Test the rdmaskn control signal
[soc.git] / src / soc / experiment / test / test_compalu_multi.py
1 """Computation Unit (aka "ALU Manager").
2
3 Manages a Pipeline or FSM, ensuring that the start and end time are 100%
4 monitored. At no time may the ALU proceed without this module notifying
5 the Dependency Matrices. At no time is a result production "abandoned".
6 This module blocks (indicates busy) starting from when it first receives
7 an opcode until it receives notification that
8 its result(s) have been successfully stored in the regfile(s)
9
10 Documented at http://libre-soc.org/3d_gpu/architecture/compunit
11 """
12
13 from soc.experiment.alu_fsm import Shifter, CompFSMOpSubset
14 from soc.fu.alu.alu_input_record import CompALUOpSubset
15 from soc.fu.cr.cr_input_record import CompCROpSubset
16 from soc.experiment.alu_hier import ALU, DummyALU
17 from soc.experiment.compalu_multi import MultiCompUnit
18 from soc.decoder.power_enums import MicrOp
19 from nmutil.gtkw import write_gtkw
20 from nmigen import Module, Signal
21 from nmigen.cli import rtlil
22
23 # NOTE: to use cxxsim, export NMIGEN_SIM_MODE=cxxsim from the shell
24 # Also, check out the cxxsim nmigen branch, and latest yosys from git
25 from nmutil.sim_tmp_alternative import (Simulator, Settle, is_engine_pysim,
26 Passive)
27
28
29 def wrap(process):
30 def wrapper():
31 yield from process
32 return wrapper
33
34
35 class OperandProducer:
36 """
37 Produces an operand when requested by the Computation Unit
38 (`dut` parameter), using the `rel_o` / `go_i` handshake.
39
40 Attaches itself to the `dut` operand indexed by `op_index`.
41
42 Has a programmable delay between the assertion of `rel_o` and the
43 `go_i` pulse.
44
45 Data is presented only during the cycle in which `go_i` is active.
46
47 It adds itself as a passive process to the simulation (`sim` parameter).
48 Since it is passive, it will not hang the simulation, and does not need a
49 flag to terminate itself.
50 """
51 def __init__(self, sim, dut, op_index):
52 self.count = Signal(8, name=f"src{op_index + 1}_count")
53 """ transaction counter"""
54 # data and handshake signals from the DUT
55 self.port = dut.src_i[op_index]
56 self.go_i = dut.rd.go_i[op_index]
57 self.rel_o = dut.rd.rel_o[op_index]
58 # transaction parameters, passed via signals
59 self.delay = Signal(8)
60 self.data = Signal.like(self.port)
61 # add ourselves to the simulation process list
62 sim.add_sync_process(self._process)
63
64 def _process(self):
65 yield Passive()
66 while True:
67 # Settle() is needed to give a quick response to
68 # the zero delay case
69 yield Settle()
70 # wait for rel_o to become active
71 while not (yield self.rel_o):
72 yield
73 yield Settle()
74 # read the transaction parameters
75 delay = (yield self.delay)
76 data = (yield self.data)
77 # wait for `delay` cycles
78 for _ in range(delay):
79 yield
80 # activate go_i and present data, for one cycle
81 yield self.go_i.eq(1)
82 yield self.port.eq(data)
83 yield self.count.eq(self.count + 1)
84 yield
85 yield self.go_i.eq(0)
86 yield self.port.eq(0)
87
88 def send(self, data, delay):
89 """
90 Schedules the module to send some `data`, counting `delay` cycles after
91 `rel_i` becomes active.
92
93 To be called from the main test-bench process,
94 it returns in the same cycle.
95
96 Communication with the worker process is done by means of
97 combinatorial simulation-only signals.
98
99 """
100 yield self.data.eq(data)
101 yield self.delay.eq(delay)
102
103
104 class ResultConsumer:
105 """
106 Consumes a result when requested by the Computation Unit
107 (`dut` parameter), using the `rel_o` / `go_i` handshake.
108
109 Attaches itself to the `dut` result indexed by `op_index`.
110
111 Has a programmable delay between the assertion of `rel_o` and the
112 `go_i` pulse.
113
114 Data is retrieved only during the cycle in which `go_i` is active.
115
116 It adds itself as a passive process to the simulation (`sim` parameter).
117 Since it is passive, it will not hang the simulation, and does not need a
118 flag to terminate itself.
