refer to signals directly in Test Core
[soc.git] / src / soc / simple / test / test_core.py
1 """simple core test
2
3 related bugs:
4
5 * https://bugs.libre-soc.org/show_bug.cgi?id=363
6 """
7 from nmigen import Module, Signal, Cat
8 from nmigen.back.pysim import Simulator, Delay, Settle
9 from nmutil.formaltest import FHDLTestCase
10 from nmigen.cli import rtlil
11 import unittest
12 from soc.decoder.isa.caller import special_sprs
13 from soc.decoder.power_decoder import create_pdecode
14 from soc.decoder.power_decoder2 import PowerDecode2
15 from soc.decoder.isa.all import ISA
16 from soc.decoder.power_enums import Function, XER_bits
17
18
19 from soc.simple.core import NonProductionCore
20 from soc.experiment.compalu_multi import find_ok # hack
21
22 from soc.fu.compunits.test.test_compunit import (setup_test_memory,
23 check_sim_memory)
24
25 # test with ALU data and Logical data
26 from soc.fu.alu.test.test_pipe_caller import ALUTestCase
27 from soc.fu.logical.test.test_pipe_caller import LogicalTestCase
28 from soc.fu.shift_rot.test.test_pipe_caller import ShiftRotTestCase
29 from soc.fu.cr.test.test_pipe_caller import CRTestCase
30 from soc.fu.branch.test.test_pipe_caller import BranchTestCase
31 from soc.fu.ldst.test.test_pipe_caller import LDSTTestCase
32
33
34 def set_issue(core, dec2, sim):
35 yield core.issue_i.eq(1)
36 yield
37 yield core.issue_i.eq(0)
38 while True:
39 busy_o = yield core.busy_o
40 if busy_o:
41 break
42 print("!busy",)
43 yield
44
45
46 def wait_for_busy_clear(cu):
47 while True:
48 busy_o = yield cu.busy_o
49 if not busy_o:
50 break
51 print("busy",)
52 yield
53
54
55 class TestRunner(FHDLTestCase):
56 def __init__(self, tst_data):
57 super().__init__("run_all")
58 self.test_data = tst_data
59
60 def run_all(self):
61 m = Module()
62 comb = m.d.comb
63 instruction = Signal(32)
64 ivalid_i = Signal()
65
66 m.submodules.core = core = NonProductionCore()
67 pdecode = core.pdecode
68 pdecode2 = core.pdecode2
69 l0 = core.l0
70
71 comb += core.raw_opcode_i.eq(instruction)
72 comb += core.ivalid_i.eq(ivalid_i)
73
74 # temporary hack: says "go" immediately for both address gen and ST
75 ldst = core.fus.fus['ldst0']
76 m.d.comb += ldst.ad.go.eq(ldst.ad.rel) # link addr-go direct to rel
77 m.d.comb += ldst.st.go.eq(ldst.st.rel) # link store-go direct to rel
78
79 # nmigen Simulation
80 sim = Simulator(m)
81 sim.add_clock(1e-6)
82
83 def process():
84 yield core.issue_i.eq(0)
85 yield
86
87 for test in self.test_data:
88 print(test.name)
89 program = test.program
90 self.subTest(test.name)
91 sim = ISA(pdecode2, test.regs, test.sprs, test.cr, test.mem,
92 test.msr)
93 gen = program.generate_instructions()
94 instructions = list(zip(gen, program.assembly.splitlines()))
95
96 yield from setup_test_memory(l0, sim)
97
98 # set up INT regfile, "direct" write (bypass rd/write ports)
99 for i in range(32):
100 yield core.regs.int.regs[i].reg.eq(test.regs[i])
101
102 # set up CR regfile, "direct" write across all CRs
103 cr = test.cr
104 #cr = int('{:32b}'.format(cr)[::-1], 2)
105 print ("cr reg", hex(cr))
106 for i in range(8):
107 #j = 7-i
108 cri = (cr>>(i*4)) & 0xf
109 #cri = int('{:04b}'.format(cri)[::-1], 2)
110 print ("cr reg", hex(cri), i,
111 core.regs.cr.regs[i].reg.shape())
112 yield core.regs.cr.regs[i].reg.eq(cri)
113
114 # set up XER. "direct" write (bypass rd/write ports)
115 xregs = core.regs.xer
116 print ("sprs", test.sprs)
117 if special_sprs['XER'] in test.sprs:
118 xer = test.sprs[special_sprs['XER']]
119 sobit = xer[XER_bits['SO']].value
120 yield xregs.regs[xregs.SO].reg.eq(sobit)
121 cabit = xer[XER_bits['CA']].value
122 ca32bit = xer[XER_bits['CA32']].value
123 yield xregs.regs[xregs.CA].reg.eq(Cat(cabit, ca32bit))
124 ovbit = xer[XER_bits['OV']].value
125 ov32bit = xer[XER_bits['OV32']].value
126 yield xregs.regs[xregs.OV].reg.eq(Cat(ovbit, ov32bit))
127 else:
128 yield xregs.regs[xregs.SO].reg.eq(0)
129 yield xregs.regs[xregs.OV].reg.eq(0)
130 yield xregs.regs[xregs.CA].reg.eq(0)
131
132 index = sim.pc.CIA.value//4
133 while index < len(instructions):
134 ins, code = instructions[index]
135
136 print("instruction: 0x{:X}".format(ins & 0xffffffff))
137 print(code)
138
139 # ask the decoder to decode this binary data (endian'd)
140 yield core.bigendian_i.eq(0) # little / big?
