mesa: include mtypes.h less
[mesa.git] / src / intel / compiler / brw_compiler.h
1 /*
2 * Copyright © 2010 - 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef BRW_COMPILER_H
25 #define BRW_COMPILER_H
26
27 #include <stdio.h>
28 #include "dev/gen_device_info.h"
29 #include "main/macros.h"
30 #include "main/mtypes.h"
31 #include "util/ralloc.h"
32
33 #ifdef __cplusplus
34 extern "C" {
35 #endif
36
37 struct ra_regs;
38 struct nir_shader;
39 struct brw_program;
40
41 struct brw_compiler {
42 const struct gen_device_info *devinfo;
43
44 struct {
45 struct ra_regs *regs;
46
47 /**
48 * Array of the ra classes for the unaligned contiguous register
49 * block sizes used.
50 */
51 int *classes;
52
53 /**
54 * Mapping for register-allocated objects in *regs to the first
55 * GRF for that object.
56 */
57 uint8_t *ra_reg_to_grf;
58 } vec4_reg_set;
59
60 struct {
61 struct ra_regs *regs;
62
63 /**
64 * Array of the ra classes for the unaligned contiguous register
65 * block sizes used, indexed by register size.
66 */
67 int classes[16];
68
69 /**
70 * Mapping from classes to ra_reg ranges. Each of the per-size
71 * classes corresponds to a range of ra_reg nodes. This array stores
72 * those ranges in the form of first ra_reg in each class and the
73 * total number of ra_reg elements in the last array element. This
74 * way the range of the i'th class is given by:
75 * [ class_to_ra_reg_range[i], class_to_ra_reg_range[i+1] )
76 */
77 int class_to_ra_reg_range[17];
78
79 /**
80 * Mapping for register-allocated objects in *regs to the first
81 * GRF for that object.
82 */
83 uint8_t *ra_reg_to_grf;
84
85 /**
86 * ra class for the aligned pairs we use for PLN, which doesn't
87 * appear in *classes.
88 */
89 int aligned_pairs_class;
90 } fs_reg_sets[3];
91
92 void (*shader_debug_log)(void *, const char *str, ...) PRINTFLIKE(2, 3);
93 void (*shader_perf_log)(void *, const char *str, ...) PRINTFLIKE(2, 3);
94
95 bool scalar_stage[MESA_SHADER_STAGES];
96 struct gl_shader_compiler_options glsl_compiler_options[MESA_SHADER_STAGES];
97
98 /**
99 * Apply workarounds for SIN and COS output range problems.
100 * This can negatively impact performance.
101 */
102 bool precise_trig;
103
104 /**
105 * Is 3DSTATE_CONSTANT_*'s Constant Buffer 0 relative to Dynamic State
106 * Base Address? (If not, it's a normal GPU address.)
107 */
108 bool constant_buffer_0_is_relative;
109
110 /**
111 * Whether or not the driver supports pull constants. If not, the compiler
112 * will attempt to push everything.
113 */
114 bool supports_pull_constants;
115 };
116
117 /**
118 * We use a constant subgroup size of 32. It really only needs to be a
119 * maximum and, since we do SIMD32 for compute shaders in some cases, it
120 * needs to be at least 32. SIMD8 and SIMD16 shaders will still claim a
121 * subgroup size of 32 but will act as if 16 or 24 of those channels are
122 * disabled.
123 */
124 #define BRW_SUBGROUP_SIZE 32
125
126 /**
127 * Program key structures.
128 *
129 * When drawing, we look for the currently bound shaders in the program
130 * cache. This is essentially a hash table lookup, and these are the keys.
131 *
132 * Sometimes OpenGL features specified as state need to be simulated via
133 * shader code, due to a mismatch between the API and the hardware. This
134 * is often referred to as "non-orthagonal state" or "NOS". We store NOS
135 * in the program key so it's considered when searching for a program. If
136 * we haven't seen a particular combination before, we have to recompile a
137 * new specialized version.
138 *
139 * Shader compilation should not look up state in gl_context directly, but
140 * instead use the copy in the program key. This guarantees recompiles will
141 * happen correctly.
142 *
143 * @{
144 */
145
146 enum PACKED gen6_gather_sampler_wa {
147 WA_SIGN = 1, /* whether we need to sign extend */
148 WA_8BIT = 2, /* if we have an 8bit format needing wa */
149 WA_16BIT = 4, /* if we have a 16bit format needing wa */
150 };
151
152 /**
153 * Sampler information needed by VS, WM, and GS program cache keys.
154 */
155 struct brw_sampler_prog_key_data {
156 /**
157 * EXT_texture_swizzle and DEPTH_TEXTURE_MODE swizzles.
158 */
159 uint16_t swizzles[MAX_SAMPLERS];
160
161 uint32_t gl_clamp_mask[3];
162
163 /**
164 * For RG32F, gather4's channel select is broken.
165 */
166 uint32_t gather_channel_quirk_mask;
167
168 /**
169 * Whether this sampler uses the compressed multisample surface layout.
170 */
171 uint32_t compressed_multisample_layout_mask;
172
173 /**
174 * Whether this sampler is using 16x multisampling. If so fetching from
175 * this sampler will be handled with a different instruction, ld2dms_w
176 * instead of ld2dms.
177 */
178 uint32_t msaa_16;
179
180 /**
181 * For Sandybridge, which shader w/a we need for gather quirks.
182 */
183 enum gen6_gather_sampler_wa gen6_gather_wa[MAX_SAMPLERS];
184
185 /**
186 * Texture units that have a YUV image bound.
187 */
188 uint32_t y_u_v_image_mask;
189 uint32_t y_uv_image_mask;
190 uint32_t yx_xuxv_image_mask;
191 uint32_t xy_uxvx_image_mask;
192 };
193
194 /**
195 * The VF can't natively handle certain types of attributes, such as GL_FIXED
196 * or most 10_10_10_2 types. These flags enable various VS workarounds to
197 * "fix" attributes at the beginning of shaders.
