Implement checks for all the rest of the comparison operarions
[ieee754fpu.git] / src / ieee754 / part / partsig.py
1 # SPDX-License-Identifier: LGPL-2.1-or-later
2 # See Notices.txt for copyright information
3
4 """
5 Copyright (C) 2020 Luke Kenneth Casson Leighton <lkcl@lkcl.net>
6
7 dynamic-partitionable class similar to Signal, which, when the partition
8 is fully open will be identical to Signal. when partitions are closed,
9 the class turns into a SIMD variant of Signal. *this is dynamic*.
10
11 the basic fundamental idea is: write code once, and if you want a SIMD
12 version of it, use PartitionedSignal in place of Signal. job done.
13 this however requires the code to *not* be designed to use nmigen.If,
14 nmigen.Case, or other constructs: only Mux and other logic.
15
16 * http://bugs.libre-riscv.org/show_bug.cgi?id=132
17 """
18
19 from ieee754.part_mul_add.adder import PartitionedAdder
20 from ieee754.part_cmp.eq_gt_ge import PartitionedEqGtGe
21 from ieee754.part_shift.part_shift_dynamic import PartitionedDynamicShift
22 from ieee754.part_shift.part_shift_scalar import PartitionedScalarShift
23 from ieee754.part_mul_add.partpoints import make_partition, PartitionPoints
24 from operator import or_, xor, and_, not_
25
26 from nmigen import (Signal, Const)
27
28
29 def getsig(op1):
30 if isinstance(op1, PartitionedSignal):
31 op1 = op1.sig
32 return op1
33
34
35 def applyop(op1, op2, op):
36 return op(getsig(op1), getsig(op2))
37
38
39 class PartitionedSignal:
40 def __init__(self, mask, *args, **kwargs):
41 self.sig = Signal(*args, **kwargs)
42 width = len(self.sig) # get signal width
43 # create partition points
44 if isinstance(mask, PartitionPoints):
45 self.partpoints = mask
46 else:
47 self.partpoints = make_partition(mask, width)
48 self.modnames = {}
49 for name in ['add', 'eq', 'gt', 'ge', 'ls']:
50 self.modnames[name] = 0
51
52 def set_module(self, m):
53 self.m = m
54
55 def get_modname(self, category):
56 self.modnames[category] += 1
57 return "%s_%d" % (category, self.modnames[category])
58
59 def eq(self, val):
60 return self.sig.eq(getsig(val))
61
62 # unary ops that do not require partitioning
63
64 def __invert__(self):
65 return ~self.sig
66
67 # unary ops that require partitioning
68
69 def __neg__(self):
70 z = Const(0, len(self.partpoints)+1)
71 result, _ = self.add_op(self, ~0, carry=z) # TODO, subop
72 return result
73
74 # binary ops that don't require partitioning
75
76 def __and__(self, other):
77 return applyop(self, other, and_)
78
79 def __rand__(self, other):
80 return applyop(other, self, and_)
81
82 def __or__(self, other):
83 return applyop(self, other, or_)
84
85 def __ror__(self, other):
86 return applyop(other, self, or_)
87
88 def __xor__(self, other):
89 return applyop(self, other, xor)
90
91 def __rxor__(self, other):
92 return applyop(other, self, xor)
93
94 # binary ops that need partitioning
95
96 # TODO: detect if the 2nd operand is a Const, a Signal or a
97 # PartitionedSignal. if it's a Const or a Signal, a global shift
98 # can occur. if it's a PartitionedSignal, that's much more interesting.
99 def ls_op(self, op1, op2, carry, shr_flag=0):
100 op1 = getsig(op1)
101 if isinstance(op2, Const) or isinstance(op2, Signal):
102 scalar = True
103 pa = PartitionedScalarShift(len(op1), self.partpoints)
104 else:
105 scalar = False
106 op2 = getsig(op2)
107 pa = PartitionedDynamicShift(len(op1), self.partpoints)
108 setattr(self.m.submodules, self.get_modname('ls'), pa)
109 comb = self.m.d.comb
110 if scalar:
111 comb += pa.data.eq(op1)
112 comb += pa.shifter.eq(op2)
113 comb += pa.shift_right.eq(shr_flag)
114 else:
115 comb += pa.a.eq(op1)
116 comb += pa.b.eq(op2)
117 comb += pa.shift_right.eq(shr_flag)
118 # XXX TODO: carry-in, carry-out
119 #comb += pa.carry_in.eq(carry)
120 return (pa.output, 0)
121
122 def __lshift__(self, other):
123 z = Const(0, len(self.partpoints)+1)
124 result, _ = self.ls_op(self, other, carry=z) # TODO, carry
125 return result
126
127 def __rlshift__(self, other):
128 raise NotImplementedError
129 return Operator("<<", [other, self])
130
131 def __rshift__(self, other):
132 z = Const(0, len(self.partpoints)+1)
133 result, _ = self.ls_op(self, other, carry=z, shr_flag=1) # TODO, carry
134 return result
135
136 def __rrshift__(self, other):
137 raise NotImplementedError
138 return Operator(">>", [other, self])
139
140 def add_op(self, op1, op2, carry):
141 op1 = getsig(op1)
142 op2 = getsig(op2)
143 pa = PartitionedAdder(len(op1), self.partpoints)
144 setattr(self.m.submodules, self.get_modname('add'), pa)
145 comb = self.m.d.comb
146 comb += pa.a.eq(op1)
147 comb += pa.b.eq(op2)
148 comb += pa.carry_in.eq(carry)
149 return (pa.output, pa.carry_out)
150
151 def sub_op(self, op1, op2, carry=~0):
152 op1 = getsig(op1)
153 op2 = getsig(op2)
154 pa = PartitionedAdder(len(op1), self.partpoints)
155 setattr(self.m.submodules, self.get_modname('add'), pa)
156 comb = self.m.d.comb
157 comb += pa.a.eq(op1)
158 comb += pa.b.eq(~op2)
159 comb += pa.carry_in.eq(carry)
160 return (pa.output, pa.carry_out)
161
162 def __add__(self, other):
163 result, _ = self.add_op(self, other, carry=0)
164 return result
165
166 def __radd__(self, other):
167 result, _ = self.add_op(other, self)
168 return result
169
170 def __sub__(self, other):
171 result, _ = self.sub_op(self, other)
172 return result
173
174 def __rsub__(self, other):
175 result, _ = self.sub_op(other, self)
176 return result
177
178 def __mul__(self, other):
179 return Operator("*", [self, other])
180
181 def __rmul__(self, other):
182 return Operator("*", [other, self])
183
184 def __check_divisor(self):
185 width, signed = self.shape()
186 if signed:
187 # Python's division semantics and Verilog's division semantics
188 # differ for negative divisors (Python uses div/mod, Verilog
189 # uses quo/rem); for now, avoid the issue
190 # completely by prohibiting such division operations.
