intel/fs: Add an option to lower variable group size in backend
[mesa.git] / src / mesa / drivers / dri / i965 / intel_screen.c
1 /*
2 * Copyright 2003 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include "drm-uapi/drm_fourcc.h"
27 #include <errno.h>
28 #include <time.h>
29 #include <unistd.h>
30 #include "main/context.h"
31 #include "main/framebuffer.h"
32 #include "main/renderbuffer.h"
33 #include "main/texobj.h"
34 #include "main/hash.h"
35 #include "main/fbobject.h"
36 #include "main/version.h"
37 #include "main/glthread.h"
38 #include "swrast/s_renderbuffer.h"
39 #include "util/ralloc.h"
40 #include "util/disk_cache.h"
41 #include "brw_defines.h"
42 #include "brw_state.h"
43 #include "compiler/nir/nir.h"
44
45 #include "utils.h"
46 #include "util/disk_cache.h"
47 #include "util/xmlpool.h"
48 #include "util/u_memory.h"
49
50 #include "common/gen_defines.h"
51
52 static const __DRIconfigOptionsExtension brw_config_options = {
53 .base = { __DRI_CONFIG_OPTIONS, 1 },
54 .xml =
55 DRI_CONF_BEGIN
56 DRI_CONF_SECTION_PERFORMANCE
57 /* Options correspond to DRI_CONF_BO_REUSE_DISABLED,
58 * DRI_CONF_BO_REUSE_ALL
59 */
60 DRI_CONF_OPT_BEGIN_V(bo_reuse, enum, 1, "0:1")
61 DRI_CONF_DESC_BEGIN(en, "Buffer object reuse")
62 DRI_CONF_ENUM(0, "Disable buffer object reuse")
63 DRI_CONF_ENUM(1, "Enable reuse of all sizes of buffer objects")
64 DRI_CONF_DESC_END
65 DRI_CONF_OPT_END
66 DRI_CONF_MESA_NO_ERROR("false")
67 DRI_CONF_MESA_GLTHREAD("false")
68 DRI_CONF_SECTION_END
69
70 DRI_CONF_SECTION_QUALITY
71 DRI_CONF_PRECISE_TRIG("false")
72
73 DRI_CONF_OPT_BEGIN(clamp_max_samples, int, -1)
74 DRI_CONF_DESC(en, "Clamp the value of GL_MAX_SAMPLES to the "
75 "given integer. If negative, then do not clamp.")
76 DRI_CONF_OPT_END
77 DRI_CONF_SECTION_END
78
79 DRI_CONF_SECTION_DEBUG
80 DRI_CONF_ALWAYS_FLUSH_BATCH("false")
81 DRI_CONF_ALWAYS_FLUSH_CACHE("false")
82 DRI_CONF_DISABLE_THROTTLING("false")
83 DRI_CONF_FORCE_GLSL_EXTENSIONS_WARN("false")
84 DRI_CONF_FORCE_GLSL_VERSION(0)
85 DRI_CONF_DISABLE_GLSL_LINE_CONTINUATIONS("false")
86 DRI_CONF_DISABLE_BLEND_FUNC_EXTENDED("false")
87 DRI_CONF_DUAL_COLOR_BLEND_BY_LOCATION("false")
88 DRI_CONF_ALLOW_GLSL_EXTENSION_DIRECTIVE_MIDSHADER("false")
89 DRI_CONF_ALLOW_GLSL_BUILTIN_VARIABLE_REDECLARATION("false")
90 DRI_CONF_ALLOW_GLSL_CROSS_STAGE_INTERPOLATION_MISMATCH("false")
91 DRI_CONF_ALLOW_HIGHER_COMPAT_VERSION("false")
92 DRI_CONF_FORCE_COMPAT_PROFILE("false")
93 DRI_CONF_FORCE_GLSL_ABS_SQRT("false")
94
95 DRI_CONF_OPT_BEGIN_B(shader_precompile, "true")
96 DRI_CONF_DESC(en, "Perform code generation at shader link time.")
97 DRI_CONF_OPT_END
98 DRI_CONF_SECTION_END
99
100 DRI_CONF_SECTION_MISCELLANEOUS
101 DRI_CONF_GLSL_ZERO_INIT("false")
102 DRI_CONF_VS_POSITION_ALWAYS_INVARIANT("false")
103 DRI_CONF_ALLOW_RGB10_CONFIGS("false")
104 DRI_CONF_ALLOW_RGB565_CONFIGS("true")
105 DRI_CONF_ALLOW_FP16_CONFIGS("false")
106 DRI_CONF_SECTION_END
107 DRI_CONF_END
108 };
109
110 #include "intel_batchbuffer.h"
111 #include "intel_buffers.h"
112 #include "brw_bufmgr.h"
113 #include "intel_fbo.h"
114 #include "intel_mipmap_tree.h"
115 #include "intel_screen.h"
116 #include "intel_tex.h"
117 #include "intel_image.h"
118
119 #include "brw_context.h"
120
121 #include "drm-uapi/i915_drm.h"
122
123 /**
124 * For debugging purposes, this returns a time in seconds.
125 */
126 double
127 get_time(void)
128 {
129 struct timespec tp;
130
131 clock_gettime(CLOCK_MONOTONIC, &tp);
132
133 return tp.tv_sec + tp.tv_nsec / 1000000000.0;
134 }
135
136 static const __DRItexBufferExtension intelTexBufferExtension = {
137 .base = { __DRI_TEX_BUFFER, 3 },
138
139 .setTexBuffer = intelSetTexBuffer,
140 .setTexBuffer2 = intelSetTexBuffer2,
141 .releaseTexBuffer = intelReleaseTexBuffer,
142 };
143
144 static void
145 intel_dri2_flush_with_flags(__DRIcontext *cPriv,
146 __DRIdrawable *dPriv,
147 unsigned flags,
148 enum __DRI2throttleReason reason)
149 {
150 struct brw_context *brw = cPriv->driverPrivate;
151
152 if (!brw)
153 return;
154
155 struct gl_context *ctx = &brw->ctx;
156
157 _mesa_glthread_finish(ctx);
158
159 FLUSH_VERTICES(ctx, 0);
160
161 if (flags & __DRI2_FLUSH_DRAWABLE)
162 intel_resolve_for_dri2_flush(brw, dPriv);
163
164 if (reason == __DRI2_THROTTLE_SWAPBUFFER)
165 brw->need_swap_throttle = true;
166 if (reason == __DRI2_THROTTLE_FLUSHFRONT)
167 brw->need_flush_throttle = true;
168
169 intel_batchbuffer_flush(brw);
170 }
171
172 /**
173 * Provides compatibility with loaders that only support the older (version
174 * 1-3) flush interface.
175 *
176 * That includes libGL up to Mesa 9.0, and the X Server at least up to 1.13.
177 */
178 static void
179 intel_dri2_flush(__DRIdrawable *drawable)
180 {
181 intel_dri2_flush_with_flags(drawable->driContextPriv, drawable,
182 __DRI2_FLUSH_DRAWABLE,
183 __DRI2_THROTTLE_SWAPBUFFER);
184 }
185
186 static const struct __DRI2flushExtensionRec intelFlushExtension = {
187 .base = { __DRI2_FLUSH, 4 },
188
189 .flush = intel_dri2_flush,
190 .invalidate = dri2InvalidateDrawable,
191 .flush_with_flags = intel_dri2_flush_with_flags,
192 };
193
194 static const struct intel_image_format intel_image_formats[] = {
195 { DRM_FORMAT_ABGR16161616F, __DRI_IMAGE_COMPONENTS_RGBA, 1,
196 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ABGR16161616F, 8 } } },
197
198 { DRM_FORMAT_XBGR16161616F, __DRI_IMAGE_COMPONENTS_RGB, 1,
199 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XBGR16161616F, 8 } } },
200
201 { DRM_FORMAT_ARGB2101010, __DRI_IMAGE_COMPONENTS_RGBA, 1,
202 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB2101010, 4 } } },
203
204 { DRM_FORMAT_XRGB2101010, __DRI_IMAGE_COMPONENTS_RGB, 1,
205 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XRGB2101010, 4 } } },
206
207 { DRM_FORMAT_ABGR2101010, __DRI_IMAGE_COMPONENTS_RGBA, 1,
208 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ABGR2101010, 4 } } },
209
210 { DRM_FORMAT_XBGR2101010, __DRI_IMAGE_COMPONENTS_RGB, 1,
211 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XBGR2101010, 4 } } },
212
213 { DRM_FORMAT_ARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
214 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } },
215
216 { DRM_FORMAT_ABGR8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
217 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ABGR8888, 4 } } },
218
219 { __DRI_IMAGE_FOURCC_SARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
220 { { 0, 0, 0, __DRI_IMAGE_FORMAT_SARGB8, 4 } } },
221
222 { __DRI_IMAGE_FOURCC_SXRGB8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
223 { { 0, 0, 0, __DRI_IMAGE_FORMAT_SXRGB8, 4 } } },
224
225 { DRM_FORMAT_XRGB8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
226 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XRGB8888, 4 }, } },
227
228 { DRM_FORMAT_XBGR8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
229 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XBGR8888, 4 }, } },
230
231 { DRM_FORMAT_ARGB1555, __DRI_IMAGE_COMPONENTS_RGBA, 1,
232 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB1555, 2 } } },
233
234 { DRM_FORMAT_RGB565, __DRI_IMAGE_COMPONENTS_RGB, 1,
235 { { 0, 0, 0, __DRI_IMAGE_FORMAT_RGB565, 2 } } },
236
237 { DRM_FORMAT_R8, __DRI_IMAGE_COMPONENTS_R, 1,
238 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 }, } },
239
240 { DRM_FORMAT_R16, __DRI_IMAGE_COMPONENTS_R, 1,
241 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R16, 1 }, } },
242
243 { DRM_FORMAT_GR88, __DRI_IMAGE_COMPONENTS_RG, 1,
244 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 }, } },
245
246 { DRM_FORMAT_GR1616, __DRI_IMAGE_COMPONENTS_RG, 1,
247 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR1616, 2 }, } },
248
249 { DRM_FORMAT_YUV410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
250 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
251 { 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
252 { 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
253
254 { DRM_FORMAT_YUV411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
255 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
256 { 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
257 { 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
258
259 { DRM_FORMAT_YUV420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
260 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
261 { 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
262 { 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
263
264 { DRM_FORMAT_YUV422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
265 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
266 { 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
267 { 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
268
269 { DRM_FORMAT_YUV444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
270 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
271 { 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
272 { 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
273
274 { DRM_FORMAT_YVU410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
275 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
276 { 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
277 { 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
278
279 { DRM_FORMAT_YVU411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
280 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
281 { 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
282 { 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
283
284 { DRM_FORMAT_YVU420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
285 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
286 { 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
287 { 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
288
289 { DRM_FORMAT_YVU422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
290 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
291 { 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
292 { 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
293
294 { DRM_FORMAT_YVU444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
295 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
296 { 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
297 { 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
298
299 { DRM_FORMAT_NV12, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
300 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
301 { 1, 1, 1, __DRI_IMAGE_FORMAT_GR88, 2 } } },
302
303 { DRM_FORMAT_P010, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
304 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R16, 2 },
305 { 1, 1, 1, __DRI_IMAGE_FORMAT_GR1616, 4 } } },
306
307 { DRM_FORMAT_P012, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
308 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R16, 2 },
309 { 1, 1, 1, __DRI_IMAGE_FORMAT_GR1616, 4 } } },
310
311 { DRM_FORMAT_P016, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
312 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R16, 2 },
313 { 1, 1, 1, __DRI_IMAGE_FORMAT_GR1616, 4 } } },
314
315 { DRM_FORMAT_NV16, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
316 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
317 { 1, 1, 0, __DRI_IMAGE_FORMAT_GR88, 2 } } },
318
319 { DRM_FORMAT_AYUV, __DRI_IMAGE_COMPONENTS_AYUV, 1,
320 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ABGR8888, 4 } } },
321
322 { DRM_FORMAT_XYUV8888, __DRI_IMAGE_COMPONENTS_XYUV, 1,
323 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XBGR8888, 4 } } },
324
325 /* For YUYV and UYVY buffers, we set up two overlapping DRI images
326 * and treat them as planar buffers in the compositors.
327 * Plane 0 is GR88 and samples YU or YV pairs and places Y into
328 * the R component, while plane 1 is ARGB/ABGR and samples YUYV/UYVY
329 * clusters and places pairs and places U into the G component and
330 * V into A. This lets the texture sampler interpolate the Y
331 * components correctly when sampling from plane 0, and interpolate
332 * U and V correctly when sampling from plane 1. */
333 { DRM_FORMAT_YUYV, __DRI_IMAGE_COMPONENTS_Y_XUXV, 2,
334 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 },
335 { 0, 1, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } },
336 { DRM_FORMAT_UYVY, __DRI_IMAGE_COMPONENTS_Y_UXVX, 2,
337 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 },
338 { 0, 1, 0, __DRI_IMAGE_FORMAT_ABGR8888, 4 } } }
339 };
340
341 static const struct {
342 uint64_t modifier;
343 unsigned since_gen;
344 } supported_modifiers[] = {
345 { .modifier = DRM_FORMAT_MOD_LINEAR , .since_gen = 1 },
346 { .modifier = I915_FORMAT_MOD_X_TILED , .since_gen = 1 },
347 { .modifier = I915_FORMAT_MOD_Y_TILED , .since_gen = 6 },
348 { .modifier = I915_FORMAT_MOD_Y_TILED_CCS , .since_gen = 9 },
349 };
350
351 static bool
352 modifier_is_supported(const struct gen_device_info *devinfo,
353 const struct intel_image_format *fmt, int dri_format,
354 uint64_t modifier)
355 {
356 const struct isl_drm_modifier_info *modinfo =
357 isl_drm_modifier_get_info(modifier);
358 int i;
359
360 /* ISL had better know about the modifier */
361 if (!modinfo)
362 return false;
363
364 if (modinfo->aux_usage == ISL_AUX_USAGE_CCS_E) {
365 /* If INTEL_DEBUG=norbc is set, don't support any CCS_E modifiers */
366 if (unlikely(INTEL_DEBUG & DEBUG_NO_RBC))
367 return false;
368
369 /* CCS_E is not supported for planar images */
370 if (fmt && fmt->nplanes > 1)
371 return false;
372
373 if (fmt) {
374 assert(dri_format == 0);
375 dri_format = fmt->planes[0].dri_format;
376 }
377
378 mesa_format format = driImageFormatToGLFormat(dri_format);
379 /* Whether or not we support compression is based on the RGBA non-sRGB
380 * version of the format.
