remove unneeded imports
[soc.git] / src / soc / experiment / test / test_compalu_multi.py
1 """Computation Unit (aka "ALU Manager").
2
3 Manages a Pipeline or FSM, ensuring that the start and end time are 100%
4 monitored. At no time may the ALU proceed without this module notifying
5 the Dependency Matrices. At no time is a result production "abandoned".
6 This module blocks (indicates busy) starting from when it first receives
7 an opcode until it receives notification that
8 its result(s) have been successfully stored in the regfile(s)
9
10 Documented at http://libre-soc.org/3d_gpu/architecture/compunit
11 """
12
13 from nmigen.compat.sim import run_simulation, Settle
14 from nmigen.cli import rtlil
15 from nmigen import Module
16
17 from soc.decoder.power_enums import InternalOp
18
19 from soc.experiment.compalu_multi import MultiCompUnit
20 from soc.experiment.alu_hier import ALU, DummyALU
21 from soc.fu.alu.alu_input_record import CompALUOpSubset
22
23
24 def op_sim(dut, a, b, op, inv_a=0, imm=0, imm_ok=0, zero_a=0):
25 yield dut.issue_i.eq(0)
26 yield
27 yield dut.src_i[0].eq(a)
28 yield dut.src_i[1].eq(b)
29 yield dut.oper_i.insn_type.eq(op)
30 yield dut.oper_i.invert_a.eq(inv_a)
31 yield dut.oper_i.imm_data.imm.eq(imm)
32 yield dut.oper_i.imm_data.imm_ok.eq(imm_ok)
33 yield dut.oper_i.zero_a.eq(zero_a)
34 yield dut.issue_i.eq(1)
35 yield
36 yield dut.issue_i.eq(0)
37 yield
38 if not imm_ok or not zero_a:
39 yield dut.rd.go.eq(0b11)
40 while True:
41 yield
42 rd_rel_o = yield dut.rd.rel
43 print ("rd_rel", rd_rel_o)
44 if rd_rel_o:
45 break
46 yield dut.rd.go.eq(0)
47 if len(dut.src_i) == 3:
48 yield dut.rd.go.eq(0b100)
49 while True:
50 yield
51 rd_rel_o = yield dut.rd.rel
52 print ("rd_rel", rd_rel_o)
53 if rd_rel_o:
54 break
55 yield dut.rd.go.eq(0)
56
57 req_rel_o = yield dut.wr.rel
58 result = yield dut.data_o
59 print ("req_rel", req_rel_o, result)
60 while True:
61 req_rel_o = yield dut.wr.rel
62 result = yield dut.data_o
63 print ("req_rel", req_rel_o, result)
64 if req_rel_o:
65 break
66 yield
67 yield dut.wr.go[0].eq(1)
68 yield Settle()
69 result = yield dut.data_o
70 yield
71 print ("result", result)
72 yield dut.wr.go[0].eq(0)
73 yield
74 return result
75
76
77 def scoreboard_sim_dummy(dut):
78 result = yield from op_sim(dut, 5, 2, InternalOp.OP_NOP, inv_a=0,
79 imm=8, imm_ok=1)
80 assert result == 5, result
81
82 result = yield from op_sim(dut, 9, 2, InternalOp.OP_NOP, inv_a=0,
83 imm=8, imm_ok=1)
84 assert result == 9, result
85
86
87 def scoreboard_sim(dut):
88 result = yield from op_sim(dut, 5, 2, InternalOp.OP_ADD, inv_a=0,
89 imm=8, imm_ok=1)
90 assert result == 13
91
92 result = yield from op_sim(dut, 5, 2, InternalOp.OP_ADD)
93 assert result == 7
94
95 result = yield from op_sim(dut, 5, 2, InternalOp.OP_ADD, inv_a=1)
96 assert result == 65532
97
98 result = yield from op_sim(dut, 5, 2, InternalOp.OP_ADD, zero_a=1,
99 imm=8, imm_ok=1)
100 assert result == 8
101
102 result = yield from op_sim(dut, 5, 2, InternalOp.OP_ADD, zero_a=1)
103 assert result == 2
104
105
106 def test_compunit():
107
108 m = Module()
109 alu = ALU(16)
110 dut = MultiCompUnit(16, alu, CompALUOpSubset)
111 m.submodules.cu = dut
112
113 vl = rtlil.convert(dut, ports=dut.ports())
114 with open("test_compunit1.il", "w") as f:
115 f.write(vl)
116
117 run_simulation(m, scoreboard_sim(dut), vcd_name='test_compunit1.vcd')
118
119
120 class CompUnitParallelTest:
121 def __init__(self, dut):
122 self.dut = dut
123
124 # Operation cycle should not take longer than this:
125 self.MAX_BUSY_WAIT = 50
126
127 # Minimum duration in which issue_i will be kept inactive,
128 # during which busy_o must remain low.