119 """
120 def __init__(self, sim, dut, op_index):
121 self.count = Signal(8, name=f"dest{op_index + 1}_count")
122 """ transaction counter"""
123 # data and handshake signals from the DUT
124 self.port = dut.dest[op_index]
125 self.go_i = dut.wr.go_i[op_index]
126 self.rel_o = dut.wr.rel_o[op_index]
127 # transaction parameters, passed via signals
128 self.delay = Signal(8)
129 self.expected = Signal.like(self.port)
130 # add ourselves to the simulation process list
131 sim.add_sync_process(self._process)
132
133 def _process(self):
134 yield Passive()
135 while True:
136 # Settle() is needed to give a quick response to
137 # the zero delay case
138 yield Settle()
139 # wait for rel_o to become active
140 while not (yield self.rel_o):
141 yield
142 yield Settle()
143 # read the transaction parameters
144 delay = (yield self.delay)
145 expected = (yield self.expected)
146 # wait for `delay` cycles
147 for _ in range(delay):
148 yield
149 # activate go_i for one cycle
150 yield self.go_i.eq(1)
151 yield self.count.eq(self.count + 1)
152 yield
153 # check received data against the expected value
154 result = (yield self.port)
155 assert result == expected,\
156 f"expected {expected}, received {result}"
157 yield self.go_i.eq(0)
158 yield self.port.eq(0)
159
160 def receive(self, expected, delay):
161 """
162 Schedules the module to receive some result,
163 counting `delay` cycles after `rel_i` becomes active.
164 As 'go_i' goes active, check the result with `expected`.
165
166 To be called from the main test-bench process,
167 it returns in the same cycle.
168
169 Communication with the worker process is done by means of
170 combinatorial simulation-only signals.
171 """
172 yield self.expected.eq(expected)
173 yield self.delay.eq(delay)
174
175
176 def op_sim(dut, a, b, op, inv_a=0, imm=0, imm_ok=0, zero_a=0):
177 yield dut.issue_i.eq(0)
178 yield
179 yield dut.src_i[0].eq(a)
180 yield dut.src_i[1].eq(b)
181 yield dut.oper_i.insn_type.eq(op)
182 yield dut.oper_i.invert_in.eq(inv_a)
183 yield dut.oper_i.imm_data.data.eq(imm)
184 yield dut.oper_i.imm_data.ok.eq(imm_ok)
185 yield dut.oper_i.zero_a.eq(zero_a)
186 yield dut.issue_i.eq(1)
187 yield
188 yield dut.issue_i.eq(0)
189 yield
190 if not imm_ok or not zero_a:
191 yield dut.rd.go_i.eq(0b11)
192 while True:
193 yield
194 rd_rel_o = yield dut.rd.rel_o
195 print("rd_rel", rd_rel_o)
196 if rd_rel_o:
197 break
198 yield dut.rd.go_i.eq(0)
199 else:
200 print("no go rd")
201
202 if len(dut.src_i) == 3:
203 yield dut.rd.go_i.eq(0b100)
204 while True:
205 yield
206 rd_rel_o = yield dut.rd.rel_o
207 print("rd_rel", rd_rel_o)
208 if rd_rel_o:
209 break
210 yield dut.rd.go_i.eq(0)
211 else:
212 print("no 3rd rd")
213
214 req_rel_o = yield dut.wr.rel_o
215 result = yield dut.data_o
216 print("req_rel", req_rel_o, result)
217 while True:
218 req_rel_o = yield dut.wr.rel_o
219 result = yield dut.data_o
220 print("req_rel", req_rel_o, result)
221 if req_rel_o:
222 break
223 yield
224 yield dut.wr.go_i[0].eq(1)
225 yield Settle()
226 result = yield dut.data_o
227 yield
228 print("result", result)
229 yield dut.wr.go_i[0].eq(0)
230 yield
231 return result
232
233
234 def scoreboard_sim_fsm(dut, producers, consumers):
235
236 # stores the operation count
237 op_count = 0
238
239 def op_sim_fsm(a, b, direction, expected, delays):
240 print("op_sim_fsm", a, b, direction, expected)
241 yield dut.issue_i.eq(0)
242 yield
243 # forward data and delays to the producers and consumers
244 yield from producers[0].send(a, delays[0])
245 yield from producers[1].send(b, delays[1])
246 yield from consumers[0].receive(expected, delays[2])
247 # submit operation, and assert issue_i for one cycle
248 yield dut.oper_i.sdir.eq(direction)
249 yield dut.issue_i.eq(1)
250 yield
251 yield dut.issue_i.eq(0)
252 # wait for busy to be negated
253 yield Settle()
254 while (yield dut.busy_o):
255 yield
256 yield Settle()
257 # update the operation count
258 nonlocal op_count
259 op_count = (op_count + 1) & 255
260 # check that producers and consumers have the same count
261 # this assures that no data was left unused or was lost