198 */
199 #define BRW_ATTRIB_WA_COMPONENT_MASK 7 /* mask for GL_FIXED scale channel count */
200 #define BRW_ATTRIB_WA_NORMALIZE 8 /* normalize in shader */
201 #define BRW_ATTRIB_WA_BGRA 16 /* swap r/b channels in shader */
202 #define BRW_ATTRIB_WA_SIGN 32 /* interpret as signed in shader */
203 #define BRW_ATTRIB_WA_SCALE 64 /* interpret as scaled in shader */
204
205 /**
206 * OpenGL attribute slots fall in [0, VERT_ATTRIB_MAX - 1] with the range
207 * [VERT_ATTRIB_GENERIC0, VERT_ATTRIB_MAX - 1] reserved for up to 16 user
208 * input vertex attributes. In Vulkan, we expose up to 28 user vertex input
209 * attributes that are mapped to slots also starting at VERT_ATTRIB_GENERIC0.
210 */
211 #define MAX_GL_VERT_ATTRIB VERT_ATTRIB_MAX
212 #define MAX_VK_VERT_ATTRIB (VERT_ATTRIB_GENERIC0 + 28)
213
214 /** The program key for Vertex Shaders. */
215 struct brw_vs_prog_key {
216 unsigned program_string_id;
217
218 /**
219 * Per-attribute workaround flags
220 *
221 * For each attribute, a combination of BRW_ATTRIB_WA_*.
222 *
223 * For OpenGL, where we expose a maximum of 16 user input atttributes
224 * we only need up to VERT_ATTRIB_MAX slots, however, in Vulkan
225 * slots preceding VERT_ATTRIB_GENERIC0 are unused and we can
226 * expose up to 28 user input vertex attributes that are mapped to slots
227 * starting at VERT_ATTRIB_GENERIC0, so this array needs to be large
228 * enough to hold this many slots.
229 */
230 uint8_t gl_attrib_wa_flags[MAX2(MAX_GL_VERT_ATTRIB, MAX_VK_VERT_ATTRIB)];
231
232 bool copy_edgeflag:1;
233
234 bool clamp_vertex_color:1;
235
236 /**
237 * How many user clipping planes are being uploaded to the vertex shader as
238 * push constants.
239 *
240 * These are used for lowering legacy gl_ClipVertex/gl_Position clipping to
241 * clip distances.
242 */
243 unsigned nr_userclip_plane_consts:4;
244
245 /**
246 * For pre-Gen6 hardware, a bitfield indicating which texture coordinates
247 * are going to be replaced with point coordinates (as a consequence of a
248 * call to glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE)). Because
249 * our SF thread requires exact matching between VS outputs and FS inputs,
250 * these texture coordinates will need to be unconditionally included in
251 * the VUE, even if they aren't written by the vertex shader.
252 */
253 uint8_t point_coord_replace;
254
255 struct brw_sampler_prog_key_data tex;
256 };
257
258 /** The program key for Tessellation Control Shaders. */
259 struct brw_tcs_prog_key
260 {
261 unsigned program_string_id;
262
263 GLenum tes_primitive_mode;
264
265 unsigned input_vertices;
266
267 /** A bitfield of per-patch outputs written. */
268 uint32_t patch_outputs_written;
269
270 /** A bitfield of per-vertex outputs written. */
271 uint64_t outputs_written;
272
273 bool quads_workaround;
274
275 struct brw_sampler_prog_key_data tex;
276 };
277
278 /** The program key for Tessellation Evaluation Shaders. */
279 struct brw_tes_prog_key
280 {
281 unsigned program_string_id;
282
283 /** A bitfield of per-patch inputs read. */
284 uint32_t patch_inputs_read;
285
286 /** A bitfield of per-vertex inputs read. */
287 uint64_t inputs_read;
288
289 struct brw_sampler_prog_key_data tex;
290 };
291
292 /** The program key for Geometry Shaders. */
293 struct brw_gs_prog_key
294 {
295 unsigned program_string_id;
296
297 struct brw_sampler_prog_key_data tex;
298 };
299
300 enum brw_sf_primitive {
301 BRW_SF_PRIM_POINTS = 0,
302 BRW_SF_PRIM_LINES = 1,
303 BRW_SF_PRIM_TRIANGLES = 2,
304 BRW_SF_PRIM_UNFILLED_TRIS = 3,
305 };
306
307 struct brw_sf_prog_key {
308 uint64_t attrs;
309 bool contains_flat_varying;
310 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
311 uint8_t point_sprite_coord_replace;
312 enum brw_sf_primitive primitive:2;
313 bool do_twoside_color:1;
314 bool frontface_ccw:1;
315 bool do_point_sprite:1;
316 bool do_point_coord:1;
317 bool sprite_origin_lower_left:1;
318 bool userclip_active:1;
319 };
320
321 enum brw_clip_mode {
322 BRW_CLIP_MODE_NORMAL = 0,
323 BRW_CLIP_MODE_CLIP_ALL = 1,
324 BRW_CLIP_MODE_CLIP_NON_REJECTED = 2,
325 BRW_CLIP_MODE_REJECT_ALL = 3,
326 BRW_CLIP_MODE_ACCEPT_ALL = 4,
327 BRW_CLIP_MODE_KERNEL_CLIP = 5,
328 };
329
330 enum brw_clip_fill_mode {
331 BRW_CLIP_FILL_MODE_LINE = 0,
332 BRW_CLIP_FILL_MODE_POINT = 1,
333 BRW_CLIP_FILL_MODE_FILL = 2,
334 BRW_CLIP_FILL_MODE_CULL = 3,
335 };
336
337 /* Note that if unfilled primitives are being emitted, we have to fix
338 * up polygon offset and flatshading at this point:
339 */
340 struct brw_clip_prog_key {
341 uint64_t attrs;
342 bool contains_flat_varying;
343 bool contains_noperspective_varying;
344 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
345 unsigned primitive:4;
346 unsigned nr_userclip:4;
347 bool pv_first:1;
348 bool do_unfilled:1;
349 enum brw_clip_fill_mode fill_cw:2; /* includes cull information */
350 enum brw_clip_fill_mode fill_ccw:2; /* includes cull information */
351 bool offset_cw:1;
352 bool offset_ccw:1;
353 bool copy_bfc_cw:1;
354 bool copy_bfc_ccw:1;
355 enum brw_clip_mode clip_mode:3;
356
357 float offset_factor;
358 float offset_units;
359 float offset_clamp;
360 };
361
362 /* A big lookup table is used to figure out which and how many
363 * additional regs will inserted before the main payload in the WM
364 * program execution. These mainly relate to depth and stencil
365 * processing and the early-depth-test optimization.
