sorting out qemu co-simulation to read/write FP regs
[openpower-isa.git] / src / openpower / decoder / helpers.py
1 import unittest
2 import struct
3 from openpower.decoder.selectable_int import (SelectableInt, onebit,
4 selectconcat)
5 from nmutil.divmod import trunc_divs, trunc_rems
6 from operator import floordiv, mod
7 from openpower.decoder.selectable_int import selectltu as ltu
8 from openpower.decoder.selectable_int import selectgtu as gtu
9 from openpower.decoder.selectable_int import check_extsign
10
11 from openpower.util import log
12
13 trunc_div = floordiv
14 trunc_rem = mod
15 DIVS = trunc_divs
16 MODS = trunc_rems
17
18 """
19 Links:
20 * https://bugs.libre-soc.org/show_bug.cgi?id=324 - add trunc_div and trunc_rem
21 """
22
23
24 def exts(value, bits):
25 sign = 1 << (bits - 1)
26 return (value & (sign - 1)) - (value & sign)
27
28
29 def EXTS(value):
30 """ extends sign bit out from current MSB to all 256 bits
31 """
32 log ("EXTS", value, type(value))
33 assert isinstance(value, SelectableInt)
34 return SelectableInt(exts(value.value, value.bits) & ((1 << 256)-1), 256)
35
36
37 def EXTS64(value):
38 """ extends sign bit out from current MSB to 64 bits
39 """
40 assert isinstance(value, SelectableInt)
41 return SelectableInt(exts(value.value, value.bits) & ((1 << 64)-1), 64)
42
43
44 def EXTS128(value):
45 """ extends sign bit out from current MSB to 128 bits
46 """
47 assert isinstance(value, SelectableInt)
48 return SelectableInt(exts(value.value, value.bits) & ((1 << 128)-1), 128)
49
50
51 # signed version of MUL
52 def MULS(a, b):
53 if isinstance(b, int):
54 b = SelectableInt(b, self.bits)
55 b = check_extsign(a, b)
56 a_s = a.value & (1 << (a.bits-1)) != 0
57 b_s = b.value & (1 << (b.bits-1)) != 0
58 result = abs(a) * abs(b)
59 log("MULS", result, a_s, b_s)
60 if a_s == b_s:
61 return result
62 return -result
63
64
65 # XXX should this explicitly extend from 32 to 64?
66 def EXTZ64(value):
67 if isinstance(value, SelectableInt):
68 value = value.value
69 return SelectableInt(value & ((1 << 32)-1), 64)
70
71
72 def rotl(value, bits, wordlen):
73 if isinstance(bits, SelectableInt):
74 bits = bits.value
75 mask = (1 << wordlen) - 1
76 bits = bits & (wordlen - 1)
77 return ((value << bits) | (value >> (wordlen-bits))) & mask
78
79
80 def ROTL64(value, bits):
81 return rotl(value, bits, 64)
82
83
84 def ROTL32(value, bits):
85 if isinstance(bits, SelectableInt):
86 bits = bits.value
87 if isinstance(value, SelectableInt):
88 value = SelectableInt(value.value, 64)
89 return rotl(value | (value << 32), bits, 64)
90
91 def MASK32(x, y):
92 if isinstance(x, SelectableInt):
93 x = x.value
94 if isinstance(y, SelectableInt):
95 y = y.value
96 return MASK(x+32, y+32)
97
98 def MASK(x, y):
99 if isinstance(x, SelectableInt):
100 x = x.value
101 if isinstance(y, SelectableInt):
102 y = y.value
103 if x < y:
104 x = 64-x
105 y = 63-y
106 mask_a = ((1 << x) - 1) & ((1 << 64) - 1)
107 mask_b = ((1 << y) - 1) & ((1 << 64) - 1)
108 elif x == y:
109 return 1 << (63-x)
110 else:
111 x = 64-x
112 y = 63-y
113 mask_a = ((1 << x) - 1) & ((1 << 64) - 1)
114 mask_b = (~((1 << y) - 1)) & ((1 << 64) - 1)
115 return mask_a ^ mask_b
116
117
118 def ne(a, b):
119 return onebit(a != b)
120
121
122 def eq(a, b):
123 return onebit(a == b)
124
125
126 def gt(a, b):
127 return onebit(a > b)
128
129
130 def ge(a, b):
131 return onebit(a >= b)
132
133
134 def lt(a, b):
135 return onebit(a < b)
136
137
138 def le(a, b):
139 return onebit(a <= b)
140
141
142 def length(a):
143 return len(a)
144
145
146 def undefined(v):
147 """ function that, for Power spec purposes, returns undefined bits of
148 the same shape as the input bits. however, for purposes of matching
149 POWER9's behavior returns the input bits unchanged. this effectively
150 "marks" (tags) locations in the v3.0B spec that need to be submitted
151 for clarification.
