Allow the formal engine to perform a same-cycle result in the ALU
[soc.git] / src / soc / litex / florent / ls180soc.py
1 #!/usr/bin/env python3
2
3 import os
4 import argparse
5 from functools import reduce
6 from operator import or_
7
8 from migen import (Signal, FSM, If, Display, Finish, NextValue, NextState,
9 Cat, Record, ClockSignal, wrap, ResetInserter)
10
11 from litex.build.generic_platform import Pins, Subsignal
12 from litex.build.sim import SimPlatform
13 from litex.build.io import CRG
14 from litex.build.sim.config import SimConfig
15
16 from litex.soc.integration.soc import SoCRegion
17 from litex.soc.integration.soc_core import SoCCore
18 from litex.soc.integration.soc_sdram import SoCSDRAM
19 from litex.soc.integration.builder import Builder
20 from litex.soc.integration.common import get_mem_data
21
22 from litedram import modules as litedram_modules
23 from litedram.phy.model import SDRAMPHYModel
24 #from litedram.phy.gensdrphy import GENSDRPHY, HalfRateGENSDRPHY
25 from litedram.common import PHYPadsCombiner, PhySettings
26 from litedram.phy.dfi import Interface as DFIInterface
27 from litex.soc.cores.spi import SPIMaster
28 from litex.soc.cores.pwm import PWM
29 #from litex.soc.cores.bitbang import I2CMaster
30 from litex.soc.cores import uart
31
32 from litex.tools.litex_sim import sdram_module_nphases, get_sdram_phy_settings
33
34 from litex.tools.litex_sim import Platform
35 from libresoc.ls180 import LS180Platform
36
37 from migen import Module
38 from litex.soc.interconnect.csr import AutoCSR
39
40 from libresoc import LibreSoC
41 from microwatt import Microwatt
42
43 # HACK!
44 from litex.soc.integration.soc import SoCCSRHandler
45 SoCCSRHandler.supported_address_width.append(12)
46
47 # GPIO Tristate -------------------------------------------------------
48 # doesn't work properly.
49 #from litex.soc.cores.gpio import GPIOTristate
50 from litex.soc.interconnect.csr import CSRStorage, CSRStatus, CSRField
51 from migen.genlib.cdc import MultiReg
52
53 # Imports
54 from litex.soc.interconnect import wishbone
55 from litesdcard.phy import (SDPHY, SDPHYClocker,
56 SDPHYInit, SDPHYCMDW, SDPHYCMDR,
57 SDPHYDATAW, SDPHYDATAR,
58 _sdpads_layout)
59 from litesdcard.core import SDCore
60 from litesdcard.frontend.dma import SDBlock2MemDMA, SDMem2BlockDMA
61 from litex.build.io import SDROutput, SDRInput
62
63
64 # I2C Master Bit-Banging --------------------------------------------------
65
66 class I2CMaster(Module, AutoCSR):
67 """I2C Master Bit-Banging
68
69 Provides the minimal hardware to do software I2C Master bit banging.
70
71 On the same write CSRStorage (_w), software can control SCL (I2C_SCL),
72 SDA direction and value (I2C_OE, I2C_W). Software get back SDA value
73 with the read CSRStatus (_r).
74 """
75 pads_layout = [("scl", 1), ("sda", 1)]
76 def __init__(self, pads):
77 self.pads = pads
78 self._w = CSRStorage(fields=[
79 CSRField("scl", size=1, offset=0),
80 CSRField("oe", size=1, offset=1),
81 CSRField("sda", size=1, offset=2)],
82 name="w")
83 self._r = CSRStatus(fields=[
84 CSRField("sda", size=1, offset=0)],
85 name="r")
86
87 self.connect(pads)
88
89 def connect(self, pads):
90 _sda_w = Signal()
91 _sda_oe = Signal()
92 _sda_r = Signal()
93 self.comb += [
94 pads.scl.eq(self._w.fields.scl),
95 pads.sda_oe.eq( self._w.fields.oe),
96 pads.sda_o.eq( self._w.fields.sda),
97 self._r.fields.sda.eq(pads.sda_i),
98 ]
99
100
101 class GPIOTristateASIC(Module, AutoCSR):
102 def __init__(self, pads):
103 nbits = len(pads.oe) # hack
104 self._oe = CSRStorage(nbits, description="GPIO Tristate(s) Control.")
