fix AttributeError in radixmmu testcase
[soc.git] / src / soc / decoder / isa / caller.py
index 4a4935f27c04216fbc3dc51edf5e1b8a84e8a7d6..ba24f48fa54d0a9130ab30b6ce68594fc9469a8d 100644 (file)
@@ -21,11 +21,20 @@ from soc.decoder.selectable_int import (FieldSelectableInt, SelectableInt,
                                         selectconcat)
 from soc.decoder.power_enums import (spr_dict, spr_byname, XER_bits,
                                      insns, MicrOp, In1Sel, In2Sel, In3Sel,
-                                     OutSel, CROutSel)
+                                     OutSel, CROutSel,
+                                     SVP64RMMode, SVP64PredMode,
+                                     SVP64PredInt, SVP64PredCR)
+
+from soc.decoder.power_enums import SVPtype
+
 from soc.decoder.helpers import exts, gtu, ltu, undefined
 from soc.consts import PIb, MSRb  # big-endian (PowerISA versions)
+from soc.consts import SVP64CROffs
 from soc.decoder.power_svp64 import SVP64RM, decode_extra
 
+from soc.decoder.isa.radixmmu import RADIX
+from soc.decoder.isa.mem import Mem, swap_order
+
 from collections import namedtuple
 import math
 import sys
@@ -42,12 +51,6 @@ special_sprs = {
     'VRSAVE': 256}
 
 
-def swap_order(x, nbytes):
-    x = x.to_bytes(nbytes, byteorder='little')
-    x = int.from_bytes(x, byteorder='big', signed=False)
-    return x
-
-
 REG_SORT_ORDER = {
     # TODO (lkcl): adjust other registers that should be in a particular order
     # probably CA, CA32, and CR
@@ -62,6 +65,7 @@ REG_SORT_ORDER = {
     "CA": 0,
     "CA32": 0,
     "MSR": 0,
+    "SVSTATE": 0,
 
     "overflow": 1,
 }
@@ -75,94 +79,6 @@ def create_args(reglist, extra=None):
     return retval
 
 
-class Mem:
-
-    def __init__(self, row_bytes=8, initial_mem=None):
-        self.mem = {}
-        self.bytes_per_word = row_bytes
-        self.word_log2 = math.ceil(math.log2(row_bytes))
-        print("Sim-Mem", initial_mem, self.bytes_per_word, self.word_log2)
-        if not initial_mem:
-            return
-
-        # different types of memory data structures recognised (for convenience)
-        if isinstance(initial_mem, list):
-            initial_mem = (0, initial_mem)
-        if isinstance(initial_mem, tuple):
-            startaddr, mem = initial_mem
-            initial_mem = {}
-            for i, val in enumerate(mem):
-                initial_mem[startaddr + row_bytes*i] = (val, row_bytes)
-
-        for addr, (val, width) in initial_mem.items():
-            #val = swap_order(val, width)
-            self.st(addr, val, width, swap=False)
-
-    def _get_shifter_mask(self, wid, remainder):
-        shifter = ((self.bytes_per_word - wid) - remainder) * \
-            8  # bits per byte
-        # XXX https://bugs.libre-soc.org/show_bug.cgi?id=377
-        # BE/LE mode?
-        shifter = remainder * 8
-        mask = (1 << (wid * 8)) - 1
-        print("width,rem,shift,mask", wid, remainder, hex(shifter), hex(mask))
-        return shifter, mask
-
-    # TODO: Implement ld/st of lesser width
-    def ld(self, address, width=8, swap=True, check_in_mem=False):
-        print("ld from addr 0x{:x} width {:d}".format(address, width))
-        remainder = address & (self.bytes_per_word - 1)
-        address = address >> self.word_log2
-        assert remainder & (width - 1) == 0, "Unaligned access unsupported!"
-        if address in self.mem:
-            val = self.mem[address]
-        elif check_in_mem:
-            return None
-        else:
-            val = 0
-        print("mem @ 0x{:x} rem {:d} : 0x{:x}".format(address, remainder, val))
-
-        if width != self.bytes_per_word:
-            shifter, mask = self._get_shifter_mask(width, remainder)
-            print("masking", hex(val), hex(mask << shifter), shifter)
-            val = val & (mask << shifter)
-            val >>= shifter
-        if swap:
-            val = swap_order(val, width)
-        print("Read 0x{:x} from addr 0x{:x}".format(val, address))
-        return val
-
-    def st(self, addr, v, width=8, swap=True):
-        staddr = addr
-        remainder = addr & (self.bytes_per_word - 1)
-        addr = addr >> self.word_log2
-        print("Writing 0x{:x} to ST 0x{:x} "
-              "memaddr 0x{:x}/{:x}".format(v, staddr, addr, remainder, swap))
-        assert remainder & (width - 1) == 0, "Unaligned access unsupported!"
-        if swap:
-            v = swap_order(v, width)
-        if width != self.bytes_per_word:
-            if addr in self.mem:
-                val = self.mem[addr]
-            else:
-                val = 0
-            shifter, mask = self._get_shifter_mask(width, remainder)
-            val &= ~(mask << shifter)
-            val |= v << shifter
-            self.mem[addr] = val
-        else:
-            self.mem[addr] = v
-        print("mem @ 0x{:x}: 0x{:x}".format(addr, self.mem[addr]))
-
-    def __call__(self, addr, sz):
-        val = self.ld(addr.value, sz, swap=False)
-        print("memread", addr, sz, val)
-        return SelectableInt(val, sz*8)
-
-    def memassign(self, addr, sz, val):
-        print("memassign", addr, sz, val)
-        self.st(addr.value, val.value, sz, swap=False)
-
 