152 """
153 return v
154
155 def DOUBLE(WORD):
156 """convert incoming WORD to double. v3.0B p140 section 4.6.2
157 """
158 # result, FRT, start off all zeros
159 log ("WORD", WORD)
160 FRT = SelectableInt(0, 64)
161 z1 = SelectableInt(0, 1)
162 z29 = SelectableInt(0, 29)
163 e = WORD[1:9]
164 m = WORD[9:32]
165 s = WORD[0]
166 log ("word s e m", s, e, m)
167
168 # Normalized Operand
169 if e.value > 0 and e.value < 255:
170 log ("normalised")
171 FRT[0:2] = WORD[0:2]
172 FRT[2] = ~WORD[1]
173 FRT[3] = ~WORD[1]
174 FRT[4] = ~WORD[1]
175 FRT[5:64] = selectconcat(WORD[2:32], z29)
176
177 # Denormalized Operand
178 if e.value == 0 and m.value != 0:
179 log ("denormalised")
180 sign = WORD[0]
181 exp = -126
182 frac = selectconcat(z1, WORD[9:32], z29)
183 # normalize the operand
184 while frac[0].value == 0:
185 frac[0:53] = selectconcat(frac[1:53], z1)
186 exp = exp - 1
187 FRT[0] = sign
188 FRT[1:12] = exp + 1023
189 FRT[12:64] = frac[1:53]
190
191 # Zero / Infinity / NaN
192 if e.value == 255 or m.value == 0:
193 log ("z/inf/nan")
194 FRT[0:2] = WORD[0:2]
195 FRT[2] = WORD[1]
196 FRT[3] = WORD[1]
197 FRT[4] = WORD[1]
198 FRT[5:64] = selectconcat(WORD[2:32], z29)
199
200 log ("Double s e m", FRT[0].value, FRT[1:12].value-1023,
201 FRT[12:64].value)
202
203 return FRT
204
205
206 def SINGLE(FRS):
207 """convert incoming FRS into 32-bit word. v3.0B p144 section 4.6.3
208 """
209 # result - WORD - start off all zeros
210 WORD = SelectableInt(0, 32)
211
212 e = FRS[1:12]
213 m = FRS[12:64]
214 s = FRS[0]
215
216 log ("SINGLE", FRS)
217 log ("s e m", s.value, e.value, m.value)
218
219 #No Denormalization Required (includes Zero / Infinity / NaN)
220 if e.value > 896 or FRS[1:64].value == 0:
221 log("nodenorm", FRS[0:2].value, hex(FRS[5:35].value))
222 WORD[0:2] = FRS[0:2]
223 WORD[2:32] = FRS[5:35]
224
225 #Denormalization Required
226 if e.value >= 874 and e.value <= 896:
227 sign = FRS[0]
228 exp = e.value - 1023
229 frac = selectconcat(SelectableInt(1, 1), FRS[12:64])
230 log("exp, fract", exp, hex(frac.value))
231 # denormalize operand
232 while exp < -126:
233 frac[0:53] = selectconcat(SelectableInt(0, 1), frac[0:52])
234 exp = exp + 1
235 WORD[0] = sign
236 WORD[1:9] = SelectableInt(0, 8)
237 WORD[9:32] = frac[1:24]
238 #else WORD = undefined # return zeros
239
240 log ("WORD", WORD)
241
242 return WORD
243
244 # XXX NOTE: these are very quick hacked functions for utterly basic
245 # FP support
246
247 def fp64toselectable(frt):
248 """convert FP number to 64 bit SelectableInt
249 """
250 b = struct.pack(">d", frt)
251 val = int.from_bytes(b, byteorder='big', signed=False)
252 return SelectableInt(val, 64)
253
254
255 def FPADD32(FRA, FRB):
256 FRA = DOUBLE(SINGLE(FRA))
257 FRB = DOUBLE(SINGLE(FRB))
258 result = float(FRA) + float(FRB)
259 cvt = fp64toselectable(result)
260 cvt = DOUBLE(SINGLE(cvt))
261 log ("FPADD32", FRA, FRB, result, cvt)
262 return cvt
263
264
265 def FPSUB32(FRA, FRB):
266 FRA = DOUBLE(SINGLE(FRA))
267 FRB = DOUBLE(SINGLE(FRB))
268 result = float(FRA) - float(FRB)
269 cvt = fp64toselectable(result)
270 cvt = DOUBLE(SINGLE(cvt))
271 log ("FPSUB32", FRA, FRB, result, cvt)
272 return cvt
273
274
275 def FPMUL32(FRA, FRB):
276 FRA = DOUBLE(SINGLE(FRA))
277 FRB = DOUBLE(SINGLE(FRB))
278 result = float(FRA) * float(FRB)
279 cvt = fp64toselectable(result)
280 cvt = DOUBLE(SINGLE(cvt))
281 log ("FPMUL32", FRA, FRB, result, cvt)
282 return cvt
283
284
285 def FPDIV32(FRA, FRB):
286 FRA = DOUBLE(SINGLE(FRA))
287 FRB = DOUBLE(SINGLE(FRB))
288 result = float(FRA) / float(FRB)
289 cvt = fp64toselectable(result)
290 cvt = DOUBLE(SINGLE(cvt))
291 log ("FPDIV32", FRA, FRB, result, cvt)
292 return cvt
293
294
