add in SVP64 LD/ST basic test for ISACaller
[soc.git] / src / soc / decoder / isa / caller.py
index 00f5c8ebd71b161307d3e88c1a2286a43011465b..f6c83e672370cfcd4b0b0aebdf69da0b6a67a2cf 100644 (file)
@@ -29,6 +29,9 @@ from soc.decoder.helpers import exts, gtu, ltu, undefined
 from soc.consts import PIb, MSRb  # big-endian (PowerISA versions)
 from soc.decoder.power_svp64 import SVP64RM, decode_extra
 
+from soc.decoder.isa.radixmmu import RADIX
+from soc.decoder.isa.mem import Mem, swap_order
+
 from collections import namedtuple
 import math
 import sys
@@ -45,12 +48,6 @@ special_sprs = {
     'VRSAVE': 256}
 
 
-def swap_order(x, nbytes):
-    x = x.to_bytes(nbytes, byteorder='little')
-    x = int.from_bytes(x, byteorder='big', signed=False)
-    return x
-
-
 REG_SORT_ORDER = {
     # TODO (lkcl): adjust other registers that should be in a particular order
     # probably CA, CA32, and CR
@@ -78,467 +75,6 @@ def create_args(reglist, extra=None):
     return retval
 
 
-# very quick, TODO move to SelectableInt utils later
-def genmask(shift, size):
-    res = SelectableInt(0, size)
-    for i in range(size):
-        if i < shift:
-            res[size-1-i] = SelectableInt(1, 1)
-    return res
-
-"""
-    Get Root Page
-
-    //Accessing 2nd double word of partition table (pate1)
-    //Ref: Power ISA Manual v3.0B, Book-III, section 5.7.6.1
-    //           PTCR Layout
-    // ====================================================
-    // -----------------------------------------------
-    // | /// |     PATB                | /// | PATS  |
-    // -----------------------------------------------
-    // 0     4                       51 52 58 59    63
-    // PATB[4:51] holds the base address of the Partition Table,
-    // right shifted by 12 bits.
-    // This is because the address of the Partition base is
-    // 4k aligned. Hence, the lower 12bits, which are always
-    // 0 are ommitted from the PTCR.
-    //
-    // Thus, The Partition Table Base is obtained by (PATB << 12)
-    //
-    // PATS represents the partition table size right-shifted by 12 bits.
-    // The minimal size of the partition table is 4k.
-    // Thus partition table size = (1 << PATS + 12).
-    //
-    //        Partition Table
-    //  ====================================================
-    //  0    PATE0            63  PATE1             127
-    //  |----------------------|----------------------|
-    //  |                      |                      |
-    //  |----------------------|----------------------|
-    //  |                      |                      |
-    //  |----------------------|----------------------|
-    //  |                      |                      | <-- effLPID
-    //  |----------------------|----------------------|
-    //           .
-    //           .
-    //           .
-    //  |----------------------|----------------------|
-    //  |                      |                      |
-    //  |----------------------|----------------------|
-    //
-    // The effective LPID  forms the index into the Partition Table.
-    //
-    // Each entry in the partition table contains 2 double words, PATE0, PATE1,
-    // corresponding to that partition.
-    //
-    // In case of Radix, The structure of PATE0 and PATE1 is as follows.
-    //
-    //     PATE0 Layout
-    // -----------------------------------------------
-    // |1|RTS1|/|     RPDB          | RTS2 |  RPDS   |
-    // -----------------------------------------------
-    //  0 1  2 3 4                55 56  58 59      63
-    //
-    // HR[0] : For Radix Page table, first bit should be 1.
-    // RTS1[1:2] : Gives one fragment of the Radix treesize
-    // RTS2[56:58] : Gives the second fragment of the Radix Tree size.
-    // RTS = (RTS1 << 3 + RTS2) + 31.
-    //
-    // RPDB[4:55] = Root Page Directory Base.
-    // RPDS = Logarithm of Root Page Directory Size right shifted by 3.
-    //        Thus, Root page directory size = 1 << (RPDS + 3).
-    //        Note: RPDS >= 5.
-    //
-    //   PATE1 Layout
-    // -----------------------------------------------
-    // |///|       PRTB             |  //  |  PRTS   |
-    // -----------------------------------------------
-    // 0  3 4                     51 52  58 59     63
-    //
-    // PRTB[4:51]   = Process Table Base. This is aligned to size.
-    // PRTS[59: 63] = Process Table Size right shifted by 12.
-    //                Minimal size of the process table is 4k.
-    //                Process Table Size = (1 << PRTS + 12).
-    //                Note: PRTS <= 24.
-    //
-    //                Computing the size aligned Process Table Base:
-    //                   table_base = (PRTB  & ~((1 << PRTS) - 1)) << 12
-    //                Thus, the lower 12+PRTS bits of table_base will
-    //                be zero.
-
-
-    //Ref: Power ISA Manual v3.0B, Book-III, section 5.7.6.2
-    //
-    //        Process Table
-    // ==========================
-    //  0    PRTE0            63  PRTE1             127
-    //  |----------------------|----------------------|
-    //  |                      |                      |
-    //  |----------------------|----------------------|
-    //  |                      |                      |
