Replace gl_frag_attrib enum with gl_varying_slot.
[mesa.git] / src / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <stdio.h>
30 #include <stdlib.h>
31
32 #include "ralloc.h"
33 #include "glsl_types.h"
34 #include "list.h"
35 #include "ir_visitor.h"
36 #include "ir_hierarchical_visitor.h"
37 #include "main/mtypes.h"
38
39 /**
40 * \defgroup IR Intermediate representation nodes
41 *
42 * @{
43 */
44
45 /**
46 * Class tags
47 *
48 * Each concrete class derived from \c ir_instruction has a value in this
49 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
50 * by the constructor. While using type tags is not very C++, it is extremely
51 * convenient. For example, during debugging you can simply inspect
52 * \c ir_instruction::ir_type to find out the actual type of the object.
53 *
54 * In addition, it is possible to use a switch-statement based on \c
55 * \c ir_instruction::ir_type to select different behavior for different object
56 * types. For functions that have only slight differences for several object
57 * types, this allows writing very straightforward, readable code.
58 */
59 enum ir_node_type {
60 /**
61 * Zero is unused so that the IR validator can detect cases where
62 * \c ir_instruction::ir_type has not been initialized.
63 */
64 ir_type_unset,
65 ir_type_variable,
66 ir_type_assignment,
67 ir_type_call,
68 ir_type_constant,
69 ir_type_dereference_array,
70 ir_type_dereference_record,
71 ir_type_dereference_variable,
72 ir_type_discard,
73 ir_type_expression,
74 ir_type_function,
75 ir_type_function_signature,
76 ir_type_if,
77 ir_type_loop,
78 ir_type_loop_jump,
79 ir_type_return,
80 ir_type_swizzle,
81 ir_type_texture,
82 ir_type_max /**< maximum ir_type enum number, for validation */
83 };
84
85 /**
86 * Base class of all IR instructions
87 */
88 class ir_instruction : public exec_node {
89 public:
90 enum ir_node_type ir_type;
91
92 /**
93 * GCC 4.7+ and clang warn when deleting an ir_instruction unless
94 * there's a virtual destructor present. Because we almost
95 * universally use ralloc for our memory management of
96 * ir_instructions, the destructor doesn't need to do any work.
97 */
98 virtual ~ir_instruction()
99 {
100 }
101
102 /** ir_print_visitor helper for debugging. */
103 void print(void) const;
104
105 virtual void accept(ir_visitor *) = 0;
106 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
107 virtual ir_instruction *clone(void *mem_ctx,
108 struct hash_table *ht) const = 0;
109
110 /**
111 * \name IR instruction downcast functions
112 *
113 * These functions either cast the object to a derived class or return
114 * \c NULL if the object's type does not match the specified derived class.
115 * Additional downcast functions will be added as needed.
116 */
117 /*@{*/
118 virtual class ir_variable * as_variable() { return NULL; }
119 virtual class ir_function * as_function() { return NULL; }
120 virtual class ir_dereference * as_dereference() { return NULL; }
121 virtual class ir_dereference_array * as_dereference_array() { return NULL; }
122 virtual class ir_dereference_variable *as_dereference_variable() { return NULL; }
123 virtual class ir_expression * as_expression() { return NULL; }
124 virtual class ir_rvalue * as_rvalue() { return NULL; }
125 virtual class ir_loop * as_loop() { return NULL; }
126 virtual class ir_assignment * as_assignment() { return NULL; }
127 virtual class ir_call * as_call() { return NULL; }
128 virtual class ir_return * as_return() { return NULL; }
129 virtual class ir_if * as_if() { return NULL; }
130 virtual class ir_swizzle * as_swizzle() { return NULL; }
131 virtual class ir_constant * as_constant() { return NULL; }
132 virtual class ir_discard * as_discard() { return NULL; }
133 /*@}*/
134
135 protected:
136 ir_instruction()
137 {
138 ir_type = ir_type_unset;
139 }
140 };
141
142
143 /**
144 * The base class for all "values"/expression trees.
145 */
146 class ir_rvalue : public ir_instruction {
147 public:
148 const struct glsl_type *type;
149
150 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
151
152 virtual void accept(ir_visitor *v)
153 {
154 v->visit(this);
155 }
156
157 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
158
159 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
160
161 virtual ir_rvalue * as_rvalue()
162 {
163 return this;
164 }
165
166 ir_rvalue *as_rvalue_to_saturate();
167
168 virtual bool is_lvalue() const
169 {
170 return false;
171 }
172
173 /**
174 * Get the variable that is ultimately referenced by an r-value
175 */
176 virtual ir_variable *variable_referenced() const
177 {
178 return NULL;
179 }
180
181
182 /**
183 * If an r-value is a reference to a whole variable, get that variable
184 *
185 * \return
186 * Pointer to a variable that is completely dereferenced by the r-value. If
187 * the r-value is not a dereference or the dereference does not access the
188 * entire variable (i.e., it's just one array element, struct field), \c NULL
189 * is returned.
190 */
191 virtual ir_variable *whole_variable_referenced()
192 {
193 return NULL;
194 }
195
196 /**
197 * Determine if an r-value has the value zero
198 *
199 * The base implementation of this function always returns \c false. The
200 * \c ir_constant class over-rides this function to return \c true \b only
201 * for vector and scalar types that have all elements set to the value
202 * zero (or \c false for booleans).
203 *
204 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one,
205 * ir_constant::is_basis
206 */
207 virtual bool is_zero() const;
208
209 /**
210 * Determine if an r-value has the value one
211 *
212 * The base implementation of this function always returns \c false. The
213 * \c ir_constant class over-rides this function to return \c true \b only
214 * for vector and scalar types that have all elements set to the value
215 * one (or \c true for booleans).
216 *
217 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one,
218 * ir_constant::is_basis
219 */
220 virtual bool is_one() const;
221
222 /**
223 * Determine if an r-value has the value negative one
224 *
225 * The base implementation of this function always returns \c false. The
226 * \c ir_constant class over-rides this function to return \c true \b only
227 * for vector and scalar types that have all elements set to the value
228 * negative one. For boolean types, the result is always \c false.
229 *
230 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
231 * ir_constant::is_basis
232 */
233 virtual bool is_negative_one() const;
234
235 /**
236 * Determine if an r-value is a basis vector
237 *
238 * The base implementation of this function always returns \c false. The
239 * \c ir_constant class over-rides this function to return \c true \b only
240 * for vector and scalar types that have one element set to the value one,
241 * and the other elements set to the value zero. For boolean types, the
242 * result is always \c false.
243 *
244 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one,
245 * is_constant::is_negative_one
246 */
247 virtual bool is_basis() const;
248
249
250 /**
251 * Return a generic value of error_type.
