anv: Add support for the on-disk shader cache
[mesa.git] / src / intel / vulkan / anv_device.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <sys/sysinfo.h>
29 #include <unistd.h>
30 #include <fcntl.h>
31 #include <xf86drm.h>
32 #include <drm_fourcc.h>
33
34 #include "anv_private.h"
35 #include "util/strtod.h"
36 #include "util/debug.h"
37 #include "util/build_id.h"
38 #include "util/disk_cache.h"
39 #include "util/mesa-sha1.h"
40 #include "vk_util.h"
41 #include "common/gen_defines.h"
42
43 #include "genxml/gen7_pack.h"
44
45 static void
46 compiler_debug_log(void *data, const char *fmt, ...)
47 { }
48
49 static void
50 compiler_perf_log(void *data, const char *fmt, ...)
51 {
52 va_list args;
53 va_start(args, fmt);
54
55 if (unlikely(INTEL_DEBUG & DEBUG_PERF))
56 intel_logd_v(fmt, args);
57
58 va_end(args);
59 }
60
61 static VkResult
62 anv_compute_heap_size(int fd, uint64_t gtt_size, uint64_t *heap_size)
63 {
64 /* Query the total ram from the system */
65 struct sysinfo info;
66 sysinfo(&info);
67
68 uint64_t total_ram = (uint64_t)info.totalram * (uint64_t)info.mem_unit;
69
70 /* We don't want to burn too much ram with the GPU. If the user has 4GiB
71 * or less, we use at most half. If they have more than 4GiB, we use 3/4.
72 */
73 uint64_t available_ram;
74 if (total_ram <= 4ull * 1024ull * 1024ull * 1024ull)
75 available_ram = total_ram / 2;
76 else
77 available_ram = total_ram * 3 / 4;
78
79 /* We also want to leave some padding for things we allocate in the driver,
80 * so don't go over 3/4 of the GTT either.
81 */
82 uint64_t available_gtt = gtt_size * 3 / 4;
83
84 *heap_size = MIN2(available_ram, available_gtt);
85
86 return VK_SUCCESS;
87 }
88
89 static VkResult
90 anv_physical_device_init_heaps(struct anv_physical_device *device, int fd)
91 {
92 uint64_t gtt_size;
93 if (anv_gem_get_context_param(fd, 0, I915_CONTEXT_PARAM_GTT_SIZE,
94 &gtt_size) == -1) {
95 /* If, for whatever reason, we can't actually get the GTT size from the
96 * kernel (too old?) fall back to the aperture size.
97 */
98 anv_perf_warn(NULL, NULL,
99 "Failed to get I915_CONTEXT_PARAM_GTT_SIZE: %m");
100
101 if (anv_gem_get_aperture(fd, &gtt_size) == -1) {
102 return vk_errorf(NULL, NULL, VK_ERROR_INITIALIZATION_FAILED,
103 "failed to get aperture size: %m");
104 }
105 }
106
107 device->supports_48bit_addresses = (device->info.gen >= 8) &&
108 gtt_size > (4ULL << 30 /* GiB */);
109
110 uint64_t heap_size = 0;
111 VkResult result = anv_compute_heap_size(fd, gtt_size, &heap_size);
112 if (result != VK_SUCCESS)
113 return result;
114
115 if (heap_size > (2ull << 30) && !device->supports_48bit_addresses) {
116 /* When running with an overridden PCI ID, we may get a GTT size from
117 * the kernel that is greater than 2 GiB but the execbuf check for 48bit
118 * address support can still fail. Just clamp the address space size to
119 * 2 GiB if we don't have 48-bit support.
120 */
121 intel_logw("%s:%d: The kernel reported a GTT size larger than 2 GiB but "
122 "not support for 48-bit addresses",
123 __FILE__, __LINE__);
124 heap_size = 2ull << 30;
125 }
126
127 if (heap_size <= 3ull * (1ull << 30)) {
128 /* In this case, everything fits nicely into the 32-bit address space,
129 * so there's no need for supporting 48bit addresses on client-allocated
130 * memory objects.
131 */
132 device->memory.heap_count = 1;
133 device->memory.heaps[0] = (struct anv_memory_heap) {
134 .size = heap_size,
135 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
136 .supports_48bit_addresses = false,
137 };
138 } else {
139 /* Not everything will fit nicely into a 32-bit address space. In this
140 * case we need a 64-bit heap. Advertise a small 32-bit heap and a
141 * larger 48-bit heap. If we're in this case, then we have a total heap
142 * size larger than 3GiB which most likely means they have 8 GiB of
143 * video memory and so carving off 1 GiB for the 32-bit heap should be
144 * reasonable.
145 */
146 const uint64_t heap_size_32bit = 1ull << 30;
147 const uint64_t heap_size_48bit = heap_size - heap_size_32bit;
148
149 assert(device->supports_48bit_addresses);
150
151 device->memory.heap_count = 2;
152 device->memory.heaps[0] = (struct anv_memory_heap) {
153 .size = heap_size_48bit,
154 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
155 .supports_48bit_addresses = true,
156 };
157 device->memory.heaps[1] = (struct anv_memory_heap) {
158 .size = heap_size_32bit,
159 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
160 .supports_48bit_addresses = false,
161 };
162 }
163
164 uint32_t type_count = 0;
165 for (uint32_t heap = 0; heap < device->memory.heap_count; heap++) {
166 uint32_t valid_buffer_usage = ~0;
167
168 /* There appears to be a hardware issue in the VF cache where it only
169 * considers the bottom 32 bits of memory addresses. If you happen to
170 * have two vertex buffers which get placed exactly 4 GiB apart and use
171 * them in back-to-back draw calls, you can get collisions. In order to
172 * solve this problem, we require vertex and index buffers be bound to
173 * memory allocated out of the 32-bit heap.
174 */
175 if (device->memory.heaps[heap].supports_48bit_addresses) {
176 valid_buffer_usage &= ~(VK_BUFFER_USAGE_INDEX_BUFFER_BIT |
177 VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
178 }
179
180 if (device->info.has_llc) {
181 /* Big core GPUs share LLC with the CPU and thus one memory type can be
182 * both cached and coherent at the same time.
183 */
184 device->memory.types[type_count++] = (struct anv_memory_type) {
185 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
186 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
187 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
188 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
189 .heapIndex = heap,
190 .valid_buffer_usage = valid_buffer_usage,
191 };
192 } else {
193 /* The spec requires that we expose a host-visible, coherent memory
194 * type, but Atom GPUs don't share LLC. Thus we offer two memory types
195 * to give the application a choice between cached, but not coherent and
196 * coherent but uncached (WC though).
197 */
198 device->memory.types[type_count++] = (struct anv_memory_type) {
199 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
200 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
201 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
202 .heapIndex = heap,
203 .valid_buffer_usage = valid_buffer_usage,
204 };
205 device->memory.types[type_count++] = (struct anv_memory_type) {
206 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
207 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
208 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
209 .heapIndex = heap,
210 .valid_buffer_usage = valid_buffer_usage,
211 };
212 }
213 }
214 device->memory.type_count = type_count;
215
216 return VK_SUCCESS;
217 }
218
219 static VkResult
220 anv_physical_device_init_uuids(struct anv_physical_device *device)
221 {
222 const struct build_id_note *note =
223 build_id_find_nhdr_for_addr(anv_physical_device_init_uuids);
224 if (!note) {
225 return vk_errorf(device->instance, device,
226 VK_ERROR_INITIALIZATION_FAILED,
227 "Failed to find build-id");
228 }
229
230 unsigned build_id_len = build_id_length(note);
231 if (build_id_len < 20) {
232 return vk_errorf(device->instance, device,
233 VK_ERROR_INITIALIZATION_FAILED,
234 "build-id too short. It needs to be a SHA");
235 }
236
237 memcpy(device->driver_build_sha1, build_id_data(note), 20);
238
239 struct mesa_sha1 sha1_ctx;
240 uint8_t sha1[20];
241 STATIC_ASSERT(VK_UUID_SIZE <= sizeof(sha1));
242
243 /* The pipeline cache UUID is used for determining when a pipeline cache is
244 * invalid. It needs both a driver build and the PCI ID of the device.
245 */
246 _mesa_sha1_init(&sha1_ctx);
247 _mesa_sha1_update(&sha1_ctx, build_id_data(note), build_id_len);
248 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
249 sizeof(device->chipset_id));
250 _mesa_sha1_final(&sha1_ctx, sha1);
251 memcpy(device->pipeline_cache_uuid, sha1, VK_UUID_SIZE);
252
253 /* The driver UUID is used for determining sharability of images and memory
254 * between two Vulkan instances in separate processes. People who want to
255 * share memory need to also check the device UUID (below) so all this
256 * needs to be is the build-id.
257 */
258 memcpy(device->driver_uuid, build_id_data(note), VK_UUID_SIZE);
259
260 /* The device UUID uniquely identifies the given device within the machine.
261 * Since we never have more than one device, this doesn't need to be a real
262 * UUID. However, on the off-chance that someone tries to use this to
263 * cache pre-tiled images or something of the like, we use the PCI ID and
264 * some bits of ISL info to ensure that this is safe.
265 */
266 _mesa_sha1_init(&sha1_ctx);
267 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
268 sizeof(device->chipset_id));
269 _mesa_sha1_update(&sha1_ctx, &device->isl_dev.has_bit6_swizzling,
270 sizeof(device->isl_dev.has_bit6_swizzling));
271 _mesa_sha1_final(&sha1_ctx, sha1);
272 memcpy(device->device_uuid, sha1, VK_UUID_SIZE);
273
274 return VK_SUCCESS;
275 }
276
277 static void
278 anv_physical_device_init_disk_cache(struct anv_physical_device *device)
279 {
280 #ifdef ENABLE_SHADER_CACHE
281 char renderer[9];
282 MAYBE_UNUSED int len = snprintf(renderer, sizeof(renderer), "anv_%04x",
283 device->chipset_id);
284 assert(len == sizeof(renderer) - 1);
285
286 char timestamp[41];
287 _mesa_sha1_format(timestamp, device->driver_build_sha1);
288
289 device->disk_cache = disk_cache_create(renderer, timestamp, 0);
290 #else
291 device->disk_cache = NULL;
292 #endif
293 }
294
295 static void
296 anv_physical_device_free_disk_cache(struct anv_physical_device *device)
297 {
298 #ifdef ENABLE_SHADER_CACHE
299 if (device->disk_cache)
300 disk_cache_destroy(device->disk_cache);
301 #else
302 assert(device->disk_cache == NULL);
303 #endif
304 }
305
306 static VkResult
307 anv_physical_device_init(struct anv_physical_device *device,
308 struct anv_instance *instance,
309 const char *primary_path,
310 const char *path)
311 {
312 VkResult result;
313 int fd;
314 int master_fd = -1;
315
316 brw_process_intel_debug_variable();
317
318 fd = open(path, O_RDWR | O_CLOEXEC);
319 if (fd < 0)
320 return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
321
322 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
323 device->instance = instance;
324
325 assert(strlen(path) < ARRAY_SIZE(device->path));
326 strncpy(device->path, path, ARRAY_SIZE(device->path));
327
328 device->no_hw = getenv("INTEL_NO_HW") != NULL;
329
330 const int pci_id_override = gen_get_pci_device_id_override();
331 if (pci_id_override < 0) {
332 device->chipset_id = anv_gem_get_param(fd, I915_PARAM_CHIPSET_ID);
333 if (!device->chipset_id) {
334 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
335 goto fail;
336 }
337 } else {
338 device->chipset_id = pci_id_override;
339 device->no_hw = true;
340 }
341
342 device->name = gen_get_device_name(device->chipset_id);
343 if (!gen_get_device_info(device->chipset_id, &device->info)) {
344 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
345 goto fail;
346 }
347
348 if (device->info.is_haswell) {
349 intel_logw("Haswell Vulkan support is incomplete");
350 } else if (device->info.gen == 7 && !device->info.is_baytrail) {
351 intel_logw("Ivy Bridge Vulkan support is incomplete");
352 } else if (device->info.gen == 7 && device->info.is_baytrail) {
353 intel_logw("Bay Trail Vulkan support is incomplete");
354 } else if (device->info.gen >= 8 && device->info.gen <= 10) {
355 /* Gen8-10 fully supported */
356 } else if (device->info.gen == 11) {
357 intel_logw("Vulkan is not yet fully supported on gen11.");
358 } else {
359 result = vk_errorf(device->instance, device,
360 VK_ERROR_INCOMPATIBLE_DRIVER,
361 "Vulkan not yet supported on %s", device->name);
362 goto fail;
363 }
364
365 device->cmd_parser_version = -1;
366 if (device->info.gen == 7) {
367 device->cmd_parser_version =
368 anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
369 if (device->cmd_parser_version == -1) {
370 result = vk_errorf(device->instance, device,
371 VK_ERROR_INITIALIZATION_FAILED,
372 "failed to get command parser version");
373 goto fail;
374 }
375 }
376
377 if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
378 result = vk_errorf(device->instance, device,
379 VK_ERROR_INITIALIZATION_FAILED,
380 "kernel missing gem wait");
381 goto fail;
382 }
383
384 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
385 result = vk_errorf(device->instance, device,
386 VK_ERROR_INITIALIZATION_FAILED,
387 "kernel missing execbuf2");
388 goto fail;
389 }
390
391 if (!device->info.has_llc &&
392 anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
393 result = vk_errorf(device->instance, device,
394 VK_ERROR_INITIALIZATION_FAILED,
395 "kernel missing wc mmap");
396 goto fail;
397 }
398
399 result = anv_physical_device_init_heaps(device, fd);
400 if (result != VK_SUCCESS)
401 goto fail;
402
403 device->has_exec_async = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_ASYNC);
404 device->has_exec_capture = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_CAPTURE);
405 device->has_exec_fence = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE);
406 device->has_syncobj = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE_ARRAY);
407 device->has_syncobj_wait = device->has_syncobj &&
408 anv_gem_supports_syncobj_wait(fd);
409 device->has_context_priority = anv_gem_has_context_priority(fd);
410
411 device->use_softpin = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_SOFTPIN)
412 && device->supports_48bit_addresses;
413
414 device->has_context_isolation =
415 anv_gem_get_param(fd, I915_PARAM_HAS_CONTEXT_ISOLATION);
416
417 bool swizzled = anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
418
419 /* Starting with Gen10, the timestamp frequency of the command streamer may
420 * vary from one part to another. We can query the value from the kernel.
