i965: don't forget to set screen on duped image
[mesa.git] / src / mesa / drivers / dri / i965 / intel_screen.c
1 /*
2 * Copyright 2003 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include "drm-uapi/drm_fourcc.h"
27 #include <errno.h>
28 #include <time.h>
29 #include <unistd.h>
30 #include "main/context.h"
31 #include "main/framebuffer.h"
32 #include "main/renderbuffer.h"
33 #include "main/texobj.h"
34 #include "main/hash.h"
35 #include "main/fbobject.h"
36 #include "main/version.h"
37 #include "main/glthread.h"
38 #include "swrast/s_renderbuffer.h"
39 #include "util/ralloc.h"
40 #include "util/disk_cache.h"
41 #include "brw_defines.h"
42 #include "brw_state.h"
43 #include "compiler/nir/nir.h"
44
45 #include "utils.h"
46 #include "util/disk_cache.h"
47 #include "util/xmlpool.h"
48 #include "util/u_memory.h"
49
50 #include "common/gen_defines.h"
51
52 static const __DRIconfigOptionsExtension brw_config_options = {
53 .base = { __DRI_CONFIG_OPTIONS, 1 },
54 .xml =
55 DRI_CONF_BEGIN
56 DRI_CONF_SECTION_PERFORMANCE
57 /* Options correspond to DRI_CONF_BO_REUSE_DISABLED,
58 * DRI_CONF_BO_REUSE_ALL
59 */
60 DRI_CONF_OPT_BEGIN_V(bo_reuse, enum, 1, "0:1")
61 DRI_CONF_DESC_BEGIN(en, "Buffer object reuse")
62 DRI_CONF_ENUM(0, "Disable buffer object reuse")
63 DRI_CONF_ENUM(1, "Enable reuse of all sizes of buffer objects")
64 DRI_CONF_DESC_END
65 DRI_CONF_OPT_END
66 DRI_CONF_MESA_NO_ERROR("false")
67 DRI_CONF_MESA_GLTHREAD("false")
68 DRI_CONF_SECTION_END
69
70 DRI_CONF_SECTION_QUALITY
71 DRI_CONF_PRECISE_TRIG("false")
72
73 DRI_CONF_OPT_BEGIN(clamp_max_samples, int, -1)
74 DRI_CONF_DESC(en, "Clamp the value of GL_MAX_SAMPLES to the "
75 "given integer. If negative, then do not clamp.")
76 DRI_CONF_OPT_END
77 DRI_CONF_SECTION_END
78
79 DRI_CONF_SECTION_DEBUG
80 DRI_CONF_ALWAYS_FLUSH_BATCH("false")
81 DRI_CONF_ALWAYS_FLUSH_CACHE("false")
82 DRI_CONF_DISABLE_THROTTLING("false")
83 DRI_CONF_FORCE_GLSL_EXTENSIONS_WARN("false")
84 DRI_CONF_FORCE_GLSL_VERSION(0)
85 DRI_CONF_DISABLE_GLSL_LINE_CONTINUATIONS("false")
86 DRI_CONF_DISABLE_BLEND_FUNC_EXTENDED("false")
87 DRI_CONF_DUAL_COLOR_BLEND_BY_LOCATION("false")
88 DRI_CONF_ALLOW_GLSL_EXTENSION_DIRECTIVE_MIDSHADER("false")
89 DRI_CONF_ALLOW_GLSL_BUILTIN_VARIABLE_REDECLARATION("false")
90 DRI_CONF_ALLOW_GLSL_CROSS_STAGE_INTERPOLATION_MISMATCH("false")
91 DRI_CONF_ALLOW_HIGHER_COMPAT_VERSION("false")
92 DRI_CONF_FORCE_COMPAT_PROFILE("false")
93 DRI_CONF_FORCE_GLSL_ABS_SQRT("false")
94
95 DRI_CONF_OPT_BEGIN_B(shader_precompile, "true")
96 DRI_CONF_DESC(en, "Perform code generation at shader link time.")
97 DRI_CONF_OPT_END
98 DRI_CONF_SECTION_END
99
100 DRI_CONF_SECTION_MISCELLANEOUS
101 DRI_CONF_GLSL_ZERO_INIT("false")
102 DRI_CONF_VS_POSITION_ALWAYS_INVARIANT("false")
103 DRI_CONF_ALLOW_RGB10_CONFIGS("false")
104 DRI_CONF_ALLOW_RGB565_CONFIGS("true")
105 DRI_CONF_ALLOW_FP16_CONFIGS("false")
106 DRI_CONF_SECTION_END
107 DRI_CONF_END
108 };
109
110 #include "intel_batchbuffer.h"
111 #include "intel_buffers.h"
112 #include "brw_bufmgr.h"
113 #include "intel_fbo.h"
114 #include "intel_mipmap_tree.h"
115 #include "intel_screen.h"
116 #include "intel_tex.h"
117 #include "intel_image.h"
118
119 #include "brw_context.h"
120
121 #include "drm-uapi/i915_drm.h"
122
123 /**
124 * For debugging purposes, this returns a time in seconds.
125 */
126 double
127 get_time(void)
128 {
129 struct timespec tp;
130
131 clock_gettime(CLOCK_MONOTONIC, &tp);
132
133 return tp.tv_sec + tp.tv_nsec / 1000000000.0;
134 }
135
136 static const __DRItexBufferExtension intelTexBufferExtension = {
137 .base = { __DRI_TEX_BUFFER, 3 },
138
139 .setTexBuffer = intelSetTexBuffer,
140 .setTexBuffer2 = intelSetTexBuffer2,
141 .releaseTexBuffer = intelReleaseTexBuffer,
142 };
143
144 static void
145 intel_dri2_flush_with_flags(__DRIcontext *cPriv,
146 __DRIdrawable *dPriv,
147 unsigned flags,
148 enum __DRI2throttleReason reason)
149 {
150 struct brw_context *brw = cPriv->driverPrivate;
151
152 if (!brw)
153 return;
154
155 struct gl_context *ctx = &brw->ctx;
156
157 _mesa_glthread_finish(ctx);
158
159 FLUSH_VERTICES(ctx, 0);
160
161 if (flags & __DRI2_FLUSH_DRAWABLE)
162 intel_resolve_for_dri2_flush(brw, dPriv);
163
164 if (reason == __DRI2_THROTTLE_SWAPBUFFER)
165 brw->need_swap_throttle = true;
166 if (reason == __DRI2_THROTTLE_FLUSHFRONT)
167 brw->need_flush_throttle = true;
168
169 intel_batchbuffer_flush(brw);
170 }
171
172 /**
173 * Provides compatibility with loaders that only support the older (version
174 * 1-3) flush interface.
175 *
176 * That includes libGL up to Mesa 9.0, and the X Server at least up to 1.13.
177 */
178 static void
179 intel_dri2_flush(__DRIdrawable *drawable)
180 {
181 intel_dri2_flush_with_flags(drawable->driContextPriv, drawable,
182 __DRI2_FLUSH_DRAWABLE,
183 __DRI2_THROTTLE_SWAPBUFFER);
184 }
185
186 static const struct __DRI2flushExtensionRec intelFlushExtension = {
187 .base = { __DRI2_FLUSH, 4 },
188
189 .flush = intel_dri2_flush,
190 .invalidate = dri2InvalidateDrawable,
191 .flush_with_flags = intel_dri2_flush_with_flags,
192 };
193
194 static const struct intel_image_format intel_image_formats[] = {
195 { DRM_FORMAT_ABGR16161616F, __DRI_IMAGE_COMPONENTS_RGBA, 1,
196 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ABGR16161616F, 8 } } },
197
198 { DRM_FORMAT_XBGR16161616F, __DRI_IMAGE_COMPONENTS_RGB, 1,
199 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XBGR16161616F, 8 } } },
200
201 { DRM_FORMAT_ARGB2101010, __DRI_IMAGE_COMPONENTS_RGBA, 1,
202 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB2101010, 4 } } },
203
204 { DRM_FORMAT_XRGB2101010, __DRI_IMAGE_COMPONENTS_RGB, 1,
205 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XRGB2101010, 4 } } },
206
207 { DRM_FORMAT_ABGR2101010, __DRI_IMAGE_COMPONENTS_RGBA, 1,
208 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ABGR2101010, 4 } } },
209
210 { DRM_FORMAT_XBGR2101010, __DRI_IMAGE_COMPONENTS_RGB, 1,
211 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XBGR2101010, 4 } } },
212
213 { DRM_FORMAT_ARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
214 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } },
215
216 { DRM_FORMAT_ABGR8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
217 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ABGR8888, 4 } } },
218
219 { __DRI_IMAGE_FOURCC_SARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
220 { { 0, 0, 0, __DRI_IMAGE_FORMAT_SARGB8, 4 } } },
221
222 { __DRI_IMAGE_FOURCC_SXRGB8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
223 { { 0, 0, 0, __DRI_IMAGE_FORMAT_SXRGB8, 4 } } },
224
225 { DRM_FORMAT_XRGB8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
226 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XRGB8888, 4 }, } },
227
228 { DRM_FORMAT_XBGR8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
229 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XBGR8888, 4 }, } },
230
231 { DRM_FORMAT_ARGB1555, __DRI_IMAGE_COMPONENTS_RGBA, 1,
232 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB1555, 2 } } },
233
234 { DRM_FORMAT_RGB565, __DRI_IMAGE_COMPONENTS_RGB, 1,
235 { { 0, 0, 0, __DRI_IMAGE_FORMAT_RGB565, 2 } } },
236
237 { DRM_FORMAT_R8, __DRI_IMAGE_COMPONENTS_R, 1,
238 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 }, } },
239
240 { DRM_FORMAT_R16, __DRI_IMAGE_COMPONENTS_R, 1,
241 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R16, 1 }, } },
242
243 { DRM_FORMAT_GR88, __DRI_IMAGE_COMPONENTS_RG, 1,
244 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 }, } },
245
246 { DRM_FORMAT_GR1616, __DRI_IMAGE_COMPONENTS_RG, 1,
247 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR1616, 2 }, } },
248
249 { DRM_FORMAT_YUV410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
250 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
251 { 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
252 { 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
253
254 { DRM_FORMAT_YUV411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
255 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
256 { 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
257 { 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
258
259 { DRM_FORMAT_YUV420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
260 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
261 { 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
262 { 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
263
264 { DRM_FORMAT_YUV422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
265 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
266 { 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
267 { 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
268
269 { DRM_FORMAT_YUV444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
270 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
271 { 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
272 { 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
273
274 { DRM_FORMAT_YVU410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
275 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
276 { 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
277 { 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
278
279 { DRM_FORMAT_YVU411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
280 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
281 { 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
282 { 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
283
284 { DRM_FORMAT_YVU420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
285 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
286 { 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
287 { 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
288
289 { DRM_FORMAT_YVU422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
290 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
291 { 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
292 { 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
293
294 { DRM_FORMAT_YVU444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
295 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
296 { 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
297 { 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
298
299 { DRM_FORMAT_NV12, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
300 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
301 { 1, 1, 1, __DRI_IMAGE_FORMAT_GR88, 2 } } },
302
303 { DRM_FORMAT_P010, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
304 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R16, 2 },
305 { 1, 1, 1, __DRI_IMAGE_FORMAT_GR1616, 4 } } },
306
307 { DRM_FORMAT_P012, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
308 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R16, 2 },
309 { 1, 1, 1, __DRI_IMAGE_FORMAT_GR1616, 4 } } },
310
311 { DRM_FORMAT_P016, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
312 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R16, 2 },
313 { 1, 1, 1, __DRI_IMAGE_FORMAT_GR1616, 4 } } },
314
315 { DRM_FORMAT_NV16, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
316 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
317 { 1, 1, 0, __DRI_IMAGE_FORMAT_GR88, 2 } } },
318
319 { DRM_FORMAT_AYUV, __DRI_IMAGE_COMPONENTS_AYUV, 1,
320 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ABGR8888, 4 } } },
321
322 { DRM_FORMAT_XYUV8888, __DRI_IMAGE_COMPONENTS_XYUV, 1,
323 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XBGR8888, 4 } } },
324
325 /* For YUYV and UYVY buffers, we set up two overlapping DRI images
326 * and treat them as planar buffers in the compositors.
327 * Plane 0 is GR88 and samples YU or YV pairs and places Y into
328 * the R component, while plane 1 is ARGB/ABGR and samples YUYV/UYVY
329 * clusters and places pairs and places U into the G component and
330 * V into A. This lets the texture sampler interpolate the Y
331 * components correctly when sampling from plane 0, and interpolate
332 * U and V correctly when sampling from plane 1. */
333 { DRM_FORMAT_YUYV, __DRI_IMAGE_COMPONENTS_Y_XUXV, 2,
334 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 },
335 { 0, 1, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } },
336 { DRM_FORMAT_UYVY, __DRI_IMAGE_COMPONENTS_Y_UXVX, 2,
337 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 },
338 { 0, 1, 0, __DRI_IMAGE_FORMAT_ABGR8888, 4 } } }
339 };
340
341 static const struct {
342 uint64_t modifier;
343 unsigned since_gen;
344 } supported_modifiers[] = {
345 { .modifier = DRM_FORMAT_MOD_LINEAR , .since_gen = 1 },
346 { .modifier = I915_FORMAT_MOD_X_TILED , .since_gen = 1 },
347 { .modifier = I915_FORMAT_MOD_Y_TILED , .since_gen = 6 },
348 { .modifier = I915_FORMAT_MOD_Y_TILED_CCS , .since_gen = 9 },
349 };
350
351 static bool
352 modifier_is_supported(const struct gen_device_info *devinfo,
353 const struct intel_image_format *fmt, int dri_format,
354 uint64_t modifier)
355 {
356 const struct isl_drm_modifier_info *modinfo =
357 isl_drm_modifier_get_info(modifier);
358 int i;
359
360 /* ISL had better know about the modifier */
361 if (!modinfo)
362 return false;
363
364 if (modinfo->aux_usage == ISL_AUX_USAGE_CCS_E) {
365 /* If INTEL_DEBUG=norbc is set, don't support any CCS_E modifiers */
366 if (unlikely(INTEL_DEBUG & DEBUG_NO_RBC))
367 return false;
368
369 /* CCS_E is not supported for planar images */
370 if (fmt && fmt->nplanes > 1)
371 return false;
372
373 if (fmt) {
374 assert(dri_format == 0);
375 dri_format = fmt->planes[0].dri_format;
376 }
377
378 mesa_format format = driImageFormatToGLFormat(dri_format);
379 /* Whether or not we support compression is based on the RGBA non-sRGB
380 * version of the format.
