turnip: Skip unused regs when setting up streamout buffers
[mesa.git] / src / freedreno / vulkan / tu_pipeline.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
25 * DEALINGS IN THE SOFTWARE.
26 */
27
28 #include "tu_private.h"
29
30 #include "ir3/ir3_nir.h"
31 #include "main/menums.h"
32 #include "nir/nir.h"
33 #include "nir/nir_builder.h"
34 #include "spirv/nir_spirv.h"
35 #include "util/debug.h"
36 #include "util/mesa-sha1.h"
37 #include "util/u_atomic.h"
38 #include "vk_format.h"
39 #include "vk_util.h"
40
41 #include "tu_cs.h"
42
43 /* Emit IB that preloads the descriptors that the shader uses */
44
45 static inline uint32_t
46 tu6_vkstage2opcode(VkShaderStageFlags stage)
47 {
48 switch (stage) {
49 case VK_SHADER_STAGE_VERTEX_BIT:
50 case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
51 case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
52 case VK_SHADER_STAGE_GEOMETRY_BIT:
53 return CP_LOAD_STATE6_GEOM;
54 case VK_SHADER_STAGE_FRAGMENT_BIT:
55 case VK_SHADER_STAGE_COMPUTE_BIT:
56 return CP_LOAD_STATE6_FRAG;
57 default:
58 unreachable("bad shader type");
59 }
60 }
61
62 static enum a6xx_state_block
63 tu6_tex_stage2sb(VkShaderStageFlags stage)
64 {
65 switch (stage) {
66 case VK_SHADER_STAGE_VERTEX_BIT:
67 return SB6_VS_TEX;
68 case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
69 return SB6_HS_TEX;
70 case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
71 return SB6_DS_TEX;
72 case VK_SHADER_STAGE_GEOMETRY_BIT:
73 return SB6_GS_TEX;
74 case VK_SHADER_STAGE_FRAGMENT_BIT:
75 return SB6_FS_TEX;
76 case VK_SHADER_STAGE_COMPUTE_BIT:
77 return SB6_CS_TEX;
78 default:
79 unreachable("bad shader stage");
80 }
81 }
82
83 static enum a6xx_state_block
84 tu6_ubo_stage2sb(VkShaderStageFlags stage)
85 {
86 switch (stage) {
87 case VK_SHADER_STAGE_VERTEX_BIT:
88 return SB6_VS_SHADER;
89 case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
90 return SB6_HS_SHADER;
91 case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
92 return SB6_DS_SHADER;
93 case VK_SHADER_STAGE_GEOMETRY_BIT:
94 return SB6_GS_SHADER;
95 case VK_SHADER_STAGE_FRAGMENT_BIT:
96 return SB6_FS_SHADER;
97 case VK_SHADER_STAGE_COMPUTE_BIT:
98 return SB6_CS_SHADER;
99 default:
100 unreachable("bad shader stage");
101 }
102 }
103
104 static void
105 emit_load_state(struct tu_cs *cs, unsigned opcode, enum a6xx_state_type st,
106 enum a6xx_state_block sb, unsigned base, unsigned offset,
107 unsigned count)
108 {
109 /* Note: just emit one packet, even if count overflows NUM_UNIT. It's not
110 * clear if emitting more packets will even help anything. Presumably the
111 * descriptor cache is relatively small, and these packets stop doing
112 * anything when there are too many descriptors.
113 */
114 tu_cs_emit_pkt7(cs, opcode, 3);
115 tu_cs_emit(cs,
116 CP_LOAD_STATE6_0_STATE_TYPE(st) |
117 CP_LOAD_STATE6_0_STATE_SRC(SS6_BINDLESS) |
118 CP_LOAD_STATE6_0_STATE_BLOCK(sb) |
119 CP_LOAD_STATE6_0_NUM_UNIT(MIN2(count, 1024-1)));
120 tu_cs_emit_qw(cs, offset | (base << 28));
121 }
122
123 static unsigned
124 tu6_load_state_size(struct tu_pipeline_layout *layout, bool compute)
125 {
126 const unsigned load_state_size = 4;
127 unsigned size = 0;
128 for (unsigned i = 0; i < layout->num_sets; i++) {
129 struct tu_descriptor_set_layout *set_layout = layout->set[i].layout;
130 for (unsigned j = 0; j < set_layout->binding_count; j++) {
131 struct tu_descriptor_set_binding_layout *binding = &set_layout->binding[j];
132 unsigned count = 0;
133 /* Note: some users, like amber for example, pass in
134 * VK_SHADER_STAGE_ALL which includes a bunch of extra bits, so
135 * filter these out by using VK_SHADER_STAGE_ALL_GRAPHICS explicitly.
136 */
137 VkShaderStageFlags stages = compute ?
138 binding->shader_stages & VK_SHADER_STAGE_COMPUTE_BIT :
139 binding->shader_stages & VK_SHADER_STAGE_ALL_GRAPHICS;
140 unsigned stage_count = util_bitcount(stages);
141 switch (binding->type) {
142 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
143 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
144 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
145 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
146 /* IBO-backed resources only need one packet for all graphics stages */
147 if (stages & ~VK_SHADER_STAGE_COMPUTE_BIT)
148 count += 1;
149 if (stages & VK_SHADER_STAGE_COMPUTE_BIT)
150 count += 1;
151 break;
152 case VK_DESCRIPTOR_TYPE_SAMPLER:
153 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
154 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
155 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
156 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
157 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
158 /* Textures and UBO's needs a packet for each stage */
159 count = stage_count;
160 break;
161 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
162 /* Because of how we pack combined images and samplers, we
163 * currently can't use one packet for the whole array.
164 */
165 count = stage_count * binding->array_size * 2;
166 break;
167 default:
168 unreachable("bad descriptor type");
169 }
170 size += count * load_state_size;
171 }
172 }
173 return size;
174 }
175
176 static void
177 tu6_emit_load_state(struct tu_pipeline *pipeline, bool compute)
178 {
179 unsigned size = tu6_load_state_size(pipeline->layout, compute);
180 if (size == 0)
181 return;
182
183 struct tu_cs cs;
184 tu_cs_begin_sub_stream(&pipeline->cs, size, &cs);
185
186 struct tu_pipeline_layout *layout = pipeline->layout;
187 for (unsigned i = 0; i < layout->num_sets; i++) {
188 struct tu_descriptor_set_layout *set_layout = layout->set[i].layout;
189 for (unsigned j = 0; j < set_layout->binding_count; j++) {
190 struct tu_descriptor_set_binding_layout *binding = &set_layout->binding[j];
191 unsigned base = i;
192 unsigned offset = binding->offset / 4;
193 /* Note: some users, like amber for example, pass in
194 * VK_SHADER_STAGE_ALL which includes a bunch of extra bits, so
195 * filter these out by using VK_SHADER_STAGE_ALL_GRAPHICS explicitly.
196 */
197 VkShaderStageFlags stages = compute ?
198 binding->shader_stages & VK_SHADER_STAGE_COMPUTE_BIT :
199 binding->shader_stages & VK_SHADER_STAGE_ALL_GRAPHICS;
200 unsigned count = binding->array_size;
201 if (count == 0 || stages == 0)
202 continue;
203 switch (binding->type) {
204 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
205 base = MAX_SETS;
206 offset = (layout->input_attachment_count +
207 layout->set[i].dynamic_offset_start +
208 binding->dynamic_offset_offset) * A6XX_TEX_CONST_DWORDS;
209 /* fallthrough */
210 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
211 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
212 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
213 /* IBO-backed resources only need one packet for all graphics stages */
214 if (stages & ~VK_SHADER_STAGE_COMPUTE_BIT) {
215 emit_load_state(&cs, CP_LOAD_STATE6, ST6_SHADER, SB6_IBO,
216 base, offset, count);
217 }
218 if (stages & VK_SHADER_STAGE_COMPUTE_BIT) {
219 emit_load_state(&cs, CP_LOAD_STATE6_FRAG, ST6_IBO, SB6_CS_SHADER,
220 base, offset, count);
221 }
222 break;
223 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
224 base = MAX_SETS;
225 offset = (layout->set[i].input_attachment_start +
226 binding->input_attachment_offset) * A6XX_TEX_CONST_DWORDS;
227 case VK_DESCRIPTOR_TYPE_SAMPLER:
228 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
229 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER: {
230 unsigned stage_log2;
231 for_each_bit(stage_log2, stages) {
232 VkShaderStageFlags stage = 1 << stage_log2;
233 emit_load_state(&cs, tu6_vkstage2opcode(stage),
234 binding->type == VK_DESCRIPTOR_TYPE_SAMPLER ?
235 ST6_SHADER : ST6_CONSTANTS,
236 tu6_tex_stage2sb(stage), base, offset, count);
237 }
238 break;
239 }
240 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
241 base = MAX_SETS;
242 offset = (layout->input_attachment_count +
243 layout->set[i].dynamic_offset_start +
244 binding->dynamic_offset_offset) * A6XX_TEX_CONST_DWORDS;
245 /* fallthrough */
246 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER: {
247 unsigned stage_log2;
248 for_each_bit(stage_log2, stages) {
249 VkShaderStageFlags stage = 1 << stage_log2;
250 emit_load_state(&cs, tu6_vkstage2opcode(stage), ST6_UBO,
251 tu6_ubo_stage2sb(stage), base, offset, count);
252 }
253 break;
254 }
255 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER: {
256 unsigned stage_log2;
257 for_each_bit(stage_log2, stages) {
258 VkShaderStageFlags stage = 1 << stage_log2;
259 /* TODO: We could emit less CP_LOAD_STATE6 if we used
260 * struct-of-arrays instead of array-of-structs.
261 */
262 for (unsigned i = 0; i < count; i++) {
263 unsigned tex_offset = offset + 2 * i * A6XX_TEX_CONST_DWORDS;
264 unsigned sam_offset = offset + (2 * i + 1) * A6XX_TEX_CONST_DWORDS;
265 emit_load_state(&cs, tu6_vkstage2opcode(stage),
266 ST6_CONSTANTS, tu6_tex_stage2sb(stage),
267 base, tex_offset, 1);
268 emit_load_state(&cs, tu6_vkstage2opcode(stage),
269 ST6_SHADER, tu6_tex_stage2sb(stage),
270 base, sam_offset, 1);
271 }
272 }
273 break;
274 }
275 default:
276 unreachable("bad descriptor type");
277 }
278 }
279 }
280
281 pipeline->load_state.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &cs);
282 }
283
284 struct tu_pipeline_builder
285 {
286 struct tu_device *device;
287 struct tu_pipeline_cache *cache;
288 struct tu_pipeline_layout *layout;
289 const VkAllocationCallbacks *alloc;
290 const VkGraphicsPipelineCreateInfo *create_info;
291
292 struct tu_shader *shaders[MESA_SHADER_STAGES];
293 uint32_t shader_offsets[MESA_SHADER_STAGES];
294 uint32_t binning_vs_offset;
295 uint32_t shader_total_size;
296
297 bool rasterizer_discard;
298 /* these states are affectd by rasterizer_discard */
299 VkSampleCountFlagBits samples;
300 bool use_color_attachments;
301 uint32_t color_attachment_count;
302 VkFormat color_attachment_formats[MAX_RTS];
303 VkFormat depth_attachment_format;
304 };
305
306 static enum tu_dynamic_state_bits
307 tu_dynamic_state_bit(VkDynamicState state)
308 {
309 switch (state) {
310 case VK_DYNAMIC_STATE_VIEWPORT:
311 return TU_DYNAMIC_VIEWPORT;
312 case VK_DYNAMIC_STATE_SCISSOR:
313 return TU_DYNAMIC_SCISSOR;
314 case VK_DYNAMIC_STATE_LINE_WIDTH:
315 return TU_DYNAMIC_LINE_WIDTH;
316 case VK_DYNAMIC_STATE_DEPTH_BIAS:
317 return TU_DYNAMIC_DEPTH_BIAS;
318 case VK_DYNAMIC_STATE_BLEND_CONSTANTS:
319 return TU_DYNAMIC_BLEND_CONSTANTS;
320 case VK_DYNAMIC_STATE_DEPTH_BOUNDS:
321 return TU_DYNAMIC_DEPTH_BOUNDS;
322 case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK:
323 return TU_DYNAMIC_STENCIL_COMPARE_MASK;
324 case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK:
325 return TU_DYNAMIC_STENCIL_WRITE_MASK;
326 case VK_DYNAMIC_STATE_STENCIL_REFERENCE:
327 return TU_DYNAMIC_STENCIL_REFERENCE;
328 case VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT:
329 return TU_DYNAMIC_SAMPLE_LOCATIONS;
330 default:
331 unreachable("invalid dynamic state");
332 return 0;
333 }
334 }
335
336 static gl_shader_stage
337 tu_shader_stage(VkShaderStageFlagBits stage)
338 {
339 switch (stage) {
340 case VK_SHADER_STAGE_VERTEX_BIT:
341 return MESA_SHADER_VERTEX;
342 case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
343 return MESA_SHADER_TESS_CTRL;
344 case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
345 return MESA_SHADER_TESS_EVAL;
346 case VK_SHADER_STAGE_GEOMETRY_BIT:
347 return MESA_SHADER_GEOMETRY;
348 case VK_SHADER_STAGE_FRAGMENT_BIT:
349 return MESA_SHADER_FRAGMENT;
350 case VK_SHADER_STAGE_COMPUTE_BIT:
351 return MESA_SHADER_COMPUTE;
352 default:
353 unreachable("invalid VkShaderStageFlagBits");
354 return MESA_SHADER_NONE;
355 }
356 }
357
358 static bool
359 tu_logic_op_reads_dst(VkLogicOp op)
360 {
361 switch (op) {
362 case VK_LOGIC_OP_CLEAR:
363 case VK_LOGIC_OP_COPY:
364 case VK_LOGIC_OP_COPY_INVERTED:
365 case VK_LOGIC_OP_SET:
366 return false;
367 default:
368 return true;
369 }
370 }
371
372 static VkBlendFactor
373 tu_blend_factor_no_dst_alpha(VkBlendFactor factor)
374 {
375 /* treat dst alpha as 1.0 and avoid reading it */
376 switch (factor) {
377 case VK_BLEND_FACTOR_DST_ALPHA:
378 return VK_BLEND_FACTOR_ONE;
379 case VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA:
380 return VK_BLEND_FACTOR_ZERO;
381 default:
382 return factor;
383 }
384 }
385
386 static enum pc_di_primtype
387 tu6_primtype(VkPrimitiveTopology topology)
388 {
389 switch (topology) {
390 case VK_PRIMITIVE_TOPOLOGY_POINT_LIST:
