i965: Exit with error if gen12+ is detected
[mesa.git] / src / mesa / drivers / dri / i965 / intel_screen.c
1 /*
2 * Copyright 2003 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include "drm-uapi/drm_fourcc.h"
27 #include <errno.h>
28 #include <time.h>
29 #include <unistd.h>
30 #include "main/context.h"
31 #include "main/framebuffer.h"
32 #include "main/renderbuffer.h"
33 #include "main/texobj.h"
34 #include "main/hash.h"
35 #include "main/fbobject.h"
36 #include "main/version.h"
37 #include "main/glthread.h"
38 #include "swrast/s_renderbuffer.h"
39 #include "util/ralloc.h"
40 #include "util/disk_cache.h"
41 #include "brw_defines.h"
42 #include "brw_state.h"
43 #include "compiler/nir/nir.h"
44
45 #include "utils.h"
46 #include "util/disk_cache.h"
47 #include "util/xmlpool.h"
48
49 #include "common/gen_defines.h"
50
51 static const __DRIconfigOptionsExtension brw_config_options = {
52 .base = { __DRI_CONFIG_OPTIONS, 1 },
53 .xml =
54 DRI_CONF_BEGIN
55 DRI_CONF_SECTION_PERFORMANCE
56 /* Options correspond to DRI_CONF_BO_REUSE_DISABLED,
57 * DRI_CONF_BO_REUSE_ALL
58 */
59 DRI_CONF_OPT_BEGIN_V(bo_reuse, enum, 1, "0:1")
60 DRI_CONF_DESC_BEGIN(en, "Buffer object reuse")
61 DRI_CONF_ENUM(0, "Disable buffer object reuse")
62 DRI_CONF_ENUM(1, "Enable reuse of all sizes of buffer objects")
63 DRI_CONF_DESC_END
64 DRI_CONF_OPT_END
65 DRI_CONF_MESA_NO_ERROR("false")
66 DRI_CONF_MESA_GLTHREAD("false")
67 DRI_CONF_SECTION_END
68
69 DRI_CONF_SECTION_QUALITY
70 DRI_CONF_PRECISE_TRIG("false")
71
72 DRI_CONF_OPT_BEGIN(clamp_max_samples, int, -1)
73 DRI_CONF_DESC(en, "Clamp the value of GL_MAX_SAMPLES to the "
74 "given integer. If negative, then do not clamp.")
75 DRI_CONF_OPT_END
76 DRI_CONF_SECTION_END
77
78 DRI_CONF_SECTION_DEBUG
79 DRI_CONF_ALWAYS_FLUSH_BATCH("false")
80 DRI_CONF_ALWAYS_FLUSH_CACHE("false")
81 DRI_CONF_DISABLE_THROTTLING("false")
82 DRI_CONF_FORCE_GLSL_EXTENSIONS_WARN("false")
83 DRI_CONF_FORCE_GLSL_VERSION(0)
84 DRI_CONF_DISABLE_GLSL_LINE_CONTINUATIONS("false")
85 DRI_CONF_DISABLE_BLEND_FUNC_EXTENDED("false")
86 DRI_CONF_DUAL_COLOR_BLEND_BY_LOCATION("false")
87 DRI_CONF_ALLOW_GLSL_EXTENSION_DIRECTIVE_MIDSHADER("false")
88 DRI_CONF_ALLOW_GLSL_BUILTIN_VARIABLE_REDECLARATION("false")
89 DRI_CONF_ALLOW_GLSL_CROSS_STAGE_INTERPOLATION_MISMATCH("false")
90 DRI_CONF_ALLOW_HIGHER_COMPAT_VERSION("false")
91 DRI_CONF_FORCE_COMPAT_PROFILE("false")
92 DRI_CONF_FORCE_GLSL_ABS_SQRT("false")
93
94 DRI_CONF_OPT_BEGIN_B(shader_precompile, "true")
95 DRI_CONF_DESC(en, "Perform code generation at shader link time.")
96 DRI_CONF_OPT_END
97 DRI_CONF_SECTION_END
98
99 DRI_CONF_SECTION_MISCELLANEOUS
100 DRI_CONF_GLSL_ZERO_INIT("false")
101 DRI_CONF_ALLOW_RGB10_CONFIGS("false")
102 DRI_CONF_ALLOW_RGB565_CONFIGS("true")
103 DRI_CONF_ALLOW_FP16_CONFIGS("false")
104 DRI_CONF_SECTION_END
105 DRI_CONF_END
106 };
107
108 #include "intel_batchbuffer.h"
109 #include "intel_buffers.h"
110 #include "brw_bufmgr.h"
111 #include "intel_fbo.h"
112 #include "intel_mipmap_tree.h"
113 #include "intel_screen.h"
114 #include "intel_tex.h"
115 #include "intel_image.h"
116
117 #include "brw_context.h"
118
119 #include "drm-uapi/i915_drm.h"
120
121 /**
122 * For debugging purposes, this returns a time in seconds.
123 */
124 double
125 get_time(void)
126 {
127 struct timespec tp;
128
129 clock_gettime(CLOCK_MONOTONIC, &tp);
130
131 return tp.tv_sec + tp.tv_nsec / 1000000000.0;
132 }
133
134 static const __DRItexBufferExtension intelTexBufferExtension = {
135 .base = { __DRI_TEX_BUFFER, 3 },
136
137 .setTexBuffer = intelSetTexBuffer,
138 .setTexBuffer2 = intelSetTexBuffer2,
139 .releaseTexBuffer = intelReleaseTexBuffer,
140 };
141
142 static void
143 intel_dri2_flush_with_flags(__DRIcontext *cPriv,
144 __DRIdrawable *dPriv,
145 unsigned flags,
146 enum __DRI2throttleReason reason)
147 {
148 struct brw_context *brw = cPriv->driverPrivate;
149
150 if (!brw)
151 return;
152
153 struct gl_context *ctx = &brw->ctx;
154
155 _mesa_glthread_finish(ctx);
156
157 FLUSH_VERTICES(ctx, 0);
158
159 if (flags & __DRI2_FLUSH_DRAWABLE)
160 intel_resolve_for_dri2_flush(brw, dPriv);
161
162 if (reason == __DRI2_THROTTLE_SWAPBUFFER)
163 brw->need_swap_throttle = true;
164 if (reason == __DRI2_THROTTLE_FLUSHFRONT)
165 brw->need_flush_throttle = true;
166
167 intel_batchbuffer_flush(brw);
168 }
169
170 /**
171 * Provides compatibility with loaders that only support the older (version
172 * 1-3) flush interface.
173 *
174 * That includes libGL up to Mesa 9.0, and the X Server at least up to 1.13.
175 */
176 static void
177 intel_dri2_flush(__DRIdrawable *drawable)
178 {
179 intel_dri2_flush_with_flags(drawable->driContextPriv, drawable,
180 __DRI2_FLUSH_DRAWABLE,
181 __DRI2_THROTTLE_SWAPBUFFER);
182 }
183
184 static const struct __DRI2flushExtensionRec intelFlushExtension = {
185 .base = { __DRI2_FLUSH, 4 },
186
187 .flush = intel_dri2_flush,
188 .invalidate = dri2InvalidateDrawable,
189 .flush_with_flags = intel_dri2_flush_with_flags,
190 };
191
192 static const struct intel_image_format intel_image_formats[] = {
193 { __DRI_IMAGE_FOURCC_ABGR16161616F, __DRI_IMAGE_COMPONENTS_RGBA, 1,
194 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ABGR16161616F, 8 } } },
195
196 { __DRI_IMAGE_FOURCC_XBGR16161616F, __DRI_IMAGE_COMPONENTS_RGB, 1,
197 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XBGR16161616F, 8 } } },
198
199 { __DRI_IMAGE_FOURCC_ARGB2101010, __DRI_IMAGE_COMPONENTS_RGBA, 1,
200 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB2101010, 4 } } },
201
202 { __DRI_IMAGE_FOURCC_XRGB2101010, __DRI_IMAGE_COMPONENTS_RGB, 1,
203 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XRGB2101010, 4 } } },
204
205 { __DRI_IMAGE_FOURCC_ABGR2101010, __DRI_IMAGE_COMPONENTS_RGBA, 1,
206 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ABGR2101010, 4 } } },
207
208 { __DRI_IMAGE_FOURCC_XBGR2101010, __DRI_IMAGE_COMPONENTS_RGB, 1,
209 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XBGR2101010, 4 } } },
210
211 { __DRI_IMAGE_FOURCC_ARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
212 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } },
213
214 { __DRI_IMAGE_FOURCC_ABGR8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
215 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ABGR8888, 4 } } },
216
217 { __DRI_IMAGE_FOURCC_SARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
218 { { 0, 0, 0, __DRI_IMAGE_FORMAT_SARGB8, 4 } } },
219
220 { __DRI_IMAGE_FOURCC_XRGB8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
221 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XRGB8888, 4 }, } },
222
223 { __DRI_IMAGE_FOURCC_XBGR8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
224 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XBGR8888, 4 }, } },
225
226 { __DRI_IMAGE_FOURCC_ARGB1555, __DRI_IMAGE_COMPONENTS_RGBA, 1,
227 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB1555, 2 } } },
228
229 { __DRI_IMAGE_FOURCC_RGB565, __DRI_IMAGE_COMPONENTS_RGB, 1,
230 { { 0, 0, 0, __DRI_IMAGE_FORMAT_RGB565, 2 } } },
231
232 { __DRI_IMAGE_FOURCC_R8, __DRI_IMAGE_COMPONENTS_R, 1,
233 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 }, } },
234
235 { __DRI_IMAGE_FOURCC_R16, __DRI_IMAGE_COMPONENTS_R, 1,
236 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R16, 1 }, } },
237
238 { __DRI_IMAGE_FOURCC_GR88, __DRI_IMAGE_COMPONENTS_RG, 1,
239 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 }, } },
240
241 { __DRI_IMAGE_FOURCC_GR1616, __DRI_IMAGE_COMPONENTS_RG, 1,
242 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR1616, 2 }, } },
243
244 { __DRI_IMAGE_FOURCC_YUV410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
245 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
246 { 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
247 { 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
248
249 { __DRI_IMAGE_FOURCC_YUV411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
250 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
251 { 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
252 { 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
253
254 { __DRI_IMAGE_FOURCC_YUV420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
255 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
256 { 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
257 { 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
258
259 { __DRI_IMAGE_FOURCC_YUV422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
260 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
261 { 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
262 { 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
263
264 { __DRI_IMAGE_FOURCC_YUV444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
265 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
266 { 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
267 { 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
268
269 { __DRI_IMAGE_FOURCC_YVU410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
270 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
271 { 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
272 { 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
273
274 { __DRI_IMAGE_FOURCC_YVU411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
275 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
276 { 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
277 { 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
278
279 { __DRI_IMAGE_FOURCC_YVU420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
280 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
281 { 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
282 { 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
283
284 { __DRI_IMAGE_FOURCC_YVU422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
285 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
286 { 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
287 { 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
288
289 { __DRI_IMAGE_FOURCC_YVU444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
290 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
291 { 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
292 { 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
293
294 { __DRI_IMAGE_FOURCC_NV12, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
295 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
296 { 1, 1, 1, __DRI_IMAGE_FORMAT_GR88, 2 } } },
297
298 { __DRI_IMAGE_FOURCC_P010, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
299 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R16, 2 },
300 { 1, 1, 1, __DRI_IMAGE_FORMAT_GR1616, 4 } } },
301
302 { __DRI_IMAGE_FOURCC_P012, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
303 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R16, 2 },
304 { 1, 1, 1, __DRI_IMAGE_FORMAT_GR1616, 4 } } },
305
306 { __DRI_IMAGE_FOURCC_P016, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
307 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R16, 2 },
308 { 1, 1, 1, __DRI_IMAGE_FORMAT_GR1616, 4 } } },
309
310 { __DRI_IMAGE_FOURCC_NV16, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
311 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
312 { 1, 1, 0, __DRI_IMAGE_FORMAT_GR88, 2 } } },
313
314 { __DRI_IMAGE_FOURCC_AYUV, __DRI_IMAGE_COMPONENTS_AYUV, 1,
315 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ABGR8888, 4 } } },
316
317 { __DRI_IMAGE_FOURCC_XYUV8888, __DRI_IMAGE_COMPONENTS_XYUV, 1,
318 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XBGR8888, 4 } } },
319
320 /* For YUYV and UYVY buffers, we set up two overlapping DRI images
321 * and treat them as planar buffers in the compositors.
322 * Plane 0 is GR88 and samples YU or YV pairs and places Y into
323 * the R component, while plane 1 is ARGB/ABGR and samples YUYV/UYVY
324 * clusters and places pairs and places U into the G component and
325 * V into A. This lets the texture sampler interpolate the Y
326 * components correctly when sampling from plane 0, and interpolate
327 * U and V correctly when sampling from plane 1. */
328 { __DRI_IMAGE_FOURCC_YUYV, __DRI_IMAGE_COMPONENTS_Y_XUXV, 2,
329 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 },
330 { 0, 1, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } },
331 { __DRI_IMAGE_FOURCC_UYVY, __DRI_IMAGE_COMPONENTS_Y_UXVX, 2,
332 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 },
333 { 0, 1, 0, __DRI_IMAGE_FORMAT_ABGR8888, 4 } } }
334 };
335
336 static const struct {
337 uint64_t modifier;
338 unsigned since_gen;
339 } supported_modifiers[] = {
340 { .modifier = DRM_FORMAT_MOD_LINEAR , .since_gen = 1 },
341 { .modifier = I915_FORMAT_MOD_X_TILED , .since_gen = 1 },
342 { .modifier = I915_FORMAT_MOD_Y_TILED , .since_gen = 6 },
343 { .modifier = I915_FORMAT_MOD_Y_TILED_CCS , .since_gen = 9 },
344 };
345
346 static bool
347 modifier_is_supported(const struct gen_device_info *devinfo,
348 const struct intel_image_format *fmt, int dri_format,
349 uint64_t modifier)
350 {
351 const struct isl_drm_modifier_info *modinfo =
352 isl_drm_modifier_get_info(modifier);
353 int i;
354
355 /* ISL had better know about the modifier */
356 if (!modinfo)
357 return false;
358
359 if (modinfo->aux_usage == ISL_AUX_USAGE_CCS_E) {
360 /* If INTEL_DEBUG=norbc is set, don't support any CCS_E modifiers */
361 if (unlikely(INTEL_DEBUG & DEBUG_NO_RBC))
362 return false;
363
364 /* CCS_E is not supported for planar images */
365 if (fmt && fmt->nplanes > 1)
366 return false;
367
368 if (fmt) {
369 assert(dri_format == 0);
370 dri_format = fmt->planes[0].dri_format;
371 }
372
373 mesa_format format = driImageFormatToGLFormat(dri_format);
374 /* Whether or not we support compression is based on the RGBA non-sRGB
375 * version of the format.