252 *
253 * Allocation will be performed with 'mem_ctx' as ralloc owner.
254 */
255 static ir_rvalue *error_value(void *mem_ctx);
256
257 protected:
258 ir_rvalue();
259 };
260
261
262 /**
263 * Variable storage classes
264 */
265 enum ir_variable_mode {
266 ir_var_auto = 0, /**< Function local variables and globals. */
267 ir_var_uniform, /**< Variable declared as a uniform. */
268 ir_var_shader_in,
269 ir_var_shader_out,
270 ir_var_function_in,
271 ir_var_function_out,
272 ir_var_function_inout,
273 ir_var_const_in, /**< "in" param that must be a constant expression */
274 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
275 ir_var_temporary /**< Temporary variable generated during compilation. */
276 };
277
278 /**
279 * \brief Layout qualifiers for gl_FragDepth.
280 *
281 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
282 * with a layout qualifier.
283 */
284 enum ir_depth_layout {
285 ir_depth_layout_none, /**< No depth layout is specified. */
286 ir_depth_layout_any,
287 ir_depth_layout_greater,
288 ir_depth_layout_less,
289 ir_depth_layout_unchanged
290 };
291
292 /**
293 * \brief Convert depth layout qualifier to string.
294 */
295 const char*
296 depth_layout_string(ir_depth_layout layout);
297
298 /**
299 * Description of built-in state associated with a uniform
300 *
301 * \sa ir_variable::state_slots
302 */
303 struct ir_state_slot {
304 int tokens[5];
305 int swizzle;
306 };
307
308 class ir_variable : public ir_instruction {
309 public:
310 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
311
312 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
313
314 virtual ir_variable *as_variable()
315 {
316 return this;
317 }
318
319 virtual void accept(ir_visitor *v)
320 {
321 v->visit(this);
322 }
323
324 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
325
326
327 /**
328 * Get the string value for the interpolation qualifier
329 *
330 * \return The string that would be used in a shader to specify \c
331 * mode will be returned.
332 *
333 * This function is used to generate error messages of the form "shader
334 * uses %s interpolation qualifier", so in the case where there is no
335 * interpolation qualifier, it returns "no".
336 *
337 * This function should only be used on a shader input or output variable.
338 */
339 const char *interpolation_string() const;
340
341 /**
342 * Determine how this variable should be interpolated based on its
343 * interpolation qualifier (if present), whether it is gl_Color or
344 * gl_SecondaryColor, and whether flatshading is enabled in the current GL
345 * state.
346 *
347 * The return value will always be either INTERP_QUALIFIER_SMOOTH,
348 * INTERP_QUALIFIER_NOPERSPECTIVE, or INTERP_QUALIFIER_FLAT.
349 */
350 glsl_interp_qualifier determine_interpolation_mode(bool flat_shade);
351
352 /**
353 * Determine whether or not a variable is part of a uniform block.
354 */
355 inline bool is_in_uniform_block() const
356 {
357 return this->mode == ir_var_uniform && this->interface_type != NULL;
358 }
359
360 /**
361 * Determine whether or not a variable is the declaration of an interface
362 * block
363 *
364 * For the first declaration below, there will be an \c ir_variable named
365 * "instance" whose type and whose instance_type will be the same
366 * \cglsl_type. For the second declaration, there will be an \c ir_variable
367 * named "f" whose type is float and whose instance_type is B2.
368 *
369 * "instance" is an interface instance variable, but "f" is not.
370 *
371 * uniform B1 {
372 * float f;
373 * } instance;
374 *
375 * uniform B2 {
376 * float f;
377 * };
378 */
379 inline bool is_interface_instance() const
380 {
381 const glsl_type *const t = this->type;
382
383 return (t == this->interface_type)
384 || (t->is_array() && t->fields.array == this->interface_type);
385 }
386
387 /**
388 * Declared type of the variable
389 */
390 const struct glsl_type *type;
391
392 /**
393 * Declared name of the variable
394 */
395 const char *name;
396
397 /**
398 * Highest element accessed with a constant expression array index
399 *
400 * Not used for non-array variables.
401 */
402 unsigned max_array_access;
403
404 /**
405 * Is the variable read-only?
406 *
407 * This is set for variables declared as \c const, shader inputs,
408 * and uniforms.
409 */
410 unsigned read_only:1;
411 unsigned centroid:1;
412 unsigned invariant:1;
413
414 /**
415 * Has this variable been used for reading or writing?
416 *
417 * Several GLSL semantic checks require knowledge of whether or not a
418 * variable has been used. For example, it is an error to redeclare a
419 * variable as invariant after it has been used.
420 *
421 * This is only maintained in the ast_to_hir.cpp path, not in
422 * Mesa's fixed function or ARB program paths.
423 */
424 unsigned used:1;
425
426 /**
427 * Has this variable been statically assigned?
428 *
429 * This answers whether the variable was assigned in any path of
430 * the shader during ast_to_hir. This doesn't answer whether it is
431 * still written after dead code removal, nor is it maintained in
432 * non-ast_to_hir.cpp (GLSL parsing) paths.
433 */
434 unsigned assigned:1;
435
436 /**
437 * Storage class of the variable.
438 *
439 * \sa ir_variable_mode
440 */
441 unsigned mode:4;
442
443 /**
444 * Interpolation mode for shader inputs / outputs
445 *
446 * \sa ir_variable_interpolation
447 */
448 unsigned interpolation:2;
449
450 /**
451 * \name ARB_fragment_coord_conventions
452 * @{
453 */
454 unsigned origin_upper_left:1;
455 unsigned pixel_center_integer:1;
456 /*@}*/
457
458 /**
459 * Was the location explicitly set in the shader?
460 *
461 * If the location is explicitly set in the shader, it \b cannot be changed
462 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
463 * no effect).
464 */
465 unsigned explicit_location:1;
466 unsigned explicit_index:1;
467
468 /**
469 * Does this variable have an initializer?
470 *
471 * This is used by the linker to cross-validiate initializers of global
472 * variables.
473 */
474 unsigned has_initializer:1;
475
476 /**
477 * Is this variable a generic output or input that has not yet been matched
478 * up to a variable in another stage of the pipeline?
479 *
480 * This is used by the linker as scratch storage while assigning locations
481 * to generic inputs and outputs.
482 */
483 unsigned is_unmatched_generic_inout:1;
484
485 /**
486 * If non-zero, then this variable may be packed along with other variables
487 * into a single varying slot, so this offset should be applied when
488 * accessing components. For example, an offset of 1 means that the x
489 * component of this variable is actually stored in component y of the
490 * location specified by \c location.
491 */
492 unsigned location_frac:2;
493
494 /**
495 * \brief Layout qualifier for gl_FragDepth.