105 self._in = CSRStatus(nbits, description="GPIO Input(s) Status.")
106 self._out = CSRStorage(nbits, description="GPIO Ouptut(s) Control.")
107
108 # # #
109
110 _pads = Record( (("i", nbits),
111 ("o", nbits),
112 ("oe", nbits)))
113 self.comb += _pads.i.eq(pads.i)
114 self.comb += pads.o.eq(_pads.o)
115 self.comb += pads.oe.eq(_pads.oe)
116
117 self.comb += _pads.oe.eq(self._oe.storage)
118 self.comb += _pads.o.eq(self._out.storage)
119 for i in range(nbits):
120 self.specials += MultiReg(_pads.i[i], self._in.status[i])
121
122 # SDCard PHY IO -------------------------------------------------------
123
124 class SDRPad(Module):
125 def __init__(self, pad, name, o, oe, i):
126 clk = ClockSignal()
127 _o = getattr(pad, "%s_o" % name)
128 _oe = getattr(pad, "%s_oe" % name)
129 _i = getattr(pad, "%s_i" % name)
130 self.specials += SDROutput(clk=clk, i=oe, o=_oe)
131 for j in range(len(_o)):
132 self.specials += SDROutput(clk=clk, i=o[j], o=_o[j])
133 self.specials += SDRInput(clk=clk, i=_i[j], o=i[j])
134
135
136 class SDPHYIOGen(Module):
137 def __init__(self, clocker, sdpads, pads):
138 # Rst
139 if hasattr(pads, "rst"):
140 self.comb += pads.rst.eq(0)
141
142 # Clk
143 self.specials += SDROutput(
144 clk = ClockSignal(),
145 i = ~clocker.clk & sdpads.clk,
146 o = pads.clk
147 )
148
149 # Cmd
150 c = sdpads.cmd
151 self.submodules.sd_cmd = SDRPad(pads, "cmd", c.o, c.oe, c.i)
152
153 # Data
154 d = sdpads.data
155 self.submodules.sd_data = SDRPad(pads, "data", d.o, d.oe, d.i)
156
157
158 class SDPHY(Module, AutoCSR):
159 def __init__(self, pads, device, sys_clk_freq,
160 cmd_timeout=10e-3, data_timeout=10e-3):
161 self.card_detect = CSRStatus() # Assume SDCard is present if no cd pin.
162 self.comb += self.card_detect.status.eq(getattr(pads, "cd", 0))
163
164 self.submodules.clocker = clocker = SDPHYClocker()
165 self.submodules.init = init = SDPHYInit()
166 self.submodules.cmdw = cmdw = SDPHYCMDW()
167 self.submodules.cmdr = cmdr = SDPHYCMDR(sys_clk_freq,
168 cmd_timeout, cmdw)
169 self.submodules.dataw = dataw = SDPHYDATAW()
170 self.submodules.datar = datar = SDPHYDATAR(sys_clk_freq,
171 data_timeout)
172
173 # # #
174
175 self.sdpads = sdpads = Record(_sdpads_layout)
176
177 # IOs
178 sdphy_cls = SDPHYIOGen
179 self.submodules.io = sdphy_cls(clocker, sdpads, pads)
180
181 # Connect pads_out of submodules to physical pads --------------
182 pl = [init, cmdw, cmdr, dataw, datar]
183 self.comb += [
184 sdpads.clk.eq( reduce(or_, [m.pads_out.clk for m in pl])),
185 sdpads.cmd.oe.eq( reduce(or_, [m.pads_out.cmd.oe for m in pl])),
186 sdpads.cmd.o.eq( reduce(or_, [m.pads_out.cmd.o for m in pl])),
187 sdpads.data.oe.eq(reduce(or_, [m.pads_out.data.oe for m in pl])),
188 sdpads.data.o.eq( reduce(or_, [m.pads_out.data.o for m in pl])),
189 ]
190 for m in pl:
191 self.comb += m.pads_out.ready.eq(self.clocker.ce)
192
193 # Connect physical pads to pads_in of submodules ---------------
194 for m in pl:
195 self.comb += m.pads_in.valid.eq(self.clocker.ce)
196 self.comb += m.pads_in.cmd.i.eq(sdpads.cmd.i)
197 self.comb += m.pads_in.data.i.eq(sdpads.data.i)
198
199 # Speed Throttling -------------------------------------------
