minor codeshuffle, split out check of PartitionedSignal check,
[ieee754fpu.git] / src / ieee754 / part / partsig.py
1 # SPDX-License-Identifier: LGPL-2.1-or-later
2 # See Notices.txt for copyright information
3
4 """
5 Copyright (C) 2020 Luke Kenneth Casson Leighton <lkcl@lkcl.net>
6
7 dynamic-partitionable class similar to Signal, which, when the partition
8 is fully open will be identical to Signal. when partitions are closed,
9 the class turns into a SIMD variant of Signal. *this is dynamic*.
10
11 the basic fundamental idea is: write code once, and if you want a SIMD
12 version of it, use PartitionedSignal in place of Signal. job done.
13 this however requires the code to *not* be designed to use nmigen.If,
14 nmigen.Case, or other constructs: only Mux and other logic.
15
16 * http://bugs.libre-riscv.org/show_bug.cgi?id=132
17 """
18
19 from ieee754.part_mul_add.adder import PartitionedAdder
20 #from ieee754.part_cmp.equal_ortree import PartitionedEq
21 from ieee754.part_cmp.eq_gt_ge import PartitionedEqGtGe
22 from ieee754.part_mul_add.partpoints import make_partition
23 from operator import or_, xor, and_, not_
24
25 from nmigen import (Signal,
26 )
27
28 def getsig(op1):
29 if isinstance(op1, PartitionedSignal):
30 op1 = op1.sig
31 return op1
32
33 def applyop(op1, op2, op):
34 return op(getsig(op1), getsig(op2))
35
36
37 class PartitionedSignal:
38 def __init__(self, mask, *args, **kwargs):
39 self.sig = Signal(*args, **kwargs)
40 width = self.sig.shape()[0] # get signal width
41 self.partpoints = make_partition(mask, width) # create partition points
42 self.modnames = {}
43 for name in ['add', 'eq', 'gt', 'ge']:
44 self.modnames[name] = 0
45
46 def set_module(self, m):
47 self.m = m
48
49 def get_modname(self, category):
50 self.modnames[category] += 1
51 return "%s%d" % (category, self.modnames[category])
52
53 def eq(self, val):
54 return self.sig.eq(getsig(val))
55
56 # unary ops that do not require partitioning
57
58 def __invert__(self):
59 return ~self.sig
60
61 # unary ops that require partitioning
62
63 def __neg__(self):
64 # TODO use PartitionedAdder for this, with a "neg" mode?
65 return Operator("-", [self])
66
67 # binary ops that don't require partitioning
68
69 def __and__(self, other):
70 return applyop(self, other, and_)
71
72 def __rand__(self, other):
73 return applyop(other, self, and_)
74
75 def __or__(self, other):
76 return applyop(self, other, or_)
77
78 def __ror__(self, other):
79 return applyop(other, self, or_)
80
81 def __xor__(self, other):
82 return applyop(self, other, xor)
83
84 def __rxor__(self, other):
85 return applyop(other, self, xor)
86
87 # binary ops that need partitioning
88
89 # TODO: detect if the 2nd operand is a Const, a Signal or a
90 # PartitionedSignal. if it's a Const or a Signal, a global shift
91 # can occur. if it's a PartitionedSignal, that's much more interesting.
92 def __lshift__(self, other):
93 return Operator("<<", [self, other])
94 def __rlshift__(self, other):
95 return Operator("<<", [other, self])
96 def __rshift__(self, other):
97 return Operator(">>", [self, other])
98 def __rrshift__(self, other):
99 return Operator(">>", [other, self])
100
101 def add_op(self, op1, op2):
102 op1 = getsig(op1)
103 op2 = getsig(op2)
104 shape = op1.shape()
105 pa = PartitionedAdder(shape[0], self.partpoints)
106 setattr(self.m.submodules, self.get_modname('add'), pa)
107 comb = self.m.d.comb
108 comb += pa.a.eq(op1)
109 comb += pa.b.eq(op2)
110 return pa.output
111
112 def __add__(self, other):
113 return self.add_op(self, other)
114
115 def __radd__(self, other):
116 return self.add_op(other, self)
117
118 def __sub__(self, other):
119 return self.sub_op(self, other) # TODO, subop
120 def __rsub__(self, other):
121 return self.sub_op(other, self) # TODO, subop
122
123 def __mul__(self, other):
124 return Operator("*", [self, other])
125 def __rmul__(self, other):
126 return Operator("*", [other, self])
127
128 def __check_divisor(self):
129 width, signed = self.shape()
130 if signed:
131 # Python's division semantics and Verilog's division semantics
132 # differ for negative divisors (Python uses div/mod, Verilog
133 # uses quo/rem); for now, avoid the issue
134 # completely by prohibiting such division operations.