381 */
382 format = _mesa_format_fallback_rgbx_to_rgba(format);
383 format = _mesa_get_srgb_format_linear(format);
384 if (!isl_format_supports_ccs_e(devinfo,
385 brw_isl_format_for_mesa_format(format)))
386 return false;
387 }
388
389 for (i = 0; i < ARRAY_SIZE(supported_modifiers); i++) {
390 if (supported_modifiers[i].modifier != modifier)
391 continue;
392
393 return supported_modifiers[i].since_gen <= devinfo->gen;
394 }
395
396 return false;
397 }
398
399 static uint64_t
400 tiling_to_modifier(uint32_t tiling)
401 {
402 static const uint64_t map[] = {
403 [I915_TILING_NONE] = DRM_FORMAT_MOD_LINEAR,
404 [I915_TILING_X] = I915_FORMAT_MOD_X_TILED,
405 [I915_TILING_Y] = I915_FORMAT_MOD_Y_TILED,
406 };
407
408 assert(tiling < ARRAY_SIZE(map));
409
410 return map[tiling];
411 }
412
413 static void
414 intel_image_warn_if_unaligned(__DRIimage *image, const char *func)
415 {
416 uint32_t tiling, swizzle;
417 brw_bo_get_tiling(image->bo, &tiling, &swizzle);
418
419 if (tiling != I915_TILING_NONE && (image->offset & 0xfff)) {
420 _mesa_warning(NULL, "%s: offset 0x%08x not on tile boundary",
421 func, image->offset);
422 }
423 }
424
425 static const struct intel_image_format *
426 intel_image_format_lookup(int fourcc)
427 {
428 for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
429 if (intel_image_formats[i].fourcc == fourcc)
430 return &intel_image_formats[i];
431 }
432
433 return NULL;
434 }
435
436 static bool
437 intel_image_get_fourcc(__DRIimage *image, int *fourcc)
438 {
439 if (image->planar_format) {
440 *fourcc = image->planar_format->fourcc;
441 return true;
442 }
443
444 for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
445 if (intel_image_formats[i].planes[0].dri_format == image->dri_format) {
446 *fourcc = intel_image_formats[i].fourcc;
447 return true;
448 }
449 }
450 return false;
451 }
452
453 static __DRIimage *
454 intel_allocate_image(struct intel_screen *screen, int dri_format,
455 void *loaderPrivate)
456 {
457 __DRIimage *image;
458
459 image = calloc(1, sizeof *image);
460 if (image == NULL)
461 return NULL;
462
463 image->screen = screen;
464 image->dri_format = dri_format;
465 image->offset = 0;
466
467 image->format = driImageFormatToGLFormat(dri_format);
468 if (dri_format != __DRI_IMAGE_FORMAT_NONE &&
469 image->format == MESA_FORMAT_NONE) {
470 free(image);
471 return NULL;
472 }
473
474 image->internal_format = _mesa_get_format_base_format(image->format);
475 image->data = loaderPrivate;
476
477 return image;
478 }
479
480 /**
481 * Sets up a DRIImage structure to point to a slice out of a miptree.
482 */
483 static void
484 intel_setup_image_from_mipmap_tree(struct brw_context *brw, __DRIimage *image,
485 struct intel_mipmap_tree *mt, GLuint level,
486 GLuint zoffset)
487 {
488 intel_miptree_make_shareable(brw, mt);
489
490 intel_miptree_check_level_layer(mt, level, zoffset);
491
492 image->width = minify(mt->surf.phys_level0_sa.width,
493 level - mt->first_level);
494 image->height = minify(mt->surf.phys_level0_sa.height,
495 level - mt->first_level);
496 image->pitch = mt->surf.row_pitch_B;
497
498 image->offset = intel_miptree_get_tile_offsets(mt, level, zoffset,
499 &image->tile_x,
500 &image->tile_y);
501
502 brw_bo_unreference(image->bo);
503 image->bo = mt->bo;
504 brw_bo_reference(mt->bo);
505 }
506
507 static __DRIimage *
508 intel_create_image_from_name(__DRIscreen *dri_screen,
509 int width, int height, int format,
510 int name, int pitch, void *loaderPrivate)
511 {
512 struct intel_screen *screen = dri_screen->driverPrivate;
513 __DRIimage *image;
514 int cpp;
515
516 image = intel_allocate_image(screen, format, loaderPrivate);
517 if (image == NULL)
518 return NULL;
519
520 if (image->format == MESA_FORMAT_NONE)
521 cpp = 1;
522 else
523 cpp = _mesa_get_format_bytes(image->format);
524
525 image->width = width;
526 image->height = height;
527 image->pitch = pitch * cpp;
528 image->bo = brw_bo_gem_create_from_name(screen->bufmgr, "image",
529 name);
530 if (!image->bo) {
531 free(image);
532 return NULL;
533 }
534 image->modifier = tiling_to_modifier(image->bo->tiling_mode);
535
536 return image;
537 }
538
539 static __DRIimage *
540 intel_create_image_from_renderbuffer(__DRIcontext *context,
541 int renderbuffer, void *loaderPrivate)
542 {
543 __DRIimage *image;
544 struct brw_context *brw = context->driverPrivate;
545 struct gl_context *ctx = &brw->ctx;
546 struct gl_renderbuffer *rb;
547 struct intel_renderbuffer *irb;
548
549 rb = _mesa_lookup_renderbuffer(ctx, renderbuffer);
550 if (!rb) {
551 _mesa_error(ctx, GL_INVALID_OPERATION, "glRenderbufferExternalMESA");
552 return NULL;
553 }
554
555 irb = intel_renderbuffer(rb);
556 intel_miptree_make_shareable(brw, irb->mt);
557 image = calloc(1, sizeof *image);
558 if (image == NULL)
559 return NULL;
560
561 image->internal_format = rb->InternalFormat;
562 image->format = rb->Format;
563 image->modifier = tiling_to_modifier(
564 isl_tiling_to_i915_tiling(irb->mt->surf.tiling));
565 image->offset = 0;
566 image->data = loaderPrivate;
567 brw_bo_unreference(image->bo);
568 image->bo = irb->mt->bo;
569 brw_bo_reference(irb->mt->bo);
570 image->width = rb->Width;
571 image->height = rb->Height;
572 image->pitch = irb->mt->surf.row_pitch_B;
573 image->dri_format = driGLFormatToImageFormat(image->format);
574 image->has_depthstencil = irb->mt->stencil_mt? true : false;
575
576 rb->NeedsFinishRenderTexture = true;
577 return image;
578 }
579
580 static __DRIimage *
581 intel_create_image_from_texture(__DRIcontext *context, int target,
582 unsigned texture, int zoffset,
583 int level,
584 unsigned *error,
585 void *loaderPrivate)
586 {
587 __DRIimage *image;
588 struct brw_context *brw = context->driverPrivate;
589 struct gl_texture_object *obj;
590 struct intel_texture_object *iobj;
591 GLuint face = 0;
592
593 obj = _mesa_lookup_texture(&brw->ctx, texture);
594 if (!obj || obj->Target != target) {
595 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
596 return NULL;
597 }
598
599 if (target == GL_TEXTURE_CUBE_MAP)
600 face = zoffset;
601
602 _mesa_test_texobj_completeness(&brw->ctx, obj);
603 iobj = intel_texture_object(obj);
604 if (!obj->_BaseComplete || (level > 0 && !obj->_MipmapComplete)) {
605 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
606 return NULL;
607 }
608
609 if (level < obj->BaseLevel || level > obj->_MaxLevel) {
610 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
611 return NULL;
612 }
613
614 if (target == GL_TEXTURE_3D && obj->Image[face][level]->Depth < zoffset) {
615 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
616 return NULL;
617 }
618 image = calloc(1, sizeof *image);
619 if (image == NULL) {
620 *error = __DRI_IMAGE_ERROR_BAD_ALLOC;
621 return NULL;
622 }
623
624 image->internal_format = obj->Image[face][level]->InternalFormat;
625 image->format = obj->Image[face][level]->TexFormat;
626 image->modifier = tiling_to_modifier(
627 isl_tiling_to_i915_tiling(iobj->mt->surf.tiling));
628 image->data = loaderPrivate;
629 intel_setup_image_from_mipmap_tree(brw, image, iobj->mt, level, zoffset);
630 image->dri_format = driGLFormatToImageFormat(image->format);
631 image->has_depthstencil = iobj->mt->stencil_mt? true : false;
632 image->planar_format = iobj->planar_format;
633 if (image->dri_format == __DRI_IMAGE_FORMAT_NONE) {
634 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
635 free(image);
636 return NULL;
637 }
638
639 *error = __DRI_IMAGE_ERROR_SUCCESS;
640 return image;
641 }
642
643 static void
644 intel_destroy_image(__DRIimage *image)
645 {
646 brw_bo_unreference(image->bo);
647 free(image);
648 }
649
650 enum modifier_priority {
651 MODIFIER_PRIORITY_INVALID = 0,
652 MODIFIER_PRIORITY_LINEAR,
653 MODIFIER_PRIORITY_X,
654 MODIFIER_PRIORITY_Y,
655 MODIFIER_PRIORITY_Y_CCS,
656 };
657
658 const uint64_t priority_to_modifier[] = {
659 [MODIFIER_PRIORITY_INVALID] = DRM_FORMAT_MOD_INVALID,
660 [MODIFIER_PRIORITY_LINEAR] = DRM_FORMAT_MOD_LINEAR,
661 [MODIFIER_PRIORITY_X] = I915_FORMAT_MOD_X_TILED,
662 [MODIFIER_PRIORITY_Y] = I915_FORMAT_MOD_Y_TILED,
663 [MODIFIER_PRIORITY_Y_CCS] = I915_FORMAT_MOD_Y_TILED_CCS,
664 };
665
666 static uint64_t
667 select_best_modifier(struct gen_device_info *devinfo,
668 int dri_format,
669 const uint64_t *modifiers,
670 const unsigned count)
671 {
672 enum modifier_priority prio = MODIFIER_PRIORITY_INVALID;
673
674 for (int i = 0; i < count; i++) {
675 if (!modifier_is_supported(devinfo, NULL, dri_format, modifiers[i]))
676 continue;
677
678 switch (modifiers[i]) {
679 case I915_FORMAT_MOD_Y_TILED_CCS:
680 prio = MAX2(prio, MODIFIER_PRIORITY_Y_CCS);
681 break;
682 case I915_FORMAT_MOD_Y_TILED:
683 prio = MAX2(prio, MODIFIER_PRIORITY_Y);
684 break;
685 case I915_FORMAT_MOD_X_TILED:
686 prio = MAX2(prio, MODIFIER_PRIORITY_X);
687 break;
688 case DRM_FORMAT_MOD_LINEAR:
689 prio = MAX2(prio, MODIFIER_PRIORITY_LINEAR);
690 break;
691 case DRM_FORMAT_MOD_INVALID:
692 default:
693 break;
694 }
695 }
696
697 return priority_to_modifier[prio];
698 }
699
700 static __DRIimage *
701 intel_create_image_common(__DRIscreen *dri_screen,
702 int width, int height, int format,
703 unsigned int use,
704 const uint64_t *modifiers,
705 unsigned count,
706 void *loaderPrivate)
707 {
708 __DRIimage *image;
709 struct intel_screen *screen = dri_screen->driverPrivate;
710 uint64_t modifier = DRM_FORMAT_MOD_INVALID;
711 bool ok;
712
713 /* Callers of this may specify a modifier, or a dri usage, but not both. The
714 * newer modifier interface deprecates the older usage flags.
715 */
716 assert(!(use && count));
717
718 if (use & __DRI_IMAGE_USE_CURSOR) {
719 if (width != 64 || height != 64)
720 return NULL;
721 modifier = DRM_FORMAT_MOD_LINEAR;
722 }
723
724 if (use & __DRI_IMAGE_USE_LINEAR)
725 modifier = DRM_FORMAT_MOD_LINEAR;
726
727 if (modifier == DRM_FORMAT_MOD_INVALID) {
728 if (modifiers) {
729 /* User requested specific modifiers */
730 modifier = select_best_modifier(&screen->devinfo, format,
731 modifiers, count);
732 if (modifier == DRM_FORMAT_MOD_INVALID)
733 return NULL;
734 } else {
735 /* Historically, X-tiled was the default, and so lack of modifier means
736 * X-tiled.
737 */
738 modifier = I915_FORMAT_MOD_X_TILED;
739 }
740 }
741
742 image = intel_allocate_image(screen, format, loaderPrivate);
743 if (image == NULL)
744 return NULL;
745
746 const struct isl_drm_modifier_info *mod_info =
747 isl_drm_modifier_get_info(modifier);
748
749 struct isl_surf surf;
750 ok = isl_surf_init(&screen->isl_dev, &surf,
751 .dim = ISL_SURF_DIM_2D,
752 .format = brw_isl_format_for_mesa_format(image->format),
753 .width = width,
754 .height = height,
755 .depth = 1,
756 .levels = 1,
757 .array_len = 1,
758 .samples = 1,
759 .usage = ISL_SURF_USAGE_RENDER_TARGET_BIT |
760 ISL_SURF_USAGE_TEXTURE_BIT |
761 ISL_SURF_USAGE_STORAGE_BIT |
762 ((use & __DRI_IMAGE_USE_SCANOUT) ?
763 ISL_SURF_USAGE_DISPLAY_BIT : 0),
764 .tiling_flags = (1 << mod_info->tiling));
765 assert(ok);
766 if (!ok) {
767 free(image);
768 return NULL;
769 }
770
771 struct isl_surf aux_surf = {0,};
772 if (mod_info->aux_usage == ISL_AUX_USAGE_CCS_E) {
773 ok = isl_surf_get_ccs_surf(&screen->isl_dev, &surf, &aux_surf, NULL, 0);
774 if (!ok) {
775 free(image);
776 return NULL;
777 }
778 } else {
779 assert(mod_info->aux_usage == ISL_AUX_USAGE_NONE);
780 aux_surf.size_B = 0;
781 }
782
783 /* We request that the bufmgr zero the buffer for us for two reasons:
784 *
785 * 1) If a buffer gets re-used from the pool, we don't want to leak random
786 * garbage from our process to some other.
