intel/compiler: Be more conservative about subgroup sizes in GL
[mesa.git] / src / intel / compiler / brw_compiler.h
1 /*
2 * Copyright © 2010 - 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef BRW_COMPILER_H
25 #define BRW_COMPILER_H
26
27 #include <stdio.h>
28 #include "dev/gen_device_info.h"
29 #include "main/macros.h"
30 #include "main/mtypes.h"
31 #include "util/ralloc.h"
32
33 #ifdef __cplusplus
34 extern "C" {
35 #endif
36
37 struct ra_regs;
38 struct nir_shader;
39 struct brw_program;
40
41 struct brw_compiler {
42 const struct gen_device_info *devinfo;
43
44 struct {
45 struct ra_regs *regs;
46
47 /**
48 * Array of the ra classes for the unaligned contiguous register
49 * block sizes used.
50 */
51 int *classes;
52
53 /**
54 * Mapping for register-allocated objects in *regs to the first
55 * GRF for that object.
56 */
57 uint8_t *ra_reg_to_grf;
58 } vec4_reg_set;
59
60 struct {
61 struct ra_regs *regs;
62
63 /**
64 * Array of the ra classes for the unaligned contiguous register
65 * block sizes used, indexed by register size.
66 */
67 int classes[16];
68
69 /**
70 * Mapping from classes to ra_reg ranges. Each of the per-size
71 * classes corresponds to a range of ra_reg nodes. This array stores
72 * those ranges in the form of first ra_reg in each class and the
73 * total number of ra_reg elements in the last array element. This
74 * way the range of the i'th class is given by:
75 * [ class_to_ra_reg_range[i], class_to_ra_reg_range[i+1] )
76 */
77 int class_to_ra_reg_range[17];
78
79 /**
80 * Mapping for register-allocated objects in *regs to the first
81 * GRF for that object.
82 */
83 uint8_t *ra_reg_to_grf;
84
85 /**
86 * ra class for the aligned pairs we use for PLN, which doesn't
87 * appear in *classes.
88 */
89 int aligned_pairs_class;
90 } fs_reg_sets[3];
91
92 void (*shader_debug_log)(void *, const char *str, ...) PRINTFLIKE(2, 3);
93 void (*shader_perf_log)(void *, const char *str, ...) PRINTFLIKE(2, 3);
94
95 bool scalar_stage[MESA_SHADER_STAGES];
96 bool use_tcs_8_patch;
97 struct gl_shader_compiler_options glsl_compiler_options[MESA_SHADER_STAGES];
98
99 /**
100 * Apply workarounds for SIN and COS output range problems.
101 * This can negatively impact performance.
102 */
103 bool precise_trig;
104
105 /**
106 * Is 3DSTATE_CONSTANT_*'s Constant Buffer 0 relative to Dynamic State
107 * Base Address? (If not, it's a normal GPU address.)
108 */
109 bool constant_buffer_0_is_relative;
110
111 /**
112 * Whether or not the driver supports pull constants. If not, the compiler
113 * will attempt to push everything.
114 */
115 bool supports_pull_constants;
116
117 /**
118 * Whether or not the driver supports NIR shader constants. This controls
119 * whether nir_opt_large_constants will be run.
120 */
121 bool supports_shader_constants;
122 };
123
124 /**
125 * We use a constant subgroup size of 32. It really only needs to be a
126 * maximum and, since we do SIMD32 for compute shaders in some cases, it
127 * needs to be at least 32. SIMD8 and SIMD16 shaders will still claim a
128 * subgroup size of 32 but will act as if 16 or 24 of those channels are
129 * disabled.
130 */
131 #define BRW_SUBGROUP_SIZE 32
132
133 /**
134 * Program key structures.
135 *
136 * When drawing, we look for the currently bound shaders in the program
137 * cache. This is essentially a hash table lookup, and these are the keys.
138 *
139 * Sometimes OpenGL features specified as state need to be simulated via
140 * shader code, due to a mismatch between the API and the hardware. This
141 * is often referred to as "non-orthagonal state" or "NOS". We store NOS
142 * in the program key so it's considered when searching for a program. If
143 * we haven't seen a particular combination before, we have to recompile a
144 * new specialized version.
145 *
146 * Shader compilation should not look up state in gl_context directly, but
147 * instead use the copy in the program key. This guarantees recompiles will
148 * happen correctly.
149 *
150 * @{
151 */
152
153 enum PACKED gen6_gather_sampler_wa {
154 WA_SIGN = 1, /* whether we need to sign extend */
155 WA_8BIT = 2, /* if we have an 8bit format needing wa */
156 WA_16BIT = 4, /* if we have a 16bit format needing wa */
157 };
158
159 /**
160 * Sampler information needed by VS, WM, and GS program cache keys.
161 */
162 struct brw_sampler_prog_key_data {
163 /**
164 * EXT_texture_swizzle and DEPTH_TEXTURE_MODE swizzles.
165 */
166 uint16_t swizzles[MAX_SAMPLERS];
167
168 uint32_t gl_clamp_mask[3];
169
170 /**
171 * For RG32F, gather4's channel select is broken.
172 */
173 uint32_t gather_channel_quirk_mask;
174
175 /**
176 * Whether this sampler uses the compressed multisample surface layout.
177 */
178 uint32_t compressed_multisample_layout_mask;
179
180 /**
181 * Whether this sampler is using 16x multisampling. If so fetching from
182 * this sampler will be handled with a different instruction, ld2dms_w
183 * instead of ld2dms.
184 */
185 uint32_t msaa_16;
186
187 /**
188 * For Sandybridge, which shader w/a we need for gather quirks.
189 */
190 enum gen6_gather_sampler_wa gen6_gather_wa[MAX_SAMPLERS];
191
192 /**
193 * Texture units that have a YUV image bound.
194 */
195 uint32_t y_u_v_image_mask;
196 uint32_t y_uv_image_mask;
197 uint32_t yx_xuxv_image_mask;
198 uint32_t xy_uxvx_image_mask;
199 uint32_t ayuv_image_mask;
200 uint32_t xyuv_image_mask;
201
202 /* Scale factor for each texture. */
203 float scale_factors[32];
204 };
205
206 /** An enum representing what kind of input gl_SubgroupSize is. */
207 enum PACKED brw_subgroup_size_type
208 {
209 BRW_SUBGROUP_SIZE_API_CONSTANT, /**< Vulkan behavior */
210 BRW_SUBGROUP_SIZE_UNIFORM, /**< OpenGL behavior */
211 };
212
213 struct brw_base_prog_key {
214 unsigned program_string_id;
215
216 enum brw_subgroup_size_type subgroup_size_type;
217
218 struct brw_sampler_prog_key_data tex;
219 };
220
221 /**
222 * The VF can't natively handle certain types of attributes, such as GL_FIXED
223 * or most 10_10_10_2 types. These flags enable various VS workarounds to
224 * "fix" attributes at the beginning of shaders.