191 raise NotImplementedError(
192 "Division by a signed value is not supported")
193
194 def __mod__(self, other):
195 raise NotImplementedError
196 other = Value.cast(other)
197 other.__check_divisor()
198 return Operator("%", [self, other])
199
200 def __rmod__(self, other):
201 raise NotImplementedError
202 self.__check_divisor()
203 return Operator("%", [other, self])
204
205 def __floordiv__(self, other):
206 raise NotImplementedError
207 other = Value.cast(other)
208 other.__check_divisor()
209 return Operator("//", [self, other])
210
211 def __rfloordiv__(self, other):
212 raise NotImplementedError
213 self.__check_divisor()
214 return Operator("//", [other, self])
215
216 # binary comparison ops that need partitioning
217
218 def _compare(self, width, op1, op2, opname, optype):
219 # print (opname, op1, op2)
220 pa = PartitionedEqGtGe(width, self.partpoints)
221 setattr(self.m.submodules, self.get_modname(opname), pa)
222 comb = self.m.d.comb
223 comb += pa.opcode.eq(optype) # set opcode
224 if isinstance(op1, PartitionedSignal):
225 comb += pa.a.eq(op1.sig)
226 else:
227 comb += pa.a.eq(op1)
228 if isinstance(op2, PartitionedSignal):
229 comb += pa.b.eq(op2.sig)
230 else:
231 comb += pa.b.eq(op2)
232 return pa.output
233
234 def __eq__(self, other):
235 width = len(self.sig)
236 return self._compare(width, self, other, "eq", PartitionedEqGtGe.EQ)
237
238 def __ne__(self, other):
239 width = len(self.sig)
240 eq = self._compare(width, self, other, "eq", PartitionedEqGtGe.EQ)
241 ne = Signal(eq.width)
242 self.m.d.comb += ne.eq(~eq)
243 return ne
244
245 def __gt__(self, other):
246 width = len(self.sig)
247 return self._compare(width, self, other, "gt", PartitionedEqGtGe.GT)
248
249 def __lt__(self, other):
250 width = len(self.sig)
251 # swap operands, use gt to do lt
252 return self._compare(width, other, self, "gt", PartitionedEqGtGe.GT)
253
254 def __ge__(self, other):
255 width = len(self.sig)
256 return self._compare(width, self, other, "ge", PartitionedEqGtGe.GE)
257
258 def __le__(self, other):
259 width = len(self.sig)
260 # swap operands, use ge to do le
261 return self._compare(width, other, self, "ge", PartitionedEqGtGe.GE)
262
263 # useful operators
264
265 def bool(self):
266 """Conversion to boolean.
267
268 Returns
269 -------
270 Value, out
271 ``1`` if any bits are set, ``0`` otherwise.
272 """
273 return self.any() # have to see how this goes
274 #return Operator("b", [self])
275
276 def any(self):
277 """Check if any bits are ``1``.
278
279 Returns
280 -------
281 Value, out
282 ``1`` if any bits are set, ``0`` otherwise.
283 """
284 return Operator("r|", [self])
285
286 def all(self):
287 """Check if all bits are ``1``.
288
289 Returns
290 -------
291 Value, out
292 ``1`` if all bits are set, ``0`` otherwise.
293 """
294 return self == Const(-1) # leverage the __eq__ operator here
295
296 def xor(self):
297 """Compute pairwise exclusive-or of every bit.
298
299 Returns
300 -------
301 Value, out
302 ``1`` if an odd number of bits are set, ``0`` if an
303 even number of bits are set.
304 """
305 # XXXX TODO: return partition-mask-sized set of bits
306 raise NotImplementedError
307 return Operator("r^", [self])
308
309 def implies(premise, conclusion):
310 """Implication.
311
312 Returns
313 -------
314 Value, out
315 ``0`` if ``premise`` is true and ``conclusion`` is not,
316 ``1`` otherwise.
317 """
318 # amazingly, this should actually work.
319 return ~premise | conclusion