update OV and OV32 ISACaller flags if overflow occurs
[soc.git] / src / soc / decoder / isa / caller.py
1 """core of the python-based POWER9 simulator
2
3 this is part of a cycle-accurate POWER9 simulator. its primary purpose is
4 not speed, it is for both learning and educational purposes, as well as
5 a method of verifying the HDL.
6 """
7
8 from functools import wraps
9 from soc.decoder.orderedset import OrderedSet
10 from soc.decoder.selectable_int import (FieldSelectableInt, SelectableInt,
11 selectconcat)
12 from soc.decoder.power_enums import spr_dict, XER_bits, insns, InternalOp
13 from soc.decoder.helpers import exts, trunc_div, trunc_rem
14 from collections import namedtuple
15 import math
16 import sys
17
18 instruction_info = namedtuple('instruction_info',
19 'func read_regs uninit_regs write_regs ' + \
20 'special_regs op_fields form asmregs')
21
22 special_sprs = {
23 'LR': 8,
24 'CTR': 9,
25 'TAR': 815,
26 'XER': 1,
27 'VRSAVE': 256}
28
29
30 def swap_order(x, nbytes):
31 x = x.to_bytes(nbytes, byteorder='little')
32 x = int.from_bytes(x, byteorder='big', signed=False)
33 return x
34
35
36 def create_args(reglist, extra=None):
37 args = OrderedSet()
38 for reg in reglist:
39 args.add(reg)
40 args = list(args)
41 if extra:
42 args = [extra] + args
43 return args
44
45
46 class Mem:
47
48 def __init__(self, row_bytes=8, initial_mem=None):
49 self.mem = {}
50 self.bytes_per_word = row_bytes
51 self.word_log2 = math.ceil(math.log2(row_bytes))
52 print ("Sim-Mem", initial_mem, self.bytes_per_word, self.word_log2)
53 if not initial_mem:
54 return
55
56 # different types of memory data structures recognised (for convenience)
57 if isinstance(initial_mem, list):
58 initial_mem = (0, initial_mem)
59 if isinstance(initial_mem, tuple):
60 startaddr, mem = initial_mem
61 initial_mem = {}
62 for i, val in enumerate(mem):
63 initial_mem[startaddr + row_bytes*i] = (val, row_bytes)
64
65 for addr, (val, width) in initial_mem.items():
66 #val = swap_order(val, width)
67 self.st(addr, val, width, swap=False)
68
69 def _get_shifter_mask(self, wid, remainder):
70 shifter = ((self.bytes_per_word - wid) - remainder) * \
71 8 # bits per byte
72 # XXX https://bugs.libre-soc.org/show_bug.cgi?id=377
73 # BE/LE mode?
74 shifter = remainder * 8
75 mask = (1 << (wid * 8)) - 1
76 print ("width,rem,shift,mask", wid, remainder, hex(shifter), hex(mask))
77 return shifter, mask
78
79 # TODO: Implement ld/st of lesser width
80 def ld(self, address, width=8, swap=True, check_in_mem=False):
81 print("ld from addr 0x{:x} width {:d}".format(address, width))
82 remainder = address & (self.bytes_per_word - 1)
83 address = address >> self.word_log2
84 assert remainder & (width - 1) == 0, "Unaligned access unsupported!"
85 if address in self.mem:
86 val = self.mem[address]
87 elif check_in_mem:
88 return None
89 else:
90 val = 0
91 print("mem @ 0x{:x} rem {:d} : 0x{:x}".format(address, remainder, val))
92
93 if width != self.bytes_per_word:
94 shifter, mask = self._get_shifter_mask(width, remainder)
95 print ("masking", hex(val), hex(mask<<shifter), shifter)
96 val = val & (mask << shifter)
97 val >>= shifter
98 if swap:
99 val = swap_order(val, width)
100 print("Read 0x{:x} from addr 0x{:x}".format(val, address))
101 return val
102
103 def st(self, addr, v, width=8, swap=True):
104 staddr = addr
105 remainder = addr & (self.bytes_per_word - 1)
106 addr = addr >> self.word_log2
107 print("Writing 0x{:x} to ST 0x{:x} memaddr 0x{:x}/{:x}".format(v,
108 staddr, addr, remainder, swap))
109 assert remainder & (width - 1) == 0, "Unaligned access unsupported!"