225 */
226 #define BRW_ATTRIB_WA_COMPONENT_MASK 7 /* mask for GL_FIXED scale channel count */
227 #define BRW_ATTRIB_WA_NORMALIZE 8 /* normalize in shader */
228 #define BRW_ATTRIB_WA_BGRA 16 /* swap r/b channels in shader */
229 #define BRW_ATTRIB_WA_SIGN 32 /* interpret as signed in shader */
230 #define BRW_ATTRIB_WA_SCALE 64 /* interpret as scaled in shader */
231
232 /**
233 * OpenGL attribute slots fall in [0, VERT_ATTRIB_MAX - 1] with the range
234 * [VERT_ATTRIB_GENERIC0, VERT_ATTRIB_MAX - 1] reserved for up to 16 user
235 * input vertex attributes. In Vulkan, we expose up to 28 user vertex input
236 * attributes that are mapped to slots also starting at VERT_ATTRIB_GENERIC0.
237 */
238 #define MAX_GL_VERT_ATTRIB VERT_ATTRIB_MAX
239 #define MAX_VK_VERT_ATTRIB (VERT_ATTRIB_GENERIC0 + 28)
240
241 /** The program key for Vertex Shaders. */
242 struct brw_vs_prog_key {
243 struct brw_base_prog_key base;
244
245 /**
246 * Per-attribute workaround flags
247 *
248 * For each attribute, a combination of BRW_ATTRIB_WA_*.
249 *
250 * For OpenGL, where we expose a maximum of 16 user input atttributes
251 * we only need up to VERT_ATTRIB_MAX slots, however, in Vulkan
252 * slots preceding VERT_ATTRIB_GENERIC0 are unused and we can
253 * expose up to 28 user input vertex attributes that are mapped to slots
254 * starting at VERT_ATTRIB_GENERIC0, so this array needs to be large
255 * enough to hold this many slots.
256 */
257 uint8_t gl_attrib_wa_flags[MAX2(MAX_GL_VERT_ATTRIB, MAX_VK_VERT_ATTRIB)];
258
259 bool copy_edgeflag:1;
260
261 bool clamp_vertex_color:1;
262
263 /**
264 * How many user clipping planes are being uploaded to the vertex shader as
265 * push constants.
266 *
267 * These are used for lowering legacy gl_ClipVertex/gl_Position clipping to
268 * clip distances.
269 */
270 unsigned nr_userclip_plane_consts:4;
271
272 /**
273 * For pre-Gen6 hardware, a bitfield indicating which texture coordinates
274 * are going to be replaced with point coordinates (as a consequence of a
275 * call to glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE)). Because
276 * our SF thread requires exact matching between VS outputs and FS inputs,
277 * these texture coordinates will need to be unconditionally included in
278 * the VUE, even if they aren't written by the vertex shader.
279 */
280 uint8_t point_coord_replace;
281 };
282
283 /** The program key for Tessellation Control Shaders. */
284 struct brw_tcs_prog_key
285 {
286 struct brw_base_prog_key base;
287
288 GLenum tes_primitive_mode;
289
290 unsigned input_vertices;
291
292 /** A bitfield of per-patch outputs written. */
293 uint32_t patch_outputs_written;
294
295 /** A bitfield of per-vertex outputs written. */
296 uint64_t outputs_written;
297
298 bool quads_workaround;
299 };
300
301 /** The program key for Tessellation Evaluation Shaders. */
302 struct brw_tes_prog_key
303 {
304 struct brw_base_prog_key base;
305
306 /** A bitfield of per-patch inputs read. */
307 uint32_t patch_inputs_read;
308
309 /** A bitfield of per-vertex inputs read. */
310 uint64_t inputs_read;
311 };
312
313 /** The program key for Geometry Shaders. */
314 struct brw_gs_prog_key
315 {
316 struct brw_base_prog_key base;
317 };
318
319 enum brw_sf_primitive {
320 BRW_SF_PRIM_POINTS = 0,
321 BRW_SF_PRIM_LINES = 1,
322 BRW_SF_PRIM_TRIANGLES = 2,
323 BRW_SF_PRIM_UNFILLED_TRIS = 3,
324 };
325
326 struct brw_sf_prog_key {
327 uint64_t attrs;
328 bool contains_flat_varying;
329 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
330 uint8_t point_sprite_coord_replace;
331 enum brw_sf_primitive primitive:2;
332 bool do_twoside_color:1;
333 bool frontface_ccw:1;
334 bool do_point_sprite:1;
335 bool do_point_coord:1;
336 bool sprite_origin_lower_left:1;
337 bool userclip_active:1;
338 };
339
340 enum brw_clip_mode {
341 BRW_CLIP_MODE_NORMAL = 0,
342 BRW_CLIP_MODE_CLIP_ALL = 1,
343 BRW_CLIP_MODE_CLIP_NON_REJECTED = 2,
344 BRW_CLIP_MODE_REJECT_ALL = 3,
345 BRW_CLIP_MODE_ACCEPT_ALL = 4,
346 BRW_CLIP_MODE_KERNEL_CLIP = 5,
347 };
348
349 enum brw_clip_fill_mode {
350 BRW_CLIP_FILL_MODE_LINE = 0,
351 BRW_CLIP_FILL_MODE_POINT = 1,
352 BRW_CLIP_FILL_MODE_FILL = 2,
353 BRW_CLIP_FILL_MODE_CULL = 3,
354 };
355
356 /* Note that if unfilled primitives are being emitted, we have to fix
357 * up polygon offset and flatshading at this point:
358 */
359 struct brw_clip_prog_key {
360 uint64_t attrs;
361 bool contains_flat_varying;
362 bool contains_noperspective_varying;
363 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
364 unsigned primitive:4;
365 unsigned nr_userclip:4;
366 bool pv_first:1;
367 bool do_unfilled:1;
368 enum brw_clip_fill_mode fill_cw:2; /* includes cull information */
369 enum brw_clip_fill_mode fill_ccw:2; /* includes cull information */
370 bool offset_cw:1;
371 bool offset_ccw:1;
372 bool copy_bfc_cw:1;
373 bool copy_bfc_ccw:1;
374 enum brw_clip_mode clip_mode:3;
375
376 float offset_factor;
377 float offset_units;
378 float offset_clamp;
379 };
380
381 /* A big lookup table is used to figure out which and how many
382 * additional regs will inserted before the main payload in the WM
383 * program execution. These mainly relate to depth and stencil
384 * processing and the early-depth-test optimization.