391 return DI_PT_POINTLIST;
392 case VK_PRIMITIVE_TOPOLOGY_LINE_LIST:
393 return DI_PT_LINELIST;
394 case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP:
395 return DI_PT_LINESTRIP;
396 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST:
397 return DI_PT_TRILIST;
398 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP:
399 return DI_PT_TRISTRIP;
400 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN:
401 return DI_PT_TRIFAN;
402 case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY:
403 return DI_PT_LINE_ADJ;
404 case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY:
405 return DI_PT_LINESTRIP_ADJ;
406 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY:
407 return DI_PT_TRI_ADJ;
408 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY:
409 return DI_PT_TRISTRIP_ADJ;
410 case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST:
411 default:
412 unreachable("invalid primitive topology");
413 return DI_PT_NONE;
414 }
415 }
416
417 static enum adreno_compare_func
418 tu6_compare_func(VkCompareOp op)
419 {
420 switch (op) {
421 case VK_COMPARE_OP_NEVER:
422 return FUNC_NEVER;
423 case VK_COMPARE_OP_LESS:
424 return FUNC_LESS;
425 case VK_COMPARE_OP_EQUAL:
426 return FUNC_EQUAL;
427 case VK_COMPARE_OP_LESS_OR_EQUAL:
428 return FUNC_LEQUAL;
429 case VK_COMPARE_OP_GREATER:
430 return FUNC_GREATER;
431 case VK_COMPARE_OP_NOT_EQUAL:
432 return FUNC_NOTEQUAL;
433 case VK_COMPARE_OP_GREATER_OR_EQUAL:
434 return FUNC_GEQUAL;
435 case VK_COMPARE_OP_ALWAYS:
436 return FUNC_ALWAYS;
437 default:
438 unreachable("invalid VkCompareOp");
439 return FUNC_NEVER;
440 }
441 }
442
443 static enum adreno_stencil_op
444 tu6_stencil_op(VkStencilOp op)
445 {
446 switch (op) {
447 case VK_STENCIL_OP_KEEP:
448 return STENCIL_KEEP;
449 case VK_STENCIL_OP_ZERO:
450 return STENCIL_ZERO;
451 case VK_STENCIL_OP_REPLACE:
452 return STENCIL_REPLACE;
453 case VK_STENCIL_OP_INCREMENT_AND_CLAMP:
454 return STENCIL_INCR_CLAMP;
455 case VK_STENCIL_OP_DECREMENT_AND_CLAMP:
456 return STENCIL_DECR_CLAMP;
457 case VK_STENCIL_OP_INVERT:
458 return STENCIL_INVERT;
459 case VK_STENCIL_OP_INCREMENT_AND_WRAP:
460 return STENCIL_INCR_WRAP;
461 case VK_STENCIL_OP_DECREMENT_AND_WRAP:
462 return STENCIL_DECR_WRAP;
463 default:
464 unreachable("invalid VkStencilOp");
465 return STENCIL_KEEP;
466 }
467 }
468
469 static enum a3xx_rop_code
470 tu6_rop(VkLogicOp op)
471 {
472 switch (op) {
473 case VK_LOGIC_OP_CLEAR:
474 return ROP_CLEAR;
475 case VK_LOGIC_OP_AND:
476 return ROP_AND;
477 case VK_LOGIC_OP_AND_REVERSE:
478 return ROP_AND_REVERSE;
479 case VK_LOGIC_OP_COPY:
480 return ROP_COPY;
481 case VK_LOGIC_OP_AND_INVERTED:
482 return ROP_AND_INVERTED;
483 case VK_LOGIC_OP_NO_OP:
484 return ROP_NOOP;
485 case VK_LOGIC_OP_XOR:
486 return ROP_XOR;
487 case VK_LOGIC_OP_OR:
488 return ROP_OR;
489 case VK_LOGIC_OP_NOR:
490 return ROP_NOR;
491 case VK_LOGIC_OP_EQUIVALENT:
492 return ROP_EQUIV;
493 case VK_LOGIC_OP_INVERT:
494 return ROP_INVERT;
495 case VK_LOGIC_OP_OR_REVERSE:
496 return ROP_OR_REVERSE;
497 case VK_LOGIC_OP_COPY_INVERTED:
498 return ROP_COPY_INVERTED;
499 case VK_LOGIC_OP_OR_INVERTED:
500 return ROP_OR_INVERTED;
501 case VK_LOGIC_OP_NAND:
502 return ROP_NAND;
503 case VK_LOGIC_OP_SET:
504 return ROP_SET;
505 default:
506 unreachable("invalid VkLogicOp");
507 return ROP_NOOP;
508 }
509 }
510
511 static enum adreno_rb_blend_factor
512 tu6_blend_factor(VkBlendFactor factor)
513 {
514 switch (factor) {
515 case VK_BLEND_FACTOR_ZERO:
516 return FACTOR_ZERO;
517 case VK_BLEND_FACTOR_ONE:
518 return FACTOR_ONE;
519 case VK_BLEND_FACTOR_SRC_COLOR:
520 return FACTOR_SRC_COLOR;
521 case VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR:
522 return FACTOR_ONE_MINUS_SRC_COLOR;
523 case VK_BLEND_FACTOR_DST_COLOR:
524 return FACTOR_DST_COLOR;
525 case VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR:
526 return FACTOR_ONE_MINUS_DST_COLOR;
527 case VK_BLEND_FACTOR_SRC_ALPHA:
528 return FACTOR_SRC_ALPHA;
529 case VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA:
530 return FACTOR_ONE_MINUS_SRC_ALPHA;
531 case VK_BLEND_FACTOR_DST_ALPHA:
532 return FACTOR_DST_ALPHA;
533 case VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA:
534 return FACTOR_ONE_MINUS_DST_ALPHA;
535 case VK_BLEND_FACTOR_CONSTANT_COLOR:
536 return FACTOR_CONSTANT_COLOR;
537 case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR:
538 return FACTOR_ONE_MINUS_CONSTANT_COLOR;
539 case VK_BLEND_FACTOR_CONSTANT_ALPHA:
540 return FACTOR_CONSTANT_ALPHA;
541 case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA:
542 return FACTOR_ONE_MINUS_CONSTANT_ALPHA;
543 case VK_BLEND_FACTOR_SRC_ALPHA_SATURATE:
544 return FACTOR_SRC_ALPHA_SATURATE;
545 case VK_BLEND_FACTOR_SRC1_COLOR:
546 return FACTOR_SRC1_COLOR;
547 case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR:
548 return FACTOR_ONE_MINUS_SRC1_COLOR;
549 case VK_BLEND_FACTOR_SRC1_ALPHA:
550 return FACTOR_SRC1_ALPHA;
551 case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA:
552 return FACTOR_ONE_MINUS_SRC1_ALPHA;
553 default:
554 unreachable("invalid VkBlendFactor");
555 return FACTOR_ZERO;
556 }
557 }
558
559 static enum a3xx_rb_blend_opcode
560 tu6_blend_op(VkBlendOp op)
561 {
562 switch (op) {
563 case VK_BLEND_OP_ADD:
564 return BLEND_DST_PLUS_SRC;
565 case VK_BLEND_OP_SUBTRACT:
566 return BLEND_SRC_MINUS_DST;
567 case VK_BLEND_OP_REVERSE_SUBTRACT:
568 return BLEND_DST_MINUS_SRC;
569 case VK_BLEND_OP_MIN:
570 return BLEND_MIN_DST_SRC;
571 case VK_BLEND_OP_MAX:
572 return BLEND_MAX_DST_SRC;
573 default:
574 unreachable("invalid VkBlendOp");
575 return BLEND_DST_PLUS_SRC;
576 }
577 }
578
579 static uint32_t
580 emit_xs_config(const struct ir3_shader_variant *sh)
581 {
582 if (sh->instrlen) {
583 return A6XX_SP_VS_CONFIG_ENABLED |
584 COND(sh->bindless_tex, A6XX_SP_VS_CONFIG_BINDLESS_TEX) |
585 COND(sh->bindless_samp, A6XX_SP_VS_CONFIG_BINDLESS_SAMP) |
586 COND(sh->bindless_ibo, A6XX_SP_VS_CONFIG_BINDLESS_IBO) |
587 COND(sh->bindless_ubo, A6XX_SP_VS_CONFIG_BINDLESS_UBO);
588 } else {
589 return 0;
590 }
591 }
592
593 static void
594 tu6_emit_vs_config(struct tu_cs *cs, struct tu_shader *shader,
595 const struct ir3_shader_variant *vs)
596 {
597 uint32_t sp_vs_ctrl =
598 A6XX_SP_VS_CTRL_REG0_THREADSIZE(FOUR_QUADS) |
599 A6XX_SP_VS_CTRL_REG0_FULLREGFOOTPRINT(vs->info.max_reg + 1) |
600 A6XX_SP_VS_CTRL_REG0_MERGEDREGS |
601 A6XX_SP_VS_CTRL_REG0_BRANCHSTACK(vs->branchstack);
602 if (vs->need_pixlod)
603 sp_vs_ctrl |= A6XX_SP_VS_CTRL_REG0_PIXLODENABLE;
604 if (vs->need_fine_derivatives)
605 sp_vs_ctrl |= A6XX_SP_VS_CTRL_REG0_DIFF_FINE;
606
607 tu_cs_emit_pkt4(cs, REG_A6XX_SP_VS_CTRL_REG0, 1);
608 tu_cs_emit(cs, sp_vs_ctrl);
609
610 tu_cs_emit_pkt4(cs, REG_A6XX_SP_VS_CONFIG, 2);
611 tu_cs_emit(cs, emit_xs_config(vs));
612 tu_cs_emit(cs, vs->instrlen);
613
614 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_VS_CNTL, 1);
615 tu_cs_emit(cs, A6XX_HLSQ_VS_CNTL_CONSTLEN(align(vs->constlen, 4)) |
616 A6XX_HLSQ_VS_CNTL_ENABLED);
617 }
618
619 static void
620 tu6_emit_hs_config(struct tu_cs *cs, struct tu_shader *shader,
621 const struct ir3_shader_variant *hs)
622 {
623 tu_cs_emit_pkt4(cs, REG_A6XX_SP_HS_UNKNOWN_A831, 1);
624 tu_cs_emit(cs, 0);
625
626 tu_cs_emit_pkt4(cs, REG_A6XX_SP_HS_CONFIG, 2);
627 tu_cs_emit(cs, emit_xs_config(hs));
628 tu_cs_emit(cs, hs->instrlen);
629
630 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_HS_CNTL, 1);
631 tu_cs_emit(cs, A6XX_HLSQ_HS_CNTL_CONSTLEN(align(hs->constlen, 4)));
632 }
633
634 static void
635 tu6_emit_ds_config(struct tu_cs *cs, struct tu_shader *shader,
636 const struct ir3_shader_variant *ds)
637 {
638 tu_cs_emit_pkt4(cs, REG_A6XX_SP_DS_CONFIG, 2);
639 tu_cs_emit(cs, emit_xs_config(ds));
640 tu_cs_emit(cs, ds->instrlen);
641
642 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_DS_CNTL, 1);
643 tu_cs_emit(cs, A6XX_HLSQ_DS_CNTL_CONSTLEN(align(ds->constlen, 4)));
644 }
645
646 static void
647 tu6_emit_gs_config(struct tu_cs *cs, struct tu_shader *shader,
648 const struct ir3_shader_variant *gs)
649 {
650 bool has_gs = gs->type != MESA_SHADER_NONE;
651 tu_cs_emit_pkt4(cs, REG_A6XX_SP_GS_UNKNOWN_A871, 1);
652 tu_cs_emit(cs, 0);
653
654 tu_cs_emit_pkt4(cs, REG_A6XX_SP_GS_CONFIG, 2);
655 tu_cs_emit(cs, emit_xs_config(gs));
656 tu_cs_emit(cs, gs->instrlen);
657
658 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_GS_CNTL, 1);
659 tu_cs_emit(cs, COND(has_gs, A6XX_HLSQ_GS_CNTL_ENABLED) |
660 A6XX_HLSQ_GS_CNTL_CONSTLEN(align(gs->constlen, 4)));
661 }
662
663 static void
664 tu6_emit_fs_config(struct tu_cs *cs, struct tu_shader *shader,
665 const struct ir3_shader_variant *fs)
666 {
667 uint32_t sp_fs_ctrl =
668 A6XX_SP_FS_CTRL_REG0_THREADSIZE(FOUR_QUADS) | 0x1000000 |
669 A6XX_SP_FS_CTRL_REG0_FULLREGFOOTPRINT(fs->info.max_reg + 1) |
670 A6XX_SP_FS_CTRL_REG0_MERGEDREGS |
671 A6XX_SP_FS_CTRL_REG0_BRANCHSTACK(fs->branchstack);
672 if (fs->total_in > 0)
673 sp_fs_ctrl |= A6XX_SP_FS_CTRL_REG0_VARYING;
674 if (fs->need_pixlod)
675 sp_fs_ctrl |= A6XX_SP_FS_CTRL_REG0_PIXLODENABLE;
676 if (fs->need_fine_derivatives)
677 sp_fs_ctrl |= A6XX_SP_FS_CTRL_REG0_DIFF_FINE;
678
679 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_CTRL_REG0, 1);
680 tu_cs_emit(cs, sp_fs_ctrl);
681
682 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_CONFIG, 2);
683 tu_cs_emit(cs, emit_xs_config(fs));
684 tu_cs_emit(cs, fs->instrlen);
685
686 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_FS_CNTL, 1);
687 tu_cs_emit(cs, A6XX_HLSQ_FS_CNTL_CONSTLEN(align(fs->constlen, 4)) |
688 A6XX_HLSQ_FS_CNTL_ENABLED);
689 }
690
691 static void
692 tu6_emit_cs_config(struct tu_cs *cs, const struct tu_shader *shader,
693 const struct ir3_shader_variant *v)
694 {
695 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_UPDATE_CNTL, 1);
696 tu_cs_emit(cs, 0xff);
697
698 unsigned constlen = align(v->constlen, 4);
699 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_CS_CNTL, 1);
700 tu_cs_emit(cs, A6XX_HLSQ_CS_CNTL_CONSTLEN(constlen) |
701 A6XX_HLSQ_CS_CNTL_ENABLED);
702
703 tu_cs_emit_pkt4(cs, REG_A6XX_SP_CS_CONFIG, 2);
704 tu_cs_emit(cs, emit_xs_config(v));
705 tu_cs_emit(cs, v->instrlen);
706
707 tu_cs_emit_pkt4(cs, REG_A6XX_SP_CS_CTRL_REG0, 1);
708 tu_cs_emit(cs, A6XX_SP_CS_CTRL_REG0_THREADSIZE(FOUR_QUADS) |
709 A6XX_SP_CS_CTRL_REG0_FULLREGFOOTPRINT(v->info.max_reg + 1) |
710 A6XX_SP_CS_CTRL_REG0_MERGEDREGS |
711 A6XX_SP_CS_CTRL_REG0_BRANCHSTACK(v->branchstack) |
712 COND(v->need_pixlod, A6XX_SP_CS_CTRL_REG0_PIXLODENABLE) |
713 COND(v->need_fine_derivatives, A6XX_SP_CS_CTRL_REG0_DIFF_FINE));
714
715 tu_cs_emit_pkt4(cs, REG_A6XX_SP_CS_UNKNOWN_A9B1, 1);
716 tu_cs_emit(cs, 0x41);
717
718 uint32_t local_invocation_id =
719 ir3_find_sysval_regid(v, SYSTEM_VALUE_LOCAL_INVOCATION_ID);
720 uint32_t work_group_id =
721 ir3_find_sysval_regid(v, SYSTEM_VALUE_WORK_GROUP_ID);
722
723 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_CS_CNTL_0, 2);
724 tu_cs_emit(cs,
725 A6XX_HLSQ_CS_CNTL_0_WGIDCONSTID(work_group_id) |
726 A6XX_HLSQ_CS_CNTL_0_UNK0(regid(63, 0)) |
727 A6XX_HLSQ_CS_CNTL_0_UNK1(regid(63, 0)) |
728 A6XX_HLSQ_CS_CNTL_0_LOCALIDREGID(local_invocation_id));
729 tu_cs_emit(cs, 0x2fc); /* HLSQ_CS_UNKNOWN_B998 */
730 }
731
732 static void
733 tu6_emit_vs_system_values(struct tu_cs *cs,
734 const struct ir3_shader_variant *vs,
735 const struct ir3_shader_variant *gs)
736 {
737 const uint32_t vertexid_regid =
738 ir3_find_sysval_regid(vs, SYSTEM_VALUE_VERTEX_ID);
739 const uint32_t instanceid_regid =
740 ir3_find_sysval_regid(vs, SYSTEM_VALUE_INSTANCE_ID);
741 const uint32_t primitiveid_regid = gs->type != MESA_SHADER_NONE ?
742 ir3_find_sysval_regid(gs, SYSTEM_VALUE_PRIMITIVE_ID) :
743 regid(63, 0);
744 const uint32_t gsheader_regid = gs->type != MESA_SHADER_NONE ?
745 ir3_find_sysval_regid(gs, SYSTEM_VALUE_GS_HEADER_IR3) :
746 regid(63, 0);
747
748 tu_cs_emit_pkt4(cs, REG_A6XX_VFD_CONTROL_1, 6);
749 tu_cs_emit(cs, A6XX_VFD_CONTROL_1_REGID4VTX(vertexid_regid) |
750 A6XX_VFD_CONTROL_1_REGID4INST(instanceid_regid) |
751 A6XX_VFD_CONTROL_1_REGID4PRIMID(primitiveid_regid) |
752 0xfc000000);
753 tu_cs_emit(cs, 0x0000fcfc); /* VFD_CONTROL_2 */
754 tu_cs_emit(cs, 0xfcfcfcfc); /* VFD_CONTROL_3 */
755 tu_cs_emit(cs, 0x000000fc); /* VFD_CONTROL_4 */
756 tu_cs_emit(cs, A6XX_VFD_CONTROL_5_REGID_GSHEADER(gsheader_regid) |
757 0xfc00); /* VFD_CONTROL_5 */
758 tu_cs_emit(cs, 0x00000000); /* VFD_CONTROL_6 */
759 }
760
761 /* Add any missing varyings needed for stream-out. Otherwise varyings not
762 * used by fragment shader will be stripped out.