200 self.comb += clocker.stop.eq(dataw.stop | datar.stop)
201
202
203 # Generic SDR PHY ---------------------------------------------------------
204
205 class GENSDRPHY(Module):
206 def __init__(self, pads, cl=2, cmd_latency=1):
207 pads = PHYPadsCombiner(pads)
208 addressbits = len(pads.a)
209 bankbits = len(pads.ba)
210 nranks = 1 if not hasattr(pads, "cs_n") else len(pads.cs_n)
211 databits = len(pads.dq_i)
212 assert cl in [2, 3]
213 assert databits%8 == 0
214
215 # PHY settings ----------------------------------------------------
216 self.settings = PhySettings(
217 phytype = "GENSDRPHY",
218 memtype = "SDR",
219 databits = databits,
220 dfi_databits = databits,
221 nranks = nranks,
222 nphases = 1,
223 rdphase = 0,
224 wrphase = 0,
225 rdcmdphase = 0,
226 wrcmdphase = 0,
227 cl = cl,
228 read_latency = cl + cmd_latency,
229 write_latency = 0
230 )
231
232 # DFI Interface ---------------------------------------------------
233 self.dfi = dfi = DFIInterface(addressbits, bankbits, nranks, databits)
234
235 # # #
236
237 # Iterate on pads groups ------------------------------------------
238 for pads_group in range(len(pads.groups)):
239 pads.sel_group(pads_group)
240
241 # Addresses and Commands --------------------------------------
242 p0 = dfi.p0
243 self.specials += [SDROutput(i=p0.address[i], o=pads.a[i])
244 for i in range(len(pads.a))]
245 self.specials += [SDROutput(i=p0.bank[i], o=pads.ba[i])
246 for i in range(len(pads.ba))]
247 self.specials += SDROutput(i=p0.cas_n, o=pads.cas_n)
248 self.specials += SDROutput(i=p0.ras_n, o=pads.ras_n)
249 self.specials += SDROutput(i=p0.we_n, o=pads.we_n)
250 if hasattr(pads, "cke"):
251 for i in range(len(pads.cke)):
252 self.specials += SDROutput(i=p0.cke[i], o=pads.cke[i])
253 if hasattr(pads, "cs_n"):
254 for i in range(len(pads.cs_n)):
255 self.specials += SDROutput(i=p0.cs_n[i], o=pads.cs_n[i])
256
257 # DQ/DM Data Path -------------------------------------------------
258
259 d = dfi.p0
260 wren = []
261 self.submodules.dq = SDRPad(pads, "dq", d.wrdata, d.wrdata_en, d.rddata)
262
263 if hasattr(pads, "dm"):
264 for i in range(len(pads.dm)):
265 self.specials += SDROutput(i=d.wrdata_mask[i], o=pads.dm[i])
266
267 # DQ/DM Control Path ----------------------------------------------
268 rddata_en = Signal(cl + cmd_latency)
269 self.sync += rddata_en.eq(Cat(dfi.p0.rddata_en, rddata_en))
270 self.sync += dfi.p0.rddata_valid.eq(rddata_en[-1])
271
272
273 # LibreSoC 180nm ASIC -------------------------------------------------------
274
275 class LibreSoCSim(SoCCore):
276 def __init__(self, cpu="libresoc", debug=False, with_sdram=True,
277 sdram_module = "AS4C16M16",
278 #sdram_data_width = 16,
279 #sdram_module = "MT48LC16M16",
280 sdram_data_width = 16,
281 irq_reserved_irqs = {'uart': 0},
282 platform='sim',
283 ):
284 assert cpu in ["libresoc", "microwatt"]
285 sys_clk_freq = int(50e6)
286
287 if platform == 'sim':
288 platform = Platform()
289 uart_name = "sim"
290 elif platform == 'ls180':
291 platform = LS180Platform()
292 uart_name = "uart"
293
294 #cpu_data_width = 32
295 cpu_data_width = 64
296
297 variant = "ls180"
298
299 # reserve XICS ICP and XICS memory addresses.
