add beginnings of TestIssuer class, to issue instructions to simple core
[soc.git] / src / soc / simple / test / test_core.py
1 """simple core test
2
3 related bugs:
4
5 * https://bugs.libre-soc.org/show_bug.cgi?id=363
6 """
7 from nmigen import Module, Signal, Cat
8 from nmigen.back.pysim import Simulator, Delay, Settle
9 from nmutil.formaltest import FHDLTestCase
10 from nmigen.cli import rtlil
11 import unittest
12 from soc.decoder.isa.caller import special_sprs
13 from soc.decoder.power_decoder import create_pdecode
14 from soc.decoder.power_decoder2 import PowerDecode2
15 from soc.decoder.isa.all import ISA
16 from soc.decoder.power_enums import Function, XER_bits
17
18
19 from soc.simple.core import NonProductionCore
20 from soc.experiment.compalu_multi import find_ok # hack
21
22 from soc.fu.compunits.test.test_compunit import (setup_test_memory,
23 check_sim_memory)
24
25 # test with ALU data and Logical data
26 from soc.fu.alu.test.test_pipe_caller import ALUTestCase
27 from soc.fu.logical.test.test_pipe_caller import LogicalTestCase
28 from soc.fu.shift_rot.test.test_pipe_caller import ShiftRotTestCase
29 from soc.fu.cr.test.test_pipe_caller import CRTestCase
30 from soc.fu.branch.test.test_pipe_caller import BranchTestCase
31 from soc.fu.ldst.test.test_pipe_caller import LDSTTestCase
32
33
34 def set_issue(core, dec2, sim):
35 yield core.issue_i.eq(1)
36 yield
37 yield core.issue_i.eq(0)
38 while True:
39 busy_o = yield core.busy_o
40 if busy_o:
41 break
42 print("!busy",)
43 yield
44
45
46 def wait_for_busy_clear(cu):
47 while True:
48 busy_o = yield cu.busy_o
49 if not busy_o:
50 break
51 print("busy",)
52 yield
53
54
55 class TestRunner(FHDLTestCase):
56 def __init__(self, tst_data):
57 super().__init__("run_all")
58 self.test_data = tst_data
59
60 def run_all(self):
61 m = Module()
62 comb = m.d.comb
63 instruction = Signal(32)
64 ivalid_i = Signal()
65
66 m.submodules.core = core = NonProductionCore()
67 pdecode2 = core.pdecode2
68 l0 = core.l0
69
70 comb += core.raw_opcode_i.eq(instruction)
71 comb += core.ivalid_i.eq(ivalid_i)
72
73 # temporary hack: says "go" immediately for both address gen and ST
74 ldst = core.fus.fus['ldst0']
75 m.d.comb += ldst.ad.go.eq(ldst.ad.rel) # link addr-go direct to rel
76 m.d.comb += ldst.st.go.eq(ldst.st.rel) # link store-go direct to rel
77
78 # nmigen Simulation
79 sim = Simulator(m)
80 sim.add_clock(1e-6)
81
82 def process():
83 yield core.issue_i.eq(0)
84 yield
85
86 for test in self.test_data:
87 print(test.name)
88 program = test.program
89 self.subTest(test.name)
90 sim = ISA(pdecode2, test.regs, test.sprs, test.cr, test.mem,
91 test.msr)
92 gen = program.generate_instructions()
93 instructions = list(zip(gen, program.assembly.splitlines()))
94
95 yield from setup_test_memory(l0, sim)
96
97 # set up INT regfile, "direct" write (bypass rd/write ports)
98 for i in range(32):
99 yield core.regs.int.regs[i].reg.eq(test.regs[i])
100
101 # set up CR regfile, "direct" write across all CRs
102 cr = test.cr
103 #cr = int('{:32b}'.format(cr)[::-1], 2)
104 print ("cr reg", hex(cr))
105 for i in range(8):
106 #j = 7-i
107 cri = (cr>>(i*4)) & 0xf
108 #cri = int('{:04b}'.format(cri)[::-1], 2)
109 print ("cr reg", hex(cri), i,
110 core.regs.cr.regs[i].reg.shape())
111 yield core.regs.cr.regs[i].reg.eq(cri)
112
113 # set up XER. "direct" write (bypass rd/write ports)
114 xregs = core.regs.xer
115 print ("sprs", test.sprs)
116 if special_sprs['XER'] in test.sprs:
117 xer = test.sprs[special_sprs['XER']]
118 sobit = xer[XER_bits['SO']].value
119 yield xregs.regs[xregs.SO].reg.eq(sobit)
120 cabit = xer[XER_bits['CA']].value
121 ca32bit = xer[XER_bits['CA32']].value
122 yield xregs.regs[xregs.CA].reg.eq(Cat(cabit, ca32bit))
123 ovbit = xer[XER_bits['OV']].value
124 ov32bit = xer[XER_bits['OV32']].value
125 yield xregs.regs[xregs.OV].reg.eq(Cat(ovbit, ov32bit))
126 else:
127 yield xregs.regs[xregs.SO].reg.eq(0)
128 yield xregs.regs[xregs.OV].reg.eq(0)
129 yield xregs.regs[xregs.CA].reg.eq(0)
130
131 index = sim.pc.CIA.value//4
132 while index < len(instructions):
133 ins, code = instructions[index]
134
135 print("instruction: 0x{:X}".format(ins & 0xffffffff))
136 print(code)
137
138 # ask the decoder to decode this binary data (endian'd)
139 yield core.bigendian_i.eq(0) # little / big?