763 */
764 static void
765 tu6_link_streamout(struct ir3_shader_linkage *l,
766 const struct ir3_shader_variant *v)
767 {
768 const struct ir3_stream_output_info *info = &v->shader->stream_output;
769
770 /*
771 * First, any stream-out varyings not already in linkage map (ie. also
772 * consumed by frag shader) need to be added:
773 */
774 for (unsigned i = 0; i < info->num_outputs; i++) {
775 const struct ir3_stream_output *out = &info->output[i];
776 unsigned compmask =
777 (1 << (out->num_components + out->start_component)) - 1;
778 unsigned k = out->register_index;
779 unsigned idx, nextloc = 0;
780
781 /* psize/pos need to be the last entries in linkage map, and will
782 * get added link_stream_out, so skip over them:
783 */
784 if (v->outputs[k].slot == VARYING_SLOT_PSIZ ||
785 v->outputs[k].slot == VARYING_SLOT_POS)
786 continue;
787
788 for (idx = 0; idx < l->cnt; idx++) {
789 if (l->var[idx].regid == v->outputs[k].regid)
790 break;
791 nextloc = MAX2(nextloc, l->var[idx].loc + 4);
792 }
793
794 /* add if not already in linkage map: */
795 if (idx == l->cnt)
796 ir3_link_add(l, v->outputs[k].regid, compmask, nextloc);
797
798 /* expand component-mask if needed, ie streaming out all components
799 * but frag shader doesn't consume all components:
800 */
801 if (compmask & ~l->var[idx].compmask) {
802 l->var[idx].compmask |= compmask;
803 l->max_loc = MAX2(l->max_loc, l->var[idx].loc +
804 util_last_bit(l->var[idx].compmask));
805 }
806 }
807 }
808
809 static void
810 tu6_setup_streamout(const struct ir3_shader_variant *v,
811 struct ir3_shader_linkage *l, struct tu_streamout_state *tf)
812 {
813 const struct ir3_stream_output_info *info = &v->shader->stream_output;
814
815 memset(tf, 0, sizeof(*tf));
816
817 tf->prog_count = align(l->max_loc, 2) / 2;
818
819 debug_assert(tf->prog_count < ARRAY_SIZE(tf->prog));
820
821 /* set stride info to the streamout state */
822 for (unsigned i = 0; i < IR3_MAX_SO_BUFFERS; i++)
823 tf->stride[i] = info->stride[i];
824
825 for (unsigned i = 0; i < info->num_outputs; i++) {
826 const struct ir3_stream_output *out = &info->output[i];
827 unsigned k = out->register_index;
828 unsigned idx;
829
830 /* Skip it, if there's an unused reg in the middle of outputs. */
831 if (v->outputs[k].regid == INVALID_REG)
832 continue;
833
834 tf->ncomp[out->output_buffer] += out->num_components;
835
836 /* linkage map sorted by order frag shader wants things, so
837 * a bit less ideal here..
838 */
839 for (idx = 0; idx < l->cnt; idx++)
840 if (l->var[idx].regid == v->outputs[k].regid)
841 break;
842
843 debug_assert(idx < l->cnt);
844
845 for (unsigned j = 0; j < out->num_components; j++) {
846 unsigned c = j + out->start_component;
847 unsigned loc = l->var[idx].loc + c;
848 unsigned off = j + out->dst_offset; /* in dwords */
849
850 if (loc & 1) {
851 tf->prog[loc/2] |= A6XX_VPC_SO_PROG_B_EN |
852 A6XX_VPC_SO_PROG_B_BUF(out->output_buffer) |
853 A6XX_VPC_SO_PROG_B_OFF(off * 4);
854 } else {
855 tf->prog[loc/2] |= A6XX_VPC_SO_PROG_A_EN |
856 A6XX_VPC_SO_PROG_A_BUF(out->output_buffer) |
857 A6XX_VPC_SO_PROG_A_OFF(off * 4);
858 }
859 }
860 }
861
862 tf->vpc_so_buf_cntl = A6XX_VPC_SO_BUF_CNTL_ENABLE |
863 COND(tf->ncomp[0] > 0, A6XX_VPC_SO_BUF_CNTL_BUF0) |
864 COND(tf->ncomp[1] > 0, A6XX_VPC_SO_BUF_CNTL_BUF1) |
865 COND(tf->ncomp[2] > 0, A6XX_VPC_SO_BUF_CNTL_BUF2) |
866 COND(tf->ncomp[3] > 0, A6XX_VPC_SO_BUF_CNTL_BUF3);
867 }
868
869 static void
870 tu6_emit_const(struct tu_cs *cs, uint32_t opcode, uint32_t base,
871 enum a6xx_state_block block, uint32_t offset,
872 uint32_t size, uint32_t *dwords) {
873 assert(size % 4 == 0);
874
875 tu_cs_emit_pkt7(cs, opcode, 3 + size);
876 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(base) |
877 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
878 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
879 CP_LOAD_STATE6_0_STATE_BLOCK(block) |
880 CP_LOAD_STATE6_0_NUM_UNIT(size / 4));
881
882 tu_cs_emit(cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
883 tu_cs_emit(cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
884 dwords = (uint32_t *)&((uint8_t *)dwords)[offset];
885
886 tu_cs_emit_array(cs, dwords, size);
887 }
888
889 static void
890 tu6_emit_link_map(struct tu_cs *cs,
891 const struct ir3_shader_variant *producer,
892 const struct ir3_shader_variant *consumer) {
893 const struct ir3_const_state *const_state = &consumer->shader->const_state;
894 uint32_t base = const_state->offsets.primitive_map;
895 uint32_t patch_locs[MAX_VARYING] = { }, num_loc;
896 num_loc = ir3_link_geometry_stages(producer, consumer, patch_locs);
897 int size = DIV_ROUND_UP(num_loc, 4);
898
899 size = (MIN2(size + base, consumer->constlen) - base) * 4;
900
901 tu6_emit_const(cs, CP_LOAD_STATE6_GEOM, base, SB6_GS_SHADER, 0, size,
902 patch_locs);
903 }
904
905 static uint16_t
906 gl_primitive_to_tess(uint16_t primitive) {
907 switch (primitive) {
908 case GL_POINTS:
909 return TESS_POINTS;
910 case GL_LINE_STRIP:
911 return TESS_LINES;
912 case GL_TRIANGLE_STRIP:
913 return TESS_CW_TRIS;
914 default:
915 unreachable("");
916 }
917 }
918
919 static void
920 tu6_emit_vpc(struct tu_cs *cs,
921 const struct ir3_shader_variant *vs,
922 const struct ir3_shader_variant *gs,
923 const struct ir3_shader_variant *fs,
924 bool binning_pass,
925 struct tu_streamout_state *tf)
926 {
927 bool has_gs = gs->type != MESA_SHADER_NONE;
928 const struct ir3_shader_variant *last_shader = has_gs ? gs : vs;
929 struct ir3_shader_linkage linkage = { 0 };
930 ir3_link_shaders(&linkage, last_shader, fs);
931
932 if (last_shader->shader->stream_output.num_outputs)
933 tu6_link_streamout(&linkage, last_shader);
934
935 BITSET_DECLARE(vpc_var_enables, 128) = { 0 };
936 for (uint32_t i = 0; i < linkage.cnt; i++) {
937 const uint32_t comp_count = util_last_bit(linkage.var[i].compmask);
938 for (uint32_t j = 0; j < comp_count; j++)
939 BITSET_SET(vpc_var_enables, linkage.var[i].loc + j);
940 }
941
942 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_VAR_DISABLE(0), 4);
943 tu_cs_emit(cs, ~vpc_var_enables[0]);
944 tu_cs_emit(cs, ~vpc_var_enables[1]);
945 tu_cs_emit(cs, ~vpc_var_enables[2]);
946 tu_cs_emit(cs, ~vpc_var_enables[3]);
947
948 /* a6xx finds position/pointsize at the end */
949 const uint32_t position_regid =
950 ir3_find_output_regid(last_shader, VARYING_SLOT_POS);
951 const uint32_t pointsize_regid =
952 ir3_find_output_regid(last_shader, VARYING_SLOT_PSIZ);
953 const uint32_t layer_regid = has_gs ?
954 ir3_find_output_regid(gs, VARYING_SLOT_LAYER) : regid(63, 0);
955
956 uint32_t pointsize_loc = 0xff, position_loc = 0xff, layer_loc = 0xff;
957 if (layer_regid != regid(63, 0)) {
958 layer_loc = linkage.max_loc;
959 ir3_link_add(&linkage, layer_regid, 0x1, linkage.max_loc);
960 }
961 if (position_regid != regid(63, 0)) {
962 position_loc = linkage.max_loc;
963 ir3_link_add(&linkage, position_regid, 0xf, linkage.max_loc);
964 }
965 if (pointsize_regid != regid(63, 0)) {
966 pointsize_loc = linkage.max_loc;
967 ir3_link_add(&linkage, pointsize_regid, 0x1, linkage.max_loc);
968 }
969
970 if (last_shader->shader->stream_output.num_outputs)
971 tu6_setup_streamout(last_shader, &linkage, tf);
972
973 /* map outputs of the last shader to VPC */
974 assert(linkage.cnt <= 32);
975 const uint32_t sp_out_count = DIV_ROUND_UP(linkage.cnt, 2);
976 const uint32_t sp_vpc_dst_count = DIV_ROUND_UP(linkage.cnt, 4);
977 uint32_t sp_out[16];
978 uint32_t sp_vpc_dst[8];
979 for (uint32_t i = 0; i < linkage.cnt; i++) {
980 ((uint16_t *) sp_out)[i] =
981 A6XX_SP_VS_OUT_REG_A_REGID(linkage.var[i].regid) |
982 A6XX_SP_VS_OUT_REG_A_COMPMASK(linkage.var[i].compmask);
983 ((uint8_t *) sp_vpc_dst)[i] =
984 A6XX_SP_VS_VPC_DST_REG_OUTLOC0(linkage.var[i].loc);
985 }
986
987 if (has_gs)
988 tu_cs_emit_pkt4(cs, REG_A6XX_SP_GS_OUT_REG(0), sp_out_count);
989 else
990 tu_cs_emit_pkt4(cs, REG_A6XX_SP_VS_OUT_REG(0), sp_out_count);
991 tu_cs_emit_array(cs, sp_out, sp_out_count);
992
993 if (has_gs)
994 tu_cs_emit_pkt4(cs, REG_A6XX_SP_GS_VPC_DST_REG(0), sp_vpc_dst_count);
995 else
996 tu_cs_emit_pkt4(cs, REG_A6XX_SP_VS_VPC_DST_REG(0), sp_vpc_dst_count);
997 tu_cs_emit_array(cs, sp_vpc_dst, sp_vpc_dst_count);
998
999 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_CNTL_0, 1);
1000 tu_cs_emit(cs, A6XX_VPC_CNTL_0_NUMNONPOSVAR(fs->total_in) |
1001 (fs->total_in > 0 ? A6XX_VPC_CNTL_0_VARYING : 0) |
1002 0xff00ff00);
1003
1004 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_PACK, 1);
1005 tu_cs_emit(cs, A6XX_VPC_PACK_POSITIONLOC(position_loc) |
1006 A6XX_VPC_PACK_PSIZELOC(pointsize_loc) |
1007 A6XX_VPC_PACK_STRIDE_IN_VPC(linkage.max_loc));
1008
1009 if (has_gs) {
1010 tu_cs_emit_pkt4(cs, REG_A6XX_SP_GS_CTRL_REG0, 1);
1011 tu_cs_emit(cs, A6XX_SP_GS_CTRL_REG0_THREADSIZE(TWO_QUADS) |
1012 A6XX_SP_GS_CTRL_REG0_FULLREGFOOTPRINT(gs->info.max_reg + 1) |
1013 A6XX_SP_GS_CTRL_REG0_BRANCHSTACK(gs->branchstack) |
1014 COND(gs->need_pixlod, A6XX_SP_GS_CTRL_REG0_PIXLODENABLE));
1015
1016 tu6_emit_link_map(cs, vs, gs);
1017
1018 uint32_t primitive_regid =
1019 ir3_find_sysval_regid(gs, SYSTEM_VALUE_PRIMITIVE_ID);
1020 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_PACK_GS, 1);
1021 tu_cs_emit(cs, A6XX_VPC_PACK_GS_POSITIONLOC(position_loc) |
1022 A6XX_VPC_PACK_GS_PSIZELOC(pointsize_loc) |
1023 A6XX_VPC_PACK_GS_STRIDE_IN_VPC(linkage.max_loc));
1024
1025 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_UNKNOWN_9105, 1);
1026 tu_cs_emit(cs, A6XX_VPC_UNKNOWN_9105_LAYERLOC(layer_loc) | 0xff00);
1027
1028 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_UNKNOWN_809C, 1);
1029 tu_cs_emit(cs, CONDREG(layer_regid,
1030 A6XX_GRAS_UNKNOWN_809C_GS_WRITES_LAYER));
1031
1032 uint32_t flags_regid = ir3_find_output_regid(gs,
1033 VARYING_SLOT_GS_VERTEX_FLAGS_IR3);
1034
1035 tu_cs_emit_pkt4(cs, REG_A6XX_SP_PRIMITIVE_CNTL_GS, 1);
1036 tu_cs_emit(cs, A6XX_SP_PRIMITIVE_CNTL_GS_GSOUT(linkage.cnt) |
1037 A6XX_SP_PRIMITIVE_CNTL_GS_FLAGS_REGID(flags_regid));
1038
1039 tu_cs_emit_pkt4(cs, REG_A6XX_PC_PRIMITIVE_CNTL_2, 1);
1040 tu_cs_emit(cs, A6XX_PC_PRIMITIVE_CNTL_2_STRIDE_IN_VPC(linkage.max_loc) |
1041 CONDREG(pointsize_regid, A6XX_PC_PRIMITIVE_CNTL_2_PSIZE) |
1042 CONDREG(layer_regid, A6XX_PC_PRIMITIVE_CNTL_2_LAYER) |
1043 CONDREG(primitive_regid, A6XX_PC_PRIMITIVE_CNTL_2_PRIMITIVE_ID));
1044
1045 uint32_t vertices_out = gs->shader->nir->info.gs.vertices_out - 1;
1046 uint16_t output =
1047 gl_primitive_to_tess(gs->shader->nir->info.gs.output_primitive);
1048 uint32_t invocations = gs->shader->nir->info.gs.invocations - 1;
1049 tu_cs_emit_pkt4(cs, REG_A6XX_PC_PRIMITIVE_CNTL_5, 1);
1050 tu_cs_emit(cs,
1051 A6XX_PC_PRIMITIVE_CNTL_5_GS_VERTICES_OUT(vertices_out) |
1052 A6XX_PC_PRIMITIVE_CNTL_5_GS_OUTPUT(output) |
1053 A6XX_PC_PRIMITIVE_CNTL_5_GS_INVOCATIONS(invocations));
1054
1055 tu_cs_emit_pkt4(cs, REG_A6XX_PC_PRIMITIVE_CNTL_3, 1);
1056 tu_cs_emit(cs, 0);
1057
1058 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_UNKNOWN_8003, 1);
1059 tu_cs_emit(cs, 0);
1060
1061 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_UNKNOWN_9100, 1);
1062 tu_cs_emit(cs, 0xff);
1063
1064 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_UNKNOWN_9102, 1);
1065 tu_cs_emit(cs, 0xffff00);
1066
1067 /* Size of per-primitive alloction in ldlw memory in vec4s. */
1068 uint32_t vec4_size =
1069 gs->shader->nir->info.gs.vertices_in *
1070 DIV_ROUND_UP(vs->shader->output_size, 4);
1071 tu_cs_emit_pkt4(cs, REG_A6XX_PC_PRIMITIVE_CNTL_6, 1);
1072 tu_cs_emit(cs, A6XX_PC_PRIMITIVE_CNTL_6_STRIDE_IN_VPC(vec4_size));
1073
1074 tu_cs_emit_pkt4(cs, REG_A6XX_PC_UNKNOWN_9B07, 1);
1075 tu_cs_emit(cs, 0);
1076
1077 tu_cs_emit_pkt4(cs, REG_A6XX_SP_GS_UNKNOWN_A871, 1);
1078 tu_cs_emit(cs, vs->shader->output_size);
1079 }
1080
1081 tu_cs_emit_pkt4(cs, REG_A6XX_SP_PRIMITIVE_CNTL, 1);
1082 tu_cs_emit(cs, A6XX_SP_PRIMITIVE_CNTL_VSOUT(linkage.cnt));
1083
1084 tu_cs_emit_pkt4(cs, REG_A6XX_PC_PRIMITIVE_CNTL_1, 1);
1085 tu_cs_emit(cs, A6XX_PC_PRIMITIVE_CNTL_1_STRIDE_IN_VPC(linkage.max_loc) |
1086 (last_shader->writes_psize ? A6XX_PC_PRIMITIVE_CNTL_1_PSIZE : 0));
1087 }
1088
1089 static int
1090 tu6_vpc_varying_mode(const struct ir3_shader_variant *fs,
1091 uint32_t index,
1092 uint8_t *interp_mode,
