add pspec to test_core.py
[soc.git] / src / soc / simple / test / test_core.py
1 """simple core test
2
3 related bugs:
4
5 * https://bugs.libre-soc.org/show_bug.cgi?id=363
6 """
7 from nmigen import Module, Signal, Cat
8 from nmigen.back.pysim import Simulator, Delay, Settle
9 from nmutil.formaltest import FHDLTestCase
10 from nmigen.cli import rtlil
11 import unittest
12 from soc.decoder.isa.caller import special_sprs
13 from soc.decoder.power_decoder import create_pdecode
14 from soc.decoder.power_decoder2 import PowerDecode2
15 from soc.decoder.isa.all import ISA
16 from soc.decoder.power_enums import Function, XER_bits
17 from soc.config.test.test_loadstore import TestMemPspec
18
19 from soc.simple.core import NonProductionCore
20 from soc.experiment.compalu_multi import find_ok # hack
21
22 from soc.fu.compunits.test.test_compunit import (setup_test_memory,
23 check_sim_memory)
24
25 # test with ALU data and Logical data
26 from soc.fu.alu.test.test_pipe_caller import ALUTestCase
27 from soc.fu.logical.test.test_pipe_caller import LogicalTestCase
28 from soc.fu.shift_rot.test.test_pipe_caller import ShiftRotTestCase
29 from soc.fu.cr.test.test_pipe_caller import CRTestCase
30 from soc.fu.branch.test.test_pipe_caller import BranchTestCase
31 from soc.fu.ldst.test.test_pipe_caller import LDSTTestCase
32
33
34 def setup_regs(core, test):
35
36 # set up INT regfile, "direct" write (bypass rd/write ports)
37 intregs = core.regs.int
38 for i in range(32):
39 yield intregs.regs[i].reg.eq(test.regs[i])
40
41 # set up CR regfile, "direct" write across all CRs
42 cr = test.cr
43 crregs = core.regs.cr
44 #cr = int('{:32b}'.format(cr)[::-1], 2)
45 print ("cr reg", hex(cr))
46 for i in range(8):
47 #j = 7-i
48 cri = (cr>>(i*4)) & 0xf
49 #cri = int('{:04b}'.format(cri)[::-1], 2)
50 print ("cr reg", hex(cri), i,
51 crregs.regs[i].reg.shape())
52 yield crregs.regs[i].reg.eq(cri)
53
54 # set up XER. "direct" write (bypass rd/write ports)
55 xregs = core.regs.xer
56 print ("sprs", test.sprs)
57 if special_sprs['XER'] in test.sprs:
58 xer = test.sprs[special_sprs['XER']]
59 sobit = xer[XER_bits['SO']].value
60 yield xregs.regs[xregs.SO].reg.eq(sobit)
61 cabit = xer[XER_bits['CA']].value
62 ca32bit = xer[XER_bits['CA32']].value
63 yield xregs.regs[xregs.CA].reg.eq(Cat(cabit, ca32bit))
64 ovbit = xer[XER_bits['OV']].value
65 ov32bit = xer[XER_bits['OV32']].value
66 yield xregs.regs[xregs.OV].reg.eq(Cat(ovbit, ov32bit))
67 else:
68 yield xregs.regs[xregs.SO].reg.eq(0)
69 yield xregs.regs[xregs.OV].reg.eq(0)
70 yield xregs.regs[xregs.CA].reg.eq(0)
71
72 # XER
73 pdecode2 = core.pdecode2
74 so = yield xregs.regs[xregs.SO].reg
75 ov = yield xregs.regs[xregs.OV].reg
76 ca = yield xregs.regs[xregs.CA].reg
77 oe = yield pdecode2.e.oe.oe
78 oe_ok = yield pdecode2.e.oe.oe_ok
79
80 print ("before: so/ov-32/ca-32", so, bin(ov), bin(ca))
81 print ("oe:", oe, oe_ok)
82
83
84 def check_regs(dut, sim, core, test, code):
85 # int regs
86 intregs = []
87 for i in range(32):
88 rval = yield core.regs.int.regs[i].reg
89 intregs.append(rval)
90 print ("int regs", list(map(hex, intregs)))
91 for i in range(32):
92 simregval = sim.gpr[i].asint()
93 dut.assertEqual(simregval, intregs[i],
94 "int reg %d not equal %s" % (i, repr(code)))
95
96 # CRs
97 crregs = []
98 for i in range(8):
99 rval = yield core.regs.cr.regs[i].reg
100 crregs.append(rval)
101 print ("cr regs", list(map(hex, crregs)))
102 for i in range(8):
103 rval = crregs[i]
104 cri = sim.crl[7-i].get_range().value
105 print ("cr reg", i, hex(cri), i, hex(rval))
106 # XXX https://bugs.libre-soc.org/show_bug.cgi?id=363
107 dut.assertEqual(cri, rval,
108 "cr reg %d not equal %s" % (i, repr(code)))
109
110 # XER
111 xregs = core.regs.xer
112 so = yield xregs.regs[xregs.SO].reg
113 ov = yield xregs.regs[xregs.OV].reg
114 ca = yield xregs.regs[xregs.CA].reg
115
116 print ("sim SO", sim.spr['XER'][XER_bits['SO']])
117 e_so = sim.spr['XER'][XER_bits['SO']].value
