Separate individual traces for each rel_o/go_i port
[soc.git] / src / soc / experiment / test / test_compalu_multi.py
1 """Computation Unit (aka "ALU Manager").
2
3 Manages a Pipeline or FSM, ensuring that the start and end time are 100%
4 monitored. At no time may the ALU proceed without this module notifying
5 the Dependency Matrices. At no time is a result production "abandoned".
6 This module blocks (indicates busy) starting from when it first receives
7 an opcode until it receives notification that
8 its result(s) have been successfully stored in the regfile(s)
9
10 Documented at http://libre-soc.org/3d_gpu/architecture/compunit
11 """
12
13 from soc.experiment.alu_fsm import Shifter, CompFSMOpSubset
14 from soc.fu.alu.alu_input_record import CompALUOpSubset
15 from soc.experiment.alu_hier import ALU, DummyALU
16 from soc.experiment.compalu_multi import MultiCompUnit
17 from soc.decoder.power_enums import MicrOp
18 from nmutil.gtkw import write_gtkw
19 from nmigen import Module, Signal
20 from nmigen.cli import rtlil
21
22 # NOTE: to use cxxsim, export NMIGEN_SIM_MODE=cxxsim from the shell
23 # Also, check out the cxxsim nmigen branch, and latest yosys from git
24 from nmutil.sim_tmp_alternative import (Simulator, Settle, is_engine_pysim,
25 Passive)
26
27
28 def wrap(process):
29 def wrapper():
30 yield from process
31 return wrapper
32
33
34 class OperandProducer:
35 """
36 Produces an operand when requested by the Computation Unit
37 (`dut` parameter), using the `rel_o` / `go_i` handshake.
38
39 Attaches itself to the `dut` operand indexed by `op_index`.
40
41 Has a programmable delay between the assertion of `rel_o` and the
42 `go_i` pulse.
43
44 Data is presented only during the cycle in which `go_i` is active.
45
46 It adds itself as a passive process to the simulation (`sim` parameter).
47 Since it is passive, it will not hang the simulation, and does not need a
48 flag to terminate itself.
49 """
50 def __init__(self, sim, dut, op_index):
51 self.count = Signal(8, name=f"src{op_index + 1}_count")
52 """ transaction counter"""
53 # data and handshake signals from the DUT
54 self.port = dut.src_i[op_index]
55 self.go_i = dut.rd.go_i[op_index]
56 self.rel_o = dut.rd.rel_o[op_index]
57 # transaction parameters, passed via signals
58 self.delay = Signal(8)
59 self.data = Signal.like(self.port)
60 # add ourselves to the simulation process list
61 sim.add_sync_process(self._process)
62
63 def _process(self):
64 yield Passive()
65 while True:
66 # Settle() is needed to give a quick response to
67 # the zero delay case
68 yield Settle()
69 # wait for rel_o to become active
70 while not (yield self.rel_o):
71 yield
72 yield Settle()
73 # read the transaction parameters
74 delay = (yield self.delay)
75 data = (yield self.data)
76 # wait for `delay` cycles
77 for _ in range(delay):
78 yield
79 # activate go_i and present data, for one cycle
80 yield self.go_i.eq(1)
81 yield self.port.eq(data)
82 yield self.count.eq(self.count + 1)
83 yield
84 yield self.go_i.eq(0)
85 yield self.port.eq(0)
86
87 def send(self, data, delay):
88 """
89 Schedules the module to send some `data`, counting `delay` cycles after
90 `rel_i` becomes active.
91
92 To be called from the main test-bench process,
93 it returns in the same cycle.
94
95 Communication with the worker process is done by means of
96 combinatorial simulation-only signals.
97
98 """
99 yield self.data.eq(data)
100 yield self.delay.eq(delay)
101
102
103 class ResultConsumer:
104 """
105 Consumes a result when requested by the Computation Unit
106 (`dut` parameter), using the `rel_o` / `go_i` handshake.
107
108 Attaches itself to the `dut` result indexed by `op_index`.
109
110 Has a programmable delay between the assertion of `rel_o` and the
111 `go_i` pulse.
112
113 Data is retrieved only during the cycle in which `go_i` is active.
114
115 It adds itself as a passive process to the simulation (`sim` parameter).
116 Since it is passive, it will not hang the simulation, and does not need a
117 flag to terminate itself.