300 self.mem_map['icp'] = 0xc0010000
301 self.mem_map['ics'] = 0xc0011000
302 #self.csr_map["icp"] = 8 # 8 x 0x800 == 0x4000
303 #self.csr_map["ics"] = 10 # 10 x 0x800 == 0x5000
304
305 ram_init = []
306 if False:
307 #ram_init = get_mem_data({
308 # ram_fname: "0x00000000",
309 # }, "little")
310 ram_init = get_mem_data(ram_fname, "little")
311
312 # remap the main RAM to reset-start-address
313
314 # without sram nothing works, therefore move it to higher up
315 self.mem_map["sram"] = 0x90000000
316
317 # put UART at 0xc000200 (w00t! this works!)
318 self.csr_map["uart"] = 4
319
320 self.mem_map["main_ram"] = 0x90000000
321 self.mem_map["sram"] = 0x00000000
322
323 # SoCCore -------------------------------------------------------------
324 SoCCore.__init__(self, platform, clk_freq=sys_clk_freq,
325 cpu_type = "microwatt",
326 cpu_cls = LibreSoC if cpu == "libresoc" \
327 else Microwatt,
328 #bus_data_width = 64,
329 csr_address_width = 14, # limit to 0x8000
330 cpu_variant = variant,
331 csr_data_width = 8,
332 l2_size = 0,
333 with_uart = False,
334 uart_name = None,
335 with_sdram = with_sdram,
336 sdram_module = sdram_module,
337 sdram_data_width = sdram_data_width,
338 integrated_rom_size = 0, # if ram_fname else 0x10000,
339 integrated_sram_size = 0x200,
340 #integrated_main_ram_init = ram_init,
341 integrated_main_ram_size = 0x00000000 if with_sdram \
342 else 0x10000000 , # 256MB
343 )
344 self.platform.name = "ls180"
345
346 # SDR SDRAM ----------------------------------------------
347 if False: # not self.integrated_main_ram_size:
348 self.submodules.sdrphy = sdrphy_cls(platform.request("sdram"))
349
350 if cpu == "libresoc":
351 # XICS interrupt devices
352 icp_addr = self.mem_map['icp']
353 icp_wb = self.cpu.xics_icp
354 icp_region = SoCRegion(origin=icp_addr, size=0x20, cached=False)
355 self.bus.add_slave(name='icp', slave=icp_wb, region=icp_region)
356
357 ics_addr = self.mem_map['ics']
358 ics_wb = self.cpu.xics_ics
359 ics_region = SoCRegion(origin=ics_addr, size=0x1000, cached=False)
360 self.bus.add_slave(name='ics', slave=ics_wb, region=ics_region)
361
362 # CRG -----------------------------------------------------------------
363 self.submodules.crg = CRG(platform.request("sys_clk"),
364 platform.request("sys_rst"))
365
366 # PLL/Clock Select
367 clksel_i = platform.request("sys_clksel_i")
368 pll48_o = platform.request("sys_pll_48_o")
369
370 self.comb += self.cpu.clk_sel.eq(clksel_i) # allow clock src select
371 self.comb += pll48_o.eq(self.cpu.pll_48_o) # "test feed" from the PLL
372
373 #ram_init = []
374
375 # SDRAM ----------------------------------------------------
376 if with_sdram:
377 sdram_clk_freq = int(100e6) # FIXME: use 100MHz timings
378 sdram_module_cls = getattr(litedram_modules, sdram_module)
379 sdram_rate = "1:{}".format(
380 sdram_module_nphases[sdram_module_cls.memtype])
381 sdram_module = sdram_module_cls(sdram_clk_freq, sdram_rate)
382 phy_settings = get_sdram_phy_settings(
383 memtype = sdram_module.memtype,
384 data_width = sdram_data_width,
385 clk_freq = sdram_clk_freq)