496 *
497 * This is not equal to \c ir_depth_layout_none if and only if this
498 * variable is \c gl_FragDepth and a layout qualifier is specified.
499 */
500 ir_depth_layout depth_layout;
501
502 /**
503 * Storage location of the base of this variable
504 *
505 * The precise meaning of this field depends on the nature of the variable.
506 *
507 * - Vertex shader input: one of the values from \c gl_vert_attrib.
508 * - Vertex shader output: one of the values from \c gl_varying_slot.
509 * - Fragment shader input: one of the values from \c gl_varying_slot.
510 * - Fragment shader output: one of the values from \c gl_frag_result.
511 * - Uniforms: Per-stage uniform slot number for default uniform block.
512 * - Uniforms: Index within the uniform block definition for UBO members.
513 * - Other: This field is not currently used.
514 *
515 * If the variable is a uniform, shader input, or shader output, and the
516 * slot has not been assigned, the value will be -1.
517 */
518 int location;
519
520 /**
521 * output index for dual source blending.
522 */
523 int index;
524
525 /**
526 * Built-in state that backs this uniform
527 *
528 * Once set at variable creation, \c state_slots must remain invariant.
529 * This is because, ideally, this array would be shared by all clones of
530 * this variable in the IR tree. In other words, we'd really like for it
531 * to be a fly-weight.
532 *
533 * If the variable is not a uniform, \c num_state_slots will be zero and
534 * \c state_slots will be \c NULL.
535 */
536 /*@{*/
537 unsigned num_state_slots; /**< Number of state slots used */
538 ir_state_slot *state_slots; /**< State descriptors. */
539 /*@}*/
540
541 /**
542 * Emit a warning if this variable is accessed.
543 */
544 const char *warn_extension;
545
546 /**
547 * Value assigned in the initializer of a variable declared "const"
548 */
549 ir_constant *constant_value;
550
551 /**
552 * Constant expression assigned in the initializer of the variable
553 *
554 * \warning
555 * This field and \c ::constant_value are distinct. Even if the two fields
556 * refer to constants with the same value, they must point to separate
557 * objects.
558 */
559 ir_constant *constant_initializer;
560
561 /**
562 * For variables that are in an interface block or are an instance of an
563 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
564 *
565 * \sa ir_variable::location
566 */
567 const glsl_type *interface_type;
568 };
569
570
571 /*@{*/
572 /**
573 * The representation of a function instance; may be the full definition or
574 * simply a prototype.
575 */
576 class ir_function_signature : public ir_instruction {
577 /* An ir_function_signature will be part of the list of signatures in
578 * an ir_function.
579 */
580 public:
581 ir_function_signature(const glsl_type *return_type);
582
583 virtual ir_function_signature *clone(void *mem_ctx,
584 struct hash_table *ht) const;
585 ir_function_signature *clone_prototype(void *mem_ctx,
586 struct hash_table *ht) const;
587
588 virtual void accept(ir_visitor *v)
589 {
590 v->visit(this);
591 }
592
593 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
594
595 /**
596 * Attempt to evaluate this function as a constant expression,
597 * given a list of the actual parameters and the variable context.
598 * Returns NULL for non-built-ins.
599 */
600 ir_constant *constant_expression_value(exec_list *actual_parameters, struct hash_table *variable_context);
601
602 /**
603 * Get the name of the function for which this is a signature
604 */
605 const char *function_name() const;
606
607 /**
608 * Get a handle to the function for which this is a signature
609 *
610 * There is no setter function, this function returns a \c const pointer,
611 * and \c ir_function_signature::_function is private for a reason. The
612 * only way to make a connection between a function and function signature
613 * is via \c ir_function::add_signature. This helps ensure that certain
614 * invariants (i.e., a function signature is in the list of signatures for
615 * its \c _function) are met.
616 *
617 * \sa ir_function::add_signature
618 */
619 inline const class ir_function *function() const
620 {
621 return this->_function;
622 }
623
624 /**
625 * Check whether the qualifiers match between this signature's parameters
626 * and the supplied parameter list. If not, returns the name of the first
627 * parameter with mismatched qualifiers (for use in error messages).
628 */
629 const char *qualifiers_match(exec_list *params);
630
631 /**
632 * Replace the current parameter list with the given one. This is useful
633 * if the current information came from a prototype, and either has invalid
634 * or missing parameter names.
635 */
636 void replace_parameters(exec_list *new_params);
637
638 /**
639 * Function return type.
640 *
641 * \note This discards the optional precision qualifier.
642 */
643 const struct glsl_type *return_type;
644
645 /**
646 * List of ir_variable of function parameters.
647 *
648 * This represents the storage. The paramaters passed in a particular
649 * call will be in ir_call::actual_paramaters.
650 */
651 struct exec_list parameters;
652
653 /** Whether or not this function has a body (which may be empty). */
654 unsigned is_defined:1;
655
656 /** Whether or not this function signature is a built-in. */
657 unsigned is_builtin:1;
658
659 /** Body of instructions in the function. */
660 struct exec_list body;
661
662 private:
663 /** Function of which this signature is one overload. */
664 class ir_function *_function;
665
666 /** Function signature of which this one is a prototype clone */
667 const ir_function_signature *origin;
668
669 friend class ir_function;
670
671 /**
672 * Helper function to run a list of instructions for constant
673 * expression evaluation.
674 *
675 * The hash table represents the values of the visible variables.
676 * There are no scoping issues because the table is indexed on
677 * ir_variable pointers, not variable names.
678 *
679 * Returns false if the expression is not constant, true otherwise,
680 * and the value in *result if result is non-NULL.
681 */
682 bool constant_expression_evaluate_expression_list(const struct exec_list &body,
683 struct hash_table *variable_context,
684 ir_constant **result);
685 };
686
687
688 /**
689 * Header for tracking multiple overloaded functions with the same name.
690 * Contains a list of ir_function_signatures representing each of the
691 * actual functions.
692 */
693 class ir_function : public ir_instruction {
694 public:
695 ir_function(const char *name);
696
697 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
698
699 virtual ir_function *as_function()
700 {
701 return this;
702 }
703
704 virtual void accept(ir_visitor *v)
705 {
706 v->visit(this);
707 }
708
709 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
710
711 void add_signature(ir_function_signature *sig)
712 {
713 sig->_function = this;
714 this->signatures.push_tail(sig);
715 }
716
717 /**
718 * Get an iterator for the set of function signatures
719 */
720 exec_list_iterator iterator()
721 {
722 return signatures.iterator();
723 }
724
725 /**
726 * Find a signature that matches a set of actual parameters, taking implicit
727 * conversions into account. Also flags whether the match was exact.
728 */
729 ir_function_signature *matching_signature(const exec_list *actual_param,
730 bool *match_is_exact);
731
732 /**
733 * Find a signature that matches a set of actual parameters, taking implicit
734 * conversions into account.