 class GPR(dict):
     def __init__(self, decoder, isacaller, svstate, regfile):
@@ -181,7 +97,7 @@ class GPR(dict):
 
     def getz(self, rnum):
         # rnum = rnum.value # only SelectableInt allowed
-        print("GPR getzero", rnum)
+        print("GPR getzero?", rnum)
         if rnum == 0:
             return SelectableInt(0, 64)
         return self[rnum]
@@ -208,6 +124,65 @@ class GPR(dict):
             print("reg", "%2d" % i, s)
 
 
+class SPR(dict):
+    def __init__(self, dec2, initial_sprs={}):
+        self.sd = dec2
+        dict.__init__(self)
+        for key, v in initial_sprs.items():
+            if isinstance(key, SelectableInt):
+                key = key.value
+            key = special_sprs.get(key, key)
+            if isinstance(key, int):
+                info = spr_dict[key]
+            else:
+                info = spr_byname[key]
+            if not isinstance(v, SelectableInt):
+                v = SelectableInt(v, info.length)
+            self[key] = v
+
+    def __getitem__(self, key):
+        print("get spr", key)
+        print("dict", self.items())
+        # if key in special_sprs get the special spr, otherwise return key
+        if isinstance(key, SelectableInt):
+            key = key.value
+        if isinstance(key, int):
+            key = spr_dict[key].SPR
+        key = special_sprs.get(key, key)
+        if key == 'HSRR0':  # HACK!
+            key = 'SRR0'
+        if key == 'HSRR1':  # HACK!
+            key = 'SRR1'
+        if key in self:
+            res = dict.__getitem__(self, key)
+        else:
+            if isinstance(key, int):
+                info = spr_dict[key]
+            else:
+                info = spr_byname[key]
+            dict.__setitem__(self, key, SelectableInt(0, info.length))
+            res = dict.__getitem__(self, key)
+        print("spr returning", key, res)
+        return res
+
+    def __setitem__(self, key, value):
+        if isinstance(key, SelectableInt):
+            key = key.value
+        if isinstance(key, int):
+            key = spr_dict[key].SPR
+            print("spr key", key)
+        key = special_sprs.get(key, key)
+        if key == 'HSRR0':  # HACK!
+            self.__setitem__('SRR0', value)
+        if key == 'HSRR1':  # HACK!
+            self.__setitem__('SRR1', value)
+        print("setting spr", key, value)
+        dict.__setitem__(self, key, value)
+
+    def __call__(self, ridx):
+        return self[ridx]
+
+
 class PC:
     def __init__(self, pc_init=0):
         self.CIA = SelectableInt(pc_init, 64)
@@ -251,6 +226,29 @@ class SVP64RMFields:
         self.subvl = FieldSelectableInt(self.spr, tuple(range(8,10)))
         self.extra = FieldSelectableInt(self.spr, tuple(range(10,19)))
         self.mode = FieldSelectableInt(self.spr, tuple(range(19,24)))
+        # these cover the same extra field, split into parts as EXTRA2
+        self.extra2 = list(range(4))
+        self.extra2[0] = FieldSelectableInt(self.spr, tuple(range(10,12)))
+        self.extra2[1] = FieldSelectableInt(self.spr, tuple(range(12,14)))
+        self.extra2[2] = FieldSelectableInt(self.spr, tuple(range(14,16)))
+        self.extra2[3] = FieldSelectableInt(self.spr, tuple(range(16,18)))
+        self.smask = FieldSelectableInt(self.spr, tuple(range(16,19)))
+        # and here as well, but EXTRA3
+        self.extra3 = list(range(3))
+        self.extra3[0] = FieldSelectableInt(self.spr, tuple(range(10,13)))
+        self.extra3[1] = FieldSelectableInt(self.spr, tuple(range(13,16)))
+        self.extra3[2] = FieldSelectableInt(self.spr, tuple(range(16,19)))
+
+
+SVP64RM_MMODE_SIZE = len(SVP64RMFields().mmode.br)
+SVP64RM_MASK_SIZE = len(SVP64RMFields().mask.br)
+SVP64RM_ELWIDTH_SIZE = len(SVP64RMFields().elwidth.br)
+SVP64RM_EWSRC_SIZE = len(SVP64RMFields().ewsrc.br)
+SVP64RM_SUBVL_SIZE = len(SVP64RMFields().subvl.br)
+SVP64RM_EXTRA2_SPEC_SIZE = len(SVP64RMFields().extra2[0].br)
+SVP64RM_EXTRA3_SPEC_SIZE = len(SVP64RMFields().extra3[0].br)
+SVP64RM_SMASK_SIZE = len(SVP64RMFields().smask.br)
+SVP64RM_MODE_SIZE = len(SVP64RMFields().mode.br)
 