135 raise NotImplementedError(
136 "Division by a signed value is not supported")
137 def __mod__(self, other):
138 other = Value.cast(other)
139 other.__check_divisor()
140 return Operator("%", [self, other])
141 def __rmod__(self, other):
142 self.__check_divisor()
143 return Operator("%", [other, self])
144 def __floordiv__(self, other):
145 other = Value.cast(other)
146 other.__check_divisor()
147 return Operator("//", [self, other])
148 def __rfloordiv__(self, other):
149 self.__check_divisor()
150 return Operator("//", [other, self])
151
152 def __lshift__(self, other):
153 return Operator("<<", [self, other])
154 def __rlshift__(self, other):
155 return Operator("<<", [other, self])
156 def __rshift__(self, other):
157 return Operator(">>", [self, other])
158
159 # binary comparison ops that need partitioning
160
161 def _compare(self, width, op1, op2, opname, optype):
162 #print (opname, op1, op2)
163 pa = PartitionedEqGtGe(width, self.partpoints)
164 setattr(self.m.submodules, self.get_modname(opname), pa)
165 comb = self.m.d.comb
166 comb += pa.opcode.eq(optype) # set opcode
167 if isinstance(op1, PartitionedSignal):
168 comb += pa.a.eq(op1.sig)
169 else:
170 comb += pa.a.eq(op1)
171 if isinstance(op2, PartitionedSignal):
172 comb += pa.b.eq(op2.sig)
173 else:
174 comb += pa.b.eq(op2)
175 return pa.output
176
177 def __eq__(self, other):
178 width = self.sig.shape()[0]
179 return self._compare(width, self, other, "eq", PartitionedEqGtGe.EQ)
180
181 def __ne__(self, other):
182 width = self.sig.shape()[0]
183 eq = self._compare(width, self, other, "eq", PartitionedEqGtGe.EQ)
184 ne = Signal(eq.width)
185 self.m.d.comb += ne.eq(~eq)
186 return ne
187
188 def __gt__(self, other):
189 width = self.sig.shape()[0]
190 return self._compare(width, self, other, "gt", PartitionedEqGtGe.GT)
191
192 def __lt__(self, other):
193 width = self.sig.shape()[0]
194 return self._compare(width, other, self, "gt", PartitionedEqGtGe.GT)
195
196 def __ge__(self, other):
197 width = self.sig.shape()[0]
198 return self._compare(width, self, other, "ge", PartitionedEqGtGe.GE)
199
200 def __le__(self, other):
201 width = self.sig.shape()[0]
202 return self._compare(width, other, self, "ge", PartitionedEqGtGe.GE)
203
204 # useful operators
205
206 def bool(self):
207 """Conversion to boolean.
208
209 Returns
210 -------
211 Value, out
212 ``1`` if any bits are set, ``0`` otherwise.
213 """
214 return Operator("b", [self])
215
216 def any(self):
217 """Check if any bits are ``1``.
218
219 Returns
220 -------
221 Value, out
222 ``1`` if any bits are set, ``0`` otherwise.
223 """
224 return Operator("r|", [self])
225
226 def all(self):
227 """Check if all bits are ``1``.
228
229 Returns
230 -------
231 Value, out
232 ``1`` if all bits are set, ``0`` otherwise.
233 """
234 return Operator("r&", [self])
235
236 def xor(self):
237 """Compute pairwise exclusive-or of every bit.
238
239 Returns
240 -------
241 Value, out
242 ``1`` if an odd number of bits are set, ``0`` if an
243 even number of bits are set.
244 """
245 return Operator("r^", [self])
246
247 def implies(premise, conclusion):
248 """Implication.
249
250 Returns
251 -------
252 Value, out
253 ``0`` if ``premise`` is true and ``conclusion`` is not,
254 ``1`` otherwise.
255 """
256 return ~premise | conclusion
257
258