i965: Move fallback size assignment out of bufmgr
[mesa.git] / src / mesa / drivers / dri / i965 / intel_screen.c
1 /*
2 * Copyright 2003 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <drm_fourcc.h>
27 #include <errno.h>
28 #include <time.h>
29 #include <unistd.h>
30 #include "main/context.h"
31 #include "main/framebuffer.h"
32 #include "main/renderbuffer.h"
33 #include "main/texobj.h"
34 #include "main/hash.h"
35 #include "main/fbobject.h"
36 #include "main/version.h"
37 #include "swrast/s_renderbuffer.h"
38 #include "util/ralloc.h"
39 #include "brw_defines.h"
40 #include "compiler/nir/nir.h"
41
42 #include "utils.h"
43 #include "xmlpool.h"
44
45 #ifndef DRM_FORMAT_MOD_INVALID
46 #define DRM_FORMAT_MOD_INVALID ((1ULL<<56) - 1)
47 #endif
48
49 #ifndef DRM_FORMAT_MOD_LINEAR
50 #define DRM_FORMAT_MOD_LINEAR 0
51 #endif
52
53 static const __DRIconfigOptionsExtension brw_config_options = {
54 .base = { __DRI_CONFIG_OPTIONS, 1 },
55 .xml =
56 DRI_CONF_BEGIN
57 DRI_CONF_SECTION_PERFORMANCE
58 DRI_CONF_VBLANK_MODE(DRI_CONF_VBLANK_ALWAYS_SYNC)
59 /* Options correspond to DRI_CONF_BO_REUSE_DISABLED,
60 * DRI_CONF_BO_REUSE_ALL
61 */
62 DRI_CONF_OPT_BEGIN_V(bo_reuse, enum, 1, "0:1")
63 DRI_CONF_DESC_BEGIN(en, "Buffer object reuse")
64 DRI_CONF_ENUM(0, "Disable buffer object reuse")
65 DRI_CONF_ENUM(1, "Enable reuse of all sizes of buffer objects")
66 DRI_CONF_DESC_END
67 DRI_CONF_OPT_END
68 DRI_CONF_SECTION_END
69
70 DRI_CONF_SECTION_QUALITY
71 DRI_CONF_FORCE_S3TC_ENABLE("false")
72
73 DRI_CONF_PRECISE_TRIG("false")
74
75 DRI_CONF_OPT_BEGIN(clamp_max_samples, int, -1)
76 DRI_CONF_DESC(en, "Clamp the value of GL_MAX_SAMPLES to the "
77 "given integer. If negative, then do not clamp.")
78 DRI_CONF_OPT_END
79 DRI_CONF_SECTION_END
80
81 DRI_CONF_SECTION_DEBUG
82 DRI_CONF_NO_RAST("false")
83 DRI_CONF_ALWAYS_FLUSH_BATCH("false")
84 DRI_CONF_ALWAYS_FLUSH_CACHE("false")
85 DRI_CONF_DISABLE_THROTTLING("false")
86 DRI_CONF_FORCE_GLSL_EXTENSIONS_WARN("false")
87 DRI_CONF_FORCE_GLSL_VERSION(0)
88 DRI_CONF_DISABLE_GLSL_LINE_CONTINUATIONS("false")
89 DRI_CONF_DISABLE_BLEND_FUNC_EXTENDED("false")
90 DRI_CONF_DUAL_COLOR_BLEND_BY_LOCATION("false")
91 DRI_CONF_ALLOW_GLSL_EXTENSION_DIRECTIVE_MIDSHADER("false")
92 DRI_CONF_ALLOW_GLSL_BUILTIN_VARIABLE_REDECLARATION("false")
93 DRI_CONF_ALLOW_HIGHER_COMPAT_VERSION("false")
94 DRI_CONF_FORCE_GLSL_ABS_SQRT("false")
95
96 DRI_CONF_OPT_BEGIN_B(shader_precompile, "true")
97 DRI_CONF_DESC(en, "Perform code generation at shader link time.")
98 DRI_CONF_OPT_END
99 DRI_CONF_SECTION_END
100
101 DRI_CONF_SECTION_MISCELLANEOUS
102 DRI_CONF_GLSL_ZERO_INIT("false")
103 DRI_CONF_SECTION_END
104 DRI_CONF_END
105 };
106
107 #include "intel_batchbuffer.h"
108 #include "intel_buffers.h"
109 #include "brw_bufmgr.h"
110 #include "intel_fbo.h"
111 #include "intel_mipmap_tree.h"
112 #include "intel_screen.h"
113 #include "intel_tex.h"
114 #include "intel_image.h"
115
116 #include "brw_context.h"
117
118 #include "i915_drm.h"
119
120 /**
121 * For debugging purposes, this returns a time in seconds.
122 */
123 double
124 get_time(void)
125 {
126 struct timespec tp;
127
128 clock_gettime(CLOCK_MONOTONIC, &tp);
129
130 return tp.tv_sec + tp.tv_nsec / 1000000000.0;
131 }
132
133 static const __DRItexBufferExtension intelTexBufferExtension = {
134 .base = { __DRI_TEX_BUFFER, 3 },
135
136 .setTexBuffer = intelSetTexBuffer,
137 .setTexBuffer2 = intelSetTexBuffer2,
138 .releaseTexBuffer = NULL,
139 };
140
141 static void
142 intel_dri2_flush_with_flags(__DRIcontext *cPriv,
143 __DRIdrawable *dPriv,
144 unsigned flags,
145 enum __DRI2throttleReason reason)
146 {
147 struct brw_context *brw = cPriv->driverPrivate;
148
149 if (!brw)
150 return;
151
152 struct gl_context *ctx = &brw->ctx;
153
154 FLUSH_VERTICES(ctx, 0);
155
156 if (flags & __DRI2_FLUSH_DRAWABLE)
157 intel_resolve_for_dri2_flush(brw, dPriv);
158
159 if (reason == __DRI2_THROTTLE_SWAPBUFFER)
160 brw->need_swap_throttle = true;
161 if (reason == __DRI2_THROTTLE_FLUSHFRONT)
162 brw->need_flush_throttle = true;
163
164 intel_batchbuffer_flush(brw);
165 }
166
167 /**
168 * Provides compatibility with loaders that only support the older (version
169 * 1-3) flush interface.
170 *
171 * That includes libGL up to Mesa 9.0, and the X Server at least up to 1.13.
172 */
173 static void
174 intel_dri2_flush(__DRIdrawable *drawable)
175 {
176 intel_dri2_flush_with_flags(drawable->driContextPriv, drawable,
177 __DRI2_FLUSH_DRAWABLE,
178 __DRI2_THROTTLE_SWAPBUFFER);
179 }
180
181 static const struct __DRI2flushExtensionRec intelFlushExtension = {
182 .base = { __DRI2_FLUSH, 4 },
183
184 .flush = intel_dri2_flush,
185 .invalidate = dri2InvalidateDrawable,
186 .flush_with_flags = intel_dri2_flush_with_flags,
187 };
188
189 static struct intel_image_format intel_image_formats[] = {
190 { __DRI_IMAGE_FOURCC_ARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
191 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } },
192
193 { __DRI_IMAGE_FOURCC_ABGR8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
194 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ABGR8888, 4 } } },
195
196 { __DRI_IMAGE_FOURCC_SARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
197 { { 0, 0, 0, __DRI_IMAGE_FORMAT_SARGB8, 4 } } },
198
199 { __DRI_IMAGE_FOURCC_XRGB8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
200 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XRGB8888, 4 }, } },
201
202 { __DRI_IMAGE_FOURCC_XBGR8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
203 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XBGR8888, 4 }, } },
204
205 { __DRI_IMAGE_FOURCC_ARGB1555, __DRI_IMAGE_COMPONENTS_RGBA, 1,
206 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB1555, 2 } } },
207
208 { __DRI_IMAGE_FOURCC_RGB565, __DRI_IMAGE_COMPONENTS_RGB, 1,
209 { { 0, 0, 0, __DRI_IMAGE_FORMAT_RGB565, 2 } } },
210
211 { __DRI_IMAGE_FOURCC_R8, __DRI_IMAGE_COMPONENTS_R, 1,
212 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 }, } },
213
214 { __DRI_IMAGE_FOURCC_R16, __DRI_IMAGE_COMPONENTS_R, 1,
215 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R16, 1 }, } },
216
217 { __DRI_IMAGE_FOURCC_GR88, __DRI_IMAGE_COMPONENTS_RG, 1,
218 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 }, } },
219
220 { __DRI_IMAGE_FOURCC_GR1616, __DRI_IMAGE_COMPONENTS_RG, 1,
221 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR1616, 2 }, } },
222
223 { __DRI_IMAGE_FOURCC_YUV410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
224 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
225 { 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
226 { 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
227
228 { __DRI_IMAGE_FOURCC_YUV411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
229 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
230 { 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
231 { 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
232
233 { __DRI_IMAGE_FOURCC_YUV420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
234 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
235 { 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
236 { 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
237
238 { __DRI_IMAGE_FOURCC_YUV422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
239 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
240 { 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
241 { 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
242
243 { __DRI_IMAGE_FOURCC_YUV444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
244 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
245 { 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
246 { 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
247
248 { __DRI_IMAGE_FOURCC_YVU410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
249 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
250 { 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
251 { 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
252
253 { __DRI_IMAGE_FOURCC_YVU411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
254 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
255 { 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
256 { 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
257
258 { __DRI_IMAGE_FOURCC_YVU420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
259 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
260 { 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
261 { 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
262
263 { __DRI_IMAGE_FOURCC_YVU422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
264 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
265 { 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
266 { 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
267
268 { __DRI_IMAGE_FOURCC_YVU444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
269 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
270 { 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
271 { 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
272
273 { __DRI_IMAGE_FOURCC_NV12, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
274 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
275 { 1, 1, 1, __DRI_IMAGE_FORMAT_GR88, 2 } } },
276
277 { __DRI_IMAGE_FOURCC_NV16, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
278 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
279 { 1, 1, 0, __DRI_IMAGE_FORMAT_GR88, 2 } } },
280
281 /* For YUYV buffers, we set up two overlapping DRI images and treat
282 * them as planar buffers in the compositors. Plane 0 is GR88 and
283 * samples YU or YV pairs and places Y into the R component, while
284 * plane 1 is ARGB and samples YUYV clusters and places pairs and
