fix AttributeError in radixmmu testcase
[soc.git] / src / soc / decoder / isa / caller.py
index 0925915b553a49eca3abe183d11fb2b75bb0e549..ba24f48fa54d0a9130ab30b6ce68594fc9469a8d 100644 (file)
@@ -21,11 +21,20 @@ from soc.decoder.selectable_int import (FieldSelectableInt, SelectableInt,
                                         selectconcat)
 from soc.decoder.power_enums import (spr_dict, spr_byname, XER_bits,
                                      insns, MicrOp, In1Sel, In2Sel, In3Sel,
-                                     OutSel, CROutSel)
+                                     OutSel, CROutSel,
+                                     SVP64RMMode, SVP64PredMode,
+                                     SVP64PredInt, SVP64PredCR)
+
+from soc.decoder.power_enums import SVPtype
+
 from soc.decoder.helpers import exts, gtu, ltu, undefined
 from soc.consts import PIb, MSRb  # big-endian (PowerISA versions)
+from soc.consts import SVP64CROffs
 from soc.decoder.power_svp64 import SVP64RM, decode_extra
 
+from soc.decoder.isa.radixmmu import RADIX
+from soc.decoder.isa.mem import Mem, swap_order
+
 from collections import namedtuple
 import math
 import sys
@@ -42,12 +51,6 @@ special_sprs = {
     'VRSAVE': 256}
 
 
-def swap_order(x, nbytes):
-    x = x.to_bytes(nbytes, byteorder='little')
-    x = int.from_bytes(x, byteorder='big', signed=False)
-    return x
-
-
 REG_SORT_ORDER = {
     # TODO (lkcl): adjust other registers that should be in a particular order
     # probably CA, CA32, and CR
@@ -62,6 +65,7 @@ REG_SORT_ORDER = {
     "CA": 0,
     "CA32": 0,
     "MSR": 0,
+    "SVSTATE": 0,
 
     "overflow": 1,
 }
@@ -75,445 +79,6 @@ def create_args(reglist, extra=None):
     return retval
 