-    //  |----------------------|----------------------|
-    //  |                      |                      | <-- effPID
-    //  |----------------------|----------------------|
-    //           .
-    //           .
-    //           .
-    //  |----------------------|----------------------|
-    //  |                      |                      |
-    //  |----------------------|----------------------|
-    //
-    // The effective Process id (PID) forms the index into the Process Table.
-    //
-    // Each entry in the partition table contains 2 double words, PRTE0, PRTE1,
-    // corresponding to that process
-    //
-    // In case of Radix, The structure of PRTE0 and PRTE1 is as follows.
-    //
-    //     PRTE0 Layout
-    // -----------------------------------------------
-    // |/|RTS1|/|     RPDB          | RTS2 |  RPDS   |
-    // -----------------------------------------------
-    //  0 1  2 3 4                55 56  58 59      63
-    //
-    // RTS1[1:2] : Gives one fragment of the Radix treesize
-    // RTS2[56:58] : Gives the second fragment of the Radix Tree size.
-    // RTS = (RTS1 << 3 + RTS2) << 31,
-    //        since minimal Radix Tree size is 4G.
-    //
-    // RPDB = Root Page Directory Base.
-    // RPDS = Root Page Directory Size right shifted by 3.
-    //        Thus, Root page directory size = RPDS << 3.
-    //        Note: RPDS >= 5.
-    //
-    //   PRTE1 Layout
-    // -----------------------------------------------
-    // |                      ///                    |
-    // -----------------------------------------------
-    // 0                                            63
-    // All bits are reserved.
-
-
-"""
-
-# see qemu/target/ppc/mmu-radix64.c for reference
-class RADIX:
-    def __init__(self, mem, caller):
-        self.mem = mem
-        self.caller = caller
-
-        # cached page table stuff
-        self.pgtbl0 = 0
-        self.pt0_valid = False
-        self.pgtbl3 = 0
-        self.pt3_valid = False
-
-    def __call__(self,*args, **kwargs):
-        print("TODO: implement RADIX.__call__()")
-        print(args)
-        print(kwargs)
-        return None
-
-    def ld(self, address, width=8, swap=True, check_in_mem=False):
-        print("RADIX: ld from addr 0x%x width %d" % (address, width))
-        dsisr = self.caller.spr[DEC_SPR.DSISR.value]
-        dar   = self.caller.spr[DEC_SPR.DAR.value]
-        pidr  = self.caller.spr[DEC_SPR.PIDR.value]
-        prtbl = self.caller.spr[DEC_SPR.PRTBL.value]
-
-        pte = self._walk_tree()
-        # use pte to caclculate phys address
-        return self.mem.ld(address, width, swap, check_in_mem)
-
-        # XXX set SPRs on error
-
-    # TODO implement
-    def st(self, addr, v, width=8, swap=True):
-        print("RADIX: st to addr 0x%x width %d data %x" % (addr, width, v))
-        dsisr = self.caller.spr[DEC_SPR.DSISR.value]
-        dar   = self.caller.spr[DEC_SPR.DAR.value]
-        pidr  = self.caller.spr[DEC_SPR.PIDR.value]
-        prtbl = self.caller.spr[DEC_SPR.PRTBL.value]
-
-        # use pte to caclculate phys address (addr)
-        return self.mem.st(addr, v, width, swap)
-
-        # XXX set SPRs on error
-
-    def memassign(self, addr, sz, val):
-        print("memassign", addr, sz, val)
-        self.st(addr.value, val.value, sz, swap=False)
-
-    def _next_level(self):
-        return True
-        ## DSISR_R_BADCONFIG
-        ## read_entry
-        ## DSISR_NOPTE
-        ## Prepare for next iteration
-
-    def _walk_tree(self):
-        """walk tree
-
-        // vaddr                    64 Bit
-        // vaddr |-----------------------------------------------------|
-        //       | Unused    |  Used                                   |
-        //       |-----------|-----------------------------------------|
-        //       | 0000000   | usefulBits = X bits (typically 52)      |
-        //       |-----------|-----------------------------------------|
-        //       |           |<--Cursize---->|                         |
-        //       |           |    Index      |                         |
-        //       |           |    into Page  |                         |
-        //       |           |    Directory  |                         |
-        //       |-----------------------------------------------------|
-        //                        |                       |
-        //                        V                       |
-        // PDE  |---------------------------|             |
-        //      |V|L|//|  NLB       |///|NLS|             |
-        //      |---------------------------|             |
-        // PDE = Page Directory Entry                     |
-        // [0] = V = Valid Bit                            |
-        // [1] = L = Leaf bit. If 0, then                 |
-        // [4:55] = NLB = Next Level Base                 |
-        //                right shifted by 8              |
-        // [59:63] = NLS = Next Level Size                |
-        //            |    NLS >= 5                       |
-        //            |                                   V
-        //            |                     |--------------------------|