129 self.MIN_BUSY_LOW = 5
130
131 # Number of cycles to stall until the assertion of go.
132 # One value, for each port. Can be zero, for no delay.
133 self.RD_GO_DELAY = [0, 3]
134
135 # store common data for the input operation of the processes
136 # input operation:
137 self.op = 0
138 self.inv_a = self.zero_a = 0
139 self.imm = self.imm_ok = 0
140 # input data:
141 self.a = self.b = 0
142
143 def driver(self):
144 print("Begin parallel test.")
145 yield from self.operation(5, 2, InternalOp.OP_ADD, inv_a=0,
146 imm=8, imm_ok=1)
147
148 def operation(self, a, b, op, inv_a=0, imm=0, imm_ok=0, zero_a=0):
149 # store data for the operation
150 self.a = a
151 self.b = b
152 self.op = op
153 self.inv_a = inv_a
154 self.imm = imm
155 self.imm_ok = imm_ok
156 self.zero_a = zero_a
157
158 # trigger operation cycle
159 yield from self.issue()
160
161 def issue(self):
162 # issue_i starts inactive
163 yield self.dut.issue_i.eq(0)
164
165 for n in range(self.MIN_BUSY_LOW):
166 yield
167 # busy_o must remain inactive. It cannot rise on its own.
168 busy_o = yield self.dut.busy_o
169 assert not busy_o
170
171 # activate issue_i to begin the operation cycle
172 yield self.dut.issue_i.eq(1)
173
174 # at the same time, present the operation
175 yield self.dut.oper_i.insn_type.eq(self.op)
176 yield self.dut.oper_i.invert_a.eq(self.inv_a)
177 yield self.dut.oper_i.imm_data.imm.eq(self.imm)
178 yield self.dut.oper_i.imm_data.imm_ok.eq(self.imm_ok)
179 yield self.dut.oper_i.zero_a.eq(self.zero_a)
180
181 # give one cycle for the CompUnit to latch the data
182 yield
183
184 # busy_o must keep being low in this cycle, because issue_i was
185 # low on the previous cycle.
186 # It cannot rise on its own.
187 # Also, busy_o and issue_i must never be active at the same time, ever.
188 busy_o = yield self.dut.busy_o
189 assert not busy_o
190
191 # Lower issue_i
192 yield self.dut.issue_i.eq(0)
193
194 # deactivate inputs along with issue_i, so we can be sure the data
195 # was latched at the correct cycle
196 yield self.dut.oper_i.insn_type.eq(0)
197 yield self.dut.oper_i.invert_a.eq(0)
198 yield self.dut.oper_i.imm_data.imm.eq(0)
199 yield self.dut.oper_i.imm_data.imm_ok.eq(0)
200 yield self.dut.oper_i.zero_a.eq(0)
201 yield
202
203 # wait for busy_o to lower
204 # timeout after self.MAX_BUSY_WAIT cycles
205 for n in range(self.MAX_BUSY_WAIT):
206 # sample busy_o in the current cycle
207 busy_o = yield self.dut.busy_o
208 if not busy_o:
209 # operation cycle ends when busy_o becomes inactive
210 break
211 yield
212
213 # if busy_o is still active, a timeout has occurred
214 # TODO: Uncomment this, once the test is complete:
215 # assert not busy_o
216
217 if busy_o:
218 print("If you are reading this, "
219 "it's because the above test failed, as expected,\n"
220 "with a timeout. It must pass, once the test is complete.")