376 */
377 format = _mesa_format_fallback_rgbx_to_rgba(format);
378 format = _mesa_get_srgb_format_linear(format);
379 if (!isl_format_supports_ccs_e(devinfo,
380 brw_isl_format_for_mesa_format(format)))
381 return false;
382 }
383
384 for (i = 0; i < ARRAY_SIZE(supported_modifiers); i++) {
385 if (supported_modifiers[i].modifier != modifier)
386 continue;
387
388 return supported_modifiers[i].since_gen <= devinfo->gen;
389 }
390
391 return false;
392 }
393
394 static uint64_t
395 tiling_to_modifier(uint32_t tiling)
396 {
397 static const uint64_t map[] = {
398 [I915_TILING_NONE] = DRM_FORMAT_MOD_LINEAR,
399 [I915_TILING_X] = I915_FORMAT_MOD_X_TILED,
400 [I915_TILING_Y] = I915_FORMAT_MOD_Y_TILED,
401 };
402
403 assert(tiling < ARRAY_SIZE(map));
404
405 return map[tiling];
406 }
407
408 static void
409 intel_image_warn_if_unaligned(__DRIimage *image, const char *func)
410 {
411 uint32_t tiling, swizzle;
412 brw_bo_get_tiling(image->bo, &tiling, &swizzle);
413
414 if (tiling != I915_TILING_NONE && (image->offset & 0xfff)) {
415 _mesa_warning(NULL, "%s: offset 0x%08x not on tile boundary",
416 func, image->offset);
417 }
418 }
419
420 static const struct intel_image_format *
421 intel_image_format_lookup(int fourcc)
422 {
423 for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
424 if (intel_image_formats[i].fourcc == fourcc)
425 return &intel_image_formats[i];
426 }
427
428 return NULL;
429 }
430
431 static bool
432 intel_image_get_fourcc(__DRIimage *image, int *fourcc)
433 {
434 if (image->planar_format) {
435 *fourcc = image->planar_format->fourcc;
436 return true;
437 }
438
439 for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
440 if (intel_image_formats[i].planes[0].dri_format == image->dri_format) {
441 *fourcc = intel_image_formats[i].fourcc;
442 return true;
443 }
444 }
445 return false;
446 }
447
448 static __DRIimage *
449 intel_allocate_image(struct intel_screen *screen, int dri_format,
450 void *loaderPrivate)
451 {
452 __DRIimage *image;
453
454 image = calloc(1, sizeof *image);
455 if (image == NULL)
456 return NULL;
457
458 image->screen = screen;
459 image->dri_format = dri_format;
460 image->offset = 0;
461
462 image->format = driImageFormatToGLFormat(dri_format);
463 if (dri_format != __DRI_IMAGE_FORMAT_NONE &&
464 image->format == MESA_FORMAT_NONE) {
465 free(image);
466 return NULL;
467 }
468
469 image->internal_format = _mesa_get_format_base_format(image->format);
470 image->data = loaderPrivate;
471
472 return image;
473 }
474
475 /**
476 * Sets up a DRIImage structure to point to a slice out of a miptree.
477 */
478 static void
479 intel_setup_image_from_mipmap_tree(struct brw_context *brw, __DRIimage *image,
480 struct intel_mipmap_tree *mt, GLuint level,
481 GLuint zoffset)
482 {
483 intel_miptree_make_shareable(brw, mt);
484
485 intel_miptree_check_level_layer(mt, level, zoffset);
486
487 image->width = minify(mt->surf.phys_level0_sa.width,
488 level - mt->first_level);
489 image->height = minify(mt->surf.phys_level0_sa.height,
490 level - mt->first_level);
491 image->pitch = mt->surf.row_pitch_B;
492
493 image->offset = intel_miptree_get_tile_offsets(mt, level, zoffset,
494 &image->tile_x,
495 &image->tile_y);
496
497 brw_bo_unreference(image->bo);
498 image->bo = mt->bo;
499 brw_bo_reference(mt->bo);
500 }
501
502 static __DRIimage *
503 intel_create_image_from_name(__DRIscreen *dri_screen,
504 int width, int height, int format,
505 int name, int pitch, void *loaderPrivate)
506 {
507 struct intel_screen *screen = dri_screen->driverPrivate;
508 __DRIimage *image;
509 int cpp;
510
511 image = intel_allocate_image(screen, format, loaderPrivate);
512 if (image == NULL)
513 return NULL;
514
515 if (image->format == MESA_FORMAT_NONE)
516 cpp = 1;
517 else
518 cpp = _mesa_get_format_bytes(image->format);
519
520 image->width = width;
521 image->height = height;
522 image->pitch = pitch * cpp;
523 image->bo = brw_bo_gem_create_from_name(screen->bufmgr, "image",
524 name);
525 if (!image->bo) {
526 free(image);
527 return NULL;
528 }
529 image->modifier = tiling_to_modifier(image->bo->tiling_mode);
530
531 return image;
532 }
533
534 static __DRIimage *
535 intel_create_image_from_renderbuffer(__DRIcontext *context,
536 int renderbuffer, void *loaderPrivate)
537 {
538 __DRIimage *image;
539 struct brw_context *brw = context->driverPrivate;
540 struct gl_context *ctx = &brw->ctx;
541 struct gl_renderbuffer *rb;
542 struct intel_renderbuffer *irb;
543
544 rb = _mesa_lookup_renderbuffer(ctx, renderbuffer);
545 if (!rb) {
546 _mesa_error(ctx, GL_INVALID_OPERATION, "glRenderbufferExternalMESA");
547 return NULL;
548 }
549
550 irb = intel_renderbuffer(rb);
551 intel_miptree_make_shareable(brw, irb->mt);
552 image = calloc(1, sizeof *image);
553 if (image == NULL)
554 return NULL;
555
556 image->internal_format = rb->InternalFormat;
557 image->format = rb->Format;
558 image->modifier = tiling_to_modifier(
559 isl_tiling_to_i915_tiling(irb->mt->surf.tiling));
560 image->offset = 0;
561 image->data = loaderPrivate;
562 brw_bo_unreference(image->bo);
563 image->bo = irb->mt->bo;
564 brw_bo_reference(irb->mt->bo);
565 image->width = rb->Width;
566 image->height = rb->Height;
567 image->pitch = irb->mt->surf.row_pitch_B;
568 image->dri_format = driGLFormatToImageFormat(image->format);
569 image->has_depthstencil = irb->mt->stencil_mt? true : false;
570
571 rb->NeedsFinishRenderTexture = true;
572 return image;
573 }
574
575 static __DRIimage *
576 intel_create_image_from_texture(__DRIcontext *context, int target,
577 unsigned texture, int zoffset,
578 int level,
579 unsigned *error,
580 void *loaderPrivate)
581 {
582 __DRIimage *image;
583 struct brw_context *brw = context->driverPrivate;
584 struct gl_texture_object *obj;
585 struct intel_texture_object *iobj;
586 GLuint face = 0;
587
588 obj = _mesa_lookup_texture(&brw->ctx, texture);
589 if (!obj || obj->Target != target) {
590 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
591 return NULL;
592 }
593
594 if (target == GL_TEXTURE_CUBE_MAP)
595 face = zoffset;
596
597 _mesa_test_texobj_completeness(&brw->ctx, obj);
598 iobj = intel_texture_object(obj);
599 if (!obj->_BaseComplete || (level > 0 && !obj->_MipmapComplete)) {
600 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
601 return NULL;
602 }
603
604 if (level < obj->BaseLevel || level > obj->_MaxLevel) {
605 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
606 return NULL;
607 }
608
609 if (target == GL_TEXTURE_3D && obj->Image[face][level]->Depth < zoffset) {
610 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
611 return NULL;
612 }
613 image = calloc(1, sizeof *image);
614 if (image == NULL) {
615 *error = __DRI_IMAGE_ERROR_BAD_ALLOC;
616 return NULL;
617 }
618
619 image->internal_format = obj->Image[face][level]->InternalFormat;
620 image->format = obj->Image[face][level]->TexFormat;
621 image->modifier = tiling_to_modifier(
622 isl_tiling_to_i915_tiling(iobj->mt->surf.tiling));
623 image->data = loaderPrivate;
624 intel_setup_image_from_mipmap_tree(brw, image, iobj->mt, level, zoffset);
625 image->dri_format = driGLFormatToImageFormat(image->format);
626 image->has_depthstencil = iobj->mt->stencil_mt? true : false;
627 image->planar_format = iobj->planar_format;
628 if (image->dri_format == __DRI_IMAGE_FORMAT_NONE) {
629 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
630 free(image);
631 return NULL;
632 }
633
634 *error = __DRI_IMAGE_ERROR_SUCCESS;
635 return image;
636 }
637
638 static void
639 intel_destroy_image(__DRIimage *image)
640 {
641 brw_bo_unreference(image->bo);
642 free(image);
643 }
644
645 enum modifier_priority {
646 MODIFIER_PRIORITY_INVALID = 0,
647 MODIFIER_PRIORITY_LINEAR,
648 MODIFIER_PRIORITY_X,
649 MODIFIER_PRIORITY_Y,
650 MODIFIER_PRIORITY_Y_CCS,
651 };
652
653 const uint64_t priority_to_modifier[] = {
654 [MODIFIER_PRIORITY_INVALID] = DRM_FORMAT_MOD_INVALID,
655 [MODIFIER_PRIORITY_LINEAR] = DRM_FORMAT_MOD_LINEAR,
656 [MODIFIER_PRIORITY_X] = I915_FORMAT_MOD_X_TILED,
657 [MODIFIER_PRIORITY_Y] = I915_FORMAT_MOD_Y_TILED,
658 [MODIFIER_PRIORITY_Y_CCS] = I915_FORMAT_MOD_Y_TILED_CCS,
659 };
660
661 static uint64_t
662 select_best_modifier(struct gen_device_info *devinfo,
663 int dri_format,
664 const uint64_t *modifiers,
665 const unsigned count)
666 {
667 enum modifier_priority prio = MODIFIER_PRIORITY_INVALID;
668
669 for (int i = 0; i < count; i++) {
670 if (!modifier_is_supported(devinfo, NULL, dri_format, modifiers[i]))
671 continue;
672
673 switch (modifiers[i]) {
674 case I915_FORMAT_MOD_Y_TILED_CCS:
675 prio = MAX2(prio, MODIFIER_PRIORITY_Y_CCS);
676 break;
677 case I915_FORMAT_MOD_Y_TILED:
678 prio = MAX2(prio, MODIFIER_PRIORITY_Y);
679 break;
680 case I915_FORMAT_MOD_X_TILED:
681 prio = MAX2(prio, MODIFIER_PRIORITY_X);
682 break;
683 case DRM_FORMAT_MOD_LINEAR:
684 prio = MAX2(prio, MODIFIER_PRIORITY_LINEAR);
685 break;
686 case DRM_FORMAT_MOD_INVALID:
687 default:
688 break;
689 }
690 }
691
692 return priority_to_modifier[prio];
693 }
694
695 static __DRIimage *
696 intel_create_image_common(__DRIscreen *dri_screen,
697 int width, int height, int format,
698 unsigned int use,
699 const uint64_t *modifiers,
700 unsigned count,
701 void *loaderPrivate)
702 {
703 __DRIimage *image;
704 struct intel_screen *screen = dri_screen->driverPrivate;
705 uint64_t modifier = DRM_FORMAT_MOD_INVALID;
706 bool ok;
707
708 /* Callers of this may specify a modifier, or a dri usage, but not both. The
709 * newer modifier interface deprecates the older usage flags newer modifier
710 * interface deprecates the older usage flags.
711 */
712 assert(!(use && count));
713
714 if (use & __DRI_IMAGE_USE_CURSOR) {
715 if (width != 64 || height != 64)
716 return NULL;
717 modifier = DRM_FORMAT_MOD_LINEAR;
718 }
719
720 if (use & __DRI_IMAGE_USE_LINEAR)
721 modifier = DRM_FORMAT_MOD_LINEAR;
722
723 if (modifier == DRM_FORMAT_MOD_INVALID) {
724 if (modifiers) {
725 /* User requested specific modifiers */
726 modifier = select_best_modifier(&screen->devinfo, format,
727 modifiers, count);
728 if (modifier == DRM_FORMAT_MOD_INVALID)
729 return NULL;
730 } else {
731 /* Historically, X-tiled was the default, and so lack of modifier means
732 * X-tiled.
733 */
734 modifier = I915_FORMAT_MOD_X_TILED;
735 }
736 }
737
738 image = intel_allocate_image(screen, format, loaderPrivate);
739 if (image == NULL)
740 return NULL;
741
742 const struct isl_drm_modifier_info *mod_info =
743 isl_drm_modifier_get_info(modifier);
744
745 struct isl_surf surf;
746 ok = isl_surf_init(&screen->isl_dev, &surf,
747 .dim = ISL_SURF_DIM_2D,
748 .format = brw_isl_format_for_mesa_format(image->format),
749 .width = width,
750 .height = height,
751 .depth = 1,
752 .levels = 1,
753 .array_len = 1,
754 .samples = 1,
755 .usage = ISL_SURF_USAGE_RENDER_TARGET_BIT |
756 ISL_SURF_USAGE_TEXTURE_BIT |
757 ISL_SURF_USAGE_STORAGE_BIT |
758 ((use & __DRI_IMAGE_USE_SCANOUT) ?