141 yield instruction.eq(ins) # raw binary instr.
142 yield ivalid_i.eq(1)
143 yield Settle()
144 #fn_unit = yield pdecode2.e.fn_unit
145 #fuval = self.funit.value
146 #self.assertEqual(fn_unit & fuval, fuval)
147
148 # XER
149 so = yield xregs.regs[xregs.SO].reg
150 ov = yield xregs.regs[xregs.OV].reg
151 ca = yield xregs.regs[xregs.CA].reg
152 oe = yield pdecode2.e.oe.oe
153 oe_ok = yield pdecode2.e.oe.oe_ok
154
155 print ("before: so/ov-32/ca-32", so, bin(ov), bin(ca))
156 print ("oe:", oe, oe_ok)
157
158 # set operand and get inputs
159 yield from set_issue(core, pdecode2, sim)
160 yield Settle()
161
162 yield from wait_for_busy_clear(core)
163 yield ivalid_i.eq(0)
164 yield
165
166 print ("sim", code)
167 # call simulated operation
168 opname = code.split(' ')[0]
169 yield from sim.call(opname)
170 index = sim.pc.CIA.value//4
171
172 # int regs
173 intregs = []
174 for i in range(32):
175 rval = yield core.regs.int.regs[i].reg
176 intregs.append(rval)
177 print ("int regs", list(map(hex, intregs)))
178 for i in range(32):
179 simregval = sim.gpr[i].asint()
180 self.assertEqual(simregval, intregs[i],
181 "int reg %d not equal %s" % (i, repr(code)))
182
183 # CRs
184 crregs = []
185 for i in range(8):
186 rval = yield core.regs.cr.regs[i].reg
187 crregs.append(rval)
188 print ("cr regs", list(map(hex, crregs)))
189 print ("sim cr reg", hex(cr))
190 for i in range(8):
191 rval = crregs[i]
192 cri = sim.crl[7-i].get_range().value
193 print ("cr reg", i, hex(cri), i, hex(rval))
194 # XXX https://bugs.libre-soc.org/show_bug.cgi?id=363
195 self.assertEqual(cri, rval,
196 "cr reg %d not equal %s" % (i, repr(code)))
197
198 # XER
199 so = yield xregs.regs[xregs.SO].reg
200 ov = yield xregs.regs[xregs.OV].reg
201 ca = yield xregs.regs[xregs.CA].reg
202
203 print ("sim SO", sim.spr['XER'][XER_bits['SO']])
204 e_so = sim.spr['XER'][XER_bits['SO']].value
205 e_ov = sim.spr['XER'][XER_bits['OV']].value
206 e_ov32 = sim.spr['XER'][XER_bits['OV32']].value
207 e_ca = sim.spr['XER'][XER_bits['CA']].value
208 e_ca32 = sim.spr['XER'][XER_bits['CA32']].value
209
210 e_ov = e_ov | (e_ov32<<1)
211 e_ca = e_ca | (e_ca32<<1)
212
213 print ("after: so/ov-32/ca-32", so, bin(ov), bin(ca))
214 self.assertEqual(e_so, so, "so mismatch %s" % (repr(code)))
215 self.assertEqual(e_ov, ov, "ov mismatch %s" % (repr(code)))
216 self.assertEqual(e_ca, ca, "ca mismatch %s" % (repr(code)))
217
218 # Memory check
219 yield from check_sim_memory(self, l0, sim, code)
220
221 sim.add_sync_process(process)
222 with sim.write_vcd("core_simulator.vcd", "core_simulator.gtkw",
223 traces=[]):
224 sim.run()
225
226
227 if __name__ == "__main__":
228 unittest.main(exit=False)
229 suite = unittest.TestSuite()
230 suite.addTest(TestRunner(LDSTTestCase.test_data))
231 suite.addTest(TestRunner(CRTestCase.test_data))
232 suite.addTest(TestRunner(ShiftRotTestCase.test_data))
233 suite.addTest(TestRunner(LogicalTestCase.test_data))
234 suite.addTest(TestRunner(ALUTestCase.test_data))
235 suite.addTest(TestRunner(BranchTestCase.test_data))
236
237 runner = unittest.TextTestRunner()
238 runner.run(suite)
239