366 */
367 enum brw_wm_iz_bits {
368 BRW_WM_IZ_PS_KILL_ALPHATEST_BIT = 0x1,
369 BRW_WM_IZ_PS_COMPUTES_DEPTH_BIT = 0x2,
370 BRW_WM_IZ_DEPTH_WRITE_ENABLE_BIT = 0x4,
371 BRW_WM_IZ_DEPTH_TEST_ENABLE_BIT = 0x8,
372 BRW_WM_IZ_STENCIL_WRITE_ENABLE_BIT = 0x10,
373 BRW_WM_IZ_STENCIL_TEST_ENABLE_BIT = 0x20,
374 BRW_WM_IZ_BIT_MAX = 0x40
375 };
376
377 enum brw_wm_aa_enable {
378 BRW_WM_AA_NEVER,
379 BRW_WM_AA_SOMETIMES,
380 BRW_WM_AA_ALWAYS
381 };
382
383 /** The program key for Fragment/Pixel Shaders. */
384 struct brw_wm_prog_key {
385 /* Some collection of BRW_WM_IZ_* */
386 uint8_t iz_lookup;
387 bool stats_wm:1;
388 bool flat_shade:1;
389 unsigned nr_color_regions:5;
390 bool replicate_alpha:1;
391 bool clamp_fragment_color:1;
392 bool persample_interp:1;
393 bool multisample_fbo:1;
394 bool frag_coord_adds_sample_pos:1;
395 enum brw_wm_aa_enable line_aa:2;
396 bool high_quality_derivatives:1;
397 bool force_dual_color_blend:1;
398 bool coherent_fb_fetch:1;
399
400 uint64_t input_slots_valid;
401 unsigned program_string_id;
402 GLenum alpha_test_func; /* < For Gen4/5 MRT alpha test */
403 float alpha_test_ref;
404
405 struct brw_sampler_prog_key_data tex;
406 };
407
408 struct brw_cs_prog_key {
409 uint32_t program_string_id;
410 struct brw_sampler_prog_key_data tex;
411 };
412
413 /* brw_any_prog_key is any of the keys that map to an API stage */
414 union brw_any_prog_key {
415 struct brw_vs_prog_key vs;
416 struct brw_tcs_prog_key tcs;
417 struct brw_tes_prog_key tes;
418 struct brw_gs_prog_key gs;
419 struct brw_wm_prog_key wm;
420 struct brw_cs_prog_key cs;
421 };
422
423 /*
424 * Image metadata structure as laid out in the shader parameter
425 * buffer. Entries have to be 16B-aligned for the vec4 back-end to be
426 * able to use them. That's okay because the padding and any unused
427 * entries [most of them except when we're doing untyped surface
428 * access] will be removed by the uniform packing pass.
429 */
430 #define BRW_IMAGE_PARAM_SURFACE_IDX_OFFSET 0
431 #define BRW_IMAGE_PARAM_OFFSET_OFFSET 4
432 #define BRW_IMAGE_PARAM_SIZE_OFFSET 8
433 #define BRW_IMAGE_PARAM_STRIDE_OFFSET 12
434 #define BRW_IMAGE_PARAM_TILING_OFFSET 16
435 #define BRW_IMAGE_PARAM_SWIZZLING_OFFSET 20
436 #define BRW_IMAGE_PARAM_SIZE 24
437
438 struct brw_image_param {
439 /** Surface binding table index. */
440 uint32_t surface_idx;
441
442 /** Offset applied to the X and Y surface coordinates. */
443 uint32_t offset[2];
444
445 /** Surface X, Y and Z dimensions. */
446 uint32_t size[3];
447
448 /** X-stride in bytes, Y-stride in pixels, horizontal slice stride in
449 * pixels, vertical slice stride in pixels.
450 */
451 uint32_t stride[4];
452
453 /** Log2 of the tiling modulus in the X, Y and Z dimension. */
454 uint32_t tiling[3];
455
456 /**
457 * Right shift to apply for bit 6 address swizzling. Two different
458 * swizzles can be specified and will be applied one after the other. The
459 * resulting address will be:
460 *
461 * addr' = addr ^ ((1 << 6) & ((addr >> swizzling[0]) ^
462 * (addr >> swizzling[1])))
463 *
464 * Use \c 0xff if any of the swizzles is not required.
465 */
466 uint32_t swizzling[2];
467 };
468
469 /** Max number of render targets in a shader */
470 #define BRW_MAX_DRAW_BUFFERS 8
471
472 /**
473 * Max number of binding table entries used for stream output.
474 *
475 * From the OpenGL 3.0 spec, table 6.44 (Transform Feedback State), the
476 * minimum value of MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS is 64.
477 *
478 * On Gen6, the size of transform feedback data is limited not by the number
479 * of components but by the number of binding table entries we set aside. We
480 * use one binding table entry for a float, one entry for a vector, and one
481 * entry per matrix column. Since the only way we can communicate our
482 * transform feedback capabilities to the client is via
483 * MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS, we need to plan for the
484 * worst case, in which all the varyings are floats, so we use up one binding
485 * table entry per component. Therefore we need to set aside at least 64
486 * binding table entries for use by transform feedback.
487 *
488 * Note: since we don't currently pack varyings, it is currently impossible
489 * for the client to actually use up all of these binding table entries--if
490 * all of their varyings were floats, they would run out of varying slots and
491 * fail to link. But that's a bug, so it seems prudent to go ahead and
492 * allocate the number of binding table entries we will need once the bug is
493 * fixed.
494 */
495 #define BRW_MAX_SOL_BINDINGS 64
496
497 /**
498 * Binding table index for the first gen6 SOL binding.
499 */
500 #define BRW_GEN6_SOL_BINDING_START 0
501
502 /**
503 * Stride in bytes between shader_time entries.
504 *
505 * We separate entries by a cacheline to reduce traffic between EUs writing to
506 * different entries.