-        //            |                     |   usfulBits = X-Cursize  |
-        //            |                     |--------------------------|
-        //            |---------------------><--NLS-->|                |
-        //                                  | Index   |                |
-        //                                  | into    |                |
-        //                                  | PDE     |                |
-        //                                  |--------------------------|
-        //                                                    |
-        // If the next PDE obtained by                        |
-        // (NLB << 8 + 8 * index) is a                        |
-        // nonleaf, then repeat the above.                    |
-        //                                                    |
-        // If the next PDE is a leaf,                         |
-        // then Leaf PDE structure is as                      |
-        // follows                                            |
-        //                                                    |
-        //                                                    |
-        // Leaf PDE                                           |
-        // |------------------------------|           |----------------|
-        // |V|L|sw|//|RPN|sw|R|C|/|ATT|EAA|           | usefulBits     |
-        // |------------------------------|           |----------------|
-        // [0] = V = Valid Bit                                 |
-        // [1] = L = Leaf Bit = 1 if leaf                      |
-        //                      PDE                            |
-        // [2] = Sw = Sw bit 0.                                |
-        // [7:51] = RPN = Real Page Number,                    V
-        //          real_page = RPN << 12 ------------->  Logical OR
-        // [52:54] = Sw Bits 1:3                               |
-        // [55] = R = Reference                                |
-        // [56] = C = Change                                   V
-        // [58:59] = Att =                                Physical Address
-        //           0b00 = Normal Memory
-        //           0b01 = SAO
-        //           0b10 = Non Idenmpotent
-        //           0b11 = Tolerant I/O
-        // [60:63] = Encoded Access
-        //           Authority
-        //
-        """
-        # walk tree starts on prtbl
-        while True:
-            ret = self._next_level()
-            if ret: return ret
-
-    def _decode_prte(self, data):
-        """PRTE0 Layout
-           -----------------------------------------------
-           |/|RTS1|/|     RPDB          | RTS2 |  RPDS   |
-           -----------------------------------------------
-            0 1  2 3 4                55 56  58 59      63
-        """
-        # note that SelectableInt does big-endian!  so the indices
-        # below *directly* match the spec, unlike microwatt which
-        # has to turn them around (to LE)
-        zero = SelectableInt(0, 1)
-        rts = selectconcat(zero,
-                           data[56:59],      # RTS2
-                           data[1:3],        # RTS1
-                           )
-        masksize = data[59:64]               # RPDS
-        mbits = selectconcat(zero, masksize)
-        pgbase = selectconcat(data[8:56],  # part of RPDB
-                             SelectableInt(0, 16),)
-
-        return (rts, mbits, pgbase)
-
-    def _segment_check(self, addr, mbits, shift):
-        """checks segment valid
-                    mbits := '0' & r.mask_size;
-            v.shift := r.shift + (31 - 12) - mbits;
-            nonzero := or(r.addr(61 downto 31) and not finalmask(30 downto 0));
-            if r.addr(63) /= r.addr(62) or nonzero = '1' then
-                v.state := RADIX_FINISH;
-                v.segerror := '1';
-            elsif mbits < 5 or mbits > 16 or mbits > (r.shift + (31 - 12)) then
-                v.state := RADIX_FINISH;
-                v.badtree := '1';
-            else
-                v.state := RADIX_LOOKUP;
-        """
-        # note that SelectableInt does big-endian!  so the indices
-        # below *directly* match the spec, unlike microwatt which
-        # has to turn them around (to LE)
-        mask = genmask(shift, 43)
-        nonzero = addr[1:32] & mask[12:43] # mask 31 LSBs (BE numbered 12:43)
-        print ("RADIX _segment_check nonzero", bin(nonzero.value))
-        print ("RADIX _segment_check addr[0-1]", addr[0].value, addr[1].value)
-        if addr[0] != addr[1] or nonzero == 1:
-            return "segerror"
-        limit = shift + (31 - 12)
-        if mbits < 5 or mbits > 16 or mbits > limit:
-            return "badtree"
-        new_shift = shift + (31 - 12) - mbits
-        return new_shift
-
-    def _check_perms(self):
-        """check page permissions
-                    -- test leaf bit
-                    if data(62) = '1' then
-                        -- check permissions and RC bits
-                        perm_ok := '0';
-                        if r.priv = '1' or data(3) = '0' then
-                            if r.iside = '0' then
-                                perm_ok := data(1) or (data(2) and not r.store);
