i seem to like short names that happen to make things fit onto one line
[soc.git] / src / soc / fu / alu / main_stage.py
1 # This stage is intended to do most of the work of executing the Arithmetic
2 # instructions. This would be like the additions, compares, and sign-extension
3 # as well as carry and overflow generation. This module
4 # however should not gate the carry or overflow, that's up to the
5 # output stage
6 from nmigen import (Module, Signal, Cat, Repl, Mux, Const)
7 from nmutil.pipemodbase import PipeModBase
8 from nmutil.extend import exts
9 from soc.fu.alu.pipe_data import ALUInputData, ALUOutputData
10 from ieee754.part.partsig import PartitionedSignal
11 from soc.decoder.power_enums import InternalOp
12
13
14 class ALUMainStage(PipeModBase):
15 def __init__(self, pspec):
16 super().__init__(pspec, "main")
17
18 def ispec(self):
19 return ALUInputData(self.pspec)
20
21 def ospec(self):
22 return ALUOutputData(self.pspec) # TODO: ALUIntermediateData
23
24 def elaborate(self, platform):
25 m = Module()
26 comb = m.d.comb
27 cry_o, o, cr0 = self.o.xer_co, self.o.o, self.o.cr0
28 a, b, cry_i, op = self.i.a, self.i.b, self.i.carry_in, self.i.ctx.op
29
30 # check if op is 32-bit, and get sign bit from operand a
31 is_32bit = Signal(reset_less=True)
32 sign_bit = Signal(reset_less=True)
33 comb += is_32bit.eq(op.is_32bit)
34 comb += sign_bit.eq(Mux(is_32bit, a[31], a[63]))
35
36 # little trick: do the add using only one add (not 2)
37 add_a = Signal(a.width + 2, reset_less=True)
38 add_b = Signal(a.width + 2, reset_less=True)
39 add_o = Signal(a.width + 2, reset_less=True)
40 with m.If((op.insn_type == InternalOp.OP_ADD) |
41 (op.insn_type == InternalOp.OP_CMP)):
42 # in bit 0, 1+carry_in creates carry into bit 1 and above
43 comb += add_a.eq(Cat(cry_i, a, Const(0, 1)))
44 comb += add_b.eq(Cat(Const(1, 1), b, Const(0, 1)))
45 comb += add_o.eq(add_a + add_b)
46
47 ##########################
48 # main switch-statement for handling arithmetic operations
49
50 with m.Switch(op.insn_type):
51 #### CMP, CMPL ####
52 with m.Case(InternalOp.OP_CMP):
53 # this is supposed to be inverted (b-a, not a-b)
54 # however we have a trick: instead of adding either 2x 64-bit
55 # MUXes to invert a and b, or messing with a 64-bit output,
56 # swap +ve and -ve test in the *output* stage using an XOR gate
57 comb += o.eq(add_o[1:-1])
58
59 #### add ####
60 with m.Case(InternalOp.OP_ADD):
61 # bit 0 is not part of the result, top bit is the carry-out
62 comb += o.eq(add_o[1:-1])
63 comb += cry_o.data[0].eq(add_o[-1]) # XER.CO
64
65 # see microwatt OP_ADD code
66 # https://bugs.libre-soc.org/show_bug.cgi?id=319#c5
67 comb += cry_o.data[1].eq(add_o[33] ^ (a[32] ^ b[32])) # XER.CO32
68
69 #### exts (sign-extend) ####
70 with m.Case(InternalOp.OP_EXTS):
71 with m.If(op.data_len == 1):
72 comb += o.eq(exts(a, 8, 64))
73 with m.If(op.data_len == 2):
74 comb += o.eq(exts(a, 16, 64))
75 with m.If(op.data_len == 4):
76 comb += o.eq(exts(a, 32, 64))
77
78 #### cmpeqb ####
79 with m.Case(InternalOp.OP_CMPEQB):
80 eqs = Signal(8, reset_less=True)
81 src1 = Signal(8, reset_less=True)
82 comb += src1.eq(a[0:8])
83 for i in range(8):
84 comb += eqs[i].eq(src1 == b[8*i:8*(i+1)])
85 comb += cr0.data.eq(Cat(Const(0, 2), eqs.any(), Const(0, 1)))
86
87 ###### sticky overflow and context, both pass-through #####
88
89 comb += self.o.xer_so.data.eq(self.i.so)
90 comb += self.o.ctx.eq(self.i.ctx)
91
92 return m