787 *
788 * 2) For images with CCS_E, we want to ensure that the CCS starts off in
789 * a valid state. A CCS value of 0 indicates that the given block is
790 * in the pass-through state which is what we want.
791 */
792 image->bo = brw_bo_alloc_tiled(screen->bufmgr, "image",
793 surf.size_B + aux_surf.size_B,
794 BRW_MEMZONE_OTHER,
795 isl_tiling_to_i915_tiling(mod_info->tiling),
796 surf.row_pitch_B, BO_ALLOC_ZEROED);
797 if (image->bo == NULL) {
798 free(image);
799 return NULL;
800 }
801 image->width = width;
802 image->height = height;
803 image->pitch = surf.row_pitch_B;
804 image->modifier = modifier;
805
806 if (aux_surf.size_B) {
807 image->aux_offset = surf.size_B;
808 image->aux_pitch = aux_surf.row_pitch_B;
809 image->aux_size = aux_surf.size_B;
810 }
811
812 return image;
813 }
814
815 static __DRIimage *
816 intel_create_image(__DRIscreen *dri_screen,
817 int width, int height, int format,
818 unsigned int use,
819 void *loaderPrivate)
820 {
821 return intel_create_image_common(dri_screen, width, height, format, use, NULL, 0,
822 loaderPrivate);
823 }
824
825 static void *
826 intel_map_image(__DRIcontext *context, __DRIimage *image,
827 int x0, int y0, int width, int height,
828 unsigned int flags, int *stride, void **map_info)
829 {
830 struct brw_context *brw = NULL;
831 struct brw_bo *bo = NULL;
832 void *raw_data = NULL;
833 GLuint pix_w = 1;
834 GLuint pix_h = 1;
835 GLint pix_bytes = 1;
836
837 if (!context || !image || !stride || !map_info || *map_info)
838 return NULL;
839
840 if (x0 < 0 || x0 >= image->width || width > image->width - x0)
841 return NULL;
842
843 if (y0 < 0 || y0 >= image->height || height > image->height - y0)
844 return NULL;
845
846 if (flags & MAP_INTERNAL_MASK)
847 return NULL;
848
849 brw = context->driverPrivate;
850 bo = image->bo;
851
852 assert(brw);
853 assert(bo);
854
855 /* DRI flags and GL_MAP.*_BIT flags are the same, so just pass them on. */
856 raw_data = brw_bo_map(brw, bo, flags);
857 if (!raw_data)
858 return NULL;
859
860 _mesa_get_format_block_size(image->format, &pix_w, &pix_h);
861 pix_bytes = _mesa_get_format_bytes(image->format);
862
863 assert(pix_w);
864 assert(pix_h);
865 assert(pix_bytes > 0);
866
867 raw_data += (x0 / pix_w) * pix_bytes + (y0 / pix_h) * image->pitch;
868
869 brw_bo_reference(bo);
870
871 *stride = image->pitch;
872 *map_info = bo;
873
874 return raw_data;
875 }
876
877 static void
878 intel_unmap_image(__DRIcontext *context, __DRIimage *image, void *map_info)
879 {
880 struct brw_bo *bo = map_info;
881
882 brw_bo_unmap(bo);
883 brw_bo_unreference(bo);
884 }
885
886 static __DRIimage *
887 intel_create_image_with_modifiers(__DRIscreen *dri_screen,
888 int width, int height, int format,
889 const uint64_t *modifiers,
890 const unsigned count,
891 void *loaderPrivate)
892 {
893 return intel_create_image_common(dri_screen, width, height, format, 0,
894 modifiers, count, loaderPrivate);
895 }
896
897 static GLboolean
898 intel_query_image(__DRIimage *image, int attrib, int *value)
899 {
900 switch (attrib) {
901 case __DRI_IMAGE_ATTRIB_STRIDE:
902 *value = image->pitch;
903 return true;
904 case __DRI_IMAGE_ATTRIB_HANDLE:
905 *value = brw_bo_export_gem_handle(image->bo);
906 return true;
907 case __DRI_IMAGE_ATTRIB_NAME:
908 return !brw_bo_flink(image->bo, (uint32_t *) value);
909 case __DRI_IMAGE_ATTRIB_FORMAT:
910 *value = image->dri_format;
911 return true;
912 case __DRI_IMAGE_ATTRIB_WIDTH:
913 *value = image->width;
914 return true;
915 case __DRI_IMAGE_ATTRIB_HEIGHT:
916 *value = image->height;
917 return true;
918 case __DRI_IMAGE_ATTRIB_COMPONENTS:
919 if (image->planar_format == NULL)
920 return false;
921 *value = image->planar_format->components;
922 return true;
923 case __DRI_IMAGE_ATTRIB_FD:
924 return !brw_bo_gem_export_to_prime(image->bo, value);
925 case __DRI_IMAGE_ATTRIB_FOURCC:
926 return intel_image_get_fourcc(image, value);
927 case __DRI_IMAGE_ATTRIB_NUM_PLANES:
928 if (isl_drm_modifier_has_aux(image->modifier)) {
929 assert(!image->planar_format || image->planar_format->nplanes == 1);
930 *value = 2;
931 } else if (image->planar_format) {
932 *value = image->planar_format->nplanes;
933 } else {
934 *value = 1;
935 }
936 return true;
937 case __DRI_IMAGE_ATTRIB_OFFSET:
938 *value = image->offset;
939 return true;
940 case __DRI_IMAGE_ATTRIB_MODIFIER_LOWER:
941 *value = (image->modifier & 0xffffffff);
942 return true;
943 case __DRI_IMAGE_ATTRIB_MODIFIER_UPPER:
944 *value = ((image->modifier >> 32) & 0xffffffff);
945 return true;
946
947 default:
948 return false;
949 }
950 }
951
952 static GLboolean
953 intel_query_format_modifier_attribs(__DRIscreen *dri_screen,
954 uint32_t fourcc, uint64_t modifier,
955 int attrib, uint64_t *value)
956 {
957 struct intel_screen *screen = dri_screen->driverPrivate;
958 const struct intel_image_format *f = intel_image_format_lookup(fourcc);
959
960 if (!modifier_is_supported(&screen->devinfo, f, 0, modifier))
961 return false;
962
963 switch (attrib) {
964 case __DRI_IMAGE_FORMAT_MODIFIER_ATTRIB_PLANE_COUNT:
965 *value = isl_drm_modifier_has_aux(modifier) ? 2 : f->nplanes;
966 return true;
967
968 default:
969 return false;
970 }
971 }
972
973 static __DRIimage *
974 intel_dup_image(__DRIimage *orig_image, void *loaderPrivate)
975 {
976 __DRIimage *image;
977
978 image = calloc(1, sizeof *image);
979 if (image == NULL)
980 return NULL;
981
982 brw_bo_reference(orig_image->bo);
983 image->screen = orig_image->screen;
984 image->bo = orig_image->bo;
985 image->internal_format = orig_image->internal_format;
986 image->planar_format = orig_image->planar_format;
987 image->dri_format = orig_image->dri_format;
988 image->format = orig_image->format;
989 image->modifier = orig_image->modifier;
990 image->offset = orig_image->offset;
991 image->width = orig_image->width;
992 image->height = orig_image->height;
993 image->pitch = orig_image->pitch;
994 image->tile_x = orig_image->tile_x;
995 image->tile_y = orig_image->tile_y;
996 image->has_depthstencil = orig_image->has_depthstencil;
997 image->data = loaderPrivate;
998 image->aux_offset = orig_image->aux_offset;
999 image->aux_pitch = orig_image->aux_pitch;
1000
1001 memcpy(image->strides, orig_image->strides, sizeof(image->strides));
1002 memcpy(image->offsets, orig_image->offsets, sizeof(image->offsets));
1003
1004 return image;
1005 }
1006
1007 static GLboolean
1008 intel_validate_usage(__DRIimage *image, unsigned int use)
1009 {
1010 if (use & __DRI_IMAGE_USE_CURSOR) {
1011 if (image->width != 64 || image->height != 64)
1012 return GL_FALSE;
1013 }
1014
1015 return GL_TRUE;
1016 }
1017
1018 static __DRIimage *
1019 intel_create_image_from_names(__DRIscreen *dri_screen,
1020 int width, int height, int fourcc,
1021 int *names, int num_names,
1022 int *strides, int *offsets,
1023 void *loaderPrivate)
1024 {
1025 const struct intel_image_format *f = NULL;
1026 __DRIimage *image;
1027 int i, index;
1028
1029 if (dri_screen == NULL || names == NULL || num_names != 1)
1030 return NULL;
1031
1032 f = intel_image_format_lookup(fourcc);
1033 if (f == NULL)
1034 return NULL;
1035
1036 image = intel_create_image_from_name(dri_screen, width, height,
1037 __DRI_IMAGE_FORMAT_NONE,
1038 names[0], strides[0],
1039 loaderPrivate);
1040
1041 if (image == NULL)
1042 return NULL;
1043
1044 image->planar_format = f;
1045 for (i = 0; i < f->nplanes; i++) {
1046 index = f->planes[i].buffer_index;
1047 image->offsets[index] = offsets[index];
1048 image->strides[index] = strides[index];
1049 }
1050
1051 return image;
1052 }
1053
1054 static __DRIimage *
1055 intel_create_image_from_fds_common(__DRIscreen *dri_screen,
1056 int width, int height, int fourcc,
1057 uint64_t modifier, int *fds, int num_fds,
1058 int *strides, int *offsets,
1059 void *loaderPrivate)
1060 {
1061 struct intel_screen *screen = dri_screen->driverPrivate;
1062 const struct intel_image_format *f;
1063 __DRIimage *image;
1064 int i, index;
1065 bool ok;
1066
1067 if (fds == NULL || num_fds < 1)
1068 return NULL;
1069
1070 f = intel_image_format_lookup(fourcc);
1071 if (f == NULL)
1072 return NULL;
1073
1074 if (modifier != DRM_FORMAT_MOD_INVALID &&
1075 !modifier_is_supported(&screen->devinfo, f, 0, modifier))
1076 return NULL;
1077
1078 if (f->nplanes == 1)
1079 image = intel_allocate_image(screen, f->planes[0].dri_format,
1080 loaderPrivate);
1081 else
1082 image = intel_allocate_image(screen, __DRI_IMAGE_FORMAT_NONE,
1083 loaderPrivate);
1084
1085 if (image == NULL)
1086 return NULL;
1087
1088 image->width = width;
1089 image->height = height;
1090 image->pitch = strides[0];
1091
1092 image->planar_format = f;
1093
1094 if (modifier != DRM_FORMAT_MOD_INVALID) {
1095 const struct isl_drm_modifier_info *mod_info =
1096 isl_drm_modifier_get_info(modifier);
1097 uint32_t tiling = isl_tiling_to_i915_tiling(mod_info->tiling);
1098 image->bo = brw_bo_gem_create_from_prime_tiled(screen->bufmgr, fds[0],
1099 tiling, strides[0]);
1100 } else {
1101 image->bo = brw_bo_gem_create_from_prime(screen->bufmgr, fds[0]);
1102 }
1103
1104 if (image->bo == NULL) {
1105 free(image);
1106 return NULL;
1107 }
1108
1109 /* We only support all planes from the same bo.
1110 * brw_bo_gem_create_from_prime() should return the same pointer for all
1111 * fds received here */
1112 for (i = 1; i < num_fds; i++) {
1113 struct brw_bo *aux = brw_bo_gem_create_from_prime(screen->bufmgr, fds[i]);
1114 brw_bo_unreference(aux);
1115 if (aux != image->bo) {
1116 brw_bo_unreference(image->bo);
1117 free(image);
1118 return NULL;
1119 }
1120 }
1121
1122 if (modifier != DRM_FORMAT_MOD_INVALID)
1123 image->modifier = modifier;
1124 else
1125 image->modifier = tiling_to_modifier(image->bo->tiling_mode);
1126
1127 const struct isl_drm_modifier_info *mod_info =
1128 isl_drm_modifier_get_info(image->modifier);
1129
1130 int size = 0;
1131 struct isl_surf surf;
1132 for (i = 0; i < f->nplanes; i++) {
1133 index = f->planes[i].buffer_index;
1134 image->offsets[index] = offsets[index];
1135 image->strides[index] = strides[index];
1136
1137 mesa_format format = driImageFormatToGLFormat(f->planes[i].dri_format);
1138 /* The images we will create are actually based on the RGBA non-sRGB
1139 * version of the format.
1140 */
1141 format = _mesa_format_fallback_rgbx_to_rgba(format);
1142 format = _mesa_get_srgb_format_linear(format);
1143
1144 ok = isl_surf_init(&screen->isl_dev, &surf,
1145 .dim = ISL_SURF_DIM_2D,
1146 .format = brw_isl_format_for_mesa_format(format),
1147 .width = image->width >> f->planes[i].width_shift,
1148 .height = image->height >> f->planes[i].height_shift,
1149 .depth = 1,
1150 .levels = 1,
1151 .array_len = 1,
1152 .samples = 1,
1153 .row_pitch_B = strides[index],
1154 .usage = ISL_SURF_USAGE_RENDER_TARGET_BIT |
1155 ISL_SURF_USAGE_TEXTURE_BIT |
1156 ISL_SURF_USAGE_STORAGE_BIT,
1157 .tiling_flags = (1 << mod_info->tiling));
1158 if (!ok) {
1159 brw_bo_unreference(image->bo);
1160 free(image);
1161 return NULL;
1162 }
1163
1164 const int end = offsets[index] + surf.size_B;
1165 if (size < end)
1166 size = end;
1167 }
1168
1169 if (mod_info->aux_usage == ISL_AUX_USAGE_CCS_E) {
1170 /* Even though we initialize surf in the loop above, we know that
1171 * anything with CCS_E will have exactly one plane so surf is properly
1172 * initialized when we get here.
1173 */
1174 assert(f->nplanes == 1);
1175
1176 image->aux_offset = offsets[1];
1177 image->aux_pitch = strides[1];
1178
1179 /* Scanout hardware requires that the CCS be placed after the main
1180 * surface in memory. We consider any CCS that is placed any earlier in
1181 * memory to be invalid and reject it.
1182 *
1183 * At some point in the future, this restriction may be relaxed if the
1184 * hardware becomes less strict but we may need a new modifier for that.