 
 # SVP64 Prefix fields: see https://libre-soc.org/openpower/sv/svp64/
@@ -268,64 +266,58 @@ SV64P_MAJOR_SIZE = len(SVP64PrefixFields().major.br)
 SV64P_PID_SIZE = len(SVP64PrefixFields().pid.br)
 SV64P_RM_SIZE = len(SVP64PrefixFields().rm.br)
 
+# decode SVP64 predicate integer to reg number and invert
+def get_predint(gpr, mask):
+    r10 = gpr(10)
+    r30 = gpr(30)
+    print ("get_predint", mask, SVP64PredInt.ALWAYS.value)
+    if mask == SVP64PredInt.ALWAYS.value:
+        return 0xffff_ffff_ffff_ffff
+    if mask == SVP64PredInt.R3_UNARY.value:
+        return 1 << (gpr(3).value & 0b111111)
+    if mask == SVP64PredInt.R3.value:
+        return gpr(3).value
+    if mask == SVP64PredInt.R3_N.value:
+        return ~gpr(3).value
+    if mask == SVP64PredInt.R10.value:
+        return gpr(10).value
+    if mask == SVP64PredInt.R10_N.value:
+        return ~gpr(10).value
+    if mask == SVP64PredInt.R30.value:
+        return gpr(30).value
+    if mask == SVP64PredInt.R30_N.value:
+        return ~gpr(30).value
+
+# decode SVP64 predicate CR to reg number and invert status
+def _get_predcr(mask):
+    if mask == SVP64PredCR.LT.value:
+        return 0, 1
+    if mask == SVP64PredCR.GE.value:
+        return 0, 0
+    if mask == SVP64PredCR.GT.value:
+        return 1, 1
+    if mask == SVP64PredCR.LE.value:
+        return 1, 0
+    if mask == SVP64PredCR.EQ.value:
+        return 2, 1
+    if mask == SVP64PredCR.NE.value:
+        return 2, 0
+    if mask == SVP64PredCR.SO.value:
+        return 3, 1
+    if mask == SVP64PredCR.NS.value:
+        return 3, 0
+
+# read individual CR fields (0..VL-1), extract the required bit
+# and construct the mask
+def get_predcr(crl, mask, vl):
+    idx, noninv = _get_predcr(mask)
+    mask = 0
+    for i in range(vl):
+        cr = crl[i+SVP64CROffs.CRPred]
+        if cr[idx].value == noninv:
+            mask |= (1<<i)
+    return mask
 