140 yield instruction.eq(ins) # raw binary instr.
141 yield ivalid_i.eq(1)
142 yield Settle()
143 #fn_unit = yield pdecode2.e.fn_unit
144 #fuval = self.funit.value
145 #self.assertEqual(fn_unit & fuval, fuval)
146
147 # XER
148 so = yield xregs.regs[xregs.SO].reg
149 ov = yield xregs.regs[xregs.OV].reg
150 ca = yield xregs.regs[xregs.CA].reg
151 oe = yield pdecode2.e.oe.oe
152 oe_ok = yield pdecode2.e.oe.oe_ok
153
154 print ("before: so/ov-32/ca-32", so, bin(ov), bin(ca))
155 print ("oe:", oe, oe_ok)
156
157 # set operand and get inputs
158 yield from set_issue(core, pdecode2, sim)
159 yield Settle()
160
161 yield from wait_for_busy_clear(core)
162 yield ivalid_i.eq(0)
163 yield
164
165 print ("sim", code)
166 # call simulated operation
167 opname = code.split(' ')[0]
168 yield from sim.call(opname)
169 index = sim.pc.CIA.value//4
170
171 # int regs
172 intregs = []
173 for i in range(32):
174 rval = yield core.regs.int.regs[i].reg
175 intregs.append(rval)
176 print ("int regs", list(map(hex, intregs)))
177 for i in range(32):
178 simregval = sim.gpr[i].asint()
179 self.assertEqual(simregval, intregs[i],
180 "int reg %d not equal %s" % (i, repr(code)))
181
182 # CRs
183 crregs = []
184 for i in range(8):
185 rval = yield core.regs.cr.regs[i].reg
186 crregs.append(rval)
187 print ("cr regs", list(map(hex, crregs)))
188 print ("sim cr reg", hex(cr))
189 for i in range(8):
190 rval = crregs[i]
191 cri = sim.crl[7-i].get_range().value
192 print ("cr reg", i, hex(cri), i, hex(rval))
193 # XXX https://bugs.libre-soc.org/show_bug.cgi?id=363
194 self.assertEqual(cri, rval,
195 "cr reg %d not equal %s" % (i, repr(code)))
196
197 # XER
198 so = yield xregs.regs[xregs.SO].reg
199 ov = yield xregs.regs[xregs.OV].reg
200 ca = yield xregs.regs[xregs.CA].reg
201
202 print ("sim SO", sim.spr['XER'][XER_bits['SO']])
203 e_so = sim.spr['XER'][XER_bits['SO']].value
204 e_ov = sim.spr['XER'][XER_bits['OV']].value
205 e_ov32 = sim.spr['XER'][XER_bits['OV32']].value
206 e_ca = sim.spr['XER'][XER_bits['CA']].value
207 e_ca32 = sim.spr['XER'][XER_bits['CA32']].value
208
209 e_ov = e_ov | (e_ov32<<1)
210 e_ca = e_ca | (e_ca32<<1)
211
212 print ("after: so/ov-32/ca-32", so, bin(ov), bin(ca))
213 self.assertEqual(e_so, so, "so mismatch %s" % (repr(code)))
214 self.assertEqual(e_ov, ov, "ov mismatch %s" % (repr(code)))
215 self.assertEqual(e_ca, ca, "ca mismatch %s" % (repr(code)))
216
217 # Memory check
218 yield from check_sim_memory(self, l0, sim, code)
219
220 sim.add_sync_process(process)
221 with sim.write_vcd("core_simulator.vcd", "core_simulator.gtkw",
222 traces=[]):
223 sim.run()
224
225
226 if __name__ == "__main__":
227 unittest.main(exit=False)
228 suite = unittest.TestSuite()
229 suite.addTest(TestRunner(LDSTTestCase.test_data))
230 suite.addTest(TestRunner(CRTestCase.test_data))
231 suite.addTest(TestRunner(ShiftRotTestCase.test_data))
232 suite.addTest(TestRunner(LogicalTestCase.test_data))
233 suite.addTest(TestRunner(ALUTestCase.test_data))
234 suite.addTest(TestRunner(BranchTestCase.test_data))
235
236 runner = unittest.TextTestRunner()
237 runner.run(suite)
238