 
-# very quick, TODO move to SelectableInt utils later
-def genmask(shift, size):
-    res = SelectableInt(0, size)
-    for i in range(size):
-        if i < shift:
-            res[size-1-i] = SelectableInt(1, 1)
-    return res
-
-"""
-    Get Root Page
-
-    //Accessing 2nd double word of partition table (pate1)
-    //Ref: Power ISA Manual v3.0B, Book-III, section 5.7.6.1
-    //           PTCR Layout
-    // ====================================================
-    // -----------------------------------------------
-    // | /// |     PATB                | /// | PATS  |
-    // -----------------------------------------------
-    // 0     4                       51 52 58 59    63
-    // PATB[4:51] holds the base address of the Partition Table,
-    // right shifted by 12 bits.
-    // This is because the address of the Partition base is
-    // 4k aligned. Hence, the lower 12bits, which are always
-    // 0 are ommitted from the PTCR.
-    //
-    // Thus, The Partition Table Base is obtained by (PATB << 12)
-    //
-    // PATS represents the partition table size right-shifted by 12 bits.
-    // The minimal size of the partition table is 4k.
-    // Thus partition table size = (1 << PATS + 12).
-    //
-    //        Partition Table
-    //  ====================================================
-    //  0    PATE0            63  PATE1             127
-    //  |----------------------|----------------------|
-    //  |                      |                      |
-    //  |----------------------|----------------------|
-    //  |                      |                      |
-    //  |----------------------|----------------------|
-    //  |                      |                      | <-- effLPID
-    //  |----------------------|----------------------|
-    //           .
-    //           .
-    //           .
-    //  |----------------------|----------------------|
-    //  |                      |                      |
-    //  |----------------------|----------------------|
-    //
-    // The effective LPID  forms the index into the Partition Table.
-    //
-    // Each entry in the partition table contains 2 double words, PATE0, PATE1,
-    // corresponding to that partition.
-    //
-    // In case of Radix, The structure of PATE0 and PATE1 is as follows.
-    //
-    //     PATE0 Layout
-    // -----------------------------------------------
-    // |1|RTS1|/|     RPDB          | RTS2 |  RPDS   |
-    // -----------------------------------------------
-    //  0 1  2 3 4                55 56  58 59      63
-    //
-    // HR[0] : For Radix Page table, first bit should be 1.
-    // RTS1[1:2] : Gives one fragment of the Radix treesize
-    // RTS2[56:58] : Gives the second fragment of the Radix Tree size.
-    // RTS = (RTS1 << 3 + RTS2) + 31.
-    //
-    // RPDB[4:55] = Root Page Directory Base.
-    // RPDS = Logarithm of Root Page Directory Size right shifted by 3.
-    //        Thus, Root page directory size = 1 << (RPDS + 3).
-    //        Note: RPDS >= 5.
-    //
-    //   PATE1 Layout
-    // -----------------------------------------------
-    // |///|       PRTB             |  //  |  PRTS   |
-    // -----------------------------------------------
-    // 0  3 4                     51 52  58 59     63
-    //
-    // PRTB[4:51]   = Process Table Base. This is aligned to size.
-    // PRTS[59: 63] = Process Table Size right shifted by 12.
-    //                Minimal size of the process table is 4k.
-    //                Process Table Size = (1 << PRTS + 12).
-    //                Note: PRTS <= 24.
-    //
-    //                Computing the size aligned Process Table Base:
-    //                   table_base = (PRTB  & ~((1 << PRTS) - 1)) << 12
-    //                Thus, the lower 12+PRTS bits of table_base will
-    //                be zero.
-
-
-    //Ref: Power ISA Manual v3.0B, Book-III, section 5.7.6.2
-    //
-    //        Process Table
-    // ==========================
-    //  0    PRTE0            63  PRTE1             127
-    //  |----------------------|----------------------|
-    //  |                      |                      |
-    //  |----------------------|----------------------|
-    //  |                      |                      |
-    //  |----------------------|----------------------|
-    //  |                      |                      | <-- effPID
-    //  |----------------------|----------------------|
-    //           .
-    //           .
-    //           .
-    //  |----------------------|----------------------|
-    //  |                      |                      |
-    //  |----------------------|----------------------|
-    //
-    // The effective Process id (PID) forms the index into the Process Table.
-    //
-    // Each entry in the partition table contains 2 double words, PRTE0, PRTE1,
-    // corresponding to that process
-    //
-    // In case of Radix, The structure of PRTE0 and PRTE1 is as follows.
-    //
-    //     PRTE0 Layout
-    // -----------------------------------------------
-    // |/|RTS1|/|     RPDB          | RTS2 |  RPDS   |
-    // -----------------------------------------------
-    //  0 1  2 3 4                55 56  58 59      63
-    //
-    // RTS1[1:2] : Gives one fragment of the Radix treesize
-    // RTS2[56:58] : Gives the second fragment of the Radix Tree size.
-    // RTS = (RTS1 << 3 + RTS2) << 31,
-    //        since minimal Radix Tree size is 4G.
-    //
-    // RPDB = Root Page Directory Base.
-    // RPDS = Root Page Directory Size right shifted by 3.
-    //        Thus, Root page directory size = RPDS << 3.
-    //        Note: RPDS >= 5.
-    //
-    //   PRTE1 Layout
-    // -----------------------------------------------
-    // |                      ///                    |
-    // -----------------------------------------------
-    // 0                                            63
-    // All bits are reserved.
-
-
-"""
-
-# see qemu/target/ppc/mmu-radix64.c for reference
-class RADIX:
-    def __init__(self, mem, caller):
-        self.mem = mem
-        self.caller = caller
-
-        # cached page table stuff
-        self.pgtbl0 = 0
-        self.pt0_valid = False
-        self.pgtbl3 = 0
-        self.pt3_valid = False
-
-    def ld(self, address, width=8, swap=True, check_in_mem=False):
-        print("RADIX: ld from addr 0x%x width %d" % (address, width))
-
-        pte = self._walk_tree()
-        # use pte to caclculate phys address
-        return self.mem.ld(address, width, swap, check_in_mem)
-
-    # TODO implement
-    def st(self, addr, v, width=8, swap=True):
-        print("RADIX: st to addr 0x%x width %d data %x" % (addr, width, v))
-        # use pte to caclculate phys address (addr)
-        return self.mem.st(addr, v, width, swap)
-
-    # def memassign(self, addr, sz, val):
-    def _next_level(self):
-        return True
-        ## DSISR_R_BADCONFIG
-        ## read_entry
-        ## DSISR_NOPTE
-        ## Prepare for next iteration
-
-    def _walk_tree(self):
-        """walk tree
-
-        // vaddr                    64 Bit
-        // vaddr |-----------------------------------------------------|
-        //       | Unused    |  Used                                   |
-        //       |-----------|-----------------------------------------|
-        //       | 0000000   | usefulBits = X bits (typically 52)      |
-        //       |-----------|-----------------------------------------|
-        //       |           |<--Cursize---->|                         |
-        //       |           |    Index      |                         |
-        //       |           |    into Page  |                         |
-        //       |           |    Directory  |                         |
-        //       |-----------------------------------------------------|
-        //                        |                       |
-        //                        V                       |
-        // PDE  |---------------------------|             |
-        //      |V|L|//|  NLB       |///|NLS|             |
-        //      |---------------------------|             |
-        // PDE = Page Directory Entry                     |
-        // [0] = V = Valid Bit                            |
-        // [1] = L = Leaf bit. If 0, then                 |
-        // [4:55] = NLB = Next Level Base                 |
-        //                right shifted by 8              |
-        // [59:63] = NLS = Next Level Size                |
-        //            |    NLS >= 5                       |
-        //            |                                   V
-        //            |                     |--------------------------|
-        //            |                     |   usfulBits = X-Cursize  |
-        //            |                     |--------------------------|
-        //            |---------------------><--NLS-->|                |
-        //                                  | Index   |                |
-        //                                  | into    |                |
-        //                                  | PDE     |                |
-        //                                  |--------------------------|
-        //                                                    |
-        // If the next PDE obtained by                        |
-        // (NLB << 8 + 8 * index) is a                        |
-        // nonleaf, then repeat the above.                    |
-        //                                                    |
-        // If the next PDE is a leaf,                         |