262 assert (yield producers[0].count) == op_count
263 assert (yield producers[1].count) == op_count
264 assert (yield consumers[0].count) == op_count
265
266 # 13 >> 2 = 3
267 # operand 1 arrives immediately
268 # operand 2 arrives after operand 1
269 # write data is accepted immediately
270 yield from op_sim_fsm(13, 2, 1, 3, [0, 2, 0])
271 # 3 << 4 = 48
272 # operand 2 arrives immediately
273 # operand 1 arrives after operand 2
274 # write data is accepted after some delay
275 yield from op_sim_fsm(3, 4, 0, 48, [2, 0, 2])
276 # 21 << 0 = 21
277 # operands 1 and 2 arrive at the same time
278 # write data is accepted after some delay
279 yield from op_sim_fsm(21, 0, 0, 21, [1, 1, 1])
280
281
282 def scoreboard_sim_dummy(op):
283 yield from op.issue([5, 2, 0], MicrOp.OP_NOP, [5],
284 src_delays=[0, 2, 1], dest_delays=[0])
285 yield from op.issue([9, 2, 0], MicrOp.OP_NOP, [9],
286 src_delays=[2, 1, 0], dest_delays=[2])
287 # test all combinations of masked input ports
288 yield from op.issue([5, 2, 0], MicrOp.OP_NOP, [0],
289 rdmaskn=[1, 0, 0],
290 src_delays=[0, 2, 1], dest_delays=[0])
291 yield from op.issue([9, 2, 0], MicrOp.OP_NOP, [9],
292 rdmaskn=[0, 1, 0],
293 src_delays=[2, 1, 0], dest_delays=[2])
294 yield from op.issue([5, 2, 0], MicrOp.OP_NOP, [5],
295 rdmaskn=[0, 0, 1],
296 src_delays=[2, 1, 0], dest_delays=[2])
297 yield from op.issue([9, 2, 0], MicrOp.OP_NOP, [9],
298 rdmaskn=[0, 1, 1],
299 src_delays=[2, 1, 0], dest_delays=[2])
300 yield from op.issue([9, 2, 0], MicrOp.OP_NOP, [0],
301 rdmaskn=[1, 1, 0],
302 src_delays=[2, 1, 0], dest_delays=[2])
303 yield from op.issue([9, 2, 0], MicrOp.OP_NOP, [0],
304 rdmaskn=[1, 1, 1],
305 src_delays=[2, 1, 0], dest_delays=[2])
306
307
308 class OpSim:
309 """ALU Operation issuer
310
311 Issues operations to the DUT"""
312 def __init__(self, dut, sim):
313 self.op_count = 0
314 self.zero_a_count = 0
315 self.imm_ok_count = 0
316 self.rdmaskn_count = [0] * len(dut.src_i)
317 self.dut = dut
318 # create one operand producer for each input port
319 self.producers = list()
320 for i in range(len(dut.src_i)):
321 self.producers.append(OperandProducer(sim, dut, i))
322 # create one result consumer for each output port
323 self.consumers = list()
324 for i in range(len(dut.dest)):
325 self.consumers.append(ResultConsumer(sim, dut, i))
326 def issue(self, src_i, op, expected, src_delays, dest_delays,
327 inv_a=0, imm=0, imm_ok=0, zero_a=0, rdmaskn=None):
328 """Executes the issue operation"""
329 dut = self.dut
330 producers = self.producers
331 consumers = self.consumers
332 if rdmaskn is None:
333 rdmaskn = [0] * len(src_i)
334 yield dut.issue_i.eq(0)
335 yield
336 # forward data and delays to the producers and consumers
337 # first, send special cases (with zero_a and/or imm_ok)
338 if not zero_a:
339 yield from producers[0].send(src_i[0], src_delays[0])
340 if not imm_ok:
341 yield from producers[1].send(src_i[1], src_delays[1])
342 # then, send the rest (if any)
343 for i in range(2, len(producers)):
344 yield from producers[i].send(src_i[i], src_delays[i])
345 for i in range(len(consumers)):
346 yield from consumers[i].receive(expected[i], dest_delays[i])
347 # submit operation, and assert issue_i for one cycle
348 yield dut.oper_i.insn_type.eq(op)
349 if hasattr(dut.oper_i, "invert_in"):
350 yield dut.oper_i.invert_in.eq(inv_a)
351 if hasattr(dut.oper_i, "imm_data"):
352 yield dut.oper_i.imm_data.data.eq(imm)
353 yield dut.oper_i.imm_data.ok.eq(imm_ok)
354 if hasattr(dut.oper_i, "zero_a"):
355 yield dut.oper_i.zero_a.eq(zero_a)
356 if hasattr(dut, "rdmaskn"):
357 rdmaskn_bits = 0
358 for i in range(len(rdmaskn)):
359 rdmaskn_bits |= rdmaskn[i] << i
360 yield dut.rdmaskn.eq(rdmaskn_bits)
361 yield dut.issue_i.eq(1)
362 yield
363 yield dut.issue_i.eq(0)
364 # wait for busy to be negated
365 yield Settle()
366 while (yield dut.busy_o):
367 yield
368 yield Settle()
369 # update the operation count
370 self.op_count = (self.op_count + 1) & 255
371 # On zero_a, imm_ok and rdmaskn executions, the producer counters will
372 # fall behind. But, by summing the following counts, the invariant is
373 # preserved.