385 */
386 enum brw_wm_iz_bits {
387 BRW_WM_IZ_PS_KILL_ALPHATEST_BIT = 0x1,
388 BRW_WM_IZ_PS_COMPUTES_DEPTH_BIT = 0x2,
389 BRW_WM_IZ_DEPTH_WRITE_ENABLE_BIT = 0x4,
390 BRW_WM_IZ_DEPTH_TEST_ENABLE_BIT = 0x8,
391 BRW_WM_IZ_STENCIL_WRITE_ENABLE_BIT = 0x10,
392 BRW_WM_IZ_STENCIL_TEST_ENABLE_BIT = 0x20,
393 BRW_WM_IZ_BIT_MAX = 0x40
394 };
395
396 enum brw_wm_aa_enable {
397 BRW_WM_AA_NEVER,
398 BRW_WM_AA_SOMETIMES,
399 BRW_WM_AA_ALWAYS
400 };
401
402 /** The program key for Fragment/Pixel Shaders. */
403 struct brw_wm_prog_key {
404 struct brw_base_prog_key base;
405
406 /* Some collection of BRW_WM_IZ_* */
407 uint8_t iz_lookup;
408 bool stats_wm:1;
409 bool flat_shade:1;
410 unsigned nr_color_regions:5;
411 bool alpha_test_replicate_alpha:1;
412 bool alpha_to_coverage:1;
413 bool clamp_fragment_color:1;
414 bool persample_interp:1;
415 bool multisample_fbo:1;
416 bool frag_coord_adds_sample_pos:1;
417 enum brw_wm_aa_enable line_aa:2;
418 bool high_quality_derivatives:1;
419 bool force_dual_color_blend:1;
420 bool coherent_fb_fetch:1;
421
422 uint8_t color_outputs_valid;
423 uint64_t input_slots_valid;
424 GLenum alpha_test_func; /* < For Gen4/5 MRT alpha test */
425 float alpha_test_ref;
426 };
427
428 struct brw_cs_prog_key {
429 struct brw_base_prog_key base;
430 };
431
432 /* brw_any_prog_key is any of the keys that map to an API stage */
433 union brw_any_prog_key {
434 struct brw_base_prog_key base;
435 struct brw_vs_prog_key vs;
436 struct brw_tcs_prog_key tcs;
437 struct brw_tes_prog_key tes;
438 struct brw_gs_prog_key gs;
439 struct brw_wm_prog_key wm;
440 struct brw_cs_prog_key cs;
441 };
442
443 /*
444 * Image metadata structure as laid out in the shader parameter
445 * buffer. Entries have to be 16B-aligned for the vec4 back-end to be
446 * able to use them. That's okay because the padding and any unused
447 * entries [most of them except when we're doing untyped surface
448 * access] will be removed by the uniform packing pass.
449 */
450 #define BRW_IMAGE_PARAM_OFFSET_OFFSET 0
451 #define BRW_IMAGE_PARAM_SIZE_OFFSET 4
452 #define BRW_IMAGE_PARAM_STRIDE_OFFSET 8
453 #define BRW_IMAGE_PARAM_TILING_OFFSET 12
454 #define BRW_IMAGE_PARAM_SWIZZLING_OFFSET 16
455 #define BRW_IMAGE_PARAM_SIZE 20
456
457 struct brw_image_param {
458 /** Offset applied to the X and Y surface coordinates. */
459 uint32_t offset[2];
460
461 /** Surface X, Y and Z dimensions. */
462 uint32_t size[3];
463
464 /** X-stride in bytes, Y-stride in pixels, horizontal slice stride in
465 * pixels, vertical slice stride in pixels.
466 */
467 uint32_t stride[4];
468
469 /** Log2 of the tiling modulus in the X, Y and Z dimension. */
470 uint32_t tiling[3];
471
472 /**
473 * Right shift to apply for bit 6 address swizzling. Two different
474 * swizzles can be specified and will be applied one after the other. The
475 * resulting address will be:
476 *
477 * addr' = addr ^ ((1 << 6) & ((addr >> swizzling[0]) ^
478 * (addr >> swizzling[1])))
479 *
480 * Use \c 0xff if any of the swizzles is not required.
481 */
482 uint32_t swizzling[2];
483 };
484
485 /** Max number of render targets in a shader */
486 #define BRW_MAX_DRAW_BUFFERS 8
487
488 /**
489 * Max number of binding table entries used for stream output.
490 *
491 * From the OpenGL 3.0 spec, table 6.44 (Transform Feedback State), the
492 * minimum value of MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS is 64.
493 *
494 * On Gen6, the size of transform feedback data is limited not by the number
495 * of components but by the number of binding table entries we set aside. We
496 * use one binding table entry for a float, one entry for a vector, and one
497 * entry per matrix column. Since the only way we can communicate our
498 * transform feedback capabilities to the client is via
499 * MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS, we need to plan for the
500 * worst case, in which all the varyings are floats, so we use up one binding
501 * table entry per component. Therefore we need to set aside at least 64
502 * binding table entries for use by transform feedback.
503 *
504 * Note: since we don't currently pack varyings, it is currently impossible
505 * for the client to actually use up all of these binding table entries--if
506 * all of their varyings were floats, they would run out of varying slots and
507 * fail to link. But that's a bug, so it seems prudent to go ahead and
508 * allocate the number of binding table entries we will need once the bug is
509 * fixed.
510 */
511 #define BRW_MAX_SOL_BINDINGS 64
512
513 /**
514 * Binding table index for the first gen6 SOL binding.
515 */
516 #define BRW_GEN6_SOL_BINDING_START 0
517
518 /**
519 * Stride in bytes between shader_time entries.
520 *
521 * We separate entries by a cacheline to reduce traffic between EUs writing to
522 * different entries.