-        // then Leaf PDE structure is as                      |
-        // follows                                            |
-        //                                                    |
-        //                                                    |
-        // Leaf PDE                                           |
-        // |------------------------------|           |----------------|
-        // |V|L|sw|//|RPN|sw|R|C|/|ATT|EAA|           | usefulBits     |
-        // |------------------------------|           |----------------|
-        // [0] = V = Valid Bit                                 |
-        // [1] = L = Leaf Bit = 1 if leaf                      |
-        //                      PDE                            |
-        // [2] = Sw = Sw bit 0.                                |
-        // [7:51] = RPN = Real Page Number,                    V
-        //          real_page = RPN << 12 ------------->  Logical OR
-        // [52:54] = Sw Bits 1:3                               |
-        // [55] = R = Reference                                |
-        // [56] = C = Change                                   V
-        // [58:59] = Att =                                Physical Address
-        //           0b00 = Normal Memory
-        //           0b01 = SAO
-        //           0b10 = Non Idenmpotent
-        //           0b11 = Tolerant I/O
-        // [60:63] = Encoded Access
-        //           Authority
-        //
-        """
-        # walk tree starts on prtbl
-        while True:
-            ret = self._next_level()
-            if ret: return ret
-
-    def _decode_prte(self, data):
-        """PRTE0 Layout
-           -----------------------------------------------
-           |/|RTS1|/|     RPDB          | RTS2 |  RPDS   |
-           -----------------------------------------------
-            0 1  2 3 4                55 56  58 59      63
-        """
-        # note that SelectableInt does big-endian!  so the indices
-        # below *directly* match the spec, unlike microwatt which
-        # has to turn them around (to LE)
-        zero = SelectableInt(0, 1)
-        rts = selectconcat(zero,
-                           data[56:59],      # RTS2
-                           data[1:3],        # RTS1
-                           )
-        masksize = data[59:64]               # RPDS
-        mbits = selectconcat(zero, masksize)
-        pgbase = selectconcat(data[8:56],  # part of RPDB
-                             SelectableInt(0, 16),)
-
-        return (rts, mbits, pgbase)
-
-    def _segment_check(self, addr, mbits, shift):
-        """checks segment valid
-                    mbits := '0' & r.mask_size;
-            v.shift := r.shift + (31 - 12) - mbits;
-            nonzero := or(r.addr(61 downto 31) and not finalmask(30 downto 0));
-            if r.addr(63) /= r.addr(62) or nonzero = '1' then
-                v.state := RADIX_FINISH;
-                v.segerror := '1';
-            elsif mbits < 5 or mbits > 16 or mbits > (r.shift + (31 - 12)) then
-                v.state := RADIX_FINISH;
-                v.badtree := '1';
-            else
-                v.state := RADIX_LOOKUP;
-        """
-        # note that SelectableInt does big-endian!  so the indices
-        # below *directly* match the spec, unlike microwatt which
-        # has to turn them around (to LE)
-        mask = genmask(shift, 43)
-        nonzero = addr[1:32] & mask[12:43] # mask 31 LSBs (BE numbered 12:43)
-        print ("RADIX _segment_check nonzero", bin(nonzero.value))
-        print ("RADIX _segment_check addr[0-1]", addr[0].value, addr[1].value)
-        if addr[0] != addr[1] or nonzero == 1:
-            return "segerror"
-        limit = shift + (31 - 12)
-        if mbits < 5 or mbits > 16 or mbits > limit:
-            return "badtree"
-        new_shift = shift + (31 - 12) - mbits
-        return new_shift
-
-    def _check_perms(self):
-        """check page permissions
-                    -- test leaf bit
-                    if data(62) = '1' then
-                        -- check permissions and RC bits
-                        perm_ok := '0';
-                        if r.priv = '1' or data(3) = '0' then
-                            if r.iside = '0' then
-                                perm_ok := data(1) or (data(2) and not r.store);
-                            else
-                                -- no IAMR, so no KUEP support for now
-                                -- deny execute permission if cache inhibited
-                                perm_ok := data(0) and not data(5);
-                            end if;
-                        end if;
-                        rc_ok := data(8) and (data(7) or not r.store);
-                        if perm_ok = '1' and rc_ok = '1' then
-                            v.state := RADIX_LOAD_TLB;
-                        else
-                            v.state := RADIX_FINISH;
-                            v.perm_err := not perm_ok;
-                            -- permission error takes precedence over RC error
-                            v.rc_error := perm_ok;
-                        end if;
-        """
-
-    def _get_prtable_addr(self, prtbl, addr):
-        """
-        if r.addr(63) = '1' then
-            effpid := x"00000000";
-        else
-            effpid := r.pid;
-        end if;
-        prtable_addr := x"00" & r.prtbl(55 downto 36) &
-                        ((r.prtbl(35 downto 12) and not finalmask(23 downto 0)) or
-                         (effpid(31 downto 8) and finalmask(23 downto 0))) &
-                        effpid(7 downto 0) & "0000";
-        """
-
-    def _get_pgtable_addr(self):
-        """
-        pgtable_addr := x"00" & r.pgbase(55 downto 19) &
-                        ((r.pgbase(18 downto 3) and not mask) or (addrsh and mask)) &
-                        "000";
-        """
-
-    def _get_pte(self):
-        """
-        pte := x"00" &
-               ((r.pde(55 downto 12) and not finalmask) or (r.addr(55 downto 12) and finalmask))
-               & r.pde(11 downto 0);
-        """
-
-
-class Mem:
-
-    def __init__(self, row_bytes=8, initial_mem=None):
-        self.mem = {}
-        self.bytes_per_word = row_bytes
-        self.word_log2 = math.ceil(math.log2(row_bytes))
-        print("Sim-Mem", initial_mem, self.bytes_per_word, self.word_log2)
-        if not initial_mem:
-            return
-
-        # different types of memory data structures recognised (for convenience)
-        if isinstance(initial_mem, list):
-            initial_mem = (0, initial_mem)
-        if isinstance(initial_mem, tuple):
-            startaddr, mem = initial_mem
-            initial_mem = {}
-            for i, val in enumerate(mem):
-                initial_mem[startaddr + row_bytes*i] = (val, row_bytes)
-
-        for addr, (val, width) in initial_mem.items():
-            #val = swap_order(val, width)
-            self.st(addr, val, width, swap=False)
-
-    def _get_shifter_mask(self, wid, remainder):
-        shifter = ((self.bytes_per_word - wid) - remainder) * \
-            8  # bits per byte
-        # XXX https://bugs.libre-soc.org/show_bug.cgi?id=377
-        # BE/LE mode?
-        shifter = remainder * 8
-        mask = (1 << (wid * 8)) - 1
-        print("width,rem,shift,mask", wid, remainder, hex(shifter), hex(mask))
-        return shifter, mask
-
-    # TODO: Implement ld/st of lesser width
-    def ld(self, address, width=8, swap=True, check_in_mem=False):
-        print("ld from addr 0x{:x} width {:d}".format(address, width))
-        remainder = address & (self.bytes_per_word - 1)
-        address = address >> self.word_log2
-        assert remainder & (width - 1) == 0, "Unaligned access unsupported!"
-        if address in self.mem:
-            val = self.mem[address]
-        elif check_in_mem:
-            return None
-        else:
-            val = 0
-        print("mem @ 0x{:x} rem {:d} : 0x{:x}".format(address, remainder, val))
-
-        if width != self.bytes_per_word:
-            shifter, mask = self._get_shifter_mask(width, remainder)
-            print("masking", hex(val), hex(mask << shifter), shifter)
-            val = val & (mask << shifter)
-            val >>= shifter
-        if swap:
-            val = swap_order(val, width)
-        print("Read 0x{:x} from addr 0x{:x}".format(val, address))
-        return val
-
-    def st(self, addr, v, width=8, swap=True):
-        staddr = addr
-        remainder = addr & (self.bytes_per_word - 1)
-        addr = addr >> self.word_log2
-        print("Writing 0x{:x} to ST 0x{:x} "
-              "memaddr 0x{:x}/{:x}".format(v, staddr, addr, remainder, swap))
-        assert remainder & (width - 1) == 0, "Unaligned access unsupported!"
-        if swap:
-            v = swap_order(v, width)
-        if width != self.bytes_per_word:
-            if addr in self.mem:
-                val = self.mem[addr]
-            else:
-                val = 0
-            shifter, mask = self._get_shifter_mask(width, remainder)
-            val &= ~(mask << shifter)
-            val |= v << shifter
-            self.mem[addr] = val
-        else:
-            self.mem[addr] = v
-        print("mem @ 0x{:x}: 0x{:x}".format(addr, self.mem[addr]))
-
-    def __call__(self, addr, sz):
-        val = self.ld(addr.value, sz, swap=False)
-        print("memread", addr, sz, val)
-        return SelectableInt(val, sz*8)
-
-    def memassign(self, addr, sz, val):
-        print("memassign", addr, sz, val)
-        self.st(addr.value, val.value, sz, swap=False)
-
 