374 if zero_a and not rdmaskn[0]:
375 self.zero_a_count = self.zero_a_count + 1
376 if imm_ok and not rdmaskn[1]:
377 self.imm_ok_count = self.imm_ok_count + 1
378 for i in range(len(rdmaskn)):
379 if rdmaskn[i]:
380 self.rdmaskn_count[i] = self.rdmaskn_count[i] + 1
381 # check that producers and consumers have the same count
382 # this assures that no data was left unused or was lost
383 # first, check special cases (zero_a and imm_ok)
384 port_a_cnt = \
385 (yield producers[0].count) \
386 + self.zero_a_count \
387 + self.rdmaskn_count[0]
388 port_b_cnt = \
389 (yield producers[1].count) \
390 + self.imm_ok_count \
391 + self.rdmaskn_count[1]
392 assert port_a_cnt == self.op_count
393 assert port_b_cnt == self.op_count
394 # then, check the rest (if any)
395 for i in range(2, len(producers)):
396 port_cnt = (yield producers[i].count) + self.rdmaskn_count[i]
397 assert port_cnt == self.op_count
398 # check write counter
399 for i in range(len(consumers)):
400 assert (yield consumers[i].count) == self.op_count
401
402
403 def scoreboard_sim(op):
404 # zero (no) input operands test
405 # 0 + 8 = 8
406 yield from op.issue([5, 2], MicrOp.OP_ADD, [8],
407 zero_a=1, imm=8, imm_ok=1,
408 src_delays=[0, 2], dest_delays=[0])
409 # 5 + 8 = 13
410 yield from op.issue([5, 2], MicrOp.OP_ADD, [13],
411 inv_a=0, imm=8, imm_ok=1,
412 src_delays=[2, 0], dest_delays=[2])
413 # 5 + 2 = 7
414 yield from op.issue([5, 2], MicrOp.OP_ADD, [7],
415 src_delays=[1, 1], dest_delays=[1])
416 # (-6) + 2 = (-4)
417 yield from op.issue([5, 2], MicrOp.OP_ADD, [65532],
418 inv_a=1,
419 src_delays=[1, 2], dest_delays=[0])
420 # 0 + 2 = 2
421 yield from op.issue([5, 2], MicrOp.OP_ADD, [2],
422 zero_a=1,
423 src_delays=[2, 0], dest_delays=[1])
424
425 # test combinatorial zero-delay operation
426 # In the test ALU, any operation other than ADD, MUL or SHR
427 # is zero-delay, and do a subtraction.