381 */
382 format = _mesa_format_fallback_rgbx_to_rgba(format);
383 format = _mesa_get_srgb_format_linear(format);
384 if (!isl_format_supports_ccs_e(devinfo,
385 brw_isl_format_for_mesa_format(format)))
386 return false;
387 }
388
389 for (i = 0; i < ARRAY_SIZE(supported_modifiers); i++) {
390 if (supported_modifiers[i].modifier != modifier)
391 continue;
392
393 return supported_modifiers[i].since_gen <= devinfo->gen;
394 }
395
396 return false;
397 }
398
399 static uint64_t
400 tiling_to_modifier(uint32_t tiling)
401 {
402 static const uint64_t map[] = {
403 [I915_TILING_NONE] = DRM_FORMAT_MOD_LINEAR,
404 [I915_TILING_X] = I915_FORMAT_MOD_X_TILED,
405 [I915_TILING_Y] = I915_FORMAT_MOD_Y_TILED,
406 };
407
408 assert(tiling < ARRAY_SIZE(map));
409
410 return map[tiling];
411 }
412
413 static void
414 intel_image_warn_if_unaligned(__DRIimage *image, const char *func)
415 {
416 uint32_t tiling, swizzle;
417 brw_bo_get_tiling(image->bo, &tiling, &swizzle);
418
419 if (tiling != I915_TILING_NONE && (image->offset & 0xfff)) {
420 _mesa_warning(NULL, "%s: offset 0x%08x not on tile boundary",
421 func, image->offset);
422 }
423 }
424
425 static const struct intel_image_format *
426 intel_image_format_lookup(int fourcc)
427 {
428 for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
429 if (intel_image_formats[i].fourcc == fourcc)
430 return &intel_image_formats[i];
431 }
432
433 return NULL;
434 }
435
436 static bool
437 intel_image_get_fourcc(__DRIimage *image, int *fourcc)
438 {
439 if (image->planar_format) {
440 *fourcc = image->planar_format->fourcc;
441 return true;
442 }
443
444 for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
445 if (intel_image_formats[i].planes[0].dri_format == image->dri_format) {
446 *fourcc = intel_image_formats[i].fourcc;
447 return true;
448 }
449 }
450 return false;
451 }
452
453 static __DRIimage *
454 intel_allocate_image(struct intel_screen *screen, int dri_format,
455 void *loaderPrivate)
456 {
457 __DRIimage *image;
458
459 image = calloc(1, sizeof *image);
460 if (image == NULL)
461 return NULL;
462
463 image->screen = screen;
464 image->dri_format = dri_format;
465 image->offset = 0;
466
467 image->format = driImageFormatToGLFormat(dri_format);
468 if (dri_format != __DRI_IMAGE_FORMAT_NONE &&
469 image->format == MESA_FORMAT_NONE) {
470 free(image);
471 return NULL;
472 }
473
474 image->internal_format = _mesa_get_format_base_format(image->format);
475 image->data = loaderPrivate;
476
477 return image;
478 }
479
480 /**
481 * Sets up a DRIImage structure to point to a slice out of a miptree.
482 */
483 static void
484 intel_setup_image_from_mipmap_tree(struct brw_context *brw, __DRIimage *image,
485 struct intel_mipmap_tree *mt, GLuint level,
486 GLuint zoffset)
487 {
488 intel_miptree_make_shareable(brw, mt);
489
490 intel_miptree_check_level_layer(mt, level, zoffset);
491
492 image->width = minify(mt->surf.phys_level0_sa.width,
493 level - mt->first_level);
494 image->height = minify(mt->surf.phys_level0_sa.height,
495 level - mt->first_level);
496 image->pitch = mt->surf.row_pitch_B;
497
498 image->offset = intel_miptree_get_tile_offsets(mt, level, zoffset,
499 &image->tile_x,
500 &image->tile_y);
501
502 brw_bo_unreference(image->bo);
503 image->bo = mt->bo;
504 brw_bo_reference(mt->bo);
505 }
506
507 static __DRIimage *
508 intel_create_image_from_name(__DRIscreen *dri_screen,
509 int width, int height, int format,
510 int name, int pitch, void *loaderPrivate)
511 {
512 struct intel_screen *screen = dri_screen->driverPrivate;
513 __DRIimage *image;
514 int cpp;
515
516 image = intel_allocate_image(screen, format, loaderPrivate);
517 if (image == NULL)
518 return NULL;
519
520 if (image->format == MESA_FORMAT_NONE)
521 cpp = 1;
522 else
523 cpp = _mesa_get_format_bytes(image->format);
524
525 image->width = width;
526 image->height = height;
527 image->pitch = pitch * cpp;
528 image->bo = brw_bo_gem_create_from_name(screen->bufmgr, "image",
529 name);
530 if (!image->bo) {
531 free(image);
532 return NULL;
533 }
534 image->modifier = tiling_to_modifier(image->bo->tiling_mode);
535
536 return image;
537 }
538
539 static __DRIimage *
540 intel_create_image_from_renderbuffer(__DRIcontext *context,
541 int renderbuffer, void *loaderPrivate)
542 {
543 __DRIimage *image;
544 struct brw_context *brw = context->driverPrivate;
545 struct gl_context *ctx = &brw->ctx;
546 struct gl_renderbuffer *rb;
547 struct intel_renderbuffer *irb;
548
549 rb = _mesa_lookup_renderbuffer(ctx, renderbuffer);
550 if (!rb) {
551 _mesa_error(ctx, GL_INVALID_OPERATION, "glRenderbufferExternalMESA");
552 return NULL;
553 }
554
555 irb = intel_renderbuffer(rb);
556 intel_miptree_make_shareable(brw, irb->mt);
557 image = calloc(1, sizeof *image);
558 if (image == NULL)
559 return NULL;
560
561 image->internal_format = rb->InternalFormat;
562 image->format = rb->Format;
563 image->modifier = tiling_to_modifier(
564 isl_tiling_to_i915_tiling(irb->mt->surf.tiling));
565 image->offset = 0;
566 image->data = loaderPrivate;
567 brw_bo_unreference(image->bo);
568 image->bo = irb->mt->bo;
569 brw_bo_reference(irb->mt->bo);
570 image->width = rb->Width;
571 image->height = rb->Height;
572 image->pitch = irb->mt->surf.row_pitch_B;
573 image->dri_format = driGLFormatToImageFormat(image->format);
574 image->has_depthstencil = irb->mt->stencil_mt? true : false;
575
576 rb->NeedsFinishRenderTexture = true;
577 return image;
578 }
579
580 static __DRIimage *
581 intel_create_image_from_texture(__DRIcontext *context, int target,
582 unsigned texture, int zoffset,
583 int level,
584 unsigned *error,
585 void *loaderPrivate)
586 {
587 __DRIimage *image;
588 struct brw_context *brw = context->driverPrivate;
589 struct gl_texture_object *obj;
590 struct intel_texture_object *iobj;
591 GLuint face = 0;
592
593 obj = _mesa_lookup_texture(&brw->ctx, texture);
594 if (!obj || obj->Target != target) {
595 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
596 return NULL;
597 }
598
599 if (target == GL_TEXTURE_CUBE_MAP)
600 face = zoffset;
601
602 _mesa_test_texobj_completeness(&brw->ctx, obj);
603 iobj = intel_texture_object(obj);
604 if (!obj->_BaseComplete || (level > 0 && !obj->_MipmapComplete)) {
605 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
606 return NULL;
607 }
608
609 if (level < obj->BaseLevel || level > obj->_MaxLevel) {
610 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
611 return NULL;
612 }
613
614 if (target == GL_TEXTURE_3D && obj->Image[face][level]->Depth < zoffset) {
615 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
616 return NULL;
617 }
618 image = calloc(1, sizeof *image);
619 if (image == NULL) {
620 *error = __DRI_IMAGE_ERROR_BAD_ALLOC;
621 return NULL;
622 }
623
624 image->internal_format = obj->Image[face][level]->InternalFormat;
625 image->format = obj->Image[face][level]->TexFormat;
626 image->modifier = tiling_to_modifier(
627 isl_tiling_to_i915_tiling(iobj->mt->surf.tiling));
628 image->data = loaderPrivate;
629 intel_setup_image_from_mipmap_tree(brw, image, iobj->mt, level, zoffset);
630 image->dri_format = driGLFormatToImageFormat(image->format);
631 image->has_depthstencil = iobj->mt->stencil_mt? true : false;
632 image->planar_format = iobj->planar_format;
633 if (image->dri_format == __DRI_IMAGE_FORMAT_NONE) {
634 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
635 free(image);
636 return NULL;
637 }
638
639 *error = __DRI_IMAGE_ERROR_SUCCESS;
640 return image;
641 }
642
643 static void
644 intel_destroy_image(__DRIimage *image)
645 {
646 brw_bo_unreference(image->bo);
647 free(image);
648 }
649
650 enum modifier_priority {
651 MODIFIER_PRIORITY_INVALID = 0,
652 MODIFIER_PRIORITY_LINEAR,
653 MODIFIER_PRIORITY_X,
654 MODIFIER_PRIORITY_Y,
655 MODIFIER_PRIORITY_Y_CCS,
656 };
657
658 const uint64_t priority_to_modifier[] = {
659 [MODIFIER_PRIORITY_INVALID] = DRM_FORMAT_MOD_INVALID,
660 [MODIFIER_PRIORITY_LINEAR] = DRM_FORMAT_MOD_LINEAR,
661 [MODIFIER_PRIORITY_X] = I915_FORMAT_MOD_X_TILED,
662 [MODIFIER_PRIORITY_Y] = I915_FORMAT_MOD_Y_TILED,
663 [MODIFIER_PRIORITY_Y_CCS] = I915_FORMAT_MOD_Y_TILED_CCS,
664 };
665
666 static uint64_t
667 select_best_modifier(struct gen_device_info *devinfo,
668 int dri_format,
669 const uint64_t *modifiers,
670 const unsigned count)
671 {
672 enum modifier_priority prio = MODIFIER_PRIORITY_INVALID;
673
674 for (int i = 0; i < count; i++) {
675 if (!modifier_is_supported(devinfo, NULL, dri_format, modifiers[i]))
676 continue;
677
678 switch (modifiers[i]) {
679 case I915_FORMAT_MOD_Y_TILED_CCS:
680 prio = MAX2(prio, MODIFIER_PRIORITY_Y_CCS);
681 break;
682 case I915_FORMAT_MOD_Y_TILED:
683 prio = MAX2(prio, MODIFIER_PRIORITY_Y);
684 break;
685 case I915_FORMAT_MOD_X_TILED:
686 prio = MAX2(prio, MODIFIER_PRIORITY_X);
687 break;
688 case DRM_FORMAT_MOD_LINEAR:
689 prio = MAX2(prio, MODIFIER_PRIORITY_LINEAR);
690 break;
691 case DRM_FORMAT_MOD_INVALID:
692 default:
693 break;
694 }
695 }
696
697 return priority_to_modifier[prio];
698 }
699
700 static __DRIimage *
701 intel_create_image_common(__DRIscreen *dri_screen,
702 int width, int height, int format,
703 unsigned int use,
704 const uint64_t *modifiers,
705 unsigned count,
706 void *loaderPrivate)
707 {
708 __DRIimage *image;
709 struct intel_screen *screen = dri_screen->driverPrivate;
710 uint64_t modifier = DRM_FORMAT_MOD_INVALID;
711 bool ok;
712
713 /* Callers of this may specify a modifier, or a dri usage, but not both. The
714 * newer modifier interface deprecates the older usage flags.
715 */
716 assert(!(use && count));
717
718 if (use & __DRI_IMAGE_USE_CURSOR) {
719 if (width != 64 || height != 64)
720 return NULL;
721 modifier = DRM_FORMAT_MOD_LINEAR;
722 }
723
724 if (use & __DRI_IMAGE_USE_LINEAR)
725 modifier = DRM_FORMAT_MOD_LINEAR;
726
727 if (modifier == DRM_FORMAT_MOD_INVALID) {
728 if (modifiers) {
729 /* User requested specific modifiers */
730 modifier = select_best_modifier(&screen->devinfo, format,
731 modifiers, count);
732 if (modifier == DRM_FORMAT_MOD_INVALID)
733 return NULL;
734 } else {
735 /* Historically, X-tiled was the default, and so lack of modifier means
736 * X-tiled.
737 */
738 modifier = I915_FORMAT_MOD_X_TILED;
739 }
740 }
741
742 image = intel_allocate_image(screen, format, loaderPrivate);
743 if (image == NULL)
744 return NULL;
745
746 const struct isl_drm_modifier_info *mod_info =
747 isl_drm_modifier_get_info(modifier);
748
749 struct isl_surf surf;
750 ok = isl_surf_init(&screen->isl_dev, &surf,
751 .dim = ISL_SURF_DIM_2D,
752 .format = brw_isl_format_for_mesa_format(image->format),
753 .width = width,
754 .height = height,
755 .depth = 1,
756 .levels = 1,
757 .array_len = 1,
758 .samples = 1,
759 .usage = ISL_SURF_USAGE_RENDER_TARGET_BIT |
760 ISL_SURF_USAGE_TEXTURE_BIT |
761 ISL_SURF_USAGE_STORAGE_BIT |
762 ((use & __DRI_IMAGE_USE_SCANOUT) ?
763 ISL_SURF_USAGE_DISPLAY_BIT : 0),
764 .tiling_flags = (1 << mod_info->tiling));
765 assert(ok);
766 if (!ok) {
767 free(image);
768 return NULL;
769 }
770
771 struct isl_surf aux_surf = {0,};
772 if (mod_info->aux_usage == ISL_AUX_USAGE_CCS_E) {
773 ok = isl_surf_get_ccs_surf(&screen->isl_dev, &surf, &aux_surf, NULL, 0);
774 if (!ok) {
775 free(image);
776 return NULL;
777 }
778 } else {
779 assert(mod_info->aux_usage == ISL_AUX_USAGE_NONE);
780 aux_surf.size_B = 0;
781 }
782
783 /* We request that the bufmgr zero the buffer for us for two reasons:
784 *
785 * 1) If a buffer gets re-used from the pool, we don't want to leak random
786 * garbage from our process to some other.
