in end-primitive");
1151 return NULL;
1152 }
1153 return new(mem_ctx) ir_end_primitive(stream);
1154 }
1155 ir_read_error(NULL, "when reading end-primitive");
1156 return NULL;
1157 }
1158
1159 ir_barrier *
1160 ir_reader::read_barrier(s_expression *expr)
1161 {
1162 s_pattern pat[] = { "barrier" };
1163
1164 if (MATCH(expr, pat)) {
1165 return new(mem_ctx) ir_barrier();
1166 }
1167 ir_read_error(NULL, "when reading barrier");
1168 return NULL;
1169 }