759 ISL_SURF_USAGE_DISPLAY_BIT : 0),
760 .tiling_flags = (1 << mod_info->tiling));
761 assert(ok);
762 if (!ok) {
763 free(image);
764 return NULL;
765 }
766
767 struct isl_surf aux_surf;
768 if (mod_info->aux_usage == ISL_AUX_USAGE_CCS_E) {
769 ok = isl_surf_get_ccs_surf(&screen->isl_dev, &surf, &aux_surf, 0);
770 if (!ok) {
771 free(image);
772 return NULL;
773 }
774 } else {
775 assert(mod_info->aux_usage == ISL_AUX_USAGE_NONE);
776 aux_surf.size_B = 0;
777 }
778
779 /* We request that the bufmgr zero the buffer for us for two reasons:
780 *
781 * 1) If a buffer gets re-used from the pool, we don't want to leak random
782 * garbage from our process to some other.
783 *
784 * 2) For images with CCS_E, we want to ensure that the CCS starts off in
785 * a valid state. A CCS value of 0 indicates that the given block is
786 * in the pass-through state which is what we want.
787 */
788 image->bo = brw_bo_alloc_tiled(screen->bufmgr, "image",
789 surf.size_B + aux_surf.size_B,
790 BRW_MEMZONE_OTHER,
791 isl_tiling_to_i915_tiling(mod_info->tiling),
792 surf.row_pitch_B, BO_ALLOC_ZEROED);
793 if (image->bo == NULL) {
794 free(image);
795 return NULL;
796 }
797 image->width = width;
798 image->height = height;
799 image->pitch = surf.row_pitch_B;
800 image->modifier = modifier;
801
802 if (aux_surf.size_B) {
803 image->aux_offset = surf.size_B;
804 image->aux_pitch = aux_surf.row_pitch_B;
805 image->aux_size = aux_surf.size_B;
806 }
807
808 return image;
809 }
810
811 static __DRIimage *
812 intel_create_image(__DRIscreen *dri_screen,
813 int width, int height, int format,
814 unsigned int use,
815 void *loaderPrivate)
816 {
817 return intel_create_image_common(dri_screen, width, height, format, use, NULL, 0,
818 loaderPrivate);
819 }
820
821 static void *
822 intel_map_image(__DRIcontext *context, __DRIimage *image,
823 int x0, int y0, int width, int height,
824 unsigned int flags, int *stride, void **map_info)
825 {
826 struct brw_context *brw = NULL;
827 struct brw_bo *bo = NULL;
828 void *raw_data = NULL;
829 GLuint pix_w = 1;
830 GLuint pix_h = 1;
831 GLint pix_bytes = 1;
832
833 if (!context || !image || !stride || !map_info || *map_info)
834 return NULL;
835
836 if (x0 < 0 || x0 >= image->width || width > image->width - x0)
837 return NULL;
838
839 if (y0 < 0 || y0 >= image->height || height > image->height - y0)
840 return NULL;
841
842 if (flags & MAP_INTERNAL_MASK)
843 return NULL;
844
845 brw = context->driverPrivate;
846 bo = image->bo;
847
848 assert(brw);
849 assert(bo);
850
851 /* DRI flags and GL_MAP.*_BIT flags are the same, so just pass them on. */
852 raw_data = brw_bo_map(brw, bo, flags);
853 if (!raw_data)
854 return NULL;
855
856 _mesa_get_format_block_size(image->format, &pix_w, &pix_h);
857 pix_bytes = _mesa_get_format_bytes(image->format);
858
859 assert(pix_w);
860 assert(pix_h);
861 assert(pix_bytes > 0);
862
863 raw_data += (x0 / pix_w) * pix_bytes + (y0 / pix_h) * image->pitch;
864
865 brw_bo_reference(bo);
866
867 *stride = image->pitch;
868 *map_info = bo;
869
870 return raw_data;
871 }
872
873 static void
874 intel_unmap_image(__DRIcontext *context, __DRIimage *image, void *map_info)
875 {
876 struct brw_bo *bo = map_info;
877
878 brw_bo_unmap(bo);
879 brw_bo_unreference(bo);
880 }
881
882 static __DRIimage *
883 intel_create_image_with_modifiers(__DRIscreen *dri_screen,
884 int width, int height, int format,
885 const uint64_t *modifiers,
886 const unsigned count,
887 void *loaderPrivate)
888 {
889 return intel_create_image_common(dri_screen, width, height, format, 0,
890 modifiers, count, loaderPrivate);
891 }
892
893 static GLboolean
894 intel_query_image(__DRIimage *image, int attrib, int *value)
895 {
896 switch (attrib) {
897 case __DRI_IMAGE_ATTRIB_STRIDE:
898 *value = image->pitch;
899 return true;
900 case __DRI_IMAGE_ATTRIB_HANDLE:
901 *value = brw_bo_export_gem_handle(image->bo);
902 return true;
903 case __DRI_IMAGE_ATTRIB_NAME:
904 return !brw_bo_flink(image->bo, (uint32_t *) value);
905 case __DRI_IMAGE_ATTRIB_FORMAT:
906 *value = image->dri_format;
907 return true;
908 case __DRI_IMAGE_ATTRIB_WIDTH:
909 *value = image->width;
910 return true;
911 case __DRI_IMAGE_ATTRIB_HEIGHT:
912 *value = image->height;
913 return true;
914 case __DRI_IMAGE_ATTRIB_COMPONENTS:
915 if (image->planar_format == NULL)
916 return false;
917 *value = image->planar_format->components;
918 return true;
919 case __DRI_IMAGE_ATTRIB_FD:
920 return !brw_bo_gem_export_to_prime(image->bo, value);
921 case __DRI_IMAGE_ATTRIB_FOURCC:
922 return intel_image_get_fourcc(image, value);
923 case __DRI_IMAGE_ATTRIB_NUM_PLANES:
924 if (isl_drm_modifier_has_aux(image->modifier)) {
925 assert(!image->planar_format || image->planar_format->nplanes == 1);
926 *value = 2;
927 } else if (image->planar_format) {
928 *value = image->planar_format->nplanes;
929 } else {
930 *value = 1;
931 }
932 return true;
933 case __DRI_IMAGE_ATTRIB_OFFSET:
934 *value = image->offset;
935 return true;
936 case __DRI_IMAGE_ATTRIB_MODIFIER_LOWER:
937 *value = (image->modifier & 0xffffffff);
938 return true;
939 case __DRI_IMAGE_ATTRIB_MODIFIER_UPPER:
940 *value = ((image->modifier >> 32) & 0xffffffff);
941 return true;
942
943 default:
944 return false;
945 }
946 }
947
948 static GLboolean
949 intel_query_format_modifier_attribs(__DRIscreen *dri_screen,
950 uint32_t fourcc, uint64_t modifier,
951 int attrib, uint64_t *value)
952 {
953 struct intel_screen *screen = dri_screen->driverPrivate;
954 const struct intel_image_format *f = intel_image_format_lookup(fourcc);
955
956 if (!modifier_is_supported(&screen->devinfo, f, 0, modifier))
957 return false;
958
959 switch (attrib) {
960 case __DRI_IMAGE_FORMAT_MODIFIER_ATTRIB_PLANE_COUNT:
961 *value = isl_drm_modifier_has_aux(modifier) ? 2 : f->nplanes;
962 return true;
963
964 default:
965 return false;
966 }
967 }
968
969 static __DRIimage *
970 intel_dup_image(__DRIimage *orig_image, void *loaderPrivate)
971 {
972 __DRIimage *image;
973
974 image = calloc(1, sizeof *image);
975 if (image == NULL)
976 return NULL;
977
978 brw_bo_reference(orig_image->bo);
979 image->bo = orig_image->bo;
980 image->internal_format = orig_image->internal_format;
981 image->planar_format = orig_image->planar_format;
982 image->dri_format = orig_image->dri_format;
983 image->format = orig_image->format;
984 image->modifier = orig_image->modifier;
985 image->offset = orig_image->offset;
986 image->width = orig_image->width;
987 image->height = orig_image->height;
988 image->pitch = orig_image->pitch;
989 image->tile_x = orig_image->tile_x;
990 image->tile_y = orig_image->tile_y;
991 image->has_depthstencil = orig_image->has_depthstencil;
992 image->data = loaderPrivate;
993 image->aux_offset = orig_image->aux_offset;
994 image->aux_pitch = orig_image->aux_pitch;
995
996 memcpy(image->strides, orig_image->strides, sizeof(image->strides));
997 memcpy(image->offsets, orig_image->offsets, sizeof(image->offsets));
998
999 return image;
1000 }
1001
1002 static GLboolean
1003 intel_validate_usage(__DRIimage *image, unsigned int use)
1004 {
1005 if (use & __DRI_IMAGE_USE_CURSOR) {
1006 if (image->width != 64 || image->height != 64)
1007 return GL_FALSE;
1008 }
1009
1010 return GL_TRUE;
1011 }
1012
1013 static __DRIimage *
1014 intel_create_image_from_names(__DRIscreen *dri_screen,
1015 int width, int height, int fourcc,
1016 int *names, int num_names,
1017 int *strides, int *offsets,
1018 void *loaderPrivate)
1019 {
1020 const struct intel_image_format *f = NULL;
1021 __DRIimage *image;
1022 int i, index;
1023
1024 if (dri_screen == NULL || names == NULL || num_names != 1)
1025 return NULL;
1026
1027 f = intel_image_format_lookup(fourcc);
1028 if (f == NULL)
1029 return NULL;
1030
1031 image = intel_create_image_from_name(dri_screen, width, height,
1032 __DRI_IMAGE_FORMAT_NONE,
1033 names[0], strides[0],
1034 loaderPrivate);
1035
1036 if (image == NULL)
1037 return NULL;
1038
1039 image->planar_format = f;
1040 for (i = 0; i < f->nplanes; i++) {
1041 index = f->planes[i].buffer_index;
1042 image->offsets[index] = offsets[index];
1043 image->strides[index] = strides[index];
1044 }
1045
1046 return image;
1047 }
1048
1049 static __DRIimage *
1050 intel_create_image_from_fds_common(__DRIscreen *dri_screen,
1051 int width, int height, int fourcc,
1052 uint64_t modifier, int *fds, int num_fds,
1053 int *strides, int *offsets,
1054 void *loaderPrivate)
1055 {
1056 struct intel_screen *screen = dri_screen->driverPrivate;
1057 const struct intel_image_format *f;
1058 __DRIimage *image;
1059 int i, index;
1060 bool ok;
1061
1062 if (fds == NULL || num_fds < 1)
1063 return NULL;
1064
1065 f = intel_image_format_lookup(fourcc);
1066 if (f == NULL)
1067 return NULL;
1068
1069 if (modifier != DRM_FORMAT_MOD_INVALID &&
1070 !modifier_is_supported(&screen->devinfo, f, 0, modifier))
1071 return NULL;
1072
1073 if (f->nplanes == 1)
1074 image = intel_allocate_image(screen, f->planes[0].dri_format,
1075 loaderPrivate);
1076 else
1077 image = intel_allocate_image(screen, __DRI_IMAGE_FORMAT_NONE,
1078 loaderPrivate);
1079
1080 if (image == NULL)
1081 return NULL;
1082
1083 image->width = width;
1084 image->height = height;
1085 image->pitch = strides[0];
1086
1087 image->planar_format = f;
1088
1089 if (modifier != DRM_FORMAT_MOD_INVALID) {
1090 const struct isl_drm_modifier_info *mod_info =
1091 isl_drm_modifier_get_info(modifier);
1092 uint32_t tiling = isl_tiling_to_i915_tiling(mod_info->tiling);
1093 image->bo = brw_bo_gem_create_from_prime_tiled(screen->bufmgr, fds[0],
1094 tiling, strides[0]);
1095 } else {
1096 image->bo = brw_bo_gem_create_from_prime(screen->bufmgr, fds[0]);
1097 }
1098
1099 if (image->bo == NULL) {
1100 free(image);
1101 return NULL;
1102 }
1103
1104 /* We only support all planes from the same bo.
1105 * brw_bo_gem_create_from_prime() should return the same pointer for all
1106 * fds received here */
1107 for (i = 1; i < num_fds; i++) {
1108 struct brw_bo *aux = brw_bo_gem_create_from_prime(screen->bufmgr, fds[i]);
1109 brw_bo_unreference(aux);
1110 if (aux != image->bo) {
1111 brw_bo_unreference(image->bo);
1112 free(image);
1113 return NULL;
1114 }
1115 }
1116
1117 if (modifier != DRM_FORMAT_MOD_INVALID)
1118 image->modifier = modifier;
1119 else
1120 image->modifier = tiling_to_modifier(image->bo->tiling_mode);
1121
1122 const struct isl_drm_modifier_info *mod_info =
1123 isl_drm_modifier_get_info(image->modifier);
1124
1125 int size = 0;
1126 struct isl_surf surf;
1127 for (i = 0; i < f->nplanes; i++) {
1128 index = f->planes[i].buffer_index;
1129 image->offsets[index] = offsets[index];
1130 image->strides[index] = strides[index];
1131
1132 mesa_format format = driImageFormatToGLFormat(f->planes[i].dri_format);
1133 /* The images we will create are actually based on the RGBA non-sRGB
1134 * version of the format.
1135 */
1136 format = _mesa_format_fallback_rgbx_to_rgba(format);
1137 format = _mesa_get_srgb_format_linear(format);
1138
1139 ok = isl_surf_init(&screen->isl_dev, &surf,
1140 .dim = ISL_SURF_DIM_2D,
1141 .format = brw_isl_format_for_mesa_format(format),
1142 .width = image->width >> f->planes[i].width_shift,
1143 .height = image->height >> f->planes[i].height_shift,
1144 .depth = 1,
1145 .levels = 1,
1146 .array_len = 1,
1147 .samples = 1,
1148 .row_pitch_B = strides[index],
1149 .usage = ISL_SURF_USAGE_RENDER_TARGET_BIT |
1150 ISL_SURF_USAGE_TEXTURE_BIT |
1151 ISL_SURF_USAGE_STORAGE_BIT,
1152 .tiling_flags = (1 << mod_info->tiling));
1153 if (!ok) {
1154 brw_bo_unreference(image->bo);
1155 free(image);
1156 return NULL;
1157 }
1158
1159 const int end = offsets[index] + surf.size_B;
1160 if (size < end)
1161 size = end;
1162 }
1163
1164 if (mod_info->aux_usage == ISL_AUX_USAGE_CCS_E) {
1165 /* Even though we initialize surf in the loop above, we know that
1166 * anything with CCS_E will have exactly one plane so surf is properly
1167 * initialized when we get here.
