use copy of FHDLTestCase
[soc.git] / src / soc / fu / mul / test / test_pipe_caller.py
1 from nmigen import Module, Signal
2 from nmigen.back.pysim import Simulator, Delay, Settle
3 from nmutil.formaltest import FHDLTestCase
4 from nmigen.cli import rtlil
5 import unittest
6 from soc.decoder.isa.caller import ISACaller, special_sprs
7 from soc.decoder.power_decoder import (create_pdecode)
8 from soc.decoder.power_decoder2 import (PowerDecode2)
9 from soc.decoder.power_enums import (XER_bits, Function)
10 from soc.decoder.selectable_int import SelectableInt
11 from soc.simulator.program import Program
12 from soc.decoder.isa.all import ISA
13
14 from soc.fu.mul.pipeline import MulBasePipe
15 from soc.fu.alu.alu_input_record import CompALUOpSubset
16 from soc.fu.mul.pipe_data import MulPipeSpec
17 import random
18
19
20 class TestCase:
21 def __init__(self, program, regs, sprs, name):
22 self.program = program
23 self.regs = regs
24 self.sprs = sprs
25 self.name = name
26
27
28 def set_alu_inputs(alu, dec2, sim):
29 inputs = []
30 # TODO: see https://bugs.libre-soc.org/show_bug.cgi?id=305#c43
31 # detect the immediate here (with m.If(self.i.ctx.op.imm_data.imm_ok))
32 # and place it into data_i.b
33
34 reg3_ok = yield dec2.e.read_reg3.ok
35 if reg3_ok:
36 reg3_sel = yield dec2.e.read_reg3.data
37 data3 = sim.gpr(reg3_sel).value
38 else:
39 data3 = 0
40 reg1_ok = yield dec2.e.read_reg1.ok
41 if reg1_ok:
42 reg1_sel = yield dec2.e.read_reg1.data
43 data1 = sim.gpr(reg1_sel).value
44 else:
45 data1 = 0
46 reg2_ok = yield dec2.e.read_reg2.ok
47 imm_ok = yield dec2.e.imm_data.ok
48 if reg2_ok:
49 reg2_sel = yield dec2.e.read_reg2.data
50 data2 = sim.gpr(reg2_sel).value
51 elif imm_ok:
52 data2 = yield dec2.e.imm_data.imm
53 else:
54 data2 = 0
55
56 yield alu.p.data_i.ra.eq(data1)
57 yield alu.p.data_i.rb.eq(data2)
58 yield alu.p.data_i.rs.eq(data3)
59
60
61 def set_extra_alu_inputs(alu, dec2, sim):
62 carry = 1 if sim.spr['XER'][XER_bits['CA']] else 0
63 carry32 = 1 if sim.spr['XER'][XER_bits['CA32']] else 0
64 yield alu.p.data_i.xer_ca[0].eq(carry)
65 yield alu.p.data_i.xer_ca[1].eq(carry32)
66 so = 1 if sim.spr['XER'][XER_bits['SO']] else 0
67 yield alu.p.data_i.xer_so.eq(so)
68
69
70 # This test bench is a bit different than is usual. Initially when I
71 # was writing it, I had all of the tests call a function to create a
72 # device under test and simulator, initialize the dut, run the
73 # simulation for ~2 cycles, and assert that the dut output what it
74 # should have. However, this was really slow, since it needed to
75 # create and tear down the dut and simulator for every test case.
76
77 # Now, instead of doing that, every test case in MulTestCase puts some
78 # data into the test_data list below, describing the instructions to
79 # be tested and the initial state. Once all the tests have been run,
80 # test_data gets passed to TestRunner which then sets up the DUT and
81 # simulator once, runs all the data through it, and asserts that the
82 # results match the pseudocode sim at every cycle.
83
84 # By doing this, I've reduced the time it takes to run the test suite
85 # massively. Before, it took around 1 minute on my computer, now it
86 # takes around 3 seconds
87
88 test_data = []
89
90
91 class MulTestCase(FHDLTestCase):
92 def __init__(self, name):
93 super().__init__(name)
94 self.test_name = name
95 def run_tst_program(self, prog, initial_regs=[0] * 32, initial_sprs={}):
96 tc = TestCase(prog, initial_regs, initial_sprs, self.test_name)
97 test_data.append(tc)
98
99
100 def test_shift(self):
101 insns = ["slw", "sld", "srw", "srd", "sraw", "srad"]
102 for i in range(20):
103 choice = random.choice(insns)
104 lst = [f"{choice} 3, 1, 2"]
105 initial_regs = [0] * 32
106 initial_regs[1] = random.randint(0, (1<<64)-1)
107 initial_regs[2] = random.randint(0, 63)
108 print(initial_regs[1], initial_regs[2])
109 self.run_tst_program(Program(lst), initial_regs)
110
111
112 def test_shift_arith(self):
113 lst = ["sraw 3, 1, 2"]
114 initial_regs = [0] * 32
115 initial_regs[1] = random.randint(0, (1<<64)-1)
116 initial_regs[2] = random.randint(0, 63)
117 print(initial_regs[1], initial_regs[2])
118 self.run_tst_program(Program(lst), initial_regs)
119
120 def test_shift_once(self):
121 lst = ["slw 3, 1, 4",
122 "slw 3, 1, 2"]
123 initial_regs = [0] * 32
124 initial_regs[1] = 0x80000000
125 initial_regs[2] = 0x40
126 initial_regs[4] = 0x00
127 self.run_tst_program(Program(lst), initial_regs)