523 */
524 #define BRW_SHADER_TIME_STRIDE 64
525
526 struct brw_ubo_range
527 {
528 uint16_t block;
529 uint8_t start;
530 uint8_t length;
531 };
532
533 /* We reserve the first 2^16 values for builtins */
534 #define BRW_PARAM_IS_BUILTIN(param) (((param) & 0xffff0000) == 0)
535
536 enum brw_param_builtin {
537 BRW_PARAM_BUILTIN_ZERO,
538
539 BRW_PARAM_BUILTIN_CLIP_PLANE_0_X,
540 BRW_PARAM_BUILTIN_CLIP_PLANE_0_Y,
541 BRW_PARAM_BUILTIN_CLIP_PLANE_0_Z,
542 BRW_PARAM_BUILTIN_CLIP_PLANE_0_W,
543 BRW_PARAM_BUILTIN_CLIP_PLANE_1_X,
544 BRW_PARAM_BUILTIN_CLIP_PLANE_1_Y,
545 BRW_PARAM_BUILTIN_CLIP_PLANE_1_Z,
546 BRW_PARAM_BUILTIN_CLIP_PLANE_1_W,
547 BRW_PARAM_BUILTIN_CLIP_PLANE_2_X,
548 BRW_PARAM_BUILTIN_CLIP_PLANE_2_Y,
549 BRW_PARAM_BUILTIN_CLIP_PLANE_2_Z,
550 BRW_PARAM_BUILTIN_CLIP_PLANE_2_W,
551 BRW_PARAM_BUILTIN_CLIP_PLANE_3_X,
552 BRW_PARAM_BUILTIN_CLIP_PLANE_3_Y,
553 BRW_PARAM_BUILTIN_CLIP_PLANE_3_Z,
554 BRW_PARAM_BUILTIN_CLIP_PLANE_3_W,
555 BRW_PARAM_BUILTIN_CLIP_PLANE_4_X,
556 BRW_PARAM_BUILTIN_CLIP_PLANE_4_Y,
557 BRW_PARAM_BUILTIN_CLIP_PLANE_4_Z,
558 BRW_PARAM_BUILTIN_CLIP_PLANE_4_W,
559 BRW_PARAM_BUILTIN_CLIP_PLANE_5_X,
560 BRW_PARAM_BUILTIN_CLIP_PLANE_5_Y,
561 BRW_PARAM_BUILTIN_CLIP_PLANE_5_Z,
562 BRW_PARAM_BUILTIN_CLIP_PLANE_5_W,
563 BRW_PARAM_BUILTIN_CLIP_PLANE_6_X,
564 BRW_PARAM_BUILTIN_CLIP_PLANE_6_Y,
565 BRW_PARAM_BUILTIN_CLIP_PLANE_6_Z,
566 BRW_PARAM_BUILTIN_CLIP_PLANE_6_W,
567 BRW_PARAM_BUILTIN_CLIP_PLANE_7_X,
568 BRW_PARAM_BUILTIN_CLIP_PLANE_7_Y,
569 BRW_PARAM_BUILTIN_CLIP_PLANE_7_Z,
570 BRW_PARAM_BUILTIN_CLIP_PLANE_7_W,
571
572 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X,
573 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Y,
574 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Z,
575 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_W,
576 BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_X,
577 BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_Y,
578
579 BRW_PARAM_BUILTIN_PATCH_VERTICES_IN,
580
581 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_X,
582 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Y,
583 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Z,
584 BRW_PARAM_BUILTIN_SUBGROUP_ID,
585 };
586
587 #define BRW_PARAM_BUILTIN_CLIP_PLANE(idx, comp) \
588 (BRW_PARAM_BUILTIN_CLIP_PLANE_0_X + ((idx) << 2) + (comp))
589
590 #define BRW_PARAM_BUILTIN_IS_CLIP_PLANE(param) \
591 ((param) >= BRW_PARAM_BUILTIN_CLIP_PLANE_0_X && \
592 (param) <= BRW_PARAM_BUILTIN_CLIP_PLANE_7_W)
593
594 #define BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(param) \
595 (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) >> 2)
596
597 #define BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(param) \
598 (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) & 0x3)
599
600 struct brw_stage_prog_data {
601 struct {
602 /** size of our binding table. */
603 uint32_t size_bytes;
604
605 /** @{
606 * surface indices for the various groups of surfaces
607 */
608 uint32_t pull_constants_start;
609 uint32_t texture_start;
610 uint32_t gather_texture_start;
611 uint32_t ubo_start;
612 uint32_t ssbo_start;
613 uint32_t image_start;
614 uint32_t shader_time_start;
615 uint32_t plane_start[3];
616 /** @} */
617 } binding_table;
618
619 struct brw_ubo_range ubo_ranges[4];
620
621 GLuint nr_params; /**< number of float params/constants */
622 GLuint nr_pull_params;
623
624 unsigned curb_read_length;
625 unsigned total_scratch;
626 unsigned total_shared;
627
628 unsigned program_size;
629
630 /**
631 * Register where the thread expects to find input data from the URB
632 * (typically uniforms, followed by vertex or fragment attributes).
633 */
634 unsigned dispatch_grf_start_reg;
635
636 bool use_alt_mode; /**< Use ALT floating point mode? Otherwise, IEEE. */
637
638 /* 32-bit identifiers for all push/pull parameters. These can be anything
639 * the driver wishes them to be; the core of the back-end compiler simply
640 * re-arranges them. The one restriction is that the bottom 2^16 values
641 * are reserved for builtins defined in the brw_param_builtin enum defined
642 * above.
643 */
644 uint32_t *param;
645 uint32_t *pull_param;
646 };
647
648 static inline uint32_t *
649 brw_stage_prog_data_add_params(struct brw_stage_prog_data *prog_data,
650 unsigned nr_new_params)
651 {
652 unsigned old_nr_params = prog_data->nr_params;
653 prog_data->nr_params += nr_new_params;
654 prog_data->param = reralloc(ralloc_parent(prog_data->param),
655 prog_data->param, uint32_t,
656 prog_data->nr_params);
657 return prog_data->param + old_nr_params;
658 }
659
660 enum brw_barycentric_mode {
661 BRW_BARYCENTRIC_PERSPECTIVE_PIXEL = 0,
662 BRW_BARYCENTRIC_PERSPECTIVE_CENTROID = 1,
663 BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE = 2,
664 BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL = 3,
665 BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID = 4,
666 BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE = 5,
667 BRW_BARYCENTRIC_MODE_COUNT = 6
668 };
669 #define BRW_BARYCENTRIC_NONPERSPECTIVE_BITS \
670 ((1 << BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL) | \
671 (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID) | \
672 (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE))
673
674 enum brw_pixel_shader_computed_depth_mode {
675 BRW_PSCDEPTH_OFF = 0, /* PS does not compute depth */
676 BRW_PSCDEPTH_ON = 1, /* PS computes depth; no guarantee about value */
677 BRW_PSCDEPTH_ON_GE = 2, /* PS guarantees output depth >= source depth */
678 BRW_PSCDEPTH_ON_LE = 3, /* PS guarantees output depth <= source depth */
679 };
680
681 /* Data about a particular attempt to compile a program. Note that
682 * there can be many of these, each in a different GL state
683 * corresponding to a different brw_wm_prog_key struct, with different
684 * compiled programs.
685 */
686 struct brw_wm_prog_data {
687 struct brw_stage_prog_data base;
688
689 GLuint num_varying_inputs;
690
691 uint8_t reg_blocks_8;
692 uint8_t reg_blocks_16;
693 uint8_t reg_blocks_32;
694
695 uint8_t dispatch_grf_start_reg_16;
696 uint8_t dispatch_grf_start_reg_32;
697 uint32_t prog_offset_16;
698 uint32_t prog_offset_32;
699
700 struct {
701 /** @{
702 * surface indices the WM-specific surfaces
703 */
704 uint32_t render_target_read_start;
705 /** @} */
706 } binding_table;
707
708 uint8_t computed_depth_mode;
709 bool computed_stencil;
710
711 bool early_fragment_tests;
712 bool post_depth_coverage;
713 bool inner_coverage;
714 bool dispatch_8;
715 bool dispatch_16;
716 bool dispatch_32;
717 bool dual_src_blend;
718 bool replicate_alpha;
719 bool persample_dispatch;
720 bool uses_pos_offset;
721 bool uses_omask;
722 bool uses_kill;
723 bool uses_src_depth;
724 bool uses_src_w;
725 bool uses_sample_mask;
726 bool has_render_target_reads;
727 bool has_side_effects;
728 bool pulls_bary;
729
730 bool contains_flat_varying;
731 bool contains_noperspective_varying;
732
733 /**
734 * Mask of which interpolation modes are required by the fragment shader.
735 * Used in hardware setup on gen6+.
736 */
737 uint32_t barycentric_interp_modes;
738
739 /**
740 * Mask of which FS inputs are marked flat by the shader source. This is
741 * needed for setting up 3DSTATE_SF/SBE.
742 */
743 uint32_t flat_inputs;
744
745 /* Mapping of VUE slots to interpolation modes.