507 */
508 #define BRW_SHADER_TIME_STRIDE 64
509
510 struct brw_ubo_range
511 {
512 uint16_t block;
513 uint8_t start;
514 uint8_t length;
515 };
516
517 /* We reserve the first 2^16 values for builtins */
518 #define BRW_PARAM_IS_BUILTIN(param) (((param) & 0xffff0000) == 0)
519
520 enum brw_param_builtin {
521 BRW_PARAM_BUILTIN_ZERO,
522
523 BRW_PARAM_BUILTIN_CLIP_PLANE_0_X,
524 BRW_PARAM_BUILTIN_CLIP_PLANE_0_Y,
525 BRW_PARAM_BUILTIN_CLIP_PLANE_0_Z,
526 BRW_PARAM_BUILTIN_CLIP_PLANE_0_W,
527 BRW_PARAM_BUILTIN_CLIP_PLANE_1_X,
528 BRW_PARAM_BUILTIN_CLIP_PLANE_1_Y,
529 BRW_PARAM_BUILTIN_CLIP_PLANE_1_Z,
530 BRW_PARAM_BUILTIN_CLIP_PLANE_1_W,
531 BRW_PARAM_BUILTIN_CLIP_PLANE_2_X,
532 BRW_PARAM_BUILTIN_CLIP_PLANE_2_Y,
533 BRW_PARAM_BUILTIN_CLIP_PLANE_2_Z,
534 BRW_PARAM_BUILTIN_CLIP_PLANE_2_W,
535 BRW_PARAM_BUILTIN_CLIP_PLANE_3_X,
536 BRW_PARAM_BUILTIN_CLIP_PLANE_3_Y,
537 BRW_PARAM_BUILTIN_CLIP_PLANE_3_Z,
538 BRW_PARAM_BUILTIN_CLIP_PLANE_3_W,
539 BRW_PARAM_BUILTIN_CLIP_PLANE_4_X,
540 BRW_PARAM_BUILTIN_CLIP_PLANE_4_Y,
541 BRW_PARAM_BUILTIN_CLIP_PLANE_4_Z,
542 BRW_PARAM_BUILTIN_CLIP_PLANE_4_W,
543 BRW_PARAM_BUILTIN_CLIP_PLANE_5_X,
544 BRW_PARAM_BUILTIN_CLIP_PLANE_5_Y,
545 BRW_PARAM_BUILTIN_CLIP_PLANE_5_Z,
546 BRW_PARAM_BUILTIN_CLIP_PLANE_5_W,
547 BRW_PARAM_BUILTIN_CLIP_PLANE_6_X,
548 BRW_PARAM_BUILTIN_CLIP_PLANE_6_Y,
549 BRW_PARAM_BUILTIN_CLIP_PLANE_6_Z,
550 BRW_PARAM_BUILTIN_CLIP_PLANE_6_W,
551 BRW_PARAM_BUILTIN_CLIP_PLANE_7_X,
552 BRW_PARAM_BUILTIN_CLIP_PLANE_7_Y,
553 BRW_PARAM_BUILTIN_CLIP_PLANE_7_Z,
554 BRW_PARAM_BUILTIN_CLIP_PLANE_7_W,
555
556 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X,
557 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Y,
558 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Z,
559 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_W,
560 BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_X,
561 BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_Y,
562
563 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_X,
564 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Y,
565 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Z,
566 BRW_PARAM_BUILTIN_SUBGROUP_ID,
567 };
568
569 #define BRW_PARAM_BUILTIN_CLIP_PLANE(idx, comp) \
570 (BRW_PARAM_BUILTIN_CLIP_PLANE_0_X + ((idx) << 2) + (comp))
571
572 #define BRW_PARAM_BUILTIN_IS_CLIP_PLANE(param) \
573 ((param) >= BRW_PARAM_BUILTIN_CLIP_PLANE_0_X && \
574 (param) <= BRW_PARAM_BUILTIN_CLIP_PLANE_7_W)
575
576 #define BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(param) \
577 (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) >> 2)
578
579 #define BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(param) \
580 (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) & 0x3)
581
582 struct brw_stage_prog_data {
583 struct {
584 /** size of our binding table. */
585 uint32_t size_bytes;
586
587 /** @{
588 * surface indices for the various groups of surfaces
589 */
590 uint32_t pull_constants_start;
591 uint32_t texture_start;
592 uint32_t gather_texture_start;
593 uint32_t ubo_start;
594 uint32_t ssbo_start;
595 uint32_t image_start;
596 uint32_t shader_time_start;
597 uint32_t plane_start[3];
598 /** @} */
599 } binding_table;
600
601 struct brw_ubo_range ubo_ranges[4];
602
603 GLuint nr_params; /**< number of float params/constants */
604 GLuint nr_pull_params;
605
606 unsigned curb_read_length;
607 unsigned total_scratch;
608 unsigned total_shared;
609
610 unsigned program_size;
611
612 /**
613 * Register where the thread expects to find input data from the URB
614 * (typically uniforms, followed by vertex or fragment attributes).
615 */
616 unsigned dispatch_grf_start_reg;
617
618 bool use_alt_mode; /**< Use ALT floating point mode? Otherwise, IEEE. */
619
620 /* 32-bit identifiers for all push/pull parameters. These can be anything
621 * the driver wishes them to be; the core of the back-end compiler simply
622 * re-arranges them. The one restriction is that the bottom 2^16 values
623 * are reserved for builtins defined in the brw_param_builtin enum defined
624 * above.
625 */
626 uint32_t *param;
627 uint32_t *pull_param;
628 };
629
630 static inline uint32_t *
631 brw_stage_prog_data_add_params(struct brw_stage_prog_data *prog_data,
632 unsigned nr_new_params)
633 {
634 unsigned old_nr_params = prog_data->nr_params;
635 prog_data->nr_params += nr_new_params;
636 prog_data->param = reralloc(ralloc_parent(prog_data->param),
637 prog_data->param, uint32_t,
638 prog_data->nr_params);
639 return prog_data->param + old_nr_params;
640 }
641
642 static inline void
643 brw_mark_surface_used(struct brw_stage_prog_data *prog_data,
644 unsigned surf_index)
645 {
646 /* A binding table index is 8 bits and the top 3 values are reserved for
647 * special things (stateless and SLM).
648 */
649 assert(surf_index <= 252);
650
651 prog_data->binding_table.size_bytes =
652 MAX2(prog_data->binding_table.size_bytes, (surf_index + 1) * 4);
653 }
654
655 enum brw_barycentric_mode {
656 BRW_BARYCENTRIC_PERSPECTIVE_PIXEL = 0,
657 BRW_BARYCENTRIC_PERSPECTIVE_CENTROID = 1,
658 BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE = 2,
659 BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL = 3,
660 BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID = 4,
661 BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE = 5,
662 BRW_BARYCENTRIC_MODE_COUNT = 6
663 };
664 #define BRW_BARYCENTRIC_NONPERSPECTIVE_BITS \
665 ((1 << BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL) | \
666 (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID) | \
667 (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE))
668
669 enum brw_pixel_shader_computed_depth_mode {
670 BRW_PSCDEPTH_OFF = 0, /* PS does not compute depth */
671 BRW_PSCDEPTH_ON = 1, /* PS computes depth; no guarantee about value */
672 BRW_PSCDEPTH_ON_GE = 2, /* PS guarantees output depth >= source depth */
673 BRW_PSCDEPTH_ON_LE = 3, /* PS guarantees output depth <= source depth */
674 };
675
676 /* Data about a particular attempt to compile a program. Note that
677 * there can be many of these, each in a different GL state
678 * corresponding to a different brw_wm_prog_key struct, with different
679 * compiled programs.
