Add shift right to test_partsig and partsig
[ieee754fpu.git] / src / ieee754 / part / partsig.py
1 # SPDX-License-Identifier: LGPL-2.1-or-later
2 # See Notices.txt for copyright information
3
4 """
5 Copyright (C) 2020 Luke Kenneth Casson Leighton <lkcl@lkcl.net>
6
7 dynamic-partitionable class similar to Signal, which, when the partition
8 is fully open will be identical to Signal. when partitions are closed,
9 the class turns into a SIMD variant of Signal. *this is dynamic*.
10
11 the basic fundamental idea is: write code once, and if you want a SIMD
12 version of it, use PartitionedSignal in place of Signal. job done.
13 this however requires the code to *not* be designed to use nmigen.If,
14 nmigen.Case, or other constructs: only Mux and other logic.
15
16 * http://bugs.libre-riscv.org/show_bug.cgi?id=132
17 """
18
19 from ieee754.part_mul_add.adder import PartitionedAdder
20 from ieee754.part_cmp.eq_gt_ge import PartitionedEqGtGe
21 from ieee754.part_shift.part_shift_dynamic import PartitionedDynamicShift
22 from ieee754.part_shift.part_shift_scalar import PartitionedScalarShift
23 from ieee754.part_mul_add.partpoints import make_partition
24 from operator import or_, xor, and_, not_
25
26 from nmigen import (Signal, Const)
27
28
29 def getsig(op1):
30 if isinstance(op1, PartitionedSignal):
31 op1 = op1.sig
32 return op1
33
34
35 def applyop(op1, op2, op):
36 return op(getsig(op1), getsig(op2))
37
38
39 class PartitionedSignal:
40 def __init__(self, mask, *args, **kwargs):
41 self.sig = Signal(*args, **kwargs)
42 width = self.sig.shape()[0] # get signal width
43 # create partition points
44 self.partpoints = make_partition(mask, width)
45 self.modnames = {}
46 for name in ['add', 'eq', 'gt', 'ge', 'ls']:
47 self.modnames[name] = 0
48
49 def set_module(self, m):
50 self.m = m
51
52 def get_modname(self, category):
53 self.modnames[category] += 1
54 return "%s_%d" % (category, self.modnames[category])
55
56 def eq(self, val):
57 return self.sig.eq(getsig(val))
58
59 # unary ops that do not require partitioning
60
61 def __invert__(self):
62 return ~self.sig
63
64 # unary ops that require partitioning
65
66 def __neg__(self):
67 z = Const(0, len(self.partpoints)+1)
68 result, _ = self.add_op(self, ~0, carry=z) # TODO, subop
69 return result
70
71 # binary ops that don't require partitioning
72
73 def __and__(self, other):
74 return applyop(self, other, and_)
75
76 def __rand__(self, other):
77 return applyop(other, self, and_)
78
79 def __or__(self, other):
80 return applyop(self, other, or_)
81
82 def __ror__(self, other):
83 return applyop(other, self, or_)
84
85 def __xor__(self, other):
86 return applyop(self, other, xor)
87
88 def __rxor__(self, other):
89 return applyop(other, self, xor)
90
91 # binary ops that need partitioning
92
93 # TODO: detect if the 2nd operand is a Const, a Signal or a
94 # PartitionedSignal. if it's a Const or a Signal, a global shift
95 # can occur. if it's a PartitionedSignal, that's much more interesting.
96 def ls_op(self, op1, op2, carry, shr_flag=0):
97 op1 = getsig(op1)
98 if isinstance(op2, Const) or isinstance(op2, Signal):
99 scalar = True
100 shape = op1.shape()
101 pa = PartitionedScalarShift(shape[0], self.partpoints)
102 else:
103 scalar = False
104 op2 = getsig(op2)
105 shape = op1.shape()
106 pa = PartitionedDynamicShift(shape[0], self.partpoints)
107 setattr(self.m.submodules, self.get_modname('ls'), pa)
108 comb = self.m.d.comb
109 if scalar:
110 comb += pa.data.eq(op1)
111 comb += pa.shifter.eq(op2)
112 comb += pa.shift_right.eq(shr_flag)
113 else:
114 comb += pa.a.eq(op1)
115 comb += pa.b.eq(op2)
116 comb += pa.shift_right.eq(shr_flag)
117 # XXX TODO: carry-in, carry-out
118 #comb += pa.carry_in.eq(carry)
119 return (pa.output, 0)
120
121 def __lshift__(self, other):
122 z = Const(0, len(self.partpoints)+1)
123 result, _ = self.ls_op(self, other, carry=z) # TODO, carry
124 return result
125
126 def __rlshift__(self, other):
127 raise NotImplementedError
128 return Operator("<<", [other, self])
129
130 def __rshift__(self, other):
131 z = Const(0, len(self.partpoints)+1)
132 result, _ = self.ls_op(self, other, carry=z, shr_flag=1) # TODO, carry
133 return result
134
135 def __rrshift__(self, other):
136 raise NotImplementedError
137 return Operator(">>", [other, self])
138
139 def add_op(self, op1, op2, carry):
140 op1 = getsig(op1)
141 op2 = getsig(op2)
142 shape = op1.shape()
143 pa = PartitionedAdder(shape[0], self.partpoints)
144 setattr(self.m.submodules, self.get_modname('add'), pa)
145 comb = self.m.d.comb
146 comb += pa.a.eq(op1)
147 comb += pa.b.eq(op2)
148 comb += pa.carry_in.eq(carry)
149 return (pa.output, pa.carry_out)
150
151 def sub_op(self, op1, op2, carry=~0):
152 op1 = getsig(op1)
153 op2 = getsig(op2)
154 shape = op1.shape()
155 pa = PartitionedAdder(shape[0], self.partpoints)
156 setattr(self.m.submodules, self.get_modname('add'), pa)
157 comb = self.m.d.comb
158 comb += pa.a.eq(op1)
159 comb += pa.b.eq(~op2)
160 comb += pa.carry_in.eq(carry)
161 return (pa.output, pa.carry_out)
162
163 def __add__(self, other):
164 result, _ = self.add_op(self, other, carry=0)
165 return result
166
167 def __radd__(self, other):
168 result, _ = self.add_op(other, self)
169 return result
170
171 def __sub__(self, other):
172 result, _ = self.sub_op(self, other)
173 return result
174
175 def __rsub__(self, other):
176 result, _ = self.sub_op(other, self)
177 return result
178
179 def __mul__(self, other):
180 return Operator("*", [self, other])
181
182 def __rmul__(self, other):
183 return Operator("*", [other, self])
184
185 def __check_divisor(self):
186 width, signed = self.shape()
187 if signed:
188 # Python's division semantics and Verilog's division semantics
189 # differ for negative divisors (Python uses div/mod, Verilog
190 # uses quo/rem); for now, avoid the issue
191 # completely by prohibiting such division operations.
