anv: bump maxFramebufferLayers to 2048
[mesa.git] / src / intel / vulkan / anv_device.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <dlfcn.h>
25 #include <assert.h>
26 #include <stdbool.h>
27 #include <string.h>
28 #include <sys/mman.h>
29 #include <sys/stat.h>
30 #include <unistd.h>
31 #include <fcntl.h>
32
33 #include "anv_private.h"
34 #include "util/strtod.h"
35 #include "util/debug.h"
36
37 #include "genxml/gen7_pack.h"
38
39 struct anv_dispatch_table dtable;
40
41 static void
42 compiler_debug_log(void *data, const char *fmt, ...)
43 { }
44
45 static void
46 compiler_perf_log(void *data, const char *fmt, ...)
47 {
48 va_list args;
49 va_start(args, fmt);
50
51 if (unlikely(INTEL_DEBUG & DEBUG_PERF))
52 vfprintf(stderr, fmt, args);
53
54 va_end(args);
55 }
56
57 static bool
58 anv_get_function_timestamp(void *ptr, uint32_t* timestamp)
59 {
60 Dl_info info;
61 struct stat st;
62 if (!dladdr(ptr, &info) || !info.dli_fname)
63 return false;
64
65 if (stat(info.dli_fname, &st))
66 return false;
67
68 *timestamp = st.st_mtim.tv_sec;
69 return true;
70 }
71
72 static bool
73 anv_device_get_cache_uuid(void *uuid)
74 {
75 uint32_t timestamp;
76
77 memset(uuid, 0, VK_UUID_SIZE);
78 if (!anv_get_function_timestamp(anv_device_get_cache_uuid, &timestamp))
79 return false;
80
81 snprintf(uuid, VK_UUID_SIZE, "anv-%d", timestamp);
82 return true;
83 }
84
85 static VkResult
86 anv_physical_device_init(struct anv_physical_device *device,
87 struct anv_instance *instance,
88 const char *path)
89 {
90 VkResult result;
91 int fd;
92
93 fd = open(path, O_RDWR | O_CLOEXEC);
94 if (fd < 0)
95 return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
96
97 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
98 device->instance = instance;
99
100 assert(strlen(path) < ARRAY_SIZE(device->path));
101 strncpy(device->path, path, ARRAY_SIZE(device->path));
102
103 device->chipset_id = anv_gem_get_param(fd, I915_PARAM_CHIPSET_ID);
104 if (!device->chipset_id) {
105 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
106 goto fail;
107 }
108
109 device->name = gen_get_device_name(device->chipset_id);
110 if (!gen_get_device_info(device->chipset_id, &device->info)) {
111 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
112 goto fail;
113 }
114
115 if (device->info.is_haswell) {
116 fprintf(stderr, "WARNING: Haswell Vulkan support is incomplete\n");
117 } else if (device->info.gen == 7 && !device->info.is_baytrail) {
118 fprintf(stderr, "WARNING: Ivy Bridge Vulkan support is incomplete\n");
119 } else if (device->info.gen == 7 && device->info.is_baytrail) {
120 fprintf(stderr, "WARNING: Bay Trail Vulkan support is incomplete\n");
121 } else if (device->info.gen >= 8) {
122 /* Broadwell, Cherryview, Skylake, Broxton, Kabylake is as fully
123 * supported as anything */
124 } else {
125 result = vk_errorf(VK_ERROR_INCOMPATIBLE_DRIVER,
126 "Vulkan not yet supported on %s", device->name);
127 goto fail;
128 }
129
130 device->cmd_parser_version = -1;
131 if (device->info.gen == 7) {
132 device->cmd_parser_version =
133 anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
134 if (device->cmd_parser_version == -1) {
135 result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
136 "failed to get command parser version");
137 goto fail;
138 }
139 }
140
141 if (anv_gem_get_aperture(fd, &device->aperture_size) == -1) {
142 result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
143 "failed to get aperture size: %m");
144 goto fail;
145 }
146
147 if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
148 result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
149 "kernel missing gem wait");
150 goto fail;
151 }
152
153 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
154 result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
155 "kernel missing execbuf2");
156 goto fail;
157 }
158
159 if (!device->info.has_llc &&
160 anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
161 result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
162 "kernel missing wc mmap");
163 goto fail;
164 }
165
166 if (!anv_device_get_cache_uuid(device->uuid)) {
167 result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
168 "cannot generate UUID");
169 goto fail;
170 }
171 bool swizzled = anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
172
173 /* GENs prior to 8 do not support EU/Subslice info */
174 if (device->info.gen >= 8) {
175 device->subslice_total = anv_gem_get_param(fd, I915_PARAM_SUBSLICE_TOTAL);
176 device->eu_total = anv_gem_get_param(fd, I915_PARAM_EU_TOTAL);
177
178 /* Without this information, we cannot get the right Braswell
179 * brandstrings, and we have to use conservative numbers for GPGPU on
180 * many platforms, but otherwise, things will just work.
181 */
182 if (device->subslice_total < 1 || device->eu_total < 1) {
183 fprintf(stderr, "WARNING: Kernel 4.1 required to properly"
184 " query GPU properties.\n");
185 }
186 } else if (device->info.gen == 7) {
187 device->subslice_total = 1 << (device->info.gt - 1);
188 }
189
190 if (device->info.is_cherryview &&
191 device->subslice_total > 0 && device->eu_total > 0) {
192 /* Logical CS threads = EUs per subslice * 7 threads per EU */
193 uint32_t max_cs_threads = device->eu_total / device->subslice_total * 7;
194
195 /* Fuse configurations may give more threads than expected, never less. */
196 if (max_cs_threads > device->info.max_cs_threads)
197 device->info.max_cs_threads = max_cs_threads;
198 }
199
200 brw_process_intel_debug_variable();
201
202 device->compiler = brw_compiler_create(NULL, &device->info);
203 if (device->compiler == NULL) {
204 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
205 goto fail;
206 }
207 device->compiler->shader_debug_log = compiler_debug_log;
208 device->compiler->shader_perf_log = compiler_perf_log;
209
210 result = anv_init_wsi(device);
211 if (result != VK_SUCCESS) {
212 ralloc_free(device->compiler);
213 goto fail;
214 }
215
216 isl_device_init(&device->isl_dev, &device->info, swizzled);
217
218 close(fd);
219 return VK_SUCCESS;
220
221 fail:
222 close(fd);
223 return result;
224 }
225
226 static void
227 anv_physical_device_finish(struct anv_physical_device *device)
228 {
229 anv_finish_wsi(device);
230 ralloc_free(device->compiler);
231 }
232
233 static const VkExtensionProperties global_extensions[] = {
234 {
235 .extensionName = VK_KHR_SURFACE_EXTENSION_NAME,
236 .specVersion = 25,
237 },
238 #ifdef VK_USE_PLATFORM_XCB_KHR
239 {
240 .extensionName = VK_KHR_XCB_SURFACE_EXTENSION_NAME,
241 .specVersion = 6,
242 },
243 #endif
244 #ifdef VK_USE_PLATFORM_XLIB_KHR
245 {
246 .extensionName = VK_KHR_XLIB_SURFACE_EXTENSION_NAME,
247 .specVersion = 6,
248 },
249 #endif
250 #ifdef VK_USE_PLATFORM_WAYLAND_KHR
251 {
252 .extensionName = VK_KHR_WAYLAND_SURFACE_EXTENSION_NAME,
253 .specVersion = 5,
254 },
255 #endif
256 };
257
258 static const VkExtensionProperties device_extensions[] = {
259 {
260 .extensionName = VK_KHR_SWAPCHAIN_EXTENSION_NAME,
261 .specVersion = 68,
262 },
263 };
264
265 static void *
266 default_alloc_func(void *pUserData, size_t size, size_t align,
267 VkSystemAllocationScope allocationScope)
268 {
269 return malloc(size);
270 }
271
272 static void *
273 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
274 size_t align, VkSystemAllocationScope allocationScope)