128
129 def test_rlwinm(self):
130 for i in range(10):
131 mb = random.randint(0,31)
132 me = random.randint(0,31)
133 sh = random.randint(0,31)
134 lst = [f"rlwinm 3, 1, {mb}, {me}, {sh}"]
135 initial_regs = [0] * 32
136 initial_regs[1] = random.randint(0, (1<<64)-1)
137 self.run_tst_program(Program(lst), initial_regs)
138
139 def test_rlwimi(self):
140 lst = ["rlwimi 3, 1, 5, 20, 6"]
141 initial_regs = [0] * 32
142 initial_regs[1] = 0xdeadbeef
143 initial_regs[3] = 0x12345678
144 self.run_tst_program(Program(lst), initial_regs)
145
146 def test_rlwnm(self):
147 lst = ["rlwnm 3, 1, 2, 20, 6"]
148 initial_regs = [0] * 32
149 initial_regs[1] = random.randint(0, (1<<64)-1)
150 initial_regs[2] = random.randint(0, 63)
151 self.run_tst_program(Program(lst), initial_regs)
152
153 def test_rldicl(self):
154 lst = ["rldicl 3, 1, 5, 20"]
155 initial_regs = [0] * 32
156 initial_regs[1] = random.randint(0, (1<<64)-1)
157 self.run_tst_program(Program(lst), initial_regs)
158
159 def test_rldicr(self):
160 lst = ["rldicr 3, 1, 5, 20"]
161 initial_regs = [0] * 32
162 initial_regs[1] = random.randint(0, (1<<64)-1)
163 self.run_tst_program(Program(lst), initial_regs)
164
165 def test_rlc(self):
166 insns = ["rldic", "rldicl", "rldicr"]
167 for i in range(20):
168 choice = random.choice(insns)
169 sh = random.randint(0, 63)
170 m = random.randint(0, 63)
171 lst = [f"{choice} 3, 1, {sh}, {m}"]
172 initial_regs = [0] * 32
173 initial_regs[1] = random.randint(0, (1<<64)-1)
174 self.run_tst_program(Program(lst), initial_regs)
175
176 def test_ilang(self):
177 pspec = MulPipeSpec(id_wid=2)
178 alu = MulBasePipe(pspec)
179 vl = rtlil.convert(alu, ports=alu.ports())
180 with open("mul_pipeline.il", "w") as f:
181 f.write(vl)
182
183
184 class TestRunner(FHDLTestCase):
185 def __init__(self, test_data):
186 super().__init__("run_all")
187 self.test_data = test_data
188
189 def run_all(self):
190 m = Module()
191 comb = m.d.comb
192 instruction = Signal(32)
193
194 pdecode = create_pdecode()
195
196 m.submodules.pdecode2 = pdecode2 = PowerDecode2(pdecode)
197
198 pspec = MulPipeSpec(id_wid=2)
199 m.submodules.alu = alu = MulBasePipe(pspec)
200
201 comb += alu.p.data_i.ctx.op.eq_from_execute1(pdecode2.e)
202 comb += alu.p.valid_i.eq(1)
203 comb += alu.n.ready_i.eq(1)
204 comb += pdecode2.dec.raw_opcode_in.eq(instruction)
205 sim = Simulator(m)
206
207 sim.add_clock(1e-6)
208 def process():
209 for test in self.test_data:
210 print(test.name)
211 program = test.program
212 self.subTest(test.name)
213 simulator = ISA(pdecode2, test.regs, test.sprs, 0)
214 gen = program.generate_instructions()
215 instructions = list(zip(gen, program.assembly.splitlines()))
216
217 index = simulator.pc.CIA.value//4
218 while index < len(instructions):
219 ins, code = instructions[index]
220
221 print("0x{:X}".format(ins & 0xffffffff))
222 print(code)
223
224 # ask the decoder to decode this binary data (endian'd)
225 yield pdecode2.dec.bigendian.eq(0) # little / big?
226 yield instruction.eq(ins) # raw binary instr.
227 yield Settle()
228 fn_unit = yield pdecode2.e.fn_unit
229 self.assertEqual(fn_unit, Function.SHIFT_ROT.value)
230 yield from set_alu_inputs(alu, pdecode2, simulator)
231 yield from set_extra_alu_inputs(alu, pdecode2, simulator)
232 yield
233 opname = code.split(' ')[0]
234 yield from simulator.call(opname)
235 index = simulator.pc.CIA.value//4
236
237 vld = yield alu.n.valid_o
238 while not vld:
239 yield
240 vld = yield alu.n.valid_o
241 yield
242 alu_out = yield alu.n.data_o.o
243 out_reg_valid = yield pdecode2.e.write_reg.ok
244 if out_reg_valid:
245 write_reg_idx = yield pdecode2.e.write_reg.data
246 expected = simulator.gpr(write_reg_idx).value
247 msg = f"expected {expected:x}, actual: {alu_out:x}"
248 self.assertEqual(expected, alu_out, msg)
249 yield from self.check_extra_alu_outputs(alu, pdecode2,
250 simulator)
251
252 sim.add_sync_process(process)
253 with sim.write_vcd("simulator.vcd", "simulator.gtkw",
254 traces=[]):
255 sim.run()
256 def check_extra_alu_outputs(self, alu, dec2, sim):
257 rc = yield dec2.e.rc.data
258 if rc:
259 cr_expected = sim.crl[0].get_range().value
260 cr_actual = yield alu.n.data_o.cr0
261 self.assertEqual(cr_expected, cr_actual)
262
263
264 if __name__ == "__main__":
265 unittest.main(exit=False)
266 suite = unittest.TestSuite()
267 suite.addTest(TestRunner(test_data))
268
269 runner = unittest.TextTestRunner()
270 runner.run(suite)