285 * places U into the G component and V into A. This lets the
286 * texture sampler interpolate the Y components correctly when
287 * sampling from plane 0, and interpolate U and V correctly when
288 * sampling from plane 1. */
289 { __DRI_IMAGE_FOURCC_YUYV, __DRI_IMAGE_COMPONENTS_Y_XUXV, 2,
290 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 },
291 { 0, 1, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } }
292 };
293
294 static const struct {
295 uint32_t tiling;
296 uint64_t modifier;
297 } tiling_modifier_map[] = {
298 { .tiling = I915_TILING_NONE, .modifier = DRM_FORMAT_MOD_LINEAR },
299 { .tiling = I915_TILING_X, .modifier = I915_FORMAT_MOD_X_TILED },
300 { .tiling = I915_TILING_Y, .modifier = I915_FORMAT_MOD_Y_TILED },
301 };
302
303 static uint32_t
304 modifier_to_tiling(uint64_t modifier)
305 {
306 int i;
307
308 for (i = 0; i < ARRAY_SIZE(tiling_modifier_map); i++) {
309 if (tiling_modifier_map[i].modifier == modifier)
310 return tiling_modifier_map[i].tiling;
311 }
312
313 unreachable("modifier_to_tiling should only receive known modifiers");
314 }
315
316 static uint64_t
317 tiling_to_modifier(uint32_t tiling)
318 {
319 int i;
320
321 for (i = 0; i < ARRAY_SIZE(tiling_modifier_map); i++) {
322 if (tiling_modifier_map[i].tiling == tiling)
323 return tiling_modifier_map[i].modifier;
324 }
325
326 unreachable("tiling_to_modifier received unknown tiling mode");
327 }
328
329 static void
330 intel_image_warn_if_unaligned(__DRIimage *image, const char *func)
331 {
332 uint32_t tiling, swizzle;
333 brw_bo_get_tiling(image->bo, &tiling, &swizzle);
334
335 if (tiling != I915_TILING_NONE && (image->offset & 0xfff)) {
336 _mesa_warning(NULL, "%s: offset 0x%08x not on tile boundary",
337 func, image->offset);
338 }
339 }
340
341 static struct intel_image_format *
342 intel_image_format_lookup(int fourcc)
343 {
344 struct intel_image_format *f = NULL;
345
346 for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
347 if (intel_image_formats[i].fourcc == fourcc) {
348 f = &intel_image_formats[i];
349 break;
350 }
351 }
352
353 return f;
354 }
355
356 static boolean intel_lookup_fourcc(int dri_format, int *fourcc)
357 {
358 for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
359 if (intel_image_formats[i].planes[0].dri_format == dri_format) {
360 *fourcc = intel_image_formats[i].fourcc;
361 return true;
362 }
363 }
364 return false;
365 }
366
367 static __DRIimage *
368 intel_allocate_image(struct intel_screen *screen, int dri_format,
369 void *loaderPrivate)
370 {
371 __DRIimage *image;
372
373 image = calloc(1, sizeof *image);
374 if (image == NULL)
375 return NULL;
376
377 image->screen = screen;
378 image->dri_format = dri_format;
379 image->offset = 0;
380
381 image->format = driImageFormatToGLFormat(dri_format);
382 if (dri_format != __DRI_IMAGE_FORMAT_NONE &&
383 image->format == MESA_FORMAT_NONE) {
384 free(image);
385 return NULL;
386 }
387
388 image->internal_format = _mesa_get_format_base_format(image->format);
389 image->data = loaderPrivate;
390
391 return image;
392 }
393
394 /**
395 * Sets up a DRIImage structure to point to a slice out of a miptree.
396 */
397 static void
398 intel_setup_image_from_mipmap_tree(struct brw_context *brw, __DRIimage *image,
399 struct intel_mipmap_tree *mt, GLuint level,
400 GLuint zoffset)
401 {
402 intel_miptree_make_shareable(brw, mt);
403
404 intel_miptree_check_level_layer(mt, level, zoffset);
405
406 image->width = minify(mt->physical_width0, level - mt->first_level);
407 image->height = minify(mt->physical_height0, level - mt->first_level);
408 image->pitch = mt->pitch;
409
410 image->offset = intel_miptree_get_tile_offsets(mt, level, zoffset,
411 &image->tile_x,
412 &image->tile_y);
413
414 brw_bo_unreference(image->bo);
415 image->bo = mt->bo;
416 brw_bo_reference(mt->bo);
417 }
418
419 static __DRIimage *
420 intel_create_image_from_name(__DRIscreen *dri_screen,
421 int width, int height, int format,
422 int name, int pitch, void *loaderPrivate)
423 {
424 struct intel_screen *screen = dri_screen->driverPrivate;
425 __DRIimage *image;
426 int cpp;
427
428 image = intel_allocate_image(screen, format, loaderPrivate);
429 if (image == NULL)
430 return NULL;
431
432 if (image->format == MESA_FORMAT_NONE)
433 cpp = 1;
434 else
435 cpp = _mesa_get_format_bytes(image->format);
436
437 image->width = width;
438 image->height = height;
439 image->pitch = pitch * cpp;
440 image->bo = brw_bo_gem_create_from_name(screen->bufmgr, "image",
441 name);
442 if (!image->bo) {
443 free(image);
444 return NULL;
445 }
446 image->modifier = tiling_to_modifier(image->bo->tiling_mode);
447
448 return image;
449 }
450
451 static __DRIimage *
452 intel_create_image_from_renderbuffer(__DRIcontext *context,
453 int renderbuffer, void *loaderPrivate)
454 {
455 __DRIimage *image;
456 struct brw_context *brw = context->driverPrivate;
457 struct gl_context *ctx = &brw->ctx;
458 struct gl_renderbuffer *rb;
459 struct intel_renderbuffer *irb;
460
461 rb = _mesa_lookup_renderbuffer(ctx, renderbuffer);
462 if (!rb) {
463 _mesa_error(ctx, GL_INVALID_OPERATION, "glRenderbufferExternalMESA");
464 return NULL;
465 }
466
467 irb = intel_renderbuffer(rb);
468 intel_miptree_make_shareable(brw, irb->mt);
469 image = calloc(1, sizeof *image);
470 if (image == NULL)
471 return NULL;
472
473 image->internal_format = rb->InternalFormat;
474 image->format = rb->Format;
475 image->modifier = tiling_to_modifier(irb->mt->tiling);
476 image->offset = 0;
477 image->data = loaderPrivate;
478 brw_bo_unreference(image->bo);
479 image->bo = irb->mt->bo;
480 brw_bo_reference(irb->mt->bo);
481 image->width = rb->Width;
482 image->height = rb->Height;
483 image->pitch = irb->mt->pitch;
484 image->dri_format = driGLFormatToImageFormat(image->format);
485 image->has_depthstencil = irb->mt->stencil_mt? true : false;
486
487 rb->NeedsFinishRenderTexture = true;
488 return image;
489 }
490
491 static __DRIimage *
492 intel_create_image_from_texture(__DRIcontext *context, int target,
493 unsigned texture, int zoffset,
494 int level,
495 unsigned *error,
496 void *loaderPrivate)
497 {
498 __DRIimage *image;
499 struct brw_context *brw = context->driverPrivate;
500 struct gl_texture_object *obj;
501 struct intel_texture_object *iobj;
502 GLuint face = 0;
503
504 obj = _mesa_lookup_texture(&brw->ctx, texture);
505 if (!obj || obj->Target != target) {
506 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
507 return NULL;
508 }
509
510 if (target == GL_TEXTURE_CUBE_MAP)
511 face = zoffset;
512
513 _mesa_test_texobj_completeness(&brw->ctx, obj);
514 iobj = intel_texture_object(obj);
515 if (!obj->_BaseComplete || (level > 0 && !obj->_MipmapComplete)) {
516 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
517 return NULL;
518 }
519
520 if (level < obj->BaseLevel || level > obj->_MaxLevel) {
521 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
522 return NULL;
523 }
524
525 if (target == GL_TEXTURE_3D && obj->Image[face][level]->Depth < zoffset) {
526 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
527 return NULL;
528 }
529 image = calloc(1, sizeof *image);
530 if (image == NULL) {
531 *error = __DRI_IMAGE_ERROR_BAD_ALLOC;
532 return NULL;
533 }
534
535 image->internal_format = obj->Image[face][level]->InternalFormat;
536 image->format = obj->Image[face][level]->TexFormat;
537 image->modifier = tiling_to_modifier(iobj->mt->tiling);
538 image->data = loaderPrivate;
539 intel_setup_image_from_mipmap_tree(brw, image, iobj->mt, level, zoffset);
540 image->dri_format = driGLFormatToImageFormat(image->format);
541 image->has_depthstencil = iobj->mt->stencil_mt? true : false;
542 if (image->dri_format == MESA_FORMAT_NONE) {
543 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
544 free(image);
545 return NULL;
546 }
547
548 *error = __DRI_IMAGE_ERROR_SUCCESS;
549 return image;
550 }
551
552 static void
553 intel_destroy_image(__DRIimage *image)
554 {
555 brw_bo_unreference(image->bo);
556 free(image);
557 }
558
559 enum modifier_priority {
560 MODIFIER_PRIORITY_INVALID = 0,
561 MODIFIER_PRIORITY_LINEAR,
562 MODIFIER_PRIORITY_X,
563 MODIFIER_PRIORITY_Y,
564 };
565
566 const uint64_t priority_to_modifier[] = {
567 [MODIFIER_PRIORITY_INVALID] = DRM_FORMAT_MOD_INVALID,
568 [MODIFIER_PRIORITY_LINEAR] = DRM_FORMAT_MOD_LINEAR,
569 [MODIFIER_PRIORITY_X] = I915_FORMAT_MOD_X_TILED,
570 [MODIFIER_PRIORITY_Y] = I915_FORMAT_MOD_Y_TILED,
571 };
572
573 static uint64_t
574 select_best_modifier(struct gen_device_info *devinfo,
575 const uint64_t *modifiers,
576 const unsigned count)
577 {
578 enum modifier_priority prio = MODIFIER_PRIORITY_INVALID;
579
580 for (int i = 0; i < count; i++) {
581 switch (modifiers[i]) {
582 case I915_FORMAT_MOD_Y_TILED:
583 prio = MAX2(prio, MODIFIER_PRIORITY_Y);
584 break;
585 case I915_FORMAT_MOD_X_TILED:
586 prio = MAX2(prio, MODIFIER_PRIORITY_X);
587 break;
588 case DRM_FORMAT_MOD_LINEAR:
589 prio = MAX2(prio, MODIFIER_PRIORITY_LINEAR);
590 break;
591 case DRM_FORMAT_MOD_INVALID:
592 default:
593 break;
594 }
595 }
596
597 return priority_to_modifier[prio];
598 }
599
600 static __DRIimage *
601 intel_create_image_common(__DRIscreen *dri_screen,
602 int width, int height, int format,
603 unsigned int use,
604 const uint64_t *modifiers,
605 unsigned count,
606 void *loaderPrivate)
607 {
608 __DRIimage *image;
609 struct intel_screen *screen = dri_screen->driverPrivate;
610 uint32_t tiling;
611 uint64_t modifier = DRM_FORMAT_MOD_INVALID;
612 int cpp;
613
614 /* Callers of this may specify a modifier, or a dri usage, but not both. The
615 * newer modifier interface deprecates the older usage flags newer modifier
616 * interface deprecates the older usage flags.