118 """
119 def __init__(self, sim, dut, op_index):
120 self.count = Signal(8, name=f"dest{op_index + 1}_count")
121 """ transaction counter"""
122 # data and handshake signals from the DUT
123 self.port = dut.dest[op_index]
124 self.go_i = dut.wr.go_i[op_index]
125 self.rel_o = dut.wr.rel_o[op_index]
126 # transaction parameters, passed via signals
127 self.delay = Signal(8)
128 self.expected = Signal.like(self.port)
129 # add ourselves to the simulation process list
130 sim.add_sync_process(self._process)
131
132 def _process(self):
133 yield Passive()
134 while True:
135 # Settle() is needed to give a quick response to
136 # the zero delay case
137 yield Settle()
138 # wait for rel_o to become active
139 while not (yield self.rel_o):
140 yield
141 yield Settle()
142 # read the transaction parameters
143 delay = (yield self.delay)
144 expected = (yield self.expected)
145 # wait for `delay` cycles
146 for _ in range(delay):
147 yield
148 # activate go_i for one cycle
149 yield self.go_i.eq(1)
150 yield self.count.eq(self.count + 1)
151 yield
152 # check received data against the expected value
153 result = (yield self.port)
154 assert result == expected,\
155 f"expected {expected}, received {result}"
156 yield self.go_i.eq(0)
157 yield self.port.eq(0)
158
159 def receive(self, expected, delay):
160 """
161 Schedules the module to receive some result,
162 counting `delay` cycles after `rel_i` becomes active.
163 As 'go_i' goes active, check the result with `expected`.
164
165 To be called from the main test-bench process,
166 it returns in the same cycle.
167
168 Communication with the worker process is done by means of
169 combinatorial simulation-only signals.
170 """
171 yield self.expected.eq(expected)
172 yield self.delay.eq(delay)
173
174
175 def op_sim(dut, a, b, op, inv_a=0, imm=0, imm_ok=0, zero_a=0):
176 yield dut.issue_i.eq(0)
177 yield
178 yield dut.src_i[0].eq(a)
179 yield dut.src_i[1].eq(b)
180 yield dut.oper_i.insn_type.eq(op)
181 yield dut.oper_i.invert_in.eq(inv_a)
182 yield dut.oper_i.imm_data.data.eq(imm)
183 yield dut.oper_i.imm_data.ok.eq(imm_ok)
184 yield dut.oper_i.zero_a.eq(zero_a)
185 yield dut.issue_i.eq(1)
186 yield
187 yield dut.issue_i.eq(0)
188 yield
189 if not imm_ok or not zero_a:
190 yield dut.rd.go_i.eq(0b11)
191 while True:
192 yield
193 rd_rel_o = yield dut.rd.rel_o
194 print("rd_rel", rd_rel_o)
195 if rd_rel_o:
196 break
197 yield dut.rd.go_i.eq(0)
198 else:
199 print("no go rd")
200
201 if len(dut.src_i) == 3:
202 yield dut.rd.go_i.eq(0b100)
203 while True:
204 yield
205 rd_rel_o = yield dut.rd.rel_o
206 print("rd_rel", rd_rel_o)
207 if rd_rel_o:
208 break
209 yield dut.rd.go_i.eq(0)
210 else:
211 print("no 3rd rd")
212
213 req_rel_o = yield dut.wr.rel_o
214 result = yield dut.data_o
215 print("req_rel", req_rel_o, result)
216 while True:
217 req_rel_o = yield dut.wr.rel_o
218 result = yield dut.data_o
219 print("req_rel", req_rel_o, result)
220 if req_rel_o:
221 break
222 yield
223 yield dut.wr.go_i[0].eq(1)
224 yield Settle()
225 result = yield dut.data_o
226 yield
227 print("result", result)
228 yield dut.wr.go_i[0].eq(0)
229 yield
230 return result
231
232
233 def scoreboard_sim_fsm(dut, producers, consumers):
234
235 # stores the operation count
236 op_count = 0
237
238 def op_sim_fsm(a, b, direction, expected, delays):
239 print("op_sim_fsm", a, b, direction, expected)
240 yield dut.issue_i.eq(0)