1185 */
1186 assert(size > 0);
1187 if (image->aux_offset < size) {
1188 brw_bo_unreference(image->bo);
1189 free(image);
1190 return NULL;
1191 }
1192
1193 struct isl_surf aux_surf = {0,};
1194 ok = isl_surf_get_ccs_surf(&screen->isl_dev, &surf, &aux_surf, NULL,
1195 image->aux_pitch);
1196 if (!ok) {
1197 brw_bo_unreference(image->bo);
1198 free(image);
1199 return NULL;
1200 }
1201
1202 image->aux_size = aux_surf.size_B;
1203
1204 const int end = image->aux_offset + aux_surf.size_B;
1205 if (size < end)
1206 size = end;
1207 } else {
1208 assert(mod_info->aux_usage == ISL_AUX_USAGE_NONE);
1209 }
1210
1211 /* Check that the requested image actually fits within the BO. 'size'
1212 * is already relative to the offsets, so we don't need to add that. */
1213 if (image->bo->size == 0) {
1214 image->bo->size = size;
1215 } else if (size > image->bo->size) {
1216 brw_bo_unreference(image->bo);
1217 free(image);
1218 return NULL;
1219 }
1220
1221 if (f->nplanes == 1) {
1222 image->offset = image->offsets[0];
1223 intel_image_warn_if_unaligned(image, __func__);
1224 }
1225
1226 return image;
1227 }
1228
1229 static __DRIimage *
1230 intel_create_image_from_fds(__DRIscreen *dri_screen,
1231 int width, int height, int fourcc,
1232 int *fds, int num_fds, int *strides, int *offsets,
1233 void *loaderPrivate)
1234 {
1235 return intel_create_image_from_fds_common(dri_screen, width, height, fourcc,
1236 DRM_FORMAT_MOD_INVALID,
1237 fds, num_fds, strides, offsets,
1238 loaderPrivate);
1239 }
1240
1241 static __DRIimage *
1242 intel_create_image_from_dma_bufs2(__DRIscreen *dri_screen,
1243 int width, int height,
1244 int fourcc, uint64_t modifier,
1245 int *fds, int num_fds,
1246 int *strides, int *offsets,
1247 enum __DRIYUVColorSpace yuv_color_space,
1248 enum __DRISampleRange sample_range,
1249 enum __DRIChromaSiting horizontal_siting,
1250 enum __DRIChromaSiting vertical_siting,
1251 unsigned *error,
1252 void *loaderPrivate)
1253 {
1254 __DRIimage *image;
1255 const struct intel_image_format *f = intel_image_format_lookup(fourcc);
1256
1257 if (!f) {
1258 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
1259 return NULL;
1260 }
1261
1262 image = intel_create_image_from_fds_common(dri_screen, width, height,
1263 fourcc, modifier,
1264 fds, num_fds, strides, offsets,
1265 loaderPrivate);
1266
1267 /*
1268 * Invalid parameters and any inconsistencies between are assumed to be
1269 * checked by the caller. Therefore besides unsupported formats one can fail
1270 * only in allocation.
1271 */
1272 if (!image) {
1273 *error = __DRI_IMAGE_ERROR_BAD_ALLOC;
1274 return NULL;
1275 }
1276
1277 image->yuv_color_space = yuv_color_space;
1278 image->sample_range = sample_range;
1279 image->horizontal_siting = horizontal_siting;
1280 image->vertical_siting = vertical_siting;
1281 image->imported_dmabuf = true;
1282
1283 *error = __DRI_IMAGE_ERROR_SUCCESS;
1284 return image;
1285 }
1286
1287 static __DRIimage *
1288 intel_create_image_from_dma_bufs(__DRIscreen *dri_screen,
1289 int width, int height, int fourcc,
1290 int *fds, int num_fds,
1291 int *strides, int *offsets,
1292 enum __DRIYUVColorSpace yuv_color_space,
1293 enum __DRISampleRange sample_range,
1294 enum __DRIChromaSiting horizontal_siting,
1295 enum __DRIChromaSiting vertical_siting,
1296 unsigned *error,
1297 void *loaderPrivate)
1298 {
1299 return intel_create_image_from_dma_bufs2(dri_screen, width, height,
1300 fourcc, DRM_FORMAT_MOD_INVALID,
1301 fds, num_fds, strides, offsets,
1302 yuv_color_space,
1303 sample_range,
1304 horizontal_siting,
1305 vertical_siting,
1306 error,
1307 loaderPrivate);
1308 }
1309
1310 static bool
1311 intel_image_format_is_supported(const struct gen_device_info *devinfo,
1312 const struct intel_image_format *fmt)
1313 {
1314 /* Currently, all formats with an intel_image_format are available on all
1315 * platforms so there's really nothing to check there.
1316 */
1317
1318 #ifndef NDEBUG
1319 if (fmt->nplanes == 1) {
1320 mesa_format format = driImageFormatToGLFormat(fmt->planes[0].dri_format);
1321 /* The images we will create are actually based on the RGBA non-sRGB
1322 * version of the format.
1323 */
1324 format = _mesa_format_fallback_rgbx_to_rgba(format);
1325 format = _mesa_get_srgb_format_linear(format);
1326 enum isl_format isl_format = brw_isl_format_for_mesa_format(format);
1327 assert(isl_format_supports_rendering(devinfo, isl_format));
1328 }
1329 #endif
1330
1331 return true;
1332 }
1333
1334 static GLboolean
1335 intel_query_dma_buf_formats(__DRIscreen *_screen, int max,
1336 int *formats, int *count)
1337 {
1338 struct intel_screen *screen = _screen->driverPrivate;
1339 int num_formats = 0, i;
1340
1341 for (i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
1342 /* These formats are valid DRI formats but do not exist in drm_fourcc.h
1343 * in the Linux kernel. We don't want to accidentally advertise them
1344 * them through the EGL layer.
1345 */
1346 if (intel_image_formats[i].fourcc == __DRI_IMAGE_FOURCC_SARGB8888 ||
1347 intel_image_formats[i].fourcc == __DRI_IMAGE_FOURCC_SABGR8888 ||
1348 intel_image_formats[i].fourcc == __DRI_IMAGE_FOURCC_SXRGB8888)
1349 continue;
1350
1351 if (!intel_image_format_is_supported(&screen->devinfo,
1352 &intel_image_formats[i]))
1353 continue;
1354
1355 num_formats++;
1356 if (max == 0)
1357 continue;
1358
1359 formats[num_formats - 1] = intel_image_formats[i].fourcc;
1360 if (num_formats >= max)
1361 break;
1362 }
1363
1364 *count = num_formats;
1365 return true;
1366 }
1367
1368 static GLboolean
1369 intel_query_dma_buf_modifiers(__DRIscreen *_screen, int fourcc, int max,
1370 uint64_t *modifiers,
1371 unsigned int *external_only,
1372 int *count)
1373 {
1374 struct intel_screen *screen = _screen->driverPrivate;
1375 const struct intel_image_format *f;
1376 int num_mods = 0, i;
1377
1378 f = intel_image_format_lookup(fourcc);
1379 if (f == NULL)
1380 return false;
1381
1382 if (!intel_image_format_is_supported(&screen->devinfo, f))
1383 return false;
1384
1385 for (i = 0; i < ARRAY_SIZE(supported_modifiers); i++) {
1386 uint64_t modifier = supported_modifiers[i].modifier;
1387 if (!modifier_is_supported(&screen->devinfo, f, 0, modifier))
1388 continue;
1389
1390 num_mods++;
1391 if (max == 0)
1392 continue;
1393
1394 modifiers[num_mods - 1] = modifier;
1395 if (num_mods >= max)
1396 break;
1397 }
1398
1399 if (external_only != NULL) {
1400 for (i = 0; i < num_mods && i < max; i++) {
1401 if (f->components == __DRI_IMAGE_COMPONENTS_Y_U_V ||
1402 f->components == __DRI_IMAGE_COMPONENTS_Y_UV ||
1403 f->components == __DRI_IMAGE_COMPONENTS_AYUV ||
1404 f->components == __DRI_IMAGE_COMPONENTS_XYUV ||
1405 f->components == __DRI_IMAGE_COMPONENTS_Y_XUXV ||
1406 f->components == __DRI_IMAGE_COMPONENTS_Y_UXVX) {
1407 external_only[i] = GL_TRUE;
1408 }
1409 else {
1410 external_only[i] = GL_FALSE;
1411 }
1412 }
1413 }
1414
1415 *count = num_mods;
1416 return true;
1417 }
1418
1419 static __DRIimage *
1420 intel_from_planar(__DRIimage *parent, int plane, void *loaderPrivate)
1421 {
1422 int width, height, offset, stride, size, dri_format;
1423 __DRIimage *image;
1424
1425 if (parent == NULL)
1426 return NULL;
1427
1428 width = parent->width;
1429 height = parent->height;
1430
1431 const struct intel_image_format *f = parent->planar_format;
1432
1433 if (f && plane < f->nplanes) {
1434 /* Use the planar format definition. */
1435 width >>= f->planes[plane].width_shift;
1436 height >>= f->planes[plane].height_shift;
1437 dri_format = f->planes[plane].dri_format;
1438 int index = f->planes[plane].buffer_index;
1439 offset = parent->offsets[index];
1440 stride = parent->strides[index];
1441 size = height * stride;
1442 } else if (plane == 0) {
1443 /* The only plane of a non-planar image: copy the parent definition
1444 * directly. */
1445 dri_format = parent->dri_format;
1446 offset = parent->offset;
1447 stride = parent->pitch;
1448 size = height * stride;
1449 } else if (plane == 1 && parent->modifier != DRM_FORMAT_MOD_INVALID &&
1450 isl_drm_modifier_has_aux(parent->modifier)) {
1451 /* Auxiliary plane */
1452 dri_format = parent->dri_format;
1453 offset = parent->aux_offset;
1454 stride = parent->aux_pitch;
1455 size = parent->aux_size;
1456 } else {
1457 return NULL;
1458 }
1459
1460 if (offset + size > parent->bo->size) {
1461 _mesa_warning(NULL, "intel_from_planar: subimage out of bounds");
1462 return NULL;
1463 }
1464
1465 image = intel_allocate_image(parent->screen, dri_format, loaderPrivate);
1466 if (image == NULL)
1467 return NULL;
1468
1469 image->bo = parent->bo;
1470 brw_bo_reference(parent->bo);
1471 image->modifier = parent->modifier;
1472
1473 image->width = width;
1474 image->height = height;
1475 image->pitch = stride;
1476 image->offset = offset;
1477
1478 intel_image_warn_if_unaligned(image, __func__);
1479
1480 return image;
1481 }
1482
1483 static const __DRIimageExtension intelImageExtension = {
1484 .base = { __DRI_IMAGE, 16 },
1485
1486 .createImageFromName = intel_create_image_from_name,
1487 .createImageFromRenderbuffer = intel_create_image_from_renderbuffer,
1488 .destroyImage = intel_destroy_image,
1489 .createImage = intel_create_image,
1490 .queryImage = intel_query_image,
1491 .dupImage = intel_dup_image,
1492 .validateUsage = intel_validate_usage,
1493 .createImageFromNames = intel_create_image_from_names,
1494 .fromPlanar = intel_from_planar,
1495 .createImageFromTexture = intel_create_image_from_texture,
1496 .createImageFromFds = intel_create_image_from_fds,
1497 .createImageFromDmaBufs = intel_create_image_from_dma_bufs,
1498 .blitImage = NULL,
1499 .getCapabilities = NULL,
1500 .mapImage = intel_map_image,
1501 .unmapImage = intel_unmap_image,
1502 .createImageWithModifiers = intel_create_image_with_modifiers,
1503 .createImageFromDmaBufs2 = intel_create_image_from_dma_bufs2,
1504 .queryDmaBufFormats = intel_query_dma_buf_formats,
1505 .queryDmaBufModifiers = intel_query_dma_buf_modifiers,
1506 .queryDmaBufFormatModifierAttribs = intel_query_format_modifier_attribs,
1507 };
1508
1509 static int
1510 brw_query_renderer_integer(__DRIscreen *dri_screen,
1511 int param, unsigned int *value)
1512 {
1513 const struct intel_screen *const screen =
1514 (struct intel_screen *) dri_screen->driverPrivate;
1515
1516 switch (param) {
1517 case __DRI2_RENDERER_VENDOR_ID:
1518 value[0] = 0x8086;
1519 return 0;
1520 case __DRI2_RENDERER_DEVICE_ID:
1521 value[0] = screen->deviceID;
1522 return 0;
1523 case __DRI2_RENDERER_ACCELERATED:
1524 value[0] = 1;
1525 return 0;
1526 case __DRI2_RENDERER_VIDEO_MEMORY: {
1527 /* Once a batch uses more than 75% of the maximum mappable size, we
1528 * assume that there's some fragmentation, and we start doing extra
1529 * flushing, etc. That's the big cliff apps will care about.