680 */
681 struct brw_wm_prog_data {
682 struct brw_stage_prog_data base;
683
684 GLuint num_varying_inputs;
685
686 uint8_t reg_blocks_0;
687 uint8_t reg_blocks_2;
688
689 uint8_t dispatch_grf_start_reg_2;
690 uint32_t prog_offset_2;
691
692 struct {
693 /** @{
694 * surface indices the WM-specific surfaces
695 */
696 uint32_t render_target_read_start;
697 /** @} */
698 } binding_table;
699
700 uint8_t computed_depth_mode;
701 bool computed_stencil;
702
703 bool early_fragment_tests;
704 bool post_depth_coverage;
705 bool inner_coverage;
706 bool dispatch_8;
707 bool dispatch_16;
708 bool dual_src_blend;
709 bool persample_dispatch;
710 bool uses_pos_offset;
711 bool uses_omask;
712 bool uses_kill;
713 bool uses_src_depth;
714 bool uses_src_w;
715 bool uses_sample_mask;
716 bool has_render_target_reads;
717 bool has_side_effects;
718 bool pulls_bary;
719
720 bool contains_flat_varying;
721 bool contains_noperspective_varying;
722
723 /**
724 * Mask of which interpolation modes are required by the fragment shader.
725 * Used in hardware setup on gen6+.
726 */
727 uint32_t barycentric_interp_modes;
728
729 /**
730 * Mask of which FS inputs are marked flat by the shader source. This is
731 * needed for setting up 3DSTATE_SF/SBE.
732 */
733 uint32_t flat_inputs;
734
735 /* Mapping of VUE slots to interpolation modes.
736 * Used by the Gen4-5 clip/sf/wm stages.
737 */
738 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
739
740 /**
741 * Map from gl_varying_slot to the position within the FS setup data
742 * payload where the varying's attribute vertex deltas should be delivered.
743 * For varying slots that are not used by the FS, the value is -1.
744 */
745 int urb_setup[VARYING_SLOT_MAX];
746 };
747
748 struct brw_push_const_block {
749 unsigned dwords; /* Dword count, not reg aligned */
750 unsigned regs;
751 unsigned size; /* Bytes, register aligned */
752 };
753
754 struct brw_cs_prog_data {
755 struct brw_stage_prog_data base;
756
757 unsigned local_size[3];
758 unsigned simd_size;
759 unsigned threads;
760 bool uses_barrier;
761 bool uses_num_work_groups;
762
763 struct {
764 struct brw_push_const_block cross_thread;
765 struct brw_push_const_block per_thread;
766 struct brw_push_const_block total;
767 } push;
768
769 struct {
770 /** @{
771 * surface indices the CS-specific surfaces
772 */
773 uint32_t work_groups_start;
774 /** @} */
775 } binding_table;
776 };
777
778 /**
779 * Enum representing the i965-specific vertex results that don't correspond
780 * exactly to any element of gl_varying_slot. The values of this enum are
781 * assigned such that they don't conflict with gl_varying_slot.
782 */
783 typedef enum
784 {
785 BRW_VARYING_SLOT_NDC = VARYING_SLOT_MAX,
786 BRW_VARYING_SLOT_PAD,
787 /**
788 * Technically this is not a varying but just a placeholder that
789 * compile_sf_prog() inserts into its VUE map to cause the gl_PointCoord
790 * builtin variable to be compiled correctly. see compile_sf_prog() for
791 * more info.
792 */
793 BRW_VARYING_SLOT_PNTC,
794 BRW_VARYING_SLOT_COUNT
795 } brw_varying_slot;
796
797 /**
798 * We always program SF to start reading at an offset of 1 (2 varying slots)
799 * from the start of the vertex URB entry. This causes it to skip:
800 * - VARYING_SLOT_PSIZ and BRW_VARYING_SLOT_NDC on gen4-5
801 * - VARYING_SLOT_PSIZ and VARYING_SLOT_POS on gen6+
802 */
803 #define BRW_SF_URB_ENTRY_READ_OFFSET 1
804
805 /**
806 * Bitmask indicating which fragment shader inputs represent varyings (and
807 * hence have to be delivered to the fragment shader by the SF/SBE stage).
808 */
809 #define BRW_FS_VARYING_INPUT_MASK \
810 (BITFIELD64_RANGE(0, VARYING_SLOT_MAX) & \
811 ~VARYING_BIT_POS & ~VARYING_BIT_FACE)
812
813 /**
814 * Data structure recording the relationship between the gl_varying_slot enum
815 * and "slots" within the vertex URB entry (VUE). A "slot" is defined as a
816 * single octaword within the VUE (128 bits).
817 *
818 * Note that each BRW register contains 256 bits (2 octawords), so when
819 * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
820 * consecutive VUE slots. When accessing the VUE in URB_INTERLEAVED mode (as
821 * in a vertex shader), each register corresponds to a single VUE slot, since
822 * it contains data for two separate vertices.
823 */
824 struct brw_vue_map {
825 /**
826 * Bitfield representing all varying slots that are (a) stored in this VUE
827 * map, and (b) actually written by the shader. Does not include any of
828 * the additional varying slots defined in brw_varying_slot.
829 */
830 uint64_t slots_valid;
831
832 /**
833 * Is this VUE map for a separate shader pipeline?
834 *
835 * Separable programs (GL_ARB_separate_shader_objects) can be mixed and matched
836 * without the linker having a chance to dead code eliminate unused varyings.
837 *
838 * This means that we have to use a fixed slot layout, based on the output's
839 * location field, rather than assigning slots in a compact contiguous block.
840 */
841 bool separate;
842
843 /**
844 * Map from gl_varying_slot value to VUE slot. For gl_varying_slots that are
845 * not stored in a slot (because they are not written, or because
846 * additional processing is applied before storing them in the VUE), the
847 * value is -1.