428 # 5 - 2 = 3
429 yield from op.issue([5, 2], MicrOp.OP_NOP, [3],
430 src_delays=[0, 1], dest_delays=[2])
431 # test all combinations of masked input ports
432 # 5 + 0 (masked) = 5
433 yield from op.issue([5, 2], MicrOp.OP_ADD, [5],
434 rdmaskn=[0, 1],
435 src_delays=[2, 1], dest_delays=[0])
436 # 0 (masked) + 2 = 2
437 yield from op.issue([5, 2], MicrOp.OP_ADD, [2],
438 rdmaskn=[1, 0],
439 src_delays=[1, 2], dest_delays=[1])
440 # 0 (masked) + 0 (masked) = 0
441 yield from op.issue([5, 2], MicrOp.OP_ADD, [0],
442 rdmaskn=[1, 1],
443 src_delays=[1, 2], dest_delays=[1])
444
445
446 def test_compunit_fsm():
447 style = {
448 'in': {'color': 'orange'},
449 'out': {'color': 'yellow'},
450 }
451 traces = [
452 'clk',
453 ('operation port', {'color': 'red'}, [
454 'cu_issue_i', 'cu_busy_o',
455 {'comment': 'operation'},
456 'oper_i_None__sdir']),
457 ('operand 1 port', 'in', [
458 ('cu_rd__rel_o[1:0]', {'bit': 1}),
459 ('cu_rd__go_i[1:0]', {'bit': 1}),
460 'src1_i[7:0]']),
461 ('operand 2 port', 'in', [
462 ('cu_rd__rel_o[1:0]', {'bit': 0}),
463 ('cu_rd__go_i[1:0]', {'bit': 0}),
464 'src2_i[7:0]']),
465 ('result port', 'out', [
466 'cu_wr__rel_o', 'cu_wr__go_i', 'dest1_o[7:0]']),
467 ('alu', {'submodule': 'alu'}, [
468 ('prev port', 'in', [
469 'op__sdir', 'p_data_i[7:0]', 'p_shift_i[7:0]',
470 ({'submodule': 'p'},
471 ['p_valid_i', 'p_ready_o'])]),
472 ('next port', 'out', [
473 'n_data_o[7:0]',
474 ({'submodule': 'n'},
475 ['n_valid_o', 'n_ready_i'])])]),
476 ('debug', {'module': 'top'},
477 ['src1_count[7:0]', 'src2_count[7:0]', 'dest1_count[7:0]'])]
478
479 write_gtkw(
480 "test_compunit_fsm1.gtkw",
481 "test_compunit_fsm1.vcd",
482 traces, style,
483 module='top.cu'
484 )
485 m = Module()
486 alu = Shifter(8)
487 dut = MultiCompUnit(8, alu, CompFSMOpSubset)
488 m.submodules.cu = dut
489
490 vl = rtlil.convert(dut, ports=dut.ports())
491 with open("test_compunit_fsm1.il", "w") as f:
492 f.write(vl)
493
494 sim = Simulator(m)
495 sim.add_clock(1e-6)
496
497 # create one operand producer for each input port
498 prod_a = OperandProducer(sim, dut, 0)
499 prod_b = OperandProducer(sim, dut, 1)
500 # create an result consumer for the output port
501 cons = ResultConsumer(sim, dut, 0)
502 sim.add_sync_process(wrap(scoreboard_sim_fsm(dut,
503 [prod_a, prod_b],
504 [cons])))
505 sim_writer = sim.write_vcd('test_compunit_fsm1.vcd',
506 traces=[prod_a.count,
507 prod_b.count,
508 cons.count])
509 with sim_writer:
510 sim.run()
511
512
513 def test_compunit():
514
515 m = Module()
516 alu = ALU(16)
517 dut = MultiCompUnit(16, alu, CompALUOpSubset)
518 m.submodules.cu = dut
519
520 vl = rtlil.convert(dut, ports=dut.ports())
521 with open("test_compunit1.il", "w") as f:
522 f.write(vl)
523
524 sim = Simulator(m)
525 sim.add_clock(1e-6)
526
527 # create an operation issuer
528 op = OpSim(dut, sim)
529 sim.add_sync_process(wrap(scoreboard_sim(op)))
530 sim_writer = sim.write_vcd('test_compunit1.vcd')
531 with sim_writer:
532 sim.run()
533
534
535 class CompUnitParallelTest:
536 def __init__(self, dut):
537 self.dut = dut
538
539 # Operation cycle should not take longer than this:
540 self.MAX_BUSY_WAIT = 50
541
542 # Minimum duration in which issue_i will be kept inactive,
543 # during which busy_o must remain low.
544 self.MIN_BUSY_LOW = 5
545
546 # Number of cycles to stall until the assertion of go.
547 # One value, for each port. Can be zero, for no delay.
548 self.RD_GO_DELAY = [0, 3]
549
550 # store common data for the input operation of the processes
551 # input operation:
552 self.op = 0
553 self.inv_a = self.zero_a = 0
554 self.imm = self.imm_ok = 0
555 self.imm_control = (0, 0)
556 self.rdmaskn = (0, 0)
557 # input data:
558 self.operands = (0, 0)
559
560 # Indicates completion of the sub-processes
561 self.rd_complete = [False, False]
562
563 def driver(self):
564 print("Begin parallel test.")