275 {
276 return realloc(pOriginal, size);
277 }
278
279 static void
280 default_free_func(void *pUserData, void *pMemory)
281 {
282 free(pMemory);
283 }
284
285 static const VkAllocationCallbacks default_alloc = {
286 .pUserData = NULL,
287 .pfnAllocation = default_alloc_func,
288 .pfnReallocation = default_realloc_func,
289 .pfnFree = default_free_func,
290 };
291
292 VkResult anv_CreateInstance(
293 const VkInstanceCreateInfo* pCreateInfo,
294 const VkAllocationCallbacks* pAllocator,
295 VkInstance* pInstance)
296 {
297 struct anv_instance *instance;
298
299 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
300
301 uint32_t client_version;
302 if (pCreateInfo->pApplicationInfo &&
303 pCreateInfo->pApplicationInfo->apiVersion != 0) {
304 client_version = pCreateInfo->pApplicationInfo->apiVersion;
305 } else {
306 client_version = VK_MAKE_VERSION(1, 0, 0);
307 }
308
309 if (VK_MAKE_VERSION(1, 0, 0) > client_version ||
310 client_version > VK_MAKE_VERSION(1, 0, 0xfff)) {
311 return vk_errorf(VK_ERROR_INCOMPATIBLE_DRIVER,
312 "Client requested version %d.%d.%d",
313 VK_VERSION_MAJOR(client_version),
314 VK_VERSION_MINOR(client_version),
315 VK_VERSION_PATCH(client_version));
316 }
317
318 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
319 bool found = false;
320 for (uint32_t j = 0; j < ARRAY_SIZE(global_extensions); j++) {
321 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
322 global_extensions[j].extensionName) == 0) {
323 found = true;
324 break;
325 }
326 }
327 if (!found)
328 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
329 }
330
331 instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
332 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
333 if (!instance)
334 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
335
336 instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
337
338 if (pAllocator)
339 instance->alloc = *pAllocator;
340 else
341 instance->alloc = default_alloc;
342
343 instance->apiVersion = client_version;
344 instance->physicalDeviceCount = -1;
345
346 _mesa_locale_init();
347
348 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
349
350 *pInstance = anv_instance_to_handle(instance);
351
352 return VK_SUCCESS;
353 }
354
355 void anv_DestroyInstance(
356 VkInstance _instance,
357 const VkAllocationCallbacks* pAllocator)
358 {
359 ANV_FROM_HANDLE(anv_instance, instance, _instance);
360
361 if (instance->physicalDeviceCount > 0) {
362 /* We support at most one physical device. */
363 assert(instance->physicalDeviceCount == 1);
364 anv_physical_device_finish(&instance->physicalDevice);
365 }
366
367 VG(VALGRIND_DESTROY_MEMPOOL(instance));
368
369 _mesa_locale_fini();
370
371 vk_free(&instance->alloc, instance);
372 }
373
374 VkResult anv_EnumeratePhysicalDevices(
375 VkInstance _instance,
376 uint32_t* pPhysicalDeviceCount,
377 VkPhysicalDevice* pPhysicalDevices)
378 {
379 ANV_FROM_HANDLE(anv_instance, instance, _instance);
380 VkResult result;
381
382 if (instance->physicalDeviceCount < 0) {
383 char path[20];
384 for (unsigned i = 0; i < 8; i++) {
385 snprintf(path, sizeof(path), "/dev/dri/renderD%d", 128 + i);
386 result = anv_physical_device_init(&instance->physicalDevice,
387 instance, path);
388 if (result != VK_ERROR_INCOMPATIBLE_DRIVER)
389 break;
390 }
391
392 if (result == VK_ERROR_INCOMPATIBLE_DRIVER) {
393 instance->physicalDeviceCount = 0;
394 } else if (result == VK_SUCCESS) {
395 instance->physicalDeviceCount = 1;
396 } else {
397 return result;
398 }
399 }
400
401 /* pPhysicalDeviceCount is an out parameter if pPhysicalDevices is NULL;
402 * otherwise it's an inout parameter.
403 *
404 * The Vulkan spec (git aaed022) says:
405 *
406 * pPhysicalDeviceCount is a pointer to an unsigned integer variable
407 * that is initialized with the number of devices the application is
408 * prepared to receive handles to. pname:pPhysicalDevices is pointer to
409 * an array of at least this many VkPhysicalDevice handles [...].
410 *
411 * Upon success, if pPhysicalDevices is NULL, vkEnumeratePhysicalDevices
412 * overwrites the contents of the variable pointed to by
413 * pPhysicalDeviceCount with the number of physical devices in in the
414 * instance; otherwise, vkEnumeratePhysicalDevices overwrites
415 * pPhysicalDeviceCount with the number of physical handles written to
416 * pPhysicalDevices.
417 */
418 if (!pPhysicalDevices) {
419 *pPhysicalDeviceCount = instance->physicalDeviceCount;
420 } else if (*pPhysicalDeviceCount >= 1) {
421 pPhysicalDevices[0] = anv_physical_device_to_handle(&instance->physicalDevice);
422 *pPhysicalDeviceCount = 1;
423 } else if (*pPhysicalDeviceCount < instance->physicalDeviceCount) {
424 return VK_INCOMPLETE;
425 } else {
426 *pPhysicalDeviceCount = 0;
427 }
428
429 return VK_SUCCESS;
430 }
431
432 void anv_GetPhysicalDeviceFeatures(
433 VkPhysicalDevice physicalDevice,
434 VkPhysicalDeviceFeatures* pFeatures)
435 {
436 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
437
438 *pFeatures = (VkPhysicalDeviceFeatures) {
439 .robustBufferAccess = true,
440 .fullDrawIndexUint32 = true,
441 .imageCubeArray = true,
442 .independentBlend = true,
443 .geometryShader = true,
444 .tessellationShader = false,
445 .sampleRateShading = true,
446 .dualSrcBlend = true,
447 .logicOp = true,
448 .multiDrawIndirect = false,
449 .drawIndirectFirstInstance = false,
450 .depthClamp = true,
451 .depthBiasClamp = false,
452 .fillModeNonSolid = true,
453 .depthBounds = false,
454 .wideLines = true,
455 .largePoints = true,
456 .alphaToOne = true,
457 .multiViewport = true,
458 .samplerAnisotropy = true,
459 .textureCompressionETC2 = pdevice->info.gen >= 8 ||
460 pdevice->info.is_baytrail,
461 .textureCompressionASTC_LDR = pdevice->info.gen >= 9, /* FINISHME CHV */
462 .textureCompressionBC = true,
463 .occlusionQueryPrecise = true,
464 .pipelineStatisticsQuery = false,
465 .fragmentStoresAndAtomics = true,
466 .shaderTessellationAndGeometryPointSize = true,
467 .shaderImageGatherExtended = false,
468 .shaderStorageImageExtendedFormats = true,
469 .shaderStorageImageMultisample = false,
470 .shaderUniformBufferArrayDynamicIndexing = true,
471 .shaderSampledImageArrayDynamicIndexing = true,
472 .shaderStorageBufferArrayDynamicIndexing = true,
473 .shaderStorageImageArrayDynamicIndexing = true,
474 .shaderStorageImageReadWithoutFormat = false,
475 .shaderStorageImageWriteWithoutFormat = true,
476 .shaderClipDistance = true,
477 .shaderCullDistance = true,
478 .shaderFloat64 = false,
479 .shaderInt64 = false,
480 .shaderInt16 = false,
481 .alphaToOne = true,
482 .variableMultisampleRate = false,
483 .inheritedQueries = false,
484 };
485
486 /* We can't do image stores in vec4 shaders */
487 pFeatures->vertexPipelineStoresAndAtomics =
488 pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
489 pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
490 }
491
492 void anv_GetPhysicalDeviceProperties(
493 VkPhysicalDevice physicalDevice,
494 VkPhysicalDeviceProperties* pProperties)
495 {
496 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
497 const struct gen_device_info *devinfo = &pdevice->info;
498
499 const float time_stamp_base = devinfo->gen >= 9 ? 83.333 : 80.0;
500
501 /* See assertions made when programming the buffer surface state. */
502 const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ?