421 */
422 if (device->info.gen >= 10) {
423 int timestamp_frequency =
424 anv_gem_get_param(fd, I915_PARAM_CS_TIMESTAMP_FREQUENCY);
425
426 if (timestamp_frequency < 0)
427 intel_logw("Kernel 4.16-rc1+ required to properly query CS timestamp frequency");
428 else
429 device->info.timestamp_frequency = timestamp_frequency;
430 }
431
432 /* GENs prior to 8 do not support EU/Subslice info */
433 if (device->info.gen >= 8) {
434 device->subslice_total = anv_gem_get_param(fd, I915_PARAM_SUBSLICE_TOTAL);
435 device->eu_total = anv_gem_get_param(fd, I915_PARAM_EU_TOTAL);
436
437 /* Without this information, we cannot get the right Braswell
438 * brandstrings, and we have to use conservative numbers for GPGPU on
439 * many platforms, but otherwise, things will just work.
440 */
441 if (device->subslice_total < 1 || device->eu_total < 1) {
442 intel_logw("Kernel 4.1 required to properly query GPU properties");
443 }
444 } else if (device->info.gen == 7) {
445 device->subslice_total = 1 << (device->info.gt - 1);
446 }
447
448 if (device->info.is_cherryview &&
449 device->subslice_total > 0 && device->eu_total > 0) {
450 /* Logical CS threads = EUs per subslice * num threads per EU */
451 uint32_t max_cs_threads =
452 device->eu_total / device->subslice_total * device->info.num_thread_per_eu;
453
454 /* Fuse configurations may give more threads than expected, never less. */
455 if (max_cs_threads > device->info.max_cs_threads)
456 device->info.max_cs_threads = max_cs_threads;
457 }
458
459 device->compiler = brw_compiler_create(NULL, &device->info);
460 if (device->compiler == NULL) {
461 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
462 goto fail;
463 }
464 device->compiler->shader_debug_log = compiler_debug_log;
465 device->compiler->shader_perf_log = compiler_perf_log;
466 device->compiler->supports_pull_constants = false;
467 device->compiler->constant_buffer_0_is_relative =
468 device->info.gen < 8 || !device->has_context_isolation;
469 device->compiler->supports_shader_constants = true;
470
471 isl_device_init(&device->isl_dev, &device->info, swizzled);
472
473 result = anv_physical_device_init_uuids(device);
474 if (result != VK_SUCCESS)
475 goto fail;
476
477 anv_physical_device_init_disk_cache(device);
478
479 if (instance->enabled_extensions.KHR_display) {
480 master_fd = open(primary_path, O_RDWR | O_CLOEXEC);
481 if (master_fd >= 0) {
482 /* prod the device with a GETPARAM call which will fail if
483 * we don't have permission to even render on this device
484 */
485 if (anv_gem_get_param(master_fd, I915_PARAM_CHIPSET_ID) == 0) {
486 close(master_fd);
487 master_fd = -1;
488 }
489 }
490 }
491 device->master_fd = master_fd;
492
493 result = anv_init_wsi(device);
494 if (result != VK_SUCCESS) {
495 ralloc_free(device->compiler);
496 anv_physical_device_free_disk_cache(device);
497 goto fail;
498 }
499
500 anv_physical_device_get_supported_extensions(device,
501 &device->supported_extensions);
502
503
504 device->local_fd = fd;
505
506 return VK_SUCCESS;
507
508 fail:
509 close(fd);
510 if (master_fd != -1)
511 close(master_fd);
512 return result;
513 }
514
515 static void
516 anv_physical_device_finish(struct anv_physical_device *device)
517 {
518 anv_finish_wsi(device);
519 anv_physical_device_free_disk_cache(device);
520 ralloc_free(device->compiler);
521 close(device->local_fd);
522 if (device->master_fd >= 0)
523 close(device->master_fd);
524 }
525
526 static void *
527 default_alloc_func(void *pUserData, size_t size, size_t align,
528 VkSystemAllocationScope allocationScope)
529 {
530 return malloc(size);
531 }
532
533 static void *
534 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
535 size_t align, VkSystemAllocationScope allocationScope)
536 {
537 return realloc(pOriginal, size);
538 }
539
540 static void
541 default_free_func(void *pUserData, void *pMemory)
542 {
543 free(pMemory);
544 }
545
546 static const VkAllocationCallbacks default_alloc = {
547 .pUserData = NULL,
548 .pfnAllocation = default_alloc_func,
549 .pfnReallocation = default_realloc_func,
550 .pfnFree = default_free_func,
551 };
552
553 VkResult anv_EnumerateInstanceExtensionProperties(
554 const char* pLayerName,
555 uint32_t* pPropertyCount,
556 VkExtensionProperties* pProperties)
557 {
558 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
559
560 for (int i = 0; i < ANV_INSTANCE_EXTENSION_COUNT; i++) {
561 if (anv_instance_extensions_supported.extensions[i]) {
562 vk_outarray_append(&out, prop) {
563 *prop = anv_instance_extensions[i];
564 }
565 }
566 }
567
568 return vk_outarray_status(&out);
569 }
570
571 VkResult anv_CreateInstance(
572 const VkInstanceCreateInfo* pCreateInfo,
573 const VkAllocationCallbacks* pAllocator,
574 VkInstance* pInstance)
575 {
576 struct anv_instance *instance;
577 VkResult result;
578
579 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
580
581 struct anv_instance_extension_table enabled_extensions = {};
582 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
583 int idx;
584 for (idx = 0; idx < ANV_INSTANCE_EXTENSION_COUNT; idx++) {
585 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
586 anv_instance_extensions[idx].extensionName) == 0)
587 break;
588 }
589
590 if (idx >= ANV_INSTANCE_EXTENSION_COUNT)
591 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
592
593 if (!anv_instance_extensions_supported.extensions[idx])
594 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
595
596 enabled_extensions.extensions[idx] = true;
597 }
598
599 instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
600 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
601 if (!instance)
602 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
603
604 instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
605
606 if (pAllocator)
607 instance->alloc = *pAllocator;
608 else
609 instance->alloc = default_alloc;
610
611 if (pCreateInfo->pApplicationInfo &&
612 pCreateInfo->pApplicationInfo->apiVersion != 0) {
613 instance->apiVersion = pCreateInfo->pApplicationInfo->apiVersion;
614 } else {
615 anv_EnumerateInstanceVersion(&instance->apiVersion);
616 }
617
618 instance->enabled_extensions = enabled_extensions;
619
620 for (unsigned i = 0; i < ARRAY_SIZE(instance->dispatch.entrypoints); i++) {
621 /* Vulkan requires that entrypoints for extensions which have not been
622 * enabled must not be advertised.
623 */
624 if (!anv_entrypoint_is_enabled(i, instance->apiVersion,
625 &instance->enabled_extensions, NULL)) {
626 instance->dispatch.entrypoints[i] = NULL;
627 } else if (anv_dispatch_table.entrypoints[i] != NULL) {
628 instance->dispatch.entrypoints[i] = anv_dispatch_table.entrypoints[i];
629 } else {
630 instance->dispatch.entrypoints[i] =
631 anv_tramp_dispatch_table.entrypoints[i];
632 }
633 }
634
635 instance->physicalDeviceCount = -1;
636
637 result = vk_debug_report_instance_init(&instance->debug_report_callbacks);
638 if (result != VK_SUCCESS) {
639 vk_free2(&default_alloc, pAllocator, instance);
640 return vk_error(result);
641 }
642
643 instance->pipeline_cache_enabled =
644 env_var_as_boolean("ANV_ENABLE_PIPELINE_CACHE", true);
645
646 _mesa_locale_init();
647
648 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
649
650 *pInstance = anv_instance_to_handle(instance);
651
652 return VK_SUCCESS;
653 }
654
655 void anv_DestroyInstance(
656 VkInstance _instance,
657 const VkAllocationCallbacks* pAllocator)
658 {
659 ANV_FROM_HANDLE(anv_instance, instance, _instance);
660
661 if (!instance)
662 return;
663
664 if (instance->physicalDeviceCount > 0) {
665 /* We support at most one physical device. */
666 assert(instance->physicalDeviceCount == 1);
667 anv_physical_device_finish(&instance->physicalDevice);
668 }
669
670 VG(VALGRIND_DESTROY_MEMPOOL(instance));
671
672 vk_debug_report_instance_destroy(&instance->debug_report_callbacks);
673
674 _mesa_locale_fini();
675
676 vk_free(&instance->alloc, instance);
677 }
678
679 static VkResult
680 anv_enumerate_devices(struct anv_instance *instance)
681 {
682 /* TODO: Check for more devices ? */
683 drmDevicePtr devices[8];
684 VkResult result = VK_ERROR_INCOMPATIBLE_DRIVER;
685 int max_devices;
686
687 instance->physicalDeviceCount = 0;
688
689 max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
690 if (max_devices < 1)
691 return VK_ERROR_INCOMPATIBLE_DRIVER;
692
693 for (unsigned i = 0; i < (unsigned)max_devices; i++) {
694 if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
695 devices[i]->bustype == DRM_BUS_PCI &&
696 devices[i]->deviceinfo.pci->vendor_id == 0x8086) {
697
698 result = anv_physical_device_init(&instance->physicalDevice,
699 instance,
700 devices[i]->nodes[DRM_NODE_PRIMARY],
701 devices[i]->nodes[DRM_NODE_RENDER]);
702 if (result != VK_ERROR_INCOMPATIBLE_DRIVER)
703 break;
704 }
705 }
706 drmFreeDevices(devices, max_devices);
707
708 if (result == VK_SUCCESS)
709 instance->physicalDeviceCount = 1;
710
711 return result;
712 }
713
714 static VkResult
715 anv_instance_ensure_physical_device(struct anv_instance *instance)
716 {
717 if (instance->physicalDeviceCount < 0) {
718 VkResult result = anv_enumerate_devices(instance);
719 if (result != VK_SUCCESS &&
720 result != VK_ERROR_INCOMPATIBLE_DRIVER)
721 return result;
722 }
723
724 return VK_SUCCESS;
725 }
726
727 VkResult anv_EnumeratePhysicalDevices(
728 VkInstance _instance,
729 uint32_t* pPhysicalDeviceCount,
730 VkPhysicalDevice* pPhysicalDevices)
731 {
732 ANV_FROM_HANDLE(anv_instance, instance, _instance);
733 VK_OUTARRAY_MAKE(out, pPhysicalDevices, pPhysicalDeviceCount);
734
735 VkResult result = anv_instance_ensure_physical_device(instance);
736 if (result != VK_SUCCESS)
737 return result;
738
739 if (instance->physicalDeviceCount == 0)
740 return VK_SUCCESS;
741
742 assert(instance->physicalDeviceCount == 1);
743 vk_outarray_append(&out, i) {
744 *i = anv_physical_device_to_handle(&instance->physicalDevice);
745 }
746
747 return vk_outarray_status(&out);
748 }
749
750 VkResult anv_EnumeratePhysicalDeviceGroups(
751 VkInstance _instance,
752 uint32_t* pPhysicalDeviceGroupCount,
753 VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties)
754 {
755 ANV_FROM_HANDLE(anv_instance, instance, _instance);
756 VK_OUTARRAY_MAKE(out, pPhysicalDeviceGroupProperties,
757 pPhysicalDeviceGroupCount);
758
759 VkResult result = anv_instance_ensure_physical_device(instance);
760 if (result != VK_SUCCESS)
761 return result;
762
763 if (instance->physicalDeviceCount == 0)
764 return VK_SUCCESS;
765
766 assert(instance->physicalDeviceCount == 1);
767
768 vk_outarray_append(&out, p) {
769 p->physicalDeviceCount = 1;
770 memset(p->physicalDevices, 0, sizeof(p->physicalDevices));
771 p->physicalDevices[0] =
772 anv_physical_device_to_handle(&instance->physicalDevice);
773 p->subsetAllocation = VK_FALSE;
774
775 vk_foreach_struct(ext, p->pNext)
776 anv_debug_ignored_stype(ext->sType);
777 }
778
779 return vk_outarray_status(&out);
780 }
781
782 void anv_GetPhysicalDeviceFeatures(
783 VkPhysicalDevice physicalDevice,
784 VkPhysicalDeviceFeatures* pFeatures)
785 {
786 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
787
788 *pFeatures = (VkPhysicalDeviceFeatures) {
789 .robustBufferAccess = true,
790 .fullDrawIndexUint32 = true,
791 .imageCubeArray = true,
792 .independentBlend = true,
793 .geometryShader = true,
794 .tessellationShader = true,
795 .sampleRateShading = true,
796 .dualSrcBlend = true,
797 .logicOp = true,
798 .multiDrawIndirect = true,
799 .drawIndirectFirstInstance = true,
800 .depthClamp = true,