787 *
788 * 2) For images with CCS_E, we want to ensure that the CCS starts off in
789 * a valid state. A CCS value of 0 indicates that the given block is
790 * in the pass-through state which is what we want.
791 */
792 image->bo = brw_bo_alloc_tiled(screen->bufmgr, "image",
793 surf.size_B + aux_surf.size_B,
794 BRW_MEMZONE_OTHER,
795 isl_tiling_to_i915_tiling(mod_info->tiling),
796 surf.row_pitch_B, BO_ALLOC_ZEROED);
797 if (image->bo == NULL) {
798 free(image);
799 return NULL;
800 }
801 image->width = width;
802 image->height = height;
803 image->pitch = surf.row_pitch_B;
804 image->modifier = modifier;
805
806 if (aux_surf.size_B) {
807 image->aux_offset = surf.size_B;
808 image->aux_pitch = aux_surf.row_pitch_B;
809 image->aux_size = aux_surf.size_B;
810 }
811
812 return image;
813 }
814
815 static __DRIimage *
816 intel_create_image(__DRIscreen *dri_screen,
817 int width, int height, int format,
818 unsigned int use,
819 void *loaderPrivate)
820 {
821 return intel_create_image_common(dri_screen, width, height, format, use, NULL, 0,
822 loaderPrivate);
823 }
824
825 static void *
826 intel_map_image(__DRIcontext *context, __DRIimage *image,
827 int x0, int y0, int width, int height,
828 unsigned int flags, int *stride, void **map_info)
829 {
830 struct brw_context *brw = NULL;
831 struct brw_bo *bo = NULL;
832 void *raw_data = NULL;
833 GLuint pix_w = 1;
834 GLuint pix_h = 1;
835 GLint pix_bytes = 1;
836
837 if (!context || !image || !stride || !map_info || *map_info)
838 return NULL;
839
840 if (x0 < 0 || x0 >= image->width || width > image->width - x0)
841 return NULL;
842
843 if (y0 < 0 || y0 >= image->height || height > image->height - y0)
844 return NULL;
845
846 if (flags & MAP_INTERNAL_MASK)
847 return NULL;
848
849 brw = context->driverPrivate;
850 bo = image->bo;
851
852 assert(brw);
853 assert(bo);
854
855 /* DRI flags and GL_MAP.*_BIT flags are the same, so just pass them on. */
856 raw_data = brw_bo_map(brw, bo, flags);
857 if (!raw_data)
858 return NULL;
859
860 _mesa_get_format_block_size(image->format, &pix_w, &pix_h);
861 pix_bytes = _mesa_get_format_bytes(image->format);
862
863 assert(pix_w);
864 assert(pix_h);
865 assert(pix_bytes > 0);
866
867 raw_data += (x0 / pix_w) * pix_bytes + (y0 / pix_h) * image->pitch;
868
869 brw_bo_reference(bo);
870
871 *stride = image->pitch;
872 *map_info = bo;
873
874 return raw_data;
875 }
876
877 static void
878 intel_unmap_image(__DRIcontext *context, __DRIimage *image, void *map_info)
879 {
880 struct brw_bo *bo = map_info;
881
882 brw_bo_unmap(bo);
883 brw_bo_unreference(bo);
884 }
885
886 static __DRIimage *
887 intel_create_image_with_modifiers(__DRIscreen *dri_screen,
888 int width, int height, int format,
889 const uint64_t *modifiers,
890 const unsigned count,
891 void *loaderPrivate)
892 {
893 return intel_create_image_common(dri_screen, width, height, format, 0,
894 modifiers, count, loaderPrivate);
895 }
896
897 static GLboolean
898 intel_query_image(__DRIimage *image, int attrib, int *value)
899 {
900 switch (attrib) {
901 case __DRI_IMAGE_ATTRIB_STRIDE:
902 *value = image->pitch;
903 return true;
904 case __DRI_IMAGE_ATTRIB_HANDLE:
905 *value = brw_bo_export_gem_handle(image->bo);
906 return true;
907 case __DRI_IMAGE_ATTRIB_NAME:
908 return !brw_bo_flink(image->bo, (uint32_t *) value);
909 case __DRI_IMAGE_ATTRIB_FORMAT:
910 *value = image->dri_format;
911 return true;
912 case __DRI_IMAGE_ATTRIB_WIDTH:
913 *value = image->width;
914 return true;
915 case __DRI_IMAGE_ATTRIB_HEIGHT:
916 *value = image->height;
917 return true;
918 case __DRI_IMAGE_ATTRIB_COMPONENTS:
919 if (image->planar_format == NULL)
920 return false;
921 *value = image->planar_format->components;
922 return true;
923 case __DRI_IMAGE_ATTRIB_FD:
924 return !brw_bo_gem_export_to_prime(image->bo, value);
925 case __DRI_IMAGE_ATTRIB_FOURCC:
926 return intel_image_get_fourcc(image, value);
927 case __DRI_IMAGE_ATTRIB_NUM_PLANES:
928 if (isl_drm_modifier_has_aux(image->modifier)) {
929 assert(!image->planar_format || image->planar_format->nplanes == 1);
930 *value = 2;
931 } else if (image->planar_format) {
932 *value = image->planar_format->nplanes;
933 } else {
934 *value = 1;
935 }
936 return true;
937 case __DRI_IMAGE_ATTRIB_OFFSET:
938 *value = image->offset;
939 return true;
940 case __DRI_IMAGE_ATTRIB_MODIFIER_LOWER:
941 *value = (image->modifier & 0xffffffff);
942 return true;
943 case __DRI_IMAGE_ATTRIB_MODIFIER_UPPER:
944 *value = ((image->modifier >> 32) & 0xffffffff);
945 return true;
946
947 default:
948 return false;
949 }
950 }
951
952 static GLboolean
953 intel_query_format_modifier_attribs(__DRIscreen *dri_screen,
954 uint32_t fourcc, uint64_t modifier,
955 int attrib, uint64_t *value)
956 {
957 struct intel_screen *screen = dri_screen->driverPrivate;
958 const struct intel_image_format *f = intel_image_format_lookup(fourcc);
959
960 if (!modifier_is_supported(&screen->devinfo, f, 0, modifier))
961 return false;
962
963 switch (attrib) {
964 case __DRI_IMAGE_FORMAT_MODIFIER_ATTRIB_PLANE_COUNT:
965 *value = isl_drm_modifier_has_aux(modifier) ? 2 : f->nplanes;
966 return true;
967
968 default:
969 return false;
970 }
971 }
972
973 static __DRIimage *
974 intel_dup_image(__DRIimage *orig_image, void *loaderPrivate)
975 {
976 __DRIimage *image;
977
978 image = calloc(1, sizeof *image);
979 if (image == NULL)
980 return NULL;
981
982 brw_bo_reference(orig_image->bo);
983 image->bo = orig_image->bo;
984 image->internal_format = orig_image->internal_format;
985 image->planar_format = orig_image->planar_format;
986 image->dri_format = orig_image->dri_format;
987 image->format = orig_image->format;
988 image->modifier = orig_image->modifier;
989 image->offset = orig_image->offset;
990 image->width = orig_image->width;
991 image->height = orig_image->height;
992 image->pitch = orig_image->pitch;
993 image->tile_x = orig_image->tile_x;
994 image->tile_y = orig_image->tile_y;
995 image->has_depthstencil = orig_image->has_depthstencil;
996 image->data = loaderPrivate;
997 image->aux_offset = orig_image->aux_offset;
998 image->aux_pitch = orig_image->aux_pitch;
999
1000 memcpy(image->strides, orig_image->strides, sizeof(image->strides));
1001 memcpy(image->offsets, orig_image->offsets, sizeof(image->offsets));
1002
1003 return image;
1004 }
1005
1006 static GLboolean
1007 intel_validate_usage(__DRIimage *image, unsigned int use)
1008 {
1009 if (use & __DRI_IMAGE_USE_CURSOR) {
1010 if (image->width != 64 || image->height != 64)
1011 return GL_FALSE;
1012 }
1013
1014 return GL_TRUE;
1015 }
1016
1017 static __DRIimage *
1018 intel_create_image_from_names(__DRIscreen *dri_screen,
1019 int width, int height, int fourcc,
1020 int *names, int num_names,
1021 int *strides, int *offsets,
1022 void *loaderPrivate)
1023 {
1024 const struct intel_image_format *f = NULL;
1025 __DRIimage *image;
1026 int i, index;
1027
1028 if (dri_screen == NULL || names == NULL || num_names != 1)
1029 return NULL;
1030
1031 f = intel_image_format_lookup(fourcc);
1032 if (f == NULL)
1033 return NULL;
1034
1035 image = intel_create_image_from_name(dri_screen, width, height,
1036 __DRI_IMAGE_FORMAT_NONE,
1037 names[0], strides[0],
1038 loaderPrivate);
1039
1040 if (image == NULL)
1041 return NULL;
1042
1043 image->planar_format = f;
1044 for (i = 0; i < f->nplanes; i++) {
1045 index = f->planes[i].buffer_index;
1046 image->offsets[index] = offsets[index];
1047 image->strides[index] = strides[index];
1048 }
1049
1050 return image;
1051 }
1052
1053 static __DRIimage *
1054 intel_create_image_from_fds_common(__DRIscreen *dri_screen,
1055 int width, int height, int fourcc,
1056 uint64_t modifier, int *fds, int num_fds,
1057 int *strides, int *offsets,
1058 void *loaderPrivate)
1059 {
1060 struct intel_screen *screen = dri_screen->driverPrivate;
1061 const struct intel_image_format *f;
1062 __DRIimage *image;
1063 int i, index;
1064 bool ok;
1065
1066 if (fds == NULL || num_fds < 1)
1067 return NULL;
1068
1069 f = intel_image_format_lookup(fourcc);
1070 if (f == NULL)
1071 return NULL;
1072
1073 if (modifier != DRM_FORMAT_MOD_INVALID &&
1074 !modifier_is_supported(&screen->devinfo, f, 0, modifier))
1075 return NULL;
1076
1077 if (f->nplanes == 1)
1078 image = intel_allocate_image(screen, f->planes[0].dri_format,
1079 loaderPrivate);
1080 else
1081 image = intel_allocate_image(screen, __DRI_IMAGE_FORMAT_NONE,
1082 loaderPrivate);
1083
1084 if (image == NULL)
1085 return NULL;
1086
1087 image->width = width;
1088 image->height = height;
1089 image->pitch = strides[0];
1090
1091 image->planar_format = f;
1092
1093 if (modifier != DRM_FORMAT_MOD_INVALID) {
1094 const struct isl_drm_modifier_info *mod_info =
1095 isl_drm_modifier_get_info(modifier);
1096 uint32_t tiling = isl_tiling_to_i915_tiling(mod_info->tiling);
1097 image->bo = brw_bo_gem_create_from_prime_tiled(screen->bufmgr, fds[0],
1098 tiling, strides[0]);
1099 } else {
1100 image->bo = brw_bo_gem_create_from_prime(screen->bufmgr, fds[0]);
1101 }
1102
1103 if (image->bo == NULL) {
1104 free(image);
1105 return NULL;
1106 }
1107
1108 /* We only support all planes from the same bo.
1109 * brw_bo_gem_create_from_prime() should return the same pointer for all
1110 * fds received here */
1111 for (i = 1; i < num_fds; i++) {
1112 struct brw_bo *aux = brw_bo_gem_create_from_prime(screen->bufmgr, fds[i]);
1113 brw_bo_unreference(aux);
1114 if (aux != image->bo) {
1115 brw_bo_unreference(image->bo);
1116 free(image);
1117 return NULL;
1118 }
1119 }
1120
1121 if (modifier != DRM_FORMAT_MOD_INVALID)
1122 image->modifier = modifier;
1123 else
1124 image->modifier = tiling_to_modifier(image->bo->tiling_mode);
1125
1126 const struct isl_drm_modifier_info *mod_info =
1127 isl_drm_modifier_get_info(image->modifier);
1128
1129 int size = 0;
1130 struct isl_surf surf;
1131 for (i = 0; i < f->nplanes; i++) {
1132 index = f->planes[i].buffer_index;
1133 image->offsets[index] = offsets[index];
1134 image->strides[index] = strides[index];
1135
1136 mesa_format format = driImageFormatToGLFormat(f->planes[i].dri_format);
1137 /* The images we will create are actually based on the RGBA non-sRGB
1138 * version of the format.
1139 */
1140 format = _mesa_format_fallback_rgbx_to_rgba(format);
1141 format = _mesa_get_srgb_format_linear(format);
1142
1143 ok = isl_surf_init(&screen->isl_dev, &surf,
1144 .dim = ISL_SURF_DIM_2D,
1145 .format = brw_isl_format_for_mesa_format(format),
1146 .width = image->width >> f->planes[i].width_shift,
1147 .height = image->height >> f->planes[i].height_shift,
1148 .depth = 1,
1149 .levels = 1,
1150 .array_len = 1,
1151 .samples = 1,
1152 .row_pitch_B = strides[index],
1153 .usage = ISL_SURF_USAGE_RENDER_TARGET_BIT |
1154 ISL_SURF_USAGE_TEXTURE_BIT |
1155 ISL_SURF_USAGE_STORAGE_BIT,
1156 .tiling_flags = (1 << mod_info->tiling));
1157 if (!ok) {
1158 brw_bo_unreference(image->bo);
1159 free(image);
1160 return NULL;
1161 }
1162
1163 const int end = offsets[index] + surf.size_B;
1164 if (size < end)
1165 size = end;
1166 }
1167
1168 if (mod_info->aux_usage == ISL_AUX_USAGE_CCS_E) {
1169 /* Even though we initialize surf in the loop above, we know that
1170 * anything with CCS_E will have exactly one plane so surf is properly
1171 * initialized when we get here.
1172 */
1173 assert(f->nplanes == 1);
1174
1175 image->aux_offset = offsets[1];
1176 image->aux_pitch = strides[1];
1177
1178 /* Scanout hardware requires that the CCS be placed after the main
1179 * surface in memory. We consider any CCS that is placed any earlier in
1180 * memory to be invalid and reject it.
1181 *
1182 * At some point in the future, this restriction may be relaxed if the
1183 * hardware becomes less strict but we may need a new modifier for that.