848 */
849 signed char varying_to_slot[VARYING_SLOT_TESS_MAX];
850
851 /**
852 * Map from VUE slot to gl_varying_slot value. For slots that do not
853 * directly correspond to a gl_varying_slot, the value comes from
854 * brw_varying_slot.
855 *
856 * For slots that are not in use, the value is BRW_VARYING_SLOT_PAD.
857 */
858 signed char slot_to_varying[VARYING_SLOT_TESS_MAX];
859
860 /**
861 * Total number of VUE slots in use
862 */
863 int num_slots;
864
865 /**
866 * Number of per-patch VUE slots. Only valid for tessellation control
867 * shader outputs and tessellation evaluation shader inputs.
868 */
869 int num_per_patch_slots;
870
871 /**
872 * Number of per-vertex VUE slots. Only valid for tessellation control
873 * shader outputs and tessellation evaluation shader inputs.
874 */
875 int num_per_vertex_slots;
876 };
877
878 void brw_print_vue_map(FILE *fp, const struct brw_vue_map *vue_map);
879
880 /**
881 * Convert a VUE slot number into a byte offset within the VUE.
882 */
883 static inline GLuint brw_vue_slot_to_offset(GLuint slot)
884 {
885 return 16*slot;
886 }
887
888 /**
889 * Convert a vertex output (brw_varying_slot) into a byte offset within the
890 * VUE.
891 */
892 static inline
893 GLuint brw_varying_to_offset(const struct brw_vue_map *vue_map, GLuint varying)
894 {
895 return brw_vue_slot_to_offset(vue_map->varying_to_slot[varying]);
896 }
897
898 void brw_compute_vue_map(const struct gen_device_info *devinfo,
899 struct brw_vue_map *vue_map,
900 uint64_t slots_valid,
901 bool separate_shader);
902
903 void brw_compute_tess_vue_map(struct brw_vue_map *const vue_map,
904 uint64_t slots_valid,
905 uint32_t is_patch);
906
907 /* brw_interpolation_map.c */
908 void brw_setup_vue_interpolation(struct brw_vue_map *vue_map,
909 struct nir_shader *nir,
910 struct brw_wm_prog_data *prog_data,
911 const struct gen_device_info *devinfo);
912
913 enum shader_dispatch_mode {
914 DISPATCH_MODE_4X1_SINGLE = 0,
915 DISPATCH_MODE_4X2_DUAL_INSTANCE = 1,
916 DISPATCH_MODE_4X2_DUAL_OBJECT = 2,
917 DISPATCH_MODE_SIMD8 = 3,
918 };
919
920 /**
921 * @defgroup Tessellator parameter enumerations.
922 *
923 * These correspond to the hardware values in 3DSTATE_TE, and are provided
924 * as part of the tessellation evaluation shader.
925 *
926 * @{
927 */
928 enum brw_tess_partitioning {
929 BRW_TESS_PARTITIONING_INTEGER = 0,
930 BRW_TESS_PARTITIONING_ODD_FRACTIONAL = 1,
931 BRW_TESS_PARTITIONING_EVEN_FRACTIONAL = 2,
932 };
933
934 enum brw_tess_output_topology {
935 BRW_TESS_OUTPUT_TOPOLOGY_POINT = 0,
936 BRW_TESS_OUTPUT_TOPOLOGY_LINE = 1,
937 BRW_TESS_OUTPUT_TOPOLOGY_TRI_CW = 2,
938 BRW_TESS_OUTPUT_TOPOLOGY_TRI_CCW = 3,
939 };
940
941 enum brw_tess_domain {
942 BRW_TESS_DOMAIN_QUAD = 0,
943 BRW_TESS_DOMAIN_TRI = 1,
944 BRW_TESS_DOMAIN_ISOLINE = 2,
945 };
946 /** @} */
947
948 struct brw_vue_prog_data {
949 struct brw_stage_prog_data base;
950 struct brw_vue_map vue_map;
951
952 /** Should the hardware deliver input VUE handles for URB pull loads? */
953 bool include_vue_handles;
954
955 GLuint urb_read_length;
956 GLuint total_grf;
957
958 uint32_t clip_distance_mask;
959 uint32_t cull_distance_mask;
960
961 /* Used for calculating urb partitions. In the VS, this is the size of the
962 * URB entry used for both input and output to the thread. In the GS, this
963 * is the size of the URB entry used for output.
964 */
965 GLuint urb_entry_size;
966
967 enum shader_dispatch_mode dispatch_mode;
968 };
969
970 struct brw_vs_prog_data {
971 struct brw_vue_prog_data base;
972
973 GLbitfield64 inputs_read;
974 GLbitfield64 double_inputs_read;
975
976 unsigned nr_attribute_slots;
977
978 bool uses_vertexid;
979 bool uses_instanceid;
980 bool uses_basevertex;
981 bool uses_baseinstance;
982 bool uses_drawid;
983 };
984
985 struct brw_tcs_prog_data
986 {
987 struct brw_vue_prog_data base;
988
989 /** Number vertices in output patch */
990 int instances;
991 };
992
993
994 struct brw_tes_prog_data
995 {
996 struct brw_vue_prog_data base;
997
998 enum brw_tess_partitioning partitioning;
999 enum brw_tess_output_topology output_topology;
1000 enum brw_tess_domain domain;
1001 };
1002
1003 struct brw_gs_prog_data
1004 {
1005 struct brw_vue_prog_data base;
1006
1007 unsigned vertices_in;
1008
1009 /**
1010 * Size of an output vertex, measured in HWORDS (32 bytes).
1011 */
1012 unsigned output_vertex_size_hwords;
1013
1014 unsigned output_topology;
1015
1016 /**
1017 * Size of the control data (cut bits or StreamID bits), in hwords (32
1018 * bytes). 0 if there is no control data.
1019 */
1020 unsigned control_data_header_size_hwords;
1021
1022 /**
1023 * Format of the control data (either GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID
1024 * if the control data is StreamID bits, or
1025 * GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT if the control data is cut bits).
1026 * Ignored if control_data_header_size is 0.
1027 */
1028 unsigned control_data_format;
1029
1030 bool include_primitive_id;
1031
1032 /**
1033 * The number of vertices emitted, if constant - otherwise -1.