617 */
618 assert(!(use && count));
619
620 if (use & __DRI_IMAGE_USE_CURSOR) {
621 if (width != 64 || height != 64)
622 return NULL;
623 modifier = DRM_FORMAT_MOD_LINEAR;
624 }
625
626 if (use & __DRI_IMAGE_USE_LINEAR)
627 modifier = DRM_FORMAT_MOD_LINEAR;
628
629 if (modifier == DRM_FORMAT_MOD_INVALID) {
630 if (modifiers) {
631 /* User requested specific modifiers */
632 modifier = select_best_modifier(&screen->devinfo, modifiers, count);
633 if (modifier == DRM_FORMAT_MOD_INVALID)
634 return NULL;
635 } else {
636 /* Historically, X-tiled was the default, and so lack of modifier means
637 * X-tiled.
638 */
639 modifier = I915_FORMAT_MOD_X_TILED;
640 }
641 }
642 tiling = modifier_to_tiling(modifier);
643
644 image = intel_allocate_image(screen, format, loaderPrivate);
645 if (image == NULL)
646 return NULL;
647
648 cpp = _mesa_get_format_bytes(image->format);
649 image->bo = brw_bo_alloc_tiled(screen->bufmgr, "image",
650 width, height, cpp, tiling,
651 &image->pitch, 0);
652 if (image->bo == NULL) {
653 free(image);
654 return NULL;
655 }
656 image->width = width;
657 image->height = height;
658 image->modifier = modifier;
659
660 return image;
661 }
662
663 static __DRIimage *
664 intel_create_image(__DRIscreen *dri_screen,
665 int width, int height, int format,
666 unsigned int use,
667 void *loaderPrivate)
668 {
669 return intel_create_image_common(dri_screen, width, height, format, use, NULL, 0,
670 loaderPrivate);
671 }
672
673 static __DRIimage *
674 intel_create_image_with_modifiers(__DRIscreen *dri_screen,
675 int width, int height, int format,
676 const uint64_t *modifiers,
677 const unsigned count,
678 void *loaderPrivate)
679 {
680 return intel_create_image_common(dri_screen, width, height, format, 0,
681 modifiers, count, loaderPrivate);
682 }
683
684 static GLboolean
685 intel_query_image(__DRIimage *image, int attrib, int *value)
686 {
687 switch (attrib) {
688 case __DRI_IMAGE_ATTRIB_STRIDE:
689 *value = image->pitch;
690 return true;
691 case __DRI_IMAGE_ATTRIB_HANDLE:
692 *value = image->bo->gem_handle;
693 return true;
694 case __DRI_IMAGE_ATTRIB_NAME:
695 return !brw_bo_flink(image->bo, (uint32_t *) value);
696 case __DRI_IMAGE_ATTRIB_FORMAT:
697 *value = image->dri_format;
698 return true;
699 case __DRI_IMAGE_ATTRIB_WIDTH:
700 *value = image->width;
701 return true;
702 case __DRI_IMAGE_ATTRIB_HEIGHT:
703 *value = image->height;
704 return true;
705 case __DRI_IMAGE_ATTRIB_COMPONENTS:
706 if (image->planar_format == NULL)
707 return false;
708 *value = image->planar_format->components;
709 return true;
710 case __DRI_IMAGE_ATTRIB_FD:
711 return !brw_bo_gem_export_to_prime(image->bo, value);
712 case __DRI_IMAGE_ATTRIB_FOURCC:
713 return intel_lookup_fourcc(image->dri_format, value);
714 case __DRI_IMAGE_ATTRIB_NUM_PLANES:
715 *value = 1;
716 return true;
717 case __DRI_IMAGE_ATTRIB_OFFSET:
718 *value = image->offset;
719 return true;
720 case __DRI_IMAGE_ATTRIB_MODIFIER_LOWER:
721 *value = (image->modifier & 0xffffffff);
722 return true;
723 case __DRI_IMAGE_ATTRIB_MODIFIER_UPPER:
724 *value = ((image->modifier >> 32) & 0xffffffff);
725 return true;
726
727 default:
728 return false;
729 }
730 }
731
732 static __DRIimage *
733 intel_dup_image(__DRIimage *orig_image, void *loaderPrivate)
734 {
735 __DRIimage *image;
736
737 image = calloc(1, sizeof *image);
738 if (image == NULL)
739 return NULL;
740
741 brw_bo_reference(orig_image->bo);
742 image->bo = orig_image->bo;
743 image->internal_format = orig_image->internal_format;
744 image->planar_format = orig_image->planar_format;
745 image->dri_format = orig_image->dri_format;
746 image->format = orig_image->format;
747 image->modifier = orig_image->modifier;
748 image->offset = orig_image->offset;
749 image->width = orig_image->width;
750 image->height = orig_image->height;
751 image->pitch = orig_image->pitch;
752 image->tile_x = orig_image->tile_x;
753 image->tile_y = orig_image->tile_y;
754 image->has_depthstencil = orig_image->has_depthstencil;
755 image->data = loaderPrivate;
756
757 memcpy(image->strides, orig_image->strides, sizeof(image->strides));
758 memcpy(image->offsets, orig_image->offsets, sizeof(image->offsets));
759
760 return image;
761 }
762
763 static GLboolean
764 intel_validate_usage(__DRIimage *image, unsigned int use)
765 {
766 if (use & __DRI_IMAGE_USE_CURSOR) {
767 if (image->width != 64 || image->height != 64)
768 return GL_FALSE;
769 }
770
771 return GL_TRUE;
772 }
773
774 static __DRIimage *
775 intel_create_image_from_names(__DRIscreen *dri_screen,
776 int width, int height, int fourcc,
777 int *names, int num_names,
778 int *strides, int *offsets,
779 void *loaderPrivate)
780 {
781 struct intel_image_format *f = NULL;
782 __DRIimage *image;
783 int i, index;
784
785 if (dri_screen == NULL || names == NULL || num_names != 1)
786 return NULL;
787
788 f = intel_image_format_lookup(fourcc);
789 if (f == NULL)
790 return NULL;
791
792 image = intel_create_image_from_name(dri_screen, width, height,
793 __DRI_IMAGE_FORMAT_NONE,
794 names[0], strides[0],
795 loaderPrivate);
796
797 if (image == NULL)
798 return NULL;
799
800 image->planar_format = f;
801 for (i = 0; i < f->nplanes; i++) {
802 index = f->planes[i].buffer_index;
803 image->offsets[index] = offsets[index];
804 image->strides[index] = strides[index];
805 }
806
807 return image;
808 }
809
810 static __DRIimage *
811 intel_create_image_from_fds(__DRIscreen *dri_screen,
812 int width, int height, int fourcc,
813 int *fds, int num_fds, int *strides, int *offsets,
814 void *loaderPrivate)
815 {
816 struct intel_screen *screen = dri_screen->driverPrivate;
817 struct intel_image_format *f;
818 __DRIimage *image;
819 int i, index;
820
821 if (fds == NULL || num_fds < 1)
822 return NULL;
823
824 /* We only support all planes from the same bo */
825 for (i = 0; i < num_fds; i++)
826 if (fds[0] != fds[i])
827 return NULL;
828
829 f = intel_image_format_lookup(fourcc);
830 if (f == NULL)
831 return NULL;
832
833 if (f->nplanes == 1)
834 image = intel_allocate_image(screen, f->planes[0].dri_format,
835 loaderPrivate);
836 else
837 image = intel_allocate_image(screen, __DRI_IMAGE_FORMAT_NONE,
838 loaderPrivate);
839
840 if (image == NULL)
841 return NULL;
842
843 image->width = width;
844 image->height = height;
845 image->pitch = strides[0];
846
847 image->planar_format = f;
848
849 image->bo = brw_bo_gem_create_from_prime(screen->bufmgr, fds[0]);
850 if (image->bo == NULL) {
851 free(image);
852 return NULL;
853 }
854
855 image->modifier = tiling_to_modifier(image->bo->tiling_mode);
856
857 int size = 0;
858 for (i = 0; i < f->nplanes; i++) {
859 index = f->planes[i].buffer_index;
860 image->offsets[index] = offsets[index];
861 image->strides[index] = strides[index];
862
863 const int plane_height = height >> f->planes[i].height_shift;
864 const int end = offsets[index] + plane_height * strides[index];
865 if (size < end)
866 size = end;
867 }
868
869 /* Check that the requested image actually fits within the BO. 'size'
870 * is already relative to the offsets, so we don't need to add that. */
871 if (image->bo->size == 0) {
872 image->bo->size = size;
873 } else if (size > image->bo->size) {
874 brw_bo_unreference(image->bo);
875 free(image);
876 return NULL;
877 }
878
879 if (f->nplanes == 1) {
880 image->offset = image->offsets[0];
881 intel_image_warn_if_unaligned(image, __func__);
882 }
883
884 return image;
885 }
886
887 static __DRIimage *
888 intel_create_image_from_dma_bufs(__DRIscreen *dri_screen,
889 int width, int height, int fourcc,
890 int *fds, int num_fds,
891 int *strides, int *offsets,
892 enum __DRIYUVColorSpace yuv_color_space,
893 enum __DRISampleRange sample_range,
894 enum __DRIChromaSiting horizontal_siting,
895 enum __DRIChromaSiting vertical_siting,
896 unsigned *error,
897 void *loaderPrivate)
898 {
899 __DRIimage *image;
900 struct intel_image_format *f = intel_image_format_lookup(fourcc);
901
902 if (!f) {
903 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
904 return NULL;
905 }
906
907 image = intel_create_image_from_fds(dri_screen, width, height, fourcc, fds,
908 num_fds, strides, offsets,
909 loaderPrivate);
910
911 /*
912 * Invalid parameters and any inconsistencies between are assumed to be
913 * checked by the caller. Therefore besides unsupported formats one can fail
914 * only in allocation.