503 (1ul << 30) : (1ul << 27);
504
505 VkSampleCountFlags sample_counts =
506 isl_device_get_sample_counts(&pdevice->isl_dev);
507
508 VkPhysicalDeviceLimits limits = {
509 .maxImageDimension1D = (1 << 14),
510 .maxImageDimension2D = (1 << 14),
511 .maxImageDimension3D = (1 << 11),
512 .maxImageDimensionCube = (1 << 14),
513 .maxImageArrayLayers = (1 << 11),
514 .maxTexelBufferElements = 128 * 1024 * 1024,
515 .maxUniformBufferRange = (1ul << 27),
516 .maxStorageBufferRange = max_raw_buffer_sz,
517 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
518 .maxMemoryAllocationCount = UINT32_MAX,
519 .maxSamplerAllocationCount = 64 * 1024,
520 .bufferImageGranularity = 64, /* A cache line */
521 .sparseAddressSpaceSize = 0,
522 .maxBoundDescriptorSets = MAX_SETS,
523 .maxPerStageDescriptorSamplers = 64,
524 .maxPerStageDescriptorUniformBuffers = 64,
525 .maxPerStageDescriptorStorageBuffers = 64,
526 .maxPerStageDescriptorSampledImages = 64,
527 .maxPerStageDescriptorStorageImages = 64,
528 .maxPerStageDescriptorInputAttachments = 64,
529 .maxPerStageResources = 128,
530 .maxDescriptorSetSamplers = 256,
531 .maxDescriptorSetUniformBuffers = 256,
532 .maxDescriptorSetUniformBuffersDynamic = 256,
533 .maxDescriptorSetStorageBuffers = 256,
534 .maxDescriptorSetStorageBuffersDynamic = 256,
535 .maxDescriptorSetSampledImages = 256,
536 .maxDescriptorSetStorageImages = 256,
537 .maxDescriptorSetInputAttachments = 256,
538 .maxVertexInputAttributes = 32,
539 .maxVertexInputBindings = 32,
540 .maxVertexInputAttributeOffset = 2047,
541 .maxVertexInputBindingStride = 2048,
542 .maxVertexOutputComponents = 128,
543 .maxTessellationGenerationLevel = 0,
544 .maxTessellationPatchSize = 0,
545 .maxTessellationControlPerVertexInputComponents = 0,
546 .maxTessellationControlPerVertexOutputComponents = 0,
547 .maxTessellationControlPerPatchOutputComponents = 0,
548 .maxTessellationControlTotalOutputComponents = 0,
549 .maxTessellationEvaluationInputComponents = 0,
550 .maxTessellationEvaluationOutputComponents = 0,
551 .maxGeometryShaderInvocations = 32,
552 .maxGeometryInputComponents = 64,
553 .maxGeometryOutputComponents = 128,
554 .maxGeometryOutputVertices = 256,
555 .maxGeometryTotalOutputComponents = 1024,
556 .maxFragmentInputComponents = 128,
557 .maxFragmentOutputAttachments = 8,
558 .maxFragmentDualSrcAttachments = 1,
559 .maxFragmentCombinedOutputResources = 8,
560 .maxComputeSharedMemorySize = 32768,
561 .maxComputeWorkGroupCount = { 65535, 65535, 65535 },
562 .maxComputeWorkGroupInvocations = 16 * devinfo->max_cs_threads,
563 .maxComputeWorkGroupSize = {
564 16 * devinfo->max_cs_threads,
565 16 * devinfo->max_cs_threads,
566 16 * devinfo->max_cs_threads,
567 },
568 .subPixelPrecisionBits = 4 /* FIXME */,
569 .subTexelPrecisionBits = 4 /* FIXME */,
570 .mipmapPrecisionBits = 4 /* FIXME */,
571 .maxDrawIndexedIndexValue = UINT32_MAX,
572 .maxDrawIndirectCount = UINT32_MAX,
573 .maxSamplerLodBias = 16,
574 .maxSamplerAnisotropy = 16,
575 .maxViewports = MAX_VIEWPORTS,
576 .maxViewportDimensions = { (1 << 14), (1 << 14) },
577 .viewportBoundsRange = { INT16_MIN, INT16_MAX },
578 .viewportSubPixelBits = 13, /* We take a float? */
579 .minMemoryMapAlignment = 4096, /* A page */
580 .minTexelBufferOffsetAlignment = 1,
581 .minUniformBufferOffsetAlignment = 1,
582 .minStorageBufferOffsetAlignment = 1,
583 .minTexelOffset = -8,
584 .maxTexelOffset = 7,
585 .minTexelGatherOffset = -8,
586 .maxTexelGatherOffset = 7,
587 .minInterpolationOffset = -0.5,
588 .maxInterpolationOffset = 0.4375,
589 .subPixelInterpolationOffsetBits = 4,
590 .maxFramebufferWidth = (1 << 14),
591 .maxFramebufferHeight = (1 << 14),
592 .maxFramebufferLayers = (1 << 11),
593 .framebufferColorSampleCounts = sample_counts,
594 .framebufferDepthSampleCounts = sample_counts,
595 .framebufferStencilSampleCounts = sample_counts,
596 .framebufferNoAttachmentsSampleCounts = sample_counts,
597 .maxColorAttachments = MAX_RTS,
598 .sampledImageColorSampleCounts = sample_counts,
599 .sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT,
600 .sampledImageDepthSampleCounts = sample_counts,
601 .sampledImageStencilSampleCounts = sample_counts,
602 .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
603 .maxSampleMaskWords = 1,
604 .timestampComputeAndGraphics = false,
605 .timestampPeriod = time_stamp_base,
606 .maxClipDistances = 8,
607 .maxCullDistances = 8,
608 .maxCombinedClipAndCullDistances = 8,
609 .discreteQueuePriorities = 1,
610 .pointSizeRange = { 0.125, 255.875 },
611 .lineWidthRange = { 0.0, 7.9921875 },
612 .pointSizeGranularity = (1.0 / 8.0),
613 .lineWidthGranularity = (1.0 / 128.0),
614 .strictLines = false, /* FINISHME */
615 .standardSampleLocations = true,
616 .optimalBufferCopyOffsetAlignment = 128,
617 .optimalBufferCopyRowPitchAlignment = 128,
618 .nonCoherentAtomSize = 64,
619 };
620
621 *pProperties = (VkPhysicalDeviceProperties) {
622 .apiVersion = VK_MAKE_VERSION(1, 0, 5),
623 .driverVersion = 1,
624 .vendorID = 0x8086,
625 .deviceID = pdevice->chipset_id,
626 .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
627 .limits = limits,
628 .sparseProperties = {0}, /* Broadwell doesn't do sparse. */
629 };
630
631 strcpy(pProperties->deviceName, pdevice->name);
632 memcpy(pProperties->pipelineCacheUUID, pdevice->uuid, VK_UUID_SIZE);
633 }
634
635 void anv_GetPhysicalDeviceQueueFamilyProperties(
636 VkPhysicalDevice physicalDevice,
637 uint32_t* pCount,
638 VkQueueFamilyProperties* pQueueFamilyProperties)
639 {
640 if (pQueueFamilyProperties == NULL) {
641 *pCount = 1;
642 return;
643 }
644
645 assert(*pCount >= 1);
646
647 *pQueueFamilyProperties = (VkQueueFamilyProperties) {
648 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
649 VK_QUEUE_COMPUTE_BIT |
650 VK_QUEUE_TRANSFER_BIT,
651 .queueCount = 1,
652 .timestampValidBits = 36, /* XXX: Real value here */
653 .minImageTransferGranularity = (VkExtent3D) { 1, 1, 1 },
654 };
655 }
656
657 void anv_GetPhysicalDeviceMemoryProperties(
658 VkPhysicalDevice physicalDevice,
659 VkPhysicalDeviceMemoryProperties* pMemoryProperties)
660 {
661 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
662 VkDeviceSize heap_size;
663
664 /* Reserve some wiggle room for the driver by exposing only 75% of the
665 * aperture to the heap.
666 */
667 heap_size = 3 * physical_device->aperture_size / 4;
668
669 if (physical_device->info.has_llc) {
670 /* Big core GPUs share LLC with the CPU and thus one memory type can be
671 * both cached and coherent at the same time.
672 */
673 pMemoryProperties->memoryTypeCount = 1;
674 pMemoryProperties->memoryTypes[0] = (VkMemoryType) {
675 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
676 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
677 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
678 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
679 .heapIndex = 0,
680 };
681 } else {
682 /* The spec requires that we expose a host-visible, coherent memory
683 * type, but Atom GPUs don't share LLC. Thus we offer two memory types
684 * to give the application a choice between cached, but not coherent and
685 * coherent but uncached (WC though).