1093 uint8_t *ps_repl_mode)
1094 {
1095 enum
1096 {
1097 INTERP_SMOOTH = 0,
1098 INTERP_FLAT = 1,
1099 INTERP_ZERO = 2,
1100 INTERP_ONE = 3,
1101 };
1102 enum
1103 {
1104 PS_REPL_NONE = 0,
1105 PS_REPL_S = 1,
1106 PS_REPL_T = 2,
1107 PS_REPL_ONE_MINUS_T = 3,
1108 };
1109
1110 const uint32_t compmask = fs->inputs[index].compmask;
1111
1112 /* NOTE: varyings are packed, so if compmask is 0xb then first, second, and
1113 * fourth component occupy three consecutive varying slots
1114 */
1115 int shift = 0;
1116 *interp_mode = 0;
1117 *ps_repl_mode = 0;
1118 if (fs->inputs[index].slot == VARYING_SLOT_PNTC) {
1119 if (compmask & 0x1) {
1120 *ps_repl_mode |= PS_REPL_S << shift;
1121 shift += 2;
1122 }
1123 if (compmask & 0x2) {
1124 *ps_repl_mode |= PS_REPL_T << shift;
1125 shift += 2;
1126 }
1127 if (compmask & 0x4) {
1128 *interp_mode |= INTERP_ZERO << shift;
1129 shift += 2;
1130 }
1131 if (compmask & 0x8) {
1132 *interp_mode |= INTERP_ONE << 6;
1133 shift += 2;
1134 }
1135 } else if ((fs->inputs[index].interpolate == INTERP_MODE_FLAT) ||
1136 fs->inputs[index].rasterflat) {
1137 for (int i = 0; i < 4; i++) {
1138 if (compmask & (1 << i)) {
1139 *interp_mode |= INTERP_FLAT << shift;
1140 shift += 2;
1141 }
1142 }
1143 }
1144
1145 return shift;
1146 }
1147
1148 static void
1149 tu6_emit_vpc_varying_modes(struct tu_cs *cs,
1150 const struct ir3_shader_variant *fs,
1151 bool binning_pass)
1152 {
1153 uint32_t interp_modes[8] = { 0 };
1154 uint32_t ps_repl_modes[8] = { 0 };
1155
1156 if (!binning_pass) {
1157 for (int i = -1;
1158 (i = ir3_next_varying(fs, i)) < (int) fs->inputs_count;) {
1159
1160 /* get the mode for input i */
1161 uint8_t interp_mode;
1162 uint8_t ps_repl_mode;
1163 const int bits =
1164 tu6_vpc_varying_mode(fs, i, &interp_mode, &ps_repl_mode);
1165
1166 /* OR the mode into the array */
1167 const uint32_t inloc = fs->inputs[i].inloc * 2;
1168 uint32_t n = inloc / 32;
1169 uint32_t shift = inloc % 32;
1170 interp_modes[n] |= interp_mode << shift;
1171 ps_repl_modes[n] |= ps_repl_mode << shift;
1172 if (shift + bits > 32) {
1173 n++;
1174 shift = 32 - shift;
1175
1176 interp_modes[n] |= interp_mode >> shift;
1177 ps_repl_modes[n] |= ps_repl_mode >> shift;
1178 }
1179 }
1180 }
1181
1182 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_VARYING_INTERP_MODE(0), 8);
1183 tu_cs_emit_array(cs, interp_modes, 8);
1184
1185 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_VARYING_PS_REPL_MODE(0), 8);
1186 tu_cs_emit_array(cs, ps_repl_modes, 8);
1187 }
1188
1189 static void
1190 tu6_emit_fs_inputs(struct tu_cs *cs, const struct ir3_shader_variant *fs)
1191 {
1192 uint32_t face_regid, coord_regid, zwcoord_regid, samp_id_regid;
1193 uint32_t ij_pix_regid, ij_samp_regid, ij_cent_regid, ij_size_regid;
1194 uint32_t smask_in_regid;
1195
1196 bool sample_shading = fs->per_samp; /* TODO | key->sample_shading; */
1197 bool enable_varyings = fs->total_in > 0;
1198
1199 samp_id_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_SAMPLE_ID);
1200 smask_in_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_SAMPLE_MASK_IN);
1201 face_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_FRONT_FACE);
1202 coord_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_FRAG_COORD);
1203 zwcoord_regid = VALIDREG(coord_regid) ? coord_regid + 2 : regid(63, 0);
1204 ij_pix_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL);
1205 ij_samp_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_BARYCENTRIC_PERSP_SAMPLE);
1206 ij_cent_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_BARYCENTRIC_PERSP_CENTROID);
1207 ij_size_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_BARYCENTRIC_PERSP_SIZE);
1208
1209 if (fs->num_sampler_prefetch > 0) {
1210 assert(VALIDREG(ij_pix_regid));
1211 /* also, it seems like ij_pix is *required* to be r0.x */
1212 assert(ij_pix_regid == regid(0, 0));
1213 }
1214
1215 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_PREFETCH_CNTL, 1 + fs->num_sampler_prefetch);
1216 tu_cs_emit(cs, A6XX_SP_FS_PREFETCH_CNTL_COUNT(fs->num_sampler_prefetch) |
1217 A6XX_SP_FS_PREFETCH_CNTL_UNK4(regid(63, 0)) |
1218 0x7000); // XXX);
1219 for (int i = 0; i < fs->num_sampler_prefetch; i++) {
1220 const struct ir3_sampler_prefetch *prefetch = &fs->sampler_prefetch[i];
1221 tu_cs_emit(cs, A6XX_SP_FS_PREFETCH_CMD_SRC(prefetch->src) |
1222 A6XX_SP_FS_PREFETCH_CMD_SAMP_ID(prefetch->samp_id) |
1223 A6XX_SP_FS_PREFETCH_CMD_TEX_ID(prefetch->tex_id) |
1224 A6XX_SP_FS_PREFETCH_CMD_DST(prefetch->dst) |
1225 A6XX_SP_FS_PREFETCH_CMD_WRMASK(prefetch->wrmask) |
1226 COND(prefetch->half_precision, A6XX_SP_FS_PREFETCH_CMD_HALF) |
1227 A6XX_SP_FS_PREFETCH_CMD_CMD(prefetch->cmd));
1228 }
1229
1230 if (fs->num_sampler_prefetch > 0) {
1231 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_BINDLESS_PREFETCH_CMD(0), fs->num_sampler_prefetch);
1232 for (int i = 0; i < fs->num_sampler_prefetch; i++) {
1233 const struct ir3_sampler_prefetch *prefetch = &fs->sampler_prefetch[i];
1234 tu_cs_emit(cs,
1235 A6XX_SP_FS_BINDLESS_PREFETCH_CMD_SAMP_ID(prefetch->samp_bindless_id) |
1236 A6XX_SP_FS_BINDLESS_PREFETCH_CMD_TEX_ID(prefetch->tex_bindless_id));
1237 }
1238 }
1239
1240 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_CONTROL_1_REG, 5);
1241 tu_cs_emit(cs, 0x7);
1242 tu_cs_emit(cs, A6XX_HLSQ_CONTROL_2_REG_FACEREGID(face_regid) |
1243 A6XX_HLSQ_CONTROL_2_REG_SAMPLEID(samp_id_regid) |
1244 A6XX_HLSQ_CONTROL_2_REG_SAMPLEMASK(smask_in_regid) |
1245 A6XX_HLSQ_CONTROL_2_REG_SIZE(ij_size_regid));
1246 tu_cs_emit(cs, A6XX_HLSQ_CONTROL_3_REG_BARY_IJ_PIXEL(ij_pix_regid) |
1247 A6XX_HLSQ_CONTROL_3_REG_BARY_IJ_CENTROID(ij_cent_regid) |
1248 0xfc00fc00);
1249 tu_cs_emit(cs, A6XX_HLSQ_CONTROL_4_REG_XYCOORDREGID(coord_regid) |
1250 A6XX_HLSQ_CONTROL_4_REG_ZWCOORDREGID(zwcoord_regid) |
1251 A6XX_HLSQ_CONTROL_4_REG_BARY_IJ_PIXEL_PERSAMP(ij_samp_regid) |
1252 0x0000fc00);
1253 tu_cs_emit(cs, 0xfc);
1254
1255 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_UNKNOWN_B980, 1);
1256 tu_cs_emit(cs, enable_varyings ? 3 : 1);
1257
1258 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_UPDATE_CNTL, 1);
1259 tu_cs_emit(cs, 0xff); /* XXX */
1260
1261 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_CNTL, 1);
1262 tu_cs_emit(cs,
1263 CONDREG(ij_pix_regid, A6XX_GRAS_CNTL_VARYING) |
1264 CONDREG(ij_cent_regid, A6XX_GRAS_CNTL_CENTROID) |
1265 CONDREG(ij_samp_regid, A6XX_GRAS_CNTL_PERSAMP_VARYING) |
1266 COND(VALIDREG(ij_size_regid) && !sample_shading, A6XX_GRAS_CNTL_SIZE) |
1267 COND(VALIDREG(ij_size_regid) && sample_shading, A6XX_GRAS_CNTL_SIZE_PERSAMP) |
1268 COND(fs->frag_coord,
1269 A6XX_GRAS_CNTL_SIZE |
1270 A6XX_GRAS_CNTL_XCOORD |
1271 A6XX_GRAS_CNTL_YCOORD |
1272 A6XX_GRAS_CNTL_ZCOORD |
1273 A6XX_GRAS_CNTL_WCOORD) |
1274 COND(fs->frag_face, A6XX_GRAS_CNTL_SIZE));
1275
1276 tu_cs_emit_pkt4(cs, REG_A6XX_RB_RENDER_CONTROL0, 2);
1277 tu_cs_emit(cs,
1278 CONDREG(ij_pix_regid, A6XX_RB_RENDER_CONTROL0_VARYING) |
1279 CONDREG(ij_cent_regid, A6XX_RB_RENDER_CONTROL0_CENTROID) |
1280 CONDREG(ij_samp_regid, A6XX_RB_RENDER_CONTROL0_PERSAMP_VARYING) |
1281 COND(enable_varyings, A6XX_RB_RENDER_CONTROL0_UNK10) |
1282 COND(VALIDREG(ij_size_regid) && !sample_shading, A6XX_RB_RENDER_CONTROL0_SIZE) |
1283 COND(VALIDREG(ij_size_regid) && sample_shading, A6XX_RB_RENDER_CONTROL0_SIZE_PERSAMP) |
1284 COND(fs->frag_coord,
1285 A6XX_RB_RENDER_CONTROL0_SIZE |
1286 A6XX_RB_RENDER_CONTROL0_XCOORD |
1287 A6XX_RB_RENDER_CONTROL0_YCOORD |
1288 A6XX_RB_RENDER_CONTROL0_ZCOORD |
1289 A6XX_RB_RENDER_CONTROL0_WCOORD) |
1290 COND(fs->frag_face, A6XX_RB_RENDER_CONTROL0_SIZE));
1291 tu_cs_emit(cs,
1292 CONDREG(smask_in_regid, A6XX_RB_RENDER_CONTROL1_SAMPLEMASK) |
1293 CONDREG(samp_id_regid, A6XX_RB_RENDER_CONTROL1_SAMPLEID) |
1294 CONDREG(ij_size_regid, A6XX_RB_RENDER_CONTROL1_SIZE) |
1295 COND(fs->frag_face, A6XX_RB_RENDER_CONTROL1_FACENESS));
1296
1297 tu_cs_emit_pkt4(cs, REG_A6XX_RB_SAMPLE_CNTL, 1);
1298 tu_cs_emit(cs, COND(sample_shading, A6XX_RB_SAMPLE_CNTL_PER_SAMP_MODE));
1299
1300 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_UNKNOWN_8101, 1);
1301 tu_cs_emit(cs, COND(sample_shading, 0x6)); // XXX
1302
1303 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SAMPLE_CNTL, 1);
1304 tu_cs_emit(cs, COND(sample_shading, A6XX_GRAS_SAMPLE_CNTL_PER_SAMP_MODE));
1305 }
1306
1307 static void
1308 tu6_emit_fs_outputs(struct tu_cs *cs,
1309 const struct ir3_shader_variant *fs,
1310 uint32_t mrt_count)
1311 {
1312 uint32_t smask_regid, posz_regid;
1313
1314 posz_regid = ir3_find_output_regid(fs, FRAG_RESULT_DEPTH);
1315 smask_regid = ir3_find_output_regid(fs, FRAG_RESULT_SAMPLE_MASK);
1316
1317 uint32_t fragdata_regid[8];
1318 if (fs->color0_mrt) {
1319 fragdata_regid[0] = ir3_find_output_regid(fs, FRAG_RESULT_COLOR);
1320 for (uint32_t i = 1; i < ARRAY_SIZE(fragdata_regid); i++)
1321 fragdata_regid[i] = fragdata_regid[0];
1322 } else {
1323 for (uint32_t i = 0; i < ARRAY_SIZE(fragdata_regid); i++)
1324 fragdata_regid[i] = ir3_find_output_regid(fs, FRAG_RESULT_DATA0 + i);
1325 }
1326
1327 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_OUTPUT_CNTL0, 2);
1328 tu_cs_emit(cs, A6XX_SP_FS_OUTPUT_CNTL0_DEPTH_REGID(posz_regid) |
1329 A6XX_SP_FS_OUTPUT_CNTL0_SAMPMASK_REGID(smask_regid) |
1330 0xfc000000);
1331 tu_cs_emit(cs, A6XX_SP_FS_OUTPUT_CNTL1_MRT(mrt_count));
1332
1333 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_OUTPUT_REG(0), 8);
1334 for (uint32_t i = 0; i < ARRAY_SIZE(fragdata_regid); i++) {
1335 // TODO we could have a mix of half and full precision outputs,
1336 // we really need to figure out half-precision from IR3_REG_HALF
1337 tu_cs_emit(cs, A6XX_SP_FS_OUTPUT_REG_REGID(fragdata_regid[i]) |
1338 (false ? A6XX_SP_FS_OUTPUT_REG_HALF_PRECISION : 0));
1339 }
1340
1341 tu_cs_emit_pkt4(cs, REG_A6XX_RB_FS_OUTPUT_CNTL0, 2);
1342 tu_cs_emit(cs, COND(fs->writes_pos, A6XX_RB_FS_OUTPUT_CNTL0_FRAG_WRITES_Z) |
1343 COND(fs->writes_smask, A6XX_RB_FS_OUTPUT_CNTL0_FRAG_WRITES_SAMPMASK));
1344 tu_cs_emit(cs, A6XX_RB_FS_OUTPUT_CNTL1_MRT(mrt_count));
1345
1346 uint32_t gras_su_depth_plane_cntl = 0;
1347 uint32_t rb_depth_plane_cntl = 0;
1348 if (fs->no_earlyz || fs->writes_pos) {
1349 gras_su_depth_plane_cntl |= A6XX_GRAS_SU_DEPTH_PLANE_CNTL_FRAG_WRITES_Z;
1350 rb_depth_plane_cntl |= A6XX_RB_DEPTH_PLANE_CNTL_FRAG_WRITES_Z;
1351 }
1352
1353 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_DEPTH_PLANE_CNTL, 1);
1354 tu_cs_emit(cs, gras_su_depth_plane_cntl);
1355
1356 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_PLANE_CNTL, 1);
1357 tu_cs_emit(cs, rb_depth_plane_cntl);
1358 }
1359
1360 static void
1361 tu6_emit_shader_object(struct tu_cs *cs,
1362 gl_shader_stage stage,
1363 const struct ir3_shader_variant *variant,
1364 const struct tu_bo *binary_bo,
1365 uint32_t binary_offset)
1366 {
1367 uint16_t reg;
1368 uint8_t opcode;
1369 enum a6xx_state_block sb;
1370 switch (stage) {
1371 case MESA_SHADER_VERTEX:
1372 reg = REG_A6XX_SP_VS_OBJ_START_LO;
1373 opcode = CP_LOAD_STATE6_GEOM;
1374 sb = SB6_VS_SHADER;
1375 break;
1376 case MESA_SHADER_TESS_CTRL:
1377 reg = REG_A6XX_SP_HS_OBJ_START_LO;
1378 opcode = CP_LOAD_STATE6_GEOM;
1379 sb = SB6_HS_SHADER;
1380 break;
1381 case MESA_SHADER_TESS_EVAL:
1382 reg = REG_A6XX_SP_DS_OBJ_START_LO;
1383 opcode = CP_LOAD_STATE6_GEOM;
1384 sb = SB6_DS_SHADER;
1385 break;
1386 case MESA_SHADER_GEOMETRY:
1387 reg = REG_A6XX_SP_GS_OBJ_START_LO;
1388 opcode = CP_LOAD_STATE6_GEOM;
1389 sb = SB6_GS_SHADER;
1390 break;
1391 case MESA_SHADER_FRAGMENT:
1392 reg = REG_A6XX_SP_FS_OBJ_START_LO;
1393 opcode = CP_LOAD_STATE6_FRAG;
1394 sb = SB6_FS_SHADER;
1395 break;
1396 case MESA_SHADER_COMPUTE:
1397 reg = REG_A6XX_SP_CS_OBJ_START_LO;
1398 opcode = CP_LOAD_STATE6_FRAG;
1399 sb = SB6_CS_SHADER;
1400 break;
1401 default:
1402 unreachable("invalid gl_shader_stage");
1403 opcode = CP_LOAD_STATE6_GEOM;
1404 sb = SB6_VS_SHADER;
1405 break;
1406 }
1407
1408 if (!variant->instrlen) {
1409 tu_cs_emit_pkt4(cs, reg, 2);
1410 tu_cs_emit_qw(cs, 0);
1411 return;
1412 }
1413
1414 assert(variant->type == stage);
1415
1416 const uint64_t binary_iova = binary_bo->iova + binary_offset;
1417 assert((binary_iova & 0xf) == 0);
1418 /* note: it looks like HW might try to read a few instructions beyond the instrlen size