746 * Used by the Gen4-5 clip/sf/wm stages.
747 */
748 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
749
750 /**
751 * Map from gl_varying_slot to the position within the FS setup data
752 * payload where the varying's attribute vertex deltas should be delivered.
753 * For varying slots that are not used by the FS, the value is -1.
754 */
755 int urb_setup[VARYING_SLOT_MAX];
756 };
757
758 /** Returns the SIMD width corresponding to a given KSP index
759 *
760 * The "Variable Pixel Dispatch" table in the PRM (which can be found, for
761 * example in Vol. 7 of the SKL PRM) has a mapping from dispatch widths to
762 * kernel start pointer (KSP) indices that is based on what dispatch widths
763 * are enabled. This function provides, effectively, the reverse mapping.
764 *
765 * If the given KSP is valid with respect to the SIMD8/16/32 enables, a SIMD
766 * width of 8, 16, or 32 is returned. If the KSP is invalid, 0 is returned.
767 */
768 static inline unsigned
769 brw_fs_simd_width_for_ksp(unsigned ksp_idx, bool simd8_enabled,
770 bool simd16_enabled, bool simd32_enabled)
771 {
772 /* This function strictly ignores contiguous dispatch */
773 switch (ksp_idx) {
774 case 0:
775 return simd8_enabled ? 8 :
776 (simd16_enabled && !simd32_enabled) ? 16 :
777 (simd32_enabled && !simd16_enabled) ? 32 : 0;
778 case 1:
779 return (simd32_enabled && (simd16_enabled || simd8_enabled)) ? 32 : 0;
780 case 2:
781 return (simd16_enabled && (simd32_enabled || simd8_enabled)) ? 16 : 0;
782 default:
783 unreachable("Invalid KSP index");
784 }
785 }
786
787 #define brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx) \
788 brw_fs_simd_width_for_ksp((ksp_idx), (wm_state)._8PixelDispatchEnable, \
789 (wm_state)._16PixelDispatchEnable, \
790 (wm_state)._32PixelDispatchEnable)
791
792 #define brw_wm_state_has_ksp(wm_state, ksp_idx) \
793 (brw_wm_state_simd_width_for_ksp((wm_state), (ksp_idx)) != 0)
794
795 static inline uint32_t
796 _brw_wm_prog_data_prog_offset(const struct brw_wm_prog_data *prog_data,
797 unsigned simd_width)
798 {
799 switch (simd_width) {
800 case 8: return 0;
801 case 16: return prog_data->prog_offset_16;
802 case 32: return prog_data->prog_offset_32;
803 default: return 0;
804 }
805 }
806
807 #define brw_wm_prog_data_prog_offset(prog_data, wm_state, ksp_idx) \
808 _brw_wm_prog_data_prog_offset(prog_data, \
809 brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
810
811 static inline uint8_t
812 _brw_wm_prog_data_dispatch_grf_start_reg(const struct brw_wm_prog_data *prog_data,
813 unsigned simd_width)
814 {
815 switch (simd_width) {
816 case 8: return prog_data->base.dispatch_grf_start_reg;
817 case 16: return prog_data->dispatch_grf_start_reg_16;
818 case 32: return prog_data->dispatch_grf_start_reg_32;
819 default: return 0;
820 }
821 }
822
823 #define brw_wm_prog_data_dispatch_grf_start_reg(prog_data, wm_state, ksp_idx) \
824 _brw_wm_prog_data_dispatch_grf_start_reg(prog_data, \
825 brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
826
827 static inline uint8_t
828 _brw_wm_prog_data_reg_blocks(const struct brw_wm_prog_data *prog_data,
829 unsigned simd_width)
830 {
831 switch (simd_width) {
832 case 8: return prog_data->reg_blocks_8;
833 case 16: return prog_data->reg_blocks_16;
834 case 32: return prog_data->reg_blocks_32;
835 default: return 0;
836 }
837 }
838
839 #define brw_wm_prog_data_reg_blocks(prog_data, wm_state, ksp_idx) \
840 _brw_wm_prog_data_reg_blocks(prog_data, \
841 brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
842
843 struct brw_push_const_block {
844 unsigned dwords; /* Dword count, not reg aligned */
845 unsigned regs;
846 unsigned size; /* Bytes, register aligned */
847 };
848
849 struct brw_cs_prog_data {
850 struct brw_stage_prog_data base;
851
852 unsigned local_size[3];
853 unsigned simd_size;
854 unsigned threads;
855 bool uses_barrier;
856 bool uses_num_work_groups;
857
858 struct {
859 struct brw_push_const_block cross_thread;
860 struct brw_push_const_block per_thread;
861 struct brw_push_const_block total;
862 } push;
863
864 struct {
865 /** @{
866 * surface indices the CS-specific surfaces
867 */
868 uint32_t work_groups_start;
869 /** @} */
870 } binding_table;
871 };
872
873 /**
874 * Enum representing the i965-specific vertex results that don't correspond
875 * exactly to any element of gl_varying_slot. The values of this enum are
876 * assigned such that they don't conflict with gl_varying_slot.
877 */
878 typedef enum
879 {
880 BRW_VARYING_SLOT_NDC = VARYING_SLOT_MAX,
881 BRW_VARYING_SLOT_PAD,
882 /**
883 * Technically this is not a varying but just a placeholder that
884 * compile_sf_prog() inserts into its VUE map to cause the gl_PointCoord
885 * builtin variable to be compiled correctly. see compile_sf_prog() for
886 * more info.
887 */
888 BRW_VARYING_SLOT_PNTC,
889 BRW_VARYING_SLOT_COUNT
890 } brw_varying_slot;
891
892 /**
893 * We always program SF to start reading at an offset of 1 (2 varying slots)
894 * from the start of the vertex URB entry. This causes it to skip:
895 * - VARYING_SLOT_PSIZ and BRW_VARYING_SLOT_NDC on gen4-5
896 * - VARYING_SLOT_PSIZ and VARYING_SLOT_POS on gen6+
897 */
898 #define BRW_SF_URB_ENTRY_READ_OFFSET 1
899
900 /**
901 * Bitmask indicating which fragment shader inputs represent varyings (and
902 * hence have to be delivered to the fragment shader by the SF/SBE stage).
903 */
904 #define BRW_FS_VARYING_INPUT_MASK \
905 (BITFIELD64_RANGE(0, VARYING_SLOT_MAX) & \
906 ~VARYING_BIT_POS & ~VARYING_BIT_FACE)
907
908 /**
909 * Data structure recording the relationship between the gl_varying_slot enum
910 * and "slots" within the vertex URB entry (VUE). A "slot" is defined as a
911 * single octaword within the VUE (128 bits).
912 *
913 * Note that each BRW register contains 256 bits (2 octawords), so when
914 * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
915 * consecutive VUE slots. When accessing the VUE in URB_INTERLEAVED mode (as
916 * in a vertex shader), each register corresponds to a single VUE slot, since
917 * it contains data for two separate vertices.