735 */
736 ir_function_signature *matching_signature(const exec_list *actual_param);
737
738 /**
739 * Find a signature that exactly matches a set of actual parameters without
740 * any implicit type conversions.
741 */
742 ir_function_signature *exact_matching_signature(const exec_list *actual_ps);
743
744 /**
745 * Name of the function.
746 */
747 const char *name;
748
749 /** Whether or not this function has a signature that isn't a built-in. */
750 bool has_user_signature();
751
752 /**
753 * List of ir_function_signature for each overloaded function with this name.
754 */
755 struct exec_list signatures;
756 };
757
758 inline const char *ir_function_signature::function_name() const
759 {
760 return this->_function->name;
761 }
762 /*@}*/
763
764
765 /**
766 * IR instruction representing high-level if-statements
767 */
768 class ir_if : public ir_instruction {
769 public:
770 ir_if(ir_rvalue *condition)
771 : condition(condition)
772 {
773 ir_type = ir_type_if;
774 }
775
776 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
777
778 virtual ir_if *as_if()
779 {
780 return this;
781 }
782
783 virtual void accept(ir_visitor *v)
784 {
785 v->visit(this);
786 }
787
788 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
789
790 ir_rvalue *condition;
791 /** List of ir_instruction for the body of the then branch */
792 exec_list then_instructions;
793 /** List of ir_instruction for the body of the else branch */
794 exec_list else_instructions;
795 };
796
797
798 /**
799 * IR instruction representing a high-level loop structure.
800 */
801 class ir_loop : public ir_instruction {
802 public:
803 ir_loop();
804
805 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
806
807 virtual void accept(ir_visitor *v)
808 {
809 v->visit(this);
810 }
811
812 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
813
814 virtual ir_loop *as_loop()
815 {
816 return this;
817 }
818
819 /**
820 * Get an iterator for the instructions of the loop body
821 */
822 exec_list_iterator iterator()
823 {
824 return body_instructions.iterator();
825 }
826
827 /** List of ir_instruction that make up the body of the loop. */
828 exec_list body_instructions;
829
830 /**
831 * \name Loop counter and controls
832 *
833 * Represents a loop like a FORTRAN \c do-loop.
834 *
835 * \note
836 * If \c from and \c to are the same value, the loop will execute once.
837 */
838 /*@{*/
839 ir_rvalue *from; /** Value of the loop counter on the first
840 * iteration of the loop.
841 */
842 ir_rvalue *to; /** Value of the loop counter on the last
843 * iteration of the loop.
844 */
845 ir_rvalue *increment;
846 ir_variable *counter;
847
848 /**
849 * Comparison operation in the loop terminator.
850 *
851 * If any of the loop control fields are non-\c NULL, this field must be
852 * one of \c ir_binop_less, \c ir_binop_greater, \c ir_binop_lequal,
853 * \c ir_binop_gequal, \c ir_binop_equal, or \c ir_binop_nequal.
854 */
855 int cmp;
856 /*@}*/
857 };
858
859
860 class ir_assignment : public ir_instruction {
861 public:
862 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
863
864 /**
865 * Construct an assignment with an explicit write mask
866 *
867 * \note
868 * Since a write mask is supplied, the LHS must already be a bare
869 * \c ir_dereference. The cannot be any swizzles in the LHS.
870 */
871 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
872 unsigned write_mask);
873
874 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
875
876 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
877
878 virtual void accept(ir_visitor *v)
879 {
880 v->visit(this);
881 }
882
883 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
884
885 virtual ir_assignment * as_assignment()
886 {
887 return this;
888 }
889
890 /**
891 * Get a whole variable written by an assignment
892 *
893 * If the LHS of the assignment writes a whole variable, the variable is
894 * returned. Otherwise \c NULL is returned. Examples of whole-variable
895 * assignment are:
896 *
897 * - Assigning to a scalar
898 * - Assigning to all components of a vector
899 * - Whole array (or matrix) assignment
900 * - Whole structure assignment
901 */
902 ir_variable *whole_variable_written();
903
904 /**
905 * Set the LHS of an assignment
906 */
907 void set_lhs(ir_rvalue *lhs);
908
909 /**
910 * Left-hand side of the assignment.
911 *
912 * This should be treated as read only. If you need to set the LHS of an
913 * assignment, use \c ir_assignment::set_lhs.
914 */
915 ir_dereference *lhs;
916
917 /**
918 * Value being assigned
919 */
920 ir_rvalue *rhs;
921
922 /**
923 * Optional condition for the assignment.
924 */
925 ir_rvalue *condition;
926
927
928 /**
929 * Component mask written
930 *
931 * For non-vector types in the LHS, this field will be zero. For vector
932 * types, a bit will be set for each component that is written. Note that
933 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
934 *
935 * A partially-set write mask means that each enabled channel gets
936 * the value from a consecutive channel of the rhs. For example,
937 * to write just .xyw of gl_FrontColor with color:
938 *
939 * (assign (constant bool (1)) (xyw)
940 * (var_ref gl_FragColor)
941 * (swiz xyw (var_ref color)))
942 */
943 unsigned write_mask:4;
944 };
945
946 /* Update ir_expression::get_num_operands() and operator_strs when
947 * updating this list.
948 */
949 enum ir_expression_operation {
950 ir_unop_bit_not,
951 ir_unop_logic_not,
952 ir_unop_neg,
953 ir_unop_abs,
954 ir_unop_sign,
955 ir_unop_rcp,
956 ir_unop_rsq,
957 ir_unop_sqrt,
958 ir_unop_exp, /**< Log base e on gentype */
959 ir_unop_log, /**< Natural log on gentype */
960 ir_unop_exp2,
961 ir_unop_log2,
962 ir_unop_f2i, /**< Float-to-integer conversion. */
963 ir_unop_f2u, /**< Float-to-unsigned conversion. */
964 ir_unop_i2f, /**< Integer-to-float conversion. */
965 ir_unop_f2b, /**< Float-to-boolean conversion */
966 ir_unop_b2f, /**< Boolean-to-float conversion */
967 ir_unop_i2b, /**< int-to-boolean conversion */
968 ir_unop_b2i, /**< Boolean-to-int conversion */
969 ir_unop_u2f, /**< Unsigned-to-float conversion. */
970 ir_unop_i2u, /**< Integer-to-unsigned conversion. */
971 ir_unop_u2i, /**< Unsigned-to-integer conversion. */
972 ir_unop_bitcast_i2f, /**< Bit-identical int-to-float "conversion" */
973 ir_unop_bitcast_f2i, /**< Bit-identical float-to-int "conversion" */
974 ir_unop_bitcast_u2f, /**< Bit-identical uint-to-float "conversion" */
975 ir_unop_bitcast_f2u, /**< Bit-identical float-to-uint "conversion" */
976 ir_unop_any,
977
978 /**
979 * \name Unary floating-point rounding operations.