1419 * of the shader. this could be a potential source of problems at some point
1420 * possibly this doesn't happen if shader iova is aligned enough (to 4k for example)
1421 */
1422
1423 tu_cs_emit_pkt4(cs, reg, 2);
1424 tu_cs_emit_qw(cs, binary_iova);
1425
1426 /* always indirect */
1427 const bool indirect = true;
1428 if (indirect) {
1429 tu_cs_emit_pkt7(cs, opcode, 3);
1430 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(0) |
1431 CP_LOAD_STATE6_0_STATE_TYPE(ST6_SHADER) |
1432 CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
1433 CP_LOAD_STATE6_0_STATE_BLOCK(sb) |
1434 CP_LOAD_STATE6_0_NUM_UNIT(variant->instrlen));
1435 tu_cs_emit_qw(cs, binary_iova);
1436 } else {
1437 const void *binary = binary_bo->map + binary_offset;
1438
1439 tu_cs_emit_pkt7(cs, opcode, 3 + variant->info.sizedwords);
1440 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(0) |
1441 CP_LOAD_STATE6_0_STATE_TYPE(ST6_SHADER) |
1442 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
1443 CP_LOAD_STATE6_0_STATE_BLOCK(sb) |
1444 CP_LOAD_STATE6_0_NUM_UNIT(variant->instrlen));
1445 tu_cs_emit_qw(cs, 0);
1446 tu_cs_emit_array(cs, binary, variant->info.sizedwords);
1447 }
1448 }
1449
1450 static void
1451 tu6_emit_immediates(struct tu_cs *cs, const struct ir3_shader_variant *v,
1452 uint32_t opcode, enum a6xx_state_block block)
1453 {
1454 /* dummy variant */
1455 if (!v->shader)
1456 return;
1457
1458 const struct ir3_const_state *const_state = &v->shader->const_state;
1459 uint32_t base = const_state->offsets.immediate;
1460 int size = const_state->immediates_count;
1461
1462 /* truncate size to avoid writing constants that shader
1463 * does not use:
1464 */
1465 size = MIN2(size + base, v->constlen) - base;
1466
1467 if (size <= 0)
1468 return;
1469
1470 tu_cs_emit_pkt7(cs, opcode, 3 + size * 4);
1471 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(base) |
1472 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
1473 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
1474 CP_LOAD_STATE6_0_STATE_BLOCK(block) |
1475 CP_LOAD_STATE6_0_NUM_UNIT(size));
1476 tu_cs_emit(cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
1477 tu_cs_emit(cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
1478
1479 for (unsigned i = 0; i < size; i++) {
1480 tu_cs_emit(cs, const_state->immediates[i].val[0]);
1481 tu_cs_emit(cs, const_state->immediates[i].val[1]);
1482 tu_cs_emit(cs, const_state->immediates[i].val[2]);
1483 tu_cs_emit(cs, const_state->immediates[i].val[3]);
1484 }
1485 }
1486
1487 static void
1488 tu6_emit_geometry_consts(struct tu_cs *cs,
1489 const struct ir3_shader_variant *vs,
1490 const struct ir3_shader_variant *gs) {
1491 unsigned num_vertices = gs->shader->nir->info.gs.vertices_in;
1492
1493 uint32_t params[4] = {
1494 vs->shader->output_size * num_vertices * 4, /* primitive stride */
1495 vs->shader->output_size * 4, /* vertex stride */
1496 0,
1497 0,
1498 };
1499 uint32_t vs_base = vs->shader->const_state.offsets.primitive_param;
1500 tu6_emit_const(cs, CP_LOAD_STATE6_GEOM, vs_base, SB6_VS_SHADER, 0,
1501 ARRAY_SIZE(params), params);
1502
1503 uint32_t gs_base = gs->shader->const_state.offsets.primitive_param;
1504 tu6_emit_const(cs, CP_LOAD_STATE6_GEOM, gs_base, SB6_GS_SHADER, 0,
1505 ARRAY_SIZE(params), params);
1506 }
1507
1508 static void
1509 tu6_emit_program(struct tu_cs *cs,
1510 const struct tu_pipeline_builder *builder,
1511 const struct tu_bo *binary_bo,
1512 bool binning_pass,
1513 struct tu_streamout_state *tf)
1514 {
1515 static const struct ir3_shader_variant dummy_variant = {
1516 .type = MESA_SHADER_NONE
1517 };
1518 assert(builder->shaders[MESA_SHADER_VERTEX]);
1519 const struct ir3_shader_variant *vs =
1520 &builder->shaders[MESA_SHADER_VERTEX]->variants[0];
1521 const struct ir3_shader_variant *hs =
1522 builder->shaders[MESA_SHADER_TESS_CTRL]
1523 ? &builder->shaders[MESA_SHADER_TESS_CTRL]->variants[0]
1524 : &dummy_variant;
1525 const struct ir3_shader_variant *ds =
1526 builder->shaders[MESA_SHADER_TESS_EVAL]
1527 ? &builder->shaders[MESA_SHADER_TESS_EVAL]->variants[0]
1528 : &dummy_variant;
1529 const struct ir3_shader_variant *gs =
1530 builder->shaders[MESA_SHADER_GEOMETRY]
1531 ? &builder->shaders[MESA_SHADER_GEOMETRY]->variants[0]
1532 : &dummy_variant;
1533 const struct ir3_shader_variant *fs =
1534 builder->shaders[MESA_SHADER_FRAGMENT]
1535 ? &builder->shaders[MESA_SHADER_FRAGMENT]->variants[0]
1536 : &dummy_variant;
1537 bool has_gs = gs->type != MESA_SHADER_NONE;
1538
1539 if (binning_pass) {
1540 /* if we have streamout, use full VS in binning pass, as the
1541 * binning pass VS will have outputs on other than position/psize
1542 * stripped out:
1543 */
1544 if (vs->shader->stream_output.num_outputs == 0)
1545 vs = &builder->shaders[MESA_SHADER_VERTEX]->variants[1];
1546 fs = &dummy_variant;
1547 }
1548
1549 tu6_emit_vs_config(cs, builder->shaders[MESA_SHADER_VERTEX], vs);
1550 tu6_emit_hs_config(cs, builder->shaders[MESA_SHADER_TESS_CTRL], hs);
1551 tu6_emit_ds_config(cs, builder->shaders[MESA_SHADER_TESS_EVAL], ds);
1552 tu6_emit_gs_config(cs, builder->shaders[MESA_SHADER_GEOMETRY], gs);
1553 tu6_emit_fs_config(cs, builder->shaders[MESA_SHADER_FRAGMENT], fs);
1554
1555 tu6_emit_vs_system_values(cs, vs, gs);
1556 tu6_emit_vpc(cs, vs, gs, fs, binning_pass, tf);
1557 tu6_emit_vpc_varying_modes(cs, fs, binning_pass);
1558 tu6_emit_fs_inputs(cs, fs);
1559 tu6_emit_fs_outputs(cs, fs, builder->color_attachment_count);
1560
1561 tu6_emit_shader_object(cs, MESA_SHADER_VERTEX, vs, binary_bo,
1562 binning_pass ? builder->binning_vs_offset : builder->shader_offsets[MESA_SHADER_VERTEX]);
1563 if (has_gs)
1564 tu6_emit_shader_object(cs, MESA_SHADER_GEOMETRY, gs, binary_bo,
1565 builder->shader_offsets[MESA_SHADER_GEOMETRY]);
1566 tu6_emit_shader_object(cs, MESA_SHADER_FRAGMENT, fs, binary_bo,
1567 builder->shader_offsets[MESA_SHADER_FRAGMENT]);
1568
1569 tu6_emit_immediates(cs, vs, CP_LOAD_STATE6_GEOM, SB6_VS_SHADER);
1570 if (has_gs) {
1571 tu6_emit_immediates(cs, gs, CP_LOAD_STATE6_GEOM, SB6_GS_SHADER);
1572 tu6_emit_geometry_consts(cs, vs, gs);
1573 }
1574 if (!binning_pass)
1575 tu6_emit_immediates(cs, fs, CP_LOAD_STATE6_FRAG, SB6_FS_SHADER);
1576 }
1577
1578 static void
1579 tu6_emit_vertex_input(struct tu_cs *cs,
1580 const struct ir3_shader_variant *vs,
1581 const VkPipelineVertexInputStateCreateInfo *info,
1582 uint8_t bindings[MAX_VERTEX_ATTRIBS],
1583 uint32_t *count)
1584 {
1585 uint32_t vfd_fetch_idx = 0;
1586 uint32_t vfd_decode_idx = 0;
1587 uint32_t binding_instanced = 0; /* bitmask of instanced bindings */
1588
1589 for (uint32_t i = 0; i < info->vertexBindingDescriptionCount; i++) {
1590 const VkVertexInputBindingDescription *binding =
1591 &info->pVertexBindingDescriptions[i];
1592
1593 tu_cs_emit_regs(cs,
1594 A6XX_VFD_FETCH_STRIDE(vfd_fetch_idx, binding->stride));
1595
1596 if (binding->inputRate == VK_VERTEX_INPUT_RATE_INSTANCE)
1597 binding_instanced |= 1 << binding->binding;
1598
1599 bindings[vfd_fetch_idx] = binding->binding;
1600 vfd_fetch_idx++;
1601 }
1602
1603 /* TODO: emit all VFD_DECODE/VFD_DEST_CNTL in same (two) pkt4 */
1604
1605 for (uint32_t i = 0; i < info->vertexAttributeDescriptionCount; i++) {
1606 const VkVertexInputAttributeDescription *attr =
1607 &info->pVertexAttributeDescriptions[i];
1608 uint32_t binding_idx, input_idx;
1609
1610 for (binding_idx = 0; binding_idx < vfd_fetch_idx; binding_idx++) {
1611 if (bindings[binding_idx] == attr->binding)
1612 break;
1613 }
1614 assert(binding_idx < vfd_fetch_idx);
1615
1616 for (input_idx = 0; input_idx < vs->inputs_count; input_idx++) {
1617 if ((vs->inputs[input_idx].slot - VERT_ATTRIB_GENERIC0) == attr->location)
1618 break;
1619 }
1620
1621 /* attribute not used, skip it */
1622 if (input_idx == vs->inputs_count)
1623 continue;
1624
1625 const struct tu_native_format format = tu6_format_vtx(attr->format);
1626 tu_cs_emit_regs(cs,
1627 A6XX_VFD_DECODE_INSTR(vfd_decode_idx,
1628 .idx = binding_idx,
1629 .offset = attr->offset,
1630 .instanced = binding_instanced & (1 << attr->binding),
1631 .format = format.fmt,
1632 .swap = format.swap,
1633 .unk30 = 1,
1634 ._float = !vk_format_is_int(attr->format)),
1635 A6XX_VFD_DECODE_STEP_RATE(vfd_decode_idx, 1));
1636
1637 tu_cs_emit_regs(cs,
1638 A6XX_VFD_DEST_CNTL_INSTR(vfd_decode_idx,
1639 .writemask = vs->inputs[input_idx].compmask,
1640 .regid = vs->inputs[input_idx].regid));
1641
1642 vfd_decode_idx++;
1643 }
1644
1645 tu_cs_emit_regs(cs,
1646 A6XX_VFD_CONTROL_0(
1647 .fetch_cnt = vfd_fetch_idx,
1648 .decode_cnt = vfd_decode_idx));
1649
1650 *count = vfd_fetch_idx;
1651 }
1652
1653 static uint32_t
1654 tu6_guardband_adj(uint32_t v)
1655 {
1656 if (v > 256)
1657 return (uint32_t)(511.0 - 65.0 * (log2(v) - 8.0));
1658 else
1659 return 511;
1660 }
1661
1662 void
1663 tu6_emit_viewport(struct tu_cs *cs, const VkViewport *viewport)
1664 {
1665 float offsets[3];
1666 float scales[3];
1667 scales[0] = viewport->width / 2.0f;
1668 scales[1] = viewport->height / 2.0f;
1669 scales[2] = viewport->maxDepth - viewport->minDepth;
1670 offsets[0] = viewport->x + scales[0];
1671 offsets[1] = viewport->y + scales[1];
1672 offsets[2] = viewport->minDepth;
1673
1674 VkOffset2D min;
1675 VkOffset2D max;
1676 min.x = (int32_t) viewport->x;
1677 max.x = (int32_t) ceilf(viewport->x + viewport->width);
1678 if (viewport->height >= 0.0f) {
1679 min.y = (int32_t) viewport->y;
1680 max.y = (int32_t) ceilf(viewport->y + viewport->height);
1681 } else {
1682 min.y = (int32_t)(viewport->y + viewport->height);
1683 max.y = (int32_t) ceilf(viewport->y);
1684 }
1685 /* the spec allows viewport->height to be 0.0f */
1686 if (min.y == max.y)
1687 max.y++;
1688 assert(min.x >= 0 && min.x < max.x);
1689 assert(min.y >= 0 && min.y < max.y);
1690
1691 VkExtent2D guardband_adj;
1692 guardband_adj.width = tu6_guardband_adj(max.x - min.x);
1693 guardband_adj.height = tu6_guardband_adj(max.y - min.y);
1694
1695 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_CL_VPORT_XOFFSET_0, 6);
1696 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_XOFFSET_0(offsets[0]).value);
1697 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_XSCALE_0(scales[0]).value);
1698 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_YOFFSET_0(offsets[1]).value);
1699 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_YSCALE_0(scales[1]).value);
1700 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_ZOFFSET_0(offsets[2]).value);
1701 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_ZSCALE_0(scales[2]).value);
1702
1703 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0, 2);
1704 tu_cs_emit(cs, A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_X(min.x) |
1705 A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_Y(min.y));
1706 tu_cs_emit(cs, A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_X(max.x - 1) |
1707 A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_Y(max.y - 1));
1708
1709 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_CL_GUARDBAND_CLIP_ADJ, 1);
1710 tu_cs_emit(cs,
1711 A6XX_GRAS_CL_GUARDBAND_CLIP_ADJ_HORZ(guardband_adj.width) |
1712 A6XX_GRAS_CL_GUARDBAND_CLIP_ADJ_VERT(guardband_adj.height));
1713
1714 float z_clamp_min = MIN2(viewport->minDepth, viewport->maxDepth);
1715 float z_clamp_max = MAX2(viewport->minDepth, viewport->maxDepth);
1716
1717 tu_cs_emit_regs(cs,
1718 A6XX_GRAS_CL_Z_CLAMP_MIN(z_clamp_min),
1719 A6XX_GRAS_CL_Z_CLAMP_MAX(z_clamp_max));
1720
1721 tu_cs_emit_regs(cs,
1722 A6XX_RB_Z_CLAMP_MIN(z_clamp_min),
1723 A6XX_RB_Z_CLAMP_MAX(z_clamp_max));
1724 }
1725
1726 void
1727 tu6_emit_scissor(struct tu_cs *cs, const VkRect2D *scissor)
1728 {
1729 const VkOffset2D min = scissor->offset;
1730 const VkOffset2D max = {
1731 scissor->offset.x + scissor->extent.width,
1732 scissor->offset.y + scissor->extent.height,
1733 };
1734
1735 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0, 2);
1736 tu_cs_emit(cs, A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_X(min.x) |
1737 A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_Y(min.y));
1738 tu_cs_emit(cs, A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_X(max.x - 1) |