386 #sdrphy_cls = HalfRateGENSDRPHY
387 sdrphy_cls = GENSDRPHY
388 sdram_pads = self.cpu.cpupads['sdr']
389 self.submodules.sdrphy = sdrphy_cls(sdram_pads)
390 #self.submodules.sdrphy = sdrphy_cls(sdram_module,
391 # phy_settings,
392 # init=ram_init
393 # )
394 self.add_sdram("sdram",
395 phy = self.sdrphy,
396 module = sdram_module,
397 origin = self.mem_map["main_ram"],
398 size = 0x80000000,
399 l2_cache_size = 0, # 8192
400 l2_cache_min_data_width = 128,
401 l2_cache_reverse = True
402 )
403 # FIXME: skip memtest to avoid corrupting memory
404 self.add_constant("MEMTEST_BUS_SIZE", 128//16)
405 self.add_constant("MEMTEST_DATA_SIZE", 128//16)
406 self.add_constant("MEMTEST_ADDR_SIZE", 128//16)
407 self.add_constant("MEMTEST_BUS_DEBUG", 1)
408 self.add_constant("MEMTEST_ADDR_DEBUG", 1)
409 self.add_constant("MEMTEST_DATA_DEBUG", 1)
410
411 # SDRAM clock
412 sys_clk = ClockSignal()
413 sdr_clk = self.cpu.cpupads['sdram_clock']
414 #self.specials += DDROutput(1, 0, , sdram_clk)
415 self.specials += SDROutput(clk=sys_clk, i=sys_clk, o=sdr_clk)
416
417 # UART
418 uart_core_pads = self.cpu.cpupads['uart']
419 self.submodules.uart_phy = uart.UARTPHY(
420 pads = uart_core_pads,
421 clk_freq = self.sys_clk_freq,
422 baudrate = 115200)
423 self.submodules.uart = ResetInserter()(uart.UART(self.uart_phy,
424 tx_fifo_depth = 16,
425 rx_fifo_depth = 16))
426
427 self.csr.add("uart_phy", use_loc_if_exists=True)
428 self.csr.add("uart", use_loc_if_exists=True)
429 self.irq.add("uart", use_loc_if_exists=True)
430
431 # GPIOs (bi-directional)
432 gpio_core_pads = self.cpu.cpupads['gpio']
433 self.submodules.gpio = GPIOTristateASIC(gpio_core_pads)
434 self.add_csr("gpio")
435
436 # SPI Master
437 print ("cpupadkeys", self.cpu.cpupads.keys())
438 self.submodules.spimaster = SPIMaster(
439 pads = self.cpu.cpupads['mspi1'],
440 data_width = 8,
441 sys_clk_freq = sys_clk_freq,
442 spi_clk_freq = 8e6,
443 )
444 self.add_csr("spimaster")
445
446 # SPI SDCard (1 wide)
447 spi_clk_freq = 400e3
448 pads = self.cpu.cpupads['mspi0']
449 spisdcard = SPIMaster(pads, 8, self.sys_clk_freq, spi_clk_freq)
450 spisdcard.add_clk_divider()
451 setattr(self.submodules, 'spisdcard', spisdcard)
452 self.add_csr('spisdcard')
453
454 # EINTs - very simple, wire up top 3 bits to ls180 "eint" pins
455 eintpads = self.cpu.cpupads['eint']
456 print ("eintpads", eintpads)
457 self.comb += self.cpu.interrupt[12:16].eq(eintpads)
458
459 # JTAG
460 jtagpads = platform.request("jtag")
461 self.comb += self.cpu.jtag_tck.eq(jtagpads.tck)
462 self.comb += self.cpu.jtag_tms.eq(jtagpads.tms)
463 self.comb += self.cpu.jtag_tdi.eq(jtagpads.tdi)
464 self.comb += jtagpads.tdo.eq(self.cpu.jtag_tdo)
465
466 # NC - allows some iopads to be connected up
467 # sigh, just do something, anything, to stop yosys optimising these out
468 nc_pads = platform.request("nc")
469 num_nc = len(nc_pads)
470 self.nc = Signal(num_nc)
471 self.comb += self.nc.eq(nc_pads)
472 self.dummy = Signal(num_nc)
473 for i in range(num_nc):
474 self.sync += self.dummy[i].eq(self.nc[i] | self.cpu.interrupt[0])
475
476 # PWM