980 */
981 /*@{*/
982 ir_unop_trunc,
983 ir_unop_ceil,
984 ir_unop_floor,
985 ir_unop_fract,
986 ir_unop_round_even,
987 /*@}*/
988
989 /**
990 * \name Trigonometric operations.
991 */
992 /*@{*/
993 ir_unop_sin,
994 ir_unop_cos,
995 ir_unop_sin_reduced, /**< Reduced range sin. [-pi, pi] */
996 ir_unop_cos_reduced, /**< Reduced range cos. [-pi, pi] */
997 /*@}*/
998
999 /**
1000 * \name Partial derivatives.
1001 */
1002 /*@{*/
1003 ir_unop_dFdx,
1004 ir_unop_dFdy,
1005 /*@}*/
1006
1007 /**
1008 * \name Floating point pack and unpack operations.
1009 */
1010 /*@{*/
1011 ir_unop_pack_snorm_2x16,
1012 ir_unop_pack_snorm_4x8,
1013 ir_unop_pack_unorm_2x16,
1014 ir_unop_pack_unorm_4x8,
1015 ir_unop_pack_half_2x16,
1016 ir_unop_unpack_snorm_2x16,
1017 ir_unop_unpack_snorm_4x8,
1018 ir_unop_unpack_unorm_2x16,
1019 ir_unop_unpack_unorm_4x8,
1020 ir_unop_unpack_half_2x16,
1021 /*@}*/
1022
1023 /**
1024 * \name Lowered floating point unpacking operations.
1025 *
1026 * \see lower_packing_builtins_visitor::split_unpack_half_2x16
1027 */
1028 /*@{*/
1029 ir_unop_unpack_half_2x16_split_x,
1030 ir_unop_unpack_half_2x16_split_y,
1031 /*@}*/
1032
1033 ir_unop_noise,
1034
1035 /**
1036 * A sentinel marking the last of the unary operations.
1037 */
1038 ir_last_unop = ir_unop_noise,
1039
1040 ir_binop_add,
1041 ir_binop_sub,
1042 ir_binop_mul,
1043 ir_binop_div,
1044
1045 /**
1046 * Takes one of two combinations of arguments:
1047 *
1048 * - mod(vecN, vecN)
1049 * - mod(vecN, float)
1050 *
1051 * Does not take integer types.
1052 */
1053 ir_binop_mod,
1054
1055 /**
1056 * \name Binary comparison operators which return a boolean vector.
1057 * The type of both operands must be equal.
1058 */
1059 /*@{*/
1060 ir_binop_less,
1061 ir_binop_greater,
1062 ir_binop_lequal,
1063 ir_binop_gequal,
1064 ir_binop_equal,
1065 ir_binop_nequal,
1066 /**
1067 * Returns single boolean for whether all components of operands[0]
1068 * equal the components of operands[1].
1069 */
1070 ir_binop_all_equal,
1071 /**
1072 * Returns single boolean for whether any component of operands[0]
1073 * is not equal to the corresponding component of operands[1].
1074 */
1075 ir_binop_any_nequal,
1076 /*@}*/
1077
1078 /**
1079 * \name Bit-wise binary operations.
1080 */
1081 /*@{*/
1082 ir_binop_lshift,
1083 ir_binop_rshift,
1084 ir_binop_bit_and,
1085 ir_binop_bit_xor,
1086 ir_binop_bit_or,
1087 /*@}*/
1088
1089 ir_binop_logic_and,
1090 ir_binop_logic_xor,
1091 ir_binop_logic_or,
1092
1093 ir_binop_dot,
1094 ir_binop_min,
1095 ir_binop_max,
1096
1097 ir_binop_pow,
1098
1099 /**
1100 * \name Lowered floating point packing operations.
1101 *
1102 * \see lower_packing_builtins_visitor::split_pack_half_2x16
1103 */
1104 /*@{*/
1105 ir_binop_pack_half_2x16_split,
1106 /*@}*/
1107
1108 /**
1109 * Load a value the size of a given GLSL type from a uniform block.
1110 *
1111 * operand0 is the ir_constant uniform block index in the linked shader.
1112 * operand1 is a byte offset within the uniform block.
1113 */
1114 ir_binop_ubo_load,
1115
1116 /**
1117 * A sentinel marking the last of the binary operations.
1118 */
1119 ir_last_binop = ir_binop_ubo_load,
1120
1121 ir_triop_lrp,
1122
1123 /**
1124 * A sentinel marking the last of the ternary operations.
1125 */
1126 ir_last_triop = ir_triop_lrp,
1127
1128 ir_quadop_vector,
1129
1130 /**
1131 * A sentinel marking the last of all operations.
1132 */
1133 ir_last_opcode = ir_quadop_vector
1134 };
1135
1136 class ir_expression : public ir_rvalue {
1137 public:
1138 ir_expression(int op, const struct glsl_type *type,
1139 ir_rvalue *op0, ir_rvalue *op1 = NULL,
1140 ir_rvalue *op2 = NULL, ir_rvalue *op3 = NULL);
1141
1142 /**
1143 * Constructor for unary operation expressions
1144 */
1145 ir_expression(int op, ir_rvalue *);
1146
1147 /**
1148 * Constructor for binary operation expressions
1149 */
1150 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
1151
1152 virtual ir_expression *as_expression()
1153 {
1154 return this;
1155 }
1156
1157 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
1158
1159 /**
1160 * Attempt to constant-fold the expression
1161 *
1162 * The "variable_context" hash table links ir_variable * to ir_constant *
1163 * that represent the variables' values. \c NULL represents an empty
1164 * context.
1165 *
1166 * If the expression cannot be constant folded, this method will return
1167 * \c NULL.
1168 */
1169 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1170
1171 /**
1172 * Determine the number of operands used by an expression
1173 */
1174 static unsigned int get_num_operands(ir_expression_operation);
1175
1176 /**
1177 * Determine the number of operands used by an expression
1178 */
1179 unsigned int get_num_operands() const
1180 {
1181 return (this->operation == ir_quadop_vector)
1182 ? this->type->vector_elements : get_num_operands(operation);
1183 }
1184
1185 /**
1186 * Return a string representing this expression's operator.
1187 */
1188 const char *operator_string();
1189
1190 /**
1191 * Return a string representing this expression's operator.
1192 */
1193 static const char *operator_string(ir_expression_operation);
1194
1195
1196 /**
1197 * Do a reverse-lookup to translate the given string into an operator.