1739 A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_Y(max.y - 1));
1740 }
1741
1742 void
1743 tu6_emit_sample_locations(struct tu_cs *cs, const VkSampleLocationsInfoEXT *samp_loc)
1744 {
1745 if (!samp_loc) {
1746 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SAMPLE_CONFIG, 1);
1747 tu_cs_emit(cs, 0);
1748
1749 tu_cs_emit_pkt4(cs, REG_A6XX_RB_SAMPLE_CONFIG, 1);
1750 tu_cs_emit(cs, 0);
1751
1752 tu_cs_emit_pkt4(cs, REG_A6XX_SP_TP_SAMPLE_CONFIG, 1);
1753 tu_cs_emit(cs, 0);
1754 return;
1755 }
1756
1757 assert(samp_loc->sampleLocationsPerPixel == samp_loc->sampleLocationsCount);
1758 assert(samp_loc->sampleLocationGridSize.width == 1);
1759 assert(samp_loc->sampleLocationGridSize.height == 1);
1760
1761 uint32_t sample_config =
1762 A6XX_RB_SAMPLE_CONFIG_LOCATION_ENABLE;
1763 uint32_t sample_locations = 0;
1764 for (uint32_t i = 0; i < samp_loc->sampleLocationsCount; i++) {
1765 sample_locations |=
1766 (A6XX_RB_SAMPLE_LOCATION_0_SAMPLE_0_X(samp_loc->pSampleLocations[i].x) |
1767 A6XX_RB_SAMPLE_LOCATION_0_SAMPLE_0_Y(samp_loc->pSampleLocations[i].y)) << i*8;
1768 }
1769
1770 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SAMPLE_CONFIG, 2);
1771 tu_cs_emit(cs, sample_config);
1772 tu_cs_emit(cs, sample_locations);
1773
1774 tu_cs_emit_pkt4(cs, REG_A6XX_RB_SAMPLE_CONFIG, 2);
1775 tu_cs_emit(cs, sample_config);
1776 tu_cs_emit(cs, sample_locations);
1777
1778 tu_cs_emit_pkt4(cs, REG_A6XX_SP_TP_SAMPLE_CONFIG, 2);
1779 tu_cs_emit(cs, sample_config);
1780 tu_cs_emit(cs, sample_locations);
1781 }
1782
1783 static void
1784 tu6_emit_gras_unknowns(struct tu_cs *cs)
1785 {
1786 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_UNKNOWN_8001, 1);
1787 tu_cs_emit(cs, 0x0);
1788 }
1789
1790 static void
1791 tu6_emit_point_size(struct tu_cs *cs)
1792 {
1793 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_POINT_MINMAX, 2);
1794 tu_cs_emit(cs, A6XX_GRAS_SU_POINT_MINMAX_MIN(1.0f / 16.0f) |
1795 A6XX_GRAS_SU_POINT_MINMAX_MAX(4092.0f));
1796 tu_cs_emit(cs, A6XX_GRAS_SU_POINT_SIZE(1.0f).value);
1797 }
1798
1799 static uint32_t
1800 tu6_gras_su_cntl(const VkPipelineRasterizationStateCreateInfo *rast_info,
1801 VkSampleCountFlagBits samples)
1802 {
1803 uint32_t gras_su_cntl = 0;
1804
1805 if (rast_info->cullMode & VK_CULL_MODE_FRONT_BIT)
1806 gras_su_cntl |= A6XX_GRAS_SU_CNTL_CULL_FRONT;
1807 if (rast_info->cullMode & VK_CULL_MODE_BACK_BIT)
1808 gras_su_cntl |= A6XX_GRAS_SU_CNTL_CULL_BACK;
1809
1810 if (rast_info->frontFace == VK_FRONT_FACE_CLOCKWISE)
1811 gras_su_cntl |= A6XX_GRAS_SU_CNTL_FRONT_CW;
1812
1813 /* don't set A6XX_GRAS_SU_CNTL_LINEHALFWIDTH */
1814
1815 if (rast_info->depthBiasEnable)
1816 gras_su_cntl |= A6XX_GRAS_SU_CNTL_POLY_OFFSET;
1817
1818 if (samples > VK_SAMPLE_COUNT_1_BIT)
1819 gras_su_cntl |= A6XX_GRAS_SU_CNTL_MSAA_ENABLE;
1820
1821 return gras_su_cntl;
1822 }
1823
1824 void
1825 tu6_emit_gras_su_cntl(struct tu_cs *cs,
1826 uint32_t gras_su_cntl,
1827 float line_width)
1828 {
1829 assert((gras_su_cntl & A6XX_GRAS_SU_CNTL_LINEHALFWIDTH__MASK) == 0);
1830 gras_su_cntl |= A6XX_GRAS_SU_CNTL_LINEHALFWIDTH(line_width / 2.0f);
1831
1832 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_CNTL, 1);
1833 tu_cs_emit(cs, gras_su_cntl);
1834 }
1835
1836 void
1837 tu6_emit_depth_bias(struct tu_cs *cs,
1838 float constant_factor,
1839 float clamp,
1840 float slope_factor)
1841 {
1842 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_POLY_OFFSET_SCALE, 3);
1843 tu_cs_emit(cs, A6XX_GRAS_SU_POLY_OFFSET_SCALE(slope_factor).value);
1844 tu_cs_emit(cs, A6XX_GRAS_SU_POLY_OFFSET_OFFSET(constant_factor).value);
1845 tu_cs_emit(cs, A6XX_GRAS_SU_POLY_OFFSET_OFFSET_CLAMP(clamp).value);
1846 }
1847
1848 static void
1849 tu6_emit_alpha_control_disable(struct tu_cs *cs)
1850 {
1851 tu_cs_emit_pkt4(cs, REG_A6XX_RB_ALPHA_CONTROL, 1);
1852 tu_cs_emit(cs, 0);
1853 }
1854
1855 static void
1856 tu6_emit_depth_control(struct tu_cs *cs,
1857 const VkPipelineDepthStencilStateCreateInfo *ds_info,
1858 const VkPipelineRasterizationStateCreateInfo *rast_info)
1859 {
1860 assert(!ds_info->depthBoundsTestEnable);
1861
1862 uint32_t rb_depth_cntl = 0;
1863 if (ds_info->depthTestEnable) {
1864 rb_depth_cntl |=
1865 A6XX_RB_DEPTH_CNTL_Z_ENABLE |
1866 A6XX_RB_DEPTH_CNTL_ZFUNC(tu6_compare_func(ds_info->depthCompareOp)) |
1867 A6XX_RB_DEPTH_CNTL_Z_TEST_ENABLE;
1868
1869 if (rast_info->depthClampEnable)
1870 rb_depth_cntl |= A6XX_RB_DEPTH_CNTL_Z_CLAMP_ENABLE;
1871
1872 if (ds_info->depthWriteEnable)
1873 rb_depth_cntl |= A6XX_RB_DEPTH_CNTL_Z_WRITE_ENABLE;
1874 }
1875
1876 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_CNTL, 1);
1877 tu_cs_emit(cs, rb_depth_cntl);
1878 }
1879
1880 static void
1881 tu6_emit_stencil_control(struct tu_cs *cs,
1882 const VkPipelineDepthStencilStateCreateInfo *ds_info)
1883 {
1884 uint32_t rb_stencil_control = 0;
1885 if (ds_info->stencilTestEnable) {
1886 const VkStencilOpState *front = &ds_info->front;
1887 const VkStencilOpState *back = &ds_info->back;
1888 rb_stencil_control |=
1889 A6XX_RB_STENCIL_CONTROL_STENCIL_ENABLE |
1890 A6XX_RB_STENCIL_CONTROL_STENCIL_ENABLE_BF |
1891 A6XX_RB_STENCIL_CONTROL_STENCIL_READ |
1892 A6XX_RB_STENCIL_CONTROL_FUNC(tu6_compare_func(front->compareOp)) |
1893 A6XX_RB_STENCIL_CONTROL_FAIL(tu6_stencil_op(front->failOp)) |
1894 A6XX_RB_STENCIL_CONTROL_ZPASS(tu6_stencil_op(front->passOp)) |
1895 A6XX_RB_STENCIL_CONTROL_ZFAIL(tu6_stencil_op(front->depthFailOp)) |
1896 A6XX_RB_STENCIL_CONTROL_FUNC_BF(tu6_compare_func(back->compareOp)) |
1897 A6XX_RB_STENCIL_CONTROL_FAIL_BF(tu6_stencil_op(back->failOp)) |
1898 A6XX_RB_STENCIL_CONTROL_ZPASS_BF(tu6_stencil_op(back->passOp)) |
1899 A6XX_RB_STENCIL_CONTROL_ZFAIL_BF(tu6_stencil_op(back->depthFailOp));
1900 }
1901
1902 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCIL_CONTROL, 1);
1903 tu_cs_emit(cs, rb_stencil_control);
1904 }
1905
1906 void
1907 tu6_emit_stencil_compare_mask(struct tu_cs *cs, uint32_t front, uint32_t back)
1908 {
1909 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCILMASK, 1);
1910 tu_cs_emit(
1911 cs, A6XX_RB_STENCILMASK_MASK(front) | A6XX_RB_STENCILMASK_BFMASK(back));
1912 }
1913
1914 void
1915 tu6_emit_stencil_write_mask(struct tu_cs *cs, uint32_t front, uint32_t back)
1916 {
1917 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCILWRMASK, 1);
1918 tu_cs_emit(cs, A6XX_RB_STENCILWRMASK_WRMASK(front) |
1919 A6XX_RB_STENCILWRMASK_BFWRMASK(back));
1920 }
1921
1922 void
1923 tu6_emit_stencil_reference(struct tu_cs *cs, uint32_t front, uint32_t back)
1924 {
1925 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCILREF, 1);
1926 tu_cs_emit(cs,
1927 A6XX_RB_STENCILREF_REF(front) | A6XX_RB_STENCILREF_BFREF(back));
1928 }
1929
1930 static uint32_t
1931 tu6_rb_mrt_blend_control(const VkPipelineColorBlendAttachmentState *att,
1932 bool has_alpha)
1933 {
1934 const enum a3xx_rb_blend_opcode color_op = tu6_blend_op(att->colorBlendOp);
1935 const enum adreno_rb_blend_factor src_color_factor = tu6_blend_factor(
1936 has_alpha ? att->srcColorBlendFactor
1937 : tu_blend_factor_no_dst_alpha(att->srcColorBlendFactor));
1938 const enum adreno_rb_blend_factor dst_color_factor = tu6_blend_factor(
1939 has_alpha ? att->dstColorBlendFactor
1940 : tu_blend_factor_no_dst_alpha(att->dstColorBlendFactor));
1941 const enum a3xx_rb_blend_opcode alpha_op = tu6_blend_op(att->alphaBlendOp);
1942 const enum adreno_rb_blend_factor src_alpha_factor =
1943 tu6_blend_factor(att->srcAlphaBlendFactor);
1944 const enum adreno_rb_blend_factor dst_alpha_factor =
1945 tu6_blend_factor(att->dstAlphaBlendFactor);
1946
1947 return A6XX_RB_MRT_BLEND_CONTROL_RGB_SRC_FACTOR(src_color_factor) |
1948 A6XX_RB_MRT_BLEND_CONTROL_RGB_BLEND_OPCODE(color_op) |
1949 A6XX_RB_MRT_BLEND_CONTROL_RGB_DEST_FACTOR(dst_color_factor) |
1950 A6XX_RB_MRT_BLEND_CONTROL_ALPHA_SRC_FACTOR(src_alpha_factor) |
1951 A6XX_RB_MRT_BLEND_CONTROL_ALPHA_BLEND_OPCODE(alpha_op) |
1952 A6XX_RB_MRT_BLEND_CONTROL_ALPHA_DEST_FACTOR(dst_alpha_factor);
1953 }
1954
1955 static uint32_t
1956 tu6_rb_mrt_control(const VkPipelineColorBlendAttachmentState *att,
1957 uint32_t rb_mrt_control_rop,
1958 bool is_int,
1959 bool has_alpha)
1960 {
1961 uint32_t rb_mrt_control =
1962 A6XX_RB_MRT_CONTROL_COMPONENT_ENABLE(att->colorWriteMask);
1963
1964 /* ignore blending and logic op for integer attachments */
1965 if (is_int) {
1966 rb_mrt_control |= A6XX_RB_MRT_CONTROL_ROP_CODE(ROP_COPY);
1967 return rb_mrt_control;
1968 }
1969
1970 rb_mrt_control |= rb_mrt_control_rop;
1971
1972 if (att->blendEnable) {
1973 rb_mrt_control |= A6XX_RB_MRT_CONTROL_BLEND;
1974
1975 if (has_alpha)
1976 rb_mrt_control |= A6XX_RB_MRT_CONTROL_BLEND2;
1977 }
1978
1979 return rb_mrt_control;
1980 }
1981
1982 static void
1983 tu6_emit_rb_mrt_controls(struct tu_cs *cs,
1984 const VkPipelineColorBlendStateCreateInfo *blend_info,
1985 const VkFormat attachment_formats[MAX_RTS],
1986 uint32_t *blend_enable_mask)
1987 {
1988 *blend_enable_mask = 0;
1989
1990 bool rop_reads_dst = false;
1991 uint32_t rb_mrt_control_rop = 0;
1992 if (blend_info->logicOpEnable) {
1993 rop_reads_dst = tu_logic_op_reads_dst(blend_info->logicOp);
1994 rb_mrt_control_rop =
1995 A6XX_RB_MRT_CONTROL_ROP_ENABLE |
1996 A6XX_RB_MRT_CONTROL_ROP_CODE(tu6_rop(blend_info->logicOp));
1997 }
1998
1999 for (uint32_t i = 0; i < blend_info->attachmentCount; i++) {
2000 const VkPipelineColorBlendAttachmentState *att =
2001 &blend_info->pAttachments[i];
2002 const VkFormat format = attachment_formats[i];
2003
2004 uint32_t rb_mrt_control = 0;
2005 uint32_t rb_mrt_blend_control = 0;
2006 if (format != VK_FORMAT_UNDEFINED) {
2007 const bool is_int = vk_format_is_int(format);
2008 const bool has_alpha = vk_format_has_alpha(format);
2009
2010 rb_mrt_control =
2011 tu6_rb_mrt_control(att, rb_mrt_control_rop, is_int, has_alpha);
2012 rb_mrt_blend_control = tu6_rb_mrt_blend_control(att, has_alpha);
2013
2014 if (att->blendEnable || rop_reads_dst)
2015 *blend_enable_mask |= 1 << i;
2016 }
2017
2018 tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_CONTROL(i), 2);
2019 tu_cs_emit(cs, rb_mrt_control);
2020 tu_cs_emit(cs, rb_mrt_blend_control);
2021 }
2022 }
2023
2024 static void
2025 tu6_emit_blend_control(struct tu_cs *cs,
2026 uint32_t blend_enable_mask,
2027 const VkPipelineMultisampleStateCreateInfo *msaa_info)
2028 {
2029 assert(!msaa_info->alphaToOneEnable);
2030
2031 uint32_t sp_blend_cntl = A6XX_SP_BLEND_CNTL_UNK8;
2032 if (blend_enable_mask)
2033 sp_blend_cntl |= A6XX_SP_BLEND_CNTL_ENABLED;
2034 if (msaa_info->alphaToCoverageEnable)
2035 sp_blend_cntl |= A6XX_SP_BLEND_CNTL_ALPHA_TO_COVERAGE;
2036
2037 const uint32_t sample_mask =
2038 msaa_info->pSampleMask ? *msaa_info->pSampleMask
2039 : ((1 << msaa_info->rasterizationSamples) - 1);
2040
2041 /* set A6XX_RB_BLEND_CNTL_INDEPENDENT_BLEND only when enabled? */
2042 uint32_t rb_blend_cntl =
2043 A6XX_RB_BLEND_CNTL_ENABLE_BLEND(blend_enable_mask) |
2044 A6XX_RB_BLEND_CNTL_INDEPENDENT_BLEND |
2045 A6XX_RB_BLEND_CNTL_SAMPLE_MASK(sample_mask);
2046 if (msaa_info->alphaToCoverageEnable)
2047 rb_blend_cntl |= A6XX_RB_BLEND_CNTL_ALPHA_TO_COVERAGE;
2048
2049 tu_cs_emit_pkt4(cs, REG_A6XX_SP_BLEND_CNTL, 1);
2050 tu_cs_emit(cs, sp_blend_cntl);
2051
2052 tu_cs_emit_pkt4(cs, REG_A6XX_RB_BLEND_CNTL, 1);
2053 tu_cs_emit(cs, rb_blend_cntl);
2054 }
2055
2056 void
2057 tu6_emit_blend_constants(struct tu_cs *cs, const float constants[4])
2058 {
2059 tu_cs_emit_pkt4(cs, REG_A6XX_RB_BLEND_RED_F32, 4);
2060 tu_cs_emit_array(cs, (const uint32_t *) constants, 4);
2061 }
2062
2063 static VkResult
2064 tu_pipeline_create(struct tu_device *dev,
2065 struct tu_pipeline_layout *layout,
2066 bool compute,
2067 const VkAllocationCallbacks *pAllocator,
2068 struct tu_pipeline **out_pipeline)
2069 {
2070 struct tu_pipeline *pipeline =
2071 vk_zalloc2(&dev->alloc, pAllocator, sizeof(*pipeline), 8,
2072 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2073 if (!pipeline)
2074 return VK_ERROR_OUT_OF_HOST_MEMORY;
2075
2076 tu_cs_init(&pipeline->cs, dev, TU_CS_MODE_SUB_STREAM, 2048);
2077
2078 /* Reserve the space now such that tu_cs_begin_sub_stream never fails. Note
2079 * that LOAD_STATE can potentially take up a large amount of space so we
2080 * calculate its size explicitly.
