anv: Parse VkPhysicalDeviceFeatures2 in CreateDevice
[mesa.git] / src / intel / vulkan / anv_device.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <sys/sysinfo.h>
29 #include <unistd.h>
30 #include <fcntl.h>
31 #include <xf86drm.h>
32 #include "drm-uapi/drm_fourcc.h"
33
34 #include "anv_private.h"
35 #include "util/debug.h"
36 #include "util/build_id.h"
37 #include "util/disk_cache.h"
38 #include "util/mesa-sha1.h"
39 #include "util/os_file.h"
40 #include "util/u_atomic.h"
41 #include "util/u_string.h"
42 #include "util/xmlpool.h"
43 #include "git_sha1.h"
44 #include "vk_util.h"
45 #include "common/gen_aux_map.h"
46 #include "common/gen_defines.h"
47 #include "compiler/glsl_types.h"
48
49 #include "genxml/gen7_pack.h"
50
51 static const char anv_dri_options_xml[] =
52 DRI_CONF_BEGIN
53 DRI_CONF_SECTION_PERFORMANCE
54 DRI_CONF_VK_X11_OVERRIDE_MIN_IMAGE_COUNT(0)
55 DRI_CONF_VK_X11_STRICT_IMAGE_COUNT("false")
56 DRI_CONF_SECTION_END
57
58 DRI_CONF_SECTION_DEBUG
59 DRI_CONF_ALWAYS_FLUSH_CACHE("false")
60 DRI_CONF_VK_WSI_FORCE_BGRA8_UNORM_FIRST("false")
61 DRI_CONF_SECTION_END
62 DRI_CONF_END;
63
64 /* This is probably far to big but it reflects the max size used for messages
65 * in OpenGLs KHR_debug.
66 */
67 #define MAX_DEBUG_MESSAGE_LENGTH 4096
68
69 static void
70 compiler_debug_log(void *data, const char *fmt, ...)
71 {
72 char str[MAX_DEBUG_MESSAGE_LENGTH];
73 struct anv_device *device = (struct anv_device *)data;
74 struct anv_instance *instance = device->physical->instance;
75
76 if (list_is_empty(&instance->debug_report_callbacks.callbacks))
77 return;
78
79 va_list args;
80 va_start(args, fmt);
81 (void) vsnprintf(str, MAX_DEBUG_MESSAGE_LENGTH, fmt, args);
82 va_end(args);
83
84 vk_debug_report(&instance->debug_report_callbacks,
85 VK_DEBUG_REPORT_DEBUG_BIT_EXT,
86 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,
87 0, 0, 0, "anv", str);
88 }
89
90 static void
91 compiler_perf_log(void *data, const char *fmt, ...)
92 {
93 va_list args;
94 va_start(args, fmt);
95
96 if (unlikely(INTEL_DEBUG & DEBUG_PERF))
97 intel_logd_v(fmt, args);
98
99 va_end(args);
100 }
101
102 static uint64_t
103 anv_compute_heap_size(int fd, uint64_t gtt_size)
104 {
105 /* Query the total ram from the system */
106 struct sysinfo info;
107 sysinfo(&info);
108
109 uint64_t total_ram = (uint64_t)info.totalram * (uint64_t)info.mem_unit;
110
111 /* We don't want to burn too much ram with the GPU. If the user has 4GiB
112 * or less, we use at most half. If they have more than 4GiB, we use 3/4.
113 */
114 uint64_t available_ram;
115 if (total_ram <= 4ull * 1024ull * 1024ull * 1024ull)
116 available_ram = total_ram / 2;
117 else
118 available_ram = total_ram * 3 / 4;
119
120 /* We also want to leave some padding for things we allocate in the driver,
121 * so don't go over 3/4 of the GTT either.
122 */
123 uint64_t available_gtt = gtt_size * 3 / 4;
124
125 return MIN2(available_ram, available_gtt);
126 }
127
128 static VkResult
129 anv_physical_device_init_heaps(struct anv_physical_device *device, int fd)
130 {
131 if (anv_gem_get_context_param(fd, 0, I915_CONTEXT_PARAM_GTT_SIZE,
132 &device->gtt_size) == -1) {
133 /* If, for whatever reason, we can't actually get the GTT size from the
134 * kernel (too old?) fall back to the aperture size.
135 */
136 anv_perf_warn(NULL, NULL,
137 "Failed to get I915_CONTEXT_PARAM_GTT_SIZE: %m");
138
139 if (anv_gem_get_aperture(fd, &device->gtt_size) == -1) {
140 return vk_errorfi(device->instance, NULL,
141 VK_ERROR_INITIALIZATION_FAILED,
142 "failed to get aperture size: %m");
143 }
144 }
145
146 /* We only allow 48-bit addresses with softpin because knowing the actual
147 * address is required for the vertex cache flush workaround.
148 */
149 device->supports_48bit_addresses = (device->info.gen >= 8) &&
150 device->has_softpin &&
151 device->gtt_size > (4ULL << 30 /* GiB */);
152
153 uint64_t heap_size = anv_compute_heap_size(fd, device->gtt_size);
154
155 if (heap_size > (2ull << 30) && !device->supports_48bit_addresses) {
156 /* When running with an overridden PCI ID, we may get a GTT size from
157 * the kernel that is greater than 2 GiB but the execbuf check for 48bit
158 * address support can still fail. Just clamp the address space size to
159 * 2 GiB if we don't have 48-bit support.
160 */
161 intel_logw("%s:%d: The kernel reported a GTT size larger than 2 GiB but "
162 "not support for 48-bit addresses",
163 __FILE__, __LINE__);
164 heap_size = 2ull << 30;
165 }
166
167 device->memory.heap_count = 1;
168 device->memory.heaps[0] = (struct anv_memory_heap) {
169 .size = heap_size,
170 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
171 };
172
173 uint32_t type_count = 0;
174 for (uint32_t heap = 0; heap < device->memory.heap_count; heap++) {
175 if (device->info.has_llc) {
176 /* Big core GPUs share LLC with the CPU and thus one memory type can be
177 * both cached and coherent at the same time.
178 */
179 device->memory.types[type_count++] = (struct anv_memory_type) {
180 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
181 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
182 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
183 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
184 .heapIndex = heap,
185 };
186 } else {
187 /* The spec requires that we expose a host-visible, coherent memory
188 * type, but Atom GPUs don't share LLC. Thus we offer two memory types
189 * to give the application a choice between cached, but not coherent and
190 * coherent but uncached (WC though).
191 */
192 device->memory.types[type_count++] = (struct anv_memory_type) {
193 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
194 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
195 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
196 .heapIndex = heap,
197 };
198 device->memory.types[type_count++] = (struct anv_memory_type) {
199 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
200 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
201 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
202 .heapIndex = heap,
203 };
204 }
205 }
206 device->memory.type_count = type_count;
207
208 return VK_SUCCESS;
209 }
210
211 static VkResult
212 anv_physical_device_init_uuids(struct anv_physical_device *device)
213 {
214 const struct build_id_note *note =
215 build_id_find_nhdr_for_addr(anv_physical_device_init_uuids);
216 if (!note) {
217 return vk_errorfi(device->instance, NULL,
218 VK_ERROR_INITIALIZATION_FAILED,
219 "Failed to find build-id");
220 }
221
222 unsigned build_id_len = build_id_length(note);
223 if (build_id_len < 20) {
224 return vk_errorfi(device->instance, NULL,
225 VK_ERROR_INITIALIZATION_FAILED,
226 "build-id too short. It needs to be a SHA");
227 }
228
229 memcpy(device->driver_build_sha1, build_id_data(note), 20);
230
231 struct mesa_sha1 sha1_ctx;
232 uint8_t sha1[20];
233 STATIC_ASSERT(VK_UUID_SIZE <= sizeof(sha1));
234
235 /* The pipeline cache UUID is used for determining when a pipeline cache is
236 * invalid. It needs both a driver build and the PCI ID of the device.
237 */
238 _mesa_sha1_init(&sha1_ctx);
239 _mesa_sha1_update(&sha1_ctx, build_id_data(note), build_id_len);
240 _mesa_sha1_update(&sha1_ctx, &device->info.chipset_id,
241 sizeof(device->info.chipset_id));
242 _mesa_sha1_update(&sha1_ctx, &device->always_use_bindless,
243 sizeof(device->always_use_bindless));
244 _mesa_sha1_update(&sha1_ctx, &device->has_a64_buffer_access,
245 sizeof(device->has_a64_buffer_access));
246 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_images,
247 sizeof(device->has_bindless_images));
248 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_samplers,
249 sizeof(device->has_bindless_samplers));
250 _mesa_sha1_final(&sha1_ctx, sha1);
251 memcpy(device->pipeline_cache_uuid, sha1, VK_UUID_SIZE);
252
253 /* The driver UUID is used for determining sharability of images and memory
254 * between two Vulkan instances in separate processes. People who want to
255 * share memory need to also check the device UUID (below) so all this
256 * needs to be is the build-id.
257 */
258 memcpy(device->driver_uuid, build_id_data(note), VK_UUID_SIZE);
259
260 /* The device UUID uniquely identifies the given device within the machine.
261 * Since we never have more than one device, this doesn't need to be a real
262 * UUID. However, on the off-chance that someone tries to use this to
263 * cache pre-tiled images or something of the like, we use the PCI ID and
264 * some bits of ISL info to ensure that this is safe.
265 */
266 _mesa_sha1_init(&sha1_ctx);
267 _mesa_sha1_update(&sha1_ctx, &device->info.chipset_id,
268 sizeof(device->info.chipset_id));
269 _mesa_sha1_update(&sha1_ctx, &device->isl_dev.has_bit6_swizzling,
270 sizeof(device->isl_dev.has_bit6_swizzling));
271 _mesa_sha1_final(&sha1_ctx, sha1);
272 memcpy(device->device_uuid, sha1, VK_UUID_SIZE);
273
274 return VK_SUCCESS;
275 }
276
277 static void
278 anv_physical_device_init_disk_cache(struct anv_physical_device *device)
279 {
280 #ifdef ENABLE_SHADER_CACHE
281 char renderer[10];
282 ASSERTED int len = snprintf(renderer, sizeof(renderer), "anv_%04x",
283 device->info.chipset_id);
284 assert(len == sizeof(renderer) - 2);
285
286 char timestamp[41];
287 _mesa_sha1_format(timestamp, device->driver_build_sha1);
288
289 const uint64_t driver_flags =
290 brw_get_compiler_config_value(device->compiler);
291 device->disk_cache = disk_cache_create(renderer, timestamp, driver_flags);
292 #else
293 device->disk_cache = NULL;
294 #endif
295 }
296
297 static void
298 anv_physical_device_free_disk_cache(struct anv_physical_device *device)
299 {
300 #ifdef ENABLE_SHADER_CACHE
301 if (device->disk_cache)
302 disk_cache_destroy(device->disk_cache);
303 #else
304 assert(device->disk_cache == NULL);
305 #endif
306 }
307
308 static uint64_t
309 get_available_system_memory()
310 {
311 char *meminfo = os_read_file("/proc/meminfo");
312 if (!meminfo)
313 return 0;
314
315 char *str = strstr(meminfo, "MemAvailable:");
316 if (!str) {
317 free(meminfo);
318 return 0;
319 }
320
321 uint64_t kb_mem_available;
322 if (sscanf(str, "MemAvailable: %" PRIx64, &kb_mem_available) == 1) {
323 free(meminfo);
324 return kb_mem_available << 10;
325 }
326
327 free(meminfo);
328 return 0;
329 }
330
331 static VkResult
332 anv_physical_device_try_create(struct anv_instance *instance,
333 drmDevicePtr drm_device,
334 struct anv_physical_device **device_out)
335 {
336 const char *primary_path = drm_device->nodes[DRM_NODE_PRIMARY];
337 const char *path = drm_device->nodes[DRM_NODE_RENDER];
338 VkResult result;
339 int fd;
340 int master_fd = -1;
341
342 brw_process_intel_debug_variable();
343
344 fd = open(path, O_RDWR | O_CLOEXEC);
345 if (fd < 0)
346 return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
347
348 struct gen_device_info devinfo;
349 if (!gen_get_device_info_from_fd(fd, &devinfo)) {
350 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
351 goto fail_fd;
352 }
353
354 const char *device_name = gen_get_device_name(devinfo.chipset_id);
355
356 if (devinfo.is_haswell) {
357 intel_logw("Haswell Vulkan support is incomplete");
358 } else if (devinfo.gen == 7 && !devinfo.is_baytrail) {
359 intel_logw("Ivy Bridge Vulkan support is incomplete");
360 } else if (devinfo.gen == 7 && devinfo.is_baytrail) {
361 intel_logw("Bay Trail Vulkan support is incomplete");
362 } else if (devinfo.gen >= 8 && devinfo.gen <= 11) {
363 /* Gen8-11 fully supported */
364 } else if (devinfo.gen == 12) {
365 intel_logw("Vulkan is not yet fully supported on gen12");
366 } else {
367 result = vk_errorfi(instance, NULL, VK_ERROR_INCOMPATIBLE_DRIVER,
368 "Vulkan not yet supported on %s", device_name);
369 goto fail_fd;
370 }
371
372 struct anv_physical_device *device =
373 vk_alloc(&instance->alloc, sizeof(*device), 8,
374 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
375 if (device == NULL) {
376 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
377 goto fail_fd;
378 }
379
380 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
381 device->instance = instance;
382
383 assert(strlen(path) < ARRAY_SIZE(device->path));
384 snprintf(device->path, ARRAY_SIZE(device->path), "%s", path);
385
386 device->info = devinfo;
387 device->name = device_name;
388
389 device->no_hw = device->info.no_hw;
390 if (getenv("INTEL_NO_HW") != NULL)
391 device->no_hw = true;
392
393 device->pci_info.domain = drm_device->businfo.pci->domain;
394 device->pci_info.bus = drm_device->businfo.pci->bus;
395 device->pci_info.device = drm_device->businfo.pci->dev;
396 device->pci_info.function = drm_device->businfo.pci->func;
397
398 device->cmd_parser_version = -1;
399 if (device->info.gen == 7) {
400 device->cmd_parser_version =
401 anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
402 if (device->cmd_parser_version == -1) {
403 result = vk_errorfi(device->instance, NULL,
404 VK_ERROR_INITIALIZATION_FAILED,
405 "failed to get command parser version");
406 goto fail_alloc;
407 }
408 }
409
410 if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
411 result = vk_errorfi(device->instance, NULL,
412 VK_ERROR_INITIALIZATION_FAILED,
413 "kernel missing gem wait");
414 goto fail_alloc;
415 }
416
417 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
418 result = vk_errorfi(device->instance, NULL,
419 VK_ERROR_INITIALIZATION_FAILED,
420 "kernel missing execbuf2");
421 goto fail_alloc;
422 }
423
424 if (!device->info.has_llc &&
425 anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
426 result = vk_errorfi(device->instance, NULL,
427 VK_ERROR_INITIALIZATION_FAILED,
428 "kernel missing wc mmap");
429 goto fail_alloc;
430 }
431
432 device->has_softpin = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_SOFTPIN);
433 device->has_exec_async = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_ASYNC);
434 device->has_exec_capture = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_CAPTURE);
435 device->has_exec_fence = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE);
436 device->has_syncobj = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE_ARRAY);
437 device->has_syncobj_wait = device->has_syncobj &&
438 anv_gem_supports_syncobj_wait(fd);
439 device->has_context_priority = anv_gem_has_context_priority(fd);
440
441 result = anv_physical_device_init_heaps(device, fd);
442 if (result != VK_SUCCESS)
443 goto fail_alloc;
444
445 device->use_softpin = device->has_softpin &&
446 device->supports_48bit_addresses;
447
448 device->has_context_isolation =
449 anv_gem_get_param(fd, I915_PARAM_HAS_CONTEXT_ISOLATION);
450
451 device->always_use_bindless =
452 env_var_as_boolean("ANV_ALWAYS_BINDLESS", false);
453
454 /* We first got the A64 messages on broadwell and we can only use them if
455 * we can pass addresses directly into the shader which requires softpin.
456 */
457 device->has_a64_buffer_access = device->info.gen >= 8 &&
458 device->use_softpin;
459
460 /* We first get bindless image access on Skylake and we can only really do
461 * it if we don't have any relocations so we need softpin.
462 */
463 device->has_bindless_images = device->info.gen >= 9 &&
464 device->use_softpin;
465
466 /* We've had bindless samplers since Ivy Bridge (forever in Vulkan terms)
467 * because it's just a matter of setting the sampler address in the sample
468 * message header. However, we've not bothered to wire it up for vec4 so
469 * we leave it disabled on gen7.
470 */
471 device->has_bindless_samplers = device->info.gen >= 8;
472
473 device->has_implicit_ccs = device->info.has_aux_map;
474
475 device->has_mem_available = get_available_system_memory() != 0;
476
477 device->always_flush_cache =
478 driQueryOptionb(&instance->dri_options, "always_flush_cache");
479
480 /* Starting with Gen10, the timestamp frequency of the command streamer may
481 * vary from one part to another. We can query the value from the kernel.
482 */
483 if (device->info.gen >= 10) {
484 int timestamp_frequency =
485 anv_gem_get_param(fd, I915_PARAM_CS_TIMESTAMP_FREQUENCY);
486
487 if (timestamp_frequency < 0)
488 intel_logw("Kernel 4.16-rc1+ required to properly query CS timestamp frequency");
489 else
490 device->info.timestamp_frequency = timestamp_frequency;
491 }
492
493 /* GENs prior to 8 do not support EU/Subslice info */
494 if (device->info.gen >= 8) {
495 device->subslice_total = anv_gem_get_param(fd, I915_PARAM_SUBSLICE_TOTAL);
496 device->eu_total = anv_gem_get_param(fd, I915_PARAM_EU_TOTAL);
497
498 /* Without this information, we cannot get the right Braswell
499 * brandstrings, and we have to use conservative numbers for GPGPU on
500 * many platforms, but otherwise, things will just work.
501 */
502 if (device->subslice_total < 1 || device->eu_total < 1) {
503 intel_logw("Kernel 4.1 required to properly query GPU properties");
504 }
505 } else if (device->info.gen == 7) {
506 device->subslice_total = 1 << (device->info.gt - 1);
507 }
508
509 if (device->info.is_cherryview &&
510 device->subslice_total > 0 && device->eu_total > 0) {
511 /* Logical CS threads = EUs per subslice * num threads per EU */
512 uint32_t max_cs_threads =
513 device->eu_total / device->subslice_total * device->info.num_thread_per_eu;
514
515 /* Fuse configurations may give more threads than expected, never less. */
516 if (max_cs_threads > device->info.max_cs_threads)
517 device->info.max_cs_threads = max_cs_threads;
518 }
519
520 device->compiler = brw_compiler_create(NULL, &device->info);
521 if (device->compiler == NULL) {
522 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
523 goto fail_alloc;
524 }
525 device->compiler->shader_debug_log = compiler_debug_log;
526 device->compiler->shader_perf_log = compiler_perf_log;
527 device->compiler->supports_pull_constants = false;
528 device->compiler->constant_buffer_0_is_relative =
529 device->info.gen < 8 || !device->has_context_isolation;
530 device->compiler->supports_shader_constants = true;
531 device->compiler->compact_params = false;
532
533 /* Broadwell PRM says:
534 *
535 * "Before Gen8, there was a historical configuration control field to
536 * swizzle address bit[6] for in X/Y tiling modes. This was set in three
537 * different places: TILECTL[1:0], ARB_MODE[5:4], and
538 * DISP_ARB_CTL[14:13].
539 *
540 * For Gen8 and subsequent generations, the swizzle fields are all
541 * reserved, and the CPU's memory controller performs all address
542 * swizzling modifications."