1184 */
1185 assert(size > 0);
1186 if (image->aux_offset < size) {
1187 brw_bo_unreference(image->bo);
1188 free(image);
1189 return NULL;
1190 }
1191
1192 struct isl_surf aux_surf = {0,};
1193 ok = isl_surf_get_ccs_surf(&screen->isl_dev, &surf, &aux_surf, NULL,
1194 image->aux_pitch);
1195 if (!ok) {
1196 brw_bo_unreference(image->bo);
1197 free(image);
1198 return NULL;
1199 }
1200
1201 image->aux_size = aux_surf.size_B;
1202
1203 const int end = image->aux_offset + aux_surf.size_B;
1204 if (size < end)
1205 size = end;
1206 } else {
1207 assert(mod_info->aux_usage == ISL_AUX_USAGE_NONE);
1208 }
1209
1210 /* Check that the requested image actually fits within the BO. 'size'
1211 * is already relative to the offsets, so we don't need to add that. */
1212 if (image->bo->size == 0) {
1213 image->bo->size = size;
1214 } else if (size > image->bo->size) {
1215 brw_bo_unreference(image->bo);
1216 free(image);
1217 return NULL;
1218 }
1219
1220 if (f->nplanes == 1) {
1221 image->offset = image->offsets[0];
1222 intel_image_warn_if_unaligned(image, __func__);
1223 }
1224
1225 return image;
1226 }
1227
1228 static __DRIimage *
1229 intel_create_image_from_fds(__DRIscreen *dri_screen,
1230 int width, int height, int fourcc,
1231 int *fds, int num_fds, int *strides, int *offsets,
1232 void *loaderPrivate)
1233 {
1234 return intel_create_image_from_fds_common(dri_screen, width, height, fourcc,
1235 DRM_FORMAT_MOD_INVALID,
1236 fds, num_fds, strides, offsets,
1237 loaderPrivate);
1238 }
1239
1240 static __DRIimage *
1241 intel_create_image_from_dma_bufs2(__DRIscreen *dri_screen,
1242 int width, int height,
1243 int fourcc, uint64_t modifier,
1244 int *fds, int num_fds,
1245 int *strides, int *offsets,
1246 enum __DRIYUVColorSpace yuv_color_space,
1247 enum __DRISampleRange sample_range,
1248 enum __DRIChromaSiting horizontal_siting,
1249 enum __DRIChromaSiting vertical_siting,
1250 unsigned *error,
1251 void *loaderPrivate)
1252 {
1253 __DRIimage *image;
1254 const struct intel_image_format *f = intel_image_format_lookup(fourcc);
1255
1256 if (!f) {
1257 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
1258 return NULL;
1259 }
1260
1261 image = intel_create_image_from_fds_common(dri_screen, width, height,
1262 fourcc, modifier,
1263 fds, num_fds, strides, offsets,
1264 loaderPrivate);
1265
1266 /*
1267 * Invalid parameters and any inconsistencies between are assumed to be
1268 * checked by the caller. Therefore besides unsupported formats one can fail
1269 * only in allocation.
1270 */
1271 if (!image) {
1272 *error = __DRI_IMAGE_ERROR_BAD_ALLOC;
1273 return NULL;
1274 }
1275
1276 image->yuv_color_space = yuv_color_space;
1277 image->sample_range = sample_range;
1278 image->horizontal_siting = horizontal_siting;
1279 image->vertical_siting = vertical_siting;
1280 image->imported_dmabuf = true;
1281
1282 *error = __DRI_IMAGE_ERROR_SUCCESS;
1283 return image;
1284 }
1285
1286 static __DRIimage *
1287 intel_create_image_from_dma_bufs(__DRIscreen *dri_screen,
1288 int width, int height, int fourcc,
1289 int *fds, int num_fds,
1290 int *strides, int *offsets,
1291 enum __DRIYUVColorSpace yuv_color_space,
1292 enum __DRISampleRange sample_range,
1293 enum __DRIChromaSiting horizontal_siting,
1294 enum __DRIChromaSiting vertical_siting,
1295 unsigned *error,
1296 void *loaderPrivate)
1297 {
1298 return intel_create_image_from_dma_bufs2(dri_screen, width, height,
1299 fourcc, DRM_FORMAT_MOD_INVALID,
1300 fds, num_fds, strides, offsets,
1301 yuv_color_space,
1302 sample_range,
1303 horizontal_siting,
1304 vertical_siting,
1305 error,
1306 loaderPrivate);
1307 }
1308
1309 static bool
1310 intel_image_format_is_supported(const struct gen_device_info *devinfo,
1311 const struct intel_image_format *fmt)
1312 {
1313 /* Currently, all formats with an intel_image_format are available on all
1314 * platforms so there's really nothing to check there.
1315 */
1316
1317 #ifndef NDEBUG
1318 if (fmt->nplanes == 1) {
1319 mesa_format format = driImageFormatToGLFormat(fmt->planes[0].dri_format);
1320 /* The images we will create are actually based on the RGBA non-sRGB
1321 * version of the format.
1322 */
1323 format = _mesa_format_fallback_rgbx_to_rgba(format);
1324 format = _mesa_get_srgb_format_linear(format);
1325 enum isl_format isl_format = brw_isl_format_for_mesa_format(format);
1326 assert(isl_format_supports_rendering(devinfo, isl_format));
1327 }
1328 #endif
1329
1330 return true;
1331 }
1332
1333 static GLboolean
1334 intel_query_dma_buf_formats(__DRIscreen *_screen, int max,
1335 int *formats, int *count)
1336 {
1337 struct intel_screen *screen = _screen->driverPrivate;
1338 int num_formats = 0, i;
1339
1340 for (i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
1341 /* These formats are valid DRI formats but do not exist in drm_fourcc.h
1342 * in the Linux kernel. We don't want to accidentally advertise them
1343 * them through the EGL layer.
1344 */
1345 if (intel_image_formats[i].fourcc == __DRI_IMAGE_FOURCC_SARGB8888 ||
1346 intel_image_formats[i].fourcc == __DRI_IMAGE_FOURCC_SABGR8888 ||
1347 intel_image_formats[i].fourcc == __DRI_IMAGE_FOURCC_SXRGB8888)
1348 continue;
1349
1350 if (!intel_image_format_is_supported(&screen->devinfo,
1351 &intel_image_formats[i]))
1352 continue;
1353
1354 num_formats++;
1355 if (max == 0)
1356 continue;
1357
1358 formats[num_formats - 1] = intel_image_formats[i].fourcc;
1359 if (num_formats >= max)
1360 break;
1361 }
1362
1363 *count = num_formats;
1364 return true;
1365 }
1366
1367 static GLboolean
1368 intel_query_dma_buf_modifiers(__DRIscreen *_screen, int fourcc, int max,
1369 uint64_t *modifiers,
1370 unsigned int *external_only,
1371 int *count)
1372 {
1373 struct intel_screen *screen = _screen->driverPrivate;
1374 const struct intel_image_format *f;
1375 int num_mods = 0, i;
1376
1377 f = intel_image_format_lookup(fourcc);
1378 if (f == NULL)
1379 return false;
1380
1381 if (!intel_image_format_is_supported(&screen->devinfo, f))
1382 return false;
1383
1384 for (i = 0; i < ARRAY_SIZE(supported_modifiers); i++) {
1385 uint64_t modifier = supported_modifiers[i].modifier;
1386 if (!modifier_is_supported(&screen->devinfo, f, 0, modifier))
1387 continue;
1388
1389 num_mods++;
1390 if (max == 0)
1391 continue;
1392
1393 modifiers[num_mods - 1] = modifier;
1394 if (num_mods >= max)
1395 break;
1396 }
1397
1398 if (external_only != NULL) {
1399 for (i = 0; i < num_mods && i < max; i++) {
1400 if (f->components == __DRI_IMAGE_COMPONENTS_Y_U_V ||
1401 f->components == __DRI_IMAGE_COMPONENTS_Y_UV ||
1402 f->components == __DRI_IMAGE_COMPONENTS_AYUV ||
1403 f->components == __DRI_IMAGE_COMPONENTS_XYUV ||
1404 f->components == __DRI_IMAGE_COMPONENTS_Y_XUXV ||
1405 f->components == __DRI_IMAGE_COMPONENTS_Y_UXVX) {
1406 external_only[i] = GL_TRUE;
1407 }
1408 else {
1409 external_only[i] = GL_FALSE;
1410 }
1411 }
1412 }
1413
1414 *count = num_mods;
1415 return true;
1416 }
1417
1418 static __DRIimage *
1419 intel_from_planar(__DRIimage *parent, int plane, void *loaderPrivate)
1420 {
1421 int width, height, offset, stride, size, dri_format;
1422 __DRIimage *image;
1423
1424 if (parent == NULL)
1425 return NULL;
1426
1427 width = parent->width;
1428 height = parent->height;
1429
1430 const struct intel_image_format *f = parent->planar_format;
1431
1432 if (f && plane < f->nplanes) {
1433 /* Use the planar format definition. */
1434 width >>= f->planes[plane].width_shift;
1435 height >>= f->planes[plane].height_shift;
1436 dri_format = f->planes[plane].dri_format;
1437 int index = f->planes[plane].buffer_index;
1438 offset = parent->offsets[index];
1439 stride = parent->strides[index];
1440 size = height * stride;
1441 } else if (plane == 0) {
1442 /* The only plane of a non-planar image: copy the parent definition
1443 * directly. */
1444 dri_format = parent->dri_format;
1445 offset = parent->offset;
1446 stride = parent->pitch;
1447 size = height * stride;
1448 } else if (plane == 1 && parent->modifier != DRM_FORMAT_MOD_INVALID &&
1449 isl_drm_modifier_has_aux(parent->modifier)) {
1450 /* Auxiliary plane */
1451 dri_format = parent->dri_format;
1452 offset = parent->aux_offset;
1453 stride = parent->aux_pitch;
1454 size = parent->aux_size;
1455 } else {
1456 return NULL;
1457 }
1458
1459 if (offset + size > parent->bo->size) {
1460 _mesa_warning(NULL, "intel_from_planar: subimage out of bounds");
1461 return NULL;
1462 }
1463
1464 image = intel_allocate_image(parent->screen, dri_format, loaderPrivate);
1465 if (image == NULL)
1466 return NULL;
1467
1468 image->bo = parent->bo;
1469 brw_bo_reference(parent->bo);
1470 image->modifier = parent->modifier;
1471
1472 image->width = width;
1473 image->height = height;
1474 image->pitch = stride;
1475 image->offset = offset;
1476
1477 intel_image_warn_if_unaligned(image, __func__);
1478
1479 return image;
1480 }
1481
1482 static const __DRIimageExtension intelImageExtension = {
1483 .base = { __DRI_IMAGE, 16 },
1484
1485 .createImageFromName = intel_create_image_from_name,
1486 .createImageFromRenderbuffer = intel_create_image_from_renderbuffer,
1487 .destroyImage = intel_destroy_image,
1488 .createImage = intel_create_image,
1489 .queryImage = intel_query_image,
1490 .dupImage = intel_dup_image,
1491 .validateUsage = intel_validate_usage,
1492 .createImageFromNames = intel_create_image_from_names,
1493 .fromPlanar = intel_from_planar,
1494 .createImageFromTexture = intel_create_image_from_texture,
1495 .createImageFromFds = intel_create_image_from_fds,
1496 .createImageFromDmaBufs = intel_create_image_from_dma_bufs,
1497 .blitImage = NULL,
1498 .getCapabilities = NULL,
1499 .mapImage = intel_map_image,
1500 .unmapImage = intel_unmap_image,
1501 .createImageWithModifiers = intel_create_image_with_modifiers,
1502 .createImageFromDmaBufs2 = intel_create_image_from_dma_bufs2,
1503 .queryDmaBufFormats = intel_query_dma_buf_formats,
1504 .queryDmaBufModifiers = intel_query_dma_buf_modifiers,
1505 .queryDmaBufFormatModifierAttribs = intel_query_format_modifier_attribs,
1506 };
1507
1508 static uint64_t
1509 get_aperture_size(int fd)
1510 {
1511 struct drm_i915_gem_get_aperture aperture;
1512
1513 if (drmIoctl(fd, DRM_IOCTL_I915_GEM_GET_APERTURE, &aperture) != 0)
1514 return 0;
1515
1516 return aperture.aper_size;
1517 }
1518
1519 static int
1520 brw_query_renderer_integer(__DRIscreen *dri_screen,
1521 int param, unsigned int *value)
1522 {
1523 const struct intel_screen *const screen =
1524 (struct intel_screen *) dri_screen->driverPrivate;
1525
1526 switch (param) {
1527 case __DRI2_RENDERER_VENDOR_ID:
1528 value[0] = 0x8086;
1529 return 0;
1530 case __DRI2_RENDERER_DEVICE_ID:
1531 value[0] = screen->deviceID;
1532 return 0;
1533 case __DRI2_RENDERER_ACCELERATED:
1534 value[0] = 1;
1535 return 0;
1536 case __DRI2_RENDERER_VIDEO_MEMORY: {
1537 /* Once a batch uses more than 75% of the maximum mappable size, we
1538 * assume that there's some fragmentation, and we start doing extra
1539 * flushing, etc. That's the big cliff apps will care about.