2081 */
2082 unsigned load_state_size = tu6_load_state_size(layout, compute);
2083 VkResult result = tu_cs_reserve_space(&pipeline->cs, 2048 + load_state_size);
2084 if (result != VK_SUCCESS) {
2085 vk_free2(&dev->alloc, pAllocator, pipeline);
2086 return result;
2087 }
2088
2089 *out_pipeline = pipeline;
2090
2091 return VK_SUCCESS;
2092 }
2093
2094 static VkResult
2095 tu_pipeline_builder_compile_shaders(struct tu_pipeline_builder *builder)
2096 {
2097 const VkPipelineShaderStageCreateInfo *stage_infos[MESA_SHADER_STAGES] = {
2098 NULL
2099 };
2100 for (uint32_t i = 0; i < builder->create_info->stageCount; i++) {
2101 gl_shader_stage stage =
2102 tu_shader_stage(builder->create_info->pStages[i].stage);
2103 stage_infos[stage] = &builder->create_info->pStages[i];
2104 }
2105
2106 struct tu_shader_compile_options options;
2107 tu_shader_compile_options_init(&options, builder->create_info);
2108
2109 /* compile shaders in reverse order */
2110 struct tu_shader *next_stage_shader = NULL;
2111 for (gl_shader_stage stage = MESA_SHADER_STAGES - 1;
2112 stage > MESA_SHADER_NONE; stage--) {
2113 const VkPipelineShaderStageCreateInfo *stage_info = stage_infos[stage];
2114 if (!stage_info)
2115 continue;
2116
2117 struct tu_shader *shader =
2118 tu_shader_create(builder->device, stage, stage_info, builder->layout,
2119 builder->alloc);
2120 if (!shader)
2121 return VK_ERROR_OUT_OF_HOST_MEMORY;
2122
2123 VkResult result =
2124 tu_shader_compile(builder->device, shader, next_stage_shader,
2125 &options, builder->alloc);
2126 if (result != VK_SUCCESS)
2127 return result;
2128
2129 builder->shaders[stage] = shader;
2130 builder->shader_offsets[stage] = builder->shader_total_size;
2131 builder->shader_total_size +=
2132 sizeof(uint32_t) * shader->variants[0].info.sizedwords;
2133
2134 next_stage_shader = shader;
2135 }
2136
2137 if (builder->shaders[MESA_SHADER_VERTEX]->has_binning_pass) {
2138 const struct tu_shader *vs = builder->shaders[MESA_SHADER_VERTEX];
2139 const struct ir3_shader_variant *variant;
2140
2141 if (vs->ir3_shader.stream_output.num_outputs)
2142 variant = &vs->variants[0];
2143 else
2144 variant = &vs->variants[1];
2145
2146 builder->binning_vs_offset = builder->shader_total_size;
2147 builder->shader_total_size +=
2148 sizeof(uint32_t) * variant->info.sizedwords;
2149 }
2150
2151 return VK_SUCCESS;
2152 }
2153
2154 static VkResult
2155 tu_pipeline_builder_upload_shaders(struct tu_pipeline_builder *builder,
2156 struct tu_pipeline *pipeline)
2157 {
2158 struct tu_bo *bo = &pipeline->program.binary_bo;
2159
2160 VkResult result =
2161 tu_bo_init_new(builder->device, bo, builder->shader_total_size);
2162 if (result != VK_SUCCESS)
2163 return result;
2164
2165 result = tu_bo_map(builder->device, bo);
2166 if (result != VK_SUCCESS)
2167 return result;
2168
2169 for (uint32_t i = 0; i < MESA_SHADER_STAGES; i++) {
2170 const struct tu_shader *shader = builder->shaders[i];
2171 if (!shader)
2172 continue;
2173
2174 memcpy(bo->map + builder->shader_offsets[i], shader->binary,
2175 sizeof(uint32_t) * shader->variants[0].info.sizedwords);
2176 }
2177
2178 if (builder->shaders[MESA_SHADER_VERTEX]->has_binning_pass) {
2179 const struct tu_shader *vs = builder->shaders[MESA_SHADER_VERTEX];
2180 const struct ir3_shader_variant *variant;
2181 void *bin;
2182
2183 if (vs->ir3_shader.stream_output.num_outputs) {
2184 variant = &vs->variants[0];
2185 bin = vs->binary;
2186 } else {
2187 variant = &vs->variants[1];
2188 bin = vs->binning_binary;
2189 }
2190
2191 memcpy(bo->map + builder->binning_vs_offset, bin,
2192 sizeof(uint32_t) * variant->info.sizedwords);
2193 }
2194
2195 return VK_SUCCESS;
2196 }
2197
2198 static void
2199 tu_pipeline_builder_parse_dynamic(struct tu_pipeline_builder *builder,
2200 struct tu_pipeline *pipeline)
2201 {
2202 const VkPipelineDynamicStateCreateInfo *dynamic_info =
2203 builder->create_info->pDynamicState;
2204
2205 if (!dynamic_info)
2206 return;
2207
2208 for (uint32_t i = 0; i < dynamic_info->dynamicStateCount; i++) {
2209 pipeline->dynamic_state.mask |=
2210 tu_dynamic_state_bit(dynamic_info->pDynamicStates[i]);
2211 }
2212 }
2213
2214 static void
2215 tu_pipeline_set_linkage(struct tu_program_descriptor_linkage *link,
2216 struct tu_shader *shader,
2217 struct ir3_shader_variant *v)
2218 {
2219 link->ubo_state = v->shader->ubo_state;
2220 link->const_state = v->shader->const_state;
2221 link->constlen = v->constlen;
2222 link->push_consts = shader->push_consts;
2223 }
2224
2225 static void
2226 tu_pipeline_builder_parse_shader_stages(struct tu_pipeline_builder *builder,
2227 struct tu_pipeline *pipeline)
2228 {
2229 struct tu_cs prog_cs;
2230 tu_cs_begin_sub_stream(&pipeline->cs, 512, &prog_cs);
2231 tu6_emit_program(&prog_cs, builder, &pipeline->program.binary_bo, false, &pipeline->streamout);
2232 pipeline->program.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &prog_cs);
2233
2234 tu_cs_begin_sub_stream(&pipeline->cs, 512, &prog_cs);
2235 tu6_emit_program(&prog_cs, builder, &pipeline->program.binary_bo, true, &pipeline->streamout);
2236 pipeline->program.binning_state_ib =
2237 tu_cs_end_sub_stream(&pipeline->cs, &prog_cs);
2238
2239 VkShaderStageFlags stages = 0;
2240 for (unsigned i = 0; i < builder->create_info->stageCount; i++) {
2241 stages |= builder->create_info->pStages[i].stage;
2242 }
2243 pipeline->active_stages = stages;
2244
2245 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2246 if (!builder->shaders[i])
2247 continue;
2248
2249 tu_pipeline_set_linkage(&pipeline->program.link[i],
2250 builder->shaders[i],
2251 &builder->shaders[i]->variants[0]);
2252 }
2253
2254 if (builder->shaders[MESA_SHADER_FRAGMENT]) {
2255 memcpy(pipeline->program.input_attachment_idx,
2256 builder->shaders[MESA_SHADER_FRAGMENT]->attachment_idx,
2257 sizeof(pipeline->program.input_attachment_idx));
2258 }
2259 }
2260
2261 static void
2262 tu_pipeline_builder_parse_vertex_input(struct tu_pipeline_builder *builder,
2263 struct tu_pipeline *pipeline)
2264 {
2265 const VkPipelineVertexInputStateCreateInfo *vi_info =
2266 builder->create_info->pVertexInputState;
2267 const struct tu_shader *vs = builder->shaders[MESA_SHADER_VERTEX];
2268
2269 struct tu_cs vi_cs;
2270 tu_cs_begin_sub_stream(&pipeline->cs,
2271 MAX_VERTEX_ATTRIBS * 7 + 2, &vi_cs);
2272 tu6_emit_vertex_input(&vi_cs, &vs->variants[0], vi_info,
2273 pipeline->vi.bindings, &pipeline->vi.count);
2274 pipeline->vi.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &vi_cs);
2275
2276 if (vs->has_binning_pass) {
2277 tu_cs_begin_sub_stream(&pipeline->cs,
2278 MAX_VERTEX_ATTRIBS * 7 + 2, &vi_cs);
2279 tu6_emit_vertex_input(
2280 &vi_cs, &vs->variants[1], vi_info, pipeline->vi.binning_bindings,
2281 &pipeline->vi.binning_count);
2282 pipeline->vi.binning_state_ib =
2283 tu_cs_end_sub_stream(&pipeline->cs, &vi_cs);
2284 }
2285 }
2286
2287 static void
2288 tu_pipeline_builder_parse_input_assembly(struct tu_pipeline_builder *builder,
2289 struct tu_pipeline *pipeline)
2290 {
2291 const VkPipelineInputAssemblyStateCreateInfo *ia_info =
2292 builder->create_info->pInputAssemblyState;
2293
2294 pipeline->ia.primtype = tu6_primtype(ia_info->topology);
2295 pipeline->ia.primitive_restart = ia_info->primitiveRestartEnable;
2296 }
2297
2298 static void
2299 tu_pipeline_builder_parse_viewport(struct tu_pipeline_builder *builder,
2300 struct tu_pipeline *pipeline)
2301 {
2302 /* The spec says:
2303 *
2304 * pViewportState is a pointer to an instance of the
2305 * VkPipelineViewportStateCreateInfo structure, and is ignored if the
2306 * pipeline has rasterization disabled."
2307 *
2308 * We leave the relevant registers stale in that case.
2309 */
2310 if (builder->rasterizer_discard)
2311 return;
2312
2313 const VkPipelineViewportStateCreateInfo *vp_info =
2314 builder->create_info->pViewportState;
2315
2316 struct tu_cs vp_cs;
2317 tu_cs_begin_sub_stream(&pipeline->cs, 21, &vp_cs);
2318
2319 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_VIEWPORT)) {
2320 assert(vp_info->viewportCount == 1);
2321 tu6_emit_viewport(&vp_cs, vp_info->pViewports);
2322 }
2323
2324 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_SCISSOR)) {
2325 assert(vp_info->scissorCount == 1);
2326 tu6_emit_scissor(&vp_cs, vp_info->pScissors);
2327 }
2328
2329 pipeline->vp.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &vp_cs);
2330 }
2331
2332 static void
2333 tu_pipeline_builder_parse_rasterization(struct tu_pipeline_builder *builder,
2334 struct tu_pipeline *pipeline)
2335 {
2336 const VkPipelineRasterizationStateCreateInfo *rast_info =
2337 builder->create_info->pRasterizationState;
2338
2339 assert(rast_info->polygonMode == VK_POLYGON_MODE_FILL);
2340
2341 struct tu_cs rast_cs;
2342 tu_cs_begin_sub_stream(&pipeline->cs, 20, &rast_cs);
2343
2344
2345 tu_cs_emit_regs(&rast_cs,
2346 A6XX_GRAS_CL_CNTL(
2347 .znear_clip_disable = rast_info->depthClampEnable,
2348 .zfar_clip_disable = rast_info->depthClampEnable,
2349 .unk5 = rast_info->depthClampEnable,
2350 .zero_gb_scale_z = 1,
2351 .vp_clip_code_ignore = 1));
2352 /* move to hw ctx init? */
2353 tu6_emit_gras_unknowns(&rast_cs);
2354 tu6_emit_point_size(&rast_cs);
2355
2356 const uint32_t gras_su_cntl =
2357 tu6_gras_su_cntl(rast_info, builder->samples);
2358
2359 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_LINE_WIDTH))
2360 tu6_emit_gras_su_cntl(&rast_cs, gras_su_cntl, rast_info->lineWidth);
2361
2362 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_DEPTH_BIAS)) {
2363 tu6_emit_depth_bias(&rast_cs, rast_info->depthBiasConstantFactor,
2364 rast_info->depthBiasClamp,
2365 rast_info->depthBiasSlopeFactor);
2366 }
2367
2368 pipeline->rast.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &rast_cs);
2369
2370 pipeline->rast.gras_su_cntl = gras_su_cntl;
2371 }
2372
2373 static void
2374 tu_pipeline_builder_parse_depth_stencil(struct tu_pipeline_builder *builder,
2375 struct tu_pipeline *pipeline)
2376 {
2377 /* The spec says:
2378 *
2379 * pDepthStencilState is a pointer to an instance of the
2380 * VkPipelineDepthStencilStateCreateInfo structure, and is ignored if
2381 * the pipeline has rasterization disabled or if the subpass of the
2382 * render pass the pipeline is created against does not use a
2383 * depth/stencil attachment.