565 yield from self.operation(5, 2, MicrOp.OP_ADD)
566
567 def operation(self, a, b, op, inv_a=0, imm=0, imm_ok=0, zero_a=0,
568 rdmaskn=(0, 0)):
569 # store data for the operation
570 self.operands = (a, b)
571 self.op = op
572 self.inv_a = inv_a
573 self.imm = imm
574 self.imm_ok = imm_ok
575 self.zero_a = zero_a
576 self.imm_control = (zero_a, imm_ok)
577 self.rdmaskn = rdmaskn
578
579 # Initialize completion flags
580 self.rd_complete = [False, False]
581
582 # trigger operation cycle
583 yield from self.issue()
584
585 # check that the sub-processes completed, before the busy_o cycle ended
586 for completion in self.rd_complete:
587 assert completion
588
589 def issue(self):
590 # issue_i starts inactive
591 yield self.dut.issue_i.eq(0)
592
593 for n in range(self.MIN_BUSY_LOW):
594 yield
595 # busy_o must remain inactive. It cannot rise on its own.
596 busy_o = yield self.dut.busy_o
597 assert not busy_o
598
599 # activate issue_i to begin the operation cycle
600 yield self.dut.issue_i.eq(1)
601
602 # at the same time, present the operation
603 yield self.dut.oper_i.insn_type.eq(self.op)
604 yield self.dut.oper_i.invert_in.eq(self.inv_a)
605 yield self.dut.oper_i.imm_data.data.eq(self.imm)
606 yield self.dut.oper_i.imm_data.ok.eq(self.imm_ok)
607 yield self.dut.oper_i.zero_a.eq(self.zero_a)
608 rdmaskn = self.rdmaskn[0] | (self.rdmaskn[1] << 1)
609 yield self.dut.rdmaskn.eq(rdmaskn)
610
611 # give one cycle for the CompUnit to latch the data
612 yield
613
614 # busy_o must keep being low in this cycle, because issue_i was
615 # low on the previous cycle.
616 # It cannot rise on its own.
617 # Also, busy_o and issue_i must never be active at the same time, ever.
618 busy_o = yield self.dut.busy_o
619 assert not busy_o
620
621 # Lower issue_i
622 yield self.dut.issue_i.eq(0)
623
624 # deactivate inputs along with issue_i, so we can be sure the data
625 # was latched at the correct cycle
626 # note: rdmaskn must be held, while busy_o is active
627 # TODO: deactivate rdmaskn when the busy_o cycle ends
628 yield self.dut.oper_i.insn_type.eq(0)
629 yield self.dut.oper_i.invert_in.eq(0)
630 yield self.dut.oper_i.imm_data.data.eq(0)
631 yield self.dut.oper_i.imm_data.ok.eq(0)
632 yield self.dut.oper_i.zero_a.eq(0)
633 yield
634
635 # wait for busy_o to lower
636 # timeout after self.MAX_BUSY_WAIT cycles
637 for n in range(self.MAX_BUSY_WAIT):
638 # sample busy_o in the current cycle
639 busy_o = yield self.dut.busy_o
640 if not busy_o:
641 # operation cycle ends when busy_o becomes inactive
642 break
643 yield
644
645 # if busy_o is still active, a timeout has occurred
646 # TODO: Uncomment this, once the test is complete:
647 # assert not busy_o
648
649 if busy_o:
650 print("If you are reading this, "
651 "it's because the above test failed, as expected,\n"
652 "with a timeout. It must pass, once the test is complete.")
653 return
654
655 print("If you are reading this, "
656 "it's because the above test unexpectedly passed.")
657
658 def rd(self, rd_idx):
659 # wait for issue_i to rise
660 while True:
661 issue_i = yield self.dut.issue_i
662 if issue_i:
663 break
664 # issue_i has not risen yet, so rd must keep low
665 rel = yield self.dut.rd.rel_o[rd_idx]
666 assert not rel
667 yield
668
669 # we do not want rd to rise on an immediate operand
670 # if it is immediate, exit the process
671 # likewise, if the read mask is active
672 # TODO: don't exit the process, monitor rd instead to ensure it
673 # doesn't rise on its own
674 if self.rdmaskn[rd_idx] or self.imm_control[rd_idx]:
675 self.rd_complete[rd_idx] = True
676 return
677
678 # issue_i has risen. rel must rise on the next cycle
679 rel = yield self.dut.rd.rel_o[rd_idx]
680 assert not rel
681
682 # stall for additional cycles. Check that rel doesn't fall on its own
683 for n in range(self.RD_GO_DELAY[rd_idx]):
684 yield
685 rel = yield self.dut.rd.rel_o[rd_idx]
686 assert rel
687
688 # Before asserting "go", make sure "rel" has risen.
689 # The use of Settle allows "go" to be set combinatorially,
690 # rising on the same cycle as "rel".