801 .depthBiasClamp = true,
802 .fillModeNonSolid = true,
803 .depthBounds = false,
804 .wideLines = true,
805 .largePoints = true,
806 .alphaToOne = true,
807 .multiViewport = true,
808 .samplerAnisotropy = true,
809 .textureCompressionETC2 = pdevice->info.gen >= 8 ||
810 pdevice->info.is_baytrail,
811 .textureCompressionASTC_LDR = pdevice->info.gen >= 9, /* FINISHME CHV */
812 .textureCompressionBC = true,
813 .occlusionQueryPrecise = true,
814 .pipelineStatisticsQuery = true,
815 .fragmentStoresAndAtomics = true,
816 .shaderTessellationAndGeometryPointSize = true,
817 .shaderImageGatherExtended = true,
818 .shaderStorageImageExtendedFormats = true,
819 .shaderStorageImageMultisample = false,
820 .shaderStorageImageReadWithoutFormat = false,
821 .shaderStorageImageWriteWithoutFormat = true,
822 .shaderUniformBufferArrayDynamicIndexing = true,
823 .shaderSampledImageArrayDynamicIndexing = true,
824 .shaderStorageBufferArrayDynamicIndexing = true,
825 .shaderStorageImageArrayDynamicIndexing = true,
826 .shaderClipDistance = true,
827 .shaderCullDistance = true,
828 .shaderFloat64 = pdevice->info.gen >= 8 &&
829 pdevice->info.has_64bit_types,
830 .shaderInt64 = pdevice->info.gen >= 8 &&
831 pdevice->info.has_64bit_types,
832 .shaderInt16 = pdevice->info.gen >= 8,
833 .shaderResourceMinLod = false,
834 .variableMultisampleRate = true,
835 .inheritedQueries = true,
836 };
837
838 /* We can't do image stores in vec4 shaders */
839 pFeatures->vertexPipelineStoresAndAtomics =
840 pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
841 pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
842 }
843
844 void anv_GetPhysicalDeviceFeatures2(
845 VkPhysicalDevice physicalDevice,
846 VkPhysicalDeviceFeatures2* pFeatures)
847 {
848 anv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
849
850 vk_foreach_struct(ext, pFeatures->pNext) {
851 switch (ext->sType) {
852 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES: {
853 VkPhysicalDeviceProtectedMemoryFeatures *features = (void *)ext;
854 features->protectedMemory = VK_FALSE;
855 break;
856 }
857
858 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES: {
859 VkPhysicalDeviceMultiviewFeatures *features =
860 (VkPhysicalDeviceMultiviewFeatures *)ext;
861 features->multiview = true;
862 features->multiviewGeometryShader = true;
863 features->multiviewTessellationShader = true;
864 break;
865 }
866
867 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTER_FEATURES: {
868 VkPhysicalDeviceVariablePointerFeatures *features = (void *)ext;
869 features->variablePointersStorageBuffer = true;
870 features->variablePointers = true;
871 break;
872 }
873
874 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES: {
875 VkPhysicalDeviceSamplerYcbcrConversionFeatures *features =
876 (VkPhysicalDeviceSamplerYcbcrConversionFeatures *) ext;
877 features->samplerYcbcrConversion = true;
878 break;
879 }
880
881 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETER_FEATURES: {
882 VkPhysicalDeviceShaderDrawParameterFeatures *features = (void *)ext;
883 features->shaderDrawParameters = true;
884 break;
885 }
886
887 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES_KHR: {
888 VkPhysicalDevice16BitStorageFeaturesKHR *features =
889 (VkPhysicalDevice16BitStorageFeaturesKHR *)ext;
890 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
891
892 features->storageBuffer16BitAccess = pdevice->info.gen >= 8;
893 features->uniformAndStorageBuffer16BitAccess = pdevice->info.gen >= 8;
894 features->storagePushConstant16 = pdevice->info.gen >= 8;
895 features->storageInputOutput16 = false;
896 break;
897 }
898
899 default:
900 anv_debug_ignored_stype(ext->sType);
901 break;
902 }
903 }
904 }
905
906 void anv_GetPhysicalDeviceProperties(
907 VkPhysicalDevice physicalDevice,
908 VkPhysicalDeviceProperties* pProperties)
909 {
910 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
911 const struct gen_device_info *devinfo = &pdevice->info;
912
913 /* See assertions made when programming the buffer surface state. */
914 const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ?
915 (1ul << 30) : (1ul << 27);
916
917 const uint32_t max_samplers = (devinfo->gen >= 8 || devinfo->is_haswell) ?
918 128 : 16;
919
920 VkSampleCountFlags sample_counts =
921 isl_device_get_sample_counts(&pdevice->isl_dev);
922
923 VkPhysicalDeviceLimits limits = {
924 .maxImageDimension1D = (1 << 14),
925 .maxImageDimension2D = (1 << 14),
926 .maxImageDimension3D = (1 << 11),
927 .maxImageDimensionCube = (1 << 14),
928 .maxImageArrayLayers = (1 << 11),
929 .maxTexelBufferElements = 128 * 1024 * 1024,
930 .maxUniformBufferRange = (1ul << 27),
931 .maxStorageBufferRange = max_raw_buffer_sz,
932 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
933 .maxMemoryAllocationCount = UINT32_MAX,
934 .maxSamplerAllocationCount = 64 * 1024,
935 .bufferImageGranularity = 64, /* A cache line */
936 .sparseAddressSpaceSize = 0,
937 .maxBoundDescriptorSets = MAX_SETS,
938 .maxPerStageDescriptorSamplers = max_samplers,
939 .maxPerStageDescriptorUniformBuffers = 64,
940 .maxPerStageDescriptorStorageBuffers = 64,
941 .maxPerStageDescriptorSampledImages = max_samplers,
942 .maxPerStageDescriptorStorageImages = 64,
943 .maxPerStageDescriptorInputAttachments = 64,
944 .maxPerStageResources = 250,
945 .maxDescriptorSetSamplers = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSamplers */
946 .maxDescriptorSetUniformBuffers = 6 * 64, /* number of stages * maxPerStageDescriptorUniformBuffers */
947 .maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
948 .maxDescriptorSetStorageBuffers = 6 * 64, /* number of stages * maxPerStageDescriptorStorageBuffers */
949 .maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
950 .maxDescriptorSetSampledImages = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSampledImages */
951 .maxDescriptorSetStorageImages = 6 * 64, /* number of stages * maxPerStageDescriptorStorageImages */
952 .maxDescriptorSetInputAttachments = 256,
953 .maxVertexInputAttributes = MAX_VBS,
954 .maxVertexInputBindings = MAX_VBS,
955 .maxVertexInputAttributeOffset = 2047,
956 .maxVertexInputBindingStride = 2048,
957 .maxVertexOutputComponents = 128,
958 .maxTessellationGenerationLevel = 64,
959 .maxTessellationPatchSize = 32,
960 .maxTessellationControlPerVertexInputComponents = 128,
961 .maxTessellationControlPerVertexOutputComponents = 128,
962 .maxTessellationControlPerPatchOutputComponents = 128,
963 .maxTessellationControlTotalOutputComponents = 2048,
964 .maxTessellationEvaluationInputComponents = 128,
965 .maxTessellationEvaluationOutputComponents = 128,
966 .maxGeometryShaderInvocations = 32,
967 .maxGeometryInputComponents = 64,
968 .maxGeometryOutputComponents = 128,
969 .maxGeometryOutputVertices = 256,
970 .maxGeometryTotalOutputComponents = 1024,
971 .maxFragmentInputComponents = 112, /* 128 components - (POS, PSIZ, CLIP_DIST0, CLIP_DIST1) */
972 .maxFragmentOutputAttachments = 8,
973 .maxFragmentDualSrcAttachments = 1,
974 .maxFragmentCombinedOutputResources = 8,
975 .maxComputeSharedMemorySize = 32768,
976 .maxComputeWorkGroupCount = { 65535, 65535, 65535 },
977 .maxComputeWorkGroupInvocations = 16 * devinfo->max_cs_threads,
978 .maxComputeWorkGroupSize = {
979 16 * devinfo->max_cs_threads,
980 16 * devinfo->max_cs_threads,
981 16 * devinfo->max_cs_threads,
982 },
983 .subPixelPrecisionBits = 4 /* FIXME */,
984 .subTexelPrecisionBits = 4 /* FIXME */,
985 .mipmapPrecisionBits = 4 /* FIXME */,
986 .maxDrawIndexedIndexValue = UINT32_MAX,
987 .maxDrawIndirectCount = UINT32_MAX,
988 .maxSamplerLodBias = 16,
989 .maxSamplerAnisotropy = 16,
990 .maxViewports = MAX_VIEWPORTS,
991 .maxViewportDimensions = { (1 << 14), (1 << 14) },
992 .viewportBoundsRange = { INT16_MIN, INT16_MAX },
993 .viewportSubPixelBits = 13, /* We take a float? */
994 .minMemoryMapAlignment = 4096, /* A page */
995 .minTexelBufferOffsetAlignment = 1,
996 /* We need 16 for UBO block reads to work and 32 for push UBOs */
997 .minUniformBufferOffsetAlignment = 32,
998 .minStorageBufferOffsetAlignment = 4,
999 .minTexelOffset = -8,
1000 .maxTexelOffset = 7,
1001 .minTexelGatherOffset = -32,
1002 .maxTexelGatherOffset = 31,
1003 .minInterpolationOffset = -0.5,
1004 .maxInterpolationOffset = 0.4375,
1005 .subPixelInterpolationOffsetBits = 4,
1006 .maxFramebufferWidth = (1 << 14),
1007 .maxFramebufferHeight = (1 << 14),
1008 .maxFramebufferLayers = (1 << 11),
1009 .framebufferColorSampleCounts = sample_counts,
1010 .framebufferDepthSampleCounts = sample_counts,
1011 .framebufferStencilSampleCounts = sample_counts,
1012 .framebufferNoAttachmentsSampleCounts = sample_counts,
1013 .maxColorAttachments = MAX_RTS,
1014 .sampledImageColorSampleCounts = sample_counts,
1015 .sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1016 .sampledImageDepthSampleCounts = sample_counts,
1017 .sampledImageStencilSampleCounts = sample_counts,
1018 .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1019 .maxSampleMaskWords = 1,
1020 .timestampComputeAndGraphics = false,
1021 .timestampPeriod = 1000000000.0 / devinfo->timestamp_frequency,
1022 .maxClipDistances = 8,
1023 .maxCullDistances = 8,
1024 .maxCombinedClipAndCullDistances = 8,
1025 .discreteQueuePriorities = 1,
1026 .pointSizeRange = { 0.125, 255.875 },
1027 .lineWidthRange = { 0.0, 7.9921875 },
1028 .pointSizeGranularity = (1.0 / 8.0),
1029 .lineWidthGranularity = (1.0 / 128.0),
1030 .strictLines = false, /* FINISHME */
1031 .standardSampleLocations = true,
1032 .optimalBufferCopyOffsetAlignment = 128,
1033 .optimalBufferCopyRowPitchAlignment = 128,
1034 .nonCoherentAtomSize = 64,
1035 };
1036
1037 *pProperties = (VkPhysicalDeviceProperties) {
1038 .apiVersion = anv_physical_device_api_version(pdevice),
1039 .driverVersion = vk_get_driver_version(),
1040 .vendorID = 0x8086,
1041 .deviceID = pdevice->chipset_id,
1042 .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
1043 .limits = limits,
1044 .sparseProperties = {0}, /* Broadwell doesn't do sparse. */
1045 };
1046
1047 snprintf(pProperties->deviceName, sizeof(pProperties->deviceName),
1048 "%s", pdevice->name);
1049 memcpy(pProperties->pipelineCacheUUID,
1050 pdevice->pipeline_cache_uuid, VK_UUID_SIZE);
1051 }
1052
1053 void anv_GetPhysicalDeviceProperties2(
1054 VkPhysicalDevice physicalDevice,
1055 VkPhysicalDeviceProperties2* pProperties)
1056 {
1057 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1058
1059 anv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
1060
1061 vk_foreach_struct(ext, pProperties->pNext) {
1062 switch (ext->sType) {
1063 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
1064 VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
1065 (VkPhysicalDevicePushDescriptorPropertiesKHR *) ext;
1066
1067 properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
1068 break;
1069 }
1070
1071 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES: {
1072 VkPhysicalDeviceIDProperties *id_props =
1073 (VkPhysicalDeviceIDProperties *)ext;
1074 memcpy(id_props->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
1075 memcpy(id_props->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
1076 /* The LUID is for Windows. */
1077 id_props->deviceLUIDValid = false;
1078 break;
1079 }
1080
1081 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES: {
1082 VkPhysicalDeviceMaintenance3Properties *props =
1083 (VkPhysicalDeviceMaintenance3Properties *)ext;
1084 /* This value doesn't matter for us today as our per-stage
1085 * descriptors are the real limit.