543 */
544 bool swizzled =
545 device->info.gen < 8 && anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
546
547 isl_device_init(&device->isl_dev, &device->info, swizzled);
548
549 result = anv_physical_device_init_uuids(device);
550 if (result != VK_SUCCESS)
551 goto fail_compiler;
552
553 anv_physical_device_init_disk_cache(device);
554
555 if (instance->enabled_extensions.KHR_display) {
556 master_fd = open(primary_path, O_RDWR | O_CLOEXEC);
557 if (master_fd >= 0) {
558 /* prod the device with a GETPARAM call which will fail if
559 * we don't have permission to even render on this device
560 */
561 if (anv_gem_get_param(master_fd, I915_PARAM_CHIPSET_ID) == 0) {
562 close(master_fd);
563 master_fd = -1;
564 }
565 }
566 }
567 device->master_fd = master_fd;
568
569 result = anv_init_wsi(device);
570 if (result != VK_SUCCESS)
571 goto fail_disk_cache;
572
573 device->perf = anv_get_perf(&device->info, fd);
574
575 anv_physical_device_get_supported_extensions(device,
576 &device->supported_extensions);
577
578
579 device->local_fd = fd;
580
581 *device_out = device;
582
583 return VK_SUCCESS;
584
585 fail_disk_cache:
586 anv_physical_device_free_disk_cache(device);
587 fail_compiler:
588 ralloc_free(device->compiler);
589 fail_alloc:
590 vk_free(&instance->alloc, device);
591 fail_fd:
592 close(fd);
593 if (master_fd != -1)
594 close(master_fd);
595 return result;
596 }
597
598 static void
599 anv_physical_device_destroy(struct anv_physical_device *device)
600 {
601 anv_finish_wsi(device);
602 anv_physical_device_free_disk_cache(device);
603 ralloc_free(device->compiler);
604 ralloc_free(device->perf);
605 close(device->local_fd);
606 if (device->master_fd >= 0)
607 close(device->master_fd);
608 vk_free(&device->instance->alloc, device);
609 }
610
611 static void *
612 default_alloc_func(void *pUserData, size_t size, size_t align,
613 VkSystemAllocationScope allocationScope)
614 {
615 return malloc(size);
616 }
617
618 static void *
619 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
620 size_t align, VkSystemAllocationScope allocationScope)
621 {
622 return realloc(pOriginal, size);
623 }
624
625 static void
626 default_free_func(void *pUserData, void *pMemory)
627 {
628 free(pMemory);
629 }
630
631 static const VkAllocationCallbacks default_alloc = {
632 .pUserData = NULL,
633 .pfnAllocation = default_alloc_func,
634 .pfnReallocation = default_realloc_func,
635 .pfnFree = default_free_func,
636 };
637
638 VkResult anv_EnumerateInstanceExtensionProperties(
639 const char* pLayerName,
640 uint32_t* pPropertyCount,
641 VkExtensionProperties* pProperties)
642 {
643 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
644
645 for (int i = 0; i < ANV_INSTANCE_EXTENSION_COUNT; i++) {
646 if (anv_instance_extensions_supported.extensions[i]) {
647 vk_outarray_append(&out, prop) {
648 *prop = anv_instance_extensions[i];
649 }
650 }
651 }
652
653 return vk_outarray_status(&out);
654 }
655
656 VkResult anv_CreateInstance(
657 const VkInstanceCreateInfo* pCreateInfo,
658 const VkAllocationCallbacks* pAllocator,
659 VkInstance* pInstance)
660 {
661 struct anv_instance *instance;
662 VkResult result;
663
664 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
665
666 struct anv_instance_extension_table enabled_extensions = {};
667 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
668 int idx;
669 for (idx = 0; idx < ANV_INSTANCE_EXTENSION_COUNT; idx++) {
670 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
671 anv_instance_extensions[idx].extensionName) == 0)
672 break;
673 }
674
675 if (idx >= ANV_INSTANCE_EXTENSION_COUNT)
676 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
677
678 if (!anv_instance_extensions_supported.extensions[idx])
679 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
680
681 enabled_extensions.extensions[idx] = true;
682 }
683
684 instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
685 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
686 if (!instance)
687 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
688
689 instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
690
691 if (pAllocator)
692 instance->alloc = *pAllocator;
693 else
694 instance->alloc = default_alloc;
695
696 instance->app_info = (struct anv_app_info) { .api_version = 0 };
697 if (pCreateInfo->pApplicationInfo) {
698 const VkApplicationInfo *app = pCreateInfo->pApplicationInfo;
699
700 instance->app_info.app_name =
701 vk_strdup(&instance->alloc, app->pApplicationName,
702 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
703 instance->app_info.app_version = app->applicationVersion;
704
705 instance->app_info.engine_name =
706 vk_strdup(&instance->alloc, app->pEngineName,
707 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
708 instance->app_info.engine_version = app->engineVersion;
709
710 instance->app_info.api_version = app->apiVersion;
711 }
712
713 if (instance->app_info.api_version == 0)
714 instance->app_info.api_version = VK_API_VERSION_1_0;
715
716 instance->enabled_extensions = enabled_extensions;
717
718 for (unsigned i = 0; i < ARRAY_SIZE(instance->dispatch.entrypoints); i++) {
719 /* Vulkan requires that entrypoints for extensions which have not been
720 * enabled must not be advertised.
721 */
722 if (!anv_instance_entrypoint_is_enabled(i, instance->app_info.api_version,
723 &instance->enabled_extensions)) {
724 instance->dispatch.entrypoints[i] = NULL;
725 } else {
726 instance->dispatch.entrypoints[i] =
727 anv_instance_dispatch_table.entrypoints[i];
728 }
729 }
730
731 for (unsigned i = 0; i < ARRAY_SIZE(instance->physical_device_dispatch.entrypoints); i++) {
732 /* Vulkan requires that entrypoints for extensions which have not been
733 * enabled must not be advertised.
734 */
735 if (!anv_physical_device_entrypoint_is_enabled(i, instance->app_info.api_version,
736 &instance->enabled_extensions)) {
737 instance->physical_device_dispatch.entrypoints[i] = NULL;
738 } else {
739 instance->physical_device_dispatch.entrypoints[i] =
740 anv_physical_device_dispatch_table.entrypoints[i];
741 }
742 }
743
744 for (unsigned i = 0; i < ARRAY_SIZE(instance->device_dispatch.entrypoints); i++) {
745 /* Vulkan requires that entrypoints for extensions which have not been
746 * enabled must not be advertised.
747 */
748 if (!anv_device_entrypoint_is_enabled(i, instance->app_info.api_version,
749 &instance->enabled_extensions, NULL)) {
750 instance->device_dispatch.entrypoints[i] = NULL;
751 } else {
752 instance->device_dispatch.entrypoints[i] =
753 anv_device_dispatch_table.entrypoints[i];
754 }
755 }
756
757 instance->physical_devices_enumerated = false;
758 list_inithead(&instance->physical_devices);
759
760 result = vk_debug_report_instance_init(&instance->debug_report_callbacks);
761 if (result != VK_SUCCESS) {
762 vk_free2(&default_alloc, pAllocator, instance);
763 return vk_error(result);
764 }
765
766 instance->pipeline_cache_enabled =
767 env_var_as_boolean("ANV_ENABLE_PIPELINE_CACHE", true);
768
769 glsl_type_singleton_init_or_ref();
770
771 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
772
773 driParseOptionInfo(&instance->available_dri_options, anv_dri_options_xml);
774 driParseConfigFiles(&instance->dri_options, &instance->available_dri_options,
775 0, "anv", NULL,
776 instance->app_info.engine_name,
777 instance->app_info.engine_version);
778
779 *pInstance = anv_instance_to_handle(instance);
780
781 return VK_SUCCESS;
782 }
783
784 void anv_DestroyInstance(
785 VkInstance _instance,
786 const VkAllocationCallbacks* pAllocator)
787 {
788 ANV_FROM_HANDLE(anv_instance, instance, _instance);
789
790 if (!instance)
791 return;
792
793 list_for_each_entry_safe(struct anv_physical_device, pdevice,
794 &instance->physical_devices, link)
795 anv_physical_device_destroy(pdevice);
796
797 vk_free(&instance->alloc, (char *)instance->app_info.app_name);
798 vk_free(&instance->alloc, (char *)instance->app_info.engine_name);
799
800 VG(VALGRIND_DESTROY_MEMPOOL(instance));
801
802 vk_debug_report_instance_destroy(&instance->debug_report_callbacks);
803
804 glsl_type_singleton_decref();
805
806 driDestroyOptionCache(&instance->dri_options);
807 driDestroyOptionInfo(&instance->available_dri_options);
808
809 vk_free(&instance->alloc, instance);
810 }
811
812 static VkResult
813 anv_enumerate_physical_devices(struct anv_instance *instance)
814 {
815 if (instance->physical_devices_enumerated)
816 return VK_SUCCESS;
817
818 instance->physical_devices_enumerated = true;
819
820 /* TODO: Check for more devices ? */
821 drmDevicePtr devices[8];
822 int max_devices;
823
824 max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
825 if (max_devices < 1)
826 return VK_SUCCESS;
827
828 VkResult result = VK_SUCCESS;
829 for (unsigned i = 0; i < (unsigned)max_devices; i++) {
830 if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
831 devices[i]->bustype == DRM_BUS_PCI &&
832 devices[i]->deviceinfo.pci->vendor_id == 0x8086) {
833
834 struct anv_physical_device *pdevice;
835 result = anv_physical_device_try_create(instance, devices[i],
836 &pdevice);
837 /* Incompatible DRM device, skip. */
838 if (result == VK_ERROR_INCOMPATIBLE_DRIVER) {
839 result = VK_SUCCESS;
840 continue;
841 }
842
843 /* Error creating the physical device, report the error. */
844 if (result != VK_SUCCESS)
845 break;
846
847 list_addtail(&pdevice->link, &instance->physical_devices);
848 }
849 }
850 drmFreeDevices(devices, max_devices);
851
852 /* If we successfully enumerated any devices, call it success */
853 return result;
854 }
855
856 VkResult anv_EnumeratePhysicalDevices(
857 VkInstance _instance,
858 uint32_t* pPhysicalDeviceCount,
859 VkPhysicalDevice* pPhysicalDevices)
860 {
861 ANV_FROM_HANDLE(anv_instance, instance, _instance);
862 VK_OUTARRAY_MAKE(out, pPhysicalDevices, pPhysicalDeviceCount);
863
864 VkResult result = anv_enumerate_physical_devices(instance);
865 if (result != VK_SUCCESS)
866 return result;
867
868 list_for_each_entry(struct anv_physical_device, pdevice,
869 &instance->physical_devices, link) {
870 vk_outarray_append(&out, i) {
871 *i = anv_physical_device_to_handle(pdevice);
872 }
873 }
874
875 return vk_outarray_status(&out);
876 }
877
878 VkResult anv_EnumeratePhysicalDeviceGroups(
879 VkInstance _instance,
880 uint32_t* pPhysicalDeviceGroupCount,
881 VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties)
882 {
883 ANV_FROM_HANDLE(anv_instance, instance, _instance);
884 VK_OUTARRAY_MAKE(out, pPhysicalDeviceGroupProperties,
885 pPhysicalDeviceGroupCount);
886
887 VkResult result = anv_enumerate_physical_devices(instance);
888 if (result != VK_SUCCESS)
889 return result;
890
891 list_for_each_entry(struct anv_physical_device, pdevice,
892 &instance->physical_devices, link) {
893 vk_outarray_append(&out, p) {
894 p->physicalDeviceCount = 1;
895 memset(p->physicalDevices, 0, sizeof(p->physicalDevices));
896 p->physicalDevices[0] = anv_physical_device_to_handle(pdevice);
897 p->subsetAllocation = false;
898
899 vk_foreach_struct(ext, p->pNext)
900 anv_debug_ignored_stype(ext->sType);
901 }
902 }
903
904 return vk_outarray_status(&out);
905 }
906
907 void anv_GetPhysicalDeviceFeatures(
908 VkPhysicalDevice physicalDevice,
909 VkPhysicalDeviceFeatures* pFeatures)
910 {
911 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
912
913 *pFeatures = (VkPhysicalDeviceFeatures) {
914 .robustBufferAccess = true,
915 .fullDrawIndexUint32 = true,
916 .imageCubeArray = true,
917 .independentBlend = true,
918 .geometryShader = true,
919 .tessellationShader = true,
920 .sampleRateShading = true,
921 .dualSrcBlend = true,
922 .logicOp = true,
923 .multiDrawIndirect = true,
924 .drawIndirectFirstInstance = true,
925 .depthClamp = true,
926 .depthBiasClamp = true,
927 .fillModeNonSolid = true,
928 .depthBounds = pdevice->info.gen >= 12,
929 .wideLines = true,
930 .largePoints = true,
931 .alphaToOne = true,
932 .multiViewport = true,
933 .samplerAnisotropy = true,
934 .textureCompressionETC2 = pdevice->info.gen >= 8 ||
935 pdevice->info.is_baytrail,
936 .textureCompressionASTC_LDR = pdevice->info.gen >= 9, /* FINISHME CHV */
937 .textureCompressionBC = true,
938 .occlusionQueryPrecise = true,
939 .pipelineStatisticsQuery = true,
940 .fragmentStoresAndAtomics = true,
941 .shaderTessellationAndGeometryPointSize = true,
942 .shaderImageGatherExtended = true,
943 .shaderStorageImageExtendedFormats = true,
944 .shaderStorageImageMultisample = false,
945 .shaderStorageImageReadWithoutFormat = false,
946 .shaderStorageImageWriteWithoutFormat = true,
947 .shaderUniformBufferArrayDynamicIndexing = true,
948 .shaderSampledImageArrayDynamicIndexing = true,
949 .shaderStorageBufferArrayDynamicIndexing = true,
950 .shaderStorageImageArrayDynamicIndexing = true,
951 .shaderClipDistance = true,
952 .shaderCullDistance = true,
953 .shaderFloat64 = pdevice->info.gen >= 8 &&
954 pdevice->info.has_64bit_float,
955 .shaderInt64 = pdevice->info.gen >= 8 &&
956 pdevice->info.has_64bit_int,
957 .shaderInt16 = pdevice->info.gen >= 8,
958 .shaderResourceMinLod = pdevice->info.gen >= 9,
959 .variableMultisampleRate = true,
960 .inheritedQueries = true,
961 };
962
963 /* We can't do image stores in vec4 shaders */
964 pFeatures->vertexPipelineStoresAndAtomics =
965 pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
966 pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
967
968 struct anv_app_info *app_info = &pdevice->instance->app_info;
969
970 /* The new DOOM and Wolfenstein games require depthBounds without
971 * checking for it. They seem to run fine without it so just claim it's
972 * there and accept the consequences.
973 */
974 if (app_info->engine_name && strcmp(app_info->engine_name, "idTech") == 0)
975 pFeatures->depthBounds = true;
976 }
977
978 static void
979 anv_get_physical_device_features_1_1(struct anv_physical_device *pdevice,
980 VkPhysicalDeviceVulkan11Features *f)
981 {
982 assert(f->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES);
983
984 f->storageBuffer16BitAccess = pdevice->info.gen >= 8;
985 f->uniformAndStorageBuffer16BitAccess = pdevice->info.gen >= 8;
986 f->storagePushConstant16 = pdevice->info.gen >= 8;
987 f->storageInputOutput16 = false;
988 f->multiview = true;
989 f->multiviewGeometryShader = true;
990 f->multiviewTessellationShader = true;
991 f->variablePointersStorageBuffer = true;
992 f->variablePointers = true;
993 f->protectedMemory = false;
994 f->samplerYcbcrConversion = true;
995 f->shaderDrawParameters = true;
996 }
997
998 static void
999 anv_get_physical_device_features_1_2(struct anv_physical_device *pdevice,
1000 VkPhysicalDeviceVulkan12Features *f)
1001 {
1002 assert(f->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES);
1003
1004 f->samplerMirrorClampToEdge = true;
1005 f->drawIndirectCount = true;
1006 f->storageBuffer8BitAccess = pdevice->info.gen >= 8;
1007 f->uniformAndStorageBuffer8BitAccess = pdevice->info.gen >= 8;
1008 f->storagePushConstant8 = pdevice->info.gen >= 8;
1009 f->shaderBufferInt64Atomics = pdevice->info.gen >= 9 &&
1010 pdevice->use_softpin;
1011 f->shaderSharedInt64Atomics = false;
1012 f->shaderFloat16 = pdevice->info.gen >= 8;
1013 f->shaderInt8 = pdevice->info.gen >= 8;
1014
1015 bool descIndexing = pdevice->has_a64_buffer_access &&
1016 pdevice->has_bindless_images;
1017 f->descriptorIndexing = descIndexing;
1018 f->shaderInputAttachmentArrayDynamicIndexing = false;
1019 f->shaderUniformTexelBufferArrayDynamicIndexing = descIndexing;
1020 f->shaderStorageTexelBufferArrayDynamicIndexing = descIndexing;
1021 f->shaderUniformBufferArrayNonUniformIndexing = false;
1022 f->shaderSampledImageArrayNonUniformIndexing = descIndexing;
1023 f->shaderStorageBufferArrayNonUniformIndexing = descIndexing;
1024 f->shaderStorageImageArrayNonUniformIndexing = descIndexing;
1025 f->shaderInputAttachmentArrayNonUniformIndexing = false;
1026 f->shaderUniformTexelBufferArrayNonUniformIndexing = descIndexing;
1027 f->shaderStorageTexelBufferArrayNonUniformIndexing = descIndexing;
1028 f->descriptorBindingUniformBufferUpdateAfterBind = false;
1029 f->descriptorBindingSampledImageUpdateAfterBind = descIndexing;
1030 f->descriptorBindingStorageImageUpdateAfterBind = descIndexing;
1031 f->descriptorBindingStorageBufferUpdateAfterBind = descIndexing;
1032 f->descriptorBindingUniformTexelBufferUpdateAfterBind = descIndexing;
1033 f->descriptorBindingStorageTexelBufferUpdateAfterBind = descIndexing;
1034 f->descriptorBindingUpdateUnusedWhilePending = descIndexing;
1035 f->descriptorBindingPartiallyBound = descIndexing;
1036 f->descriptorBindingVariableDescriptorCount = false;
1037 f->runtimeDescriptorArray = descIndexing;
1038
1039 f->samplerFilterMinmax = pdevice->info.gen >= 9;
1040 f->scalarBlockLayout = true;
1041 f->imagelessFramebuffer = true;
1042 f->uniformBufferStandardLayout = true;
1043 f->shaderSubgroupExtendedTypes = true;
1044 f->separateDepthStencilLayouts = true;
1045 f->hostQueryReset = true;
1046 f->timelineSemaphore = true;
1047 f->bufferDeviceAddress = pdevice->has_a64_buffer_access;
1048 f->bufferDeviceAddressCaptureReplay = pdevice->has_a64_buffer_access;
1049 f->bufferDeviceAddressMultiDevice = false;
1050 f->vulkanMemoryModel = true;
1051 f->vulkanMemoryModelDeviceScope = true;
1052 f->vulkanMemoryModelAvailabilityVisibilityChains = true;
1053 f->shaderOutputViewportIndex = true;
1054 f->shaderOutputLayer = true;
1055 f->subgroupBroadcastDynamicId = true;
1056 }
1057
1058 void anv_GetPhysicalDeviceFeatures2(
1059 VkPhysicalDevice physicalDevice,
1060 VkPhysicalDeviceFeatures2* pFeatures)
1061 {
1062 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1063 anv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
1064
1065 VkPhysicalDeviceVulkan11Features core_1_1 = {
1066 .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES,
1067 };
1068 anv_get_physical_device_features_1_1(pdevice, &core_1_1);
1069
1070 VkPhysicalDeviceVulkan12Features core_1_2 = {
1071 .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES,
1072 };
1073 anv_get_physical_device_features_1_2(pdevice, &core_1_2);
1074
1075 #define CORE_FEATURE(major, minor, feature) \
1076 features->feature = core_##major##_##minor.feature
1077
1078
1079 vk_foreach_struct(ext, pFeatures->pNext) {
1080 switch (ext->sType) {
1081 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_8BIT_STORAGE_FEATURES_KHR: {
1082 VkPhysicalDevice8BitStorageFeaturesKHR *features =
1083 (VkPhysicalDevice8BitStorageFeaturesKHR *)ext;
1084 CORE_FEATURE(1, 2, storageBuffer8BitAccess);
1085 CORE_FEATURE(1, 2, uniformAndStorageBuffer8BitAccess);
1086 CORE_FEATURE(1, 2, storagePushConstant8);
1087 break;
1088 }
1089
1090 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES: {
1091 VkPhysicalDevice16BitStorageFeatures *features =
1092 (VkPhysicalDevice16BitStorageFeatures *)ext;
1093 CORE_FEATURE(1, 1, storageBuffer16BitAccess);
1094 CORE_FEATURE(1, 1, uniformAndStorageBuffer16BitAccess);
1095 CORE_FEATURE(1, 1, storagePushConstant16);
1096 CORE_FEATURE(1, 1, storageInputOutput16);
1097 break;
1098 }
1099
1100 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_EXT: {
1101 VkPhysicalDeviceBufferDeviceAddressFeaturesEXT *features = (void *)ext;
1102 features->bufferDeviceAddress = pdevice->has_a64_buffer_access;
1103 features->bufferDeviceAddressCaptureReplay = false;
1104 features->bufferDeviceAddressMultiDevice = false;
1105 break;
1106 }
1107
1108 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_KHR: {
1109 VkPhysicalDeviceBufferDeviceAddressFeaturesKHR *features = (void *)ext;
1110 CORE_FEATURE(1, 2, bufferDeviceAddress);
1111 CORE_FEATURE(1, 2, bufferDeviceAddressCaptureReplay);
1112 CORE_FEATURE(1, 2, bufferDeviceAddressMultiDevice);
1113 break;
1114 }
1115
1116 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COMPUTE_SHADER_DERIVATIVES_FEATURES_NV: {
1117 VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *features =
1118 (VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *)ext;
1119 features->computeDerivativeGroupQuads = true;
1120 features->computeDerivativeGroupLinear = true;
1121 break;
1122 }
1123
1124 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONDITIONAL_RENDERING_FEATURES_EXT: {
1125 VkPhysicalDeviceConditionalRenderingFeaturesEXT *features =
1126 (VkPhysicalDeviceConditionalRenderingFeaturesEXT*)ext;
1127 features->conditionalRendering = pdevice->info.gen >= 8 ||
1128 pdevice->info.is_haswell;
1129 features->inheritedConditionalRendering = pdevice->info.gen >= 8 ||
1130 pdevice->info.is_haswell;
1131 break;
1132 }
1133
1134 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_ENABLE_FEATURES_EXT: {
1135 VkPhysicalDeviceDepthClipEnableFeaturesEXT *features =
1136 (VkPhysicalDeviceDepthClipEnableFeaturesEXT *)ext;
1137 features->depthClipEnable = true;
1138 break;
1139 }
1140
1141 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT16_INT8_FEATURES_KHR: {
1142 VkPhysicalDeviceFloat16Int8FeaturesKHR *features = (void *)ext;
1143 CORE_FEATURE(1, 2, shaderFloat16);
1144 CORE_FEATURE(1, 2, shaderInt8);
1145 break;
1146 }
1147
1148 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADER_INTERLOCK_FEATURES_EXT: {
1149 VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *features =
1150 (VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *)ext;
1151 features->fragmentShaderSampleInterlock = pdevice->info.gen >= 9;
1152 features->fragmentShaderPixelInterlock = pdevice->info.gen >= 9;
1153 features->fragmentShaderShadingRateInterlock = false;
1154 break;
1155 }
1156
1157 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_QUERY_RESET_FEATURES_EXT: {
1158 VkPhysicalDeviceHostQueryResetFeaturesEXT *features =
1159 (VkPhysicalDeviceHostQueryResetFeaturesEXT *)ext;
1160 CORE_FEATURE(1, 2, hostQueryReset);
1161 break;
1162 }
1163
1164 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_FEATURES_EXT: {
1165 VkPhysicalDeviceDescriptorIndexingFeaturesEXT *features =
1166 (VkPhysicalDeviceDescriptorIndexingFeaturesEXT *)ext;
1167 CORE_FEATURE(1, 2, shaderInputAttachmentArrayDynamicIndexing);
1168 CORE_FEATURE(1, 2, shaderUniformTexelBufferArrayDynamicIndexing);
1169 CORE_FEATURE(1, 2, shaderStorageTexelBufferArrayDynamicIndexing);
1170 CORE_FEATURE(1, 2, shaderUniformBufferArrayNonUniformIndexing);
1171 CORE_FEATURE(1, 2, shaderSampledImageArrayNonUniformIndexing);
1172 CORE_FEATURE(1, 2, shaderStorageBufferArrayNonUniformIndexing);
1173 CORE_FEATURE(1, 2, shaderStorageImageArrayNonUniformIndexing);
1174 CORE_FEATURE(1, 2, shaderInputAttachmentArrayNonUniformIndexing);
1175 CORE_FEATURE(1, 2, shaderUniformTexelBufferArrayNonUniformIndexing);
1176 CORE_FEATURE(1, 2, shaderStorageTexelBufferArrayNonUniformIndexing);
1177 CORE_FEATURE(1, 2, descriptorBindingUniformBufferUpdateAfterBind);
1178 CORE_FEATURE(1, 2, descriptorBindingSampledImageUpdateAfterBind);
1179 CORE_FEATURE(1, 2, descriptorBindingStorageImageUpdateAfterBind);
1180 CORE_FEATURE(1, 2, descriptorBindingStorageBufferUpdateAfterBind);
1181 CORE_FEATURE(1, 2, descriptorBindingUniformTexelBufferUpdateAfterBind);
1182 CORE_FEATURE(1, 2, descriptorBindingStorageTexelBufferUpdateAfterBind);
1183 CORE_FEATURE(1, 2, descriptorBindingUpdateUnusedWhilePending);
1184 CORE_FEATURE(1, 2, descriptorBindingPartiallyBound);
1185 CORE_FEATURE(1, 2, descriptorBindingVariableDescriptorCount);
1186 CORE_FEATURE(1, 2, runtimeDescriptorArray);
1187 break;
1188 }
1189
1190 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INDEX_TYPE_UINT8_FEATURES_EXT: {
1191 VkPhysicalDeviceIndexTypeUint8FeaturesEXT *features =
1192 (VkPhysicalDeviceIndexTypeUint8FeaturesEXT *)ext;
1193 features->indexTypeUint8 = true;
1194 break;
1195 }
1196
1197 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_FEATURES_EXT: {
1198 VkPhysicalDeviceInlineUniformBlockFeaturesEXT *features =
1199 (VkPhysicalDeviceInlineUniformBlockFeaturesEXT *)ext;
1200 features->inlineUniformBlock = true;
1201 features->descriptorBindingInlineUniformBlockUpdateAfterBind = true;
1202 break;
1203 }
1204
1205 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_FEATURES_EXT: {
1206 VkPhysicalDeviceLineRasterizationFeaturesEXT *features =
1207 (VkPhysicalDeviceLineRasterizationFeaturesEXT *)ext;
1208 features->rectangularLines = true;
1209 features->bresenhamLines = true;
1210 /* Support for Smooth lines with MSAA was removed on gen11. From the
1211 * BSpec section "Multisample ModesState" table for "AA Line Support
1212 * Requirements":
1213 *
1214 * GEN10:BUG:######## NUM_MULTISAMPLES == 1
1215 *
1216 * Fortunately, this isn't a case most people care about.