686 */
687 pMemoryProperties->memoryTypeCount = 2;
688 pMemoryProperties->memoryTypes[0] = (VkMemoryType) {
689 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
690 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
691 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
692 .heapIndex = 0,
693 };
694 pMemoryProperties->memoryTypes[1] = (VkMemoryType) {
695 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
696 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
697 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
698 .heapIndex = 0,
699 };
700 }
701
702 pMemoryProperties->memoryHeapCount = 1;
703 pMemoryProperties->memoryHeaps[0] = (VkMemoryHeap) {
704 .size = heap_size,
705 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
706 };
707 }
708
709 PFN_vkVoidFunction anv_GetInstanceProcAddr(
710 VkInstance instance,
711 const char* pName)
712 {
713 return anv_lookup_entrypoint(NULL, pName);
714 }
715
716 /* With version 1+ of the loader interface the ICD should expose
717 * vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
718 */
719 PUBLIC
720 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
721 VkInstance instance,
722 const char* pName);
723
724 PUBLIC
725 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
726 VkInstance instance,
727 const char* pName)
728 {
729 return anv_GetInstanceProcAddr(instance, pName);
730 }
731
732 PFN_vkVoidFunction anv_GetDeviceProcAddr(
733 VkDevice _device,
734 const char* pName)
735 {
736 ANV_FROM_HANDLE(anv_device, device, _device);
737 return anv_lookup_entrypoint(&device->info, pName);
738 }
739
740 static void
741 anv_queue_init(struct anv_device *device, struct anv_queue *queue)
742 {
743 queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
744 queue->device = device;
745 queue->pool = &device->surface_state_pool;
746 }
747
748 static void
749 anv_queue_finish(struct anv_queue *queue)
750 {
751 }
752
753 static struct anv_state
754 anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
755 {
756 struct anv_state state;
757
758 state = anv_state_pool_alloc(pool, size, align);
759 memcpy(state.map, p, size);
760
761 if (!pool->block_pool->device->info.has_llc)
762 anv_state_clflush(state);
763
764 return state;
765 }
766
767 struct gen8_border_color {
768 union {
769 float float32[4];
770 uint32_t uint32[4];
771 };
772 /* Pad out to 64 bytes */
773 uint32_t _pad[12];
774 };
775
776 static void
777 anv_device_init_border_colors(struct anv_device *device)
778 {
779 static const struct gen8_border_color border_colors[] = {
780 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
781 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
782 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
783 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
784 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
785 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
786 };
787
788 device->border_colors = anv_state_pool_emit_data(&device->dynamic_state_pool,
789 sizeof(border_colors), 64,
790 border_colors);
791 }
792
793 VkResult
794 anv_device_submit_simple_batch(struct anv_device *device,
795 struct anv_batch *batch)
796 {
797 struct drm_i915_gem_execbuffer2 execbuf;
798 struct drm_i915_gem_exec_object2 exec2_objects[1];
799 struct anv_bo bo, *exec_bos[1];
800 VkResult result = VK_SUCCESS;
801 uint32_t size;
802 int64_t timeout;
803 int ret;
804
805 /* Kernel driver requires 8 byte aligned batch length */
806 size = align_u32(batch->next - batch->start, 8);
807 result = anv_bo_pool_alloc(&device->batch_bo_pool, &bo, size);
808 if (result != VK_SUCCESS)
809 return result;
810
811 memcpy(bo.map, batch->start, size);
812 if (!device->info.has_llc)
813 anv_clflush_range(bo.map, size);
814
815 exec_bos[0] = &bo;
816 exec2_objects[0].handle = bo.gem_handle;
817 exec2_objects[0].relocation_count = 0;
818 exec2_objects[0].relocs_ptr = 0;
819 exec2_objects[0].alignment = 0;
820 exec2_objects[0].offset = bo.offset;
821 exec2_objects[0].flags = 0;
822 exec2_objects[0].rsvd1 = 0;
823 exec2_objects[0].rsvd2 = 0;
824
825 execbuf.buffers_ptr = (uintptr_t) exec2_objects;
826 execbuf.buffer_count = 1;
827 execbuf.batch_start_offset = 0;
828 execbuf.batch_len = size;
829 execbuf.cliprects_ptr = 0;
830 execbuf.num_cliprects = 0;
831 execbuf.DR1 = 0;
832 execbuf.DR4 = 0;
833
834 execbuf.flags =
835 I915_EXEC_HANDLE_LUT | I915_EXEC_NO_RELOC | I915_EXEC_RENDER;
836 execbuf.rsvd1 = device->context_id;
837 execbuf.rsvd2 = 0;
838
839 result = anv_device_execbuf(device, &execbuf, exec_bos);
840 if (result != VK_SUCCESS)
841 goto fail;
842
843 timeout = INT64_MAX;
844 ret = anv_gem_wait(device, bo.gem_handle, &timeout);
845 if (ret != 0) {
846 /* We don't know the real error. */
847 result = vk_errorf(VK_ERROR_DEVICE_LOST, "execbuf2 failed: %m");
848 goto fail;
849 }
850
851 fail:
852 anv_bo_pool_free(&device->batch_bo_pool, &bo);
853
854 return result;
855 }
856
857 VkResult anv_CreateDevice(
858 VkPhysicalDevice physicalDevice,
859 const VkDeviceCreateInfo* pCreateInfo,
860 const VkAllocationCallbacks* pAllocator,
861 VkDevice* pDevice)
862 {
863 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
864 VkResult result;
865 struct anv_device *device;
866
867 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
868
869 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
870 bool found = false;
871 for (uint32_t j = 0; j < ARRAY_SIZE(device_extensions); j++) {
872 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
873 device_extensions[j].extensionName) == 0) {
874 found = true;
875 break;
876 }
877 }
878 if (!found)
879 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
880 }
881
882 device = vk_alloc2(&physical_device->instance->alloc, pAllocator,
883 sizeof(*device), 8,
884 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
885 if (!device)
886 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
887
888 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
889 device->instance = physical_device->instance;
890 device->chipset_id = physical_device->chipset_id;
891
892 if (pAllocator)
893 device->alloc = *pAllocator;
894 else
895 device->alloc = physical_device->instance->alloc;
896
897 /* XXX(chadv): Can we dup() physicalDevice->fd here? */
898 device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
899 if (device->fd == -1) {
900 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
901 goto fail_device;
902 }
903
904 device->context_id = anv_gem_create_context(device);
905 if (device->context_id == -1) {
906 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
907 goto fail_fd;
908 }
909
910 device->info = physical_device->info;
911 device->isl_dev = physical_device->isl_dev;
912
913 /* On Broadwell and later, we can use batch chaining to more efficiently
914 * implement growing command buffers. Prior to Haswell, the kernel
915 * command parser gets in the way and we have to fall back to growing
916 * the batch.
917 */
918 device->can_chain_batches = device->info.gen >= 8;
919
920 device->robust_buffer_access = pCreateInfo->pEnabledFeatures &&
921 pCreateInfo->pEnabledFeatures->robustBufferAccess;
922
923 pthread_mutex_init(&device->mutex, NULL);
924
925 pthread_condattr_t condattr;
926 pthread_condattr_init(&condattr);
927 pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC);
928 pthread_cond_init(&device->queue_submit, NULL);
929 pthread_condattr_destroy(&condattr);
930
931 anv_bo_pool_init(&device->batch_bo_pool, device);
932
933 anv_block_pool_init(&device->dynamic_state_block_pool, device, 16384);
934
935 anv_state_pool_init(&device->dynamic_state_pool,
936 &device->dynamic_state_block_pool);
937
938 anv_block_pool_init(&device->instruction_block_pool, device, 128 * 1024);
939 anv_state_pool_init(&device->instruction_state_pool,
940 &device->instruction_block_pool);
941
942 anv_block_pool_init(&device->surface_state_block_pool, device, 4096);
943
944 anv_state_pool_init(&device->surface_state_pool,
945 &device->surface_state_block_pool);
946
947 anv_bo_init_new(&device->workaround_bo, device, 1024);
948
949 anv_scratch_pool_init(device, &device->scratch_pool);
950
951 anv_queue_init(device, &device->queue);
952
953 switch (device->info.gen) {
954 case 7:
955 if (!device->info.is_haswell)
956 result = gen7_init_device_state(device);
957 else
958 result = gen75_init_device_state(device);
959 break;
960 case 8:
961 result = gen8_init_device_state(device);
962 break;
963 case 9:
964 result = gen9_init_device_state(device);
965 break;
966 default:
967 /* Shouldn't get here as we don't create physical devices for any other
968 * gens. */
969 unreachable("unhandled gen");
970 }
971 if (result != VK_SUCCESS)
972 goto fail_fd;
973
974 anv_device_init_blorp(device);
975
976 anv_device_init_border_colors(device);
977
978 *pDevice = anv_device_to_handle(device);
979
980 return VK_SUCCESS;
981
982 fail_fd:
983 close(device->fd);
984 fail_device:
985 vk_free(&device->alloc, device);
986
987 return result;
988 }
989
990 void anv_DestroyDevice(
991 VkDevice _device,
992 const VkAllocationCallbacks* pAllocator)
993 {
994 ANV_FROM_HANDLE(anv_device, device, _device);
995
996 anv_device_finish_blorp(device);
997
998 anv_queue_finish(&device->queue);
999
1000 #ifdef HAVE_VALGRIND
1001 /* We only need to free these to prevent valgrind errors. The backing
1002 * BO will go away in a couple of lines so we don't actually leak.