1034 */
1035 int static_vertex_count;
1036
1037 int invocations;
1038
1039 /**
1040 * Gen6: Provoking vertex convention for odd-numbered triangles
1041 * in tristrips.
1042 */
1043 GLuint pv_first:1;
1044
1045 /**
1046 * Gen6: Number of varyings that are output to transform feedback.
1047 */
1048 GLuint num_transform_feedback_bindings:7; /* 0-BRW_MAX_SOL_BINDINGS */
1049
1050 /**
1051 * Gen6: Map from the index of a transform feedback binding table entry to the
1052 * gl_varying_slot that should be streamed out through that binding table
1053 * entry.
1054 */
1055 unsigned char transform_feedback_bindings[64 /* BRW_MAX_SOL_BINDINGS */];
1056
1057 /**
1058 * Gen6: Map from the index of a transform feedback binding table entry to the
1059 * swizzles that should be used when streaming out data through that
1060 * binding table entry.
1061 */
1062 unsigned char transform_feedback_swizzles[64 /* BRW_MAX_SOL_BINDINGS */];
1063 };
1064
1065 struct brw_sf_prog_data {
1066 uint32_t urb_read_length;
1067 uint32_t total_grf;
1068
1069 /* Each vertex may have upto 12 attributes, 4 components each,
1070 * except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11
1071 * rows.
1072 *
1073 * Actually we use 4 for each, so call it 12 rows.
1074 */
1075 unsigned urb_entry_size;
1076 };
1077
1078 struct brw_clip_prog_data {
1079 uint32_t curb_read_length; /* user planes? */
1080 uint32_t clip_mode;
1081 uint32_t urb_read_length;
1082 uint32_t total_grf;
1083 };
1084
1085 /* brw_any_prog_data is prog_data for any stage that maps to an API stage */
1086 union brw_any_prog_data {
1087 struct brw_stage_prog_data base;
1088 struct brw_vue_prog_data vue;
1089 struct brw_vs_prog_data vs;
1090 struct brw_tcs_prog_data tcs;
1091 struct brw_tes_prog_data tes;
1092 struct brw_gs_prog_data gs;
1093 struct brw_wm_prog_data wm;
1094 struct brw_cs_prog_data cs;
1095 };
1096
1097 #define DEFINE_PROG_DATA_DOWNCAST(stage) \
1098 static inline struct brw_##stage##_prog_data * \
1099 brw_##stage##_prog_data(struct brw_stage_prog_data *prog_data) \
1100 { \
1101 return (struct brw_##stage##_prog_data *) prog_data; \
1102 }
1103 DEFINE_PROG_DATA_DOWNCAST(vue)
1104 DEFINE_PROG_DATA_DOWNCAST(vs)
1105 DEFINE_PROG_DATA_DOWNCAST(tcs)
1106 DEFINE_PROG_DATA_DOWNCAST(tes)
1107 DEFINE_PROG_DATA_DOWNCAST(gs)
1108 DEFINE_PROG_DATA_DOWNCAST(wm)
1109 DEFINE_PROG_DATA_DOWNCAST(cs)
1110 DEFINE_PROG_DATA_DOWNCAST(ff_gs)
1111 DEFINE_PROG_DATA_DOWNCAST(clip)
1112 DEFINE_PROG_DATA_DOWNCAST(sf)
1113 #undef DEFINE_PROG_DATA_DOWNCAST
1114
1115 /** @} */
1116
1117 struct brw_compiler *
1118 brw_compiler_create(void *mem_ctx, const struct gen_device_info *devinfo);
1119
1120 unsigned
1121 brw_prog_data_size(gl_shader_stage stage);
1122
1123 unsigned
1124 brw_prog_key_size(gl_shader_stage stage);
1125
1126 /**
1127 * Compile a vertex shader.
1128 *
1129 * Returns the final assembly and the program's size.
1130 */
1131 const unsigned *
1132 brw_compile_vs(const struct brw_compiler *compiler, void *log_data,
1133 void *mem_ctx,
1134 const struct brw_vs_prog_key *key,
1135 struct brw_vs_prog_data *prog_data,
1136 const struct nir_shader *shader,
1137 int shader_time_index,
1138 char **error_str);
1139
1140 /**
1141 * Compile a tessellation control shader.
1142 *
1143 * Returns the final assembly and the program's size.
1144 */
1145 const unsigned *
1146 brw_compile_tcs(const struct brw_compiler *compiler,
1147 void *log_data,
1148 void *mem_ctx,
1149 const struct brw_tcs_prog_key *key,
1150 struct brw_tcs_prog_data *prog_data,
1151 const struct nir_shader *nir,
1152 int shader_time_index,
1153 char **error_str);
1154
1155 /**
1156 * Compile a tessellation evaluation shader.
1157 *
1158 * Returns the final assembly and the program's size.
1159 */
1160 const unsigned *
1161 brw_compile_tes(const struct brw_compiler *compiler, void *log_data,
1162 void *mem_ctx,
1163 const struct brw_tes_prog_key *key,
1164 const struct brw_vue_map *input_vue_map,
1165 struct brw_tes_prog_data *prog_data,
1166 const struct nir_shader *shader,
1167 struct gl_program *prog,
1168 int shader_time_index,
1169 char **error_str);
1170
1171 /**
1172 * Compile a vertex shader.
1173 *
1174 * Returns the final assembly and the program's size.
1175 */
1176 const unsigned *
1177 brw_compile_gs(const struct brw_compiler *compiler, void *log_data,
1178 void *mem_ctx,
1179 const struct brw_gs_prog_key *key,
1180 struct brw_gs_prog_data *prog_data,
1181 const struct nir_shader *shader,
1182 struct gl_program *prog,
1183 int shader_time_index,
1184 char **error_str);
1185
1186 /**
1187 * Compile a strips and fans shader.
1188 *
1189 * This is a fixed-function shader determined entirely by the shader key and
1190 * a VUE map.
1191 *
1192 * Returns the final assembly and the program's size.
1193 */
1194 const unsigned *
1195 brw_compile_sf(const struct brw_compiler *compiler,
1196 void *mem_ctx,
1197 const struct brw_sf_prog_key *key,
1198 struct brw_sf_prog_data *prog_data,
1199 struct brw_vue_map *vue_map,
1200 unsigned *final_assembly_size);
1201
1202 /**
1203 * Compile a clipper shader.