915 */
916 if (!image) {
917 *error = __DRI_IMAGE_ERROR_BAD_ALLOC;
918 return NULL;
919 }
920
921 image->dma_buf_imported = true;
922 image->yuv_color_space = yuv_color_space;
923 image->sample_range = sample_range;
924 image->horizontal_siting = horizontal_siting;
925 image->vertical_siting = vertical_siting;
926
927 *error = __DRI_IMAGE_ERROR_SUCCESS;
928 return image;
929 }
930
931 static __DRIimage *
932 intel_from_planar(__DRIimage *parent, int plane, void *loaderPrivate)
933 {
934 int width, height, offset, stride, dri_format, index;
935 struct intel_image_format *f;
936 __DRIimage *image;
937
938 if (parent == NULL || parent->planar_format == NULL)
939 return NULL;
940
941 f = parent->planar_format;
942
943 if (plane >= f->nplanes)
944 return NULL;
945
946 width = parent->width >> f->planes[plane].width_shift;
947 height = parent->height >> f->planes[plane].height_shift;
948 dri_format = f->planes[plane].dri_format;
949 index = f->planes[plane].buffer_index;
950 offset = parent->offsets[index];
951 stride = parent->strides[index];
952
953 image = intel_allocate_image(parent->screen, dri_format, loaderPrivate);
954 if (image == NULL)
955 return NULL;
956
957 if (offset + height * stride > parent->bo->size) {
958 _mesa_warning(NULL, "intel_create_sub_image: subimage out of bounds");
959 free(image);
960 return NULL;
961 }
962
963 image->bo = parent->bo;
964 brw_bo_reference(parent->bo);
965 image->modifier = parent->modifier;
966
967 image->width = width;
968 image->height = height;
969 image->pitch = stride;
970 image->offset = offset;
971
972 intel_image_warn_if_unaligned(image, __func__);
973
974 return image;
975 }
976
977 static const __DRIimageExtension intelImageExtension = {
978 .base = { __DRI_IMAGE, 14 },
979
980 .createImageFromName = intel_create_image_from_name,
981 .createImageFromRenderbuffer = intel_create_image_from_renderbuffer,
982 .destroyImage = intel_destroy_image,
983 .createImage = intel_create_image,
984 .queryImage = intel_query_image,
985 .dupImage = intel_dup_image,
986 .validateUsage = intel_validate_usage,
987 .createImageFromNames = intel_create_image_from_names,
988 .fromPlanar = intel_from_planar,
989 .createImageFromTexture = intel_create_image_from_texture,
990 .createImageFromFds = intel_create_image_from_fds,
991 .createImageFromDmaBufs = intel_create_image_from_dma_bufs,
992 .blitImage = NULL,
993 .getCapabilities = NULL,
994 .mapImage = NULL,
995 .unmapImage = NULL,
996 .createImageWithModifiers = intel_create_image_with_modifiers,
997 };
998
999 static uint64_t
1000 get_aperture_size(int fd)
1001 {
1002 struct drm_i915_gem_get_aperture aperture;
1003
1004 if (drmIoctl(fd, DRM_IOCTL_I915_GEM_GET_APERTURE, &aperture) != 0)
1005 return 0;
1006
1007 return aperture.aper_size;
1008 }
1009
1010 static int
1011 brw_query_renderer_integer(__DRIscreen *dri_screen,
1012 int param, unsigned int *value)
1013 {
1014 const struct intel_screen *const screen =
1015 (struct intel_screen *) dri_screen->driverPrivate;
1016
1017 switch (param) {
1018 case __DRI2_RENDERER_VENDOR_ID:
1019 value[0] = 0x8086;
1020 return 0;
1021 case __DRI2_RENDERER_DEVICE_ID:
1022 value[0] = screen->deviceID;
1023 return 0;
1024 case __DRI2_RENDERER_ACCELERATED:
1025 value[0] = 1;
1026 return 0;
1027 case __DRI2_RENDERER_VIDEO_MEMORY: {
1028 /* Once a batch uses more than 75% of the maximum mappable size, we
1029 * assume that there's some fragmentation, and we start doing extra
1030 * flushing, etc. That's the big cliff apps will care about.
1031 */
1032 const unsigned gpu_mappable_megabytes =
1033 screen->aperture_threshold / (1024 * 1024);
1034
1035 const long system_memory_pages = sysconf(_SC_PHYS_PAGES);
1036 const long system_page_size = sysconf(_SC_PAGE_SIZE);
1037
1038 if (system_memory_pages <= 0 || system_page_size <= 0)
1039 return -1;
1040
1041 const uint64_t system_memory_bytes = (uint64_t) system_memory_pages
1042 * (uint64_t) system_page_size;
1043
1044 const unsigned system_memory_megabytes =
1045 (unsigned) (system_memory_bytes / (1024 * 1024));
1046
1047 value[0] = MIN2(system_memory_megabytes, gpu_mappable_megabytes);
1048 return 0;
1049 }
1050 case __DRI2_RENDERER_UNIFIED_MEMORY_ARCHITECTURE:
1051 value[0] = 1;
1052 return 0;
1053 case __DRI2_RENDERER_HAS_TEXTURE_3D:
1054 value[0] = 1;
1055 return 0;
1056 default:
1057 return driQueryRendererIntegerCommon(dri_screen, param, value);
1058 }
1059
1060 return -1;
1061 }
1062
1063 static int
1064 brw_query_renderer_string(__DRIscreen *dri_screen,
1065 int param, const char **value)
1066 {
1067 const struct intel_screen *screen =
1068 (struct intel_screen *) dri_screen->driverPrivate;
1069
1070 switch (param) {
1071 case __DRI2_RENDERER_VENDOR_ID:
1072 value[0] = brw_vendor_string;
1073 return 0;
1074 case __DRI2_RENDERER_DEVICE_ID:
1075 value[0] = brw_get_renderer_string(screen);
1076 return 0;
1077 default:
1078 break;
1079 }
1080
1081 return -1;
1082 }
1083
1084 static const __DRI2rendererQueryExtension intelRendererQueryExtension = {
1085 .base = { __DRI2_RENDERER_QUERY, 1 },
1086
1087 .queryInteger = brw_query_renderer_integer,
1088 .queryString = brw_query_renderer_string
1089 };
1090
1091 static const __DRIrobustnessExtension dri2Robustness = {
1092 .base = { __DRI2_ROBUSTNESS, 1 }
1093 };
1094
1095 static const __DRIextension *screenExtensions[] = {
1096 &intelTexBufferExtension.base,
1097 &intelFenceExtension.base,
1098 &intelFlushExtension.base,
1099 &intelImageExtension.base,
1100 &intelRendererQueryExtension.base,
1101 &dri2ConfigQueryExtension.base,
1102 NULL
1103 };
1104
1105 static const __DRIextension *intelRobustScreenExtensions[] = {
1106 &intelTexBufferExtension.base,
1107 &intelFenceExtension.base,
1108 &intelFlushExtension.base,
1109 &intelImageExtension.base,
1110 &intelRendererQueryExtension.base,
1111 &dri2ConfigQueryExtension.base,
1112 &dri2Robustness.base,
1113 NULL
1114 };
1115
1116 static int
1117 intel_get_param(struct intel_screen *screen, int param, int *value)
1118 {
1119 int ret = 0;
1120 struct drm_i915_getparam gp;
1121
1122 memset(&gp, 0, sizeof(gp));
1123 gp.param = param;
1124 gp.value = value;
1125
1126 if (drmIoctl(screen->driScrnPriv->fd, DRM_IOCTL_I915_GETPARAM, &gp) == -1) {
1127 ret = -errno;
1128 if (ret != -EINVAL)
1129 _mesa_warning(NULL, "drm_i915_getparam: %d", ret);
1130 }
1131
1132 return ret;
1133 }
1134
1135 static bool
1136 intel_get_boolean(struct intel_screen *screen, int param)
1137 {
1138 int value = 0;
1139 return (intel_get_param(screen, param, &value) == 0) && value;
1140 }
1141
1142 static int
1143 intel_get_integer(struct intel_screen *screen, int param)
1144 {
1145 int value = -1;
1146
1147 if (intel_get_param(screen, param, &value) == 0)
1148 return value;
1149
1150 return -1;
1151 }
1152
1153 static void
1154 intelDestroyScreen(__DRIscreen * sPriv)
1155 {
1156 struct intel_screen *screen = sPriv->driverPrivate;
1157
1158 brw_bufmgr_destroy(screen->bufmgr);
1159 driDestroyOptionInfo(&screen->optionCache);
1160
1161 ralloc_free(screen);
1162 sPriv->driverPrivate = NULL;
1163 }
1164
1165
1166 /**
1167 * Create a gl_framebuffer and attach it to __DRIdrawable::driverPrivate.
1168 *
1169 *_This implements driDriverAPI::createNewDrawable, which the DRI layer calls
1170 * when creating a EGLSurface, GLXDrawable, or GLXPixmap. Despite the name,
1171 * this does not allocate GPU memory.