1217 */
1218 features->smoothLines = pdevice->info.gen < 10;
1219 features->stippledRectangularLines = false;
1220 features->stippledBresenhamLines = true;
1221 features->stippledSmoothLines = false;
1222 break;
1223 }
1224
1225 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES: {
1226 VkPhysicalDeviceMultiviewFeatures *features =
1227 (VkPhysicalDeviceMultiviewFeatures *)ext;
1228 CORE_FEATURE(1, 1, multiview);
1229 CORE_FEATURE(1, 1, multiviewGeometryShader);
1230 CORE_FEATURE(1, 1, multiviewTessellationShader);
1231 break;
1232 }
1233
1234 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGELESS_FRAMEBUFFER_FEATURES_KHR: {
1235 VkPhysicalDeviceImagelessFramebufferFeaturesKHR *features =
1236 (VkPhysicalDeviceImagelessFramebufferFeaturesKHR *)ext;
1237 CORE_FEATURE(1, 2, imagelessFramebuffer);
1238 break;
1239 }
1240
1241 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_EXECUTABLE_PROPERTIES_FEATURES_KHR: {
1242 VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *features =
1243 (VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *)ext;
1244 features->pipelineExecutableInfo = true;
1245 break;
1246 }
1247
1248 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES: {
1249 VkPhysicalDeviceProtectedMemoryFeatures *features = (void *)ext;
1250 CORE_FEATURE(1, 1, protectedMemory);
1251 break;
1252 }
1253
1254 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES: {
1255 VkPhysicalDeviceSamplerYcbcrConversionFeatures *features =
1256 (VkPhysicalDeviceSamplerYcbcrConversionFeatures *) ext;
1257 CORE_FEATURE(1, 1, samplerYcbcrConversion);
1258 break;
1259 }
1260
1261 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCALAR_BLOCK_LAYOUT_FEATURES_EXT: {
1262 VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *features =
1263 (VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *)ext;
1264 CORE_FEATURE(1, 2, scalarBlockLayout);
1265 break;
1266 }
1267
1268 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SEPARATE_DEPTH_STENCIL_LAYOUTS_FEATURES_KHR: {
1269 VkPhysicalDeviceSeparateDepthStencilLayoutsFeaturesKHR *features =
1270 (VkPhysicalDeviceSeparateDepthStencilLayoutsFeaturesKHR *)ext;
1271 CORE_FEATURE(1, 2, separateDepthStencilLayouts);
1272 break;
1273 }
1274
1275 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_INT64_FEATURES_KHR: {
1276 VkPhysicalDeviceShaderAtomicInt64FeaturesKHR *features = (void *)ext;
1277 CORE_FEATURE(1, 2, shaderBufferInt64Atomics);
1278 CORE_FEATURE(1, 2, shaderSharedInt64Atomics);
1279 break;
1280 }
1281
1282 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DEMOTE_TO_HELPER_INVOCATION_FEATURES_EXT: {
1283 VkPhysicalDeviceShaderDemoteToHelperInvocationFeaturesEXT *features = (void *)ext;
1284 features->shaderDemoteToHelperInvocation = true;
1285 break;
1286 }
1287
1288 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CLOCK_FEATURES_KHR: {
1289 VkPhysicalDeviceShaderClockFeaturesKHR *features =
1290 (VkPhysicalDeviceShaderClockFeaturesKHR *)ext;
1291 features->shaderSubgroupClock = true;
1292 features->shaderDeviceClock = false;
1293 break;
1294 }
1295
1296 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETERS_FEATURES: {
1297 VkPhysicalDeviceShaderDrawParametersFeatures *features = (void *)ext;
1298 CORE_FEATURE(1, 1, shaderDrawParameters);
1299 break;
1300 }
1301
1302 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_SUBGROUP_EXTENDED_TYPES_FEATURES_KHR: {
1303 VkPhysicalDeviceShaderSubgroupExtendedTypesFeaturesKHR *features =
1304 (VkPhysicalDeviceShaderSubgroupExtendedTypesFeaturesKHR *)ext;
1305 CORE_FEATURE(1, 2, shaderSubgroupExtendedTypes);
1306 break;
1307 }
1308
1309 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_FEATURES_EXT: {
1310 VkPhysicalDeviceSubgroupSizeControlFeaturesEXT *features =
1311 (VkPhysicalDeviceSubgroupSizeControlFeaturesEXT *)ext;
1312 features->subgroupSizeControl = true;
1313 features->computeFullSubgroups = true;
1314 break;
1315 }
1316
1317 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_FEATURES_EXT: {
1318 VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *features =
1319 (VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *)ext;
1320 features->texelBufferAlignment = true;
1321 break;
1322 }
1323
1324 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_FEATURES_KHR: {
1325 VkPhysicalDeviceTimelineSemaphoreFeaturesKHR *features =
1326 (VkPhysicalDeviceTimelineSemaphoreFeaturesKHR *) ext;
1327 CORE_FEATURE(1, 2, timelineSemaphore);
1328 break;
1329 }
1330
1331 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTERS_FEATURES: {
1332 VkPhysicalDeviceVariablePointersFeatures *features = (void *)ext;
1333 CORE_FEATURE(1, 1, variablePointersStorageBuffer);
1334 CORE_FEATURE(1, 1, variablePointers);
1335 break;
1336 }
1337
1338 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_FEATURES_EXT: {
1339 VkPhysicalDeviceTransformFeedbackFeaturesEXT *features =
1340 (VkPhysicalDeviceTransformFeedbackFeaturesEXT *)ext;
1341 features->transformFeedback = true;
1342 features->geometryStreams = true;
1343 break;
1344 }
1345
1346 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_UNIFORM_BUFFER_STANDARD_LAYOUT_FEATURES_KHR: {
1347 VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *features =
1348 (VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *)ext;
1349 CORE_FEATURE(1, 2, uniformBufferStandardLayout);
1350 break;
1351 }
1352
1353 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_EXT: {
1354 VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *features =
1355 (VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *)ext;
1356 features->vertexAttributeInstanceRateDivisor = true;
1357 features->vertexAttributeInstanceRateZeroDivisor = true;
1358 break;
1359 }
1360
1361 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES:
1362 anv_get_physical_device_features_1_1(pdevice, (void *)ext);
1363 break;
1364
1365 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES:
1366 anv_get_physical_device_features_1_2(pdevice, (void *)ext);
1367 break;
1368
1369 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_MEMORY_MODEL_FEATURES_KHR: {
1370 VkPhysicalDeviceVulkanMemoryModelFeaturesKHR *features = (void *)ext;
1371 CORE_FEATURE(1, 2, vulkanMemoryModel);
1372 CORE_FEATURE(1, 2, vulkanMemoryModelDeviceScope);
1373 CORE_FEATURE(1, 2, vulkanMemoryModelAvailabilityVisibilityChains);
1374 break;
1375 }
1376
1377 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_YCBCR_IMAGE_ARRAYS_FEATURES_EXT: {
1378 VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *features =
1379 (VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *)ext;
1380 features->ycbcrImageArrays = true;
1381 break;
1382 }
1383
1384 default:
1385 anv_debug_ignored_stype(ext->sType);
1386 break;
1387 }
1388 }
1389
1390 #undef CORE_FEATURE
1391 }
1392
1393 #define MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS 64
1394
1395 #define MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS 64
1396 #define MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS 256
1397
1398 void anv_GetPhysicalDeviceProperties(
1399 VkPhysicalDevice physicalDevice,
1400 VkPhysicalDeviceProperties* pProperties)
1401 {
1402 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1403 const struct gen_device_info *devinfo = &pdevice->info;
1404
1405 /* See assertions made when programming the buffer surface state. */
1406 const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ?
1407 (1ul << 30) : (1ul << 27);
1408
1409 const uint32_t max_ssbos = pdevice->has_a64_buffer_access ? UINT16_MAX : 64;
1410 const uint32_t max_textures =
1411 pdevice->has_bindless_images ? UINT16_MAX : 128;
1412 const uint32_t max_samplers =
1413 pdevice->has_bindless_samplers ? UINT16_MAX :
1414 (devinfo->gen >= 8 || devinfo->is_haswell) ? 128 : 16;
1415 const uint32_t max_images =
1416 pdevice->has_bindless_images ? UINT16_MAX : MAX_IMAGES;
1417
1418 /* If we can use bindless for everything, claim a high per-stage limit,
1419 * otherwise use the binding table size, minus the slots reserved for
1420 * render targets and one slot for the descriptor buffer. */
1421 const uint32_t max_per_stage =
1422 pdevice->has_bindless_images && pdevice->has_a64_buffer_access
1423 ? UINT32_MAX : MAX_BINDING_TABLE_SIZE - MAX_RTS - 1;
1424
1425 const uint32_t max_workgroup_size = 32 * devinfo->max_cs_threads;
1426
1427 VkSampleCountFlags sample_counts =
1428 isl_device_get_sample_counts(&pdevice->isl_dev);
1429
1430
1431 VkPhysicalDeviceLimits limits = {
1432 .maxImageDimension1D = (1 << 14),
1433 .maxImageDimension2D = (1 << 14),
1434 .maxImageDimension3D = (1 << 11),
1435 .maxImageDimensionCube = (1 << 14),
1436 .maxImageArrayLayers = (1 << 11),
1437 .maxTexelBufferElements = 128 * 1024 * 1024,
1438 .maxUniformBufferRange = (1ul << 27),
1439 .maxStorageBufferRange = max_raw_buffer_sz,
1440 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
1441 .maxMemoryAllocationCount = UINT32_MAX,
1442 .maxSamplerAllocationCount = 64 * 1024,
1443 .bufferImageGranularity = 64, /* A cache line */
1444 .sparseAddressSpaceSize = 0,
1445 .maxBoundDescriptorSets = MAX_SETS,
1446 .maxPerStageDescriptorSamplers = max_samplers,
1447 .maxPerStageDescriptorUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS,
1448 .maxPerStageDescriptorStorageBuffers = max_ssbos,
1449 .maxPerStageDescriptorSampledImages = max_textures,
1450 .maxPerStageDescriptorStorageImages = max_images,
1451 .maxPerStageDescriptorInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS,
1452 .maxPerStageResources = max_per_stage,
1453 .maxDescriptorSetSamplers = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSamplers */
1454 .maxDescriptorSetUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS, /* number of stages * maxPerStageDescriptorUniformBuffers */
1455 .maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1456 .maxDescriptorSetStorageBuffers = 6 * max_ssbos, /* number of stages * maxPerStageDescriptorStorageBuffers */
1457 .maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1458 .maxDescriptorSetSampledImages = 6 * max_textures, /* number of stages * maxPerStageDescriptorSampledImages */
1459 .maxDescriptorSetStorageImages = 6 * max_images, /* number of stages * maxPerStageDescriptorStorageImages */
1460 .maxDescriptorSetInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS,
1461 .maxVertexInputAttributes = MAX_VBS,
1462 .maxVertexInputBindings = MAX_VBS,
1463 .maxVertexInputAttributeOffset = 2047,
1464 .maxVertexInputBindingStride = 2048,
1465 .maxVertexOutputComponents = 128,
1466 .maxTessellationGenerationLevel = 64,
1467 .maxTessellationPatchSize = 32,
1468 .maxTessellationControlPerVertexInputComponents = 128,
1469 .maxTessellationControlPerVertexOutputComponents = 128,
1470 .maxTessellationControlPerPatchOutputComponents = 128,
1471 .maxTessellationControlTotalOutputComponents = 2048,
1472 .maxTessellationEvaluationInputComponents = 128,
1473 .maxTessellationEvaluationOutputComponents = 128,
1474 .maxGeometryShaderInvocations = 32,
1475 .maxGeometryInputComponents = 64,
1476 .maxGeometryOutputComponents = 128,
1477 .maxGeometryOutputVertices = 256,
1478 .maxGeometryTotalOutputComponents = 1024,
1479 .maxFragmentInputComponents = 116, /* 128 components - (PSIZ, CLIP_DIST0, CLIP_DIST1) */
1480 .maxFragmentOutputAttachments = 8,
1481 .maxFragmentDualSrcAttachments = 1,
1482 .maxFragmentCombinedOutputResources = 8,
1483 .maxComputeSharedMemorySize = 64 * 1024,
1484 .maxComputeWorkGroupCount = { 65535, 65535, 65535 },
1485 .maxComputeWorkGroupInvocations = max_workgroup_size,
1486 .maxComputeWorkGroupSize = {
1487 max_workgroup_size,
1488 max_workgroup_size,
1489 max_workgroup_size,
1490 },
1491 .subPixelPrecisionBits = 8,
1492 .subTexelPrecisionBits = 8,
1493 .mipmapPrecisionBits = 8,
1494 .maxDrawIndexedIndexValue = UINT32_MAX,
1495 .maxDrawIndirectCount = UINT32_MAX,
1496 .maxSamplerLodBias = 16,
1497 .maxSamplerAnisotropy = 16,
1498 .maxViewports = MAX_VIEWPORTS,
1499 .maxViewportDimensions = { (1 << 14), (1 << 14) },
1500 .viewportBoundsRange = { INT16_MIN, INT16_MAX },
1501 .viewportSubPixelBits = 13, /* We take a float? */
1502 .minMemoryMapAlignment = 4096, /* A page */
1503 /* The dataport requires texel alignment so we need to assume a worst
1504 * case of R32G32B32A32 which is 16 bytes.
1505 */
1506 .minTexelBufferOffsetAlignment = 16,
1507 /* We need 16 for UBO block reads to work and 32 for push UBOs */
1508 .minUniformBufferOffsetAlignment = 32,
1509 .minStorageBufferOffsetAlignment = 4,
1510 .minTexelOffset = -8,
1511 .maxTexelOffset = 7,
1512 .minTexelGatherOffset = -32,
1513 .maxTexelGatherOffset = 31,
1514 .minInterpolationOffset = -0.5,
1515 .maxInterpolationOffset = 0.4375,
1516 .subPixelInterpolationOffsetBits = 4,
1517 .maxFramebufferWidth = (1 << 14),
1518 .maxFramebufferHeight = (1 << 14),
1519 .maxFramebufferLayers = (1 << 11),
1520 .framebufferColorSampleCounts = sample_counts,
1521 .framebufferDepthSampleCounts = sample_counts,
1522 .framebufferStencilSampleCounts = sample_counts,
1523 .framebufferNoAttachmentsSampleCounts = sample_counts,
1524 .maxColorAttachments = MAX_RTS,
1525 .sampledImageColorSampleCounts = sample_counts,
1526 .sampledImageIntegerSampleCounts = sample_counts,
1527 .sampledImageDepthSampleCounts = sample_counts,
1528 .sampledImageStencilSampleCounts = sample_counts,
1529 .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1530 .maxSampleMaskWords = 1,
1531 .timestampComputeAndGraphics = true,
1532 .timestampPeriod = 1000000000.0 / devinfo->timestamp_frequency,
1533 .maxClipDistances = 8,
1534 .maxCullDistances = 8,
1535 .maxCombinedClipAndCullDistances = 8,
1536 .discreteQueuePriorities = 2,
1537 .pointSizeRange = { 0.125, 255.875 },
1538 .lineWidthRange = {
1539 0.0,
1540 (devinfo->gen >= 9 || devinfo->is_cherryview) ?
1541 2047.9921875 : 7.9921875,
1542 },
1543 .pointSizeGranularity = (1.0 / 8.0),
1544 .lineWidthGranularity = (1.0 / 128.0),
1545 .strictLines = false,
1546 .standardSampleLocations = true,
1547 .optimalBufferCopyOffsetAlignment = 128,
1548 .optimalBufferCopyRowPitchAlignment = 128,
1549 .nonCoherentAtomSize = 64,
1550 };
1551
1552 *pProperties = (VkPhysicalDeviceProperties) {
1553 .apiVersion = anv_physical_device_api_version(pdevice),
1554 .driverVersion = vk_get_driver_version(),
1555 .vendorID = 0x8086,
1556 .deviceID = pdevice->info.chipset_id,
1557 .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
1558 .limits = limits,
1559 .sparseProperties = {0}, /* Broadwell doesn't do sparse. */
1560 };
1561
1562 snprintf(pProperties->deviceName, sizeof(pProperties->deviceName),
1563 "%s", pdevice->name);
1564 memcpy(pProperties->pipelineCacheUUID,
1565 pdevice->pipeline_cache_uuid, VK_UUID_SIZE);
1566 }
1567
1568 static void
1569 anv_get_physical_device_properties_1_1(struct anv_physical_device *pdevice,
1570 VkPhysicalDeviceVulkan11Properties *p)
1571 {
1572 assert(p->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES);
1573
1574 memcpy(p->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
1575 memcpy(p->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
1576 memset(p->deviceLUID, 0, VK_LUID_SIZE);
1577 p->deviceNodeMask = 0;
1578 p->deviceLUIDValid = false;
1579
1580 p->subgroupSize = BRW_SUBGROUP_SIZE;
1581 VkShaderStageFlags scalar_stages = 0;
1582 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
1583 if (pdevice->compiler->scalar_stage[stage])
1584 scalar_stages |= mesa_to_vk_shader_stage(stage);
1585 }
1586 p->subgroupSupportedStages = scalar_stages;
1587 p->subgroupSupportedOperations = VK_SUBGROUP_FEATURE_BASIC_BIT |
1588 VK_SUBGROUP_FEATURE_VOTE_BIT |
1589 VK_SUBGROUP_FEATURE_BALLOT_BIT |
1590 VK_SUBGROUP_FEATURE_SHUFFLE_BIT |
1591 VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT |
1592 VK_SUBGROUP_FEATURE_QUAD_BIT;
1593 if (pdevice->info.gen >= 8) {
1594 /* TODO: There's no technical reason why these can't be made to
1595 * work on gen7 but they don't at the moment so it's best to leave
1596 * the feature disabled than enabled and broken.
1597 */
1598 p->subgroupSupportedOperations |= VK_SUBGROUP_FEATURE_ARITHMETIC_BIT |
1599 VK_SUBGROUP_FEATURE_CLUSTERED_BIT;
1600 }
1601 p->subgroupQuadOperationsInAllStages = pdevice->info.gen >= 8;
1602
1603 p->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_USER_CLIP_PLANES_ONLY;
1604 p->maxMultiviewViewCount = 16;
1605 p->maxMultiviewInstanceIndex = UINT32_MAX / 16;
1606 p->protectedNoFault = false;
1607 /* This value doesn't matter for us today as our per-stage descriptors are
1608 * the real limit.