-class SPR(dict):
-    def __init__(self, dec2, initial_sprs={}):
-        self.sd = dec2
-        dict.__init__(self)
-        for key, v in initial_sprs.items():
-            if isinstance(key, SelectableInt):
-                key = key.value
-            key = special_sprs.get(key, key)
-            if isinstance(key, int):
-                info = spr_dict[key]
-            else:
-                info = spr_byname[key]
-            if not isinstance(v, SelectableInt):
-                v = SelectableInt(v, info.length)
-            self[key] = v
-
-    def __getitem__(self, key):
-        print("get spr", key)
-        print("dict", self.items())
-        # if key in special_sprs get the special spr, otherwise return key
-        if isinstance(key, SelectableInt):
-            key = key.value
-        if isinstance(key, int):
-            key = spr_dict[key].SPR
-        key = special_sprs.get(key, key)
-        if key == 'HSRR0':  # HACK!
-            key = 'SRR0'
-        if key == 'HSRR1':  # HACK!
-            key = 'SRR1'
-        if key in self:
-            res = dict.__getitem__(self, key)
-        else:
-            if isinstance(key, int):
-                info = spr_dict[key]
-            else:
-                info = spr_byname[key]
-            dict.__setitem__(self, key, SelectableInt(0, info.length))
-            res = dict.__getitem__(self, key)
-        print("spr returning", key, res)
-        return res
-
-    def __setitem__(self, key, value):
-        if isinstance(key, SelectableInt):
-            key = key.value
-        if isinstance(key, int):
-            key = spr_dict[key].SPR
-            print("spr key", key)
-        key = special_sprs.get(key, key)
-        if key == 'HSRR0':  # HACK!
-            self.__setitem__('SRR0', value)
-        if key == 'HSRR1':  # HACK!
-            self.__setitem__('SRR1', value)
-        print("setting spr", key, value)
-        dict.__setitem__(self, key, value)
-
-    def __call__(self, ridx):
-        return self[ridx]
 
 def get_pdecode_idx_in(dec2, name):
     op = dec2.dec.op
@@ -339,7 +331,12 @@ def get_pdecode_idx_in(dec2, name):
     in1_isvec = yield dec2.in1_isvec
     in2_isvec = yield dec2.in2_isvec
     in3_isvec = yield dec2.in3_isvec
-    print ("get_pdecode_idx", in1_sel, In1Sel.RA.value, in1, in1_isvec)
+    print ("get_pdecode_idx_in in1", name, in1_sel, In1Sel.RA.value,
+                                     in1, in1_isvec)
+    print ("get_pdecode_idx_in in2", name, in2_sel, In2Sel.RB.value,
+                                     in2, in2_isvec)
+    print ("get_pdecode_idx_in in3", name, in3_sel, In3Sel.RS.value,
+                                     in3, in3_isvec)
     # identify which regnames map to in1/2/3
     if name == 'RA':
         if (in1_sel == In1Sel.RA.value or
@@ -371,6 +368,7 @@ def get_pdecode_cr_out(dec2, name):
     out_bitfield = yield dec2.dec_cr_out.cr_bitfield.data
     sv_cr_out = yield op.sv_cr_out
     spec = yield dec2.crout_svdec.spec
+    sv_override = yield dec2.dec_cr_out.sv_override
     # get the IN1/2/3 from the decoder (includes SVP64 remap and isvec)
     out = yield dec2.e.write_cr.data
     o_isvec = yield dec2.o_isvec
@@ -378,6 +376,7 @@ def get_pdecode_cr_out(dec2, name):
     print ("    sv_cr_out", sv_cr_out)
     print ("    cr_bf", out_bitfield)
     print ("    spec", spec)
+    print ("    override", sv_override)
     # identify which regnames map to out / o2
     if name == 'CR0':
         if out_sel == CROutSel.CR0.value:
@@ -392,12 +391,14 @@ def get_pdecode_idx_out(dec2, name):
     # get the IN1/2/3 from the decoder (includes SVP64 remap and isvec)
     out = yield dec2.e.write_reg.data
     o_isvec = yield dec2.o_isvec
-    print ("get_pdecode_idx_out", out_sel, OutSel.RA.value, out, o_isvec)
     # identify which regnames map to out / o2
     if name == 'RA':
+        print ("get_pdecode_idx_out", out_sel, OutSel.RA.value, out, o_isvec)
         if out_sel == OutSel.RA.value:
             return out, o_isvec
     elif name == 'RT':
+        print ("get_pdecode_idx_out", out_sel, OutSel.RT.value,
+                                      OutSel.RT_OR_ZERO.value, out, o_isvec)
         if out_sel == OutSel.RT.value:
             return out, o_isvec
     print ("get_pdecode_idx_out not found", name)
@@ -422,7 +423,8 @@ class ISACaller:
                  initial_insns=None, respect_pc=False,
                  disassembly=None,
                  initial_pc=0,
-                 bigendian=False):
+                 bigendian=False,
+                 mmu=False):
 
         self.bigendian = bigendian
         self.halted = False
@@ -457,15 +459,21 @@ class ISACaller:
 