1172 */
1173 static GLboolean
1174 intelCreateBuffer(__DRIscreen *dri_screen,
1175 __DRIdrawable * driDrawPriv,
1176 const struct gl_config * mesaVis, GLboolean isPixmap)
1177 {
1178 struct intel_renderbuffer *rb;
1179 struct intel_screen *screen = (struct intel_screen *)
1180 dri_screen->driverPrivate;
1181 mesa_format rgbFormat;
1182 unsigned num_samples =
1183 intel_quantize_num_samples(screen, mesaVis->samples);
1184
1185 if (isPixmap)
1186 return false;
1187
1188 struct gl_framebuffer *fb = CALLOC_STRUCT(gl_framebuffer);
1189 if (!fb)
1190 return false;
1191
1192 _mesa_initialize_window_framebuffer(fb, mesaVis);
1193
1194 if (screen->winsys_msaa_samples_override != -1) {
1195 num_samples = screen->winsys_msaa_samples_override;
1196 fb->Visual.samples = num_samples;
1197 }
1198
1199 if (mesaVis->redBits == 5) {
1200 rgbFormat = mesaVis->redMask == 0x1f ? MESA_FORMAT_R5G6B5_UNORM
1201 : MESA_FORMAT_B5G6R5_UNORM;
1202 } else if (mesaVis->sRGBCapable) {
1203 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
1204 : MESA_FORMAT_B8G8R8A8_SRGB;
1205 } else if (mesaVis->alphaBits == 0) {
1206 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8X8_UNORM
1207 : MESA_FORMAT_B8G8R8X8_UNORM;
1208 } else {
1209 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
1210 : MESA_FORMAT_B8G8R8A8_SRGB;
1211 fb->Visual.sRGBCapable = true;
1212 }
1213
1214 /* setup the hardware-based renderbuffers */
1215 rb = intel_create_winsys_renderbuffer(rgbFormat, num_samples);
1216 _mesa_attach_and_own_rb(fb, BUFFER_FRONT_LEFT, &rb->Base.Base);
1217
1218 if (mesaVis->doubleBufferMode) {
1219 rb = intel_create_winsys_renderbuffer(rgbFormat, num_samples);
1220 _mesa_attach_and_own_rb(fb, BUFFER_BACK_LEFT, &rb->Base.Base);
1221 }
1222
1223 /*
1224 * Assert here that the gl_config has an expected depth/stencil bit
1225 * combination: one of d24/s8, d16/s0, d0/s0. (See intelInitScreen2(),
1226 * which constructs the advertised configs.)
1227 */
1228 if (mesaVis->depthBits == 24) {
1229 assert(mesaVis->stencilBits == 8);
1230
1231 if (screen->devinfo.has_hiz_and_separate_stencil) {
1232 rb = intel_create_private_renderbuffer(MESA_FORMAT_Z24_UNORM_X8_UINT,
1233 num_samples);
1234 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1235 rb = intel_create_private_renderbuffer(MESA_FORMAT_S_UINT8,
1236 num_samples);
1237 _mesa_attach_and_own_rb(fb, BUFFER_STENCIL, &rb->Base.Base);
1238 } else {
1239 /*
1240 * Use combined depth/stencil. Note that the renderbuffer is
1241 * attached to two attachment points.
1242 */
1243 rb = intel_create_private_renderbuffer(MESA_FORMAT_Z24_UNORM_S8_UINT,
1244 num_samples);
1245 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1246 _mesa_attach_and_reference_rb(fb, BUFFER_STENCIL, &rb->Base.Base);
1247 }
1248 }
1249 else if (mesaVis->depthBits == 16) {
1250 assert(mesaVis->stencilBits == 0);
1251 rb = intel_create_private_renderbuffer(MESA_FORMAT_Z_UNORM16,
1252 num_samples);
1253 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1254 }
1255 else {
1256 assert(mesaVis->depthBits == 0);
1257 assert(mesaVis->stencilBits == 0);
1258 }
1259
1260 /* now add any/all software-based renderbuffers we may need */
1261 _swrast_add_soft_renderbuffers(fb,
1262 false, /* never sw color */
1263 false, /* never sw depth */
1264 false, /* never sw stencil */
1265 mesaVis->accumRedBits > 0,
1266 false, /* never sw alpha */
1267 false /* never sw aux */ );
1268 driDrawPriv->driverPrivate = fb;
1269
1270 return true;
1271 }
1272
1273 static void
1274 intelDestroyBuffer(__DRIdrawable * driDrawPriv)
1275 {
1276 struct gl_framebuffer *fb = driDrawPriv->driverPrivate;
1277
1278 _mesa_reference_framebuffer(&fb, NULL);
1279 }
1280
1281 static void
1282 intel_detect_sseu(struct intel_screen *screen)
1283 {
1284 assert(screen->devinfo.gen >= 8);
1285 int ret;
1286
1287 screen->subslice_total = -1;
1288 screen->eu_total = -1;
1289
1290 ret = intel_get_param(screen, I915_PARAM_SUBSLICE_TOTAL,
1291 &screen->subslice_total);
1292 if (ret < 0 && ret != -EINVAL)
1293 goto err_out;
1294
1295 ret = intel_get_param(screen,
1296 I915_PARAM_EU_TOTAL, &screen->eu_total);
1297 if (ret < 0 && ret != -EINVAL)
1298 goto err_out;
1299
1300 /* Without this information, we cannot get the right Braswell brandstrings,
1301 * and we have to use conservative numbers for GPGPU on many platforms, but
1302 * otherwise, things will just work.
1303 */
1304 if (screen->subslice_total < 1 || screen->eu_total < 1)
1305 _mesa_warning(NULL,
1306 "Kernel 4.1 required to properly query GPU properties.\n");
1307
1308 return;
1309
1310 err_out:
1311 screen->subslice_total = -1;
1312 screen->eu_total = -1;
1313 _mesa_warning(NULL, "Failed to query GPU properties (%s).\n", strerror(-ret));
1314 }
1315
1316 static bool
1317 intel_init_bufmgr(struct intel_screen *screen)
1318 {
1319 __DRIscreen *dri_screen = screen->driScrnPriv;
1320
1321 if (getenv("INTEL_NO_HW") != NULL)
1322 screen->no_hw = true;
1323
1324 screen->bufmgr = brw_bufmgr_init(&screen->devinfo, dri_screen->fd, BATCH_SZ);
1325 if (screen->bufmgr == NULL) {
1326 fprintf(stderr, "[%s:%u] Error initializing buffer manager.\n",
1327 __func__, __LINE__);
1328 return false;
1329 }
1330
1331 if (!intel_get_boolean(screen, I915_PARAM_HAS_WAIT_TIMEOUT)) {
1332 fprintf(stderr, "[%s: %u] Kernel 3.6 required.\n", __func__, __LINE__);
1333 return false;
1334 }
1335
1336 return true;
1337 }
1338
1339 static bool
1340 intel_detect_swizzling(struct intel_screen *screen)
1341 {
1342 struct brw_bo *buffer;
1343 unsigned flags = 0;
1344 uint32_t aligned_pitch;
1345 uint32_t tiling = I915_TILING_X;
1346 uint32_t swizzle_mode = 0;
1347
1348 buffer = brw_bo_alloc_tiled(screen->bufmgr, "swizzle test",
1349 64, 64, 4, tiling, &aligned_pitch, flags);
1350 if (buffer == NULL)
1351 return false;
1352
1353 brw_bo_get_tiling(buffer, &tiling, &swizzle_mode);
1354 brw_bo_unreference(buffer);
1355
1356 if (swizzle_mode == I915_BIT_6_SWIZZLE_NONE)
1357 return false;
1358 else
1359 return true;
1360 }
1361
1362 static int
1363 intel_detect_timestamp(struct intel_screen *screen)
1364 {
1365 uint64_t dummy = 0, last = 0;
1366 int upper, lower, loops;
1367
1368 /* On 64bit systems, some old kernels trigger a hw bug resulting in the
1369 * TIMESTAMP register being shifted and the low 32bits always zero.
1370 *
1371 * More recent kernels offer an interface to read the full 36bits
1372 * everywhere.
1373 */
1374 if (brw_reg_read(screen->bufmgr, TIMESTAMP | 1, &dummy) == 0)
1375 return 3;
1376
1377 /* Determine if we have a 32bit or 64bit kernel by inspecting the
1378 * upper 32bits for a rapidly changing timestamp.
1379 */
1380 if (brw_reg_read(screen->bufmgr, TIMESTAMP, &last))
1381 return 0;
1382
1383 upper = lower = 0;
1384 for (loops = 0; loops < 10; loops++) {
1385 /* The TIMESTAMP should change every 80ns, so several round trips
1386 * through the kernel should be enough to advance it.
1387 */
1388 if (brw_reg_read(screen->bufmgr, TIMESTAMP, &dummy))
1389 return 0;
1390
1391 upper += (dummy >> 32) != (last >> 32);
1392 if (upper > 1) /* beware 32bit counter overflow */
1393 return 2; /* upper dword holds the low 32bits of the timestamp */
1394
1395 lower += (dummy & 0xffffffff) != (last & 0xffffffff);
1396 if (lower > 1)
1397 return 1; /* timestamp is unshifted */
1398
1399 last = dummy;
1400 }
1401
1402 /* No advancement? No timestamp! */
1403 return 0;
1404 }
1405
1406 /**
1407 * Test if we can use MI_LOAD_REGISTER_MEM from an untrusted batchbuffer.
1408 *
1409 * Some combinations of hardware and kernel versions allow this feature,
1410 * while others don't. Instead of trying to enumerate every case, just
1411 * try and write a register and see if works.
1412 */
1413 static bool
1414 intel_detect_pipelined_register(struct intel_screen *screen,
1415 int reg, uint32_t expected_value, bool reset)
1416 {
1417 if (screen->no_hw)
1418 return false;
1419
1420 struct brw_bo *results, *bo;
1421 uint32_t *batch;
1422 uint32_t offset = 0;
1423 void *map;
1424 bool success = false;
1425
1426 /* Create a zero'ed temporary buffer for reading our results */
1427 results = brw_bo_alloc(screen->bufmgr, "registers", 4096, 0);
1428 if (results == NULL)
1429 goto err;
1430
1431 bo = brw_bo_alloc(screen->bufmgr, "batchbuffer", 4096, 0);
1432 if (bo == NULL)
1433 goto err_results;
1434
1435 map = brw_bo_map(NULL, bo, MAP_WRITE);
1436 if (!map)
1437 goto err_batch;
1438
1439 batch = map;
1440
1441 /* Write the register. */
1442 *batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
1443 *batch++ = reg;
1444 *batch++ = expected_value;
1445
1446 /* Save the register's value back to the buffer. */
1447 *batch++ = MI_STORE_REGISTER_MEM | (3 - 2);
1448 *batch++ = reg;
1449 struct drm_i915_gem_relocation_entry reloc = {
1450 .offset = (char *) batch - (char *) map,
1451 .delta = offset * sizeof(uint32_t),
1452 .target_handle = results->gem_handle,
1453 .read_domains = I915_GEM_DOMAIN_INSTRUCTION,
1454 .write_domain = I915_GEM_DOMAIN_INSTRUCTION,
1455 };
1456 *batch++ = reloc.presumed_offset + reloc.delta;
1457
1458 /* And afterwards clear the register */
1459 if (reset) {
1460 *batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
1461 *batch++ = reg;
1462 *batch++ = 0;
1463 }
1464
1465 *batch++ = MI_BATCH_BUFFER_END;
1466
1467 struct drm_i915_gem_exec_object2 exec_objects[2] = {
1468 {
1469 .handle = results->gem_handle,
1470 },
1471 {
1472 .handle = bo->gem_handle,
1473 .relocation_count = 1,
1474 .relocs_ptr = (uintptr_t) &reloc,
1475 }
1476 };
1477
1478 struct drm_i915_gem_execbuffer2 execbuf = {
1479 .buffers_ptr = (uintptr_t) exec_objects,
1480 .buffer_count = 2,
1481 .batch_len = ALIGN((char *) batch - (char *) map, 8),
1482 .flags = I915_EXEC_RENDER,
1483 };
1484
1485 /* Don't bother with error checking - if the execbuf fails, the
1486 * value won't be written and we'll just report that there's no access.