295 def FPADD64(FRA, FRB):
296 result = float(FRA) + float(FRB)
297 cvt = fp64toselectable(result)
298 log ("FPADD64", FRA, FRB, result, cvt)
299 return cvt
300
301
302 def FPSUB64(FRA, FRB):
303 result = float(FRA) - float(FRB)
304 cvt = fp64toselectable(result)
305 log ("FPSUB64", FRA, FRB, result, cvt)
306 return cvt
307
308
309 def FPMUL64(FRA, FRB):
310 result = float(FRA) * float(FRB)
311 cvt = fp64toselectable(result)
312 log ("FPMUL64", FRA, FRB, result, cvt)
313 return cvt
314
315
316 def FPDIV64(FRA, FRB):
317 result = float(FRA) / float(FRB)
318 cvt = fp64toselectable(result)
319 log ("FPDIV64", FRA, FRB, result, cvt)
320 return cvt
321
322
323 # For these tests I tried to find power instructions that would let me
324 # isolate each of these helper operations. So for instance, when I was
325 # testing the MASK() function, I chose rlwinm and rldicl because if I
326 # set the shift equal to 0 and passed in a value of all ones, the
327 # result I got would be exactly the same as the output of MASK()
328
329
330 class HelperTests(unittest.TestCase):
331 def test_MASK(self):
332 # Verified using rlwinm, rldicl, rldicr in qemu
333 # li 1, -1
334 # rlwinm reg, 1, 0, 5, 15
335 self.assertHex(MASK(5+32, 15+32), 0x7ff0000)
336 # rlwinm reg, 1, 0, 15, 5
337 self.assertHex(MASK(15+32, 5+32), 0xfffffffffc01ffff)
338 self.assertHex(MASK(30+32, 2+32), 0xffffffffe0000003)
339 # rldicl reg, 1, 0, 37
340 self.assertHex(MASK(37, 63), 0x7ffffff)
341 self.assertHex(MASK(10, 63), 0x3fffffffffffff)
342 self.assertHex(MASK(58, 63), 0x3f)
343 # rldicr reg, 1, 0, 37
344 self.assertHex(MASK(0, 37), 0xfffffffffc000000)
345 self.assertHex(MASK(0, 10), 0xffe0000000000000)
346 self.assertHex(MASK(0, 58), 0xffffffffffffffe0)
347
348 # li 2, 5
349 # slw 1, 1, 2
350 self.assertHex(MASK(32, 63-5), 0xffffffe0)
351
352 self.assertHex(MASK(32, 33), 0xc0000000)
353 self.assertHex(MASK(32, 32), 0x80000000)
354 self.assertHex(MASK(33, 33), 0x40000000)
355
356 def test_ROTL64(self):
357 # r1 = 0xdeadbeef12345678
358 value = 0xdeadbeef12345678
359
360 # rldicl reg, 1, 10, 0
361 self.assertHex(ROTL64(value, 10), 0xb6fbbc48d159e37a)
362 # rldicl reg, 1, 35, 0
363 self.assertHex(ROTL64(value, 35), 0x91a2b3c6f56df778)
364 self.assertHex(ROTL64(value, 58), 0xe37ab6fbbc48d159)
365 self.assertHex(ROTL64(value, 22), 0xbbc48d159e37ab6f)
366
367 def test_ROTL32(self):
368 # r1 = 0xdeadbeef
369 value = 0xdeadbeef
370
371 # rlwinm reg, 1, 10, 0, 31
372 self.assertHex(ROTL32(value, 10), 0xb6fbbf7a)
373 # rlwinm reg, 1, 17, 0, 31
374 self.assertHex(ROTL32(value, 17), 0x7ddfbd5b)
375 self.assertHex(ROTL32(value, 25), 0xdfbd5b7d)
376 self.assertHex(ROTL32(value, 30), 0xf7ab6fbb)
377
378 def test_EXTS64(self):
379 value_a = SelectableInt(0xdeadbeef, 32) # r1
380 value_b = SelectableInt(0x73123456, 32) # r2
381 value_c = SelectableInt(0x80000000, 32) # r3
382
383 # extswsli reg, 1, 0
384 self.assertHex(EXTS64(value_a), 0xffffffffdeadbeef)
385 # extswsli reg, 2, 0
386 self.assertHex(EXTS64(value_b), SelectableInt(value_b.value, 64))
387 # extswsli reg, 3, 0
388 self.assertHex(EXTS64(value_c), 0xffffffff80000000)
389
390 def test_FPADD32(self):
391 value_a = SelectableInt(0x4014000000000000, 64) # 5.0
392 value_b = SelectableInt(0x403B4CCCCCCCCCCD, 64) # 27.3
393 result = FPADD32(value_a, value_b)
394 self.assertHex(0x4040266666666666, result)
395
396 def assertHex(self, a, b):
397 a_val = a
398 if isinstance(a, SelectableInt):
399 a_val = a.value
400 b_val = b
401 if isinstance(b, SelectableInt):
402 b_val = b.value
403 msg = "{:x} != {:x}".format(a_val, b_val)
404 return self.assertEqual(a, b, msg)
405
406
407 if __name__ == '__main__':
408 log(SelectableInt.__bases__)
409 unittest.main()