110 if swap:
111 v = swap_order(v, width)
112 if width != self.bytes_per_word:
113 if addr in self.mem:
114 val = self.mem[addr]
115 else:
116 val = 0
117 shifter, mask = self._get_shifter_mask(width, remainder)
118 val &= ~(mask << shifter)
119 val |= v << shifter
120 self.mem[addr] = val
121 else:
122 self.mem[addr] = v
123 print("mem @ 0x{:x}: 0x{:x}".format(addr, self.mem[addr]))
124
125 def __call__(self, addr, sz):
126 val = self.ld(addr.value, sz)
127 print ("memread", addr, sz, val)
128 return SelectableInt(val, sz*8)
129
130 def memassign(self, addr, sz, val):
131 print ("memassign", addr, sz, val)
132 self.st(addr.value, val.value, sz)
133
134
135 class GPR(dict):
136 def __init__(self, decoder, regfile):
137 dict.__init__(self)
138 self.sd = decoder
139 for i in range(32):
140 self[i] = SelectableInt(regfile[i], 64)
141
142 def __call__(self, ridx):
143 return self[ridx]
144
145 def set_form(self, form):
146 self.form = form
147
148 def getz(self, rnum):
149 #rnum = rnum.value # only SelectableInt allowed
150 print("GPR getzero", rnum)
151 if rnum == 0:
152 return SelectableInt(0, 64)
153 return self[rnum]
154
155 def _get_regnum(self, attr):
156 getform = self.sd.sigforms[self.form]
157 rnum = getattr(getform, attr)
158 return rnum
159
160 def ___getitem__(self, attr):
161 print("GPR getitem", attr)
162 rnum = self._get_regnum(attr)
163 return self.regfile[rnum]
164
165 def dump(self):
166 for i in range(0, len(self), 8):
167 s = []
168 for j in range(8):
169 s.append("%08x" % self[i+j].value)
170 s = ' '.join(s)
171 print("reg", "%2d" % i, s)
172
173 class PC:
174 def __init__(self, pc_init=0):
175 self.CIA = SelectableInt(pc_init, 64)
176 self.NIA = self.CIA + SelectableInt(4, 64)
177
178 def update(self, namespace):
179 self.CIA = namespace['NIA'].narrow(64)
180 self.NIA = self.CIA + SelectableInt(4, 64)
181 namespace['CIA'] = self.CIA
182 namespace['NIA'] = self.NIA
183
184
185 class SPR(dict):
186 def __init__(self, dec2, initial_sprs={}):
187 self.sd = dec2
188 dict.__init__(self)
189 self.update(initial_sprs)
190
191 def __getitem__(self, key):
192 # if key in special_sprs get the special spr, otherwise return key
193 if isinstance(key, SelectableInt):
194 key = key.value
195 key = special_sprs.get(key, key)
196 if key in self:
197 return dict.__getitem__(self, key)
198 else:
199 info = spr_dict[key]
200 dict.__setitem__(self, key, SelectableInt(0, info.length))
201 return dict.__getitem__(self, key)
202
203 def __setitem__(self, key, value):
204 if isinstance(key, SelectableInt):
205 key = key.value
206 key = special_sprs.get(key, key)
207 dict.__setitem__(self, key, value)
208
209 def __call__(self, ridx):
210 return self[ridx]
211
212
213 class ISACaller:
214 # decoder2 - an instance of power_decoder2
215 # regfile - a list of initial values for the registers
216 # initial_{etc} - initial values for SPRs, Condition Register, Mem, MSR
217 # respect_pc - tracks the program counter. requires initial_insns
218 def __init__(self, decoder2, regfile, initial_sprs=None, initial_cr=0,
219 initial_mem=None, initial_msr=0,
220 initial_insns=None, respect_pc=False,
221 disassembly=None):
222
223 self.respect_pc = respect_pc
224 if initial_sprs is None:
225 initial_sprs = {}