1487 */
1488 __DRIscreen *dri_screen = screen->driScrnPriv;
1489 drmIoctl(dri_screen->fd, DRM_IOCTL_I915_GEM_EXECBUFFER2, &execbuf);
1490
1491 /* Check whether the value got written. */
1492 void *results_map = brw_bo_map(NULL, results, MAP_READ);
1493 if (results_map) {
1494 success = *((uint32_t *)results_map + offset) == expected_value;
1495 brw_bo_unmap(results);
1496 }
1497
1498 err_batch:
1499 brw_bo_unreference(bo);
1500 err_results:
1501 brw_bo_unreference(results);
1502 err:
1503 return success;
1504 }
1505
1506 static bool
1507 intel_detect_pipelined_so(struct intel_screen *screen)
1508 {
1509 const struct gen_device_info *devinfo = &screen->devinfo;
1510
1511 /* Supposedly, Broadwell just works. */
1512 if (devinfo->gen >= 8)
1513 return true;
1514
1515 if (devinfo->gen <= 6)
1516 return false;
1517
1518 /* See the big explanation about command parser versions below */
1519 if (screen->cmd_parser_version >= (devinfo->is_haswell ? 7 : 2))
1520 return true;
1521
1522 /* We use SO_WRITE_OFFSET0 since you're supposed to write it (unlike the
1523 * statistics registers), and we already reset it to zero before using it.
1524 */
1525 return intel_detect_pipelined_register(screen,
1526 GEN7_SO_WRITE_OFFSET(0),
1527 0x1337d0d0,
1528 false);
1529 }
1530
1531 /**
1532 * Return array of MSAA modes supported by the hardware. The array is
1533 * zero-terminated and sorted in decreasing order.
1534 */
1535 const int*
1536 intel_supported_msaa_modes(const struct intel_screen *screen)
1537 {
1538 static const int gen9_modes[] = {16, 8, 4, 2, 0, -1};
1539 static const int gen8_modes[] = {8, 4, 2, 0, -1};
1540 static const int gen7_modes[] = {8, 4, 0, -1};
1541 static const int gen6_modes[] = {4, 0, -1};
1542 static const int gen4_modes[] = {0, -1};
1543
1544 if (screen->devinfo.gen >= 9) {
1545 return gen9_modes;
1546 } else if (screen->devinfo.gen >= 8) {
1547 return gen8_modes;
1548 } else if (screen->devinfo.gen >= 7) {
1549 return gen7_modes;
1550 } else if (screen->devinfo.gen == 6) {
1551 return gen6_modes;
1552 } else {
1553 return gen4_modes;
1554 }
1555 }
1556
1557 static __DRIconfig**
1558 intel_screen_make_configs(__DRIscreen *dri_screen)
1559 {
1560 static const mesa_format formats[] = {
1561 MESA_FORMAT_B5G6R5_UNORM,
1562 MESA_FORMAT_B8G8R8A8_UNORM,
1563 MESA_FORMAT_B8G8R8X8_UNORM
1564 };
1565
1566 /* GLX_SWAP_COPY_OML is not supported due to page flipping. */
1567 static const GLenum back_buffer_modes[] = {
1568 GLX_SWAP_UNDEFINED_OML, GLX_NONE,
1569 };
1570
1571 static const uint8_t singlesample_samples[1] = {0};
1572 static const uint8_t multisample_samples[2] = {4, 8};
1573
1574 struct intel_screen *screen = dri_screen->driverPrivate;
1575 const struct gen_device_info *devinfo = &screen->devinfo;
1576 uint8_t depth_bits[4], stencil_bits[4];
1577 __DRIconfig **configs = NULL;
1578
1579 /* Generate singlesample configs without accumulation buffer. */
1580 for (unsigned i = 0; i < ARRAY_SIZE(formats); i++) {
1581 __DRIconfig **new_configs;
1582 int num_depth_stencil_bits = 2;
1583
1584 /* Starting with DRI2 protocol version 1.1 we can request a depth/stencil
1585 * buffer that has a different number of bits per pixel than the color
1586 * buffer, gen >= 6 supports this.
1587 */
1588 depth_bits[0] = 0;
1589 stencil_bits[0] = 0;
1590
1591 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
1592 depth_bits[1] = 16;
1593 stencil_bits[1] = 0;
1594 if (devinfo->gen >= 6) {
1595 depth_bits[2] = 24;
1596 stencil_bits[2] = 8;
1597 num_depth_stencil_bits = 3;
1598 }
1599 } else {
1600 depth_bits[1] = 24;
1601 stencil_bits[1] = 8;
1602 }
1603
1604 new_configs = driCreateConfigs(formats[i],
1605 depth_bits,
1606 stencil_bits,
1607 num_depth_stencil_bits,
1608 back_buffer_modes, 2,
1609 singlesample_samples, 1,
1610 false, false);
1611 configs = driConcatConfigs(configs, new_configs);
1612 }
1613
1614 /* Generate the minimum possible set of configs that include an
1615 * accumulation buffer.
1616 */
1617 for (unsigned i = 0; i < ARRAY_SIZE(formats); i++) {
1618 __DRIconfig **new_configs;
1619
1620 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
1621 depth_bits[0] = 16;
1622 stencil_bits[0] = 0;
1623 } else {
1624 depth_bits[0] = 24;
1625 stencil_bits[0] = 8;
1626 }
1627
1628 new_configs = driCreateConfigs(formats[i],
1629 depth_bits, stencil_bits, 1,
1630 back_buffer_modes, 1,
1631 singlesample_samples, 1,
1632 true, false);
1633 configs = driConcatConfigs(configs, new_configs);
1634 }
1635
1636 /* Generate multisample configs.
1637 *
1638 * This loop breaks early, and hence is a no-op, on gen < 6.
1639 *
1640 * Multisample configs must follow the singlesample configs in order to
1641 * work around an X server bug present in 1.12. The X server chooses to
1642 * associate the first listed RGBA888-Z24S8 config, regardless of its
1643 * sample count, with the 32-bit depth visual used for compositing.
1644 *
1645 * Only doublebuffer configs with GLX_SWAP_UNDEFINED_OML behavior are
1646 * supported. Singlebuffer configs are not supported because no one wants
1647 * them.
1648 */
1649 for (unsigned i = 0; i < ARRAY_SIZE(formats); i++) {
1650 if (devinfo->gen < 6)
1651 break;
1652
1653 __DRIconfig **new_configs;
1654 const int num_depth_stencil_bits = 2;
1655 int num_msaa_modes = 0;
1656
1657 depth_bits[0] = 0;
1658 stencil_bits[0] = 0;
1659
1660 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
1661 depth_bits[1] = 16;
1662 stencil_bits[1] = 0;
1663 } else {
1664 depth_bits[1] = 24;
1665 stencil_bits[1] = 8;
1666 }
1667
1668 if (devinfo->gen >= 7)
1669 num_msaa_modes = 2;
1670 else if (devinfo->gen == 6)
1671 num_msaa_modes = 1;
1672
1673 new_configs = driCreateConfigs(formats[i],
1674 depth_bits,
1675 stencil_bits,
1676 num_depth_stencil_bits,
1677 back_buffer_modes, 1,
1678 multisample_samples,
1679 num_msaa_modes,
1680 false, false);
1681 configs = driConcatConfigs(configs, new_configs);
1682 }
1683
1684 if (configs == NULL) {
1685 fprintf(stderr, "[%s:%u] Error creating FBConfig!\n", __func__,
1686 __LINE__);
1687 return NULL;
1688 }
1689
1690 return configs;
1691 }
1692
1693 static void
1694 set_max_gl_versions(struct intel_screen *screen)
1695 {
1696 __DRIscreen *dri_screen = screen->driScrnPriv;
1697 const bool has_astc = screen->devinfo.gen >= 9;
1698
1699 switch (screen->devinfo.gen) {
1700 case 9:
1701 case 8:
1702 dri_screen->max_gl_core_version = 45;
1703 dri_screen->max_gl_compat_version = 30;
1704 dri_screen->max_gl_es1_version = 11;
1705 dri_screen->max_gl_es2_version = has_astc ? 32 : 31;
1706 break;
1707 case 7:
1708 dri_screen->max_gl_core_version = 33;
1709 if (can_do_pipelined_register_writes(screen)) {
1710 dri_screen->max_gl_core_version = 42;
1711 if (screen->devinfo.is_haswell && can_do_compute_dispatch(screen))
1712 dri_screen->max_gl_core_version = 43;
1713 if (screen->devinfo.is_haswell && can_do_mi_math_and_lrr(screen))
1714 dri_screen->max_gl_core_version = 45;
1715 }
1716 dri_screen->max_gl_compat_version = 30;
1717 dri_screen->max_gl_es1_version = 11;
1718 dri_screen->max_gl_es2_version = screen->devinfo.is_haswell ? 31 : 30;
1719 break;
1720 case 6:
1721 dri_screen->max_gl_core_version = 33;
1722 dri_screen->max_gl_compat_version = 30;
1723 dri_screen->max_gl_es1_version = 11;
1724 dri_screen->max_gl_es2_version = 30;
1725 break;
1726 case 5:
1727 case 4:
1728 dri_screen->max_gl_core_version = 0;
1729 dri_screen->max_gl_compat_version = 21;
1730 dri_screen->max_gl_es1_version = 11;
1731 dri_screen->max_gl_es2_version = 20;
1732 break;
1733 default:
1734 unreachable("unrecognized intel_screen::gen");
1735 }
1736 }
1737
1738 /**
1739 * Return the revision (generally the revid field of the PCI header) of the
1740 * graphics device.