         # set up registers, instruction memory, data memory, PC, SPRs, MSR
         self.svp64rm = SVP64RM()
+        if initial_svstate is None:
+            initial_svstate = 0
         if isinstance(initial_svstate, int):
             initial_svstate = SVP64State(initial_svstate)
         self.svstate = initial_svstate
         self.gpr = GPR(decoder2, self, self.svstate, regfile)
+        self.spr = SPR(decoder2, initial_sprs) # initialise SPRs before MMU
         self.mem = Mem(row_bytes=8, initial_mem=initial_mem)
         self.imem = Mem(row_bytes=4, initial_mem=initial_insns)
-        self.pc = PC()
-        self.spr = SPR(decoder2, initial_sprs)
+        # MMU mode, redirect underlying Mem through RADIX
         self.msr = SelectableInt(initial_msr, 64)  # underlying reg
+        if mmu:
+            self.mem = RADIX(self.mem, self)
+            self.imem = RADIX(self.imem, self)
+        self.pc = PC()
 
         # TODO, needed here:
         # FPR (same as GPR except for FP nums)
@@ -496,6 +504,7 @@ class ISACaller:
                                'memassign': self.memassign,
                                'NIA': self.pc.NIA,
                                'CIA': self.pc.CIA,
+                               'SVSTATE': self.svstate.spr,
                                'CR': self.cr,
                                'MSR': self.msr,
                                'undefined': undefined,
@@ -701,7 +710,7 @@ class ISACaller:
         else:
             pc = self.fake_pc
         self._pc = pc
-        ins = self.imem.ld(pc, 4, False, True)
+        ins = self.imem.ld(pc, 4, False, True, instr_fetch=True)
         if ins is None:
             raise KeyError("no instruction at 0x%x" % pc)
         print("setup: 0x%x 0x%x %s" % (pc, ins & 0xffffffff, bin(ins)))
@@ -712,7 +721,8 @@ class ISACaller:
         yield self.dec2.dec.bigendian.eq(self.bigendian)
         yield self.dec2.state.msr.eq(self.msr.value)
         yield self.dec2.state.pc.eq(pc)
-        yield self.dec2.state.svstate.eq(self.svstate.spr.value)
+        if self.svstate is not None:
+            yield self.dec2.state.svstate.eq(self.svstate.spr.value)
 
         # SVP64.  first, check if the opcode is EXT001, and SVP64 id bits set
         yield Settle()
@@ -726,6 +736,8 @@ class ISACaller:
                               pfx.insn[7].value == 0b1 and
                               pfx.insn[9].value == 0b1)
         self.pc.update_nia(self.is_svp64_mode)
+        self.namespace['NIA'] = self.pc.NIA
+        self.namespace['SVSTATE'] = self.svstate.spr
         if not self.is_svp64_mode:
             return
 
@@ -734,7 +746,7 @@ class ISACaller:
         print ("    svstate.vl", self.svstate.vl.asint(msb0=True))
         print ("    svstate.mvl", self.svstate.maxvl.asint(msb0=True))
         sv_rm = pfx.rm.asint(msb0=True)
-        ins = self.imem.ld(pc+4, 4, False, True)
+        ins = self.imem.ld(pc+4, 4, False, True, instr_fetch=True)
         print("     svsetup: 0x%x 0x%x %s" % (pc+4, ins & 0xffffffff, bin(ins)))
         yield self.dec2.dec.raw_opcode_in.eq(ins & 0xffffffff) # v3.0B suffix
         yield self.dec2.sv_rm.eq(sv_rm)                        # svp64 prefix
@@ -869,6 +881,11 @@ class ISACaller:
         if name not in ['mtcrf', 'mtocrf']:
             illegal = name != asmop
 