 class GPR(dict):
     def __init__(self, decoder, isacaller, svstate, regfile):
@@ -532,7 +97,7 @@ class GPR(dict):
 
     def getz(self, rnum):
         # rnum = rnum.value # only SelectableInt allowed
-        print("GPR getzero", rnum)
+        print("GPR getzero?", rnum)
         if rnum == 0:
             return SelectableInt(0, 64)
         return self[rnum]
@@ -559,6 +124,65 @@ class GPR(dict):
             print("reg", "%2d" % i, s)
 
 
+class SPR(dict):
+    def __init__(self, dec2, initial_sprs={}):
+        self.sd = dec2
+        dict.__init__(self)
+        for key, v in initial_sprs.items():
+            if isinstance(key, SelectableInt):
+                key = key.value
+            key = special_sprs.get(key, key)
+            if isinstance(key, int):
+                info = spr_dict[key]
+            else:
+                info = spr_byname[key]
+            if not isinstance(v, SelectableInt):
+                v = SelectableInt(v, info.length)
+            self[key] = v
+
+    def __getitem__(self, key):
+        print("get spr", key)
+        print("dict", self.items())
+        # if key in special_sprs get the special spr, otherwise return key
+        if isinstance(key, SelectableInt):
+            key = key.value
+        if isinstance(key, int):
+            key = spr_dict[key].SPR
+        key = special_sprs.get(key, key)
+        if key == 'HSRR0':  # HACK!
+            key = 'SRR0'
+        if key == 'HSRR1':  # HACK!
+            key = 'SRR1'
+        if key in self:
+            res = dict.__getitem__(self, key)
+        else:
+            if isinstance(key, int):
+                info = spr_dict[key]
+            else:
+                info = spr_byname[key]
+            dict.__setitem__(self, key, SelectableInt(0, info.length))
+            res = dict.__getitem__(self, key)
+        print("spr returning", key, res)
+        return res
+
+    def __setitem__(self, key, value):
+        if isinstance(key, SelectableInt):
+            key = key.value
+        if isinstance(key, int):
+            key = spr_dict[key].SPR
+            print("spr key", key)
+        key = special_sprs.get(key, key)
+        if key == 'HSRR0':  # HACK!
+            self.__setitem__('SRR0', value)
+        if key == 'HSRR1':  # HACK!
+            self.__setitem__('SRR1', value)
+        print("setting spr", key, value)
+        dict.__setitem__(self, key, value)
+
+    def __call__(self, ridx):
+        return self[ridx]
+
+
 class PC:
     def __init__(self, pc_init=0):
         self.CIA = SelectableInt(pc_init, 64)
@@ -642,64 +266,58 @@ SV64P_MAJOR_SIZE = len(SVP64PrefixFields().major.br)
 SV64P_PID_SIZE = len(SVP64PrefixFields().pid.br)
 SV64P_RM_SIZE = len(SVP64PrefixFields().rm.br)
 