1168 */
1169 assert(f->nplanes == 1);
1170
1171 image->aux_offset = offsets[1];
1172 image->aux_pitch = strides[1];
1173
1174 /* Scanout hardware requires that the CCS be placed after the main
1175 * surface in memory. We consider any CCS that is placed any earlier in
1176 * memory to be invalid and reject it.
1177 *
1178 * At some point in the future, this restriction may be relaxed if the
1179 * hardware becomes less strict but we may need a new modifier for that.
1180 */
1181 assert(size > 0);
1182 if (image->aux_offset < size) {
1183 brw_bo_unreference(image->bo);
1184 free(image);
1185 return NULL;
1186 }
1187
1188 struct isl_surf aux_surf;
1189 ok = isl_surf_get_ccs_surf(&screen->isl_dev, &surf, &aux_surf,
1190 image->aux_pitch);
1191 if (!ok) {
1192 brw_bo_unreference(image->bo);
1193 free(image);
1194 return NULL;
1195 }
1196
1197 image->aux_size = aux_surf.size_B;
1198
1199 const int end = image->aux_offset + aux_surf.size_B;
1200 if (size < end)
1201 size = end;
1202 } else {
1203 assert(mod_info->aux_usage == ISL_AUX_USAGE_NONE);
1204 }
1205
1206 /* Check that the requested image actually fits within the BO. 'size'
1207 * is already relative to the offsets, so we don't need to add that. */
1208 if (image->bo->size == 0) {
1209 image->bo->size = size;
1210 } else if (size > image->bo->size) {
1211 brw_bo_unreference(image->bo);
1212 free(image);
1213 return NULL;
1214 }
1215
1216 if (f->nplanes == 1) {
1217 image->offset = image->offsets[0];
1218 intel_image_warn_if_unaligned(image, __func__);
1219 }
1220
1221 return image;
1222 }
1223
1224 static __DRIimage *
1225 intel_create_image_from_fds(__DRIscreen *dri_screen,
1226 int width, int height, int fourcc,
1227 int *fds, int num_fds, int *strides, int *offsets,
1228 void *loaderPrivate)
1229 {
1230 return intel_create_image_from_fds_common(dri_screen, width, height, fourcc,
1231 DRM_FORMAT_MOD_INVALID,
1232 fds, num_fds, strides, offsets,
1233 loaderPrivate);
1234 }
1235
1236 static __DRIimage *
1237 intel_create_image_from_dma_bufs2(__DRIscreen *dri_screen,
1238 int width, int height,
1239 int fourcc, uint64_t modifier,
1240 int *fds, int num_fds,
1241 int *strides, int *offsets,
1242 enum __DRIYUVColorSpace yuv_color_space,
1243 enum __DRISampleRange sample_range,
1244 enum __DRIChromaSiting horizontal_siting,
1245 enum __DRIChromaSiting vertical_siting,
1246 unsigned *error,
1247 void *loaderPrivate)
1248 {
1249 __DRIimage *image;
1250 const struct intel_image_format *f = intel_image_format_lookup(fourcc);
1251
1252 if (!f) {
1253 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
1254 return NULL;
1255 }
1256
1257 image = intel_create_image_from_fds_common(dri_screen, width, height,
1258 fourcc, modifier,
1259 fds, num_fds, strides, offsets,
1260 loaderPrivate);
1261
1262 /*
1263 * Invalid parameters and any inconsistencies between are assumed to be
1264 * checked by the caller. Therefore besides unsupported formats one can fail
1265 * only in allocation.
1266 */
1267 if (!image) {
1268 *error = __DRI_IMAGE_ERROR_BAD_ALLOC;
1269 return NULL;
1270 }
1271
1272 image->yuv_color_space = yuv_color_space;
1273 image->sample_range = sample_range;
1274 image->horizontal_siting = horizontal_siting;
1275 image->vertical_siting = vertical_siting;
1276
1277 *error = __DRI_IMAGE_ERROR_SUCCESS;
1278 return image;
1279 }
1280
1281 static __DRIimage *
1282 intel_create_image_from_dma_bufs(__DRIscreen *dri_screen,
1283 int width, int height, int fourcc,
1284 int *fds, int num_fds,
1285 int *strides, int *offsets,
1286 enum __DRIYUVColorSpace yuv_color_space,
1287 enum __DRISampleRange sample_range,
1288 enum __DRIChromaSiting horizontal_siting,
1289 enum __DRIChromaSiting vertical_siting,
1290 unsigned *error,
1291 void *loaderPrivate)
1292 {
1293 return intel_create_image_from_dma_bufs2(dri_screen, width, height,
1294 fourcc, DRM_FORMAT_MOD_INVALID,
1295 fds, num_fds, strides, offsets,
1296 yuv_color_space,
1297 sample_range,
1298 horizontal_siting,
1299 vertical_siting,
1300 error,
1301 loaderPrivate);
1302 }
1303
1304 static bool
1305 intel_image_format_is_supported(const struct gen_device_info *devinfo,
1306 const struct intel_image_format *fmt)
1307 {
1308 /* Currently, all formats with an intel_image_format are available on all
1309 * platforms so there's really nothing to check there.
1310 */
1311
1312 #ifndef NDEBUG
1313 if (fmt->nplanes == 1) {
1314 mesa_format format = driImageFormatToGLFormat(fmt->planes[0].dri_format);
1315 /* The images we will create are actually based on the RGBA non-sRGB
1316 * version of the format.
1317 */
1318 format = _mesa_format_fallback_rgbx_to_rgba(format);
1319 format = _mesa_get_srgb_format_linear(format);
1320 enum isl_format isl_format = brw_isl_format_for_mesa_format(format);
1321 assert(isl_format_supports_rendering(devinfo, isl_format));
1322 }
1323 #endif
1324
1325 return true;
1326 }
1327
1328 static GLboolean
1329 intel_query_dma_buf_formats(__DRIscreen *_screen, int max,
1330 int *formats, int *count)
1331 {
1332 struct intel_screen *screen = _screen->driverPrivate;
1333 int num_formats = 0, i;
1334
1335 for (i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
1336 /* These two formats are valid DRI formats but do not exist in
1337 * drm_fourcc.h in the Linux kernel. We don't want to accidentally
1338 * advertise them through the EGL layer.
1339 */
1340 if (intel_image_formats[i].fourcc == __DRI_IMAGE_FOURCC_SARGB8888 ||
1341 intel_image_formats[i].fourcc == __DRI_IMAGE_FOURCC_SABGR8888)
1342 continue;
1343
1344 if (!intel_image_format_is_supported(&screen->devinfo,
1345 &intel_image_formats[i]))
1346 continue;
1347
1348 num_formats++;
1349 if (max == 0)
1350 continue;
1351
1352 formats[num_formats - 1] = intel_image_formats[i].fourcc;
1353 if (num_formats >= max)
1354 break;
1355 }
1356
1357 *count = num_formats;
1358 return true;
1359 }
1360
1361 static GLboolean
1362 intel_query_dma_buf_modifiers(__DRIscreen *_screen, int fourcc, int max,
1363 uint64_t *modifiers,
1364 unsigned int *external_only,
1365 int *count)
1366 {
1367 struct intel_screen *screen = _screen->driverPrivate;
1368 const struct intel_image_format *f;
1369 int num_mods = 0, i;
1370
1371 f = intel_image_format_lookup(fourcc);
1372 if (f == NULL)
1373 return false;
1374
1375 if (!intel_image_format_is_supported(&screen->devinfo, f))
1376 return false;
1377
1378 for (i = 0; i < ARRAY_SIZE(supported_modifiers); i++) {
1379 uint64_t modifier = supported_modifiers[i].modifier;
1380 if (!modifier_is_supported(&screen->devinfo, f, 0, modifier))
1381 continue;
1382
1383 num_mods++;
1384 if (max == 0)
1385 continue;
1386
1387 modifiers[num_mods - 1] = modifier;
1388 if (num_mods >= max)
1389 break;
1390 }
1391
1392 if (external_only != NULL) {
1393 for (i = 0; i < num_mods && i < max; i++) {
1394 if (f->components == __DRI_IMAGE_COMPONENTS_Y_U_V ||
1395 f->components == __DRI_IMAGE_COMPONENTS_Y_UV ||
1396 f->components == __DRI_IMAGE_COMPONENTS_Y_XUXV ||
1397 f->components == __DRI_IMAGE_COMPONENTS_Y_UXVX) {
1398 external_only[i] = GL_TRUE;
1399 }
1400 else {
1401 external_only[i] = GL_FALSE;
1402 }
1403 }
1404 }
1405
1406 *count = num_mods;
1407 return true;
1408 }
1409
1410 static __DRIimage *
1411 intel_from_planar(__DRIimage *parent, int plane, void *loaderPrivate)
1412 {
1413 int width, height, offset, stride, size, dri_format;
1414 __DRIimage *image;
1415
1416 if (parent == NULL)
1417 return NULL;
1418
1419 width = parent->width;
1420 height = parent->height;
1421
1422 const struct intel_image_format *f = parent->planar_format;
1423
1424 if (f && plane < f->nplanes) {
1425 /* Use the planar format definition. */
1426 width >>= f->planes[plane].width_shift;
1427 height >>= f->planes[plane].height_shift;
1428 dri_format = f->planes[plane].dri_format;
1429 int index = f->planes[plane].buffer_index;
1430 offset = parent->offsets[index];
1431 stride = parent->strides[index];
1432 size = height * stride;
1433 } else if (plane == 0) {
1434 /* The only plane of a non-planar image: copy the parent definition
1435 * directly. */
1436 dri_format = parent->dri_format;
1437 offset = parent->offset;
1438 stride = parent->pitch;
1439 size = height * stride;
1440 } else if (plane == 1 && parent->modifier != DRM_FORMAT_MOD_INVALID &&
1441 isl_drm_modifier_has_aux(parent->modifier)) {
1442 /* Auxiliary plane */
1443 dri_format = parent->dri_format;
1444 offset = parent->aux_offset;
1445 stride = parent->aux_pitch;
1446 size = parent->aux_size;
1447 } else {
1448 return NULL;
1449 }
1450
1451 if (offset + size > parent->bo->size) {
1452 _mesa_warning(NULL, "intel_from_planar: subimage out of bounds");
1453 return NULL;
1454 }
1455
1456 image = intel_allocate_image(parent->screen, dri_format, loaderPrivate);
1457 if (image == NULL)
1458 return NULL;
1459
1460 image->bo = parent->bo;
1461 brw_bo_reference(parent->bo);
1462 image->modifier = parent->modifier;
1463
1464 image->width = width;
1465 image->height = height;
1466 image->pitch = stride;
1467 image->offset = offset;
1468
1469 intel_image_warn_if_unaligned(image, __func__);
1470
1471 return image;
1472 }
1473
1474 static const __DRIimageExtension intelImageExtension = {
1475 .base = { __DRI_IMAGE, 16 },
1476
1477 .createImageFromName = intel_create_image_from_name,
1478 .createImageFromRenderbuffer = intel_create_image_from_renderbuffer,
1479 .destroyImage = intel_destroy_image,
1480 .createImage = intel_create_image,
1481 .queryImage = intel_query_image,
1482 .dupImage = intel_dup_image,
1483 .validateUsage = intel_validate_usage,
1484 .createImageFromNames = intel_create_image_from_names,
1485 .fromPlanar = intel_from_planar,
1486 .createImageFromTexture = intel_create_image_from_texture,
1487 .createImageFromFds = intel_create_image_from_fds,
1488 .createImageFromDmaBufs = intel_create_image_from_dma_bufs,
1489 .blitImage = NULL,
1490 .getCapabilities = NULL,
1491 .mapImage = intel_map_image,
1492 .unmapImage = intel_unmap_image,
1493 .createImageWithModifiers = intel_create_image_with_modifiers,
1494 .createImageFromDmaBufs2 = intel_create_image_from_dma_bufs2,
1495 .queryDmaBufFormats = intel_query_dma_buf_formats,
1496 .queryDmaBufModifiers = intel_query_dma_buf_modifiers,
1497 .queryDmaBufFormatModifierAttribs = intel_query_format_modifier_attribs,
1498 };
1499
1500 static uint64_t
1501 get_aperture_size(int fd)
1502 {
1503 struct drm_i915_gem_get_aperture aperture;
1504
1505 if (drmIoctl(fd, DRM_IOCTL_I915_GEM_GET_APERTURE, &aperture) != 0)
1506 return 0;
1507
1508 return aperture.aper_size;
1509 }
1510
1511 static int
1512 brw_query_renderer_integer(__DRIscreen *dri_screen,
1513 int param, unsigned int *value)
1514 {
1515 const struct intel_screen *const screen =
1516 (struct intel_screen *) dri_screen->driverPrivate;
1517
1518 switch (param) {
1519 case __DRI2_RENDERER_VENDOR_ID:
1520 value[0] = 0x8086;
1521 return 0;
1522 case __DRI2_RENDERER_DEVICE_ID:
1523 value[0] = screen->deviceID;
1524 return 0;
1525 case __DRI2_RENDERER_ACCELERATED:
1526 value[0] = 1;
1527 return 0;
1528 case __DRI2_RENDERER_VIDEO_MEMORY: {
1529 /* Once a batch uses more than 75% of the maximum mappable size, we
1530 * assume that there's some fragmentation, and we start doing extra
1531 * flushing, etc. That's the big cliff apps will care about.