241 yield
242 # forward data and delays to the producers and consumers
243 yield from producers[0].send(a, delays[0])
244 yield from producers[1].send(b, delays[1])
245 yield from consumers[0].receive(expected, delays[2])
246 # submit operation, and assert issue_i for one cycle
247 yield dut.oper_i.sdir.eq(direction)
248 yield dut.issue_i.eq(1)
249 yield
250 yield dut.issue_i.eq(0)
251 # wait for busy to be negated
252 yield Settle()
253 while (yield dut.busy_o):
254 yield
255 yield Settle()
256 # update the operation count
257 nonlocal op_count
258 op_count = (op_count + 1) & 255
259 # check that producers and consumers have the same count
260 # this assures that no data was left unused or was lost
261 assert (yield producers[0].count) == op_count
262 assert (yield producers[1].count) == op_count
263 assert (yield consumers[0].count) == op_count
264
265 yield from op_sim_fsm(13, 2, 1, 3, [0, 2, 0])
266 yield from op_sim_fsm(3, 4, 0, 48, [2, 0, 2])
267 yield from op_sim_fsm(21, 0, 0, 21, [1, 1, 1])
268
269
270 def scoreboard_sim_dummy(dut):
271 result = yield from op_sim(dut, 5, 2, MicrOp.OP_NOP, inv_a=0,
272 imm=8, imm_ok=1)
273 assert result == 5, result
274
275 result = yield from op_sim(dut, 9, 2, MicrOp.OP_NOP, inv_a=0,
276 imm=8, imm_ok=1)
277 assert result == 9, result
278
279
280 def scoreboard_sim(dut):
281 # zero (no) input operands test
282 result = yield from op_sim(dut, 5, 2, MicrOp.OP_ADD, zero_a=1,
283 imm=8, imm_ok=1)
284 assert result == 8
285
286 result = yield from op_sim(dut, 5, 2, MicrOp.OP_ADD, inv_a=0,
287 imm=8, imm_ok=1)
288 assert result == 13
289
290 result = yield from op_sim(dut, 5, 2, MicrOp.OP_ADD)
291 assert result == 7
292
293 result = yield from op_sim(dut, 5, 2, MicrOp.OP_ADD, inv_a=1)
294 assert result == 65532
295
296 result = yield from op_sim(dut, 5, 2, MicrOp.OP_ADD, zero_a=1)
297 assert result == 2
298
299 # test combinatorial zero-delay operation
300 # In the test ALU, any operation other than ADD, MUL or SHR
301 # is zero-delay, and do a subtraction.
302 result = yield from op_sim(dut, 5, 2, MicrOp.OP_NOP)
303 assert result == 3
304
305
306 def test_compunit_fsm():
307 top = "top.cu" if is_engine_pysim() else "cu"
308 traces = [
309 'clk',
310 ('operation port', {'color': 'red'}, [
311 'oper_i_None__sdir', 'cu_issue_i',
312 'cu_busy_o']),
313 ('operand 1 port', {'color': 'yellow'}, [
314 ('cu_rd__rel_o[1:0]', {'bit': 1}),
315 ('cu_rd__go_i[1:0]', {'bit': 1}),
316 'src1_i[7:0]']),
317 ('operand 2 port', {'color': 'yellow'}, [
318 ('cu_rd__rel_o[1:0]', {'bit': 0}),
319 ('cu_rd__go_i[1:0]', {'bit': 0}),
320 'src2_i[7:0]']),
321 ('result port', {'color': 'orange'}, [
322 'cu_wr__rel_o', 'cu_wr__go_i', 'dest1_o[7:0]']),
323 ('alu', {'module': top+'.alu'}, [
324 'p_data_i[7:0]', 'p_shift_i[7:0]', 'op__sdir',
325 'p_valid_i', 'p_ready_o', 'n_valid_o', 'n_ready_i',
326 'n_data_o[7:0]'
327 ]),
328 ('debug', {'module': 'top'},
329 ['src1_count[7:0]', 'src2_count[7:0]', 'dest1_count[7:0]'])
330
331 ]
332 write_gtkw(
333 "test_compunit_fsm1.gtkw",
334 "test_compunit_fsm1.vcd",
335 traces,
336 module=top
337 )
338 m = Module()
339 alu = Shifter(8)
340 dut = MultiCompUnit(8, alu, CompFSMOpSubset)
341 m.submodules.cu = dut
342
343 vl = rtlil.convert(dut, ports=dut.ports())
344 with open("test_compunit_fsm1.il", "w") as f:
345 f.write(vl)
346
347 sim = Simulator(m)
348 sim.add_clock(1e-6)
349