1530 */
1531 const unsigned gpu_mappable_megabytes =
1532 screen->aperture_threshold / (1024 * 1024);
1533
1534 const long system_memory_pages = sysconf(_SC_PHYS_PAGES);
1535 const long system_page_size = sysconf(_SC_PAGE_SIZE);
1536
1537 if (system_memory_pages <= 0 || system_page_size <= 0)
1538 return -1;
1539
1540 const uint64_t system_memory_bytes = (uint64_t) system_memory_pages
1541 * (uint64_t) system_page_size;
1542
1543 const unsigned system_memory_megabytes =
1544 (unsigned) (system_memory_bytes / (1024 * 1024));
1545
1546 value[0] = MIN2(system_memory_megabytes, gpu_mappable_megabytes);
1547 return 0;
1548 }
1549 case __DRI2_RENDERER_UNIFIED_MEMORY_ARCHITECTURE:
1550 value[0] = 1;
1551 return 0;
1552 case __DRI2_RENDERER_HAS_TEXTURE_3D:
1553 value[0] = 1;
1554 return 0;
1555 case __DRI2_RENDERER_HAS_CONTEXT_PRIORITY:
1556 value[0] = 0;
1557 if (brw_hw_context_set_priority(screen->bufmgr,
1558 0, GEN_CONTEXT_HIGH_PRIORITY) == 0)
1559 value[0] |= __DRI2_RENDERER_HAS_CONTEXT_PRIORITY_HIGH;
1560 if (brw_hw_context_set_priority(screen->bufmgr,
1561 0, GEN_CONTEXT_LOW_PRIORITY) == 0)
1562 value[0] |= __DRI2_RENDERER_HAS_CONTEXT_PRIORITY_LOW;
1563 /* reset to default last, just in case */
1564 if (brw_hw_context_set_priority(screen->bufmgr,
1565 0, GEN_CONTEXT_MEDIUM_PRIORITY) == 0)
1566 value[0] |= __DRI2_RENDERER_HAS_CONTEXT_PRIORITY_MEDIUM;
1567 return 0;
1568 case __DRI2_RENDERER_HAS_FRAMEBUFFER_SRGB:
1569 value[0] = 1;
1570 return 0;
1571 default:
1572 return driQueryRendererIntegerCommon(dri_screen, param, value);
1573 }
1574
1575 return -1;
1576 }
1577
1578 static int
1579 brw_query_renderer_string(__DRIscreen *dri_screen,
1580 int param, const char **value)
1581 {
1582 const struct intel_screen *screen =
1583 (struct intel_screen *) dri_screen->driverPrivate;
1584
1585 switch (param) {
1586 case __DRI2_RENDERER_VENDOR_ID:
1587 value[0] = brw_vendor_string;
1588 return 0;
1589 case __DRI2_RENDERER_DEVICE_ID:
1590 value[0] = brw_get_renderer_string(screen);
1591 return 0;
1592 default:
1593 break;
1594 }
1595
1596 return -1;
1597 }
1598
1599 static void
1600 brw_set_cache_funcs(__DRIscreen *dri_screen,
1601 __DRIblobCacheSet set, __DRIblobCacheGet get)
1602 {
1603 const struct intel_screen *const screen =
1604 (struct intel_screen *) dri_screen->driverPrivate;
1605
1606 if (!screen->disk_cache)
1607 return;
1608
1609 disk_cache_set_callbacks(screen->disk_cache, set, get);
1610 }
1611
1612 static const __DRI2rendererQueryExtension intelRendererQueryExtension = {
1613 .base = { __DRI2_RENDERER_QUERY, 1 },
1614
1615 .queryInteger = brw_query_renderer_integer,
1616 .queryString = brw_query_renderer_string
1617 };
1618
1619 static const __DRIrobustnessExtension dri2Robustness = {
1620 .base = { __DRI2_ROBUSTNESS, 1 }
1621 };
1622
1623 static const __DRI2blobExtension intelBlobExtension = {
1624 .base = { __DRI2_BLOB, 1 },
1625 .set_cache_funcs = brw_set_cache_funcs
1626 };
1627
1628 static const __DRImutableRenderBufferDriverExtension intelMutableRenderBufferExtension = {
1629 .base = { __DRI_MUTABLE_RENDER_BUFFER_DRIVER, 1 },
1630 };
1631
1632 static const __DRIextension *screenExtensions[] = {
1633 &intelTexBufferExtension.base,
1634 &intelFenceExtension.base,
1635 &intelFlushExtension.base,
1636 &intelImageExtension.base,
1637 &intelRendererQueryExtension.base,
1638 &intelMutableRenderBufferExtension.base,
1639 &dri2ConfigQueryExtension.base,
1640 &dri2NoErrorExtension.base,
1641 &intelBlobExtension.base,
1642 NULL
1643 };
1644
1645 static const __DRIextension *intelRobustScreenExtensions[] = {
1646 &intelTexBufferExtension.base,
1647 &intelFenceExtension.base,
1648 &intelFlushExtension.base,
1649 &intelImageExtension.base,
1650 &intelRendererQueryExtension.base,
1651 &intelMutableRenderBufferExtension.base,
1652 &dri2ConfigQueryExtension.base,
1653 &dri2Robustness.base,
1654 &dri2NoErrorExtension.base,
1655 &intelBlobExtension.base,
1656 NULL
1657 };
1658
1659 static int
1660 intel_get_param(struct intel_screen *screen, int param, int *value)
1661 {
1662 int ret = 0;
1663 struct drm_i915_getparam gp;
1664
1665 memset(&gp, 0, sizeof(gp));
1666 gp.param = param;
1667 gp.value = value;
1668
1669 if (drmIoctl(screen->fd, DRM_IOCTL_I915_GETPARAM, &gp) == -1) {
1670 ret = -errno;
1671 if (ret != -EINVAL)
1672 _mesa_warning(NULL, "drm_i915_getparam: %d", ret);
1673 }
1674
1675 return ret;
1676 }
1677
1678 static bool
1679 intel_get_boolean(struct intel_screen *screen, int param)
1680 {
1681 int value = 0;
1682 return (intel_get_param(screen, param, &value) == 0) && value;
1683 }
1684
1685 static int
1686 intel_get_integer(struct intel_screen *screen, int param)
1687 {
1688 int value = -1;
1689
1690 if (intel_get_param(screen, param, &value) == 0)
1691 return value;
1692
1693 return -1;
1694 }
1695
1696 static void
1697 intelDestroyScreen(__DRIscreen * sPriv)
1698 {
1699 struct intel_screen *screen = sPriv->driverPrivate;
1700
1701 brw_bufmgr_unref(screen->bufmgr);
1702 driDestroyOptionInfo(&screen->optionCache);
1703
1704 disk_cache_destroy(screen->disk_cache);
1705
1706 ralloc_free(screen);
1707 sPriv->driverPrivate = NULL;
1708 }
1709
1710
1711 /**
1712 * Create a gl_framebuffer and attach it to __DRIdrawable::driverPrivate.
1713 *
1714 *_This implements driDriverAPI::createNewDrawable, which the DRI layer calls
1715 * when creating a EGLSurface, GLXDrawable, or GLXPixmap. Despite the name,
1716 * this does not allocate GPU memory.
1717 */
1718 static GLboolean
1719 intelCreateBuffer(__DRIscreen *dri_screen,
1720 __DRIdrawable * driDrawPriv,
1721 const struct gl_config * mesaVis, GLboolean isPixmap)
1722 {
1723 struct intel_renderbuffer *rb;
1724 struct intel_screen *screen = (struct intel_screen *)
1725 dri_screen->driverPrivate;
1726 mesa_format rgbFormat;
1727 unsigned num_samples =
1728 intel_quantize_num_samples(screen, mesaVis->samples);
1729
1730 if (isPixmap)
1731 return false;
1732
1733 struct gl_framebuffer *fb = CALLOC_STRUCT(gl_framebuffer);
1734 if (!fb)
1735 return false;
1736
1737 _mesa_initialize_window_framebuffer(fb, mesaVis);
1738
1739 if (screen->winsys_msaa_samples_override != -1) {
1740 num_samples = screen->winsys_msaa_samples_override;
1741 fb->Visual.samples = num_samples;
1742 }
1743
1744 if (mesaVis->redBits == 16 && mesaVis->alphaBits > 0 && mesaVis->floatMode) {
1745 rgbFormat = MESA_FORMAT_RGBA_FLOAT16;
1746 } else if (mesaVis->redBits == 16 && mesaVis->floatMode) {
1747 rgbFormat = MESA_FORMAT_RGBX_FLOAT16;
1748 } else if (mesaVis->redBits == 10 && mesaVis->alphaBits > 0) {
1749 rgbFormat = mesaVis->redMask == 0x3ff00000 ? MESA_FORMAT_B10G10R10A2_UNORM
1750 : MESA_FORMAT_R10G10B10A2_UNORM;
1751 } else if (mesaVis->redBits == 10) {
1752 rgbFormat = mesaVis->redMask == 0x3ff00000 ? MESA_FORMAT_B10G10R10X2_UNORM
1753 : MESA_FORMAT_R10G10B10X2_UNORM;
1754 } else if (mesaVis->redBits == 5) {
1755 rgbFormat = mesaVis->redMask == 0x1f ? MESA_FORMAT_R5G6B5_UNORM
1756 : MESA_FORMAT_B5G6R5_UNORM;
1757 } else if (mesaVis->alphaBits == 0) {
1758 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8X8_SRGB
1759 : MESA_FORMAT_B8G8R8X8_SRGB;
1760 fb->Visual.sRGBCapable = true;
1761 } else if (mesaVis->sRGBCapable) {
1762 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
1763 : MESA_FORMAT_B8G8R8A8_SRGB;
1764 fb->Visual.sRGBCapable = true;
1765 } else {
1766 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
1767 : MESA_FORMAT_B8G8R8A8_SRGB;
1768 fb->Visual.sRGBCapable = true;
1769 }
1770
1771 /* mesaVis->sRGBCapable was set, user is asking for sRGB */
1772 bool srgb_cap_set = mesaVis->redBits >= 8 && mesaVis->sRGBCapable;
1773
1774 /* setup the hardware-based renderbuffers */
1775 rb = intel_create_winsys_renderbuffer(screen, rgbFormat, num_samples);
1776 _mesa_attach_and_own_rb(fb, BUFFER_FRONT_LEFT, &rb->Base.Base);
1777 rb->need_srgb = srgb_cap_set;
1778
1779 if (mesaVis->doubleBufferMode) {
1780 rb = intel_create_winsys_renderbuffer(screen, rgbFormat, num_samples);
1781 _mesa_attach_and_own_rb(fb, BUFFER_BACK_LEFT, &rb->Base.Base);
1782 rb->need_srgb = srgb_cap_set;
1783 }
1784
1785 /*
1786 * Assert here that the gl_config has an expected depth/stencil bit
1787 * combination: one of d24/s8, d16/s0, d0/s0. (See intelInitScreen2(),
1788 * which constructs the advertised configs.)
1789 */
1790 if (mesaVis->depthBits == 24) {
1791 assert(mesaVis->stencilBits == 8);
1792
1793 if (screen->devinfo.has_hiz_and_separate_stencil) {
1794 rb = intel_create_private_renderbuffer(screen,
1795 MESA_FORMAT_Z24_UNORM_X8_UINT,
1796 num_samples);
1797 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1798 rb = intel_create_private_renderbuffer(screen, MESA_FORMAT_S_UINT8,
1799 num_samples);
1800 _mesa_attach_and_own_rb(fb, BUFFER_STENCIL, &rb->Base.Base);
1801 } else {
1802 /*
1803 * Use combined depth/stencil. Note that the renderbuffer is
1804 * attached to two attachment points.
1805 */
1806 rb = intel_create_private_renderbuffer(screen,
1807 MESA_FORMAT_Z24_UNORM_S8_UINT,
1808 num_samples);
1809 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1810 _mesa_attach_and_reference_rb(fb, BUFFER_STENCIL, &rb->Base.Base);
1811 }
1812 }
1813 else if (mesaVis->depthBits == 16) {
1814 assert(mesaVis->stencilBits == 0);
1815 rb = intel_create_private_renderbuffer(screen, MESA_FORMAT_Z_UNORM16,
1816 num_samples);
1817 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1818 }
1819 else {
1820 assert(mesaVis->depthBits == 0);
1821 assert(mesaVis->stencilBits == 0);
1822 }
1823
1824 /* now add any/all software-based renderbuffers we may need */
1825 _swrast_add_soft_renderbuffers(fb,
1826 false, /* never sw color */
1827 false, /* never sw depth */
1828 false, /* never sw stencil */
1829 mesaVis->accumRedBits > 0,
1830 false, /* never sw alpha */
1831 false /* never sw aux */ );
1832 driDrawPriv->driverPrivate = fb;
1833
1834 return true;
1835 }
1836
1837 static void
1838 intelDestroyBuffer(__DRIdrawable * driDrawPriv)
1839 {
1840 struct gl_framebuffer *fb = driDrawPriv->driverPrivate;
1841
1842 _mesa_reference_framebuffer(&fb, NULL);
1843 }
1844
1845 static void
1846 intel_cs_timestamp_frequency(struct intel_screen *screen)
1847 {
1848 /* We shouldn't need to update gen_device_info.timestamp_frequency prior to
1849 * gen10, PCI-id is enough to figure it out.
1850 */
1851 assert(screen->devinfo.gen >= 10);
1852
1853 int ret, freq;
1854
1855 ret = intel_get_param(screen, I915_PARAM_CS_TIMESTAMP_FREQUENCY,
1856 &freq);
1857 if (ret < 0) {
1858 _mesa_warning(NULL,
1859 "Kernel 4.15 required to read the CS timestamp frequency.\n");
1860 return;
1861 }
1862
1863 screen->devinfo.timestamp_frequency = freq;
1864 }
1865
1866 static void
1867 intel_detect_sseu(struct intel_screen *screen)
1868 {
1869 assert(screen->devinfo.gen >= 8);
1870 int ret;
1871
1872 screen->subslice_total = -1;
1873 screen->eu_total = -1;
1874
1875 ret = intel_get_param(screen, I915_PARAM_SUBSLICE_TOTAL,
1876 &screen->subslice_total);
1877 if (ret < 0 && ret != -EINVAL)
1878 goto err_out;
1879
1880 ret = intel_get_param(screen,
1881 I915_PARAM_EU_TOTAL, &screen->eu_total);
1882 if (ret < 0 && ret != -EINVAL)
1883 goto err_out;
1884
1885 /* Without this information, we cannot get the right Braswell brandstrings,
1886 * and we have to use conservative numbers for GPGPU on many platforms, but
1887 * otherwise, things will just work.
1888 */
1889 if (screen->subslice_total < 1 || screen->eu_total < 1)
1890 _mesa_warning(NULL,
1891 "Kernel 4.1 required to properly query GPU properties.\n");
1892
1893 return;
1894
1895 err_out:
1896 screen->subslice_total = -1;
1897 screen->eu_total = -1;
1898 _mesa_warning(NULL, "Failed to query GPU properties (%s).\n", strerror(-ret));
1899 }
1900
1901 static bool
1902 intel_init_bufmgr(struct intel_screen *screen)
1903 {
1904 __DRIscreen *dri_screen = screen->driScrnPriv;
1905
1906 if (getenv("INTEL_NO_HW") != NULL)
1907 screen->no_hw = true;
1908
1909 bool bo_reuse = false;
1910 int bo_reuse_mode = driQueryOptioni(&screen->optionCache, "bo_reuse");
1911 switch (bo_reuse_mode) {
1912 case DRI_CONF_BO_REUSE_DISABLED:
1913 break;
1914 case DRI_CONF_BO_REUSE_ALL:
1915 bo_reuse = true;
1916 break;
1917 }
1918
1919 screen->bufmgr = brw_bufmgr_get_for_fd(&screen->devinfo, dri_screen->fd, bo_reuse);
1920 if (screen->bufmgr == NULL) {
1921 fprintf(stderr, "[%s:%u] Error initializing buffer manager.\n",
1922 __func__, __LINE__);
1923 return false;
1924 }
1925 screen->fd = brw_bufmgr_get_fd(screen->bufmgr);
1926
1927 if (!intel_get_boolean(screen, I915_PARAM_HAS_EXEC_NO_RELOC)) {
1928 fprintf(stderr, "[%s: %u] Kernel 3.9 required.\n", __func__, __LINE__);
1929 return false;
1930 }
1931
1932 return true;
1933 }
1934
1935 static bool
1936 intel_detect_swizzling(struct intel_screen *screen)
1937 {
1938 /* Broadwell PRM says:
1939 *
1940 * "Before Gen8, there was a historical configuration control field to
1941 * swizzle address bit[6] for in X/Y tiling modes. This was set in three
1942 * different places: TILECTL[1:0], ARB_MODE[5:4], and
1943 * DISP_ARB_CTL[14:13].