192 raise NotImplementedError(
193 "Division by a signed value is not supported")
194
195 def __mod__(self, other):
196 raise NotImplementedError
197 other = Value.cast(other)
198 other.__check_divisor()
199 return Operator("%", [self, other])
200
201 def __rmod__(self, other):
202 raise NotImplementedError
203 self.__check_divisor()
204 return Operator("%", [other, self])
205
206 def __floordiv__(self, other):
207 raise NotImplementedError
208 other = Value.cast(other)
209 other.__check_divisor()
210 return Operator("//", [self, other])
211
212 def __rfloordiv__(self, other):
213 raise NotImplementedError
214 self.__check_divisor()
215 return Operator("//", [other, self])
216
217 # binary comparison ops that need partitioning
218
219 def _compare(self, width, op1, op2, opname, optype):
220 # print (opname, op1, op2)
221 pa = PartitionedEqGtGe(width, self.partpoints)
222 setattr(self.m.submodules, self.get_modname(opname), pa)
223 comb = self.m.d.comb
224 comb += pa.opcode.eq(optype) # set opcode
225 if isinstance(op1, PartitionedSignal):
226 comb += pa.a.eq(op1.sig)
227 else:
228 comb += pa.a.eq(op1)
229 if isinstance(op2, PartitionedSignal):
230 comb += pa.b.eq(op2.sig)
231 else:
232 comb += pa.b.eq(op2)
233 return pa.output
234
235 def __eq__(self, other):
236 width = self.sig.shape()[0]
237 return self._compare(width, self, other, "eq", PartitionedEqGtGe.EQ)
238
239 def __ne__(self, other):
240 width = self.sig.shape()[0]
241 eq = self._compare(width, self, other, "eq", PartitionedEqGtGe.EQ)
242 ne = Signal(eq.width)
243 self.m.d.comb += ne.eq(~eq)
244 return ne
245
246 def __gt__(self, other):
247 width = self.sig.shape()[0]
248 return self._compare(width, self, other, "gt", PartitionedEqGtGe.GT)
249
250 def __lt__(self, other):
251 width = self.sig.shape()[0]
252 return self._compare(width, other, self, "gt", PartitionedEqGtGe.GT)
253
254 def __ge__(self, other):
255 width = self.sig.shape()[0]
256 return self._compare(width, self, other, "ge", PartitionedEqGtGe.GE)
257
258 def __le__(self, other):
259 width = self.sig.shape()[0]
260 return self._compare(width, other, self, "ge", PartitionedEqGtGe.GE)
261
262 # useful operators
263
264 def bool(self):
265 """Conversion to boolean.
266
267 Returns
268 -------
269 Value, out
270 ``1`` if any bits are set, ``0`` otherwise.
271 """
272 raise NotImplementedError
273 return Operator("b", [self])
274
275 def any(self):
276 """Check if any bits are ``1``.
277
278 Returns
279 -------
280 Value, out
281 ``1`` if any bits are set, ``0`` otherwise.
282 """
283 raise NotImplementedError
284 return Operator("r|", [self])
285
286 def all(self):
287 """Check if all bits are ``1``.
288
289 Returns
290 -------
291 Value, out
292 ``1`` if all bits are set, ``0`` otherwise.
293 """
294 raise NotImplementedError
295 return Operator("r&", [self])
296
297 def xor(self):
298 """Compute pairwise exclusive-or of every bit.
299
300 Returns
301 -------
302 Value, out
303 ``1`` if an odd number of bits are set, ``0`` if an
304 even number of bits are set.
305 """
306 # XXXX TODO: return partition-mask-sized set of bits
307 raise NotImplementedError
308 return Operator("r^", [self])
309
310 def implies(premise, conclusion):
311 """Implication.
312
313 Returns
314 -------
315 Value, out
316 ``0`` if ``premise`` is true and ``conclusion`` is not,
317 ``1`` otherwise.
318 """
319 # amazingly, this should actually work.
320 return ~premise | conclusion