226 if initial_mem is None:
227 initial_mem = {}
228 if initial_insns is None:
229 initial_insns = {}
230 assert self.respect_pc == False, "instructions required to honor pc"
231
232 print ("ISACaller insns", respect_pc, initial_insns, disassembly)
233
234 # "fake program counter" mode (for unit testing)
235 self.fake_pc = 0
236 if not respect_pc:
237 if isinstance(initial_mem, tuple):
238 self.fake_pc = initial_mem[0]
239
240 # disassembly: we need this for now (not given from the decoder)
241 self.disassembly = {}
242 if disassembly:
243 for i, code in enumerate(disassembly):
244 self.disassembly[i*4 + self.fake_pc] = code
245
246 # set up registers, instruction memory, data memory, PC, SPRs, MSR
247 self.gpr = GPR(decoder2, regfile)
248 self.mem = Mem(row_bytes=8, initial_mem=initial_mem)
249 self.imem = Mem(row_bytes=4, initial_mem=initial_insns)
250 self.pc = PC()
251 self.spr = SPR(decoder2, initial_sprs)
252 self.msr = SelectableInt(initial_msr, 64) # underlying reg
253
254 # TODO, needed here:
255 # FPR (same as GPR except for FP nums)
256 # 4.2.2 p124 FPSCR (definitely "separate" - not in SPR)
257 # note that mffs, mcrfs, mtfsf "manage" this FPSCR
258 # 2.3.1 CR (and sub-fields CR0..CR6 - CR0 SO comes from XER.SO)
259 # note that mfocrf, mfcr, mtcr, mtocrf, mcrxrx "manage" CRs
260 # -- Done
261 # 2.3.2 LR (actually SPR #8) -- Done
262 # 2.3.3 CTR (actually SPR #9) -- Done
263 # 2.3.4 TAR (actually SPR #815)
264 # 3.2.2 p45 XER (actually SPR #1) -- Done
265 # 3.2.3 p46 p232 VRSAVE (actually SPR #256)
266
267 # create CR then allow portions of it to be "selectable" (below)
268 self._cr = SelectableInt(initial_cr, 64) # underlying reg
269 self.cr = FieldSelectableInt(self._cr, list(range(32,64)))
270
271 # "undefined", just set to variable-bit-width int (use exts "max")
272 self.undefined = SelectableInt(0, 256) # TODO, not hard-code 256!
273
274 self.namespace = {'GPR': self.gpr,
275 'MEM': self.mem,
276 'SPR': self.spr,
277 'memassign': self.memassign,
278 'NIA': self.pc.NIA,
279 'CIA': self.pc.CIA,
280 'CR': self.cr,
281 'MSR': self.msr,
282 'undefined': self.undefined,
283 'mode_is_64bit': True,
284 'SO': XER_bits['SO']
285 }
286
287 # field-selectable versions of Condition Register TODO check bitranges?
288 self.crl = []
289 for i in range(8):
290 bits = tuple(range(i*4, (i+1)*4))# errr... maybe?
291 _cr = FieldSelectableInt(self.cr, bits)
292 self.crl.append(_cr)
293 self.namespace["CR%d" % i] = _cr
294
295 self.decoder = decoder2.dec
296 self.dec2 = decoder2
297
298 def TRAP(self, trap_addr=0x700):
299 print ("TRAP: TODO")
300 #self.namespace['NIA'] = trap_addr
301 #self.SRR0 = self.namespace['CIA'] + 4
302 #self.SRR1 = self.namespace['MSR']
303 #self.namespace['MSR'][45] = 1
304 # store CIA(+4?) in SRR0, set NIA to 0x700
305 # store MSR in SRR1, set MSR to um errr something, have to check spec
306
307 def memassign(self, ea, sz, val):
308 self.mem.memassign(ea, sz, val)
309
310 def prep_namespace(self, formname, op_fields):
311 # TODO: get field names from form in decoder*1* (not decoder2)
312 # decoder2 is hand-created, and decoder1.sigform is auto-generated
313 # from spec
314 # then "yield" fields only from op_fields rather than hard-coded
315 # list, here.