477 pwmpads = self.cpu.cpupads['pwm']
478 for i in range(2):
479 name = "pwm%d" % i
480 setattr(self.submodules, name, PWM(pwmpads[i]))
481 self.add_csr(name)
482
483 # I2C Master
484 i2c_core_pads = self.cpu.cpupads['mtwi']
485 self.submodules.i2c = I2CMaster(i2c_core_pads)
486 self.add_csr("i2c")
487
488 # SDCard -----------------------------------------------------
489
490 # Emulator / Pads
491 sdcard_pads = self.cpu.cpupads['sd0']
492
493 # Core
494 self.submodules.sdphy = SDPHY(sdcard_pads,
495 self.platform.device, self.clk_freq)
496 self.submodules.sdcore = SDCore(self.sdphy)
497 self.add_csr("sdphy")
498 self.add_csr("sdcore")
499
500 # Block2Mem DMA
501 bus = wishbone.Interface(data_width=self.bus.data_width,
502 adr_width=self.bus.address_width)
503 self.submodules.sdblock2mem = SDBlock2MemDMA(bus=bus,
504 endianness=self.cpu.endianness)
505 self.comb += self.sdcore.source.connect(self.sdblock2mem.sink)
506 dma_bus = self.bus if not hasattr(self, "dma_bus") else self.dma_bus
507 dma_bus.add_master("sdblock2mem", master=bus)
508 self.add_csr("sdblock2mem")
509
510 # Mem2Block DMA
511 bus = wishbone.Interface(data_width=self.bus.data_width,
512 adr_width=self.bus.address_width)
513 self.submodules.sdmem2block = SDMem2BlockDMA(bus=bus,
514 endianness=self.cpu.endianness)
515 self.comb += self.sdmem2block.source.connect(self.sdcore.sink)
516 dma_bus = self.bus if not hasattr(self, "dma_bus") else self.dma_bus
517 dma_bus.add_master("sdmem2block", master=bus)
518 self.add_csr("sdmem2block")
519
520 # Debug ---------------------------------------------------------------
521 if not debug:
522 return
523
524 jtag_en = ('jtag' in variant) or variant == 'ls180'
525
526 # setup running of DMI FSM
527 dmi_addr = Signal(4)
528 dmi_din = Signal(64)
529 dmi_dout = Signal(64)
530 dmi_wen = Signal(1)
531 dmi_req = Signal(1)
532
533 # debug log out
534 dbg_addr = Signal(4)
535 dbg_dout = Signal(64)
536 dbg_msg = Signal(1)
537
538 # capture pc from dmi
539 pc = Signal(64)
540 active_dbg = Signal()
541 active_dbg_cr = Signal()
542 active_dbg_xer = Signal()
543
544 # xer flags
545 xer_so = Signal()
546 xer_ca = Signal()
547 xer_ca32 = Signal()
548 xer_ov = Signal()
549 xer_ov32 = Signal()
550
551 # increment counter, Stop after 100000 cycles
552 uptime = Signal(64)
553 self.sync += uptime.eq(uptime + 1)
554 #self.sync += If(uptime == 1000000000000, Finish())
555
556 # DMI FSM counter and FSM itself
557 dmicount = Signal(10)
558 dmirunning = Signal(1)
559 dmi_monitor = Signal(1)
560 dmifsm = FSM()
561 self.submodules += dmifsm
562
563 # DMI FSM
564 dmifsm.act("START",
565 If(dmi_req & dmi_wen,
566 (self.cpu.dmi_addr.eq(dmi_addr), # DMI Addr
567 self.cpu.dmi_din.eq(dmi_din), # DMI in
568 self.cpu.dmi_req.eq(1), # DMI request
569 self.cpu.dmi_wr.eq(1), # DMI write
570 If(self.cpu.dmi_ack,
571 (NextState("IDLE"),
572 )
573 ),
574 ),
575 ),
576 If(dmi_req & ~dmi_wen,
577 (self.cpu.dmi_addr.eq(dmi_addr), # DMI Addr
578 self.cpu.dmi_req.eq(1), # DMI request
579 self.cpu.dmi_wr.eq(0), # DMI read
580 If(self.cpu.dmi_ack,
581 # acknowledge received: capture data.