1741 *
1742 * XXX: This function is useful to keep around even if it is not currently in
1743 * use. It is necessary for new platforms and revision specific workarounds or
1744 * features. Please don't remove it so that we know it at least continues to
1745 * build.
1746 */
1747 static __attribute__((__unused__)) int
1748 brw_get_revision(int fd)
1749 {
1750 struct drm_i915_getparam gp;
1751 int revision;
1752 int ret;
1753
1754 memset(&gp, 0, sizeof(gp));
1755 gp.param = I915_PARAM_REVISION;
1756 gp.value = &revision;
1757
1758 ret = drmCommandWriteRead(fd, DRM_I915_GETPARAM, &gp, sizeof(gp));
1759 if (ret)
1760 revision = -1;
1761
1762 return revision;
1763 }
1764
1765 static void
1766 shader_debug_log_mesa(void *data, const char *fmt, ...)
1767 {
1768 struct brw_context *brw = (struct brw_context *)data;
1769 va_list args;
1770
1771 va_start(args, fmt);
1772 GLuint msg_id = 0;
1773 _mesa_gl_vdebug(&brw->ctx, &msg_id,
1774 MESA_DEBUG_SOURCE_SHADER_COMPILER,
1775 MESA_DEBUG_TYPE_OTHER,
1776 MESA_DEBUG_SEVERITY_NOTIFICATION, fmt, args);
1777 va_end(args);
1778 }
1779
1780 static void
1781 shader_perf_log_mesa(void *data, const char *fmt, ...)
1782 {
1783 struct brw_context *brw = (struct brw_context *)data;
1784
1785 va_list args;
1786 va_start(args, fmt);
1787
1788 if (unlikely(INTEL_DEBUG & DEBUG_PERF)) {
1789 va_list args_copy;
1790 va_copy(args_copy, args);
1791 vfprintf(stderr, fmt, args_copy);
1792 va_end(args_copy);
1793 }
1794
1795 if (brw->perf_debug) {
1796 GLuint msg_id = 0;
1797 _mesa_gl_vdebug(&brw->ctx, &msg_id,
1798 MESA_DEBUG_SOURCE_SHADER_COMPILER,
1799 MESA_DEBUG_TYPE_PERFORMANCE,
1800 MESA_DEBUG_SEVERITY_MEDIUM, fmt, args);
1801 }
1802 va_end(args);
1803 }
1804
1805 static int
1806 parse_devid_override(const char *devid_override)
1807 {
1808 static const struct {
1809 const char *name;
1810 int pci_id;
1811 } name_map[] = {
1812 { "brw", 0x2a02 },
1813 { "g4x", 0x2a42 },
1814 { "ilk", 0x0042 },
1815 { "snb", 0x0126 },
1816 { "ivb", 0x016a },
1817 { "hsw", 0x0d2e },
1818 { "byt", 0x0f33 },
1819 { "bdw", 0x162e },
1820 { "skl", 0x1912 },
1821 { "kbl", 0x5912 },
1822 };
1823
1824 for (unsigned i = 0; i < ARRAY_SIZE(name_map); i++) {
1825 if (!strcmp(name_map[i].name, devid_override))
1826 return name_map[i].pci_id;
1827 }
1828
1829 return strtod(devid_override, NULL);
1830 }
1831
1832 /**
1833 * Get the PCI ID for the device. This can be overridden by setting the
1834 * INTEL_DEVID_OVERRIDE environment variable to the desired ID.
1835 *
1836 * Returns -1 on ioctl failure.
1837 */
1838 static int
1839 get_pci_device_id(struct intel_screen *screen)
1840 {
1841 if (geteuid() == getuid()) {
1842 char *devid_override = getenv("INTEL_DEVID_OVERRIDE");
1843 if (devid_override) {
1844 screen->no_hw = true;
1845 return parse_devid_override(devid_override);
1846 }
1847 }
1848
1849 return intel_get_integer(screen, I915_PARAM_CHIPSET_ID);
1850 }
1851
1852 /**
1853 * This is the driver specific part of the createNewScreen entry point.
1854 * Called when using DRI2.
1855 *
1856 * \return the struct gl_config supported by this driver
1857 */
1858 static const
1859 __DRIconfig **intelInitScreen2(__DRIscreen *dri_screen)
1860 {
1861 struct intel_screen *screen;
1862
1863 if (dri_screen->image.loader) {
1864 } else if (dri_screen->dri2.loader->base.version <= 2 ||
1865 dri_screen->dri2.loader->getBuffersWithFormat == NULL) {
1866 fprintf(stderr,
1867 "\nERROR! DRI2 loader with getBuffersWithFormat() "
1868 "support required\n");
1869 return NULL;
1870 }
1871
1872 /* Allocate the private area */
1873 screen = rzalloc(NULL, struct intel_screen);
1874 if (!screen) {
1875 fprintf(stderr, "\nERROR! Allocating private area failed\n");
1876 return NULL;
1877 }
1878 /* parse information in __driConfigOptions */
1879 driParseOptionInfo(&screen->optionCache, brw_config_options.xml);
1880
1881 screen->driScrnPriv = dri_screen;
1882 dri_screen->driverPrivate = (void *) screen;
1883
1884 screen->deviceID = get_pci_device_id(screen);
1885
1886 if (!gen_get_device_info(screen->deviceID, &screen->devinfo))
1887 return NULL;
1888
1889 if (!intel_init_bufmgr(screen))
1890 return NULL;
1891
1892 const struct gen_device_info *devinfo = &screen->devinfo;
1893
1894 brw_process_intel_debug_variable();
1895
1896 if ((INTEL_DEBUG & DEBUG_SHADER_TIME) && devinfo->gen < 7) {
1897 fprintf(stderr,
1898 "shader_time debugging requires gen7 (Ivybridge) or better.\n");
1899 INTEL_DEBUG &= ~DEBUG_SHADER_TIME;
1900 }
1901
1902 if (intel_get_integer(screen, I915_PARAM_MMAP_GTT_VERSION) >= 1) {
1903 /* Theorectically unlimited! At least for individual objects...
1904 *
1905 * Currently the entire (global) address space for all GTT maps is
1906 * limited to 64bits. That is all objects on the system that are
1907 * setup for GTT mmapping must fit within 64bits. An attempt to use
1908 * one that exceeds the limit with fail in brw_bo_map_gtt().
1909 *
1910 * Long before we hit that limit, we will be practically limited by
1911 * that any single object must fit in physical memory (RAM). The upper
1912 * limit on the CPU's address space is currently 48bits (Skylake), of
1913 * which only 39bits can be physical memory. (The GPU itself also has
1914 * a 48bit addressable virtual space.) We can fit over 32 million
1915 * objects of the current maximum allocable size before running out
1916 * of mmap space.
1917 */
1918 screen->max_gtt_map_object_size = UINT64_MAX;
1919 } else {
1920 /* Estimate the size of the mappable aperture into the GTT. There's an
1921 * ioctl to get the whole GTT size, but not one to get the mappable subset.
1922 * It turns out it's basically always 256MB, though some ancient hardware
1923 * was smaller.
1924 */
1925 uint32_t gtt_size = 256 * 1024 * 1024;
1926
1927 /* We don't want to map two objects such that a memcpy between them would
1928 * just fault one mapping in and then the other over and over forever. So
1929 * we would need to divide the GTT size by 2. Additionally, some GTT is
1930 * taken up by things like the framebuffer and the ringbuffer and such, so
1931 * be more conservative.
1932 */
1933 screen->max_gtt_map_object_size = gtt_size / 4;
1934 }
1935
1936 screen->aperture_threshold = get_aperture_size(dri_screen->fd) * 3 / 4;
1937
1938 screen->hw_has_swizzling = intel_detect_swizzling(screen);
1939 screen->hw_has_timestamp = intel_detect_timestamp(screen);
1940
1941 /* GENs prior to 8 do not support EU/Subslice info */
1942 if (devinfo->gen >= 8) {
1943 intel_detect_sseu(screen);
1944 } else if (devinfo->gen == 7) {
1945 screen->subslice_total = 1 << (devinfo->gt - 1);
1946 }
1947
1948 /* Gen7-7.5 kernel requirements / command parser saga:
1949 *
1950 * - pre-v3.16:
1951 * Haswell and Baytrail cannot use any privileged batchbuffer features.
1952 *
1953 * Ivybridge has aliasing PPGTT on by default, which accidentally marks
1954 * all batches secure, allowing them to use any feature with no checking.
1955 * This is effectively equivalent to a command parser version of
1956 * \infinity - everything is possible.
1957 *
1958 * The command parser does not exist, and querying the version will
1959 * return -EINVAL.
1960 *
1961 * - v3.16:
1962 * The kernel enables the command parser by default, for systems with
1963 * aliasing PPGTT enabled (Ivybridge and Haswell). However, the
1964 * hardware checker is still enabled, so Haswell and Baytrail cannot
1965 * do anything.
1966 *
1967 * Ivybridge goes from "everything is possible" to "only what the
1968 * command parser allows" (if the user boots with i915.cmd_parser=0,
1969 * then everything is possible again). We can only safely use features
1970 * allowed by the supported command parser version.
1971 *
1972 * Annoyingly, I915_PARAM_CMD_PARSER_VERSION reports the static version
1973 * implemented by the kernel, even if it's turned off. So, checking
1974 * for version > 0 does not mean that you can write registers. We have
1975 * to try it and see. The version does, however, indicate the age of
1976 * the kernel.
1977 *
1978 * Instead of matching the hardware checker's behavior of converting
1979 * privileged commands to MI_NOOP, it makes execbuf2 start returning
1980 * -EINVAL, making it dangerous to try and use privileged features.
1981 *
1982 * Effective command parser versions:
1983 * - Haswell: 0 (reporting 1, writes don't work)
1984 * - Baytrail: 0 (reporting 1, writes don't work)
1985 * - Ivybridge: 1 (enabled) or infinite (disabled)
1986 *
1987 * - v3.17:
1988 * Baytrail aliasing PPGTT is enabled, making it like Ivybridge:
1989 * effectively version 1 (enabled) or infinite (disabled).
1990 *
1991 * - v3.19: f1f55cc0556031c8ee3fe99dae7251e78b9b653b
1992 * Command parser v2 supports predicate writes.