1003 */
1004 anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
1005 #endif
1006
1007 anv_scratch_pool_finish(device, &device->scratch_pool);
1008
1009 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
1010 anv_gem_close(device, device->workaround_bo.gem_handle);
1011
1012 anv_state_pool_finish(&device->surface_state_pool);
1013 anv_block_pool_finish(&device->surface_state_block_pool);
1014 anv_state_pool_finish(&device->instruction_state_pool);
1015 anv_block_pool_finish(&device->instruction_block_pool);
1016 anv_state_pool_finish(&device->dynamic_state_pool);
1017 anv_block_pool_finish(&device->dynamic_state_block_pool);
1018
1019 anv_bo_pool_finish(&device->batch_bo_pool);
1020
1021 pthread_cond_destroy(&device->queue_submit);
1022 pthread_mutex_destroy(&device->mutex);
1023
1024 anv_gem_destroy_context(device, device->context_id);
1025
1026 close(device->fd);
1027
1028 vk_free(&device->alloc, device);
1029 }
1030
1031 VkResult anv_EnumerateInstanceExtensionProperties(
1032 const char* pLayerName,
1033 uint32_t* pPropertyCount,
1034 VkExtensionProperties* pProperties)
1035 {
1036 if (pProperties == NULL) {
1037 *pPropertyCount = ARRAY_SIZE(global_extensions);
1038 return VK_SUCCESS;
1039 }
1040
1041 *pPropertyCount = MIN2(*pPropertyCount, ARRAY_SIZE(global_extensions));
1042 typed_memcpy(pProperties, global_extensions, *pPropertyCount);
1043
1044 if (*pPropertyCount < ARRAY_SIZE(global_extensions))
1045 return VK_INCOMPLETE;
1046
1047 return VK_SUCCESS;
1048 }
1049
1050 VkResult anv_EnumerateDeviceExtensionProperties(
1051 VkPhysicalDevice physicalDevice,
1052 const char* pLayerName,
1053 uint32_t* pPropertyCount,
1054 VkExtensionProperties* pProperties)
1055 {
1056 if (pProperties == NULL) {
1057 *pPropertyCount = ARRAY_SIZE(device_extensions);
1058 return VK_SUCCESS;
1059 }
1060
1061 *pPropertyCount = MIN2(*pPropertyCount, ARRAY_SIZE(device_extensions));
1062 typed_memcpy(pProperties, device_extensions, *pPropertyCount);
1063
1064 if (*pPropertyCount < ARRAY_SIZE(device_extensions))
1065 return VK_INCOMPLETE;
1066
1067 return VK_SUCCESS;
1068 }
1069
1070 VkResult anv_EnumerateInstanceLayerProperties(
1071 uint32_t* pPropertyCount,
1072 VkLayerProperties* pProperties)
1073 {
1074 if (pProperties == NULL) {
1075 *pPropertyCount = 0;
1076 return VK_SUCCESS;
1077 }
1078
1079 /* None supported at this time */
1080 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
1081 }
1082
1083 VkResult anv_EnumerateDeviceLayerProperties(
1084 VkPhysicalDevice physicalDevice,
1085 uint32_t* pPropertyCount,
1086 VkLayerProperties* pProperties)
1087 {
1088 if (pProperties == NULL) {
1089 *pPropertyCount = 0;
1090 return VK_SUCCESS;
1091 }
1092
1093 /* None supported at this time */
1094 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
1095 }
1096
1097 void anv_GetDeviceQueue(
1098 VkDevice _device,
1099 uint32_t queueNodeIndex,
1100 uint32_t queueIndex,
1101 VkQueue* pQueue)
1102 {
1103 ANV_FROM_HANDLE(anv_device, device, _device);
1104
1105 assert(queueIndex == 0);
1106
1107 *pQueue = anv_queue_to_handle(&device->queue);
1108 }
1109
1110 VkResult
1111 anv_device_execbuf(struct anv_device *device,
1112 struct drm_i915_gem_execbuffer2 *execbuf,
1113 struct anv_bo **execbuf_bos)
1114 {
1115 int ret = anv_gem_execbuffer(device, execbuf);
1116 if (ret != 0) {
1117 /* We don't know the real error. */
1118 return vk_errorf(VK_ERROR_DEVICE_LOST, "execbuf2 failed: %m");
1119 }
1120
1121 struct drm_i915_gem_exec_object2 *objects =
1122 (void *)(uintptr_t)execbuf->buffers_ptr;
1123 for (uint32_t k = 0; k < execbuf->buffer_count; k++)
1124 execbuf_bos[k]->offset = objects[k].offset;
1125
1126 return VK_SUCCESS;
1127 }
1128
1129 VkResult anv_QueueSubmit(
1130 VkQueue _queue,
1131 uint32_t submitCount,
1132 const VkSubmitInfo* pSubmits,
1133 VkFence _fence)
1134 {
1135 ANV_FROM_HANDLE(anv_queue, queue, _queue);
1136 ANV_FROM_HANDLE(anv_fence, fence, _fence);
1137 struct anv_device *device = queue->device;
1138 VkResult result = VK_SUCCESS;
1139
1140 /* We lock around QueueSubmit for three main reasons:
1141 *
1142 * 1) When a block pool is resized, we create a new gem handle with a
1143 * different size and, in the case of surface states, possibly a
1144 * different center offset but we re-use the same anv_bo struct when
1145 * we do so. If this happens in the middle of setting up an execbuf,
1146 * we could end up with our list of BOs out of sync with our list of
1147 * gem handles.
1148 *
1149 * 2) The algorithm we use for building the list of unique buffers isn't
1150 * thread-safe. While the client is supposed to syncronize around
1151 * QueueSubmit, this would be extremely difficult to debug if it ever
1152 * came up in the wild due to a broken app. It's better to play it
1153 * safe and just lock around QueueSubmit.
1154 *
1155 * 3) The anv_cmd_buffer_execbuf function may perform relocations in
1156 * userspace. Due to the fact that the surface state buffer is shared
1157 * between batches, we can't afford to have that happen from multiple
1158 * threads at the same time. Even though the user is supposed to
1159 * ensure this doesn't happen, we play it safe as in (2) above.
1160 *
1161 * Since the only other things that ever take the device lock such as block
1162 * pool resize only rarely happen, this will almost never be contended so
1163 * taking a lock isn't really an expensive operation in this case.
1164 */
1165 pthread_mutex_lock(&device->mutex);
1166
1167 for (uint32_t i = 0; i < submitCount; i++) {
1168 for (uint32_t j = 0; j < pSubmits[i].commandBufferCount; j++) {
1169 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer,
1170 pSubmits[i].pCommandBuffers[j]);
1171 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
1172
1173 result = anv_cmd_buffer_execbuf(device, cmd_buffer);
1174 if (result != VK_SUCCESS)
1175 goto out;
1176 }
1177 }
1178
1179 if (fence) {
1180 struct anv_bo *fence_bo = &fence->bo;
1181 result = anv_device_execbuf(device, &fence->execbuf, &fence_bo);
1182 if (result != VK_SUCCESS)
1183 goto out;
1184
1185 /* Update the fence and wake up any waiters */
1186 assert(fence->state == ANV_FENCE_STATE_RESET);
1187 fence->state = ANV_FENCE_STATE_SUBMITTED;
1188 pthread_cond_broadcast(&device->queue_submit);
1189 }
1190
1191 out:
1192 pthread_mutex_unlock(&device->mutex);
1193
1194 return result;
1195 }
1196
1197 VkResult anv_QueueWaitIdle(
1198 VkQueue _queue)
1199 {
1200 ANV_FROM_HANDLE(anv_queue, queue, _queue);
1201
1202 return anv_DeviceWaitIdle(anv_device_to_handle(queue->device));
1203 }
1204
1205 VkResult anv_DeviceWaitIdle(
1206 VkDevice _device)
1207 {
1208 ANV_FROM_HANDLE(anv_device, device, _device);
1209 struct anv_batch batch;
1210
1211 uint32_t cmds[8];
1212 batch.start = batch.next = cmds;
1213 batch.end = (void *) cmds + sizeof(cmds);
1214
1215 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
1216 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
1217
1218 return anv_device_submit_simple_batch(device, &batch);
1219 }
1220
1221 VkResult
1222 anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size)
1223 {
1224 uint32_t gem_handle = anv_gem_create(device, size);
1225 if (!gem_handle)