1609 */
1610 p->maxPerSetDescriptors = 1024;
1611 p->maxMemoryAllocationSize = MAX_MEMORY_ALLOCATION_SIZE;
1612 }
1613
1614 static void
1615 anv_get_physical_device_properties_1_2(struct anv_physical_device *pdevice,
1616 VkPhysicalDeviceVulkan12Properties *p)
1617 {
1618 assert(p->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES);
1619
1620 p->driverID = VK_DRIVER_ID_INTEL_OPEN_SOURCE_MESA_KHR;
1621 memset(p->driverName, 0, sizeof(p->driverName));
1622 snprintf(p->driverName, VK_MAX_DRIVER_NAME_SIZE_KHR,
1623 "Intel open-source Mesa driver");
1624 memset(p->driverInfo, 0, sizeof(p->driverInfo));
1625 snprintf(p->driverInfo, VK_MAX_DRIVER_INFO_SIZE_KHR,
1626 "Mesa " PACKAGE_VERSION MESA_GIT_SHA1);
1627 p->conformanceVersion = (VkConformanceVersionKHR) {
1628 .major = 1,
1629 .minor = 2,
1630 .subminor = 0,
1631 .patch = 0,
1632 };
1633
1634 p->denormBehaviorIndependence =
1635 VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL_KHR;
1636 p->roundingModeIndependence =
1637 VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE_KHR;
1638
1639 /* Broadwell does not support HF denorms and there are restrictions
1640 * other gens. According to Kabylake's PRM:
1641 *
1642 * "math - Extended Math Function
1643 * [...]
1644 * Restriction : Half-float denorms are always retained."
1645 */
1646 p->shaderDenormFlushToZeroFloat16 = false;
1647 p->shaderDenormPreserveFloat16 = pdevice->info.gen > 8;
1648 p->shaderRoundingModeRTEFloat16 = true;
1649 p->shaderRoundingModeRTZFloat16 = true;
1650 p->shaderSignedZeroInfNanPreserveFloat16 = true;
1651
1652 p->shaderDenormFlushToZeroFloat32 = true;
1653 p->shaderDenormPreserveFloat32 = true;
1654 p->shaderRoundingModeRTEFloat32 = true;
1655 p->shaderRoundingModeRTZFloat32 = true;
1656 p->shaderSignedZeroInfNanPreserveFloat32 = true;
1657
1658 p->shaderDenormFlushToZeroFloat64 = true;
1659 p->shaderDenormPreserveFloat64 = true;
1660 p->shaderRoundingModeRTEFloat64 = true;
1661 p->shaderRoundingModeRTZFloat64 = true;
1662 p->shaderSignedZeroInfNanPreserveFloat64 = true;
1663
1664 /* It's a bit hard to exactly map our implementation to the limits
1665 * described here. The bindless surface handle in the extended
1666 * message descriptors is 20 bits and it's an index into the table of
1667 * RENDER_SURFACE_STATE structs that starts at bindless surface base
1668 * address. Given that most things consume two surface states per
1669 * view (general/sampled for textures and write-only/read-write for
1670 * images), we claim 2^19 things.
1671 *
1672 * For SSBOs, we just use A64 messages so there is no real limit
1673 * there beyond the limit on the total size of a descriptor set.
1674 */
1675 const unsigned max_bindless_views = 1 << 19;
1676 p->maxUpdateAfterBindDescriptorsInAllPools = max_bindless_views;
1677 p->shaderUniformBufferArrayNonUniformIndexingNative = false;
1678 p->shaderSampledImageArrayNonUniformIndexingNative = false;
1679 p->shaderStorageBufferArrayNonUniformIndexingNative = true;
1680 p->shaderStorageImageArrayNonUniformIndexingNative = false;
1681 p->shaderInputAttachmentArrayNonUniformIndexingNative = false;
1682 p->robustBufferAccessUpdateAfterBind = true;
1683 p->quadDivergentImplicitLod = false;
1684 p->maxPerStageDescriptorUpdateAfterBindSamplers = max_bindless_views;
1685 p->maxPerStageDescriptorUpdateAfterBindUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1686 p->maxPerStageDescriptorUpdateAfterBindStorageBuffers = UINT32_MAX;
1687 p->maxPerStageDescriptorUpdateAfterBindSampledImages = max_bindless_views;
1688 p->maxPerStageDescriptorUpdateAfterBindStorageImages = max_bindless_views;
1689 p->maxPerStageDescriptorUpdateAfterBindInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS;
1690 p->maxPerStageUpdateAfterBindResources = UINT32_MAX;
1691 p->maxDescriptorSetUpdateAfterBindSamplers = max_bindless_views;
1692 p->maxDescriptorSetUpdateAfterBindUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1693 p->maxDescriptorSetUpdateAfterBindUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1694 p->maxDescriptorSetUpdateAfterBindStorageBuffers = UINT32_MAX;
1695 p->maxDescriptorSetUpdateAfterBindStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1696 p->maxDescriptorSetUpdateAfterBindSampledImages = max_bindless_views;
1697 p->maxDescriptorSetUpdateAfterBindStorageImages = max_bindless_views;
1698 p->maxDescriptorSetUpdateAfterBindInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS;
1699
1700 /* We support all of the depth resolve modes */
1701 p->supportedDepthResolveModes = VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR |
1702 VK_RESOLVE_MODE_AVERAGE_BIT_KHR |
1703 VK_RESOLVE_MODE_MIN_BIT_KHR |
1704 VK_RESOLVE_MODE_MAX_BIT_KHR;
1705 /* Average doesn't make sense for stencil so we don't support that */
1706 p->supportedStencilResolveModes = VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR;
1707 if (pdevice->info.gen >= 8) {
1708 /* The advanced stencil resolve modes currently require stencil
1709 * sampling be supported by the hardware.
1710 */
1711 p->supportedStencilResolveModes |= VK_RESOLVE_MODE_MIN_BIT_KHR |
1712 VK_RESOLVE_MODE_MAX_BIT_KHR;
1713 }
1714 p->independentResolveNone = true;
1715 p->independentResolve = true;
1716
1717 p->filterMinmaxSingleComponentFormats = pdevice->info.gen >= 9;
1718 p->filterMinmaxImageComponentMapping = pdevice->info.gen >= 9;
1719
1720 p->maxTimelineSemaphoreValueDifference = UINT64_MAX;
1721
1722 p->framebufferIntegerColorSampleCounts =
1723 isl_device_get_sample_counts(&pdevice->isl_dev);
1724 }
1725
1726 void anv_GetPhysicalDeviceProperties2(
1727 VkPhysicalDevice physicalDevice,
1728 VkPhysicalDeviceProperties2* pProperties)
1729 {
1730 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1731
1732 anv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
1733
1734 VkPhysicalDeviceVulkan11Properties core_1_1 = {
1735 .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES,
1736 };
1737 anv_get_physical_device_properties_1_1(pdevice, &core_1_1);
1738
1739 VkPhysicalDeviceVulkan12Properties core_1_2 = {
1740 .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES,
1741 };
1742 anv_get_physical_device_properties_1_2(pdevice, &core_1_2);
1743
1744 #define CORE_RENAMED_PROPERTY(major, minor, ext_property, core_property) \
1745 memcpy(&properties->ext_property, &core_##major##_##minor.core_property, \
1746 sizeof(core_##major##_##minor.core_property))
1747
1748 #define CORE_PROPERTY(major, minor, property) \
1749 CORE_RENAMED_PROPERTY(major, minor, property, property)
1750
1751 vk_foreach_struct(ext, pProperties->pNext) {
1752 switch (ext->sType) {
1753 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_STENCIL_RESOLVE_PROPERTIES_KHR: {
1754 VkPhysicalDeviceDepthStencilResolvePropertiesKHR *properties =
1755 (VkPhysicalDeviceDepthStencilResolvePropertiesKHR *)ext;
1756 CORE_PROPERTY(1, 2, supportedDepthResolveModes);
1757 CORE_PROPERTY(1, 2, supportedStencilResolveModes);
1758 CORE_PROPERTY(1, 2, independentResolveNone);
1759 CORE_PROPERTY(1, 2, independentResolve);
1760 break;
1761 }
1762
1763 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_PROPERTIES_EXT: {
1764 VkPhysicalDeviceDescriptorIndexingPropertiesEXT *properties =
1765 (VkPhysicalDeviceDescriptorIndexingPropertiesEXT *)ext;
1766 CORE_PROPERTY(1, 2, maxUpdateAfterBindDescriptorsInAllPools);
1767 CORE_PROPERTY(1, 2, shaderUniformBufferArrayNonUniformIndexingNative);
1768 CORE_PROPERTY(1, 2, shaderSampledImageArrayNonUniformIndexingNative);
1769 CORE_PROPERTY(1, 2, shaderStorageBufferArrayNonUniformIndexingNative);
1770 CORE_PROPERTY(1, 2, shaderStorageImageArrayNonUniformIndexingNative);
1771 CORE_PROPERTY(1, 2, shaderInputAttachmentArrayNonUniformIndexingNative);
1772 CORE_PROPERTY(1, 2, robustBufferAccessUpdateAfterBind);
1773 CORE_PROPERTY(1, 2, quadDivergentImplicitLod);
1774 CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindSamplers);
1775 CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindUniformBuffers);
1776 CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindStorageBuffers);
1777 CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindSampledImages);
1778 CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindStorageImages);
1779 CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindInputAttachments);
1780 CORE_PROPERTY(1, 2, maxPerStageUpdateAfterBindResources);
1781 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindSamplers);
1782 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindUniformBuffers);
1783 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindUniformBuffersDynamic);
1784 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindStorageBuffers);
1785 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindStorageBuffersDynamic);
1786 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindSampledImages);
1787 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindStorageImages);
1788 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindInputAttachments);
1789 break;
1790 }
1791
1792 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES_KHR: {
1793 VkPhysicalDeviceDriverPropertiesKHR *properties =
1794 (VkPhysicalDeviceDriverPropertiesKHR *) ext;
1795 CORE_PROPERTY(1, 2, driverID);
1796 CORE_PROPERTY(1, 2, driverName);
1797 CORE_PROPERTY(1, 2, driverInfo);
1798 CORE_PROPERTY(1, 2, conformanceVersion);
1799 break;
1800 }
1801
1802 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT: {
1803 VkPhysicalDeviceExternalMemoryHostPropertiesEXT *props =
1804 (VkPhysicalDeviceExternalMemoryHostPropertiesEXT *) ext;
1805 /* Userptr needs page aligned memory. */
1806 props->minImportedHostPointerAlignment = 4096;
1807 break;
1808 }
1809
1810 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES: {
1811 VkPhysicalDeviceIDProperties *properties =
1812 (VkPhysicalDeviceIDProperties *)ext;
1813 CORE_PROPERTY(1, 1, deviceUUID);
1814 CORE_PROPERTY(1, 1, driverUUID);
1815 CORE_PROPERTY(1, 1, deviceLUID);
1816 CORE_PROPERTY(1, 1, deviceLUIDValid);
1817 break;
1818 }
1819
1820 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_PROPERTIES_EXT: {
1821 VkPhysicalDeviceInlineUniformBlockPropertiesEXT *props =
1822 (VkPhysicalDeviceInlineUniformBlockPropertiesEXT *)ext;
1823 props->maxInlineUniformBlockSize = MAX_INLINE_UNIFORM_BLOCK_SIZE;
1824 props->maxPerStageDescriptorInlineUniformBlocks =
1825 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1826 props->maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks =
1827 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1828 props->maxDescriptorSetInlineUniformBlocks =
1829 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1830 props->maxDescriptorSetUpdateAfterBindInlineUniformBlocks =
1831 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1832 break;
1833 }
1834
1835 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_PROPERTIES_EXT: {
1836 VkPhysicalDeviceLineRasterizationPropertiesEXT *props =
1837 (VkPhysicalDeviceLineRasterizationPropertiesEXT *)ext;
1838 /* In the Skylake PRM Vol. 7, subsection titled "GIQ (Diamond)
1839 * Sampling Rules - Legacy Mode", it says the following:
1840 *
1841 * "Note that the device divides a pixel into a 16x16 array of
1842 * subpixels, referenced by their upper left corners."
1843 *
1844 * This is the only known reference in the PRMs to the subpixel
1845 * precision of line rasterization and a "16x16 array of subpixels"
1846 * implies 4 subpixel precision bits. Empirical testing has shown
1847 * that 4 subpixel precision bits applies to all line rasterization
1848 * types.
1849 */
1850 props->lineSubPixelPrecisionBits = 4;
1851 break;
1852 }
1853
1854 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES: {
1855 VkPhysicalDeviceMaintenance3Properties *properties =
1856 (VkPhysicalDeviceMaintenance3Properties *)ext;
1857 /* This value doesn't matter for us today as our per-stage
1858 * descriptors are the real limit.
1859 */
1860 CORE_PROPERTY(1, 1, maxPerSetDescriptors);
1861 CORE_PROPERTY(1, 1, maxMemoryAllocationSize);
1862 break;
1863 }
1864
1865 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES: {
1866 VkPhysicalDeviceMultiviewProperties *properties =
1867 (VkPhysicalDeviceMultiviewProperties *)ext;
1868 CORE_PROPERTY(1, 1, maxMultiviewViewCount);
1869 CORE_PROPERTY(1, 1, maxMultiviewInstanceIndex);
1870 break;
1871 }
1872
1873 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT: {
1874 VkPhysicalDevicePCIBusInfoPropertiesEXT *properties =
1875 (VkPhysicalDevicePCIBusInfoPropertiesEXT *)ext;
1876 properties->pciDomain = pdevice->pci_info.domain;
1877 properties->pciBus = pdevice->pci_info.bus;
1878 properties->pciDevice = pdevice->pci_info.device;
1879 properties->pciFunction = pdevice->pci_info.function;
1880 break;
1881 }
1882
1883 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES: {
1884 VkPhysicalDevicePointClippingProperties *properties =
1885 (VkPhysicalDevicePointClippingProperties *) ext;
1886 CORE_PROPERTY(1, 1, pointClippingBehavior);
1887 break;
1888 }
1889
1890 #pragma GCC diagnostic push
1891 #pragma GCC diagnostic ignored "-Wswitch"
1892 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRESENTATION_PROPERTIES_ANDROID: {
1893 VkPhysicalDevicePresentationPropertiesANDROID *props =
1894 (VkPhysicalDevicePresentationPropertiesANDROID *)ext;
1895 props->sharedImage = VK_FALSE;
1896 break;
1897 }
1898 #pragma GCC diagnostic pop
1899
1900 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_PROPERTIES: {
1901 VkPhysicalDeviceProtectedMemoryProperties *properties =
1902 (VkPhysicalDeviceProtectedMemoryProperties *)ext;
1903 CORE_PROPERTY(1, 1, protectedNoFault);
1904 break;
1905 }
1906
1907 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
1908 VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
1909 (VkPhysicalDevicePushDescriptorPropertiesKHR *) ext;
1910 properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
1911 break;
1912 }
1913
1914 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES_EXT: {
1915 VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *properties =
1916 (VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *)ext;
1917 CORE_PROPERTY(1, 2, filterMinmaxImageComponentMapping);
1918 CORE_PROPERTY(1, 2, filterMinmaxSingleComponentFormats);
1919 break;
1920 }
1921
1922 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES: {
1923 VkPhysicalDeviceSubgroupProperties *properties = (void *)ext;
1924 CORE_PROPERTY(1, 1, subgroupSize);
1925 CORE_RENAMED_PROPERTY(1, 1, supportedStages,
1926 subgroupSupportedStages);
1927 CORE_RENAMED_PROPERTY(1, 1, supportedOperations,
1928 subgroupSupportedOperations);
1929 CORE_RENAMED_PROPERTY(1, 1, quadOperationsInAllStages,
1930 subgroupQuadOperationsInAllStages);
1931 break;
1932 }
1933
1934 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_PROPERTIES_EXT: {
1935 VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *props =
1936 (VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *)ext;
1937 STATIC_ASSERT(8 <= BRW_SUBGROUP_SIZE && BRW_SUBGROUP_SIZE <= 32);
1938 props->minSubgroupSize = 8;
1939 props->maxSubgroupSize = 32;
1940 props->maxComputeWorkgroupSubgroups = pdevice->info.max_cs_threads;
1941 props->requiredSubgroupSizeStages = VK_SHADER_STAGE_COMPUTE_BIT;
1942 break;
1943 }
1944 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT_CONTROLS_PROPERTIES_KHR : {
1945 VkPhysicalDeviceFloatControlsPropertiesKHR *properties = (void *)ext;
1946 CORE_PROPERTY(1, 2, denormBehaviorIndependence);
1947 CORE_PROPERTY(1, 2, roundingModeIndependence);
1948 CORE_PROPERTY(1, 2, shaderDenormFlushToZeroFloat16);
1949 CORE_PROPERTY(1, 2, shaderDenormPreserveFloat16);
1950 CORE_PROPERTY(1, 2, shaderRoundingModeRTEFloat16);
1951 CORE_PROPERTY(1, 2, shaderRoundingModeRTZFloat16);
1952 CORE_PROPERTY(1, 2, shaderSignedZeroInfNanPreserveFloat16);
1953 CORE_PROPERTY(1, 2, shaderDenormFlushToZeroFloat32);
1954 CORE_PROPERTY(1, 2, shaderDenormPreserveFloat32);
1955 CORE_PROPERTY(1, 2, shaderRoundingModeRTEFloat32);
1956 CORE_PROPERTY(1, 2, shaderRoundingModeRTZFloat32);
1957 CORE_PROPERTY(1, 2, shaderSignedZeroInfNanPreserveFloat32);
1958 CORE_PROPERTY(1, 2, shaderDenormFlushToZeroFloat64);
1959 CORE_PROPERTY(1, 2, shaderDenormPreserveFloat64);
1960 CORE_PROPERTY(1, 2, shaderRoundingModeRTEFloat64);
1961 CORE_PROPERTY(1, 2, shaderRoundingModeRTZFloat64);
1962 CORE_PROPERTY(1, 2, shaderSignedZeroInfNanPreserveFloat64);
1963 break;
1964 }
1965
1966 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_PROPERTIES_EXT: {
1967 VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *props =
1968 (VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *)ext;
1969
1970 /* From the SKL PRM Vol. 2d, docs for RENDER_SURFACE_STATE::Surface
1971 * Base Address:
1972 *
1973 * "For SURFTYPE_BUFFER non-rendertarget surfaces, this field
1974 * specifies the base address of the first element of the surface,
1975 * computed in software by adding the surface base address to the
1976 * byte offset of the element in the buffer. The base address must
1977 * be aligned to element size."
1978 *
1979 * The typed dataport messages require that things be texel aligned.
1980 * Otherwise, we may just load/store the wrong data or, in the worst
1981 * case, there may be hangs.
1982 */
1983 props->storageTexelBufferOffsetAlignmentBytes = 16;
1984 props->storageTexelBufferOffsetSingleTexelAlignment = true;
1985
1986 /* The sampler, however, is much more forgiving and it can handle
1987 * arbitrary byte alignment for linear and buffer surfaces. It's
1988 * hard to find a good PRM citation for this but years of empirical
1989 * experience demonstrate that this is true.