350 # create one operand producer for each input port
351 prod_a = OperandProducer(sim, dut, 0)
352 prod_b = OperandProducer(sim, dut, 1)
353 # create an result consumer for the output port
354 cons = ResultConsumer(sim, dut, 0)
355 sim.add_sync_process(wrap(scoreboard_sim_fsm(dut,
356 [prod_a, prod_b],
357 [cons])))
358 sim_writer = sim.write_vcd('test_compunit_fsm1.vcd',
359 traces=[prod_a.count,
360 prod_b.count,
361 cons.count])
362 with sim_writer:
363 sim.run()
364
365
366 def test_compunit():
367
368 m = Module()
369 alu = ALU(16)
370 dut = MultiCompUnit(16, alu, CompALUOpSubset)
371 m.submodules.cu = dut
372
373 vl = rtlil.convert(dut, ports=dut.ports())
374 with open("test_compunit1.il", "w") as f:
375 f.write(vl)
376
377 sim = Simulator(m)
378 sim.add_clock(1e-6)
379
380 sim.add_sync_process(wrap(scoreboard_sim(dut)))
381 sim_writer = sim.write_vcd('test_compunit1.vcd')
382 with sim_writer:
383 sim.run()
384
385
386 class CompUnitParallelTest:
387 def __init__(self, dut):
388 self.dut = dut
389
390 # Operation cycle should not take longer than this:
391 self.MAX_BUSY_WAIT = 50
392
393 # Minimum duration in which issue_i will be kept inactive,
394 # during which busy_o must remain low.
395 self.MIN_BUSY_LOW = 5
396
397 # Number of cycles to stall until the assertion of go.
398 # One value, for each port. Can be zero, for no delay.
399 self.RD_GO_DELAY = [0, 3]
400
401 # store common data for the input operation of the processes
402 # input operation:
403 self.op = 0
404 self.inv_a = self.zero_a = 0
405 self.imm = self.imm_ok = 0
406 self.imm_control = (0, 0)
407 self.rdmaskn = (0, 0)
408 # input data:
409 self.operands = (0, 0)
410
411 # Indicates completion of the sub-processes
412 self.rd_complete = [False, False]
413
414 def driver(self):
415 print("Begin parallel test.")
416 yield from self.operation(5, 2, MicrOp.OP_ADD)
417
418 def operation(self, a, b, op, inv_a=0, imm=0, imm_ok=0, zero_a=0,
419 rdmaskn=(0, 0)):
420 # store data for the operation
421 self.operands = (a, b)
422 self.op = op
423 self.inv_a = inv_a
424 self.imm = imm
425 self.imm_ok = imm_ok
426 self.zero_a = zero_a
427 self.imm_control = (zero_a, imm_ok)
428 self.rdmaskn = rdmaskn
429
430 # Initialize completion flags
431 self.rd_complete = [False, False]
432
433 # trigger operation cycle
434 yield from self.issue()
435
436 # check that the sub-processes completed, before the busy_o cycle ended
437 for completion in self.rd_complete:
438 assert completion
439
440 def issue(self):
441 # issue_i starts inactive
442 yield self.dut.issue_i.eq(0)
443
444 for n in range(self.MIN_BUSY_LOW):
445 yield
446 # busy_o must remain inactive. It cannot rise on its own.
447 busy_o = yield self.dut.busy_o
448 assert not busy_o
449
450 # activate issue_i to begin the operation cycle
451 yield self.dut.issue_i.eq(1)
452
453 # at the same time, present the operation
454 yield self.dut.oper_i.insn_type.eq(self.op)
455 yield self.dut.oper_i.invert_in.eq(self.inv_a)
456 yield self.dut.oper_i.imm_data.data.eq(self.imm)
457 yield self.dut.oper_i.imm_data.ok.eq(self.imm_ok)
458 yield self.dut.oper_i.zero_a.eq(self.zero_a)
459 rdmaskn = self.rdmaskn[0] | (self.rdmaskn[1] << 1)
460 yield self.dut.rdmaskn.eq(rdmaskn)
461
462 # give one cycle for the CompUnit to latch the data
463 yield
464
465 # busy_o must keep being low in this cycle, because issue_i was
466 # low on the previous cycle.