+# decode SVP64 predicate integer to reg number and invert
+def get_predint(gpr, mask):
+    r10 = gpr(10)
+    r30 = gpr(30)
+    print ("get_predint", mask, SVP64PredInt.ALWAYS.value)
+    if mask == SVP64PredInt.ALWAYS.value:
+        return 0xffff_ffff_ffff_ffff
+    if mask == SVP64PredInt.R3_UNARY.value:
+        return 1 << (gpr(3).value & 0b111111)
+    if mask == SVP64PredInt.R3.value:
+        return gpr(3).value
+    if mask == SVP64PredInt.R3_N.value:
+        return ~gpr(3).value
+    if mask == SVP64PredInt.R10.value:
+        return gpr(10).value
+    if mask == SVP64PredInt.R10_N.value:
+        return ~gpr(10).value
+    if mask == SVP64PredInt.R30.value:
+        return gpr(30).value
+    if mask == SVP64PredInt.R30_N.value:
+        return ~gpr(30).value
+
+# decode SVP64 predicate CR to reg number and invert status
+def _get_predcr(mask):
+    if mask == SVP64PredCR.LT.value:
+        return 0, 1
+    if mask == SVP64PredCR.GE.value:
+        return 0, 0
+    if mask == SVP64PredCR.GT.value:
+        return 1, 1
+    if mask == SVP64PredCR.LE.value:
+        return 1, 0
+    if mask == SVP64PredCR.EQ.value:
+        return 2, 1
+    if mask == SVP64PredCR.NE.value:
+        return 2, 0
+    if mask == SVP64PredCR.SO.value:
+        return 3, 1
+    if mask == SVP64PredCR.NS.value:
+        return 3, 0
+
+# read individual CR fields (0..VL-1), extract the required bit
+# and construct the mask
+def get_predcr(crl, mask, vl):
+    idx, noninv = _get_predcr(mask)
+    mask = 0
+    for i in range(vl):
+        cr = crl[i+SVP64CROffs.CRPred]
+        if cr[idx].value == noninv:
+            mask |= (1<<i)
+    return mask
 
-class SPR(dict):
-    def __init__(self, dec2, initial_sprs={}):
-        self.sd = dec2
-        dict.__init__(self)
-        for key, v in initial_sprs.items():
-            if isinstance(key, SelectableInt):
-                key = key.value
-            key = special_sprs.get(key, key)
-            if isinstance(key, int):
-                info = spr_dict[key]
-            else:
-                info = spr_byname[key]
-            if not isinstance(v, SelectableInt):
-                v = SelectableInt(v, info.length)
-            self[key] = v
-
-    def __getitem__(self, key):
-        print("get spr", key)
-        print("dict", self.items())
-        # if key in special_sprs get the special spr, otherwise return key
-        if isinstance(key, SelectableInt):
-            key = key.value
-        if isinstance(key, int):
-            key = spr_dict[key].SPR
-        key = special_sprs.get(key, key)
-        if key == 'HSRR0':  # HACK!
-            key = 'SRR0'
-        if key == 'HSRR1':  # HACK!
-            key = 'SRR1'
-        if key in self:
-            res = dict.__getitem__(self, key)
-        else:
-            if isinstance(key, int):
-                info = spr_dict[key]
-            else:
-                info = spr_byname[key]
-            dict.__setitem__(self, key, SelectableInt(0, info.length))
-            res = dict.__getitem__(self, key)
-        print("spr returning", key, res)
-        return res
-
-    def __setitem__(self, key, value):
-        if isinstance(key, SelectableInt):
-            key = key.value
-        if isinstance(key, int):
-            key = spr_dict[key].SPR
-            print("spr key", key)
-        key = special_sprs.get(key, key)
-        if key == 'HSRR0':  # HACK!
-            self.__setitem__('SRR0', value)
-        if key == 'HSRR1':  # HACK!
-            self.__setitem__('SRR1', value)
-        print("setting spr", key, value)
-        dict.__setitem__(self, key, value)
-
-    def __call__(self, ridx):
-        return self[ridx]
 
 def get_pdecode_idx_in(dec2, name):
     op = dec2.dec.op
@@ -713,7 +331,12 @@ def get_pdecode_idx_in(dec2, name):
     in1_isvec = yield dec2.in1_isvec
     in2_isvec = yield dec2.in2_isvec
     in3_isvec = yield dec2.in3_isvec
-    print ("get_pdecode_idx", in1_sel, In1Sel.RA.value, in1, in1_isvec)
+    print ("get_pdecode_idx_in in1", name, in1_sel, In1Sel.RA.value,
+                                     in1, in1_isvec)
+    print ("get_pdecode_idx_in in2", name, in2_sel, In2Sel.RB.value,
+                                     in2, in2_isvec)
+    print ("get_pdecode_idx_in in3", name, in3_sel, In3Sel.RS.value,
+                                     in3, in3_isvec)
     # identify which regnames map to in1/2/3
     if name == 'RA':
         if (in1_sel == In1Sel.RA.value or
@@ -768,12 +391,14 @@ def get_pdecode_idx_out(dec2, name):
     # get the IN1/2/3 from the decoder (includes SVP64 remap and isvec)
     out = yield dec2.e.write_reg.data
     o_isvec = yield dec2.o_isvec
-    print ("get_pdecode_idx_out", out_sel, OutSel.RA.value, out, o_isvec)
     # identify which regnames map to out / o2
     if name == 'RA':
+        print ("get_pdecode_idx_out", out_sel, OutSel.RA.value, out, o_isvec)
         if out_sel == OutSel.RA.value:
             return out, o_isvec
     elif name == 'RT':
+        print ("get_pdecode_idx_out", out_sel, OutSel.RT.value,
+                                      OutSel.RT_OR_ZERO.value, out, o_isvec)
         if out_sel == OutSel.RT.value:
             return out, o_isvec
     print ("get_pdecode_idx_out not found", name)
@@ -834,17 +459,21 @@ class ISACaller:
 