1990 */
1991 props->uniformTexelBufferOffsetAlignmentBytes = 1;
1992 props->uniformTexelBufferOffsetSingleTexelAlignment = false;
1993 break;
1994 }
1995
1996 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_PROPERTIES_KHR: {
1997 VkPhysicalDeviceTimelineSemaphorePropertiesKHR *properties =
1998 (VkPhysicalDeviceTimelineSemaphorePropertiesKHR *) ext;
1999 CORE_PROPERTY(1, 2, maxTimelineSemaphoreValueDifference);
2000 break;
2001 }
2002
2003 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_PROPERTIES_EXT: {
2004 VkPhysicalDeviceTransformFeedbackPropertiesEXT *props =
2005 (VkPhysicalDeviceTransformFeedbackPropertiesEXT *)ext;
2006
2007 props->maxTransformFeedbackStreams = MAX_XFB_STREAMS;
2008 props->maxTransformFeedbackBuffers = MAX_XFB_BUFFERS;
2009 props->maxTransformFeedbackBufferSize = (1ull << 32);
2010 props->maxTransformFeedbackStreamDataSize = 128 * 4;
2011 props->maxTransformFeedbackBufferDataSize = 128 * 4;
2012 props->maxTransformFeedbackBufferDataStride = 2048;
2013 props->transformFeedbackQueries = true;
2014 props->transformFeedbackStreamsLinesTriangles = false;
2015 props->transformFeedbackRasterizationStreamSelect = false;
2016 props->transformFeedbackDraw = true;
2017 break;
2018 }
2019
2020 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT: {
2021 VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *props =
2022 (VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *)ext;
2023 /* We have to restrict this a bit for multiview */
2024 props->maxVertexAttribDivisor = UINT32_MAX / 16;
2025 break;
2026 }
2027
2028 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES:
2029 anv_get_physical_device_properties_1_1(pdevice, (void *)ext);
2030 break;
2031
2032 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES:
2033 anv_get_physical_device_properties_1_2(pdevice, (void *)ext);
2034 break;
2035
2036 default:
2037 anv_debug_ignored_stype(ext->sType);
2038 break;
2039 }
2040 }
2041
2042 #undef CORE_RENAMED_PROPERTY
2043 #undef CORE_PROPERTY
2044 }
2045
2046 /* We support exactly one queue family. */
2047 static const VkQueueFamilyProperties
2048 anv_queue_family_properties = {
2049 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
2050 VK_QUEUE_COMPUTE_BIT |
2051 VK_QUEUE_TRANSFER_BIT,
2052 .queueCount = 1,
2053 .timestampValidBits = 36, /* XXX: Real value here */
2054 .minImageTransferGranularity = { 1, 1, 1 },
2055 };
2056
2057 void anv_GetPhysicalDeviceQueueFamilyProperties(
2058 VkPhysicalDevice physicalDevice,
2059 uint32_t* pCount,
2060 VkQueueFamilyProperties* pQueueFamilyProperties)
2061 {
2062 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pCount);
2063
2064 vk_outarray_append(&out, p) {
2065 *p = anv_queue_family_properties;
2066 }
2067 }
2068
2069 void anv_GetPhysicalDeviceQueueFamilyProperties2(
2070 VkPhysicalDevice physicalDevice,
2071 uint32_t* pQueueFamilyPropertyCount,
2072 VkQueueFamilyProperties2* pQueueFamilyProperties)
2073 {
2074
2075 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pQueueFamilyPropertyCount);
2076
2077 vk_outarray_append(&out, p) {
2078 p->queueFamilyProperties = anv_queue_family_properties;
2079
2080 vk_foreach_struct(s, p->pNext) {
2081 anv_debug_ignored_stype(s->sType);
2082 }
2083 }
2084 }
2085
2086 void anv_GetPhysicalDeviceMemoryProperties(
2087 VkPhysicalDevice physicalDevice,
2088 VkPhysicalDeviceMemoryProperties* pMemoryProperties)
2089 {
2090 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
2091
2092 pMemoryProperties->memoryTypeCount = physical_device->memory.type_count;
2093 for (uint32_t i = 0; i < physical_device->memory.type_count; i++) {
2094 pMemoryProperties->memoryTypes[i] = (VkMemoryType) {
2095 .propertyFlags = physical_device->memory.types[i].propertyFlags,
2096 .heapIndex = physical_device->memory.types[i].heapIndex,
2097 };
2098 }
2099
2100 pMemoryProperties->memoryHeapCount = physical_device->memory.heap_count;
2101 for (uint32_t i = 0; i < physical_device->memory.heap_count; i++) {
2102 pMemoryProperties->memoryHeaps[i] = (VkMemoryHeap) {
2103 .size = physical_device->memory.heaps[i].size,
2104 .flags = physical_device->memory.heaps[i].flags,
2105 };
2106 }
2107 }
2108
2109 static void
2110 anv_get_memory_budget(VkPhysicalDevice physicalDevice,
2111 VkPhysicalDeviceMemoryBudgetPropertiesEXT *memoryBudget)
2112 {
2113 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
2114 uint64_t sys_available = get_available_system_memory();
2115 assert(sys_available > 0);
2116
2117 VkDeviceSize total_heaps_size = 0;
2118 for (size_t i = 0; i < device->memory.heap_count; i++)
2119 total_heaps_size += device->memory.heaps[i].size;
2120
2121 for (size_t i = 0; i < device->memory.heap_count; i++) {
2122 VkDeviceSize heap_size = device->memory.heaps[i].size;
2123 VkDeviceSize heap_used = device->memory.heaps[i].used;
2124 VkDeviceSize heap_budget;
2125
2126 double heap_proportion = (double) heap_size / total_heaps_size;
2127 VkDeviceSize sys_available_prop = sys_available * heap_proportion;
2128
2129 /*
2130 * Let's not incite the app to starve the system: report at most 90% of
2131 * available system memory.
2132 */
2133 uint64_t heap_available = sys_available_prop * 9 / 10;
2134 heap_budget = MIN2(heap_size, heap_used + heap_available);
2135
2136 /*
2137 * Round down to the nearest MB
2138 */
2139 heap_budget &= ~((1ull << 20) - 1);
2140
2141 /*
2142 * The heapBudget value must be non-zero for array elements less than
2143 * VkPhysicalDeviceMemoryProperties::memoryHeapCount. The heapBudget
2144 * value must be less than or equal to VkMemoryHeap::size for each heap.
2145 */
2146 assert(0 < heap_budget && heap_budget <= heap_size);
2147
2148 memoryBudget->heapUsage[i] = heap_used;
2149 memoryBudget->heapBudget[i] = heap_budget;
2150 }
2151
2152 /* The heapBudget and heapUsage values must be zero for array elements
2153 * greater than or equal to VkPhysicalDeviceMemoryProperties::memoryHeapCount
2154 */
2155 for (uint32_t i = device->memory.heap_count; i < VK_MAX_MEMORY_HEAPS; i++) {
2156 memoryBudget->heapBudget[i] = 0;
2157 memoryBudget->heapUsage[i] = 0;
2158 }
2159 }
2160
2161 void anv_GetPhysicalDeviceMemoryProperties2(
2162 VkPhysicalDevice physicalDevice,
2163 VkPhysicalDeviceMemoryProperties2* pMemoryProperties)
2164 {
2165 anv_GetPhysicalDeviceMemoryProperties(physicalDevice,
2166 &pMemoryProperties->memoryProperties);
2167
2168 vk_foreach_struct(ext, pMemoryProperties->pNext) {
2169 switch (ext->sType) {
2170 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT:
2171 anv_get_memory_budget(physicalDevice, (void*)ext);
2172 break;
2173 default:
2174 anv_debug_ignored_stype(ext->sType);
2175 break;
2176 }
2177 }
2178 }
2179
2180 void
2181 anv_GetDeviceGroupPeerMemoryFeatures(
2182 VkDevice device,
2183 uint32_t heapIndex,
2184 uint32_t localDeviceIndex,
2185 uint32_t remoteDeviceIndex,
2186 VkPeerMemoryFeatureFlags* pPeerMemoryFeatures)
2187 {
2188 assert(localDeviceIndex == 0 && remoteDeviceIndex == 0);
2189 *pPeerMemoryFeatures = VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT |
2190 VK_PEER_MEMORY_FEATURE_COPY_DST_BIT |
2191 VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT |
2192 VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT;
2193 }
2194
2195 PFN_vkVoidFunction anv_GetInstanceProcAddr(
2196 VkInstance _instance,
2197 const char* pName)
2198 {
2199 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2200
2201 /* The Vulkan 1.0 spec for vkGetInstanceProcAddr has a table of exactly
2202 * when we have to return valid function pointers, NULL, or it's left
2203 * undefined. See the table for exact details.
2204 */
2205 if (pName == NULL)
2206 return NULL;
2207
2208 #define LOOKUP_ANV_ENTRYPOINT(entrypoint) \
2209 if (strcmp(pName, "vk" #entrypoint) == 0) \
2210 return (PFN_vkVoidFunction)anv_##entrypoint
2211
2212 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceExtensionProperties);
2213 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceLayerProperties);
2214 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceVersion);
2215 LOOKUP_ANV_ENTRYPOINT(CreateInstance);
2216
2217 #undef LOOKUP_ANV_ENTRYPOINT
2218
2219 if (instance == NULL)
2220 return NULL;
2221
2222 int idx = anv_get_instance_entrypoint_index(pName);
2223 if (idx >= 0)
2224 return instance->dispatch.entrypoints[idx];
2225
2226 idx = anv_get_physical_device_entrypoint_index(pName);
2227 if (idx >= 0)
2228 return instance->physical_device_dispatch.entrypoints[idx];
2229
2230 idx = anv_get_device_entrypoint_index(pName);
2231 if (idx >= 0)
2232 return instance->device_dispatch.entrypoints[idx];
2233
2234 return NULL;
2235 }
2236
2237 /* With version 1+ of the loader interface the ICD should expose
2238 * vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
2239 */
2240 PUBLIC
2241 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
2242 VkInstance instance,
2243 const char* pName);
2244
2245 PUBLIC
2246 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
2247 VkInstance instance,
2248 const char* pName)
2249 {
2250 return anv_GetInstanceProcAddr(instance, pName);
2251 }
2252
2253 PFN_vkVoidFunction anv_GetDeviceProcAddr(
2254 VkDevice _device,
2255 const char* pName)
2256 {
2257 ANV_FROM_HANDLE(anv_device, device, _device);
2258
2259 if (!device || !pName)
2260 return NULL;
2261
2262 int idx = anv_get_device_entrypoint_index(pName);
2263 if (idx < 0)
2264 return NULL;
2265
2266 return device->dispatch.entrypoints[idx];
2267 }
2268
2269 /* With version 4+ of the loader interface the ICD should expose
2270 * vk_icdGetPhysicalDeviceProcAddr()
2271 */
2272 PUBLIC
2273 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetPhysicalDeviceProcAddr(
2274 VkInstance _instance,
2275 const char* pName);
2276
2277 PFN_vkVoidFunction vk_icdGetPhysicalDeviceProcAddr(
2278 VkInstance _instance,
2279 const char* pName)
2280 {
2281 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2282
2283 if (!pName || !instance)
2284 return NULL;
2285
2286 int idx = anv_get_physical_device_entrypoint_index(pName);
2287 if (idx < 0)
2288 return NULL;
2289
2290 return instance->physical_device_dispatch.entrypoints[idx];
2291 }
2292
2293
2294 VkResult
2295 anv_CreateDebugReportCallbackEXT(VkInstance _instance,
2296 const VkDebugReportCallbackCreateInfoEXT* pCreateInfo,
2297 const VkAllocationCallbacks* pAllocator,
2298 VkDebugReportCallbackEXT* pCallback)
2299 {
2300 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2301 return vk_create_debug_report_callback(&instance->debug_report_callbacks,
2302 pCreateInfo, pAllocator, &instance->alloc,
2303 pCallback);
2304 }
2305
2306 void
2307 anv_DestroyDebugReportCallbackEXT(VkInstance _instance,
2308 VkDebugReportCallbackEXT _callback,
2309 const VkAllocationCallbacks* pAllocator)
2310 {
2311 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2312 vk_destroy_debug_report_callback(&instance->debug_report_callbacks,
2313 _callback, pAllocator, &instance->alloc);
2314 }
2315
2316 void
2317 anv_DebugReportMessageEXT(VkInstance _instance,
2318 VkDebugReportFlagsEXT flags,
2319 VkDebugReportObjectTypeEXT objectType,
2320 uint64_t object,
2321 size_t location,
2322 int32_t messageCode,
2323 const char* pLayerPrefix,
2324 const char* pMessage)
2325 {
2326 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2327 vk_debug_report(&instance->debug_report_callbacks, flags, objectType,
2328 object, location, messageCode, pLayerPrefix, pMessage);
2329 }
2330
2331 static struct anv_state
2332 anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
2333 {
2334 struct anv_state state;
2335
2336 state = anv_state_pool_alloc(pool, size, align);
2337 memcpy(state.map, p, size);
2338
2339 return state;
2340 }
2341
2342 /* Haswell border color is a bit of a disaster. Float and unorm formats use a
2343 * straightforward 32-bit float color in the first 64 bytes. Instead of using
2344 * a nice float/integer union like Gen8+, Haswell specifies the integer border
2345 * color as a separate entry /after/ the float color. The layout of this entry
2346 * also depends on the format's bpp (with extra hacks for RG32), and overlaps.
2347 *
2348 * Since we don't know the format/bpp, we can't make any of the border colors
2349 * containing '1' work for all formats, as it would be in the wrong place for
2350 * some of them. We opt to make 32-bit integers work as this seems like the
2351 * most common option. Fortunately, transparent black works regardless, as
2352 * all zeroes is the same in every bit-size.
2353 */
2354 struct hsw_border_color {
2355 float float32[4];
2356 uint32_t _pad0[12];
2357 uint32_t uint32[4];
2358 uint32_t _pad1[108];
2359 };
2360
2361 struct gen8_border_color {
2362 union {
2363 float float32[4];
2364 uint32_t uint32[4];
2365 };
2366 /* Pad out to 64 bytes */
2367 uint32_t _pad[12];
2368 };
2369
2370 static void
2371 anv_device_init_border_colors(struct anv_device *device)
2372 {
2373 if (device->info.is_haswell) {
2374 static const struct hsw_border_color border_colors[] = {
2375 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
2376 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
2377 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
2378 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
2379 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
2380 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
2381 };
2382
2383 device->border_colors =
2384 anv_state_pool_emit_data(&device->dynamic_state_pool,
2385 sizeof(border_colors), 512, border_colors);
2386 } else {
2387 static const struct gen8_border_color border_colors[] = {
2388 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
2389 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
2390 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
2391 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
2392 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
2393 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
2394 };
2395
2396 device->border_colors =
2397 anv_state_pool_emit_data(&device->dynamic_state_pool,
2398 sizeof(border_colors), 64, border_colors);
2399 }
2400 }
2401
2402 static VkResult
2403 anv_device_init_trivial_batch(struct anv_device *device)
2404 {
2405 VkResult result = anv_device_alloc_bo(device, 4096,
2406 ANV_BO_ALLOC_MAPPED,
2407 0 /* explicit_address */,
2408 &device->trivial_batch_bo);
2409 if (result != VK_SUCCESS)
2410 return result;
2411
2412 struct anv_batch batch = {
2413 .start = device->trivial_batch_bo->map,
2414 .next = device->trivial_batch_bo->map,
2415 .end = device->trivial_batch_bo->map + 4096,
2416 };
2417
2418 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
2419 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
2420
2421 if (!device->info.has_llc)
2422 gen_clflush_range(batch.start, batch.next - batch.start);
2423
2424 return VK_SUCCESS;
2425 }
2426
2427 VkResult anv_EnumerateDeviceExtensionProperties(
2428 VkPhysicalDevice physicalDevice,
2429 const char* pLayerName,
2430 uint32_t* pPropertyCount,
2431 VkExtensionProperties* pProperties)
2432 {
2433 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
2434 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
2435
2436 for (int i = 0; i < ANV_DEVICE_EXTENSION_COUNT; i++) {
2437 if (device->supported_extensions.extensions[i]) {
2438 vk_outarray_append(&out, prop) {
2439 *prop = anv_device_extensions[i];
2440 }
2441 }
2442 }
2443
2444 return vk_outarray_status(&out);
2445 }
2446
2447 static void
2448 anv_device_init_dispatch(struct anv_device *device)
2449 {
2450 const struct anv_instance *instance = device->physical->instance;
2451
2452 const struct anv_device_dispatch_table *genX_table;
2453 switch (device->info.gen) {
2454 case 12:
2455 genX_table = &gen12_device_dispatch_table;
2456 break;
2457 case 11:
2458 genX_table = &gen11_device_dispatch_table;
2459 break;
2460 case 10:
2461 genX_table = &gen10_device_dispatch_table;
2462 break;
2463 case 9:
2464 genX_table = &gen9_device_dispatch_table;
2465 break;
2466 case 8:
2467 genX_table = &gen8_device_dispatch_table;
2468 break;
2469 case 7:
2470 if (device->info.is_haswell)
2471 genX_table = &gen75_device_dispatch_table;
2472 else
2473 genX_table = &gen7_device_dispatch_table;
2474 break;
2475 default:
2476 unreachable("unsupported gen\n");
2477 }
2478
2479 for (unsigned i = 0; i < ARRAY_SIZE(device->dispatch.entrypoints); i++) {
2480 /* Vulkan requires that entrypoints for extensions which have not been
2481 * enabled must not be advertised.
2482 */
2483 if (!anv_device_entrypoint_is_enabled(i, instance->app_info.api_version,
2484 &instance->enabled_extensions,
2485 &device->enabled_extensions)) {
2486 device->dispatch.entrypoints[i] = NULL;
2487 } else if (genX_table->entrypoints[i]) {
2488 device->dispatch.entrypoints[i] = genX_table->entrypoints[i];
2489 } else {
2490 device->dispatch.entrypoints[i] =
2491 anv_device_dispatch_table.entrypoints[i];
2492 }
2493 }
2494 }
2495
2496 static int
2497 vk_priority_to_gen(int priority)
2498 {
2499 switch (priority) {
2500 case VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT:
2501 return GEN_CONTEXT_LOW_PRIORITY;
2502 case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT:
2503 return GEN_CONTEXT_MEDIUM_PRIORITY;
2504 case VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT:
2505 return GEN_CONTEXT_HIGH_PRIORITY;
2506 case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT:
2507 return GEN_CONTEXT_REALTIME_PRIORITY;
2508 default:
2509 unreachable("Invalid priority");
2510 }
2511 }
2512
2513 static VkResult
2514 anv_device_init_hiz_clear_value_bo(struct anv_device *device)
2515 {
2516 VkResult result = anv_device_alloc_bo(device, 4096,
2517 ANV_BO_ALLOC_MAPPED,
2518 0 /* explicit_address */,
2519 &device->hiz_clear_bo);
2520 if (result != VK_SUCCESS)
2521 return result;
2522
2523 union isl_color_value hiz_clear = { .u32 = { 0, } };
2524 hiz_clear.f32[0] = ANV_HZ_FC_VAL;
2525
2526 memcpy(device->hiz_clear_bo->map, hiz_clear.u32, sizeof(hiz_clear.u32));
2527
2528 if (!device->info.has_llc)
2529 gen_clflush_range(device->hiz_clear_bo->map, sizeof(hiz_clear.u32));
2530
2531 return VK_SUCCESS;
2532 }
2533
2534 static bool
2535 get_bo_from_pool(struct gen_batch_decode_bo *ret,
2536 struct anv_block_pool *pool,
2537 uint64_t address)
2538 {
2539 anv_block_pool_foreach_bo(bo, pool) {
2540 uint64_t bo_address = gen_48b_address(bo->offset);
2541 if (address >= bo_address && address < (bo_address + bo->size)) {
2542 *ret = (struct gen_batch_decode_bo) {
2543 .addr = bo_address,
2544 .size = bo->size,
2545 .map = bo->map,
2546 };
2547 return true;
2548 }
2549 }
2550 return false;
2551 }
2552
2553 /* Finding a buffer for batch decoding */
2554 static struct gen_batch_decode_bo
2555 decode_get_bo(void *v_batch, bool ppgtt, uint64_t address)
2556 {
2557 struct anv_device *device = v_batch;
2558 struct gen_batch_decode_bo ret_bo = {};
2559
2560 assert(ppgtt);
2561
2562 if (get_bo_from_pool(&ret_bo, &device->dynamic_state_pool.block_pool, address))
2563 return ret_bo;
2564 if (get_bo_from_pool(&ret_bo, &device->instruction_state_pool.block_pool, address))
2565 return ret_bo;
2566 if (get_bo_from_pool(&ret_bo, &device->binding_table_pool.block_pool, address))
2567 return ret_bo;
2568 if (get_bo_from_pool(&ret_bo, &device->surface_state_pool.block_pool, address))
2569 return ret_bo;
2570
2571 if (!device->cmd_buffer_being_decoded)
2572 return (struct gen_batch_decode_bo) { };
2573
2574 struct anv_batch_bo **bo;
2575
2576 u_vector_foreach(bo, &device->cmd_buffer_being_decoded->seen_bbos) {
2577 /* The decoder zeroes out the top 16 bits, so we need to as well */
2578 uint64_t bo_address = (*bo)->bo->offset & (~0ull >> 16);
2579
2580 if (address >= bo_address && address < bo_address + (*bo)->bo->size) {
2581 return (struct gen_batch_decode_bo) {
2582 .addr = bo_address,
2583 .size = (*bo)->bo->size,
2584 .map = (*bo)->bo->map,
2585 };
2586 }
2587 }
2588
2589 return (struct gen_batch_decode_bo) { };
2590 }
2591
2592 struct gen_aux_map_buffer {
2593 struct gen_buffer base;
2594 struct anv_state state;
2595 };
2596
2597 static struct gen_buffer *
2598 gen_aux_map_buffer_alloc(void *driver_ctx, uint32_t size)
2599 {
2600 struct gen_aux_map_buffer *buf = malloc(sizeof(struct gen_aux_map_buffer));
2601 if (!buf)
2602 return NULL;
2603
2604 struct anv_device *device = (struct anv_device*)driver_ctx;
2605 assert(device->physical->supports_48bit_addresses &&
2606 device->physical->use_softpin);
2607
2608 struct anv_state_pool *pool = &device->dynamic_state_pool;
2609 buf->state = anv_state_pool_alloc(pool, size, size);
2610
2611 buf->base.gpu = pool->block_pool.bo->offset + buf->state.offset;
2612 buf->base.gpu_end = buf->base.gpu + buf->state.alloc_size;
2613 buf->base.map = buf->state.map;
2614 buf->base.driver_bo = &buf->state;
2615 return &buf->base;
2616 }
2617
2618 static void
2619 gen_aux_map_buffer_free(void *driver_ctx, struct gen_buffer *buffer)
2620 {
2621 struct gen_aux_map_buffer *buf = (struct gen_aux_map_buffer*)buffer;
2622 struct anv_device *device = (struct anv_device*)driver_ctx;
2623 struct anv_state_pool *pool = &device->dynamic_state_pool;
2624 anv_state_pool_free(pool, buf->state);
2625 free(buf);
2626 }
2627
2628 static struct gen_mapped_pinned_buffer_alloc aux_map_allocator = {
2629 .alloc = gen_aux_map_buffer_alloc,
2630 .free = gen_aux_map_buffer_free,
2631 };
2632
2633 static VkResult
2634 check_physical_device_features(VkPhysicalDevice physicalDevice,
2635 const VkPhysicalDeviceFeatures *features)
2636 {
2637 VkPhysicalDeviceFeatures supported_features;
2638 anv_GetPhysicalDeviceFeatures(physicalDevice, &supported_features);
2639 VkBool32 *supported_feature = (VkBool32 *)&supported_features;
2640 VkBool32 *enabled_feature = (VkBool32 *)features;
2641 unsigned num_features = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
2642 for (uint32_t i = 0; i < num_features; i++) {
2643 if (enabled_feature[i] && !supported_feature[i])
2644 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
2645 }
2646
2647 return VK_SUCCESS;
2648 }
2649
2650 VkResult anv_CreateDevice(
2651 VkPhysicalDevice physicalDevice,
2652 const VkDeviceCreateInfo* pCreateInfo,
2653 const VkAllocationCallbacks* pAllocator,
2654 VkDevice* pDevice)
2655 {
2656 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
2657 VkResult result;
2658 struct anv_device *device;
2659
2660 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
2661
2662 struct anv_device_extension_table enabled_extensions = { };
2663 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
2664 int idx;
2665 for (idx = 0; idx < ANV_DEVICE_EXTENSION_COUNT; idx++) {
2666 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
2667 anv_device_extensions[idx].extensionName) == 0)
2668 break;
2669 }
2670
2671 if (idx >= ANV_DEVICE_EXTENSION_COUNT)
2672 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2673
2674 if (!physical_device->supported_extensions.extensions[idx])
2675 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2676
2677 enabled_extensions.extensions[idx] = true;
2678 }
2679
2680 /* Check enabled features */
2681 bool robust_buffer_access = false;
2682 if (pCreateInfo->pEnabledFeatures) {
2683 result = check_physical_device_features(physicalDevice,
2684 pCreateInfo->pEnabledFeatures);
2685 if (result != VK_SUCCESS)
2686 return result;
2687
2688 if (pCreateInfo->pEnabledFeatures->robustBufferAccess)
2689 robust_buffer_access = true;
2690 }
2691
2692 vk_foreach_struct_const(ext, pCreateInfo->pNext) {
2693 switch (ext->sType) {
2694 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2: {
2695 const VkPhysicalDeviceFeatures2 *features = (const void *)ext;
2696 result = check_physical_device_features(physicalDevice,
2697 &features->features);
2698 if (result != VK_SUCCESS)
2699 return result;
2700
2701 if (features->features.robustBufferAccess)
2702 robust_buffer_access = true;
2703 break;
2704 }
2705
2706 default:
2707 /* Don't warn */
2708 break;
2709 }
2710 }
2711
2712 /* Check requested queues and fail if we are requested to create any
2713 * queues with flags we don't support.