-                            else
-                                -- no IAMR, so no KUEP support for now
-                                -- deny execute permission if cache inhibited
-                                perm_ok := data(0) and not data(5);
-                            end if;
-                        end if;
-                        rc_ok := data(8) and (data(7) or not r.store);
-                        if perm_ok = '1' and rc_ok = '1' then
-                            v.state := RADIX_LOAD_TLB;
-                        else
-                            v.state := RADIX_FINISH;
-                            v.perm_err := not perm_ok;
-                            -- permission error takes precedence over RC error
-                            v.rc_error := perm_ok;
-                        end if;
-        """
-
-    def _get_prtable_addr(self, prtbl, addr):
-        """
-        if r.addr(63) = '1' then
-            effpid := x"00000000";
-        else
-            effpid := r.pid;
-        end if;
-        prtable_addr := x"00" & r.prtbl(55 downto 36) &
-                        ((r.prtbl(35 downto 12) and not finalmask(23 downto 0)) or
-                         (effpid(31 downto 8) and finalmask(23 downto 0))) &
-                        effpid(7 downto 0) & "0000";
-        """
-
-    def _get_pgtable_addr(self):
-        """
-        pgtable_addr := x"00" & r.pgbase(55 downto 19) &
-                        ((r.pgbase(18 downto 3) and not mask) or (addrsh and mask)) &
-                        "000";
-        """
-
-    def _get_pte(self):
-        """
-        pte := x"00" &
-               ((r.pde(55 downto 12) and not finalmask) or (r.addr(55 downto 12) and finalmask))
-               & r.pde(11 downto 0);
-        """
-
-
-class Mem:
-
-    def __init__(self, row_bytes=8, initial_mem=None):
-        self.mem = {}
-        self.bytes_per_word = row_bytes
-        self.word_log2 = math.ceil(math.log2(row_bytes))
-        print("Sim-Mem", initial_mem, self.bytes_per_word, self.word_log2)
-        if not initial_mem:
-            return
-
-        # different types of memory data structures recognised (for convenience)
-        if isinstance(initial_mem, list):
-            initial_mem = (0, initial_mem)
-        if isinstance(initial_mem, tuple):
-            startaddr, mem = initial_mem
-            initial_mem = {}
-            for i, val in enumerate(mem):
-                initial_mem[startaddr + row_bytes*i] = (val, row_bytes)
-
-        for addr, (val, width) in initial_mem.items():
-            #val = swap_order(val, width)
-            self.st(addr, val, width, swap=False)
-
-    def _get_shifter_mask(self, wid, remainder):
-        shifter = ((self.bytes_per_word - wid) - remainder) * \
-            8  # bits per byte
-        # XXX https://bugs.libre-soc.org/show_bug.cgi?id=377
-        # BE/LE mode?
-        shifter = remainder * 8
-        mask = (1 << (wid * 8)) - 1
-        print("width,rem,shift,mask", wid, remainder, hex(shifter), hex(mask))
-        return shifter, mask
-
-    # TODO: Implement ld/st of lesser width
-    def ld(self, address, width=8, swap=True, check_in_mem=False):
-        print("ld from addr 0x{:x} width {:d}".format(address, width))
-        remainder = address & (self.bytes_per_word - 1)
-        address = address >> self.word_log2
-        assert remainder & (width - 1) == 0, "Unaligned access unsupported!"
-        if address in self.mem:
-            val = self.mem[address]
-        elif check_in_mem:
-            return None
-        else:
-            val = 0
-        print("mem @ 0x{:x} rem {:d} : 0x{:x}".format(address, remainder, val))
-
-        if width != self.bytes_per_word:
-            shifter, mask = self._get_shifter_mask(width, remainder)
-            print("masking", hex(val), hex(mask << shifter), shifter)
-            val = val & (mask << shifter)
-            val >>= shifter
-        if swap:
-            val = swap_order(val, width)
-        print("Read 0x{:x} from addr 0x{:x}".format(val, address))
-        return val
-
-    def st(self, addr, v, width=8, swap=True):
-        staddr = addr
-        remainder = addr & (self.bytes_per_word - 1)
-        addr = addr >> self.word_log2
-        print("Writing 0x{:x} to ST 0x{:x} "
-              "memaddr 0x{:x}/{:x}".format(v, staddr, addr, remainder, swap))
-        assert remainder & (width - 1) == 0, "Unaligned access unsupported!"
-        if swap:
-            v = swap_order(v, width)
-        if width != self.bytes_per_word:
-            if addr in self.mem:
-                val = self.mem[addr]
-            else:
-                val = 0
-            shifter, mask = self._get_shifter_mask(width, remainder)
-            val &= ~(mask << shifter)
-            val |= v << shifter
-            self.mem[addr] = val
-        else:
-            self.mem[addr] = v
-        print("mem @ 0x{:x}: 0x{:x}".format(addr, self.mem[addr]))
-
-    def __call__(self, addr, sz):
-        val = self.ld(addr.value, sz, swap=False)
-        print("memread", addr, sz, val)
-        return SelectableInt(val, sz*8)
-
-    def memassign(self, addr, sz, val):
-        print("memassign", addr, sz, val)
-        self.st(addr.value, val.value, sz, swap=False)
-
 