221 return
222
223 print("If you are reading this, "
224 "it's because the above test unexpectedly passed.")
225
226 def rd(self, rd_idx):
227 # wait for issue_i to rise
228 while True:
229 issue_i = yield self.dut.issue_i
230 if issue_i:
231 break
232 # issue_i has not risen yet, so rd must keep low
233 rel = yield self.dut.rd.rel[rd_idx]
234 assert not rel
235 yield
236
237 # we do not want rd to rise on an immediate operand
238 # if it is immediate, exit the process
239 # TODO: don't exit the process, monitor rd instead to ensure it
240 # doesn't rise on its own
241 if (self.zero_a and rd_idx == 0) or (self.imm_ok and rd_idx == 1):
242 return
243
244 # issue_i has risen. rel must rise on the next cycle
245 rel = yield self.dut.rd.rel[rd_idx]
246 assert not rel
247
248 # stall for additional cycles. Check that rel doesn't fall on its own
249 for n in range(self.RD_GO_DELAY[rd_idx]):
250 yield
251 rel = yield self.dut.rd.rel[rd_idx]
252 assert rel
253
254 # Before asserting "go", make sure "rel" has risen.
255 # The use of Settle allows "go" to be set combinatorially,
256 # rising on the same cycle as "rel".
257 yield Settle()
258 rel = yield self.dut.rd.rel[rd_idx]
259 assert rel
260
261 # assert go for one cycle
262 yield self.dut.rd.go[rd_idx].eq(1)
263 yield
264
265 # rel must keep high, since go was inactive in the last cycle
266 rel = yield self.dut.rd.rel[rd_idx]
267 assert rel
268
269 # finish the go one-clock pulse
270 yield self.dut.rd.go[rd_idx].eq(0)
271 yield
272
273 # rel must have gone low in response to go being high
274 # on the previous cycle
275 rel = yield self.dut.rd.rel[rd_idx]
276 assert not rel
277
278 # TODO: also when dut.rd.go is set, put the expected value into
279 # the src_i. use dut.get_in[rd_idx] to do so
280
281 def wr(self, wr_idx):
282 # monitor self.dut.wr.req[rd_idx] and sets dut.wr.go[idx] for one cycle
283 yield
284 # TODO: also when dut.wr.go is set, check the output against the
285 # self.expected_o and assert. use dut.get_out(wr_idx) to do so.
286
287 def run_simulation(self, vcd_name):
288 run_simulation(self.dut, [self.driver(),
289 self.rd(0), # one read port (a)
290 self.rd(1), # one read port (b)
291 self.wr(0), # one write port (o)
292 ],
293 vcd_name=vcd_name)
294
295
296 def test_compunit_regspec3():
297
298 inspec = [('INT', 'a', '0:15'),
299 ('INT', 'b', '0:15'),
300 ('INT', 'c', '0:15')]
301 outspec = [('INT', 'o', '0:15'),
302 ]
303
304 regspec = (inspec, outspec)
305
306 m = Module()
307 alu = DummyALU(16)
308 dut = MultiCompUnit(regspec, alu, CompALUOpSubset)
309 m.submodules.cu = dut
310
311 run_simulation(m, scoreboard_sim_dummy(dut),
312 vcd_name='test_compunit_regspec3.vcd')
313
314
315 def test_compunit_regspec1():
316
317 inspec = [('INT', 'a', '0:15'),
318 ('INT', 'b', '0:15')]
319 outspec = [('INT', 'o', '0:15'),
320 ]
321
322 regspec = (inspec, outspec)
323
324 m = Module()
325 alu = ALU(16)
326 dut = MultiCompUnit(regspec, alu, CompALUOpSubset)
327 m.submodules.cu = dut
328
329 vl = rtlil.convert(dut, ports=dut.ports())
330 with open("test_compunit_regspec1.il", "w") as f:
331 f.write(vl)
332
333 run_simulation(m, scoreboard_sim(dut),
334 vcd_name='test_compunit_regspec1.vcd')
335
336 test = CompUnitParallelTest(dut)
337 test.run_simulation("test_compunit_parallel.vcd")
338
339
340 if __name__ == '__main__':
341 test_compunit()
342 test_compunit_regspec1()
343 test_compunit_regspec3()