316 fields = self.decoder.sigforms[formname]
317 for name in op_fields:
318 if name == 'spr':
319 sig = getattr(fields, name.upper())
320 else:
321 sig = getattr(fields, name)
322 val = yield sig
323 if name in ['BF', 'BFA']:
324 self.namespace[name] = val
325 else:
326 self.namespace[name] = SelectableInt(val, sig.width)
327
328 self.namespace['XER'] = self.spr['XER']
329 self.namespace['CA'] = self.spr['XER'][XER_bits['CA']].value
330 self.namespace['CA32'] = self.spr['XER'][XER_bits['CA32']].value
331
332 def handle_carry_(self, inputs, outputs, already_done):
333 inv_a = yield self.dec2.e.invert_a
334 if inv_a:
335 inputs[0] = ~inputs[0]
336
337 imm_ok = yield self.dec2.e.imm_data.ok
338 if imm_ok:
339 imm = yield self.dec2.e.imm_data.data
340 inputs.append(SelectableInt(imm, 64))
341 assert len(outputs) >= 1
342 print ("outputs", repr(outputs))
343 if isinstance(outputs, list) or isinstance(outputs, tuple):
344 output = outputs[0]
345 else:
346 output = outputs
347 gts = []
348 for x in inputs:
349 print ("gt input", x, output)
350 gt = (x > output)
351 gts.append(gt)
352 print(gts)
353 cy = 1 if any(gts) else 0
354 if not (1 & already_done):
355 self.spr['XER'][XER_bits['CA']] = cy
356
357 print ("inputs", inputs)
358 # 32 bit carry
359 gts = []
360 for x in inputs:
361 print ("input", x, output)
362 gt = (x[32:64] > output[32:64]) == SelectableInt(1, 1)
363 gts.append(gt)
364 cy32 = 1 if any(gts) else 0
365 if not (2 & already_done):
366 self.spr['XER'][XER_bits['CA32']] = cy32
367
368 def handle_overflow(self, inputs, outputs, div_overflow):
369 inv_a = yield self.dec2.e.invert_a
370 if inv_a:
371 inputs[0] = ~inputs[0]
372
373 imm_ok = yield self.dec2.e.imm_data.ok
374 if imm_ok:
375 imm = yield self.dec2.e.imm_data.data
376 inputs.append(SelectableInt(imm, 64))
377 assert len(outputs) >= 1
378 print ("handle_overflow", inputs, outputs, div_overflow)
379 if len(inputs) < 2 and div_overflow != 1:
380 return
381
382 # div overflow is different: it's returned by the pseudo-code
383 # because it's more complex than can be done by analysing the output
384 if div_overflow == 1:
385 ov, ov32 = 1, 1
386 # arithmetic overflow can be done by analysing the input and output
387 elif len(inputs) >= 2:
388 output = outputs[0]
389
390 # OV (64-bit)
391 input_sgn = [exts(x.value, x.bits) < 0 for x in inputs]
392 output_sgn = exts(output.value, output.bits) < 0
393 ov = 1 if input_sgn[0] == input_sgn[1] and \
394 output_sgn != input_sgn[0] else 0
395
396 # OV (32-bit)
397 input32_sgn = [exts(x.value, 32) < 0 for x in inputs]
398 output32_sgn = exts(output.value, 32) < 0
399 ov32 = 1 if input32_sgn[0] == input32_sgn[1] and \
400 output32_sgn != input32_sgn[0] else 0
401
402 self.spr['XER'][XER_bits['OV']] = ov
403 self.spr['XER'][XER_bits['OV32']] = ov32
404 so = self.spr['XER'][XER_bits['SO']]
405 so = so | ov
406 self.spr['XER'][XER_bits['SO']] = so
407
408 def handle_comparison(self, outputs):
409 out = outputs[0]
410 out = exts(out.value, out.bits)
411 zero = SelectableInt(out == 0, 1)