2714 */
2715 assert(pCreateInfo->queueCreateInfoCount > 0);
2716 for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
2717 if (pCreateInfo->pQueueCreateInfos[i].flags != 0)
2718 return vk_error(VK_ERROR_INITIALIZATION_FAILED);
2719 }
2720
2721 /* Check if client specified queue priority. */
2722 const VkDeviceQueueGlobalPriorityCreateInfoEXT *queue_priority =
2723 vk_find_struct_const(pCreateInfo->pQueueCreateInfos[0].pNext,
2724 DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT);
2725
2726 VkQueueGlobalPriorityEXT priority =
2727 queue_priority ? queue_priority->globalPriority :
2728 VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT;
2729
2730 device = vk_alloc2(&physical_device->instance->alloc, pAllocator,
2731 sizeof(*device), 8,
2732 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
2733 if (!device)
2734 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2735
2736 if (INTEL_DEBUG & DEBUG_BATCH) {
2737 const unsigned decode_flags =
2738 GEN_BATCH_DECODE_FULL |
2739 ((INTEL_DEBUG & DEBUG_COLOR) ? GEN_BATCH_DECODE_IN_COLOR : 0) |
2740 GEN_BATCH_DECODE_OFFSETS |
2741 GEN_BATCH_DECODE_FLOATS;
2742
2743 gen_batch_decode_ctx_init(&device->decoder_ctx,
2744 &physical_device->info,
2745 stderr, decode_flags, NULL,
2746 decode_get_bo, NULL, device);
2747 }
2748
2749 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
2750 device->physical = physical_device;
2751 device->no_hw = physical_device->no_hw;
2752 device->_lost = false;
2753
2754 if (pAllocator)
2755 device->alloc = *pAllocator;
2756 else
2757 device->alloc = physical_device->instance->alloc;
2758
2759 /* XXX(chadv): Can we dup() physicalDevice->fd here? */
2760 device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
2761 if (device->fd == -1) {
2762 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2763 goto fail_device;
2764 }
2765
2766 device->context_id = anv_gem_create_context(device);
2767 if (device->context_id == -1) {
2768 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2769 goto fail_fd;
2770 }
2771
2772 result = anv_queue_init(device, &device->queue);
2773 if (result != VK_SUCCESS)
2774 goto fail_context_id;
2775
2776 if (physical_device->use_softpin) {
2777 if (pthread_mutex_init(&device->vma_mutex, NULL) != 0) {
2778 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2779 goto fail_queue;
2780 }
2781
2782 /* keep the page with address zero out of the allocator */
2783 util_vma_heap_init(&device->vma_lo,
2784 LOW_HEAP_MIN_ADDRESS, LOW_HEAP_SIZE);
2785
2786 util_vma_heap_init(&device->vma_cva, CLIENT_VISIBLE_HEAP_MIN_ADDRESS,
2787 CLIENT_VISIBLE_HEAP_SIZE);
2788
2789 /* Leave the last 4GiB out of the high vma range, so that no state
2790 * base address + size can overflow 48 bits. For more information see
2791 * the comment about Wa32bitGeneralStateOffset in anv_allocator.c
2792 */
2793 util_vma_heap_init(&device->vma_hi, HIGH_HEAP_MIN_ADDRESS,
2794 physical_device->gtt_size - (1ull << 32) -
2795 HIGH_HEAP_MIN_ADDRESS);
2796 }
2797
2798 list_inithead(&device->memory_objects);
2799
2800 /* As per spec, the driver implementation may deny requests to acquire
2801 * a priority above the default priority (MEDIUM) if the caller does not
2802 * have sufficient privileges. In this scenario VK_ERROR_NOT_PERMITTED_EXT
2803 * is returned.
2804 */
2805 if (physical_device->has_context_priority) {
2806 int err = anv_gem_set_context_param(device->fd, device->context_id,
2807 I915_CONTEXT_PARAM_PRIORITY,
2808 vk_priority_to_gen(priority));
2809 if (err != 0 && priority > VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT) {
2810 result = vk_error(VK_ERROR_NOT_PERMITTED_EXT);
2811 goto fail_vmas;
2812 }
2813 }
2814
2815 device->info = physical_device->info;
2816 device->isl_dev = physical_device->isl_dev;
2817
2818 /* On Broadwell and later, we can use batch chaining to more efficiently
2819 * implement growing command buffers. Prior to Haswell, the kernel
2820 * command parser gets in the way and we have to fall back to growing
2821 * the batch.
2822 */
2823 device->can_chain_batches = device->info.gen >= 8;
2824
2825 device->robust_buffer_access = robust_buffer_access;
2826 device->enabled_extensions = enabled_extensions;
2827
2828 anv_device_init_dispatch(device);
2829
2830 if (pthread_mutex_init(&device->mutex, NULL) != 0) {
2831 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2832 goto fail_queue;
2833 }
2834
2835 pthread_condattr_t condattr;
2836 if (pthread_condattr_init(&condattr) != 0) {
2837 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2838 goto fail_mutex;
2839 }
2840 if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC) != 0) {
2841 pthread_condattr_destroy(&condattr);
2842 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2843 goto fail_mutex;
2844 }
2845 if (pthread_cond_init(&device->queue_submit, &condattr) != 0) {
2846 pthread_condattr_destroy(&condattr);
2847 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2848 goto fail_mutex;
2849 }
2850 pthread_condattr_destroy(&condattr);
2851
2852 result = anv_bo_cache_init(&device->bo_cache);
2853 if (result != VK_SUCCESS)
2854 goto fail_queue_cond;
2855
2856 anv_bo_pool_init(&device->batch_bo_pool, device);
2857
2858 result = anv_state_pool_init(&device->dynamic_state_pool, device,
2859 DYNAMIC_STATE_POOL_MIN_ADDRESS, 16384);
2860 if (result != VK_SUCCESS)
2861 goto fail_batch_bo_pool;
2862
2863 result = anv_state_pool_init(&device->instruction_state_pool, device,
2864 INSTRUCTION_STATE_POOL_MIN_ADDRESS, 16384);
2865 if (result != VK_SUCCESS)
2866 goto fail_dynamic_state_pool;
2867
2868 result = anv_state_pool_init(&device->surface_state_pool, device,
2869 SURFACE_STATE_POOL_MIN_ADDRESS, 4096);
2870 if (result != VK_SUCCESS)
2871 goto fail_instruction_state_pool;
2872
2873 if (physical_device->use_softpin) {
2874 result = anv_state_pool_init(&device->binding_table_pool, device,
2875 BINDING_TABLE_POOL_MIN_ADDRESS, 4096);
2876 if (result != VK_SUCCESS)
2877 goto fail_surface_state_pool;
2878 }
2879
2880 if (device->info.gen >= 12) {
2881 device->aux_map_ctx = gen_aux_map_init(device, &aux_map_allocator,
2882 &physical_device->info);
2883 if (!device->aux_map_ctx)
2884 goto fail_binding_table_pool;
2885 }
2886
2887 result = anv_device_alloc_bo(device, 4096, 0 /* flags */,
2888 0 /* explicit_address */,
2889 &device->workaround_bo);
2890 if (result != VK_SUCCESS)
2891 goto fail_surface_aux_map_pool;
2892
2893 result = anv_device_init_trivial_batch(device);
2894 if (result != VK_SUCCESS)
2895 goto fail_workaround_bo;
2896
2897 if (device->info.gen >= 10) {
2898 result = anv_device_init_hiz_clear_value_bo(device);
2899 if (result != VK_SUCCESS)
2900 goto fail_trivial_batch_bo;
2901 }
2902
2903 anv_scratch_pool_init(device, &device->scratch_pool);
2904
2905 switch (device->info.gen) {
2906 case 7:
2907 if (!device->info.is_haswell)
2908 result = gen7_init_device_state(device);
2909 else
2910 result = gen75_init_device_state(device);
2911 break;
2912 case 8:
2913 result = gen8_init_device_state(device);
2914 break;
2915 case 9:
2916 result = gen9_init_device_state(device);
2917 break;
2918 case 10:
2919 result = gen10_init_device_state(device);
2920 break;
2921 case 11:
2922 result = gen11_init_device_state(device);
2923 break;
2924 case 12:
2925 result = gen12_init_device_state(device);
2926 break;
2927 default:
2928 /* Shouldn't get here as we don't create physical devices for any other
2929 * gens. */
2930 unreachable("unhandled gen");
2931 }
2932 if (result != VK_SUCCESS)
2933 goto fail_workaround_bo;
2934
2935 anv_pipeline_cache_init(&device->default_pipeline_cache, device, true);
2936
2937 anv_device_init_blorp(device);
2938
2939 anv_device_init_border_colors(device);
2940
2941 anv_device_perf_init(device);
2942
2943 *pDevice = anv_device_to_handle(device);
2944
2945 return VK_SUCCESS;
2946
2947 fail_workaround_bo:
2948 anv_scratch_pool_finish(device, &device->scratch_pool);
2949 if (device->info.gen >= 10)
2950 anv_device_release_bo(device, device->hiz_clear_bo);
2951 anv_device_release_bo(device, device->workaround_bo);
2952 fail_trivial_batch_bo:
2953 anv_device_release_bo(device, device->trivial_batch_bo);
2954 fail_surface_aux_map_pool:
2955 if (device->info.gen >= 12) {
2956 gen_aux_map_finish(device->aux_map_ctx);
2957 device->aux_map_ctx = NULL;
2958 }
2959 fail_binding_table_pool:
2960 if (physical_device->use_softpin)
2961 anv_state_pool_finish(&device->binding_table_pool);
2962 fail_surface_state_pool:
2963 anv_state_pool_finish(&device->surface_state_pool);
2964 fail_instruction_state_pool:
2965 anv_state_pool_finish(&device->instruction_state_pool);
2966 fail_dynamic_state_pool:
2967 anv_state_pool_finish(&device->dynamic_state_pool);
2968 fail_batch_bo_pool:
2969 anv_bo_pool_finish(&device->batch_bo_pool);
2970 anv_bo_cache_finish(&device->bo_cache);
2971 fail_queue_cond:
2972 pthread_cond_destroy(&device->queue_submit);
2973 fail_mutex:
2974 pthread_mutex_destroy(&device->mutex);
2975 fail_vmas:
2976 if (physical_device->use_softpin) {
2977 util_vma_heap_finish(&device->vma_hi);
2978 util_vma_heap_finish(&device->vma_cva);
2979 util_vma_heap_finish(&device->vma_lo);
2980 }
2981 fail_queue:
2982 anv_queue_finish(&device->queue);
2983 fail_context_id:
2984 anv_gem_destroy_context(device, device->context_id);
2985 fail_fd:
2986 close(device->fd);
2987 fail_device:
2988 vk_free(&device->alloc, device);
2989
2990 return result;
2991 }
2992
2993 void anv_DestroyDevice(
2994 VkDevice _device,
2995 const VkAllocationCallbacks* pAllocator)
2996 {
2997 ANV_FROM_HANDLE(anv_device, device, _device);
2998
2999 if (!device)
3000 return;
3001
3002 anv_device_finish_blorp(device);
3003
3004 anv_pipeline_cache_finish(&device->default_pipeline_cache);
3005
3006 anv_queue_finish(&device->queue);
3007
3008 #ifdef HAVE_VALGRIND
3009 /* We only need to free these to prevent valgrind errors. The backing
3010 * BO will go away in a couple of lines so we don't actually leak.
3011 */
3012 anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
3013 anv_state_pool_free(&device->dynamic_state_pool, device->slice_hash);
3014 #endif
3015
3016 anv_scratch_pool_finish(device, &device->scratch_pool);
3017
3018 anv_device_release_bo(device, device->workaround_bo);
3019 anv_device_release_bo(device, device->trivial_batch_bo);
3020 if (device->info.gen >= 10)
3021 anv_device_release_bo(device, device->hiz_clear_bo);
3022
3023 if (device->info.gen >= 12) {
3024 gen_aux_map_finish(device->aux_map_ctx);
3025 device->aux_map_ctx = NULL;
3026 }
3027
3028 if (device->physical->use_softpin)
3029 anv_state_pool_finish(&device->binding_table_pool);
3030 anv_state_pool_finish(&device->surface_state_pool);
3031 anv_state_pool_finish(&device->instruction_state_pool);
3032 anv_state_pool_finish(&device->dynamic_state_pool);
3033
3034 anv_bo_pool_finish(&device->batch_bo_pool);
3035
3036 anv_bo_cache_finish(&device->bo_cache);
3037
3038 if (device->physical->use_softpin) {
3039 util_vma_heap_finish(&device->vma_hi);
3040 util_vma_heap_finish(&device->vma_cva);
3041 util_vma_heap_finish(&device->vma_lo);
3042 }
3043
3044 pthread_cond_destroy(&device->queue_submit);
3045 pthread_mutex_destroy(&device->mutex);
3046
3047 anv_gem_destroy_context(device, device->context_id);
3048
3049 if (INTEL_DEBUG & DEBUG_BATCH)
3050 gen_batch_decode_ctx_finish(&device->decoder_ctx);
3051
3052 close(device->fd);
3053
3054 vk_free(&device->alloc, device);
3055 }
3056
3057 VkResult anv_EnumerateInstanceLayerProperties(
3058 uint32_t* pPropertyCount,
3059 VkLayerProperties* pProperties)
3060 {
3061 if (pProperties == NULL) {
3062 *pPropertyCount = 0;
3063 return VK_SUCCESS;
3064 }
3065
3066 /* None supported at this time */
3067 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
3068 }
3069
3070 VkResult anv_EnumerateDeviceLayerProperties(
3071 VkPhysicalDevice physicalDevice,
3072 uint32_t* pPropertyCount,
3073 VkLayerProperties* pProperties)
3074 {
3075 if (pProperties == NULL) {
3076 *pPropertyCount = 0;
3077 return VK_SUCCESS;
3078 }
3079
3080 /* None supported at this time */
3081 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
3082 }
3083
3084 void anv_GetDeviceQueue(
3085 VkDevice _device,
3086 uint32_t queueNodeIndex,
3087 uint32_t queueIndex,
3088 VkQueue* pQueue)
3089 {
3090 const VkDeviceQueueInfo2 info = {
3091 .sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_INFO_2,
3092 .pNext = NULL,
3093 .flags = 0,
3094 .queueFamilyIndex = queueNodeIndex,
3095 .queueIndex = queueIndex,
3096 };
3097
3098 anv_GetDeviceQueue2(_device, &info, pQueue);
3099 }
3100
3101 void anv_GetDeviceQueue2(
3102 VkDevice _device,
3103 const VkDeviceQueueInfo2* pQueueInfo,
3104 VkQueue* pQueue)
3105 {
3106 ANV_FROM_HANDLE(anv_device, device, _device);
3107
3108 assert(pQueueInfo->queueIndex == 0);
3109
3110 if (pQueueInfo->flags == device->queue.flags)
3111 *pQueue = anv_queue_to_handle(&device->queue);
3112 else
3113 *pQueue = NULL;
3114 }
3115
3116 VkResult
3117 _anv_device_set_lost(struct anv_device *device,
3118 const char *file, int line,
3119 const char *msg, ...)
3120 {
3121 VkResult err;
3122 va_list ap;
3123
3124 p_atomic_inc(&device->_lost);
3125
3126 va_start(ap, msg);
3127 err = __vk_errorv(device->physical->instance, device,
3128 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
3129 VK_ERROR_DEVICE_LOST, file, line, msg, ap);
3130 va_end(ap);
3131
3132 if (env_var_as_boolean("ANV_ABORT_ON_DEVICE_LOSS", false))
3133 abort();
3134
3135 return err;
3136 }
3137
3138 VkResult
3139 _anv_queue_set_lost(struct anv_queue *queue,
3140 const char *file, int line,
3141 const char *msg, ...)
3142 {
3143 VkResult err;
3144 va_list ap;
3145
3146 p_atomic_inc(&queue->device->_lost);
3147
3148 va_start(ap, msg);
3149 err = __vk_errorv(queue->device->physical->instance, queue->device,
3150 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
3151 VK_ERROR_DEVICE_LOST, file, line, msg, ap);
3152 va_end(ap);
3153
3154 if (env_var_as_boolean("ANV_ABORT_ON_DEVICE_LOSS", false))
3155 abort();
3156
3157 return err;
3158 }
3159
3160 VkResult
3161 anv_device_query_status(struct anv_device *device)
3162 {
3163 /* This isn't likely as most of the callers of this function already check
3164 * for it. However, it doesn't hurt to check and it potentially lets us
3165 * avoid an ioctl.
3166 */
3167 if (anv_device_is_lost(device))
3168 return VK_ERROR_DEVICE_LOST;
3169
3170 uint32_t active, pending;
3171 int ret = anv_gem_gpu_get_reset_stats(device, &active, &pending);
3172 if (ret == -1) {
3173 /* We don't know the real error. */
3174 return anv_device_set_lost(device, "get_reset_stats failed: %m");
3175 }
3176
3177 if (active) {
3178 return anv_device_set_lost(device, "GPU hung on one of our command buffers");
3179 } else if (pending) {
3180 return anv_device_set_lost(device, "GPU hung with commands in-flight");
3181 }
3182
3183 return VK_SUCCESS;
3184 }
3185
3186 VkResult
3187 anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo)
3188 {
3189 /* Note: This only returns whether or not the BO is in use by an i915 GPU.
3190 * Other usages of the BO (such as on different hardware) will not be
3191 * flagged as "busy" by this ioctl. Use with care.
3192 */
3193 int ret = anv_gem_busy(device, bo->gem_handle);
3194 if (ret == 1) {
3195 return VK_NOT_READY;
3196 } else if (ret == -1) {
3197 /* We don't know the real error. */
3198 return anv_device_set_lost(device, "gem wait failed: %m");
3199 }
3200
3201 /* Query for device status after the busy call. If the BO we're checking
3202 * got caught in a GPU hang we don't want to return VK_SUCCESS to the
3203 * client because it clearly doesn't have valid data. Yes, this most
3204 * likely means an ioctl, but we just did an ioctl to query the busy status
3205 * so it's no great loss.
3206 */
3207 return anv_device_query_status(device);
3208 }
3209
3210 VkResult
3211 anv_device_wait(struct anv_device *device, struct anv_bo *bo,
3212 int64_t timeout)
3213 {
3214 int ret = anv_gem_wait(device, bo->gem_handle, &timeout);
3215 if (ret == -1 && errno == ETIME) {
3216 return VK_TIMEOUT;
3217 } else if (ret == -1) {
3218 /* We don't know the real error. */
3219 return anv_device_set_lost(device, "gem wait failed: %m");
3220 }
3221
3222 /* Query for device status after the wait. If the BO we're waiting on got
3223 * caught in a GPU hang we don't want to return VK_SUCCESS to the client
3224 * because it clearly doesn't have valid data. Yes, this most likely means
3225 * an ioctl, but we just did an ioctl to wait so it's no great loss.