1540 */
1541 const unsigned gpu_mappable_megabytes =
1542 screen->aperture_threshold / (1024 * 1024);
1543
1544 const long system_memory_pages = sysconf(_SC_PHYS_PAGES);
1545 const long system_page_size = sysconf(_SC_PAGE_SIZE);
1546
1547 if (system_memory_pages <= 0 || system_page_size <= 0)
1548 return -1;
1549
1550 const uint64_t system_memory_bytes = (uint64_t) system_memory_pages
1551 * (uint64_t) system_page_size;
1552
1553 const unsigned system_memory_megabytes =
1554 (unsigned) (system_memory_bytes / (1024 * 1024));
1555
1556 value[0] = MIN2(system_memory_megabytes, gpu_mappable_megabytes);
1557 return 0;
1558 }
1559 case __DRI2_RENDERER_UNIFIED_MEMORY_ARCHITECTURE:
1560 value[0] = 1;
1561 return 0;
1562 case __DRI2_RENDERER_HAS_TEXTURE_3D:
1563 value[0] = 1;
1564 return 0;
1565 case __DRI2_RENDERER_HAS_CONTEXT_PRIORITY:
1566 value[0] = 0;
1567 if (brw_hw_context_set_priority(screen->bufmgr,
1568 0, GEN_CONTEXT_HIGH_PRIORITY) == 0)
1569 value[0] |= __DRI2_RENDERER_HAS_CONTEXT_PRIORITY_HIGH;
1570 if (brw_hw_context_set_priority(screen->bufmgr,
1571 0, GEN_CONTEXT_LOW_PRIORITY) == 0)
1572 value[0] |= __DRI2_RENDERER_HAS_CONTEXT_PRIORITY_LOW;
1573 /* reset to default last, just in case */
1574 if (brw_hw_context_set_priority(screen->bufmgr,
1575 0, GEN_CONTEXT_MEDIUM_PRIORITY) == 0)
1576 value[0] |= __DRI2_RENDERER_HAS_CONTEXT_PRIORITY_MEDIUM;
1577 return 0;
1578 case __DRI2_RENDERER_HAS_FRAMEBUFFER_SRGB:
1579 value[0] = 1;
1580 return 0;
1581 default:
1582 return driQueryRendererIntegerCommon(dri_screen, param, value);
1583 }
1584
1585 return -1;
1586 }
1587
1588 static int
1589 brw_query_renderer_string(__DRIscreen *dri_screen,
1590 int param, const char **value)
1591 {
1592 const struct intel_screen *screen =
1593 (struct intel_screen *) dri_screen->driverPrivate;
1594
1595 switch (param) {
1596 case __DRI2_RENDERER_VENDOR_ID:
1597 value[0] = brw_vendor_string;
1598 return 0;
1599 case __DRI2_RENDERER_DEVICE_ID:
1600 value[0] = brw_get_renderer_string(screen);
1601 return 0;
1602 default:
1603 break;
1604 }
1605
1606 return -1;
1607 }
1608
1609 static void
1610 brw_set_cache_funcs(__DRIscreen *dri_screen,
1611 __DRIblobCacheSet set, __DRIblobCacheGet get)
1612 {
1613 const struct intel_screen *const screen =
1614 (struct intel_screen *) dri_screen->driverPrivate;
1615
1616 if (!screen->disk_cache)
1617 return;
1618
1619 disk_cache_set_callbacks(screen->disk_cache, set, get);
1620 }
1621
1622 static const __DRI2rendererQueryExtension intelRendererQueryExtension = {
1623 .base = { __DRI2_RENDERER_QUERY, 1 },
1624
1625 .queryInteger = brw_query_renderer_integer,
1626 .queryString = brw_query_renderer_string
1627 };
1628
1629 static const __DRIrobustnessExtension dri2Robustness = {
1630 .base = { __DRI2_ROBUSTNESS, 1 }
1631 };
1632
1633 static const __DRI2blobExtension intelBlobExtension = {
1634 .base = { __DRI2_BLOB, 1 },
1635 .set_cache_funcs = brw_set_cache_funcs
1636 };
1637
1638 static const __DRImutableRenderBufferDriverExtension intelMutableRenderBufferExtension = {
1639 .base = { __DRI_MUTABLE_RENDER_BUFFER_DRIVER, 1 },
1640 };
1641
1642 static const __DRIextension *screenExtensions[] = {
1643 &intelTexBufferExtension.base,
1644 &intelFenceExtension.base,
1645 &intelFlushExtension.base,
1646 &intelImageExtension.base,
1647 &intelRendererQueryExtension.base,
1648 &intelMutableRenderBufferExtension.base,
1649 &dri2ConfigQueryExtension.base,
1650 &dri2NoErrorExtension.base,
1651 &intelBlobExtension.base,
1652 NULL
1653 };
1654
1655 static const __DRIextension *intelRobustScreenExtensions[] = {
1656 &intelTexBufferExtension.base,
1657 &intelFenceExtension.base,
1658 &intelFlushExtension.base,
1659 &intelImageExtension.base,
1660 &intelRendererQueryExtension.base,
1661 &intelMutableRenderBufferExtension.base,
1662 &dri2ConfigQueryExtension.base,
1663 &dri2Robustness.base,
1664 &dri2NoErrorExtension.base,
1665 &intelBlobExtension.base,
1666 NULL
1667 };
1668
1669 static int
1670 intel_get_param(struct intel_screen *screen, int param, int *value)
1671 {
1672 int ret = 0;
1673 struct drm_i915_getparam gp;
1674
1675 memset(&gp, 0, sizeof(gp));
1676 gp.param = param;
1677 gp.value = value;
1678
1679 if (drmIoctl(screen->fd, DRM_IOCTL_I915_GETPARAM, &gp) == -1) {
1680 ret = -errno;
1681 if (ret != -EINVAL)
1682 _mesa_warning(NULL, "drm_i915_getparam: %d", ret);
1683 }
1684
1685 return ret;
1686 }
1687
1688 static bool
1689 intel_get_boolean(struct intel_screen *screen, int param)
1690 {
1691 int value = 0;
1692 return (intel_get_param(screen, param, &value) == 0) && value;
1693 }
1694
1695 static int
1696 intel_get_integer(struct intel_screen *screen, int param)
1697 {
1698 int value = -1;
1699
1700 if (intel_get_param(screen, param, &value) == 0)
1701 return value;
1702
1703 return -1;
1704 }
1705
1706 static void
1707 intelDestroyScreen(__DRIscreen * sPriv)
1708 {
1709 struct intel_screen *screen = sPriv->driverPrivate;
1710
1711 brw_bufmgr_unref(screen->bufmgr);
1712 driDestroyOptionInfo(&screen->optionCache);
1713
1714 disk_cache_destroy(screen->disk_cache);
1715
1716 ralloc_free(screen);
1717 sPriv->driverPrivate = NULL;
1718 }
1719
1720
1721 /**
1722 * Create a gl_framebuffer and attach it to __DRIdrawable::driverPrivate.
1723 *
1724 *_This implements driDriverAPI::createNewDrawable, which the DRI layer calls
1725 * when creating a EGLSurface, GLXDrawable, or GLXPixmap. Despite the name,
1726 * this does not allocate GPU memory.
1727 */
1728 static GLboolean
1729 intelCreateBuffer(__DRIscreen *dri_screen,
1730 __DRIdrawable * driDrawPriv,
1731 const struct gl_config * mesaVis, GLboolean isPixmap)
1732 {
1733 struct intel_renderbuffer *rb;
1734 struct intel_screen *screen = (struct intel_screen *)
1735 dri_screen->driverPrivate;
1736 mesa_format rgbFormat;
1737 unsigned num_samples =
1738 intel_quantize_num_samples(screen, mesaVis->samples);
1739
1740 if (isPixmap)
1741 return false;
1742
1743 struct gl_framebuffer *fb = CALLOC_STRUCT(gl_framebuffer);
1744 if (!fb)
1745 return false;
1746
1747 _mesa_initialize_window_framebuffer(fb, mesaVis);
1748
1749 if (screen->winsys_msaa_samples_override != -1) {
1750 num_samples = screen->winsys_msaa_samples_override;
1751 fb->Visual.samples = num_samples;
1752 }
1753
1754 if (mesaVis->redBits == 16 && mesaVis->alphaBits > 0 && mesaVis->floatMode) {
1755 rgbFormat = MESA_FORMAT_RGBA_FLOAT16;
1756 } else if (mesaVis->redBits == 16 && mesaVis->floatMode) {
1757 rgbFormat = MESA_FORMAT_RGBX_FLOAT16;
1758 } else if (mesaVis->redBits == 10 && mesaVis->alphaBits > 0) {
1759 rgbFormat = mesaVis->redMask == 0x3ff00000 ? MESA_FORMAT_B10G10R10A2_UNORM
1760 : MESA_FORMAT_R10G10B10A2_UNORM;
1761 } else if (mesaVis->redBits == 10) {
1762 rgbFormat = mesaVis->redMask == 0x3ff00000 ? MESA_FORMAT_B10G10R10X2_UNORM
1763 : MESA_FORMAT_R10G10B10X2_UNORM;
1764 } else if (mesaVis->redBits == 5) {
1765 rgbFormat = mesaVis->redMask == 0x1f ? MESA_FORMAT_R5G6B5_UNORM
1766 : MESA_FORMAT_B5G6R5_UNORM;
1767 } else if (mesaVis->alphaBits == 0) {
1768 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8X8_SRGB
1769 : MESA_FORMAT_B8G8R8X8_SRGB;
1770 fb->Visual.sRGBCapable = true;
1771 } else if (mesaVis->sRGBCapable) {
1772 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
1773 : MESA_FORMAT_B8G8R8A8_SRGB;
1774 fb->Visual.sRGBCapable = true;
1775 } else {
1776 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
1777 : MESA_FORMAT_B8G8R8A8_SRGB;
1778 fb->Visual.sRGBCapable = true;
1779 }
1780
1781 /* mesaVis->sRGBCapable was set, user is asking for sRGB */
1782 bool srgb_cap_set = mesaVis->redBits >= 8 && mesaVis->sRGBCapable;
1783
1784 /* setup the hardware-based renderbuffers */
1785 rb = intel_create_winsys_renderbuffer(screen, rgbFormat, num_samples);
1786 _mesa_attach_and_own_rb(fb, BUFFER_FRONT_LEFT, &rb->Base.Base);
1787 rb->need_srgb = srgb_cap_set;
1788
1789 if (mesaVis->doubleBufferMode) {
1790 rb = intel_create_winsys_renderbuffer(screen, rgbFormat, num_samples);
1791 _mesa_attach_and_own_rb(fb, BUFFER_BACK_LEFT, &rb->Base.Base);
1792 rb->need_srgb = srgb_cap_set;
1793 }
1794
1795 /*
1796 * Assert here that the gl_config has an expected depth/stencil bit
1797 * combination: one of d24/s8, d16/s0, d0/s0. (See intelInitScreen2(),
1798 * which constructs the advertised configs.)
1799 */
1800 if (mesaVis->depthBits == 24) {
1801 assert(mesaVis->stencilBits == 8);
1802
1803 if (screen->devinfo.has_hiz_and_separate_stencil) {
1804 rb = intel_create_private_renderbuffer(screen,
1805 MESA_FORMAT_Z24_UNORM_X8_UINT,
1806 num_samples);
1807 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1808 rb = intel_create_private_renderbuffer(screen, MESA_FORMAT_S_UINT8,
1809 num_samples);
1810 _mesa_attach_and_own_rb(fb, BUFFER_STENCIL, &rb->Base.Base);
1811 } else {
1812 /*
1813 * Use combined depth/stencil. Note that the renderbuffer is
1814 * attached to two attachment points.
1815 */
1816 rb = intel_create_private_renderbuffer(screen,
1817 MESA_FORMAT_Z24_UNORM_S8_UINT,
1818 num_samples);
1819 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1820 _mesa_attach_and_reference_rb(fb, BUFFER_STENCIL, &rb->Base.Base);
1821 }
1822 }
1823 else if (mesaVis->depthBits == 16) {
1824 assert(mesaVis->stencilBits == 0);
1825 rb = intel_create_private_renderbuffer(screen, MESA_FORMAT_Z_UNORM16,
1826 num_samples);
1827 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1828 }
1829 else {
1830 assert(mesaVis->depthBits == 0);
1831 assert(mesaVis->stencilBits == 0);
1832 }
1833
1834 /* now add any/all software-based renderbuffers we may need */
1835 _swrast_add_soft_renderbuffers(fb,
1836 false, /* never sw color */
1837 false, /* never sw depth */
1838 false, /* never sw stencil */
1839 mesaVis->accumRedBits > 0,
1840 false, /* never sw alpha */
1841 false /* never sw aux */ );
1842 driDrawPriv->driverPrivate = fb;
1843
1844 return true;
1845 }
1846
1847 static void
1848 intelDestroyBuffer(__DRIdrawable * driDrawPriv)
1849 {
1850 struct gl_framebuffer *fb = driDrawPriv->driverPrivate;
1851
1852 _mesa_reference_framebuffer(&fb, NULL);
1853 }
1854
1855 static void
1856 intel_cs_timestamp_frequency(struct intel_screen *screen)
1857 {
1858 /* We shouldn't need to update gen_device_info.timestamp_frequency prior to
1859 * gen10, PCI-id is enough to figure it out.
1860 */
1861 assert(screen->devinfo.gen >= 10);
1862
1863 int ret, freq;
1864
1865 ret = intel_get_param(screen, I915_PARAM_CS_TIMESTAMP_FREQUENCY,
1866 &freq);
1867 if (ret < 0) {
1868 _mesa_warning(NULL,
1869 "Kernel 4.15 required to read the CS timestamp frequency.\n");
1870 return;
1871 }
1872
1873 screen->devinfo.timestamp_frequency = freq;
1874 }
1875
1876 static void
1877 intel_detect_sseu(struct intel_screen *screen)
1878 {
1879 assert(screen->devinfo.gen >= 8);
1880 int ret;
1881
1882 screen->subslice_total = -1;
1883 screen->eu_total = -1;
1884
1885 ret = intel_get_param(screen, I915_PARAM_SUBSLICE_TOTAL,
1886 &screen->subslice_total);
1887 if (ret < 0 && ret != -EINVAL)
1888 goto err_out;
1889
1890 ret = intel_get_param(screen,
1891 I915_PARAM_EU_TOTAL, &screen->eu_total);
1892 if (ret < 0 && ret != -EINVAL)
1893 goto err_out;
1894
1895 /* Without this information, we cannot get the right Braswell brandstrings,
1896 * and we have to use conservative numbers for GPGPU on many platforms, but
1897 * otherwise, things will just work.