1532 */
1533 const unsigned gpu_mappable_megabytes =
1534 screen->aperture_threshold / (1024 * 1024);
1535
1536 const long system_memory_pages = sysconf(_SC_PHYS_PAGES);
1537 const long system_page_size = sysconf(_SC_PAGE_SIZE);
1538
1539 if (system_memory_pages <= 0 || system_page_size <= 0)
1540 return -1;
1541
1542 const uint64_t system_memory_bytes = (uint64_t) system_memory_pages
1543 * (uint64_t) system_page_size;
1544
1545 const unsigned system_memory_megabytes =
1546 (unsigned) (system_memory_bytes / (1024 * 1024));
1547
1548 value[0] = MIN2(system_memory_megabytes, gpu_mappable_megabytes);
1549 return 0;
1550 }
1551 case __DRI2_RENDERER_UNIFIED_MEMORY_ARCHITECTURE:
1552 value[0] = 1;
1553 return 0;
1554 case __DRI2_RENDERER_HAS_TEXTURE_3D:
1555 value[0] = 1;
1556 return 0;
1557 case __DRI2_RENDERER_HAS_CONTEXT_PRIORITY:
1558 value[0] = 0;
1559 if (brw_hw_context_set_priority(screen->bufmgr,
1560 0, GEN_CONTEXT_HIGH_PRIORITY) == 0)
1561 value[0] |= __DRI2_RENDERER_HAS_CONTEXT_PRIORITY_HIGH;
1562 if (brw_hw_context_set_priority(screen->bufmgr,
1563 0, GEN_CONTEXT_LOW_PRIORITY) == 0)
1564 value[0] |= __DRI2_RENDERER_HAS_CONTEXT_PRIORITY_LOW;
1565 /* reset to default last, just in case */
1566 if (brw_hw_context_set_priority(screen->bufmgr,
1567 0, GEN_CONTEXT_MEDIUM_PRIORITY) == 0)
1568 value[0] |= __DRI2_RENDERER_HAS_CONTEXT_PRIORITY_MEDIUM;
1569 return 0;
1570 case __DRI2_RENDERER_HAS_FRAMEBUFFER_SRGB:
1571 value[0] = 1;
1572 return 0;
1573 default:
1574 return driQueryRendererIntegerCommon(dri_screen, param, value);
1575 }
1576
1577 return -1;
1578 }
1579
1580 static int
1581 brw_query_renderer_string(__DRIscreen *dri_screen,
1582 int param, const char **value)
1583 {
1584 const struct intel_screen *screen =
1585 (struct intel_screen *) dri_screen->driverPrivate;
1586
1587 switch (param) {
1588 case __DRI2_RENDERER_VENDOR_ID:
1589 value[0] = brw_vendor_string;
1590 return 0;
1591 case __DRI2_RENDERER_DEVICE_ID:
1592 value[0] = brw_get_renderer_string(screen);
1593 return 0;
1594 default:
1595 break;
1596 }
1597
1598 return -1;
1599 }
1600
1601 static void
1602 brw_set_cache_funcs(__DRIscreen *dri_screen,
1603 __DRIblobCacheSet set, __DRIblobCacheGet get)
1604 {
1605 const struct intel_screen *const screen =
1606 (struct intel_screen *) dri_screen->driverPrivate;
1607
1608 if (!screen->disk_cache)
1609 return;
1610
1611 disk_cache_set_callbacks(screen->disk_cache, set, get);
1612 }
1613
1614 static const __DRI2rendererQueryExtension intelRendererQueryExtension = {
1615 .base = { __DRI2_RENDERER_QUERY, 1 },
1616
1617 .queryInteger = brw_query_renderer_integer,
1618 .queryString = brw_query_renderer_string
1619 };
1620
1621 static const __DRIrobustnessExtension dri2Robustness = {
1622 .base = { __DRI2_ROBUSTNESS, 1 }
1623 };
1624
1625 static const __DRI2blobExtension intelBlobExtension = {
1626 .base = { __DRI2_BLOB, 1 },
1627 .set_cache_funcs = brw_set_cache_funcs
1628 };
1629
1630 static const __DRImutableRenderBufferDriverExtension intelMutableRenderBufferExtension = {
1631 .base = { __DRI_MUTABLE_RENDER_BUFFER_DRIVER, 1 },
1632 };
1633
1634 static const __DRIextension *screenExtensions[] = {
1635 &intelTexBufferExtension.base,
1636 &intelFenceExtension.base,
1637 &intelFlushExtension.base,
1638 &intelImageExtension.base,
1639 &intelRendererQueryExtension.base,
1640 &intelMutableRenderBufferExtension.base,
1641 &dri2ConfigQueryExtension.base,
1642 &dri2NoErrorExtension.base,
1643 &intelBlobExtension.base,
1644 NULL
1645 };
1646
1647 static const __DRIextension *intelRobustScreenExtensions[] = {
1648 &intelTexBufferExtension.base,
1649 &intelFenceExtension.base,
1650 &intelFlushExtension.base,
1651 &intelImageExtension.base,
1652 &intelRendererQueryExtension.base,
1653 &intelMutableRenderBufferExtension.base,
1654 &dri2ConfigQueryExtension.base,
1655 &dri2Robustness.base,
1656 &dri2NoErrorExtension.base,
1657 &intelBlobExtension.base,
1658 NULL
1659 };
1660
1661 static int
1662 intel_get_param(struct intel_screen *screen, int param, int *value)
1663 {
1664 int ret = 0;
1665 struct drm_i915_getparam gp;
1666
1667 memset(&gp, 0, sizeof(gp));
1668 gp.param = param;
1669 gp.value = value;
1670
1671 if (drmIoctl(screen->driScrnPriv->fd, DRM_IOCTL_I915_GETPARAM, &gp) == -1) {
1672 ret = -errno;
1673 if (ret != -EINVAL)
1674 _mesa_warning(NULL, "drm_i915_getparam: %d", ret);
1675 }
1676
1677 return ret;
1678 }
1679
1680 static bool
1681 intel_get_boolean(struct intel_screen *screen, int param)
1682 {
1683 int value = 0;
1684 return (intel_get_param(screen, param, &value) == 0) && value;
1685 }
1686
1687 static int
1688 intel_get_integer(struct intel_screen *screen, int param)
1689 {
1690 int value = -1;
1691
1692 if (intel_get_param(screen, param, &value) == 0)
1693 return value;
1694
1695 return -1;
1696 }
1697
1698 static void
1699 intelDestroyScreen(__DRIscreen * sPriv)
1700 {
1701 struct intel_screen *screen = sPriv->driverPrivate;
1702
1703 brw_bufmgr_destroy(screen->bufmgr);
1704 driDestroyOptionInfo(&screen->optionCache);
1705
1706 disk_cache_destroy(screen->disk_cache);
1707
1708 ralloc_free(screen);
1709 sPriv->driverPrivate = NULL;
1710 }
1711
1712
1713 /**
1714 * Create a gl_framebuffer and attach it to __DRIdrawable::driverPrivate.
1715 *
1716 *_This implements driDriverAPI::createNewDrawable, which the DRI layer calls
1717 * when creating a EGLSurface, GLXDrawable, or GLXPixmap. Despite the name,
1718 * this does not allocate GPU memory.
1719 */
1720 static GLboolean
1721 intelCreateBuffer(__DRIscreen *dri_screen,
1722 __DRIdrawable * driDrawPriv,
1723 const struct gl_config * mesaVis, GLboolean isPixmap)
1724 {
1725 struct intel_renderbuffer *rb;
1726 struct intel_screen *screen = (struct intel_screen *)
1727 dri_screen->driverPrivate;
1728 mesa_format rgbFormat;
1729 unsigned num_samples =
1730 intel_quantize_num_samples(screen, mesaVis->samples);
1731
1732 if (isPixmap)
1733 return false;
1734
1735 struct gl_framebuffer *fb = CALLOC_STRUCT(gl_framebuffer);
1736 if (!fb)
1737 return false;
1738
1739 _mesa_initialize_window_framebuffer(fb, mesaVis);
1740
1741 if (screen->winsys_msaa_samples_override != -1) {
1742 num_samples = screen->winsys_msaa_samples_override;
1743 fb->Visual.samples = num_samples;
1744 }
1745
1746 if (mesaVis->redBits == 16 && mesaVis->alphaBits > 0 && mesaVis->floatMode) {
1747 rgbFormat = MESA_FORMAT_RGBA_FLOAT16;
1748 } else if (mesaVis->redBits == 16 && mesaVis->floatMode) {
1749 rgbFormat = MESA_FORMAT_RGBX_FLOAT16;
1750 } else if (mesaVis->redBits == 10 && mesaVis->alphaBits > 0) {
1751 rgbFormat = mesaVis->redMask == 0x3ff00000 ? MESA_FORMAT_B10G10R10A2_UNORM
1752 : MESA_FORMAT_R10G10B10A2_UNORM;
1753 } else if (mesaVis->redBits == 10) {
1754 rgbFormat = mesaVis->redMask == 0x3ff00000 ? MESA_FORMAT_B10G10R10X2_UNORM
1755 : MESA_FORMAT_R10G10B10X2_UNORM;
1756 } else if (mesaVis->redBits == 5) {
1757 rgbFormat = mesaVis->redMask == 0x1f ? MESA_FORMAT_R5G6B5_UNORM
1758 : MESA_FORMAT_B5G6R5_UNORM;
1759 } else if (mesaVis->sRGBCapable) {
1760 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
1761 : MESA_FORMAT_B8G8R8A8_SRGB;
1762 } else if (mesaVis->alphaBits == 0) {
1763 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8X8_UNORM
1764 : MESA_FORMAT_B8G8R8X8_UNORM;
1765 } else {
1766 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
1767 : MESA_FORMAT_B8G8R8A8_SRGB;
1768 fb->Visual.sRGBCapable = true;
1769 }
1770
1771 /* mesaVis->sRGBCapable was set, user is asking for sRGB */
1772 bool srgb_cap_set = mesaVis->redBits >= 8 && mesaVis->sRGBCapable;
1773
1774 /* setup the hardware-based renderbuffers */
1775 rb = intel_create_winsys_renderbuffer(screen, rgbFormat, num_samples);
1776 _mesa_attach_and_own_rb(fb, BUFFER_FRONT_LEFT, &rb->Base.Base);
1777 rb->need_srgb = srgb_cap_set;
1778
1779 if (mesaVis->doubleBufferMode) {
1780 rb = intel_create_winsys_renderbuffer(screen, rgbFormat, num_samples);
1781 _mesa_attach_and_own_rb(fb, BUFFER_BACK_LEFT, &rb->Base.Base);
1782 rb->need_srgb = srgb_cap_set;
1783 }
1784
1785 /*
1786 * Assert here that the gl_config has an expected depth/stencil bit
1787 * combination: one of d24/s8, d16/s0, d0/s0. (See intelInitScreen2(),
1788 * which constructs the advertised configs.)
1789 */
1790 if (mesaVis->depthBits == 24) {
1791 assert(mesaVis->stencilBits == 8);
1792
1793 if (screen->devinfo.has_hiz_and_separate_stencil) {
1794 rb = intel_create_private_renderbuffer(screen,
1795 MESA_FORMAT_Z24_UNORM_X8_UINT,
1796 num_samples);
1797 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1798 rb = intel_create_private_renderbuffer(screen, MESA_FORMAT_S_UINT8,
1799 num_samples);
1800 _mesa_attach_and_own_rb(fb, BUFFER_STENCIL, &rb->Base.Base);
1801 } else {
1802 /*
1803 * Use combined depth/stencil. Note that the renderbuffer is
1804 * attached to two attachment points.
1805 */
1806 rb = intel_create_private_renderbuffer(screen,
1807 MESA_FORMAT_Z24_UNORM_S8_UINT,
1808 num_samples);
1809 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1810 _mesa_attach_and_reference_rb(fb, BUFFER_STENCIL, &rb->Base.Base);
1811 }
1812 }
1813 else if (mesaVis->depthBits == 16) {
1814 assert(mesaVis->stencilBits == 0);
1815 rb = intel_create_private_renderbuffer(screen, MESA_FORMAT_Z_UNORM16,
1816 num_samples);
1817 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1818 }
1819 else {
1820 assert(mesaVis->depthBits == 0);
1821 assert(mesaVis->stencilBits == 0);
1822 }
1823
1824 /* now add any/all software-based renderbuffers we may need */
1825 _swrast_add_soft_renderbuffers(fb,
1826 false, /* never sw color */
1827 false, /* never sw depth */
1828 false, /* never sw stencil */
1829 mesaVis->accumRedBits > 0,
1830 false, /* never sw alpha */
1831 false /* never sw aux */ );
1832 driDrawPriv->driverPrivate = fb;
1833
1834 return true;
1835 }
1836
1837 static void
1838 intelDestroyBuffer(__DRIdrawable * driDrawPriv)
1839 {
1840 struct gl_framebuffer *fb = driDrawPriv->driverPrivate;
1841
1842 _mesa_reference_framebuffer(&fb, NULL);
1843 }
1844
1845 static void
1846 intel_cs_timestamp_frequency(struct intel_screen *screen)
1847 {
1848 /* We shouldn't need to update gen_device_info.timestamp_frequency prior to
1849 * gen10, PCI-id is enough to figure it out.
1850 */
1851 assert(screen->devinfo.gen >= 10);
1852
1853 int ret, freq;
1854
1855 ret = intel_get_param(screen, I915_PARAM_CS_TIMESTAMP_FREQUENCY,
1856 &freq);
1857 if (ret < 0) {
1858 _mesa_warning(NULL,
1859 "Kernel 4.15 required to read the CS timestamp frequency.\n");
1860 return;
1861 }
1862
1863 screen->devinfo.timestamp_frequency = freq;
1864 }
1865
1866 static void
1867 intel_detect_sseu(struct intel_screen *screen)
1868 {
1869 assert(screen->devinfo.gen >= 8);
1870 int ret;
1871
1872 screen->subslice_total = -1;
1873 screen->eu_total = -1;
1874
1875 ret = intel_get_param(screen, I915_PARAM_SUBSLICE_TOTAL,
1876 &screen->subslice_total);
1877 if (ret < 0 && ret != -EINVAL)
1878 goto err_out;
1879
1880 ret = intel_get_param(screen,
1881 I915_PARAM_EU_TOTAL, &screen->eu_total);
1882 if (ret < 0 && ret != -EINVAL)
1883 goto err_out;
1884
1885 /* Without this information, we cannot get the right Braswell brandstrings,
1886 * and we have to use conservative numbers for GPGPU on many platforms, but
1887 * otherwise, things will just work.