1086 */
1087 props->maxPerSetDescriptors = 1024;
1088 props->maxMemoryAllocationSize = MAX_MEMORY_ALLOCATION_SIZE;
1089 break;
1090 }
1091
1092 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES: {
1093 VkPhysicalDeviceMultiviewProperties *properties =
1094 (VkPhysicalDeviceMultiviewProperties *)ext;
1095 properties->maxMultiviewViewCount = 16;
1096 properties->maxMultiviewInstanceIndex = UINT32_MAX / 16;
1097 break;
1098 }
1099
1100 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES: {
1101 VkPhysicalDevicePointClippingProperties *properties =
1102 (VkPhysicalDevicePointClippingProperties *) ext;
1103 properties->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_ALL_CLIP_PLANES;
1104 anv_finishme("Implement pop-free point clipping");
1105 break;
1106 }
1107
1108 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES: {
1109 VkPhysicalDeviceSubgroupProperties *properties = (void *)ext;
1110
1111 properties->subgroupSize = BRW_SUBGROUP_SIZE;
1112
1113 VkShaderStageFlags scalar_stages = 0;
1114 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
1115 if (pdevice->compiler->scalar_stage[stage])
1116 scalar_stages |= mesa_to_vk_shader_stage(stage);
1117 }
1118 properties->supportedStages = scalar_stages;
1119
1120 properties->supportedOperations = VK_SUBGROUP_FEATURE_BASIC_BIT |
1121 VK_SUBGROUP_FEATURE_VOTE_BIT |
1122 VK_SUBGROUP_FEATURE_ARITHMETIC_BIT |
1123 VK_SUBGROUP_FEATURE_BALLOT_BIT |
1124 VK_SUBGROUP_FEATURE_SHUFFLE_BIT |
1125 VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT |
1126 VK_SUBGROUP_FEATURE_CLUSTERED_BIT |
1127 VK_SUBGROUP_FEATURE_QUAD_BIT;
1128 properties->quadOperationsInAllStages = VK_TRUE;
1129 break;
1130 }
1131
1132 default:
1133 anv_debug_ignored_stype(ext->sType);
1134 break;
1135 }
1136 }
1137 }
1138
1139 /* We support exactly one queue family. */
1140 static const VkQueueFamilyProperties
1141 anv_queue_family_properties = {
1142 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
1143 VK_QUEUE_COMPUTE_BIT |
1144 VK_QUEUE_TRANSFER_BIT,
1145 .queueCount = 1,
1146 .timestampValidBits = 36, /* XXX: Real value here */
1147 .minImageTransferGranularity = { 1, 1, 1 },
1148 };
1149
1150 void anv_GetPhysicalDeviceQueueFamilyProperties(
1151 VkPhysicalDevice physicalDevice,
1152 uint32_t* pCount,
1153 VkQueueFamilyProperties* pQueueFamilyProperties)
1154 {
1155 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pCount);
1156
1157 vk_outarray_append(&out, p) {
1158 *p = anv_queue_family_properties;
1159 }
1160 }
1161
1162 void anv_GetPhysicalDeviceQueueFamilyProperties2(
1163 VkPhysicalDevice physicalDevice,
1164 uint32_t* pQueueFamilyPropertyCount,
1165 VkQueueFamilyProperties2* pQueueFamilyProperties)
1166 {
1167
1168 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pQueueFamilyPropertyCount);
1169
1170 vk_outarray_append(&out, p) {
1171 p->queueFamilyProperties = anv_queue_family_properties;
1172
1173 vk_foreach_struct(s, p->pNext) {
1174 anv_debug_ignored_stype(s->sType);
1175 }
1176 }
1177 }
1178
1179 void anv_GetPhysicalDeviceMemoryProperties(
1180 VkPhysicalDevice physicalDevice,
1181 VkPhysicalDeviceMemoryProperties* pMemoryProperties)
1182 {
1183 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
1184
1185 pMemoryProperties->memoryTypeCount = physical_device->memory.type_count;
1186 for (uint32_t i = 0; i < physical_device->memory.type_count; i++) {
1187 pMemoryProperties->memoryTypes[i] = (VkMemoryType) {
1188 .propertyFlags = physical_device->memory.types[i].propertyFlags,
1189 .heapIndex = physical_device->memory.types[i].heapIndex,
1190 };
1191 }
1192
1193 pMemoryProperties->memoryHeapCount = physical_device->memory.heap_count;
1194 for (uint32_t i = 0; i < physical_device->memory.heap_count; i++) {
1195 pMemoryProperties->memoryHeaps[i] = (VkMemoryHeap) {
1196 .size = physical_device->memory.heaps[i].size,
1197 .flags = physical_device->memory.heaps[i].flags,
1198 };
1199 }
1200 }
1201
1202 void anv_GetPhysicalDeviceMemoryProperties2(
1203 VkPhysicalDevice physicalDevice,
1204 VkPhysicalDeviceMemoryProperties2* pMemoryProperties)
1205 {
1206 anv_GetPhysicalDeviceMemoryProperties(physicalDevice,
1207 &pMemoryProperties->memoryProperties);
1208
1209 vk_foreach_struct(ext, pMemoryProperties->pNext) {
1210 switch (ext->sType) {
1211 default:
1212 anv_debug_ignored_stype(ext->sType);
1213 break;
1214 }
1215 }
1216 }
1217
1218 void
1219 anv_GetDeviceGroupPeerMemoryFeatures(
1220 VkDevice device,
1221 uint32_t heapIndex,
1222 uint32_t localDeviceIndex,
1223 uint32_t remoteDeviceIndex,
1224 VkPeerMemoryFeatureFlags* pPeerMemoryFeatures)
1225 {
1226 assert(localDeviceIndex == 0 && remoteDeviceIndex == 0);
1227 *pPeerMemoryFeatures = VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT |
1228 VK_PEER_MEMORY_FEATURE_COPY_DST_BIT |
1229 VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT |
1230 VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT;
1231 }
1232
1233 PFN_vkVoidFunction anv_GetInstanceProcAddr(
1234 VkInstance _instance,
1235 const char* pName)
1236 {
1237 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1238
1239 /* The Vulkan 1.0 spec for vkGetInstanceProcAddr has a table of exactly
1240 * when we have to return valid function pointers, NULL, or it's left
1241 * undefined. See the table for exact details.
1242 */
1243 if (pName == NULL)
1244 return NULL;
1245
1246 #define LOOKUP_ANV_ENTRYPOINT(entrypoint) \
1247 if (strcmp(pName, "vk" #entrypoint) == 0) \
1248 return (PFN_vkVoidFunction)anv_##entrypoint
1249
1250 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceExtensionProperties);
1251 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceLayerProperties);
1252 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceVersion);
1253 LOOKUP_ANV_ENTRYPOINT(CreateInstance);
1254
1255 #undef LOOKUP_ANV_ENTRYPOINT
1256
1257 if (instance == NULL)
1258 return NULL;
1259
1260 int idx = anv_get_entrypoint_index(pName);
1261 if (idx < 0)
1262 return NULL;
1263
1264 return instance->dispatch.entrypoints[idx];
1265 }
1266
1267 /* With version 1+ of the loader interface the ICD should expose
1268 * vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
1269 */
1270 PUBLIC
1271 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
1272 VkInstance instance,
1273 const char* pName);
1274
1275 PUBLIC
1276 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
1277 VkInstance instance,
1278 const char* pName)
1279 {
1280 return anv_GetInstanceProcAddr(instance, pName);
1281 }
1282
1283 PFN_vkVoidFunction anv_GetDeviceProcAddr(
1284 VkDevice _device,
1285 const char* pName)
1286 {
1287 ANV_FROM_HANDLE(anv_device, device, _device);
1288
1289 if (!device || !pName)
1290 return NULL;
1291
1292 int idx = anv_get_entrypoint_index(pName);
1293 if (idx < 0)
1294 return NULL;
1295
1296 return device->dispatch.entrypoints[idx];
1297 }
1298
1299 VkResult
1300 anv_CreateDebugReportCallbackEXT(VkInstance _instance,
1301 const VkDebugReportCallbackCreateInfoEXT* pCreateInfo,
1302 const VkAllocationCallbacks* pAllocator,
1303 VkDebugReportCallbackEXT* pCallback)
1304 {
1305 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1306 return vk_create_debug_report_callback(&instance->debug_report_callbacks,
1307 pCreateInfo, pAllocator, &instance->alloc,
1308 pCallback);
1309 }
1310
1311 void
1312 anv_DestroyDebugReportCallbackEXT(VkInstance _instance,
1313 VkDebugReportCallbackEXT _callback,
1314 const VkAllocationCallbacks* pAllocator)
1315 {
1316 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1317 vk_destroy_debug_report_callback(&instance->debug_report_callbacks,
1318 _callback, pAllocator, &instance->alloc);
1319 }
1320
1321 void
1322 anv_DebugReportMessageEXT(VkInstance _instance,
1323 VkDebugReportFlagsEXT flags,
1324 VkDebugReportObjectTypeEXT objectType,
1325 uint64_t object,
1326 size_t location,
1327 int32_t messageCode,
1328 const char* pLayerPrefix,
1329 const char* pMessage)
1330 {
1331 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1332 vk_debug_report(&instance->debug_report_callbacks, flags, objectType,
1333 object, location, messageCode, pLayerPrefix, pMessage);
1334 }
1335
1336 static void
1337 anv_queue_init(struct anv_device *device, struct anv_queue *queue)
1338 {
1339 queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1340 queue->device = device;
1341 queue->flags = 0;
1342 }
1343
1344 static void
1345 anv_queue_finish(struct anv_queue *queue)
1346 {
1347 }
1348
1349 static struct anv_state
1350 anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
1351 {
1352 struct anv_state state;
1353
1354 state = anv_state_pool_alloc(pool, size, align);
1355 memcpy(state.map, p, size);
1356
1357 anv_state_flush(pool->block_pool.device, state);
1358
1359 return state;
1360 }
1361
1362 struct gen8_border_color {
1363 union {
1364 float float32[4];
1365 uint32_t uint32[4];
1366 };
1367 /* Pad out to 64 bytes */
1368 uint32_t _pad[12];
1369 };
1370
1371 static void
1372 anv_device_init_border_colors(struct anv_device *device)
1373 {
1374 static const struct gen8_border_color border_colors[] = {
1375 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
1376 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
1377 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
1378 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
1379 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
1380 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
1381 };
1382
1383 device->border_colors = anv_state_pool_emit_data(&device->dynamic_state_pool,
1384 sizeof(border_colors), 64,
1385 border_colors);
1386 }
1387
1388 static void
1389 anv_device_init_trivial_batch(struct anv_device *device)
1390 {
1391 anv_bo_init_new(&device->trivial_batch_bo, device, 4096);
1392
1393 if (device->instance->physicalDevice.has_exec_async)
1394 device->trivial_batch_bo.flags |= EXEC_OBJECT_ASYNC;
1395
1396 if (device->instance->physicalDevice.use_softpin)
1397 device->trivial_batch_bo.flags |= EXEC_OBJECT_PINNED;
1398
1399 anv_vma_alloc(device, &device->trivial_batch_bo);
1400
1401 void *map = anv_gem_mmap(device, device->trivial_batch_bo.gem_handle,
1402 0, 4096, 0);
1403
1404 struct anv_batch batch = {
1405 .start = map,
1406 .next = map,
1407 .end = map + 4096,
1408 };
1409
1410 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
1411 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
1412
1413 if (!device->info.has_llc)
1414 gen_clflush_range(map, batch.next - map);
1415
1416 anv_gem_munmap(map, device->trivial_batch_bo.size);
1417 }
1418
1419 VkResult anv_EnumerateDeviceExtensionProperties(
1420 VkPhysicalDevice physicalDevice,
1421 const char* pLayerName,
1422 uint32_t* pPropertyCount,
1423 VkExtensionProperties* pProperties)
1424 {
1425 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
1426 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
1427 (void)device;
1428
1429 for (int i = 0; i < ANV_DEVICE_EXTENSION_COUNT; i++) {
1430 if (device->supported_extensions.extensions[i]) {
1431 vk_outarray_append(&out, prop) {
1432 *prop = anv_device_extensions[i];
1433 }
1434 }
1435 }
1436
1437 return vk_outarray_status(&out);
1438 }
1439
1440 static void
1441 anv_device_init_dispatch(struct anv_device *device)
1442 {
1443 const struct anv_dispatch_table *genX_table;
1444 switch (device->info.gen) {
1445 case 11:
1446 genX_table = &gen11_dispatch_table;
1447 break;
1448 case 10:
1449 genX_table = &gen10_dispatch_table;
1450 break;
1451 case 9:
1452 genX_table = &gen9_dispatch_table;
1453 break;
1454 case 8:
1455 genX_table = &gen8_dispatch_table;
1456 break;
1457 case 7:
1458 if (device->info.is_haswell)
1459 genX_table = &gen75_dispatch_table;
1460 else
1461 genX_table = &gen7_dispatch_table;
1462 break;
1463 default:
1464 unreachable("unsupported gen\n");
1465 }
1466
1467 for (unsigned i = 0; i < ARRAY_SIZE(device->dispatch.entrypoints); i++) {
1468 /* Vulkan requires that entrypoints for extensions which have not been
1469 * enabled must not be advertised.