1898 */
1899 if (screen->subslice_total < 1 || screen->eu_total < 1)
1900 _mesa_warning(NULL,
1901 "Kernel 4.1 required to properly query GPU properties.\n");
1902
1903 return;
1904
1905 err_out:
1906 screen->subslice_total = -1;
1907 screen->eu_total = -1;
1908 _mesa_warning(NULL, "Failed to query GPU properties (%s).\n", strerror(-ret));
1909 }
1910
1911 static bool
1912 intel_init_bufmgr(struct intel_screen *screen)
1913 {
1914 __DRIscreen *dri_screen = screen->driScrnPriv;
1915
1916 if (getenv("INTEL_NO_HW") != NULL)
1917 screen->no_hw = true;
1918
1919 bool bo_reuse = false;
1920 int bo_reuse_mode = driQueryOptioni(&screen->optionCache, "bo_reuse");
1921 switch (bo_reuse_mode) {
1922 case DRI_CONF_BO_REUSE_DISABLED:
1923 break;
1924 case DRI_CONF_BO_REUSE_ALL:
1925 bo_reuse = true;
1926 break;
1927 }
1928
1929 screen->bufmgr = brw_bufmgr_get_for_fd(&screen->devinfo, dri_screen->fd, bo_reuse);
1930 if (screen->bufmgr == NULL) {
1931 fprintf(stderr, "[%s:%u] Error initializing buffer manager.\n",
1932 __func__, __LINE__);
1933 return false;
1934 }
1935 screen->fd = brw_bufmgr_get_fd(screen->bufmgr);
1936
1937 if (!intel_get_boolean(screen, I915_PARAM_HAS_EXEC_NO_RELOC)) {
1938 fprintf(stderr, "[%s: %u] Kernel 3.9 required.\n", __func__, __LINE__);
1939 return false;
1940 }
1941
1942 return true;
1943 }
1944
1945 static bool
1946 intel_detect_swizzling(struct intel_screen *screen)
1947 {
1948 /* Broadwell PRM says:
1949 *
1950 * "Before Gen8, there was a historical configuration control field to
1951 * swizzle address bit[6] for in X/Y tiling modes. This was set in three
1952 * different places: TILECTL[1:0], ARB_MODE[5:4], and
1953 * DISP_ARB_CTL[14:13].
1954 *
1955 * For Gen8 and subsequent generations, the swizzle fields are all
1956 * reserved, and the CPU's memory controller performs all address
1957 * swizzling modifications."
1958 */
1959 if (screen->devinfo.gen >= 8)
1960 return false;
1961
1962 uint32_t tiling = I915_TILING_X;
1963 uint32_t swizzle_mode = 0;
1964 struct brw_bo *buffer =
1965 brw_bo_alloc_tiled(screen->bufmgr, "swizzle test", 32768,
1966 BRW_MEMZONE_OTHER, tiling, 512, 0);
1967 if (buffer == NULL)
1968 return false;
1969
1970 brw_bo_get_tiling(buffer, &tiling, &swizzle_mode);
1971 brw_bo_unreference(buffer);
1972
1973 return swizzle_mode != I915_BIT_6_SWIZZLE_NONE;
1974 }
1975
1976 static int
1977 intel_detect_timestamp(struct intel_screen *screen)
1978 {
1979 uint64_t dummy = 0, last = 0;
1980 int upper, lower, loops;
1981
1982 /* On 64bit systems, some old kernels trigger a hw bug resulting in the
1983 * TIMESTAMP register being shifted and the low 32bits always zero.
1984 *
1985 * More recent kernels offer an interface to read the full 36bits
1986 * everywhere.
1987 */
1988 if (brw_reg_read(screen->bufmgr, TIMESTAMP | 1, &dummy) == 0)
1989 return 3;
1990
1991 /* Determine if we have a 32bit or 64bit kernel by inspecting the
1992 * upper 32bits for a rapidly changing timestamp.
1993 */
1994 if (brw_reg_read(screen->bufmgr, TIMESTAMP, &last))
1995 return 0;
1996
1997 upper = lower = 0;
1998 for (loops = 0; loops < 10; loops++) {
1999 /* The TIMESTAMP should change every 80ns, so several round trips
2000 * through the kernel should be enough to advance it.
2001 */
2002 if (brw_reg_read(screen->bufmgr, TIMESTAMP, &dummy))
2003 return 0;
2004
2005 upper += (dummy >> 32) != (last >> 32);
2006 if (upper > 1) /* beware 32bit counter overflow */
2007 return 2; /* upper dword holds the low 32bits of the timestamp */
2008
2009 lower += (dummy & 0xffffffff) != (last & 0xffffffff);
2010 if (lower > 1)
2011 return 1; /* timestamp is unshifted */
2012
2013 last = dummy;
2014 }
2015
2016 /* No advancement? No timestamp! */
2017 return 0;
2018 }
2019
2020 /**
2021 * Test if we can use MI_LOAD_REGISTER_MEM from an untrusted batchbuffer.
2022 *
2023 * Some combinations of hardware and kernel versions allow this feature,
2024 * while others don't. Instead of trying to enumerate every case, just
2025 * try and write a register and see if works.
2026 */
2027 static bool
2028 intel_detect_pipelined_register(struct intel_screen *screen,
2029 int reg, uint32_t expected_value, bool reset)
2030 {
2031 if (screen->no_hw)
2032 return false;
2033
2034 struct brw_bo *results, *bo;
2035 uint32_t *batch;
2036 uint32_t offset = 0;
2037 void *map;
2038 bool success = false;
2039
2040 /* Create a zero'ed temporary buffer for reading our results */
2041 results = brw_bo_alloc(screen->bufmgr, "registers", 4096, BRW_MEMZONE_OTHER);
2042 if (results == NULL)
2043 goto err;
2044
2045 bo = brw_bo_alloc(screen->bufmgr, "batchbuffer", 4096, BRW_MEMZONE_OTHER);
2046 if (bo == NULL)
2047 goto err_results;
2048
2049 map = brw_bo_map(NULL, bo, MAP_WRITE);
2050 if (!map)
2051 goto err_batch;
2052
2053 batch = map;
2054
2055 /* Write the register. */
2056 *batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
2057 *batch++ = reg;
2058 *batch++ = expected_value;
2059
2060 /* Save the register's value back to the buffer. */
2061 *batch++ = MI_STORE_REGISTER_MEM | (3 - 2);
2062 *batch++ = reg;
2063 struct drm_i915_gem_relocation_entry reloc = {
2064 .offset = (char *) batch - (char *) map,
2065 .delta = offset * sizeof(uint32_t),
2066 .target_handle = results->gem_handle,
2067 .read_domains = I915_GEM_DOMAIN_INSTRUCTION,
2068 .write_domain = I915_GEM_DOMAIN_INSTRUCTION,
2069 };
2070 *batch++ = reloc.presumed_offset + reloc.delta;
2071
2072 /* And afterwards clear the register */
2073 if (reset) {
2074 *batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
2075 *batch++ = reg;
2076 *batch++ = 0;
2077 }
2078
2079 *batch++ = MI_BATCH_BUFFER_END;
2080
2081 struct drm_i915_gem_exec_object2 exec_objects[2] = {
2082 {
2083 .handle = results->gem_handle,
2084 },
2085 {
2086 .handle = bo->gem_handle,
2087 .relocation_count = 1,
2088 .relocs_ptr = (uintptr_t) &reloc,
2089 }
2090 };
2091
2092 struct drm_i915_gem_execbuffer2 execbuf = {
2093 .buffers_ptr = (uintptr_t) exec_objects,
2094 .buffer_count = 2,
2095 .batch_len = ALIGN((char *) batch - (char *) map, 8),
2096 .flags = I915_EXEC_RENDER,
2097 };
2098
2099 /* Don't bother with error checking - if the execbuf fails, the
2100 * value won't be written and we'll just report that there's no access.
2101 */
2102 drmIoctl(screen->fd, DRM_IOCTL_I915_GEM_EXECBUFFER2, &execbuf);
2103
2104 /* Check whether the value got written. */
2105 void *results_map = brw_bo_map(NULL, results, MAP_READ);
2106 if (results_map) {
2107 success = *((uint32_t *)results_map + offset) == expected_value;
2108 brw_bo_unmap(results);
2109 }
2110
2111 err_batch:
2112 brw_bo_unreference(bo);
2113 err_results:
2114 brw_bo_unreference(results);
2115 err:
2116 return success;
2117 }
2118
2119 static bool
2120 intel_detect_pipelined_so(struct intel_screen *screen)
2121 {
2122 const struct gen_device_info *devinfo = &screen->devinfo;
2123
2124 /* Supposedly, Broadwell just works. */
2125 if (devinfo->gen >= 8)
2126 return true;
2127
2128 if (devinfo->gen <= 6)
2129 return false;
2130
2131 /* See the big explanation about command parser versions below */
2132 if (screen->cmd_parser_version >= (devinfo->is_haswell ? 7 : 2))
2133 return true;
2134
2135 /* We use SO_WRITE_OFFSET0 since you're supposed to write it (unlike the
2136 * statistics registers), and we already reset it to zero before using it.
2137 */
2138 return intel_detect_pipelined_register(screen,
2139 GEN7_SO_WRITE_OFFSET(0),
2140 0x1337d0d0,
2141 false);
2142 }
2143
2144 /**
2145 * Return array of MSAA modes supported by the hardware. The array is
2146 * zero-terminated and sorted in decreasing order.
2147 */
2148 const int*
2149 intel_supported_msaa_modes(const struct intel_screen *screen)
2150 {
2151 static const int gen9_modes[] = {16, 8, 4, 2, 0, -1};
2152 static const int gen8_modes[] = {8, 4, 2, 0, -1};
2153 static const int gen7_modes[] = {8, 4, 0, -1};
2154 static const int gen6_modes[] = {4, 0, -1};
2155 static const int gen4_modes[] = {0, -1};
2156
2157 if (screen->devinfo.gen >= 9) {
2158 return gen9_modes;
2159 } else if (screen->devinfo.gen >= 8) {
2160 return gen8_modes;
2161 } else if (screen->devinfo.gen >= 7) {
2162 return gen7_modes;
2163 } else if (screen->devinfo.gen == 6) {
2164 return gen6_modes;
2165 } else {
2166 return gen4_modes;
2167 }
2168 }
2169
2170 static unsigned
2171 intel_loader_get_cap(const __DRIscreen *dri_screen, enum dri_loader_cap cap)
2172 {
2173 if (dri_screen->dri2.loader && dri_screen->dri2.loader->base.version >= 4 &&
2174 dri_screen->dri2.loader->getCapability)
2175 return dri_screen->dri2.loader->getCapability(dri_screen->loaderPrivate, cap);
2176
2177 if (dri_screen->image.loader && dri_screen->image.loader->base.version >= 2 &&
2178 dri_screen->image.loader->getCapability)
2179 return dri_screen->image.loader->getCapability(dri_screen->loaderPrivate, cap);
2180
2181 return 0;
2182 }
2183
2184 static bool
2185 intel_allowed_format(__DRIscreen *dri_screen, mesa_format format)
2186 {
2187 struct intel_screen *screen = dri_screen->driverPrivate;
2188
2189 /* Expose only BGRA ordering if the loader doesn't support RGBA ordering. */
2190 bool allow_rgba_ordering = intel_loader_get_cap(dri_screen, DRI_LOADER_CAP_RGBA_ORDERING);
2191 if (!allow_rgba_ordering &&
2192 (format == MESA_FORMAT_R8G8B8A8_UNORM ||
2193 format == MESA_FORMAT_R8G8B8X8_UNORM ||
2194 format == MESA_FORMAT_R8G8B8A8_SRGB))
2195 return false;
2196
2197 /* Shall we expose 10 bpc formats? */
2198 bool allow_rgb10_configs = driQueryOptionb(&screen->optionCache,
2199 "allow_rgb10_configs");
2200 if (!allow_rgb10_configs &&
2201 (format == MESA_FORMAT_B10G10R10A2_UNORM ||
2202 format == MESA_FORMAT_B10G10R10X2_UNORM))
2203 return false;
2204
2205 /* Shall we expose 565 formats? */
2206 bool allow_rgb565_configs = driQueryOptionb(&screen->optionCache,
2207 "allow_rgb565_configs");
2208 if (!allow_rgb565_configs && format == MESA_FORMAT_B5G6R5_UNORM)
2209 return false;
2210
2211 /* Shall we expose fp16 formats? */
2212 bool allow_fp16_configs = driQueryOptionb(&screen->optionCache,
2213 "allow_fp16_configs");
2214 allow_fp16_configs &= intel_loader_get_cap(dri_screen, DRI_LOADER_CAP_FP16);
2215 if (!allow_fp16_configs &&
2216 (format == MESA_FORMAT_RGBA_FLOAT16 ||
2217 format == MESA_FORMAT_RGBX_FLOAT16))
2218 return false;
2219
2220 return true;
2221 }
2222
2223 static __DRIconfig**
2224 intel_screen_make_configs(__DRIscreen *dri_screen)
2225 {
2226 static const mesa_format formats[] = {
2227 MESA_FORMAT_B5G6R5_UNORM,
2228 MESA_FORMAT_B8G8R8A8_UNORM,
2229 MESA_FORMAT_B8G8R8X8_UNORM,
2230
2231 MESA_FORMAT_B8G8R8A8_SRGB,
2232 MESA_FORMAT_B8G8R8X8_SRGB,
2233
2234 /* For 10 bpc, 30 bit depth framebuffers. */
2235 MESA_FORMAT_B10G10R10A2_UNORM,
2236 MESA_FORMAT_B10G10R10X2_UNORM,
2237
2238 MESA_FORMAT_RGBA_FLOAT16,
2239 MESA_FORMAT_RGBX_FLOAT16,
2240
2241 /* The 32-bit RGBA format must not precede the 32-bit BGRA format.
2242 * Likewise for RGBX and BGRX. Otherwise, the GLX client and the GLX
2243 * server may disagree on which format the GLXFBConfig represents,
2244 * resulting in swapped color channels.
2245 *
2246 * The problem, as of 2017-05-30:
2247 * When matching a GLXFBConfig to a __DRIconfig, GLX ignores the channel
2248 * order and chooses the first __DRIconfig with the expected channel
2249 * sizes. Specifically, GLX compares the GLXFBConfig's and __DRIconfig's
2250 * __DRI_ATTRIB_{CHANNEL}_SIZE but ignores __DRI_ATTRIB_{CHANNEL}_MASK.
2251 *
2252 * EGL does not suffer from this problem. It correctly compares the
2253 * channel masks when matching EGLConfig to __DRIconfig.
2254 */
2255
2256 /* Required by Android, for HAL_PIXEL_FORMAT_RGBA_8888. */
2257 MESA_FORMAT_R8G8B8A8_UNORM,
2258
2259 /* Required by Android, for HAL_PIXEL_FORMAT_RGBX_8888. */
2260 MESA_FORMAT_R8G8B8X8_UNORM,
2261
2262 MESA_FORMAT_R8G8B8A8_SRGB,
2263 };
2264
2265 /* __DRI_ATTRIB_SWAP_COPY is not supported due to page flipping. */
2266 static const GLenum back_buffer_modes[] = {
2267 __DRI_ATTRIB_SWAP_UNDEFINED, __DRI_ATTRIB_SWAP_NONE
2268 };
2269
2270 static const uint8_t singlesample_samples[1] = {0};
2271
2272 struct intel_screen *screen = dri_screen->driverPrivate;
2273 const struct gen_device_info *devinfo = &screen->devinfo;
2274 uint8_t depth_bits[4], stencil_bits[4];
2275 __DRIconfig **configs = NULL;
2276
2277 unsigned num_formats = ARRAY_SIZE(formats);
2278
2279 /* Generate singlesample configs, each without accumulation buffer
2280 * and with EGL_MUTABLE_RENDER_BUFFER_BIT_KHR.