412 positive = SelectableInt(out > 0, 1)
413 negative = SelectableInt(out < 0, 1)
414 SO = self.spr['XER'][XER_bits['SO']]
415 cr_field = selectconcat(negative, positive, zero, SO)
416 self.crl[0].eq(cr_field)
417
418 def set_pc(self, pc_val):
419 self.namespace['NIA'] = SelectableInt(pc_val, 64)
420 self.pc.update(self.namespace)
421
422 def setup_one(self):
423 """set up one instruction
424 """
425 if self.respect_pc:
426 pc = self.pc.CIA.value
427 else:
428 pc = self.fake_pc
429 self._pc = pc
430 ins = self.imem.ld(pc, 4, False, True)
431 if ins is None:
432 raise KeyError("no instruction at 0x%x" % pc)
433 print("setup: 0x%x 0x%x %s" % (pc, ins & 0xffffffff, bin(ins)))
434 print ("NIA, CIA", self.pc.CIA.value, self.pc.NIA.value)
435
436 yield self.dec2.dec.raw_opcode_in.eq(ins & 0xffffffff)
437 yield self.dec2.dec.bigendian.eq(0) # little / big?
438
439 def execute_one(self):
440 """execute one instruction
441 """
442 # get the disassembly code for this instruction
443 code = self.disassembly[self._pc]
444 print("sim-execute", hex(self._pc), code)
445 opname = code.split(' ')[0]
446 yield from self.call(opname)
447
448 if not self.respect_pc:
449 self.fake_pc += 4
450 print ("NIA, CIA", self.pc.CIA.value, self.pc.NIA.value)
451
452 def get_assembly_name(self):
453 # TODO, asmregs is from the spec, e.g. add RT,RA,RB
454 # see http://bugs.libre-riscv.org/show_bug.cgi?id=282
455 asmcode = yield self.dec2.dec.op.asmcode
456 asmop = insns.get(asmcode, None)
457
458 # sigh reconstruct the assembly instruction name
459 ov_en = yield self.dec2.e.oe.oe
460 ov_ok = yield self.dec2.e.oe.ok
461 if ov_en & ov_ok:
462 asmop += "."
463 lk = yield self.dec2.e.lk
464 if lk:
465 asmop += "l"
466 int_op = yield self.dec2.dec.op.internal_op
467 print ("int_op", int_op)
468 if int_op in [InternalOp.OP_B.value, InternalOp.OP_BC.value]:
469 AA = yield self.dec2.dec.fields.FormI.AA[0:-1]
470 print ("AA", AA)
471 if AA:
472 asmop += "a"
473 if int_op == InternalOp.OP_MFCR.value:
474 dec_insn = yield self.dec2.e.insn
475 if dec_insn & (1<<20) != 0: # sigh
476 asmop = 'mfocrf'
477 else:
478 asmop = 'mfcr'
479 # XXX TODO: for whatever weird reason this doesn't work
480 # https://bugs.libre-soc.org/show_bug.cgi?id=390
481 if int_op == InternalOp.OP_MTCRF.value:
482 dec_insn = yield self.dec2.e.insn
483 if dec_insn & (1<<20) != 0: # sigh
484 asmop = 'mtocrf'
485 else:
486 asmop = 'mtcrf'
487 return asmop
488
489 def call(self, name):
490 # TODO, asmregs is from the spec, e.g. add RT,RA,RB
491 # see http://bugs.libre-riscv.org/show_bug.cgi?id=282
492 asmop = yield from self.get_assembly_name()
493 print ("call", name, asmop)
494 if name not in ['mtcrf', 'mtocrf']:
495 assert name == asmop, "name %s != %s" % (name, asmop)
496
497 info = self.instrs[name]
498 yield from self.prep_namespace(info.form, info.op_fields)
499
500 # preserve order of register names
501 input_names = create_args(list(info.read_regs) + list(info.uninit_regs))
502 print(input_names)
503
504 # main registers (RT, RA ...)