1204 *
1205 * This is a fixed-function shader determined entirely by the shader key and
1206 * a VUE map.
1207 *
1208 * Returns the final assembly and the program's size.
1209 */
1210 const unsigned *
1211 brw_compile_clip(const struct brw_compiler *compiler,
1212 void *mem_ctx,
1213 const struct brw_clip_prog_key *key,
1214 struct brw_clip_prog_data *prog_data,
1215 struct brw_vue_map *vue_map,
1216 unsigned *final_assembly_size);
1217
1218 /**
1219 * Compile a fragment shader.
1220 *
1221 * Returns the final assembly and the program's size.
1222 */
1223 const unsigned *
1224 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
1225 void *mem_ctx,
1226 const struct brw_wm_prog_key *key,
1227 struct brw_wm_prog_data *prog_data,
1228 const struct nir_shader *shader,
1229 struct gl_program *prog,
1230 int shader_time_index8,
1231 int shader_time_index16,
1232 bool allow_spilling,
1233 bool use_rep_send, struct brw_vue_map *vue_map,
1234 char **error_str);
1235
1236 /**
1237 * Compile a compute shader.
1238 *
1239 * Returns the final assembly and the program's size.
1240 */
1241 const unsigned *
1242 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
1243 void *mem_ctx,
1244 const struct brw_cs_prog_key *key,
1245 struct brw_cs_prog_data *prog_data,
1246 const struct nir_shader *shader,
1247 int shader_time_index,
1248 char **error_str);
1249
1250 static inline uint32_t
1251 encode_slm_size(unsigned gen, uint32_t bytes)
1252 {
1253 uint32_t slm_size = 0;
1254
1255 /* Shared Local Memory is specified as powers of two, and encoded in
1256 * INTERFACE_DESCRIPTOR_DATA with the following representations:
1257 *
1258 * Size | 0 kB | 1 kB | 2 kB | 4 kB | 8 kB | 16 kB | 32 kB | 64 kB |
1259 * -------------------------------------------------------------------
1260 * Gen7-8 | 0 | none | none | 1 | 2 | 4 | 8 | 16 |
1261 * -------------------------------------------------------------------
1262 * Gen9+ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
1263 */
1264 assert(bytes <= 64 * 1024);
1265
1266 if (bytes > 0) {
1267 /* Shared Local Memory Size is specified as powers of two. */
1268 slm_size = util_next_power_of_two(bytes);
1269
1270 if (gen >= 9) {
1271 /* Use a minimum of 1kB; turn an exponent of 10 (1024 kB) into 1. */
1272 slm_size = ffs(MAX2(slm_size, 1024)) - 10;
1273 } else {
1274 /* Use a minimum of 4kB; convert to the pre-Gen9 representation. */
1275 slm_size = MAX2(slm_size, 4096) / 4096;
1276 }
1277 }
1278
1279 return slm_size;
1280 }
1281
1282 /**
1283 * Return true if the given shader stage is dispatched contiguously by the
1284 * relevant fixed function starting from channel 0 of the SIMD thread, which
1285 * implies that the dispatch mask of a thread can be assumed to have the form
1286 * '2^n - 1' for some n.
1287 */
1288 static inline bool
1289 brw_stage_has_packed_dispatch(MAYBE_UNUSED const struct gen_device_info *devinfo,
1290 gl_shader_stage stage,
1291 const struct brw_stage_prog_data *prog_data)
1292 {
1293 /* The code below makes assumptions about the hardware's thread dispatch
1294 * behavior that could be proven wrong in future generations -- Make sure
1295 * to do a full test run with brw_fs_test_dispatch_packing() hooked up to
1296 * the NIR front-end before changing this assertion.
1297 */
1298 assert(devinfo->gen <= 11);
1299
1300 switch (stage) {
1301 case MESA_SHADER_FRAGMENT: {
1302 /* The PSD discards subspans coming in with no lit samples, which in the
1303 * per-pixel shading case implies that each subspan will either be fully
1304 * lit (due to the VMask being used to allow derivative computations),
1305 * or not dispatched at all. In per-sample dispatch mode individual
1306 * samples from the same subspan have a fixed relative location within
1307 * the SIMD thread, so dispatch of unlit samples cannot be avoided in
1308 * general and we should return false.
1309 */
1310 const struct brw_wm_prog_data *wm_prog_data =
1311 (const struct brw_wm_prog_data *)prog_data;
1312 return !wm_prog_data->persample_dispatch;
1313 }
1314 case MESA_SHADER_COMPUTE:
1315 /* Compute shaders will be spawned with either a fully enabled dispatch
1316 * mask or with whatever bottom/right execution mask was given to the
1317 * GPGPU walker command to be used along the workgroup edges -- In both
1318 * cases the dispatch mask is required to be tightly packed for our
1319 * invocation index calculations to work.
1320 */
1321 return true;
1322 default:
1323 /* Most remaining fixed functions are limited to use a packed dispatch
1324 * mask due to the hardware representation of the dispatch mask as a
1325 * single counter representing the number of enabled channels.
1326 */
1327 return true;
1328 }
1329 }
1330
1331 /**
1332 * Computes the first varying slot in the URB produced by the previous stage
1333 * that is used in the next stage. We do this by testing the varying slots in
1334 * the previous stage's vue map against the inputs read in the next stage.
1335 *
1336 * Note that:
1337 *
1338 * - Each URB offset contains two varying slots and we can only skip a
1339 * full offset if both slots are unused, so the value we return here is always
1340 * rounded down to the closest multiple of two.
1341 *
1342 * - gl_Layer and gl_ViewportIndex don't have their own varying slots, they are
1343 * part of the vue header, so if these are read we can't skip anything.
1344 */
1345 static inline int
1346 brw_compute_first_urb_slot_required(uint64_t inputs_read,
1347 const struct brw_vue_map *prev_stage_vue_map)
1348 {
1349 if ((inputs_read & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT)) == 0) {
1350 for (int i = 0; i < prev_stage_vue_map->num_slots; i++) {
1351 int varying = prev_stage_vue_map->slot_to_varying[i];
1352 if (varying > 0 && (inputs_read & BITFIELD64_BIT(varying)) != 0)
1353 return ROUND_DOWN_TO(i, 2);
1354 }
1355 }
1356
1357 return 0;
1358 }
1359
1360 #ifdef __cplusplus
1361 } /* extern "C" */
1362 #endif
1363
1364 #endif /* BRW_COMPILER_H */