+        # sigh deal with setvl not being supported by binutils (.long)
+        if asmop.startswith('setvl'):
+            illegal = False
+            name = 'setvl'
+
         if illegal:
             print("illegal", name, asmop)
             self.TRAP(0x700, PIb.ILLEG)
@@ -894,15 +911,84 @@ class ISACaller:
             dest_cr, src_cr, src_byname, dest_byname = False, False, {}, {}
         print ("sv rm", sv_rm, dest_cr, src_cr, src_byname, dest_byname)
 
-        # get SVSTATE srcstep.  TODO: dststep (twin predication)
-        srcstep = self.svstate.srcstep.asint(msb0=True)
-        vl = self.svstate.vl.asint(msb0=True)
-        mvl = self.svstate.maxvl.asint(msb0=True)
+        # get SVSTATE VL (oh and print out some debug stuff)
+        if self.is_svp64_mode:
+            vl = self.svstate.vl.asint(msb0=True)
+            srcstep = self.svstate.srcstep.asint(msb0=True)
+            dststep = self.svstate.dststep.asint(msb0=True)
+            sv_a_nz = yield self.dec2.sv_a_nz
+            in1 = yield self.dec2.e.read_reg1.data
+            print ("SVP64: VL, srcstep, dststep, sv_a_nz, in1",
+                    vl, srcstep, dststep, sv_a_nz, in1)
+
+        # get predicate mask
+        srcmask = dstmask = 0xffff_ffff_ffff_ffff
+        if self.is_svp64_mode:
+            pmode = yield self.dec2.rm_dec.predmode
+            sv_ptype = yield self.dec2.dec.op.SV_Ptype
+            srcpred = yield self.dec2.rm_dec.srcpred
+            dstpred = yield self.dec2.rm_dec.dstpred
+            pred_src_zero = yield self.dec2.rm_dec.pred_sz
+            pred_dst_zero = yield self.dec2.rm_dec.pred_dz
+            if pmode == SVP64PredMode.INT.value:
+                srcmask = dstmask = get_predint(self.gpr, dstpred)
+                if sv_ptype == SVPtype.P2.value:
+                    srcmask = get_predint(self.gpr, srcpred)
+            elif pmode == SVP64PredMode.CR.value:
+                srcmask = dstmask = get_predcr(self.crl, dstpred, vl)
+                if sv_ptype == SVPtype.P2.value:
+                    srcmask = get_predcr(self.crl, srcpred, vl)
+            print ("    pmode", pmode)
+            print ("    ptype", sv_ptype)
+            print ("    srcpred", bin(srcpred))
+            print ("    dstpred", bin(dstpred))
+            print ("    srcmask", bin(srcmask))
+            print ("    dstmask", bin(dstmask))
+            print ("    pred_sz", bin(pred_src_zero))
+            print ("    pred_dz", bin(pred_dst_zero))
+
+            # okaaay, so here we simply advance srcstep (TODO dststep)
+            # until the predicate mask has a "1" bit... or we run out of VL
+            # let srcstep==VL be the indicator to move to next instruction
+            if not pred_src_zero:
+                while (((1<<srcstep) & srcmask) == 0) and (srcstep != vl):
+                    print ("      skip", bin(1<<srcstep))
+                    srcstep += 1
+            # same for dststep
+            if not pred_dst_zero:
+                while (((1<<dststep) & dstmask) == 0) and (dststep != vl):
+                    print ("      skip", bin(1<<dststep))
+                    dststep += 1
+
+            # now work out if the relevant mask bits require zeroing
+            if pred_dst_zero:
+                pred_dst_zero = ((1<<dststep) & dstmask) == 0
+            if pred_src_zero:
+                pred_src_zero = ((1<<srcstep) & srcmask) == 0
+
+            # update SVSTATE with new srcstep
+            self.svstate.srcstep[0:7] = srcstep
+            self.svstate.dststep[0:7] = dststep
+            self.namespace['SVSTATE'] = self.svstate.spr
+            yield self.dec2.state.svstate.eq(self.svstate.spr.value)
+            yield Settle() # let decoder update
+            srcstep = self.svstate.srcstep.asint(msb0=True)
+            dststep = self.svstate.dststep.asint(msb0=True)
+            print ("    srcstep", srcstep)
+            print ("    dststep", dststep)
+
+            # check if end reached (we let srcstep overrun, above)
+            # nothing needs doing (TODO zeroing): just do next instruction
+            if srcstep == vl or dststep == vl:
+                self.svp64_reset_loop()
+                self.update_pc_next()
+                return
 