467 # It cannot rise on its own.
468 # Also, busy_o and issue_i must never be active at the same time, ever.
469 busy_o = yield self.dut.busy_o
470 assert not busy_o
471
472 # Lower issue_i
473 yield self.dut.issue_i.eq(0)
474
475 # deactivate inputs along with issue_i, so we can be sure the data
476 # was latched at the correct cycle
477 # note: rdmaskn must be held, while busy_o is active
478 # TODO: deactivate rdmaskn when the busy_o cycle ends
479 yield self.dut.oper_i.insn_type.eq(0)
480 yield self.dut.oper_i.invert_in.eq(0)
481 yield self.dut.oper_i.imm_data.data.eq(0)
482 yield self.dut.oper_i.imm_data.ok.eq(0)
483 yield self.dut.oper_i.zero_a.eq(0)
484 yield
485
486 # wait for busy_o to lower
487 # timeout after self.MAX_BUSY_WAIT cycles
488 for n in range(self.MAX_BUSY_WAIT):
489 # sample busy_o in the current cycle
490 busy_o = yield self.dut.busy_o
491 if not busy_o:
492 # operation cycle ends when busy_o becomes inactive
493 break
494 yield
495
496 # if busy_o is still active, a timeout has occurred
497 # TODO: Uncomment this, once the test is complete:
498 # assert not busy_o
499
500 if busy_o:
501 print("If you are reading this, "
502 "it's because the above test failed, as expected,\n"
503 "with a timeout. It must pass, once the test is complete.")
504 return
505
506 print("If you are reading this, "
507 "it's because the above test unexpectedly passed.")
508
509 def rd(self, rd_idx):
510 # wait for issue_i to rise
511 while True:
512 issue_i = yield self.dut.issue_i
513 if issue_i:
514 break
515 # issue_i has not risen yet, so rd must keep low
516 rel = yield self.dut.rd.rel_o[rd_idx]
517 assert not rel
518 yield
519
520 # we do not want rd to rise on an immediate operand
521 # if it is immediate, exit the process
522 # likewise, if the read mask is active
523 # TODO: don't exit the process, monitor rd instead to ensure it
524 # doesn't rise on its own
525 if self.rdmaskn[rd_idx] or self.imm_control[rd_idx]:
526 self.rd_complete[rd_idx] = True
527 return
528
529 # issue_i has risen. rel must rise on the next cycle
530 rel = yield self.dut.rd.rel_o[rd_idx]
531 assert not rel
532
533 # stall for additional cycles. Check that rel doesn't fall on its own
534 for n in range(self.RD_GO_DELAY[rd_idx]):
535 yield
536 rel = yield self.dut.rd.rel_o[rd_idx]
537 assert rel
538
539 # Before asserting "go", make sure "rel" has risen.
540 # The use of Settle allows "go" to be set combinatorially,
541 # rising on the same cycle as "rel".
542 yield Settle()
543 rel = yield self.dut.rd.rel_o[rd_idx]
544 assert rel
545
546 # assert go for one cycle, passing along the operand value
547 yield self.dut.rd.go_i[rd_idx].eq(1)
548 yield self.dut.src_i[rd_idx].eq(self.operands[rd_idx])
549 # check that the operand was sent to the alu
550 # TODO: Properly check the alu protocol
551 yield Settle()
552 alu_input = yield self.dut.get_in(rd_idx)
553 assert alu_input == self.operands[rd_idx]
554 yield
555
556 # rel must keep high, since go was inactive in the last cycle
557 rel = yield self.dut.rd.rel_o[rd_idx]
558 assert rel
559
560 # finish the go one-clock pulse
561 yield self.dut.rd.go_i[rd_idx].eq(0)
562 yield self.dut.src_i[rd_idx].eq(0)
563 yield
564
565 # rel must have gone low in response to go being high
566 # on the previous cycle
567 rel = yield self.dut.rd.rel_o[rd_idx]
568 assert not rel
569
570 self.rd_complete[rd_idx] = True
571
572 # TODO: check that rel doesn't rise again until the end of the
573 # busy_o cycle
574
575 def wr(self, wr_idx):
576 # monitor self.dut.wr.req[rd_idx] and sets dut.wr.go[idx] for one cycle
577 yield
578 # TODO: also when dut.wr.go is set, check the output against the
579 # self.expected_o and assert. use dut.get_out(wr_idx) to do so.