1198 */
1199 static ir_expression_operation get_operator(const char *);
1200
1201 virtual void accept(ir_visitor *v)
1202 {
1203 v->visit(this);
1204 }
1205
1206 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1207
1208 ir_expression_operation operation;
1209 ir_rvalue *operands[4];
1210 };
1211
1212
1213 /**
1214 * HIR instruction representing a high-level function call, containing a list
1215 * of parameters and returning a value in the supplied temporary.
1216 */
1217 class ir_call : public ir_instruction {
1218 public:
1219 ir_call(ir_function_signature *callee,
1220 ir_dereference_variable *return_deref,
1221 exec_list *actual_parameters)
1222 : return_deref(return_deref), callee(callee)
1223 {
1224 ir_type = ir_type_call;
1225 assert(callee->return_type != NULL);
1226 actual_parameters->move_nodes_to(& this->actual_parameters);
1227 this->use_builtin = callee->is_builtin;
1228 }
1229
1230 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1231
1232 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1233
1234 virtual ir_call *as_call()
1235 {
1236 return this;
1237 }
1238
1239 virtual void accept(ir_visitor *v)
1240 {
1241 v->visit(this);
1242 }
1243
1244 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1245
1246 /**
1247 * Get an iterator for the set of acutal parameters
1248 */
1249 exec_list_iterator iterator()
1250 {
1251 return actual_parameters.iterator();
1252 }
1253
1254 /**
1255 * Get the name of the function being called.
1256 */
1257 const char *callee_name() const
1258 {
1259 return callee->function_name();
1260 }
1261
1262 /**
1263 * Generates an inline version of the function before @ir,
1264 * storing the return value in return_deref.
1265 */
1266 void generate_inline(ir_instruction *ir);
1267
1268 /**
1269 * Storage for the function's return value.
1270 * This must be NULL if the return type is void.
1271 */
1272 ir_dereference_variable *return_deref;
1273
1274 /**
1275 * The specific function signature being called.
1276 */
1277 ir_function_signature *callee;
1278
1279 /* List of ir_rvalue of paramaters passed in this call. */
1280 exec_list actual_parameters;
1281
1282 /** Should this call only bind to a built-in function? */
1283 bool use_builtin;
1284 };
1285
1286
1287 /**
1288 * \name Jump-like IR instructions.
1289 *
1290 * These include \c break, \c continue, \c return, and \c discard.
1291 */
1292 /*@{*/
1293 class ir_jump : public ir_instruction {
1294 protected:
1295 ir_jump()
1296 {
1297 ir_type = ir_type_unset;
1298 }
1299 };
1300
1301 class ir_return : public ir_jump {
1302 public:
1303 ir_return()
1304 : value(NULL)
1305 {
1306 this->ir_type = ir_type_return;
1307 }
1308
1309 ir_return(ir_rvalue *value)
1310 : value(value)
1311 {
1312 this->ir_type = ir_type_return;
1313 }
1314
1315 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1316
1317 virtual ir_return *as_return()
1318 {
1319 return this;
1320 }
1321
1322 ir_rvalue *get_value() const
1323 {
1324 return value;
1325 }
1326
1327 virtual void accept(ir_visitor *v)
1328 {
1329 v->visit(this);
1330 }
1331
1332 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1333
1334 ir_rvalue *value;
1335 };
1336
1337
1338 /**
1339 * Jump instructions used inside loops
1340 *
1341 * These include \c break and \c continue. The \c break within a loop is
1342 * different from the \c break within a switch-statement.
1343 *
1344 * \sa ir_switch_jump
1345 */
1346 class ir_loop_jump : public ir_jump {
1347 public:
1348 enum jump_mode {
1349 jump_break,
1350 jump_continue
1351 };
1352
1353 ir_loop_jump(jump_mode mode)
1354 {
1355 this->ir_type = ir_type_loop_jump;
1356 this->mode = mode;
1357 }
1358
1359 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1360
1361 virtual void accept(ir_visitor *v)
1362 {
1363 v->visit(this);
1364 }
1365
1366 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1367
1368 bool is_break() const
1369 {
1370 return mode == jump_break;
1371 }
1372
1373 bool is_continue() const
1374 {
1375 return mode == jump_continue;
1376 }
1377
1378 /** Mode selector for the jump instruction. */
1379 enum jump_mode mode;
1380 };
1381
1382 /**
1383 * IR instruction representing discard statements.
1384 */
1385 class ir_discard : public ir_jump {
1386 public:
1387 ir_discard()
1388 {
1389 this->ir_type = ir_type_discard;
1390 this->condition = NULL;
1391 }
1392
1393 ir_discard(ir_rvalue *cond)
1394 {
1395 this->ir_type = ir_type_discard;
1396 this->condition = cond;
1397 }
1398
1399 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1400
1401 virtual void accept(ir_visitor *v)
1402 {
1403 v->visit(this);
1404 }
1405
1406 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1407
1408 virtual ir_discard *as_discard()
1409 {
1410 return this;
1411 }
1412
1413 ir_rvalue *condition;
1414 };
1415 /*@}*/
1416
1417
1418 /**
1419 * Texture sampling opcodes used in ir_texture
1420 */
1421 enum ir_texture_opcode {
1422 ir_tex, /**< Regular texture look-up */
1423 ir_txb, /**< Texture look-up with LOD bias */
1424 ir_txl, /**< Texture look-up with explicit LOD */
1425 ir_txd, /**< Texture look-up with partial derivatvies */
1426 ir_txf, /**< Texel fetch with explicit LOD */
1427 ir_txf_ms, /**< Multisample texture fetch */
1428 ir_txs /**< Texture size */
1429 };
1430
1431
1432 /**
1433 * IR instruction to sample a texture
1434 *
1435 * The specific form of the IR instruction depends on the \c mode value
1436 * selected from \c ir_texture_opcodes. In the printed IR, these will
1437 * appear as:
1438 *
1439 * Texel offset (0 or an expression)
1440 * | Projection divisor
1441 * | | Shadow comparitor
1442 * | | |
1443 * v v v
1444 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1445 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1446 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1447 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1448 * (txf <type> <sampler> <coordinate> 0 <lod>)
1449 * (txf_ms
1450 * <type> <sampler> <coordinate> <sample_index>)
1451 * (txs <type> <sampler> <lod>)
1452 */
1453 class ir_texture : public ir_rvalue {
1454 public:
1455 ir_texture(enum ir_texture_opcode op)
1456 : op(op), sampler(NULL), coordinate(NULL), projector(NULL),
1457 shadow_comparitor(NULL), offset(NULL)
1458 {
1459 this->ir_type = ir_type_texture;
1460 }
1461
1462 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1463
1464 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1465
1466 virtual void accept(ir_visitor *v)
1467 {
1468 v->visit(this);
1469 }
1470
1471 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1472
1473 /**
1474 * Return a string representing the ir_texture_opcode.