1888 */
1889 if (screen->subslice_total < 1 || screen->eu_total < 1)
1890 _mesa_warning(NULL,
1891 "Kernel 4.1 required to properly query GPU properties.\n");
1892
1893 return;
1894
1895 err_out:
1896 screen->subslice_total = -1;
1897 screen->eu_total = -1;
1898 _mesa_warning(NULL, "Failed to query GPU properties (%s).\n", strerror(-ret));
1899 }
1900
1901 static bool
1902 intel_init_bufmgr(struct intel_screen *screen)
1903 {
1904 __DRIscreen *dri_screen = screen->driScrnPriv;
1905
1906 if (getenv("INTEL_NO_HW") != NULL)
1907 screen->no_hw = true;
1908
1909 screen->bufmgr = brw_bufmgr_init(&screen->devinfo, dri_screen->fd);
1910 if (screen->bufmgr == NULL) {
1911 fprintf(stderr, "[%s:%u] Error initializing buffer manager.\n",
1912 __func__, __LINE__);
1913 return false;
1914 }
1915
1916 if (!intel_get_boolean(screen, I915_PARAM_HAS_EXEC_NO_RELOC)) {
1917 fprintf(stderr, "[%s: %u] Kernel 3.9 required.\n", __func__, __LINE__);
1918 return false;
1919 }
1920
1921 return true;
1922 }
1923
1924 static bool
1925 intel_detect_swizzling(struct intel_screen *screen)
1926 {
1927 /* Broadwell PRM says:
1928 *
1929 * "Before Gen8, there was a historical configuration control field to
1930 * swizzle address bit[6] for in X/Y tiling modes. This was set in three
1931 * different places: TILECTL[1:0], ARB_MODE[5:4], and
1932 * DISP_ARB_CTL[14:13].
1933 *
1934 * For Gen8 and subsequent generations, the swizzle fields are all
1935 * reserved, and the CPU's memory controller performs all address
1936 * swizzling modifications."
1937 */
1938 if (screen->devinfo.gen >= 8)
1939 return false;
1940
1941 uint32_t tiling = I915_TILING_X;
1942 uint32_t swizzle_mode = 0;
1943 struct brw_bo *buffer =
1944 brw_bo_alloc_tiled(screen->bufmgr, "swizzle test", 32768,
1945 BRW_MEMZONE_OTHER, tiling, 512, 0);
1946 if (buffer == NULL)
1947 return false;
1948
1949 brw_bo_get_tiling(buffer, &tiling, &swizzle_mode);
1950 brw_bo_unreference(buffer);
1951
1952 return swizzle_mode != I915_BIT_6_SWIZZLE_NONE;
1953 }
1954
1955 static int
1956 intel_detect_timestamp(struct intel_screen *screen)
1957 {
1958 uint64_t dummy = 0, last = 0;
1959 int upper, lower, loops;
1960
1961 /* On 64bit systems, some old kernels trigger a hw bug resulting in the
1962 * TIMESTAMP register being shifted and the low 32bits always zero.
1963 *
1964 * More recent kernels offer an interface to read the full 36bits
1965 * everywhere.
1966 */
1967 if (brw_reg_read(screen->bufmgr, TIMESTAMP | 1, &dummy) == 0)
1968 return 3;
1969
1970 /* Determine if we have a 32bit or 64bit kernel by inspecting the
1971 * upper 32bits for a rapidly changing timestamp.
1972 */
1973 if (brw_reg_read(screen->bufmgr, TIMESTAMP, &last))
1974 return 0;
1975
1976 upper = lower = 0;
1977 for (loops = 0; loops < 10; loops++) {
1978 /* The TIMESTAMP should change every 80ns, so several round trips
1979 * through the kernel should be enough to advance it.
1980 */
1981 if (brw_reg_read(screen->bufmgr, TIMESTAMP, &dummy))
1982 return 0;
1983
1984 upper += (dummy >> 32) != (last >> 32);
1985 if (upper > 1) /* beware 32bit counter overflow */
1986 return 2; /* upper dword holds the low 32bits of the timestamp */
1987
1988 lower += (dummy & 0xffffffff) != (last & 0xffffffff);
1989 if (lower > 1)
1990 return 1; /* timestamp is unshifted */
1991
1992 last = dummy;
1993 }
1994
1995 /* No advancement? No timestamp! */
1996 return 0;
1997 }
1998
1999 /**
2000 * Test if we can use MI_LOAD_REGISTER_MEM from an untrusted batchbuffer.
2001 *
2002 * Some combinations of hardware and kernel versions allow this feature,
2003 * while others don't. Instead of trying to enumerate every case, just
2004 * try and write a register and see if works.
2005 */
2006 static bool
2007 intel_detect_pipelined_register(struct intel_screen *screen,
2008 int reg, uint32_t expected_value, bool reset)
2009 {
2010 if (screen->no_hw)
2011 return false;
2012
2013 struct brw_bo *results, *bo;
2014 uint32_t *batch;
2015 uint32_t offset = 0;
2016 void *map;
2017 bool success = false;
2018
2019 /* Create a zero'ed temporary buffer for reading our results */
2020 results = brw_bo_alloc(screen->bufmgr, "registers", 4096, BRW_MEMZONE_OTHER);
2021 if (results == NULL)
2022 goto err;
2023
2024 bo = brw_bo_alloc(screen->bufmgr, "batchbuffer", 4096, BRW_MEMZONE_OTHER);
2025 if (bo == NULL)
2026 goto err_results;
2027
2028 map = brw_bo_map(NULL, bo, MAP_WRITE);
2029 if (!map)
2030 goto err_batch;
2031
2032 batch = map;
2033
2034 /* Write the register. */
2035 *batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
2036 *batch++ = reg;
2037 *batch++ = expected_value;
2038
2039 /* Save the register's value back to the buffer. */
2040 *batch++ = MI_STORE_REGISTER_MEM | (3 - 2);
2041 *batch++ = reg;
2042 struct drm_i915_gem_relocation_entry reloc = {
2043 .offset = (char *) batch - (char *) map,
2044 .delta = offset * sizeof(uint32_t),
2045 .target_handle = results->gem_handle,
2046 .read_domains = I915_GEM_DOMAIN_INSTRUCTION,
2047 .write_domain = I915_GEM_DOMAIN_INSTRUCTION,
2048 };
2049 *batch++ = reloc.presumed_offset + reloc.delta;
2050
2051 /* And afterwards clear the register */
2052 if (reset) {
2053 *batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
2054 *batch++ = reg;
2055 *batch++ = 0;
2056 }
2057
2058 *batch++ = MI_BATCH_BUFFER_END;
2059
2060 struct drm_i915_gem_exec_object2 exec_objects[2] = {
2061 {
2062 .handle = results->gem_handle,
2063 },
2064 {
2065 .handle = bo->gem_handle,
2066 .relocation_count = 1,
2067 .relocs_ptr = (uintptr_t) &reloc,
2068 }
2069 };
2070
2071 struct drm_i915_gem_execbuffer2 execbuf = {
2072 .buffers_ptr = (uintptr_t) exec_objects,
2073 .buffer_count = 2,
2074 .batch_len = ALIGN((char *) batch - (char *) map, 8),
2075 .flags = I915_EXEC_RENDER,
2076 };
2077
2078 /* Don't bother with error checking - if the execbuf fails, the
2079 * value won't be written and we'll just report that there's no access.
2080 */
2081 __DRIscreen *dri_screen = screen->driScrnPriv;
2082 drmIoctl(dri_screen->fd, DRM_IOCTL_I915_GEM_EXECBUFFER2, &execbuf);
2083
2084 /* Check whether the value got written. */
2085 void *results_map = brw_bo_map(NULL, results, MAP_READ);
2086 if (results_map) {
2087 success = *((uint32_t *)results_map + offset) == expected_value;
2088 brw_bo_unmap(results);
2089 }
2090
2091 err_batch:
2092 brw_bo_unreference(bo);
2093 err_results:
2094 brw_bo_unreference(results);
2095 err:
2096 return success;
2097 }
2098
2099 static bool
2100 intel_detect_pipelined_so(struct intel_screen *screen)
2101 {
2102 const struct gen_device_info *devinfo = &screen->devinfo;
2103
2104 /* Supposedly, Broadwell just works. */
2105 if (devinfo->gen >= 8)
2106 return true;
2107
2108 if (devinfo->gen <= 6)
2109 return false;
2110
2111 /* See the big explanation about command parser versions below */
2112 if (screen->cmd_parser_version >= (devinfo->is_haswell ? 7 : 2))
2113 return true;
2114
2115 /* We use SO_WRITE_OFFSET0 since you're supposed to write it (unlike the
2116 * statistics registers), and we already reset it to zero before using it.
2117 */
2118 return intel_detect_pipelined_register(screen,
2119 GEN7_SO_WRITE_OFFSET(0),
2120 0x1337d0d0,
2121 false);
2122 }
2123
2124 /**
2125 * Return array of MSAA modes supported by the hardware. The array is
2126 * zero-terminated and sorted in decreasing order.
2127 */
2128 const int*
2129 intel_supported_msaa_modes(const struct intel_screen *screen)
2130 {
2131 static const int gen9_modes[] = {16, 8, 4, 2, 0, -1};
2132 static const int gen8_modes[] = {8, 4, 2, 0, -1};
2133 static const int gen7_modes[] = {8, 4, 0, -1};
2134 static const int gen6_modes[] = {4, 0, -1};
2135 static const int gen4_modes[] = {0, -1};
2136
2137 if (screen->devinfo.gen >= 9) {
2138 return gen9_modes;
2139 } else if (screen->devinfo.gen >= 8) {
2140 return gen8_modes;
2141 } else if (screen->devinfo.gen >= 7) {
2142 return gen7_modes;
2143 } else if (screen->devinfo.gen == 6) {
2144 return gen6_modes;
2145 } else {
2146 return gen4_modes;
2147 }
2148 }
2149
2150 static unsigned
2151 intel_loader_get_cap(const __DRIscreen *dri_screen, enum dri_loader_cap cap)
2152 {
2153 if (dri_screen->dri2.loader && dri_screen->dri2.loader->base.version >= 4 &&
2154 dri_screen->dri2.loader->getCapability)
2155 return dri_screen->dri2.loader->getCapability(dri_screen->loaderPrivate, cap);
2156
2157 if (dri_screen->image.loader && dri_screen->image.loader->base.version >= 2 &&
2158 dri_screen->image.loader->getCapability)
2159 return dri_screen->image.loader->getCapability(dri_screen->loaderPrivate, cap);
2160
2161 return 0;
2162 }
2163
2164 static bool
2165 intel_allowed_format(__DRIscreen *dri_screen, mesa_format format)
2166 {
2167 struct intel_screen *screen = dri_screen->driverPrivate;
2168
2169 /* Expose only BGRA ordering if the loader doesn't support RGBA ordering. */
2170 bool allow_rgba_ordering = intel_loader_get_cap(dri_screen, DRI_LOADER_CAP_RGBA_ORDERING);
2171 if (!allow_rgba_ordering &&
2172 (format == MESA_FORMAT_R8G8B8A8_UNORM ||
2173 format == MESA_FORMAT_R8G8B8X8_UNORM ||
2174 format == MESA_FORMAT_R8G8B8A8_SRGB))
2175 return false;
2176
2177 /* Shall we expose 10 bpc formats? */
2178 bool allow_rgb10_configs = driQueryOptionb(&screen->optionCache,
2179 "allow_rgb10_configs");
2180 if (!allow_rgb10_configs &&
2181 (format == MESA_FORMAT_B10G10R10A2_UNORM ||
2182 format == MESA_FORMAT_B10G10R10X2_UNORM))
2183 return false;
2184
2185 /* Shall we expose 565 formats? */
2186 bool allow_rgb565_configs = driQueryOptionb(&screen->optionCache,
2187 "allow_rgb565_configs");
2188 if (!allow_rgb565_configs && format == MESA_FORMAT_B5G6R5_UNORM)
2189 return false;
2190
2191 /* Shall we expose fp16 formats? */
2192 bool allow_fp16_configs = driQueryOptionb(&screen->optionCache,
2193 "allow_fp16_configs");
2194 allow_fp16_configs &= intel_loader_get_cap(dri_screen, DRI_LOADER_CAP_FP16);
2195 if (!allow_fp16_configs &&
2196 (format == MESA_FORMAT_RGBA_FLOAT16 ||
2197 format == MESA_FORMAT_RGBX_FLOAT16))
2198 return false;
2199
2200 return true;
2201 }
2202
2203 static __DRIconfig**
2204 intel_screen_make_configs(__DRIscreen *dri_screen)
2205 {
2206 static const mesa_format formats[] = {
2207 MESA_FORMAT_B5G6R5_UNORM,
2208 MESA_FORMAT_B8G8R8A8_UNORM,
2209 MESA_FORMAT_B8G8R8X8_UNORM,
2210
2211 MESA_FORMAT_B8G8R8A8_SRGB,
2212
2213 /* For 10 bpc, 30 bit depth framebuffers. */
2214 MESA_FORMAT_B10G10R10A2_UNORM,
2215 MESA_FORMAT_B10G10R10X2_UNORM,
2216
2217 MESA_FORMAT_RGBA_FLOAT16,
2218 MESA_FORMAT_RGBX_FLOAT16,
2219
2220 /* The 32-bit RGBA format must not precede the 32-bit BGRA format.
2221 * Likewise for RGBX and BGRX. Otherwise, the GLX client and the GLX
2222 * server may disagree on which format the GLXFBConfig represents,
2223 * resulting in swapped color channels.
2224 *
2225 * The problem, as of 2017-05-30:
2226 * When matching a GLXFBConfig to a __DRIconfig, GLX ignores the channel
2227 * order and chooses the first __DRIconfig with the expected channel
2228 * sizes. Specifically, GLX compares the GLXFBConfig's and __DRIconfig's
2229 * __DRI_ATTRIB_{CHANNEL}_SIZE but ignores __DRI_ATTRIB_{CHANNEL}_MASK.
2230 *
2231 * EGL does not suffer from this problem. It correctly compares the
2232 * channel masks when matching EGLConfig to __DRIconfig.