918 */
919 struct brw_vue_map {
920 /**
921 * Bitfield representing all varying slots that are (a) stored in this VUE
922 * map, and (b) actually written by the shader. Does not include any of
923 * the additional varying slots defined in brw_varying_slot.
924 */
925 uint64_t slots_valid;
926
927 /**
928 * Is this VUE map for a separate shader pipeline?
929 *
930 * Separable programs (GL_ARB_separate_shader_objects) can be mixed and matched
931 * without the linker having a chance to dead code eliminate unused varyings.
932 *
933 * This means that we have to use a fixed slot layout, based on the output's
934 * location field, rather than assigning slots in a compact contiguous block.
935 */
936 bool separate;
937
938 /**
939 * Map from gl_varying_slot value to VUE slot. For gl_varying_slots that are
940 * not stored in a slot (because they are not written, or because
941 * additional processing is applied before storing them in the VUE), the
942 * value is -1.
943 */
944 signed char varying_to_slot[VARYING_SLOT_TESS_MAX];
945
946 /**
947 * Map from VUE slot to gl_varying_slot value. For slots that do not
948 * directly correspond to a gl_varying_slot, the value comes from
949 * brw_varying_slot.
950 *
951 * For slots that are not in use, the value is BRW_VARYING_SLOT_PAD.
952 */
953 signed char slot_to_varying[VARYING_SLOT_TESS_MAX];
954
955 /**
956 * Total number of VUE slots in use
957 */
958 int num_slots;
959
960 /**
961 * Number of per-patch VUE slots. Only valid for tessellation control
962 * shader outputs and tessellation evaluation shader inputs.
963 */
964 int num_per_patch_slots;
965
966 /**
967 * Number of per-vertex VUE slots. Only valid for tessellation control
968 * shader outputs and tessellation evaluation shader inputs.
969 */
970 int num_per_vertex_slots;
971 };
972
973 void brw_print_vue_map(FILE *fp, const struct brw_vue_map *vue_map);
974
975 /**
976 * Convert a VUE slot number into a byte offset within the VUE.
977 */
978 static inline GLuint brw_vue_slot_to_offset(GLuint slot)
979 {
980 return 16*slot;
981 }
982
983 /**
984 * Convert a vertex output (brw_varying_slot) into a byte offset within the
985 * VUE.
986 */
987 static inline
988 GLuint brw_varying_to_offset(const struct brw_vue_map *vue_map, GLuint varying)
989 {
990 return brw_vue_slot_to_offset(vue_map->varying_to_slot[varying]);
991 }
992
993 void brw_compute_vue_map(const struct gen_device_info *devinfo,
994 struct brw_vue_map *vue_map,
995 uint64_t slots_valid,
996 bool separate_shader);
997
998 void brw_compute_tess_vue_map(struct brw_vue_map *const vue_map,
999 uint64_t slots_valid,
1000 uint32_t is_patch);
1001
1002 /* brw_interpolation_map.c */
1003 void brw_setup_vue_interpolation(struct brw_vue_map *vue_map,
1004 struct nir_shader *nir,
1005 struct brw_wm_prog_data *prog_data);
1006
1007 enum shader_dispatch_mode {
1008 DISPATCH_MODE_4X1_SINGLE = 0,
1009 DISPATCH_MODE_4X2_DUAL_INSTANCE = 1,
1010 DISPATCH_MODE_4X2_DUAL_OBJECT = 2,
1011 DISPATCH_MODE_SIMD8 = 3,
1012
1013 DISPATCH_MODE_TCS_SINGLE_PATCH = 0,
1014 DISPATCH_MODE_TCS_8_PATCH = 2,
1015 };
1016
1017 /**
1018 * @defgroup Tessellator parameter enumerations.
1019 *
1020 * These correspond to the hardware values in 3DSTATE_TE, and are provided
1021 * as part of the tessellation evaluation shader.
1022 *
1023 * @{
1024 */
1025 enum brw_tess_partitioning {
1026 BRW_TESS_PARTITIONING_INTEGER = 0,
1027 BRW_TESS_PARTITIONING_ODD_FRACTIONAL = 1,
1028 BRW_TESS_PARTITIONING_EVEN_FRACTIONAL = 2,
1029 };
1030
1031 enum brw_tess_output_topology {
1032 BRW_TESS_OUTPUT_TOPOLOGY_POINT = 0,
1033 BRW_TESS_OUTPUT_TOPOLOGY_LINE = 1,
1034 BRW_TESS_OUTPUT_TOPOLOGY_TRI_CW = 2,
1035 BRW_TESS_OUTPUT_TOPOLOGY_TRI_CCW = 3,
1036 };
1037
1038 enum brw_tess_domain {
1039 BRW_TESS_DOMAIN_QUAD = 0,
1040 BRW_TESS_DOMAIN_TRI = 1,
1041 BRW_TESS_DOMAIN_ISOLINE = 2,
1042 };
1043 /** @} */
1044
1045 struct brw_vue_prog_data {
1046 struct brw_stage_prog_data base;
1047 struct brw_vue_map vue_map;
1048
1049 /** Should the hardware deliver input VUE handles for URB pull loads? */
1050 bool include_vue_handles;
1051
1052 GLuint urb_read_length;
1053 GLuint total_grf;
1054
1055 uint32_t clip_distance_mask;
1056 uint32_t cull_distance_mask;
1057
1058 /* Used for calculating urb partitions. In the VS, this is the size of the
1059 * URB entry used for both input and output to the thread. In the GS, this
1060 * is the size of the URB entry used for output.
1061 */
1062 GLuint urb_entry_size;
1063
1064 enum shader_dispatch_mode dispatch_mode;
1065 };
1066
1067 struct brw_vs_prog_data {
1068 struct brw_vue_prog_data base;
1069
1070 GLbitfield64 inputs_read;
1071 GLbitfield64 double_inputs_read;
1072
1073 unsigned nr_attribute_slots;
1074
1075 bool uses_vertexid;
1076 bool uses_instanceid;
1077 bool uses_is_indexed_draw;
1078 bool uses_firstvertex;
1079 bool uses_baseinstance;
1080 bool uses_drawid;
1081 };
1082
1083 struct brw_tcs_prog_data
1084 {
1085 struct brw_vue_prog_data base;
1086
1087 /** Should the non-SINGLE_PATCH payload provide primitive ID? */
1088 bool include_primitive_id;
1089
1090 /** Number vertices in output patch */
1091 int instances;
1092 };
1093
1094
1095 struct brw_tes_prog_data
1096 {
1097 struct brw_vue_prog_data base;
1098
1099 enum brw_tess_partitioning partitioning;
1100 enum brw_tess_output_topology output_topology;
1101 enum brw_tess_domain domain;
1102 };
1103
1104 struct brw_gs_prog_data
1105 {
1106 struct brw_vue_prog_data base;
1107
1108 unsigned vertices_in;
1109
1110 /**
1111 * Size of an output vertex, measured in HWORDS (32 bytes).
1112 */
1113 unsigned output_vertex_size_hwords;
1114
1115 unsigned output_topology;
1116
1117 /**
1118 * Size of the control data (cut bits or StreamID bits), in hwords (32
1119 * bytes). 0 if there is no control data.