         # set up registers, instruction memory, data memory, PC, SPRs, MSR
         self.svp64rm = SVP64RM()
+        if initial_svstate is None:
+            initial_svstate = 0
         if isinstance(initial_svstate, int):
             initial_svstate = SVP64State(initial_svstate)
         self.svstate = initial_svstate
         self.gpr = GPR(decoder2, self, self.svstate, regfile)
+        self.spr = SPR(decoder2, initial_sprs) # initialise SPRs before MMU
         self.mem = Mem(row_bytes=8, initial_mem=initial_mem)
+        self.imem = Mem(row_bytes=4, initial_mem=initial_insns)
+        # MMU mode, redirect underlying Mem through RADIX
+        self.msr = SelectableInt(initial_msr, 64)  # underlying reg
         if mmu:
             self.mem = RADIX(self.mem, self)
-        self.imem = Mem(row_bytes=4, initial_mem=initial_insns)
+            self.imem = RADIX(self.imem, self)
         self.pc = PC()
-        self.spr = SPR(decoder2, initial_sprs)
-        self.msr = SelectableInt(initial_msr, 64)  # underlying reg
 
         # TODO, needed here:
         # FPR (same as GPR except for FP nums)
@@ -875,6 +504,7 @@ class ISACaller:
                                'memassign': self.memassign,
                                'NIA': self.pc.NIA,
                                'CIA': self.pc.CIA,
+                               'SVSTATE': self.svstate.spr,
                                'CR': self.cr,
                                'MSR': self.msr,
                                'undefined': undefined,
@@ -1080,7 +710,7 @@ class ISACaller:
         else:
             pc = self.fake_pc
         self._pc = pc
-        ins = self.imem.ld(pc, 4, False, True)
+        ins = self.imem.ld(pc, 4, False, True, instr_fetch=True)
         if ins is None:
             raise KeyError("no instruction at 0x%x" % pc)
         print("setup: 0x%x 0x%x %s" % (pc, ins & 0xffffffff, bin(ins)))
@@ -1091,7 +721,8 @@ class ISACaller:
         yield self.dec2.dec.bigendian.eq(self.bigendian)
         yield self.dec2.state.msr.eq(self.msr.value)
         yield self.dec2.state.pc.eq(pc)
-        yield self.dec2.state.svstate.eq(self.svstate.spr.value)
+        if self.svstate is not None:
+            yield self.dec2.state.svstate.eq(self.svstate.spr.value)
 
         # SVP64.  first, check if the opcode is EXT001, and SVP64 id bits set
         yield Settle()
@@ -1105,6 +736,8 @@ class ISACaller:
                               pfx.insn[7].value == 0b1 and
                               pfx.insn[9].value == 0b1)
         self.pc.update_nia(self.is_svp64_mode)
+        self.namespace['NIA'] = self.pc.NIA
+        self.namespace['SVSTATE'] = self.svstate.spr
         if not self.is_svp64_mode:
             return
 
@@ -1113,7 +746,7 @@ class ISACaller:
         print ("    svstate.vl", self.svstate.vl.asint(msb0=True))
         print ("    svstate.mvl", self.svstate.maxvl.asint(msb0=True))
         sv_rm = pfx.rm.asint(msb0=True)
-        ins = self.imem.ld(pc+4, 4, False, True)
+        ins = self.imem.ld(pc+4, 4, False, True, instr_fetch=True)
         print("     svsetup: 0x%x 0x%x %s" % (pc+4, ins & 0xffffffff, bin(ins)))
         yield self.dec2.dec.raw_opcode_in.eq(ins & 0xffffffff) # v3.0B suffix
         yield self.dec2.sv_rm.eq(sv_rm)                        # svp64 prefix
@@ -1248,6 +881,11 @@ class ISACaller:
         if name not in ['mtcrf', 'mtocrf']:
             illegal = name != asmop
 
+        # sigh deal with setvl not being supported by binutils (.long)
+        if asmop.startswith('setvl'):
+            illegal = False
+            name = 'setvl'
+
         if illegal:
             print("illegal", name, asmop)
             self.TRAP(0x700, PIb.ILLEG)
@@ -1273,15 +911,84 @@ class ISACaller:
             dest_cr, src_cr, src_byname, dest_byname = False, False, {}, {}
         print ("sv rm", sv_rm, dest_cr, src_cr, src_byname, dest_byname)
 