         # VL=0 in SVP64 mode means "do nothing: skip instruction"
         if self.is_svp64_mode and vl == 0:
             self.pc.update(self.namespace, self.is_svp64_mode)
-            print("end of call", self.namespace['CIA'], self.namespace['NIA'])
+            print("SVP64: VL=0, end of call", self.namespace['CIA'],
+                                       self.namespace['NIA'])
             return
 
         # main input registers (RT, RA ...)
@@ -915,16 +1001,16 @@ class ISACaller:
                 # doing this is not part of svp64, it's because output
                 # registers, to be modified, need to be in the namespace.
                 regnum, is_vec = yield from get_pdecode_idx_out(self.dec2, name)
-            # here's where we go "vector".  TODO: zero-testing (RA_IS_ZERO)
-            # XXX already done by PowerDecoder2, now
-            #if is_vec:
-            #   regnum += srcstep # TODO, elwidth overrides
 
             # in case getting the register number is needed, _RA, _RB
             regname = "_" + name
             self.namespace[regname] = regnum
-            print('reading reg %s %d' % (name, regnum), is_vec)
-            reg_val = self.gpr(regnum)
+            if not self.is_svp64_mode or not pred_src_zero:
+                print('reading reg %s %s' % (name, str(regnum)), is_vec)
+                reg_val = self.gpr(regnum)
+            else:
+                print('zero input reg %s %s' % (name, str(regnum)), is_vec)
+                reg_val = 0
             inputs.append(reg_val)
 
         # "special" registers
@@ -937,9 +1023,10 @@ class ISACaller:
         # clear trap (trap) NIA
         self.trap_nia = None
 
-        print(inputs)
+        # execute actual instruction here
+        print("inputs", inputs)
         results = info.func(self, *inputs)
-        print(results)
+        print("results", results)
 
         # "inject" decorator takes namespace from function locals: we need to
         # overwrite NIA being overwritten (sigh)
@@ -966,35 +1053,33 @@ class ISACaller:
         if carry_en:
             yield from self.handle_carry_(inputs, results, already_done)
 
-        # detect if overflow was in return result
-        overflow = None
-        if info.write_regs:
-            for name, output in zip(output_names, results):
-                if name == 'overflow':
-                    overflow = output
-
-        if hasattr(self.dec2.e.do, "oe"):
-            ov_en = yield self.dec2.e.do.oe.oe
-            ov_ok = yield self.dec2.e.do.oe.ok
-        else:
-            ov_en = False
-            ov_ok = False
-        print("internal overflow", overflow, ov_en, ov_ok)
-        if ov_en & ov_ok:
-            yield from self.handle_overflow(inputs, results, overflow)
-
-        if hasattr(self.dec2.e.do, "rc"):
-            rc_en = yield self.dec2.e.do.rc.rc
-        else:
-            rc_en = False
+        if not self.is_svp64_mode: # yeah just no. not in parallel processing
+            # detect if overflow was in return result
+            overflow = None
+            if info.write_regs:
+                for name, output in zip(output_names, results):
+                    if name == 'overflow':
+                        overflow = output
+
+            if hasattr(self.dec2.e.do, "oe"):
+                ov_en = yield self.dec2.e.do.oe.oe
+                ov_ok = yield self.dec2.e.do.oe.ok
+            else:
+                ov_en = False
+                ov_ok = False
+            print("internal overflow", overflow, ov_en, ov_ok)
+            if ov_en & ov_ok:
+                yield from self.handle_overflow(inputs, results, overflow)
+
+        # only do SVP64 dest predicated Rc=1 if dest-pred is not enabled
+        rc_en = False
+        if not self.is_svp64_mode or not pred_dst_zero:
+            if hasattr(self.dec2.e.do, "rc"):
+                rc_en = yield self.dec2.e.do.rc.rc
         if rc_en:
             regnum, is_vec = yield from get_pdecode_cr_out(self.dec2, "CR0")
-            regnum = 0 # TODO fix
             self.handle_comparison(results, regnum)
 