1120 */
1121 unsigned control_data_header_size_hwords;
1122
1123 /**
1124 * Format of the control data (either GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID
1125 * if the control data is StreamID bits, or
1126 * GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT if the control data is cut bits).
1127 * Ignored if control_data_header_size is 0.
1128 */
1129 unsigned control_data_format;
1130
1131 bool include_primitive_id;
1132
1133 /**
1134 * The number of vertices emitted, if constant - otherwise -1.
1135 */
1136 int static_vertex_count;
1137
1138 int invocations;
1139
1140 /**
1141 * Gen6: Provoking vertex convention for odd-numbered triangles
1142 * in tristrips.
1143 */
1144 GLuint pv_first:1;
1145
1146 /**
1147 * Gen6: Number of varyings that are output to transform feedback.
1148 */
1149 GLuint num_transform_feedback_bindings:7; /* 0-BRW_MAX_SOL_BINDINGS */
1150
1151 /**
1152 * Gen6: Map from the index of a transform feedback binding table entry to the
1153 * gl_varying_slot that should be streamed out through that binding table
1154 * entry.
1155 */
1156 unsigned char transform_feedback_bindings[64 /* BRW_MAX_SOL_BINDINGS */];
1157
1158 /**
1159 * Gen6: Map from the index of a transform feedback binding table entry to the
1160 * swizzles that should be used when streaming out data through that
1161 * binding table entry.
1162 */
1163 unsigned char transform_feedback_swizzles[64 /* BRW_MAX_SOL_BINDINGS */];
1164 };
1165
1166 struct brw_sf_prog_data {
1167 uint32_t urb_read_length;
1168 uint32_t total_grf;
1169
1170 /* Each vertex may have upto 12 attributes, 4 components each,
1171 * except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11
1172 * rows.
1173 *
1174 * Actually we use 4 for each, so call it 12 rows.
1175 */
1176 unsigned urb_entry_size;
1177 };
1178
1179 struct brw_clip_prog_data {
1180 uint32_t curb_read_length; /* user planes? */
1181 uint32_t clip_mode;
1182 uint32_t urb_read_length;
1183 uint32_t total_grf;
1184 };
1185
1186 /* brw_any_prog_data is prog_data for any stage that maps to an API stage */
1187 union brw_any_prog_data {
1188 struct brw_stage_prog_data base;
1189 struct brw_vue_prog_data vue;
1190 struct brw_vs_prog_data vs;
1191 struct brw_tcs_prog_data tcs;
1192 struct brw_tes_prog_data tes;
1193 struct brw_gs_prog_data gs;
1194 struct brw_wm_prog_data wm;
1195 struct brw_cs_prog_data cs;
1196 };
1197
1198 #define DEFINE_PROG_DATA_DOWNCAST(stage) \
1199 static inline struct brw_##stage##_prog_data * \
1200 brw_##stage##_prog_data(struct brw_stage_prog_data *prog_data) \
1201 { \
1202 return (struct brw_##stage##_prog_data *) prog_data; \
1203 }
1204 DEFINE_PROG_DATA_DOWNCAST(vue)
1205 DEFINE_PROG_DATA_DOWNCAST(vs)
1206 DEFINE_PROG_DATA_DOWNCAST(tcs)
1207 DEFINE_PROG_DATA_DOWNCAST(tes)
1208 DEFINE_PROG_DATA_DOWNCAST(gs)
1209 DEFINE_PROG_DATA_DOWNCAST(wm)
1210 DEFINE_PROG_DATA_DOWNCAST(cs)
1211 DEFINE_PROG_DATA_DOWNCAST(ff_gs)
1212 DEFINE_PROG_DATA_DOWNCAST(clip)
1213 DEFINE_PROG_DATA_DOWNCAST(sf)
1214 #undef DEFINE_PROG_DATA_DOWNCAST
1215
1216 /** @} */
1217
1218 struct brw_compiler *
1219 brw_compiler_create(void *mem_ctx, const struct gen_device_info *devinfo);
1220
1221 /**
1222 * Returns a compiler configuration for use with disk shader cache
1223 *
1224 * This value only needs to change for settings that can cause different
1225 * program generation between two runs on the same hardware.
1226 *
1227 * For example, it doesn't need to be different for gen 8 and gen 9 hardware,
1228 * but it does need to be different if INTEL_DEBUG=nocompact is or isn't used.
1229 */
1230 uint64_t
1231 brw_get_compiler_config_value(const struct brw_compiler *compiler);
1232
1233 unsigned
1234 brw_prog_data_size(gl_shader_stage stage);
1235
1236 unsigned
1237 brw_prog_key_size(gl_shader_stage stage);
1238
1239 void
1240 brw_prog_key_set_id(union brw_any_prog_key *key, gl_shader_stage, unsigned id);
1241
1242 /**
1243 * Compile a vertex shader.
1244 *
1245 * Returns the final assembly and the program's size.
1246 */
1247 const unsigned *
1248 brw_compile_vs(const struct brw_compiler *compiler, void *log_data,
1249 void *mem_ctx,
1250 const struct brw_vs_prog_key *key,
1251 struct brw_vs_prog_data *prog_data,
1252 struct nir_shader *shader,
1253 int shader_time_index,
1254 char **error_str);
1255
1256 /**
1257 * Compile a tessellation control shader.
1258 *
1259 * Returns the final assembly and the program's size.
1260 */
1261 const unsigned *
1262 brw_compile_tcs(const struct brw_compiler *compiler,
1263 void *log_data,
1264 void *mem_ctx,
1265 const struct brw_tcs_prog_key *key,
1266 struct brw_tcs_prog_data *prog_data,
1267 struct nir_shader *nir,
1268 int shader_time_index,
1269 char **error_str);
1270
1271 /**
1272 * Compile a tessellation evaluation shader.
1273 *
1274 * Returns the final assembly and the program's size.
1275 */
1276 const unsigned *
1277 brw_compile_tes(const struct brw_compiler *compiler, void *log_data,
1278 void *mem_ctx,
1279 const struct brw_tes_prog_key *key,
1280 const struct brw_vue_map *input_vue_map,
1281 struct brw_tes_prog_data *prog_data,
1282 struct nir_shader *shader,
1283 struct gl_program *prog,
1284 int shader_time_index,
1285 char **error_str);
1286
1287 /**
1288 * Compile a vertex shader.
1289 *
1290 * Returns the final assembly and the program's size.
1291 */
1292 const unsigned *
1293 brw_compile_gs(const struct brw_compiler *compiler, void *log_data,
1294 void *mem_ctx,
1295 const struct brw_gs_prog_key *key,
1296 struct brw_gs_prog_data *prog_data,
1297 struct nir_shader *shader,
1298 struct gl_program *prog,
1299 int shader_time_index,
1300 char **error_str);
1301
1302 /**
1303 * Compile a strips and fans shader.
1304 *
1305 * This is a fixed-function shader determined entirely by the shader key and
1306 * a VUE map.
1307 *
1308 * Returns the final assembly and the program's size.