1993 *
1994 * - Haswell: 0 (reporting 1, writes don't work)
1995 * - Baytrail: 2 (enabled) or infinite (disabled)
1996 * - Ivybridge: 2 (enabled) or infinite (disabled)
1997 *
1998 * So version >= 2 is enough to know that Ivybridge and Baytrail
1999 * will work. Haswell still can't do anything.
2000 *
2001 * - v4.0: Version 3 happened. Largely not relevant.
2002 *
2003 * - v4.1: 6702cf16e0ba8b0129f5aa1b6609d4e9c70bc13b
2004 * L3 config registers are properly saved and restored as part
2005 * of the hardware context. We can approximately detect this point
2006 * in time by checking if I915_PARAM_REVISION is recognized - it
2007 * landed in a later commit, but in the same release cycle.
2008 *
2009 * - v4.2: 245054a1fe33c06ad233e0d58a27ec7b64db9284
2010 * Command parser finally gains secure batch promotion. On Haswell,
2011 * the hardware checker gets disabled, which finally allows it to do
2012 * privileged commands.
2013 *
2014 * I915_PARAM_CMD_PARSER_VERSION reports 3. Effective versions:
2015 * - Haswell: 3 (enabled) or 0 (disabled)
2016 * - Baytrail: 3 (enabled) or infinite (disabled)
2017 * - Ivybridge: 3 (enabled) or infinite (disabled)
2018 *
2019 * Unfortunately, detecting this point in time is tricky, because
2020 * no version bump happened when this important change occurred.
2021 * On Haswell, if we can write any register, then the kernel is at
2022 * least this new, and we can start trusting the version number.
2023 *
2024 * - v4.4: 2bbe6bbb0dc94fd4ce287bdac9e1bd184e23057b and
2025 * Command parser reaches version 4, allowing access to Haswell
2026 * atomic scratch and chicken3 registers. If version >= 4, we know
2027 * the kernel is new enough to support privileged features on all
2028 * hardware. However, the user might have disabled it...and the
2029 * kernel will still report version 4. So we still have to guess
2030 * and check.
2031 *
2032 * - v4.4: 7b9748cb513a6bef4af87b79f0da3ff7e8b56cd8
2033 * Command parser v5 whitelists indirect compute shader dispatch
2034 * registers, needed for OpenGL 4.3 and later.
2035 *
2036 * - v4.8:
2037 * Command parser v7 lets us use MI_MATH on Haswell.
2038 *
2039 * Additionally, the kernel begins reporting version 0 when
2040 * the command parser is disabled, allowing us to skip the
2041 * guess-and-check step on Haswell. Unfortunately, this also
2042 * means that we can no longer use it as an indicator of the
2043 * age of the kernel.
2044 */
2045 if (intel_get_param(screen, I915_PARAM_CMD_PARSER_VERSION,
2046 &screen->cmd_parser_version) < 0) {
2047 /* Command parser does not exist - getparam is unrecognized */
2048 screen->cmd_parser_version = 0;
2049 }
2050
2051 /* Kernel 4.13 retuired for exec object capture */
2052 #ifndef I915_PARAM_HAS_EXEC_CAPTURE
2053 #define I915_PARAM_HAS_EXEC_CAPTURE 45
2054 #endif
2055 if (intel_get_boolean(screen, I915_PARAM_HAS_EXEC_CAPTURE)) {
2056 screen->kernel_features |= KERNEL_ALLOWS_EXEC_CAPTURE;
2057 }
2058
2059 if (!intel_detect_pipelined_so(screen)) {
2060 /* We can't do anything, so the effective version is 0. */
2061 screen->cmd_parser_version = 0;
2062 } else {
2063 screen->kernel_features |= KERNEL_ALLOWS_SOL_OFFSET_WRITES;
2064 }
2065
2066 if (devinfo->gen >= 8 || screen->cmd_parser_version >= 2)
2067 screen->kernel_features |= KERNEL_ALLOWS_PREDICATE_WRITES;
2068
2069 /* Haswell requires command parser version 4 in order to have L3
2070 * atomic scratch1 and chicken3 bits
2071 */
2072 if (devinfo->is_haswell && screen->cmd_parser_version >= 4) {
2073 screen->kernel_features |=
2074 KERNEL_ALLOWS_HSW_SCRATCH1_AND_ROW_CHICKEN3;
2075 }
2076
2077 /* Haswell requires command parser version 6 in order to write to the
2078 * MI_MATH GPR registers, and version 7 in order to use
2079 * MI_LOAD_REGISTER_REG (which all users of MI_MATH use).
2080 */
2081 if (devinfo->gen >= 8 ||
2082 (devinfo->is_haswell && screen->cmd_parser_version >= 7)) {
2083 screen->kernel_features |= KERNEL_ALLOWS_MI_MATH_AND_LRR;
2084 }
2085
2086 /* Gen7 needs at least command parser version 5 to support compute */
2087 if (devinfo->gen >= 8 || screen->cmd_parser_version >= 5)
2088 screen->kernel_features |= KERNEL_ALLOWS_COMPUTE_DISPATCH;
2089
2090 const char *force_msaa = getenv("INTEL_FORCE_MSAA");
2091 if (force_msaa) {
2092 screen->winsys_msaa_samples_override =
2093 intel_quantize_num_samples(screen, atoi(force_msaa));
2094 printf("Forcing winsys sample count to %d\n",
2095 screen->winsys_msaa_samples_override);
2096 } else {
2097 screen->winsys_msaa_samples_override = -1;
2098 }
2099
2100 set_max_gl_versions(screen);
2101
2102 /* Notification of GPU resets requires hardware contexts and a kernel new
2103 * enough to support DRM_IOCTL_I915_GET_RESET_STATS. If the ioctl is
2104 * supported, calling it with a context of 0 will either generate EPERM or
2105 * no error. If the ioctl is not supported, it always generate EINVAL.
2106 * Use this to determine whether to advertise the __DRI2_ROBUSTNESS
2107 * extension to the loader.
2108 *
2109 * Don't even try on pre-Gen6, since we don't attempt to use contexts there.
2110 */
2111 if (devinfo->gen >= 6) {
2112 struct drm_i915_reset_stats stats;
2113 memset(&stats, 0, sizeof(stats));
2114
2115 const int ret = drmIoctl(dri_screen->fd, DRM_IOCTL_I915_GET_RESET_STATS, &stats);
2116
2117 screen->has_context_reset_notification =
2118 (ret != -1 || errno != EINVAL);
2119 }
2120
2121 dri_screen->extensions = !screen->has_context_reset_notification
2122 ? screenExtensions : intelRobustScreenExtensions;
2123
2124 screen->compiler = brw_compiler_create(screen, devinfo);
2125 screen->compiler->shader_debug_log = shader_debug_log_mesa;
2126 screen->compiler->shader_perf_log = shader_perf_log_mesa;
2127 screen->program_id = 1;
2128
2129 screen->has_exec_fence =
2130 intel_get_boolean(screen, I915_PARAM_HAS_EXEC_FENCE);
2131
2132 return (const __DRIconfig**) intel_screen_make_configs(dri_screen);
2133 }
2134
2135 struct intel_buffer {
2136 __DRIbuffer base;
2137 struct brw_bo *bo;
2138 };
2139
2140 static __DRIbuffer *
2141 intelAllocateBuffer(__DRIscreen *dri_screen,
2142 unsigned attachment, unsigned format,
2143 int width, int height)
2144 {
2145 struct intel_buffer *intelBuffer;
2146 struct intel_screen *screen = dri_screen->driverPrivate;
2147
2148 assert(attachment == __DRI_BUFFER_FRONT_LEFT ||
2149 attachment == __DRI_BUFFER_BACK_LEFT);
2150
2151 intelBuffer = calloc(1, sizeof *intelBuffer);
2152 if (intelBuffer == NULL)
2153 return NULL;
2154
2155 /* The front and back buffers are color buffers, which are X tiled. GEN9+
2156 * supports Y tiled and compressed buffers, but there is no way to plumb that
2157 * through to here. */
2158 uint32_t pitch;
2159 int cpp = format / 8;
2160 intelBuffer->bo = brw_bo_alloc_tiled(screen->bufmgr,
2161 "intelAllocateBuffer",
2162 width,
2163 height,
2164 cpp,
2165 I915_TILING_X, &pitch,
2166 BO_ALLOC_FOR_RENDER);
2167
2168 if (intelBuffer->bo == NULL) {
2169 free(intelBuffer);
2170 return NULL;
2171 }
2172
2173 brw_bo_flink(intelBuffer->bo, &intelBuffer->base.name);
2174
2175 intelBuffer->base.attachment = attachment;
2176 intelBuffer->base.cpp = cpp;
2177 intelBuffer->base.pitch = pitch;
2178
2179 return &intelBuffer->base;
2180 }
2181
2182 static void
2183 intelReleaseBuffer(__DRIscreen *dri_screen, __DRIbuffer *buffer)
2184 {
2185 struct intel_buffer *intelBuffer = (struct intel_buffer *) buffer;
2186
2187 brw_bo_unreference(intelBuffer->bo);
2188 free(intelBuffer);
2189 }
2190
2191 static const struct __DriverAPIRec brw_driver_api = {
2192 .InitScreen = intelInitScreen2,
2193 .DestroyScreen = intelDestroyScreen,
2194 .CreateContext = brwCreateContext,
2195 .DestroyContext = intelDestroyContext,
2196 .CreateBuffer = intelCreateBuffer,
2197 .DestroyBuffer = intelDestroyBuffer,
2198 .MakeCurrent = intelMakeCurrent,
2199 .UnbindContext = intelUnbindContext,
2200 .AllocateBuffer = intelAllocateBuffer,
2201 .ReleaseBuffer = intelReleaseBuffer
2202 };
2203
2204 static const struct __DRIDriverVtableExtensionRec brw_vtable = {
2205 .base = { __DRI_DRIVER_VTABLE, 1 },
2206 .vtable = &brw_driver_api,
2207 };
2208
2209 static const __DRIextension *brw_driver_extensions[] = {
2210 &driCoreExtension.base,
2211 &driImageDriverExtension.base,
2212 &driDRI2Extension.base,
2213 &brw_vtable.base,
2214 &brw_config_options.base,
2215 NULL
2216 };
2217
2218 PUBLIC const __DRIextension **__driDriverGetExtensions_i965(void)
2219 {
2220 globalDriverAPI = &brw_driver_api;
2221
2222 return brw_driver_extensions;
2223 }