1470 */
1471 if (!anv_entrypoint_is_enabled(i, device->instance->apiVersion,
1472 &device->instance->enabled_extensions,
1473 &device->enabled_extensions)) {
1474 device->dispatch.entrypoints[i] = NULL;
1475 } else if (genX_table->entrypoints[i]) {
1476 device->dispatch.entrypoints[i] = genX_table->entrypoints[i];
1477 } else {
1478 device->dispatch.entrypoints[i] = anv_dispatch_table.entrypoints[i];
1479 }
1480 }
1481 }
1482
1483 static int
1484 vk_priority_to_gen(int priority)
1485 {
1486 switch (priority) {
1487 case VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT:
1488 return GEN_CONTEXT_LOW_PRIORITY;
1489 case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT:
1490 return GEN_CONTEXT_MEDIUM_PRIORITY;
1491 case VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT:
1492 return GEN_CONTEXT_HIGH_PRIORITY;
1493 case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT:
1494 return GEN_CONTEXT_REALTIME_PRIORITY;
1495 default:
1496 unreachable("Invalid priority");
1497 }
1498 }
1499
1500 static void
1501 anv_device_init_hiz_clear_batch(struct anv_device *device)
1502 {
1503 anv_bo_init_new(&device->hiz_clear_bo, device, 4096);
1504 uint32_t *map = anv_gem_mmap(device, device->hiz_clear_bo.gem_handle,
1505 0, 4096, 0);
1506
1507 union isl_color_value hiz_clear = { .u32 = { 0, } };
1508 hiz_clear.f32[0] = ANV_HZ_FC_VAL;
1509
1510 memcpy(map, hiz_clear.u32, sizeof(hiz_clear.u32));
1511 anv_gem_munmap(map, device->hiz_clear_bo.size);
1512 }
1513
1514 VkResult anv_CreateDevice(
1515 VkPhysicalDevice physicalDevice,
1516 const VkDeviceCreateInfo* pCreateInfo,
1517 const VkAllocationCallbacks* pAllocator,
1518 VkDevice* pDevice)
1519 {
1520 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
1521 VkResult result;
1522 struct anv_device *device;
1523
1524 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
1525
1526 struct anv_device_extension_table enabled_extensions = { };
1527 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
1528 int idx;
1529 for (idx = 0; idx < ANV_DEVICE_EXTENSION_COUNT; idx++) {
1530 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
1531 anv_device_extensions[idx].extensionName) == 0)
1532 break;
1533 }
1534
1535 if (idx >= ANV_DEVICE_EXTENSION_COUNT)
1536 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
1537
1538 if (!physical_device->supported_extensions.extensions[idx])
1539 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
1540
1541 enabled_extensions.extensions[idx] = true;
1542 }
1543
1544 /* Check enabled features */
1545 if (pCreateInfo->pEnabledFeatures) {
1546 VkPhysicalDeviceFeatures supported_features;
1547 anv_GetPhysicalDeviceFeatures(physicalDevice, &supported_features);
1548 VkBool32 *supported_feature = (VkBool32 *)&supported_features;
1549 VkBool32 *enabled_feature = (VkBool32 *)pCreateInfo->pEnabledFeatures;
1550 unsigned num_features = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
1551 for (uint32_t i = 0; i < num_features; i++) {
1552 if (enabled_feature[i] && !supported_feature[i])
1553 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
1554 }
1555 }
1556
1557 /* Check requested queues and fail if we are requested to create any
1558 * queues with flags we don't support.
1559 */
1560 assert(pCreateInfo->queueCreateInfoCount > 0);
1561 for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
1562 if (pCreateInfo->pQueueCreateInfos[i].flags != 0)
1563 return vk_error(VK_ERROR_INITIALIZATION_FAILED);
1564 }
1565
1566 /* Check if client specified queue priority. */
1567 const VkDeviceQueueGlobalPriorityCreateInfoEXT *queue_priority =
1568 vk_find_struct_const(pCreateInfo->pQueueCreateInfos[0].pNext,
1569 DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT);
1570
1571 VkQueueGlobalPriorityEXT priority =
1572 queue_priority ? queue_priority->globalPriority :
1573 VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT;
1574
1575 device = vk_alloc2(&physical_device->instance->alloc, pAllocator,
1576 sizeof(*device), 8,
1577 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
1578 if (!device)
1579 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1580
1581 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1582 device->instance = physical_device->instance;
1583 device->chipset_id = physical_device->chipset_id;
1584 device->no_hw = physical_device->no_hw;
1585 device->lost = false;
1586
1587 if (pAllocator)
1588 device->alloc = *pAllocator;
1589 else
1590 device->alloc = physical_device->instance->alloc;
1591
1592 /* XXX(chadv): Can we dup() physicalDevice->fd here? */
1593 device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
1594 if (device->fd == -1) {
1595 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1596 goto fail_device;
1597 }
1598
1599 device->context_id = anv_gem_create_context(device);
1600 if (device->context_id == -1) {
1601 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1602 goto fail_fd;
1603 }
1604
1605 if (physical_device->use_softpin) {
1606 if (pthread_mutex_init(&device->vma_mutex, NULL) != 0) {
1607 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1608 goto fail_fd;
1609 }
1610
1611 /* keep the page with address zero out of the allocator */
1612 util_vma_heap_init(&device->vma_lo, LOW_HEAP_MIN_ADDRESS, LOW_HEAP_SIZE);
1613 device->vma_lo_available =
1614 physical_device->memory.heaps[physical_device->memory.heap_count - 1].size;
1615
1616 /* Leave the last 4GiB out of the high vma range, so that no state base
1617 * address + size can overflow 48 bits. For more information see the
1618 * comment about Wa32bitGeneralStateOffset in anv_allocator.c
1619 */
1620 util_vma_heap_init(&device->vma_hi, HIGH_HEAP_MIN_ADDRESS,
1621 HIGH_HEAP_SIZE);
1622 device->vma_hi_available = physical_device->memory.heap_count == 1 ? 0 :
1623 physical_device->memory.heaps[0].size;
1624 }
1625
1626 /* As per spec, the driver implementation may deny requests to acquire
1627 * a priority above the default priority (MEDIUM) if the caller does not
1628 * have sufficient privileges. In this scenario VK_ERROR_NOT_PERMITTED_EXT
1629 * is returned.
1630 */
1631 if (physical_device->has_context_priority) {
1632 int err = anv_gem_set_context_param(device->fd, device->context_id,
1633 I915_CONTEXT_PARAM_PRIORITY,
1634 vk_priority_to_gen(priority));
1635 if (err != 0 && priority > VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT) {
1636 result = vk_error(VK_ERROR_NOT_PERMITTED_EXT);
1637 goto fail_fd;
1638 }
1639 }
1640
1641 device->info = physical_device->info;
1642 device->isl_dev = physical_device->isl_dev;
1643
1644 /* On Broadwell and later, we can use batch chaining to more efficiently
1645 * implement growing command buffers. Prior to Haswell, the kernel
1646 * command parser gets in the way and we have to fall back to growing
1647 * the batch.
1648 */
1649 device->can_chain_batches = device->info.gen >= 8;
1650
1651 device->robust_buffer_access = pCreateInfo->pEnabledFeatures &&
1652 pCreateInfo->pEnabledFeatures->robustBufferAccess;
1653 device->enabled_extensions = enabled_extensions;
1654
1655 anv_device_init_dispatch(device);
1656
1657 if (pthread_mutex_init(&device->mutex, NULL) != 0) {
1658 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1659 goto fail_context_id;
1660 }
1661
1662 pthread_condattr_t condattr;
1663 if (pthread_condattr_init(&condattr) != 0) {
1664 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1665 goto fail_mutex;
1666 }
1667 if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC) != 0) {
1668 pthread_condattr_destroy(&condattr);
1669 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1670 goto fail_mutex;
1671 }
1672 if (pthread_cond_init(&device->queue_submit, NULL) != 0) {
1673 pthread_condattr_destroy(&condattr);
1674 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1675 goto fail_mutex;
1676 }
1677 pthread_condattr_destroy(&condattr);
1678
1679 uint64_t bo_flags =
1680 (physical_device->supports_48bit_addresses ? EXEC_OBJECT_SUPPORTS_48B_ADDRESS : 0) |
1681 (physical_device->has_exec_async ? EXEC_OBJECT_ASYNC : 0) |
1682 (physical_device->has_exec_capture ? EXEC_OBJECT_CAPTURE : 0) |
1683 (physical_device->use_softpin ? EXEC_OBJECT_PINNED : 0);
1684
1685 anv_bo_pool_init(&device->batch_bo_pool, device, bo_flags);
1686
1687 result = anv_bo_cache_init(&device->bo_cache);
1688 if (result != VK_SUCCESS)
1689 goto fail_batch_bo_pool;
1690
1691 if (!physical_device->use_softpin)
1692 bo_flags &= ~EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
1693
1694 result = anv_state_pool_init(&device->dynamic_state_pool, device,
1695 DYNAMIC_STATE_POOL_MIN_ADDRESS,
1696 16384,
1697 bo_flags);
1698 if (result != VK_SUCCESS)
1699 goto fail_bo_cache;
1700
1701 result = anv_state_pool_init(&device->instruction_state_pool, device,
1702 INSTRUCTION_STATE_POOL_MIN_ADDRESS,
1703 16384,
1704 bo_flags);
1705 if (result != VK_SUCCESS)
1706 goto fail_dynamic_state_pool;
1707
1708 result = anv_state_pool_init(&device->surface_state_pool, device,
1709 SURFACE_STATE_POOL_MIN_ADDRESS,
1710 4096,
1711 bo_flags);
1712 if (result != VK_SUCCESS)
1713 goto fail_instruction_state_pool;
1714
1715 if (physical_device->use_softpin) {
1716 result = anv_state_pool_init(&device->binding_table_pool, device,
1717 BINDING_TABLE_POOL_MIN_ADDRESS,
1718 4096,
1719 bo_flags);
1720 if (result != VK_SUCCESS)
1721 goto fail_surface_state_pool;
1722 }
1723
1724 result = anv_bo_init_new(&device->workaround_bo, device, 1024);
1725 if (result != VK_SUCCESS)
1726 goto fail_binding_table_pool;
1727
1728 if (physical_device->use_softpin)
1729 device->workaround_bo.flags |= EXEC_OBJECT_PINNED;
1730
1731 if (!anv_vma_alloc(device, &device->workaround_bo))
1732 goto fail_workaround_bo;
1733
1734 anv_device_init_trivial_batch(device);
1735
1736 if (device->info.gen >= 10)
1737 anv_device_init_hiz_clear_batch(device);
1738
1739 anv_scratch_pool_init(device, &device->scratch_pool);
1740
1741 anv_queue_init(device, &device->queue);
1742
1743 switch (device->info.gen) {
1744 case 7:
1745 if (!device->info.is_haswell)
1746 result = gen7_init_device_state(device);
1747 else
1748 result = gen75_init_device_state(device);
1749 break;
1750 case 8:
1751 result = gen8_init_device_state(device);
1752 break;
1753 case 9:
1754 result = gen9_init_device_state(device);
1755 break;
1756 case 10:
1757 result = gen10_init_device_state(device);
1758 break;
1759 case 11:
1760 result = gen11_init_device_state(device);
1761 break;
1762 default:
1763 /* Shouldn't get here as we don't create physical devices for any other
1764 * gens. */
1765 unreachable("unhandled gen");
1766 }
1767 if (result != VK_SUCCESS)
1768 goto fail_workaround_bo;
1769
1770 anv_pipeline_cache_init(&device->default_pipeline_cache, device, true);
1771
1772 anv_device_init_blorp(device);
1773
1774 anv_device_init_border_colors(device);
1775
1776 *pDevice = anv_device_to_handle(device);
1777
1778 return VK_SUCCESS;
1779
1780 fail_workaround_bo:
1781 anv_queue_finish(&device->queue);
1782 anv_scratch_pool_finish(device, &device->scratch_pool);
1783 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
1784 anv_gem_close(device, device->workaround_bo.gem_handle);
1785 fail_binding_table_pool:
1786 if (physical_device->use_softpin)
1787 anv_state_pool_finish(&device->binding_table_pool);
1788 fail_surface_state_pool:
1789 anv_state_pool_finish(&device->surface_state_pool);
1790 fail_instruction_state_pool:
1791 anv_state_pool_finish(&device->instruction_state_pool);
1792 fail_dynamic_state_pool:
1793 anv_state_pool_finish(&device->dynamic_state_pool);
1794 fail_bo_cache:
1795 anv_bo_cache_finish(&device->bo_cache);
1796 fail_batch_bo_pool:
1797 anv_bo_pool_finish(&device->batch_bo_pool);
1798 pthread_cond_destroy(&device->queue_submit);
1799 fail_mutex:
1800 pthread_mutex_destroy(&device->mutex);
1801 fail_context_id:
1802 anv_gem_destroy_context(device, device->context_id);
1803 fail_fd:
1804 close(device->fd);
1805 fail_device:
1806 vk_free(&device->alloc, device);
1807
1808 return result;
1809 }
1810
1811 void anv_DestroyDevice(
1812 VkDevice _device,
1813 const VkAllocationCallbacks* pAllocator)
1814 {
1815 ANV_FROM_HANDLE(anv_device, device, _device);
1816 struct anv_physical_device *physical_device = &device->instance->physicalDevice;
1817
1818 if (!device)
1819 return;
1820
1821 anv_device_finish_blorp(device);
1822
1823 anv_pipeline_cache_finish(&device->default_pipeline_cache);
1824
1825 anv_queue_finish(&device->queue);
1826
1827 #ifdef HAVE_VALGRIND
1828 /* We only need to free these to prevent valgrind errors. The backing
1829 * BO will go away in a couple of lines so we don't actually leak.