1475 */
1476 const char *opcode_string();
1477
1478 /** Set the sampler and type. */
1479 void set_sampler(ir_dereference *sampler, const glsl_type *type);
1480
1481 /**
1482 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1483 */
1484 static ir_texture_opcode get_opcode(const char *);
1485
1486 enum ir_texture_opcode op;
1487
1488 /** Sampler to use for the texture access. */
1489 ir_dereference *sampler;
1490
1491 /** Texture coordinate to sample */
1492 ir_rvalue *coordinate;
1493
1494 /**
1495 * Value used for projective divide.
1496 *
1497 * If there is no projective divide (the common case), this will be
1498 * \c NULL. Optimization passes should check for this to point to a constant
1499 * of 1.0 and replace that with \c NULL.
1500 */
1501 ir_rvalue *projector;
1502
1503 /**
1504 * Coordinate used for comparison on shadow look-ups.
1505 *
1506 * If there is no shadow comparison, this will be \c NULL. For the
1507 * \c ir_txf opcode, this *must* be \c NULL.
1508 */
1509 ir_rvalue *shadow_comparitor;
1510
1511 /** Texel offset. */
1512 ir_rvalue *offset;
1513
1514 union {
1515 ir_rvalue *lod; /**< Floating point LOD */
1516 ir_rvalue *bias; /**< Floating point LOD bias */
1517 ir_rvalue *sample_index; /**< MSAA sample index */
1518 struct {
1519 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1520 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1521 } grad;
1522 } lod_info;
1523 };
1524
1525
1526 struct ir_swizzle_mask {
1527 unsigned x:2;
1528 unsigned y:2;
1529 unsigned z:2;
1530 unsigned w:2;
1531
1532 /**
1533 * Number of components in the swizzle.
1534 */
1535 unsigned num_components:3;
1536
1537 /**
1538 * Does the swizzle contain duplicate components?
1539 *
1540 * L-value swizzles cannot contain duplicate components.
1541 */
1542 unsigned has_duplicates:1;
1543 };
1544
1545
1546 class ir_swizzle : public ir_rvalue {
1547 public:
1548 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1549 unsigned count);
1550
1551 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1552
1553 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1554
1555 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1556
1557 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1558
1559 virtual ir_swizzle *as_swizzle()
1560 {
1561 return this;
1562 }
1563
1564 /**
1565 * Construct an ir_swizzle from the textual representation. Can fail.
1566 */
1567 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1568
1569 virtual void accept(ir_visitor *v)
1570 {
1571 v->visit(this);
1572 }
1573
1574 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1575
1576 bool is_lvalue() const
1577 {
1578 return val->is_lvalue() && !mask.has_duplicates;
1579 }
1580
1581 /**
1582 * Get the variable that is ultimately referenced by an r-value
1583 */
1584 virtual ir_variable *variable_referenced() const;
1585
1586 ir_rvalue *val;
1587 ir_swizzle_mask mask;
1588
1589 private:
1590 /**
1591 * Initialize the mask component of a swizzle
1592 *
1593 * This is used by the \c ir_swizzle constructors.
1594 */
1595 void init_mask(const unsigned *components, unsigned count);
1596 };
1597
1598
1599 class ir_dereference : public ir_rvalue {
1600 public:
1601 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
1602
1603 virtual ir_dereference *as_dereference()
1604 {
1605 return this;
1606 }
1607
1608 bool is_lvalue() const;
1609
1610 /**
1611 * Get the variable that is ultimately referenced by an r-value
1612 */
1613 virtual ir_variable *variable_referenced() const = 0;
1614
1615 /**
1616 * Get the constant that is ultimately referenced by an r-value,
1617 * in a constant expression evaluation context.
1618 *
1619 * The offset is used when the reference is to a specific column of
1620 * a matrix.
1621 */
1622 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const = 0;
1623 };
1624
1625
1626 class ir_dereference_variable : public ir_dereference {
1627 public:
1628 ir_dereference_variable(ir_variable *var);
1629
1630 virtual ir_dereference_variable *clone(void *mem_ctx,
1631 struct hash_table *) const;
1632
1633 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1634
1635 virtual ir_dereference_variable *as_dereference_variable()
1636 {
1637 return this;
1638 }
1639
1640 /**
1641 * Get the variable that is ultimately referenced by an r-value
1642 */
1643 virtual ir_variable *variable_referenced() const
1644 {
1645 return this->var;
1646 }
1647
1648 /**
1649 * Get the constant that is ultimately referenced by an r-value,
1650 * in a constant expression evaluation context.
1651 *
1652 * The offset is used when the reference is to a specific column of
1653 * a matrix.
1654 */
1655 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const;
1656
1657 virtual ir_variable *whole_variable_referenced()
1658 {
1659 /* ir_dereference_variable objects always dereference the entire
1660 * variable. However, if this dereference is dereferenced by anything
1661 * else, the complete deferefernce chain is not a whole-variable
1662 * dereference. This method should only be called on the top most
1663 * ir_rvalue in a dereference chain.
1664 */
1665 return this->var;
1666 }
1667
1668 virtual void accept(ir_visitor *v)
1669 {
1670 v->visit(this);
1671 }
1672
1673 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1674
1675 /**
1676 * Object being dereferenced.
1677 */
1678 ir_variable *var;
1679 };
1680
1681
1682 class ir_dereference_array : public ir_dereference {
1683 public:
1684 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
1685
1686 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
1687
1688 virtual ir_dereference_array *clone(void *mem_ctx,
1689 struct hash_table *) const;
1690
1691 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1692
1693 virtual ir_dereference_array *as_dereference_array()
1694 {
1695 return this;
1696 }
1697
1698 /**
1699 * Get the variable that is ultimately referenced by an r-value
1700 */
1701 virtual ir_variable *variable_referenced() const
1702 {
1703 return this->array->variable_referenced();
1704 }
1705
1706 /**
1707 * Get the constant that is ultimately referenced by an r-value,
1708 * in a constant expression evaluation context.
1709 *
1710 * The offset is used when the reference is to a specific column of
1711 * a matrix.
1712 */
1713 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const;
1714
1715 virtual void accept(ir_visitor *v)
1716 {
1717 v->visit(this);
1718 }
1719
1720 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1721
1722 ir_rvalue *array;
1723 ir_rvalue *array_index;
1724
1725 private:
1726 void set_array(ir_rvalue *value);
1727 };
1728
1729
1730 class ir_dereference_record : public ir_dereference {
1731 public:
1732 ir_dereference_record(ir_rvalue *value, const char *field);
1733
1734 ir_dereference_record(ir_variable *var, const char *field);
1735
1736 virtual ir_dereference_record *clone(void *mem_ctx,
1737 struct hash_table *) const;
1738
1739 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1740
1741 /**
1742 * Get the variable that is ultimately referenced by an r-value
1743 */
1744 virtual ir_variable *variable_referenced() const
1745 {
1746 return this->record->variable_referenced();
1747 }
1748
1749 /**
1750 * Get the constant that is ultimately referenced by an r-value,
1751 * in a constant expression evaluation context.