-        # get SVSTATE srcstep.  TODO: dststep (twin predication)
-        srcstep = self.svstate.srcstep.asint(msb0=True)
-        vl = self.svstate.vl.asint(msb0=True)
-        mvl = self.svstate.maxvl.asint(msb0=True)
+        # get SVSTATE VL (oh and print out some debug stuff)
+        if self.is_svp64_mode:
+            vl = self.svstate.vl.asint(msb0=True)
+            srcstep = self.svstate.srcstep.asint(msb0=True)
+            dststep = self.svstate.dststep.asint(msb0=True)
+            sv_a_nz = yield self.dec2.sv_a_nz
+            in1 = yield self.dec2.e.read_reg1.data
+            print ("SVP64: VL, srcstep, dststep, sv_a_nz, in1",
+                    vl, srcstep, dststep, sv_a_nz, in1)
+
+        # get predicate mask
+        srcmask = dstmask = 0xffff_ffff_ffff_ffff
+        if self.is_svp64_mode:
+            pmode = yield self.dec2.rm_dec.predmode
+            sv_ptype = yield self.dec2.dec.op.SV_Ptype
+            srcpred = yield self.dec2.rm_dec.srcpred
+            dstpred = yield self.dec2.rm_dec.dstpred
+            pred_src_zero = yield self.dec2.rm_dec.pred_sz
+            pred_dst_zero = yield self.dec2.rm_dec.pred_dz
+            if pmode == SVP64PredMode.INT.value:
+                srcmask = dstmask = get_predint(self.gpr, dstpred)
+                if sv_ptype == SVPtype.P2.value:
+                    srcmask = get_predint(self.gpr, srcpred)
+            elif pmode == SVP64PredMode.CR.value:
+                srcmask = dstmask = get_predcr(self.crl, dstpred, vl)
+                if sv_ptype == SVPtype.P2.value:
+                    srcmask = get_predcr(self.crl, srcpred, vl)
+            print ("    pmode", pmode)
+            print ("    ptype", sv_ptype)
+            print ("    srcpred", bin(srcpred))
+            print ("    dstpred", bin(dstpred))
+            print ("    srcmask", bin(srcmask))
+            print ("    dstmask", bin(dstmask))
+            print ("    pred_sz", bin(pred_src_zero))
+            print ("    pred_dz", bin(pred_dst_zero))
+
+            # okaaay, so here we simply advance srcstep (TODO dststep)
+            # until the predicate mask has a "1" bit... or we run out of VL
+            # let srcstep==VL be the indicator to move to next instruction
+            if not pred_src_zero:
+                while (((1<<srcstep) & srcmask) == 0) and (srcstep != vl):
+                    print ("      skip", bin(1<<srcstep))
+                    srcstep += 1
+            # same for dststep
+            if not pred_dst_zero:
+                while (((1<<dststep) & dstmask) == 0) and (dststep != vl):
+                    print ("      skip", bin(1<<dststep))
+                    dststep += 1
+
+            # now work out if the relevant mask bits require zeroing
+            if pred_dst_zero:
+                pred_dst_zero = ((1<<dststep) & dstmask) == 0
+            if pred_src_zero:
+                pred_src_zero = ((1<<srcstep) & srcmask) == 0
+
+            # update SVSTATE with new srcstep
+            self.svstate.srcstep[0:7] = srcstep
+            self.svstate.dststep[0:7] = dststep
+            self.namespace['SVSTATE'] = self.svstate.spr
+            yield self.dec2.state.svstate.eq(self.svstate.spr.value)
+            yield Settle() # let decoder update
+            srcstep = self.svstate.srcstep.asint(msb0=True)
+            dststep = self.svstate.dststep.asint(msb0=True)
+            print ("    srcstep", srcstep)
+            print ("    dststep", dststep)
+
+            # check if end reached (we let srcstep overrun, above)
+            # nothing needs doing (TODO zeroing): just do next instruction
+            if srcstep == vl or dststep == vl:
+                self.svp64_reset_loop()
+                self.update_pc_next()
+                return
 
         # VL=0 in SVP64 mode means "do nothing: skip instruction"
         if self.is_svp64_mode and vl == 0:
             self.pc.update(self.namespace, self.is_svp64_mode)
-            print("end of call", self.namespace['CIA'], self.namespace['NIA'])
+            print("SVP64: VL=0, end of call", self.namespace['CIA'],
+                                       self.namespace['NIA'])
             return
 
         # main input registers (RT, RA ...)
@@ -1294,16 +1001,16 @@ class ISACaller:
                 # doing this is not part of svp64, it's because output
                 # registers, to be modified, need to be in the namespace.
                 regnum, is_vec = yield from get_pdecode_idx_out(self.dec2, name)
-            # here's where we go "vector".  TODO: zero-testing (RA_IS_ZERO)
-            # XXX already done by PowerDecoder2, now
-            #if is_vec:
-            #   regnum += srcstep # TODO, elwidth overrides
 
             # in case getting the register number is needed, _RA, _RB
             regname = "_" + name
             self.namespace[regname] = regnum
-            print('reading reg %s %d' % (name, regnum), is_vec)
-            reg_val = self.gpr(regnum)
+            if not self.is_svp64_mode or not pred_src_zero:
+                print('reading reg %s %s' % (name, str(regnum)), is_vec)
+                reg_val = self.gpr(regnum)
+            else:
+                print('zero input reg %s %s' % (name, str(regnum)), is_vec)
+                reg_val = 0
             inputs.append(reg_val)
 
         # "special" registers
@@ -1316,6 +1023,7 @@ class ISACaller:
         # clear trap (trap) NIA
         self.trap_nia = None
 
+        # execute actual instruction here
         print("inputs", inputs)
         results = info.func(self, *inputs)
         print("results", results)
@@ -1345,27 +1053,29 @@ class ISACaller:
         if carry_en:
             yield from self.handle_carry_(inputs, results, already_done)
 