1226 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
1227
1228 anv_bo_init(bo, gem_handle, size);
1229
1230 return VK_SUCCESS;
1231 }
1232
1233 VkResult anv_AllocateMemory(
1234 VkDevice _device,
1235 const VkMemoryAllocateInfo* pAllocateInfo,
1236 const VkAllocationCallbacks* pAllocator,
1237 VkDeviceMemory* pMem)
1238 {
1239 ANV_FROM_HANDLE(anv_device, device, _device);
1240 struct anv_device_memory *mem;
1241 VkResult result;
1242
1243 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
1244
1245 if (pAllocateInfo->allocationSize == 0) {
1246 /* Apparently, this is allowed */
1247 *pMem = VK_NULL_HANDLE;
1248 return VK_SUCCESS;
1249 }
1250
1251 /* We support exactly one memory heap. */
1252 assert(pAllocateInfo->memoryTypeIndex == 0 ||
1253 (!device->info.has_llc && pAllocateInfo->memoryTypeIndex < 2));
1254
1255 /* FINISHME: Fail if allocation request exceeds heap size. */
1256
1257 mem = vk_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
1258 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1259 if (mem == NULL)
1260 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1261
1262 /* The kernel is going to give us whole pages anyway */
1263 uint64_t alloc_size = align_u64(pAllocateInfo->allocationSize, 4096);
1264
1265 result = anv_bo_init_new(&mem->bo, device, alloc_size);
1266 if (result != VK_SUCCESS)
1267 goto fail;
1268
1269 mem->type_index = pAllocateInfo->memoryTypeIndex;
1270
1271 mem->map = NULL;
1272 mem->map_size = 0;
1273
1274 *pMem = anv_device_memory_to_handle(mem);
1275
1276 return VK_SUCCESS;
1277
1278 fail:
1279 vk_free2(&device->alloc, pAllocator, mem);
1280
1281 return result;
1282 }
1283
1284 void anv_FreeMemory(
1285 VkDevice _device,
1286 VkDeviceMemory _mem,
1287 const VkAllocationCallbacks* pAllocator)
1288 {
1289 ANV_FROM_HANDLE(anv_device, device, _device);
1290 ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
1291
1292 if (mem == NULL)
1293 return;
1294
1295 if (mem->map)
1296 anv_UnmapMemory(_device, _mem);
1297
1298 if (mem->bo.map)
1299 anv_gem_munmap(mem->bo.map, mem->bo.size);
1300
1301 if (mem->bo.gem_handle != 0)
1302 anv_gem_close(device, mem->bo.gem_handle);
1303
1304 vk_free2(&device->alloc, pAllocator, mem);
1305 }
1306
1307 VkResult anv_MapMemory(
1308 VkDevice _device,
1309 VkDeviceMemory _memory,
1310 VkDeviceSize offset,
1311 VkDeviceSize size,
1312 VkMemoryMapFlags flags,
1313 void** ppData)
1314 {
1315 ANV_FROM_HANDLE(anv_device, device, _device);
1316 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
1317
1318 if (mem == NULL) {
1319 *ppData = NULL;
1320 return VK_SUCCESS;
1321 }
1322
1323 if (size == VK_WHOLE_SIZE)
1324 size = mem->bo.size - offset;
1325
1326 /* From the Vulkan spec version 1.0.32 docs for MapMemory:
1327 *
1328 * * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0
1329 * assert(size != 0);
1330 * * If size is not equal to VK_WHOLE_SIZE, size must be less than or
1331 * equal to the size of the memory minus offset
1332 */
1333 assert(size > 0);
1334 assert(offset + size <= mem->bo.size);
1335
1336 /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
1337 * takes a VkDeviceMemory pointer, it seems like only one map of the memory
1338 * at a time is valid. We could just mmap up front and return an offset
1339 * pointer here, but that may exhaust virtual memory on 32 bit
1340 * userspace. */
1341
1342 uint32_t gem_flags = 0;
1343 if (!device->info.has_llc && mem->type_index == 0)
1344 gem_flags |= I915_MMAP_WC;
1345
1346 /* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
1347 uint64_t map_offset = offset & ~4095ull;
1348 assert(offset >= map_offset);
1349 uint64_t map_size = (offset + size) - map_offset;
1350
1351 /* Let's map whole pages */
1352 map_size = align_u64(map_size, 4096);
1353
1354 void *map = anv_gem_mmap(device, mem->bo.gem_handle,
1355 map_offset, map_size, gem_flags);
1356 if (map == MAP_FAILED)
1357 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
1358
1359 mem->map = map;
1360 mem->map_size = map_size;
1361
1362 *ppData = mem->map + (offset - map_offset);
1363
1364 return VK_SUCCESS;
1365 }
1366
1367 void anv_UnmapMemory(
1368 VkDevice _device,
1369 VkDeviceMemory _memory)
1370 {
1371 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
1372
1373 if (mem == NULL)
1374 return;
1375
1376 anv_gem_munmap(mem->map, mem->map_size);
1377
1378 mem->map = NULL;
1379 mem->map_size = 0;
1380 }
1381
1382 static void
1383 clflush_mapped_ranges(struct anv_device *device,
1384 uint32_t count,
1385 const VkMappedMemoryRange *ranges)
1386 {
1387 for (uint32_t i = 0; i < count; i++) {
1388 ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
1389 void *p = mem->map + (ranges[i].offset & ~CACHELINE_MASK);
1390 void *end;
1391
1392 if (ranges[i].offset + ranges[i].size > mem->map_size)
1393 end = mem->map + mem->map_size;
1394 else
1395 end = mem->map + ranges[i].offset + ranges[i].size;
1396
1397 while (p < end) {
1398 __builtin_ia32_clflush(p);
1399 p += CACHELINE_SIZE;
1400 }
1401 }
1402 }
1403
1404 VkResult anv_FlushMappedMemoryRanges(
1405 VkDevice _device,
1406 uint32_t memoryRangeCount,
1407 const VkMappedMemoryRange* pMemoryRanges)
1408 {
1409 ANV_FROM_HANDLE(anv_device, device, _device);
1410
1411 if (device->info.has_llc)
1412 return VK_SUCCESS;
1413
1414 /* Make sure the writes we're flushing have landed. */
1415 __builtin_ia32_mfence();
1416
1417 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
1418
1419 return VK_SUCCESS;
1420 }
1421
1422 VkResult anv_InvalidateMappedMemoryRanges(
1423 VkDevice _device,
1424 uint32_t memoryRangeCount,
1425 const VkMappedMemoryRange* pMemoryRanges)
1426 {
1427 ANV_FROM_HANDLE(anv_device, device, _device);
1428
1429 if (device->info.has_llc)
1430 return VK_SUCCESS;
1431
1432 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
1433
1434 /* Make sure no reads get moved up above the invalidate. */
1435 __builtin_ia32_mfence();
1436
1437 return VK_SUCCESS;
1438 }
1439
1440 void anv_GetBufferMemoryRequirements(
1441 VkDevice device,
1442 VkBuffer _buffer,
1443 VkMemoryRequirements* pMemoryRequirements)
1444 {
1445 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
1446
1447 /* The Vulkan spec (git aaed022) says:
1448 *
1449 * memoryTypeBits is a bitfield and contains one bit set for every
1450 * supported memory type for the resource. The bit `1<<i` is set if and
1451 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
1452 * structure for the physical device is supported.
1453 *
1454 * We support exactly one memory type.
1455 */
1456 pMemoryRequirements->memoryTypeBits = 1;
1457
1458 pMemoryRequirements->size = buffer->size;
1459 pMemoryRequirements->alignment = 16;
1460 }
1461
1462 void anv_GetImageMemoryRequirements(
1463 VkDevice device,
1464 VkImage _image,
1465 VkMemoryRequirements* pMemoryRequirements)
1466 {
1467 ANV_FROM_HANDLE(anv_image, image, _image);
1468
1469 /* The Vulkan spec (git aaed022) says:
1470 *
1471 * memoryTypeBits is a bitfield and contains one bit set for every
1472 * supported memory type for the resource. The bit `1<<i` is set if and
1473 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
1474 * structure for the physical device is supported.
1475 *
1476 * We support exactly one memory type.