1752 *
1753 * The offset is used when the reference is to a specific column of
1754 * a matrix.
1755 */
1756 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const;
1757
1758 virtual void accept(ir_visitor *v)
1759 {
1760 v->visit(this);
1761 }
1762
1763 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1764
1765 ir_rvalue *record;
1766 const char *field;
1767 };
1768
1769
1770 /**
1771 * Data stored in an ir_constant
1772 */
1773 union ir_constant_data {
1774 unsigned u[16];
1775 int i[16];
1776 float f[16];
1777 bool b[16];
1778 };
1779
1780
1781 class ir_constant : public ir_rvalue {
1782 public:
1783 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
1784 ir_constant(bool b);
1785 ir_constant(unsigned int u);
1786 ir_constant(int i);
1787 ir_constant(float f);
1788
1789 /**
1790 * Construct an ir_constant from a list of ir_constant values
1791 */
1792 ir_constant(const struct glsl_type *type, exec_list *values);
1793
1794 /**
1795 * Construct an ir_constant from a scalar component of another ir_constant
1796 *
1797 * The new \c ir_constant inherits the type of the component from the
1798 * source constant.
1799 *
1800 * \note
1801 * In the case of a matrix constant, the new constant is a scalar, \b not
1802 * a vector.
1803 */
1804 ir_constant(const ir_constant *c, unsigned i);
1805
1806 /**
1807 * Return a new ir_constant of the specified type containing all zeros.
1808 */
1809 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
1810
1811 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
1812
1813 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1814
1815 virtual ir_constant *as_constant()
1816 {
1817 return this;
1818 }
1819
1820 virtual void accept(ir_visitor *v)
1821 {
1822 v->visit(this);
1823 }
1824
1825 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1826
1827 /**
1828 * Get a particular component of a constant as a specific type
1829 *
1830 * This is useful, for example, to get a value from an integer constant
1831 * as a float or bool. This appears frequently when constructors are
1832 * called with all constant parameters.
1833 */
1834 /*@{*/
1835 bool get_bool_component(unsigned i) const;
1836 float get_float_component(unsigned i) const;
1837 int get_int_component(unsigned i) const;
1838 unsigned get_uint_component(unsigned i) const;
1839 /*@}*/
1840
1841 ir_constant *get_array_element(unsigned i) const;
1842
1843 ir_constant *get_record_field(const char *name);
1844
1845 /**
1846 * Copy the values on another constant at a given offset.
1847 *
1848 * The offset is ignored for array or struct copies, it's only for
1849 * scalars or vectors into vectors or matrices.
1850 *
1851 * With identical types on both sides and zero offset it's clone()
1852 * without creating a new object.
1853 */
1854
1855 void copy_offset(ir_constant *src, int offset);
1856
1857 /**
1858 * Copy the values on another constant at a given offset and
1859 * following an assign-like mask.
1860 *
1861 * The mask is ignored for scalars.
1862 *
1863 * Note that this function only handles what assign can handle,
1864 * i.e. at most a vector as source and a column of a matrix as
1865 * destination.
1866 */
1867
1868 void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
1869
1870 /**
1871 * Determine whether a constant has the same value as another constant
1872 *
1873 * \sa ir_constant::is_zero, ir_constant::is_one,
1874 * ir_constant::is_negative_one, ir_constant::is_basis
1875 */
1876 bool has_value(const ir_constant *) const;
1877
1878 virtual bool is_zero() const;
1879 virtual bool is_one() const;
1880 virtual bool is_negative_one() const;
1881 virtual bool is_basis() const;
1882
1883 /**
1884 * Value of the constant.
1885 *
1886 * The field used to back the values supplied by the constant is determined
1887 * by the type associated with the \c ir_instruction. Constants may be
1888 * scalars, vectors, or matrices.
1889 */
1890 union ir_constant_data value;
1891
1892 /* Array elements */
1893 ir_constant **array_elements;
1894
1895 /* Structure fields */
1896 exec_list components;
1897
1898 private:
1899 /**
1900 * Parameterless constructor only used by the clone method
1901 */
1902 ir_constant(void);
1903 };
1904
1905 /*@}*/
1906
1907 /**
1908 * Apply a visitor to each IR node in a list
1909 */
1910 void
1911 visit_exec_list(exec_list *list, ir_visitor *visitor);
1912
1913 /**
1914 * Validate invariants on each IR node in a list
1915 */
1916 void validate_ir_tree(exec_list *instructions);
1917
1918 struct _mesa_glsl_parse_state;
1919 struct gl_shader_program;
1920
1921 /**
1922 * Detect whether an unlinked shader contains static recursion
1923 *
1924 * If the list of instructions is determined to contain static recursion,
1925 * \c _mesa_glsl_error will be called to emit error messages for each function
1926 * that is in the recursion cycle.
1927 */
1928 void
1929 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
1930 exec_list *instructions);
1931
1932 /**
1933 * Detect whether a linked shader contains static recursion
1934 *
1935 * If the list of instructions is determined to contain static recursion,
1936 * \c link_error_printf will be called to emit error messages for each function
1937 * that is in the recursion cycle. In addition,
1938 * \c gl_shader_program::LinkStatus will be set to false.
1939 */
1940 void
1941 detect_recursion_linked(struct gl_shader_program *prog,
1942 exec_list *instructions);
1943
1944 /**
1945 * Make a clone of each IR instruction in a list
1946 *
1947 * \param in List of IR instructions that are to be cloned
1948 * \param out List to hold the cloned instructions
1949 */
1950 void
1951 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
1952
1953 extern void
1954 _mesa_glsl_initialize_variables(exec_list *instructions,
1955 struct _mesa_glsl_parse_state *state);
1956
1957 extern void
1958 _mesa_glsl_initialize_functions(_mesa_glsl_parse_state *state);
1959
1960 extern void
1961 _mesa_glsl_release_functions(void);
1962
1963 extern void
1964 reparent_ir(exec_list *list, void *mem_ctx);
1965
1966 struct glsl_symbol_table;
1967
1968 extern void
1969 import_prototypes(const exec_list *source, exec_list *dest,
1970 struct glsl_symbol_table *symbols, void *mem_ctx);
1971
1972 extern bool
1973 ir_has_call(ir_instruction *ir);
1974
1975 extern void
1976 do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
1977 bool is_fragment_shader);
1978
1979 extern char *
1980 prototype_string(const glsl_type *return_type, const char *name,
1981 exec_list *parameters);
1982
1983 #endif /* IR_H */