1830 */
1831 anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
1832 #endif
1833
1834 anv_scratch_pool_finish(device, &device->scratch_pool);
1835
1836 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
1837 anv_vma_free(device, &device->workaround_bo);
1838 anv_gem_close(device, device->workaround_bo.gem_handle);
1839
1840 anv_vma_free(device, &device->trivial_batch_bo);
1841 anv_gem_close(device, device->trivial_batch_bo.gem_handle);
1842 if (device->info.gen >= 10)
1843 anv_gem_close(device, device->hiz_clear_bo.gem_handle);
1844
1845 if (physical_device->use_softpin)
1846 anv_state_pool_finish(&device->binding_table_pool);
1847 anv_state_pool_finish(&device->surface_state_pool);
1848 anv_state_pool_finish(&device->instruction_state_pool);
1849 anv_state_pool_finish(&device->dynamic_state_pool);
1850
1851 anv_bo_cache_finish(&device->bo_cache);
1852
1853 anv_bo_pool_finish(&device->batch_bo_pool);
1854
1855 pthread_cond_destroy(&device->queue_submit);
1856 pthread_mutex_destroy(&device->mutex);
1857
1858 anv_gem_destroy_context(device, device->context_id);
1859
1860 close(device->fd);
1861
1862 vk_free(&device->alloc, device);
1863 }
1864
1865 VkResult anv_EnumerateInstanceLayerProperties(
1866 uint32_t* pPropertyCount,
1867 VkLayerProperties* pProperties)
1868 {
1869 if (pProperties == NULL) {
1870 *pPropertyCount = 0;
1871 return VK_SUCCESS;
1872 }
1873
1874 /* None supported at this time */
1875 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
1876 }
1877
1878 VkResult anv_EnumerateDeviceLayerProperties(
1879 VkPhysicalDevice physicalDevice,
1880 uint32_t* pPropertyCount,
1881 VkLayerProperties* pProperties)
1882 {
1883 if (pProperties == NULL) {
1884 *pPropertyCount = 0;
1885 return VK_SUCCESS;
1886 }
1887
1888 /* None supported at this time */
1889 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
1890 }
1891
1892 void anv_GetDeviceQueue(
1893 VkDevice _device,
1894 uint32_t queueNodeIndex,
1895 uint32_t queueIndex,
1896 VkQueue* pQueue)
1897 {
1898 ANV_FROM_HANDLE(anv_device, device, _device);
1899
1900 assert(queueIndex == 0);
1901
1902 *pQueue = anv_queue_to_handle(&device->queue);
1903 }
1904
1905 void anv_GetDeviceQueue2(
1906 VkDevice _device,
1907 const VkDeviceQueueInfo2* pQueueInfo,
1908 VkQueue* pQueue)
1909 {
1910 ANV_FROM_HANDLE(anv_device, device, _device);
1911
1912 assert(pQueueInfo->queueIndex == 0);
1913
1914 if (pQueueInfo->flags == device->queue.flags)
1915 *pQueue = anv_queue_to_handle(&device->queue);
1916 else
1917 *pQueue = NULL;
1918 }
1919
1920 VkResult
1921 anv_device_query_status(struct anv_device *device)
1922 {
1923 /* This isn't likely as most of the callers of this function already check
1924 * for it. However, it doesn't hurt to check and it potentially lets us
1925 * avoid an ioctl.
1926 */
1927 if (unlikely(device->lost))
1928 return VK_ERROR_DEVICE_LOST;
1929
1930 uint32_t active, pending;
1931 int ret = anv_gem_gpu_get_reset_stats(device, &active, &pending);
1932 if (ret == -1) {
1933 /* We don't know the real error. */
1934 device->lost = true;
1935 return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
1936 "get_reset_stats failed: %m");
1937 }
1938
1939 if (active) {
1940 device->lost = true;
1941 return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
1942 "GPU hung on one of our command buffers");
1943 } else if (pending) {
1944 device->lost = true;
1945 return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
1946 "GPU hung with commands in-flight");
1947 }
1948
1949 return VK_SUCCESS;
1950 }
1951
1952 VkResult
1953 anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo)
1954 {
1955 /* Note: This only returns whether or not the BO is in use by an i915 GPU.
1956 * Other usages of the BO (such as on different hardware) will not be
1957 * flagged as "busy" by this ioctl. Use with care.
1958 */
1959 int ret = anv_gem_busy(device, bo->gem_handle);
1960 if (ret == 1) {
1961 return VK_NOT_READY;
1962 } else if (ret == -1) {
1963 /* We don't know the real error. */
1964 device->lost = true;
1965 return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
1966 "gem wait failed: %m");
1967 }
1968
1969 /* Query for device status after the busy call. If the BO we're checking
1970 * got caught in a GPU hang we don't want to return VK_SUCCESS to the
1971 * client because it clearly doesn't have valid data. Yes, this most
1972 * likely means an ioctl, but we just did an ioctl to query the busy status
1973 * so it's no great loss.
1974 */
1975 return anv_device_query_status(device);
1976 }
1977
1978 VkResult
1979 anv_device_wait(struct anv_device *device, struct anv_bo *bo,
1980 int64_t timeout)
1981 {
1982 int ret = anv_gem_wait(device, bo->gem_handle, &timeout);
1983 if (ret == -1 && errno == ETIME) {
1984 return VK_TIMEOUT;
1985 } else if (ret == -1) {
1986 /* We don't know the real error. */
1987 device->lost = true;
1988 return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
1989 "gem wait failed: %m");
1990 }
1991
1992 /* Query for device status after the wait. If the BO we're waiting on got
1993 * caught in a GPU hang we don't want to return VK_SUCCESS to the client
1994 * because it clearly doesn't have valid data. Yes, this most likely means
1995 * an ioctl, but we just did an ioctl to wait so it's no great loss.
1996 */
1997 return anv_device_query_status(device);
1998 }
1999
2000 VkResult anv_DeviceWaitIdle(
2001 VkDevice _device)
2002 {
2003 ANV_FROM_HANDLE(anv_device, device, _device);
2004 if (unlikely(device->lost))
2005 return VK_ERROR_DEVICE_LOST;
2006
2007 struct anv_batch batch;
2008
2009 uint32_t cmds[8];
2010 batch.start = batch.next = cmds;
2011 batch.end = (void *) cmds + sizeof(cmds);
2012
2013 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
2014 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
2015
2016 return anv_device_submit_simple_batch(device, &batch);
2017 }
2018
2019 bool
2020 anv_vma_alloc(struct anv_device *device, struct anv_bo *bo)
2021 {
2022 if (!(bo->flags & EXEC_OBJECT_PINNED))
2023 return true;
2024
2025 pthread_mutex_lock(&device->vma_mutex);
2026
2027 bo->offset = 0;
2028
2029 if (bo->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS &&
2030 device->vma_hi_available >= bo->size) {
2031 uint64_t addr = util_vma_heap_alloc(&device->vma_hi, bo->size, 4096);
2032 if (addr) {
2033 bo->offset = gen_canonical_address(addr);
2034 assert(addr == gen_48b_address(bo->offset));
2035 device->vma_hi_available -= bo->size;
2036 }
2037 }
2038
2039 if (bo->offset == 0 && device->vma_lo_available >= bo->size) {
2040 uint64_t addr = util_vma_heap_alloc(&device->vma_lo, bo->size, 4096);
2041 if (addr) {
2042 bo->offset = gen_canonical_address(addr);
2043 assert(addr == gen_48b_address(bo->offset));
2044 device->vma_lo_available -= bo->size;
2045 }
2046 }
2047
2048 pthread_mutex_unlock(&device->vma_mutex);
2049
2050 return bo->offset != 0;
2051 }
2052
2053 void
2054 anv_vma_free(struct anv_device *device, struct anv_bo *bo)
2055 {
2056 if (!(bo->flags & EXEC_OBJECT_PINNED))
2057 return;
2058
2059 const uint64_t addr_48b = gen_48b_address(bo->offset);
2060
2061 pthread_mutex_lock(&device->vma_mutex);
2062
2063 if (addr_48b >= LOW_HEAP_MIN_ADDRESS &&
2064 addr_48b <= LOW_HEAP_MAX_ADDRESS) {
2065 util_vma_heap_free(&device->vma_lo, addr_48b, bo->size);
2066 device->vma_lo_available += bo->size;
2067 } else {
2068 assert(addr_48b >= HIGH_HEAP_MIN_ADDRESS &&
2069 addr_48b <= HIGH_HEAP_MAX_ADDRESS);
2070 util_vma_heap_free(&device->vma_hi, addr_48b, bo->size);
2071 device->vma_hi_available += bo->size;
2072 }
2073
2074 pthread_mutex_unlock(&device->vma_mutex);
2075
2076 bo->offset = 0;
2077 }
2078
2079 VkResult
2080 anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size)
2081 {
2082 uint32_t gem_handle = anv_gem_create(device, size);
2083 if (!gem_handle)
2084 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
2085
2086 anv_bo_init(bo, gem_handle, size);
2087
2088 return VK_SUCCESS;
2089 }
2090
2091 VkResult anv_AllocateMemory(
2092 VkDevice _device,
2093 const VkMemoryAllocateInfo* pAllocateInfo,
2094 const VkAllocationCallbacks* pAllocator,
2095 VkDeviceMemory* pMem)
2096 {
2097 ANV_FROM_HANDLE(anv_device, device, _device);
2098 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2099 struct anv_device_memory *mem;
2100 VkResult result = VK_SUCCESS;
2101
2102 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
2103
2104 /* The Vulkan 1.0.33 spec says "allocationSize must be greater than 0". */
2105 assert(pAllocateInfo->allocationSize > 0);
2106
2107 if (pAllocateInfo->allocationSize > MAX_MEMORY_ALLOCATION_SIZE)
2108 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2109
2110 /* FINISHME: Fail if allocation request exceeds heap size. */
2111
2112 mem = vk_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
2113 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2114 if (mem == NULL)
2115 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2116
2117 assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
2118 mem->type = &pdevice->memory.types[pAllocateInfo->memoryTypeIndex];
2119 mem->map = NULL;
2120 mem->map_size = 0;
2121
2122 uint64_t bo_flags = 0;
2123
2124 assert(mem->type->heapIndex < pdevice->memory.heap_count);
2125 if (pdevice->memory.heaps[mem->type->heapIndex].supports_48bit_addresses)
2126 bo_flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
2127
2128 const struct wsi_memory_allocate_info *wsi_info =
2129 vk_find_struct_const(pAllocateInfo->pNext, WSI_MEMORY_ALLOCATE_INFO_MESA);
2130 if (wsi_info && wsi_info->implicit_sync) {
2131 /* We need to set the WRITE flag on window system buffers so that GEM
2132 * will know we're writing to them and synchronize uses on other rings
2133 * (eg if the display server uses the blitter ring).
2134 */
2135 bo_flags |= EXEC_OBJECT_WRITE;
2136 } else if (pdevice->has_exec_async) {
2137 bo_flags |= EXEC_OBJECT_ASYNC;
2138 }
2139
2140 if (pdevice->use_softpin)
2141 bo_flags |= EXEC_OBJECT_PINNED;
2142
2143 const VkImportMemoryFdInfoKHR *fd_info =
2144 vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_FD_INFO_KHR);
2145
2146 /* The Vulkan spec permits handleType to be 0, in which case the struct is
2147 * ignored.
2148 */
2149 if (fd_info && fd_info->handleType) {
2150 /* At the moment, we support only the below handle types. */
2151 assert(fd_info->handleType ==
2152 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
2153 fd_info->handleType ==
2154 VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
2155
2156 result = anv_bo_cache_import(device, &device->bo_cache,
2157 fd_info->fd, bo_flags, &mem->bo);
2158 if (result != VK_SUCCESS)
2159 goto fail;
2160
2161 VkDeviceSize aligned_alloc_size =
2162 align_u64(pAllocateInfo->allocationSize, 4096);
2163
2164 /* For security purposes, we reject importing the bo if it's smaller
2165 * than the requested allocation size. This prevents a malicious client
2166 * from passing a buffer to a trusted client, lying about the size, and
2167 * telling the trusted client to try and texture from an image that goes
2168 * out-of-bounds. This sort of thing could lead to GPU hangs or worse
2169 * in the trusted client. The trusted client can protect itself against
2170 * this sort of attack but only if it can trust the buffer size.