2233 */
2234
2235 /* Required by Android, for HAL_PIXEL_FORMAT_RGBA_8888. */
2236 MESA_FORMAT_R8G8B8A8_UNORM,
2237
2238 /* Required by Android, for HAL_PIXEL_FORMAT_RGBX_8888. */
2239 MESA_FORMAT_R8G8B8X8_UNORM,
2240
2241 MESA_FORMAT_R8G8B8A8_SRGB,
2242 };
2243
2244 /* __DRI_ATTRIB_SWAP_COPY is not supported due to page flipping. */
2245 static const GLenum back_buffer_modes[] = {
2246 __DRI_ATTRIB_SWAP_UNDEFINED, __DRI_ATTRIB_SWAP_NONE
2247 };
2248
2249 static const uint8_t singlesample_samples[1] = {0};
2250
2251 struct intel_screen *screen = dri_screen->driverPrivate;
2252 const struct gen_device_info *devinfo = &screen->devinfo;
2253 uint8_t depth_bits[4], stencil_bits[4];
2254 __DRIconfig **configs = NULL;
2255
2256 unsigned num_formats = ARRAY_SIZE(formats);
2257
2258 /* Generate singlesample configs, each without accumulation buffer
2259 * and with EGL_MUTABLE_RENDER_BUFFER_BIT_KHR.
2260 */
2261 for (unsigned i = 0; i < num_formats; i++) {
2262 __DRIconfig **new_configs;
2263 int num_depth_stencil_bits = 2;
2264
2265 if (!intel_allowed_format(dri_screen, formats[i]))
2266 continue;
2267
2268 /* Starting with DRI2 protocol version 1.1 we can request a depth/stencil
2269 * buffer that has a different number of bits per pixel than the color
2270 * buffer, gen >= 6 supports this.
2271 */
2272 depth_bits[0] = 0;
2273 stencil_bits[0] = 0;
2274
2275 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
2276 depth_bits[1] = 16;
2277 stencil_bits[1] = 0;
2278 if (devinfo->gen >= 6) {
2279 depth_bits[2] = 24;
2280 stencil_bits[2] = 8;
2281 num_depth_stencil_bits = 3;
2282 }
2283 } else {
2284 depth_bits[1] = 24;
2285 stencil_bits[1] = 8;
2286 }
2287
2288 new_configs = driCreateConfigs(formats[i],
2289 depth_bits,
2290 stencil_bits,
2291 num_depth_stencil_bits,
2292 back_buffer_modes, 2,
2293 singlesample_samples, 1,
2294 false, false,
2295 /*mutable_render_buffer*/ true);
2296 configs = driConcatConfigs(configs, new_configs);
2297 }
2298
2299 /* Generate the minimum possible set of configs that include an
2300 * accumulation buffer.
2301 */
2302 for (unsigned i = 0; i < num_formats; i++) {
2303 __DRIconfig **new_configs;
2304
2305 if (!intel_allowed_format(dri_screen, formats[i]))
2306 continue;
2307
2308 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
2309 depth_bits[0] = 16;
2310 stencil_bits[0] = 0;
2311 } else {
2312 depth_bits[0] = 24;
2313 stencil_bits[0] = 8;
2314 }
2315
2316 new_configs = driCreateConfigs(formats[i],
2317 depth_bits, stencil_bits, 1,
2318 back_buffer_modes, 1,
2319 singlesample_samples, 1,
2320 true, false, false);
2321 configs = driConcatConfigs(configs, new_configs);
2322 }
2323
2324 /* Generate multisample configs.
2325 *
2326 * This loop breaks early, and hence is a no-op, on gen < 6.
2327 *
2328 * Multisample configs must follow the singlesample configs in order to
2329 * work around an X server bug present in 1.12. The X server chooses to
2330 * associate the first listed RGBA888-Z24S8 config, regardless of its
2331 * sample count, with the 32-bit depth visual used for compositing.
2332 *
2333 * Only doublebuffer configs with GLX_SWAP_UNDEFINED_OML behavior are
2334 * supported. Singlebuffer configs are not supported because no one wants
2335 * them.
2336 */
2337 for (unsigned i = 0; i < num_formats; i++) {
2338 if (devinfo->gen < 6)
2339 break;
2340
2341 if (!intel_allowed_format(dri_screen, formats[i]))
2342 continue;
2343
2344 __DRIconfig **new_configs;
2345 const int num_depth_stencil_bits = 2;
2346 int num_msaa_modes = 0;
2347 const uint8_t *multisample_samples = NULL;
2348
2349 depth_bits[0] = 0;
2350 stencil_bits[0] = 0;
2351
2352 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
2353 depth_bits[1] = 16;
2354 stencil_bits[1] = 0;
2355 } else {
2356 depth_bits[1] = 24;
2357 stencil_bits[1] = 8;
2358 }
2359
2360 if (devinfo->gen >= 9) {
2361 static const uint8_t multisample_samples_gen9[] = {2, 4, 8, 16};
2362 multisample_samples = multisample_samples_gen9;
2363 num_msaa_modes = ARRAY_SIZE(multisample_samples_gen9);
2364 } else if (devinfo->gen == 8) {
2365 static const uint8_t multisample_samples_gen8[] = {2, 4, 8};
2366 multisample_samples = multisample_samples_gen8;
2367 num_msaa_modes = ARRAY_SIZE(multisample_samples_gen8);
2368 } else if (devinfo->gen == 7) {
2369 static const uint8_t multisample_samples_gen7[] = {4, 8};
2370 multisample_samples = multisample_samples_gen7;
2371 num_msaa_modes = ARRAY_SIZE(multisample_samples_gen7);
2372 } else if (devinfo->gen == 6) {
2373 static const uint8_t multisample_samples_gen6[] = {4};
2374 multisample_samples = multisample_samples_gen6;
2375 num_msaa_modes = ARRAY_SIZE(multisample_samples_gen6);
2376 }
2377
2378 new_configs = driCreateConfigs(formats[i],
2379 depth_bits,
2380 stencil_bits,
2381 num_depth_stencil_bits,
2382 back_buffer_modes, 1,
2383 multisample_samples,
2384 num_msaa_modes,
2385 false, false, false);
2386 configs = driConcatConfigs(configs, new_configs);
2387 }
2388
2389 if (configs == NULL) {
2390 fprintf(stderr, "[%s:%u] Error creating FBConfig!\n", __func__,
2391 __LINE__);
2392 return NULL;
2393 }
2394
2395 return configs;
2396 }
2397
2398 static void
2399 set_max_gl_versions(struct intel_screen *screen)
2400 {
2401 __DRIscreen *dri_screen = screen->driScrnPriv;
2402 const bool has_astc = screen->devinfo.gen >= 9;
2403
2404 switch (screen->devinfo.gen) {
2405 case 11:
2406 case 10:
2407 case 9:
2408 case 8:
2409 dri_screen->max_gl_core_version = 46;
2410 dri_screen->max_gl_compat_version = 30;
2411 dri_screen->max_gl_es1_version = 11;
2412 dri_screen->max_gl_es2_version = has_astc ? 32 : 31;
2413 break;
2414 case 7:
2415 dri_screen->max_gl_core_version = 33;
2416 if (can_do_pipelined_register_writes(screen)) {
2417 dri_screen->max_gl_core_version = 42;
2418 if (screen->devinfo.is_haswell && can_do_compute_dispatch(screen))
2419 dri_screen->max_gl_core_version = 43;
2420 if (screen->devinfo.is_haswell && can_do_mi_math_and_lrr(screen))
2421 dri_screen->max_gl_core_version = 45;
2422 }
2423 dri_screen->max_gl_compat_version = 30;
2424 dri_screen->max_gl_es1_version = 11;
2425 dri_screen->max_gl_es2_version = screen->devinfo.is_haswell ? 31 : 30;
2426 break;
2427 case 6:
2428 dri_screen->max_gl_core_version = 33;
2429 dri_screen->max_gl_compat_version = 30;
2430 dri_screen->max_gl_es1_version = 11;
2431 dri_screen->max_gl_es2_version = 30;
2432 break;
2433 case 5:
2434 case 4:
2435 dri_screen->max_gl_core_version = 0;
2436 dri_screen->max_gl_compat_version = 21;
2437 dri_screen->max_gl_es1_version = 11;
2438 dri_screen->max_gl_es2_version = 20;
2439 break;
2440 default:
2441 unreachable("unrecognized intel_screen::gen");
2442 }
2443 }
2444
2445 static void
2446 shader_debug_log_mesa(void *data, const char *fmt, ...)
2447 {
2448 struct brw_context *brw = (struct brw_context *)data;
2449 va_list args;
2450
2451 va_start(args, fmt);
2452 GLuint msg_id = 0;
2453 _mesa_gl_vdebugf(&brw->ctx, &msg_id,
2454 MESA_DEBUG_SOURCE_SHADER_COMPILER,
2455 MESA_DEBUG_TYPE_OTHER,
2456 MESA_DEBUG_SEVERITY_NOTIFICATION, fmt, args);
2457 va_end(args);
2458 }
2459
2460 static void
2461 shader_perf_log_mesa(void *data, const char *fmt, ...)
2462 {
2463 struct brw_context *brw = (struct brw_context *)data;
2464
2465 va_list args;
2466 va_start(args, fmt);
2467
2468 if (unlikely(INTEL_DEBUG & DEBUG_PERF)) {
2469 va_list args_copy;
2470 va_copy(args_copy, args);
2471 vfprintf(stderr, fmt, args_copy);
2472 va_end(args_copy);
2473 }
2474
2475 if (brw->perf_debug) {
2476 GLuint msg_id = 0;
2477 _mesa_gl_vdebugf(&brw->ctx, &msg_id,
2478 MESA_DEBUG_SOURCE_SHADER_COMPILER,
2479 MESA_DEBUG_TYPE_PERFORMANCE,
2480 MESA_DEBUG_SEVERITY_MEDIUM, fmt, args);
2481 }
2482 va_end(args);
2483 }
2484
2485 /**
2486 * This is the driver specific part of the createNewScreen entry point.
2487 * Called when using DRI2.
2488 *
2489 * \return the struct gl_config supported by this driver
2490 */
2491 static const
2492 __DRIconfig **intelInitScreen2(__DRIscreen *dri_screen)
2493 {
2494 struct intel_screen *screen;
2495
2496 if (dri_screen->image.loader) {
2497 } else if (dri_screen->dri2.loader->base.version <= 2 ||
2498 dri_screen->dri2.loader->getBuffersWithFormat == NULL) {
2499 fprintf(stderr,
2500 "\nERROR! DRI2 loader with getBuffersWithFormat() "
2501 "support required\n");
2502 return NULL;
2503 }
2504
2505 /* Allocate the private area */
2506 screen = rzalloc(NULL, struct intel_screen);
2507 if (!screen) {
2508 fprintf(stderr, "\nERROR! Allocating private area failed\n");
2509 return NULL;
2510 }
2511 /* parse information in __driConfigOptions */
2512 driOptionCache options;
2513 memset(&options, 0, sizeof(options));
2514
2515 driParseOptionInfo(&options, brw_config_options.xml);
2516 driParseConfigFiles(&screen->optionCache, &options, dri_screen->myNum,
2517 "i965", NULL);
2518 driDestroyOptionCache(&options);
2519
2520 screen->driScrnPriv = dri_screen;
2521 dri_screen->driverPrivate = (void *) screen;
2522
2523 if (!gen_get_device_info_from_fd(dri_screen->fd, &screen->devinfo))
2524 return NULL;
2525
2526 const struct gen_device_info *devinfo = &screen->devinfo;
2527 screen->deviceID = devinfo->chipset_id;
2528 screen->no_hw = devinfo->no_hw;
2529
2530 if (devinfo->gen >= 12) {
2531 fprintf(stderr, "gen12 and newer are not supported on i965\n");
2532 return NULL;
2533 }
2534
2535 if (!intel_init_bufmgr(screen))
2536 return NULL;
2537
2538 brw_process_intel_debug_variable();
2539
2540 if ((INTEL_DEBUG & DEBUG_SHADER_TIME) && devinfo->gen < 7) {
2541 fprintf(stderr,
2542 "shader_time debugging requires gen7 (Ivybridge) or better.\n");
2543 INTEL_DEBUG &= ~DEBUG_SHADER_TIME;
2544 }
2545
2546 if (intel_get_integer(screen, I915_PARAM_MMAP_GTT_VERSION) >= 1) {
2547 /* Theorectically unlimited! At least for individual objects...
2548 *
2549 * Currently the entire (global) address space for all GTT maps is
2550 * limited to 64bits. That is all objects on the system that are
2551 * setup for GTT mmapping must fit within 64bits. An attempt to use
2552 * one that exceeds the limit with fail in brw_bo_map_gtt().
2553 *
2554 * Long before we hit that limit, we will be practically limited by
2555 * that any single object must fit in physical memory (RAM). The upper
2556 * limit on the CPU's address space is currently 48bits (Skylake), of
2557 * which only 39bits can be physical memory. (The GPU itself also has
2558 * a 48bit addressable virtual space.) We can fit over 32 million
2559 * objects of the current maximum allocable size before running out
2560 * of mmap space.
2561 */
2562 screen->max_gtt_map_object_size = UINT64_MAX;
2563 } else {
2564 /* Estimate the size of the mappable aperture into the GTT. There's an
2565 * ioctl to get the whole GTT size, but not one to get the mappable subset.
2566 * It turns out it's basically always 256MB, though some ancient hardware
2567 * was smaller.
2568 */
2569 uint32_t gtt_size = 256 * 1024 * 1024;
2570
2571 /* We don't want to map two objects such that a memcpy between them would
2572 * just fault one mapping in and then the other over and over forever. So
2573 * we would need to divide the GTT size by 2. Additionally, some GTT is
2574 * taken up by things like the framebuffer and the ringbuffer and such, so
2575 * be more conservative.
2576 */
2577 screen->max_gtt_map_object_size = gtt_size / 4;
2578 }
2579
2580 screen->aperture_threshold = get_aperture_size(dri_screen->fd) * 3 / 4;
2581
2582 screen->hw_has_swizzling = intel_detect_swizzling(screen);
2583 screen->hw_has_timestamp = intel_detect_timestamp(screen);
2584
2585 isl_device_init(&screen->isl_dev, &screen->devinfo,
2586 screen->hw_has_swizzling);
2587
2588 if (devinfo->gen >= 10)
2589 intel_cs_timestamp_frequency(screen);
2590
2591 /* GENs prior to 8 do not support EU/Subslice info */
2592 if (devinfo->gen >= 8) {
2593 intel_detect_sseu(screen);
2594 } else if (devinfo->gen == 7) {
2595 screen->subslice_total = 1 << (devinfo->gt - 1);
2596 }
2597
2598 /* Gen7-7.5 kernel requirements / command parser saga:
2599 *
2600 * - pre-v3.16:
2601 * Haswell and Baytrail cannot use any privileged batchbuffer features.