582 (NextState("IDLE"),
583 NextValue(dbg_addr, dmi_addr),
584 NextValue(dbg_dout, self.cpu.dmi_dout),
585 NextValue(dbg_msg, 1),
586 ),
587 ),
588 ),
589 )
590 )
591
592 # DMI response received: reset the dmi request and check if
593 # in "monitor" mode
594 dmifsm.act("IDLE",
595 If(dmi_monitor,
596 NextState("FIRE_MONITOR"), # fire "monitor" on next cycle
597 ).Else(
598 NextState("START"), # back to start on next cycle
599 ),
600 NextValue(dmi_req, 0),
601 NextValue(dmi_addr, 0),
602 NextValue(dmi_din, 0),
603 NextValue(dmi_wen, 0),
604 )
605
606 # "monitor" mode fires off a STAT request
607 dmifsm.act("FIRE_MONITOR",
608 (NextValue(dmi_req, 1),
609 NextValue(dmi_addr, 1), # DMI STAT address
610 NextValue(dmi_din, 0),
611 NextValue(dmi_wen, 0), # read STAT
612 NextState("START"), # back to start on next cycle
613 )
614 )
615
616 self.comb += xer_so.eq((dbg_dout & 1) == 1)
617 self.comb += xer_ca.eq((dbg_dout & 4) == 4)
618 self.comb += xer_ca32.eq((dbg_dout & 8) == 8)
619 self.comb += xer_ov.eq((dbg_dout & 16) == 16)
620 self.comb += xer_ov32.eq((dbg_dout & 32) == 32)
621
622 # debug messages out
623 self.sync += If(dbg_msg,
624 (If(active_dbg & (dbg_addr == 0b10), # PC
625 Display("pc : %016x", dbg_dout),
626 ),
627 If(dbg_addr == 0b10, # PC
628 pc.eq(dbg_dout), # capture PC
629 ),
630 #If(dbg_addr == 0b11, # MSR
631 # Display(" msr: %016x", dbg_dout),
632 #),
633 If(dbg_addr == 0b1000, # CR
634 Display(" cr : %016x", dbg_dout),
635 ),
636 If(dbg_addr == 0b1001, # XER
637 Display(" xer: so %d ca %d 32 %d ov %d 32 %d",
638 xer_so, xer_ca, xer_ca32, xer_ov, xer_ov32),
639 ),
640 If(dbg_addr == 0b101, # GPR
641 Display(" gpr: %016x", dbg_dout),
642 ),
643 # also check if this is a "stat"
644 If(dbg_addr == 1, # requested a STAT
645 #Display(" stat: %x", dbg_dout),
646 If(dbg_dout & 2, # bit 2 of STAT is "stopped" mode
647 dmirunning.eq(1), # continue running
648 dmi_monitor.eq(0), # and stop monitor mode
649 ),
650 ),
651 dbg_msg.eq(0)
652 )
653 )
654
655 # kick off a "stop"
656 self.sync += If(uptime == 0,
657 (dmi_addr.eq(0), # CTRL
658 dmi_din.eq(1<<0), # STOP
659 dmi_req.eq(1),
660 dmi_wen.eq(1),
661 )
662 )
663
664 self.sync += If(uptime == 4,
665 dmirunning.eq(1),
666 )
667
668 self.sync += If(dmirunning,
669 dmicount.eq(dmicount + 1),
670 )
671
672 # loop every 1<<N cycles
673 cyclewid = 9
674
675 # get the PC
676 self.sync += If(dmicount == 4,
677 (dmi_addr.eq(0b10), # NIA
678 dmi_req.eq(1),
679 dmi_wen.eq(0),
680 )
681 )
682
683 # kick off a "step"
684 self.sync += If(dmicount == 8,
685 (dmi_addr.eq(0), # CTRL
686 dmi_din.eq(1<<3), # STEP
687 dmi_req.eq(1),
688 dmi_wen.eq(1),
689 dmirunning.eq(0), # stop counter, need to fire "monitor"
690 dmi_monitor.eq(1), # start "monitor" instead
691 )
692 )
693
694 # limit range of pc for debug reporting
695 #self.comb += active_dbg.eq((0x378c <= pc) & (pc <= 0x38d8))
696 #self.comb += active_dbg.eq((0x0 < pc) & (pc < 0x58))
697 self.comb += active_dbg.eq(1)
698
699
700 # get the MSR
701 self.sync += If(active_dbg & (dmicount == 12),
702 (dmi_addr.eq(0b11), # MSR
703 dmi_req.eq(1),
704 dmi_wen.eq(0),
705 )
706 )
707
708 if cpu == "libresoc":
709 #self.comb += active_dbg_cr.eq((0x10300 <= pc) & (pc <= 0x12600))
710 self.comb += active_dbg_cr.eq(0)
711