1477 */
1478 pMemoryRequirements->memoryTypeBits = 1;
1479
1480 pMemoryRequirements->size = image->size;
1481 pMemoryRequirements->alignment = image->alignment;
1482 }
1483
1484 void anv_GetImageSparseMemoryRequirements(
1485 VkDevice device,
1486 VkImage image,
1487 uint32_t* pSparseMemoryRequirementCount,
1488 VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
1489 {
1490 stub();
1491 }
1492
1493 void anv_GetDeviceMemoryCommitment(
1494 VkDevice device,
1495 VkDeviceMemory memory,
1496 VkDeviceSize* pCommittedMemoryInBytes)
1497 {
1498 *pCommittedMemoryInBytes = 0;
1499 }
1500
1501 VkResult anv_BindBufferMemory(
1502 VkDevice device,
1503 VkBuffer _buffer,
1504 VkDeviceMemory _memory,
1505 VkDeviceSize memoryOffset)
1506 {
1507 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
1508 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
1509
1510 if (mem) {
1511 buffer->bo = &mem->bo;
1512 buffer->offset = memoryOffset;
1513 } else {
1514 buffer->bo = NULL;
1515 buffer->offset = 0;
1516 }
1517
1518 return VK_SUCCESS;
1519 }
1520
1521 VkResult anv_QueueBindSparse(
1522 VkQueue queue,
1523 uint32_t bindInfoCount,
1524 const VkBindSparseInfo* pBindInfo,
1525 VkFence fence)
1526 {
1527 stub_return(VK_ERROR_INCOMPATIBLE_DRIVER);
1528 }
1529
1530 VkResult anv_CreateFence(
1531 VkDevice _device,
1532 const VkFenceCreateInfo* pCreateInfo,
1533 const VkAllocationCallbacks* pAllocator,
1534 VkFence* pFence)
1535 {
1536 ANV_FROM_HANDLE(anv_device, device, _device);
1537 struct anv_bo fence_bo;
1538 struct anv_fence *fence;
1539 struct anv_batch batch;
1540 VkResult result;
1541
1542 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FENCE_CREATE_INFO);
1543
1544 result = anv_bo_pool_alloc(&device->batch_bo_pool, &fence_bo, 4096);
1545 if (result != VK_SUCCESS)
1546 return result;
1547
1548 /* Fences are small. Just store the CPU data structure in the BO. */
1549 fence = fence_bo.map;
1550 fence->bo = fence_bo;
1551
1552 /* Place the batch after the CPU data but on its own cache line. */
1553 const uint32_t batch_offset = align_u32(sizeof(*fence), CACHELINE_SIZE);
1554 batch.next = batch.start = fence->bo.map + batch_offset;
1555 batch.end = fence->bo.map + fence->bo.size;
1556 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
1557 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
1558
1559 if (!device->info.has_llc) {
1560 assert(((uintptr_t) batch.start & CACHELINE_MASK) == 0);
1561 assert(batch.next - batch.start <= CACHELINE_SIZE);
1562 __builtin_ia32_mfence();
1563 __builtin_ia32_clflush(batch.start);
1564 }
1565
1566 fence->exec2_objects[0].handle = fence->bo.gem_handle;
1567 fence->exec2_objects[0].relocation_count = 0;
1568 fence->exec2_objects[0].relocs_ptr = 0;
1569 fence->exec2_objects[0].alignment = 0;
1570 fence->exec2_objects[0].offset = fence->bo.offset;
1571 fence->exec2_objects[0].flags = 0;
1572 fence->exec2_objects[0].rsvd1 = 0;
1573 fence->exec2_objects[0].rsvd2 = 0;
1574
1575 fence->execbuf.buffers_ptr = (uintptr_t) fence->exec2_objects;
1576 fence->execbuf.buffer_count = 1;
1577 fence->execbuf.batch_start_offset = batch.start - fence->bo.map;
1578 fence->execbuf.batch_len = batch.next - batch.start;
1579 fence->execbuf.cliprects_ptr = 0;
1580 fence->execbuf.num_cliprects = 0;
1581 fence->execbuf.DR1 = 0;
1582 fence->execbuf.DR4 = 0;
1583
1584 fence->execbuf.flags =
1585 I915_EXEC_HANDLE_LUT | I915_EXEC_NO_RELOC | I915_EXEC_RENDER;
1586 fence->execbuf.rsvd1 = device->context_id;
1587 fence->execbuf.rsvd2 = 0;
1588
1589 if (pCreateInfo->flags & VK_FENCE_CREATE_SIGNALED_BIT) {
1590 fence->state = ANV_FENCE_STATE_SIGNALED;
1591 } else {
1592 fence->state = ANV_FENCE_STATE_RESET;
1593 }
1594
1595 *pFence = anv_fence_to_handle(fence);
1596
1597 return VK_SUCCESS;
1598 }
1599
1600 void anv_DestroyFence(
1601 VkDevice _device,
1602 VkFence _fence,
1603 const VkAllocationCallbacks* pAllocator)
1604 {
1605 ANV_FROM_HANDLE(anv_device, device, _device);
1606 ANV_FROM_HANDLE(anv_fence, fence, _fence);
1607
1608 if (!fence)
1609 return;
1610
1611 assert(fence->bo.map == fence);
1612 anv_bo_pool_free(&device->batch_bo_pool, &fence->bo);
1613 }
1614
1615 VkResult anv_ResetFences(
1616 VkDevice _device,
1617 uint32_t fenceCount,
1618 const VkFence* pFences)
1619 {
1620 for (uint32_t i = 0; i < fenceCount; i++) {
1621 ANV_FROM_HANDLE(anv_fence, fence, pFences[i]);
1622 fence->state = ANV_FENCE_STATE_RESET;
1623 }
1624
1625 return VK_SUCCESS;
1626 }
1627
1628 VkResult anv_GetFenceStatus(
1629 VkDevice _device,
1630 VkFence _fence)
1631 {
1632 ANV_FROM_HANDLE(anv_device, device, _device);
1633 ANV_FROM_HANDLE(anv_fence, fence, _fence);
1634 int64_t t = 0;
1635 int ret;
1636
1637 switch (fence->state) {
1638 case ANV_FENCE_STATE_RESET:
1639 /* If it hasn't even been sent off to the GPU yet, it's not ready */
1640 return VK_NOT_READY;
1641
1642 case ANV_FENCE_STATE_SIGNALED:
1643 /* It's been signaled, return success */
1644 return VK_SUCCESS;
1645
1646 case ANV_FENCE_STATE_SUBMITTED:
1647 /* It's been submitted to the GPU but we don't know if it's done yet. */
1648 ret = anv_gem_wait(device, fence->bo.gem_handle, &t);
1649 if (ret == 0) {
1650 fence->state = ANV_FENCE_STATE_SIGNALED;
1651 return VK_SUCCESS;
1652 } else {
1653 return VK_NOT_READY;
1654 }
1655 default:
1656 unreachable("Invalid fence status");
1657 }
1658 }
1659
1660 #define NSEC_PER_SEC 1000000000
1661 #define INT_TYPE_MAX(type) ((1ull << (sizeof(type) * 8 - 1)) - 1)
1662
1663 VkResult anv_WaitForFences(
1664 VkDevice _device,
1665 uint32_t fenceCount,
1666 const VkFence* pFences,
1667 VkBool32 waitAll,
1668 uint64_t _timeout)
1669 {
1670 ANV_FROM_HANDLE(anv_device, device, _device);
1671 int ret;
1672
1673 /* DRM_IOCTL_I915_GEM_WAIT uses a signed 64 bit timeout and is supposed
1674 * to block indefinitely timeouts <= 0. Unfortunately, this was broken
1675 * for a couple of kernel releases. Since there's no way to know
1676 * whether or not the kernel we're using is one of the broken ones, the
1677 * best we can do is to clamp the timeout to INT64_MAX. This limits the
1678 * maximum timeout from 584 years to 292 years - likely not a big deal.
1679 */
1680 int64_t timeout = MIN2(_timeout, INT64_MAX);
1681
1682 uint32_t pending_fences = fenceCount;
1683 while (pending_fences) {
1684 pending_fences = 0;
1685 bool signaled_fences = false;
1686 for (uint32_t i = 0; i < fenceCount; i++) {
1687 ANV_FROM_HANDLE(anv_fence, fence, pFences[i]);
1688 switch (fence->state) {
1689 case ANV_FENCE_STATE_RESET:
1690 /* This fence hasn't been submitted yet, we'll catch it the next
1691 * time around. Yes, this may mean we dead-loop but, short of
1692 * lots of locking and a condition variable, there's not much that
1693 * we can do about that.
1694 */
1695 pending_fences++;
1696 continue;
1697
1698 case ANV_FENCE_STATE_SIGNALED:
1699 /* This fence is not pending. If waitAll isn't set, we can return
1700 * early. Otherwise, we have to keep going.
1701 */
1702 if (!waitAll)
1703 return VK_SUCCESS;
1704 continue;
1705
1706 case ANV_FENCE_STATE_SUBMITTED:
1707 /* These are the fences we really care about. Go ahead and wait
1708 * on it until we hit a timeout.
1709 */
1710 ret = anv_gem_wait(device, fence->bo.gem_handle, &timeout);
1711 if (ret == -1 && errno == ETIME) {
1712 return VK_TIMEOUT;
1713 } else if (ret == -1) {
1714 /* We don't know the real error. */
1715 return vk_errorf(VK_ERROR_DEVICE_LOST, "gem wait failed: %m");
1716 } else {
1717 fence->state = ANV_FENCE_STATE_SIGNALED;
1718 signaled_fences = true;
1719 if (!waitAll)
1720 return VK_SUCCESS;
1721 continue;
1722 }
1723 }
1724 }
1725
1726 if (pending_fences && !signaled_fences) {
1727 /* If we've hit this then someone decided to vkWaitForFences before
1728 * they've actually submitted any of them to a queue. This is a
1729 * fairly pessimal case, so it's ok to lock here and use a standard
1730 * pthreads condition variable.
1731 */
1732 pthread_mutex_lock(&device->mutex);
1733
1734 /* It's possible that some of the fences have changed state since the
1735 * last time we checked. Now that we have the lock, check for
1736 * pending fences again and don't wait if it's changed.