1309 */
1310 const unsigned *
1311 brw_compile_sf(const struct brw_compiler *compiler,
1312 void *mem_ctx,
1313 const struct brw_sf_prog_key *key,
1314 struct brw_sf_prog_data *prog_data,
1315 struct brw_vue_map *vue_map,
1316 unsigned *final_assembly_size);
1317
1318 /**
1319 * Compile a clipper shader.
1320 *
1321 * This is a fixed-function shader determined entirely by the shader key and
1322 * a VUE map.
1323 *
1324 * Returns the final assembly and the program's size.
1325 */
1326 const unsigned *
1327 brw_compile_clip(const struct brw_compiler *compiler,
1328 void *mem_ctx,
1329 const struct brw_clip_prog_key *key,
1330 struct brw_clip_prog_data *prog_data,
1331 struct brw_vue_map *vue_map,
1332 unsigned *final_assembly_size);
1333
1334 /**
1335 * Compile a fragment shader.
1336 *
1337 * Returns the final assembly and the program's size.
1338 */
1339 const unsigned *
1340 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
1341 void *mem_ctx,
1342 const struct brw_wm_prog_key *key,
1343 struct brw_wm_prog_data *prog_data,
1344 struct nir_shader *shader,
1345 struct gl_program *prog,
1346 int shader_time_index8,
1347 int shader_time_index16,
1348 int shader_time_index32,
1349 bool allow_spilling,
1350 bool use_rep_send, struct brw_vue_map *vue_map,
1351 char **error_str);
1352
1353 /**
1354 * Compile a compute shader.
1355 *
1356 * Returns the final assembly and the program's size.
1357 */
1358 const unsigned *
1359 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
1360 void *mem_ctx,
1361 const struct brw_cs_prog_key *key,
1362 struct brw_cs_prog_data *prog_data,
1363 const struct nir_shader *shader,
1364 int shader_time_index,
1365 char **error_str);
1366
1367 void brw_debug_key_recompile(const struct brw_compiler *c, void *log,
1368 gl_shader_stage stage,
1369 const struct brw_base_prog_key *old_key,
1370 const struct brw_base_prog_key *key);
1371
1372 static inline uint32_t
1373 encode_slm_size(unsigned gen, uint32_t bytes)
1374 {
1375 uint32_t slm_size = 0;
1376
1377 /* Shared Local Memory is specified as powers of two, and encoded in
1378 * INTERFACE_DESCRIPTOR_DATA with the following representations:
1379 *
1380 * Size | 0 kB | 1 kB | 2 kB | 4 kB | 8 kB | 16 kB | 32 kB | 64 kB |
1381 * -------------------------------------------------------------------
1382 * Gen7-8 | 0 | none | none | 1 | 2 | 4 | 8 | 16 |
1383 * -------------------------------------------------------------------
1384 * Gen9+ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
1385 */
1386 assert(bytes <= 64 * 1024);
1387
1388 if (bytes > 0) {
1389 /* Shared Local Memory Size is specified as powers of two. */
1390 slm_size = util_next_power_of_two(bytes);
1391
1392 if (gen >= 9) {
1393 /* Use a minimum of 1kB; turn an exponent of 10 (1024 kB) into 1. */
1394 slm_size = ffs(MAX2(slm_size, 1024)) - 10;
1395 } else {
1396 /* Use a minimum of 4kB; convert to the pre-Gen9 representation. */
1397 slm_size = MAX2(slm_size, 4096) / 4096;
1398 }
1399 }
1400
1401 return slm_size;
1402 }
1403
1404 /**
1405 * Return true if the given shader stage is dispatched contiguously by the
1406 * relevant fixed function starting from channel 0 of the SIMD thread, which
1407 * implies that the dispatch mask of a thread can be assumed to have the form
1408 * '2^n - 1' for some n.
1409 */
1410 static inline bool
1411 brw_stage_has_packed_dispatch(MAYBE_UNUSED const struct gen_device_info *devinfo,
1412 gl_shader_stage stage,
1413 const struct brw_stage_prog_data *prog_data)
1414 {
1415 /* The code below makes assumptions about the hardware's thread dispatch
1416 * behavior that could be proven wrong in future generations -- Make sure
1417 * to do a full test run with brw_fs_test_dispatch_packing() hooked up to
1418 * the NIR front-end before changing this assertion.
1419 */
1420 assert(devinfo->gen <= 11);
1421
1422 switch (stage) {
1423 case MESA_SHADER_FRAGMENT: {
1424 /* The PSD discards subspans coming in with no lit samples, which in the
1425 * per-pixel shading case implies that each subspan will either be fully
1426 * lit (due to the VMask being used to allow derivative computations),
1427 * or not dispatched at all. In per-sample dispatch mode individual
1428 * samples from the same subspan have a fixed relative location within
1429 * the SIMD thread, so dispatch of unlit samples cannot be avoided in
1430 * general and we should return false.
1431 */
1432 const struct brw_wm_prog_data *wm_prog_data =
1433 (const struct brw_wm_prog_data *)prog_data;
1434 return !wm_prog_data->persample_dispatch;
1435 }
1436 case MESA_SHADER_COMPUTE:
1437 /* Compute shaders will be spawned with either a fully enabled dispatch
1438 * mask or with whatever bottom/right execution mask was given to the
1439 * GPGPU walker command to be used along the workgroup edges -- In both
1440 * cases the dispatch mask is required to be tightly packed for our
1441 * invocation index calculations to work.
1442 */
1443 return true;
1444 default:
1445 /* Most remaining fixed functions are limited to use a packed dispatch
1446 * mask due to the hardware representation of the dispatch mask as a
1447 * single counter representing the number of enabled channels.
1448 */
1449 return true;
1450 }
1451 }
1452
1453 /**
1454 * Computes the first varying slot in the URB produced by the previous stage
1455 * that is used in the next stage. We do this by testing the varying slots in
1456 * the previous stage's vue map against the inputs read in the next stage.
1457 *
1458 * Note that:
1459 *
1460 * - Each URB offset contains two varying slots and we can only skip a
1461 * full offset if both slots are unused, so the value we return here is always
1462 * rounded down to the closest multiple of two.
1463 *
1464 * - gl_Layer and gl_ViewportIndex don't have their own varying slots, they are
1465 * part of the vue header, so if these are read we can't skip anything.
1466 */
1467 static inline int
1468 brw_compute_first_urb_slot_required(uint64_t inputs_read,
1469 const struct brw_vue_map *prev_stage_vue_map)
1470 {
1471 if ((inputs_read & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT)) == 0) {
1472 for (int i = 0; i < prev_stage_vue_map->num_slots; i++) {
1473 int varying = prev_stage_vue_map->slot_to_varying[i];
1474 if (varying > 0 && (inputs_read & BITFIELD64_BIT(varying)) != 0)
1475 return ROUND_DOWN_TO(i, 2);
1476 }
1477 }
1478
1479 return 0;
1480 }
1481
1482 #ifdef __cplusplus
1483 } /* extern "C" */
1484 #endif
1485
1486 #endif /* BRW_COMPILER_H */