fix signed variants of cmp in alu
[soc.git] / src / soc / fu / alu / main_stage.py
1 # This stage is intended to do most of the work of executing the Arithmetic
2 # instructions. This would be like the additions, compares, and sign-extension
3 # as well as carry and overflow generation. This module
4 # however should not gate the carry or overflow, that's up to the
5 # output stage
6 from nmigen import (Module, Signal, Cat, Repl, Mux, Const)
7 from nmutil.pipemodbase import PipeModBase
8 from nmutil.extend import exts
9 from soc.fu.alu.pipe_data import ALUInputData, ALUOutputData
10 from ieee754.part.partsig import PartitionedSignal
11 from soc.decoder.power_enums import MicrOp
12
13 from soc.decoder.power_fields import DecodeFields
14 from soc.decoder.power_fieldsn import SignalBitRange
15
16
17 # microwatt calc_ov function.
18 def calc_ov(msb_a, msb_b, ca, msb_r):
19 return (ca ^ msb_r) & ~(msb_a ^ msb_b)
20
21
22 class ALUMainStage(PipeModBase):
23 def __init__(self, pspec):
24 super().__init__(pspec, "main")
25 self.fields = DecodeFields(SignalBitRange, [self.i.ctx.op.insn])
26 self.fields.create_specs()
27
28 def ispec(self):
29 return ALUInputData(self.pspec) # defines pipeline stage input format
30
31 def ospec(self):
32 return ALUOutputData(self.pspec) # defines pipeline stage output format
33
34 def elaborate(self, platform):
35 m = Module()
36 comb = m.d.comb
37
38 # convenience variables
39 cry_o, o, cr0 = self.o.xer_ca, self.o.o, self.o.cr0
40 ov_o = self.o.xer_ov
41 a, b, cry_i, op = self.i.a, self.i.b, self.i.xer_ca, self.i.ctx.op
42
43 # get L-field for OP_CMP
44 x_fields = self.fields.FormX
45 L = x_fields.L[0]
46
47 # check if op is 32-bit, and get sign bit from operand a
48 is_32bit = Signal(reset_less=True)
49
50 with m.If(op.insn_type == MicrOp.OP_CMP):
51 comb += is_32bit.eq(~L)
52
53 # little trick: do the add using only one add (not 2)
54 # LSB: carry-in [0]. op/result: [1:-1]. MSB: carry-out [-1]
55 add_a = Signal(a.width + 2, reset_less=True)
56 add_b = Signal(a.width + 2, reset_less=True)
57 add_o = Signal(a.width + 2, reset_less=True)
58
59 a_i = Signal.like(a)
60 b_i = Signal.like(b)
61 with m.If(is_32bit):
62 comb += a_i.eq(exts(a, 32, 64))
63 comb += b_i.eq(exts(b, 32, 64))
64 with m.Else():
65 comb += a_i.eq(a)
66 comb += b_i.eq(b)
67
68 with m.If((op.insn_type == MicrOp.OP_ADD) |
69 (op.insn_type == MicrOp.OP_CMP)):
70 # in bit 0, 1+carry_in creates carry into bit 1 and above
71 comb += add_a.eq(Cat(cry_i[0], a_i, Const(0, 1)))
72 comb += add_b.eq(Cat(Const(1, 1), b_i, Const(0, 1)))
73 comb += add_o.eq(add_a + add_b)
74
75 ##########################
76 # main switch-statement for handling arithmetic operations
77
78 with m.Switch(op.insn_type):
79
80 ###################
81 #### CMP, CMPL v3.0B p85-86
82
83 with m.Case(MicrOp.OP_CMP):
84 # this is supposed to be inverted (b-a, not a-b)
85 # however we have a trick: instead of adding either 2x 64-bit
86 # MUXes to invert a and b, or messing with a 64-bit output,
87 # swap +ve and -ve test in the *output* stage using an XOR gate
88 comb += o.data.eq(add_o[1:-1])
89 comb += o.ok.eq(0) # use o.data but do *not* actually output
90
91 ###################
92 #### add v3.0B p67, p69-72
93
94 with m.Case(MicrOp.OP_ADD):
95 # bit 0 is not part of the result, top bit is the carry-out
96 comb += o.data.eq(add_o[1:-1])
97 comb += o.ok.eq(1) # output register
98
99 # see microwatt OP_ADD code
100 # https://bugs.libre-soc.org/show_bug.cgi?id=319#c5
101 ca = Signal(2, reset_less=True)
102 comb += ca[0].eq(add_o[-1]) # XER.CA
103 comb += ca[1].eq(add_o[33] ^ (a_i[32] ^ b_i[32])) # XER.CA32
104 comb += cry_o.data.eq(ca)
105 comb += cry_o.ok.eq(1)
106 # 32-bit (ov[1]) and 64-bit (ov[0]) overflow
107 ov = Signal(2, reset_less=True)
108 comb += ov[0].eq(calc_ov(a_i[-1], b_i[-1], ca[0], add_o[-2]))
109 comb += ov[1].eq(calc_ov(a_i[31], b_i[31], ca[1], add_o[32]))
110 comb += ov_o.data.eq(ov)
111 comb += ov_o.ok.eq(1)
112
113 ###################
114 #### exts (sign-extend) v3.0B p96, p99
115
116 with m.Case(MicrOp.OP_EXTS):
117 with m.If(op.data_len == 1):
118 comb += o.data.eq(exts(a, 8, 64))
119 with m.If(op.data_len == 2):
120 comb += o.data.eq(exts(a, 16, 64))
121 with m.If(op.data_len == 4):
122 comb += o.data.eq(exts(a, 32, 64))
123 comb += o.ok.eq(1) # output register
124
125 ###################
126 #### cmpeqb v3.0B p88
127
128 with m.Case(MicrOp.OP_CMPEQB):
129 eqs = Signal(8, reset_less=True)
130 src1 = Signal(8, reset_less=True)
131 comb += src1.eq(a[0:8])
132 for i in range(8):
133 comb += eqs[i].eq(src1 == b[8*i:8*(i+1)])
134 comb += o.data[0].eq(eqs.any())
135 comb += o.ok.eq(0) # use o.data but do *not* actually output
136 comb += cr0.data.eq(Cat(Const(0, 2), eqs.any(), Const(0, 1)))
137 comb += cr0.ok.eq(1)
138
139 ###### sticky overflow and context, both pass-through #####
140
141 comb += self.o.xer_so.data.eq(self.i.xer_so)
142 comb += self.o.ctx.eq(self.i.ctx)
143
144 return m