-        # detect if overflow was in return result
-        overflow = None
-        if info.write_regs:
-            for name, output in zip(output_names, results):
-                if name == 'overflow':
-                    overflow = output
-
-        if hasattr(self.dec2.e.do, "oe"):
-            ov_en = yield self.dec2.e.do.oe.oe
-            ov_ok = yield self.dec2.e.do.oe.ok
-        else:
-            ov_en = False
-            ov_ok = False
-        print("internal overflow", overflow, ov_en, ov_ok)
-        if ov_en & ov_ok:
-            yield from self.handle_overflow(inputs, results, overflow)
-
-        if hasattr(self.dec2.e.do, "rc"):
-            rc_en = yield self.dec2.e.do.rc.rc
-        else:
-            rc_en = False
+        if not self.is_svp64_mode: # yeah just no. not in parallel processing
+            # detect if overflow was in return result
+            overflow = None
+            if info.write_regs:
+                for name, output in zip(output_names, results):
+                    if name == 'overflow':
+                        overflow = output
+
+            if hasattr(self.dec2.e.do, "oe"):
+                ov_en = yield self.dec2.e.do.oe.oe
+                ov_ok = yield self.dec2.e.do.oe.ok
+            else:
+                ov_en = False
+                ov_ok = False
+            print("internal overflow", overflow, ov_en, ov_ok)
+            if ov_en & ov_ok:
+                yield from self.handle_overflow(inputs, results, overflow)
+
+        # only do SVP64 dest predicated Rc=1 if dest-pred is not enabled
+        rc_en = False
+        if not self.is_svp64_mode or not pred_dst_zero:
+            if hasattr(self.dec2.e.do, "rc"):
+                rc_en = yield self.dec2.e.do.rc.rc
         if rc_en:
             regnum, is_vec = yield from get_pdecode_cr_out(self.dec2, "CR0")
             self.handle_comparison(results, regnum)
@@ -1398,7 +1108,13 @@ class ISACaller:
                         # temporary hack for not having 2nd output
                         regnum = yield getattr(self.decoder, name)
                         is_vec = False
-                    print('writing reg %d %s' % (regnum, str(output)), is_vec)
+                    if self.is_svp64_mode and pred_dst_zero:
+                        print('zeroing reg %d %s' % (regnum, str(output)),
+                                                     is_vec)
+                        output = SelectableInt(0, 256)
+                    else:
+                        print('writing reg %d %s' % (regnum, str(output)),
+                                                     is_vec)
                     if output.bits > 64:
                         output = SelectableInt(output.value, 64)
                     self.gpr[regnum] = output
@@ -1410,29 +1126,54 @@ class ISACaller:
             vl = self.svstate.vl.asint(msb0=True)
             mvl = self.svstate.maxvl.asint(msb0=True)
             srcstep = self.svstate.srcstep.asint(msb0=True)
+            dststep = self.svstate.dststep.asint(msb0=True)
+            sv_ptype = yield self.dec2.dec.op.SV_Ptype
+            no_out_vec = not (yield self.dec2.no_out_vec)
+            no_in_vec = not (yield self.dec2.no_in_vec)
             print ("    svstate.vl", vl)
             print ("    svstate.mvl", mvl)
             print ("    svstate.srcstep", srcstep)
+            print ("    svstate.dststep", dststep)
+            print ("    no_out_vec", no_out_vec)
+            print ("    no_in_vec", no_in_vec)
+            print ("    sv_ptype", sv_ptype, sv_ptype == SVPtype.P2.value)
             # check if srcstep needs incrementing by one, stop PC advancing
-            # svp64 loop can end early if the dest is scalar
-            svp64_dest_vector = not (yield self.dec2.no_out_vec)
-            if svp64_dest_vector and srcstep != vl-1:
+            # svp64 loop can end early if the dest is scalar for single-pred
+            # but for 2-pred both src/dest have to be checked.
+            # XXX this might not be true! it may just be LD/ST
+            if sv_ptype == SVPtype.P2.value:
+                svp64_is_vector = (no_out_vec or no_in_vec)
+            else:
+                svp64_is_vector = no_out_vec
+            if svp64_is_vector and srcstep != vl-1 and dststep != vl-1:
                 self.svstate.srcstep += SelectableInt(1, 7)
+                self.svstate.dststep += SelectableInt(1, 7)
                 self.pc.NIA.value = self.pc.CIA.value
                 self.namespace['NIA'] = self.pc.NIA
+                self.namespace['SVSTATE'] = self.svstate.spr
                 print("end of sub-pc call", self.namespace['CIA'],
                                      self.namespace['NIA'])
                 return # DO NOT allow PC to update whilst Sub-PC loop running
-            # reset to zero
-            self.svstate.srcstep[0:7] = 0
-            print ("    svstate.srcstep loop end (PC to update)")
-            self.pc.update_nia(self.is_svp64_mode)
-            self.namespace['NIA'] = self.pc.NIA
+            # reset loop to zero
+            self.svp64_reset_loop()
+
+        self.update_pc_next()
 
+    def update_pc_next(self):
         # UPDATE program counter
         self.pc.update(self.namespace, self.is_svp64_mode)
-        print("end of call", self.namespace['CIA'], self.namespace['NIA'])
-
+        self.svstate.spr = self.namespace['SVSTATE']
+        print("end of call", self.namespace['CIA'],
+                             self.namespace['NIA'],
+                             self.namespace['SVSTATE'])
+
+    def svp64_reset_loop(self):
+        self.svstate.srcstep[0:7] = 0
+        self.svstate.dststep[0:7] = 0
+        print ("    svstate.srcstep loop end (PC to update)")
+        self.pc.update_nia(self.is_svp64_mode)
+        self.namespace['NIA'] = self.pc.NIA
+        self.namespace['SVSTATE'] = self.svstate.spr
 
 def inject():
     """Decorator factory.
@@ -1460,7 +1201,8 @@ def inject():
             result = func(*args, **kwargs)
             print("globals after", func_globals['CIA'], func_globals['NIA'])
             print("args[0]", args[0].namespace['CIA'],
-                  args[0].namespace['NIA'])
+                  args[0].namespace['NIA'],
+                  args[0].namespace['SVSTATE'])
             args[0].namespace = func_globals
             #exec (func.__code__, func_globals)
 
@@ -1474,27 +1216,3 @@ def inject():
     return variable_injector
 
 
-# very quick test of maskgen function (TODO, move to util later)
-if __name__ == '__main__':
-    shift = SelectableInt(5, 6)
-    mask = genmask(shift, 43)
-    print ("    mask", bin(mask.value))
-
-    mem = Mem(row_bytes=8)
-    mem = RADIX(mem, None)
-    # -----------------------------------------------
-    # |/|RTS1|/|     RPDB          | RTS2 |  RPDS   |
-    # -----------------------------------------------
-    # |0|1  2|3|4                55|56  58|59     63|
-    data = SelectableInt(0, 64)
-    data[1:3] = 0b01
-    data[56:59] = 0b11
-    data[59:64] = 0b01101 # mask
-    data[55] = 1
-    (rts, mbits, pgbase) = mem._decode_prte(data)
-    print ("    rts", bin(rts.value), rts.bits)
-    print ("    mbits", bin(mbits.value), mbits.bits)
-    print ("    pgbase", hex(pgbase.value), pgbase.bits)
-    addr = SelectableInt(0x1000, 64)
-    check = mem._segment_check(addr, mbits, shift)
-    print ("    segment check", check)