 class GPR(dict):
     def __init__(self, decoder, isacaller, svstate, regfile):
@@ -863,12 +399,12 @@ class ISACaller:
             initial_svstate = SVP64State(initial_svstate)
         self.svstate = initial_svstate
         self.gpr = GPR(decoder2, self, self.svstate, regfile)
+        self.spr = SPR(decoder2, initial_sprs) # initialise SPRs before MMU
         self.mem = Mem(row_bytes=8, initial_mem=initial_mem)
         if mmu:
             self.mem = RADIX(self.mem, self)
         self.imem = Mem(row_bytes=4, initial_mem=initial_insns)
         self.pc = PC()
-        self.spr = SPR(decoder2, initial_sprs)
         self.msr = SelectableInt(initial_msr, 64)  # underlying reg
 
         # TODO, needed here:
@@ -1116,7 +652,8 @@ class ISACaller:
         yield self.dec2.dec.bigendian.eq(self.bigendian)
         yield self.dec2.state.msr.eq(self.msr.value)
         yield self.dec2.state.pc.eq(pc)
-        yield self.dec2.state.svstate.eq(self.svstate.spr.value)
+        if self.svstate is not None:
+            yield self.dec2.state.svstate.eq(self.svstate.spr.value)
 
         # SVP64.  first, check if the opcode is EXT001, and SVP64 id bits set
         yield Settle()
@@ -1130,6 +667,7 @@ class ISACaller:
                               pfx.insn[7].value == 0b1 and
                               pfx.insn[9].value == 0b1)
         self.pc.update_nia(self.is_svp64_mode)
+        self.namespace['NIA'] = self.pc.NIA
         if not self.is_svp64_mode:
             return
 