2281 */
2282 for (unsigned i = 0; i < num_formats; i++) {
2283 __DRIconfig **new_configs;
2284 int num_depth_stencil_bits = 1;
2285
2286 if (!intel_allowed_format(dri_screen, formats[i]))
2287 continue;
2288
2289 /* Starting with DRI2 protocol version 1.1 we can request a depth/stencil
2290 * buffer that has a different number of bits per pixel than the color
2291 * buffer, gen >= 6 supports this.
2292 */
2293 depth_bits[0] = 0;
2294 stencil_bits[0] = 0;
2295
2296 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
2297 if (devinfo->gen >= 8) {
2298 depth_bits[num_depth_stencil_bits] = 16;
2299 stencil_bits[num_depth_stencil_bits] = 0;
2300 num_depth_stencil_bits++;
2301 }
2302 if (devinfo->gen >= 6) {
2303 depth_bits[num_depth_stencil_bits] = 24;
2304 stencil_bits[num_depth_stencil_bits] = 8;
2305 num_depth_stencil_bits++;
2306 }
2307 } else {
2308 depth_bits[num_depth_stencil_bits] = 24;
2309 stencil_bits[num_depth_stencil_bits] = 8;
2310 num_depth_stencil_bits++;
2311 }
2312
2313 new_configs = driCreateConfigs(formats[i],
2314 depth_bits,
2315 stencil_bits,
2316 num_depth_stencil_bits,
2317 back_buffer_modes, 2,
2318 singlesample_samples, 1,
2319 false, false,
2320 /*mutable_render_buffer*/ true);
2321 configs = driConcatConfigs(configs, new_configs);
2322 }
2323
2324 /* Generate the minimum possible set of configs that include an
2325 * accumulation buffer.
2326 */
2327 for (unsigned i = 0; i < num_formats; i++) {
2328 __DRIconfig **new_configs;
2329
2330 if (!intel_allowed_format(dri_screen, formats[i]))
2331 continue;
2332
2333 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
2334 if (devinfo->gen >= 8) {
2335 depth_bits[0] = 16;
2336 stencil_bits[0] = 0;
2337 } else if (devinfo->gen >= 6) {
2338 depth_bits[0] = 24;
2339 stencil_bits[0] = 8;
2340 } else {
2341 depth_bits[0] = 0;
2342 stencil_bits[0] = 0;
2343 }
2344 } else {
2345 depth_bits[0] = 24;
2346 stencil_bits[0] = 8;
2347 }
2348
2349 new_configs = driCreateConfigs(formats[i],
2350 depth_bits, stencil_bits, 1,
2351 back_buffer_modes, 1,
2352 singlesample_samples, 1,
2353 true, false, false);
2354 configs = driConcatConfigs(configs, new_configs);
2355 }
2356
2357 /* Generate multisample configs.
2358 *
2359 * This loop breaks early, and hence is a no-op, on gen < 6.
2360 *
2361 * Multisample configs must follow the singlesample configs in order to
2362 * work around an X server bug present in 1.12. The X server chooses to
2363 * associate the first listed RGBA888-Z24S8 config, regardless of its
2364 * sample count, with the 32-bit depth visual used for compositing.
2365 *
2366 * Only doublebuffer configs with GLX_SWAP_UNDEFINED_OML behavior are
2367 * supported. Singlebuffer configs are not supported because no one wants
2368 * them.
2369 */
2370 for (unsigned i = 0; i < num_formats; i++) {
2371 if (devinfo->gen < 6)
2372 break;
2373
2374 if (!intel_allowed_format(dri_screen, formats[i]))
2375 continue;
2376
2377 __DRIconfig **new_configs;
2378 const int num_depth_stencil_bits = 2;
2379 int num_msaa_modes = 0;
2380 const uint8_t *multisample_samples = NULL;
2381
2382 depth_bits[0] = 0;
2383 stencil_bits[0] = 0;
2384
2385 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM && devinfo->gen >= 8) {
2386 depth_bits[1] = 16;
2387 stencil_bits[1] = 0;
2388 } else {
2389 depth_bits[1] = 24;
2390 stencil_bits[1] = 8;
2391 }
2392
2393 if (devinfo->gen >= 9) {
2394 static const uint8_t multisample_samples_gen9[] = {2, 4, 8, 16};
2395 multisample_samples = multisample_samples_gen9;
2396 num_msaa_modes = ARRAY_SIZE(multisample_samples_gen9);
2397 } else if (devinfo->gen == 8) {
2398 static const uint8_t multisample_samples_gen8[] = {2, 4, 8};
2399 multisample_samples = multisample_samples_gen8;
2400 num_msaa_modes = ARRAY_SIZE(multisample_samples_gen8);
2401 } else if (devinfo->gen == 7) {
2402 static const uint8_t multisample_samples_gen7[] = {4, 8};
2403 multisample_samples = multisample_samples_gen7;
2404 num_msaa_modes = ARRAY_SIZE(multisample_samples_gen7);
2405 } else if (devinfo->gen == 6) {
2406 static const uint8_t multisample_samples_gen6[] = {4};
2407 multisample_samples = multisample_samples_gen6;
2408 num_msaa_modes = ARRAY_SIZE(multisample_samples_gen6);
2409 }
2410
2411 new_configs = driCreateConfigs(formats[i],
2412 depth_bits,
2413 stencil_bits,
2414 num_depth_stencil_bits,
2415 back_buffer_modes, 1,
2416 multisample_samples,
2417 num_msaa_modes,
2418 false, false, false);
2419 configs = driConcatConfigs(configs, new_configs);
2420 }
2421
2422 if (configs == NULL) {
2423 fprintf(stderr, "[%s:%u] Error creating FBConfig!\n", __func__,
2424 __LINE__);
2425 return NULL;
2426 }
2427
2428 return configs;
2429 }
2430
2431 static void
2432 set_max_gl_versions(struct intel_screen *screen)
2433 {
2434 __DRIscreen *dri_screen = screen->driScrnPriv;
2435 const bool has_astc = screen->devinfo.gen >= 9;
2436
2437 switch (screen->devinfo.gen) {
2438 case 11:
2439 case 10:
2440 case 9:
2441 case 8:
2442 dri_screen->max_gl_core_version = 46;
2443 dri_screen->max_gl_compat_version = 30;
2444 dri_screen->max_gl_es1_version = 11;
2445 dri_screen->max_gl_es2_version = has_astc ? 32 : 31;
2446 break;
2447 case 7:
2448 dri_screen->max_gl_core_version = 33;
2449 if (can_do_pipelined_register_writes(screen)) {
2450 dri_screen->max_gl_core_version = 42;
2451 if (screen->devinfo.is_haswell && can_do_compute_dispatch(screen))
2452 dri_screen->max_gl_core_version = 43;
2453 if (screen->devinfo.is_haswell && can_do_mi_math_and_lrr(screen))
2454 dri_screen->max_gl_core_version = 45;
2455 }
2456 dri_screen->max_gl_compat_version = 30;
2457 dri_screen->max_gl_es1_version = 11;
2458 dri_screen->max_gl_es2_version = screen->devinfo.is_haswell ? 31 : 30;
2459 break;
2460 case 6:
2461 dri_screen->max_gl_core_version = 33;
2462 dri_screen->max_gl_compat_version = 30;
2463 dri_screen->max_gl_es1_version = 11;
2464 dri_screen->max_gl_es2_version = 30;
2465 break;
2466 case 5:
2467 case 4:
2468 dri_screen->max_gl_core_version = 0;
2469 dri_screen->max_gl_compat_version = 21;
2470 dri_screen->max_gl_es1_version = 11;
2471 dri_screen->max_gl_es2_version = 20;
2472 break;
2473 default:
2474 unreachable("unrecognized intel_screen::gen");
2475 }
2476 }
2477
2478 static void
2479 shader_debug_log_mesa(void *data, const char *fmt, ...)
2480 {
2481 struct brw_context *brw = (struct brw_context *)data;
2482 va_list args;
2483
2484 va_start(args, fmt);
2485 GLuint msg_id = 0;
2486 _mesa_gl_vdebugf(&brw->ctx, &msg_id,
2487 MESA_DEBUG_SOURCE_SHADER_COMPILER,
2488 MESA_DEBUG_TYPE_OTHER,
2489 MESA_DEBUG_SEVERITY_NOTIFICATION, fmt, args);
2490 va_end(args);
2491 }
2492
2493 static void
2494 shader_perf_log_mesa(void *data, const char *fmt, ...)
2495 {
2496 struct brw_context *brw = (struct brw_context *)data;
2497
2498 va_list args;
2499 va_start(args, fmt);
2500
2501 if (unlikely(INTEL_DEBUG & DEBUG_PERF)) {
2502 va_list args_copy;
2503 va_copy(args_copy, args);
2504 vfprintf(stderr, fmt, args_copy);
2505 va_end(args_copy);
2506 }
2507
2508 if (brw->perf_debug) {
2509 GLuint msg_id = 0;
2510 _mesa_gl_vdebugf(&brw->ctx, &msg_id,
2511 MESA_DEBUG_SOURCE_SHADER_COMPILER,
2512 MESA_DEBUG_TYPE_PERFORMANCE,
2513 MESA_DEBUG_SEVERITY_MEDIUM, fmt, args);
2514 }
2515 va_end(args);
2516 }
2517
2518 /**
2519 * This is the driver specific part of the createNewScreen entry point.
2520 * Called when using DRI2.
2521 *
2522 * \return the struct gl_config supported by this driver
2523 */
2524 static const
2525 __DRIconfig **intelInitScreen2(__DRIscreen *dri_screen)
2526 {
2527 struct intel_screen *screen;
2528
2529 if (dri_screen->image.loader) {
2530 } else if (dri_screen->dri2.loader->base.version <= 2 ||
2531 dri_screen->dri2.loader->getBuffersWithFormat == NULL) {
2532 fprintf(stderr,
2533 "\nERROR! DRI2 loader with getBuffersWithFormat() "
2534 "support required\n");
2535 return NULL;
2536 }
2537
2538 /* Allocate the private area */
2539 screen = rzalloc(NULL, struct intel_screen);
2540 if (!screen) {
2541 fprintf(stderr, "\nERROR! Allocating private area failed\n");
2542 return NULL;
2543 }
2544 /* parse information in __driConfigOptions */
2545 driOptionCache options;
2546 memset(&options, 0, sizeof(options));
2547
2548 driParseOptionInfo(&options, brw_config_options.xml);
2549 driParseConfigFiles(&screen->optionCache, &options, dri_screen->myNum,
2550 "i965", NULL, NULL, 0);
2551 driDestroyOptionCache(&options);
2552
2553 screen->driScrnPriv = dri_screen;
2554 dri_screen->driverPrivate = (void *) screen;
2555
2556 if (!gen_get_device_info_from_fd(dri_screen->fd, &screen->devinfo))
2557 return NULL;
2558
2559 const struct gen_device_info *devinfo = &screen->devinfo;
2560 screen->deviceID = devinfo->chipset_id;
2561 screen->no_hw = devinfo->no_hw;
2562
2563 if (devinfo->gen >= 12) {
2564 fprintf(stderr, "gen12 and newer are not supported on i965\n");
2565 return NULL;
2566 }
2567
2568 if (!intel_init_bufmgr(screen))
2569 return NULL;
2570
2571 brw_process_intel_debug_variable();
2572
2573 if ((INTEL_DEBUG & DEBUG_SHADER_TIME) && devinfo->gen < 7) {
2574 fprintf(stderr,
2575 "shader_time debugging requires gen7 (Ivybridge) or better.\n");
2576 INTEL_DEBUG &= ~DEBUG_SHADER_TIME;
2577 }
2578
2579 if (intel_get_integer(screen, I915_PARAM_MMAP_GTT_VERSION) >= 1) {
2580 /* Theorectically unlimited! At least for individual objects...
2581 *
2582 * Currently the entire (global) address space for all GTT maps is
2583 * limited to 64bits. That is all objects on the system that are
2584 * setup for GTT mmapping must fit within 64bits. An attempt to use
2585 * one that exceeds the limit with fail in brw_bo_map_gtt().
2586 *
2587 * Long before we hit that limit, we will be practically limited by
2588 * that any single object must fit in physical memory (RAM). The upper
2589 * limit on the CPU's address space is currently 48bits (Skylake), of
2590 * which only 39bits can be physical memory. (The GPU itself also has
2591 * a 48bit addressable virtual space.) We can fit over 32 million
2592 * objects of the current maximum allocable size before running out
2593 * of mmap space.
2594 */
2595 screen->max_gtt_map_object_size = UINT64_MAX;
2596 } else {
2597 /* Estimate the size of the mappable aperture into the GTT. There's an
2598 * ioctl to get the whole GTT size, but not one to get the mappable subset.
2599 * It turns out it's basically always 256MB, though some ancient hardware
2600 * was smaller.
2601 */
2602 uint32_t gtt_size = 256 * 1024 * 1024;
2603
2604 /* We don't want to map two objects such that a memcpy between them would
2605 * just fault one mapping in and then the other over and over forever. So
2606 * we would need to divide the GTT size by 2. Additionally, some GTT is
2607 * taken up by things like the framebuffer and the ringbuffer and such, so
2608 * be more conservative.
2609 */
2610 screen->max_gtt_map_object_size = gtt_size / 4;
2611 }
2612
2613 screen->aperture_threshold = get_aperture_size(screen->fd) * 3 / 4;
2614
2615 screen->hw_has_swizzling = intel_detect_swizzling(screen);
2616 screen->hw_has_timestamp = intel_detect_timestamp(screen);
2617
2618 isl_device_init(&screen->isl_dev, &screen->devinfo,
2619 screen->hw_has_swizzling);
2620
2621 if (devinfo->gen >= 10)
2622 intel_cs_timestamp_frequency(screen);
2623
2624 /* GENs prior to 8 do not support EU/Subslice info */
2625 if (devinfo->gen >= 8) {
2626 intel_detect_sseu(screen);
2627 } else if (devinfo->gen == 7) {
2628 screen->subslice_total = 1 << (devinfo->gt - 1);
2629 }
2630
2631 /* Gen7-7.5 kernel requirements / command parser saga:
2632 *
2633 * - pre-v3.16:
2634 * Haswell and Baytrail cannot use any privileged batchbuffer features.