118 e_ov = sim.spr['XER'][XER_bits['OV']].value
119 e_ov32 = sim.spr['XER'][XER_bits['OV32']].value
120 e_ca = sim.spr['XER'][XER_bits['CA']].value
121 e_ca32 = sim.spr['XER'][XER_bits['CA32']].value
122
123 e_ov = e_ov | (e_ov32<<1)
124 e_ca = e_ca | (e_ca32<<1)
125
126 print ("after: so/ov-32/ca-32", so, bin(ov), bin(ca))
127 dut.assertEqual(e_so, so, "so mismatch %s" % (repr(code)))
128 dut.assertEqual(e_ov, ov, "ov mismatch %s" % (repr(code)))
129 dut.assertEqual(e_ca, ca, "ca mismatch %s" % (repr(code)))
130
131
132 def wait_for_busy_hi(cu):
133 while True:
134 busy_o = yield cu.busy_o
135 if busy_o:
136 break
137 print("!busy",)
138 yield
139
140 def set_issue(core, dec2, sim):
141 yield core.issue_i.eq(1)
142 yield
143 yield core.issue_i.eq(0)
144 yield from wait_for_busy_hi(core)
145
146
147 def wait_for_busy_clear(cu):
148 while True:
149 busy_o = yield cu.busy_o
150 if not busy_o:
151 break
152 print("busy",)
153 yield
154
155
156 class TestRunner(FHDLTestCase):
157 def __init__(self, tst_data):
158 super().__init__("run_all")
159 self.test_data = tst_data
160
161 def run_all(self):
162 m = Module()
163 comb = m.d.comb
164 instruction = Signal(32)
165 ivalid_i = Signal()
166
167 pspec = TestMemPspec(ldst_ifacetype='testpi',
168 imem_ifacetype='',
169 addr_wid=48,
170 mask_wid=8,
171 reg_wid=64)
172
173 m.submodules.core = core = NonProductionCore(pspec)
174 pdecode2 = core.pdecode2
175 l0 = core.l0
176
177 comb += core.raw_opcode_i.eq(instruction)
178 comb += core.ivalid_i.eq(ivalid_i)
179
180 # temporary hack: says "go" immediately for both address gen and ST
181 ldst = core.fus.fus['ldst0']
182 m.d.comb += ldst.ad.go.eq(ldst.ad.rel) # link addr-go direct to rel
183 m.d.comb += ldst.st.go.eq(ldst.st.rel) # link store-go direct to rel
184
185 # nmigen Simulation
186 sim = Simulator(m)
187 sim.add_clock(1e-6)
188
189 def process():
190 yield core.issue_i.eq(0)
191 yield
192
193 for test in self.test_data:
194 print(test.name)
195 program = test.program
196 self.subTest(test.name)
197 sim = ISA(pdecode2, test.regs, test.sprs, test.cr, test.mem,
198 test.msr)
199 gen = program.generate_instructions()
200 instructions = list(zip(gen, program.assembly.splitlines()))
201
202 yield from setup_test_memory(l0, sim)
203 yield from setup_regs(core, test)
204
205 index = sim.pc.CIA.value//4
206 while index < len(instructions):
207 ins, code = instructions[index]
208
209 print("instruction: 0x{:X}".format(ins & 0xffffffff))
210 print(code)
211
212 # ask the decoder to decode this binary data (endian'd)
213 yield core.bigendian_i.eq(0) # little / big?
214 yield instruction.eq(ins) # raw binary instr.
215 yield ivalid_i.eq(1)
216 yield Settle()
217 #fn_unit = yield pdecode2.e.fn_unit
218 #fuval = self.funit.value
219 #self.assertEqual(fn_unit & fuval, fuval)
220
221 # set operand and get inputs
222 yield from set_issue(core, pdecode2, sim)
223 yield Settle()
224
225 yield from wait_for_busy_clear(core)
226 yield ivalid_i.eq(0)
227 yield
228
229 print ("sim", code)
230 # call simulated operation
231 opname = code.split(' ')[0]
232 yield from sim.call(opname)
233 index = sim.pc.CIA.value//4
234
235 # register check
236 yield from check_regs(self, sim, core, test, code)
237
238 # Memory check
239 yield from check_sim_memory(self, l0, sim, code)
240
241 sim.add_sync_process(process)
242 with sim.write_vcd("core_simulator.vcd", "core_simulator.gtkw",
243 traces=[]):
244 sim.run()
245
246
247 if __name__ == "__main__":
248 unittest.main(exit=False)
249 suite = unittest.TestSuite()
250 suite.addTest(TestRunner(LDSTTestCase.test_data))
251 suite.addTest(TestRunner(CRTestCase.test_data))
252 suite.addTest(TestRunner(ShiftRotTestCase.test_data))
253 suite.addTest(TestRunner(LogicalTestCase.test_data))
254 suite.addTest(TestRunner(ALUTestCase.test_data))
255 suite.addTest(TestRunner(BranchTestCase.test_data))
256
257 runner = unittest.TextTestRunner()
258 runner.run(suite)
259