505 inputs = []
506 for name in input_names:
507 regnum = yield getattr(self.decoder, name)
508 regname = "_" + name
509 self.namespace[regname] = regnum
510 print('reading reg %d' % regnum)
511 inputs.append(self.gpr(regnum))
512
513 # "special" registers
514 for special in info.special_regs:
515 if special in special_sprs:
516 inputs.append(self.spr[special])
517 else:
518 inputs.append(self.namespace[special])
519
520 print(inputs)
521 results = info.func(self, *inputs)
522 print(results)
523
524 # detect if CA/CA32 already in outputs (sra*, basically)
525 already_done = 0
526 if info.write_regs:
527 output_names = create_args(info.write_regs)
528 for name in output_names:
529 if name == 'CA':
530 already_done |= 1
531 if name == 'CA32':
532 already_done |= 2
533
534 print ("carry already done?", bin(already_done))
535 carry_en = yield self.dec2.e.output_carry
536 if carry_en:
537 yield from self.handle_carry_(inputs, results, already_done)
538
539 # detect if overflow was in return result
540 overflow = None
541 if info.write_regs:
542 for name, output in zip(output_names, results):
543 if name == 'overflow':
544 overflow = output
545
546 ov_en = yield self.dec2.e.oe.oe
547 ov_ok = yield self.dec2.e.oe.ok
548 print ("internal overflow", overflow)
549 if ov_en & ov_ok:
550 yield from self.handle_overflow(inputs, results, overflow)
551
552 rc_en = yield self.dec2.e.rc.data
553 if rc_en:
554 self.handle_comparison(results)
555
556 # any modified return results?
557 if info.write_regs:
558 for name, output in zip(output_names, results):
559 if name == 'overflow': # ignore, done already (above)
560 continue
561 if isinstance(output, int):
562 output = SelectableInt(output, 256)
563 if name in ['CA', 'CA32']:
564 if carry_en:
565 print ("writing %s to XER" % name, output)
566 self.spr['XER'][XER_bits[name]] = output.value
567 else:
568 print ("NOT writing %s to XER" % name, output)
569 elif name in info.special_regs:
570 print('writing special %s' % name, output, special_sprs)
571 if name in special_sprs:
572 self.spr[name] = output
573 else:
574 self.namespace[name].eq(output)
575 else:
576 regnum = yield getattr(self.decoder, name)
577 print('writing reg %d %s' % (regnum, str(output)))
578 if output.bits > 64:
579 output = SelectableInt(output.value, 64)
580 self.gpr[regnum] = output
581
582 # update program counter
583 self.pc.update(self.namespace)
584
585
586 def inject():
587 """Decorator factory.
588
589 this decorator will "inject" variables into the function's namespace,
590 from the *dictionary* in self.namespace. it therefore becomes possible
591 to make it look like a whole stack of variables which would otherwise
592 need "self." inserted in front of them (*and* for those variables to be
593 added to the instance) "appear" in the function.
594
595 "self.namespace['SI']" for example becomes accessible as just "SI" but
596 *only* inside the function, when decorated.
597 """
598 def variable_injector(func):
599 @wraps(func)
600 def decorator(*args, **kwargs):
601 try:
602 func_globals = func.__globals__ # Python 2.6+
603 except AttributeError:
604 func_globals = func.func_globals # Earlier versions.
605
606 context = args[0].namespace # variables to be injected
607 saved_values = func_globals.copy() # Shallow copy of dict.
608 func_globals.update(context)
609 result = func(*args, **kwargs)
610 args[0].namespace = func_globals
611 #exec (func.__code__, func_globals)
612
613 #finally:
614 # func_globals = saved_values # Undo changes.
615
616 return result
617
618 return decorator
619
620 return variable_injector
621