@@ -1298,10 +836,9 @@ class ISACaller:
             dest_cr, src_cr, src_byname, dest_byname = False, False, {}, {}
         print ("sv rm", sv_rm, dest_cr, src_cr, src_byname, dest_byname)
 
-        # get SVSTATE srcstep.  TODO: dststep (twin predication)
-        srcstep = self.svstate.srcstep.asint(msb0=True)
-        vl = self.svstate.vl.asint(msb0=True)
-        mvl = self.svstate.maxvl.asint(msb0=True)
+        # get SVSTATE VL
+        if self.is_svp64_mode:
+            vl = self.svstate.vl.asint(msb0=True)
 
         # VL=0 in SVP64 mode means "do nothing: skip instruction"
         if self.is_svp64_mode and vl == 0:
@@ -1319,10 +856,6 @@ class ISACaller:
                 # doing this is not part of svp64, it's because output
                 # registers, to be modified, need to be in the namespace.
                 regnum, is_vec = yield from get_pdecode_idx_out(self.dec2, name)
-            # here's where we go "vector".  TODO: zero-testing (RA_IS_ZERO)
-            # XXX already done by PowerDecoder2, now
-            #if is_vec:
-            #   regnum += srcstep # TODO, elwidth overrides
 
             # in case getting the register number is needed, _RA, _RB
             regname = "_" + name
@@ -1499,27 +1032,3 @@ def inject():
     return variable_injector
 
 
-# very quick test of maskgen function (TODO, move to util later)
-if __name__ == '__main__':
-    shift = SelectableInt(5, 6)
-    mask = genmask(shift, 43)
-    print ("    mask", bin(mask.value))
-
-    mem = Mem(row_bytes=8)
-    mem = RADIX(mem, None)
-    # -----------------------------------------------
-    # |/|RTS1|/|     RPDB          | RTS2 |  RPDS   |
-    # -----------------------------------------------
-    # |0|1  2|3|4                55|56  58|59     63|
-    data = SelectableInt(0, 64)
-    data[1:3] = 0b01
-    data[56:59] = 0b11
-    data[59:64] = 0b01101 # mask
-    data[55] = 1
-    (rts, mbits, pgbase) = mem._decode_prte(data)
-    print ("    rts", bin(rts.value), rts.bits)
-    print ("    mbits", bin(mbits.value), mbits.bits)
-    print ("    pgbase", hex(pgbase.value), pgbase.bits)
-    addr = SelectableInt(0x1000, 64)
-    check = mem._segment_check(addr, mbits, shift)
-    print ("    segment check", check)