580
581 def run_simulation(self, vcd_name):
582 m = Module()
583 m.submodules.cu = self.dut
584 sim = Simulator(m)
585 sim.add_clock(1e-6)
586
587 sim.add_sync_process(wrap(self.driver()))
588 sim.add_sync_process(wrap(self.rd(0)))
589 sim.add_sync_process(wrap(self.rd(1)))
590 sim.add_sync_process(wrap(self.wr(0)))
591 sim_writer = sim.write_vcd(vcd_name)
592 with sim_writer:
593 sim.run()
594
595
596 def test_compunit_regspec2_fsm():
597
598 inspec = [('INT', 'data', '0:15'),
599 ('INT', 'shift', '0:15'),
600 ]
601 outspec = [('INT', 'data', '0:15'),
602 ]
603
604 regspec = (inspec, outspec)
605
606 m = Module()
607 alu = Shifter(8)
608 dut = MultiCompUnit(regspec, alu, CompFSMOpSubset)
609 m.submodules.cu = dut
610
611 sim = Simulator(m)
612 sim.add_clock(1e-6)
613
614 # create one operand producer for each input port
615 prod_a = OperandProducer(sim, dut, 0)
616 prod_b = OperandProducer(sim, dut, 1)
617 # create an result consumer for the output port
618 cons = ResultConsumer(sim, dut, 0)
619 sim.add_sync_process(wrap(scoreboard_sim_fsm(dut,
620 [prod_a, prod_b],
621 [cons])))
622 sim_writer = sim.write_vcd('test_compunit_regspec2_fsm.vcd',
623 traces=[prod_a.count,
624 prod_b.count,
625 cons.count])
626 with sim_writer:
627 sim.run()
628
629
630 def test_compunit_regspec3():
631
632 inspec = [('INT', 'a', '0:15'),
633 ('INT', 'b', '0:15'),
634 ('INT', 'c', '0:15')]
635 outspec = [('INT', 'o', '0:15'),
636 ]
637
638 regspec = (inspec, outspec)
639
640 m = Module()
641 alu = DummyALU(16)
642 dut = MultiCompUnit(regspec, alu, CompALUOpSubset)
643 m.submodules.cu = dut
644
645 sim = Simulator(m)
646 sim.add_clock(1e-6)
647
648 sim.add_sync_process(wrap(scoreboard_sim_dummy(dut)))
649 sim_writer = sim.write_vcd('test_compunit_regspec3.vcd')
650 with sim_writer:
651 sim.run()
652
653
654 def test_compunit_regspec1():
655
656 inspec = [('INT', 'a', '0:15'),
657 ('INT', 'b', '0:15')]
658 outspec = [('INT', 'o', '0:15'),
659 ]
660
661 regspec = (inspec, outspec)
662
663 m = Module()
664 alu = ALU(16)
665 dut = MultiCompUnit(regspec, alu, CompALUOpSubset)
666 m.submodules.cu = dut
667
668 vl = rtlil.convert(dut, ports=dut.ports())
669 with open("test_compunit_regspec1.il", "w") as f:
670 f.write(vl)
671
672 sim = Simulator(m)
673 sim.add_clock(1e-6)
674
675 sim.add_sync_process(wrap(scoreboard_sim(dut)))
676 sim_writer = sim.write_vcd('test_compunit_regspec1.vcd')
677 with sim_writer:
678 sim.run()
679
680 test = CompUnitParallelTest(dut)
681 test.run_simulation("test_compunit_parallel.vcd")
682
683
684 if __name__ == '__main__':
685 test_compunit()
686 test_compunit_fsm()
687 test_compunit_regspec1()
688 test_compunit_regspec2_fsm()
689 test_compunit_regspec3()