2171 */
2172 if (mem->bo->size < aligned_alloc_size) {
2173 result = vk_errorf(device->instance, device,
2174 VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR,
2175 "aligned allocationSize too large for "
2176 "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT_KHR: "
2177 "%"PRIu64"B > %"PRIu64"B",
2178 aligned_alloc_size, mem->bo->size);
2179 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
2180 goto fail;
2181 }
2182
2183 /* From the Vulkan spec:
2184 *
2185 * "Importing memory from a file descriptor transfers ownership of
2186 * the file descriptor from the application to the Vulkan
2187 * implementation. The application must not perform any operations on
2188 * the file descriptor after a successful import."
2189 *
2190 * If the import fails, we leave the file descriptor open.
2191 */
2192 close(fd_info->fd);
2193 } else {
2194 result = anv_bo_cache_alloc(device, &device->bo_cache,
2195 pAllocateInfo->allocationSize, bo_flags,
2196 &mem->bo);
2197 if (result != VK_SUCCESS)
2198 goto fail;
2199
2200 const VkMemoryDedicatedAllocateInfoKHR *dedicated_info =
2201 vk_find_struct_const(pAllocateInfo->pNext, MEMORY_DEDICATED_ALLOCATE_INFO_KHR);
2202 if (dedicated_info && dedicated_info->image != VK_NULL_HANDLE) {
2203 ANV_FROM_HANDLE(anv_image, image, dedicated_info->image);
2204
2205 /* Some legacy (non-modifiers) consumers need the tiling to be set on
2206 * the BO. In this case, we have a dedicated allocation.
2207 */
2208 if (image->needs_set_tiling) {
2209 const uint32_t i915_tiling =
2210 isl_tiling_to_i915_tiling(image->planes[0].surface.isl.tiling);
2211 int ret = anv_gem_set_tiling(device, mem->bo->gem_handle,
2212 image->planes[0].surface.isl.row_pitch,
2213 i915_tiling);
2214 if (ret) {
2215 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
2216 return vk_errorf(device->instance, NULL,
2217 VK_ERROR_OUT_OF_DEVICE_MEMORY,
2218 "failed to set BO tiling: %m");
2219 }
2220 }
2221 }
2222 }
2223
2224 *pMem = anv_device_memory_to_handle(mem);
2225
2226 return VK_SUCCESS;
2227
2228 fail:
2229 vk_free2(&device->alloc, pAllocator, mem);
2230
2231 return result;
2232 }
2233
2234 VkResult anv_GetMemoryFdKHR(
2235 VkDevice device_h,
2236 const VkMemoryGetFdInfoKHR* pGetFdInfo,
2237 int* pFd)
2238 {
2239 ANV_FROM_HANDLE(anv_device, dev, device_h);
2240 ANV_FROM_HANDLE(anv_device_memory, mem, pGetFdInfo->memory);
2241
2242 assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
2243
2244 assert(pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
2245 pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
2246
2247 return anv_bo_cache_export(dev, &dev->bo_cache, mem->bo, pFd);
2248 }
2249
2250 VkResult anv_GetMemoryFdPropertiesKHR(
2251 VkDevice _device,
2252 VkExternalMemoryHandleTypeFlagBitsKHR handleType,
2253 int fd,
2254 VkMemoryFdPropertiesKHR* pMemoryFdProperties)
2255 {
2256 ANV_FROM_HANDLE(anv_device, device, _device);
2257 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2258
2259 switch (handleType) {
2260 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT:
2261 /* dma-buf can be imported as any memory type */
2262 pMemoryFdProperties->memoryTypeBits =
2263 (1 << pdevice->memory.type_count) - 1;
2264 return VK_SUCCESS;
2265
2266 default:
2267 /* The valid usage section for this function says:
2268 *
2269 * "handleType must not be one of the handle types defined as
2270 * opaque."
2271 *
2272 * So opaque handle types fall into the default "unsupported" case.
2273 */
2274 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
2275 }
2276 }
2277
2278 void anv_FreeMemory(
2279 VkDevice _device,
2280 VkDeviceMemory _mem,
2281 const VkAllocationCallbacks* pAllocator)
2282 {
2283 ANV_FROM_HANDLE(anv_device, device, _device);
2284 ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
2285
2286 if (mem == NULL)
2287 return;
2288
2289 if (mem->map)
2290 anv_UnmapMemory(_device, _mem);
2291
2292 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
2293
2294 vk_free2(&device->alloc, pAllocator, mem);
2295 }
2296
2297 VkResult anv_MapMemory(
2298 VkDevice _device,
2299 VkDeviceMemory _memory,
2300 VkDeviceSize offset,
2301 VkDeviceSize size,
2302 VkMemoryMapFlags flags,
2303 void** ppData)
2304 {
2305 ANV_FROM_HANDLE(anv_device, device, _device);
2306 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
2307
2308 if (mem == NULL) {
2309 *ppData = NULL;
2310 return VK_SUCCESS;
2311 }
2312
2313 if (size == VK_WHOLE_SIZE)
2314 size = mem->bo->size - offset;
2315
2316 /* From the Vulkan spec version 1.0.32 docs for MapMemory:
2317 *
2318 * * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0
2319 * assert(size != 0);
2320 * * If size is not equal to VK_WHOLE_SIZE, size must be less than or
2321 * equal to the size of the memory minus offset
2322 */
2323 assert(size > 0);
2324 assert(offset + size <= mem->bo->size);
2325
2326 /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
2327 * takes a VkDeviceMemory pointer, it seems like only one map of the memory
2328 * at a time is valid. We could just mmap up front and return an offset
2329 * pointer here, but that may exhaust virtual memory on 32 bit
2330 * userspace. */
2331
2332 uint32_t gem_flags = 0;
2333
2334 if (!device->info.has_llc &&
2335 (mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT))
2336 gem_flags |= I915_MMAP_WC;
2337
2338 /* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
2339 uint64_t map_offset = offset & ~4095ull;
2340 assert(offset >= map_offset);
2341 uint64_t map_size = (offset + size) - map_offset;
2342
2343 /* Let's map whole pages */
2344 map_size = align_u64(map_size, 4096);
2345
2346 void *map = anv_gem_mmap(device, mem->bo->gem_handle,
2347 map_offset, map_size, gem_flags);
2348 if (map == MAP_FAILED)
2349 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
2350
2351 mem->map = map;
2352 mem->map_size = map_size;
2353
2354 *ppData = mem->map + (offset - map_offset);
2355
2356 return VK_SUCCESS;
2357 }
2358
2359 void anv_UnmapMemory(
2360 VkDevice _device,
2361 VkDeviceMemory _memory)
2362 {
2363 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
2364
2365 if (mem == NULL)
2366 return;
2367
2368 anv_gem_munmap(mem->map, mem->map_size);
2369
2370 mem->map = NULL;
2371 mem->map_size = 0;
2372 }
2373
2374 static void
2375 clflush_mapped_ranges(struct anv_device *device,
2376 uint32_t count,
2377 const VkMappedMemoryRange *ranges)
2378 {
2379 for (uint32_t i = 0; i < count; i++) {
2380 ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
2381 if (ranges[i].offset >= mem->map_size)
2382 continue;
2383
2384 gen_clflush_range(mem->map + ranges[i].offset,
2385 MIN2(ranges[i].size, mem->map_size - ranges[i].offset));
2386 }
2387 }
2388
2389 VkResult anv_FlushMappedMemoryRanges(
2390 VkDevice _device,
2391 uint32_t memoryRangeCount,
2392 const VkMappedMemoryRange* pMemoryRanges)
2393 {
2394 ANV_FROM_HANDLE(anv_device, device, _device);
2395
2396 if (device->info.has_llc)
2397 return VK_SUCCESS;
2398
2399 /* Make sure the writes we're flushing have landed. */
2400 __builtin_ia32_mfence();
2401
2402 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
2403
2404 return VK_SUCCESS;
2405 }
2406
2407 VkResult anv_InvalidateMappedMemoryRanges(
2408 VkDevice _device,
2409 uint32_t memoryRangeCount,
2410 const VkMappedMemoryRange* pMemoryRanges)
2411 {
2412 ANV_FROM_HANDLE(anv_device, device, _device);
2413
2414 if (device->info.has_llc)
2415 return VK_SUCCESS;
2416
2417 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
2418
2419 /* Make sure no reads get moved up above the invalidate. */
2420 __builtin_ia32_mfence();
2421
2422 return VK_SUCCESS;
2423 }
2424
2425 void anv_GetBufferMemoryRequirements(
2426 VkDevice _device,
2427 VkBuffer _buffer,
2428 VkMemoryRequirements* pMemoryRequirements)
2429 {
2430 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2431 ANV_FROM_HANDLE(anv_device, device, _device);
2432 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2433
2434 /* The Vulkan spec (git aaed022) says:
2435 *
2436 * memoryTypeBits is a bitfield and contains one bit set for every
2437 * supported memory type for the resource. The bit `1<<i` is set if and
2438 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
2439 * structure for the physical device is supported.
2440 */
2441 uint32_t memory_types = 0;
2442 for (uint32_t i = 0; i < pdevice->memory.type_count; i++) {
2443 uint32_t valid_usage = pdevice->memory.types[i].valid_buffer_usage;
2444 if ((valid_usage & buffer->usage) == buffer->usage)
2445 memory_types |= (1u << i);
2446 }
2447
2448 /* Base alignment requirement of a cache line */
2449 uint32_t alignment = 16;
2450
2451 /* We need an alignment of 32 for pushing UBOs */
2452 if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT)
2453 alignment = MAX2(alignment, 32);
2454
2455 pMemoryRequirements->size = buffer->size;
2456 pMemoryRequirements->alignment = alignment;
2457
2458 /* Storage and Uniform buffers should have their size aligned to
2459 * 32-bits to avoid boundary checks when last DWord is not complete.
2460 * This would ensure that not internal padding would be needed for
2461 * 16-bit types.
2462 */
2463 if (device->robust_buffer_access &&
2464 (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT ||
2465 buffer->usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT))
2466 pMemoryRequirements->size = align_u64(buffer->size, 4);
2467
2468 pMemoryRequirements->memoryTypeBits = memory_types;
2469 }
2470
2471 void anv_GetBufferMemoryRequirements2(
2472 VkDevice _device,
2473 const VkBufferMemoryRequirementsInfo2* pInfo,
2474 VkMemoryRequirements2* pMemoryRequirements)
2475 {
2476 anv_GetBufferMemoryRequirements(_device, pInfo->buffer,
2477 &pMemoryRequirements->memoryRequirements);
2478
2479 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
2480 switch (ext->sType) {
2481 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
2482 VkMemoryDedicatedRequirements *requirements = (void *)ext;
2483 requirements->prefersDedicatedAllocation = VK_FALSE;
2484 requirements->requiresDedicatedAllocation = VK_FALSE;
2485 break;
2486 }
2487
2488 default:
2489 anv_debug_ignored_stype(ext->sType);
2490 break;
2491 }
2492 }
2493 }
2494
2495 void anv_GetImageMemoryRequirements(
2496 VkDevice _device,
2497 VkImage _image,
2498 VkMemoryRequirements* pMemoryRequirements)
2499 {
2500 ANV_FROM_HANDLE(anv_image, image, _image);
2501 ANV_FROM_HANDLE(anv_device, device, _device);
2502 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2503
2504 /* The Vulkan spec (git aaed022) says:
2505 *
2506 * memoryTypeBits is a bitfield and contains one bit set for every
2507 * supported memory type for the resource. The bit `1<<i` is set if and
2508 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
2509 * structure for the physical device is supported.
2510 *
2511 * All types are currently supported for images.
2512 */
2513 uint32_t memory_types = (1ull << pdevice->memory.type_count) - 1;
2514
2515 pMemoryRequirements->size = image->size;
2516 pMemoryRequirements->alignment = image->alignment;
2517 pMemoryRequirements->memoryTypeBits = memory_types;
2518 }
2519
2520 void anv_GetImageMemoryRequirements2(
2521 VkDevice _device,
2522 const VkImageMemoryRequirementsInfo2* pInfo,
2523 VkMemoryRequirements2* pMemoryRequirements)
2524 {
2525 ANV_FROM_HANDLE(anv_device, device, _device);
2526 ANV_FROM_HANDLE(anv_image, image, pInfo->image);
2527
2528 anv_GetImageMemoryRequirements(_device, pInfo->image,
2529 &pMemoryRequirements->memoryRequirements);
2530
2531 vk_foreach_struct_const(ext, pInfo->pNext) {
2532 switch (ext->sType) {
2533 case VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO: {
2534 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2535 const VkImagePlaneMemoryRequirementsInfoKHR *plane_reqs =
2536 (const VkImagePlaneMemoryRequirementsInfoKHR *) ext;
2537 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
2538 plane_reqs->planeAspect);
2539
2540 assert(image->planes[plane].offset == 0);
2541
2542 /* The Vulkan spec (git aaed022) says:
2543 *
2544 * memoryTypeBits is a bitfield and contains one bit set for every
2545 * supported memory type for the resource. The bit `1<<i` is set
2546 * if and only if the memory type `i` in the
2547 * VkPhysicalDeviceMemoryProperties structure for the physical
2548 * device is supported.