691 yield Settle()
692 rel = yield self.dut.rd.rel_o[rd_idx]
693 assert rel
694
695 # assert go for one cycle, passing along the operand value
696 yield self.dut.rd.go_i[rd_idx].eq(1)
697 yield self.dut.src_i[rd_idx].eq(self.operands[rd_idx])
698 # check that the operand was sent to the alu
699 # TODO: Properly check the alu protocol
700 yield Settle()
701 alu_input = yield self.dut.get_in(rd_idx)
702 assert alu_input == self.operands[rd_idx]
703 yield
704
705 # rel must keep high, since go was inactive in the last cycle
706 rel = yield self.dut.rd.rel_o[rd_idx]
707 assert rel
708
709 # finish the go one-clock pulse
710 yield self.dut.rd.go_i[rd_idx].eq(0)
711 yield self.dut.src_i[rd_idx].eq(0)
712 yield
713
714 # rel must have gone low in response to go being high
715 # on the previous cycle
716 rel = yield self.dut.rd.rel_o[rd_idx]
717 assert not rel
718
719 self.rd_complete[rd_idx] = True
720
721 # TODO: check that rel doesn't rise again until the end of the
722 # busy_o cycle
723
724 def wr(self, wr_idx):
725 # monitor self.dut.wr.req[rd_idx] and sets dut.wr.go[idx] for one cycle
726 yield
727 # TODO: also when dut.wr.go is set, check the output against the
728 # self.expected_o and assert. use dut.get_out(wr_idx) to do so.
729
730 def run_simulation(self, vcd_name):
731 m = Module()
732 m.submodules.cu = self.dut
733 sim = Simulator(m)
734 sim.add_clock(1e-6)
735
736 sim.add_sync_process(wrap(self.driver()))
737 sim.add_sync_process(wrap(self.rd(0)))
738 sim.add_sync_process(wrap(self.rd(1)))
739 sim.add_sync_process(wrap(self.wr(0)))
740 sim_writer = sim.write_vcd(vcd_name)
741 with sim_writer:
742 sim.run()
743
744
745 def test_compunit_regspec2_fsm():
746
747 inspec = [('INT', 'data', '0:15'),
748 ('INT', 'shift', '0:15')]
749 outspec = [('INT', 'data', '0:15')]
750
751 regspec = (inspec, outspec)
752
753 m = Module()
754 alu = Shifter(8)
755 dut = MultiCompUnit(regspec, alu, CompFSMOpSubset)
756 m.submodules.cu = dut
757
758 sim = Simulator(m)
759 sim.add_clock(1e-6)
760
761 # create one operand producer for each input port
762 prod_a = OperandProducer(sim, dut, 0)
763 prod_b = OperandProducer(sim, dut, 1)
764 # create an result consumer for the output port
765 cons = ResultConsumer(sim, dut, 0)
766 sim.add_sync_process(wrap(scoreboard_sim_fsm(dut,
767 [prod_a, prod_b],
768 [cons])))
769 sim_writer = sim.write_vcd('test_compunit_regspec2_fsm.vcd',
770 traces=[prod_a.count,
771 prod_b.count,
772 cons.count])
773 with sim_writer:
774 sim.run()
775
776
777 def test_compunit_regspec3():
778
779 style = {
780 'in': {'color': 'orange'},
781 'out': {'color': 'yellow'},
782 }
783 traces = [
784 'clk',
785 ('operation port', {'color': 'red'}, [
786 'cu_issue_i', 'cu_busy_o',
787 {'comment': 'operation'},
788 ('oper_i_None__insn_type'
789 + ('' if is_engine_pysim() else '[6:0]'),
790 {'display': 'insn_type'})]),
791 ('operand 1 port', 'in', [
792 ('cu_rd__rel_o[2:0]', {'bit': 2}),
793 ('cu_rd__go_i[2:0]', {'bit': 2}),
794 'src1_i[15:0]']),
795 ('operand 2 port', 'in', [
796 ('cu_rd__rel_o[2:0]', {'bit': 1}),
797 ('cu_rd__go_i[2:0]', {'bit': 1}),
798 'src2_i[15:0]']),
799 ('operand 3 port', 'in', [
800 ('cu_rd__rel_o[2:0]', {'bit': 0}),
801 ('cu_rd__go_i[2:0]', {'bit': 0}),
802 'src1_i[15:0]']),
803 ('result port', 'out', [
804 'cu_wr__rel_o', 'cu_wr__go_i', 'dest1_o[15:0]']),