2635 *
2636 * Ivybridge has aliasing PPGTT on by default, which accidentally marks
2637 * all batches secure, allowing them to use any feature with no checking.
2638 * This is effectively equivalent to a command parser version of
2639 * \infinity - everything is possible.
2640 *
2641 * The command parser does not exist, and querying the version will
2642 * return -EINVAL.
2643 *
2644 * - v3.16:
2645 * The kernel enables the command parser by default, for systems with
2646 * aliasing PPGTT enabled (Ivybridge and Haswell). However, the
2647 * hardware checker is still enabled, so Haswell and Baytrail cannot
2648 * do anything.
2649 *
2650 * Ivybridge goes from "everything is possible" to "only what the
2651 * command parser allows" (if the user boots with i915.cmd_parser=0,
2652 * then everything is possible again). We can only safely use features
2653 * allowed by the supported command parser version.
2654 *
2655 * Annoyingly, I915_PARAM_CMD_PARSER_VERSION reports the static version
2656 * implemented by the kernel, even if it's turned off. So, checking
2657 * for version > 0 does not mean that you can write registers. We have
2658 * to try it and see. The version does, however, indicate the age of
2659 * the kernel.
2660 *
2661 * Instead of matching the hardware checker's behavior of converting
2662 * privileged commands to MI_NOOP, it makes execbuf2 start returning
2663 * -EINVAL, making it dangerous to try and use privileged features.
2664 *
2665 * Effective command parser versions:
2666 * - Haswell: 0 (reporting 1, writes don't work)
2667 * - Baytrail: 0 (reporting 1, writes don't work)
2668 * - Ivybridge: 1 (enabled) or infinite (disabled)
2669 *
2670 * - v3.17:
2671 * Baytrail aliasing PPGTT is enabled, making it like Ivybridge:
2672 * effectively version 1 (enabled) or infinite (disabled).
2673 *
2674 * - v3.19: f1f55cc0556031c8ee3fe99dae7251e78b9b653b
2675 * Command parser v2 supports predicate writes.
2676 *
2677 * - Haswell: 0 (reporting 1, writes don't work)
2678 * - Baytrail: 2 (enabled) or infinite (disabled)
2679 * - Ivybridge: 2 (enabled) or infinite (disabled)
2680 *
2681 * So version >= 2 is enough to know that Ivybridge and Baytrail
2682 * will work. Haswell still can't do anything.
2683 *
2684 * - v4.0: Version 3 happened. Largely not relevant.
2685 *
2686 * - v4.1: 6702cf16e0ba8b0129f5aa1b6609d4e9c70bc13b
2687 * L3 config registers are properly saved and restored as part
2688 * of the hardware context. We can approximately detect this point
2689 * in time by checking if I915_PARAM_REVISION is recognized - it
2690 * landed in a later commit, but in the same release cycle.
2691 *
2692 * - v4.2: 245054a1fe33c06ad233e0d58a27ec7b64db9284
2693 * Command parser finally gains secure batch promotion. On Haswell,
2694 * the hardware checker gets disabled, which finally allows it to do
2695 * privileged commands.
2696 *
2697 * I915_PARAM_CMD_PARSER_VERSION reports 3. Effective versions:
2698 * - Haswell: 3 (enabled) or 0 (disabled)
2699 * - Baytrail: 3 (enabled) or infinite (disabled)
2700 * - Ivybridge: 3 (enabled) or infinite (disabled)
2701 *
2702 * Unfortunately, detecting this point in time is tricky, because
2703 * no version bump happened when this important change occurred.
2704 * On Haswell, if we can write any register, then the kernel is at
2705 * least this new, and we can start trusting the version number.
2706 *
2707 * - v4.4: 2bbe6bbb0dc94fd4ce287bdac9e1bd184e23057b and
2708 * Command parser reaches version 4, allowing access to Haswell
2709 * atomic scratch and chicken3 registers. If version >= 4, we know
2710 * the kernel is new enough to support privileged features on all
2711 * hardware. However, the user might have disabled it...and the
2712 * kernel will still report version 4. So we still have to guess
2713 * and check.
2714 *
2715 * - v4.4: 7b9748cb513a6bef4af87b79f0da3ff7e8b56cd8
2716 * Command parser v5 whitelists indirect compute shader dispatch
2717 * registers, needed for OpenGL 4.3 and later.
2718 *
2719 * - v4.8:
2720 * Command parser v7 lets us use MI_MATH on Haswell.
2721 *
2722 * Additionally, the kernel begins reporting version 0 when
2723 * the command parser is disabled, allowing us to skip the
2724 * guess-and-check step on Haswell. Unfortunately, this also
2725 * means that we can no longer use it as an indicator of the
2726 * age of the kernel.
2727 */
2728 if (intel_get_param(screen, I915_PARAM_CMD_PARSER_VERSION,
2729 &screen->cmd_parser_version) < 0) {
2730 /* Command parser does not exist - getparam is unrecognized */
2731 screen->cmd_parser_version = 0;
2732 }
2733
2734 /* Kernel 4.13 retuired for exec object capture */
2735 if (intel_get_boolean(screen, I915_PARAM_HAS_EXEC_CAPTURE)) {
2736 screen->kernel_features |= KERNEL_ALLOWS_EXEC_CAPTURE;
2737 }
2738
2739 if (intel_get_boolean(screen, I915_PARAM_HAS_EXEC_BATCH_FIRST)) {
2740 screen->kernel_features |= KERNEL_ALLOWS_EXEC_BATCH_FIRST;
2741 }
2742
2743 if (!intel_detect_pipelined_so(screen)) {
2744 /* We can't do anything, so the effective version is 0. */
2745 screen->cmd_parser_version = 0;
2746 } else {
2747 screen->kernel_features |= KERNEL_ALLOWS_SOL_OFFSET_WRITES;
2748 }
2749
2750 if (devinfo->gen >= 8 || screen->cmd_parser_version >= 2)
2751 screen->kernel_features |= KERNEL_ALLOWS_PREDICATE_WRITES;
2752
2753 /* Haswell requires command parser version 4 in order to have L3
2754 * atomic scratch1 and chicken3 bits
2755 */
2756 if (devinfo->is_haswell && screen->cmd_parser_version >= 4) {
2757 screen->kernel_features |=
2758 KERNEL_ALLOWS_HSW_SCRATCH1_AND_ROW_CHICKEN3;
2759 }
2760
2761 /* Haswell requires command parser version 6 in order to write to the
2762 * MI_MATH GPR registers, and version 7 in order to use
2763 * MI_LOAD_REGISTER_REG (which all users of MI_MATH use).
2764 */
2765 if (devinfo->gen >= 8 ||
2766 (devinfo->is_haswell && screen->cmd_parser_version >= 7)) {
2767 screen->kernel_features |= KERNEL_ALLOWS_MI_MATH_AND_LRR;
2768 }
2769
2770 /* Gen7 needs at least command parser version 5 to support compute */
2771 if (devinfo->gen >= 8 || screen->cmd_parser_version >= 5)
2772 screen->kernel_features |= KERNEL_ALLOWS_COMPUTE_DISPATCH;
2773
2774 if (intel_get_boolean(screen, I915_PARAM_HAS_CONTEXT_ISOLATION))
2775 screen->kernel_features |= KERNEL_ALLOWS_CONTEXT_ISOLATION;
2776
2777 const char *force_msaa = getenv("INTEL_FORCE_MSAA");
2778 if (force_msaa) {
2779 screen->winsys_msaa_samples_override =
2780 intel_quantize_num_samples(screen, atoi(force_msaa));
2781 printf("Forcing winsys sample count to %d\n",
2782 screen->winsys_msaa_samples_override);
2783 } else {
2784 screen->winsys_msaa_samples_override = -1;
2785 }
2786
2787 set_max_gl_versions(screen);
2788
2789 /* Notification of GPU resets requires hardware contexts and a kernel new
2790 * enough to support DRM_IOCTL_I915_GET_RESET_STATS. If the ioctl is
2791 * supported, calling it with a context of 0 will either generate EPERM or
2792 * no error. If the ioctl is not supported, it always generate EINVAL.
2793 * Use this to determine whether to advertise the __DRI2_ROBUSTNESS
2794 * extension to the loader.
2795 *
2796 * Don't even try on pre-Gen6, since we don't attempt to use contexts there.
2797 */
2798 if (devinfo->gen >= 6) {
2799 struct drm_i915_reset_stats stats;
2800 memset(&stats, 0, sizeof(stats));
2801
2802 const int ret = drmIoctl(screen->fd, DRM_IOCTL_I915_GET_RESET_STATS, &stats);
2803
2804 screen->has_context_reset_notification =
2805 (ret != -1 || errno != EINVAL);
2806 }
2807
2808 dri_screen->extensions = !screen->has_context_reset_notification
2809 ? screenExtensions : intelRobustScreenExtensions;
2810
2811 screen->compiler = brw_compiler_create(screen, devinfo);
2812 screen->compiler->shader_debug_log = shader_debug_log_mesa;
2813 screen->compiler->shader_perf_log = shader_perf_log_mesa;
2814
2815 /* Changing the meaning of constant buffer pointers from a dynamic state
2816 * offset to an absolute address is only safe if the kernel isolates other
2817 * contexts from our changes.
2818 */
2819 screen->compiler->constant_buffer_0_is_relative = devinfo->gen < 8 ||
2820 !(screen->kernel_features & KERNEL_ALLOWS_CONTEXT_ISOLATION);
2821
2822 screen->compiler->glsl_compiler_options[MESA_SHADER_VERTEX].PositionAlwaysInvariant = driQueryOptionb(&screen->optionCache, "vs_position_always_invariant");
2823
2824 screen->compiler->supports_pull_constants = true;
2825 screen->compiler->compact_params = true;
2826 screen->compiler->lower_variable_group_size = true;
2827
2828 screen->has_exec_fence =
2829 intel_get_boolean(screen, I915_PARAM_HAS_EXEC_FENCE);
2830
2831 intel_screen_init_surface_formats(screen);
2832
2833 if (INTEL_DEBUG & (DEBUG_BATCH | DEBUG_SUBMIT)) {
2834 unsigned int caps = intel_get_integer(screen, I915_PARAM_HAS_SCHEDULER);
2835 if (caps) {
2836 fprintf(stderr, "Kernel scheduler detected: %08x\n", caps);
2837 if (caps & I915_SCHEDULER_CAP_PRIORITY)
2838 fprintf(stderr, " - User priority sorting enabled\n");
2839 if (caps & I915_SCHEDULER_CAP_PREEMPTION)
2840 fprintf(stderr, " - Preemption enabled\n");
2841 }
2842 }
2843
2844 brw_disk_cache_init(screen);
2845
2846 return (const __DRIconfig**) intel_screen_make_configs(dri_screen);
2847 }
2848
2849 struct intel_buffer {
2850 __DRIbuffer base;
2851 struct brw_bo *bo;
2852 };
2853
2854 static __DRIbuffer *
2855 intelAllocateBuffer(__DRIscreen *dri_screen,
2856 unsigned attachment, unsigned format,
2857 int width, int height)
2858 {
2859 struct intel_buffer *intelBuffer;
2860 struct intel_screen *screen = dri_screen->driverPrivate;
2861
2862 assert(attachment == __DRI_BUFFER_FRONT_LEFT ||
2863 attachment == __DRI_BUFFER_BACK_LEFT);
2864
2865 intelBuffer = calloc(1, sizeof *intelBuffer);
2866 if (intelBuffer == NULL)
2867 return NULL;
2868
2869 /* The front and back buffers are color buffers, which are X tiled. GEN9+
2870 * supports Y tiled and compressed buffers, but there is no way to plumb that
2871 * through to here. */
2872 uint32_t pitch;
2873 int cpp = format / 8;
2874 intelBuffer->bo = brw_bo_alloc_tiled_2d(screen->bufmgr,
2875 "intelAllocateBuffer",
2876 width,
2877 height,
2878 cpp,
2879 BRW_MEMZONE_OTHER,
2880 I915_TILING_X, &pitch,
2881 BO_ALLOC_BUSY);
2882
2883 if (intelBuffer->bo == NULL) {
2884 free(intelBuffer);
2885 return NULL;
2886 }
2887
2888 brw_bo_flink(intelBuffer->bo, &intelBuffer->base.name);
2889
2890 intelBuffer->base.attachment = attachment;
2891 intelBuffer->base.cpp = cpp;
2892 intelBuffer->base.pitch = pitch;
2893
2894 return &intelBuffer->base;
2895 }
2896
2897 static void
2898 intelReleaseBuffer(__DRIscreen *dri_screen, __DRIbuffer *buffer)
2899 {
2900 struct intel_buffer *intelBuffer = (struct intel_buffer *) buffer;
2901
2902 brw_bo_unreference(intelBuffer->bo);
2903 free(intelBuffer);
2904 }
2905
2906 static const struct __DriverAPIRec brw_driver_api = {
2907 .InitScreen = intelInitScreen2,
2908 .DestroyScreen = intelDestroyScreen,
2909 .CreateContext = brwCreateContext,
2910 .DestroyContext = intelDestroyContext,
2911 .CreateBuffer = intelCreateBuffer,
2912 .DestroyBuffer = intelDestroyBuffer,
2913 .MakeCurrent = intelMakeCurrent,
2914 .UnbindContext = intelUnbindContext,
2915 .AllocateBuffer = intelAllocateBuffer,
2916 .ReleaseBuffer = intelReleaseBuffer
2917 };
2918
2919 static const struct __DRIDriverVtableExtensionRec brw_vtable = {
2920 .base = { __DRI_DRIVER_VTABLE, 1 },
2921 .vtable = &brw_driver_api,
2922 };
2923
2924 static const __DRIextension *brw_driver_extensions[] = {
2925 &driCoreExtension.base,
2926 &driImageDriverExtension.base,
2927 &driDRI2Extension.base,
2928 &brw_vtable.base,
2929 &brw_config_options.base,
2930 NULL
2931 };
2932
2933 PUBLIC const __DRIextension **__driDriverGetExtensions_i965(void)
2934 {
2935 globalDriverAPI = &brw_driver_api;
2936
2937 return brw_driver_extensions;
2938 }