712 # get the CR
713 self.sync += If(active_dbg_cr & (dmicount == 16),
714 (dmi_addr.eq(0b1000), # CR
715 dmi_req.eq(1),
716 dmi_wen.eq(0),
717 )
718 )
719
720 #self.comb += active_dbg_xer.eq((0x10300 <= pc) & (pc <= 0x1094c))
721 self.comb += active_dbg_xer.eq(active_dbg_cr)
722
723 # get the CR
724 self.sync += If(active_dbg_xer & (dmicount == 20),
725 (dmi_addr.eq(0b1001), # XER
726 dmi_req.eq(1),
727 dmi_wen.eq(0),
728 )
729 )
730
731 # read all 32 GPRs
732 for i in range(32):
733 self.sync += If(active_dbg & (dmicount == 24+(i*8)),
734 (dmi_addr.eq(0b100), # GSPR addr
735 dmi_din.eq(i), # r1
736 dmi_req.eq(1),
737 dmi_wen.eq(1),
738 )
739 )
740
741 self.sync += If(active_dbg & (dmicount == 28+(i*8)),
742 (dmi_addr.eq(0b101), # GSPR data
743 dmi_req.eq(1),
744 dmi_wen.eq(0),
745 )
746 )
747
748 # monitor bbus read/write
749 self.sync += If(active_dbg & self.cpu.dbus.stb & self.cpu.dbus.ack,
750 Display(" [%06x] dadr: %8x, we %d s %01x w %016x r: %016x",
751 #uptime,
752 0,
753 self.cpu.dbus.adr,
754 self.cpu.dbus.we,
755 self.cpu.dbus.sel,
756 self.cpu.dbus.dat_w,
757 self.cpu.dbus.dat_r
758 )
759 )
760
761 return
762
763 # monitor ibus write
764 self.sync += If(active_dbg & self.cpu.ibus.stb & self.cpu.ibus.ack &
765 self.cpu.ibus.we,
766 Display(" [%06x] iadr: %8x, s %01x w %016x",
767 #uptime,
768 0,
769 self.cpu.ibus.adr,
770 self.cpu.ibus.sel,
771 self.cpu.ibus.dat_w,
772 )
773 )
774 # monitor ibus read
775 self.sync += If(active_dbg & self.cpu.ibus.stb & self.cpu.ibus.ack &
776 ~self.cpu.ibus.we,
777 Display(" [%06x] iadr: %8x, s %01x r %016x",
778 #uptime,
779 0,
780 self.cpu.ibus.adr,
781 self.cpu.ibus.sel,
782 self.cpu.ibus.dat_r
783 )
784 )
785
786 # Build -----------------------------------------------------------------------
787
788 def main():
789 parser = argparse.ArgumentParser(description="LiteX LibreSoC CPU Sim")
790 parser.add_argument("--cpu", default="libresoc",
791 help="CPU to use: libresoc (default) or microwatt")
792 parser.add_argument("--platform", default="sim",
793 help="platform (sim or ls180)")
794 parser.add_argument("--debug", action="store_true",
795 help="Enable debug traces")
796 parser.add_argument("--trace", action="store_true",
797 help="Enable tracing")
798 parser.add_argument("--trace-start", default=0,
799 help="Cycle to start FST tracing")
800 parser.add_argument("--trace-end", default=-1,
801 help="Cycle to end FST tracing")
802 parser.add_argument("--build", action="store_true", help="Build bitstream")
803 args = parser.parse_args()
804
805
806 if args.platform == 'ls180':
807 soc = LibreSoCSim(cpu=args.cpu, debug=args.debug,
808 platform=args.platform)
809 builder = Builder(soc, compile_gateware = True)
810 builder.build(run = True)
811 os.chdir("../")
812 else:
813
814 sim_config = SimConfig(default_clk="sys_clk")
815 sim_config.add_module("serial2console", "serial")
816
817 for i in range(2):
818 soc = LibreSoCSim(cpu=args.cpu, debug=args.debug,
819 platform=args.platform)
820 builder = Builder(soc, compile_gateware = i!=0)
821 builder.build(sim_config=sim_config,
822 run = i!=0,
823 trace = args.trace,
824 trace_start = int(args.trace_start),
825 trace_end = int(args.trace_end),
826 trace_fst = 0)
827 os.chdir("../")
828
829 if __name__ == "__main__":
830 main()