3226 */
3227 return anv_device_query_status(device);
3228 }
3229
3230 VkResult anv_DeviceWaitIdle(
3231 VkDevice _device)
3232 {
3233 ANV_FROM_HANDLE(anv_device, device, _device);
3234
3235 if (anv_device_is_lost(device))
3236 return VK_ERROR_DEVICE_LOST;
3237
3238 return anv_queue_submit_simple_batch(&device->queue, NULL);
3239 }
3240
3241 uint64_t
3242 anv_vma_alloc(struct anv_device *device,
3243 uint64_t size, uint64_t align,
3244 enum anv_bo_alloc_flags alloc_flags,
3245 uint64_t client_address)
3246 {
3247 pthread_mutex_lock(&device->vma_mutex);
3248
3249 uint64_t addr = 0;
3250
3251 if (alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) {
3252 if (client_address) {
3253 if (util_vma_heap_alloc_addr(&device->vma_cva,
3254 client_address, size)) {
3255 addr = client_address;
3256 }
3257 } else {
3258 addr = util_vma_heap_alloc(&device->vma_cva, size, align);
3259 }
3260 /* We don't want to fall back to other heaps */
3261 goto done;
3262 }
3263
3264 assert(client_address == 0);
3265
3266 if (!(alloc_flags & ANV_BO_ALLOC_32BIT_ADDRESS))
3267 addr = util_vma_heap_alloc(&device->vma_hi, size, align);
3268
3269 if (addr == 0)
3270 addr = util_vma_heap_alloc(&device->vma_lo, size, align);
3271
3272 done:
3273 pthread_mutex_unlock(&device->vma_mutex);
3274
3275 assert(addr == gen_48b_address(addr));
3276 return gen_canonical_address(addr);
3277 }
3278
3279 void
3280 anv_vma_free(struct anv_device *device,
3281 uint64_t address, uint64_t size)
3282 {
3283 const uint64_t addr_48b = gen_48b_address(address);
3284
3285 pthread_mutex_lock(&device->vma_mutex);
3286
3287 if (addr_48b >= LOW_HEAP_MIN_ADDRESS &&
3288 addr_48b <= LOW_HEAP_MAX_ADDRESS) {
3289 util_vma_heap_free(&device->vma_lo, addr_48b, size);
3290 } else if (addr_48b >= CLIENT_VISIBLE_HEAP_MIN_ADDRESS &&
3291 addr_48b <= CLIENT_VISIBLE_HEAP_MAX_ADDRESS) {
3292 util_vma_heap_free(&device->vma_cva, addr_48b, size);
3293 } else {
3294 assert(addr_48b >= HIGH_HEAP_MIN_ADDRESS);
3295 util_vma_heap_free(&device->vma_hi, addr_48b, size);
3296 }
3297
3298 pthread_mutex_unlock(&device->vma_mutex);
3299 }
3300
3301 VkResult anv_AllocateMemory(
3302 VkDevice _device,
3303 const VkMemoryAllocateInfo* pAllocateInfo,
3304 const VkAllocationCallbacks* pAllocator,
3305 VkDeviceMemory* pMem)
3306 {
3307 ANV_FROM_HANDLE(anv_device, device, _device);
3308 struct anv_physical_device *pdevice = device->physical;
3309 struct anv_device_memory *mem;
3310 VkResult result = VK_SUCCESS;
3311
3312 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
3313
3314 /* The Vulkan 1.0.33 spec says "allocationSize must be greater than 0". */
3315 assert(pAllocateInfo->allocationSize > 0);
3316
3317 VkDeviceSize aligned_alloc_size =
3318 align_u64(pAllocateInfo->allocationSize, 4096);
3319
3320 if (aligned_alloc_size > MAX_MEMORY_ALLOCATION_SIZE)
3321 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
3322
3323 assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
3324 struct anv_memory_type *mem_type =
3325 &pdevice->memory.types[pAllocateInfo->memoryTypeIndex];
3326 assert(mem_type->heapIndex < pdevice->memory.heap_count);
3327 struct anv_memory_heap *mem_heap =
3328 &pdevice->memory.heaps[mem_type->heapIndex];
3329
3330 uint64_t mem_heap_used = p_atomic_read(&mem_heap->used);
3331 if (mem_heap_used + aligned_alloc_size > mem_heap->size)
3332 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
3333
3334 mem = vk_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
3335 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3336 if (mem == NULL)
3337 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3338
3339 assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
3340 mem->type = mem_type;
3341 mem->map = NULL;
3342 mem->map_size = 0;
3343 mem->ahw = NULL;
3344 mem->host_ptr = NULL;
3345
3346 enum anv_bo_alloc_flags alloc_flags = 0;
3347
3348 const VkExportMemoryAllocateInfo *export_info = NULL;
3349 const VkImportAndroidHardwareBufferInfoANDROID *ahw_import_info = NULL;
3350 const VkImportMemoryFdInfoKHR *fd_info = NULL;
3351 const VkImportMemoryHostPointerInfoEXT *host_ptr_info = NULL;
3352 const VkMemoryDedicatedAllocateInfo *dedicated_info = NULL;
3353 VkMemoryAllocateFlags vk_flags = 0;
3354 uint64_t client_address = 0;
3355
3356 vk_foreach_struct_const(ext, pAllocateInfo->pNext) {
3357 switch (ext->sType) {
3358 case VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO:
3359 export_info = (void *)ext;
3360 break;
3361
3362 case VK_STRUCTURE_TYPE_IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID:
3363 ahw_import_info = (void *)ext;
3364 break;
3365
3366 case VK_STRUCTURE_TYPE_IMPORT_MEMORY_FD_INFO_KHR:
3367 fd_info = (void *)ext;
3368 break;
3369
3370 case VK_STRUCTURE_TYPE_IMPORT_MEMORY_HOST_POINTER_INFO_EXT:
3371 host_ptr_info = (void *)ext;
3372 break;
3373
3374 case VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO: {
3375 const VkMemoryAllocateFlagsInfo *flags_info = (void *)ext;
3376 vk_flags = flags_info->flags;
3377 break;
3378 }
3379
3380 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO:
3381 dedicated_info = (void *)ext;
3382 break;
3383
3384 case VK_STRUCTURE_TYPE_MEMORY_OPAQUE_CAPTURE_ADDRESS_ALLOCATE_INFO_KHR: {
3385 const VkMemoryOpaqueCaptureAddressAllocateInfoKHR *addr_info =
3386 (const VkMemoryOpaqueCaptureAddressAllocateInfoKHR *)ext;
3387 client_address = addr_info->opaqueCaptureAddress;
3388 break;
3389 }
3390
3391 default:
3392 anv_debug_ignored_stype(ext->sType);
3393 break;
3394 }
3395 }
3396
3397 /* By default, we want all VkDeviceMemory objects to support CCS */
3398 if (device->physical->has_implicit_ccs)
3399 alloc_flags |= ANV_BO_ALLOC_IMPLICIT_CCS;
3400
3401 if (vk_flags & VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT_KHR)
3402 alloc_flags |= ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS;
3403
3404 if ((export_info && export_info->handleTypes) ||
3405 (fd_info && fd_info->handleType) ||
3406 (host_ptr_info && host_ptr_info->handleType)) {
3407 /* Anything imported or exported is EXTERNAL */
3408 alloc_flags |= ANV_BO_ALLOC_EXTERNAL;
3409
3410 /* We can't have implicit CCS on external memory with an AUX-table.
3411 * Doing so would require us to sync the aux tables across processes
3412 * which is impractical.
3413 */
3414 if (device->info.has_aux_map)
3415 alloc_flags &= ~ANV_BO_ALLOC_IMPLICIT_CCS;
3416 }
3417
3418 /* Check if we need to support Android HW buffer export. If so,
3419 * create AHardwareBuffer and import memory from it.
3420 */
3421 bool android_export = false;
3422 if (export_info && export_info->handleTypes &
3423 VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID)
3424 android_export = true;
3425
3426 if (ahw_import_info) {
3427 result = anv_import_ahw_memory(_device, mem, ahw_import_info);
3428 if (result != VK_SUCCESS)
3429 goto fail;
3430
3431 goto success;
3432 } else if (android_export) {
3433 result = anv_create_ahw_memory(_device, mem, pAllocateInfo);
3434 if (result != VK_SUCCESS)
3435 goto fail;
3436
3437 const VkImportAndroidHardwareBufferInfoANDROID import_info = {
3438 .buffer = mem->ahw,
3439 };
3440 result = anv_import_ahw_memory(_device, mem, &import_info);
3441 if (result != VK_SUCCESS)
3442 goto fail;
3443
3444 goto success;
3445 }
3446
3447 /* The Vulkan spec permits handleType to be 0, in which case the struct is
3448 * ignored.
3449 */
3450 if (fd_info && fd_info->handleType) {
3451 /* At the moment, we support only the below handle types. */
3452 assert(fd_info->handleType ==
3453 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
3454 fd_info->handleType ==
3455 VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
3456
3457 result = anv_device_import_bo(device, fd_info->fd, alloc_flags,
3458 client_address, &mem->bo);
3459 if (result != VK_SUCCESS)
3460 goto fail;
3461
3462 /* For security purposes, we reject importing the bo if it's smaller
3463 * than the requested allocation size. This prevents a malicious client
3464 * from passing a buffer to a trusted client, lying about the size, and
3465 * telling the trusted client to try and texture from an image that goes
3466 * out-of-bounds. This sort of thing could lead to GPU hangs or worse
3467 * in the trusted client. The trusted client can protect itself against
3468 * this sort of attack but only if it can trust the buffer size.
3469 */
3470 if (mem->bo->size < aligned_alloc_size) {
3471 result = vk_errorf(device, device, VK_ERROR_INVALID_EXTERNAL_HANDLE,
3472 "aligned allocationSize too large for "
3473 "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT: "
3474 "%"PRIu64"B > %"PRIu64"B",
3475 aligned_alloc_size, mem->bo->size);
3476 anv_device_release_bo(device, mem->bo);
3477 goto fail;
3478 }
3479
3480 /* From the Vulkan spec:
3481 *
3482 * "Importing memory from a file descriptor transfers ownership of
3483 * the file descriptor from the application to the Vulkan
3484 * implementation. The application must not perform any operations on
3485 * the file descriptor after a successful import."
3486 *
3487 * If the import fails, we leave the file descriptor open.
3488 */
3489 close(fd_info->fd);
3490 goto success;
3491 }
3492
3493 if (host_ptr_info && host_ptr_info->handleType) {
3494 if (host_ptr_info->handleType ==
3495 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT) {
3496 result = vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
3497 goto fail;
3498 }
3499
3500 assert(host_ptr_info->handleType ==
3501 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT);
3502
3503 result = anv_device_import_bo_from_host_ptr(device,
3504 host_ptr_info->pHostPointer,
3505 pAllocateInfo->allocationSize,
3506 alloc_flags,
3507 client_address,
3508 &mem->bo);
3509 if (result != VK_SUCCESS)
3510 goto fail;
3511
3512 mem->host_ptr = host_ptr_info->pHostPointer;
3513 goto success;
3514 }
3515
3516 /* Regular allocate (not importing memory). */
3517
3518 result = anv_device_alloc_bo(device, pAllocateInfo->allocationSize,
3519 alloc_flags, client_address, &mem->bo);
3520 if (result != VK_SUCCESS)
3521 goto fail;
3522
3523 if (dedicated_info && dedicated_info->image != VK_NULL_HANDLE) {
3524 ANV_FROM_HANDLE(anv_image, image, dedicated_info->image);
3525
3526 /* Some legacy (non-modifiers) consumers need the tiling to be set on
3527 * the BO. In this case, we have a dedicated allocation.
3528 */
3529 if (image->needs_set_tiling) {
3530 const uint32_t i915_tiling =
3531 isl_tiling_to_i915_tiling(image->planes[0].surface.isl.tiling);
3532 int ret = anv_gem_set_tiling(device, mem->bo->gem_handle,
3533 image->planes[0].surface.isl.row_pitch_B,
3534 i915_tiling);
3535 if (ret) {
3536 anv_device_release_bo(device, mem->bo);
3537 result = vk_errorf(device, device, VK_ERROR_OUT_OF_DEVICE_MEMORY,
3538 "failed to set BO tiling: %m");
3539 goto fail;
3540 }
3541 }
3542 }
3543
3544 success:
3545 mem_heap_used = p_atomic_add_return(&mem_heap->used, mem->bo->size);
3546 if (mem_heap_used > mem_heap->size) {
3547 p_atomic_add(&mem_heap->used, -mem->bo->size);
3548 anv_device_release_bo(device, mem->bo);
3549 result = vk_errorf(device, device, VK_ERROR_OUT_OF_DEVICE_MEMORY,
3550 "Out of heap memory");
3551 goto fail;
3552 }
3553
3554 pthread_mutex_lock(&device->mutex);
3555 list_addtail(&mem->link, &device->memory_objects);
3556 pthread_mutex_unlock(&device->mutex);
3557
3558 *pMem = anv_device_memory_to_handle(mem);
3559
3560 return VK_SUCCESS;
3561
3562 fail:
3563 vk_free2(&device->alloc, pAllocator, mem);
3564
3565 return result;
3566 }
3567
3568 VkResult anv_GetMemoryFdKHR(
3569 VkDevice device_h,
3570 const VkMemoryGetFdInfoKHR* pGetFdInfo,
3571 int* pFd)
3572 {
3573 ANV_FROM_HANDLE(anv_device, dev, device_h);
3574 ANV_FROM_HANDLE(anv_device_memory, mem, pGetFdInfo->memory);
3575
3576 assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
3577
3578 assert(pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
3579 pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
3580
3581 return anv_device_export_bo(dev, mem->bo, pFd);
3582 }
3583
3584 VkResult anv_GetMemoryFdPropertiesKHR(
3585 VkDevice _device,
3586 VkExternalMemoryHandleTypeFlagBits handleType,
3587 int fd,
3588 VkMemoryFdPropertiesKHR* pMemoryFdProperties)
3589 {
3590 ANV_FROM_HANDLE(anv_device, device, _device);
3591
3592 switch (handleType) {
3593 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT:
3594 /* dma-buf can be imported as any memory type */
3595 pMemoryFdProperties->memoryTypeBits =
3596 (1 << device->physical->memory.type_count) - 1;
3597 return VK_SUCCESS;
3598
3599 default:
3600 /* The valid usage section for this function says:
3601 *
3602 * "handleType must not be one of the handle types defined as
3603 * opaque."
3604 *
3605 * So opaque handle types fall into the default "unsupported" case.
3606 */
3607 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
3608 }
3609 }
3610
3611 VkResult anv_GetMemoryHostPointerPropertiesEXT(
3612 VkDevice _device,
3613 VkExternalMemoryHandleTypeFlagBits handleType,
3614 const void* pHostPointer,
3615 VkMemoryHostPointerPropertiesEXT* pMemoryHostPointerProperties)
3616 {
3617 ANV_FROM_HANDLE(anv_device, device, _device);
3618
3619 assert(pMemoryHostPointerProperties->sType ==
3620 VK_STRUCTURE_TYPE_MEMORY_HOST_POINTER_PROPERTIES_EXT);
3621
3622 switch (handleType) {
3623 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT:
3624 /* Host memory can be imported as any memory type. */
3625 pMemoryHostPointerProperties->memoryTypeBits =
3626 (1ull << device->physical->memory.type_count) - 1;
3627
3628 return VK_SUCCESS;
3629
3630 default:
3631 return VK_ERROR_INVALID_EXTERNAL_HANDLE;
3632 }
3633 }
3634
3635 void anv_FreeMemory(
3636 VkDevice _device,
3637 VkDeviceMemory _mem,
3638 const VkAllocationCallbacks* pAllocator)
3639 {
3640 ANV_FROM_HANDLE(anv_device, device, _device);
3641 ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
3642
3643 if (mem == NULL)
3644 return;
3645
3646 pthread_mutex_lock(&device->mutex);
3647 list_del(&mem->link);
3648 pthread_mutex_unlock(&device->mutex);
3649
3650 if (mem->map)
3651 anv_UnmapMemory(_device, _mem);
3652
3653 p_atomic_add(&device->physical->memory.heaps[mem->type->heapIndex].used,
3654 -mem->bo->size);
3655
3656 anv_device_release_bo(device, mem->bo);
3657
3658 #if defined(ANDROID) && ANDROID_API_LEVEL >= 26
3659 if (mem->ahw)
3660 AHardwareBuffer_release(mem->ahw);
3661 #endif
3662
3663 vk_free2(&device->alloc, pAllocator, mem);
3664 }
3665
3666 VkResult anv_MapMemory(
3667 VkDevice _device,
3668 VkDeviceMemory _memory,
3669 VkDeviceSize offset,
3670 VkDeviceSize size,
3671 VkMemoryMapFlags flags,
3672 void** ppData)
3673 {
3674 ANV_FROM_HANDLE(anv_device, device, _device);
3675 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3676
3677 if (mem == NULL) {
3678 *ppData = NULL;
3679 return VK_SUCCESS;
3680 }
3681
3682 if (mem->host_ptr) {
3683 *ppData = mem->host_ptr + offset;
3684 return VK_SUCCESS;
3685 }
3686
3687 if (size == VK_WHOLE_SIZE)
3688 size = mem->bo->size - offset;
3689
3690 /* From the Vulkan spec version 1.0.32 docs for MapMemory:
3691 *
3692 * * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0
3693 * assert(size != 0);
3694 * * If size is not equal to VK_WHOLE_SIZE, size must be less than or
3695 * equal to the size of the memory minus offset
3696 */
3697 assert(size > 0);
3698 assert(offset + size <= mem->bo->size);
3699
3700 /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
3701 * takes a VkDeviceMemory pointer, it seems like only one map of the memory
3702 * at a time is valid. We could just mmap up front and return an offset
3703 * pointer here, but that may exhaust virtual memory on 32 bit
3704 * userspace. */
3705
3706 uint32_t gem_flags = 0;
3707
3708 if (!device->info.has_llc &&
3709 (mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT))
3710 gem_flags |= I915_MMAP_WC;
3711
3712 /* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
3713 uint64_t map_offset = offset & ~4095ull;
3714 assert(offset >= map_offset);
3715 uint64_t map_size = (offset + size) - map_offset;
3716
3717 /* Let's map whole pages */
3718 map_size = align_u64(map_size, 4096);
3719
3720 void *map = anv_gem_mmap(device, mem->bo->gem_handle,
3721 map_offset, map_size, gem_flags);
3722 if (map == MAP_FAILED)
3723 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
3724
3725 mem->map = map;
3726 mem->map_size = map_size;
3727
3728 *ppData = mem->map + (offset - map_offset);
3729
3730 return VK_SUCCESS;
3731 }
3732
3733 void anv_UnmapMemory(
3734 VkDevice _device,
3735 VkDeviceMemory _memory)
3736 {
3737 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3738
3739 if (mem == NULL || mem->host_ptr)
3740 return;
3741
3742 anv_gem_munmap(mem->map, mem->map_size);
3743
3744 mem->map = NULL;
3745 mem->map_size = 0;
3746 }
3747
3748 static void
3749 clflush_mapped_ranges(struct anv_device *device,
3750 uint32_t count,
3751 const VkMappedMemoryRange *ranges)
3752 {
3753 for (uint32_t i = 0; i < count; i++) {
3754 ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
3755 if (ranges[i].offset >= mem->map_size)
3756 continue;
3757
3758 gen_clflush_range(mem->map + ranges[i].offset,
3759 MIN2(ranges[i].size, mem->map_size - ranges[i].offset));
3760 }
3761 }
3762
3763 VkResult anv_FlushMappedMemoryRanges(
3764 VkDevice _device,
3765 uint32_t memoryRangeCount,
3766 const VkMappedMemoryRange* pMemoryRanges)
3767 {
3768 ANV_FROM_HANDLE(anv_device, device, _device);
3769
3770 if (device->info.has_llc)
3771 return VK_SUCCESS;
3772
3773 /* Make sure the writes we're flushing have landed. */
3774 __builtin_ia32_mfence();
3775
3776 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3777
3778 return VK_SUCCESS;
3779 }
3780
3781 VkResult anv_InvalidateMappedMemoryRanges(
3782 VkDevice _device,
3783 uint32_t memoryRangeCount,
3784 const VkMappedMemoryRange* pMemoryRanges)
3785 {
3786 ANV_FROM_HANDLE(anv_device, device, _device);
3787
3788 if (device->info.has_llc)
3789 return VK_SUCCESS;
3790
3791 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3792
3793 /* Make sure no reads get moved up above the invalidate. */
3794 __builtin_ia32_mfence();
3795
3796 return VK_SUCCESS;
3797 }
3798
3799 void anv_GetBufferMemoryRequirements(
3800 VkDevice _device,
3801 VkBuffer _buffer,
3802 VkMemoryRequirements* pMemoryRequirements)
3803 {
3804 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3805 ANV_FROM_HANDLE(anv_device, device, _device);
3806
3807 /* The Vulkan spec (git aaed022) says:
3808 *
3809 * memoryTypeBits is a bitfield and contains one bit set for every
3810 * supported memory type for the resource. The bit `1<<i` is set if and
3811 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3812 * structure for the physical device is supported.
3813 */
3814 uint32_t memory_types = (1ull << device->physical->memory.type_count) - 1;
3815
3816 /* Base alignment requirement of a cache line */
3817 uint32_t alignment = 16;
3818
3819 /* We need an alignment of 32 for pushing UBOs */
3820 if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT)
3821 alignment = MAX2(alignment, 32);
3822
3823 pMemoryRequirements->size = buffer->size;
3824 pMemoryRequirements->alignment = alignment;
3825
3826 /* Storage and Uniform buffers should have their size aligned to
3827 * 32-bits to avoid boundary checks when last DWord is not complete.
3828 * This would ensure that not internal padding would be needed for
3829 * 16-bit types.
3830 */
3831 if (device->robust_buffer_access &&
3832 (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT ||
3833 buffer->usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT))
3834 pMemoryRequirements->size = align_u64(buffer->size, 4);
3835
3836 pMemoryRequirements->memoryTypeBits = memory_types;
3837 }
3838
3839 void anv_GetBufferMemoryRequirements2(
3840 VkDevice _device,
3841 const VkBufferMemoryRequirementsInfo2* pInfo,
3842 VkMemoryRequirements2* pMemoryRequirements)
3843 {
3844 anv_GetBufferMemoryRequirements(_device, pInfo->buffer,
3845 &pMemoryRequirements->memoryRequirements);
3846
3847 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3848 switch (ext->sType) {
3849 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3850 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3851 requirements->prefersDedicatedAllocation = false;
3852 requirements->requiresDedicatedAllocation = false;
3853 break;
3854 }
3855
3856 default:
3857 anv_debug_ignored_stype(ext->sType);
3858 break;
3859 }
3860 }
3861 }
3862
3863 void anv_GetImageMemoryRequirements(
3864 VkDevice _device,
3865 VkImage _image,
3866 VkMemoryRequirements* pMemoryRequirements)
3867 {
3868 ANV_FROM_HANDLE(anv_image, image, _image);
3869 ANV_FROM_HANDLE(anv_device, device, _device);
3870
3871 /* The Vulkan spec (git aaed022) says:
3872 *
3873 * memoryTypeBits is a bitfield and contains one bit set for every
3874 * supported memory type for the resource. The bit `1<<i` is set if and
3875 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3876 * structure for the physical device is supported.