2384 *
2385 * Disable both depth and stencil tests if there is no ds attachment,
2386 * Disable depth test if ds attachment is S8_UINT, since S8_UINT defines
2387 * only the separate stencil attachment
2388 */
2389 static const VkPipelineDepthStencilStateCreateInfo dummy_ds_info;
2390 const VkPipelineDepthStencilStateCreateInfo *ds_info =
2391 builder->depth_attachment_format != VK_FORMAT_UNDEFINED
2392 ? builder->create_info->pDepthStencilState
2393 : &dummy_ds_info;
2394 const VkPipelineDepthStencilStateCreateInfo *ds_info_depth =
2395 builder->depth_attachment_format != VK_FORMAT_S8_UINT
2396 ? ds_info : &dummy_ds_info;
2397
2398 struct tu_cs ds_cs;
2399 tu_cs_begin_sub_stream(&pipeline->cs, 12, &ds_cs);
2400
2401 /* move to hw ctx init? */
2402 tu6_emit_alpha_control_disable(&ds_cs);
2403
2404 tu6_emit_depth_control(&ds_cs, ds_info_depth,
2405 builder->create_info->pRasterizationState);
2406 tu6_emit_stencil_control(&ds_cs, ds_info);
2407
2408 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_STENCIL_COMPARE_MASK)) {
2409 tu6_emit_stencil_compare_mask(&ds_cs, ds_info->front.compareMask,
2410 ds_info->back.compareMask);
2411 }
2412 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_STENCIL_WRITE_MASK)) {
2413 tu6_emit_stencil_write_mask(&ds_cs, ds_info->front.writeMask,
2414 ds_info->back.writeMask);
2415 }
2416 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_STENCIL_REFERENCE)) {
2417 tu6_emit_stencil_reference(&ds_cs, ds_info->front.reference,
2418 ds_info->back.reference);
2419 }
2420
2421 pipeline->ds.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &ds_cs);
2422 }
2423
2424 static void
2425 tu_pipeline_builder_parse_multisample_and_color_blend(
2426 struct tu_pipeline_builder *builder, struct tu_pipeline *pipeline)
2427 {
2428 /* The spec says:
2429 *
2430 * pMultisampleState is a pointer to an instance of the
2431 * VkPipelineMultisampleStateCreateInfo, and is ignored if the pipeline
2432 * has rasterization disabled.
2433 *
2434 * Also,
2435 *
2436 * pColorBlendState is a pointer to an instance of the
2437 * VkPipelineColorBlendStateCreateInfo structure, and is ignored if the
2438 * pipeline has rasterization disabled or if the subpass of the render
2439 * pass the pipeline is created against does not use any color
2440 * attachments.
2441 *
2442 * We leave the relevant registers stale when rasterization is disabled.
2443 */
2444 if (builder->rasterizer_discard)
2445 return;
2446
2447 static const VkPipelineColorBlendStateCreateInfo dummy_blend_info;
2448 const VkPipelineMultisampleStateCreateInfo *msaa_info =
2449 builder->create_info->pMultisampleState;
2450 const VkPipelineColorBlendStateCreateInfo *blend_info =
2451 builder->use_color_attachments ? builder->create_info->pColorBlendState
2452 : &dummy_blend_info;
2453
2454 struct tu_cs blend_cs;
2455 tu_cs_begin_sub_stream(&pipeline->cs, MAX_RTS * 3 + 9, &blend_cs);
2456
2457 uint32_t blend_enable_mask;
2458 tu6_emit_rb_mrt_controls(&blend_cs, blend_info,
2459 builder->color_attachment_formats,
2460 &blend_enable_mask);
2461
2462 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_BLEND_CONSTANTS))
2463 tu6_emit_blend_constants(&blend_cs, blend_info->blendConstants);
2464
2465 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_SAMPLE_LOCATIONS)) {
2466 const struct VkPipelineSampleLocationsStateCreateInfoEXT *sample_locations =
2467 vk_find_struct_const(msaa_info->pNext, PIPELINE_SAMPLE_LOCATIONS_STATE_CREATE_INFO_EXT);
2468 const VkSampleLocationsInfoEXT *samp_loc = NULL;
2469
2470 if (sample_locations && sample_locations->sampleLocationsEnable)
2471 samp_loc = &sample_locations->sampleLocationsInfo;
2472
2473 tu6_emit_sample_locations(&blend_cs, samp_loc);
2474 }
2475
2476 tu6_emit_blend_control(&blend_cs, blend_enable_mask, msaa_info);
2477
2478 pipeline->blend.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &blend_cs);
2479 }
2480
2481 static void
2482 tu_pipeline_finish(struct tu_pipeline *pipeline,
2483 struct tu_device *dev,
2484 const VkAllocationCallbacks *alloc)
2485 {
2486 tu_cs_finish(&pipeline->cs);
2487
2488 if (pipeline->program.binary_bo.gem_handle)
2489 tu_bo_finish(dev, &pipeline->program.binary_bo);
2490 }
2491
2492 static VkResult
2493 tu_pipeline_builder_build(struct tu_pipeline_builder *builder,
2494 struct tu_pipeline **pipeline)
2495 {
2496 VkResult result = tu_pipeline_create(builder->device, builder->layout,
2497 false, builder->alloc, pipeline);
2498 if (result != VK_SUCCESS)
2499 return result;
2500
2501 (*pipeline)->layout = builder->layout;
2502
2503 /* compile and upload shaders */
2504 result = tu_pipeline_builder_compile_shaders(builder);
2505 if (result == VK_SUCCESS)
2506 result = tu_pipeline_builder_upload_shaders(builder, *pipeline);
2507 if (result != VK_SUCCESS) {
2508 tu_pipeline_finish(*pipeline, builder->device, builder->alloc);
2509 vk_free2(&builder->device->alloc, builder->alloc, *pipeline);
2510 *pipeline = VK_NULL_HANDLE;
2511
2512 return result;
2513 }
2514
2515 tu_pipeline_builder_parse_dynamic(builder, *pipeline);
2516 tu_pipeline_builder_parse_shader_stages(builder, *pipeline);
2517 tu_pipeline_builder_parse_vertex_input(builder, *pipeline);
2518 tu_pipeline_builder_parse_input_assembly(builder, *pipeline);
2519 tu_pipeline_builder_parse_viewport(builder, *pipeline);
2520 tu_pipeline_builder_parse_rasterization(builder, *pipeline);
2521 tu_pipeline_builder_parse_depth_stencil(builder, *pipeline);
2522 tu_pipeline_builder_parse_multisample_and_color_blend(builder, *pipeline);
2523 tu6_emit_load_state(*pipeline, false);
2524
2525 /* we should have reserved enough space upfront such that the CS never
2526 * grows
2527 */
2528 assert((*pipeline)->cs.bo_count == 1);
2529
2530 return VK_SUCCESS;
2531 }
2532
2533 static void
2534 tu_pipeline_builder_finish(struct tu_pipeline_builder *builder)
2535 {
2536 for (uint32_t i = 0; i < MESA_SHADER_STAGES; i++) {
2537 if (!builder->shaders[i])
2538 continue;
2539 tu_shader_destroy(builder->device, builder->shaders[i], builder->alloc);
2540 }
2541 }
2542
2543 static void
2544 tu_pipeline_builder_init_graphics(
2545 struct tu_pipeline_builder *builder,
2546 struct tu_device *dev,
2547 struct tu_pipeline_cache *cache,
2548 const VkGraphicsPipelineCreateInfo *create_info,
2549 const VkAllocationCallbacks *alloc)
2550 {
2551 TU_FROM_HANDLE(tu_pipeline_layout, layout, create_info->layout);
2552
2553 *builder = (struct tu_pipeline_builder) {
2554 .device = dev,
2555 .cache = cache,
2556 .create_info = create_info,
2557 .alloc = alloc,
2558 .layout = layout,
2559 };
2560
2561 builder->rasterizer_discard =
2562 create_info->pRasterizationState->rasterizerDiscardEnable;
2563
2564 if (builder->rasterizer_discard) {
2565 builder->samples = VK_SAMPLE_COUNT_1_BIT;
2566 } else {
2567 builder->samples = create_info->pMultisampleState->rasterizationSamples;
2568
2569 const struct tu_render_pass *pass =
2570 tu_render_pass_from_handle(create_info->renderPass);
2571 const struct tu_subpass *subpass =
2572 &pass->subpasses[create_info->subpass];
2573
2574 const uint32_t a = subpass->depth_stencil_attachment.attachment;
2575 builder->depth_attachment_format = (a != VK_ATTACHMENT_UNUSED) ?
2576 pass->attachments[a].format : VK_FORMAT_UNDEFINED;
2577
2578 assert(subpass->color_count == 0 ||
2579 !create_info->pColorBlendState ||
2580 subpass->color_count == create_info->pColorBlendState->attachmentCount);
2581 builder->color_attachment_count = subpass->color_count;
2582 for (uint32_t i = 0; i < subpass->color_count; i++) {
2583 const uint32_t a = subpass->color_attachments[i].attachment;
2584 if (a == VK_ATTACHMENT_UNUSED)
2585 continue;
2586
2587 builder->color_attachment_formats[i] = pass->attachments[a].format;
2588 builder->use_color_attachments = true;
2589 }
2590 }
2591 }
2592
2593 static VkResult
2594 tu_graphics_pipeline_create(VkDevice device,
2595 VkPipelineCache pipelineCache,
2596 const VkGraphicsPipelineCreateInfo *pCreateInfo,
2597 const VkAllocationCallbacks *pAllocator,
2598 VkPipeline *pPipeline)
2599 {
2600 TU_FROM_HANDLE(tu_device, dev, device);
2601 TU_FROM_HANDLE(tu_pipeline_cache, cache, pipelineCache);
2602
2603 struct tu_pipeline_builder builder;
2604 tu_pipeline_builder_init_graphics(&builder, dev, cache,
2605 pCreateInfo, pAllocator);
2606
2607 struct tu_pipeline *pipeline = NULL;
2608 VkResult result = tu_pipeline_builder_build(&builder, &pipeline);
2609 tu_pipeline_builder_finish(&builder);
2610
2611 if (result == VK_SUCCESS)
2612 *pPipeline = tu_pipeline_to_handle(pipeline);
2613 else
2614 *pPipeline = VK_NULL_HANDLE;
2615
2616 return result;
2617 }
2618
2619 VkResult
2620 tu_CreateGraphicsPipelines(VkDevice device,
2621 VkPipelineCache pipelineCache,
2622 uint32_t count,
2623 const VkGraphicsPipelineCreateInfo *pCreateInfos,
2624 const VkAllocationCallbacks *pAllocator,
2625 VkPipeline *pPipelines)
2626 {
2627 VkResult final_result = VK_SUCCESS;
2628
2629 for (uint32_t i = 0; i < count; i++) {
2630 VkResult result = tu_graphics_pipeline_create(device, pipelineCache,
2631 &pCreateInfos[i], pAllocator,
2632 &pPipelines[i]);
2633
2634 if (result != VK_SUCCESS)
2635 final_result = result;
2636 }
2637
2638 return final_result;
2639 }
2640
2641 static void
2642 tu6_emit_compute_program(struct tu_cs *cs,
2643 struct tu_shader *shader,
2644 const struct tu_bo *binary_bo)
2645 {
2646 const struct ir3_shader_variant *v = &shader->variants[0];
2647
2648 tu6_emit_cs_config(cs, shader, v);
2649
2650 /* The compute program is the only one in the pipeline, so 0 offset. */
2651 tu6_emit_shader_object(cs, MESA_SHADER_COMPUTE, v, binary_bo, 0);
2652
2653 tu6_emit_immediates(cs, v, CP_LOAD_STATE6_FRAG, SB6_CS_SHADER);
2654 }
2655
2656 static VkResult
2657 tu_compute_upload_shader(VkDevice device,
2658 struct tu_pipeline *pipeline,
2659 struct tu_shader *shader)
2660 {
2661 TU_FROM_HANDLE(tu_device, dev, device);
2662 struct tu_bo *bo = &pipeline->program.binary_bo;
2663 struct ir3_shader_variant *v = &shader->variants[0];
2664
2665 uint32_t shader_size = sizeof(uint32_t) * v->info.sizedwords;
2666 VkResult result =
2667 tu_bo_init_new(dev, bo, shader_size);
2668 if (result != VK_SUCCESS)
2669 return result;
2670
2671 result = tu_bo_map(dev, bo);
2672 if (result != VK_SUCCESS)
2673 return result;
2674
2675 memcpy(bo->map, shader->binary, shader_size);
2676
2677 return VK_SUCCESS;
2678 }
2679
2680
2681 static VkResult
2682 tu_compute_pipeline_create(VkDevice device,
2683 VkPipelineCache _cache,
2684 const VkComputePipelineCreateInfo *pCreateInfo,
2685 const VkAllocationCallbacks *pAllocator,
2686 VkPipeline *pPipeline)
2687 {
2688 TU_FROM_HANDLE(tu_device, dev, device);
2689 TU_FROM_HANDLE(tu_pipeline_layout, layout, pCreateInfo->layout);
2690 const VkPipelineShaderStageCreateInfo *stage_info = &pCreateInfo->stage;
2691 VkResult result;
2692
2693 struct tu_pipeline *pipeline;
2694
2695 *pPipeline = VK_NULL_HANDLE;
2696
2697 result = tu_pipeline_create(dev, layout, true, pAllocator, &pipeline);
2698 if (result != VK_SUCCESS)
2699 return result;
2700
2701 pipeline->layout = layout;
2702
2703 struct tu_shader_compile_options options;
2704 tu_shader_compile_options_init(&options, NULL);
2705
2706 struct tu_shader *shader =
2707 tu_shader_create(dev, MESA_SHADER_COMPUTE, stage_info, layout, pAllocator);
2708 if (!shader) {
2709 result = VK_ERROR_OUT_OF_HOST_MEMORY;
2710 goto fail;
2711 }
2712
2713 result = tu_shader_compile(dev, shader, NULL, &options, pAllocator);
2714 if (result != VK_SUCCESS)
2715 goto fail;
2716
2717 struct ir3_shader_variant *v = &shader->variants[0];
2718
2719 tu_pipeline_set_linkage(&pipeline->program.link[MESA_SHADER_COMPUTE],
2720 shader, v);
2721
2722 result = tu_compute_upload_shader(device, pipeline, shader);
2723 if (result != VK_SUCCESS)
2724 goto fail;
2725
2726 for (int i = 0; i < 3; i++)
2727 pipeline->compute.local_size[i] = v->shader->nir->info.cs.local_size[i];
2728
2729 struct tu_cs prog_cs;
2730 tu_cs_begin_sub_stream(&pipeline->cs, 512, &prog_cs);
2731 tu6_emit_compute_program(&prog_cs, shader, &pipeline->program.binary_bo);
2732 pipeline->program.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &prog_cs);
2733
2734 tu6_emit_load_state(pipeline, true);
2735
2736 *pPipeline = tu_pipeline_to_handle(pipeline);
2737 return VK_SUCCESS;
2738
2739 fail:
2740 if (shader)
2741 tu_shader_destroy(dev, shader, pAllocator);
2742
2743 tu_pipeline_finish(pipeline, dev, pAllocator);
2744 vk_free2(&dev->alloc, pAllocator, pipeline);
2745
2746 return result;
2747 }
2748
2749 VkResult
2750 tu_CreateComputePipelines(VkDevice device,
2751 VkPipelineCache pipelineCache,
2752 uint32_t count,
2753 const VkComputePipelineCreateInfo *pCreateInfos,
2754 const VkAllocationCallbacks *pAllocator,
2755 VkPipeline *pPipelines)
2756 {
2757 VkResult final_result = VK_SUCCESS;
2758
2759 for (uint32_t i = 0; i < count; i++) {
2760 VkResult result = tu_compute_pipeline_create(device, pipelineCache,
2761 &pCreateInfos[i],
2762 pAllocator, &pPipelines[i]);
2763 if (result != VK_SUCCESS)
2764 final_result = result;
2765 }
2766
2767 return final_result;
2768 }
2769
2770 void
2771 tu_DestroyPipeline(VkDevice _device,
2772 VkPipeline _pipeline,
2773 const VkAllocationCallbacks *pAllocator)
2774 {
2775 TU_FROM_HANDLE(tu_device, dev, _device);
2776 TU_FROM_HANDLE(tu_pipeline, pipeline, _pipeline);
2777
2778 if (!_pipeline)
2779 return;
2780
2781 tu_pipeline_finish(pipeline, dev, pAllocator);
2782 vk_free2(&dev->alloc, pAllocator, pipeline);
2783 }