1944 *
1945 * For Gen8 and subsequent generations, the swizzle fields are all
1946 * reserved, and the CPU's memory controller performs all address
1947 * swizzling modifications."
1948 */
1949 if (screen->devinfo.gen >= 8)
1950 return false;
1951
1952 uint32_t tiling = I915_TILING_X;
1953 uint32_t swizzle_mode = 0;
1954 struct brw_bo *buffer =
1955 brw_bo_alloc_tiled(screen->bufmgr, "swizzle test", 32768,
1956 BRW_MEMZONE_OTHER, tiling, 512, 0);
1957 if (buffer == NULL)
1958 return false;
1959
1960 brw_bo_get_tiling(buffer, &tiling, &swizzle_mode);
1961 brw_bo_unreference(buffer);
1962
1963 return swizzle_mode != I915_BIT_6_SWIZZLE_NONE;
1964 }
1965
1966 static int
1967 intel_detect_timestamp(struct intel_screen *screen)
1968 {
1969 uint64_t dummy = 0, last = 0;
1970 int upper, lower, loops;
1971
1972 /* On 64bit systems, some old kernels trigger a hw bug resulting in the
1973 * TIMESTAMP register being shifted and the low 32bits always zero.
1974 *
1975 * More recent kernels offer an interface to read the full 36bits
1976 * everywhere.
1977 */
1978 if (brw_reg_read(screen->bufmgr, TIMESTAMP | 1, &dummy) == 0)
1979 return 3;
1980
1981 /* Determine if we have a 32bit or 64bit kernel by inspecting the
1982 * upper 32bits for a rapidly changing timestamp.
1983 */
1984 if (brw_reg_read(screen->bufmgr, TIMESTAMP, &last))
1985 return 0;
1986
1987 upper = lower = 0;
1988 for (loops = 0; loops < 10; loops++) {
1989 /* The TIMESTAMP should change every 80ns, so several round trips
1990 * through the kernel should be enough to advance it.
1991 */
1992 if (brw_reg_read(screen->bufmgr, TIMESTAMP, &dummy))
1993 return 0;
1994
1995 upper += (dummy >> 32) != (last >> 32);
1996 if (upper > 1) /* beware 32bit counter overflow */
1997 return 2; /* upper dword holds the low 32bits of the timestamp */
1998
1999 lower += (dummy & 0xffffffff) != (last & 0xffffffff);
2000 if (lower > 1)
2001 return 1; /* timestamp is unshifted */
2002
2003 last = dummy;
2004 }
2005
2006 /* No advancement? No timestamp! */
2007 return 0;
2008 }
2009
2010 /**
2011 * Test if we can use MI_LOAD_REGISTER_MEM from an untrusted batchbuffer.
2012 *
2013 * Some combinations of hardware and kernel versions allow this feature,
2014 * while others don't. Instead of trying to enumerate every case, just
2015 * try and write a register and see if works.
2016 */
2017 static bool
2018 intel_detect_pipelined_register(struct intel_screen *screen,
2019 int reg, uint32_t expected_value, bool reset)
2020 {
2021 if (screen->no_hw)
2022 return false;
2023
2024 struct brw_bo *results, *bo;
2025 uint32_t *batch;
2026 uint32_t offset = 0;
2027 void *map;
2028 bool success = false;
2029
2030 /* Create a zero'ed temporary buffer for reading our results */
2031 results = brw_bo_alloc(screen->bufmgr, "registers", 4096, BRW_MEMZONE_OTHER);
2032 if (results == NULL)
2033 goto err;
2034
2035 bo = brw_bo_alloc(screen->bufmgr, "batchbuffer", 4096, BRW_MEMZONE_OTHER);
2036 if (bo == NULL)
2037 goto err_results;
2038
2039 map = brw_bo_map(NULL, bo, MAP_WRITE);
2040 if (!map)
2041 goto err_batch;
2042
2043 batch = map;
2044
2045 /* Write the register. */
2046 *batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
2047 *batch++ = reg;
2048 *batch++ = expected_value;
2049
2050 /* Save the register's value back to the buffer. */
2051 *batch++ = MI_STORE_REGISTER_MEM | (3 - 2);
2052 *batch++ = reg;
2053 struct drm_i915_gem_relocation_entry reloc = {
2054 .offset = (char *) batch - (char *) map,
2055 .delta = offset * sizeof(uint32_t),
2056 .target_handle = results->gem_handle,
2057 .read_domains = I915_GEM_DOMAIN_INSTRUCTION,
2058 .write_domain = I915_GEM_DOMAIN_INSTRUCTION,
2059 };
2060 *batch++ = reloc.presumed_offset + reloc.delta;
2061
2062 /* And afterwards clear the register */
2063 if (reset) {
2064 *batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
2065 *batch++ = reg;
2066 *batch++ = 0;
2067 }
2068
2069 *batch++ = MI_BATCH_BUFFER_END;
2070
2071 struct drm_i915_gem_exec_object2 exec_objects[2] = {
2072 {
2073 .handle = results->gem_handle,
2074 },
2075 {
2076 .handle = bo->gem_handle,
2077 .relocation_count = 1,
2078 .relocs_ptr = (uintptr_t) &reloc,
2079 }
2080 };
2081
2082 struct drm_i915_gem_execbuffer2 execbuf = {
2083 .buffers_ptr = (uintptr_t) exec_objects,
2084 .buffer_count = 2,
2085 .batch_len = ALIGN((char *) batch - (char *) map, 8),
2086 .flags = I915_EXEC_RENDER,
2087 };
2088
2089 /* Don't bother with error checking - if the execbuf fails, the
2090 * value won't be written and we'll just report that there's no access.
2091 */
2092 drmIoctl(screen->fd, DRM_IOCTL_I915_GEM_EXECBUFFER2, &execbuf);
2093
2094 /* Check whether the value got written. */
2095 void *results_map = brw_bo_map(NULL, results, MAP_READ);
2096 if (results_map) {
2097 success = *((uint32_t *)results_map + offset) == expected_value;
2098 brw_bo_unmap(results);
2099 }
2100
2101 err_batch:
2102 brw_bo_unreference(bo);
2103 err_results:
2104 brw_bo_unreference(results);
2105 err:
2106 return success;
2107 }
2108
2109 static bool
2110 intel_detect_pipelined_so(struct intel_screen *screen)
2111 {
2112 const struct gen_device_info *devinfo = &screen->devinfo;
2113
2114 /* Supposedly, Broadwell just works. */
2115 if (devinfo->gen >= 8)
2116 return true;
2117
2118 if (devinfo->gen <= 6)
2119 return false;
2120
2121 /* See the big explanation about command parser versions below */
2122 if (screen->cmd_parser_version >= (devinfo->is_haswell ? 7 : 2))
2123 return true;
2124
2125 /* We use SO_WRITE_OFFSET0 since you're supposed to write it (unlike the
2126 * statistics registers), and we already reset it to zero before using it.
2127 */
2128 return intel_detect_pipelined_register(screen,
2129 GEN7_SO_WRITE_OFFSET(0),
2130 0x1337d0d0,
2131 false);
2132 }
2133
2134 /**
2135 * Return array of MSAA modes supported by the hardware. The array is
2136 * zero-terminated and sorted in decreasing order.
2137 */
2138 const int*
2139 intel_supported_msaa_modes(const struct intel_screen *screen)
2140 {
2141 static const int gen9_modes[] = {16, 8, 4, 2, 0, -1};
2142 static const int gen8_modes[] = {8, 4, 2, 0, -1};
2143 static const int gen7_modes[] = {8, 4, 0, -1};
2144 static const int gen6_modes[] = {4, 0, -1};
2145 static const int gen4_modes[] = {0, -1};
2146
2147 if (screen->devinfo.gen >= 9) {
2148 return gen9_modes;
2149 } else if (screen->devinfo.gen >= 8) {
2150 return gen8_modes;
2151 } else if (screen->devinfo.gen >= 7) {
2152 return gen7_modes;
2153 } else if (screen->devinfo.gen == 6) {
2154 return gen6_modes;
2155 } else {
2156 return gen4_modes;
2157 }
2158 }
2159
2160 static unsigned
2161 intel_loader_get_cap(const __DRIscreen *dri_screen, enum dri_loader_cap cap)
2162 {
2163 if (dri_screen->dri2.loader && dri_screen->dri2.loader->base.version >= 4 &&
2164 dri_screen->dri2.loader->getCapability)
2165 return dri_screen->dri2.loader->getCapability(dri_screen->loaderPrivate, cap);
2166
2167 if (dri_screen->image.loader && dri_screen->image.loader->base.version >= 2 &&
2168 dri_screen->image.loader->getCapability)
2169 return dri_screen->image.loader->getCapability(dri_screen->loaderPrivate, cap);
2170
2171 return 0;
2172 }
2173
2174 static bool
2175 intel_allowed_format(__DRIscreen *dri_screen, mesa_format format)
2176 {
2177 struct intel_screen *screen = dri_screen->driverPrivate;
2178
2179 /* Expose only BGRA ordering if the loader doesn't support RGBA ordering. */
2180 bool allow_rgba_ordering = intel_loader_get_cap(dri_screen, DRI_LOADER_CAP_RGBA_ORDERING);
2181 if (!allow_rgba_ordering &&
2182 (format == MESA_FORMAT_R8G8B8A8_UNORM ||
2183 format == MESA_FORMAT_R8G8B8X8_UNORM ||
2184 format == MESA_FORMAT_R8G8B8A8_SRGB))
2185 return false;
2186
2187 /* Shall we expose 10 bpc formats? */
2188 bool allow_rgb10_configs = driQueryOptionb(&screen->optionCache,
2189 "allow_rgb10_configs");
2190 if (!allow_rgb10_configs &&
2191 (format == MESA_FORMAT_B10G10R10A2_UNORM ||
2192 format == MESA_FORMAT_B10G10R10X2_UNORM))
2193 return false;
2194
2195 /* Shall we expose 565 formats? */
2196 bool allow_rgb565_configs = driQueryOptionb(&screen->optionCache,
2197 "allow_rgb565_configs");
2198 if (!allow_rgb565_configs && format == MESA_FORMAT_B5G6R5_UNORM)
2199 return false;
2200
2201 /* Shall we expose fp16 formats? */
2202 bool allow_fp16_configs = driQueryOptionb(&screen->optionCache,
2203 "allow_fp16_configs");
2204 allow_fp16_configs &= intel_loader_get_cap(dri_screen, DRI_LOADER_CAP_FP16);
2205 if (!allow_fp16_configs &&
2206 (format == MESA_FORMAT_RGBA_FLOAT16 ||
2207 format == MESA_FORMAT_RGBX_FLOAT16))
2208 return false;
2209
2210 return true;
2211 }
2212
2213 static __DRIconfig**
2214 intel_screen_make_configs(__DRIscreen *dri_screen)
2215 {
2216 static const mesa_format formats[] = {
2217 MESA_FORMAT_B5G6R5_UNORM,
2218 MESA_FORMAT_B8G8R8A8_UNORM,
2219 MESA_FORMAT_B8G8R8X8_UNORM,
2220
2221 MESA_FORMAT_B8G8R8A8_SRGB,
2222 MESA_FORMAT_B8G8R8X8_SRGB,
2223
2224 /* For 10 bpc, 30 bit depth framebuffers. */
2225 MESA_FORMAT_B10G10R10A2_UNORM,
2226 MESA_FORMAT_B10G10R10X2_UNORM,
2227
2228 MESA_FORMAT_RGBA_FLOAT16,
2229 MESA_FORMAT_RGBX_FLOAT16,
2230
2231 /* The 32-bit RGBA format must not precede the 32-bit BGRA format.
2232 * Likewise for RGBX and BGRX. Otherwise, the GLX client and the GLX
2233 * server may disagree on which format the GLXFBConfig represents,
2234 * resulting in swapped color channels.
2235 *
2236 * The problem, as of 2017-05-30:
2237 * When matching a GLXFBConfig to a __DRIconfig, GLX ignores the channel
2238 * order and chooses the first __DRIconfig with the expected channel
2239 * sizes. Specifically, GLX compares the GLXFBConfig's and __DRIconfig's
2240 * __DRI_ATTRIB_{CHANNEL}_SIZE but ignores __DRI_ATTRIB_{CHANNEL}_MASK.
2241 *
2242 * EGL does not suffer from this problem. It correctly compares the
2243 * channel masks when matching EGLConfig to __DRIconfig.
2244 */
2245
2246 /* Required by Android, for HAL_PIXEL_FORMAT_RGBA_8888. */
2247 MESA_FORMAT_R8G8B8A8_UNORM,
2248
2249 /* Required by Android, for HAL_PIXEL_FORMAT_RGBX_8888. */
2250 MESA_FORMAT_R8G8B8X8_UNORM,
2251
2252 MESA_FORMAT_R8G8B8A8_SRGB,
2253 };
2254
2255 /* __DRI_ATTRIB_SWAP_COPY is not supported due to page flipping. */
2256 static const GLenum back_buffer_modes[] = {
2257 __DRI_ATTRIB_SWAP_UNDEFINED, __DRI_ATTRIB_SWAP_NONE
2258 };
2259
2260 static const uint8_t singlesample_samples[1] = {0};
2261
2262 struct intel_screen *screen = dri_screen->driverPrivate;
2263 const struct gen_device_info *devinfo = &screen->devinfo;
2264 uint8_t depth_bits[4], stencil_bits[4];
2265 __DRIconfig **configs = NULL;
2266
2267 unsigned num_formats = ARRAY_SIZE(formats);
2268
2269 /* Generate singlesample configs, each without accumulation buffer
2270 * and with EGL_MUTABLE_RENDER_BUFFER_BIT_KHR.