805 ('alu', {'submodule': 'alu'}, [
806 ('prev port', 'in', [
807 'oper_i_None__insn_type', 'i1[15:0]',
808 'valid_i', 'ready_o']),
809 ('next port', 'out', [
810 'alu_o[15:0]', 'valid_o', 'ready_i'])])]
811
812 write_gtkw("test_compunit_regspec3.gtkw",
813 "test_compunit_regspec3.vcd",
814 traces, style,
815 clk_period=1e-6,
816 module='top.cu')
817
818 inspec = [('INT', 'a', '0:15'),
819 ('INT', 'b', '0:15'),
820 ('INT', 'c', '0:15')]
821 outspec = [('INT', 'o', '0:15')]
822
823 regspec = (inspec, outspec)
824
825 m = Module()
826 alu = DummyALU(16)
827 dut = MultiCompUnit(regspec, alu, CompCROpSubset)
828 m.submodules.cu = dut
829
830 sim = Simulator(m)
831 sim.add_clock(1e-6)
832
833 # create an operation issuer
834 op = OpSim(dut, sim)
835 sim.add_sync_process(wrap(scoreboard_sim_dummy(op)))
836 sim_writer = sim.write_vcd('test_compunit_regspec3.vcd')
837 with sim_writer:
838 sim.run()
839
840
841 def test_compunit_regspec1():
842
843 style = {
844 'in': {'color': 'orange'},
845 'out': {'color': 'yellow'},
846 }
847 traces = [
848 'clk',
849 ('operation port', {'color': 'red'}, [
850 'cu_issue_i', 'cu_busy_o',
851 {'comment': 'operation'},
852 ('oper_i_None__insn_type'
853 + ('' if is_engine_pysim() else '[6:0]'),
854 {'display': 'insn_type'}),
855 ('oper_i_None__invert_in', {'display': 'invert_in'}),
856 ('oper_i_None__imm_data__data[63:0]', {'display': 'data[63:0]'}),
857 ('oper_i_None__imm_data__ok', {'display': 'imm_ok'}),
858 ('oper_i_None__zero_a', {'display': 'zero_a'})]),
859 ('operand 1 port', 'in', [
860 ('cu_rd__rel_o[1:0]', {'bit': 1}),
861 ('cu_rd__go_i[1:0]', {'bit': 1}),
862 'src1_i[15:0]']),
863 ('operand 2 port', 'in', [
864 ('cu_rd__rel_o[1:0]', {'bit': 0}),
865 ('cu_rd__go_i[1:0]', {'bit': 0}),
866 'src2_i[15:0]']),
867 ('result port', 'out', [
868 'cu_wr__rel_o', 'cu_wr__go_i', 'dest1_o[15:0]']),
869 ('alu', {'submodule': 'alu'}, [
870 ('prev port', 'in', [
871 'op__insn_type', 'op__invert_in', 'a[15:0]', 'b[15:0]',
872 'valid_i', 'ready_o']),
873 ('next port', 'out', [
874 'alu_o[15:0]', 'valid_o', 'ready_i'])]),
875 ('debug', {'module': 'top'},
876 ['src1_count[7:0]', 'src2_count[7:0]', 'dest1_count[7:0]'])]
877
878 write_gtkw("test_compunit_regspec1.gtkw",
879 "test_compunit_regspec1.vcd",
880 traces, style,
881 clk_period=1e-6,
882 module='top.cu')
883
884 inspec = [('INT', 'a', '0:15'),
885 ('INT', 'b', '0:15')]
886 outspec = [('INT', 'o', '0:15')]
887
888 regspec = (inspec, outspec)
889
890 m = Module()
891 alu = ALU(16)
892 dut = MultiCompUnit(regspec, alu, CompALUOpSubset)
893 m.submodules.cu = dut
894
895 vl = rtlil.convert(dut, ports=dut.ports())
896 with open("test_compunit_regspec1.il", "w") as f:
897 f.write(vl)
898
899 sim = Simulator(m)
900 sim.add_clock(1e-6)
901
902 # create an operation issuer
903 op = OpSim(dut, sim)
904 sim.add_sync_process(wrap(scoreboard_sim(op)))
905 sim_writer = sim.write_vcd('test_compunit_regspec1.vcd',
906 traces=[op.producers[0].count,
907 op.producers[1].count,
908 op.consumers[0].count])
909 with sim_writer:
910 sim.run()
911
912 test = CompUnitParallelTest(dut)
913 test.run_simulation("test_compunit_parallel.vcd")
914
915
916 if __name__ == '__main__':
917 test_compunit()
918 test_compunit_fsm()
919 test_compunit_regspec1()
920 test_compunit_regspec2_fsm()
921 test_compunit_regspec3()