3877 *
3878 * All types are currently supported for images.
3879 */
3880 uint32_t memory_types = (1ull << device->physical->memory.type_count) - 1;
3881
3882 /* We must have image allocated or imported at this point. According to the
3883 * specification, external images must have been bound to memory before
3884 * calling GetImageMemoryRequirements.
3885 */
3886 assert(image->size > 0);
3887
3888 pMemoryRequirements->size = image->size;
3889 pMemoryRequirements->alignment = image->alignment;
3890 pMemoryRequirements->memoryTypeBits = memory_types;
3891 }
3892
3893 void anv_GetImageMemoryRequirements2(
3894 VkDevice _device,
3895 const VkImageMemoryRequirementsInfo2* pInfo,
3896 VkMemoryRequirements2* pMemoryRequirements)
3897 {
3898 ANV_FROM_HANDLE(anv_device, device, _device);
3899 ANV_FROM_HANDLE(anv_image, image, pInfo->image);
3900
3901 anv_GetImageMemoryRequirements(_device, pInfo->image,
3902 &pMemoryRequirements->memoryRequirements);
3903
3904 vk_foreach_struct_const(ext, pInfo->pNext) {
3905 switch (ext->sType) {
3906 case VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO: {
3907 const VkImagePlaneMemoryRequirementsInfo *plane_reqs =
3908 (const VkImagePlaneMemoryRequirementsInfo *) ext;
3909 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
3910 plane_reqs->planeAspect);
3911
3912 assert(image->planes[plane].offset == 0);
3913
3914 /* The Vulkan spec (git aaed022) says:
3915 *
3916 * memoryTypeBits is a bitfield and contains one bit set for every
3917 * supported memory type for the resource. The bit `1<<i` is set
3918 * if and only if the memory type `i` in the
3919 * VkPhysicalDeviceMemoryProperties structure for the physical
3920 * device is supported.
3921 *
3922 * All types are currently supported for images.
3923 */
3924 pMemoryRequirements->memoryRequirements.memoryTypeBits =
3925 (1ull << device->physical->memory.type_count) - 1;
3926
3927 /* We must have image allocated or imported at this point. According to the
3928 * specification, external images must have been bound to memory before
3929 * calling GetImageMemoryRequirements.
3930 */
3931 assert(image->planes[plane].size > 0);
3932
3933 pMemoryRequirements->memoryRequirements.size = image->planes[plane].size;
3934 pMemoryRequirements->memoryRequirements.alignment =
3935 image->planes[plane].alignment;
3936 break;
3937 }
3938
3939 default:
3940 anv_debug_ignored_stype(ext->sType);
3941 break;
3942 }
3943 }
3944
3945 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3946 switch (ext->sType) {
3947 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3948 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3949 if (image->needs_set_tiling || image->external_format) {
3950 /* If we need to set the tiling for external consumers, we need a
3951 * dedicated allocation.
3952 *
3953 * See also anv_AllocateMemory.
3954 */
3955 requirements->prefersDedicatedAllocation = true;
3956 requirements->requiresDedicatedAllocation = true;
3957 } else {
3958 requirements->prefersDedicatedAllocation = false;
3959 requirements->requiresDedicatedAllocation = false;
3960 }
3961 break;
3962 }
3963
3964 default:
3965 anv_debug_ignored_stype(ext->sType);
3966 break;
3967 }
3968 }
3969 }
3970
3971 void anv_GetImageSparseMemoryRequirements(
3972 VkDevice device,
3973 VkImage image,
3974 uint32_t* pSparseMemoryRequirementCount,
3975 VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
3976 {
3977 *pSparseMemoryRequirementCount = 0;
3978 }
3979
3980 void anv_GetImageSparseMemoryRequirements2(
3981 VkDevice device,
3982 const VkImageSparseMemoryRequirementsInfo2* pInfo,
3983 uint32_t* pSparseMemoryRequirementCount,
3984 VkSparseImageMemoryRequirements2* pSparseMemoryRequirements)
3985 {
3986 *pSparseMemoryRequirementCount = 0;
3987 }
3988
3989 void anv_GetDeviceMemoryCommitment(
3990 VkDevice device,
3991 VkDeviceMemory memory,
3992 VkDeviceSize* pCommittedMemoryInBytes)
3993 {
3994 *pCommittedMemoryInBytes = 0;
3995 }
3996
3997 static void
3998 anv_bind_buffer_memory(const VkBindBufferMemoryInfo *pBindInfo)
3999 {
4000 ANV_FROM_HANDLE(anv_device_memory, mem, pBindInfo->memory);
4001 ANV_FROM_HANDLE(anv_buffer, buffer, pBindInfo->buffer);
4002
4003 assert(pBindInfo->sType == VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO);
4004
4005 if (mem) {
4006 buffer->address = (struct anv_address) {
4007 .bo = mem->bo,
4008 .offset = pBindInfo->memoryOffset,
4009 };
4010 } else {
4011 buffer->address = ANV_NULL_ADDRESS;
4012 }
4013 }
4014
4015 VkResult anv_BindBufferMemory(
4016 VkDevice device,
4017 VkBuffer buffer,
4018 VkDeviceMemory memory,
4019 VkDeviceSize memoryOffset)
4020 {
4021 anv_bind_buffer_memory(
4022 &(VkBindBufferMemoryInfo) {
4023 .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO,
4024 .buffer = buffer,
4025 .memory = memory,
4026 .memoryOffset = memoryOffset,
4027 });
4028
4029 return VK_SUCCESS;
4030 }
4031
4032 VkResult anv_BindBufferMemory2(
4033 VkDevice device,
4034 uint32_t bindInfoCount,
4035 const VkBindBufferMemoryInfo* pBindInfos)
4036 {
4037 for (uint32_t i = 0; i < bindInfoCount; i++)
4038 anv_bind_buffer_memory(&pBindInfos[i]);
4039
4040 return VK_SUCCESS;
4041 }
4042
4043 VkResult anv_QueueBindSparse(
4044 VkQueue _queue,
4045 uint32_t bindInfoCount,
4046 const VkBindSparseInfo* pBindInfo,
4047 VkFence fence)
4048 {
4049 ANV_FROM_HANDLE(anv_queue, queue, _queue);
4050 if (anv_device_is_lost(queue->device))
4051 return VK_ERROR_DEVICE_LOST;
4052
4053 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
4054 }
4055
4056 // Event functions
4057
4058 VkResult anv_CreateEvent(
4059 VkDevice _device,
4060 const VkEventCreateInfo* pCreateInfo,
4061 const VkAllocationCallbacks* pAllocator,
4062 VkEvent* pEvent)
4063 {
4064 ANV_FROM_HANDLE(anv_device, device, _device);
4065 struct anv_state state;
4066 struct anv_event *event;
4067
4068 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
4069
4070 state = anv_state_pool_alloc(&device->dynamic_state_pool,
4071 sizeof(*event), 8);
4072 event = state.map;
4073 event->state = state;
4074 event->semaphore = VK_EVENT_RESET;
4075
4076 if (!device->info.has_llc) {
4077 /* Make sure the writes we're flushing have landed. */
4078 __builtin_ia32_mfence();
4079 __builtin_ia32_clflush(event);
4080 }
4081
4082 *pEvent = anv_event_to_handle(event);
4083
4084 return VK_SUCCESS;
4085 }
4086
4087 void anv_DestroyEvent(
4088 VkDevice _device,
4089 VkEvent _event,
4090 const VkAllocationCallbacks* pAllocator)
4091 {
4092 ANV_FROM_HANDLE(anv_device, device, _device);
4093 ANV_FROM_HANDLE(anv_event, event, _event);
4094
4095 if (!event)
4096 return;
4097
4098 anv_state_pool_free(&device->dynamic_state_pool, event->state);
4099 }
4100
4101 VkResult anv_GetEventStatus(
4102 VkDevice _device,
4103 VkEvent _event)
4104 {
4105 ANV_FROM_HANDLE(anv_device, device, _device);
4106 ANV_FROM_HANDLE(anv_event, event, _event);
4107
4108 if (anv_device_is_lost(device))
4109 return VK_ERROR_DEVICE_LOST;
4110
4111 if (!device->info.has_llc) {
4112 /* Invalidate read cache before reading event written by GPU. */
4113 __builtin_ia32_clflush(event);
4114 __builtin_ia32_mfence();
4115
4116 }
4117
4118 return event->semaphore;
4119 }
4120
4121 VkResult anv_SetEvent(
4122 VkDevice _device,
4123 VkEvent _event)
4124 {
4125 ANV_FROM_HANDLE(anv_device, device, _device);
4126 ANV_FROM_HANDLE(anv_event, event, _event);
4127
4128 event->semaphore = VK_EVENT_SET;
4129
4130 if (!device->info.has_llc) {
4131 /* Make sure the writes we're flushing have landed. */
4132 __builtin_ia32_mfence();
4133 __builtin_ia32_clflush(event);
4134 }
4135
4136 return VK_SUCCESS;
4137 }
4138
4139 VkResult anv_ResetEvent(
4140 VkDevice _device,
4141 VkEvent _event)
4142 {
4143 ANV_FROM_HANDLE(anv_device, device, _device);
4144 ANV_FROM_HANDLE(anv_event, event, _event);
4145
4146 event->semaphore = VK_EVENT_RESET;
4147
4148 if (!device->info.has_llc) {
4149 /* Make sure the writes we're flushing have landed. */
4150 __builtin_ia32_mfence();
4151 __builtin_ia32_clflush(event);
4152 }
4153
4154 return VK_SUCCESS;
4155 }
4156
4157 // Buffer functions
4158
4159 VkResult anv_CreateBuffer(
4160 VkDevice _device,
4161 const VkBufferCreateInfo* pCreateInfo,
4162 const VkAllocationCallbacks* pAllocator,
4163 VkBuffer* pBuffer)
4164 {
4165 ANV_FROM_HANDLE(anv_device, device, _device);
4166 struct anv_buffer *buffer;
4167
4168 /* Don't allow creating buffers bigger than our address space. The real
4169 * issue here is that we may align up the buffer size and we don't want
4170 * doing so to cause roll-over. However, no one has any business
4171 * allocating a buffer larger than our GTT size.
4172 */
4173 if (pCreateInfo->size > device->physical->gtt_size)
4174 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
4175
4176 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
4177
4178 buffer = vk_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
4179 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
4180 if (buffer == NULL)
4181 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
4182
4183 buffer->size = pCreateInfo->size;
4184 buffer->usage = pCreateInfo->usage;
4185 buffer->address = ANV_NULL_ADDRESS;
4186
4187 *pBuffer = anv_buffer_to_handle(buffer);
4188
4189 return VK_SUCCESS;
4190 }
4191
4192 void anv_DestroyBuffer(
4193 VkDevice _device,
4194 VkBuffer _buffer,
4195 const VkAllocationCallbacks* pAllocator)
4196 {
4197 ANV_FROM_HANDLE(anv_device, device, _device);
4198 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
4199
4200 if (!buffer)
4201 return;
4202
4203 vk_free2(&device->alloc, pAllocator, buffer);
4204 }
4205
4206 VkDeviceAddress anv_GetBufferDeviceAddress(
4207 VkDevice device,
4208 const VkBufferDeviceAddressInfoKHR* pInfo)
4209 {
4210 ANV_FROM_HANDLE(anv_buffer, buffer, pInfo->buffer);
4211
4212 assert(!anv_address_is_null(buffer->address));
4213 assert(buffer->address.bo->flags & EXEC_OBJECT_PINNED);
4214
4215 return anv_address_physical(buffer->address);
4216 }
4217
4218 uint64_t anv_GetBufferOpaqueCaptureAddress(
4219 VkDevice device,
4220 const VkBufferDeviceAddressInfoKHR* pInfo)
4221 {
4222 return 0;
4223 }
4224
4225 uint64_t anv_GetDeviceMemoryOpaqueCaptureAddress(
4226 VkDevice device,
4227 const VkDeviceMemoryOpaqueCaptureAddressInfoKHR* pInfo)
4228 {
4229 ANV_FROM_HANDLE(anv_device_memory, memory, pInfo->memory);
4230
4231 assert(memory->bo->flags & EXEC_OBJECT_PINNED);
4232 assert(memory->bo->has_client_visible_address);
4233
4234 return gen_48b_address(memory->bo->offset);
4235 }
4236
4237 void
4238 anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
4239 enum isl_format format,
4240 struct anv_address address,
4241 uint32_t range, uint32_t stride)
4242 {
4243 isl_buffer_fill_state(&device->isl_dev, state.map,
4244 .address = anv_address_physical(address),
4245 .mocs = device->isl_dev.mocs.internal,
4246 .size_B = range,
4247 .format = format,
4248 .swizzle = ISL_SWIZZLE_IDENTITY,
4249 .stride_B = stride);
4250 }
4251
4252 void anv_DestroySampler(
4253 VkDevice _device,
4254 VkSampler _sampler,
4255 const VkAllocationCallbacks* pAllocator)
4256 {
4257 ANV_FROM_HANDLE(anv_device, device, _device);
4258 ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
4259
4260 if (!sampler)
4261 return;
4262
4263 if (sampler->bindless_state.map) {
4264 anv_state_pool_free(&device->dynamic_state_pool,
4265 sampler->bindless_state);
4266 }
4267
4268 vk_free2(&device->alloc, pAllocator, sampler);
4269 }
4270
4271 VkResult anv_CreateFramebuffer(
4272 VkDevice _device,
4273 const VkFramebufferCreateInfo* pCreateInfo,
4274 const VkAllocationCallbacks* pAllocator,
4275 VkFramebuffer* pFramebuffer)
4276 {
4277 ANV_FROM_HANDLE(anv_device, device, _device);
4278 struct anv_framebuffer *framebuffer;
4279
4280 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
4281
4282 size_t size = sizeof(*framebuffer);
4283
4284 /* VK_KHR_imageless_framebuffer extension says:
4285 *
4286 * If flags includes VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT_KHR,
4287 * parameter pAttachments is ignored.
4288 */
4289 if (!(pCreateInfo->flags & VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT_KHR)) {
4290 size += sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
4291 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
4292 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
4293 if (framebuffer == NULL)
4294 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
4295
4296 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
4297 ANV_FROM_HANDLE(anv_image_view, iview, pCreateInfo->pAttachments[i]);
4298 framebuffer->attachments[i] = iview;
4299 }
4300 framebuffer->attachment_count = pCreateInfo->attachmentCount;
4301 } else {
4302 assert(device->enabled_extensions.KHR_imageless_framebuffer);
4303 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
4304 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
4305 if (framebuffer == NULL)
4306 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
4307
4308 framebuffer->attachment_count = 0;
4309 }
4310
4311 framebuffer->width = pCreateInfo->width;
4312 framebuffer->height = pCreateInfo->height;
4313 framebuffer->layers = pCreateInfo->layers;
4314
4315 *pFramebuffer = anv_framebuffer_to_handle(framebuffer);
4316
4317 return VK_SUCCESS;
4318 }
4319
4320 void anv_DestroyFramebuffer(
4321 VkDevice _device,
4322 VkFramebuffer _fb,
4323 const VkAllocationCallbacks* pAllocator)
4324 {
4325 ANV_FROM_HANDLE(anv_device, device, _device);
4326 ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
4327
4328 if (!fb)
4329 return;
4330
4331 vk_free2(&device->alloc, pAllocator, fb);
4332 }
4333
4334 static const VkTimeDomainEXT anv_time_domains[] = {
4335 VK_TIME_DOMAIN_DEVICE_EXT,
4336 VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT,
4337 VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT,
4338 };
4339
4340 VkResult anv_GetPhysicalDeviceCalibrateableTimeDomainsEXT(
4341 VkPhysicalDevice physicalDevice,
4342 uint32_t *pTimeDomainCount,
4343 VkTimeDomainEXT *pTimeDomains)
4344 {
4345 int d;
4346 VK_OUTARRAY_MAKE(out, pTimeDomains, pTimeDomainCount);
4347
4348 for (d = 0; d < ARRAY_SIZE(anv_time_domains); d++) {
4349 vk_outarray_append(&out, i) {
4350 *i = anv_time_domains[d];
4351 }
4352 }
4353
4354 return vk_outarray_status(&out);
4355 }
4356
4357 static uint64_t
4358 anv_clock_gettime(clockid_t clock_id)
4359 {
4360 struct timespec current;
4361 int ret;
4362
4363 ret = clock_gettime(clock_id, &current);
4364 if (ret < 0 && clock_id == CLOCK_MONOTONIC_RAW)
4365 ret = clock_gettime(CLOCK_MONOTONIC, &current);
4366 if (ret < 0)
4367 return 0;
4368
4369 return (uint64_t) current.tv_sec * 1000000000ULL + current.tv_nsec;
4370 }
4371
4372 #define TIMESTAMP 0x2358
4373
4374 VkResult anv_GetCalibratedTimestampsEXT(
4375 VkDevice _device,
4376 uint32_t timestampCount,
4377 const VkCalibratedTimestampInfoEXT *pTimestampInfos,
4378 uint64_t *pTimestamps,
4379 uint64_t *pMaxDeviation)
4380 {
4381 ANV_FROM_HANDLE(anv_device, device, _device);
4382 uint64_t timestamp_frequency = device->info.timestamp_frequency;
4383 int ret;
4384 int d;
4385 uint64_t begin, end;
4386 uint64_t max_clock_period = 0;
4387
4388 begin = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
4389
4390 for (d = 0; d < timestampCount; d++) {
4391 switch (pTimestampInfos[d].timeDomain) {
4392 case VK_TIME_DOMAIN_DEVICE_EXT:
4393 ret = anv_gem_reg_read(device, TIMESTAMP | 1,
4394 &pTimestamps[d]);
4395
4396 if (ret != 0) {
4397 return anv_device_set_lost(device, "Failed to read the TIMESTAMP "
4398 "register: %m");
4399 }
4400 uint64_t device_period = DIV_ROUND_UP(1000000000, timestamp_frequency);
4401 max_clock_period = MAX2(max_clock_period, device_period);
4402 break;
4403 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT:
4404 pTimestamps[d] = anv_clock_gettime(CLOCK_MONOTONIC);
4405 max_clock_period = MAX2(max_clock_period, 1);
4406 break;
4407
4408 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT:
4409 pTimestamps[d] = begin;
4410 break;
4411 default:
4412 pTimestamps[d] = 0;
4413 break;
4414 }
4415 }
4416
4417 end = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
4418
4419 /*
4420 * The maximum deviation is the sum of the interval over which we
4421 * perform the sampling and the maximum period of any sampled
4422 * clock. That's because the maximum skew between any two sampled
4423 * clock edges is when the sampled clock with the largest period is
4424 * sampled at the end of that period but right at the beginning of the
4425 * sampling interval and some other clock is sampled right at the
4426 * begining of its sampling period and right at the end of the
4427 * sampling interval. Let's assume the GPU has the longest clock
4428 * period and that the application is sampling GPU and monotonic:
4429 *
4430 * s e
4431 * w x y z 0 1 2 3 4 5 6 7 8 9 a b c d e f
4432 * Raw -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
4433 *
4434 * g
4435 * 0 1 2 3
4436 * GPU -----_____-----_____-----_____-----_____
4437 *
4438 * m
4439 * x y z 0 1 2 3 4 5 6 7 8 9 a b c
4440 * Monotonic -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
4441 *
4442 * Interval <----------------->
4443 * Deviation <-------------------------->
4444 *
4445 * s = read(raw) 2
4446 * g = read(GPU) 1
4447 * m = read(monotonic) 2
4448 * e = read(raw) b
4449 *
4450 * We round the sample interval up by one tick to cover sampling error
4451 * in the interval clock
4452 */
4453
4454 uint64_t sample_interval = end - begin + 1;
4455
4456 *pMaxDeviation = sample_interval + max_clock_period;
4457
4458 return VK_SUCCESS;
4459 }
4460
4461 /* vk_icd.h does not declare this function, so we declare it here to
4462 * suppress Wmissing-prototypes.
4463 */
4464 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
4465 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion);
4466
4467 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
4468 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion)
4469 {
4470 /* For the full details on loader interface versioning, see
4471 * <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
4472 * What follows is a condensed summary, to help you navigate the large and
4473 * confusing official doc.
4474 *
4475 * - Loader interface v0 is incompatible with later versions. We don't
4476 * support it.
4477 *
4478 * - In loader interface v1:
4479 * - The first ICD entrypoint called by the loader is
4480 * vk_icdGetInstanceProcAddr(). The ICD must statically expose this
4481 * entrypoint.
4482 * - The ICD must statically expose no other Vulkan symbol unless it is
4483 * linked with -Bsymbolic.
4484 * - Each dispatchable Vulkan handle created by the ICD must be
4485 * a pointer to a struct whose first member is VK_LOADER_DATA. The
4486 * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
4487 * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
4488 * vkDestroySurfaceKHR(). The ICD must be capable of working with
4489 * such loader-managed surfaces.
4490 *
4491 * - Loader interface v2 differs from v1 in:
4492 * - The first ICD entrypoint called by the loader is
4493 * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
4494 * statically expose this entrypoint.
4495 *
4496 * - Loader interface v3 differs from v2 in:
4497 * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
4498 * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
4499 * because the loader no longer does so.
4500 *
4501 * - Loader interface v4 differs from v3 in:
4502 * - The ICD must implement vk_icdGetPhysicalDeviceProcAddr().
4503 */
4504 *pSupportedVersion = MIN2(*pSupportedVersion, 4u);
4505 return VK_SUCCESS;
4506 }