2549 *
2550 * All types are currently supported for images.
2551 */
2552 pMemoryRequirements->memoryRequirements.memoryTypeBits =
2553 (1ull << pdevice->memory.type_count) - 1;
2554
2555 pMemoryRequirements->memoryRequirements.size = image->planes[plane].size;
2556 pMemoryRequirements->memoryRequirements.alignment =
2557 image->planes[plane].alignment;
2558 break;
2559 }
2560
2561 default:
2562 anv_debug_ignored_stype(ext->sType);
2563 break;
2564 }
2565 }
2566
2567 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
2568 switch (ext->sType) {
2569 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
2570 VkMemoryDedicatedRequirements *requirements = (void *)ext;
2571 if (image->needs_set_tiling) {
2572 /* If we need to set the tiling for external consumers, we need a
2573 * dedicated allocation.
2574 *
2575 * See also anv_AllocateMemory.
2576 */
2577 requirements->prefersDedicatedAllocation = VK_TRUE;
2578 requirements->requiresDedicatedAllocation = VK_TRUE;
2579 } else {
2580 requirements->prefersDedicatedAllocation = VK_FALSE;
2581 requirements->requiresDedicatedAllocation = VK_FALSE;
2582 }
2583 break;
2584 }
2585
2586 default:
2587 anv_debug_ignored_stype(ext->sType);
2588 break;
2589 }
2590 }
2591 }
2592
2593 void anv_GetImageSparseMemoryRequirements(
2594 VkDevice device,
2595 VkImage image,
2596 uint32_t* pSparseMemoryRequirementCount,
2597 VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
2598 {
2599 *pSparseMemoryRequirementCount = 0;
2600 }
2601
2602 void anv_GetImageSparseMemoryRequirements2(
2603 VkDevice device,
2604 const VkImageSparseMemoryRequirementsInfo2* pInfo,
2605 uint32_t* pSparseMemoryRequirementCount,
2606 VkSparseImageMemoryRequirements2* pSparseMemoryRequirements)
2607 {
2608 *pSparseMemoryRequirementCount = 0;
2609 }
2610
2611 void anv_GetDeviceMemoryCommitment(
2612 VkDevice device,
2613 VkDeviceMemory memory,
2614 VkDeviceSize* pCommittedMemoryInBytes)
2615 {
2616 *pCommittedMemoryInBytes = 0;
2617 }
2618
2619 static void
2620 anv_bind_buffer_memory(const VkBindBufferMemoryInfo *pBindInfo)
2621 {
2622 ANV_FROM_HANDLE(anv_device_memory, mem, pBindInfo->memory);
2623 ANV_FROM_HANDLE(anv_buffer, buffer, pBindInfo->buffer);
2624
2625 assert(pBindInfo->sType == VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO);
2626
2627 if (mem) {
2628 assert((buffer->usage & mem->type->valid_buffer_usage) == buffer->usage);
2629 buffer->address = (struct anv_address) {
2630 .bo = mem->bo,
2631 .offset = pBindInfo->memoryOffset,
2632 };
2633 } else {
2634 buffer->address = ANV_NULL_ADDRESS;
2635 }
2636 }
2637
2638 VkResult anv_BindBufferMemory(
2639 VkDevice device,
2640 VkBuffer buffer,
2641 VkDeviceMemory memory,
2642 VkDeviceSize memoryOffset)
2643 {
2644 anv_bind_buffer_memory(
2645 &(VkBindBufferMemoryInfo) {
2646 .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO,
2647 .buffer = buffer,
2648 .memory = memory,
2649 .memoryOffset = memoryOffset,
2650 });
2651
2652 return VK_SUCCESS;
2653 }
2654
2655 VkResult anv_BindBufferMemory2(
2656 VkDevice device,
2657 uint32_t bindInfoCount,
2658 const VkBindBufferMemoryInfo* pBindInfos)
2659 {
2660 for (uint32_t i = 0; i < bindInfoCount; i++)
2661 anv_bind_buffer_memory(&pBindInfos[i]);
2662
2663 return VK_SUCCESS;
2664 }
2665
2666 VkResult anv_QueueBindSparse(
2667 VkQueue _queue,
2668 uint32_t bindInfoCount,
2669 const VkBindSparseInfo* pBindInfo,
2670 VkFence fence)
2671 {
2672 ANV_FROM_HANDLE(anv_queue, queue, _queue);
2673 if (unlikely(queue->device->lost))
2674 return VK_ERROR_DEVICE_LOST;
2675
2676 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
2677 }
2678
2679 // Event functions
2680
2681 VkResult anv_CreateEvent(
2682 VkDevice _device,
2683 const VkEventCreateInfo* pCreateInfo,
2684 const VkAllocationCallbacks* pAllocator,
2685 VkEvent* pEvent)
2686 {
2687 ANV_FROM_HANDLE(anv_device, device, _device);
2688 struct anv_state state;
2689 struct anv_event *event;
2690
2691 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
2692
2693 state = anv_state_pool_alloc(&device->dynamic_state_pool,
2694 sizeof(*event), 8);
2695 event = state.map;
2696 event->state = state;
2697 event->semaphore = VK_EVENT_RESET;
2698
2699 if (!device->info.has_llc) {
2700 /* Make sure the writes we're flushing have landed. */
2701 __builtin_ia32_mfence();
2702 __builtin_ia32_clflush(event);
2703 }
2704
2705 *pEvent = anv_event_to_handle(event);
2706
2707 return VK_SUCCESS;
2708 }
2709
2710 void anv_DestroyEvent(
2711 VkDevice _device,
2712 VkEvent _event,
2713 const VkAllocationCallbacks* pAllocator)
2714 {
2715 ANV_FROM_HANDLE(anv_device, device, _device);
2716 ANV_FROM_HANDLE(anv_event, event, _event);
2717
2718 if (!event)
2719 return;
2720
2721 anv_state_pool_free(&device->dynamic_state_pool, event->state);
2722 }
2723
2724 VkResult anv_GetEventStatus(
2725 VkDevice _device,
2726 VkEvent _event)
2727 {
2728 ANV_FROM_HANDLE(anv_device, device, _device);
2729 ANV_FROM_HANDLE(anv_event, event, _event);
2730
2731 if (unlikely(device->lost))
2732 return VK_ERROR_DEVICE_LOST;
2733
2734 if (!device->info.has_llc) {
2735 /* Invalidate read cache before reading event written by GPU. */
2736 __builtin_ia32_clflush(event);
2737 __builtin_ia32_mfence();
2738
2739 }
2740
2741 return event->semaphore;
2742 }
2743
2744 VkResult anv_SetEvent(
2745 VkDevice _device,
2746 VkEvent _event)
2747 {
2748 ANV_FROM_HANDLE(anv_device, device, _device);
2749 ANV_FROM_HANDLE(anv_event, event, _event);
2750
2751 event->semaphore = VK_EVENT_SET;
2752
2753 if (!device->info.has_llc) {
2754 /* Make sure the writes we're flushing have landed. */
2755 __builtin_ia32_mfence();
2756 __builtin_ia32_clflush(event);
2757 }
2758
2759 return VK_SUCCESS;
2760 }
2761
2762 VkResult anv_ResetEvent(
2763 VkDevice _device,
2764 VkEvent _event)
2765 {
2766 ANV_FROM_HANDLE(anv_device, device, _device);
2767 ANV_FROM_HANDLE(anv_event, event, _event);
2768
2769 event->semaphore = VK_EVENT_RESET;
2770
2771 if (!device->info.has_llc) {
2772 /* Make sure the writes we're flushing have landed. */
2773 __builtin_ia32_mfence();
2774 __builtin_ia32_clflush(event);
2775 }
2776
2777 return VK_SUCCESS;
2778 }
2779
2780 // Buffer functions
2781
2782 VkResult anv_CreateBuffer(
2783 VkDevice _device,
2784 const VkBufferCreateInfo* pCreateInfo,
2785 const VkAllocationCallbacks* pAllocator,
2786 VkBuffer* pBuffer)
2787 {
2788 ANV_FROM_HANDLE(anv_device, device, _device);
2789 struct anv_buffer *buffer;
2790
2791 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
2792
2793 buffer = vk_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
2794 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2795 if (buffer == NULL)
2796 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2797
2798 buffer->size = pCreateInfo->size;
2799 buffer->usage = pCreateInfo->usage;
2800 buffer->address = ANV_NULL_ADDRESS;
2801
2802 *pBuffer = anv_buffer_to_handle(buffer);
2803
2804 return VK_SUCCESS;
2805 }
2806
2807 void anv_DestroyBuffer(
2808 VkDevice _device,
2809 VkBuffer _buffer,
2810 const VkAllocationCallbacks* pAllocator)
2811 {
2812 ANV_FROM_HANDLE(anv_device, device, _device);
2813 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2814
2815 if (!buffer)
2816 return;
2817
2818 vk_free2(&device->alloc, pAllocator, buffer);
2819 }
2820
2821 void
2822 anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
2823 enum isl_format format,
2824 struct anv_address address,
2825 uint32_t range, uint32_t stride)
2826 {
2827 isl_buffer_fill_state(&device->isl_dev, state.map,
2828 .address = anv_address_physical(address),
2829 .mocs = device->default_mocs,
2830 .size = range,
2831 .format = format,
2832 .stride = stride);
2833
2834 anv_state_flush(device, state);
2835 }
2836
2837 void anv_DestroySampler(
2838 VkDevice _device,
2839 VkSampler _sampler,
2840 const VkAllocationCallbacks* pAllocator)
2841 {
2842 ANV_FROM_HANDLE(anv_device, device, _device);
2843 ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
2844
2845 if (!sampler)
2846 return;
2847
2848 vk_free2(&device->alloc, pAllocator, sampler);
2849 }
2850
2851 VkResult anv_CreateFramebuffer(
2852 VkDevice _device,
2853 const VkFramebufferCreateInfo* pCreateInfo,
2854 const VkAllocationCallbacks* pAllocator,
2855 VkFramebuffer* pFramebuffer)
2856 {
2857 ANV_FROM_HANDLE(anv_device, device, _device);
2858 struct anv_framebuffer *framebuffer;
2859
2860 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
2861
2862 size_t size = sizeof(*framebuffer) +
2863 sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
2864 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
2865 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2866 if (framebuffer == NULL)
2867 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2868
2869 framebuffer->attachment_count = pCreateInfo->attachmentCount;
2870 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
2871 VkImageView _iview = pCreateInfo->pAttachments[i];
2872 framebuffer->attachments[i] = anv_image_view_from_handle(_iview);
2873 }
2874
2875 framebuffer->width = pCreateInfo->width;
2876 framebuffer->height = pCreateInfo->height;
2877 framebuffer->layers = pCreateInfo->layers;
2878
2879 *pFramebuffer = anv_framebuffer_to_handle(framebuffer);
2880
2881 return VK_SUCCESS;
2882 }
2883
2884 void anv_DestroyFramebuffer(
2885 VkDevice _device,
2886 VkFramebuffer _fb,
2887 const VkAllocationCallbacks* pAllocator)
2888 {
2889 ANV_FROM_HANDLE(anv_device, device, _device);
2890 ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
2891
2892 if (!fb)
2893 return;
2894
2895 vk_free2(&device->alloc, pAllocator, fb);
2896 }
2897
2898 /* vk_icd.h does not declare this function, so we declare it here to
2899 * suppress Wmissing-prototypes.
2900 */
2901 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
2902 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion);
2903
2904 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
2905 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion)
2906 {
2907 /* For the full details on loader interface versioning, see
2908 * <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
2909 * What follows is a condensed summary, to help you navigate the large and
2910 * confusing official doc.
2911 *
2912 * - Loader interface v0 is incompatible with later versions. We don't
2913 * support it.
2914 *
2915 * - In loader interface v1:
2916 * - The first ICD entrypoint called by the loader is
2917 * vk_icdGetInstanceProcAddr(). The ICD must statically expose this
2918 * entrypoint.
2919 * - The ICD must statically expose no other Vulkan symbol unless it is
2920 * linked with -Bsymbolic.
2921 * - Each dispatchable Vulkan handle created by the ICD must be
2922 * a pointer to a struct whose first member is VK_LOADER_DATA. The
2923 * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
2924 * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
2925 * vkDestroySurfaceKHR(). The ICD must be capable of working with
2926 * such loader-managed surfaces.
2927 *
2928 * - Loader interface v2 differs from v1 in:
2929 * - The first ICD entrypoint called by the loader is
2930 * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
2931 * statically expose this entrypoint.
2932 *
2933 * - Loader interface v3 differs from v2 in:
2934 * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
2935 * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
2936 * because the loader no longer does so.
2937 */
2938 *pSupportedVersion = MIN2(*pSupportedVersion, 3u);
2939 return VK_SUCCESS;
2940 }