2271 */
2272 for (unsigned i = 0; i < num_formats; i++) {
2273 __DRIconfig **new_configs;
2274 int num_depth_stencil_bits = 1;
2275
2276 if (!intel_allowed_format(dri_screen, formats[i]))
2277 continue;
2278
2279 /* Starting with DRI2 protocol version 1.1 we can request a depth/stencil
2280 * buffer that has a different number of bits per pixel than the color
2281 * buffer, gen >= 6 supports this.
2282 */
2283 depth_bits[0] = 0;
2284 stencil_bits[0] = 0;
2285
2286 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
2287 if (devinfo->gen >= 8) {
2288 depth_bits[num_depth_stencil_bits] = 16;
2289 stencil_bits[num_depth_stencil_bits] = 0;
2290 num_depth_stencil_bits++;
2291 }
2292 if (devinfo->gen >= 6) {
2293 depth_bits[num_depth_stencil_bits] = 24;
2294 stencil_bits[num_depth_stencil_bits] = 8;
2295 num_depth_stencil_bits++;
2296 }
2297 } else {
2298 depth_bits[num_depth_stencil_bits] = 24;
2299 stencil_bits[num_depth_stencil_bits] = 8;
2300 num_depth_stencil_bits++;
2301 }
2302
2303 new_configs = driCreateConfigs(formats[i],
2304 depth_bits,
2305 stencil_bits,
2306 num_depth_stencil_bits,
2307 back_buffer_modes, 2,
2308 singlesample_samples, 1,
2309 false, false,
2310 /*mutable_render_buffer*/ true);
2311 configs = driConcatConfigs(configs, new_configs);
2312 }
2313
2314 /* Generate the minimum possible set of configs that include an
2315 * accumulation buffer.
2316 */
2317 for (unsigned i = 0; i < num_formats; i++) {
2318 __DRIconfig **new_configs;
2319
2320 if (!intel_allowed_format(dri_screen, formats[i]))
2321 continue;
2322
2323 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
2324 if (devinfo->gen >= 8) {
2325 depth_bits[0] = 16;
2326 stencil_bits[0] = 0;
2327 } else if (devinfo->gen >= 6) {
2328 depth_bits[0] = 24;
2329 stencil_bits[0] = 8;
2330 } else {
2331 depth_bits[0] = 0;
2332 stencil_bits[0] = 0;
2333 }
2334 } else {
2335 depth_bits[0] = 24;
2336 stencil_bits[0] = 8;
2337 }
2338
2339 new_configs = driCreateConfigs(formats[i],
2340 depth_bits, stencil_bits, 1,
2341 back_buffer_modes, 1,
2342 singlesample_samples, 1,
2343 true, false, false);
2344 configs = driConcatConfigs(configs, new_configs);
2345 }
2346
2347 /* Generate multisample configs.
2348 *
2349 * This loop breaks early, and hence is a no-op, on gen < 6.
2350 *
2351 * Multisample configs must follow the singlesample configs in order to
2352 * work around an X server bug present in 1.12. The X server chooses to
2353 * associate the first listed RGBA888-Z24S8 config, regardless of its
2354 * sample count, with the 32-bit depth visual used for compositing.
2355 *
2356 * Only doublebuffer configs with GLX_SWAP_UNDEFINED_OML behavior are
2357 * supported. Singlebuffer configs are not supported because no one wants
2358 * them.
2359 */
2360 for (unsigned i = 0; i < num_formats; i++) {
2361 if (devinfo->gen < 6)
2362 break;
2363
2364 if (!intel_allowed_format(dri_screen, formats[i]))
2365 continue;
2366
2367 __DRIconfig **new_configs;
2368 const int num_depth_stencil_bits = 2;
2369 int num_msaa_modes = 0;
2370 const uint8_t *multisample_samples = NULL;
2371
2372 depth_bits[0] = 0;
2373 stencil_bits[0] = 0;
2374
2375 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM && devinfo->gen >= 8) {
2376 depth_bits[1] = 16;
2377 stencil_bits[1] = 0;
2378 } else {
2379 depth_bits[1] = 24;
2380 stencil_bits[1] = 8;
2381 }
2382
2383 if (devinfo->gen >= 9) {
2384 static const uint8_t multisample_samples_gen9[] = {2, 4, 8, 16};
2385 multisample_samples = multisample_samples_gen9;
2386 num_msaa_modes = ARRAY_SIZE(multisample_samples_gen9);
2387 } else if (devinfo->gen == 8) {
2388 static const uint8_t multisample_samples_gen8[] = {2, 4, 8};
2389 multisample_samples = multisample_samples_gen8;
2390 num_msaa_modes = ARRAY_SIZE(multisample_samples_gen8);
2391 } else if (devinfo->gen == 7) {
2392 static const uint8_t multisample_samples_gen7[] = {4, 8};
2393 multisample_samples = multisample_samples_gen7;
2394 num_msaa_modes = ARRAY_SIZE(multisample_samples_gen7);
2395 } else if (devinfo->gen == 6) {
2396 static const uint8_t multisample_samples_gen6[] = {4};
2397 multisample_samples = multisample_samples_gen6;
2398 num_msaa_modes = ARRAY_SIZE(multisample_samples_gen6);
2399 }
2400
2401 new_configs = driCreateConfigs(formats[i],
2402 depth_bits,
2403 stencil_bits,
2404 num_depth_stencil_bits,
2405 back_buffer_modes, 1,
2406 multisample_samples,
2407 num_msaa_modes,
2408 false, false, false);
2409 configs = driConcatConfigs(configs, new_configs);
2410 }
2411
2412 if (configs == NULL) {
2413 fprintf(stderr, "[%s:%u] Error creating FBConfig!\n", __func__,
2414 __LINE__);
2415 return NULL;
2416 }
2417
2418 return configs;
2419 }
2420
2421 static void
2422 set_max_gl_versions(struct intel_screen *screen)
2423 {
2424 __DRIscreen *dri_screen = screen->driScrnPriv;
2425 const bool has_astc = screen->devinfo.gen >= 9;
2426
2427 switch (screen->devinfo.gen) {
2428 case 11:
2429 case 10:
2430 case 9:
2431 case 8:
2432 dri_screen->max_gl_core_version = 46;
2433 dri_screen->max_gl_compat_version = 30;
2434 dri_screen->max_gl_es1_version = 11;
2435 dri_screen->max_gl_es2_version = has_astc ? 32 : 31;
2436 break;
2437 case 7:
2438 dri_screen->max_gl_core_version = 33;
2439 if (can_do_pipelined_register_writes(screen)) {
2440 dri_screen->max_gl_core_version = 42;
2441 if (screen->devinfo.is_haswell && can_do_compute_dispatch(screen))
2442 dri_screen->max_gl_core_version = 43;
2443 if (screen->devinfo.is_haswell && can_do_mi_math_and_lrr(screen))
2444 dri_screen->max_gl_core_version = 45;
2445 }
2446 dri_screen->max_gl_compat_version = 30;
2447 dri_screen->max_gl_es1_version = 11;
2448 dri_screen->max_gl_es2_version = screen->devinfo.is_haswell ? 31 : 30;
2449 break;
2450 case 6:
2451 dri_screen->max_gl_core_version = 33;
2452 dri_screen->max_gl_compat_version = 30;
2453 dri_screen->max_gl_es1_version = 11;
2454 dri_screen->max_gl_es2_version = 30;
2455 break;
2456 case 5:
2457 case 4:
2458 dri_screen->max_gl_core_version = 0;
2459 dri_screen->max_gl_compat_version = 21;
2460 dri_screen->max_gl_es1_version = 11;
2461 dri_screen->max_gl_es2_version = 20;
2462 break;
2463 default:
2464 unreachable("unrecognized intel_screen::gen");
2465 }
2466 }
2467
2468 static void
2469 shader_debug_log_mesa(void *data, const char *fmt, ...)
2470 {
2471 struct brw_context *brw = (struct brw_context *)data;
2472 va_list args;
2473
2474 va_start(args, fmt);
2475 GLuint msg_id = 0;
2476 _mesa_gl_vdebugf(&brw->ctx, &msg_id,
2477 MESA_DEBUG_SOURCE_SHADER_COMPILER,
2478 MESA_DEBUG_TYPE_OTHER,
2479 MESA_DEBUG_SEVERITY_NOTIFICATION, fmt, args);
2480 va_end(args);
2481 }
2482
2483 static void
2484 shader_perf_log_mesa(void *data, const char *fmt, ...)
2485 {
2486 struct brw_context *brw = (struct brw_context *)data;
2487
2488 va_list args;
2489 va_start(args, fmt);
2490
2491 if (unlikely(INTEL_DEBUG & DEBUG_PERF)) {
2492 va_list args_copy;
2493 va_copy(args_copy, args);
2494 vfprintf(stderr, fmt, args_copy);
2495 va_end(args_copy);
2496 }
2497
2498 if (brw->perf_debug) {
2499 GLuint msg_id = 0;
2500 _mesa_gl_vdebugf(&brw->ctx, &msg_id,
2501 MESA_DEBUG_SOURCE_SHADER_COMPILER,
2502 MESA_DEBUG_TYPE_PERFORMANCE,
2503 MESA_DEBUG_SEVERITY_MEDIUM, fmt, args);
2504 }
2505 va_end(args);
2506 }
2507
2508 /**
2509 * This is the driver specific part of the createNewScreen entry point.
2510 * Called when using DRI2.
2511 *
2512 * \return the struct gl_config supported by this driver
2513 */
2514 static const
2515 __DRIconfig **intelInitScreen2(__DRIscreen *dri_screen)
2516 {
2517 struct intel_screen *screen;
2518
2519 if (dri_screen->image.loader) {
2520 } else if (dri_screen->dri2.loader->base.version <= 2 ||
2521 dri_screen->dri2.loader->getBuffersWithFormat == NULL) {
2522 fprintf(stderr,
2523 "\nERROR! DRI2 loader with getBuffersWithFormat() "
2524 "support required\n");
2525 return NULL;
2526 }
2527
2528 /* Allocate the private area */
2529 screen = rzalloc(NULL, struct intel_screen);
2530 if (!screen) {
2531 fprintf(stderr, "\nERROR! Allocating private area failed\n");
2532 return NULL;
2533 }
2534 /* parse information in __driConfigOptions */
2535 driOptionCache options;
2536 memset(&options, 0, sizeof(options));
2537
2538 driParseOptionInfo(&options, brw_config_options.xml);
2539 driParseConfigFiles(&screen->optionCache, &options, dri_screen->myNum,
2540 "i965", NULL, NULL, 0);
2541 driDestroyOptionCache(&options);
2542
2543 screen->driScrnPriv = dri_screen;
2544 dri_screen->driverPrivate = (void *) screen;
2545
2546 if (!gen_get_device_info_from_fd(dri_screen->fd, &screen->devinfo))
2547 return NULL;
2548
2549 const struct gen_device_info *devinfo = &screen->devinfo;
2550 screen->deviceID = devinfo->chipset_id;
2551 screen->no_hw = devinfo->no_hw;
2552
2553 if (devinfo->gen >= 12) {
2554 fprintf(stderr, "gen12 and newer are not supported on i965\n");
2555 return NULL;
2556 }
2557
2558 if (!intel_init_bufmgr(screen))
2559 return NULL;
2560
2561 brw_process_intel_debug_variable();
2562
2563 if ((INTEL_DEBUG & DEBUG_SHADER_TIME) && devinfo->gen < 7) {
2564 fprintf(stderr,
2565 "shader_time debugging requires gen7 (Ivybridge) or better.\n");
2566 INTEL_DEBUG &= ~DEBUG_SHADER_TIME;
2567 }
2568
2569 if (intel_get_integer(screen, I915_PARAM_MMAP_GTT_VERSION) >= 1) {
2570 /* Theorectically unlimited! At least for individual objects...
2571 *
2572 * Currently the entire (global) address space for all GTT maps is
2573 * limited to 64bits. That is all objects on the system that are
2574 * setup for GTT mmapping must fit within 64bits. An attempt to use
2575 * one that exceeds the limit with fail in brw_bo_map_gtt().
2576 *
2577 * Long before we hit that limit, we will be practically limited by
2578 * that any single object must fit in physical memory (RAM). The upper
2579 * limit on the CPU's address space is currently 48bits (Skylake), of
2580 * which only 39bits can be physical memory. (The GPU itself also has
2581 * a 48bit addressable virtual space.) We can fit over 32 million
2582 * objects of the current maximum allocable size before running out
2583 * of mmap space.
2584 */
2585 screen->max_gtt_map_object_size = UINT64_MAX;
2586 } else {
2587 /* Estimate the size of the mappable aperture into the GTT. There's an
2588 * ioctl to get the whole GTT size, but not one to get the mappable subset.
2589 * It turns out it's basically always 256MB, though some ancient hardware
2590 * was smaller.
2591 */
2592 uint32_t gtt_size = 256 * 1024 * 1024;
2593
2594 /* We don't want to map two objects such that a memcpy between them would
2595 * just fault one mapping in and then the other over and over forever. So
2596 * we would need to divide the GTT size by 2. Additionally, some GTT is
2597 * taken up by things like the framebuffer and the ringbuffer and such, so
2598 * be more conservative.
2599 */
2600 screen->max_gtt_map_object_size = gtt_size / 4;
2601 }
2602
2603 screen->aperture_threshold = devinfo->aperture_bytes * 3 / 4;
2604
2605 screen->hw_has_swizzling = intel_detect_swizzling(screen);
2606 screen->hw_has_timestamp = intel_detect_timestamp(screen);
2607
2608 isl_device_init(&screen->isl_dev, &screen->devinfo,
2609 screen->hw_has_swizzling);
2610
2611 if (devinfo->gen >= 10)
2612 intel_cs_timestamp_frequency(screen);
2613
2614 /* GENs prior to 8 do not support EU/Subslice info */
2615 if (devinfo->gen >= 8) {
2616 intel_detect_sseu(screen);
2617 } else if (devinfo->gen == 7) {
2618 screen->subslice_total = 1 << (devinfo->gt - 1);
2619 }
2620
2621 /* Gen7-7.5 kernel requirements / command parser saga:
2622 *
2623 * - pre-v3.16:
2624 * Haswell and Baytrail cannot use any privileged batchbuffer features.