-        # svp64 loop can end early if the dest is scalar
-        svp64_dest_vector = False
-
         # any modified return results?
         if info.write_regs:
             for name, output in zip(output_names, results):
@@ -1023,12 +1108,13 @@ class ISACaller:
                         # temporary hack for not having 2nd output
                         regnum = yield getattr(self.decoder, name)
                         is_vec = False
-                    # here's where we go "vector".
-                    if is_vec:
-                        # XXX already done by PowerDecoder2
-                        # regnum += srcstep # TODO, elwidth overrides
-                        svp64_dest_vector = True
-                    print('writing reg %d %s' % (regnum, str(output)), is_vec)
+                    if self.is_svp64_mode and pred_dst_zero:
+                        print('zeroing reg %d %s' % (regnum, str(output)),
+                                                     is_vec)
+                        output = SelectableInt(0, 256)
+                    else:
+                        print('writing reg %d %s' % (regnum, str(output)),
+                                                     is_vec)
                     if output.bits > 64:
                         output = SelectableInt(output.value, 64)
                     self.gpr[regnum] = output
@@ -1040,27 +1126,54 @@ class ISACaller:
             vl = self.svstate.vl.asint(msb0=True)
             mvl = self.svstate.maxvl.asint(msb0=True)
             srcstep = self.svstate.srcstep.asint(msb0=True)
+            dststep = self.svstate.dststep.asint(msb0=True)
+            sv_ptype = yield self.dec2.dec.op.SV_Ptype
+            no_out_vec = not (yield self.dec2.no_out_vec)
+            no_in_vec = not (yield self.dec2.no_in_vec)
             print ("    svstate.vl", vl)
             print ("    svstate.mvl", mvl)
             print ("    svstate.srcstep", srcstep)
+            print ("    svstate.dststep", dststep)
+            print ("    no_out_vec", no_out_vec)
+            print ("    no_in_vec", no_in_vec)
+            print ("    sv_ptype", sv_ptype, sv_ptype == SVPtype.P2.value)
             # check if srcstep needs incrementing by one, stop PC advancing
-            if svp64_dest_vector and srcstep != vl-1:
+            # svp64 loop can end early if the dest is scalar for single-pred
+            # but for 2-pred both src/dest have to be checked.
+            # XXX this might not be true! it may just be LD/ST
+            if sv_ptype == SVPtype.P2.value:
+                svp64_is_vector = (no_out_vec or no_in_vec)
+            else:
+                svp64_is_vector = no_out_vec
+            if svp64_is_vector and srcstep != vl-1 and dststep != vl-1:
                 self.svstate.srcstep += SelectableInt(1, 7)
+                self.svstate.dststep += SelectableInt(1, 7)
                 self.pc.NIA.value = self.pc.CIA.value
                 self.namespace['NIA'] = self.pc.NIA
+                self.namespace['SVSTATE'] = self.svstate.spr
                 print("end of sub-pc call", self.namespace['CIA'],
                                      self.namespace['NIA'])
                 return # DO NOT allow PC to update whilst Sub-PC loop running
-            # reset to zero
-            self.svstate.srcstep[0:7] = 0
-            print ("    svstate.srcstep loop end (PC to update)")
-            self.pc.update_nia(self.is_svp64_mode)
-            self.namespace['NIA'] = self.pc.NIA
+            # reset loop to zero
+            self.svp64_reset_loop()
 
+        self.update_pc_next()
+
+    def update_pc_next(self):
         # UPDATE program counter
         self.pc.update(self.namespace, self.is_svp64_mode)
-        print("end of call", self.namespace['CIA'], self.namespace['NIA'])
-
+        self.svstate.spr = self.namespace['SVSTATE']
+        print("end of call", self.namespace['CIA'],
+                             self.namespace['NIA'],
+                             self.namespace['SVSTATE'])
+
+    def svp64_reset_loop(self):
+        self.svstate.srcstep[0:7] = 0
+        self.svstate.dststep[0:7] = 0
+        print ("    svstate.srcstep loop end (PC to update)")
+        self.pc.update_nia(self.is_svp64_mode)
+        self.namespace['NIA'] = self.pc.NIA
+        self.namespace['SVSTATE'] = self.svstate.spr
 
 def inject():
     """Decorator factory.
@@ -1088,7 +1201,8 @@ def inject():
             result = func(*args, **kwargs)
             print("globals after", func_globals['CIA'], func_globals['NIA'])
             print("args[0]", args[0].namespace['CIA'],
-                  args[0].namespace['NIA'])
+                  args[0].namespace['NIA'],
+                  args[0].namespace['SVSTATE'])
             args[0].namespace = func_globals
             #exec (func.__code__, func_globals)
 
@@ -1100,3 +1214,5 @@ def inject():
         return decorator
 
     return variable_injector
+
+