2602 *
2603 * Ivybridge has aliasing PPGTT on by default, which accidentally marks
2604 * all batches secure, allowing them to use any feature with no checking.
2605 * This is effectively equivalent to a command parser version of
2606 * \infinity - everything is possible.
2607 *
2608 * The command parser does not exist, and querying the version will
2609 * return -EINVAL.
2610 *
2611 * - v3.16:
2612 * The kernel enables the command parser by default, for systems with
2613 * aliasing PPGTT enabled (Ivybridge and Haswell). However, the
2614 * hardware checker is still enabled, so Haswell and Baytrail cannot
2615 * do anything.
2616 *
2617 * Ivybridge goes from "everything is possible" to "only what the
2618 * command parser allows" (if the user boots with i915.cmd_parser=0,
2619 * then everything is possible again). We can only safely use features
2620 * allowed by the supported command parser version.
2621 *
2622 * Annoyingly, I915_PARAM_CMD_PARSER_VERSION reports the static version
2623 * implemented by the kernel, even if it's turned off. So, checking
2624 * for version > 0 does not mean that you can write registers. We have
2625 * to try it and see. The version does, however, indicate the age of
2626 * the kernel.
2627 *
2628 * Instead of matching the hardware checker's behavior of converting
2629 * privileged commands to MI_NOOP, it makes execbuf2 start returning
2630 * -EINVAL, making it dangerous to try and use privileged features.
2631 *
2632 * Effective command parser versions:
2633 * - Haswell: 0 (reporting 1, writes don't work)
2634 * - Baytrail: 0 (reporting 1, writes don't work)
2635 * - Ivybridge: 1 (enabled) or infinite (disabled)
2636 *
2637 * - v3.17:
2638 * Baytrail aliasing PPGTT is enabled, making it like Ivybridge:
2639 * effectively version 1 (enabled) or infinite (disabled).
2640 *
2641 * - v3.19: f1f55cc0556031c8ee3fe99dae7251e78b9b653b
2642 * Command parser v2 supports predicate writes.
2643 *
2644 * - Haswell: 0 (reporting 1, writes don't work)
2645 * - Baytrail: 2 (enabled) or infinite (disabled)
2646 * - Ivybridge: 2 (enabled) or infinite (disabled)
2647 *
2648 * So version >= 2 is enough to know that Ivybridge and Baytrail
2649 * will work. Haswell still can't do anything.
2650 *
2651 * - v4.0: Version 3 happened. Largely not relevant.
2652 *
2653 * - v4.1: 6702cf16e0ba8b0129f5aa1b6609d4e9c70bc13b
2654 * L3 config registers are properly saved and restored as part
2655 * of the hardware context. We can approximately detect this point
2656 * in time by checking if I915_PARAM_REVISION is recognized - it
2657 * landed in a later commit, but in the same release cycle.
2658 *
2659 * - v4.2: 245054a1fe33c06ad233e0d58a27ec7b64db9284
2660 * Command parser finally gains secure batch promotion. On Haswell,
2661 * the hardware checker gets disabled, which finally allows it to do
2662 * privileged commands.
2663 *
2664 * I915_PARAM_CMD_PARSER_VERSION reports 3. Effective versions:
2665 * - Haswell: 3 (enabled) or 0 (disabled)
2666 * - Baytrail: 3 (enabled) or infinite (disabled)
2667 * - Ivybridge: 3 (enabled) or infinite (disabled)
2668 *
2669 * Unfortunately, detecting this point in time is tricky, because
2670 * no version bump happened when this important change occurred.
2671 * On Haswell, if we can write any register, then the kernel is at
2672 * least this new, and we can start trusting the version number.
2673 *
2674 * - v4.4: 2bbe6bbb0dc94fd4ce287bdac9e1bd184e23057b and
2675 * Command parser reaches version 4, allowing access to Haswell
2676 * atomic scratch and chicken3 registers. If version >= 4, we know
2677 * the kernel is new enough to support privileged features on all
2678 * hardware. However, the user might have disabled it...and the
2679 * kernel will still report version 4. So we still have to guess
2680 * and check.
2681 *
2682 * - v4.4: 7b9748cb513a6bef4af87b79f0da3ff7e8b56cd8
2683 * Command parser v5 whitelists indirect compute shader dispatch
2684 * registers, needed for OpenGL 4.3 and later.
2685 *
2686 * - v4.8:
2687 * Command parser v7 lets us use MI_MATH on Haswell.
2688 *
2689 * Additionally, the kernel begins reporting version 0 when
2690 * the command parser is disabled, allowing us to skip the
2691 * guess-and-check step on Haswell. Unfortunately, this also
2692 * means that we can no longer use it as an indicator of the
2693 * age of the kernel.
2694 */
2695 if (intel_get_param(screen, I915_PARAM_CMD_PARSER_VERSION,
2696 &screen->cmd_parser_version) < 0) {
2697 /* Command parser does not exist - getparam is unrecognized */
2698 screen->cmd_parser_version = 0;
2699 }
2700
2701 /* Kernel 4.13 retuired for exec object capture */
2702 if (intel_get_boolean(screen, I915_PARAM_HAS_EXEC_CAPTURE)) {
2703 screen->kernel_features |= KERNEL_ALLOWS_EXEC_CAPTURE;
2704 }
2705
2706 if (intel_get_boolean(screen, I915_PARAM_HAS_EXEC_BATCH_FIRST)) {
2707 screen->kernel_features |= KERNEL_ALLOWS_EXEC_BATCH_FIRST;
2708 }
2709
2710 if (!intel_detect_pipelined_so(screen)) {
2711 /* We can't do anything, so the effective version is 0. */
2712 screen->cmd_parser_version = 0;
2713 } else {
2714 screen->kernel_features |= KERNEL_ALLOWS_SOL_OFFSET_WRITES;
2715 }
2716
2717 if (devinfo->gen >= 8 || screen->cmd_parser_version >= 2)
2718 screen->kernel_features |= KERNEL_ALLOWS_PREDICATE_WRITES;
2719
2720 /* Haswell requires command parser version 4 in order to have L3
2721 * atomic scratch1 and chicken3 bits
2722 */
2723 if (devinfo->is_haswell && screen->cmd_parser_version >= 4) {
2724 screen->kernel_features |=
2725 KERNEL_ALLOWS_HSW_SCRATCH1_AND_ROW_CHICKEN3;
2726 }
2727
2728 /* Haswell requires command parser version 6 in order to write to the
2729 * MI_MATH GPR registers, and version 7 in order to use
2730 * MI_LOAD_REGISTER_REG (which all users of MI_MATH use).
2731 */
2732 if (devinfo->gen >= 8 ||
2733 (devinfo->is_haswell && screen->cmd_parser_version >= 7)) {
2734 screen->kernel_features |= KERNEL_ALLOWS_MI_MATH_AND_LRR;
2735 }
2736
2737 /* Gen7 needs at least command parser version 5 to support compute */
2738 if (devinfo->gen >= 8 || screen->cmd_parser_version >= 5)
2739 screen->kernel_features |= KERNEL_ALLOWS_COMPUTE_DISPATCH;
2740
2741 if (intel_get_boolean(screen, I915_PARAM_HAS_CONTEXT_ISOLATION))
2742 screen->kernel_features |= KERNEL_ALLOWS_CONTEXT_ISOLATION;
2743
2744 const char *force_msaa = getenv("INTEL_FORCE_MSAA");
2745 if (force_msaa) {
2746 screen->winsys_msaa_samples_override =
2747 intel_quantize_num_samples(screen, atoi(force_msaa));
2748 printf("Forcing winsys sample count to %d\n",
2749 screen->winsys_msaa_samples_override);
2750 } else {
2751 screen->winsys_msaa_samples_override = -1;
2752 }
2753
2754 set_max_gl_versions(screen);
2755
2756 /* Notification of GPU resets requires hardware contexts and a kernel new
2757 * enough to support DRM_IOCTL_I915_GET_RESET_STATS. If the ioctl is
2758 * supported, calling it with a context of 0 will either generate EPERM or
2759 * no error. If the ioctl is not supported, it always generate EINVAL.
2760 * Use this to determine whether to advertise the __DRI2_ROBUSTNESS
2761 * extension to the loader.
2762 *
2763 * Don't even try on pre-Gen6, since we don't attempt to use contexts there.
2764 */
2765 if (devinfo->gen >= 6) {
2766 struct drm_i915_reset_stats stats;
2767 memset(&stats, 0, sizeof(stats));
2768
2769 const int ret = drmIoctl(dri_screen->fd, DRM_IOCTL_I915_GET_RESET_STATS, &stats);
2770
2771 screen->has_context_reset_notification =
2772 (ret != -1 || errno != EINVAL);
2773 }
2774
2775 dri_screen->extensions = !screen->has_context_reset_notification
2776 ? screenExtensions : intelRobustScreenExtensions;
2777
2778 screen->compiler = brw_compiler_create(screen, devinfo);
2779 screen->compiler->shader_debug_log = shader_debug_log_mesa;
2780 screen->compiler->shader_perf_log = shader_perf_log_mesa;
2781
2782 /* Changing the meaning of constant buffer pointers from a dynamic state
2783 * offset to an absolute address is only safe if the kernel isolates other
2784 * contexts from our changes.
2785 */
2786 screen->compiler->constant_buffer_0_is_relative = devinfo->gen < 8 ||
2787 !(screen->kernel_features & KERNEL_ALLOWS_CONTEXT_ISOLATION);
2788
2789 screen->compiler->supports_pull_constants = true;
2790
2791 screen->has_exec_fence =
2792 intel_get_boolean(screen, I915_PARAM_HAS_EXEC_FENCE);
2793
2794 intel_screen_init_surface_formats(screen);
2795
2796 if (INTEL_DEBUG & (DEBUG_BATCH | DEBUG_SUBMIT)) {
2797 unsigned int caps = intel_get_integer(screen, I915_PARAM_HAS_SCHEDULER);
2798 if (caps) {
2799 fprintf(stderr, "Kernel scheduler detected: %08x\n", caps);
2800 if (caps & I915_SCHEDULER_CAP_PRIORITY)
2801 fprintf(stderr, " - User priority sorting enabled\n");
2802 if (caps & I915_SCHEDULER_CAP_PREEMPTION)
2803 fprintf(stderr, " - Preemption enabled\n");
2804 }
2805 }
2806
2807 brw_disk_cache_init(screen);
2808
2809 return (const __DRIconfig**) intel_screen_make_configs(dri_screen);
2810 }
2811
2812 struct intel_buffer {
2813 __DRIbuffer base;
2814 struct brw_bo *bo;
2815 };
2816
2817 static __DRIbuffer *
2818 intelAllocateBuffer(__DRIscreen *dri_screen,
2819 unsigned attachment, unsigned format,
2820 int width, int height)
2821 {
2822 struct intel_buffer *intelBuffer;
2823 struct intel_screen *screen = dri_screen->driverPrivate;
2824
2825 assert(attachment == __DRI_BUFFER_FRONT_LEFT ||
2826 attachment == __DRI_BUFFER_BACK_LEFT);
2827
2828 intelBuffer = calloc(1, sizeof *intelBuffer);
2829 if (intelBuffer == NULL)
2830 return NULL;
2831
2832 /* The front and back buffers are color buffers, which are X tiled. GEN9+
2833 * supports Y tiled and compressed buffers, but there is no way to plumb that
2834 * through to here. */
2835 uint32_t pitch;
2836 int cpp = format / 8;
2837 intelBuffer->bo = brw_bo_alloc_tiled_2d(screen->bufmgr,
2838 "intelAllocateBuffer",
2839 width,
2840 height,
2841 cpp,
2842 BRW_MEMZONE_OTHER,
2843 I915_TILING_X, &pitch,
2844 BO_ALLOC_BUSY);
2845
2846 if (intelBuffer->bo == NULL) {
2847 free(intelBuffer);
2848 return NULL;
2849 }
2850
2851 brw_bo_flink(intelBuffer->bo, &intelBuffer->base.name);
2852
2853 intelBuffer->base.attachment = attachment;
2854 intelBuffer->base.cpp = cpp;
2855 intelBuffer->base.pitch = pitch;
2856
2857 return &intelBuffer->base;
2858 }
2859
2860 static void
2861 intelReleaseBuffer(__DRIscreen *dri_screen, __DRIbuffer *buffer)
2862 {
2863 struct intel_buffer *intelBuffer = (struct intel_buffer *) buffer;
2864
2865 brw_bo_unreference(intelBuffer->bo);
2866 free(intelBuffer);
2867 }
2868
2869 static const struct __DriverAPIRec brw_driver_api = {
2870 .InitScreen = intelInitScreen2,
2871 .DestroyScreen = intelDestroyScreen,
2872 .CreateContext = brwCreateContext,
2873 .DestroyContext = intelDestroyContext,
2874 .CreateBuffer = intelCreateBuffer,
2875 .DestroyBuffer = intelDestroyBuffer,
2876 .MakeCurrent = intelMakeCurrent,
2877 .UnbindContext = intelUnbindContext,
2878 .AllocateBuffer = intelAllocateBuffer,
2879 .ReleaseBuffer = intelReleaseBuffer
2880 };
2881
2882 static const struct __DRIDriverVtableExtensionRec brw_vtable = {
2883 .base = { __DRI_DRIVER_VTABLE, 1 },
2884 .vtable = &brw_driver_api,
2885 };
2886
2887 static const __DRIextension *brw_driver_extensions[] = {
2888 &driCoreExtension.base,
2889 &driImageDriverExtension.base,
2890 &driDRI2Extension.base,
2891 &brw_vtable.base,
2892 &brw_config_options.base,
2893 NULL
2894 };
2895
2896 PUBLIC const __DRIextension **__driDriverGetExtensions_i965(void)
2897 {
2898 globalDriverAPI = &brw_driver_api;
2899
2900 return brw_driver_extensions;
2901 }