2625 *
2626 * Ivybridge has aliasing PPGTT on by default, which accidentally marks
2627 * all batches secure, allowing them to use any feature with no checking.
2628 * This is effectively equivalent to a command parser version of
2629 * \infinity - everything is possible.
2630 *
2631 * The command parser does not exist, and querying the version will
2632 * return -EINVAL.
2633 *
2634 * - v3.16:
2635 * The kernel enables the command parser by default, for systems with
2636 * aliasing PPGTT enabled (Ivybridge and Haswell). However, the
2637 * hardware checker is still enabled, so Haswell and Baytrail cannot
2638 * do anything.
2639 *
2640 * Ivybridge goes from "everything is possible" to "only what the
2641 * command parser allows" (if the user boots with i915.cmd_parser=0,
2642 * then everything is possible again). We can only safely use features
2643 * allowed by the supported command parser version.
2644 *
2645 * Annoyingly, I915_PARAM_CMD_PARSER_VERSION reports the static version
2646 * implemented by the kernel, even if it's turned off. So, checking
2647 * for version > 0 does not mean that you can write registers. We have
2648 * to try it and see. The version does, however, indicate the age of
2649 * the kernel.
2650 *
2651 * Instead of matching the hardware checker's behavior of converting
2652 * privileged commands to MI_NOOP, it makes execbuf2 start returning
2653 * -EINVAL, making it dangerous to try and use privileged features.
2654 *
2655 * Effective command parser versions:
2656 * - Haswell: 0 (reporting 1, writes don't work)
2657 * - Baytrail: 0 (reporting 1, writes don't work)
2658 * - Ivybridge: 1 (enabled) or infinite (disabled)
2659 *
2660 * - v3.17:
2661 * Baytrail aliasing PPGTT is enabled, making it like Ivybridge:
2662 * effectively version 1 (enabled) or infinite (disabled).
2663 *
2664 * - v3.19: f1f55cc0556031c8ee3fe99dae7251e78b9b653b
2665 * Command parser v2 supports predicate writes.
2666 *
2667 * - Haswell: 0 (reporting 1, writes don't work)
2668 * - Baytrail: 2 (enabled) or infinite (disabled)
2669 * - Ivybridge: 2 (enabled) or infinite (disabled)
2670 *
2671 * So version >= 2 is enough to know that Ivybridge and Baytrail
2672 * will work. Haswell still can't do anything.
2673 *
2674 * - v4.0: Version 3 happened. Largely not relevant.
2675 *
2676 * - v4.1: 6702cf16e0ba8b0129f5aa1b6609d4e9c70bc13b
2677 * L3 config registers are properly saved and restored as part
2678 * of the hardware context. We can approximately detect this point
2679 * in time by checking if I915_PARAM_REVISION is recognized - it
2680 * landed in a later commit, but in the same release cycle.
2681 *
2682 * - v4.2: 245054a1fe33c06ad233e0d58a27ec7b64db9284
2683 * Command parser finally gains secure batch promotion. On Haswell,
2684 * the hardware checker gets disabled, which finally allows it to do
2685 * privileged commands.
2686 *
2687 * I915_PARAM_CMD_PARSER_VERSION reports 3. Effective versions:
2688 * - Haswell: 3 (enabled) or 0 (disabled)
2689 * - Baytrail: 3 (enabled) or infinite (disabled)
2690 * - Ivybridge: 3 (enabled) or infinite (disabled)
2691 *
2692 * Unfortunately, detecting this point in time is tricky, because
2693 * no version bump happened when this important change occurred.
2694 * On Haswell, if we can write any register, then the kernel is at
2695 * least this new, and we can start trusting the version number.
2696 *
2697 * - v4.4: 2bbe6bbb0dc94fd4ce287bdac9e1bd184e23057b and
2698 * Command parser reaches version 4, allowing access to Haswell
2699 * atomic scratch and chicken3 registers. If version >= 4, we know
2700 * the kernel is new enough to support privileged features on all
2701 * hardware. However, the user might have disabled it...and the
2702 * kernel will still report version 4. So we still have to guess
2703 * and check.
2704 *
2705 * - v4.4: 7b9748cb513a6bef4af87b79f0da3ff7e8b56cd8
2706 * Command parser v5 whitelists indirect compute shader dispatch
2707 * registers, needed for OpenGL 4.3 and later.
2708 *
2709 * - v4.8:
2710 * Command parser v7 lets us use MI_MATH on Haswell.
2711 *
2712 * Additionally, the kernel begins reporting version 0 when
2713 * the command parser is disabled, allowing us to skip the
2714 * guess-and-check step on Haswell. Unfortunately, this also
2715 * means that we can no longer use it as an indicator of the
2716 * age of the kernel.
2717 */
2718 if (intel_get_param(screen, I915_PARAM_CMD_PARSER_VERSION,
2719 &screen->cmd_parser_version) < 0) {
2720 /* Command parser does not exist - getparam is unrecognized */
2721 screen->cmd_parser_version = 0;
2722 }
2723
2724 /* Kernel 4.13 retuired for exec object capture */
2725 if (intel_get_boolean(screen, I915_PARAM_HAS_EXEC_CAPTURE)) {
2726 screen->kernel_features |= KERNEL_ALLOWS_EXEC_CAPTURE;
2727 }
2728
2729 if (intel_get_boolean(screen, I915_PARAM_HAS_EXEC_BATCH_FIRST)) {
2730 screen->kernel_features |= KERNEL_ALLOWS_EXEC_BATCH_FIRST;
2731 }
2732
2733 if (!intel_detect_pipelined_so(screen)) {
2734 /* We can't do anything, so the effective version is 0. */
2735 screen->cmd_parser_version = 0;
2736 } else {
2737 screen->kernel_features |= KERNEL_ALLOWS_SOL_OFFSET_WRITES;
2738 }
2739
2740 if (devinfo->gen >= 8 || screen->cmd_parser_version >= 2)
2741 screen->kernel_features |= KERNEL_ALLOWS_PREDICATE_WRITES;
2742
2743 /* Haswell requires command parser version 4 in order to have L3
2744 * atomic scratch1 and chicken3 bits
2745 */
2746 if (devinfo->is_haswell && screen->cmd_parser_version >= 4) {
2747 screen->kernel_features |=
2748 KERNEL_ALLOWS_HSW_SCRATCH1_AND_ROW_CHICKEN3;
2749 }
2750
2751 /* Haswell requires command parser version 6 in order to write to the
2752 * MI_MATH GPR registers, and version 7 in order to use
2753 * MI_LOAD_REGISTER_REG (which all users of MI_MATH use).
2754 */
2755 if (devinfo->gen >= 8 ||
2756 (devinfo->is_haswell && screen->cmd_parser_version >= 7)) {
2757 screen->kernel_features |= KERNEL_ALLOWS_MI_MATH_AND_LRR;
2758 }
2759
2760 /* Gen7 needs at least command parser version 5 to support compute */
2761 if (devinfo->gen >= 8 || screen->cmd_parser_version >= 5)
2762 screen->kernel_features |= KERNEL_ALLOWS_COMPUTE_DISPATCH;
2763
2764 if (intel_get_boolean(screen, I915_PARAM_HAS_CONTEXT_ISOLATION))
2765 screen->kernel_features |= KERNEL_ALLOWS_CONTEXT_ISOLATION;
2766
2767 const char *force_msaa = getenv("INTEL_FORCE_MSAA");
2768 if (force_msaa) {
2769 screen->winsys_msaa_samples_override =
2770 intel_quantize_num_samples(screen, atoi(force_msaa));
2771 printf("Forcing winsys sample count to %d\n",
2772 screen->winsys_msaa_samples_override);
2773 } else {
2774 screen->winsys_msaa_samples_override = -1;
2775 }
2776
2777 set_max_gl_versions(screen);
2778
2779 /* Notification of GPU resets requires hardware contexts and a kernel new
2780 * enough to support DRM_IOCTL_I915_GET_RESET_STATS. If the ioctl is
2781 * supported, calling it with a context of 0 will either generate EPERM or
2782 * no error. If the ioctl is not supported, it always generate EINVAL.
2783 * Use this to determine whether to advertise the __DRI2_ROBUSTNESS
2784 * extension to the loader.
2785 *
2786 * Don't even try on pre-Gen6, since we don't attempt to use contexts there.
2787 */
2788 if (devinfo->gen >= 6) {
2789 struct drm_i915_reset_stats stats;
2790 memset(&stats, 0, sizeof(stats));
2791
2792 const int ret = drmIoctl(screen->fd, DRM_IOCTL_I915_GET_RESET_STATS, &stats);
2793
2794 screen->has_context_reset_notification =
2795 (ret != -1 || errno != EINVAL);
2796 }
2797
2798 dri_screen->extensions = !screen->has_context_reset_notification
2799 ? screenExtensions : intelRobustScreenExtensions;
2800
2801 screen->compiler = brw_compiler_create(screen, devinfo);
2802 screen->compiler->shader_debug_log = shader_debug_log_mesa;
2803 screen->compiler->shader_perf_log = shader_perf_log_mesa;
2804
2805 /* Changing the meaning of constant buffer pointers from a dynamic state
2806 * offset to an absolute address is only safe if the kernel isolates other
2807 * contexts from our changes.
2808 */
2809 screen->compiler->constant_buffer_0_is_relative = devinfo->gen < 8 ||
2810 !(screen->kernel_features & KERNEL_ALLOWS_CONTEXT_ISOLATION);
2811
2812 screen->compiler->glsl_compiler_options[MESA_SHADER_VERTEX].PositionAlwaysInvariant = driQueryOptionb(&screen->optionCache, "vs_position_always_invariant");
2813
2814 screen->compiler->supports_pull_constants = true;
2815 screen->compiler->compact_params = true;
2816 screen->compiler->lower_variable_group_size = true;
2817
2818 screen->has_exec_fence =
2819 intel_get_boolean(screen, I915_PARAM_HAS_EXEC_FENCE);
2820
2821 intel_screen_init_surface_formats(screen);
2822
2823 if (INTEL_DEBUG & (DEBUG_BATCH | DEBUG_SUBMIT)) {
2824 unsigned int caps = intel_get_integer(screen, I915_PARAM_HAS_SCHEDULER);
2825 if (caps) {
2826 fprintf(stderr, "Kernel scheduler detected: %08x\n", caps);
2827 if (caps & I915_SCHEDULER_CAP_PRIORITY)
2828 fprintf(stderr, " - User priority sorting enabled\n");
2829 if (caps & I915_SCHEDULER_CAP_PREEMPTION)
2830 fprintf(stderr, " - Preemption enabled\n");
2831 }
2832 }
2833
2834 brw_disk_cache_init(screen);
2835
2836 return (const __DRIconfig**) intel_screen_make_configs(dri_screen);
2837 }
2838
2839 struct intel_buffer {
2840 __DRIbuffer base;
2841 struct brw_bo *bo;
2842 };
2843
2844 static __DRIbuffer *
2845 intelAllocateBuffer(__DRIscreen *dri_screen,
2846 unsigned attachment, unsigned format,
2847 int width, int height)
2848 {
2849 struct intel_buffer *intelBuffer;
2850 struct intel_screen *screen = dri_screen->driverPrivate;
2851
2852 assert(attachment == __DRI_BUFFER_FRONT_LEFT ||
2853 attachment == __DRI_BUFFER_BACK_LEFT);
2854
2855 intelBuffer = calloc(1, sizeof *intelBuffer);
2856 if (intelBuffer == NULL)
2857 return NULL;
2858
2859 /* The front and back buffers are color buffers, which are X tiled. GEN9+
2860 * supports Y tiled and compressed buffers, but there is no way to plumb that
2861 * through to here. */
2862 uint32_t pitch;
2863 int cpp = format / 8;
2864 intelBuffer->bo = brw_bo_alloc_tiled_2d(screen->bufmgr,
2865 "intelAllocateBuffer",
2866 width,
2867 height,
2868 cpp,
2869 BRW_MEMZONE_OTHER,
2870 I915_TILING_X, &pitch,
2871 BO_ALLOC_BUSY);
2872
2873 if (intelBuffer->bo == NULL) {
2874 free(intelBuffer);
2875 return NULL;
2876 }
2877
2878 brw_bo_flink(intelBuffer->bo, &intelBuffer->base.name);
2879
2880 intelBuffer->base.attachment = attachment;
2881 intelBuffer->base.cpp = cpp;
2882 intelBuffer->base.pitch = pitch;
2883
2884 return &intelBuffer->base;
2885 }
2886
2887 static void
2888 intelReleaseBuffer(__DRIscreen *dri_screen, __DRIbuffer *buffer)
2889 {
2890 struct intel_buffer *intelBuffer = (struct intel_buffer *) buffer;
2891
2892 brw_bo_unreference(intelBuffer->bo);
2893 free(intelBuffer);
2894 }
2895
2896 static const struct __DriverAPIRec brw_driver_api = {
2897 .InitScreen = intelInitScreen2,
2898 .DestroyScreen = intelDestroyScreen,
2899 .CreateContext = brwCreateContext,
2900 .DestroyContext = intelDestroyContext,
2901 .CreateBuffer = intelCreateBuffer,
2902 .DestroyBuffer = intelDestroyBuffer,
2903 .MakeCurrent = intelMakeCurrent,
2904 .UnbindContext = intelUnbindContext,
2905 .AllocateBuffer = intelAllocateBuffer,
2906 .ReleaseBuffer = intelReleaseBuffer
2907 };
2908
2909 static const struct __DRIDriverVtableExtensionRec brw_vtable = {
2910 .base = { __DRI_DRIVER_VTABLE, 1 },
2911 .vtable = &brw_driver_api,
2912 };
2913
2914 static const __DRIextension *brw_driver_extensions[] = {
2915 &driCoreExtension.base,
2916 &driImageDriverExtension.base,
2917 &driDRI2Extension.base,
2918 &brw_vtable.base,
2919 &brw_config_options.base,
2920 NULL
2921 };
2922
2923 PUBLIC const __DRIextension **__driDriverGetExtensions_i965(void)
2924 {
2925 globalDriverAPI = &brw_driver_api;
2926
2927 return brw_driver_extensions;
2928 }