1737 */
1738 uint32_t now_pending_fences = 0;
1739 for (uint32_t i = 0; i < fenceCount; i++) {
1740 ANV_FROM_HANDLE(anv_fence, fence, pFences[i]);
1741 if (fence->state == ANV_FENCE_STATE_RESET)
1742 now_pending_fences++;
1743 }
1744 assert(now_pending_fences <= pending_fences);
1745
1746 if (now_pending_fences == pending_fences) {
1747 struct timespec before;
1748 clock_gettime(CLOCK_MONOTONIC, &before);
1749
1750 uint32_t abs_nsec = before.tv_nsec + timeout % NSEC_PER_SEC;
1751 uint64_t abs_sec = before.tv_sec + (abs_nsec / NSEC_PER_SEC) +
1752 (timeout / NSEC_PER_SEC);
1753 abs_nsec %= NSEC_PER_SEC;
1754
1755 /* Avoid roll-over in tv_sec on 32-bit systems if the user
1756 * provided timeout is UINT64_MAX
1757 */
1758 struct timespec abstime;
1759 abstime.tv_nsec = abs_nsec;
1760 abstime.tv_sec = MIN2(abs_sec, INT_TYPE_MAX(abstime.tv_sec));
1761
1762 ret = pthread_cond_timedwait(&device->queue_submit,
1763 &device->mutex, &abstime);
1764 assert(ret != EINVAL);
1765
1766 struct timespec after;
1767 clock_gettime(CLOCK_MONOTONIC, &after);
1768 uint64_t time_elapsed =
1769 ((uint64_t)after.tv_sec * NSEC_PER_SEC + after.tv_nsec) -
1770 ((uint64_t)before.tv_sec * NSEC_PER_SEC + before.tv_nsec);
1771
1772 if (time_elapsed >= timeout) {
1773 pthread_mutex_unlock(&device->mutex);
1774 return VK_TIMEOUT;
1775 }
1776
1777 timeout -= time_elapsed;
1778 }
1779
1780 pthread_mutex_unlock(&device->mutex);
1781 }
1782 }
1783
1784 return VK_SUCCESS;
1785 }
1786
1787 // Queue semaphore functions
1788
1789 VkResult anv_CreateSemaphore(
1790 VkDevice device,
1791 const VkSemaphoreCreateInfo* pCreateInfo,
1792 const VkAllocationCallbacks* pAllocator,
1793 VkSemaphore* pSemaphore)
1794 {
1795 /* The DRM execbuffer ioctl always execute in-oder, even between different
1796 * rings. As such, there's nothing to do for the user space semaphore.
1797 */
1798
1799 *pSemaphore = (VkSemaphore)1;
1800
1801 return VK_SUCCESS;
1802 }
1803
1804 void anv_DestroySemaphore(
1805 VkDevice device,
1806 VkSemaphore semaphore,
1807 const VkAllocationCallbacks* pAllocator)
1808 {
1809 }
1810
1811 // Event functions
1812
1813 VkResult anv_CreateEvent(
1814 VkDevice _device,
1815 const VkEventCreateInfo* pCreateInfo,
1816 const VkAllocationCallbacks* pAllocator,
1817 VkEvent* pEvent)
1818 {
1819 ANV_FROM_HANDLE(anv_device, device, _device);
1820 struct anv_state state;
1821 struct anv_event *event;
1822
1823 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
1824
1825 state = anv_state_pool_alloc(&device->dynamic_state_pool,
1826 sizeof(*event), 8);
1827 event = state.map;
1828 event->state = state;
1829 event->semaphore = VK_EVENT_RESET;
1830
1831 if (!device->info.has_llc) {
1832 /* Make sure the writes we're flushing have landed. */
1833 __builtin_ia32_mfence();
1834 __builtin_ia32_clflush(event);
1835 }
1836
1837 *pEvent = anv_event_to_handle(event);
1838
1839 return VK_SUCCESS;
1840 }
1841
1842 void anv_DestroyEvent(
1843 VkDevice _device,
1844 VkEvent _event,
1845 const VkAllocationCallbacks* pAllocator)
1846 {
1847 ANV_FROM_HANDLE(anv_device, device, _device);
1848 ANV_FROM_HANDLE(anv_event, event, _event);
1849
1850 if (!event)
1851 return;
1852
1853 anv_state_pool_free(&device->dynamic_state_pool, event->state);
1854 }
1855
1856 VkResult anv_GetEventStatus(
1857 VkDevice _device,
1858 VkEvent _event)
1859 {
1860 ANV_FROM_HANDLE(anv_device, device, _device);
1861 ANV_FROM_HANDLE(anv_event, event, _event);
1862
1863 if (!device->info.has_llc) {
1864 /* Invalidate read cache before reading event written by GPU. */
1865 __builtin_ia32_clflush(event);
1866 __builtin_ia32_mfence();
1867
1868 }
1869
1870 return event->semaphore;
1871 }
1872
1873 VkResult anv_SetEvent(
1874 VkDevice _device,
1875 VkEvent _event)
1876 {
1877 ANV_FROM_HANDLE(anv_device, device, _device);
1878 ANV_FROM_HANDLE(anv_event, event, _event);
1879
1880 event->semaphore = VK_EVENT_SET;
1881
1882 if (!device->info.has_llc) {
1883 /* Make sure the writes we're flushing have landed. */
1884 __builtin_ia32_mfence();
1885 __builtin_ia32_clflush(event);
1886 }
1887
1888 return VK_SUCCESS;
1889 }
1890
1891 VkResult anv_ResetEvent(
1892 VkDevice _device,
1893 VkEvent _event)
1894 {
1895 ANV_FROM_HANDLE(anv_device, device, _device);
1896 ANV_FROM_HANDLE(anv_event, event, _event);
1897
1898 event->semaphore = VK_EVENT_RESET;
1899
1900 if (!device->info.has_llc) {
1901 /* Make sure the writes we're flushing have landed. */
1902 __builtin_ia32_mfence();
1903 __builtin_ia32_clflush(event);
1904 }
1905
1906 return VK_SUCCESS;
1907 }
1908
1909 // Buffer functions
1910
1911 VkResult anv_CreateBuffer(
1912 VkDevice _device,
1913 const VkBufferCreateInfo* pCreateInfo,
1914 const VkAllocationCallbacks* pAllocator,
1915 VkBuffer* pBuffer)
1916 {
1917 ANV_FROM_HANDLE(anv_device, device, _device);
1918 struct anv_buffer *buffer;
1919
1920 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
1921
1922 buffer = vk_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
1923 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1924 if (buffer == NULL)
1925 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1926
1927 buffer->size = pCreateInfo->size;
1928 buffer->usage = pCreateInfo->usage;
1929 buffer->bo = NULL;
1930 buffer->offset = 0;
1931
1932 *pBuffer = anv_buffer_to_handle(buffer);
1933
1934 return VK_SUCCESS;
1935 }
1936
1937 void anv_DestroyBuffer(
1938 VkDevice _device,
1939 VkBuffer _buffer,
1940 const VkAllocationCallbacks* pAllocator)
1941 {
1942 ANV_FROM_HANDLE(anv_device, device, _device);
1943 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
1944
1945 if (!buffer)
1946 return;
1947
1948 vk_free2(&device->alloc, pAllocator, buffer);
1949 }
1950
1951 void
1952 anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
1953 enum isl_format format,
1954 uint32_t offset, uint32_t range, uint32_t stride)
1955 {
1956 isl_buffer_fill_state(&device->isl_dev, state.map,
1957 .address = offset,
1958 .mocs = device->default_mocs,
1959 .size = range,
1960 .format = format,
1961 .stride = stride);
1962
1963 if (!device->info.has_llc)
1964 anv_state_clflush(state);
1965 }
1966
1967 void anv_DestroySampler(
1968 VkDevice _device,
1969 VkSampler _sampler,
1970 const VkAllocationCallbacks* pAllocator)
1971 {
1972 ANV_FROM_HANDLE(anv_device, device, _device);
1973 ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
1974
1975 if (!sampler)
1976 return;
1977
1978 vk_free2(&device->alloc, pAllocator, sampler);
1979 }
1980
1981 VkResult anv_CreateFramebuffer(
1982 VkDevice _device,
1983 const VkFramebufferCreateInfo* pCreateInfo,
1984 const VkAllocationCallbacks* pAllocator,
1985 VkFramebuffer* pFramebuffer)
1986 {
1987 ANV_FROM_HANDLE(anv_device, device, _device);
1988 struct anv_framebuffer *framebuffer;
1989
1990 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
1991
1992 size_t size = sizeof(*framebuffer) +
1993 sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
1994 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
1995 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1996 if (framebuffer == NULL)
1997 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1998
1999 framebuffer->attachment_count = pCreateInfo->attachmentCount;
2000 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
2001 VkImageView _iview = pCreateInfo->pAttachments[i];
2002 framebuffer->attachments[i] = anv_image_view_from_handle(_iview);
2003 }
2004
2005 framebuffer->width = pCreateInfo->width;
2006 framebuffer->height = pCreateInfo->height;
2007 framebuffer->layers = pCreateInfo->layers;
2008
2009 *pFramebuffer = anv_framebuffer_to_handle(framebuffer);
2010
2011 return VK_SUCCESS;
2012 }
2013
2014 void anv_DestroyFramebuffer(
2015 VkDevice _device,
2016 VkFramebuffer _fb,
2017 const VkAllocationCallbacks* pAllocator)
2018 {
2019 ANV_FROM_HANDLE(anv_device, device, _device);
2020 ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
2021
2022 if (!fb)
2023 return;
2024
2025 vk_free2(&device->alloc, pAllocator, fb);
2026 }